WorldWideScience

Sample records for indium arsenide-zinc selenide

  1. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    Science.gov (United States)

    Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; Van Hest, Maikel [Lakewood, CO; Ginley, David S [Evergreen, CO; Nekuda, Jennifer A [Lakewood, CO

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  2. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    Science.gov (United States)

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  3. Toxicity of indium arsenide, gallium arsenide, and aluminium gallium arsenide

    International Nuclear Information System (INIS)

    Tanaka, Akiyo

    2004-01-01

    Gallium arsenide (GaAs), indium arsenide (InAs), and aluminium gallium arsenide (AlGaAs) are semiconductor applications. Although the increased use of these materials has raised concerns about occupational exposure to them, there is little information regarding the adverse health effects to workers arising from exposure to these particles. However, available data indicate these semiconductor materials can be toxic in animals. Although acute and chronic toxicity of the lung, reproductive organs, and kidney are associated with exposure to these semiconductor materials, in particular, chronic toxicity should pay much attention owing to low solubility of these materials. Between InAs, GaAs, and AlGaAs, InAs was the most toxic material to the lung followed by GaAs and AlGaAs when given intratracheally. This was probably due to difference in the toxicity of the counter-element of arsenic in semiconductor materials, such as indium, gallium, or aluminium, and not arsenic itself. It appeared that indium, gallium, or aluminium was toxic when released from the particles, though the physical character of the particles also contributes to toxic effect. Although there is no evidence of the carcinogenicity of InAs or AlGaAs, GaAs and InP, which are semiconductor materials, showed the clear evidence of carcinogenic potential. It is necessary to pay much greater attention to the human exposure of semiconductor materials

  4. Optical and Electrical Characterization of Melt-Grown Bulk Indium Gallium Arsenide and Indium Arsenic Phosphide Alloys

    Science.gov (United States)

    2011-03-01

    spectrum, photoluminescence (PL), and refractive index measurements. Other methods such as infrared imagery and micro probe wavelength dispersing ...States. AFIT/DS/ENP/11-M02 OPTICAL AND ELECTRICAL CHARACTERIZATION OF MELT- GROWN BULK INDIUM GALLIUM ARSENIDE AND INDIUM ARSENIC PHOSPHIDE ...CHARACTERIZATION OF MELT-GROWN BULK INDIUM GALLIUM ARSENIDE AND INDIUM ARSENIC PHOSPHIDE ALLOYS Jean Wei, BS, MS Approved

  5. Chemical bath deposited zinc sulfide buffer layers for copper indium gallium sulfur-selenide solar cells and device analysis

    International Nuclear Information System (INIS)

    Kundu, Sambhu; Olsen, Larry C.

    2005-01-01

    Cadmium-free copper indium gallium sulfur-selenide (CIGSS) thin film solar cells have been fabricated using chemical bath deposited (CBD) zinc sulfide (ZnS) buffer layers. Shell Solar Industries provided high quality CIGSS absorber layers. The use of CBD-ZnS, which is a higher band gap material than CdS, improved the quantum efficiency of fabricated cells at lower wavelengths, leading to an increase in short circuit current. The best cell to date yielded an active area (0.43 cm 2 ) efficiency of 13.3%. The effect of the ZnS buffer layer thickness on device performance was studied carefully. This paper also presents a discussion of issues relevant to the use of the CBD-ZnS buffer material for improving device performance

  6. A study on the optics of copper indium gallium (di)selenide (CIGS) solar cells with ultra-thin absorber layers

    NARCIS (Netherlands)

    Xu, M.; Wachters, A.J.H.; Van Deelen, J.; Mourad, M.C.D.; Buskens, P.J.P.

    2014-01-01

    We present a systematic study of the effect of variation of the zinc oxide (ZnO) and copper indium gallium (di)selenide (CIGS) layer thickness on the absorption characteristics of CIGS solar cells using a simulation program based on finite element method (FEM). We show that the absorption in the

  7. Electrical properties of indium arsenide irradiated with fast neutrons

    International Nuclear Information System (INIS)

    Kolin, N.G.; Osvenskii, V.B.; Rytova, N.S.; Yurova, E.S.

    1987-01-01

    A study was made of the influence of irradiation with fast reactor neutrons on electrical properties of indium arsenide samples with different dopant concentrations. The laws governing the formation and annealing of radiation defects in indium arsenide were found to be governed by the donor-acceptor interaction. Depending on the density of free carriers in the original crystal, irradiation could produce charged defects of predominantly donor or acceptor types. Donor defects in irradiated InAs samples were annealed practically completely, whereas a considerable fraction of residual acceptor defects was retained even after heat treatment at 900 degree C. The concentration of these residual acceptors depended on the electron density at the annealing temperature

  8. Electron emission from individual indium arsenide semiconductor nanowires

    NARCIS (Netherlands)

    Heeres, E.C.; Bakkers, E.P.A.M.; Roest, A.L.; Kaiser, M.A.; Oosterkamp, T.H.; Jonge, de N.

    2007-01-01

    A procedure was developed to mount individual semiconductor indium arsenide nanowires onto tungsten support tips to serve as electron field-emission sources. The electron emission properties of the single nanowires were precisely determined by measuring the emission pattern, current-voltage curve,

  9. Selective growth of gold onto copper indium sulfide selenide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Elena; Parisi, Juergen; Kolny-Olesiak, Joanna [Oldenburg Univ. (Germany). Inst. of Physics, Energy and Semiconductor Research

    2013-05-15

    Hybrid nanostructures are interesting materials for numerous applications in chemistry, physics, and biology, due to their novel properties and multiple functionalities. Here, we present a synthesis of metal-semiconductor hybrid nanostructures composed of nontoxic I-III-VI semiconductor nanoparticles and gold. Copper indium sulfide selenide (CuInSSe) nanocrystals with zinc blende structure and trigonal pyramidal shape, capped with dodecanethiol, serve as an original semiconductor part of a new hybrid nanostructure. Metallic gold nanocrystals selectively grow onto vertexes of these CuInSSe pyramids. The hybrid nanostructures were studied by transmission electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, and UV-Vis-absorption spectroscopy, which allowed us conclusions about their growth mechanism. Hybrid nanocrystals are generated by replacement of a sacrificial domain in the CuInSSe part. At the same time, small selenium nanocrystals form that stay attached to the remaining CuInSSe/Au particles. Additionally, we compare the synthesis and properties of CuInSSe-based hybrid nanostructures with those of copper indium disulfide (CuInS{sub 2}). CuInS{sub 2}/Au nanostructures grow by a different mechanism (surface growth) and do not show any selectivity. (orig.)

  10. Short-range order in amorphous thin films of indium selenides

    International Nuclear Information System (INIS)

    Zakharov, V.P.; Poltavtsev, Yu.G.; Sheremet, G.P.

    1982-01-01

    A structure of the short-range order and a character of interatomic interactions in indium selenides Insub(1-x)Sesub(x) with 0.333 <= x <= 0.75, obtained in the form of amorphous films 0.05-0.80 μm thick are studied using electron diffraction method. It is found out that mostly tetrahedrical coordination of nearest neighbours in the vicinity of indium atoms is characteristic for studied amorphous films, and coordination of selenium atoms is different. Amorphous film with x=0.75 posesses a considereably microheterogeneous structure of the short-range order, which is characterized by the presence of microunclusions of amorphous selenium and atoms of indium, octohedrically coordinated by selenium atoms

  11. From zinc selenate to zinc selenide nano structures synthesized by reduction process

    International Nuclear Information System (INIS)

    Hutagalung, S.D.; Eng, S.T.; Ahmad, Z.A.; Ishak Mat; Yussof Wahab

    2009-01-01

    One-dimensional nano structure materials are very attractive because of their electronic and optical properties depending on their size. It is well known that properties of material can be tuned by reducing size to nano scale because at the small sizes, that they behave differently with its bulk materials and the band gap will control by the size. The tunability of the band gap makes nano structured materials useful for many applications. As one of the wide band gaps semiconductor compounds, zinc selenide (ZnSe) nano structures (nanoparticles, nano wires, nano rods) have received much attention for the application in optoelectronic devices, such as blue laser diode, light emitting diodes, solar cells and IR optical windows. In this study, ZnSe nano structures have been synthesized by reduction process of zinc selenate using hydrazine hydrate (N 2 H 4 .2H 2 O). The reductive agent of hydrazine hydrate was added to the starting materials of zinc selenate were heat treated at 500 degree Celsius for 1 hour under argon flow to form one-dimensional nano structures. The SEM and TEM images show the formation of nano composite-like structure, which some small nano bar and nano pellets stick to the rod. The x-ray diffraction and elemental composition analysis confirm the formation of mixture zinc oxide and zinc selenide phases. (author)

  12. Ecotoxicological assessment of solar cell leachates: Copper indium gallium selenide (CIGS) cells show higher activity than organic photovoltaic (OPV) cells

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Nadja Rebecca [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätsstrasse 16, CH-8092 Zürich (Switzerland); Wehrli, Bernhard [Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätsstrasse 16, CH-8092 Zürich (Switzerland); Fent, Karl, E-mail: karl.fent@fhnw.ch [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätsstrasse 16, CH-8092 Zürich (Switzerland)

    2016-02-01

    Despite the increasing use of photovoltaics their potential environmental risks are poorly understood. Here, we compared ecotoxicological effects of two thin-film photovoltaics: established copper indium gallium selenide (CIGS) and organic photovoltaic (OPV) cells. Leachates were produced by exposing photovoltaics to UV light, physical damage, and exposure to environmentally relevant model waters, representing mesotrophic lake water, acidic rain, and seawater. CIGS cell leachates contained 583 μg L{sup −1} molybdenum at lake water, whereas at acidic rain and seawater conditions, iron, copper, zinc, molybdenum, cadmium, silver, and tin were present up to 7219 μg L{sup −1}. From OPV, copper (14 μg L{sup −1}), zinc (87 μg L{sup −1}) and silver (78 μg L{sup −1}) leached. Zebrafish embryos were exposed until 120 h post-fertilization to these extracts. CIGS leachates produced under acidic rain, as well as CIGS and OPV leachates produced under seawater conditions resulted in a marked hatching delay and increase in heart edema. Depending on model water and solar cell, transcriptional alterations occurred in genes involved in oxidative stress (cat), hormonal activity (vtg1, ar), metallothionein (mt2), ER stress (bip, chop), and apoptosis (casp9). The effects were dependent on the concentrations of cationic metals in leachates. Addition of ethylenediaminetetraacetic acid protected zebrafish embryos from morphological and molecular effects. Our study suggests that metals leaching from damaged CIGS cells, may pose a potential environmental risk. - Highlights: • Photovoltaics may be disposed in the environment after usage. • Copper indium gallium selenide (CIGS) and organic (OPV) cells were compared. • Morphological and molecular effects were assessed in zebrafish embryos. • Environmental condition affected metal leaching and ecotoxicological activity. • Damaged CIGS cells pose higher risk to the environment than OPV cells.

  13. A study on the optics of copper indium gallium (di)selenide (CIGS) solar cells with ultra-thin absorber layers.

    Science.gov (United States)

    Xu, Man; Wachters, Arthur J H; van Deelen, Joop; Mourad, Maurice C D; Buskens, Pascal J P

    2014-03-10

    We present a systematic study of the effect of variation of the zinc oxide (ZnO) and copper indium gallium (di)selenide (CIGS) layer thickness on the absorption characteristics of CIGS solar cells using a simulation program based on finite element method (FEM). We show that the absorption in the CIGS layer does not decrease monotonically with its layer thickness due to interference effects. Ergo, high precision is required in the CIGS production process, especially when using ultra-thin absorber layers, to accurately realize the required thickness of the ZnO, cadmium sulfide (CdS) and CIGS layer. We show that patterning the ZnO window layer can strongly suppress these interference effects allowing a higher tolerance in the production process.

  14. Chemical Potential Tuning and Enhancement of Thermoelectric Properties in Indium Selenides.

    Science.gov (United States)

    Rhyee, Jong-Soo; Kim, Jin Hee

    2015-03-20

    Researchers have long been searching for the materials to enhance thermoelectric performance in terms of nano scale approach in order to realize phonon-glass-electron-crystal and quantum confinement effects. Peierls distortion can be a pathway to enhance thermoelectric figure-of-merit ZT by employing natural nano-wire-like electronic and thermal transport. The phonon-softening known as Kohn anomaly, and Peierls lattice distortion decrease phonon energy and increase phonon scattering, respectively, and, as a result, they lower thermal conductivity. The quasi-one-dimensional electrical transport from anisotropic band structure ensures high Seebeck coefficient in Indium Selenide. The routes for high ZT materials development of In₄Se₃ - δ are discussed from quasi-one-dimensional property and electronic band structure calculation to materials synthesis, crystal growth, and their thermoelectric properties investigations. The thermoelectric properties of In₄Se₃ - δ can be enhanced by electron doping, as suggested from the Boltzmann transport calculation. Regarding the enhancement of chemical potential, the chlorine doped In₄Se₃ - δ Cl 0.03 compound exhibits high ZT over a wide temperature range and shows state-of-the-art thermoelectric performance of ZT = 1.53 at 450 °C as an n -type material. It was proven that multiple elements doping can enhance chemical potential further. Here, we discuss the recent progress on the enhancement of thermoelectric properties in Indium Selenides by increasing chemical potential.

  15. Phase diagram of (Li(1-x)Fe(x))OHFeSe: a bridge between iron selenide and arsenide superconductors.

    Science.gov (United States)

    Dong, Xiaoli; Zhou, Huaxue; Yang, Huaixin; Yuan, Jie; Jin, Kui; Zhou, Fang; Yuan, Dongna; Wei, Linlin; Li, Jianqi; Wang, Xinqiang; Zhang, Guangming; Zhao, Zhongxian

    2015-01-14

    Previous experimental results have shown important differences between iron selenide and arsenide superconductors which seem to suggest that the high-temperature superconductivity in these two subgroups of iron-based families may arise from different electronic ground states. Here we report the complete phase diagram of a newly synthesized superconducting (SC) system, (Li1-xFex)OHFeSe, with a structure similar to that of FeAs-based superconductors. In the non-SC samples, an antiferromagnetic (AFM) spin-density-wave (SDW) transition occurs at ∼127 K. This is the first example to demonstrate such an SDW phase in an FeSe-based superconductor system. Transmission electron microscopy shows that a well-known √5×√5 iron vacancy ordered state, resulting in an AFM order at ∼500 K in AyFe2-xSe2 (A = metal ions) superconductor systems, is absent in both non-SC and SC samples, but a unique superstructure with a modulation wave vector q = (1)/2(1,1,0), identical to that seen in the SC phase of KyFe2-xSe2, is dominant in the optimal SC sample (with an SC transition temperature Tc = 40 K). Hence, we conclude that the high-Tc superconductivity in (Li1-xFex)OHFeSe stems from the similarly weak AFM fluctuations as FeAs-based superconductors, suggesting a universal physical picture for both iron selenide and arsenide superconductors.

  16. Chemical Potential Tuning and Enhancement of Thermoelectric Properties in Indium Selenides

    Directory of Open Access Journals (Sweden)

    Jong-Soo Rhyee

    2015-03-01

    Full Text Available Researchers have long been searching for the materials to enhance thermoelectric performance in terms of nano scale approach in order to realize phonon-glass-electron-crystal and quantum confinement effects. Peierls distortion can be a pathway to enhance thermoelectric figure-of-merit ZT by employing natural nano-wire-like electronic and thermal transport. The phonon-softening known as Kohn anomaly, and Peierls lattice distortion decrease phonon energy and increase phonon scattering, respectively, and, as a result, they lower thermal conductivity. The quasi-one-dimensional electrical transport from anisotropic band structure ensures high Seebeck coefficient in Indium Selenide. The routes for high ZT materials development of In4Se3−δ are discussed from quasi-one-dimensional property and electronic band structure calculation to materials synthesis, crystal growth, and their thermoelectric properties investigations. The thermoelectric properties of In4Se3−δ can be enhanced by electron doping, as suggested from the Boltzmann transport calculation. Regarding the enhancement of chemical potential, the chlorine doped In4Se3−δCl0.03 compound exhibits high ZT over a wide temperature range and shows state-of-the-art thermoelectric performance of ZT = 1.53 at 450 °C as an n-type material. It was proven that multiple elements doping can enhance chemical potential further. Here, we discuss the recent progress on the enhancement of thermoelectric properties in Indium Selenides by increasing chemical potential.

  17. Indium Doped Zinc Oxide Thin Films Deposited by Ultrasonic Chemical Spray Technique, Starting from Zinc Acetylacetonate and Indium Chloride

    Directory of Open Access Journals (Sweden)

    Rajesh Biswal

    2014-07-01

    Full Text Available The physical characteristics of ultrasonically sprayed indium-doped zinc oxide (ZnO:In thin films, with electrical resistivity as low as 3.42 × 10−3 Ω·cm and high optical transmittance, in the visible range, of 50%–70% is presented. Zinc acetylacetonate and indium chloride were used as the organometallic zinc precursor and the doping source, respectively, achieving ZnO:In thin films with growth rate in the order of 100 nm/min. The effects of both indium concentration and the substrate temperature on the structural, morphological, optical, and electrical characteristics were measured. All the films were polycrystalline, fitting well with hexagonal wurtzite type ZnO. A switching in preferential growth, from (002 to (101 planes for indium doped samples were observed. The surface morphology of the films showed a change from hexagonal slices to triangle shaped grains as the indium concentration increases. Potential applications as transparent conductive electrodes based on the resulting low electrical resistance and high optical transparency of the studied samples are considered.

  18. Significantly enhanced thermal conductivity of indium arsenide nanowires via sulfur passivation.

    Science.gov (United States)

    Xiong, Yucheng; Tang, Hao; Wang, Xiaomeng; Zhao, Yang; Fu, Qiang; Yang, Juekuan; Xu, Dongyan

    2017-10-16

    In this work, we experimentally investigated the effect of sulfur passivation on thermal transport in indium arsenide (InAs) nanowires. Our measurement results show that thermal conductivity can be enhanced by a ratio up to 159% by sulfur passivation. Current-voltage (I-V) measurements were performed on both unpassivated and S-passivated InAs nanowires to understand the mechanism of thermal conductivity enhancement. We observed a remarkable improvement in electrical conductivity upon sulfur passivation and a significant contribution of electrons to thermal conductivity, which account for the enhanced thermal conductivity of the S-passivated InAs nanowires.

  19. Study on indium leaching from mechanically activated hard zinc residue

    Directory of Open Access Journals (Sweden)

    Yao J.H.

    2011-01-01

    Full Text Available In this study, changes in physicochemical properties and leachability of indium from mechanically activated hard zinc residue by planetary mill were investigated. The results showed that mechanical activation increased specific surface area, reaction activity of hard zinc residue, and decreased its particle size, which had a positive effect on indium extraction from hard zinc residue in hydrochloric acid solution. Kinetics of indium leaching from unmilled and activated hard zinc residue were also investigated, respectively. It was found that temperature had an obvious effect on indium leaching rate. Two different kinetic models corresponding to reactions which are diffusion controlled, [1-(1- x1/3]2=kt and (1-2x/3-(1-x2/3=kt were used to describe the kinetics of indium leaching from unmilled sample and activated sample, respectively. Their activation energies were determined to be 17.89 kJ/mol (umilled and 11.65 kJ/mol (activated within the temperature range of 30°C to 90°C, which is characteristic for a diffusion controlled process. The values of activation energy demonstrated that the leaching reaction of indium became less sensitive to temperature after hard zinc residue mechanically activated by planetary mill.

  20. Spin Injection in Indium Arsenide

    Directory of Open Access Journals (Sweden)

    Mark eJohnson

    2015-08-01

    Full Text Available In a two dimensional electron system (2DES, coherent spin precession of a ballistic spin polarized current, controlled by the Rashba spin orbit interaction, is a remarkable phenomenon that’s been observed only recently. Datta and Das predicted this precession would manifest as an oscillation in the source-drain conductance of the channel in a spin-injected field effect transistor (Spin FET. The indium arsenide single quantum well materials system has proven to be ideal for experimental confirmation. The 2DES carriers have high mobility, low sheet resistance, and high spin orbit interaction. Techniques for electrical injection and detection of spin polarized carriers were developed over the last two decades. Adapting the proposed Spin FET to the Johnson-Silsbee nonlocal geometry was a key to the first experimental demonstration of gate voltage controlled coherent spin precession. More recently, a new technique measured the oscillation as a function of channel length. This article gives an overview of the experimental phenomenology of the spin injection technique. We then review details of the application of the technique to InAs single quantum well (SQW devices. The effective magnetic field associated with Rashba spin-orbit coupling is described, and a heuristic model of coherent spin precession is presented. The two successful empirical demonstrations of the Datta Das conductance oscillation are then described and discussed.

  1. Extinction in an extended-face crystal of zinc selenide

    International Nuclear Information System (INIS)

    Stevenson, A.W.; Barnea, Z.

    1982-01-01

    X-ray intensity measurements from an extended-face single crystal of cubic zinc selenide obtained by McIntyre, Moss and Barnea (1980) have been re-analysed with a view to explaining the unresolved discrepancies between theory and experiment present in the original analysis of the most severely extinguished reflections. The results are shown to complement the recent findings of a wavelength dependent study using the same crystal specimen and foreshadow the need to allow for the presence of the Borrmann effect

  2. Photoconductivity in reactively evaporated copper indium selenide thin films

    Science.gov (United States)

    Urmila, K. S.; Asokan, T. Namitha; Pradeep, B.; Jacob, Rajani; Philip, Rachel Reena

    2014-01-01

    Copper indium selenide thin films of composition CuInSe2 with thickness of the order of 130 nm are deposited on glass substrate at a temperature of 423 ±5 K and pressure of 10-5 mbar using reactive evaporation, a variant of Gunther's three temperature method with high purity Copper (99.999%), Indium (99.999%) and Selenium (99.99%) as the elemental starting materials. X-ray diffraction (XRD) studies shows that the films are polycrystalline in nature having preferred orientation of grains along the (112) plane. The structural type of the film is found to be tetragonal with particle size of the order of 32 nm. The structural parameters such as lattice constant, particle size, dislocation density, number of crystallites per unit area and strain in the film are also evaluated. The surface morphology of CuInSe2 films are studied using 2D and 3D atomic force microscopy to estimate the grain size and surface roughness respectively. Analysis of the absorption spectrum of the film recorded using UV-Vis-NIR Spectrophotometer in the wavelength range from 2500 nm to cutoff revealed that the film possess a direct allowed transition with a band gap of 1.05 eV and a high value of absorption coefficient (α) of 106 cm-1 at 570 nm. Photoconductivity at room temperature is measured after illuminating the film with an FSH lamp (82 V, 300 W). Optical absorption studies in conjunction with the good photoconductivity of the prepared p-type CuInSe2 thin films indicate its suitability in photovoltaic applications.

  3. Low-energy electron energy losses and inelastic mean free paths in zinc, selenium, and zinc selenide

    Energy Technology Data Exchange (ETDEWEB)

    Bourke, J.D.; Chantler, C.T., E-mail: chantler@unimelb.edu.au

    2014-10-15

    We compute low-energy optical energy loss spectra for the elemental solids zinc and selenium, and for the binary compound zinc selenide. The optical data are transformed via a constrained partial-pole algorithm to produce momentum-dependent electron energy loss spectra and electron inelastic mean free paths. This enables a comparison between the electron scattering behaviour in a compound solid and its constituent elements. Results cannot be explained by aggregation methods or commonly used universal curves, and prove that new approaches are required. Our work demonstrates new capabilities for the determination of fundamental material properties for a range of structures previously inaccessible to established theoretical models, and at energy levels inaccessible to most experimental techniques.

  4. Low-energy electron energy losses and inelastic mean free paths in zinc, selenium, and zinc selenide

    International Nuclear Information System (INIS)

    Bourke, J.D.; Chantler, C.T.

    2014-01-01

    We compute low-energy optical energy loss spectra for the elemental solids zinc and selenium, and for the binary compound zinc selenide. The optical data are transformed via a constrained partial-pole algorithm to produce momentum-dependent electron energy loss spectra and electron inelastic mean free paths. This enables a comparison between the electron scattering behaviour in a compound solid and its constituent elements. Results cannot be explained by aggregation methods or commonly used universal curves, and prove that new approaches are required. Our work demonstrates new capabilities for the determination of fundamental material properties for a range of structures previously inaccessible to established theoretical models, and at energy levels inaccessible to most experimental techniques

  5. The comparison between gallium arsenide and indium gallium arsenide as materials for solar cell performance using Silvaco application

    Science.gov (United States)

    Zahari, Suhaila Mohd; Norizan, Mohd Natashah; Mohamad, Ili Salwani; Osman, Rozana Aina Maulat; Taking, Sanna

    2015-05-01

    The work presented in this paper is about the development of single and multilayer solar cells using GaAs and InGaAs in AM1.5 condition. The study includes the modeling structure and simulation of the device using Silvaco applications. The performance in term of efficiency of Indium Gallium Arsenide (InGaAs) and GaAs material was studied by modification of the doping concentration and thickness of material in solar cells. The efficiency of the GaAs solar cell was higher than InGaAs solar cell for single layer solar cell. Single layer GaAs achieved an efficiency about 25% compared to InGaAs which is only 2.65% of efficiency. For multilayer which includes both GaAs and InGaAs, the output power, Pmax was 8.91nW/cm² with the efficiency only 8.51%. GaAs is one of the best materials to be used in solar cell as a based compared to InGaAs.

  6. The comparison between gallium arsenide and indium gallium arsenide as materials for solar cell performance using Silvaco application

    International Nuclear Information System (INIS)

    Zahari, Suhaila Mohd; Norizan, Mohd Natashah; Mohamad, Ili Salwani; Osman, Rozana Aina Maulat; Taking, Sanna

    2015-01-01

    The work presented in this paper is about the development of single and multilayer solar cells using GaAs and InGaAs in AM1.5 condition. The study includes the modeling structure and simulation of the device using Silvaco applications. The performance in term of efficiency of Indium Gallium Arsenide (InGaAs) and GaAs material was studied by modification of the doping concentration and thickness of material in solar cells. The efficiency of the GaAs solar cell was higher than InGaAs solar cell for single layer solar cell. Single layer GaAs achieved an efficiency about 25% compared to InGaAs which is only 2.65% of efficiency. For multilayer which includes both GaAs and InGaAs, the output power, P max was 8.91nW/cm² with the efficiency only 8.51%. GaAs is one of the best materials to be used in solar cell as a based compared to InGaAs

  7. PROPERTIES AND OPTICAL APPLICATION OF POLYCRYSTALLINE ZINC SELENIDE OBTAINED BY PHYSICAL VAPOR DEPOSITION

    Directory of Open Access Journals (Sweden)

    A. A. Dunaev

    2015-05-01

    Full Text Available Findings on production technology, mechanical and optical properties of polycrystalline zinc selenide are presented. The combination of its physicochemical properties provides wide application of ZnSe in IR optics. Production technology is based on the method of physical vapor deposition on a heated substrate (Physical Vapor Deposition - PVD. The structural features and heterogeneity of elemental composition for the growth surfaces of ZnSe polycrystalline blanks were investigated using CAMEBAX X-ray micro-analyzer. Characteristic pyramid-shaped crystallites were recorded for all growth surfaces. The measurements of the ratio for major elements concentrations show their compliance with the stoichiometry of the ZnSe compounds. Birefringence, optical homogeneity, thermal conductivity, mechanical and optical properties were measured. It is established that regardless of polycrystalline condensate columnar and texturing, the optical material is photomechanically isotropic and homogeneous. The actual performance of parts made of polycrystalline optical zinc selenide in the thermal spectral ranges from 3 to 5 μm and from 8 to 14 μm and in the CO2 laser processing plants with a power density of 500 W/cm2 is shown. The developed technology gives the possibility to produce polycrystalline optical material on an industrial scale.

  8. Evolution of the chemical bonding nature and electrode activity of indium selenide upon the composite formation with graphene nanosheets

    International Nuclear Information System (INIS)

    Oh, Seung Mi; Lee, Eunsil; Adpakpang, Kanyaporn; Patil, Sharad B.; Park, Mi Jin; Lim, Young Soo; Lee, Kyu Hyoung; Kim, Jong-Young; Hwang, Seong-Ju

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: • In 4 Se 2.85 @graphene nanocomposite is easily prepared by high energy mechanical milling process. • The bond covalency of In 4 Se 2.85 is notably changed upon the composite formation with graphene. • In 4 Se 2.85 @graphene nanocomposite shows promising anode performance for lithium ion battery. -- Abstract: Evolution of the chemical bonding nature and electrochemical activity of indium selenide upon the composite formation with carbon species is systematically investigated. Nanocomposites of In 4 Se 2.85 @graphene and In 4 Se 2.85 @carbon-black are synthesized via a solid state reaction between In and Se elements, and the following high energy mechanical milling of In 4 Se 2.85 with graphene and carbon-black, respectively. The high energy mechanical milling (HEMM) of In 4 Se 2.85 with carbon species gives rise to a decrease of particle size with a significant depression of the crystallinity of In 4 Se 2.85 phase. In contrast to the composite formation with carbon-black, that with graphene induces a notable decrease of (In−Se) bond covalency, underscoring significant chemical interaction between graphene and In 4 Se 2.85 . Both the nanocomposites of In 4 Se 2.85 @graphene and In 4 Se 2.85 @carbon-black show much better anode performance for lithium ion batteries with larger discharge capacity and better cyclability than does the pristine In 4 Se 2.85 material, indicating the beneficial effect of composite formation on the electrochemical activity of indium selenide. Between the present nanocomposites, the electrode performance of the In 4 Se 2.85 @graphene nanocomposite is superior to that of the In 4 Se 2.85 @carbon-black nanocomposite, which is attributable to the weakening of (In−Se) bonds upon the composite formation with graphene as well as to the better mixing between In 4 Se 2.85 and graphene. The present study clearly demonstrates that the composite formation with graphene has strong influence

  9. Ecotoxicological assessment of solar cell leachates: Copper indium gallium selenide (CIGS) cells show higher activity than organic photovoltaic (OPV) cells.

    Science.gov (United States)

    Brun, Nadja Rebecca; Wehrli, Bernhard; Fent, Karl

    2016-02-01

    Despite the increasing use of photovoltaics their potential environmental risks are poorly understood. Here, we compared ecotoxicological effects of two thin-film photovoltaics: established copper indium gallium selenide (CIGS) and organic photovoltaic (OPV) cells. Leachates were produced by exposing photovoltaics to UV light, physical damage, and exposure to environmentally relevant model waters, representing mesotrophic lake water, acidic rain, and seawater. CIGS cell leachates contained 583 μg L(-1) molybdenum at lake water, whereas at acidic rain and seawater conditions, iron, copper, zinc, molybdenum, cadmium, silver, and tin were present up to 7219 μg L(-1). From OPV, copper (14 μg L(-1)), zinc (87 μg L(-1)) and silver (78 μg L(-1)) leached. Zebrafish embryos were exposed until 120 h post-fertilization to these extracts. CIGS leachates produced under acidic rain, as well as CIGS and OPV leachates produced under seawater conditions resulted in a marked hatching delay and increase in heart edema. Depending on model water and solar cell, transcriptional alterations occurred in genes involved in oxidative stress (cat), hormonal activity (vtg1, ar), metallothionein (mt2), ER stress (bip, chop), and apoptosis (casp9). The effects were dependent on the concentrations of cationic metals in leachates. Addition of ethylenediaminetetraacetic acid protected zebrafish embryos from morphological and molecular effects. Our study suggests that metals leaching from damaged CIGS cells, may pose a potential environmental risk. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Investigation of deep level defects in epitaxial semiconducting zinc sulpho-selenide. Progress report, 15 June 1979-14 June 1980

    International Nuclear Information System (INIS)

    Wessels, B.W.

    1980-01-01

    In an effort to understand the defect structure of the ternary II-VI compound zinc sulpho-selenide, the binary compound zinc selenide was investigated. Thin single crystalline films of zinc selenide were heteroepitaxially grown on (100) GaAs. Epitaxial layers from 5 to 50 microns thick could be readily grown using a chemical vapor transport technique. The layers had an excellent morphology with few stacking faults and hillocks. Detailed epitaxial growth kinetics were examined as a function of temperature and reactant concentration. It was found that hydrogen flow rate, source and substrate temperature affect the growth rate of the epitaxial films. Au - ZnSe Schottky barrier diodes and ZnSe - GaAs n-p heterojunctions were prepared from the epitaxial layers. Current-voltage characteristics were measured on both types of diodes. From capacitance-voltage measurements the residual doping density of the epitaxial layers were found to be of the order of 10 14 - 10 15 cm -3 . Finally, we have begun to measure the deep level spectrum of both the Schottky barrier diodes and the heterojunctions. Deep level transient spectroscopy appears to be well suited for determining trapping states in ZnSe provided the material has a low enough resistivity

  11. Determination of frequencies of atomic oscillations along the fourth order symmetry axis in indium arsenide according to thermal diffusion scattering of X-rays

    International Nuclear Information System (INIS)

    Orlova, N.S.

    1978-01-01

    Intensity of diffusion scattering of X-rays from the plane of a monocrystal of indium arsenide has been measured on the monochromatized CuKsub(α)-radiation. The samples are made of Cl indium arsenide monocrystal of the n-type with the 1x10 18 cm -3 concentration of carriers in the form of a plate with the polished parallel cut-off with the +-5' accuracy. The investigations have been carried out on the URS-5 IM X-ray diffractometer at room temperature in vacuum. Intensities of thermal diffusion scattering of the second order have been calculated by the two-atomic chain model with different mass and four interaction paramaters. Based upon the analysis of intensity of single-phonon diffusion scattering the curves of frequencies of atomic oscillations along the direction [100] have been determined. The values of frequencies obtained experimentally on the thermal diffusion scattering of X-rays are in a satisfactory agreement with the calculated data. The frequencies obtained are compared with the results of calculation and the analysis of multiphonon spectra of IR-absorption made elsewhere

  12. Investigating Phase Transform Behavior in Indium Selenide Based RAM and Its Validation as a Memory Element

    Directory of Open Access Journals (Sweden)

    Swapnil Sourav

    2016-01-01

    Full Text Available Phase transform properties of Indium Selenide (In2Se3 based Random Access Memory (RAM have been explored in this paper. Phase change random access memory (PCRAM is an attractive solid-state nonvolatile memory that possesses potential to meet various current technology demands of memory design. Already reported PCRAM models are mainly based upon Germanium-Antimony-Tellurium (Ge2Sb2Te5 or GST materials as their prime constituents. However, PCRAM using GST material lacks some important memory attributes required for memory elements such as larger resistance margin between the highly resistive amorphous and highly conductive crystalline states in phase change materials. This paper investigates various electrical and compositional properties of the Indium Selenide (In2Se3 material and also draws comparison with its counterpart mainly focusing on phase transform properties. To achieve this goal, a SPICE model of In2Se3 based PCRAM model has been reported in this work. The reported model has been also validated to act as a memory cell by associating it with a read/write circuit proposed in this work. Simulation results demonstrate impressive retentivity and low power consumption by requiring a set pulse of 208 μA for a duration of 100 μs to set the PCRAM in crystalline state. Similarly, a reset pulse of 11.7 μA for a duration of 20 ns can set the PCRAM in amorphous state. Modeling of In2Se3 based PCRAM has been done in Verilog-A and simulation results have been extensively verified using SPICE simulator.

  13. The comparison between gallium arsenide and indium gallium arsenide as materials for solar cell performance using Silvaco application

    Energy Technology Data Exchange (ETDEWEB)

    Zahari, Suhaila Mohd; Norizan, Mohd Natashah; Mohamad, Ili Salwani; Osman, Rozana Aina Maulat; Taking, Sanna [School of Microelectronic Engineering, Universiti Malaysia Perlis, Kampus Pauh Putra, 02600 Arau, Perlis (Malaysia)

    2015-05-15

    The work presented in this paper is about the development of single and multilayer solar cells using GaAs and InGaAs in AM1.5 condition. The study includes the modeling structure and simulation of the device using Silvaco applications. The performance in term of efficiency of Indium Gallium Arsenide (InGaAs) and GaAs material was studied by modification of the doping concentration and thickness of material in solar cells. The efficiency of the GaAs solar cell was higher than InGaAs solar cell for single layer solar cell. Single layer GaAs achieved an efficiency about 25% compared to InGaAs which is only 2.65% of efficiency. For multilayer which includes both GaAs and InGaAs, the output power, P{sub max} was 8.91nW/cm² with the efficiency only 8.51%. GaAs is one of the best materials to be used in solar cell as a based compared to InGaAs.

  14. Design and fabrication of anti-reflection coating on Gallium Phosphide, Zinc Selenide and Zinc Sulfide substrates for visible and infrared application

    Directory of Open Access Journals (Sweden)

    Mokrý P.

    2013-05-01

    Full Text Available Results of design and fabrication of a dual-band anti-reflection coating on a gallium phosphide (GaP, zinc selenide (ZnSe and zinc sulfide (ZnS substrates are presented. A multilayer stack structure of antireflection coatings made of zinc sulfide and yttrium fluoride (YF3 was theoretically designed for optical bands between 0.8 and 0.9 μm and between 9.5 and 10.5 μm. This stack was designed as efficient for these materials (GaP, ZnS, ZnSe together. Multilayer stack structure was deposited using thermal evaporation method. Theoretically predicted transmittance spectra were compared with transmitted spectra measured on coated substrates. Efficiency of anti-reflection coating is estimated and discrepancies are analyzed and discussed.

  15. Studies on preparation and characterization of indium doped zinc ...

    Indian Academy of Sciences (India)

    Unknown

    The preparation of indium doped zinc oxide films is discussed. ... XRD studies have shown a change in preferential orientation from (002) to .... at grain boundaries in the form of In(OH)3, hindering the .... Angular substrate to nozzle distance.

  16. Point contacts at the copper-indium-gallium-selenide interface—A theoretical outlook

    Energy Technology Data Exchange (ETDEWEB)

    Bercegol, Adrien, E-mail: adrien.bercegol@polytechnique.edu; Chacko, Binoy; Klenk, Reiner; Lauermann, Iver; Lux-Steiner, Martha Ch. [Helmholtz-Zentrum Berlin für Materialien und Energie, Albert Einstein Straße 15, 12489 Berlin (Germany); Liero, Matthias [Weierstraß-Institut für Angewandte Analysis und Stochastik, 10117 Berlin (Germany)

    2016-04-21

    For a long time, it has been assumed that recombination in the space-charge region of copper-indium-gallium-selenide (CIGS) is dominant, at least in high efficiency solar cells with low band gap. The recent developments like potassium fluoride post deposition treatment and point-contact junction may call this into question. In this work, a theoretical outlook is made using three-dimensional simulations to investigate the effect of point-contact openings through a passivation layer on CIGS solar cell performance. A large set of solar cells is modeled under different scenarios for the charged defect levels and density, radius of the openings, interface quality, and conduction band offset. The positive surface charge created by the passivation layer induces band bending and this influences the contact (CdS) properties, making it beneficial for the open circuit voltage and efficiency, and the effect is even more pronounced when coverage area is more than 95%, and also makes a positive impact on the device performance, even in the presence of a spike at CIGS/CdS heterojunction.

  17. Anodic behavior of Al-Zn-In sacrificial anodes at different concentration of zinc and indium

    Energy Technology Data Exchange (ETDEWEB)

    Keyvani, Ahmad [Shahrekord Univ. (Iran, Islamic Republic of). Dept. of Materials Engineering; Tehran Univ. (Iran, Islamic Republic of). School of Metallurgy and Materials; Saremi, Mohsen [Tehran Univ. (Iran, Islamic Republic of). School of Metallurgy and Materials; Saeri, Mohammad Reza [Shahrekord Univ. (Iran, Islamic Republic of). Dept. of Materials Engineering

    2012-12-15

    Al-Zn-In anodes show better performance due to the beneficial effects of Zn and In on prevention of aluminum passivity and producing a homogeneous structure for uniform corrosion of the anodes. However, there are different views about the optimum concentration of each element in the anode. In this study, the anodic behavior of Al-Zn-In alloy with different concentrations of zinc from 1 to 6wt.% and indium from 0.01 to 0.05wt.% are studied. The NACE efficiency test and polarization are used in 3wt.% NaCl solution for corrosion characterization. The results showed that zinc and indium change the anode potential to more active potentials and improve the microstructure uniformity of anodes. The latter leads to more uniform corrosion. Optimum concentrations of zinc (5wt.%) and indium (0.02wt.%) were found in this respect. (orig.)

  18. Field Effect Transistors Using Atomically Thin Layers of Copper Indium Selenide (CuInSe)

    Science.gov (United States)

    Patil, Prasanna; Ghosh, Sujoy; Wasala, Milinda; Lei, Sidong; Vajtai, Robert; Ajayan, Pulickel; Talapatra, Saikat

    We will report fabrication of field-effect transistors (FETs) using few-layers of Copper Indium Selenide (CuInSe) flakes exfoliated from crystals grown using chemical vapor transport technique. Our transport measurements indicate n-type FET with electron mobility µ ~ 3 cm2 V-1 s-1 at room temperature when Silicon dioxide (SiO2) is used as a back gate. Mobility can be further increased significantly when ionic liquid 1-Butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6) is used as top gate. Similarly subthreshold swing can be further improved from 103 V/dec to 0.55 V/dec by using ionic liquid as a top gate. We also found ON/OFF ratio of ~ 102 for both top and back gate. Comparison between ionic liquid top gate and SiO2 back gate will be presented and discussed. This work is supported by the U.S. Army Research Office through a MURI Grant # W911NF-11-1-0362.

  19. INDIUM AND ZINC MEDIATED ONE-ATOM CARBOCYCLE ENLARGEMENT IN WATER. (R822668)

    Science.gov (United States)

    AbstractSix-, seven-, eight-membered rings are enlarged by one carbon-atom into seven-, eight- and nine-membered ring derivatives respectively, via indium or zinc mediated reactions in aqueous medium.

  20. Organic molecules passivated Mn doped Zinc Selenide quantum dots and its properties

    International Nuclear Information System (INIS)

    Archana, J.; Navaneethan, M.; Ponnusamy, S.; Hayakawa, Y.; Muthamizhchelvan, C.

    2011-01-01

    Quantum dots of Mn doped Zinc Selenide with N-Methylaniline as the capping agent was prepared by simple and inexpensive wet chemical method. Size of the particles observed by TEM was of the order of 2-4 nm which was well consistent with the size measured by UV analysis. The presence of paramagnetic substance Mn 2+ in the ZnSe quantum dots was confirmed by EPR measurement. Mn doped ZnSe nanoparticles exhibited a strong blue emission that was strongly dependent upon the Mn dopant level and the surface passivation produced by N-Methylaniline. The stability of the product was studied by thermal analysis which shows that this product is highly suitable for opto-electronic applications.

  1. Zinc-enriched boutons in rat spinal cord

    DEFF Research Database (Denmark)

    Schrøder, H D; Danscher, G; Jo, S M

    2000-01-01

    The rat spinal cord reveals a complex pattern of zinc-enriched (ZEN) boutons. As a result of in vivo exposure to selenide ions, nanosized clusters of zinc selenide are created in places where zinc ions are present, including the zinc-containing synaptic vesicles of ZEN boutons. The clusters can...

  2. Self-cleaning and surface chemical reactions during hafnium dioxide atomic layer deposition on indium arsenide.

    Science.gov (United States)

    Timm, Rainer; Head, Ashley R; Yngman, Sofie; Knutsson, Johan V; Hjort, Martin; McKibbin, Sarah R; Troian, Andrea; Persson, Olof; Urpelainen, Samuli; Knudsen, Jan; Schnadt, Joachim; Mikkelsen, Anders

    2018-04-12

    Atomic layer deposition (ALD) enables the ultrathin high-quality oxide layers that are central to all modern metal-oxide-semiconductor circuits. Crucial to achieving superior device performance are the chemical reactions during the first deposition cycle, which could ultimately result in atomic-scale perfection of the semiconductor-oxide interface. Here, we directly observe the chemical reactions at the surface during the first cycle of hafnium dioxide deposition on indium arsenide under realistic synthesis conditions using photoelectron spectroscopy. We find that the widely used ligand exchange model of the ALD process for the removal of native oxide on the semiconductor and the simultaneous formation of the first hafnium dioxide layer must be significantly revised. Our study provides substantial evidence that the efficiency of the self-cleaning process and the quality of the resulting semiconductor-oxide interface can be controlled by the molecular adsorption process of the ALD precursors, rather than the subsequent oxide formation.

  3. Compositional influence on the electrical performance of zinc indium tin oxide transparent thin-film transistors

    International Nuclear Information System (INIS)

    Marsal, A.; Carreras, P.; Puigdollers, J.; Voz, C.; Galindo, S.; Alcubilla, R.; Bertomeu, J.; Antony, A.

    2014-01-01

    In this work, zinc indium tin oxide layers with different compositions are used as the active layer of thin film transistors. This multicomponent transparent conductive oxide is gaining great interest due to its reduced content of the scarce indium element. Experimental data indicate that the incorporation of zinc promotes the creation of oxygen vacancies, which results in a higher free carrier density. In thin-film transistors this effect leads to a higher off current and threshold voltage values. The field-effect mobility is also strongly degraded, probably due to coulomb scattering by ionized defects. A post deposition annealing in air reduces the density of oxygen vacancies and improves the field-effect mobility by orders of magnitude. Finally, the electrical characteristics of the fabricated thin-film transistors have been analyzed to estimate the density of states in the gap of the active layers. These measurements reveal a clear peak located at 0.3 eV from the conduction band edge that could be attributed to oxygen vacancies. - Highlights: • Zinc promotes the creation of oxygen vacancies in zinc indium tin oxide transistors. • Post deposition annealing in air reduces the density of oxygen. • Density of states reveals a clear peak located at 0.3 eV from the conduction band

  4. Pyrolytically grown indium sulfide sensitized zinc oxide nanowires for solar water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Komurcu, Pelin; Can, Emre Kaan; Aydin, Erkan; Semiz, Levent [Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology, 06560 Ankara (Turkey); Gurol, Alp Eren; Alkan, Fatma Merve [Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, 06560 Ankara (Turkey); Sankir, Mehmet; Sankir, Nurdan Demirci [Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology, 06560 Ankara (Turkey); Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, 06560 Ankara (Turkey)

    2015-11-15

    Zinc oxide (ZnO) nanowires, sensitized with spray pyrolyzed indium sulfide, were obtained by chemical bath deposition. The XRD analysis indicated dominant evolution of hexagonal ZnO phase. Significant gain in photoelectrochemical current using ZnO nanowires is largely accountable to enhancement of the visible light absorption and the formation of heterostructure. The maximum photoconversion efficiency of 2.77% was calculated for the indium sulfide sensitized ZnO nanowire photoelectrodes. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. The Availability of Indium: The Present, Medium Term, and Long Term

    Energy Technology Data Exchange (ETDEWEB)

    Lokanc, Martin [Colorado School of Mines, Golden, CO (United States); Eggert, Roderick [Colorado School of Mines, Golden, CO (United States); Redlinger, Michael [Colorado School of Mines, Golden, CO (United States)

    2015-10-01

    Demand for indium is likely to increase if the growth in deployment of the copper-indium-gallium-selenide (CIGS) and III-V thin-film photovoltaic technologies accelerates. There are concerns about indium supply constraints since it is relatively rare element in the earth's crust and because it is produced exclusively as a byproduct.

  6. The solvent extraction of zinc, iron, and indium from chloride solutions by neutral organophosphorus compounds

    International Nuclear Information System (INIS)

    Preston, J.S.; Du Preez, A.C.

    1985-01-01

    The preparation of several neutral organophosphorus compounds and their evaluation as selective extractants for zinc in chloride media are described. The compounds belong to the series trialkyl phosphates (RO) 3 PO, dialkyl alkylphosphonates R'PO(OR) 2 , alkyl dialkylphosphinates R 2 'PO(OR), and trialkyl-phosphine oxides R 3 'PO. They were characterized by measurement of their physical properties (melting and boiling points, refractive indices, and densities), and their purities were confirmed by osmometric determination of their molecular masses; by carbon and hydrogen microanalysis; by the titrimetric determination of acidic impurities; and, for liquid products, by comparison of their experimental molar refractivities with empirical values. Metal-distribution equilibria were determined for solutions of the extractants in xylene and aqueous phase containing 0,5 to 5,0 M sodium chloride. Moderately good selectivities were shown for zinc(II) over iron(III), and excellent selectivities were shown for zinc(II) over iron(II), copper(II), lead(II), and cadmium(II). The extraction of indium(III) was similar to that of zinc(II). The extraction of zinc(III), iron(III), and indium(III) increased markedly through the series. (RO) 3 PO 2 2 'PO(OR) 3 'PO. The incorporation of phenyl groups into the compounds led to weaker extraction. The extracted complexes of zinc(II), iron(III), and indium(III) have the stoichiometries ZnCl 2 L 2 ,FeCl 3 L 2 (H 2 O), and InCl 3 L 2 (H 2 O) respectively, where L represents the neutral organophosphorus compound

  7. Ohmic contact formation process on low n-type gallium arsenide (GaAs) using indium gallium zinc oxide (IGZO)

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seong-Uk [Samsung-SKKU Graphene Center and School of Electronics and Electrical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Product and Test Engineering Team, System LSI Division, Samsung Electronics Co., Ltd, Yongin 446-711 (Korea, Republic of); Jung, Woo-Shik [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Lee, In-Yeal; Jung, Hyun-Wook; Kim, Gil-Ho [Samsung-SKKU Graphene Center and School of Electronics and Electrical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Park, Jin-Hong, E-mail: jhpark9@skku.edu [Samsung-SKKU Graphene Center and School of Electronics and Electrical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-02-01

    Highlights: • We propose a method to fabricate non-gold Ohmic contact on low n-type GaAs with IGZO. • 0.15 A/cm{sup 2} on-current and 1.5 on/off-current ratio are achieved in the junction. • InAs and InGaAs formed by this process decrease an electron barrier height. • Traps generated by diffused O atoms also induce a trap-assisted tunneling phenomenon. - Abstract: Here, an excellent non-gold Ohmic contact on low n-type GaAs is demonstrated by using indium gallium zinc oxide and investigating through time of flight-secondary ion mass spectrometry, X-ray photoelectron spectroscopy, transmission electron microscopy, J–V measurement, and H [enthalpy], S [entropy], Cp [heat capacity] chemistry simulation. In is diffused through GaAs during annealing and reacts with As, forming InAs and InGaAs phases with lower energy bandgap. As a result, it decreases the electron barrier height, eventually increasing the reverse current. In addition, traps generated by diffused O atoms induce a trap-assisted tunneling phenomenon, increasing generation current and subsequently the reverse current. Therefore, an excellent Ohmic contact with 0.15 A/cm{sup 2} on-current density and 1.5 on/off-current ratio is achieved on n-type GaAs.

  8. Germanium and indium

    Science.gov (United States)

    Shanks, W.C. Pat; Kimball, Bryn E.; Tolcin, Amy C.; Guberman, David E.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Germanium and indium are two important elements used in electronics devices, flat-panel display screens, light-emitting diodes, night vision devices, optical fiber, optical lens systems, and solar power arrays. Germanium and indium are treated together in this chapter because they have similar technological uses and because both are recovered as byproducts, mainly from copper and zinc sulfides.The world’s total production of germanium in 2011 was estimated to be 118 metric tons. This total comprised germanium recovered from zinc concentrates, from fly ash residues from coal burning, and from recycled material. Worldwide, primary germanium was recovered in Canada from zinc concentrates shipped from the United States; in China from zinc residues and coal from multiple sources in China and elsewhere; in Finland from zinc concentrates from the Democratic Republic of the Congo; and in Russia from coal.World production of indium metal was estimated to be about 723 metric tons in 2011; more than one-half of the total was produced in China. Other leading producers included Belgium, Canada, Japan, and the Republic of Korea. These five countries accounted for nearly 95 percent of primary indium production.Deposit types that contain significant amounts of germanium include volcanogenic massive sulfide (VMS) deposits, sedimentary exhalative (SEDEX) deposits, Mississippi Valley-type (MVT) lead-zinc deposits (including Irish-type zinc-lead deposits), Kipushi-type zinc-lead-copper replacement bodies in carbonate rocks, and coal deposits.More than one-half of the byproduct indium in the world is produced in southern China from VMS and SEDEX deposits, and much of the remainder is produced from zinc concentrates from MVT deposits. The Laochang deposit in Yunnan Province, China, and the VMS deposits of the Murchison greenstone belt in Limpopo Province, South Africa, provide excellent examples of indium-enriched deposits. The SEDEX deposits at Bainiuchang, China (located in

  9. Improved microstructure and thermoelectric properties of iodine doped indium selenide as a function of sintering temperature

    Science.gov (United States)

    Dhama, Pallavi; Kumar, Aparabal; Banerji, P.

    2018-04-01

    In this paper, we explored the effect of sintering temperature on the microstructure, thermal and electrical properties of iodine doped indium selenide in the temperature range 300 - 700 K. Samples were prepared by a collaborative process of vacuum melting, ball milling and spark plasma sintering at 570 K, 630 K and 690 K. Single phase samples were obtained at higher sintering temperature as InSe is stable only at lower temperature. With increasing sintering temperature, densities of the samples were found to improve with larger grain size formation. Negative values of Seebeck coefficient were observed which indicates n-type carrier transport. Seebeck coefficient increases with sintering temperature and found to be the highest for the sample sintered at 690 K. Thermal conductivity found to be lower in the samples sintered at lower temperatures. The maximum thermoelectric figure of merit found to be ˜ 1 at 700 K due to the enhanced power factor as a result of improved microstructure.

  10. TEM EDS analysis of epitaxially-grown self-assembled indium islands

    Directory of Open Access Journals (Sweden)

    Jasmine Sears

    2017-05-01

    Full Text Available Epitaxially-grown self-assembled indium nanostructures, or islands, show promise as nanoantennas. The elemental composition and internal structure of indium islands grown on gallium arsenide are explored using Transmission Electron Microscopy (TEM Energy Dispersive Spectroscopy (EDS. Several sizes of islands are examined, with larger islands exhibiting high (>94% average indium purity and smaller islands containing inhomogeneous gallium and arsenic contamination. These results enable more accurate predictions of indium nanoantenna behavior as a function of growth parameters.

  11. Transparent indium zinc oxide thin films used in photovoltaic cells based on polymer blends

    International Nuclear Information System (INIS)

    Besleaga, Cristina; Ion, L.; Ghenescu, Veta; Socol, G.; Radu, A.; Arghir, Iulia; Florica, Camelia; Antohe, S.

    2012-01-01

    Indium zinc oxide (IZO) thin films were obtained using pulsed laser deposition. The samples were prepared by ablation of targets with In concentrations, In/(In + Zn), of 80 at.%, at low substrate temperatures under reactive atmosphere. IZO films were used as transparent electrodes in polymer-based – poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 1:1 blend – photovoltaic cells. The action spectra measurements revealed that IZO-based photovoltaic structures have performances comparable with those using indium–tin–oxide as transparent electrode. - Highlights: ► Indium zinc oxide films were grown by pulsed laser deposition at room temperature. ► The films had large free carrier density and reasonably high mobility. ► These films fit for transparent electrodes in polymer-based photovoltaic cells.

  12. Preparation and study of the properties of indium phosphide thin films impregnated with cadmium and zinc

    International Nuclear Information System (INIS)

    Moutinho, H.R.

    1984-01-01

    Indium phosphide thin films were deposited by vacuum evaporation of indium and phosphorous, using the three-temperature method. The effects of the introduction of cadmium and zinc, group II impurities, on the properties of these films were studied. The introduction of cadmium was achieved by coevaporation of this element during the film deposition. The introduction of zinc was done by diffusion of this element in intrinsic films. Analyses of these films were carried out by the study of the composition, morphology, structure, optical properties and electrical properties. The introduction of cadmium led to the reduction of grain size and increase in the bandgap and in certain cases, even change in morphology. Phases of CdP2 and β-CdP2 were detected and the resistivity increased by some orders of magnitude. The introduction of zinc did not change the morphology, crystalline structure and bandgap. However, a new energy level corresponding to the zinc acceptor level was found and the resistivity increased by some orders of magnitude. (Author) [pt

  13. Continuum modelling of silicon diffusion in indium gallium arsenide

    Science.gov (United States)

    Aldridge, Henry Lee, Jr.

    A possible method to overcome the physical limitations experienced by continued transistor scaling and continue improvements in performance and power consumption is integration of III-V semiconductors as alternative channel materials for logic devices. Indium Gallium Arsenide (InGaAs) is such a material from the III-V semiconductor family, which exhibit superior electron mobilities and injection velocities than that of silicon. In order for InGaAs integration to be realized, contact resistances must be minimized through maximizing activation of dopants in this material. Additionally, redistribution of dopants during processing must be clearly understood and ultimately controlled at the nanometer-scale. In this work, the activation and diffusion behavior of silicon, a prominent n-type dopant in InGaAs, has been characterized and subsequently modelled using the Florida Object Oriented Process and Device Simulator (FLOOPS). In contrast to previous reports, silicon exhibits non-negligible diffusion in InGaAs, even for smaller thermal budget rapid thermal anneals (RTAs). Its diffusion is heavily concentration-dependent, with broadening "shoulder-like" profiles when doping levels exceed 1-3x1019cm -3, for both ion-implanted and Molecular Beam Epitaxy (MBE)-grown cases. Likewise a max net-activation value of ˜1.7x1019cm -3 is consistently reached with enough thermal processing, regardless of doping method. In line with experimental results and several ab-initio calculation results, rapid concentration-dependent diffusion of Si in InGaAs and the upper limits of its activation is believed to be governed by cation vacancies that serve as compensating defects in heavily n-type regions of InGaAs. These results are ultimately in line with an amphoteric defect model, where the activation limits of dopants are an intrinsic limitation of the material, rather than governed by individual dopant species or their methods of incorporation. As a result a Fermi level dependent point

  14. Solar Light Responsive Photocatalytic Activity of Reduced Graphene Oxide-Zinc Selenide Nanocomposite

    Science.gov (United States)

    Chakraborty, Koushik; Ibrahim, Sk; Das, Poulomi; Ghosh, Surajit; Pal, Tanusri

    2017-10-01

    Solution processable reduced graphene oxide-zinc selenide (RGO-ZnSe) nanocomposite has been successfully synthesized by an easy one-pot single-step solvothermal reaction. The RGO-ZnSe composite was characterized structurally and morphologically by the study of XRD analysis, SEM and TEM imaging. Reduction in graphene oxide was confirmed by FTIR spectroscopy analysis. Photocatalytic efficiency of RGO-ZnSe composite was investigated toward the degradation of Rhodamine B under solar light irradiation. Our study indicates that the RGO-ZnSe composite is catalytically more active compared to the controlled-ZnSe under the solar light illumination. Here, RGO plays an important role for photoinduced charge separation and subsequently hinders the electron-hole recombination probability that consequently enhances photocatalytic degradation efficiency. We expect that this type of RGO-based optoelectronics materials opens up a new avenue in the field of photocatalytic degradation of different organic water pollutants.

  15. Optoelectronic properties of sprayed transparent and conducting indium doped zinc oxide thin films

    International Nuclear Information System (INIS)

    Shinde, S S; Shinde, P S; Bhosale, C H; Rajpure, K Y

    2008-01-01

    Indium doped zinc oxide (IZO) thin films are grown onto Corning glass substrates using the spray pyrolysis technique. The effect of doping concentration on the structural, electrical and optical properties of IZO thin films is studied. X-ray diffraction studies show a change in preferential orientation from the (0 0 2) to the (1 0 1) crystal planes with increase in indium doping concentration. Scanning electron microscopy studies show polycrystalline morphology of the films. Based on the Hall-effect measurements and analysis, impurity scattering is found to be the dominant mechanism determining the diminished mobility in ZnO thin films having higher indium concentration. The addition of indium also induces a drastic decrease in the electrical resistivity of films; the lowest resistivity (4.03 x 10 -5 Ω cm) being observed for the film deposited with 3 at% indium doping. The effect of annealing on the film properties has been reported. Films deposited with 3 at% In concentration have relatively low resistivity with 90% transmittance at 550 nm and the highest value of figure of merit 7.9 x 10 -2 □ Ω -1

  16. Effect of barrier height on friction behavior of the semiconductors silicon and gallium arsenide in contact with pure metals

    Science.gov (United States)

    Mishina, H.; Buckley, D. H.

    1984-01-01

    Friction experiments were conducted for the semiconductors silicon and gallium arsenide in contact with pure metals. Polycrystalline titanium, tantalum, nickel, palladium, and platinum were made to contact a single crystal silicon (111) surface. Indium, nickel, copper, and silver were made to contact a single crystal gallium arsenide (100) surface. Sliding was conducted both in room air and in a vacuum of 10 to the minus 9th power torr. The friction of semiconductors in contact with metals depended on a Schottky barrier height formed at the metal semiconductor interface. Metals with a higher barrier height on semiconductors gave lower friction. The effect of the barrier height on friction behavior for argon sputtered cleaned surfaces in vacuum was more specific than that for the surfaces containing films in room air. With a silicon surface sliding on titanium, many silicon particles back transferred. In contrast, a large quantity of indium transferred to the gallium arsenide surface.

  17. Investigation of Electronic and Opto-Electronic Properties of Two-Dimensional (2D) Layers of Copper Indium Selenide Field Effect Transistors

    Science.gov (United States)

    Patil, Prasanna Dnyaneshwar

    Investigations performed in order to understand the electronic and optoelectronic properties of field effect transistors based on few layers of 2D Copper Indium Selenide (CuIn7Se11) are reported. In general, field effect transistors (FETs), electric double layer field effect transistors (EDL-FETs), and photodetectors are crucial part of several electronics based applications such as tele-communication, bio-sensing, and opto-electronic industry. After the discovery of graphene, several 2D semiconductor materials like TMDs (MoS2, WS2, and MoSe2 etc.), group III-VI materials (InSe, GaSe, and SnS2 etc.) are being studied rigorously in order to develop them as components in next generation FETs. Traditionally, thin films of ternary system of Copper Indium Selenide have been extensively studied and used in optoelectronics industry as photoactive component in solar cells. Thus, it is expected that atomically thin 2D layered structure of Copper Indium Selenide can have optical properties that could potentially be more advantageous than its thin film counterpart and could find use for developing next generation nano devices with utility in opto/nano electronics. Field effect transistors were fabricated using few-layers of CuIn7Se11 flakes, which were mechanically exfoliated from bulk crystals grown using chemical vapor transport technique. Our FET transport characterization measurements indicate n-type behavior with electron field effect mobility microFE ≈ 36 cm2 V-1 s-1 at room temperature when Silicon dioxide (SiO2) is used as a back gate. We found that in such back gated field effect transistor an on/off ratio of 104 and a subthreshold swing ≈ 1 V/dec can be obtained. Our investigations further indicate that Electronic performance of these materials can be increased significantly when gated from top using an ionic liquid electrolyte [1-Butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6)]. We found that electron field effect mobility microFE can be increased from

  18. Deep subgap feature in amorphous indium gallium zinc oxide: Evidence against reduced indium

    International Nuclear Information System (INIS)

    Sallis, Shawn; Williams, Deborah S.; Quackenbush, Nicholas F.; Senger, Mikell; Woicik, Joseph C.; White, Bruce E.; Piper, Louis F.J.

    2015-01-01

    Amorphous indium gallium zinc oxide (a-IGZO) is the archetypal transparent amorphous oxide semiconductor. Despite the gains made with a-IGZO over amorphous silicon in the last decade, the presence of deep subgap states in a-IGZO active layers facilitate instabilities in thin film transistor properties under negative bias illumination stress. Several candidates could contribute to the formation of states within the band gap. Here, we present evidence against In + lone pair active electrons as the origin of the deep subgap features. No In + species are observed, only In 0 nano-crystallites under certain oxygen deficient growth conditions. Our results further support under coordinated oxygen as the source of the deep subgap states. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Enhancement of the electrical characteristics of thin-film transistors with indium-zinc-tin oxide/Ag/indium-zinc-tin oxide multilayer electrodes

    Science.gov (United States)

    Oh, Dohyun; Yun, Dong Yeol; Cho, Woon-Jo; Kim, Tae Whan

    2014-08-01

    Transparent indium-zinc-tin oxide (IZTO)-based thin-film transistors (TFTs) with IZTO/Ag/IZTO multilayer electrodes were fabricated on glass substrates using a tilted dual-target radio-frequency magnetron sputtering system. The IZTO TFTs with IZTO/Ag/IZTO multilayer electrodes exhibited a high optical transmittance in a visible region. The threshold voltage, the mobility, and the on/off-current ratio of the TFTs with IZTO/Ag/IZTO multilayer electrodes were enhanced in comparison with those of the TFTs with ITO electrodes. The source/drain contact resistance of the IZTO TFTs with IZTO/Ag/IZTO multilayer electrodes was smaller than that of the IZTO TFTs with ITO electrodes, resulting in enhancement of their electrical characteristics.

  20. Deep subgap feature in amorphous indium gallium zinc oxide: Evidence against reduced indium

    Energy Technology Data Exchange (ETDEWEB)

    Sallis, Shawn; Williams, Deborah S. [Materials Science and Engineering, Binghamton University, Binghamton, New York, 13902 (United States); Quackenbush, Nicholas F.; Senger, Mikell [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York, 13902 (United States); Woicik, Joseph C. [Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899 (United States); White, Bruce E.; Piper, Louis F.J. [Materials Science and Engineering, Binghamton University, Binghamton, New York, 13902 (United States); Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York, 13902 (United States)

    2015-07-15

    Amorphous indium gallium zinc oxide (a-IGZO) is the archetypal transparent amorphous oxide semiconductor. Despite the gains made with a-IGZO over amorphous silicon in the last decade, the presence of deep subgap states in a-IGZO active layers facilitate instabilities in thin film transistor properties under negative bias illumination stress. Several candidates could contribute to the formation of states within the band gap. Here, we present evidence against In{sup +} lone pair active electrons as the origin of the deep subgap features. No In{sup +} species are observed, only In{sup 0} nano-crystallites under certain oxygen deficient growth conditions. Our results further support under coordinated oxygen as the source of the deep subgap states. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Solvothermal synthesis of gallium-indium-zinc-oxide nanoparticles for electrolyte-gated transistors.

    Science.gov (United States)

    Santos, Lídia; Nunes, Daniela; Calmeiro, Tomás; Branquinho, Rita; Salgueiro, Daniela; Barquinha, Pedro; Pereira, Luís; Martins, Rodrigo; Fortunato, Elvira

    2015-01-14

    Solution-processed field-effect transistors are strategic building blocks when considering low-cost sustainable flexible electronics. Nevertheless, some challenges (e.g., processing temperature, reliability, reproducibility in large areas, and cost effectiveness) are requirements that must be surpassed in order to achieve high-performance transistors. The present work reports electrolyte-gated transistors using as channel layer gallium-indium-zinc-oxide nanoparticles produced by solvothermal synthesis combined with a solid-state electrolyte based on aqueous dispersions of vinyl acetate stabilized with cellulose derivatives, acrylic acid ester in styrene and lithium perchlorate. The devices fabricated using this approach display a ION/IOFF up to 1 × 10(6), threshold voltage (VTh) of 0.3-1.9 V, and mobility up to 1 cm(2)/(V s), as a function of gallium-indium-zinc-oxide ink formulation and two different annealing temperatures. These results validates the usage of electrolyte-gated transistors as a viable and promising alternative for nanoparticle based semiconductor devices as the electrolyte improves the interface and promotes a more efficient step coverage of the channel layer, reducing the operating voltage when compared with conventional dielectrics gating. Moreover, it is shown that by controlling the applied gate potential, the operation mechanism of the electrolyte-gated transistors can be modified from electric double layer to electrochemical doping.

  2. Magnetron sputtered transparent conductive zinc-oxide stabilized amorphous indium oxide thin films on polyethylene terephthalate substrates at ambient temperature

    International Nuclear Information System (INIS)

    Yan, Y.; Zhang, X.-F.; Ding, Y.-T.

    2013-01-01

    Amorphous transparent conducting zinc-oxide stabilized indium oxide thin films, named amorphous indium zinc oxide (a-IZO), were deposited by direct current magnetron sputtering at ambient temperature on flexible polyethylene terephthalate substrates. It has been demonstrated that the electrical resistivity could attain as low as ∼ 5 × 10 −4 Ω cm, which was noticeably lower than amorphous indium tin oxide films prepared at the same condition, while the visible transmittance exceeded 84% with the refractive index of 1.85–2.00. In our experiments, introduction of oxygen gas appeared to be beneficial to the improvement of the transparency and electrical conductivity. Both free carrier absorption and indirect transition were observed and Burstein–Moss effect proved a-IZO to be a degenerated amorphous semiconductor. However, the linear relation between the optical band gap and the band tail width which usually observed in covalent amorphous semiconductor such as a-Si:H was not conserved. Besides, porosity could greatly determine the resistivity and optical constants for the thickness variation at this deposition condition. Furthermore, a broad photoluminescence peak around 510 nm was identified when more than 1.5 sccm oxygen was introduced. - Highlights: ► Highly conducting amorphous zinc-oxide stabilized indium oxide thin films were prepared. ► The films were fabricated on polyethylene terephthalate at ambient temperature. ► Introduction of oxygen can improve the transparency and electrical conductivity. ► The linear relation between optical band gap and band tail width was not conserved

  3. Analysis on the Performance of Copper Indium Gallium Selenide (CIGS Based Photovoltaic Thermal

    Directory of Open Access Journals (Sweden)

    Zulkepli Afzam

    2016-01-01

    Full Text Available This paper deals with the efficiency improvement of Copper Indium Gallium Selenide (CIGS Photovoltaic (PV and also solar thermal collector. Photovoltaic thermal (PV/T can improve overall efficiency for PV and also solve the problem of limited roof space at urban area. Objective of this study is to clarify the effect of mass flow rate on the efficiency of the PV/T system. A CIGS solar cell is used with rated output power 65 W and 1.18 m2 of area. 4 set of experiments were carried out, which were: thermal collector with 0.12 kg/s flow rate, PV/T with 0.12 kg/s flow rate, PV/T with 0.09 kg/s flow rate and PV. It was found that PV/T with 0.12 kg/s flow rate had the highest electrical efficiency, 2.92 %. PV/T with 0.09 kg/s flow rate had the lowest electrical efficiency, 2.68 %. It also had 2 % higher overall efficiency. The efficiency gained is low due to several factors. The rated output power of the PV is low for the area of 1.18 m2. The packing factor of the PV also need to be considered as it may not be operated at the optimal packing factor. Furthermore, aluminium sheet of the PV may affect the PV temperature due to high thermal conductivity. Further study on more values of mass flow rate and also other parameters that affect the efficiency of the PV/T is necessary.

  4. Influence of indium concentration and substrate temperature on the physical characteristics of chemically sprayed ZnO:In thin films deposited from zinc pentanedionate and indium sulfate

    International Nuclear Information System (INIS)

    Castaneda, L; Morales-Saavedra, O G; Cheang-Wong, J C; Acosta, D R; Banuelos, J G; Maldonado, A; Olvera, M de la L

    2006-01-01

    Chemically sprayed indium-doped zinc oxide thin films (ZnO:In) were deposited on glass substrates starting from zinc pentanedionate and indium sulfate. The influence of both the dopant concentration in the starting solution and the substrate temperature on the transport, morphology, composition, linear and nonlinear optical (NLO) properties of the ZnO:In thin films were studied. The structure of all the ZnO:In thin films was polycrystalline, and variation in the preferential growth with the indium content in the solution was observed: from an initial (002) growth in films with low In content, switching to a predominance of (101) planes for intermediate dopant regime, and finally turning to a (100) growth for heavily doped films. The crystallite size was found to decrease with doping concentration and range from 36 to 23 nm. The film composition and the dopant concentration were determined by Rutherford backscattering spectrometry; these results showed that the films are almost stoichiometric ZnO. The optimum deposition conditions leading to conductive and transparent ZnO:In thin films were also found. In this way a resistivity of 4 x 10 -3 Ω cm and an average transmittance in the visible spectra of 85%, with a (101) preferential growth, were obtained in optimized ZnO:In thin films

  5. Metal Contacts to Gallium Arsenide.

    Science.gov (United States)

    Ren, Fan

    1991-07-01

    While various high performance devices fabricated from the gallium arsenide (GaAs) and related materials have generated considerable interest, metallization are fundamental components to all semiconductor devices and integrated circuits. The essential roles of metallization systems are providing the desired electrical paths between the active region of the semiconductor and the external circuits through the metal interconnections and contacts. In this work, in-situ clean of native oxide, high temperature n-type, low temperature n-type and low temperature p-type ohmic metal systems have been studied. Argon ion mill was used to remove the native oxide prior to metal deposition. For high temperature process n-type GaAs ohmic contacts, Tungsten (W) and Tungsten Silicide (WSi) were used with an epitaxial grown graded Indium Gallium Arsenide (InGaAs) layer (0.2 eV) on GaAs. In addition, refractory metals, Molybdenum (Mo), was incorporated in the Gold-Germanium (AuGe) based on n-type GaAs ohmic contacts to replace conventional silver as barrier to prevent the reaction between ohmic metal and chlorine based plasma as well as the ohmic metallization intermixing which degrades the device performance. Finally, Indium/Gold-Beryllium (In/Au-Be) alloy has been developed as an ohmic contact for p-type GaAs to reduce the contact resistance. The Fermi-level pinning of GaAs has been dominated by the surface states. The Schottky barrier height of metal contacts are about 0.8 V regardless of the metal systems. By using p-n junction approach, barrier height of pulsed C-doped layers was achieved as high as 1.4 V. Arsenic implantation into GaAs method was also used to enhance the barrier height of 1.6 V.

  6. Dry Etching Characteristics of Amorphous Indium-Gallium-Zinc-Oxide Thin Films

    International Nuclear Information System (INIS)

    Zheng Yanbin; Li Guang; Wang Wenlong; Li Xiuchang; Jiang Zhigang

    2012-01-01

    Amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) backplane technology is the best candidate for flat panel displays (FPDs). In this paper, a-IGZO TFT structures are described. The effects of etch parameters (rf power, dc-bias voltage and gas pressure) on the etch rate and etch profile are discussed. Three kinds of gas mixtures are compared in the dry etching process of a-IGZO thin films. Lastly, three problems are pointed out that need to be addressed in the dry etching process of a-IGZO TFTs. (plasma technology)

  7. The electronic structure of co-sputtered zinc indium tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Carreras, Paz; Antony, Aldrin; Bertomeu, Joan [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, 08028 Barcelona (Spain); Gutmann, Sebastian [Department of Chemistry, University of South Florida, Tampa, Florida 33620 (United States); Schlaf, Rudy [Department of Electrical Engineering, University of South Florida, Tampa, Florida 33620 (United States)

    2011-10-01

    Zinc indium tin oxide (ZITO) transparent conductive oxide layers were deposited via radio frequency (RF) magnetron co-sputtering at room temperature. A series of samples with gradually varying zinc content was investigated. The samples were characterized with x-ray and ultraviolet photoemission spectroscopy (XPS, UPS) to determine the electronic structure of the surface. Valence and conduction bands maxima (VBM, CBM), and work function were determined. The experiments indicate that increasing Zn content results in films with a higher defect rate at the surface leading to the formation of a degenerately doped surface layer if the Zn content surpasses {approx}50%. Furthermore, the experiments demonstrate that ZITO is susceptible to ultraviolet light induced work function reduction, similar to what was earlier observed on ITO and TiO{sub 2} films.

  8. Observed damage during Argon gas cluster depth profiles of compound semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, Anders J., E-mail: anders.barlow@ncl.ac.uk; Portoles, Jose F.; Cumpson, Peter J. [National EPSRC XPS Users' Service (NEXUS), School of Mechanical and Systems Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2014-08-07

    Argon Gas Cluster Ion Beam (GCIB) sources have become very popular in XPS and SIMS in recent years, due to the minimal chemical damage they introduce in the depth-profiling of polymer and other organic materials. These GCIB sources are therefore particularly useful for depth-profiling polymer and organic materials, but also (though more slowly) the surfaces of inorganic materials such as semiconductors, due to the lower roughness expected in cluster ion sputtering compared to that introduced by monatomic ions. We have examined experimentally a set of five compound semiconductors, cadmium telluride (CdTe), gallium arsenide (GaAs), gallium phosphide (GaP), indium arsenide (InAs), and zinc selenide (ZnSe) and a high-κ dielectric material, hafnium oxide (HfO), in their response to argon cluster profiling. An experimentally determined HfO etch rate of 0.025 nm/min (3.95 × 10{sup −2} amu/atom in ion) for 6 keV Ar gas clusters is used in the depth scale conversion for the profiles of the semiconductor materials. The assumption has been that, since the damage introduced into polymer materials is low, even though sputter yields are high, then there is little likelihood of damaging inorganic materials at all with cluster ions. This seems true in most cases; however, in this work, we report for the first time that this damage can in fact be very significant in the case of InAs, causing the formation of metallic indium that is readily visible even to the naked eye.

  9. Phase-Engineered Type-II Multimetal-Selenide Heterostructures toward Low-Power Consumption, Flexible, Transparent, and Wide-Spectrum Photoresponse Photodetectors.

    Science.gov (United States)

    Chen, Yu-Ze; Wang, Sheng-Wen; Su, Teng-Yu; Lee, Shao-Hsin; Chen, Chia-Wei; Yang, Chen-Hua; Wang, Kuangye; Kuo, Hao-Chung; Chueh, Yu-Lun

    2018-05-01

    Phase-engineered type-II metal-selenide heterostructures are demonstrated by directly selenizing indium-tin oxide to form multimetal selenides in a single step. The utilization of a plasma system to assist the selenization facilitates a low-temperature process, which results in large-area films with high uniformity. Compared to single-metal-selenide-based photodetectors, the multimetal-selenide photodetectors exhibit obviously improved performance, which can be attributed to the Schottky contact at the interface for tuning the carrier transport, as well as the type-II heterostructure that is beneficial for the separation of the electron-hole pairs. The multimetal-selenide photodetectors exhibit a response to light over a broad spectrum from UV to visible light with a high responsivity of 0.8 A W -1 and an on/off current ratio of up to 10 2 . Interestingly, all-transparent photodetectors are successfully produced in this work. Moreover, the possibility of fabricating devices on flexible substrates is also demonstrated with sustainable performance, high strain tolerance, and high durability during bending tests. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. High Mobility Thin Film Transistors Based on Amorphous Indium Zinc Tin Oxide

    Directory of Open Access Journals (Sweden)

    Imas Noviyana

    2017-06-01

    Full Text Available Top-contact bottom-gate thin film transistors (TFTs with zinc-rich indium zinc tin oxide (IZTO active layer were prepared at room temperature by radio frequency magnetron sputtering. Sintered ceramic target was prepared and used for deposition from oxide powder mixture having the molar ratio of In2O3:ZnO:SnO2 = 2:5:1. Annealing treatment was carried out for as-deposited films at various temperatures to investigate its effect on TFT performances. It was found that annealing treatment at 350 °C for 30 min in air atmosphere yielded the best result, with the high field effect mobility value of 34 cm2/Vs and the minimum subthreshold swing value of 0.12 V/dec. All IZTO thin films were amorphous, even after annealing treatment of up to 350 °C.

  11. Oxygen effect of transparent conducting amorphous Indium Zinc Tin Oxide films on Polyimide substrate for flexible electrode

    International Nuclear Information System (INIS)

    Ko, Yoon Duk; Lee, Chang Hun; Moon, Doo Kyung; Kim, Young Sung

    2013-01-01

    This paper discusses the effect of oxygen on the transparent conducting properties and mechanical durability of the amorphous indium zinc tin oxide (IZTO) films. IZTO films deposited on flexible clear polyimide (PI) substrate using pulsed direct current (DC) magnetron sputtering at room temperature under various oxygen partial pressures. All IZTO films deposited at room temperature exhibit an amorphous structure. The electrical and optical properties of the IZTO films were sensitively influenced by oxygen partial pressures. At optimized deposition condition of 3.0% oxygen partial pressure, the IZTO film shows the lowest resistivity of 6.4 × 10 −4 Ωcm, high transmittance of over 80% in the visible range, and figure of merit value of 3.6 × 10 −3 Ω −1 without any heat controls. In addition, high work function and good mechanical flexibility of amorphous IZTO films are beneficial to flexible applications. It is proven that the proper oxygen partial pressure is important parameter to enhance the transparent conducting properties of IZTO films on PI substrate deposited at room temperature. - Highlights: • Indium zinc tin oxide (IZTO) films were deposited on polyimide at room temperature. • Transparent conducting properties of IZTO were influenced with oxygen partial pressure. • The smooth surface and high work function of IZTO were beneficial to anode layer. • The mechanical reliability of IZTO shows better performance to indium tin oxide film

  12. Enhanced phosphorescence and electroluminescence in triplet emitters by doping gold into cadmium selenide/zinc sulfide nanoparticles

    International Nuclear Information System (INIS)

    Liu, H.-W.; Laskar, Inamur R.; Huang, C.-P.; Cheng, J.-A.; Cheng, S.-S.; Luo, L.-Y.; Wang, H.-R.; Chen, T.-M.

    2005-01-01

    Gold-cadmium selenide/zinc sulfide (Au-CdSe/ZnS) nanocomposites (NCs) were synthesized and characterized by transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, ultraviolet-visible (UV-visible) absorption and photoluminescence (PL) emission spectroscopy. The PL intensity in the Au-CdSe/ZnS NCs system was found to be much greater than that of CdSe/ZnS nanoparticles (NPs) alone, because of the surface-enhanced Raman scattering of Au NPs. Adding Au-CdSe/ZnS NCs to the cyclometalated iridium(III) complex (Ir-complex) greatly enhanced the PL intensity of a triplet emitter. Three double-layered electroluminescence (EL) devices were fabricated where the emitting zone contains the definite mixture of Ir-complex and the NCs [molar concentration of Ir-complex/NCs = 1:0 (Blank, D-1), 1:1 (D-2) and 1:3 (D-3)] and the device D-2 exhibited optimal EL performances

  13. Amorphous Hafnium-Indium-Zinc Oxide Semiconductor Thin Film Transistors

    Directory of Open Access Journals (Sweden)

    Sheng-Po Chang

    2012-01-01

    Full Text Available We reported on the performance and electrical properties of co-sputtering-processed amorphous hafnium-indium-zinc oxide (α-HfIZO thin film transistors (TFTs. Co-sputtering-processed α-HfIZO thin films have shown an amorphous phase in nature. We could modulate the In, Hf, and Zn components by changing the co-sputtering power. Additionally, the chemical composition of α-HfIZO had a significant effect on reliability, hysteresis, field-effect mobility (μFE, carrier concentration, and subthreshold swing (S of the device. Our results indicated that we could successfully and easily fabricate α-HfIZO TFTs with excellent performance by the co-sputtering process. Co-sputtering-processed α-HfIZO TFTs were fabricated with an on/off current ratio of ~106, higher mobility, and a subthreshold slope as steep as 0.55 V/dec.

  14. Review of pulmonary toxicity of indium compounds to animals and humans

    International Nuclear Information System (INIS)

    Tanaka, Akiyo; Hirata, Miyuki; Kiyohara, Yutaka; Nakano, Makiko; Omae, Kazuyuki; Shiratani, Masaharu; Koga, Kazunori

    2010-01-01

    Due to the increased production of ITO, the potential health hazards arising from occupational exposure to this material have attracted much attention. This review consists of three parts: 1) toxic effects of indium compounds on animals, 2) toxic effects of indium compounds on humans, and 3) recommendations for preventing exposure to indium compounds in the workplace. Available data have indicated that insoluble form of indium compounds, such as ITO, indium arsenide (InAs) and indium phosphide (InP), can be toxic to animals. Furthermore, InP has demonstrated clear evidence of carcinogenic potential in long-term inhalation studies using experimental animals. As for the dangers to humans, some data are available concerning adverse health effects to workers who have been exposed to indium-containing particles. The Japan Society for Occupational Health recommended the value of 3 μg/L of indium in serum as the occupational exposure limit based on biological monitoring to preventing adverse health effects in workers resulting from occupational exposure to indium compounds. Accordingly, it is essential that much greater attention is focused on human exposure to indium compounds, and precautions against possible exposure to indium compounds are most important with regard to health management among indium-handling workers.

  15. Zinc Selenide-Based Schottky Barrier Detectors for Ultraviolet-A and Ultraviolet-B Detection

    Directory of Open Access Journals (Sweden)

    V. Naval

    2010-01-01

    Full Text Available Wide-bandgap semiconductors such as zinc selenide (ZnSe have become popular for ultraviolet (UV photodetectors due to their broad UV spectral response. Schottky barrier detectors made of ZnSe in particular have been shown to have both low dark current and high responsivity. This paper presents the results of electrical and optical characterization of UV sensors based on ZnSe/Ni Schottky diodes fabricated using single-crystal ZnSe substrate with integrated UV-A (320–400 nm and UV-B (280–320 nm filters. For comparison, characteristics characterization of an unfiltered detector is also included. The measured photoresponse showed good discrimination between the two spectral bands. The measured responsivities of the UV-A and UV-B detectors were 50 mA/W and 10 mA/W, respectively. A detector without a UV filter showed a maximum responsivity of about 110 mA/W at 375 nm wavelength. The speed of the unfiltered detector was found to be about 300 kHz primarily limited by the RC time constant determined largely by the detector area.

  16. Light-emitting diodes based on nontoxic zinc-alloyed silver-indium-sulfide (AIZS) nanocrystals

    Science.gov (United States)

    Bhaumik, Saikat; Guchhait, Asim; Pal, Amlan J.

    2014-04-01

    We report solution-processed growth of zinc-alloyed silver-indium-sulfide (AIZS) nanocrystals followed by fabrication and characterization of light-emitting diodes (LEDs) based on such nanostructures. While growing the low dimensional crystals, we vary the ratio between the silver and zinc contents that in turn tunes the bandgap and correspondingly their photoluminescence (PL) emission. We also dope the AIZS nanocrystals with manganese, so that their PL emission, which appears due to a radiative transition between the d-states of the dopants, becomes invariant in energy when the diameter of the quantum dots or the dopant concentration in the nanostructures varies. The LEDs fabricated with such undoped and manganese-doped AIZS nanocrystals emit electroluminescence (EL) that matches the PL spectrum of the respective nanomaterial. The results demonstrate examples of quantum dot LEDs (QDLEDs) based on nontoxic AIZS nanocrystals.

  17. Indium and thallium

    International Nuclear Information System (INIS)

    1976-01-01

    The physical and the chemical properties and methods for producing indium and its main compounds have been studied. Presented are the major fields of application of the metal, inclusive of the atomic and space engineering. Described are the natural occurrence and the types of deposits of this disseminated element. Given are the main methods for extracting In from various raw materials, the methods being also evaluated economically. It is inferred, that all the conditions being equal, the extraction technique yields In at a lesser cost, a higher recovery and higher labour productivity. Described are methods for manufacturing the frequently used In compounds, such as the antimonide, arsenide, phosphide

  18. DX centers in indium aluminum arsenide heterostructures

    Science.gov (United States)

    Sari, Huseyin

    DX centers are point defects observed in many n-type doped III-V compound semi conductors. They have unique properties, which include large differences between their optical and thermal ionization energies, and a temperature dependence of the capture cross-sections. As a result of these properties DX centers exhibit a reduction in free carrier concentration and a large persistent photoconductivity (PPC) effect. DX centers also lead to a shift in the threshold voltage of modulation doped field effect transistors (MODFET) structures, at low temperatures. Most of the studies on this defect have been carried out on the Ga xAl1-xAs material system. However, to date there is significantly less work on DX centers in InxAl1-xAs compounds. This is partly due to difficulties associated with the growth of defect free materials other than lattice matched In0.52Al 0.48As on InP and partly because the energy level of the DX center is in resonance with the conduction band in In0.52Al0.48As. The purpose of this dissertation is to extend the DX center investigation to InAlAs compounds, primarily in the indirect portion of the InAlAs bandgap. In this work the indium composition dependence of the DX centers in In xAl1-xAs/InyGa1-yAs-based heterostructure is studied experimentally. Different InxAl 1-xAs epitaxial layers with x = 0.10, x = 0.15, x = 0.20, and x = 0.34 in a MODFET-like heterostructure were grown by Molecular Beam Epitaxy (MBE) on (001) GaAs substrates. In order to compensate the lattice mismatch between epitaxial layers and their substrates, step-graded buffer layers with indium composition increments of x = 0.10, every 2000 A, were used. For the samples grown with different indium contents Hall measurements as a function of both temperature and different cooling biases were performed in order to determine their carrier concentrations. A self consistent Poisson-Schrodinger numerical software is used to model the heterostructures. With the help of this numerical model

  19. Electrical effect of titanium diffusion on amorphous indium gallium zinc oxide

    International Nuclear Information System (INIS)

    Choi, Seung-Ha; Jung, Woo-Shik; Park, Jin-Hong

    2012-01-01

    In this work, thermal diffusion phenomenon of Ti into amorphous indium gallium zinc oxide (α-IGZO) was carefully investigated with secondary ion mass spectroscopy, I-V, and R s measurement systems and HSC chemistry simulation tool. According to the experimental and simulated results, the diffused Ti atoms were easily oxidized due to its lowest oxidation free energy. Since oxygen atoms were decomposed from the α-IGZO during the oxidation of Ti, the number of oxygen vacancies working as electron-donating sites in α-IGZO was dramatically increased, contributing to the decrease of resistivity (ρ) from 1.96 Ω cm (as-deposited α-IGZO) to 1.33 × 10 −3 Ω cm (350 °C annealed α-IGZO).

  20. Improving the efficiency of copper indium gallium (Di-selenide (CIGS solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide

    Directory of Open Access Journals (Sweden)

    M. Burghoorn

    2014-12-01

    Full Text Available Textured transparent conductors are widely used in thin-film silicon solar cells. They lower the reflectivity at interfaces between different layers in the cell and/or cause an increase in the path length of photons in the Si absorber layer, which both result in an increase in the number of absorbed photons and, consequently, an increase in short-circuit current density (Jsc and cell efficiency. Through optical simulations, we recently obtained strong indications that texturing of the transparent conductor in copper indium gallium (di-selenide (CIGS solar cells is also optically advantageous. Here, we experimentally demonstrate that the Jsc and efficiency of CIGS solar cells with an absorber layer thickness (dCIGS of 0.85 μm, 1.00 μm and 2.00 μm increase through application of a moth-eye textured resist with a refractive index that is sufficiently similar to AZO (nresist = 1.792 vs. nAZO = 1.913 at 633 nm to avoid large optical losses at the resist-AZO interface. On average, Jsc increases by 7.2%, which matches the average reduction in reflection of 7.0%. The average relative increase in efficiency is slightly lower (6.0%. No trend towards a larger relative increase in Jsc with decreasing dCIGS was observed. Ergo, the increase in Jsc can be fully explained by the reduction in reflection, and we did not observe any increase in Jsc based on an increased photon path length.

  1. High performance Schottky diodes based on indium-gallium-zinc-oxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiawei; Song, Aimin, E-mail: A.Song@manchester.ac.uk [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); Xin, Qian [School of Physics, Shandong University, Jinan 250100 (China)

    2016-07-15

    Indium-gallium-zinc-oxide (IGZO) Schottky diodes exhibit excellent performance in comparison with conventional devices used in future flexible high frequency electronics. In this work, a high performance Pt IGZO Schottky diode was presented by using a new fabrication process. An argon/oxygen mixture gas was introduced during the deposition of the Pt layer to reduce the oxygen deficiency at the Schottky interface. The diode showed a high barrier height of 0.92 eV and a low ideality factor of 1.36 from the current–voltage characteristics. Even the radius of the active area was 0.1 mm, and the diode showed a cut-off frequency of 6 MHz in the rectifier circuit. Using the diode as a demodulator, a potential application was also demonstrated in this work.

  2. Effect of O2 plasma immersion on electrical properties and transistor performance of indium gallium zinc oxide thin films

    International Nuclear Information System (INIS)

    Liu, P.; Chen, T.P.; Liu, Z.; Tan, C.S.; Leong, K.C.

    2013-01-01

    Evolution of electrical properties and thin-film transistor characteristics of amorphous indium gallium zinc oxide (IGZO) thin films synthesized by RF sputtering with O 2 plasma immersion has been examined. O 2 plasma immersion results in an enhancement in the Hall mobility and a decrease in the electron concentration; and the transistor performance can be greatly improved by the O 2 plasma immersion. X-ray photoelectron spectroscopy analysis indicates that the effect of O 2 plasma immersion on the electrical properties and the transistor performance can be attributed to the reduction of the oxygen-related defects in the IGZO thin films. - Highlights: • Oxygen plasma immersion effect on indium gallium zinc oxide thin film properties • Oxygen-related defect reduces in the InGaZnO thin film with oxygen plasma immersion. • Increasing oxygen plasma immersion duration on device will decrease the off current. • Oxygen plasma immersion enhances the performance of device

  3. Selective separation of indium by iminodiacetic acid chelating resin

    International Nuclear Information System (INIS)

    Fortes, M.C.B.; Benedetto, J.S.; Martins, A.H.

    2007-01-01

    - Indium can be recovered by treating residues, flue dusts, slags, and metallic intermediates in zinc smelting. This paper investigates the adsorption characteristics of indium and iron on an iminodiacetic acid chelating resin, Amberlite R IRC748 (Rohm and Haas Co.-USA). High concentrations of iron are always present in the aqueous feed solution of indium recovery. In addition, the chemical behaviour of iron in adsorptive systems is similar to that of indium. The metal concentrations in the aqueous solution were based on typical indium sulfate leach liquor obtained from zinc hydrometallurgical processing in a Brazilian plant. The ionic adsorption experiments were carried out by the continuous column method. Amberlite R IRC748 resin had a high affinity for indium under acidic conditions. Indium ions adsorbed onto the polymeric resin were eluted with a 0.5 mol/dm 3 sulphuric acid solution passed through the resin bed in the column. 99.5% pure indium sulfate aqueous solution was obtained using the iminodiacetic acid chelating resin Amberlite R IRC748. (author)

  4. Zinc sulfide and zinc selenide immersion gratings for astronomical high-resolution spectroscopy: evaluation of internal attenuation of bulk materials in the short near-infrared region

    Science.gov (United States)

    Ikeda, Yuji; Kobayashi, Naoto; Kondo, Sohei; Yasui, Chikako; Kuzmenko, Paul J.; Tokoro, Hitoshi; Terada, Hiroshi

    2009-08-01

    We measure the internal attenuation of bulk crystals of chemical vapor deposition zinc selenide (CVD-ZnS), chemical vapor deposition zinc sulfide (CVD-ZnSe), Si, and GaAs in the short near-infrared (sNIR) region to evaluate the possibility of astronomical immersion gratings with those high refractive index materials. We confirm that multispectral grade CVD-ZnS and CVD-ZnSe are best suited for the immersion gratings, with the smallest internal attenuation of αatt=0.01 to 0.03 cm-1 among the major candidates. The measured attenuation is roughly in proportion to λ-2, suggesting it is dominated by bulk scattering due to the polycrystalline grains rather than by absorption. The total transmittance in the immersion grating is estimated to be at least >80%, even for the spectral resolution of R=300,000. Two potential problems, the scattered light by the bulk material and the degradation of the spectral resolution due to the gradient illumination in the diffracted beam, are investigated and found to be negligible for usual astronomical applications. Since the remaining problem, the difficulty of cutting grooves on CVD-ZnS and CVD-ZnSe, has recently been overcome by the nanoprecision fly-cutting technique, ZnS and ZnSe immersion gratings for astronomy can be technically realized.

  5. New quaternary thallium indium germanium selenide TlInGe2Se6: Crystal and electronic structure

    Science.gov (United States)

    Khyzhun, O. Y.; Parasyuk, O. V.; Tsisar, O. V.; Piskach, L. V.; Myronchuk, G. L.; Levytskyy, V. O.; Babizhetskyy, V. S.

    2017-10-01

    Crystal structure of a novel quaternary thallium indium germanium selenide TlInGe2Se6 was investigated by means of powder X-ray diffraction method. It was determined that the compound crystallizes in the trigonal space group R3 with the unit cell parameters a = 10.1798(2) Å, c = 9.2872(3) Å. The relationship with similar structures was discussed. The as-synthesized TlInGe2Se6 ingot was tested with X-ray photoelectron spectroscopy (XPS) and X-ray emission spectroscopy (XES). In particular, the XPS valence-band and core-level spectra were recorded for initial and Ar+ ion-bombarded surfaces of the sample under consideration. The XPS data allow for statement that the TlInGe2Se6 surface is rigid with respect to Ar+ ion-bombardment. Particularly, Ar+ ion-bombardment (3.0 keV, 5 min duration, ion current density fixed at 14 μA/cm2) did not cause substantial modifications of stoichiometry in topmost surface layers. Furthermore, comparison on a common energy scale of the XES Se Kβ2 and Ge Kβ2 bands and the XPS valence-band spectrum reveals that the principal contributions of the Se 4p and Ge 4p states occur in the upper and central portions of the valence band of TlInGe2Se6, respectively, with also their substantial contributions in other portions of the band. The bandgap energy of TlInGe2Se6 at the level of αg=103 cm-1 is equal to 2.38 eV at room temperature.

  6. Low-voltage protonic/electronic hybrid indium zinc oxide synaptic transistors on paper substrates

    International Nuclear Information System (INIS)

    Wu, Guodong; Wan, Changjin; Wan, Qing; Zhou, Jumei; Zhu, Liqiang

    2014-01-01

    Low-voltage (1.5 V) indium zinc oxide (IZO)-based electric-double-layer (EDL) thin-film transistors (TFTs) gated by nanogranular proton conducting SiO 2 electrolyte films are fabricated on paper substrates. Both enhancement-mode and depletion-mode operation are obtained by tuning the thickness of the IZO channel layer. Furthermore, such flexible IZO protonic/electronic hybrid EDL TFTs can be used as artificial synapses, and synaptic stimulation response and short-term synaptic plasticity function are demonstrated. The protonic/electronic hybrid EDL TFTs on paper substrates proposed here are promising for low-power flexible paper electronics, artificial synapses and bioelectronics. (paper)

  7. Synthesis of ZnO nanocoatings by decomposition of zinc acetate induced by electrons emitted by indium

    Energy Technology Data Exchange (ETDEWEB)

    Svoboda, Ladislav [Department of Chemistry, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, Ostrava 708 33 (Czech Republic); Institute of Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, Ostrava 708 33 (Czech Republic); Dvorský, Richard [Department of Physics, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, Ostrava 708 33 (Czech Republic); Regional Materials Science and Technology Centre, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, Ostrava 708 33 (Czech Republic); Nanotechnology Centre, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, Ostrava 708 33 (Czech Republic); Praus, Petr, E-mail: petr.praus@vsb.cz [Department of Chemistry, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, Ostrava 708 33 (Czech Republic); Institute of Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, Ostrava 708 33 (Czech Republic); Matýsek, Dalibor [Institute of Geological Engineering, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, Ostrava 708 33 (Czech Republic); Bednář, Jiří [Nanotechnology Centre, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, Ostrava 708 33 (Czech Republic)

    2016-12-01

    Graphical abstract: - Highlights: • Hexagonal ZnO was synthetized by the decomposition of zinc acetate under UV light. • Source of photogenerated electron was an indium plate. • ZnO nanocoatings were deposited on surface of silica nanoparticles. • Mean thickness of the ZnO nanocoatings was estimated by DLS at 13 nm. - Abstract: In this work, a new method for the synthesis of ZnO nanocoatings is presented. It was tested for the nanocoating of silica nanoparticles forming core/shell SiO{sub 2}/ZnO nanoparticles by the decomposition of zinc acetate in silica aqueous nanodispersions induced by electrons generated by a plate indium photocathode, which was irradiated with a UV Hg lamp with maximum intensity at the wavelength of 245 nm. The ZnO nanocoatings were examined by X-ray diffraction (XRD), UV–Vis diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PLS), dynamic light scattering (DLS) and transmission electron microscopy (TEM). It was found that ZnO of hexagonal structure formed nanocoatings with the mean thickness of 13 nm. The photocatalytic activity of ZnO nanocoatings was verified by the photocatalytic decomposition of methylene blue (MB). Such nanocoating procedure based on the electron-induced decomposition of suitable metal salts could be a promising method for various applications in nanotechnology.h.

  8. Recurring polyhedral motifs in the amorphous indium gallium zinc oxide network

    Energy Technology Data Exchange (ETDEWEB)

    Divya; Deepak [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur (India); National Center for Flexible Electronics, Indian Institute of Technology, Kanpur (India); Prasad, Rajendra [Department of Physics, Indian Institute of Technology, Kanpur (India)

    2017-02-15

    The coordination polyhedra around the cations are the building blocks of ionic solids. For amorphous InGaZn oxide (a-IGZO), these coordination polyhedra are identified to investigate properties that depend on short range interactions. Therefore, in this first principles based study, a large number (10) of samples of a-IGZO were prepared by ab initio melt-and-quench molecular dynamics, so that several distinct samples of the amorphous landscape are obtained corresponding to local minima in energy. Based on a method of comparing bond angles between metal and oxygen atoms, the identified polyhedra were matched to the polyhedral motifs present in the related crystalline systems, such as, InGaZnO{sub 4}, In{sub 2}O{sub 3}, Ga{sub 2}O{sub 3}, and ZnO. Consequently, we find, the a-IGZO primarily consists of the following polyhedra: a tetrahedron from space group 199 and an octahedron from space group 206 of In{sub 2}O{sub 3}; a tetrahedron from space group 12 and an octahedron from space group 167 of Ga{sub 2}O{sub 3}; a tetrahedron from space group 186 of ZnO; zinc and gallium trigonal bipyramids from c-IGZO; and one zinc fourfold, one zinc fivefold, and one indium fivefold coordination polyhedra that occur only in the amorphous phase. Thus, we were able to reduce the description of structure from 360 to 10 groups of polyhedra. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Recurring polyhedral motifs in the amorphous indium gallium zinc oxide network

    International Nuclear Information System (INIS)

    Divya; Deepak; Prasad, Rajendra

    2017-01-01

    The coordination polyhedra around the cations are the building blocks of ionic solids. For amorphous InGaZn oxide (a-IGZO), these coordination polyhedra are identified to investigate properties that depend on short range interactions. Therefore, in this first principles based study, a large number (10) of samples of a-IGZO were prepared by ab initio melt-and-quench molecular dynamics, so that several distinct samples of the amorphous landscape are obtained corresponding to local minima in energy. Based on a method of comparing bond angles between metal and oxygen atoms, the identified polyhedra were matched to the polyhedral motifs present in the related crystalline systems, such as, InGaZnO_4, In_2O_3, Ga_2O_3, and ZnO. Consequently, we find, the a-IGZO primarily consists of the following polyhedra: a tetrahedron from space group 199 and an octahedron from space group 206 of In_2O_3; a tetrahedron from space group 12 and an octahedron from space group 167 of Ga_2O_3; a tetrahedron from space group 186 of ZnO; zinc and gallium trigonal bipyramids from c-IGZO; and one zinc fourfold, one zinc fivefold, and one indium fivefold coordination polyhedra that occur only in the amorphous phase. Thus, we were able to reduce the description of structure from 360 to 10 groups of polyhedra. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Improving the efficiency of copper indium gallium (Di-)selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Burghoorn, M.; Kniknie, B.; Deelen, J. van; Ee, R. van [The Netherlands Organisation for Applied Scientific Research (TNO), De Rondom 1, 5612 AP, Eindhoven (Netherlands); Xu, M. [The Netherlands Organisation for Applied Scientific Research (TNO), De Rondom 1, 5612 AP, Eindhoven (Netherlands); Delft University of Technology, Optics Group, Van der Waalsweg 8, 2628 CH, Delft (Netherlands); Vroon, Z. [The Netherlands Organisation for Applied Scientific Research (TNO), De Rondom 1, 5612 AP, Eindhoven (Netherlands); Zuyd Hogeschool, Nieuw Eyckholt 300, 6419 DJ, Heerlen (Netherlands); Belt, R. van de [Kriya Materials BV, Urmonderbaan 22, 6167 RD, Geleen (Netherlands); Buskens, P., E-mail: pascal.buskens@tno.nl, E-mail: buskens@dwi.rwth-aachen.de [The Netherlands Organisation for Applied Scientific Research (TNO), De Rondom 1, 5612 AP, Eindhoven (Netherlands); DWI – Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen (Germany)

    2014-12-15

    Textured transparent conductors are widely used in thin-film silicon solar cells. They lower the reflectivity at interfaces between different layers in the cell and/or cause an increase in the path length of photons in the Si absorber layer, which both result in an increase in the number of absorbed photons and, consequently, an increase in short-circuit current density (J{sub sc}) and cell efficiency. Through optical simulations, we recently obtained strong indications that texturing of the transparent conductor in copper indium gallium (di-)selenide (CIGS) solar cells is also optically advantageous. Here, we experimentally demonstrate that the J{sub sc} and efficiency of CIGS solar cells with an absorber layer thickness (d{sub CIGS}) of 0.85 μm, 1.00 μm and 2.00 μm increase through application of a moth-eye textured resist with a refractive index that is sufficiently similar to AZO (n{sub resist} = 1.792 vs. n{sub AZO} = 1.913 at 633 nm) to avoid large optical losses at the resist-AZO interface. On average, J{sub sc} increases by 7.2%, which matches the average reduction in reflection of 7.0%. The average relative increase in efficiency is slightly lower (6.0%). No trend towards a larger relative increase in J{sub sc} with decreasing d{sub CIGS} was observed. Ergo, the increase in J{sub sc} can be fully explained by the reduction in reflection, and we did not observe any increase in J{sub sc} based on an increased photon path length.

  11. Double-layer indium doped zinc oxide for silicon thin-film solar cell prepared by ultrasonic spray pyrolysis

    International Nuclear Information System (INIS)

    Jiao Bao-Chen; Zhang Xiao-Dan; Wei Chang-Chun; Sun Jian; Ni Jian; Zhao Ying

    2011-01-01

    Indium doped zinc oxide (ZnO:In) thin films were prepared by ultrasonic spray pyrolysis on corning eagle 2000 glass substrate. 1 and 2 at.% indium doped single-layer ZnO:In thin films with different amounts of acetic acid added in the initial solution were fabricated. The 1 at.% indium doped single-layers have triangle grains. The 2 at.% indium doped single-layer with 0.18 acetic acid adding has the resistivity of 6.82×10 −3 Ω·cm and particle grains. The double-layers structure is designed to fabricate the ZnO:In thin film with low resistivity (2.58×10 −3 Ω·cm) and good surface morphology. It is found that the surface morphology of the double-layer ZnO:In film strongly depends on the substrate-layer, and the second-layer plays a large part in the resistivity of the double-layer ZnO:In thin film. Both total and direct transmittances of the double-layer ZnO:In film are above 80% in the visible light region. Single junction a-Si:H solar cell based on the double-layer ZnO:In as front electrode is also investigated. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  12. Zinc Cadmium Selenide Cladded Quantum Dot Based Electroluminescent and Nonvolatile Memory Devices

    Science.gov (United States)

    Al-Amody, Fuad H.

    This dissertation presents electroluminescent (EL) and nonvolatile memory devices fabricated using pseudomorphic ZnCdSe-based cladded quantum dots (QDs). These dots were grown using our own in-school built novel reactor. The EL device was fabricated on a substrate of ITO (indium tin oxide) coated glass with the quantum dots sandwiched between anode and cathode contacts with a small barrier layer on top of the QDs. The importance of these cladded dots is to increase the quantum yield of device. This device is unique as they utilize quantum dots that are pseudomorphic (nearly lattice-matched core and the shell of the dot). In the case of floating quantum dot gate nonvolatile memory, cladded ZnCdSe quantum dots are deposited on single crystalline gate insulator (ZnMgS/ZnMgSe), which is grown using metal-organic chemical vapor deposition (MOCVD). The control gate dielectric layer of the nonvolatile memory is Si3N4 or SiO2 and is grown using plasma enhanced chemical vapor deposition (PECVD). The cladded dots are grown using an improved methodology of photo-assisted microwave plasma metal-organic chemical vapor deposition (PMP-MOCVD) enhanced reactor. The cladding composition of the core and shell of the dots was engineered by the help of ultraviolet light which changed the incorporation of zinc (and hence composition of ZnCdSe). This makes ZnxCd1--xSe-ZnyCd1--y Se QDs to have a low composition of zinc in the core than the cladding (x

  13. Characteristics of indium zinc oxide films deposited using the facing targets sputtering method for OLEDs applications

    International Nuclear Information System (INIS)

    Rim, Y.S.; Kim, H.J.; Kim, K.H.

    2010-01-01

    The amorphous indium zinc oxide (IZO) thin films were deposited on polyethersulfone (PES) and glass substrates using the facing targets sputtering (FTS) system. The electrical, optical and structural properties of the IZO thin films deposited as functions of sputtering parameters on the glass and PES substrates. An optimal IZO deposition condition is fabricated for organic light-emitting device (OLED) based on glass and PES. The amorphous IZO anode-based OLEDs show superior current density and luminance characteristics.

  14. Secondary indium production from end-of-life liquid crystal displays

    Energy Technology Data Exchange (ETDEWEB)

    Amato, Alessia; Rocchetti, Laura; Fonti, Viviana; Ruello, Maria Letizia; Beolchini, Francesca [Universita Politecnica of Marche, DISVA, Via Brecce Bianche, 60131 Ancona (Italy)

    2016-12-15

    In 2014, the European Union identified 20 raw materials critical for economic importance and high supply risk. Indium, used in several innovative technologies, is among such critical raw materials. Generally, it is mined as a by-product of zinc from a mineral named sphalerite, with a concentration between 1 and 100 ppm. Currently, the largest producer of indium is China and about 84% of the worldwide indium consumption is used for liquid crystal display (LCD) production, in particular to form an indium-tin-oxide (ITO) film with transparent conductor properties. The fast evolution of LCD technologies caused a double effect: the growth of indium demand and an increase of waste electrical and electronic equipment (WEEE). Considering these two factors, the aim of this study is to make the end-of-life LCDs a secondary indium resource. With this purpose, an indium recovery process was developed carrying out an acidic leaching, followed by a zinc cementation. The first step allowed a complete indium extraction using 2M sulfuric acid at 80 C for 10 min. The problem of low indium concentration in the scraps (around 150 ppm) was overcome using a cross-current configuration in the leaching phase that allowed an increase of metal concentration and a decrease of reagents consumption. An indium recovery higher than 90% was obtained in the final cementation step, using 5 g/L of zinc powder at pH 3 and 55 C for 10 min. Considering its high efficiency, this process is promising in a context of circular economy, where a waste becomes a resource. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. High stability mechanisms of quinary indium gallium zinc aluminum oxide multicomponent oxide films and thin film transistors

    International Nuclear Information System (INIS)

    Lee, Ching-Ting; Lin, Yung-Hao; Lin, Jhong-Ham

    2015-01-01

    Quinary indium gallium zinc aluminum oxide (IGZAO) multicomponent oxide films were deposited using indium gallium zinc oxide (IGZO) target and Al target by radio frequency magnetron cosputtering system. An extra carrier transport pathway could be provided by the 3 s orbitals of Al cations to improve the electrical properties of the IGZO films, and the oxygen instability could be stabilized by the strong Al-O bonds in the IGZAO films. The electron concentration change and the electron mobility change of the IGZAO films for aging time of 10 days under an air environment at 40 °C and 75% humidity were 20.1% and 2.4%, respectively. The experimental results verified the performance stability of the IGZAO films. Compared with the thin film transistors (TFTs) using conventional IGZO channel layer, in conducting the stability of TFTs with IGZAO channel layer, the transconductance g m change, threshold voltage V T change, and the subthreshold swing S value change under the same aging condition were improved to 7.9%, 10.5%, and 14.8%, respectively. Furthermore, the stable performances of the IGZAO TFTs were also verified by the positive gate bias stress. In this research, the quinary IGZAO multicomponent oxide films and that applied in TFTs were the first studied in the literature

  16. High stability mechanisms of quinary indium gallium zinc aluminum oxide multicomponent oxide films and thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ching-Ting, E-mail: ctlee@ee.ncku.edu.tw; Lin, Yung-Hao; Lin, Jhong-Ham [Institute of Microelectronics, Department of Electrical Engineering, Research Center for Energy Technology and Strategy (RCETS), National Cheng Kung University, Tainan, Taiwan (China)

    2015-01-28

    Quinary indium gallium zinc aluminum oxide (IGZAO) multicomponent oxide films were deposited using indium gallium zinc oxide (IGZO) target and Al target by radio frequency magnetron cosputtering system. An extra carrier transport pathway could be provided by the 3 s orbitals of Al cations to improve the electrical properties of the IGZO films, and the oxygen instability could be stabilized by the strong Al-O bonds in the IGZAO films. The electron concentration change and the electron mobility change of the IGZAO films for aging time of 10 days under an air environment at 40 °C and 75% humidity were 20.1% and 2.4%, respectively. The experimental results verified the performance stability of the IGZAO films. Compared with the thin film transistors (TFTs) using conventional IGZO channel layer, in conducting the stability of TFTs with IGZAO channel layer, the transconductance g{sub m} change, threshold voltage V{sub T} change, and the subthreshold swing S value change under the same aging condition were improved to 7.9%, 10.5%, and 14.8%, respectively. Furthermore, the stable performances of the IGZAO TFTs were also verified by the positive gate bias stress. In this research, the quinary IGZAO multicomponent oxide films and that applied in TFTs were the first studied in the literature.

  17. Improvement of Self-Heating of Indium Gallium Zinc Aluminum Oxide Thin-Film Transistors Using Al2O3 Barrier Layer

    Science.gov (United States)

    Jian, Li-Yi; Lee, Hsin-Ying; Lin, Yung-Hao; Lee, Ching-Ting

    2018-02-01

    To study the self-heating effect, aluminum oxide (Al2O3) barrier layers of various thicknesses have been inserted between the channel layer and insulator layer in bottom-gate-type indium gallium zinc aluminum oxide (IGZAO) thin-film transistors (TFTs). Each IGZAO channel layer was deposited on indium tin oxide (ITO)-coated glass substrate by using a magnetron radiofrequency cosputtering system with dual targets composed of indium gallium zinc oxide (IGZO) and Al. The 3 s orbital of Al cation provided an extra transport pathway and widened the conduction-band bottom, thus increasing the electron mobility of the IGZAO films. The Al-O bonds were able to sustain the oxygen stability of the IGZAO films. The self-heating behavior of the resulting IGZAO TFTs was studied by Hall measurements on the IGZAO films as well as the electrical performance of the IGZAO TFTs with Al2O3 barrier layers of various thicknesses at different temperatures. IGZAO TFTs with 50-nm-thick Al2O3 barrier layer were stressed by positive gate bias stress (PGBS, at gate-source voltage V GS = 5 V and drain-source voltage V DS = 0 V); at V GS = 5 V and V DS = 10 V, the threshold voltage shifts were 0.04 V and 0.2 V, respectively, much smaller than for the other IGZAO TFTs without Al2O3 barrier layer, which shifted by 0.2 V and 1.0 V when stressed under the same conditions.

  18. Paired-pulse facilitation achieved in protonic/electronic hybrid indium gallium zinc oxide synaptic transistors

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Li Qiang, E-mail: guoliqiang@ujs.edu.cn; Ding, Jian Ning; Huang, Yu Kai [Micro/Nano Science & Technology Center, Jiangsu University, Zhenjiang, 212013 (China); Zhu, Li Qiang, E-mail: lqzhu@nimte.ac.cn [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2015-08-15

    Neuromorphic devices with paired pulse facilitation emulating that of biological synapses are the key to develop artificial neural networks. Here, phosphorus-doped nanogranular SiO{sub 2} electrolyte is used as gate dielectric for protonic/electronic hybrid indium gallium zinc oxide (IGZO) synaptic transistor. In such synaptic transistors, protons within the SiO{sub 2} electrolyte are deemed as neurotransmitters of biological synapses. Paired-pulse facilitation (PPF) behaviors for the analogous information were mimicked. The temperature dependent PPF behaviors were also investigated systematically. The results indicate that the protonic/electronic hybrid IGZO synaptic transistors would be promising candidates for inorganic synapses in artificial neural network applications.

  19. Paired-pulse facilitation achieved in protonic/electronic hybrid indium gallium zinc oxide synaptic transistors

    Directory of Open Access Journals (Sweden)

    Li Qiang Guo

    2015-08-01

    Full Text Available Neuromorphic devices with paired pulse facilitation emulating that of biological synapses are the key to develop artificial neural networks. Here, phosphorus-doped nanogranular SiO2 electrolyte is used as gate dielectric for protonic/electronic hybrid indium gallium zinc oxide (IGZO synaptic transistor. In such synaptic transistors, protons within the SiO2 electrolyte are deemed as neurotransmitters of biological synapses. Paired-pulse facilitation (PPF behaviors for the analogous information were mimicked. The temperature dependent PPF behaviors were also investigated systematically. The results indicate that the protonic/electronic hybrid IGZO synaptic transistors would be promising candidates for inorganic synapses in artificial neural network applications.

  20. Theoretical Study of Indium Compounds of Interest for Organometallic Chemical Vapor Deposition

    Science.gov (United States)

    Cardelino, B. H.; Moore, C. E.; Cardelino, C. A.; Frazier, D. O.; Backmann, K. J.

    2000-01-01

    The structural. electronic and therinochemical properties of indium compounds which are of interest in halide transport and organometallic chemical vapor deposition processes have been studied by ab initio and statistical mechanics methods. The compounds reported include: indium halides and hydrides (InF, InCl, InCl3, InH, InH2, InH3); indium clusters (In2, In3); methylindium, dimethylindium, and their hydrogen derivatives [In(CH3), In(CH3)H, In(CH3)H2, In(CH3)2, In(CH3)2H]; dimethyl-indium dimer [In2(CH3)4], trimethyl-indium [In(CH3)3]; dehydrogenated methyl, dimethyl and trimethylindium [In(CH3)2CH2, In(CH3)CH2, In(CH2)], trimethylindium adducts with ammonia, trimethylamine and hydrazine [(CH3)3In:NH3, (CH3)3In:N(CH3)3, (CH3)3In:N(H2)N(H2)]; dimethylamino-indium and methylimino-indium [In(CH3)2(NH2), In(CH3)(NH)]; indium nitride and indium nitride dimer (InN, In2N2), indium phosphide, arsenide and antimonide ([InP, InAs, InSb). The predicted electronic properties are based on density functional theory calculations; the calculated thermodynamic properties are reported following the format of the JANAF (Joint Army, Navy, NASA, Air Force) Tables. Equilibrium compositions at two temperatures (298 and 1000 K) have been analyzed for groups of competing simultaneous reactions.

  1. Flexible substrate compatible solution processed P-N heterojunction diodes with indium-gallium-zinc oxide and copper oxide

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Ishan; Deepak, E-mail: saboo@iitk.ac.in

    2017-04-15

    Highlights: • Both n and p-type semiconductors are solution processed. • Temperature compatibility with flexible substrates such as polyimide. • Compatibility of p-type film (CuO) on n-type film (IZO). • Diode with rectification ratio of 10{sup 4} and operating voltage <1.5 V. • Construction of band alignment using XPS. - Abstract: Printed electronics on flexible substrates requires low temperature and solution processed active inks. With n-type indium-gallium-zinc oxide (IGZO) based electronics maturing for thin film transistor (TFT), we here demonstrate its heterojunction diode with p-copper oxide, prepared by sol-gel method and processed at temperatures compatible with polyimide substrates. The phase obtained for copper oxide is CuO. When coated on n-type oxide, it is prone to develop morphological features, which are minimized by annealing treatment. Diodes of p-CuO films with IGZO are of poor quality due to its high resistivity while, conducting indium-zinc oxide (IZO) films yielded good diode with rectification ratio of 10{sup 4} and operating voltage <1.5 V. A detailed measurement at the interface by X-ray photoelectron spectroscopy and optical absorption ascertained the band alignment to be of staggered type. Consistently, the current in the diode is established to be due to electrons tunnelling from n-IZO to p-CuO.

  2. The Mobility Enhancement of Indium Gallium Zinc Oxide Transistors via Low-temperature Crystallization using a Tantalum Catalytic Layer

    OpenAIRE

    Shin, Yeonwoo; Kim, Sang Tae; Kim, Kuntae; Kim, Mi Young; Oh, Saeroonter; Jeong, Jae Kyeong

    2017-01-01

    High-mobility indium gallium zinc oxide (IGZO) thin-film transistors (TFTs) are achieved through low-temperature crystallization enabled via a reaction with a transition metal catalytic layer. For conventional amorphous IGZO TFTs, the active layer crystallizes at thermal annealing temperatures of 600??C or higher, which is not suitable for displays using a glass substrate. The crystallization temperature is reduced when in contact with a Ta layer, where partial crystallization at the IGZO bac...

  3. Amorphous indium-tin-zinc oxide films deposited by magnetron sputtering with various reactive gases: Spatial distribution of thin film transistor performance

    International Nuclear Information System (INIS)

    Jia, Junjun; Torigoshi, Yoshifumi; Shigesato, Yuzo; Kawashima, Emi; Utsuno, Futoshi; Yano, Koki

    2015-01-01

    This work presents the spatial distribution of electrical characteristics of amorphous indium-tin-zinc oxide film (a-ITZO), and how they depend on the magnetron sputtering conditions using O 2 , H 2 O, and N 2 O as the reactive gases. Experimental results show that the electrical properties of the N 2 O incorporated a-ITZO film has a weak dependence on the deposition location, which cannot be explained by the bombardment effect of high energy particles, and may be attributed to the difference in the spatial distribution of both the amount and the activity of the reactive gas reaching the substrate surface. The measurement for the performance of a-ITZO thin film transistor (TFT) also suggests that the electrical performance and device uniformity of a-ITZO TFTs can be improved significantly by the N 2 O introduction into the deposition process, where the field mobility reach to 30.8 cm 2 V –1 s –1 , which is approximately two times higher than that of the amorphous indium-gallium-zinc oxide TFT

  4. Prospects and performance limitations for Cu-Zn-Sn-S-Se photovoltaic technology.

    Science.gov (United States)

    Mitzi, David B; Gunawan, Oki; Todorov, Teodor K; Barkhouse, D Aaron R

    2013-08-13

    While cadmium telluride and copper-indium-gallium-sulfide-selenide (CIGSSe) solar cells have either already surpassed (for CdTe) or reached (for CIGSSe) the 1 GW yr⁻¹ production level, highlighting the promise of these rapidly growing thin-film technologies, reliance on the heavy metal cadmium and scarce elements indium and tellurium has prompted concern about scalability towards the terawatt level. Despite recent advances in structurally related copper-zinc-tin-sulfide-selenide (CZTSSe) absorbers, in which indium from CIGSSe is replaced with more plentiful and lower cost zinc and tin, there is still a sizeable performance gap between the kesterite CZTSSe and the more mature CdTe and CIGSSe technologies. This review will discuss recent progress in the CZTSSe field, especially focusing on a direct comparison with analogous higher performing CIGSSe to probe the performance bottlenecks in Earth-abundant kesterite devices. Key limitations in the current generation of CZTSSe devices include a shortfall in open circuit voltage relative to the absorber band gap and secondarily a high series resistance, which contributes to a lower device fill factor. Understanding and addressing these performance issues should yield closer performance parity between CZTSSe and CdTe/CIGSSe absorbers and hopefully facilitate a successful launch of commercialization for the kesterite-based technology.

  5. The steady-state and transient electron transport within bulk zinc-blende indium nitride: The impact of crystal temperature and doping concentration variations

    International Nuclear Information System (INIS)

    Siddiqua, Poppy; O'Leary, Stephen K.

    2016-01-01

    Within the framework of a semi-classical three-valley Monte Carlo electron transport simulation approach, we analyze the steady-state and transient aspects of the electron transport within bulk zinc-blende indium nitride, with a focus on the response to variations in the crystal temperature and the doping concentration. We find that while the electron transport associated with zinc-blende InN is highly sensitive to the crystal temperature, it is not very sensitive to the doping concentration selection. The device consequences of these results are then explored.

  6. Process development of ITO source/drain electrode for the top-gate indium-gallium-zinc oxide transparent thin-film transistor

    International Nuclear Information System (INIS)

    Cheong, Woo-Seok; Yoon, Young-sun; Shin, Jae-Heon; Hwang, Chi-Sun; Chu, Hye Yong

    2009-01-01

    Indium-tin oxide (ITO) has been widely used as electrodes for LCDs and OLEDs. The applications are expanding to the transparent thin-film transistors (TTFT S ) for the versatile circuits or transparent displays. This paper is related with optimization of ITO source and drain electrode for TTFTs on glass substrates. For example, un-etched ITO remnants, which frequently found in the wet etching process, often originate from unsuitable ITO formation processes. In order to improve them, an ion beam deposition method is introduced, which uses for forming a seed layer before the main ITO deposition. We confirm that ITO films with seed layers are effective to obtain clean and smooth glass surfaces without un-etched ITO remnants, resulting in a good long-run electrical stability of the top-gate indium-gallium-zinc oxide-TTFT.

  7. Electrical and optical properties of amorphous indium zinc oxide films

    International Nuclear Information System (INIS)

    Ito, N.; Sato, Y.; Song, P.K.; Kaijio, A.; Inoue, K.; Shigesato, Y.

    2006-01-01

    Valence electron control and electron transport mechanisms on the amorphous indium zinc oxide (IZO) films were investigated. The amorphous IZO films were deposited by dc magnetron sputtering using an oxide ceramic IZO target (89.3 wt.% In 2 O 3 and 10.7 wt.% ZnO). N-type impurity dopings, such as Sn, Al or F, could not lead to the increase in carrier density in the IZO. Whereas, H 2 introduction into the IZO deposition process was confirmed to be effective to increase carrier density. By 30% H 2 introduction into the deposition process, carrier density increased from 3.08 x 10 2 to 7.65 x 10 2 cm -3 , which must be originated in generations of oxygen vacancies or interstitial Zn 2+ ions. Decrease in the transmittance in the near infrared region and increase in the optical band gap were observed with the H 2 introduction, which corresponded to the increase in carrier density. The lowest resistivity of 3.39 x 10 -4 Ω cm was obtained by 10% H 2 introduction without substrate heating during the deposition

  8. Indium zinc oxide films deposited on PET by LF magnetron sputtering

    International Nuclear Information System (INIS)

    Kim, Eun Lyoung; Jung, Sang Kooun; Sohn, Sang Ho; Park, Duck Kyu

    2007-01-01

    Indium zinc oxide (IZO) has attracted much attention recently for use in transparent oxide films compared with the ITO film. We carried out the deposition of IZO on a polyethylene terapthalate (PET) substrate at room temperature by a low-frequency (LF) magnetron sputtering system. These films have amorphous structures with excellent electrical stability, surface uniformity and high optical transmittance. The effects of LF applied voltage and O 2 flow rate were investigated. The electrical and optical properties were studied. At optimal deposition conditions, thin films of IZO with a sheet resistance of 32 Ω/sq and an optical transmittance of over 80% in the visible spectrum range were achieved. The IZO thin films fabricated by this method do not require substrate heating during the film preparation of any additional post-deposition annealing treatment. The experimental results show that films with good qualities of surface morphology, transmittance and electrical conduction can be grown by the LF magnetron sputtering method on PET which is recommendable

  9. Indium recovery by solvent extraction

    International Nuclear Information System (INIS)

    Fortes, Marilia Camargos Botelho

    1999-04-01

    Indium has been recovered as a byproduct from residues generated from the sulfuric acid leaching circuits in mineral plants for zinc recovery. Once its recovery comes from the slags of other metals recovery, it is necessary to separate it from the other elements which usually are present in high concentrations. Many works have been approaching this separation and indicate the solvent extraction process as the main technique used. In Brazilian case, indium recovery depends on the knowledge of this technique and its development. This paper describes the solvent extraction knowledge for the indium recovery from aqueous solutions generated in mineral plants. The results for determination of the best experimental conditions to obtain a high indium concentration solution and minimum iron poisoning by solvent extraction with di (2-ethylhexyl)-phosphoric acid (D2EHPA) solubilized in isoparafin and exxsol has been presented. (author)

  10. Flexible indium zinc oxide/Ag/indium zinc oxide multilayer electrode grown on polyethersulfone substrate by cost-efficient roll-to-roll sputtering for flexible organic photovoltaics

    International Nuclear Information System (INIS)

    Park, Yong-Seok; Kim, Han-Ki

    2010-01-01

    The authors describe the preparation and characteristics of flexible indium zinc oxide (IZO)-Ag-IZO multilayer electrodes grown on flexible polyethersulfone (PES) substrates using a roll-to-roll sputtering system for use in flexible organic photovoltaics. By the continuous roll-to-roll sputtering of the bottom IZO, Ag, and top IZO layers at room temperature, they were able to fabricate a high quality IZO-Ag-IZO multilayer electrode with a sheet resistance of 6.15 ε/square, optical transmittance of 87.4%, and figure of merit value of 42.03x10 -3 Ω -1 on the PES substrate. In addition, the IZO-Ag-IZO multilayer electrode exhibited superior flexibility to the roll-to-roll sputter grown single ITO electrode due to the existence of a ductile Ag layer between the IZO layers and stable amorphous structure of the IZO film. Furthermore, the flexible organic solar cells (OSCs) fabricated on the roll-to-roll sputter grown IZO-Ag-IZO electrode showed higher power efficiency (3.51%) than the OSCs fabricated on the roll-to-roll sputter grown single ITO electrode (2.67%).

  11. Study of breakdown voltage of indium-gallium-zinc-oxide-based Schottky diode

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Qian; Yan, Linlong; Luo, Yi [School of Physics, Shandong University, Jinan 250100 (China); Song, Aimin, E-mail: A.Song@manchester.ac.uk [School of Physics, Shandong University, Jinan 250100 (China); School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom)

    2015-03-16

    In contrast to the intensive studies on thin-film transistors based on indium gallium zinc oxide (IGZO), the research on IGZO-based diodes is still very limited, particularly on their behavior and stability under high bias voltages. Our experiments reveal a sensitive dependence of the breakdown voltage of IGZO Schottky diodes on the anode metal and the IGZO film thickness. Devices with an Au anode are found to breakdown easily at a reverse bias as low as −2.5 V, while the devices with a Pd anode and a 200-nm, fully depleted IGZO layer have survived up to −15 V. All diodes are fabricated by radio-frequency magnetron sputtering at room temperature without any thermal treatment, yet showing an ideality factor as low as 1.14, showing the possibility of achieving high-performance Schottky diodes on flexible plastic substrate.

  12. Study of breakdown voltage of indium-gallium-zinc-oxide-based Schottky diode

    International Nuclear Information System (INIS)

    Xin, Qian; Yan, Linlong; Luo, Yi; Song, Aimin

    2015-01-01

    In contrast to the intensive studies on thin-film transistors based on indium gallium zinc oxide (IGZO), the research on IGZO-based diodes is still very limited, particularly on their behavior and stability under high bias voltages. Our experiments reveal a sensitive dependence of the breakdown voltage of IGZO Schottky diodes on the anode metal and the IGZO film thickness. Devices with an Au anode are found to breakdown easily at a reverse bias as low as −2.5 V, while the devices with a Pd anode and a 200-nm, fully depleted IGZO layer have survived up to −15 V. All diodes are fabricated by radio-frequency magnetron sputtering at room temperature without any thermal treatment, yet showing an ideality factor as low as 1.14, showing the possibility of achieving high-performance Schottky diodes on flexible plastic substrate

  13. Indium-gallium-zinc-oxide thin-film transistor with a planar split dual-gate structure

    Science.gov (United States)

    Liu, Yu-Rong; Liu, Jie; Song, Jia-Qi; Lai, Pui-To; Yao, Ruo-He

    2017-12-01

    An amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) with a planar split dual gate (PSDG) structure has been proposed, fabricated and characterized. Experimental results indicate that the two independent gates can provide dynamical control of device characteristics such as threshold voltage, sub-threshold swing, off-state current and saturation current. The transconductance extracted from the output characteristics of the device increases from 4.0 × 10-6S to 1.6 × 10-5S for a change of control gate voltage from -2 V to 2 V, and thus the device could be used in a variable-gain amplifier. A significant advantage of the PSDG structure is its flexibility in controlling the device performance according to the need of practical applications.

  14. Influence of indium doping on the properties of zinc tin oxide films and its application to transparent thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Mu Hee; Ma, Tae Young, E-mail: tyma@gnu.ac.kr

    2014-01-01

    In this study, the effects of indium (In) doping on the properties of zinc tin oxide (ZTO) films are reported. ZTO films were prepared by RF magnetron sputtering followed by In layer deposition, for use as the diffusion source. In order to protect the In layer from peeling, a second ZTO film was deposited on the In film. The annealing at 400 °C for 30 min was carried out to diffuse In atoms into the ZTO films. The structural, optical, and elemental properties of the annealed ZTO/In/ZTO films were investigated by X-ray diffraction, UV/vis spectrophotometry, and X-ray photoluminescence spectroscopy, respectively. The ZTO transparent thin film transistors employing the ZTO/In/ZTO films as the source/drain were prepared, and the effects of the In doped source/drain on the threshold voltage and mobility were characterized and analyzed. - Highlights: • We successfully doped zinc tin oxide (ZTO) films using In as a diffusion source. • Indium (In) was diffused in both directions with the diffusion coefficient of ∼ 4.3 × 10{sup −16} cm{sup 2}/s. • The mobility of ZTO thin film transistor was increased 1.6-times by adopting the In-diffused source/drain.

  15. Cross-current leaching of indium from end-of-life LCD panels.

    Science.gov (United States)

    Rocchetti, Laura; Amato, Alessia; Fonti, Viviana; Ubaldini, Stefano; De Michelis, Ida; Kopacek, Bernd; Vegliò, Francesco; Beolchini, Francesca

    2015-08-01

    Indium is a critical element mainly produced as a by-product of zinc mining, and it is largely used in the production process of liquid crystal display (LCD) panels. End-of-life LCDs represent a possible source of indium in the field of urban mining. In the present paper, we apply, for the first time, cross-current leaching to mobilize indium from end-of-life LCD panels. We carried out a series of treatments to leach indium. The best leaching conditions for indium were 2M sulfuric acid at 80°C for 10min, which allowed us to completely mobilize indium. Taking into account the low content of indium in end-of-life LCDs, of about 100ppm, a single step of leaching is not cost-effective. We tested 6 steps of cross-current leaching: in the first step indium leaching was complete, whereas in the second step it was in the range of 85-90%, and with 6 steps it was about 50-55%. Indium concentration in the leachate was about 35mg/L after the first step of leaching, almost 2-fold at the second step and about 3-fold at the fifth step. Then, we hypothesized to scale up the process of cross-current leaching up to 10 steps, followed by cementation with zinc to recover indium. In this simulation, the process of indium recovery was advantageous from an economic and environmental point of view. Indeed, cross-current leaching allowed to concentrate indium, save reagents, and reduce the emission of CO2 (with 10 steps we assessed that the emission of about 90kg CO2-Eq. could be avoided) thanks to the recovery of indium. This new strategy represents a useful approach for secondary production of indium from waste LCD panels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Anomalous high photoconductivity in short channel indium-zinc-oxide photo-transistors

    International Nuclear Information System (INIS)

    Choi, Hyun-Sik; Jeon, Sanghun

    2015-01-01

    Upon light exposure, an indium-zinc-oxide (IZO) thin-film transistor (TFT) presents higher photoconductivity by several orders of magnitude at the negative gate bias region. Among various device geometrical factors, scaling down the channel length of the photo-transistor results in an anomalous increase in photoconductivity. To probe the origin of this high photoconductivity in short-channel device, we measured transient current, current–voltage, and capacitance–voltage characteristics of IZO–TFTs with various channel lengths and widths before and after illumination. Under the illumination, the equilibrium potential region which lies far from front interface exists only in short-channel devices, forming the un-depleted conducting back channel. This region plays an important role in carrier transport under the illumination, leading to high photoconductivity in short-channel devices. Photon exposure coupled with gate-modulated band bending for short-channel devices leads to the accumulation of V o ++ at the front channel and screening negative gate bias, thereby generating high current flow in the un-depleted back-channel region

  17. I-III-VI.sub.2 based solar cell utilizing the structure CuInGaSe.sub.2 CdZnS/ZnO

    Science.gov (United States)

    Chen, Wen S.; Stewart, John M.

    1992-01-07

    A thin film I-III-VI.sub.2 based solar cell having a first layer of copper indium gallium selenide, a second layer of cadmium zinc sulfide, a double layer of zinc oxide, and a metallization structure comprised of a layer of nickel covered by a layer of aluminum. An optional antireflective coating may be placed on said metallization structure. The cadmium zinc sulfide layer is deposited by means of an aqueous solution growth deposition process and may actually consist of two layers: a low zinc content layer and a high zinc content layer. Photovoltaic efficiencies of 12.5% at Air Mass 1.5 illumination conditions and 10.4% under AMO illumination can be achieved.

  18. Influence of addition of indium and of post-annealing on structural, electrical and optical properties of gallium-doped zinc oxide thin films deposited by direct-current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Duy Phong [Laboratory of Advanced Materials, University of Science, Vietnam National University, HoChiMinh (Viet Nam); College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Nguyen, Huu Truong [Laboratory of Advanced Materials, University of Science, Vietnam National University, HoChiMinh (Viet Nam); Phan, Bach Thang [Laboratory of Advanced Materials, University of Science, Vietnam National University, HoChiMinh (Viet Nam); Faculty of Materials Science, University of Science, Vietnam National University, HoChiMinh (Viet Nam); Hoang, Van Dung [Laboratory of Advanced Materials, University of Science, Vietnam National University, HoChiMinh (Viet Nam); Maenosono, Shinya [School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Tran, Cao Vinh, E-mail: tcvinh@hcmus.edu.vn [Laboratory of Advanced Materials, University of Science, Vietnam National University, HoChiMinh (Viet Nam)

    2015-05-29

    In this study, both gallium-doped zinc oxide (GZO) and indium-added gallium-doped zinc oxide (IGZO) thin films were deposited on commercial glasses by magnetron dc-sputtering in argon atmosphere. The crystal structure, electrical conductivity and optical transmission of as-deposited as well as post-annealed thin films of both GZO and IGZO were investigated for comparison. A small amount of indium introduced into GZO thin films had improved their polycrystalline structure and increased their electrical conductivity by over 29%. All obtained GZO and IGZO thin films have strong [002] crystalline direction, a characteristic orientation of ZnO thin films. Although post-annealed in air at high temperatures up to 500 °C, IGZO thin films still had very low sheet resistance of 6.6 Ω/□. Furthermore, they had very high optical transmission of over 80% in both visible and near-infrared regions. - Highlights: • Doping 0.1 at.% indium enhanced crystalline, electrical properties of GZO films. • The mobility of IGZO films was 25% higher than that of GZO films. • The IGZO films will be potential materials for transparent conducting electrodes.

  19. Influence of addition of indium and of post-annealing on structural, electrical and optical properties of gallium-doped zinc oxide thin films deposited by direct-current magnetron sputtering

    International Nuclear Information System (INIS)

    Pham, Duy Phong; Nguyen, Huu Truong; Phan, Bach Thang; Hoang, Van Dung; Maenosono, Shinya; Tran, Cao Vinh

    2015-01-01

    In this study, both gallium-doped zinc oxide (GZO) and indium-added gallium-doped zinc oxide (IGZO) thin films were deposited on commercial glasses by magnetron dc-sputtering in argon atmosphere. The crystal structure, electrical conductivity and optical transmission of as-deposited as well as post-annealed thin films of both GZO and IGZO were investigated for comparison. A small amount of indium introduced into GZO thin films had improved their polycrystalline structure and increased their electrical conductivity by over 29%. All obtained GZO and IGZO thin films have strong [002] crystalline direction, a characteristic orientation of ZnO thin films. Although post-annealed in air at high temperatures up to 500 °C, IGZO thin films still had very low sheet resistance of 6.6 Ω/□. Furthermore, they had very high optical transmission of over 80% in both visible and near-infrared regions. - Highlights: • Doping 0.1 at.% indium enhanced crystalline, electrical properties of GZO films. • The mobility of IGZO films was 25% higher than that of GZO films. • The IGZO films will be potential materials for transparent conducting electrodes

  20. Indium-Doped Zinc Oxide Thin Films as Effective Anodes of Organic Photovoltaic Devices

    Directory of Open Access Journals (Sweden)

    Ziyang Hu

    2011-01-01

    Full Text Available Indium-doped zinc oxide (IZO thin films were prepared by low-cost ultrasonic spray pyrolysis (USP. Both a low resistivity (3.13×10−3 Ω cm and an average direct transmittance (400∼1500 nm about 80% of the IZO films were achieved. The IZO films were investigated as anodes in bulk-heterojunction organic photovoltaic (OPV devices based on poly(3-hexylthiophene and [6,6]-phenyl C61-butyric acid methyl ester. The device fabricated on IZO film-coated glass substrate showed an open circuit voltage of 0.56 V, a short circuit current of 8.49 mA cm-2, a fill factor of 0.40, and a power conversion efficiency of 1.91%, demonstrating that the IZO films prepared by USP technique are promising low In content and transparent electrode candidates of low-cost OPV devices.

  1. Cross-current leaching of indium from end-of-life LCD panels

    Energy Technology Data Exchange (ETDEWEB)

    Rocchetti, Laura; Amato, Alessia; Fonti, Viviana [Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Ubaldini, Stefano [Institute of Environmental Geology and Geoengineering IGAG, National Research Council, Via Salaria km 29300, 00015 Montelibretti, Rome (Italy); De Michelis, Ida [Department of Industrial Engineering, Information and Economy, University of L’Aquila, Via Giovanni Gronchi 18, 67100, Zona industriale di Pile, L’Aquila (Italy); Kopacek, Bernd [ISL Kopacek KG, Beckmanngasse 51, 1140 Wien (Austria); Vegliò, Francesco [Department of Industrial Engineering, Information and Economy, University of L’Aquila, Via Giovanni Gronchi 18, 67100, Zona industriale di Pile, L’Aquila (Italy); Beolchini, Francesca, E-mail: f.beolchini@univpm.it [Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy)

    2015-08-15

    Graphical abstract: Display Omitted - Highlights: • End-of-life LCD panels represent a source of indium. • Several experimental conditions for indium leaching have been assessed. • Indium is completely extracted with 2 M sulfuric acid at 80 °C for 10 min. • Cross-current leaching improves indium extraction and operating costs are lowered. • Benefits to the environment come from reduction of CO{sub 2} emissions and reagents use. - Abstract: Indium is a critical element mainly produced as a by-product of zinc mining, and it is largely used in the production process of liquid crystal display (LCD) panels. End-of-life LCDs represent a possible source of indium in the field of urban mining. In the present paper, we apply, for the first time, cross-current leaching to mobilize indium from end-of-life LCD panels. We carried out a series of treatments to leach indium. The best leaching conditions for indium were 2 M sulfuric acid at 80 °C for 10 min, which allowed us to completely mobilize indium. Taking into account the low content of indium in end-of-life LCDs, of about 100 ppm, a single step of leaching is not cost-effective. We tested 6 steps of cross-current leaching: in the first step indium leaching was complete, whereas in the second step it was in the range of 85–90%, and with 6 steps it was about 50–55%. Indium concentration in the leachate was about 35 mg/L after the first step of leaching, almost 2-fold at the second step and about 3-fold at the fifth step. Then, we hypothesized to scale up the process of cross-current leaching up to 10 steps, followed by cementation with zinc to recover indium. In this simulation, the process of indium recovery was advantageous from an economic and environmental point of view. Indeed, cross-current leaching allowed to concentrate indium, save reagents, and reduce the emission of CO{sub 2} (with 10 steps we assessed that the emission of about 90 kg CO{sub 2}-Eq. could be avoided) thanks to the recovery of indium

  2. High performance solution-deposited amorphous indium gallium zinc oxide thin film transistors by oxygen plasma treatment

    KAUST Repository

    Nayak, Pradipta K.

    2012-05-16

    Solution-deposited amorphous indium gallium zinc oxide (a-IGZO) thin film transistors(TFTs) with high performance were fabricated using O2-plasma treatment of the films prior to high temperature annealing. The O2-plasma treatment resulted in a decrease in oxygen vacancy and residual hydrocarbon concentration in the a-IGZO films, as well as an improvement in the dielectric/channel interfacial roughness. As a result, the TFTs with O2-plasma treated a-IGZO channel layers showed three times higher linear field-effect mobility compared to the untreated a-IGZO over a range of processing temperatures. The O2-plasma treatment effectively reduces the required processing temperature of solution-deposited a-IGZO films to achieve the required performance.

  3. Research on the effect of alkali roasting of copper dross on leaching rate of indium

    Science.gov (United States)

    Dafang, Liu; Fan, Xingxiang; Shi, Yifeng; Yang, Kunbin

    2017-11-01

    The byproduct copper dross produced during refining crude lead was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and fluorescence spectrometer (XRF), which showed that copper dross mainly contained lead, copper, zinc, arsenic, antimony, bismuth, sulfur and a small amount of indium and silver etc. The mineralogical phase change of oxidation roasting of copper dross by adding sodium hydroxide was analyzed with the help of XRD and SEM. The effects of water leaching, ratio of sodium hydroxide, roasting time, and roasting temperature on leaching rate of indium were investigated mainly. The experimental results showed that phase of lead metal and sulfides of lead, copper and zinc disappeared after oxidation roasting of copper dross by adding sodium hydroxide, new phase of oxides of lead, copper, zinc and sodium salt of arsenic and antimony appeared. Water leaching could remove arsenic, and acid leaching residue obtained was then leached with acid. The leaching rate of indium was higher 6.98% compared with alkali roasting of copper dross-acid leaching. It showed that removing arsenic by water leaching and acid leaching could increase the leaching rate of indium and be beneficial to reducing subsequent acid consumption of extracting indium by acid leaching. The roasting temperature had a significant effect on the leaching rate of indium, and leaching rate of indium increased with the rise of roasting temperature. When roasting temperature ranged from 450°C to 600°C, leaching rate of indium increased significantly with the rise of roasting temperature. When roasting temperature rose from 450°C to 600°C, leaching rate of indium increased by 60.29%. The amount of sodium hydroxide had an significant effect on the leaching rate of indium, and the leaching of indium increased with the increase of the amount of sodium hydroxide, and the leaching rate of indium was obviously higher than that of copper dross blank roasting and acid leaching.

  4. Interfacial Chemistry-Induced Modulation of Schottky Barrier Heights: In Situ Measurements of the Pt-Amorphous Indium Gallium Zinc Oxide Interface Using X-ray Photoelectron Spectroscopy.

    Science.gov (United States)

    Flynn, Brendan T; Oleksak, Richard P; Thevuthasan, Suntharampillai; Herman, Gregory S

    2018-01-31

    A method to understand the role of interfacial chemistry on the modulation of Schottky barrier heights for platinum and amorphous indium gallium zinc oxide (a-IGZO) interfaces is demonstrated through thermal processing and background ambient pressure control. In situ X-ray photoelectron spectroscopy was used to characterize the interfacial chemistries that modulate barrier heights in this system. The primary changes were a significant chemical reduction of indium, from In 3+ to In 0 , that occurs during deposition of Pt on to the a-IGZO surface in ultrahigh vacuum. Postannealing and controlling the background ambient O 2 pressure allows further tuning of the reduction of indium and the corresponding Schottky barrier heights from 0.17 to 0.77 eV. Understanding the detailed interfacial chemistries at Pt/a-IGZO interfaces may allow for improved electronic device performance, including Schottky diodes, memristors, and metal-semiconductor field-effect transistors.

  5. Flexible indium-gallium-zinc-oxide Schottky diode operating beyond 2.45 GHz.

    Science.gov (United States)

    Zhang, Jiawei; Li, Yunpeng; Zhang, Binglei; Wang, Hanbin; Xin, Qian; Song, Aimin

    2015-07-03

    Mechanically flexible mobile phones have been long anticipated due to the rapid development of thin-film electronics in the last couple of decades. However, to date, no such phone has been developed, largely due to a lack of flexible electronic components that are fast enough for the required wireless communications, in particular the speed-demanding front-end rectifiers. Here Schottky diodes based on amorphous indium-gallium-zinc-oxide (IGZO) are fabricated on flexible plastic substrates. Using suitable radio-frequency mesa structures, a range of IGZO thicknesses and diode sizes have been studied. The results have revealed an unexpected dependence of the diode speed on the IGZO thickness. The findings enable the best optimized flexible diodes to reach 6.3 GHz at zero bias, which is beyond the critical benchmark speed of 2.45 GHz to satisfy the principal frequency bands of smart phones such as those for cellular communication, Bluetooth, Wi-Fi and global satellite positioning.

  6. Characterization of tin selenides synthesized by high-energy milling

    Directory of Open Access Journals (Sweden)

    Marcela Achimovičová

    2011-12-01

    Full Text Available Tin selenides SnSeX (x=1,2 were synthesized from tin and selenium powder precursors by high-energy milling in the planetary ballmill Pulverisette 6 (Fritsch, Germany. The orthorhombic tin selenide SnSe and the hexagonal tin diselenide SnSe2 phases were formed after4 min and 5 min of milling, respectively. Specific surface area of both selenides increased with increasing time of mechanochemicalsynthesis. The particle size distribution analysis demonstrated that the synthesized products contain agglomerated selenide particlesconsisting of numerous idiomorphic tin selenide crystals, measuring from 2 to more than 100 nm in diameter, which were also documentedby TEM. UV-Vis spectrophotometry confirmed that tin selenide particles do not behave as quantum dots.

  7. Amorphous indium-gallium-zinc-oxide as electron transport layer in organic photodetectors

    International Nuclear Information System (INIS)

    Arora, H.; Malinowski, P. E.; Chasin, A.; Cheyns, D.; Steudel, S.; Schols, S.; Heremans, P.

    2015-01-01

    Amorphous indium-gallium-zinc-oxide (a-IGZO) is demonstrated as an electron transport layer (ETL) in a high-performance organic photodetector (OPD). Dark current in the range of 10 nA/cm 2 at a bias voltage of −2 V and a high photoresponse in the visible spectrum were obtained in inverted OPDs with poly(3-hexylthiophene) and phenyl-C 61 -butyric acid methyl ester active layer. The best results were obtained for the optimum a-IGZO thickness of 7.5 nm with specific detectivity of 3 × 10 12 Jones at the wavelength of 550 nm. The performance of the best OPD devices using a-IGZO was shown to be comparable to state-of-the-art devices based on TiO x as ETL, with higher rectification achieved in reverse bias. Yield and reproducibility were also enhanced with a-IGZO, facilitating fabrication of large area OPDs. Furthermore, easier integration with IGZO-based readout backplanes can be envisioned, where the channel material can be used as photodiode buffer layer after additional treatment

  8. Amorphous indium-gallium-zinc-oxide as electron transport layer in organic photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    Arora, H. [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Phelma–Grenoble INP, 3 Parvis Louis Néel, 38016 Grenoble Cedex 01 (France); Malinowski, P. E., E-mail: pawel.malinowski@imec.be; Chasin, A.; Cheyns, D.; Steudel, S.; Schols, S. [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Heremans, P. [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); ESAT, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, B-3001 Leuven (Belgium)

    2015-04-06

    Amorphous indium-gallium-zinc-oxide (a-IGZO) is demonstrated as an electron transport layer (ETL) in a high-performance organic photodetector (OPD). Dark current in the range of 10 nA/cm{sup 2} at a bias voltage of −2 V and a high photoresponse in the visible spectrum were obtained in inverted OPDs with poly(3-hexylthiophene) and phenyl-C{sub 61}-butyric acid methyl ester active layer. The best results were obtained for the optimum a-IGZO thickness of 7.5 nm with specific detectivity of 3 × 10{sup 12} Jones at the wavelength of 550 nm. The performance of the best OPD devices using a-IGZO was shown to be comparable to state-of-the-art devices based on TiO{sub x} as ETL, with higher rectification achieved in reverse bias. Yield and reproducibility were also enhanced with a-IGZO, facilitating fabrication of large area OPDs. Furthermore, easier integration with IGZO-based readout backplanes can be envisioned, where the channel material can be used as photodiode buffer layer after additional treatment.

  9. An EXAFS spectrometer on beam line 10B at the Photon Factory

    International Nuclear Information System (INIS)

    Oyanagi, Hiroyuki; Matsushita, Tadashi; Ito, Masahisa; Kuroda, Haruo.

    1984-03-01

    An EXAFS spectrometer installed on the beam line 10B at the Photon Factory is designed to cover the photon energy between 4 and 30 keV. Utilizing either a channel-cut or two flat silicon crystals as a monochromator, a beam intensity between 10 8 and 10 9 photons/sec is obtained at 9 keV with a resolution of 1 eV. The performance of the spectrometer, such as a signal-to-noise ratio or an energy resolution is demonstrated with examples of K edge absorption spectra of bromine, germanium, gallium arsenide, and zinc selenide. (author)

  10. Short-Term Synaptic Plasticity Regulation in Solution-Gated Indium-Gallium-Zinc-Oxide Electric-Double-Layer Transistors.

    Science.gov (United States)

    Wan, Chang Jin; Liu, Yang Hui; Zhu, Li Qiang; Feng, Ping; Shi, Yi; Wan, Qing

    2016-04-20

    In the biological nervous system, synaptic plasticity regulation is based on the modulation of ionic fluxes, and such regulation was regarded as the fundamental mechanism underlying memory and learning. Inspired by such biological strategies, indium-gallium-zinc-oxide (IGZO) electric-double-layer (EDL) transistors gated by aqueous solutions were proposed for synaptic behavior emulations. Short-term synaptic plasticity, such as paired-pulse facilitation, high-pass filtering, and orientation tuning, was experimentally emulated in these EDL transistors. Most importantly, we found that such short-term synaptic plasticity can be effectively regulated by alcohol (ethyl alcohol) and salt (potassium chloride) additives. Our results suggest that solution gated oxide-based EDL transistors could act as the platforms for short-term synaptic plasticity emulation.

  11. Investigation on the negative bias illumination stress-induced instability of amorphous indium-tin-zinc-oxide thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jaeman; Kim, Dae Geun; Kim, Dong Myong; Choi, Sung-Jin; Kim, Dae Hwan, E-mail: byungdu.ahn@samsung.com, E-mail: drlife@kookmin.ac.kr [School of Electrical Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of); Lim, Jun-Hyung; Lee, Je-Hun; Ahn, Byung Du, E-mail: byungdu.ahn@samsung.com, E-mail: drlife@kookmin.ac.kr [Samsung Display Co., Ltd., Yongin, Gyeonggi-Do 446-711 (Korea, Republic of); Kim, Yong-Sung [Korea Research Institute of Standards and Science, Yuseong, Daejeon 305-340 (Korea, Republic of)

    2014-10-13

    The quantitative analysis of mechanism on negative bias illumination stress (NBIS)-induced instability of amorphous indium-tin-zinc-oxide thin-film transistor (TFT) was suggested along with the effect of equivalent oxide thickness (EOT) of gate insulator. The analysis was implemented through combining the experimentally extracted density of subgap states and the device simulation. During NBIS, it was observed that the thicker EOT causes increase in both the shift of threshold voltage and the variation of subthreshold swing as well as the hump-like feature in a transfer curve. We found that the EOT-dependence of NBIS instability can be clearly explicated with the donor creation model, in which a larger amount of valence band tail states is transformed into either the ionized oxygen vacancy V{sub O}{sup 2+} or peroxide O{sub 2}{sup 2−} with the increase of EOT. It was also found that the V{sub O}{sup 2+}-related extrinsic factor accounts for 80%–92% of the total donor creation taking place in the valence band tail states while the rest is taken by the O{sub 2}{sup 2–} related intrinsic factor. The ratio of extrinsic factor compared to the total donor creation also increased with the increase of EOT, which could be explained by more prominent oxygen deficiency. The key founding of our work certainly represents that the established model should be considered very effective for analyzing the instability of the post-indium-gallium-zinc-oxide (IGZO) ZnO-based compound semiconductor TFTs with the mobility, which is much higher than those of a-IGZO TFTs.

  12. Stability aspects of hydrogen-doped indium oxide

    OpenAIRE

    Jost, Gabrielle; Hamri, Alexander Nordin; Köhler, Florian; Hüpkes, Jürgen

    2015-01-01

    Transparent conductive oxides play an important role as contact layers in various opto-electronic devices such as solar cells or LEDs. Whilst crystalline materials e.g. zinc oxide (ZnO), tin oxide (Sn2O3) or tin doped indium oxide (ITO) have already been vastly investigated and applied [1] hydrogen doped indium oxide (In2O3:H) entered the scene a while ago as a new material with a superior trade-off between electrical and optical performance. In2O3:H is commonly deposited at room temperature...

  13. Water-soluble thin film transistors and circuits based on amorphous indium-gallium-zinc oxide.

    Science.gov (United States)

    Jin, Sung Hun; Kang, Seung-Kyun; Cho, In-Tak; Han, Sang Youn; Chung, Ha Uk; Lee, Dong Joon; Shin, Jongmin; Baek, Geun Woo; Kim, Tae-il; Lee, Jong-Ho; Rogers, John A

    2015-04-22

    This paper presents device designs, circuit demonstrations, and dissolution kinetics for amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) comprised completely of water-soluble materials, including SiNx, SiOx, molybdenum, and poly(vinyl alcohol) (PVA). Collections of these types of physically transient a-IGZO TFTs and 5-stage ring oscillators (ROs), constructed with them, show field effect mobilities (∼10 cm2/Vs), on/off ratios (∼2×10(6)), subthreshold slopes (∼220 mV/dec), Ohmic contact properties, and oscillation frequency of 5.67 kHz at supply voltages of 19 V, all comparable to otherwise similar devices constructed in conventional ways with standard, nontransient materials. Studies of dissolution kinetics for a-IGZO films in deionized water, bovine serum, and phosphate buffer saline solution provide data of relevance for the potential use of these materials and this technology in temporary biomedical implants.

  14. Near infrared photodetector based on polymer and indium nitride nanorod organic/inorganic hybrids

    International Nuclear Information System (INIS)

    Lai, Wei-Jung; Li, Shao-Sian; Lin, Chih-Cheng; Kuo, Chun-Chiang; Chen, Chun-Wei; Chen, Kuei-Hsien; Chen, Li-Chyong

    2010-01-01

    We propose a nanostructured near infrared photodetector based on indium nitride (InN) nanorod/poly(3-hexylthiophene) hybrids. The current-voltage characteristic of the hybrid device demonstrates the typical p-n heterojunction diode behavior, consisting of p-type polymer and n-type InN nanorods. The device shows a photoresponse range of 900-1260 nm under various reverse biases. An external quantum efficiency of 3.4% at 900 nm operated at -10 V reverse bias was obtained, which is comparable with devices based on lead sulfide and lead selenide hybrid systems.

  15. The zinc-loss effect and mobility enhancement of DUV-patterned sol-gel IGZO thin-film transistors

    Science.gov (United States)

    Wang, Kuan-Hsun; Zan, Hsiao-Wen; Soppera, Olivier

    2018-03-01

    We investigate the composition of the DUV-patterned sol-gel indium gallium zinc oxide (IGZO) thin-film transistors (TFTs) and observe a significant zinc loss effect during developing when the DUV exposure is insufficient. The zinc loss, however, is beneficial for increasing the mobility. Reducing zinc to indium composition ratio from 0.5 to 0.02 can effectively increase mobility from 0.27 to 7.30 cm2 V-1 s-1 when the gallium to indium ratio is fixed as 0.25 and the post annealing process is fixed as 300 °C for 2 h. On the other hand, an IGO TFT fails to deliver a uniform film and a reproducible TFT performance, revealing the critical role of zinc in forming homogeneous IGZO TFTs.

  16. Advantages of using amorphous indium zinc oxide films for window layer in Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Warasawa, Moe [Department of Electrical Engineering, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510 (Japan); Kaijo, Akira [Idemitsu Kosan Co., Ltd., 1280 Kami-izumi, Sodegaura, 229-0293 (Japan); Sugiyama, Mutsumi, E-mail: mutsumi@rs.noda.tus.ac.jp [Department of Electrical Engineering, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510 (Japan)

    2012-01-01

    The advantages of using indium zinc oxide (IZO) films instead of conventional Ga-doped zinc oxide (ZnO:Ga) films for Cu(In,Ga)Se{sub 2} (CIGS) solar cells are described. The electrical properties of IZO are independent of film thickness. IZO films have higher mobility (30-40 cm{sup 2}/Vs) and lower resistivity (4-5 Multiplication-Sign 10{sup -4} {Omega} cm) compared to ZnO:Ga films deposited without intentional heating, because the number of grain boundaries in amorphous IZO films is small. The properties of a CIGS solar cell using IZO at the window layer were better than those obtained using a conventional ZnO:Ga at the window layer; moreover, the properties tended to be independent of thickness. These results indicate that use of IZO as a transparent conducting oxide layer is expected to increase the efficiency of CIGS solar cells.

  17. In{sub 6}Se{sub 7} thin films by heating thermally evaporated indium and chemical bath deposited selenium multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Ornelas, R.E.; Avellaneda, D. [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica, San Nicolas de los Garza, Nuevo Leon-66450 (Mexico); Shaji, S. [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica, San Nicolas de los Garza, Nuevo Leon-66450 (Mexico); Universidad Autonoma de Nuevo Leon-CIIDIT, Apodaca, N.L (Mexico); Castillo, G.A.; Roy, T.K. Das [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica, San Nicolas de los Garza, Nuevo Leon-66450 (Mexico); Krishnan, B., E-mail: kbindu_k@yahoo.com [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica, San Nicolas de los Garza, Nuevo Leon-66450 (Mexico); Universidad Autonoma de Nuevo Leon-CIIDIT, Apodaca, N.L (Mexico)

    2012-05-15

    Indium selenide (In{sub 6}Se{sub 7}) thin films were prepared via selenization of thermally evaporated indium thin films by dipping in sodium selenosulphate solution followed by annealing in nitrogen atmosphere. First, indium was thermally evaporated on glass substrate. Then, the indium coated glass substrates were dipped in a solution containing 80 ml 0.125 M sodium selenosulphate and 1.5 ml dilute acetic acid (25%) for 5 min. Glass/In-Se layers were annealed at 200-400 Degree-Sign C in nitrogen atmosphere (0.1 Torr) for 30 min. X-ray diffraction studies showed the formation of monoclinic In{sub 6}Se{sub 7}. Morphology of the thin films formed at different conditions was analyzed using Scanning electron microscopy. The elemental analysis was done using Energy dispersive X-ray detection. Electrical conductivity under dark and illumination conditions was evaluated. Optical band gap was computed using transmittance and reflectance spectra. The band gap value was in the range 1.8-2.6 eV corresponding to a direct allowed transition. We studied the effect of indium layer thickness and selenium deposition time on the structure, electrical and optical properties of In{sub 6}Se{sub 7} thin films.

  18. Improved characteristics of amorphous indium-gallium-zinc-oxide-based resistive random access memory using hydrogen post-annealing

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae Yun; Lee, Tae-Ho; Kim, Tae Geun, E-mail: tgkim1@korea.ac.kr [School of Electrical Engineering, Korea University, Seoul 02841 (Korea, Republic of)

    2016-08-15

    The authors report an improvement in resistive switching (RS) characteristics of amorphous indium-gallium-zinc-oxide (a-IGZO)-based resistive random access memory devices using hydrogen post-annealing. Because this a-IGZO thin film has oxygen off-stoichiometry in the form of deficient and excessive oxygen sites, the film properties can be improved by introducing hydrogen atoms through the annealing process. After hydrogen post-annealing, the device exhibited a stable bipolar RS, low-voltage set and reset operation, long retention (>10{sup 5 }s), good endurance (>10{sup 6} cycles), and a narrow distribution in each current state. The effect of hydrogen post-annealing is also investigated by analyzing the sample surface using X-ray photon spectroscopy and atomic force microscopy.

  19. Real Time Spectroscopic Ellipsometry Analysis of First Stage CuIn1−xGaxSe2 Growth: Indium-Gallium Selenide Co-Evaporation

    Directory of Open Access Journals (Sweden)

    Puja Pradhan

    2018-01-01

    Full Text Available Real time spectroscopic ellipsometry (RTSE has been applied for in-situ monitoring of the first stage of copper indium-gallium diselenide (CIGS thin film deposition by the three-stage co-evaporation process used for fabrication of high efficiency thin film photovoltaic (PV devices. The first stage entails the growth of indium-gallium selenide (In1−xGax2Se3 (IGS on a substrate of Mo-coated soda lime glass maintained at a temperature of 400 °C. This is a critical stage of CIGS deposition because a large fraction of the final film thickness is deposited, and as a result precise compositional control is desired in order to achieve the optimum performance of the resulting CIGS solar cell. RTSE is sensitive to monolayer level film growth processes and can provide accurate measurements of bulk and surface roughness layer thicknesses. These in turn enable accurate measurements of the bulk layer optical response in the form of the complex dielectric function ε = ε1 − iε2, spectra. Here, RTSE has been used to obtain the (ε1, ε2 spectra at the measurement temperature of 400 °C for IGS thin films of different Ga contents (x deduced from different ranges of accumulated bulk layer thickness during the deposition process. Applying an analytical expression in common for each of the (ε1, ε2 spectra of these IGS films, oscillator parameters have been obtained in the best fits and these parameters in turn have been fitted with polynomials in x. From the resulting database of polynomial coefficients, the (ε1, ε2 spectra can be generated for any composition of IGS from the single parameter, x. The results have served as an RTSE fingerprint for IGS composition and have provided further structural information beyond simply thicknesses, for example information related to film density and grain size. The deduced IGS structural evolution and the (ε1, ε2 spectra have been interpreted as well in relation to observations from scanning electron microscopy, X

  20. Control of accidental releases of hydrogen selenide in vented storage cabinets

    Science.gov (United States)

    Fthenakis, V. M.; Moskowitz, P. D.; Sproull, R. D.

    1988-07-01

    Highly toxic hydrogen selenide and hydrogen sulfide gases are used in the production of copper-indium-diselenide photovoltaic cells by reactive sputtering. In the event of an accident, these gases may be released to the atmosphere and pose hazards to public and occupational safety and health. This paper outlines an approach for designing systems for the control of these releases given the uncertainty in release conditions and lack of data on the chemical systems involved. Accidental releases of these gases in storage cabinets can be controlled by either a venturi and packed-bed scrubber and carbon adsorption bed, or containment scrubbing equipment followed by carbon adsorption. These systems can effectively reduce toxic gas emissions to levels needed to protect public health. The costs of these controls (˜0.012/Wp) are samll in comparison with current (˜6/Wp) and projected (˜I/Wp) production costs.

  1. Retrograde tracing of zinc-enriched (ZEN) neuronal somata in rat spinal cord

    DEFF Research Database (Denmark)

    Wang, Z.; Danscher, G.; Jo, S.M.

    2001-01-01

    neurons have relatively short axons or boutons en passage close to the neuronal origin. Ultrastructurally, the retrogradely transported zinc selenide clusters were found in the lysosomes of ZEN somata and proximal dendrites. Electron microscopic studies also revealed two different kinds of ZEN terminals...

  2. Band gap engineering of indium zinc oxide by nitrogen incorporation

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, J.J., E-mail: jjosila@hotmail.com [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad esq. Paseo la Bufa, Fracc. Progreso, C.P. 98060 Zacatecas (Mexico); Doctorado Institucional de Ingeniería y Ciencia de Materiales, Universidad Autónoma de San Luis Potosí, Av. Salvador Nava, Zona Universitaria, C.P. 78270 San Luis Potosí (Mexico); Aguilar-Frutis, M.A.; Alarcón, G. [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del Instituto Politécnico Nacional, Unidad Legaría, Calz. Legaría No. 694, Col. Irrigación, C.P. 11500 México D.F. (Mexico); Falcony, C. [Departamento de Física, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional campus Zacatenco, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P. 07360 México D.F. (Mexico); and others

    2014-09-15

    Highlights: • IZON thin films were deposited by RF reactive sputtering at room temperature. • The effects of nitrogen on physical properties of IZO were analyzed. • Optical properties of IZON were studied by SE and UV–vis spectroscopy. • Adachi and classical parameters were quantitative and qualitatively congruent. • Nitrogen induces a gradual narrowing band gap from 3.5 to 2.5 eV on IZON films. - Abstract: The effects of nitrogen incorporation in indium zinc oxide films, as grown by RF reactive magnetron sputtering, on the structural, electrical and optical properties were studied. It was determined that the variation of the N{sub 2}/Ar ratio, in the reactive gas flux, was directly proportional to the nitrogen percentage measured in the sample, and the incorporated nitrogen, which substituted oxygen in the films induces changes in the band gap of the films. This phenomenon was observed by measurement of absorption and transmission spectroscopy in conjunction with spectral ellipsometry. To fit the ellipsometry spectra, the classical and Adachi dispersion models were used. The obtained optical parameters presented notable changes related to the increment of the nitrogen in the film. The band gap narrowed from 3.5 to 2.5 eV as the N{sub 2}/Ar ratio was increased. The lowest resistivity obtained for these films was 3.8 × 10{sup −4} Ω cm with a carrier concentration of 5.1 × 10{sup 20} cm{sup −3}.

  3. Band gap engineering of indium zinc oxide by nitrogen incorporation

    International Nuclear Information System (INIS)

    Ortega, J.J.; Aguilar-Frutis, M.A.; Alarcón, G.; Falcony, C.

    2014-01-01

    Highlights: • IZON thin films were deposited by RF reactive sputtering at room temperature. • The effects of nitrogen on physical properties of IZO were analyzed. • Optical properties of IZON were studied by SE and UV–vis spectroscopy. • Adachi and classical parameters were quantitative and qualitatively congruent. • Nitrogen induces a gradual narrowing band gap from 3.5 to 2.5 eV on IZON films. - Abstract: The effects of nitrogen incorporation in indium zinc oxide films, as grown by RF reactive magnetron sputtering, on the structural, electrical and optical properties were studied. It was determined that the variation of the N 2 /Ar ratio, in the reactive gas flux, was directly proportional to the nitrogen percentage measured in the sample, and the incorporated nitrogen, which substituted oxygen in the films induces changes in the band gap of the films. This phenomenon was observed by measurement of absorption and transmission spectroscopy in conjunction with spectral ellipsometry. To fit the ellipsometry spectra, the classical and Adachi dispersion models were used. The obtained optical parameters presented notable changes related to the increment of the nitrogen in the film. The band gap narrowed from 3.5 to 2.5 eV as the N 2 /Ar ratio was increased. The lowest resistivity obtained for these films was 3.8 × 10 −4 Ω cm with a carrier concentration of 5.1 × 10 20 cm −3

  4. Elastic properties of some transition metal arsenides

    Science.gov (United States)

    Nayak, Vikas; Verma, U. P.; Bisht, P. S.

    2018-05-01

    The elastic properties of transition metal arsenides (TMAs) have been studied by employing Wien2K package based on density functional theory in the zinc blende (ZB) and rock salt (RS) phase treating valance electron scalar relativistically. Further, we have also treated them non-relativistically to find out the relativistic effect. We have calculated the elastic properties by computing the volume conservative stress tensor for small strains, using the method developed by Charpin. The obtained results are discussed in paper. From the obtained results, it is clear that the values of C11 > C12 and C44 for all the compounds. The values of shear moduli of these compounds are also calculated. The internal parameter for these compounds shows that ZB structures of these compounds have high resistance against bond order. We find that the estimated elastic constants are in good agreement with the available data.

  5. Indium-Nitrogen Codoped Zinc Oxide Thin Film Deposited by Ultrasonic Spray Pyrolysis on n-(111 Si Substrate: The Effect of Film Thickness

    Directory of Open Access Journals (Sweden)

    Cheng-Chang Yu

    2014-01-01

    Full Text Available Indium-nitrogen codoped zinc oxide (INZO thin films were fabricated by spray pyrolysis deposition technique on n-(111 Si substrate with different film thicknesses at 450°C using a precursor containing zinc acetate, ammonium acetate, and indium nitrate with 1 : 3 : 0.05 at.% concentration. The morphology and structure studies were carried out by scanning electron microscopy (SEM and X-ray diffraction (XRD. The grain size of the films increased when increasing the film thickness. From XRD spectra, polycrystalline ZnO structure can be observed and the preferred orientation behavior varied from (002 to (101 as the film thickness increased. The concentration and mobility were investigated by Hall effect measurement. the p-type films with a hole mobility around 3 cm2V−1s−1 and hole concentration around 3×1019 cm−3 can be achieved with film thickness less than 385 nm. The n-type conduction with concentration 1×1020 cm−3 is observed for film with thickness 1089 nm. The defect states were characterized by photoluminescence. With temperature-dependent conductivity analysis, acceptor state with activation energy 0.139 eV dominate the p type conduction for thin INZO film. And the Zn-related shallow donors with activation energy 0.029 eV dominate the n-type conduction for the thick INZO film.

  6. Determination of trace elements in electronic materials by NAA

    International Nuclear Information System (INIS)

    Kobayashi, Kenji

    1986-01-01

    Trace amounts of elements in electronic materials were determined by instrumental neutron activation analysis (INAA), re-activation analysis and substoichiometric radioactivation analysis using gamma-ray spectrometry. Ten elements (Cr, Cu, Fe, Zn, Co, Eu, Ir, Sb, Sc, Tb) in gallium arsenide single crystal were determined by INAA and substoichiometric radioactivation analysis. Trace level of chromium (10 13 atoms/cm 3 ) and zinc (10 14 atoms/cm 3 ) in gallium arsenide single crystal were determined by INAA. The chromium concentrations in horizontal Bridgmangrown semi-insulating gallium arsenide ingot were ranged from 1.2 x 10 16 atoms/cm 3 at seed end to 3.5 x 10 16 atoms/cm 3 at tail end. The trace determinations of iron (10 14 atoms/cm 3 ) and copper (10 14 atoms/cm 3 ) in silicon, gallium arsenide and indium phoshide single crystals were carried out by substoichiometric radioactivation analysis. The reactivation analysis for the multielement determination of indium phosphide single crystal was carried out and nineteen elements were determined simultaneously by gamma-ray spectrometry. Eleven elements (Ag, As, Br, Co, Cr, Fe, K, Mn, Sb, Sc, Zn) in four NIES standard reference materials (Pond Sediment, Chlorella, Mussel and Tea Leaves) and seven elements (Co, Cr, Eu, Fe, Sc, Tb, Yb) in two NBS glasses (SRM-615 and SRM-613) were determined by INAA and substoichiometric radioactivation analysis and the analytical results obtained by the methods were in good agreement with certified values by NIES and NBS. (author)

  7. Modulation of the electrical properties in amorphous indium-gallium zinc-oxide semiconductor films using hydrogen incorporation

    Science.gov (United States)

    Song, Aeran; Park, Hyun-Woo; Chung, Kwun-Bum; Rim, You Seung; Son, Kyoung Seok; Lim, Jun Hyung; Chu, Hye Yong

    2017-12-01

    The electrical properties of amorphous-indium-gallium-zinc-oxide (a-IGZO) thin films were investigated after thermal annealing and plasma treatment under different gas conditions. The electrical resistivity of a-IGZO thin films post-treated in a hydrogen ambient were lower than those without treatment and those annealed in air, regardless of the methods used for both thermal annealing and plasma treatment. The electrical properties can be explained by the quantity of hydrogen incorporated into the samples and the changes in the electronic structure in terms of the chemical bonding states, the distribution of the near-conduction-band unoccupied states, and the band alignment. As a result, the carrier concentrations of the hydrogen treated a-IGZO thin films increased, while the mobility decreased, due to the increase in the oxygen vacancies from the occurrence of unoccupied states in both shallow and deep levels.

  8. Determination of cadmium selenide nonstoichiometry

    International Nuclear Information System (INIS)

    Brezhnev, V.Yu.; Kharif, Ya.L.; Kovtunenko, P.V.

    1986-01-01

    Physicochemical method of determination of cadmium selenide nonstoichiometry is developed. The method nature consists in the fact, that under definite conditions dissolved cadmium is extracted from crystals to a vapor phase and then is determined in it using the photocolorimetric method. Cadmium solubility in CdSe crystal is calculated from known CdSe mass and amount of separated cadmium. The lower boundary of determined contents constitutes 1x10 -5 % mol at sample of cadmium selenide 10 g

  9. Looking Down Under for a Circular Economy of Indium.

    Science.gov (United States)

    Werner, Tim T; Ciacci, Luca; Mudd, Gavin Mark; Reck, Barbara K; Northey, Stephen Alan

    2018-02-20

    Indium is a specialty metal crucial for modern technology, yet it is potentially critical due to its byproduct status in mining. Measures to reduce its criticality typically focus on improving its recycling efficiency at end-of-life. This study quantifies primary and secondary indium resources ("stocks") for Australia through a dynamic material-flow analysis. It is based on detailed assessments of indium mineral resources hosted in lead-zinc and copper deposits, respective mining activities from 1844 to 2013, and the trade of indium-containing products from 1988 to 2015. The results show that Australia's indium stocks are substantial, estimated at 46.2 kt in mineral resources and an additional 14.7 kt in mine wastes. Australian mineral resources alone could meet global demand (∼0.8 kt/year) for more than five decades. Discarded material from post-consumer products, instead, is negligible (43 t). This suggests that the resilience of Australia's indium supply can best be increased through efficiency gains in mining (such as introducing domestic indium refining capacity) rather than at the end of the product life. These findings likely also apply to other specialty metals, such as gallium or germanium, and other resource-dominated countries. Finally, the results illustrate that national circular economy strategies can differ substantially.

  10. High Stability Performance of Quinary Indium Gallium Zinc Aluminum Oxide Films and Thin-Film Transistors Deposited Using Vapor Cooling Condensation Method

    Science.gov (United States)

    Lin, Yung-Hao; Lee, Ching-Ting

    2017-08-01

    High-quality indium gallium zinc aluminum oxide (IGZAO) thin films with various Al contents have been deposited using the vapor cooling condensation method. The electron mobility of the IGZAO films was improved by 89.4% on adding Al cation to IGZO film. The change in the electron concentration and mobility of the IGZAO films was 7.3% and 7.0%, respectively, when the temperature was changed from 300 K to 225 K. These experimental results confirm the high performance and stability of the IGZAO films. The performance stability mechanisms of IGZAO thin-film transistors (TFTs) were investigated in comparison with IGZO TFTs.

  11. Oxygen Partial Pressure Impact on Characteristics of Indium Titanium Zinc Oxide Thin Film Transistor Fabricated via RF Sputtering.

    Science.gov (United States)

    Hsu, Ming-Hung; Chang, Sheng-Po; Chang, Shoou-Jinn; Wu, Wei-Ting; Li, Jyun-Yi

    2017-06-26

    Indium titanium zinc oxide (InTiZnO) as the channel layer in thin film transistor (TFT) grown by RF sputtering system is proposed in this work. Optical and electrical properties were investigated. By changing the oxygen flow ratio, we can suppress excess and undesirable oxygen-related defects to some extent, making it possible to fabricate the optimized device. XPS patterns for O 1s of InTiZnO thin films indicated that the amount of oxygen vacancy was apparently declined with the increasing oxygen flow ratio. The fabricated TFTs showed a threshold voltage of -0.9 V, mobility of 0.884 cm²/Vs, on-off ratio of 5.5 × 10⁵, and subthreshold swing of 0.41 V/dec.

  12. Activation of sputter-processed indium-gallium-zinc oxide films by simultaneous ultraviolet and thermal treatments.

    Science.gov (United States)

    Tak, Young Jun; Ahn, Byung Du; Park, Sung Pyo; Kim, Si Joon; Song, Ae Ran; Chung, Kwun-Bum; Kim, Hyun Jae

    2016-02-23

    Indium-gallium-zinc oxide (IGZO) films, deposited by sputtering at room temperature, still require activation to achieve satisfactory semiconductor characteristics. Thermal treatment is typically carried out at temperatures above 300 °C. Here, we propose activating sputter- processed IGZO films using simultaneous ultraviolet and thermal (SUT) treatments to decrease the required temperature and enhance their electrical characteristics and stability. SUT treatment effectively decreased the amount of carbon residues and the number of defect sites related to oxygen vacancies and increased the number of metal oxide (M-O) bonds through the decomposition-rearrangement of M-O bonds and oxygen radicals. Activation of IGZO TFTs using the SUT treatment reduced the processing temperature to 150 °C and improved various electrical performance metrics including mobility, on-off ratio, and threshold voltage shift (positive bias stress for 10,000 s) from 3.23 to 15.81 cm(2)/Vs, 3.96 × 10(7) to 1.03 × 10(8), and 11.2 to 7.2 V, respectively.

  13. Inert gas annealing effect in solution-processed amorphous indium-gallium-zinc-oxide thin-film transistors

    Science.gov (United States)

    Lee, Seungwoon; Jeong, Jaewook

    2017-08-01

    In this paper, the annealing effect of solution-processed amorphous indium-gallium-zinc-oxide thin-film transistors (a-IGZO TFTs), under ambient He (He-device), is systematically analyzed by comparison with those under ambient O2 (O2-device) and N2 (N2-device), respectively. The He-device shows high field-effect mobility and low subthreshold slope owing to the minimization of the ambient effect. The degradation of the O2- and N2-device performances originate from their respective deep acceptor-like and shallow donor-like characteristics, which can be verified by comparison with the He-device. However, the three devices show similar threshold voltage instability under prolonged positive bias stress due to the effect of excess oxygen. Therefore, annealing in ambient He is the most suitable method for the fabrication of reference TFTs to study the various effects of the ambient during the annealing process in solution-processed a-IGZO TFTs.

  14. Defects in Amorphous Semiconductors: The Case of Amorphous Indium Gallium Zinc Oxide

    Science.gov (United States)

    de Jamblinne de Meux, A.; Pourtois, G.; Genoe, J.; Heremans, P.

    2018-05-01

    Based on a rational classification of defects in amorphous materials, we propose a simplified model to describe intrinsic defects and hydrogen impurities in amorphous indium gallium zinc oxide (a -IGZO). The proposed approach consists of organizing defects into two categories: point defects, generating structural anomalies such as metal—metal or oxygen—oxygen bonds, and defects emerging from changes in the material stoichiometry, such as vacancies and interstitial atoms. Based on first-principles simulations, it is argued that the defects originating from the second group always act as perfect donors or perfect acceptors. This classification simplifies and rationalizes the nature of defects in amorphous phases. In a -IGZO, the most important point defects are metal—metal bonds (or small metal clusters) and peroxides (O - O single bonds). Electrons are captured by metal—metal bonds and released by the formation of peroxides. The presence of hydrogen can lead to two additional types of defects: metal-hydrogen defects, acting as acceptors, and oxygen-hydrogen defects, acting as donors. The impact of these defects is linked to different instabilities observed in a -IGZO. Specifically, the diffusion of hydrogen and oxygen is connected to positive- and negative-bias stresses, while negative-bias illumination stress originates from the formation of peroxides.

  15. Efficient indium-tin-oxide free inverted organic solar cells based on aluminum-doped zinc oxide cathode and low-temperature aqueous solution processed zinc oxide electron extraction layer

    International Nuclear Information System (INIS)

    Chen, Dazheng; Zhang, Chunfu; Wang, Zhizhe; Zhang, Jincheng; Tang, Shi; Wei, Wei; Sun, Li; Hao, Yue

    2014-01-01

    Indium-tin-oxide (ITO) free inverted organic solar cells (IOSCs) based on aluminum-doped zinc oxide (AZO) cathode, low-temperature aqueous solution processed zinc oxide (ZnO) electron extraction layer, and poly(3-hexylthiophene-2, 5-diyl):[6, 6]-phenyl C 61 butyric acid methyl ester blend were realized in this work. The resulted IOSC with ZnO annealed at 150 °C shows the superior power conversion efficiency (PCE) of 3.01%, if decreasing the ZnO annealing temperature to 100 °C, the obtained IOSC also shows a PCE of 2.76%, and no light soaking issue is observed. It is found that this ZnO film not only acts as an effective buffer layer but also slightly improves the optical transmittance of AZO substrates. Further, despite the relatively inferior air-stability, these un-encapsulated AZO/ZnO IOSCs show comparable PCEs to the referenced ITO/ZnO IOSCs, which demonstrates that the AZO cathode is a potential alternative to ITO in IOSCs. Meanwhile, this simple ZnO process is compatible with large area deposition and plastic substrates, and is promising to be widely used in IOSCs and other relative fields.

  16. Origin of deep subgap states in amorphous indium gallium zinc oxide: Chemically disordered coordination of oxygen

    International Nuclear Information System (INIS)

    Sallis, S.; Williams, D. S.; Butler, K. T.; Walsh, A.; Quackenbush, N. F.; Junda, M.; Podraza, N. J.; Fischer, D. A.; Woicik, J. C.; White, B. E.; Piper, L. F. J.

    2014-01-01

    The origin of the deep subgap states in amorphous indium gallium zinc oxide (a-IGZO), whether intrinsic to the amorphous structure or not, has serious implications for the development of p-type transparent amorphous oxide semiconductors. We report that the deep subgap feature in a-IGZO originates from local variations in the oxygen coordination and not from oxygen vacancies. This is shown by the positive correlation between oxygen composition and subgap intensity as observed with X-ray photoelectron spectroscopy. We also demonstrate that the subgap feature is not intrinsic to the amorphous phase because the deep subgap feature can be removed by low-temperature annealing in a reducing environment. Atomistic calculations of a-IGZO reveal that the subgap state originates from certain oxygen environments associated with the disorder. Specifically, the subgap states originate from oxygen environments with a lower coordination number and/or a larger metal-oxygen separation.

  17. Origin of deep subgap states in amorphous indium gallium zinc oxide: Chemically disordered coordination of oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Sallis, S.; Williams, D. S. [Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States); Butler, K. T.; Walsh, A. [Center for Sustainable Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Quackenbush, N. F. [Department of Physics, Applied Physics, and Astronomy, Binghamton University, Binghamton, New York 13902 (United States); Junda, M.; Podraza, N. J. [Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606 (United States); Fischer, D. A.; Woicik, J. C. [Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); White, B. E.; Piper, L. F. J., E-mail: lpiper@binghamton.edu [Department of Physics, Applied Physics, and Astronomy, Binghamton University, Binghamton, New York 13902 (United States); Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States)

    2014-06-09

    The origin of the deep subgap states in amorphous indium gallium zinc oxide (a-IGZO), whether intrinsic to the amorphous structure or not, has serious implications for the development of p-type transparent amorphous oxide semiconductors. We report that the deep subgap feature in a-IGZO originates from local variations in the oxygen coordination and not from oxygen vacancies. This is shown by the positive correlation between oxygen composition and subgap intensity as observed with X-ray photoelectron spectroscopy. We also demonstrate that the subgap feature is not intrinsic to the amorphous phase because the deep subgap feature can be removed by low-temperature annealing in a reducing environment. Atomistic calculations of a-IGZO reveal that the subgap state originates from certain oxygen environments associated with the disorder. Specifically, the subgap states originate from oxygen environments with a lower coordination number and/or a larger metal-oxygen separation.

  18. Thermo-chemical properties and electrical resistivity of Zr-based arsenide chalcogenides

    Directory of Open Access Journals (Sweden)

    A. Schlechte, R. Niewa, M. Schmidt, G. Auffermann, Yu. Prots, W. Schnelle, D. Gnida, T. Cichorek, F. Steglich and R. Kniep

    2007-01-01

    Full Text Available Ternary phases in the systems Zr–As–Se and Zr–As–Te were studied using single crystals of ZrAs1.40(1Se0.50(1 and ZrAs1.60(2Te0.40(1 (PbFCl-type of structure, space group P4/nmm as well as ZrAs0.70(1Se1.30(1 and ZrAs0.75(1Te1.25(1 (NbPS-type of structure, space group Immm. The characterization covers chemical compositions, crystal structures, homogeneity ranges and electrical resistivities. At 1223 K, the Te-containing phases can be described with the general formula ZrAsxTe2−x, with 1.53(1≤x≤1.65(1 (As-rich and 0.58(1≤x≤0.75(1 (Te-rich. Both phases are located directly on the tie-line between ZrAs2 and ZrTe2, with no indication for any deviation. Similar is true for the Se-rich phase ZrAsxSe2−x with 0.70(1≤x≤0.75(1. However, the compositional range of the respective As-rich phase ZrAsx−ySe2−x (0.03(1≤y≤0.10(1; 1.42(1≤x≤1.70(1 is not located on the tie-line ZrAs2–ZrSe2, and exhibits a triangular region of existence with intrinsic deviation of the composition towards lower non-metal contents. Except for ZrAs0.75Se1.25, from the homogeneity range of the Se-rich phase, all compounds under investigation show metallic characteristics of electrical resistivity at temperatures >20 K. Related uranium and thorium arsenide selenides display a typical magnetic field-independent rise of the resistivity towards lower temperatures, which has been explained by a non-magnetic Kondo effect. However, a similar observation has been made for ZrAs1.40Se0.50, which, among the Zr-based arsenide chalcogenides, is the only system with a large concentration of intrinsic defects in the anionic substructure.

  19. A transparent diode with high rectifying ratio using amorphous indium-gallium-zinc oxide/SiN{sub x} coupled junction

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Myung-Jea; Kim, Myeong-Ho; Choi, Duck-Kyun, E-mail: duck@hanyang.ac.kr [Department of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-08-03

    We introduce a transparent diode that shows both high rectifying ratio and low leakage current at process temperature below 250 °C. This device is clearly distinguished from all previous transparent diodes in that the rectifying behavior results from the junction between a semiconductor (amorphous indium-gallium-zinc oxide (a-IGZO)) and insulator (SiN{sub x}). We systematically study the properties of each junction within the device structure and demonstrate that the a-IGZO/SiN{sub x} junction is the source of the outstanding rectification. The electrical characteristics of this transparent diode are: 2.8 A/cm{sup 2} on-current density measured at −7 V; lower than 7.3 × 10{sup −9} A/cm{sup 2} off-current density; 2.53 ideality factor; and high rectifying ratio of 10{sup 8}–10{sup 9}. Furthermore, the diode structure has a transmittance of over 80% across the visible light range. The operating principle of the indium-tin oxide (ITO)/a-IGZO/SiN{sub x}/ITO device was examined with an aid of the energy band diagram and we propose a preliminary model for the rectifying behavior. Finally, we suggest further directions for research on this transparent diode.

  20. Indium oxide co-doped with tin and zinc: A simple route to highly conducting high density targets for TCO thin-film fabrication

    Science.gov (United States)

    Saadeddin, I.; Hilal, H. S.; Decourt, R.; Campet, G.; Pecquenard, B.

    2012-07-01

    Indium oxide co-doped with tin and zinc (ITZO) ceramics have been successfully prepared by direct sintering of the powders mixture at 1300 °C. This allowed us to easily fabricate large highly dense target suitable for sputtering transparent conducting oxide (TCO) films, without using any cold or hot pressing techniques. Hence, the optimized ITZO ceramic reaches a high relative bulk density (˜ 92% of In2O3 theoretical density) and higher than the well-known indium oxide doped with tin (ITO) prepared under similar conditions. All X-ray diagrams obtained for ITZO ceramics confirms a bixbyte structure typical for In2O3 only. This indicates a higher solubility limit of Sn and Zn when they are co-doped into In2O3 forming a solid-solution. A very low value of electrical resistivity is obtained for [In2O3:Sn0.10]:Zn0.10 (1.7 × 10-3 Ω cm, lower than ITO counterpart) which could be fabricated to high dense ceramic target suing pressure-less sintering.

  1. Sputter deposition of indium tin oxide onto zinc pthalocyanine: Chemical and electronic properties of the interface studied by photoelectron spectroscopy

    Science.gov (United States)

    Gassmann, Jürgen; Brötz, Joachim; Klein, Andreas

    2012-02-01

    The interface chemistry and the energy band alignment at the interface formed during sputter deposition of transparent conducting indium tin oxide (ITO) onto the organic semiconductor zinc phtalocyanine (ZnPc), which is important for inverted, transparent, and stacked organic light emitting diodes, is studied by in situ photoelectron spectroscopy (XPS and UPS). ITO was sputtered at room temperature and a low power density with a face to face arrangement of the target and substrate. With these deposition conditions, no chemical reaction and a low barrier height for charge injection at this interface are observed. The barrier height is comparable to those observed for the reverse deposition sequence, which also confirms the absence of sputter damage.

  2. Ab initio calculations of indium arsenide in the wurtzite phase: structural, electronic and optical properties

    International Nuclear Information System (INIS)

    Dacal, Luis C O; Cantarero, A

    2014-01-01

    Most III–V semiconductors, which acquire the zinc-blende phase as bulk materials, adopt the metastable wurtzite phase when grown in the form of nanowires. These are new semiconductors with new optical properties, in particular, a different electronic band gap when compared with that grown in the zinc-blende phase. The electronic gap of wurtzite InAs at the Γ–point of the Brillouin zone (E 0 gap) has been recently measured, E 0 =0.46 eV at low temperature. The electronic gap at the A–point of the Brillouin zone (equivalent to the L–point in the zinc-blende structure, E 1 ) has also been obtained recently based on a resonant Raman scattering experiment. In this work, we calculate the band structure of InAs in the zinc-blende and wurtzite phases, using the full potential linearized augmented plane wave method, including spin-orbit interaction. The electronic band gap has been improved through the modified Becke–Johnson exchange-correlation potential. Both the E 0 and E 1 gaps agree very well with the experiment. From the calculations, a crystal field splitting of 0.122 eV and a spin-orbit splitting of 0.312 eV (the experimental value in zinc-blende InAs is 0.4 eV) has been obtained. Finally, we calculate the dielectric function of InAs in both the zinc-blende and wurtzite phases and a comparative discussion is given. (paper)

  3. Ab initio calculations of indium arsenide in the wurtzite phase: structural, electronic and optical properties

    Science.gov (United States)

    Dacal, Luis C. O.; Cantarero, A.

    2014-03-01

    Most III-V semiconductors, which acquire the zinc-blende phase as bulk materials, adopt the metastable wurtzite phase when grown in the form of nanowires. These are new semiconductors with new optical properties, in particular, a different electronic band gap when compared with that grown in the zinc-blende phase. The electronic gap of wurtzite InAs at the \\Gamma -point of the Brillouin zone ({{E}_{0}} gap) has been recently measured, {{E}_{0}}=0.46 eV at low temperature. The electronic gap at the A-point of the Brillouin zone (equivalent to the L-point in the zinc-blende structure, {{E}_{1}}) has also been obtained recently based on a resonant Raman scattering experiment. In this work, we calculate the band structure of InAs in the zinc-blende and wurtzite phases, using the full potential linearized augmented plane wave method, including spin-orbit interaction. The electronic band gap has been improved through the modified Becke-Johnson exchange-correlation potential. Both the {{E}_{0}} and {{E}_{1}} gaps agree very well with the experiment. From the calculations, a crystal field splitting of 0.122 eV and a spin-orbit splitting of 0.312 eV (the experimental value in zinc-blende InAs is 0.4 eV) has been obtained. Finally, we calculate the dielectric function of InAs in both the zinc-blende and wurtzite phases and a comparative discussion is given.

  4. Neutralization by metal ions of the toxicity of sodium selenide.

    Directory of Open Access Journals (Sweden)

    Marc Dauplais

    Full Text Available Inert metal-selenide colloids are found in animals. They are believed to afford cross-protection against the toxicities of both metals and selenocompounds. Here, the toxicities of metal salt and sodium selenide mixtures were systematically studied using the death rate of Saccharomyces cerevisiae cells as an indicator. In parallel, the abilities of these mixtures to produce colloids were assessed. Studied metal cations could be classified in three groups: (i metal ions that protect cells against selenium toxicity and form insoluble colloids with selenide (Ag⁺, Cd²⁺, Cu²⁺, Hg²⁺, Pb²⁺ and Zn²⁺, (ii metal ions which protect cells by producing insoluble metal-selenide complexes and by catalyzing hydrogen selenide oxidation in the presence of dioxygen (Co²⁺ and Ni²⁺ and, finally, (iii metal ions which do not afford protection and do not interact (Ca²⁺, Mg²⁺, Mn²⁺ or weakly interact (Fe²⁺ with selenide under the assayed conditions. When occurring, the insoluble complexes formed from divalent metal ions and selenide contained equimolar amounts of metal and selenium atoms. With the monovalent silver ion, the complex contained two silver atoms per selenium atom. Next, because selenides are compounds prone to oxidation, the stabilities of the above colloids were evaluated under oxidizing conditions. 5,5'-dithiobis-(2-nitrobenzoic acid (DTNB, the reduction of which can be optically followed, was used to promote selenide oxidation. Complexes with cadmium, copper, lead, mercury or silver resisted dissolution by DTNB treatment over several hours. With nickel and cobalt, partial oxidation by DTNB occurred. On the other hand, when starting from ZnSe or FeSe complexes, full decompositions were obtained within a few tens of minutes. The above properties possibly explain why ZnSe and FeSe nanoparticles were not detected in animals exposed to selenocompounds.

  5. Electron tunneling transport across heterojunctions between europium sulfide and indium arsenide

    Science.gov (United States)

    Kallaher, Raymond L.

    This dissertation presents research done on utilizing the ferromagnetic semiconductor europium sulfide (EuS) to inject spin polarized electrons into the non-magnetic semiconductor indium arsenide (InAs). There is great interest in expanding the functionality of modern day electronic circuits by creating devices that depend not only on the flow of charge in the device, but also on the transport of spin through the device. Within this mindset, there is a concerted effort to establish an efficient means of injecting and detecting spin polarized electrons in a two dimensional electron system (2DES) as the first step in developing a spin based field effect transistor. Thus, the research presented in this thesis has focused on the feasibility of using EuS, in direct electrical contact with InAs, as a spin injecting electrode into an InAs 2DES. Doped EuS is a concentrated ferromagnetic semiconductor, whose conduction band undergoes a giant Zeeman splitting when the material becomes ferromagnetic. The concomitant difference in energy between the spin-up and spin-down energy bands makes the itinerant electrons in EuS highly spin polarized. Thus, in principle, EuS is a good candidate to be used as an injector of spin polarized electrons into non-magnetic materials. In addition, the ability to adjust the conductivity of EuS by varying the doping level in the material makes EuS particularly suited for injecting spins into non-magnetic semiconductors and 2DES. For this research, thin films of EuS have been grown via e-beam evaporation of EuS powder. This growth technique produces EuS films that are sulfur deficient; these sulfur vacancies act as intrinsic electron donors and the resulting EuS films behave like heavily doped ferromagnetic semiconductors. The growth parameters and deposition procedures were varied and optimized in order to fabricate films that have minimal crystalline defects. Various properties and characteristics of these EuS films were measured and compared to

  6. Inorganic Photovoltaics Materials and Devices: Past, Present, and Future

    Science.gov (United States)

    Hepp, Aloysius F.; Bailey, Sheila G.; Rafaelle, Ryne P.

    2005-01-01

    This report describes recent aspects of advanced inorganic materials for photovoltaics or solar cell applications. Specific materials examined will be high-efficiency silicon, gallium arsenide and related materials, and thin-film materials, particularly amorphous silicon and (polycrystalline) copper indium selenide. Some of the advanced concepts discussed include multi-junction III-V (and thin-film) devices, utilization of nanotechnology, specifically quantum dots, low-temperature chemical processing, polymer substrates for lightweight and low-cost solar arrays, concentrator cells, and integrated power devices. While many of these technologies will eventually be used for utility and consumer applications, their genesis can be traced back to challenging problems related to power generation for aerospace and defense. Because this overview of inorganic materials is included in a monogram focused on organic photovoltaics, fundamental issues and metrics common to all solar cell devices (and arrays) will be addressed.

  7. Modeling drain current of indium zinc oxide thin film transistors prepared by solution deposition technique

    Science.gov (United States)

    Qiang, Lei; Liang, Xiaoci; Cai, Guangshuo; Pei, Yanli; Yao, Ruohe; Wang, Gang

    2018-06-01

    Indium zinc oxide (IZO) thin film transistor (TFT) deposited by solution method is of considerable technological interest as it is a key component for the fabrication of flexible and cheap transparent electronic devices. To obtain a principal understanding of physical properties of solution-processed IZO TFT, a new drain current model that account for the charge transport is proposed. The formulation is developed by incorporating the effect of gate voltage on mobility and threshold voltage with the carrier charges. It is demonstrated that in IZO TFTs the below threshold regime should be divided into two sections: EC - EF > 3kT and EC - EF ≤ 3kT, where kT is the thermal energy, EF and EC represent the Fermi level and the conduction band edge, respectively. Additionally, in order to describe conduction mechanisms more accurately, the extended mobility edge model is conjoined, which can also get rid of the complicated and lengthy computations. The good agreement between measured and calculated results confirms the efficiency of this model for the design of integrated large-area thin film circuits.

  8. Crystalline-like temperature dependence of the electrical characteristics in amorphous Indium-Gallium-Zinc-Oxide thin film transistors

    Science.gov (United States)

    Estrada, M.; Hernandez-Barrios, Y.; Cerdeira, A.; Ávila-Herrera, F.; Tinoco, J.; Moldovan, O.; Lime, F.; Iñiguez, B.

    2017-09-01

    A crystalline-like temperature dependence of the electrical characteristics of amorphous Indium-Gallium-Zinc-Oxide (a-IGZO) thin film transistors (TFTs) is reported, in which the drain current reduces as the temperature is increased. This behavior appears for values of drain and gate voltages above which a change in the predominant conduction mechanism occurs. After studying the possible conduction mechanisms, it was determined that, for gate and drain voltages below these values, hopping is the predominant mechanism with the current increasing with temperature, while for values above, the predominant conduction mechanism becomes percolation in the conduction band or band conduction and IDS reduces as the temperature increases. It was determined that this behavior appears, when the effect of trapping is reduced, either by varying the density of states, their characteristic energy or both. Simulations were used to further confirm the causes of the observed behavior.

  9. DC sputter deposition of amorphous indium-gallium-zinc-oxide (a-IGZO) films with H2O introduction

    International Nuclear Information System (INIS)

    Aoi, Takafumi; Oka, Nobuto; Sato, Yasushi; Hayashi, Ryo; Kumomi, Hideya; Shigesato, Yuzo

    2010-01-01

    Amorphous indium-gallium-zinc-oxide (a-IGZO) films were deposited by dc magnetron sputtering with H 2 O introduction and how the H 2 O partial pressure (P H 2 O ) during the deposition affects the electrical properties of the films was investigated in detail. Resistivity of the a-IGZO films increased dramatically to over 2 x 10 5 Ωcm with increasing P H 2 O to 2.7 x 10 -2 Pa while the hydrogen concentration in the films increased to 2.0 x 10 21 cm -3 . TFTs using a-IGZO channels deposited under P H 2 O at 1.6-8.6 x 10 -2 Pa exhibited a field-effect mobility of 1.4-3.0 cm 2 /Vs, subthreshold swing of 1.0-1.6 V/decade and on-off current ratio of 3.9 x 10 7 -1.0 x 10 8 .

  10. 75 FR 39520 - Certain New Chemicals; Receipt and Status Information

    Science.gov (United States)

    2010-07-09

    ... of manufacturing copper indium metal selenide solar panel. The finished solar panel with copper indium metal selenide deposited on the substrate is encapsulated with the complete solar panel unit. The solar panel is sold to commercial entities only. P-10-0425 06/18/10 09/15/10 CBI (G) Component of (G...

  11. Efficient and Selective Debromination of vic-Dibromides to Alkenes Using CoCl2·6H2O/Indium System

    International Nuclear Information System (INIS)

    Yoo, Byung Woo; Kim, Seo Hee; Min, Ga Hong

    2012-01-01

    We have found that vic-dibromides treated with CoCl 2 ·6H 2 O/indium system in methanol are efficiently converted into the corresponding alkenes in high yields under mild conditions. Although the scope and limitations of this method have not been fully established, it is expected to be a useful and efficient alternative to the existing methods for the debromination of vic-dibromides. There is always considerable interest in the search for more efficient and selective procedures for the debromination of vic-dibromides. The reduction of CoCl 2 to low-valent cobalt species and the synthetic utility of such species are well documented in the literature. Generally, reducing agents, such as zinc and magnesium, are used for the reduction of CoCl 2 . Because indium and zinc closely resemble each other in several aspects, including first ionization, we considered that a combination of CoCl 2 ·6H 2 O with indium could facilitate the reductive debromination of vic-dibromides under mild conditions. As in the case of zinc, the reduction potential of indium is not highly negative (In: E o , In +3 /In = -0.345 V; Zn: E o , Zn: +2 /Zn = -0.763 V): thus, indium is not sensitive to water and does not form oxides readily in air. In recent years, indium metal has been the subject of active interest because of its unique properties such as low toxicity and high stability in water and air compared to other metals. In connection with our interest in exploring the utility of low-valent metal reagents for organic transformations, we herein wish to report an efficient and chemoselective method for the debromination of vic-dibromides to alkenes using CoCl 2 ·6H 2 O/indium system at room temperature

  12. Real-space Mapping of Surface Trap States in CIGSe Nanocrystals using 4D Electron Microscopy

    KAUST Repository

    Bose, Riya

    2016-05-26

    Surface trap states in semiconductor copper indium gallium selenide nanocrystals (NCs) which serve as undesirable channels for non-radiative carrier recombination, remain a great challenge impeding the development of solar and optoelectronics devices based on these NCs. In order to design efficient passivation techniques to minimize these trap states, a precise knowledge about the charge carrier dynamics on the NCs surface is essential. However, selective mapping of surface traps requires capabilities beyond the reach of conventional laser spectroscopy and static electron microscopy; it can only be accessed by using a one-of-a-kind, second-generation four-dimensional scanning ultrafast electron microscope (4D S-UEM) with sub-picosecond temporal and nanometer spatial resolutions. Here, we precisely map the surface charge carrier dynamics of copper indium gallium selenide NCs before and after surface passivation in real space and time using S-UEM. The time-resolved snapshots clearly demonstrate that the density of the trap states is significantly reduced after zinc sulfide (ZnS) shelling. Furthermore, removal of trap states and elongation of carrier lifetime are confirmed by the increased photocurrent of the self-biased photodetector fabricated using the shelled NCs.

  13. Real-space Mapping of Surface Trap States in CIGSe Nanocrystals using 4D Electron Microscopy

    KAUST Repository

    Bose, Riya; Bera, Ashok; Parida, Manas R.; Adhikari, Aniruddha; Shaheen, Basamat; Alarousu, Erkki; Sun, Jingya; Wu, Tao; Bakr, Osman; Mohammed, Omar F.

    2016-01-01

    Surface trap states in semiconductor copper indium gallium selenide nanocrystals (NCs) which serve as undesirable channels for non-radiative carrier recombination, remain a great challenge impeding the development of solar and optoelectronics devices based on these NCs. In order to design efficient passivation techniques to minimize these trap states, a precise knowledge about the charge carrier dynamics on the NCs surface is essential. However, selective mapping of surface traps requires capabilities beyond the reach of conventional laser spectroscopy and static electron microscopy; it can only be accessed by using a one-of-a-kind, second-generation four-dimensional scanning ultrafast electron microscope (4D S-UEM) with sub-picosecond temporal and nanometer spatial resolutions. Here, we precisely map the surface charge carrier dynamics of copper indium gallium selenide NCs before and after surface passivation in real space and time using S-UEM. The time-resolved snapshots clearly demonstrate that the density of the trap states is significantly reduced after zinc sulfide (ZnS) shelling. Furthermore, removal of trap states and elongation of carrier lifetime are confirmed by the increased photocurrent of the self-biased photodetector fabricated using the shelled NCs.

  14. Diffusion length variation in 0.5- and 3-MeV-proton-irradiated, heteroepitaxial indium phosphide solar cells

    Science.gov (United States)

    Jain, Raj K.; Weinberg, Irving; Flood, Dennis J.

    1993-01-01

    Indium phosphide (InP) solar cells are more radiation resistant than gallium arsenide (GaAs) and silicon (Si) solar cells, and their growth by heteroepitaxy offers additional advantages leading to the development of light weight, mechanically strong, and cost-effective cells. Changes in heteroepitaxial InP cell efficiency under 0.5- and 3-MeV proton irradiations have been explained by the variation in the minority-carrier diffusion length. The base diffusion length versus proton fluence was calculated by simulating the cell performance. The diffusion length damage coefficient, K(sub L), was also plotted as a function of proton fluence.

  15. Contact resistance asymmetry of amorphous indium-gallium-zinc-oxide thin-film transistors by scanning Kelvin probe microscopy

    Science.gov (United States)

    Chen-Fei, Wu; Yun-Feng, Chen; Hai, Lu; Xiao-Ming, Huang; Fang-Fang, Ren; Dun-Jun, Chen; Rong, Zhang; You-Dou, Zheng

    2016-05-01

    In this work, a method based on scanning Kelvin probe microscopy is proposed to separately extract source/drain (S/D) series resistance in operating amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors. The asymmetry behavior of S/D contact resistance is deduced and the underlying physics is discussed. The present results suggest that the asymmetry of S/D contact resistance is caused by the difference in bias conditions of the Schottky-like junction at the contact interface induced by the parasitic reaction between contact metal and a-IGZO. The overall contact resistance should be determined by both the bulk channel resistance of the contact region and the interface properties of the metal-semiconductor junction. Project supported by the Key Industrial R&D Program of Jiangsu Province, China (Grant No. BE2015155), the Priority Academic Program Development of Higher Education Institutions of Jiangsu Province, China, and the Fundamental Research Funds for the Central Universities, China (Grant No. 021014380033).

  16. Interface Study on Amorphous Indium Gallium Zinc Oxide Thin Film Transistors Using High-k Gate Dielectric Materials

    Directory of Open Access Journals (Sweden)

    Yu-Hsien Lin

    2015-01-01

    Full Text Available We investigated amorphous indium gallium zinc oxide (a-IGZO thin film transistors (TFTs using different high-k gate dielectric materials such as silicon nitride (Si3N4 and aluminum oxide (Al2O3 at low temperature process (<300°C and compared them with low temperature silicon dioxide (SiO2. The IGZO device with high-k gate dielectric material will expect to get high gate capacitance density to induce large amount of channel carrier and generate the higher drive current. In addition, for the integrating process of integrating IGZO device, postannealing treatment is an essential process for completing the process. The chemical reaction of the high-k/IGZO interface due to heat formation in high-k/IGZO materials results in reliability issue. We also used the voltage stress for testing the reliability for the device with different high-k gate dielectric materials and explained the interface effect by charge band diagram.

  17. Interface Study on Amorphous Indium Gallium Zinc Oxide Thin Film Transistors Using High-k Gate Dielectric Materials

    International Nuclear Information System (INIS)

    Lin, Y. H.; Chou, J. C.

    2015-01-01

    We investigated amorphous indium gallium zinc oxide (a-IGZO) thin film transistors (TFT_s) using different high-Κ gate dielectric materials such as silicon nitride (Si_3N_4) and aluminum oxide (Al_2O_3) at low temperature process (<300 degree) and compared them with low temperature silicon dioxide (SiO_2). The IGZO device with high-Κ gate dielectric material will expect to get high gate capacitance density to induce large amount of channel carrier and generate the higher drive current. In addition, for the integrating process of integrating IGZO device, post annealing treatment is an essential process for completing the process. The chemical reaction of the high-κ/IGZO interface due to heat formation in high-Κ/IGZO materials results in reliability issue. We also used the voltage stress for testing the reliability for the device with different high-Κ gate dielectric materials and explained the interface effect by charge band diagram.

  18. Simple Hydrogen Plasma Doping Process of Amorphous Indium Gallium Zinc Oxide-Based Phototransistors for Visible Light Detection.

    Science.gov (United States)

    Kang, Byung Ha; Kim, Won-Gi; Chung, Jusung; Lee, Jin Hyeok; Kim, Hyun Jae

    2018-02-28

    A homojunction-structured amorphous indium gallium zinc oxide (a-IGZO) phototransistor that can detect visible light is reported. The key element of this technology is an absorption layer composed of hydrogen-doped a-IGZO. This absorption layer is fabricated by simple hydrogen plasma doping, and subgap states are induced by increasing the amount of hydrogen impurities. These subgap states, which lead to a higher number of photoexcited carriers and aggravate the instability under negative bias illumination stress, enabled the detection of a wide range of visible light (400-700 nm). The optimal condition of the hydrogen-doped absorption layer (HAL) is fabricated at a hydrogen partial pressure ratio of 2%. As a result, the optimized a-IGZO phototransistor with the HAL exhibits a high photoresponsivity of 1932.6 A/W, a photosensitivity of 3.85 × 10 6 , and a detectivity of 6.93 × 10 11 Jones under 635 nm light illumination.

  19. Low-frequency noise properties in Pt-indium gallium zinc oxide Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiawei; Zhang, Linqing; Ma, Xiaochen; Wilson, Joshua [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); Jin, Jidong [Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ (United Kingdom); Du, Lulu; Xin, Qian [School of Physics, Shandong University, Jinan 250100 (China); Song, Aimin, E-mail: A.Song@manchester.ac.uk [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); School of Physics, Shandong University, Jinan 250100 (China)

    2015-08-31

    The low-frequency noise properties of Pt-indium gallium zinc oxide (IGZO) Schottky diodes at different forward biases are investigated. The IGZO layer and Pt contact were deposited by RF sputtering at room temperature. The diode showed an ideality factor of 1.2 and a barrier height of 0.94 eV. The current noise spectral density exhibited 1/f behavior at low frequencies. The analysis of the current dependency of the noise spectral density revealed that for the as-deposited diode, the noise followed Luo's mobility and diffusivity fluctuation model in the thermionic-emission-limited region and Hooge's empirical theory in the series-resistance-limited region. A low Hooge's constant of 1.4 × 10{sup −9} was found in the space-charge region. In the series-resistance-limited region, the Hooge's constant was 2.2 × 10{sup −5}. After annealing, the diode showed degradation in the electrical performance. The interface-trap-induced noise dominated the noise spectrum. By using the random walk model, the interface-trap density was obtained to be 3.6 × 10{sup 15 }eV{sup −1 }cm{sup −2}. This work provides a quantitative approach to analyze the properties of Pt-IGZO interfacial layers. These low noise properties are a prerequisite to the use of IGZO Schottky diodes in switch elements in memory devices, photosensors, and mixer diodes.

  20. Improvement in gate bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors using microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Kwang-Won; Cho, Won-Ju, E-mail: chowj@kw.ac.kr [Department of Electronic Materials Engineering, Kwangwoon University, 447-1, Wolgye-dong, Nowon-gu, Seoul 139-701 (Korea, Republic of)

    2014-11-24

    In this study, we evaluated the effects of microwave irradiation (MWI) post-deposition-annealing (PDA) treatment on the gate bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors (a-IGZO TFTs) and compared the results with a conventional thermal annealing PDA treatment. The MWI-PDA-treated a-IGZO TFTs exhibited enhanced electrical performance as well as improved long-term stability with increasing microwave power. The positive turn-on voltage shift (ΔV{sub ON}) as a function of stress time with positive bias and varying temperature was precisely modeled on a stretched-exponential equation, suggesting that charge trapping is a dominant mechanism in the instability of MWI-PDA-treated a-IGZO TFTs. The characteristic trapping time and average effective barrier height for electron transport indicate that the MWI-PDA treatment effectively reduces the defects in a-IGZO TFTs, resulting in a superior resistance against gate bias stress.

  1. Improvement in gate bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors using microwave irradiation

    International Nuclear Information System (INIS)

    Jo, Kwang-Won; Cho, Won-Ju

    2014-01-01

    In this study, we evaluated the effects of microwave irradiation (MWI) post-deposition-annealing (PDA) treatment on the gate bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors (a-IGZO TFTs) and compared the results with a conventional thermal annealing PDA treatment. The MWI-PDA-treated a-IGZO TFTs exhibited enhanced electrical performance as well as improved long-term stability with increasing microwave power. The positive turn-on voltage shift (ΔV ON ) as a function of stress time with positive bias and varying temperature was precisely modeled on a stretched-exponential equation, suggesting that charge trapping is a dominant mechanism in the instability of MWI-PDA-treated a-IGZO TFTs. The characteristic trapping time and average effective barrier height for electron transport indicate that the MWI-PDA treatment effectively reduces the defects in a-IGZO TFTs, resulting in a superior resistance against gate bias stress

  2. Window structure for passivating solar cells based on gallium arsenide

    Science.gov (United States)

    Barnett, Allen M. (Inventor)

    1985-01-01

    Passivated gallium arsenide solar photovoltaic cells with high resistance to moisture and oxygen are provided by means of a gallium arsenide phosphide window graded through its thickness from arsenic rich to phosphorus rich.

  3. Comparative effects of indium/ytterbium doping on, mechanical and gas-sensitivity-related morphological, properties of sprayed ZnO compounds

    International Nuclear Information System (INIS)

    Boukhachem, A.; Fridjine, S.; Amlouk, A.; Boubaker, K.; Bouhafs, M.; Amlouk, M.

    2010-01-01

    In this study, conducting and transparent indium-doped zinc oxide (ZnO) thin films have been deposited on glass substrates by the micro-spray technique. First, zinc oxide layers were obtained by spaying a solution of propanol and zinc acetate in acidified medium. Alternatively, some of the obtained films were doped with indium (In) at the molar rates of: 1%, 2% and 3%. In addition to the classical structural investigated using XRD, AFM and SEM techniques, microhardness Vickers (Hv) measurements have been carried out along with comparative morphological prospecting. The specific gases sensitivity-related surface morphology of the doped ZnO compounds was favorably different from that of the non-doped ones, and showed a thin overlay structure. Results were compared to those recorded for similar ytterbium-doped material.

  4. Effect of Al2O3 insulator thickness on the structural integrity of amorphous indium-gallium-zinc-oxide based thin film transistors.

    Science.gov (United States)

    Kim, Hak-Jun; Hwang, In-Ju; Kim, Youn-Jea

    2014-12-01

    The current transparent oxide semiconductors (TOSs) technology provides flexibility and high performance. In this study, multi-stack nano-layers of TOSs were designed for three-dimensional analysis of amorphous indium-gallium-zinc-oxide (a-IGZO) based thin film transistors (TFTs). In particular, the effects of torsional and compressive stresses on the nano-sized active layers such as the a-IGZO layer were investigated. Numerical simulations were carried out to investigate the structural integrity of a-IGZO based TFTs with three different thicknesses of the aluminum oxide (Al2O3) insulator (δ = 10, 20, and 30 nm), respectively, using a commercial code, COMSOL Multiphysics. The results are graphically depicted for operating conditions.

  5. Temporal and voltage stress stability of high performance indium-zinc-oxide thin film transistors

    Science.gov (United States)

    Song, Yang; Katsman, Alexander; Butcher, Amy L.; Paine, David C.; Zaslavsky, Alexander

    2017-10-01

    Thin film transistors (TFTs) based on transparent oxide semiconductors, such as indium zinc oxide (IZO), are of interest due to their improved characteristics compared to traditional a-Si TFTs. Previously, we reported on top-gated IZO TFTs with an in-situ formed HfO2 gate insulator and IZO active channel, showing high performance: on/off ratio of ∼107, threshold voltage VT near zero, extracted low-field mobility μ0 = 95 cm2/V·s, and near-perfect subthreshold slope at 62 mV/decade. Since device stability is essential for technological applications, in this paper we report on the temporal and voltage stress stability of IZO TFTs. Our devices exhibit a small negative VT shift as they age, consistent with an increasing carrier density resulting from an increasing oxygen vacancy concentration in the channel. Under gate bias stress, freshly annealed TFTs show a negative VT shift during negative VG gate bias stress, while aged (>1 week) TFTs show a positive VT shift during negative VG stress. This indicates two competing mechanisms, which we identify as the field-enhanced generation of oxygen vacancies and the field-assisted migration of oxygen vacancies, respectively. A simplified kinetic model of the vacancy concentration evolution in the IZO channel under electrical stress is provided.

  6. Gastrointestinal and in vitro release of copper, cadmium, indium, mercury and zinc from conventional and copper-rich amalgams

    International Nuclear Information System (INIS)

    Brune, D.; Gjerdet, N.; Paulsen, G.

    1983-01-01

    Particles of a conventional lathe-cut, a spherical non-gamma 2 and a copper amalgam have been gastrointestinally administered to rats for the purpose of evaluation of the dissolution resistance. The animals were sacrificed after 20 hrs. The contents of copper, cadmium, indium, mercury and zinc in kidney, liver, lung or blood were measured using nuclear tracer techniques. From a copper amalgam an extreme release of copper was demonstrated. This study simulates the clinical conditions of elemental release from swallowed amalgam particles after amalgam insertion or after removal of old amalgam fillings. Specimens of the same types of amalgams were also exposed to artificial saliva for a period of 10 days. The amounts of copper and mercury released were measured with flame and flameless atomic absorption spectrophotometry respectively. The levels of copper and mercury released from the copper amalgam were approximately 50 times those of the two other amalgam types studied. (author)

  7. Printed indium gallium zinc oxide transistors. Self-assembled nanodielectric effects on low-temperature combustion growth and carrier mobility.

    Science.gov (United States)

    Everaerts, Ken; Zeng, Li; Hennek, Jonathan W; Camacho, Diana I; Jariwala, Deep; Bedzyk, Michael J; Hersam, Mark C; Marks, Tobin J

    2013-11-27

    Solution-processed amorphous oxide semiconductors (AOSs) are emerging as important electronic materials for displays and transparent electronics. We report here on the fabrication, microstructure, and performance characteristics of inkjet-printed, low-temperature combustion-processed, amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) grown on solution-processed hafnia self-assembled nanodielectrics (Hf-SANDs). TFT performance for devices processed below 300 °C includes >4× enhancement in electron mobility (μFE) on Hf-SAND versus SiO2 or ALD-HfO2 gate dielectrics, while other metrics such as subthreshold swing (SS), current on:off ratio (ION:IOFF), threshold voltage (Vth), and gate leakage current (Ig) are unchanged or enhanced. Thus, low voltage IGZO/SAND TFT operation (IGZO combustion processing leaves the underlying Hf-SAND microstructure and capacitance intact. This work establishes the compatibility and advantages of all-solution, low-temperature fabrication of inkjet-printed, combustion-derived high-mobility IGZO TFTs integrated with self-assembled hybrid organic-inorganic nanodielectrics.

  8. Selective UV–O3 treatment for indium zinc oxide thin film transistors with solution-based multiple active layer

    Science.gov (United States)

    Kim, Yu-Jung; Jeong, Jun-Kyo; Park, Jung-Hyun; Jeong, Byung-Jun; Lee, Hi-Deok; Lee, Ga-Won

    2018-06-01

    In this study, a method to control the electrical performance of solution-based indium zinc oxide (IZO) thin film transistors (TFTs) is proposed by ultraviolet–ozone (UV–O3) treatment on the selective layer during multiple IZO active layer depositions. The IZO film is composed of triple layers formed by spin coating and UV–O3 treatment only on the first layer or last layer. The IZO films are compared by X-ray photoelectron spectroscopy, and the results show that the atomic ratio of oxygen vacancy (VO) increases in the UV–O3 treatment on the first layer, while it decreases on last layer. The device characteristics of the bottom gated structure are also improved in the UV–O3 treatment on the first layer. This indicates that the selective UV–O3 treatment in a multi-stacking active layer is an effective method to optimize TFT properties by controlling the amount of VO in the IZO interface and surface independently.

  9. Indium Arsenide Nanowires

    DEFF Research Database (Denmark)

    Madsen, Morten Hannibal

    -ray diffraction. InAs NWs can be used in a broad range of applications, including detectors, high speed electronics and low temperature transport measurements, but in this thesis focus will be put on biological experiments on living cells. Good control of Au-assisted InAs NW growth has been achieved......This thesis is about growth of Au-assisted and self-assisted InAs nanowires (NWs). The wires are synthesized using a solid source molecular beam epitaxy (MBE) system and characterized with several techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x...... by a systematic study to optimize the growth conditions; first the Au deposition, then the growth temperature and finally the beam fluxes. For further control of the growth, Au droplets have been positioned with electron beam lithography and large scale arrays with a > 99 % yield have been made on 2 inch...

  10. Study the physical and optoelectronic properties of silver gallium indium selenide AgGaInSe2/Si heterojunction solar cell

    Science.gov (United States)

    Hassun, Hanan K.

    2018-05-01

    AgGa1-x InxSe2 (AGIS) thin films was deposited on Si and glass substrates by thermal evaporation at RT and different ratios of Indium (x=0.2, 0.5, 0.8). The synthetics properties of AGIS thin film have been examined using X-ray diffraction and AFM. AGIS thin films possessed a polycrystalline tetragonal structure. Average diameter and roughness calculated from AFM images shows an increase in its value with increasing the ratios of Indium. Hall measurements showed n-type conduction with high mobility. The AgGa0.2In0.8Se2 thin film solar cell with a band gap of 1.65eV exhibit a total efficiency of 6.3% with open-circuit voltage Voc 0.38V, short circuit current Jsc 29 mA/cm2, fill factor FF 0.571 and total area 1 cm2. The built-in potential Vbi, concentration of majoritarian carrier ND and depletion width w are definite under different ratios of Indium from C-V amount.

  11. Inhalation developmental toxicology studies: Gallium arsenide in mice and rats

    Energy Technology Data Exchange (ETDEWEB)

    Mast, T.J.; Greenspan, B.J.; Dill, J.A.; Stoney, K.H.; Evanoff, J.J.; Rommereim, R.L.

    1990-12-01

    Gallium arsenide is a crystalline compound used extensively in the semiconductor industry. Workers preparing solar cells and gallium arsenide ingots and wafers are potentially at risk from the inhalation of gallium arsenide dust. The potential for gallium arsenide to cause developmental toxicity was assessed in Sprague- Dawley rats and CD-1 (Swiss) mice exposed to 0, 10, 37, or 75 mg/m{sup 3} gallium arsenide, 6 h/day, 7 days/week. Each of the four treatment groups consisted of 10 virgin females (for comparison), and {approx}30 positively mated rats or {approx}24 positively mated mice. Mice were exposed on 4--17 days of gestation (dg), and rats on 4--19 dg. The day of plug or sperm detection was designated as 0 dg. Body weights were obtained throughout the study period, and uterine and fetal body weights were obtained at sacrifice (rats, 20 dg; mice, 18 dg). Implants were enumerated and their status recorded. Live fetuses were sexed and examined for gross, visceral, skeletal, and soft-tissue craniofacial defects. Gallium and arsenic concentrations were determined in the maternal blood and uterine contents of the rats (3/group) at 7, 14, and 20 dg. 37 refs., 11 figs., 30 tabs.

  12. Alumina nanoparticle/polymer nanocomposite dielectric for flexible amorphous indium-gallium-zinc oxide thin film transistors on plastic substrate with superior stability

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Hsin-Cheng [Department of Electrical Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Pei, Zingway, E-mail: zingway@dragon.nchu.edu.tw [Department of Electrical Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Graduate Institute of Optoelectronic Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Center of Nanoscience and Nanotechnology, National Chung Hsing University, Taichung 40227, Taiwan (China); Jian, Jyun-Ruri; Tzeng, Bo-Jie [Graduate Institute of Optoelectronic Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China)

    2014-07-21

    In this study, the Al{sub 2}O{sub 3} nanoparticles were incorporated into polymer as a nono-composite dielectric for used in a flexible amorphous Indium-Gallium-Zinc Oxide (a-IGZO) thin-film transistor (TFT) on a polyethylene naphthalate substrate by solution process. The process temperature was well below 100 °C. The a-IGZO TFT exhibit a mobility of 5.13 cm{sup 2}/V s on the flexible substrate. After bending at a radius of 4 mm (strain = 1.56%) for more than 100 times, the performance of this a-IGZO TFT was nearly unchanged. In addition, the electrical characteristics are less altered after positive gate bias stress at 10 V for 1500 s. Thus, this technology is suitable for use in flexible displays.

  13. E1 Gap of Wurtzite InAs Single Nanowires Measured by Means of Resonant Raman Spectroscopy

    International Nuclear Information System (INIS)

    Moeller, M.; Lima, M. M. Jr. de; Cantarero, A.; Dacal, L. C. O.; Iikawa, F.; Chiaramonte, T.; Cotta, M. A.

    2011-01-01

    Indium arsenide nanowires were synthesized with an intermixing of wurtzite and zincblende structure by chemical beam epitaxy with the vapor-liquid-solid mechanism. Resonant Raman spectroscopy of the transverse optical phonon mode at 215 cm -1 reveals an E 1 gap of 2.47 eV which is assigned to the electronic band gap at the A point in the indium arsenide wurtzite phase.

  14. E1 Gap of Wurtzite InAs Single Nanowires Measured by Means of Resonant Raman Spectroscopy

    Science.gov (United States)

    Möller, M.; Dacal, L. C. O.; de Lima, M. M.; Iikawa, F.; Chiaramonte, T.; Cotta, M. A.; Cantarero, A.

    2011-12-01

    Indium arsenide nanowires were synthesized with an intermixing of wurtzite and zincblende structure by chemical beam epitaxy with the vapor-liquid-solid mechanism. Resonant Raman spectroscopy of the transverse optical phonon mode at 215 cm-1 reveals an E1 gap of 2.47 eV which is assigned to the electronic band gap at the A point in the indium arsenide wurtzite phase.

  15. Blade-coated sol-gel indium-gallium-zinc-oxide for inverted polymer solar cell

    Directory of Open Access Journals (Sweden)

    Yan-Huei Lee

    2016-11-01

    Full Text Available The inverted organic solar cell was fabricated by using sol-gel indium-gallium-zinc-oxide (IGZO as the electron-transport layer. The IGZO precursor solution was deposited by blade coating with simultaneous substrate heating at 120 °C from the bottom and hot wind from above. Uniform IGZO film of around 30 nm was formed after annealing at 400 °C. Using the blend of low band-gap polymer poly[(4,8-bis-(2-ethylhexyloxy-benzo(1,2-b:4,5-b’dithiophene-2,6-diyl-alt- (4-(2-ethylhexanoyl-thieno [3,4-b]thiophene--2-6-diyl] (PBDTTT-C-T and [6,6]-Phenyl C71 butyric acid methyl ester ([70]PCBM as the active layer for the inverted organic solar cell, an efficiency of 6.2% was achieved with a blade speed of 180 mm/s for the IGZO. The efficiency of the inverted organic solar cells was found to depend on the coating speed of the IGZO films, which was attributed to the change in the concentration of surface OH groups. Compared to organic solar cells of conventional structure using PBDTTT-C-T: [70]PCBM as active layer, the inverted organic solar cells showed significant improvement in thermal stability. In addition, the chemical composition, as well as the work function of the IGZO film at the surface and inside can be tuned by the blade speed, which may find applications in other areas like thin-film transistors.

  16. Semiconductor materials for solar photovoltaic cells

    CERN Document Server

    Wong-Ng, Winnie; Bhattacharya, Raghu

    2016-01-01

    This book reviews the current status of semiconductor materials for conversion of sunlight to electricity, and highlights advances in both basic science and manufacturing.  Photovoltaic (PV) solar electric technology will be a significant contributor to world energy supplies when reliable, efficient PV power products are manufactured in large volumes at low cost.  Expert chapters cover the full range of semiconductor materials for solar-to-electricity conversion, from crystalline silicon and amorphous silicon to cadmium telluride, copper indium gallium sulfide selenides, dye sensitized solar cells, organic solar cells, and environmentally friendly copper zinc tin sulfide selenides. The latest methods for synthesis and characterization of solar cell materials are described, together with techniques for measuring solar cell efficiency. Semiconductor Materials for Solar Photovoltaic Cells presents the current state of the art as well as key details about future strategies to increase the efficiency and reduce ...

  17. Interaction distances in oxides, sulfides and selenides with face-centered packing

    International Nuclear Information System (INIS)

    Kesler, Ya.A.

    1993-01-01

    Concept of characteristic distances (CD) was specified with account of the principle of topologically face-centered anion packing: calculation method was presented and boundary conditions of CD concept applicability were considered. Tables of CD in oxides, sulfides and selenides, obtained in result of self-consistent calculations on the basis of experimental crystallographic data, are presented. Pair correlations between CD in oxides, sulfides and selenides were considered, their relationship with cation electron structure was established. Peculiarities of chemical bond in oxides, sulfides and selenides with face-centered anion packing were discussed

  18. Semiconducting III-V compounds

    CERN Document Server

    Hilsum, C; Henisch, Heinz R

    1961-01-01

    Semiconducting III-V Compounds deals with the properties of III-V compounds as a family of semiconducting crystals and relates these compounds to the monatomic semiconductors silicon and germanium. Emphasis is placed on physical processes that are peculiar to III-V compounds, particularly those that combine boron, aluminum, gallium, and indium with phosphorus, arsenic, and antimony (for example, indium antimonide, indium arsenide, gallium antimonide, and gallium arsenide).Comprised of eight chapters, this book begins with an assessment of the crystal structure and binding of III-V compounds, f

  19. Coplanar amorphous-indium-gallium-zinc-oxide thin film transistor with He plasma treated heavily doped layer

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ho-young [Advanced Display Research Center, Department of Information Display, Kyung Hee University, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); LG Display R and D Center, 245 Lg-ro, Wollong-myeon, Paju-si, Gyeonggi-do 413-811 (Korea, Republic of); Lee, Bok-young; Lee, Young-jang; Lee, Jung-il; Yang, Myoung-su; Kang, In-byeong [LG Display R and D Center, 245 Lg-ro, Wollong-myeon, Paju-si, Gyeonggi-do 413-811 (Korea, Republic of); Mativenga, Mallory; Jang, Jin, E-mail: jjang@khu.ac.kr [Advanced Display Research Center, Department of Information Display, Kyung Hee University, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of)

    2014-01-13

    We report thermally stable coplanar amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) with heavily doped n{sup +} a-IGZO source/drain regions. Doping is through He plasma treatment in which the resistivity of the a-IGZO decreases from 2.98 Ω cm to 2.79 × 10{sup −3} Ω cm after treatment, and then it increases to 7.92 × 10{sup −2} Ω cm after annealing at 300 °C. From the analysis of X-ray photoelectron spectroscopy, the concentration of oxygen vacancies in He plasma treated n{sup +}a-IGZO does not change much after thermal annealing at 300 °C, indicating thermally stable n{sup +} a-IGZO, even for TFTs with channel length L = 4 μm. Field-effect mobility of the coplanar a-IGZO TFTs with He plasma treatment changes from 10.7 to 9.2 cm{sup 2}/V s after annealing at 300 °C, but the performance of the a-IGZO TFT with Ar or H{sub 2} plasma treatment degrades significantly after 300 °C annealing.

  20. Coplanar amorphous-indium-gallium-zinc-oxide thin film transistor with He plasma treated heavily doped layer

    International Nuclear Information System (INIS)

    Jeong, Ho-young; Lee, Bok-young; Lee, Young-jang; Lee, Jung-il; Yang, Myoung-su; Kang, In-byeong; Mativenga, Mallory; Jang, Jin

    2014-01-01

    We report thermally stable coplanar amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) with heavily doped n + a-IGZO source/drain regions. Doping is through He plasma treatment in which the resistivity of the a-IGZO decreases from 2.98 Ω cm to 2.79 × 10 −3 Ω cm after treatment, and then it increases to 7.92 × 10 −2 Ω cm after annealing at 300 °C. From the analysis of X-ray photoelectron spectroscopy, the concentration of oxygen vacancies in He plasma treated n + a-IGZO does not change much after thermal annealing at 300 °C, indicating thermally stable n + a-IGZO, even for TFTs with channel length L = 4 μm. Field-effect mobility of the coplanar a-IGZO TFTs with He plasma treatment changes from 10.7 to 9.2 cm 2 /V s after annealing at 300 °C, but the performance of the a-IGZO TFT with Ar or H 2 plasma treatment degrades significantly after 300 °C annealing

  1. Green Hydroselenation of Aryl Alkynes: Divinyl Selenides as a Precursor of Resveratrol

    Directory of Open Access Journals (Sweden)

    Gelson Perin

    2017-02-01

    Full Text Available A simple and efficient protocol to prepare divinyl selenides has been developed by the regio- and stereoselective addition of sodium selenide species to aryl alkynes. The nucleophilic species was generates in situ, from the reaction of elemental selenium with NaBH4, utilizing PEG-400 as the solvent. Several divinyl selenides were obtained in moderate to excellent yields with selectivity for the (Z,Z-isomer by a one-step procedure that was carried out at 60 °C in short reaction times. The methodology was extended to tellurium, giving the desired divinyl tellurides in good yields. Furthermore, the Fe-catalyzed cross-coupling reaction of bis(3,5-dimethoxystyryl selenide 3f with (4-methoxyphenylmagnesium bromide 5 afforded resveratrol trimethyl ether 6 in 57% yield.

  2. Green Hydroselenation of Aryl Alkynes: Divinyl Selenides as a Precursor of Resveratrol.

    Science.gov (United States)

    Perin, Gelson; Barcellos, Angelita M; Luz, Eduardo Q; Borges, Elton L; Jacob, Raquel G; Lenardão, Eder J; Sancineto, Luca; Santi, Claudio

    2017-02-20

    A simple and efficient protocol to prepare divinyl selenides has been developed by the regio- and stereoselective addition of sodium selenide species to aryl alkynes. The nucleophilic species was generates in situ , from the reaction of elemental selenium with NaBH₄, utilizing PEG-400 as the solvent. Several divinyl selenides were obtained in moderate to excellent yields with selectivity for the ( Z , Z )-isomer by a one-step procedure that was carried out at 60 °C in short reaction times. The methodology was extended to tellurium, giving the desired divinyl tellurides in good yields. Furthermore, the Fe-catalyzed cross-coupling reaction of bis(3,5-dimethoxystyryl) selenide 3f with (4-methoxyphenyl)magnesium bromide 5 afforded resveratrol trimethyl ether 6 in 57% yield.

  3. Asymmetric supercapacitors with metal-like ternary selenides and porous graphene electrodes

    KAUST Repository

    Xia, Chuan; Jiang, Qiu; Zhao, Chao; Beaujuge, Pierre; Alshareef, Husam N.

    2016-01-01

    nanostructured ternary nickel cobalt selenides result in a much higher areal capacitance (2.33 F cm−2 at 4 mA cm−2), better rate performance and cycling stability than their binary selenide equivalents, and other ternary oxides and chalcogenides. Those hybrid

  4. Effect of indium doping on zinc oxide films prepared by chemical ...

    Indian Academy of Sciences (India)

    Administrator

    confirmed by X-ray diffraction technique which leads to the introduction of defects in ZnO. Indium doping ... elements like Al, Ga and In can be used as n-type dopant. (Kato et al 2002) .... (α is the absorption coefficient and hν the photon energy).

  5. High rate deposition of thin film cadmium sulphide by pulsed direct current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Lisco, F., E-mail: F.Lisco@lboro.ac.uk [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Kaminski, P.M.; Abbas, A.; Bowers, J.W.; Claudio, G. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Losurdo, M. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, via Orabona 4, 70126 Bari (Italy); Walls, J.M. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom)

    2015-01-01

    Cadmium Sulphide (CdS) is an important n-type semiconductor widely used as a window layer in thin film photovoltaics Copper Indium Selenide, Copper Indium Gallium (di)Selenide, Copper Zinc Tin Sulphide and Cadmium Telluride (CdTe). Cadmium Sulphide has been deposited using a number of techniques but these techniques can be slow (chemical bath deposition and Radio Frequency sputtering) or the uniformity and the control of thickness can be relatively difficult (close space sublimation). In this paper we report on the development of a process using pulsed Direct Current magnetron sputtering which allows nanometre control of thin film thickness using time only. The CdS thin films deposited in this process are highly uniform and smooth. They exhibit the preferred hexagonal structure at room temperature deposition and they have excellent optical properties. Importantly, the process is highly stable despite the use of a semi-insulating magnetron target. Moreover, the process is very fast. The deposition rate using 1.5 kW of power to a 6-inch circular magnetron was measured to be greater than 8 nm/s. This makes the process suitable for industrial deployment. - Highlights: • Pulsed DC magnetron sputtering of CdS • High deposition rate deposition • Uniform, pinhole free films.

  6. High rate deposition of thin film cadmium sulphide by pulsed direct current magnetron sputtering

    International Nuclear Information System (INIS)

    Lisco, F.; Kaminski, P.M.; Abbas, A.; Bowers, J.W.; Claudio, G.; Losurdo, M.; Walls, J.M.

    2015-01-01

    Cadmium Sulphide (CdS) is an important n-type semiconductor widely used as a window layer in thin film photovoltaics Copper Indium Selenide, Copper Indium Gallium (di)Selenide, Copper Zinc Tin Sulphide and Cadmium Telluride (CdTe). Cadmium Sulphide has been deposited using a number of techniques but these techniques can be slow (chemical bath deposition and Radio Frequency sputtering) or the uniformity and the control of thickness can be relatively difficult (close space sublimation). In this paper we report on the development of a process using pulsed Direct Current magnetron sputtering which allows nanometre control of thin film thickness using time only. The CdS thin films deposited in this process are highly uniform and smooth. They exhibit the preferred hexagonal structure at room temperature deposition and they have excellent optical properties. Importantly, the process is highly stable despite the use of a semi-insulating magnetron target. Moreover, the process is very fast. The deposition rate using 1.5 kW of power to a 6-inch circular magnetron was measured to be greater than 8 nm/s. This makes the process suitable for industrial deployment. - Highlights: • Pulsed DC magnetron sputtering of CdS • High deposition rate deposition • Uniform, pinhole free films

  7. Controlling Growth High Uniformity Indium Selenide (In2Se3) Nanowires via the Rapid Thermal Annealing Process at Low Temperature.

    Science.gov (United States)

    Hsu, Ya-Chu; Hung, Yu-Chen; Wang, Chiu-Yen

    2017-09-15

    High uniformity Au-catalyzed indium selenide (In 2 Se 3) nanowires are grown with the rapid thermal annealing (RTA) treatment via the vapor-liquid-solid (VLS) mechanism. The diameters of Au-catalyzed In 2 Se 3 nanowires could be controlled with varied thicknesses of Au films, and the uniformity of nanowires is improved via a fast pre-annealing rate, 100 °C/s. Comparing with the slower heating rate, 0.1 °C/s, the average diameters and distributions (standard deviation, SD) of In 2 Se 3 nanowires with and without the RTA process are 97.14 ± 22.95 nm (23.63%) and 119.06 ± 48.75 nm (40.95%), respectively. The in situ annealing TEM is used to study the effect of heating rate on the formation of Au nanoparticles from the as-deposited Au film. The results demonstrate that the average diameters and distributions of Au nanoparticles with and without the RTA process are 19.84 ± 5.96 nm (30.00%) and about 22.06 ± 9.00 nm (40.80%), respectively. It proves that the diameter size, distribution, and uniformity of Au-catalyzed In 2 Se 3 nanowires are reduced and improved via the RTA pre-treated. The systemic study could help to control the size distribution of other nanomaterials through tuning the annealing rate, temperatures of precursor, and growth substrate to control the size distribution of other nanomaterials. Graphical Abstract Rapid thermal annealing (RTA) process proved that it can uniform the size distribution of Au nanoparticles, and then it can be used to grow the high uniformity Au-catalyzed In 2 Se 3 nanowires via the vapor-liquid-solid (VLS) mechanism. Comparing with the general growth condition, the heating rate is slow, 0.1 °C/s, and the growth temperature is a relatively high growth temperature, > 650 °C. RTA pre-treated growth substrate can form smaller and uniform Au nanoparticles to react with the In 2 Se 3 vapor and produce the high uniformity In 2 Se 3 nanowires. The in situ annealing TEM is used to realize the effect of heating

  8. Thermodynamic Considerations for a Pyrometallurgical Extraction of Indium and Silver from a Jarosite Residue

    Directory of Open Access Journals (Sweden)

    Stefan Steinlechner

    2018-05-01

    Full Text Available Indium and silver are technologically important, critical metals, and in the majority of cases, they are extracted as a by-product of another carrier metal. The importance of indium has seen recent growth, and for technological reasons, these metals can be found in industrial residues from primary zinc production, such as the iron precipitate—jarosite. To secure the supply of such metals in Europe, and with the idea of a circular economy and the sustainable use of raw materials, the recycling of such industrial residues is coming into focus. Due to the low value of jarosite, the focus must lie simultaneously on the recovery of valuable metals and the production of high-quality products in order to pursue an economical process. The objective of this article is to give the fundamentals for the development of a successful process to extract the minor elements from roasted jarosite. As such, we use thermodynamic calculations to show the behavior of indium and silver, leading to a recommendation for the required conditions for a successful extraction process. In summary, the formation of chlorine compounds shows high potential to meet the challenge of simultaneously recovering these metals together with zinc at the lowest possible energy input.

  9. An Indium-Free Anode for Large-Area Flexible OLEDs: Defect-Free Transparent Conductive Zinc Tin Oxide

    NARCIS (Netherlands)

    Morales-Masis, M.; Dauzou, F.; Jeangros, Q.; Dabirian, A.; Lifka, H.; Gierth, R.; Ruske, M.; Moet, D.; Hessler-Wyser, A.; Ballif, C.

    2016-01-01

    Flexible large-area organic light-emitting diodes (OLEDs) require highly conductive and transparent anodes for efficient and uniform light emission. Tin-doped indium oxide (ITO) is the standard anode in industry. However, due to the scarcity of indium, alternative anodes that eliminate its use are

  10. Electrical features of an amorphous indium-gallium-zinc-oxide film transistor using a double active matrix with different oxygen contents

    International Nuclear Information System (INIS)

    Koo, Ja Hyun; Kang, Tae Sung; Hong, Jin Pyo

    2012-01-01

    The electrical characteristics of amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistor (TFTs) are systematically studied using a double a-IGZO active layer that is composed of a-IGZO x (oxygen-ion-poor region) and a-IGZO y (oxygen-ion-rich-region). An active layer is designed to have a serially-stacked bi-layer matrix with different oxygen contents, providing the formation of different electron conduction channels. Two different oxygen contents in the active layer are obtained by varying the O 2 partial pressure during sputtering. The a-IGZO TFT based on a double active layer exhibits a high mobility of 9.1 cm 2 /Vsec, a threshold voltage (V T ) of 16.5 V, and ΔV T shifts of less than 1.5 V under gate voltage stress. A possible electrical sketch for the double active layer channel is also discussed.

  11. Mercury free zinc alloy powder for alkaline manganese battery. 2. Effect of additive species to zinc particle on suppressing hydrogen gas evolution; Arukari mangan denchiyo mukoka aen gokin funmatsu. 2. Suiso gas hassei ni oyobosu aen ryushi eno tenka genso no yokusei koka

    Energy Technology Data Exchange (ETDEWEB)

    Yano, M.; Fujitani, S.; Nishio, K. [Sanyo electric Co. Ltd., Osaka (Japan); Akai, Y.; Kurimura, M. [Sanyo Excell Co. Ltd., Tottori (Japan)

    1997-08-05

    In order to make alkaline manganese batteries mercury-free and suppress hydrogen gas generation, investigations were given on the effect of additive species on modification of zinc particles present on negative electrode surface. Mercury with high hydrogen overvoltage has been added conventionally, but the mercury can cause an environmental problem. Surface modification by using indium exhibited hydrogen gas generation suppressing effect. With the surface modification amount of 0.10% by weight or more, the suppressing effect is saturated, reducing the effect to 50% of that of mercury. Surface-modifying the bismuth added zinc particles with indium showed greater suppressing effect than the case where each element is used independently. Zinc-indium (0.10% by weight) - bismuth (0.025% by weight) based alloy powder showed the same hydrogen generation suppressing effect as zinc-mercury (0.15% by weight) alloy powder. A sealed test battery using this alloy powder in negative active material exhibited a discharge capacity of 1700 mAh similarly to the initial stage even after having been stored for 20 days at 60 degC. Self-discharge characteristics equivalent to that of zinc-mercury (0.15% by weight) based alloy powder were obtained. An environment compatible dry cell battery containing no mercury whatsoever was developed successfully. 18 refs., 6 figs., 1 tab.

  12. The effect of annealing on structural, optical and photosensitive properties of electrodeposited cadmium selenide thin films

    Directory of Open Access Journals (Sweden)

    Somnath Mahato

    2017-06-01

    Full Text Available Cadmium selenide (CdSe thin films have been deposited on indium tin oxide coated glass substrate by simple electrodeposition method. X-ray Diffraction (XRD studies identify that the as-deposited CdSe films are highly oriented to [002] direction and they belong to nanocrystalline hexagonal phase. The films are changed to polycrystalline structure after annealing in air for temperatures up to 450 °C and begin to degrade afterwards with the occurrence of oxidation and porosity. CdSe completely ceases to exist at higher annealing temperatures. CdSe films exhibit a maximum absorbance in the violet to blue-green region of an optical spectrum. The absorbance increases while the band gap decreases with increasing annealing temperature. Surface morphology also shows that the increase of the annealing temperature caused the grain growth. In addition, a number of distinct crystals is formed on top of the film surface. Electrical characteristics show that the films are photosensitive with a maximum sensitivity at 350 °C.

  13. Selenide isotope generator for the Galileo mission

    International Nuclear Information System (INIS)

    Goebel, C.J.; Hammel, T.E.

    1978-01-01

    A significantly improved thermoelectric generator has been developed to provide electric power for NASA's Galileo Mission in 1982. Nominal power requirements for Galileo will be about 450 watts at BOL (Beginning of Life), and this will be furnished by two Selenide Isotope Generators (SIG) each powered by a Multi Hundred Watt (MHW) radioisotopic heat source. A Ground Demonstration System (GDS) of a nominal 100 w(e) features a 3M - produced selenide ring module around a shortened MHW-dimensioned electrical heat source, newly developed axially-grooved heat pipes on a disc-shaped radiator, and other innovations which will allow a full-sized generator's weight to be held at about 90 lbs

  14. Diagrams of the formation of In2S3 and In2Se3 films on vitroceramic upon precipitation, according to potentiometric titration

    Science.gov (United States)

    Tulenin, S. S.; Bakhteev, S. A.; Yusupov, R. A.; Maskaeva, L. N.; Markov, V. F.

    2013-10-01

    Boundary conditions and ranges of the formation of indium(III) sulfide and selenide upon precipitation by thiocarbamide and selenocarbamide are determined. Potentiometric titration of indium chloride (InCl3) in the concentration range of 0.0001 to 0.100 mol/L by a solution of sodium hydroxide is performed. It is found that the following pH ranges are optimal for In2S3 and In2Se3 film precipitation: from 3.0 to 4.5 and from 9.0 to 14.0. Indium selenide layers 100 to 300 nm thick are prepared on vitroceramic by hydrochemcial precipitation.

  15. Elastic properties of zinc, cadmium, bismuth, thallium, tin, lead and their binary alloys with indium

    International Nuclear Information System (INIS)

    Magomedov, A.M.

    1986-01-01

    Rates of propagation of longitudinal and transverse acoustic waves in samples as well as density of Tl, Pb, Sn, Bi, Cd, Zn and their binary alloys with indium are determined. The results obtained are used for calculation of elasticity constants of these materials. It is stated that concentration dependences of elasticity constants for indium alloys have non-linear character; negative deflection from the additive line is observed

  16. Slow recombination centers in cadmium selenide monocrystalline films

    International Nuclear Information System (INIS)

    Smyntyna, V.A.

    1983-01-01

    As a result of annealing when concentration of selenium Vacancies decreases due to their diffusion towards the surface, show recombination K-centers begin to influence the photoelectric properties of monocrystalline cadmium selenide layers. Energy levels of K-centers are located by 0.23-0.25 eV over the valent zone ceiling. The nature of K-centers is determined by the presence in the cadmium selenide layer structure of intrisic defects-cadmium vacancies in contrast to r-centers of slow recombination which are bound with impurities in a semiconductor material

  17. The Mobility Enhancement of Indium Gallium Zinc Oxide Transistors via Low-temperature Crystallization using a Tantalum Catalytic Layer.

    Science.gov (United States)

    Shin, Yeonwoo; Kim, Sang Tae; Kim, Kuntae; Kim, Mi Young; Oh, Saeroonter; Jeong, Jae Kyeong

    2017-09-07

    High-mobility indium gallium zinc oxide (IGZO) thin-film transistors (TFTs) are achieved through low-temperature crystallization enabled via a reaction with a transition metal catalytic layer. For conventional amorphous IGZO TFTs, the active layer crystallizes at thermal annealing temperatures of 600 °C or higher, which is not suitable for displays using a glass substrate. The crystallization temperature is reduced when in contact with a Ta layer, where partial crystallization at the IGZO back-channel occurs with annealing at 300 °C, while complete crystallization of the active layer occurs at 400 °C. The field-effect mobility is significantly boosted to 54.0 cm 2 /V·s for the IGZO device with a metal-induced polycrystalline channel formed at 300 °C compared to 18.1 cm 2 /V·s for an amorphous IGZO TFT without a catalytic layer. This work proposes a facile and effective route to enhance device performance by crystallizing the IGZO layer with standard annealing temperatures, without the introduction of expensive laser irradiation processes.

  18. Transparent indium-tin oxide/indium-gallium-zinc oxide Schottky diodes formed by gradient oxygen doping

    Science.gov (United States)

    Ho, Szuheng; Yu, Hyeonggeun; So, Franky

    2017-11-01

    Amorphous InGaZnO (a-IGZO) is promising for transparent electronics due to its high carrier mobility and optical transparency. However, most metal/a-IGZO junctions are ohmic due to the Fermi-level pinning at the interface, restricting their device applications. Here, we report that indium-tin oxide/a-IGZO Schottky diodes can be formed by gradient oxygen doping in the a-IGZO layer that would otherwise form an ohmic contact. Making use of back-to-back a-IGZO Schottky junctions, a transparent IGZO permeable metal-base transistor is also demonstrated with a high common-base gain.

  19. Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency.

    Science.gov (United States)

    Wen, Xixing; Chen, Chao; Lu, Shuaicheng; Li, Kanghua; Kondrotas, Rokas; Zhao, Yang; Chen, Wenhao; Gao, Liang; Wang, Chong; Zhang, Jun; Niu, Guangda; Tang, Jiang

    2018-06-05

    Antimony selenide is an emerging promising thin film photovoltaic material thanks to its binary composition, suitable bandgap, high absorption coefficient, inert grain boundaries and earth-abundant constituents. However, current devices produced from rapid thermal evaporation strategy suffer from low-quality film and unsatisfactory performance. Herein, we develop a vapor transport deposition technique to fabricate antimony selenide films, a technique that enables continuous and low-cost manufacturing of cadmium telluride solar cells. We improve the crystallinity of antimony selenide films and then successfully produce superstrate cadmium sulfide/antimony selenide solar cells with a certified power conversion efficiency of 7.6%, a net 2% improvement over previous 5.6% record of the same device configuration. We analyze the deep defects in antimony selenide solar cells, and find that the density of the dominant deep defects is reduced by one order of magnitude using vapor transport deposition process.

  20. Semiconductor to metallic transition in bulk accumulated amorphous indium-gallium-zinc-oxide dual gate thin-film transistor

    Directory of Open Access Journals (Sweden)

    Minkyu Chun

    2015-05-01

    Full Text Available We investigated the effects of top gate voltage (VTG and temperature (in the range of 25 to 70 oC on dual-gate (DG back-channel-etched (BCE amorphous-indium-gallium-zinc-oxide (a-IGZO thin film transistors (TFTs characteristics. The increment of VTG from -20V to +20V, decreases the threshold voltage (VTH from 19.6V to 3.8V and increases the electron density to 8.8 x 1018cm−3. Temperature dependent field-effect mobility in saturation regime, extracted from bottom gate sweep, show a critical dependency on VTG. At VTG of 20V, the mobility decreases from 19.1 to 15.4 cm2/V ⋅ s with increasing temperature, showing a metallic conduction. On the other hand, at VTG of - 20V, the mobility increases from 6.4 to 7.5cm2/V ⋅ s with increasing temperature. Since the top gate bias controls the position of Fermi level, the temperature dependent mobility shows metallic conduction when the Fermi level is above the conduction band edge, by applying high positive bias to the top gate.

  1. Facile fabrication of wire-type indium gallium zinc oxide thin-film transistors applicable to ultrasensitive flexible sensors.

    Science.gov (United States)

    Kim, Yeong-Gyu; Tak, Young Jun; Kim, Hee Jun; Kim, Won-Gi; Yoo, Hyukjoon; Kim, Hyun Jae

    2018-04-03

    We fabricated wire-type indium gallium zinc oxide (IGZO) thin-film transistors (TFTs) using a self-formed cracked template based on a lift-off process. The electrical characteristics of wire-type IGZO TFTs could be controlled by changing the width and density of IGZO wires through varying the coating conditions of template solution or multi-stacking additional layers. The fabricated wire-type devices were applied to sensors after functionalizing the surface. The wire-type pH sensor showed a sensitivity of 45.4 mV/pH, and this value was an improved sensitivity compared with that of the film-type device (27.6 mV/pH). Similarly, when the wire-type device was used as a glucose sensor, it showed more variation in electrical characteristics than the film-type device. The improved sensing properties resulted from the large surface area of the wire-type device compared with that of the film-type device. In addition, we fabricated wire-type IGZO TFTs on flexible substrates and confirmed that such structures were very resistant to mechanical stresses at a bending radius of 10 mm.

  2. Fabrication, characterization and applications of iron selenide

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Raja Azadar, E-mail: hussainazadar@yahoo.com [Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Badshah, Amin [Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Lal, Bhajan [Department of Energy Systems Engineering, Sukkur Institute of Business Administration (Pakistan)

    2016-11-15

    This review article presents fabrication of FeSe by solid state reactions, solution chemistry routes, chemical vapor deposition, spray pyrolysis and chemical vapor transport. Different properties and applications such as crystal structure and phase transition, band structure, spectroscopy, superconductivity, photocatalytic activity, electrochemical sensing, and fuel cell activity of FeSe have been discussed. - Graphical abstract: Iron selenide can be synthesized by solid state reactions, chemical vapor deposition, solution chemistry routes, chemical vapor transport and spray pyrolysis. - Highlights: • Different fabrication methods of iron selenide (FeSe) have been reviewed. • Crystal structure, band structure and spectroscopy of FeSe have been discussed. • Superconducting, catalytic and fuel cell application of FeSe have been presented.

  3. Compositional dependence of optical and electrical properties of indium doped zinc oxide (IZO) thin films deposited by chemical spray pyrolysis

    Science.gov (United States)

    Dintle, Lawrence K.; Luhanga, Pearson V. C.; Moditswe, Charles; Muiva, Cosmas M.

    2018-05-01

    The structural and optoelectronic properties of undoped and indium doped zinc oxide (IZO) thin films grown on glass substrates through a simple reproducible custom-made pneumatic chemical spray pyrolysis technique are presented. X-ray diffraction (XRD) results showed a polycrystalline structure of hexagonal wurtzite phase growing preferentially along the (002) plane for the undoped sample. Increase in dopant content modified the orientation leading to more pronounced (100) and (101) reflections. Optical transmission spectra showed high transmittance of 80-90% in the visible range for all thin films. The optical band gap energy (Eg) was evaluated on the basis of the derivative of transmittance (dT/dλ) versus wavelength (λ) model and Tauc's extrapolation method in the region where the absorption coefficient, α ≥ 104 cm-1. The observed values of Eg were found to decrease generally with increasing In dopant concentration. From the figure of merit calculations a sample with 4 at.% In dopant concentration showed better optoelectronic properties.

  4. Controlled Growth of ZnSe Nanocrystals by Tuning Reactivity and Amount of Zinc Precursor

    Directory of Open Access Journals (Sweden)

    Lai-Jun Zhang

    2013-01-01

    Full Text Available Zinc selenide (ZnSe nanocrystals were synthesized via a phosphine-free route using the highly reactive alkylamine-H2Se complex as selenium precursor and zinc precursors with different reactivity. The reactivity of zinc precursor was tuned by using three kinds of zinc carboxylates with different alkyl chain lengths, including zinc acetate, zinc nonanoate, and zinc stearate. The effect of the reactivity and the amount of zinc precursor on nucleation and growth of ZnSe nanocrystals were investigated by ultraviolet-visible absorption and photoluminescence spectra. Result indicates that the growth and optical property of the resulting ZnSe nanocrystals are strongly dependent on the alkyl chain length and the amount of the zinc carboxylates and both shorter alkyl chain length, and more amount of zinc carboxylate will lead to faster growth of ZnSe nanocrystals. This allows that the controlled growth and excellent optical property of high-quality ZnSe nanocrystals can be achieved by combining the different reactivity and the used amount of zinc precursor, such as by using stoichiometric and reactive Zn precursor and Se precursor or by using larger amount of more unreactive Zn precursor relative to the highly reactive alkylamine-H2Se complex precursor.

  5. Realization of write-once-read-many-times memory device with O{sub 2} plasma-treated indium gallium zinc oxide thin film

    Energy Technology Data Exchange (ETDEWEB)

    Liu, P., E-mail: liup0013@ntu.edu.sg; Chen, T. P., E-mail: echentp@ntu.edu.sg; Li, X. D.; Wong, J. I. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Liu, Z. [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Liu, Y. [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China); Leong, K. C. [GLOBALFOUNDRIES Singapore Pte Ltd, 60 Woodlands Industrial Park D Street 2, Singapore 738406 (Singapore)

    2014-01-20

    A write-once-read-many-times (WORM) memory devices based on O{sub 2} plasma-treated indium gallium zinc oxide (IGZO) thin films has been demonstrated. The device has a simple Al/IGZO/Al structure. The device has a normally OFF state with a very high resistance (e.g., the resistance at 2 V is ∼10{sup 9} Ω for a device with the radius of 50 μm) as a result of the O{sub 2} plasma treatment on the IGZO thin films. The device could be switched to an ON state with a low resistance (e.g., the resistance at 2 V is ∼10{sup 3} Ω for the radius of 50 μm) by applying a voltage pulse (e.g., 10 V/1 μs). The WORM device has good data-retention and reading-endurance capabilities.

  6. Indium recovery from acidic aqueous solutions by solvent extraction with D2EHPA: a statistical approach to the experimental design

    Directory of Open Access Journals (Sweden)

    Fortes M.C.B.

    2003-01-01

    Full Text Available This experimental work presents the optimization results of obtaining a high indium concentration solution and minimum iron poisoning by solvent extraction with D2EHPA solubilized in isoparaffin and exxsol. The variables studied in the extraction step were D2EHPA concentration, acidity of the aqueous phase and time of contact between phases. Different hydrochloric and sulfuric acid concentrations were studied for the stripping step. The optimum experimental conditions resulted in a solution with 99% indium extraction and less than 4% iron. The construction of a McCabe-Thiele diagram indicated two theoretical countercurrent stages for indium extraction and at least six stages for indium stripping. Finally, the influence of associated metals found in typical sulfate leach liquors from zinc plants was studied. Under the experimental conditions for maximum indium extraction, 96% indium extraction was obtained, iron extraction was about 4% and no Ga, Cu and Zn were co-extracted.

  7. In Silico Studies of Mammalian δ-ALAD Interactions with Selenides and Selenoxides.

    Science.gov (United States)

    Andrei Nogara, Pablo; Batista Teixeira Rocha, João

    2018-04-01

    Previous studies have shown that the mammalian δ-aminolevulinic acid dehydratase (δ-ALAD) is inhibited by selenides and selenoxides, which can involve thiol oxidation. However, the precise molecular interaction of selenides and selenoxides with the active center of the enzyme is unknown. Here, we try to explain the interaction of selenides and the respective selenoxides with human δ-ALAD by in silico molecular docking. The in silico data indicated that Se atoms of selenoxides have higher electrophilic character than their respective selenides. Further, the presence of oxygen increased the interaction of selenoxides with the δ-ALAD active site by O…Zn coordination. The interaction of S atom from Cys124 with the Se atom indicated the importance of the nucleophilic attack of the enzyme thiolate to the organoselenium molecules. These observations help us to understand the interaction of target proteins with organoselenium compounds. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Metal Selenides as Efficient Counter Electrodes for Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Jin, Zhitong; Zhang, Meirong; Wang, Min; Feng, Chuanqi; Wang, Zhong-Sheng

    2017-04-18

    Solar energy is the most abundant renewable energy available to the earth and can meet the energy needs of humankind, but efficient conversion of solar energy to electricity is an urgent issue of scientific research. As the third-generation photovoltaic technology, dye-sensitized solar cells (DSSCs) have gained great attention since the landmark efficiency of ∼7% reported by O'Regan and Grätzel. The most attractive features of DSSCs include low cost, simple manufacturing processes, medium-purity materials, and theoretically high power conversion efficiencies. As one of the key materials in DSSCs, the counter electrode (CE) plays a crucial role in completing the electric circuit by catalyzing the reduction of the oxidized state to the reduced state for a redox couple (e.g., I 3 - /I - ) in the electrolyte at the CE-electrolyte interface. To lower the cost caused by the typically used Pt CE, which restricts the large-scale application because of its low reserves and high price, great effort has been made to develop new CE materials alternative to Pt. A lot of Pt-free electrocatalysts, such as carbon materials, inorganic compounds, conductive polymers, and their composites with good electrocatalytic activity, have been applied as CEs in DSSCs in the past years. Metal selenides have been widely used as electrocatalysts for the oxygen reduction reaction and light-harvesting materials for solar cells. Our group first expanded their applications to the DSSC field by using in situ-grown Co 0.85 Se nanosheet and Ni 0.85 Se nanoparticle films as CEs. This finding has inspired extensive studies on developing new metal selenides in order to seek more efficient CE materials for low-cost DSSCs, and a lot of meaningful results have been achieved in the past years. In this Account, we summarize recent advances in binary and mutinary metal selenides applied as CEs in DSSCs. The synthetic methods for metal selenides with various morphologies and stoichiometric ratios and

  9. Efficient solution-processed small molecule: Cadmium selenide quantum dot bulk heterojunction solar cells

    International Nuclear Information System (INIS)

    Gupta, Vinay; Upreti, Tanvi; Chand, Suresh

    2013-01-01

    We report bulk heterojunction solar cells based on blends of solution-processed small molecule [7,7′-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′]dithiophene-2,6-diyl) bis(6-fluoro-4-(5′-hexyl-[2,2′-bithiophen]-5yl)benzo[c] [1,2,5] thiadiazole)] p-DTS(FBTTh 2 ) 2 : Cadmium Selenide (CdSe) (70:30, 60:40, 50:50, and 40:60) in the device configuration: Indium Tin Oxide /poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/p-DTS(FBTTh 2 ) 2 : CdSe/Ca/Al. The optimized ratio of p-DTS(FBTTh 2 ) 2 :CdSe::60:40 leads to a short circuit current density (J sc ) = 5.45 mA/cm 2 , open circuit voltage (V oc ) = 0.727 V, and fill factor (FF) = 51%, and a power conversion efficiency = 2.02% at 100 mW/cm 2 under AM1.5G illumination. The J sc and FF are sensitive to the ratio of p-DTS(FBTTh 2 ) 2 :CdSe, which is a crucial factor for the device performance

  10. Rutherford backscatter measurements on tellurium and cadmium implanted gallium arsenide

    International Nuclear Information System (INIS)

    Bell, E.C.

    1979-10-01

    The primary aim of the work described in this thesis was to examine implanted layers of the dopant impurities cadmium and tellurium in gallium arsenide and to experimentally assess their potential for producing electrically active layers. 1.5 MeV Rutherford backscattering measurements of lattice disorder and atom site location have been used to assess post implantation thermal annealing and elevated temperature implantations to site the dopant impurities on either gallium or arsenic lattice positions in an otherwise undisordered lattice. Pyrolitically deposited silicon dioxide was used as an encapsulant to prevent thermal dissociation of the gallium arsenide during annealing. It has been shown that high doses of cadmium and tellurium can be implanted without forming amorphous lattice disorder by heating the gallium arsenide during implantation to relatively low temperatures. Atom site location measurements have shown that a large fraction of a tellurium dose implanted at 180 0 C is located on or near lattice sites. Channeled backscatter measurements have shown that there is residual disorder or lattice strain in gallium arsenide implanted at elevated temperatures. The extent of this disorder has been shown to depend on the implanted dose and implantation temperature. The channeling effect has been used to measure annealing of the disorder. (author)

  11. The precipitation of indium at elevated pH in a stream influenced by acid mine drainage

    Science.gov (United States)

    White, Sarah Jane O.; Hussain, Fatima A.; Hemond, Harold F.; Sacco, Sarah A.; Shine, James P.; Runkel, Robert L.; Walton-Day, Katherine; Kimball, Briant A.

    2017-01-01

    Indium is an increasingly important metal in semiconductors and electronics and has uses in important energy technologies such as photovoltaic cells and light-emitting diodes (LEDs). One significant flux of indium to the environment is from lead, zinc, copper, and tin mining and smelting, but little is known about its aqueous behavior after it is mobilized. In this study, we use Mineral Creek, a headwater stream in southwestern Colorado severely affected by heavy metal contamination as a result of acid mine drainage, as a natural laboratory to study the aqueous behavior of indium. At the existing pH of ~ 3, indium concentrations are 6–29 μg/L (10,000 × those found in natural rivers), and are completely filterable through a 0.45 μm filter. During a pH modification experiment, the pH of the system was raised to > 8, and > 99% of the indium became associated with the suspended solid phase (i.e. does not pass through a 0.45 μm filter). To determine the mechanism of removal of indium from the filterable and likely primarily dissolved phase, we conducted laboratory experiments to determine an upper bound for a sorption constant to iron oxides, and used this, along with other published thermodynamic constants, to model the partitioning of indium in Mineral Creek. Modeling results suggest that the removal of indium from the filterable phase is consistent with precipitation of indium hydroxide from a dissolved phase. This work demonstrates that nonferrous mining processes can be a significant source of indium to the environment, and provides critical information about the aqueous behavior of indium.

  12. A thermalization energy analysis of the threshold voltage shift in amorphous indium gallium zinc oxide thin film transistors under positive gate bias stress

    Energy Technology Data Exchange (ETDEWEB)

    Niang, K. M.; Flewitt, A. J., E-mail: ajf@eng.cam.ac.uk [Electrical Engineering Division, Cambridge University, J J Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Barquinha, P. M. C.; Martins, R. F. P. [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica (Portugal); Cobb, B. [Holst Centre/TNO, High Tech Campus 31, 5656AE Eindhoven (Netherlands); Powell, M. J. [252, Valley Drive, Kendal LA9 7SL (United Kingdom)

    2016-02-29

    Thin film transistors (TFTs) employing an amorphous indium gallium zinc oxide (a-IGZO) channel layer exhibit a positive shift in the threshold voltage under the application of positive gate bias stress (PBS). The time and temperature dependence of the threshold voltage shift was measured and analysed using the thermalization energy concept. The peak energy barrier to defect conversion is extracted to be 0.75 eV and the attempt-to-escape frequency is extracted to be 10{sup 7} s{sup −1}. These values are in remarkable agreement with measurements in a-IGZO TFTs under negative gate bias illumination stress (NBIS) reported recently (Flewitt and Powell, J. Appl. Phys. 115, 134501 (2014)). This suggests that the same physical process is responsible for both PBS and NBIS, and supports the oxygen vacancy defect migration model that the authors have previously proposed.

  13. Low-Concentration Indium Doping in Solution-Processed Zinc Oxide Films for Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Xue Zhang

    2017-07-01

    Full Text Available We investigated the influence of low-concentration indium (In doping on the chemical and structural properties of solution-processed zinc oxide (ZnO films and the electrical characteristics of bottom-gate/top-contact In-doped ZnO thin-film transistors (TFTs. The thermogravimetry and differential scanning calorimetry analysis results showed that thermal annealing at 400 °C for 40 min produces In-doped ZnO films. As the In content of ZnO films was increased from 1% to 9%, the metal-oxygen bonding increased from 5.56% to 71.33%, while the metal-hydroxyl bonding decreased from 72.03% to 9.63%. The X-ray diffraction peaks and field-emission scanning microscope images of the ZnO films with different In concentrations revealed a better crystalline quality and reduced grain size of the solution-processed ZnO thin films. The thickness of the In-doped ZnO films also increased when the In content was increased up to 5%; however, the thickness decreased on further increasing the In content. The field-effect mobility and on/off current ratio of In-doped ZnO TFTs were notably affected by any change in the In concentration. Considering the overall TFT performance, the optimal In doping concentration in the solution-processed ZnO semiconductor was determined to be 5% in this study. These results suggest that low-concentration In incorporation is crucial for modulating the morphological characteristics of solution-processed ZnO thin films and the TFT performance.

  14. Ex situ formation of metal selenide quantum dots using bacterially derived selenide precursors

    International Nuclear Information System (INIS)

    Fellowes, J W; Pattrick, R A D; Lloyd, J R; Charnock, J M; Coker, V S; Mosselmans, J F W; Weng, T-C; Pearce, C I

    2013-01-01

    Luminescent quantum dots were synthesized using bacterially derived selenide (Se II− ) as the precursor. Biogenic Se II− was produced by the reduction of Se IV by Veillonella atypica and compared directly against borohydride-reduced Se IV for the production of glutathione-stabilized CdSe and β-mercaptoethanol-stabilized ZnSe nanoparticles by aqueous synthesis. Biological Se II− formed smaller, narrower size distributed QDs under the same conditions. The growth kinetics of biologically sourced CdSe phases were slower. The proteins isolated from filter sterilized biogenic Se II− included a methylmalonyl-CoA decarboxylase previously characterized in the closely related Veillonella parvula. XAS analysis of the glutathione-capped CdSe at the S K-edge suggested that sulfur from the glutathione was structurally incorporated within the CdSe. A novel synchrotron based XAS technique was also developed to follow the nucleation of biological and inorganic selenide phases, and showed that biogenic Se II− is more stable and more resistant to beam-induced oxidative damage than its inorganic counterpart. The bacterial production of quantum dot precursors offers an alternative, ‘green’ synthesis technique that negates the requirement of expensive, toxic chemicals and suggests a possible link to the exploitation of selenium contaminated waste streams. (paper)

  15. Ex Situ Formation of Metal Selenide Quantum Dots Using Bacterially Derived Selenide Precursors

    Energy Technology Data Exchange (ETDEWEB)

    Fellowes, Jonathan W.; Pattrick, Richard; Lloyd, Jon; Charnock, John M.; Coker, Victoria S.; Mosselmans, JFW; Weng, Tsu-Chien; Pearce, Carolyn I.

    2013-04-12

    Luminescent quantum dots were synthesized using bacterially derived selenide (SeII-) as the precursor. Biogenic SeII- was produced by the reduction of Se-IV by Veillonella atypica and compared directly against borohydride-reduced Se-IV for the production of glutathione-stabilized CdSe and beta-mercaptoethanol-stabilized ZnSe nanoparticles by aqueous synthesis. Biological SeII- formed smaller, narrower size distributed QDs under the same conditions. The growth kinetics of biologically sourced CdSe phases were slower. The proteins isolated from filter sterilized biogenic SeII- included a methylmalonyl-CoA decarboxylase previously characterized in the closely related Veillonella parvula. XAS analysis of the glutathione-capped CdSe at the S K-edge suggested that sulfur from the glutathione was structurally incorporated within the CdSe. A novel synchrotron based XAS technique was also developed to follow the nucleation of biological and inorganic selenide phases, and showed that biogenic SeII- is more stable and more resistant to beam-induced oxidative damage than its inorganic counterpart. The bacterial production of quantum dot precursors offers an alternative, 'green' synthesis technique that negates the requirement of expensive, toxic chemicals and suggests a possible link to the exploitation of selenium contaminated waste streams.

  16. Channel length dependence of negative-bias-illumination-stress in amorphous-indium-gallium-zinc-oxide thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Um, Jae Gwang; Mativenga, Mallory; Jang, Jin, E-mail: jjang@khu.ac.kr [Advanced Display Research Center, Department of Information Display, Kyung Hee University, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Migliorato, Piero [Advanced Display Research Center, Department of Information Display, Kyung Hee University, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Electrical Engineering Division, Department of Engineering, Cambridge University, Cambridge CB3 0FA (United Kingdom)

    2015-06-21

    We have investigated the dependence of Negative-Bias-illumination-Stress (NBIS) upon channel length, in amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs). The negative shift of the transfer characteristic associated with NBIS decreases for increasing channel length and is practically suppressed in devices with L = 100-μm. The effect is consistent with creation of donor defects, mainly in the channel regions adjacent to source and drain contacts. Excellent agreement with experiment has been obtained by an analytical treatment, approximating the distribution of donors in the active layer by a double exponential with characteristic length L{sub D} ∼ L{sub n} ∼ 10-μm, the latter being the electron diffusion length. The model also shows that a device with a non-uniform doping distribution along the active layer is in all equivalent, at low drain voltages, to a device with the same doping averaged over the active layer length. These results highlight a new aspect of the NBIS mechanism, that is, the dependence of the effect upon the relative magnitude of photogenerated holes and electrons, which is controlled by the device potential/band profile. They may also provide the basis for device design solutions to minimize NBIS.

  17. Semiconductor to metallic transition in bulk accumulated amorphous indium-gallium-zinc-oxide dual gate thin-film transistor

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Minkyu; Chowdhury, Md Delwar Hossain; Jang, Jin, E-mail: jjang@khu.ac.kr [Advanced Display Research Center and Department of Information Display, Kyung Hee University, Seoul 130-701 (Korea, Republic of)

    2015-05-15

    We investigated the effects of top gate voltage (V{sub TG}) and temperature (in the range of 25 to 70 {sup o}C) on dual-gate (DG) back-channel-etched (BCE) amorphous-indium-gallium-zinc-oxide (a-IGZO) thin film transistors (TFTs) characteristics. The increment of V{sub TG} from -20V to +20V, decreases the threshold voltage (V{sub TH}) from 19.6V to 3.8V and increases the electron density to 8.8 x 10{sup 18}cm{sup −3}. Temperature dependent field-effect mobility in saturation regime, extracted from bottom gate sweep, show a critical dependency on V{sub TG}. At V{sub TG} of 20V, the mobility decreases from 19.1 to 15.4 cm{sup 2}/V ⋅ s with increasing temperature, showing a metallic conduction. On the other hand, at V{sub TG} of - 20V, the mobility increases from 6.4 to 7.5cm{sup 2}/V ⋅ s with increasing temperature. Since the top gate bias controls the position of Fermi level, the temperature dependent mobility shows metallic conduction when the Fermi level is above the conduction band edge, by applying high positive bias to the top gate.

  18. High-density plasma etching characteristics of indium-gallium-zinc oxide thin films in CF4/Ar plasma

    International Nuclear Information System (INIS)

    Joo, Young-Hee; Kim, Chang-Il

    2015-01-01

    We investigated the etching process of indium-gallium-zinc oxide (IGZO) thin films in an inductively coupled plasma system. The dry etching characteristics of the IGZO thin films were studied by varying the CF 4 /Ar gas mixing ratio, RF power, DC-bias voltage, and process pressure. We determined the following optimized process conditions: an RF power of 700 W, a DC-bias voltage of − 150 V, and a process pressure of 2 Pa. A maximum etch rate of 25.63 nm/min for the IGZO thin films was achieved in a plasma with CF 4 /Ar(= 25:75), and the selectivity of IGZO to Al and TiN was found to be 1.3 and 0.7, respectively. We determined the ionic composition of the CF 4 /Ar plasma using optical emission spectroscopy. Analysis of chemical reactions at the IGZO thin film surfaces was performed using X-ray photoelectron spectroscopy. - Highlights: • IGZO thin film was etched by CF 4 /Ar plasma as a function of gas mixing ratio. • IGZO bonds were broken Ar + sputtering and then reacted with the C-F x radicals. • The physical sputtering is dominant in etch control compared with chemical etching

  19. Selective metallization of amorphous-indium-gallium-zinc-oxide thin-film transistor by using helium plasma treatment

    Science.gov (United States)

    Jang, Hun; Lee, Su Jeong; Porte, Yoann; Myoung, Jae-Min

    2018-03-01

    In this study, the effects of helium (He) plasma treatment on amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) have been investigated. The He plasma treatment induced a dramatic decrease of the resistivity in a-IGZO thin films from 1.25 × 106 to 5.93 mΩ cm. After 5 min He plasma treatment, the a-IGZO films showed an increase in carrier concentration to 6.70 × 1019 cm-3 combined with a high hall mobility of 15.7 cm2 V-1 s-1. The conductivity improvement was linked to the formation of oxygen vacancies during the He plasma treatment, which was observed by x-ray photoelectron spectroscopy analysis. The a-IGZO films did not appear to be damaged on the surface following the plasma treatment and showed a high transmittance of about 88.3% at a wavelength of 550 nm. The He plasma-treated a-IGZO films were used as source/drain (S/D) electrodes in a-IGZO TFTs. The devices demonstrated promising characteristics, on pair with TFTs using Al electrodes, with a threshold voltage (V T) of -1.97 V, sub-threshold slope (SS) of 0.52 V/decade, saturation mobility (μ sat) of 8.75 cm2 V-1 s-1, and on/off current ratio (I on/I off) of 2.66 × 108.

  20. A review of the world market of indium (Economy of indium)

    International Nuclear Information System (INIS)

    Naumov, A.V.

    2005-01-01

    A review of the current state of the world and Russian markets of indium and indium-containing products was made based on the publications of the last years. Main fields of indium application are given, in particular, its using for neutron absorbing regulating rods in nuclear reactors. The second γ-radiation resulted from neutron absorption allows using indium as a neutron detector. Indium market stabilization is expected due to supply from China and South Korea [ru

  1. Density Functional Theory Study on Defect Feature of AsGaGaAs in Gallium Arsenide

    Directory of Open Access Journals (Sweden)

    Deming Ma

    2015-01-01

    Full Text Available We investigate the defect feature of AsGaGaAs defect in gallium arsenide clusters in detail by using first-principles calculations based on the density functional theory (DFT. Our calculations reveal that the lowest donor level of AsGaGaAs defect on the gallium arsenide crystal surface is 0.85 eV below the conduction band minimum, while the lowest donor level of the AsGaGaAs defect inside the gallium arsenide bulk is 0.83 eV below the bottom of the conduction band, consistent with gallium arsenide EL2 defect level of experimental value (Ec-0.82 eV. This suggests that AsGaGaAs defect is one of the possible gallium arsenide EL2 deep-level defects. Moreover, our results also indicate that the formation energies of internal AsGaGaAs and surface AsGaGaAs defects are predicted to be around 2.36 eV and 5.54 eV, respectively. This implies that formation of AsGaGaAs defect within the crystal is easier than that of surface. Our results offer assistance in discussing the structure of gallium arsenide deep-level defect and its effect on the material.

  2. Seeded growth of boron arsenide single crystals with high thermal conductivity

    Science.gov (United States)

    Tian, Fei; Song, Bai; Lv, Bing; Sun, Jingying; Huyan, Shuyuan; Wu, Qi; Mao, Jun; Ni, Yizhou; Ding, Zhiwei; Huberman, Samuel; Liu, Te-Huan; Chen, Gang; Chen, Shuo; Chu, Ching-Wu; Ren, Zhifeng

    2018-01-01

    Materials with high thermal conductivities are crucial to effectively cooling high-power-density electronic and optoelectronic devices. Recently, zinc-blende boron arsenide (BAs) has been predicted to have a very high thermal conductivity of over 2000 W m-1 K-1 at room temperature by first-principles calculations, rendering it a close competitor for diamond which holds the highest thermal conductivity among bulk materials. Experimental demonstration, however, has proved extremely challenging, especially in the preparation of large high quality single crystals. Although BAs crystals have been previously grown by chemical vapor transport (CVT), the growth process relies on spontaneous nucleation and results in small crystals with multiple grains and various defects. Here, we report a controllable CVT synthesis of large single BAs crystals (400-600 μm) by using carefully selected tiny BAs single crystals as seeds. We have obtained BAs single crystals with a thermal conductivity of 351 ± 21 W m-1 K-1 at room temperature, which is almost twice as conductive as previously reported BAs crystals. Further improvement along this direction is very likely.

  3. Assessment of fibrous insulation materials for the selenide isotope generator system

    International Nuclear Information System (INIS)

    Wei, G.C; Tennery, V.J.

    1977-11-01

    Fibrous insulations for use in the converter and the heat source of the radioisotope-powered, selenide element, thermoelectric generator (selenide isotope generator) are assessed. The most recent system design and material selection basis is presented. Several fibrous insulation materials which have the potential for use as load-bearing or nonload-bearing thermal insulations are reviewed, and thermophysical properties supplied by manufacturers or published in the literature are presented. Potential problems with the application of fibrous insulations in the selenide isotope generator are as follows: compatibility with graphite, the thermoelectric elements, and the isolation hot frame; devitrification, grain growth, and sintering with an accompanying degradation of insulation quality; impurity diffusion from the insulation to adjoining structures; outgassing and storage of fibrous materials. Areas in which thermophysical data or quantitative information on the insulation and structural stability is lacking are identified

  4. Two-stage unified stretched-exponential model for time-dependence of threshold voltage shift under positive-bias-stresses in amorphous indium-gallium-zinc oxide thin-film transistors

    Science.gov (United States)

    Jeong, Chan-Yong; Kim, Hee-Joong; Hong, Sae-Young; Song, Sang-Hun; Kwon, Hyuck-In

    2017-08-01

    In this study, we show that the two-stage unified stretched-exponential model can more exactly describe the time-dependence of threshold voltage shift (ΔV TH) under long-term positive-bias-stresses compared to the traditional stretched-exponential model in amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). ΔV TH is mainly dominated by electron trapping at short stress times, and the contribution of trap state generation becomes significant with an increase in the stress time. The two-stage unified stretched-exponential model can provide useful information not only for evaluating the long-term electrical stability and lifetime of the a-IGZO TFT but also for understanding the stress-induced degradation mechanism in a-IGZO TFTs.

  5. Relative SHG measurements of metal thin films: Gold, silver, aluminum, cobalt, chromium, germanium, nickel, antimony, titanium, titanium nitride, tungsten, zinc, silicon and indium tin oxide

    Directory of Open Access Journals (Sweden)

    Franklin Che

    Full Text Available We have experimentally measured the surface second-harmonic generation (SHG of sputtered gold, silver, aluminum, zinc, tungsten, copper, titanium, cobalt, nickel, chromium, germanium, antimony, titanium nitride, silicon and indium tin oxide thin films. The second-harmonic response was measured in reflection using a 150 fs p-polarized laser pulse at 1561 nm. We present a clear comparison of the SHG intensity of these films relative to each other. Our measured relative intensities compare favorably with the relative intensities of metals with published data. We also report for the first time to our knowledge the surface SHG intensity of tungsten and antimony relative to that of well known metallic thin films such as gold and silver. Keywords: Surface second-harmonic generation, Nonlinear optics, Metal thin films

  6. Effect of direct current sputtering power on the behavior of amorphous indium-gallium-zinc-oxide thin-film transistors under negative bias illumination stress: A combination of experimental analyses and device simulation

    International Nuclear Information System (INIS)

    Jang, Jun Tae; Kim, Dong Myong; Choi, Sung-Jin; Kim, Dae Hwan; Park, Jozeph; Ahn, Byung Du; Kim, Hyun-Suk

    2015-01-01

    The effect of direct current sputtering power of indium-gallium-zinc-oxide (IGZO) on the performance and stability of the corresponding thin-film transistor devices was studied. The field effect mobility increases as the IGZO sputter power increases, at the expense of device reliability under negative bias illumination stress (NBIS). Device simulation based on the extracted sub-gap density of states indicates that the field effect mobility is improved as a result of the number of acceptor-like states decreasing. The degradation by NBIS is suggested to be induced by the formation of peroxides in IGZO rather than charge trapping

  7. Effect of direct current sputtering power on the behavior of amorphous indium-gallium-zinc-oxide thin-film transistors under negative bias illumination stress: A combination of experimental analyses and device simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jun Tae; Kim, Dong Myong; Choi, Sung-Jin; Kim, Dae Hwan, E-mail: khs3297@cnu.ac.kr, E-mail: drlife@kookmin.ac.kr [School of Electrical Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of); Park, Jozeph [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Ahn, Byung Du [School of Electrical and Electronic Engineering, Yonsei University, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Kim, Hyun-Suk, E-mail: khs3297@cnu.ac.kr, E-mail: drlife@kookmin.ac.kr [Department of Materials Science and Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2015-03-23

    The effect of direct current sputtering power of indium-gallium-zinc-oxide (IGZO) on the performance and stability of the corresponding thin-film transistor devices was studied. The field effect mobility increases as the IGZO sputter power increases, at the expense of device reliability under negative bias illumination stress (NBIS). Device simulation based on the extracted sub-gap density of states indicates that the field effect mobility is improved as a result of the number of acceptor-like states decreasing. The degradation by NBIS is suggested to be induced by the formation of peroxides in IGZO rather than charge trapping.

  8. Analysis of current-voltage characteristics of Au/pentacene/fluorine polymer/indium zinc oxide diodes by electric-field-induced optical second-harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Nishi, Shohei; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa, E-mail: iwamoto@pe.titech.ac.jp [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 S3-33, O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2015-06-28

    By using electric-field-induced optical second-harmonic generation measurement coupled with the conventional current-voltage (I-V) measurement, we studied the carrier transport of organic double-layer diodes with a Au/pentacene/fluorine polymer (FP)/indium zinc oxide (IZO) structure. The rectifying I-V characteristics were converted into the I-E characteristics of the FP and pentacene layers. Results suggest a model in which Schottky-type electron injection from the IZO electrode to the FP layer governs the forward electrical conduction (V > 0), where the space charge electric field produced in the FP layer by accumulated holes at the pentacene/FP interface makes a significant contribution. On the other hand, Schottky-type injection by accumulated interface electrons from the pentacene layer to the FP layer governs the backward electrical conduction (V < 0). The electroluminescence generated from the pentacene layer in the region V > 0 verifies the electron transport across the FP layer, and supports the above suggested model.

  9. Analysis of current-voltage characteristics of Au/pentacene/fluorine polymer/indium zinc oxide diodes by electric-field-induced optical second-harmonic generation

    International Nuclear Information System (INIS)

    Nishi, Shohei; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2015-01-01

    By using electric-field-induced optical second-harmonic generation measurement coupled with the conventional current-voltage (I-V) measurement, we studied the carrier transport of organic double-layer diodes with a Au/pentacene/fluorine polymer (FP)/indium zinc oxide (IZO) structure. The rectifying I-V characteristics were converted into the I-E characteristics of the FP and pentacene layers. Results suggest a model in which Schottky-type electron injection from the IZO electrode to the FP layer governs the forward electrical conduction (V > 0), where the space charge electric field produced in the FP layer by accumulated holes at the pentacene/FP interface makes a significant contribution. On the other hand, Schottky-type injection by accumulated interface electrons from the pentacene layer to the FP layer governs the backward electrical conduction (V < 0). The electroluminescence generated from the pentacene layer in the region V > 0 verifies the electron transport across the FP layer, and supports the above suggested model

  10. Low-temperature fabrication of an HfO2 passivation layer for amorphous indium-gallium-zinc oxide thin film transistors using a solution process.

    Science.gov (United States)

    Hong, Seonghwan; Park, Sung Pyo; Kim, Yeong-Gyu; Kang, Byung Ha; Na, Jae Won; Kim, Hyun Jae

    2017-11-24

    We report low-temperature solution processing of hafnium oxide (HfO 2 ) passivation layers for amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). At 150 °C, the hafnium chloride (HfCl 4 ) precursor readily hydrolyzed in deionized (DI) water and transformed into an HfO 2 film. The fabricated HfO 2 passivation layer prevented any interaction between the back surface of an a-IGZO TFT and ambient gas. Moreover, diffused Hf 4+ in the back-channel layer of the a-IGZO TFT reduced the oxygen vacancy, which is the origin of the electrical instability in a-IGZO TFTs. Consequently, the a-IGZO TFT with the HfO 2 passivation layer exhibited improved stability, showing a decrease in the threshold voltage shift from 4.83 to 1.68 V under a positive bias stress test conducted over 10,000 s.

  11. A facile way to control phase of tin selenide flakes by chemical vapor deposition

    Science.gov (United States)

    Wang, Zhigang; Pang, Fei

    2018-06-01

    Although two-dimensional (2D) tin selenides are attracting intense attentions, studies on its phase transition are still relatively few. Here we report a facile way to control the phase growth of tin selenide flakes on mica and SiO2/Si by only adjusting nominal Sn:Se ratio, which refers to the amount of loaded SnO2 and Se precursors. High normal Sn:Se ratio induced SnSe flakes, conversely SnSe2 flakes formed. It could be used as a practical guide to selectively synthesize pure phase of single crystalline 2D layered chalcogenide materials similar to tin selenides.

  12. Effect of top gate potential on bias-stress for dual gate amorphous indium-gallium-zinc-oxide thin film transistor

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Minkyu; Um, Jae Gwang; Park, Min Sang; Chowdhury, Md Delwar Hossain; Jang, Jin, E-mail: jjang@khu.ac.kr [Advanced Display Research Center and Department of Information Display, Kyung Hee University, Seoul 02447 (Korea, Republic of)

    2016-07-15

    We report the abnormal behavior of the threshold voltage (V{sub TH}) shift under positive bias Temperature stress (PBTS) and negative bias temperature stress (NBTS) at top/bottom gate in dual gate amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs). It is found that the PBTS at top gate shows negative transfer shift and NBTS shows positive transfer shift for both top and bottom gate sweep. The shift of bottom/top gate sweep is dominated by top gate bias (V{sub TG}), while bottom gate bias (V{sub BG}) is less effect than V{sub TG}. The X-ray photoelectron spectroscopy (XPS) depth profile provides the evidence of In metal diffusion to the top SiO{sub 2}/a-IGZO and also the existence of large amount of In{sup +} under positive top gate bias around top interfaces, thus negative transfer shift is observed. On the other hand, the formation of OH{sup −} at top interfaces under the stress of negative top gate bias shows negative transfer shift. The domination of V{sub TG} both on bottom/top gate sweep after PBTS/NBTS is obviously occurred due to thin active layer.

  13. Effect of thermal processing on silver thin films of varying thickness deposited on zinc oxide and indium tin oxide

    International Nuclear Information System (INIS)

    Sivaramakrishnan, K.; Ngo, A. T.; Alford, T. L.; Iyer, S.

    2009-01-01

    Silver films of varying thicknesses (25, 45, and 60 nm) were deposited on indium tin oxide (ITO) on silicon and zinc oxide (ZnO) on silicon. The films were annealed in vacuum for 1 h at different temperatures (300-650 deg. C). Four-point-probe measurements were used to determine the resistivity of the films. All films showed an abrupt change in resistivity beyond an onset temperature that varied with thickness. Rutherford backscattering spectrometry measurements revealed agglomeration of the Ag films upon annealing as being responsible for the resistivity change. X-ray pole figure analysis determined that the annealed films took on a preferential texturing; however, the degree of texturing was significantly higher in Ag/ZnO/Si than in Ag/ITO/Si samples. This observation was accounted for by interface energy minimization. Atomic force microscopy (AFM) measurements revealed an increasing surface roughness of the annealed films with temperature. The resistivity behavior was explained by the counterbalancing effects of increasing crystallinity and surface roughness. Average surface roughness obtained from the AFM measurements were also used to model the agglomeration of Ag based on Ostwald ripening theory

  14. Facile hot-injection synthesis of stoichiometric Cu2ZnSnSe4 nanocrystals using bis(triethylsilyl) selenide.

    Science.gov (United States)

    Jin, Chunyu; Ramasamy, Parthiban; Kim, Jinkwon

    2014-07-07

    Cu2ZnSnSe4 is a prospective material as an absorber in thin film solar cells due to its many advantages including direct band gap, high absorption coefficient, low toxicity, and relative abundance (indium-free) of its elements. In this report, CZTSe nanoparticles have been synthesized by the hot-injection method using bis-(triethylsilyl)selenide [(Et3Si)2Se] as the selenium source for the first time. Energy dispersive X-ray spectroscopy (EDS) confirmed the stoichiometry of CZTSe nanoparticles. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies showed that the nanocrystals were single phase polycrystalline with their size within the range of 25-30 nm. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy measurements ruled out the existence of secondary phases such as Cu2SnSe3 and ZnSe. The effect of reaction time and precursor injection order on the formation of stoichiometric CZTSe nanoparticles has been studied by Raman spectroscopy. UV-vis-NIR data indicate that the CZTSe nanocrystals have an optical band gap of 1.59 eV, which is optimal for photovoltaic applications.

  15. Effect of temperature on optical and structural properties of indium selenide thin films

    International Nuclear Information System (INIS)

    Asabe, M.R.; Manikshete, A.H.; Hankare, P.P.

    2013-01-01

    In 2 Se 3 thin film have been prepared for the first time by using a relatively simple chemical bath deposition technique at room temperature using indium chloride, tartaric acid, hydrazine hydrate and sodium selenosulphate in an aqueous alkaline medium. Various preparative conditions of thin film deposition are outlined. The films deposited at optimum preparative parameters are annealed at different temperatures. The as-deposited films those annealed at 100℃ and have been characterized by X-ray diffraction (XRD), Energy Dispersive Analysis by X-ray (EDAX), Optical absorption and scanning electron microscopy (SEM). The as grown films were found to be transparent, uniform, well adherent and brown in color. The XRD analysis of the as-deposited and annealed films shows the presence of polycrystalline nature in tetragonal crystal structure. EDAX study reveals that as-deposited films are almost stoichiometric while optical absorption study shows the presence of band gap for direct while optical absorption study shows the presence of band gap for direct transition at 2.35 and 2.10 eV respectively, for the as-deposited and annealed films. SEM study indicated the presence of uniformly distributed grains over the surface of substrate for the as-deposited as well as annealed film. (author)

  16. Indium doped zinc oxide thin films obtained by electrodeposition

    International Nuclear Information System (INIS)

    Machado, G.; Guerra, D.N.; Leinen, D.; Ramos-Barrado, J.R.; Marotti, R.E.; Dalchiele, E.A.

    2005-01-01

    Indium doped ZnO thin films were obtained by co-electrodeposition (precursor and dopant) from aqueous solution. XRD analysis showed typical patterns of the hexagonal ZnO structure for both doped and undoped films. No diffraction peaks of any other structure such as In 2 O 3 or In(OH) 3 were found. The incorporation of In into the ZnO film was verified by both EDS and XPS measurements. The bandgap energy of the films varied from 3.27 eV to 3.42 eV, increasing with the In concentration in the solution. This dependence was stronger for the less cathodic potentials. The incorporation of In into the film occurs as both, an In donor state in the ZnO grains and as an amorphous In 2 O 3 at the grain boundaries

  17. White beam synchrotron x-ray topography of gallium arsenide

    International Nuclear Information System (INIS)

    Winter, J.M. Jr.; Green, R.E. Jr.; Corak, W.S.

    1988-01-01

    The defect structure of gallium arsenide was investigated using white beam transmission topography. The samples were cut and polished monocrystal substrates from different suppliers. The goal of the work was to determine the viability of the method for documenting various crystallographic defect structures and establishing their effect on the performance of integrated microwave circuits fabricated on the wafers. The principles of the technique, essentially identical to classical Laue x-ray diffraction, are outlined. Two distinct defect structures were determined in the topographs. Reasons for the defect structures were postulated and the application of the method for quality control assessments of manufacturer-supplied gallium arsenide substrates was assessed

  18. Selenide Mineralization in the Příbram Uranium and Base-Metal District (Czech Republic

    Directory of Open Access Journals (Sweden)

    Pavel Škácha

    2017-06-01

    Full Text Available Selenium mineralization in the Příbram uranium and base-metal district (Central Bohemia, Czech Republic bound to uraninite occurrences in calcite hydrothermal veins is extremely diverse. The selenides antimonselite, athabascaite, bellidoite, berzelianite, brodtkorbite, bukovite, bytízite, cadmoselite, chaméanite, clausthalite, crookesite, dzharkenite, eskebornite, eucairite, ferroselite, giraudite, hakite, klockmannite, naumannite, permingeatite, příbramite, sabatierite, tiemannite, and umangite were found here, including two new mineral phases: Hg-Cu-Sb and Cu-As selenides. Those selenides—and in some cases their sulphidic equivalents—are characterized using wavelength-dispersive spectroscopy, reflected light, powder X-ray diffraction, single crystal X-ray diffraction, Raman spectroscopy, and electron backscatter diffraction. The selenide mineralization in the Příbram uranium district is bound to the border of the carbonate-uraninite and subsequent carbonate-sulphidic stages. Selenides crystallized there at temperatures near 100 °C in the neutral-to-weakly-alkaline environment from solutions with high oxygen fugacity and a high Se2/S2 fugacity ratio.

  19. Efficient solution-processed small molecule: Cadmium selenide quantum dot bulk heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vinay, E-mail: drvinaygupta@netscape.net [Physics of Energy Harvesting Division, Organic and Hybrid Solar Cell Group, CSIR-National Physical Laboratory, New Delhi-110012 (India); Department of Physics, University of California, Santa Barbara, California 93106 (United States); Upreti, Tanvi; Chand, Suresh [Physics of Energy Harvesting Division, Organic and Hybrid Solar Cell Group, CSIR-National Physical Laboratory, New Delhi-110012 (India)

    2013-12-16

    We report bulk heterojunction solar cells based on blends of solution-processed small molecule [7,7′-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′]dithiophene-2,6-diyl) bis(6-fluoro-4-(5′-hexyl-[2,2′-bithiophen]-5yl)benzo[c] [1,2,5] thiadiazole)] p-DTS(FBTTh{sub 2}){sub 2}: Cadmium Selenide (CdSe) (70:30, 60:40, 50:50, and 40:60) in the device configuration: Indium Tin Oxide /poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/p-DTS(FBTTh{sub 2}){sub 2}: CdSe/Ca/Al. The optimized ratio of p-DTS(FBTTh{sub 2}){sub 2}:CdSe::60:40 leads to a short circuit current density (J{sub sc}) = 5.45 mA/cm{sup 2}, open circuit voltage (V{sub oc}) = 0.727 V, and fill factor (FF) = 51%, and a power conversion efficiency = 2.02% at 100 mW/cm{sup 2} under AM1.5G illumination. The J{sub sc} and FF are sensitive to the ratio of p-DTS(FBTTh{sub 2}){sub 2}:CdSe, which is a crucial factor for the device performance.

  20. Using KrF ELA to Improve Gate-Stacked LaAlO₃/ZrO₂ Indium Gallium Zinc Oxide Thin-Film Transistors with Novel Atmospheric Pressure Plasma-Enhanced Chemical Vapor Deposition Technique.

    Science.gov (United States)

    Wu, Chien-Hung; Chang, Kow-Ming; Chen, Yi-Ming; Huang, Bo-Wen; Zhang, Yu-Xin; Wang, Shui-Jinn

    2018-03-01

    Atmospheric pressure plasma-enhanced chemical vapor deposition (AP-PECVD) technique and KrF excimer laser annealing (ELA) were employed for the fabrication of indium gallium zinc oxide thin-film transistors (IGZO-TFTs). Device with a 150 mJ/cm2 laser annealing densities demonstrated excellent electrical characteristics with improved on/off current ratio of 4.7×107, high channel mobility of 10 cm2/V-s, and low subthreshold swing of 0.15 V/dec. The improvements are attributed to the adjustment of oxygen vacancies in the IGZO channel to an appropriate range of around 28.3% and the reduction of traps at the high-k/IGZO interface.

  1. High-density plasma etching characteristics of indium-gallium-zinc oxide thin films in CF{sub 4}/Ar plasma

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Young-Hee; Kim, Chang-Il

    2015-05-29

    We investigated the etching process of indium-gallium-zinc oxide (IGZO) thin films in an inductively coupled plasma system. The dry etching characteristics of the IGZO thin films were studied by varying the CF{sub 4}/Ar gas mixing ratio, RF power, DC-bias voltage, and process pressure. We determined the following optimized process conditions: an RF power of 700 W, a DC-bias voltage of − 150 V, and a process pressure of 2 Pa. A maximum etch rate of 25.63 nm/min for the IGZO thin films was achieved in a plasma with CF{sub 4}/Ar(= 25:75), and the selectivity of IGZO to Al and TiN was found to be 1.3 and 0.7, respectively. We determined the ionic composition of the CF{sub 4}/Ar plasma using optical emission spectroscopy. Analysis of chemical reactions at the IGZO thin film surfaces was performed using X-ray photoelectron spectroscopy. - Highlights: • IGZO thin film was etched by CF{sub 4}/Ar plasma as a function of gas mixing ratio. • IGZO bonds were broken Ar{sup +} sputtering and then reacted with the C-F{sub x} radicals. • The physical sputtering is dominant in etch control compared with chemical etching.

  2. Solution-Processed Inorganic Thin Film Transistors Fabricated from Butylamine-Capped Indium-Doped Zinc Oxide Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Hien Thu; Jeong, Hyundam [Chonnam National Univ., Gwangju (Korea, Republic of)

    2014-02-15

    Indium-doped zinc oxide nanocrystals (IZO NCs), capped with stearic acid (SA) of different sizes, were synthesized using a hot injection method in a noncoordinating solvent 1-octadecene (ODE). The ligand exchange process was employed to modify the surface of IZO NCs by replacing the longer-chain ligand of stearic acid with the shorter-chain ligand of butylamine (BA). It should be noted that the ligand-exchange percentage was observed to be 75%. The change of particle size, morphology, and crystal structures were obtained using a field emission scanning electron microscope (FE-SEM) and X-ray diffraction pattern results. In our study, the 5 nm and 10 nm IZO NCs capped with stearic acid (SA-IZO) were ligand-exchanged with butylamine (BA), and were then spin-coated on a thermal oxide (SiO{sub 2}) gate insulator to fabricate a thin film transistor (TFT) device. The films were then annealed at various temperatures: 350 .deg. C, 400 .deg. C, 500 .deg. C, and 600 .deg. C. All samples showed semiconducting behavior and exhibited n-channel TFT{sup -} Curing temperature dependent on mobility was observed. Interestingly, mobility decreases with the increasing size of NCs from 5 to 10 nm. Miller-Abrahams hopping formalism was employed to explain the hopping mechanism insight our IZO NC films. By focusing on the effect of size, different curing temperatures, electron coupling, tunneling rate, and inter-NC separation, we found that the decrease in electron mobility for larger NCs was due to smaller electronic coupling.

  3. Direct solar energy and its applications

    International Nuclear Information System (INIS)

    Hamdani, A.J.

    1997-01-01

    Solar energy, which was a utopian dream forty years ago, is today already on the market, particularly for specialized uses and in remote areas. Even solar cells are now on the eve of becoming economically competitive. After a brief account of solar-cell theory, this paper gives the essential details of Photovoltaic Module Manufacturing Technologies, Single Crystal Technology, Fabrication of Wafers, Fabrication of Solar Cell, Photovoltaic Module, Multi Crystalline Silicon, Amorphous Silicon Cell. Semi-conductor based Thin-Film Technology (other than silicon), Copper-Indium Di selenide (IS), Gallium Arsenide, Multi-Junction Devices, as well as Technologies for Improving Conversion Efficiencies, Criteria for high-efficiency Cells and Module Fabrication. It concludes with a section on Direct Utilisation of solar energy, in which a brief description is presented on Solar Thermal Devices, Solar Water Heaters, Calculating hot-water requirements, Solar Stills, Solar Drying, Concentrator Collectors and, finally Measurement of the Solar Resource. At the end, there is a useful Appendix on World-Wide Photovoltaic Cell/Module Manufacturing Capacity Expansion Profile. (author)

  4. Preparation of High-purity Indium Oxalate Salt from Indium Scrap by Organic Acids

    International Nuclear Information System (INIS)

    Koo, Su-Jin; Ju, Chang-Sik

    2013-01-01

    Effect of organic acid on the preparation of indium-oxalate salt from indium scraps generated from ITO glass manufacturing process was studied. Effects of parameters, such as type and concentration of organic acids, pH of reactant, temperature, reaction time on indium-oxalate salt preparation were examined. The impurity removal efficiency was similar for both oxalic acid and citric acid, but citric acid did not make organic acid salt with indium. The optimum conditions were 1.5 M oxalic acid, pH 7, 80 .deg. C, and 6 hours. On the other hand, the recoveries increased with pH, but the purity decreased. The indium-oxalate salt purity prepared by two cycles was 99.995% (4N5). The indium-oxalate salt could be converted to indium oxide and indium metal by substitution reaction and calcination

  5. Morphological differences in transparent conductive indium-doped zinc oxide thin films deposited by ultrasonic spray pyrolysis

    International Nuclear Information System (INIS)

    Jongthammanurak, Samerkhae; Cheawkul, Tinnaphob; Witana, Maetapa

    2014-01-01

    In-doped ZnO thin films were deposited on glass substrates by an ultrasonic spray pyrolysis technique, using indium chloride (InCl 3 ) as a dopant and zinc acetate solution as a precursor. Increasing the [at.% In]/[at.% Zn] ratio changed the crystal orientations of thin films, from the (100) preferred orientation in the undoped, to the (101) and (001) preferred orientations in the In-doped ZnO thin films with 4 at.% and 6–8 at.%, respectively. Undoped ZnO thin film shows relatively smooth surface whereas In-doped ZnO thin films with 4 at.% and 6–8 at.% show surface features of pyramidal forms and hexagonal columns, respectively. X-ray diffraction patterns of the In-doped ZnO thin films with [at.% In]/[at.% Zn] ratios of 6–8% presented an additional peak located at 2-theta of 32.95°, which possibly suggested that a metastable Zn 7 In 2 O 10 phase was present with the ZnO phase. ZnO thin films doped with 2 at.% In resulted in a sheet resistance of ∼ 645 Ω/sq, the lowest value among thin films with [at.% In]/[at.% Zn] ratio in a range of 0–8%. The precursor molarity was changed between 0.05 M and 0.20 M at an [at.% In]/[at.% Zn] ratio of 2%. Increasing the precursor molarity in a range of 0.10 M–0.20 M resulted in In-doped ZnO thin films with the (100) preferred orientation. An In-doped ZnO thin film deposited by 0.20 M precursor showed a sheet resistance of 25 Ω/sq, and an optical transmission of 75% at 550 nm wavelength. The optical band gap estimated from the transmission result was 3.292 eV. - Highlights: • Indium-doped ZnO thin films were grown on glass using ultrasonic spray pyrolysis. • Thin films' orientations depend on In doping and Zn molarity of precursor solution. • Highly c-axis or a-axis orientations were found in the In-doped ZnO thin films. • In doping of 6–8 at.% may have resulted in ZnO and a metastable Zn 7 In 2 O 10 phases. • Increasing precursor molarity reduced sheet resistance of In-doped ZnO thin films

  6. Ammonia-free chemical bath method for deposition of microcrystalline cadmium selenide films

    International Nuclear Information System (INIS)

    Lokhande, C.D.; Lee, Eun-Ho; Jung, Kwang-Deog; Joo, Oh-Shim

    2005-01-01

    Chemical deposition of cadmium selenide (CdSe) films has been carried out from alkaline aqueous solution containing Cd 2+ and Se 2- ions. In general, the alkaline pH of the CdSe deposition bath has been adjusted by addition of liquid ammonia. However, the use of ammonia in large-scale chemical deposition method represents an environmental problem due to its volatility and toxicity. The volatility of ammonia changes the pH of deposition bath and results into irreproducible film properties. In the present paper, ammonia-free and weak alkaline (pH < 9.0) chemical method for cadmium selenide film has been developed. The cadmium selenide films are microcrystalline (grain size 0.5-0.7 μm) with hexagonal crystal structure. These films are photoactive and therefore, useful in photo conversion of light into electrical power

  7. Effects of low-temperature (120 °C) annealing on the carrier concentration and trap density in amorphous indium gallium zinc oxide thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-sung; Piao, Mingxing; Jang, Ho-Kyun; Kim, Gyu-Tae, E-mail: gtkim@korea.ac.kr [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Oh, Byung Su [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Samsung Display Company, Yongin (Korea, Republic of); Joo, Min-Kyu [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); IMEP-LAHC, Grenoble INP, Minatec, CS 50257, 38016 Grenoble (France); Ahn, Seung-Eon [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Samsung Advanced Institute of Technology, Samsung Electronics Corporations, Yongin 446-712 (Korea, Republic of)

    2014-12-28

    We report an investigation of the effects of low-temperature annealing on the electrical properties of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs). X-ray photoelectron spectroscopy was used to characterize the charge carrier concentration, which is related to the density of oxygen vacancies. The field-effect mobility was found to decrease as a function of the charge carrier concentration, owing to the presence of band-tail states. By employing the transmission line method, we show that the contact resistance did not significantly contribute to the changes in device performance after annealing. In addition, using low-frequency noise analyses, we found that the trap density decreased by a factor of 10 following annealing at 120 °C. The switching operation and on/off ratio of the a-IGZO TFTs improved considerably after low-temperature annealing.

  8. Plastic deformation of indium nanostructures

    International Nuclear Information System (INIS)

    Lee, Gyuhyon; Kim, Ju-Young; Burek, Michael J.; Greer, Julia R.; Tsui, Ting Y.

    2011-01-01

    Highlights: → Indium nanopillars display two different deformation mechanisms. → ∼80% exhibited low flow stresses near that of bulk indium. → Low strength nanopillars have strain rate sensitivity similar to bulk indium. → ∼20% of compressed indium nanopillars deformed at nearly theoretical strengths. → Low-strength samples do not exhibit strength size effects. - Abstract: Mechanical properties and morphology of cylindrical indium nanopillars, fabricated by electron beam lithography and electroplating, are characterized in uniaxial compression. Time-dependent deformation and influence of size on nanoscale indium mechanical properties were investigated. The results show two fundamentally different deformation mechanisms which govern plasticity in these indium nanostructures. We observed that the majority of indium nanopillars deform at engineering stresses near the bulk values (Type I), with a small fraction sustaining flow stresses approaching the theoretical limit for indium (Type II). The results also show the strain rate sensitivity and flow stresses in Type I indium nanopillars are similar to bulk indium with no apparent size effects.

  9. Study of current instabilities in high resistivity gallium arsenide

    International Nuclear Information System (INIS)

    Barraud, A.

    1968-01-01

    We have shown the existence and made a study of the current oscillations produced in high-resistivity gallium arsenide by a strong electric field. The oscillations are associated with the slow travelling of a region of high electrical field across the whole sample. An experimental study of the properties of these instabilities has made it possible for us to distinguish this phenomenon from the Gunn effect, from acoustic-electric effects and from contact effects. In order to account for this type of instability, a differential trapping mechanism involving repulsive impurities is proposed; this mechanism can reduce the concentration of charge carriers in the conduction band at strong electrical fields and can lead to the production of a high-field domain. By developing this model qualitatively we have been able to account for all the properties of high-resistance gallium arsenide crystals subjected to a strong electrical field: increase of the Hall constant, existence of a voltage threshold for these oscillations, production of domains of high field, low rate of propagation of these domains, and finally the possibility of inverting the direction of the propagation of the domain without destroying the latter. A quantitative development of the model makes it possible to calculate the various characteristic parameters of these instabilities. Comparison with experiment shows that there is a good agreement, the small deviations coming especially from the lack of knowledge concerning transport properties in gallium arsenide subjected to high fields. From a study of this model, it appears that the instability phenomenon can occur over a wide range of repulsive centre concentrations, and also for a large range of resistivities. This is the reason why it appears systematically in gallium arsenide of medium and high resistivity. (authors) [fr

  10. Structural, electrical and optical properties of indium chloride doped ZnO films synthesized by Ultrasonic Spray Pyrolysis technique

    International Nuclear Information System (INIS)

    Zaleta-Alejandre, E.; Camargo-Martinez, J.; Ramirez-Garibo, A.; Pérez-Arrieta, M.L.; Balderas-Xicohténcatl, R.; Rivera-Alvarez, Z.; Aguilar-Frutis, M.; Falcony, C.

    2012-01-01

    Indium chloride doped zinc oxide (ZnO:In) thin films were deposited onto glass substrates using zinc acetate by Ultrasonic Spray Pyrolysis technique. The effect of substrate temperature, deposition time and acetic acid added to the spraying solution on the structural, electrical and optical properties of these ZnO:In films is reported. The films were in all cases polycrystalline with a hexagonal (wurtzite) structure, a transparency over 80% and resistivity of the order of 10 −3 –10 −2 Ω·cm. The resistivity was dependent on the volume % of acetic acid added to the spraying solution. The minimum resistivity value was obtained with a 5 vol.% acetic acid (pH = 3.71) at substrate temperature of 450 °C. The deposition rates obtained were as high as 180 Å·min −1 at a substrate temperature of 450 °C. - Highlights: ► Conductive ZnO:In thin films were deposited by Ultrasonic Spray Pyrolysis (USP). ► USP is of low cost, high growth rates and scalable for industrial applications. ► USP is appropriate for the deposition of metallic oxide films. ► We studied the effect of acetic acid, time deposition and substrate temperature. ► Zinc acetate and indium chloride were used as precursor materials.

  11. The Effects of Strain on the Electrical Properties of Thin Evaporated Films of Semiconductor Compounds

    Science.gov (United States)

    Steel, G. G.

    1970-01-01

    Reports on project intended to establish how electrical resistance, Hall voltage, and magnetoresistance change when a thin film specimen is subjected to mechanical strain. Found resistance of semiconducting film of indium arsenide and indium antimonide decreases with tension and increases with compression. (LS)

  12. Synaptic behaviors of thin-film transistor with a Pt/HfO x /n-type indium-gallium-zinc oxide gate stack.

    Science.gov (United States)

    Yang, Paul; Park, Daehoon; Beom, Keonwon; Kim, Hyung Jun; Kang, Chi Jung; Yoon, Tae-Sik

    2018-07-20

    We report a variety of synaptic behaviors in a thin-film transistor (TFT) with a metal-oxide-semiconductor gate stack that has a Pt/HfO x /n-type indium-gallium-zinc oxide (n-IGZO) structure. The three-terminal synaptic TFT exhibits a tunable synaptic weight with a drain current modulation upon repeated application of gate and drain voltages. The synaptic weight modulation is analog, voltage-polarity dependent reversible, and strong with a dynamic range of multiple orders of magnitude (>10 4 ). This modulation process emulates biological synaptic potentiation, depression, excitatory-postsynaptic current, paired-pulse facilitation, and short-term to long-term memory transition behaviors as a result of repeated pulsing with respect to the pulse amplitude, width, repetition number, and the interval between pulses. These synaptic behaviors are interpreted based on the changes in the capacitance of the Pt/HfO x /n-IGZO gate stack, the channel mobility, and the threshold voltage that result from the redistribution of oxygen ions by the applied gate voltage. These results demonstrate the potential of this structure for three-terminal synaptic transistor using the gate stack composed of the HfO x gate insulator and the IGZO channel layer.

  13. Mechanochemical synthesis of nanocrystalline lead selenide. Industrial approach

    Energy Technology Data Exchange (ETDEWEB)

    Achimovicova, Marcela; Balaz, Peter [Slovak Academy of Sciences, Kosice (Slovakia). Inst. of Geotechnics; Durisin, Juraj [Slovak Academy of Sciences, Kosice (Slovakia). Inst. of Materials Research; Daneu, Nina [Josef Stefan Institute, Ljubljana (Slovenia). Dept. for Nanostructured Materials; Kovac, Juraj; Satka, Alexander [Slovak Univ. of Technology and International Laser Centre, Bratislava (Slovakia). Dept. of Microelectronics; Feldhoff, Armin [Leibniz Univ. Hannover (Germany). Inst. fuer Physikalische Chemie und Elektrochemie; Gock, Eberhard [Technical Univ. Clausthal, Clausthal-Zellerfeld (Germany). Inst. of Mineral and Waste Processing and Dumping Technology

    2011-04-15

    Mechanochemical synthesis of lead selenide PbSe nanoparticles was performed by high-energy milling of lead and selenium powder in a laboratory planetary ball mill and in an industrial eccentric vibratory mill. Structural properties of the synthesized lead selenide were characterized using X-ray diffraction that confirmed crystalline nature of PbSe nanoparticles. The average size of PbSe crystallites of 37 nm was calculated from X-ray diffraction data using the Williamson-Hall method. The methods of particle size distribution analysis, specific surface area measurement, scanning electron microscopy and transmission electron microscopy were used for characterization of surface, mean particle size, and morphology of PbSe. An application of industrial mill verified a possibility of the synthesis of a narrow bandgap semiconductor PbSe at ambient temperature and in a relatively short reaction time. (orig.)

  14. Assessment of arsenic exposures and controls in gallium arsenide production.

    Science.gov (United States)

    Sheehy, J W; Jones, J H

    1993-02-01

    The electronics industry is expanding the use of gallium arsenide in the production of optoelectronic devices and integrated circuits. Workers in the electronics industry using gallium arsenide are exposed to hazardous substances such as arsenic, arsine, and various acids. Arsenic requires stringent controls to minimize exposures (the current OSHA PEL for arsenic is 10 micrograms/m3 and the NIOSH REL is 2 micrograms/m3 ceiling). Inorganic arsenic is strongly implicated in respiratory tract and skin cancer. For these reasons, NIOSH researchers conducted a study of control systems for facilities using gallium arsenide. Seven walk-through surveys were performed to identify locations for detailed study which appeared to have effective controls; three facilities were chosen for in-depth evaluation. The controls were evaluated by industrial hygiene sampling. Including personal breathing zone and area air sampling for arsenic and arsine; wipe samples for arsenic also were collected. Work practices and the use of personal protective equipment were documented. This paper reports on the controls and the arsenic exposure results from the evaluation of the following gallium arsenide processes: Liquid Encapsulated Czochralski (LEC) and Horizontal Bridgeman (HB) crystal growing, LEC cleaning operations, ingot grinding/wafer sawing, and epitaxy. Results at one plant showed that in all processes except epitaxy, average arsenic exposures were at or above the OSHA action level of 5 micrograms/m3. While cleaning the LEC crystal pullers, the average potential arsenic exposure of the cleaning operators was 100 times the OSHA PEL. At the other two plants, personal exposures for arsenic were well controlled in LEC, LEC cleaning, grinding/sawing, and epitaxy operations.

  15. Cybernetic prediction of selenide Chevreul's phases

    International Nuclear Information System (INIS)

    Kiseleva, N.N.; Savitskij, E.M.

    1981-01-01

    The method of training a computer is used to forecast the possibility for the formation of selenide Chevreul's phases of the Asub(x)Bsub(6)Sesub(8) composition (where A is any chemical element, B-Mo, Cr, W, Re). The peculiarities of applying cybernetic forecasting systems in inorganic chemistry are considered. The critical temperature of transfer into the superconducting state of some phases forecasted is estimated [ru

  16. Diagnostic Genesis Features of Au-Ag Selenide-Telluride Mineralization of Western Java Deposits

    Directory of Open Access Journals (Sweden)

    Euis Tintin Yuningsih

    2016-01-01

    Full Text Available DOI: 10.17014/ijog.3.1.67-76The ore mineralogy of the westernmost part of West Java such as Pongkor, Cibaliung, Cikidang, Cikotok, and Cirotan are characterized by the dominance of silver-arsenic-antimony sulfosalt with silver selenides and rarely tellurides over the argentite, whereas the eastern part of West Java including Arinem and Cineam deposits are dominated by silver-gold tellurides. Mineralogy of Se-type deposits at Pongkor, Cikidang, Cibaliung, Cisungsang, and Cirotan and Te-type deposits at Arinem and Cineam shows their different geochemical characteristics. Mineralogical and geochemical differences can be explained by variation of physico-chemical conditions that existed during gold-silver deposition by applying the phase relation among sulfide, telluride, and selenide mineral association in the deposits. The relative values of ƒSe2(g, ƒTe(g, and ƒS2(g control the actual presence of selenide or telluride minerals within the West Java deposits, which also depend on their concentrations in the hydrothermal fluid. Even though the concentration of selenium in the hydrothermal fluid of Te-type deposits might have been similar or even higher than that in the Se-type, early substitution of selenium in the sulfide minerals prevents its concentration in the hydrothermal fluid to the levels for precipitating selenide minerals. Therefore, early sulfide mineral deposition from reduction fluids will not increase the ƒSe2(g/ƒS2(g ratio to form selenide minerals in Te-type deposits of Arinem and Cineam, other than selenium-bearing sulfide mineral such as Se-bearing galena or Se-bearing pyrargyrite-proustite.

  17. Monolithic two-terminal hybrid a-Si:H/CIGS tandem cells

    NARCIS (Netherlands)

    Blanker, J.; Vroon, Z.; Zeman, M.; Smets, A.

    2016-01-01

    Copper-indium-gallium-di-selenide (CIGS) is the present record holder in lab-scale thin-film photovoltaics (TFPV). One of the problems of this PV technology is the scarcity of indium. Multi-junction solar cells allow better spectral utilization of the light spectrum, while the required current

  18. Highly flexible indium zinc oxide electrode grown on PET substrate by cost efficient roll-to-roll sputtering process

    International Nuclear Information System (INIS)

    Park, Yong-Seok; Kim, Han-Ki; Jeong, Soon-Wook; Cho, Woon-Jo

    2010-01-01

    We have investigated the characteristics of flexible indium zinc oxide (IZO) electrode grown on polyethylene terephthalate (PET) substrates using a specially designed roll-to-roll (RTR) sputtering system for use in flexible optoelectronics. It was found that both electrical and optical properties of the flexible IZO electrode were critically dependent on the DC power and Ar/O 2 flow ratio during the roll-to-roll sputtering process. At optimized conditions (constant working pressure of 3 mTorr, Ar/O 2 flow ratio of Ar at only 30 sccm, DC power 800 W and rolling speed at 0.1 cm/s) the flexible IZO electrode exhibits a sheet resistance of 17.25 Ω/sq and an optical transmittance of 89.45% at 550 nm wavelength. Due to the low PET substrate temperature, which is effectively maintained by cooling drum system, all IZO electrodes showed an amorphous structure regardless of the DC power and Ar/O 2 flow ratio. Furthermore, the IZO electrodes grown at optimized condition exhibited superior flexibility than the conventional amorphous ITO electrodes due to its stable amorphous structure. This indicates that the RTR sputter grown IZO electrode is a promising flexible electrode that can substitute for the conventional ITO electrode, due to its low resistance, high transparency, superior flexibility and fast preparation by the RTR process.

  19. High-pressure Gas Activation for Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistors at 100 °C.

    Science.gov (United States)

    Kim, Won-Gi; Tak, Young Jun; Du Ahn, Byung; Jung, Tae Soo; Chung, Kwun-Bum; Kim, Hyun Jae

    2016-03-14

    We investigated the use of high-pressure gases as an activation energy source for amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistors (TFTs). High-pressure annealing (HPA) in nitrogen (N2) and oxygen (O2) gases was applied to activate a-IGZO TFTs at 100 °C at pressures in the range from 0.5 to 4 MPa. Activation of the a-IGZO TFTs during HPA is attributed to the effect of the high-pressure environment, so that the activation energy is supplied from the kinetic energy of the gas molecules. We reduced the activation temperature from 300 °C to 100 °C via the use of HPA. The electrical characteristics of a-IGZO TFTs annealed in O2 at 2 MPa were superior to those annealed in N2 at 4 MPa, despite the lower pressure. For O2 HPA under 2 MPa at 100 °C, the field effect mobility and the threshold voltage shift under positive bias stress were improved by 9.00 to 10.58 cm(2)/V.s and 3.89 to 2.64 V, respectively. This is attributed to not only the effects of the pressurizing effect but also the metal-oxide construction effect which assists to facilitate the formation of channel layer and reduces oxygen vacancies, served as electron trap sites.

  20. Effects of vacuum rapid thermal annealing on the electrical characteristics of amorphous indium gallium zinc oxide thin films

    Science.gov (United States)

    Lee, Hyun-Woo; Cho, Won-Ju

    2018-01-01

    We investigated the effects of vacuum rapid thermal annealing (RTA) on the electrical characteristics of amorphous indium gallium zinc oxide (a-IGZO) thin films. The a-IGZO films deposited by radiofrequency sputtering were subjected to vacuum annealing under various temperature and pressure conditions with the RTA system. The carrier concentration was evaluated by Hall measurement; the electron concentration of the a-IGZO film increased and the resistivity decreased as the RTA temperature increased under vacuum conditions. In a-IGZO thin-film transistors (TFTs) with a bottom-gate top-contact structure, the threshold voltage decreased and the leakage current increased as the vacuum RTA temperature increased. As the annealing pressure decreased, the threshold voltage decreased, and the leakage current increased. X-ray photoelectron spectroscopy indicated changes in the lattice oxygen and oxygen vacancies of the a-IGZO films after vacuum RTA. At higher annealing temperatures, the lattice oxygen decreased and oxygen vacancies increased, which suggests that oxygen was diffused out in a reduced pressure atmosphere. The formation of oxygen vacancies increased the electron concentration, which consequently increased the conductivity of the a-IGZO films and reduced the threshold voltage of the TFTs. The results showed that the oxygen vacancies and electron concentrations of the a-IGZO thin films changed with the vacuum RTA conditions and that high-temperature RTA treatment at low pressure converted the IGZO thin film to a conductor.

  1. Optical Characterization of Thick Growth Orientation-Patterned Gallium Arsenide

    National Research Council Canada - National Science Library

    Meyer, Joshua W

    2006-01-01

    .... Orientation patterned gallium arsenide (OPGaAs) is a promising nonlinear conversion material because it has broad transparency and can be engineered for specific pump laser and output wavelengths using quasi-phase matching techniques...

  2. Optimization of Electrochemically Deposited Highly Doped ZnO Bilayers on Ga-Rich Chalcopyrite Selenide for Cost-Effective Photovoltaic Device Technology

    Directory of Open Access Journals (Sweden)

    Dimitra N. Papadimitriou

    2016-11-01

    Full Text Available High quality polycrystalline bilayers of aluminium doped ZnO (Al:ZnO were successively electrodeposited in the form of columnar structures preferentially oriented along the ( 10 1 ¯ 1 crystallographic direction from aqueous solution of zinc nitrate (Zn(NO32 at negative electrochemical potential of EC = (−0.8–(−1.2 V and moderate temperature of 80 °C on gallium rich (30% Ga chalcopyrite selenide Cu(In,GaSe2 (CIGS with chemically deposited ZnSe buffer (ZnSe/Cu(In,GaSe2/Mo/glass. The aluminium doped ZnO layer properties have initially been probed by deposition of Al:ZnO/i-ZnO bilayers directly on Mo/glass substrates. The band-gap energy of the Al:ZnO/i-ZnO reference layers was found to vary from 3.2 to 3.7 eV by varying the AlCl3 solute dopant concentration from 1 to 20 mM. The electrical resistivity of indium-pellet contacted highly doped Al:ZnO sheet of In/Al:ZnO/i-ZnO/Mo/glass reference samples was of the order ρ ~10−5 Ω·cm; the respective carrier concentration of the order 1022 cm−3 is commensurate with that of sputtered Al:ZnO layers. For crystal quality optimization of the bilayers by maintenance of the volatile selenium content of the chalcopyrite, they were subjected to 2-step annealing under successive temperature raise and N2 flux regulation. The hydrostatic compressive strain due to Al3+ incorporation in the ZnO lattice of bilayers processed successively with 5 and 12 mM AlCl3 dopant was εh = −0.046 and the respective stress σh = −20 GPa. The surface reflectivity of maximum 5% over the scanned region of 180–900 nm and the (optical band gap of Eg = 3.67 eV were indicative of the high optical quality of the electrochemically deposited (ECD Al:ZnO bilayers.

  3. Structural, electrical and optical properties of indium chloride doped ZnO films synthesized by Ultrasonic Spray Pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Zaleta-Alejandre, E., E-mail: ezaleta@fis.cinvestav.mx [Centro de Investigacion y de Estudios Avanzados-IPN, Departamento de Fisica, Apdo, Postal 14-470, Del. Gustavo A. Madero, C.P. 07000, Mexico, D.F. (Mexico); Camargo-Martinez, J.; Ramirez-Garibo, A. [Centro de Investigacion y de Estudios Avanzados-IPN, Departamento de Fisica, Apdo, Postal 14-470, Del. Gustavo A. Madero, C.P. 07000, Mexico, D.F. (Mexico); Perez-Arrieta, M.L. [Universidad Autonoma de Zacatecas, Unidad Academica de Fisica, Calzada Solidaridad esq. Paseo, La Bufa s/n, C.P. 98060, Zacatecas, Mexico (Mexico); Balderas-Xicohtencatl, R.; Rivera-Alvarez, Z. [Centro de Investigacion y de Estudios Avanzados-IPN, Departamento de Fisica, Apdo, Postal 14-470, Del. Gustavo A. Madero, C.P. 07000, Mexico, D.F. (Mexico); Aguilar-Frutis, M. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada-IPN, Legaria 694, Col. Irrigacion, Del. Miguel Hidalgo, Mexico, D.F. (Mexico); Falcony, C. [Centro de Investigacion y de Estudios Avanzados-IPN, Departamento de Fisica, Apdo, Postal 14-470, Del. Gustavo A. Madero, C.P. 07000, Mexico, D.F. (Mexico)

    2012-12-01

    Indium chloride doped zinc oxide (ZnO:In) thin films were deposited onto glass substrates using zinc acetate by Ultrasonic Spray Pyrolysis technique. The effect of substrate temperature, deposition time and acetic acid added to the spraying solution on the structural, electrical and optical properties of these ZnO:In films is reported. The films were in all cases polycrystalline with a hexagonal (wurtzite) structure, a transparency over 80% and resistivity of the order of 10{sup -3}-10{sup -2} Ohm-Sign {center_dot}cm. The resistivity was dependent on the volume % of acetic acid added to the spraying solution. The minimum resistivity value was obtained with a 5 vol.% acetic acid (pH = 3.71) at substrate temperature of 450 Degree-Sign C. The deposition rates obtained were as high as 180 A{center_dot}min{sup -1} at a substrate temperature of 450 Degree-Sign C. - Highlights: Black-Right-Pointing-Pointer Conductive ZnO:In thin films were deposited by Ultrasonic Spray Pyrolysis (USP). Black-Right-Pointing-Pointer USP is of low cost, high growth rates and scalable for industrial applications. Black-Right-Pointing-Pointer USP is appropriate for the deposition of metallic oxide films. Black-Right-Pointing-Pointer We studied the effect of acetic acid, time deposition and substrate temperature. Black-Right-Pointing-Pointer Zinc acetate and indium chloride were used as precursor materials.

  4. An optimized In–CuGa metallic precursors for chalcopyrite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jun-feng, E-mail: junfeng.han@cnrs-imn.fr [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Department of Physics, Peking University, Beijing 100871 (China); Liao, Cheng [Department of Physics, Peking University, Beijing 100871 (China); Chengdu Green Energy and Green Manufacturing Technology R and D Center, Chengdu, Sichuan Province 601207 (China); Jiang, Tao; Xie, Hua-mu; Zhao, Kui [Department of Physics, Peking University, Beijing 100871 (China); Besland, M.-P. [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France)

    2013-10-31

    We report a study of CuGa–In metallic precursors for chalcopyrite thin film. CuGa and In thin films were prepared by DC sputtering at room temperature. Due to low melting point of indium, the sputtering power on indium target was optimized. Then, CuGa and In multilayers were annealed at low temperature. At 120 °C, the annealing treatment could enhance diffusion and alloying of CuGa and In layers; however, at 160 °C, it caused a cohesion and crystalline of indium from the alloy which consequently formed irregular nodules on the film surface. The precursors were selenized to form copper indium gallium selenide (CIGS) thin films. The morphological and structural properties were investigated by scanning electron microscopy, X-ray diffraction and Raman spectra. The relationships between metallic precursors and CIGS films were discussed in the paper. A smooth precursor layer was the key factor to obtain a homogeneous and compact CIGS film. - Highlights: • An optimized sputtered indium film • An optimized alloying process of metallic precursor • An observation of nodules forming on the indium film and precursor surface • An observation of cauliflower structure in copper indium gallium selenide film • The relationship between precursor and CIGS film surface morphology.

  5. Peculiarities of the interaction of indium-tin and indium-bismuth alloys with ammonium halides

    International Nuclear Information System (INIS)

    Red'kin, A.N.; Smirnov, V.A.; Sokolova, E.A.; Makovej, Z.I.; Telegin, G.F.

    1990-01-01

    Peculiarities of fusible metal alloys interaction with ammonium halogenides in vertical reactor are considered using indium-tin and indium-bismuth binary alloys. It is shown that at the end of the process the composition of metal and salt phases is determined by the equilibrium type and constant characteristic of the given salt-metal system. As a result the interaction of indium-tin and indium-bismuth alloys with ammonium halogenides leads to preferential halogenation of indium-bismuth alloys with ammonium halogenides leads to preferential halogenation of indium which may be used in the processes of separation or purification. A model is suggested to calculate the final concentration of salt and metal phase components

  6. Thermal transport properties of polycrystalline tin-doped indium oxide films

    International Nuclear Information System (INIS)

    Ashida, Toru; Miyamura, Amica; Oka, Nobuto; Sato, Yasushi; Shigesato, Yuzo; Yagi, Takashi; Taketoshi, Naoyuki; Baba, Tetsuya

    2009-01-01

    Thermal diffusivity of polycrystalline tin-doped indium oxide (ITO) films with a thickness of 200 nm has been characterized quantitatively by subnanosecond laser pulse irradiation and thermoreflectance measurement. ITO films sandwiched by molybdenum (Mo) films were prepared on a fused silica substrate by dc magnetron sputtering using an oxide ceramic ITO target (90 wt %In 2 O 3 and 10 wt %SnO 2 ). The resistivity and carrier density of the ITO films ranged from 2.9x10 -4 to 3.2x10 -3 Ω cm and from 1.9x10 20 to 1.2x10 21 cm -3 , respectively. The thermal diffusivity of the ITO films was (1.5-2.2)x10 -6 m 2 /s, depending on the electrical conductivity. The thermal conductivity carried by free electrons was estimated using the Wiedemann-Franz law. The phonon contribution to the heat transfer in ITO films with various resistivities was found to be almost constant (λ ph =3.95 W/m K), which was about twice that for amorphous indium zinc oxide films

  7. and gallium-doped zinc oxide transparent conducting sol–gel thin films

    Indian Academy of Sciences (India)

    Administrator

    and 1∙76 × 10–2 Ω cm for GZO, when five multilayer coatings are made. The origin of ... indium source make its price increasing every day. On the other hand, zinc ..... Zhao Q, Xu X Y, Song X F, Zhang X Z, Yu D P, Li C P and. Guo L 2006 Appl.

  8. Characteristics from Recycled of Zinc Anode used as a Corrosion Preventing Material on Board Ship

    Science.gov (United States)

    Barokah, B.; Semin, S.; Kaligis, D. D.; Huwae, J.; Fanani, M. Z.; Rompas, P. T. D.

    2018-02-01

    The objective of this research is to obtain the values of chemical composition, electrochemical potential and electrochemical efficiency. Methods used were experiment with physical tests conducted in metallurgical laboratory and DNV-RP-B401 cathode protection design DNV (Det Norske Veritas) standard. The results showed that the composition of chemical as Zinc (Zn), Aluminium, Cadmium, Plumbumb, Copper and Indium is suitable of standard. The values of electrochemical potential and electrochemical efficiency were respectively. However it can be concluded that the normal meaning of recycled zinc anode with increasing melting temperature can produce zinc anode better than original zinc anode and can be used as cathode protection on board ships. This research can assist in the management of used zinc anode waste, the supply of zinc anodes for consumers at relatively low prices, and recommendations of using zinc anodes for the prevention of corrosion on board ship.

  9. Indium Gallium Nitride Multijunction Solar Cell Simulation Using Silvaco Atlas

    Science.gov (United States)

    2007-06-01

    models is of great interest in space applications. By increasing the efficiency of photovoltaics, the number of solar panels is decreased. Therefore...obtained in single-junction solar cells by using Gallium Arsenide. Monocrystalline Gallium Arsenide has a maximum efficiency of approximately 25.1% [10

  10. Mechanisms of Current Transfer in Electrodeposited Layers of Submicron Semiconductor Particles

    Science.gov (United States)

    Zhukov, N. D.; Mosiyash, D. S.; Sinev, I. V.; Khazanov, A. A.; Smirnov, A. V.; Lapshin, I. V.

    2017-12-01

    Current-voltage ( I- V) characteristics of conductance in multigrain layers of submicron particles of silicon, gallium arsenide, indium arsenide, and indium antimonide have been studied. Nanoparticles of all semiconductors were obtained by processing initial single crystals in a ball mill and applied after sedimentation onto substrates by means of electrodeposition. Detailed analysis of the I- V curves of electrodeposited layers shows that their behavior is determined by the mechanism of intergranular tunneling emission from near-surface electron states of submicron particles. Parameters of this emission process have been determined. The proposed multigrain semiconductor structures can be used in gas sensors, optical detectors, IR imagers, etc.

  11. Morphology-Tuned Synthesis of Nickel Cobalt Selenides as Highly Efficient Pt-Free Counter Electrode Catalysts for Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Qian, Xing; Li, Hongmei; Shao, Li; Jiang, Xiancai; Hou, Linxi

    2016-11-02

    In this work, morphology-tuned ternary nickel cobalt selenides based on different Ni/Co molar ratios have been synthesized via a simple precursor conversion method and used as counter electrode (CE) materials for dye-sensitized solar cells (DSSCs). The experimental facts and mechanism analysis clarified the possible growth process of product. It can be found that the electrochemical performance and structures of ternary nickel cobalt selenides can be optimized by tuning the Ni/Co molar ratio. Benefiting from the unique morphology and tunable composition, among the as-prepared metal selenides, the electrochemical measurements showed that the ternary nickel cobalt selenides exhibited a more superior electrocatalytic activity in comparison with binary Ni and Co selenides. In particular, the three-dimensional dandelion-like Ni 0.33 Co 0.67 Se microspheres delivered much higher power conversion efficiency (9.01%) than that of Pt catalyst (8.30%) under AM 1.5G irradiation.

  12. Interaction between nanoparticles generated by zinc chloride treatment and oxidative responses in rat liver

    Directory of Open Access Journals (Sweden)

    Azzouz I

    2013-12-01

    Full Text Available Inès Azzouz, Hamdi Trabelsi, Amel Hanini, Soumaya Ferchichi, Olfa Tebourbi, Mohsen Sakly, Hafedh AbdelmelekLaboratory of Integrative Physiology, Faculty of Sciences of Bizerte, Carthage University, TunisiaAbstract: The aim of the present study was to investigate the interaction of zinc chloride (3 mg/kg, intraperitoneally [ip] in rat liver in terms of the biosynthesis of nanoparticles. Zinc treatment increased zinc content in rat liver. Analysis of fluorescence revealed the presence of red fluorescence in the liver following zinc treatment. Interestingly, the co-exposure to zinc (3 mg/kg, ip and selenium (0.20 mg/L, per os [by mouth] led to a higher intensity of red fluorescence compared to zinc-treated rats. In addition, X-ray diffraction measurements carried out on liver fractions of zinc-treated rats point to the biosynthesis of zinc sulfide and/or selenide nanocomplexes at nearly 51.60 nm in size. Moreover, co-exposure led to nanocomplexes of about 72.60 nm in size. The interaction of zinc with other mineral elements (S, Se generates several nanocomplexes, such as ZnS and/or ZnSe. The nanocomplex ZnX could interact directly with enzyme activity or indirectly by the disruption of mineral elements' bioavailability in cells. Subacute zinc or selenium treatment decreased malondialdehyde levels, indicating a drop in lipid peroxidation. In addition, antioxidant enzyme assays showed that treatment with zinc or co-treatment with zinc and selenium increased the activities of glutathione peroxidase, catalase, and superoxide dismutase. Consequently, zinc complexation with sulfur and/or selenium at nanoscale level could enhance antioxidative responses, which is correlated to the ratio of number of ZnX nanoparticles (X=sulfur or X=selenium to malondialdehyde level in rat liver.Keywords: nanocomplexes biosynthesis, antioxidative responses, X-ray diffraction, fluorescence microscopy, liver

  13. Characterization of Materials by Raman Scattering

    Science.gov (United States)

    Kozielski, M.

    2007-03-01

    The paper reports on the use of phonon spectra obtained with the Raman spectroscopy for characterization of different materials. The Raman scattering spectra obtained for zinc selenide crystals, mixed crystals zinc selenide admixtured with magnesium or beryllium, oxide crystals including strontium lanthanum gallate, molecular crystals of triammonium hydrogen diseleniate and a homologous series of polyoxyethylene glycols are analysed.

  14. Thermodynamics of gallium arsenide electrodeposition

    International Nuclear Information System (INIS)

    Perrault, G.G.

    1986-01-01

    Gallium Arsenide is well known as a very interesting compound for photoelectrical devices. Up to now, it has been prepared mostly by high temperature technology, and the authors considered that it might be of interest to set up an electrodeposition technique suitable to prepare thin layers of this compound. A reaction sequence similar to the one observed for Cadmium Sulfide or Cadmium Telluride could be considered. In these cases, the metal chalcogenide is obtained from the precipitation of the metal ions dissolved in the solutions by the reduction product of the metalloidic compound

  15. Interdigitated Back-Surface-Contact Solar Cell Modeling Using Silvaco Atlas

    Science.gov (United States)

    2015-06-01

    and Gallium Arsenide, and triple -junction cells with Indium Gallium Phosphide, Gallium Arsenide, and Germanium. Work was also done by Fotis [4] on...output power at various points on the IV curve, from [15]. ............................18 Figure 15. IV curve with the MPP. The orange area is...53 Figure 35. Simulation results of cell power output at maximum power point for varying bulk thicknesses

  16. Pulsed laser deposition of HfO{sub 2} thin films on indium zinc oxide: Band offsets measurements

    Energy Technology Data Exchange (ETDEWEB)

    Craciun, D.; Craciun, V., E-mail: valentin.craciun@inflpr.ro

    2017-04-01

    Highlights: • High quality amorphous IZO and HfO{sub 2} films were obtained by PLD technique. • XPS measurements were used to obtain the valence band alignment in HfO{sub 2}/IZO heterostructure. • A valence band offset (ΔE{sub V}) of 1.75 eV was obtained for the HfO{sub 2}/IZO heterostructure. • A conduction band offset (ΔE{sub C}) of 0.65 eV was estimated for the HfO{sub 2}/IZO heterostructure. - Abstract: One of the most used dielectric films for amorphous indium zinc oxide (IZO) based thin films transistor is HfO{sub 2}. The estimation of the valence band discontinuity (ΔE{sub V}) of HfO{sub 2}/IZO heterostructure grown using the pulsed laser deposition technique, with In/(In + Zn) = 0.79, was obtained from X-ray photoelectron spectroscopy (XPS) measurements. The binding energies of Hf 4d5, Zn 2p3 and In 3d5 core levels and valence band maxima were measured for thick pure films and for a very thin HfO{sub 2} film deposited on a thick IZO film. A value of ΔE{sub V} = 1.75 ± 0.05 eV was estimated for the heterostructure. Taking into account the measured HfO{sub 2} and IZO optical bandgap values of 5.50 eV and 3.10 eV, respectively, a conduction band offset ΔE{sub C} = 0.65 ± 0.05 eV in HfO{sub 2}/IZO heterostructure was then obtained.

  17. The effect of annealing ambient on the characteristics of an indium-gallium-zinc oxide thin film transistor.

    Science.gov (United States)

    Park, Soyeon; Bang, Seokhwan; Lee, Seungjun; Park, Joohyun; Ko, Youngbin; Jeon, Hyeongtag

    2011-07-01

    In this study, the effects of different annealing conditions (air, O2, N2, vacuum) on the chemical and electrical characteristics of amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFT) were investigated. The contact resistance and interface properties between the IGZO film and the gate dielectric improved after an annealing treatment. However, the chemical bonds in the IGZO bulk changed under various annealing atmospheres, which, in turn, altered the characteristics of the TFTs. The TFTs annealed in vacuum and N2 ambients exhibited undesired switching properties due to the high carrier concentration (>10(17) cm(-3)) of the IGZO active layer. In contrast, the IGZO TFTs annealed in air and oxygen ambients displayed clear transfer characteristics due to an adequately adjusted carrier concentration in the operating range of the TFT. Such an optimal carrier concentration arose through the stabilization of unstable chemical bonds in the IGZO film. With regard to device performance, the TFTs annealed in O2 and air exhibited saturation mobility values of 8.29 and 7.54 cm2/Vs, on-off ratios of 7.34 x 10(8) and 3.95 x 10(8), and subthreshold swing (SS) values of 0.23 and 0.19 V/decade, respectively. Therefore, proper annealing ambients contributed to internal modifications in the IGZO structure and led to an enhancement in the oxidation state of the metal. As a result, defects such as oxygen vacancies were eliminated. Oxygen annealing is thus effective for controlling the carrier concentration of the active layer, decreasing electron traps, and enhancing TFT performance.

  18. Effects of vacuum rapid thermal annealing on the electrical characteristics of amorphous indium gallium zinc oxide thin films

    Directory of Open Access Journals (Sweden)

    Hyun-Woo Lee

    2018-01-01

    Full Text Available We investigated the effects of vacuum rapid thermal annealing (RTA on the electrical characteristics of amorphous indium gallium zinc oxide (a-IGZO thin films. The a-IGZO films deposited by radiofrequency sputtering were subjected to vacuum annealing under various temperature and pressure conditions with the RTA system. The carrier concentration was evaluated by Hall measurement; the electron concentration of the a-IGZO film increased and the resistivity decreased as the RTA temperature increased under vacuum conditions. In a-IGZO thin-film transistors (TFTs with a bottom-gate top-contact structure, the threshold voltage decreased and the leakage current increased as the vacuum RTA temperature increased. As the annealing pressure decreased, the threshold voltage decreased, and the leakage current increased. X-ray photoelectron spectroscopy indicated changes in the lattice oxygen and oxygen vacancies of the a-IGZO films after vacuum RTA. At higher annealing temperatures, the lattice oxygen decreased and oxygen vacancies increased, which suggests that oxygen was diffused out in a reduced pressure atmosphere. The formation of oxygen vacancies increased the electron concentration, which consequently increased the conductivity of the a-IGZO films and reduced the threshold voltage of the TFTs. The results showed that the oxygen vacancies and electron concentrations of the a-IGZO thin films changed with the vacuum RTA conditions and that high-temperature RTA treatment at low pressure converted the IGZO thin film to a conductor.

  19. Fabrication of zinc indium oxide thin films and effect of post annealing on structural, chemical and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Vipin Kumar, E-mail: vipinjain7678@gmail.com [Institute of Engineering and Technology, JK Lakshmipat University, Jaipur 302026 (India); Kumar, Praveen [Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064 (India); Srivastava, Subodh; Vijay, Y.K. [Thin film and Membrane Science Laboratory, University of Rajasthan, Jaipur 302004 (India)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer ZIO films have been prepared by flash evaporation. Black-Right-Pointing-Pointer Thermal stability of ZIO films. Black-Right-Pointing-Pointer Structural, optical, electrical and other properties have been studied. - Abstract: In the present study, zinc indium oxide (ZIO) thin films were deposited on glass substrate with varying concentration (ZnO:In{sub 2}O{sub 3} - 100:0, 90:10, 70:30 and 50:50 wt.%) at room temperature by flash evaporation technique. These deposited ZIO films were annealed in vacuum to study the thermal stability and to see the effects on the structural, chemical and electrical properties. The XRD analysis indicates that crystallization of the ZIO films strongly depends on concentration of In{sub 2}O{sub 3} and post annealing where annealed films showed polycrystalline nature. The surface morphological study of the films using scanning electron microscopy (SEM) revealed the formation of nanostructured ZIO thin films. The surface composition and oxidation state were analyzed by X-ray photoelectron spectroscopy. XPS spectra shows that as the concentration of In{sub 2}O{sub 3} increases from 10 to 50 wt%, the surface composition ratio In/Zn and O/Zn increases for as-prepared and annealed ZIO films while the XPS valance band spectra manifest the electronic transitions. The electrical resistivity was found to be decreased while carrier concentration and Hall mobility increased for both types of films with increasing concentration of In{sub 2}O{sub 3}.

  20. Extraction of indium from extremely diluted solutions; Gewinnung von Indium aus extrem verduennten Loesungen

    Energy Technology Data Exchange (ETDEWEB)

    Vostal, Radek; Singliar, Ute; Froehlich, Peter [TU Bergakademie Freiberg (Germany). Inst. fuer Technische Chemie

    2017-02-15

    The demand for indium is rising with the growth of the electronics industry, where it is mainly used. Therefore, a multistage extraction process was developed to separate indium from a model solution whose composition was adequate to sphalerite ore. The initially very low concentration of indium in the solution was significantly increased by several successive extraction and reextraction steps. The process described is characterized by a low requirement for chemicals and a high purity of the obtained indium oxide.

  1. Theory of two-magnon Raman scattering in alkaline iron selenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.S. [Department of Physics, Yanshan University, Qinhuangdao 006004 (China); Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan (China); Zhang, A.M. [Department of Physics, Renmin University of China, Beijing 100872 (China); Xu, T.F. [Department of Physics, Yanshan University, Qinhuangdao 006004 (China); Wu, W.C., E-mail: wu@phy.ntnu.edu.tw [Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan (China)

    2014-11-15

    Highlights: • Two-magnon Raman scattering is theoretically studied for alkaline iron selenides. • Underlying spin interactions of the √(5)×√(5) AF superstructure are investigated in details. • Optimal set of exchange parameters is revealed when fitting to experiments. - Abstract: Motivated by the recent experiment of two-magnon Raman scattering in alkaline iron selenide superconductors (Zhang et al., 2012), we investigate in details the underlying spin interactions of the √(5)×√(5) antiferromagnetic superstructure. Based on the linear spin wave approximation, the Fleury-London (FL) two-magnon Raman cross-sections are calculated. By comparing theoretical results with the Raman data in both A{sub g} and B{sub g} channels, an optimal set of exchange parameters which are consistent with the fitting to the neutron scattering data are obtained. It reveals that the experimentally observed broad and asymmetric peaks around 1600 cm{sup −1} are dominantly originated from quasiparticle excitations in two nearly degenerate magnon bands in the (0,±π) and (±π,0) directions. The result thus supports that the magnetic properties in alkaline iron selenide AFe{sub 1.6+x}Se{sub 6} superconductors can be basically described by the quantum spin model with up to third nearest-neighbor exchange couplings.

  2. High-performance a-IGZO thin-film transistor with conductive indium-tin-oxide buried layer

    Science.gov (United States)

    Ahn, Min-Ju; Cho, Won-Ju

    2017-10-01

    In this study, we fabricated top-contact top-gate (TCTG) structure of amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) with a thin buried conductive indium-tin oxide (ITO) layer. The electrical performance of a-IGZO TFTs was improved by inserting an ITO buried layer under the IGZO channel. Also, the effect of the buried layer's length on the electrical characteristics of a-IGZO TFTs was investigated. The electrical performance of the transistors improved with increasing the buried layer's length: a large on/off current ratio of 1.1×107, a high field-effect mobility of 35.6 cm2/Vs, a small subthreshold slope of 116.1 mV/dec, and a low interface trap density of 4.2×1011 cm-2eV-1 were obtained. The buried layer a-IGZO TFTs exhibited enhanced transistor performance and excellent stability against the gate bias stress.

  3. Improvement of bias-stability in amorphous-indium-gallium-zinc-oxide thin-film transistors by using solution-processed Y{sub 2}O{sub 3} passivation

    Energy Technology Data Exchange (ETDEWEB)

    An, Sungjin; Mativenga, Mallory; Kim, Youngoo; Jang, Jin, E-mail: jjang@khu.ac.kr [Advanced Display Research Center, Department of Information Display, Kyung Hee University, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of)

    2014-08-04

    We demonstrate back channel improvement of back-channel-etch amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors by using solution-processed yttrium oxide (Y{sub 2}O{sub 3}) passivation. Two different solvents, which are acetonitrile (35%) + ethylene glycol (65%), solvent A and deionized water, solvent B are investigated for the spin-on process of the Y{sub 2}O{sub 3} passivation—performed after patterning source/drain (S/D) Mo electrodes by a conventional HNO{sub 3}-based wet-etch process. Both solvents yield devices with good performance but those passivated by using solvent B exhibit better light and bias stability. Presence of yttrium at the a-IGZO back interface, where it occupies metal vacancy sites, is confirmed by X-ray photoelectron spectroscopy. The passivation effect of yttrium is more significant when solvent A is used because of the existence of more metal vacancies, given that the alcohol (65% ethylene glycol) in solvent A may dissolve the metal oxide (a-IGZO) through the formation of alkoxides and water.

  4. Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices

    International Nuclear Information System (INIS)

    Jiang, X.; Wong, F.L.; Fung, M.K.; Lee, S.T.

    2003-01-01

    Highly transparent conductive, aluminum-doped zinc oxide (ZnO:Al) films were deposited on glass substrates by midfrequency magnetron sputtering of metallic aluminum-doped zinc target. ZnO:Al films with surface work functions between 3.7 and 4.4 eV were obtained by varying the sputtering conditions. Organic light-emitting diodes (OLEDs) were fabricated on these ZnO:Al films. A current efficiency of higher than 3.7 cd/A, was achieved. For comparison, 3.9 cd/A was achieved by the reference OLEDs fabricated on commercial indium-tin-oxide substrates

  5. Comparison of the electronic structure of amorphous versus crystalline indium gallium zinc oxide semiconductor: structure, tail states and strain effects

    International Nuclear Information System (INIS)

    De Jamblinne de Meux, A; Genoe, J; Heremans, P; Pourtois, G

    2015-01-01

    We study the evolution of the structural and electronic properties of crystalline indium gallium zinc oxide (IGZO) upon amorphization by first-principles calculation. The bottom of the conduction band (BCB) is found to be constituted of a pseudo-band of molecular orbitals that resonate at the same energy on different atomic sites. They display a bonding character between the s orbitals of the metal sites and an anti-bonding character arising from the interaction between the oxygen and metal s orbitals. The energy level of the BCB shifts upon breaking of the crystal symmetry during the amorphization process, which may be attributed to the reduction of the coordination of the cationic centers. The top of the valence band (TVB) is constructed from anti-bonding oxygen p orbitals. In the amorphous state, they have random orientation, in contrast to the crystalline state. This results in the appearance of localized tail states in the forbidden gap above the TVB. Zinc is found to play a predominant role in the generation of these tail states, while gallium hinders their formation. Last, we study the dependence of the fundamental gap and effective mass of IGZO on mechanical strain. The variation of the gap under strain arises from the enhancement of the anti-bonding interaction in the BCB due to the modification of the length of the oxygen–metal bonds and/or to a variation of the cation coordination. This effect is less pronounced for the amorphous material compared to the crystalline material, making amorphous IGZO a semiconductor of choice for flexible electronics. Finally, the effective mass is found to increase upon strain, in contrast to regular materials. This counterintuitive variation is due to the reduction of the electrostatic shielding of the cationic centers by oxygen, leading to an increase of the overlaps between the metal orbitals at the origin of the delocalization of the BCB. For the range of strain typically met in flexible electronics, the induced

  6. Damage-free back channel wet-etch process in amorphous indium-zinc-oxide thin-film transistors using a carbon-nanofilm barrier layer.

    Science.gov (United States)

    Luo, Dongxiang; Zhao, Mingjie; Xu, Miao; Li, Min; Chen, Zikai; Wang, Lang; Zou, Jianhua; Tao, Hong; Wang, Lei; Peng, Junbiao

    2014-07-23

    Amorphous indium-zinc-oxide thin film transistors (IZO-TFTs) with damage-free back channel wet-etch (BCE) process were investigated. A carbon (C) nanofilm was inserted into the interface between IZO layer and source/drain (S/D) electrodes as a barrier layer. Transmittance electron microscope images revealed that the 3 nm-thick C nanofilm exhibited a good corrosion resistance to a commonly used H3PO4-based etchant and could be easily eliminated. The TFT device with a 3 nm-thick C barrier layer showed a saturated field effect mobility of 14.4 cm(2) V(-1) s(-1), a subthreshold swing of 0.21 V/decade, an on-to-off current ratio of 8.3 × 10(10), and a threshold voltage of 2.0 V. The favorable electrical performance of this kind of IZO-TFTs was due to the protection of the inserted C to IZO layer in the back-channel-etch process. Moreover, the low contact resistance of the devices was proved to be due to the graphitization of the C nanofilms after annealing. In addition, the hysteresis and thermal stress testing confirmed that the usage of C barrier nanofilms is an effective method to fabricate the damage-free BCE-type devices with high reliability.

  7. Vacancy-indium clusters in implanted germanium

    KAUST Repository

    Chroneos, Alexander I.

    2010-04-01

    Secondary ion mass spectroscopy measurements of heavily indium doped germanium samples revealed that a significant proportion of the indium dose is immobile. Using electronic structure calculations we address the possibility of indium clustering with point defects by predicting the stability of indium-vacancy clusters, InnVm. We find that the formation of large clusters is energetically favorable, which can explain the immobility of the indium ions. © 2010 Elsevier B.V. All rights reserved.

  8. Vacancy-indium clusters in implanted germanium

    KAUST Repository

    Chroneos, Alexander I.; Kube, R.; Bracht, Hartmut A.; Grimes, Robin W.; Schwingenschlö gl, Udo

    2010-01-01

    Secondary ion mass spectroscopy measurements of heavily indium doped germanium samples revealed that a significant proportion of the indium dose is immobile. Using electronic structure calculations we address the possibility of indium clustering with point defects by predicting the stability of indium-vacancy clusters, InnVm. We find that the formation of large clusters is energetically favorable, which can explain the immobility of the indium ions. © 2010 Elsevier B.V. All rights reserved.

  9. Electrical Performance and Reliability Improvement of Amorphous-Indium-Gallium-Zinc-Oxide Thin-Film Transistors with HfO₂ Gate Dielectrics by CF₄ Plasma Treatment.

    Science.gov (United States)

    Fan, Ching-Lin; Tseng, Fan-Ping; Tseng, Chiao-Yuan

    2018-05-17

    In this work, amorphous indium-gallium-zinc oxide thin-film transistors (a-IGZO TFTs) with a HfO₂ gate insulator and CF₄ plasma treatment was demonstrated for the first time. Through the plasma treatment, both the electrical performance and reliability of the a-IGZO TFT with HfO₂ gate dielectric were improved. The carrier mobility significantly increased by 80.8%, from 30.2 cm²/V∙s (without treatment) to 54.6 cm²/V∙s (with CF₄ plasma treatment), which is due to the incorporated fluorine not only providing an extra electron to the IGZO, but also passivating the interface trap density. In addition, the reliability of the a-IGZO TFT with HfO₂ gate dielectric has also been improved by the CF₄ plasma treatment. By applying the CF₄ plasma treatment to the a-IGZO TFT, the hysteresis effect of the device has been improved and the device's immunity against moisture from the ambient atmosphere has been enhanced. It is believed that the CF₄ plasma treatment not only significantly improves the electrical performance of a-IGZO TFT with HfO₂ gate dielectric, but also enhances the device's reliability.

  10. Peroxidase-like activity of nanocrystalline cobalt selenide and its application for uric acid detection

    Directory of Open Access Journals (Sweden)

    Zhuang QQ

    2017-04-01

    Full Text Available Quan-Quan Zhuang,1 Zhi-Hang Lin,1 Yan-Cheng Jiang,1 Hao-Hua Deng,2 Shao-Bin He,1,3 Li-Ting Su,4 Xiao-Qiong Shi,2 Wei Chen2 1Department of Pharmacy, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, 2Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 3Department of Pharmacy, Quanzhou Infectious Disease Hospital, 4Department of Pharmaceutical Analysis, Quanzhou Medical College, Quanzhou, People’s Republic of China Abstract: Dendrite-like cobalt selenide nanostructures were synthesized from cobalt and selenium powder precursors by a solvothermal method in anhydrous ethylenediamine. The as-prepared nanocrystalline cobalt selenide was found to possess peroxidase-like activity that could catalyze the reaction of peroxidase substrates in the presence of H2O2. A spectrophotometric method for uric acid (UA determination was developed based on the nanocrystalline cobalt selenide-catalyzed coupling reaction between N-ethyl-N-(3-sulfopropyl-3-methylaniline sodium salt and 4-aminoantipyrine (4-AAP in the presence of H2O2. Under optimum conditions, the absorbance was proportional to the concentration of UA over the range of 2.0–40 µM with a detection limit of 0.5 µM. The applicability of the proposed method has been validated by determination of UA in human serum samples with satisfactory results. Keywords: enzyme mimics, cobalt selenide, peroxidase-like activity, uric acid, human serum

  11. Effect of Time and Deposition Method on Quality of Phosphonic Acid Modifier Self-Assembled Monolayers on Indium Zinc Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Sang, Lingzi; Knesting, Kristina M.; Bulusu, Anuradha; Sigdel, Ajaya K.; Giordano, Anthony J.; Marder, Seth R.; Berry, Joseph J.; Graham, Samuel; Ginger, David S.; Pemberton, Jeanne E.

    2016-12-15

    Phosphonic acid (PA) self-assembled monolayers (SAMs) are utilized at critical interfaces between transparent conductive oxides (TCO) and organic active layers in organic photovoltaic devices (OPVs). The effects of PA deposition method and time on the formation of close-packed, high-quality monolayers is investigated here for SAMs fabricated by solution deposition, micro-contact printing, and spray coating. The solution deposition isotherm for pentafluorinated benzylphosphonic acid (F5BnPA) on indium-doped zinc oxide (IZO) is studied using polarization modulation-infrared reflection-absorption spectroscopy (PM-IRRAS) at room temperature as a model PA/IZO system. Fast surface adsorption occurs within the first min; however, well-oriented high-quality SAMs are reached only after -48 h, presumably through a continual process of molecular adsorption/desorption and monolayer filling accompanied by molecular reorientation. Two other rapid, soak-free deposition techniques, micro-contact printing and spray coating, are also explored. SAM quality is compared for deposition of phenyl phosphonic acid (PPA), F13-octylphosphonic acid (F13OPA), and pentafluorinated benzyl phosphonic acid (F5BnPA) by solution deposition, micro-contact printing and spray coating using PM-IRRAS. In contrast to micro-contact printing and spray coating techniques, 48-168 h solution deposition at both room temperature and 70 degrees C result in contamination- and surface etch-free close-packed monolayers with good reproducibility. SAMs fabricated by micro-contact printing and spray coating are much less well ordered.

  12. Analysis of interfacial energy states in Au/pentacene/polyimide/indium-zinc-oxide diodes by electroluminescence spectroscopy and electric-field-induced optical second-harmonic generation measurement

    Science.gov (United States)

    Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2016-03-01

    By using electroluminescence (EL) spectroscopy and electric-field-induced optical second-harmonic generation (EFISHG) measurement, we analyzed interfacial energy states in Au/pentacene/polyimide/indium-zinc-oxide (IZO) diodes, to characterize the pentacene/polyimide interface. Under positive voltage application to the Au electrode with reference to the IZO electrode, the EFISHG showed that holes are injected from Au electrode, and accumulate at the pentacene/polyimide interface with the surface charge density of Qs = 3.8 × 10-7 C/cm2. The EL spectra suggested that the accumulated holes are not merely located in the pentacene but they are transferred to the interface states of polyimide. These accumulated holes distribute with the interface state density greater than 1012 cm-2 eV-1 in the range E = 1.5-1.8 and 1.7-2.4 eV in pentacene and in polyimide, respectively, under assumption that accumulated holes govern recombination radiation. The EL-EFISHG measurement is helpful to characterize organic-organic layer interfaces in organic devices and provides a way to analyze interface energy states.

  13. Chip-scale white flip-chip light-emitting diode containing indium phosphide/zinc selenide quantum dots

    Science.gov (United States)

    Fan, Bingfeng; Yan, Linchao; Lao, Yuqin; Ma, Yanfei; Chen, Zimin; Ma, Xuejin; Zhuo, Yi; Pei, Yanli; Wang, Gang

    2017-08-01

    A method for preparing a quantum dot (QD)-white light-emitting diode (WLED) is reported. Holes were etched in the SiO2 layer deposited on the sapphire substrate of the flip-chip LED by inductively coupled plasma, and these holes were then filled with QDs. An ultraviolet-curable resin was then spin-coated on top of the QD-containing SiO2 layer, and the resin was cured to act as a protecting layer. The reflective sidewall structure minimized sidelight leakage. The fabrication of the QD-WLED is simple in preparation and compatible with traditional LED processes, which was the minimum size of the WLED chip-scale integrated package. InP/ZnS core-shell QDs were used as the converter in the WLED. A blue light-emitting diode with a flip-chip structure was used as the excitation source. The QD-WLED exhibited color temperatures from 5900 to 6400 K and Commission Internationale De L'Elcairage color coordinates from (0.315, 0.325) to (0.325, 0.317), under drive currents from 100 to 400 mA. The QD-WLED exhibited stable optoelectronic properties.

  14. Tandem for power generation. New sandwich concentrator cell with over 30% efficiency; Im Tandem Strom erzeugen. Neue Mehrschicht-Konzentratorzelle erzielt ueber 30% Wirkungsgrad

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2000-11-01

    The Fraunhofer-Institut fuer Solare Energiesysteme at Freiburg, Germany, claims a 'best ever' efficiency of a monolithic tandem concentrator solar cell with a sandwich structure based on gallium-indium arsenide and gallium-indium phosphide. The new solar cell can be produced in a single process based on an Aixtron AG (Aachen, Germany) separator which is also used for industrial production of solar cells for aerospace applications. [German] Das Fraunhofer-Institut fuer Solare Energiesysteme in Freiburg hat einen neuen Wirkungsgradrekord fuer monolithische Tandem-Konzentratorsolarzellen gemeldet. Die Wissenschaftler am Fraunhofer-Institut fuer Solare Energiesysteme (Fraunhofer ISE) haben neue Schichtstrukturen auf der Basis von Gallium-Indium-Arsenid und Gallium-Inidum-Phosphid entwickelt. Die neue Solarzelle kann in einem einzigen Prozess hergestellt werden. Fuer diesen Prozess setzen die Freiburger Solarzellenforscher eine Abscheideanlage der Firma Aixtron AG aus Aachen ein, wie sie auch in der Industrie zur Herstellung von Solarzellen fuer Anwendungen im Weltraum genutzt wird. (orig.)

  15. Scattering and mobility in indium gallium arsenide channel, pseudomorphic high electron mobility transistors (InGaAs pHEMTs)

    International Nuclear Information System (INIS)

    Pearson, J.L.

    1999-03-01

    Extensive transport measurements have been completed on deep and shallow-channelled InGaAs p-HEMTs of varying growth temperature, indium content, spacer thickness and doping density, with a view to a thorough characterisation, both in the metallic and the localised regimes. Particular emphasis was given to MBE grown layers, with characteristics applicable for device use, but low measurement temperatures were necessary to resolve the elastic scattering mechanisms. Measurements made in the metallic regime included transport and quantum mobility - the former over a range of temperatures between 1.5K to 300K. Conductivity measurements were also acquired in the strong localisation regime between about 1.5K and 100K. Experimentally determined parameters were tested for comparison with those predicted by an electrostatic model. Excellent agreement was obtained for carrier density. Other parameters were less well predicted, but the relevant experimental measurements, including linear depletion of the 2DEG, were sensitive to any excess doping above a 'critical' value determined by the model. At low temperature (1.5K), it was found that in all samples tested, transport mobility was strongly limited at all carrier densities by a large q mechanism, possibly intrinsic to the channel. This was ascribed either to scattering by the long-range potentials arising from the indium concentration fluctuations or fluctuations in the thickness of the channel layer. This mechanism dominates the transport at low carrier densities for all samples, but at high carrier density, an additional mechanism is significant for samples with the thinnest spacers tested (2.5nm). This is ascribed to direct electron interaction with the states of the donor layer, and produces a characteristic transport mobility peak. At higher carrier densities, past the peak, quantum mobility was found only to increase monotonically in value. Remote ionised impurity scattering while significant, particularly for samples

  16. Synthesis, structure, and thermal properties of soluble hydrazinium germanium(IV) and tin(IV) selenide salts.

    Science.gov (United States)

    Mitzi, David B

    2005-05-16

    The crystal structures of two hydrazinium-based germanium(IV) and tin(IV) selenide salts are determined. (N(2)H(5))(4)Ge(2)Se(6) (1) [I4(1)cd, a = 12.708(1) Angstroms, c = 21.955(2) Angstroms, Z = 8] and (N(2)H(4))(3)(N(2)H(5))(4)Sn(2)Se(6) (2) [P, a = 6.6475(6) Angstroms, b = 9.5474(9) Angstroms, c = 9.8830(10) Angstroms, alpha = 94.110(2) degrees, beta = 99.429(2) degrees, gamma = 104.141(2) degrees, Z = 1] each consist of anionic dimers of edge-sharing metal selenide tetrahedra, M(2)Se(6)(4-) (M = Ge or Sn), separated by hydrazinium cations and, for 2, additional neutral hydrazine molecules. Substantial hydrogen bonding exists among the hydrazine/hydrazinium molecules as well as between the hydrazinium cations and the selenide anions. Whereas the previously reported tin(IV) sulfide system, (N(2)H(5))(4)Sn(2)S(6), decomposes cleanly to microcrystalline SnS(2) when heated to 200 degrees C in an inert atmosphere, higher temperatures (>300 degrees C) are required to dissociate selenium from 1 and 2 for the analogous preparations of single-phase metal selenides. The metal chalcogenide salts are highly soluble in hydrazine, as well as in a variety of amines and DMSO, highlighting the potential usefulness of these compounds as precursors for the solution deposition of the corresponding metal chalcogenide films.

  17. Zinc deposition and dissolution in methanesulfonic acid onto a carbon composite electrode as the negative electrode reactions in a hybrid redox flow battery

    International Nuclear Information System (INIS)

    Leung, P.K.; Ponce-de-Leon, C.; Low, C.T.J.; Walsh, F.C.

    2011-01-01

    Highlights: → Use methanesulfonic acid to avoid dendrite formation during a long (>4 h) zinc electrodeposition. → Electrochemical characterization of Zn(II) deposition and its morphology using methanesulfonic acid solutions. → Use of additives to improve the efficiency of zinc deposition and dissolution as the half cell reaction of a redox flow battery. - Abstract: Electrodeposition and dissolution of zinc in methanesulfonic acid were studied as the negative electrode reactions in a hybrid redox flow battery. Cyclic voltammetry at a rotating disk electrode was used to characterize the electrochemistry and the effect of process conditions on the deposition and dissolution rate of zinc in aqueous methanesulfonic acid. At a sufficiently high current density, the deposition process became a mass transport controlled reaction. The diffusion coefficient of Zn 2+ ions was 7.5 x 10 -6 cm 2 s -1 . The performance of the zinc negative electrode in a parallel plate flow cell was also studied as a function of Zn 2+ ion concentration, methanesulfonic acid concentration, current density, electrolyte flow rate, operating temperature and the addition of electrolytic additives, including potassium sodium tartarate, tetrabutylammonium hydroxide, and indium oxide. The current-, voltage- and energy efficiencies of the zinc-half cell reaction and the morphologies of the zinc deposits are also discussed. The energy efficiency improved from 62% in the absence of additives to 73% upon the addition of 2 x 10 -3 mol dm -3 of indium oxide as a hydrogen suppressant. In aqueous methanesulfonic acid with or without additives, there was no significant dendrite formation after zinc electrodeposition for 4 h at 50 mA cm -2 .

  18. Implant damage and redistribution of indium in indium-implanted thin silicon-on-insulator

    International Nuclear Information System (INIS)

    Chen Peng; An Zhenghua; Zhu Ming; Fu, Ricky K.Y.; Chu, Paul K.; Montgomery, Neil; Biswas, Sukanta

    2004-01-01

    The indium implant damage and diffusion behavior in thin silicon-on-insulator (SOI) with a 200 nm top silicon layer were studied for different implantation energies and doses. Rutherford backscattering spectrometry in the channeling mode (RBS/C) was used to characterize the implant damage before and after annealing. Secondary ion mass spectrometry (SIMS) was used to study the indium transient enhanced diffusion (TED) behavior in the top Si layer of the SOI structure. An anomalous redistribution of indium after relatively high energy (200 keV) and dose (1 x 10 14 cm -2 ) implantation was observed in both bulk Si and SOI substrates. However, there exist differences in these two substrates that are attributable to the more predominant out-diffusion of indium as well as the influence of the buried oxide layer in the SOI structure

  19. Effects of argon flow rate on electrical properties of amorphous indium gallium zinc oxide thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, A.K.; Wu, G.M., E-mail: wu@mail.cgu.edu.tw

    2016-04-30

    In this report, amorphous indium gallium zinc oxide (a-IGZO) thin films were deposited on glass substrates using different argon flow rates (AFRs). The impact on the electrical properties of the a-IGZO thin-film transistors with various AFRs during film growth has been carefully investigated. The AFR varied 20–60 sccm while the oxygen flow rate was maintained at 1 sccm. All a-IGZO films achieved transmittance higher than 80% in the wavelength range of 350–1000 nm, and it increased slightly with increasing AFR in the higher wavelength region. The rise in partial pressure due to increased AFR could affect the performance, in particular by increasing the current on/off ratio, and changes in electron mobility, sub-threshold swing voltage and threshold voltage. The optimal results were attained at AFR of 50 sccm. The field effect mobility, sub-threshold swing, ratio of on-current to the off-current, interfacial trap density and threshold voltage are 27.7 cm{sup 2}/V·s, 0.11 V/dec, 2.9 × 10{sup 8}, 1.1 × 10{sup 12} cm{sup −2} eV{sup −1} and 0.84 V, respectively. In addition, good electrical properties were achieved using dielectric SiO{sub 2} prepared by simple, low-cost electron beam evaporator system. - Highlights: • IGZO thin films RF-sputtered on glass substrates under various Ar to oxygen flow rates • The electrical performances and thin film quality of a-IGZO TFT were characterized. • High mobility 27.7 cm{sup 2}/V·s and very small sub-threshold voltage 0.11 V/decade obtained. • Simple and low cost electron-beam deposited SiO{sub 2} used as gate dielectric. • Ohmic behavior of source–drain with channel material has been achieved.

  20. Effects of argon flow rate on electrical properties of amorphous indium gallium zinc oxide thin-film transistors

    International Nuclear Information System (INIS)

    Sahoo, A.K.; Wu, G.M.

    2016-01-01

    In this report, amorphous indium gallium zinc oxide (a-IGZO) thin films were deposited on glass substrates using different argon flow rates (AFRs). The impact on the electrical properties of the a-IGZO thin-film transistors with various AFRs during film growth has been carefully investigated. The AFR varied 20–60 sccm while the oxygen flow rate was maintained at 1 sccm. All a-IGZO films achieved transmittance higher than 80% in the wavelength range of 350–1000 nm, and it increased slightly with increasing AFR in the higher wavelength region. The rise in partial pressure due to increased AFR could affect the performance, in particular by increasing the current on/off ratio, and changes in electron mobility, sub-threshold swing voltage and threshold voltage. The optimal results were attained at AFR of 50 sccm. The field effect mobility, sub-threshold swing, ratio of on-current to the off-current, interfacial trap density and threshold voltage are 27.7 cm"2/V·s, 0.11 V/dec, 2.9 × 10"8, 1.1 × 10"1"2 cm"−"2 eV"−"1 and 0.84 V, respectively. In addition, good electrical properties were achieved using dielectric SiO_2 prepared by simple, low-cost electron beam evaporator system. - Highlights: • IGZO thin films RF-sputtered on glass substrates under various Ar to oxygen flow rates • The electrical performances and thin film quality of a-IGZO TFT were characterized. • High mobility 27.7 cm"2/V·s and very small sub-threshold voltage 0.11 V/decade obtained. • Simple and low cost electron-beam deposited SiO_2 used as gate dielectric. • Ohmic behavior of source–drain with channel material has been achieved.

  1. Fast Photo-detection in Phototransistors based on Group III-VI Layered Materials.

    Science.gov (United States)

    Patil, Prasanna; Ghosh, Sujoy; Wasala, Milinda; Lei, Sidong; Vajtai, Robert; Ajayan, Pulickel; Talapatra, Saikat

    Response time of a photo detector is one of the crucial aspect of photo-detection. Recently it has been shown that direct band gap of few layered group III-VI materials helps in increased absorption of light thereby enhancing the photo responsive properties of these materials. Ternary system of Copper Indium Selenide has been extensively used in optoelectronics industry and it is expected that 2D layered structure of Copper Indium Selenide will be a key component of future optoelectronics devices based on 2D materials. Here we report fast photo detection in few layers of Copper Indium Selenide (CuIn7Se11) phototransistor. Few-layers of CuIn7Se11 flakes were exfoliated from crystals grown using chemical vapor transport technique. Our photo response characterization indicates responsivity of 104 mA/W with external quantum efficiency exceeding 103. We have found response time of few μs which is one of the fastest response among photodetectors based on 2D materials. We also found specific detectivity of 1012 Jones which is an order higher than conventional photodetectors. A comparison between response times of various layered group III-VI materials will be presented and discussed. This work is supported by the U.S. Army Research Office through a MURI Grant # W911NF-11-1-0362.

  2. Synthesis, characterization, and anomalous dielectric and conductivity performance of one-dimensional (bdaH)InSe2 (bda = 1,4-butanediamine)

    International Nuclear Information System (INIS)

    Du, Ke-Zhao; Hu, Wan-Biao; Hu, Bing; Guan, Xiang-Feng; Huang, Xiao-Ying

    2011-01-01

    Graphical abstract: Anomalous dielectric and conductivity performance have been observed in the organic-containing indium selenide (bdaH)InSe 2 , which are attributed to the water molecules existing in the crystal boundary rather than phase transition. Highlights: → The title compound is the first example of organic-containing one-dimensional indium selenide. → The anomalous dielectric peak is attributed to water molecules in crystal boundary. → The inorganic and organic components of the title compound are connected via hydrogen bonding to form a supramolecular three-dimensional network. -- Abstract: A new indium selenide, namely (bdaH)InSe 2 (1) (bda = 1,4-butanediamine) has been solvothermally synthesized and structurally characterized. It belongs to the non-centrosymmetric space group Fdd2. Its structure features an infinite one-dimensional anionic chain of [InSe 2 ] n n- with monoprotonated [bdaH] + as charge compensating cation. The organic [bdaH] + cations are joined into a supramolecular one-dimensional chain via N-H...N hydrogen bonding, which further interacts with the inorganic chain via N-H...Se and C-H...Se hydrogen bonding, forming a supramolecular three-dimensional network. Based on such a well-defined structure, the thermal stability, optical, conductivity, and dielectric properties were systematically investigated, showing that dielectric constant, as well as conductivity, had a hump at about 95 o C, which could be attributed to water molecules in the crystal boundary.

  3. Electrically Driven Photonic Crystal Nanocavity Devices

    Science.gov (United States)

    2012-01-01

    material, here gallium arsenide and indium arsenide self- assembled quantum dots (QDs). QDs are preferred for the gain medium because they can have...blue points ) and 150 K (green points ). The black lines are linear fits to the above threshold output power of the lasers, which are used to find the...SHAMBAT et al.: ELECTRICALLY DRIVEN PHOTONIC CRYSTAL NANOCAVITY DEVICES 1707 Fig. 13. (a) Tilted SEM picture of a fabricated triple cavity device. The in

  4. Improvement of Electrical Characteristics and Stability of Amorphous Indium Gallium Zinc Oxide Thin Film Transistors Using Nitrocellulose Passivation Layer.

    Science.gov (United States)

    Shin, Kwan Yup; Tak, Young Jun; Kim, Won-Gi; Hong, Seonghwan; Kim, Hyun Jae

    2017-04-19

    In this research, nitrocellulose is proposed as a new material for the passivation layers of amorphous indium gallium zinc oxide thin film transistors (a-IGZO TFTs). The a-IGZO TFTs with nitrocellulose passivation layers (NC-PVLs) demonstrate improved electrical characteristics and stability. The a-IGZO TFTs with NC-PVLs exhibit improvements in field-effect mobility (μ FE ) from 11.72 ± 1.14 to 20.68 ± 1.94 cm 2 /(V s), threshold voltage (V th ) from 1.85 ± 1.19 to 0.56 ± 0.35 V, and on/off current ratio (I on/off ) from (5.31 ± 2.19) × 10 7 to (4.79 ± 1.54) × 10 8 compared to a-IGZO TFTs without PVLs, respectively. The V th shifts of a-IGZO TFTs without PVLs, with poly(methyl methacrylate) (PMMA) PVLs, and with NC-PVLs under positive bias stress (PBS) test for 10,000 s represented 5.08, 3.94, and 2.35 V, respectively. These improvements were induced by nitrogen diffusion from NC-PVLs to a-IGZO TFTs. The lone-pair electrons of diffused nitrogen attract weakly bonded oxygen serving as defect sites in a-IGZO TFTs. Consequently, the electrical characteristics are improved by an increase of carrier concentration in a-IGZO TFTs, and a decrease of defects in the back channel layer. Also, NC-PVLs have an excellent property as a barrier against ambient gases. Therefore, the NC-PVL is a promising passivation layer for next-generation display devices that simultaneously can improve electrical characteristics and stability against ambient gases.

  5. Light forces on an indium atomic beam

    International Nuclear Information System (INIS)

    Kloeter, B.

    2007-01-01

    In this thesis it was studied, whether indium is a possible candidate for the nanostructuration respectively atomic lithography. For this known method for the generation and stabilization of the light necessary for the laser cooling had to be fitted to the special properties of indium. The spectroscopy of indium with the 451 nm and the 410 nm light yielded first hints that the formulae for the atom-light interaction for a two-level atom cannot be directly transferred to the indium atom. By means of the obtained parameters of the present experiment predictions for a possible Doppler cooling of the indium atomic beam were calculated. Furthermore the possibility for the direct deposition of indium on a substrate was studied

  6. Sodium enhances indium-gallium interdiffusion in copper indium gallium diselenide photovoltaic absorbers.

    Science.gov (United States)

    Colombara, Diego; Werner, Florian; Schwarz, Torsten; Cañero Infante, Ingrid; Fleming, Yves; Valle, Nathalie; Spindler, Conrad; Vacchieri, Erica; Rey, Germain; Guennou, Mael; Bouttemy, Muriel; Manjón, Alba Garzón; Peral Alonso, Inmaculada; Melchiorre, Michele; El Adib, Brahime; Gault, Baptiste; Raabe, Dierk; Dale, Phillip J; Siebentritt, Susanne

    2018-02-26

    Copper indium gallium diselenide-based technology provides the most efficient solar energy conversion among all thin-film photovoltaic devices. This is possible due to engineered gallium depth gradients and alkali extrinsic doping. Sodium is well known to impede interdiffusion of indium and gallium in polycrystalline Cu(In,Ga)Se 2 films, thus influencing the gallium depth distribution. Here, however, sodium is shown to have the opposite effect in monocrystalline gallium-free CuInSe 2 grown on GaAs substrates. Gallium in-diffusion from the substrates is enhanced when sodium is incorporated into the film, leading to Cu(In,Ga)Se 2 and Cu(In,Ga) 3 Se 5 phase formation. These results show that sodium does not decrease per se indium and gallium interdiffusion. Instead, it is suggested that sodium promotes indium and gallium intragrain diffusion, while it hinders intergrain diffusion by segregating at grain boundaries. The deeper understanding of dopant-mediated atomic diffusion mechanisms should lead to more effective chemical and electrical passivation strategies, and more efficient solar cells.

  7. Coulometric titration at low temperatures-nonstoichiometric silver selenide

    OpenAIRE

    Beck, Gesa K.; Janek, Jürgen

    2003-01-01

    A modified coulometric titration technique is described for the investigation of nonstoichiometric phases at low temperatures. It allows to obtain titration curves at temperatures where the conventional coulometric titration technique fails because of too small chemical diffusion coefficients of the mobile component. This method for indirect coulometric titration is applied to silver selenide between -100 and 100 °C. The titration curves are analyzed on the basis of a defect chemical model an...

  8. Transparent and Flexible Zinc Tin Oxide Thin Film Transistors and Inverters using Low-pressure Oxygen Annealing Process

    Science.gov (United States)

    Lee, Kimoon; Kim, Yong-Hoon; Kim, Jiwan; Oh, Min Suk

    2018-05-01

    We report on the transparent and flexible enhancement-load inverters which consist of zinc tin oxide (ZTO) thin film transistors (TFTs) fabricated at low process temperature. To control the electrical characteristics of oxide TFTs by oxygen vacancies, we applied low-pressure oxygen rapid thermal annealing (RTA) process to our devices. When we annealed the ZTO TFTs in oxygen ambient of 2 Torr, they showed better electrical characteristics than those of the devices annealed in the air ambient of 760 Torr. To realize oxide thin film transistor and simple inverter circuits on flexible substrate, we annealed the devices in O2 of 2 Torr at 150° C and could achieve the decent electrical properties. When we used transparent conductive oxide electrodes such as indium zinc oxide (IZO) and indium tin oxide (ITO), our transparent and flexible inverter showed the total transmittance of 68% in the visible range and the voltage gain of 5. And the transition voltage in voltage transfer curve was located well within the range of operation voltage.

  9. The molecular beam epitaxy growth and characterization of zinc cadmium selenide/zinc cadmium magnesium selenide-indium phosphide quantum cascade structures for operation in the 3 - 5 um range

    Science.gov (United States)

    Charles, William O.

    The quantum cascade (QC) laser has captured the interest of researchers for almost three decades. In the early stages, researchers were very interested in proving the QC concept1 proposed by Kazarinov and Suris in 1971. This new concept gave researchers hope that very bulky energy inefficient infra-red (IR) lasers would be replaced with ones that are very compact, tunable and portable. Since the proposal of the QC laser concept and its first demonstration by researchers at Bell Laboratories2 in 1994, this technology has progressed to the point where it is now finding commercial applications in a variety of areas such as military counter measures, free space telecommunications, infra-red imaging and chemical spectroscopy.3-5 The success of this technology can be attributed to the coming of age of the techniques of molecular beam epitaxy (MBE) semiconductor growth and bandgap engineering. 6,7 Using MBE technology, the temperature of the source material can be stabilized by making use of a combination of proportional integral derivative (PID) controllers and thermocouple feedbacks. As a result, the material flux from the effusion cells can achieve stability better than (+/-) 1%. This flux stability together with a well-developed computer controlled shuttering mechanism make it possible to grow multi-quantum well (MQW) structures with excellent layer thickness precision (mono-layer scale) and interface quality. This stringent control of material flux is also a tool that is used by MBE growers to vary the material compositions for the growth of lattice matched and strain compensated QC structures. Today, MBE stands out as one of the premier methods for growing high performing QC lasers. The first successful demonstration of a QC laser2 was done using the InGaAs/InAlAs-InP material system. This demonstration was then repeated a few years later using GaAs/AlGaAs-InP.8 These III-V material systems were extensively studied to establish their material parameters. Given that material parameters are critically important in the process of modeling QC structures, it is not surprising that early success was achieved using these systems. Today, the best performing QC lasers operate in the 4--13 mum range and are produced using lattice matched InGaAs/InAlAs-InP. In order to produce short wavelength QC lasers, the well layer thicknesses in the active region of the device must be reduced in an effort to push the lasing energy states further apart. This reduction in well thicknesses results in the movement of the upper lasing state closer to the bandedge. This action increases the probability of the lost of lasing state electrons to the continuum. Therefore, in order to produce high performing short wavelength QC lasers, a large conduction band offset (CBO) is required. The CBO of lattice matched InGaAs/InAlAs-InP is 0.52 eV. In an attempt to produce high performing devices below 4 mum many researchers have resorted to the use of strain compensation9-11 . This approach has yielded very little improvement in performance due to electron scattering to the X and L intervalleys. This has lead to the exploration of wide bandgap material systems such as the antominides and nitrides. In this work the wide bandgap II-V Znx'Cd(1-x')Se/Zn xCdyMg(1-x-y)Se-InP will be explored for QC laser fabrication. To this end, QC lasers were designed for operation at 3--5 mum range. A Matlab-based program was written to calculate the energy level spacing within the active region of these devices. This simulation program was based on Schroindger's equation and the transfer matrix technique. Several calibration samples were grown to establish the doping levels and growth rate of the well and barrier materials. The growth rate was measured using scanning electron microscopy (SEM) and reflection high energy electron diffraction (RHEED) oscillations during MBE growth. X-ray diffraction measurements were performed to determine the lattice mismatch of the II-VI bulk layers, and therefore predict whether material composition adjustments were required to attain the lattice match condition. The samples that were grown were studied using photoluminescence (PL) to determine the bandgap of the well and barrier material. This information was then used to calculate the CBO of the II-VI MQW structure. In addition, PL studies were also carried out to look for material defects and assess the quality of the well/barrier interface. These II-VI QC samples were also subjected to Fourier transform infra-red (FTIR) absorption spectroscopy to determine the energy levels in the grown structures. After optimizing the active regions using simulation data and FTIR results, electroluminescence (EL) structures were grown and processed into QC emitters using a combination photolithography and electron beam contact deposition. The processed structures were then biased and investigated for IR emission at temperatures ranging from 80 K to room temperature.

  10. Two years of on-orbit gallium arsenide performance from the LIPS solar cell panel experiment

    Science.gov (United States)

    Francis, R. W.; Betz, F. E.

    1985-01-01

    The LIPS on-orbit performance of the gallium arsenide panel experiment was analyzed from flight operation telemetry data. Algorithms were developed to calculate the daily maximum power and associated solar array parameters by two independent methods. The first technique utilizes a least mean square polynomial fit to the power curve obtained with intensity and temperature corrected currents and voltages; whereas, the second incorporates an empirical expression for fill factor based on an open circuit voltage and the calculated series resistance. Maximum power, fill factor, open circuit voltage, short circuit current and series resistance of the solar cell array are examined as a function of flight time. Trends are analyzed with respect to possible mechanisms which may affect successive periods of output power during 2 years of flight operation. Degradation factors responsible for the on-orbit performance characteristics of gallium arsenide are discussed in relation to the calculated solar cell parameters. Performance trends and the potential degradation mechanisms are correlated with existing laboratory and flight data on both gallium arsenide and silicon solar cells for similar environments.

  11. New indium selenite-oxalate and indium oxalate with two- and three-dimensional structures

    International Nuclear Information System (INIS)

    Cao Junjun; Li Guodong; Chen Jiesheng

    2009-01-01

    Two new indium(III) compounds with extended structures, [In 2 (SeO 3 ) 2 (C 2 O 4 )(H 2 O) 2 ].2H 2 O (I) and [NH 3 (CH 2 ) 2 NH 3 ][In(C 2 O 4 ) 2 ] 2 .5H 2 O (II), have been prepared under mild hydrothermal conditions and structurally characterized by single-crystal X-ray diffraction, thermogravimetric analysis and infrared spectroscopy. Compound I crystallizes in the triclinic system, space group P-1, with a=5.2596(11) A, b=6.8649(14) A, c=9.3289(19) A, α=101.78(3) o , β=102.03(3) o , γ=104.52(3) o , while compound II crystallizes in the orthorhombic system, space group Fdd2, with a=15.856(3) A, b=31.183(6) A, c=8.6688(17) A. In compound I, indium-selenite chains are bridged by oxalate units to form two-dimensional (2D) In 2 (SeO 3 ) 2 C 2 O 4 layers, separated by non-coordinating water molecules. In compound II, the indium atoms are connected through the oxalate units to generate a 3D open framework containing cross-linked 12- and 8-membered channels. - Graphical abstract: Two new indium(III) compounds have been hydrothermally synthesized and structurally characterized. In I, the indium-selenite chains are bridged by oxalate units to form 2D In 2 (SeO 3 ) 2 C 2 O 4 layers. In II, the indium atoms are connected through the oxalate units to generate a 3D open framework containing cross-linked 12- and 8-membered ring channels

  12. Non-volatile nano-floating gate memory with Pt-Fe{sub 2}O{sub 3} composite nanoparticles and indium gallium zinc oxide channel

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Quanli [Myongji University, Department of Nano Science and Engineering (Korea, Republic of); Lee, Seung Chang; Baek, Yoon-Jae [Myongji University, Department of Materials Science and Engineering (Korea, Republic of); Lee, Hyun Ho [Myongji University, Department of Chemical Engineering (Korea, Republic of); Kang, Chi Jung [Myongji University, Department of Nano Science and Engineering (Korea, Republic of); Kim, Hyun-Mi; Kim, Ki-Bum [Seoul National University, Department of Materials Science and Engineering (Korea, Republic of); Yoon, Tae-Sik, E-mail: tsyoon@mju.ac.kr [Myongji University, Department of Nano Science and Engineering (Korea, Republic of)

    2013-02-15

    Non-volatile nano-floating gate memory characteristics with colloidal Pt-Fe{sub 2}O{sub 3} composite nanoparticles with a mostly core-shell structure and indium gallium zinc oxide channel layer were investigated. The Pt-Fe{sub 2}O{sub 3} nanoparticles were chemically synthesized through the preferential oxidation of Fe and subsequent pileup of Pt into the core in the colloidal solution. The uniformly assembled nanoparticles' layer could be formed with a density of {approx}3 Multiplication-Sign 10{sup 11} cm{sup -2} by a solution-based dip-coating process. The Pt core ({approx}3 nm in diameter) and Fe{sub 2}O{sub 3}-shell ({approx}6 nm in thickness) played the roles of the charge storage node and tunneling barrier, respectively. The device exhibited the hysteresis in current-voltage measurement with a threshold voltage shift of {approx}4.76 V by gate voltage sweeping to +30 V. It also showed the threshold shift of {approx}0.66 V after pulse programming at +20 V for 1 s with retention > {approx}65 % after 10{sup 4} s. These results demonstrate the feasibility of using colloidal nanoparticles with core-shell structure as gate stacks of the charge storage node and tunneling dielectric for low-temperature and solution-based processed non-volatile memory devices.

  13. Selenide-Based Electrocatalysts and Scaffolds for Water Oxidation Applications

    KAUST Repository

    Xia, Chuan; Jiang, Qiu; Zhao, Chao; Hedhili, Mohamed N.; Alshareef, Husam N.

    2015-01-01

    Selenide-based electrocatalysts and scaffolds on carbon cloth are successfully fabricated and demonstrated for enhanced water oxidation applications. A max­imum current density of 97.5 mA cm−2 at an overpotential of a mere 300 mV and a small Tafel slope of 77 mV dec−1 are achieved, suggesting the potential of these materials to serve as advanced oxygen evolution reaction catalysts.

  14. Selenide-Based Electrocatalysts and Scaffolds for Water Oxidation Applications

    KAUST Repository

    Xia, Chuan

    2015-11-05

    Selenide-based electrocatalysts and scaffolds on carbon cloth are successfully fabricated and demonstrated for enhanced water oxidation applications. A max­imum current density of 97.5 mA cm−2 at an overpotential of a mere 300 mV and a small Tafel slope of 77 mV dec−1 are achieved, suggesting the potential of these materials to serve as advanced oxygen evolution reaction catalysts.

  15. Positron lifetime experiments in indium selenide

    International Nuclear Information System (INIS)

    Cruz, R.M. de la; Pareja, R.

    1988-01-01

    Positron lifetime experiments have been performed on as-grown samples which had been isochronally annealed up to 820 K and plastically deformed and these experiments yield a constant lifetime of 282 ± 2 ps which is attributed to bulk positron states in InSe. Electron-irradiated samples exhibit a two-component spectrum, revealing the presence of positron traps which anneal out at about 330 K. The nature of the native shallow donors in InSe is discussed in the light of the results, which support the idea that native donor centres are probably interstitial In atoms rather than Se vacancies. Positron trapping observed in the electron-irradiated samples is attributed to defects related to In vacancies. (author)

  16. Lattice parameters guide superconductivity in iron-arsenides

    Science.gov (United States)

    Konzen, Lance M. N.; Sefat, Athena S.

    2017-03-01

    The discovery of superconducting materials has led to their use in technological marvels such as magnetic-field sensors in MRI machines, powerful research magnets, short transmission cables, and high-speed trains. Despite such applications, the uses of superconductors are not widespread because they function much below room-temperature, hence the costly cooling. Since the discovery of Cu- and Fe-based high-temperature superconductors (HTS), much intense effort has tried to explain and understand the superconducting phenomenon. While no exact explanations are given, several trends are reported in relation to the materials basis in magnetism and spin excitations. In fact, most HTS have antiferromagnetic undoped ‘parent’ materials that undergo a superconducting transition upon small chemical substitutions in them. As it is currently unclear which ‘dopants’ can favor superconductivity, this manuscript investigates crystal structure changes upon chemical substitutions, to find clues in lattice parameters for the superconducting occurrence. We review the chemical substitution effects on the crystal lattice of iron-arsenide-based crystals (2008 to present). We note that (a) HTS compounds have nearly tetragonal structures with a-lattice parameter close to 4 Å, and (b) superconductivity can depend strongly on the c-lattice parameter changes with chemical substitution. For example, a decrease in c-lattice parameter is required to induce ‘in-plane’ superconductivity. The review of lattice parameter trends in iron-arsenides presented here should guide synthesis of new materials and provoke theoretical input, giving clues for HTS.

  17. Effect of replacement of tin doped indium oxide (ITO) by ZnO: analysis of environmental impact categories

    Science.gov (United States)

    Ziemińska-Stolarska, Aleksandra; Barecka, Magda; Zbiciński, Ireneusz

    2017-10-01

    Abundant use of natural resources is doubtlessly one of the greatest challenges of sustainable development. Process alternatives, which enable sustainable manufacturing of valuable products from more accessible resources, are consequently required. One of examples of limited resources is Indium, currently broadly used for tin doped indium oxide (ITO) for production of transparent conductive films (TCO) in electronics industry. Therefore, candidates for Indium replacement, which would offer as good performance as the industrial state-of-the-art technology based on ITO are widely studied. However, the environmental impact of new layers remains unknown. Hence, this paper studies the environmental effect of ITO replacement by zinc oxide (ZnO) by means life cycle assessment (LCA) methodology. The analysis enables to quantify the environmental impact over the entire period of life cycle of products—during manufacturing, use phase and waste generation. The analysis was based on experimental data for deposition process. Further, analysis of different impact categories was performed in order to determine specific environmental effects related to technology change. What results from the analysis, is that ZnO is a robust alternative material for ITO replacement regarding environmental load and energy efficiency of deposition process which is also crucial for sustainable TCO layer production.

  18. TRANSPARENT CONDUCTING OXIDE SYNTHESIS OF ALUMINIUM DOPED ZINC OXIDES BY CHEMICAL COPRECIPITATION

    Directory of Open Access Journals (Sweden)

    Silvia Maioco

    2013-03-01

    Full Text Available Aluminium doped zinc oxides (AZO are promising replacements for tin doped indium oxides (ITO but thin films show a wide range of physical properties strongly dependent on deposition process conditions. Submicrometric 1% aluminum doped zinc oxide ceramics (AZO are examined, prepared by coprecipitation, from Zn(NO32 and Al(NO33 aqueous solutions, sintered at 1200°C and subsequently annealed in 10-16 atm controlled oxygen fugacity atmospheres, at 1000°C. Electrical resistivity diminishes by two orders of magnitude after two hours of annealing and the Seebeck coefficient gradually changes from -140 to -50 µV/K within 8 h. It is concluded that increased mobility is dominant over the increased carrier density, induced by changes in metal-oxygen stoichiometry

  19. Properties of gallium arsenide alloyed with Ge and Se by irradiation in nuclear reactor thermal column

    International Nuclear Information System (INIS)

    Kolin, N.G.; Osvenskij, V.B.; Tokarevskij, V.V.; Kharchenko, V.A.; Ievlev, S.M.

    1985-01-01

    Dependences of electrophysical properties as well as lattice unit spacing and density of nuclear-alloyed gallium arsenide on the fluence of reactor neutrons and heat treatment are investigated. Neutron radiation of gallium arsenide with different energy spectra is shown to differently affect material properties. Fast neutrons make the main contribution to defect formation. Concentration of compensating acceptor defects formed under GaAs radiation in a thermal column practically equals concentration of introduced donor impurities. Radiation defects of acceptor type are not annealed in the material completely even at 900-1000 deg C

  20. Integration of Solar Cells on Top of CMOS Chips - Part II: CIGS Solar Cells

    NARCIS (Netherlands)

    Lu, J.; Liu, Wei; Kovalgin, Alexeij Y.; Sun, Yun; Schmitz, Jurriaan

    2011-01-01

    We present the monolithic integration of deepsubmicrometer complementary metal–oxide–semiconductor (CMOS) microchips with copper indium gallium (di)selenide (CIGS) solar cells. Solar cells are manufactured directly on unpackaged CMOS chips. The microchips maintain comparable electronic performance,

  1. High purity liquid phase epitaxial gallium arsenide nuclear radiation detector

    International Nuclear Information System (INIS)

    Alexiev, D.; Butcher, K.S.A.

    1991-11-01

    Surface barrier radiation detector made from high purity liquid phase epitaxial gallium arsenide wafers have been operated as X- and γ-ray detectors at various operating temperatures. Low energy isotopes are resolved including 241 Am at 40 deg C. and the higher gamma energies of 235 U at -80 deg C. 15 refs., 1 tab., 6 figs

  2. Hydrothermal synthesis and characterization of sea urchin-like nickel and cobalt selenides nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xiaohe [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China) and School of Metallurgical Science and Engineering, Central South University, Changsha, Hunan 410083 (China)]. E-mail: liuxh@mail.csu.edu.cn; Zhang Ning [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China); Yi Ran [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China); Qiu Guanzhou [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China); Yan Aiguo [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China); Wu Hongyi [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China); Meng Dapeng [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China); Tang, Motang [School of Metallurgical Science and Engineering, Central South University, Changsha, Hunan 410083 (China)

    2007-05-25

    Sea urchin-like nanorod-based nickel and cobalt selenides nanocrystals have been selective synthesized via a hydrothermal reduction route in which hydrated nickel chloride and hydrated cobalt chloride were employed to supply Ni and Co source and aqueous hydrazine (N{sub 2}H{sub 4}.H{sub 2}O) was used as reducing agent. The composition, morphology, and structure of final products could be easily controlled by adjusting the molar ratios of reactants and process parameters such as hydrothermal time. The morphology and phase structure of the final products have been investigated by X-ray diffraction, transmission electron microscopy, and scanning electron microscopy. The probable formation mechanism of the sea urchin-like nanorod-based nickel and cobalt selenides nanocrystals was discussed on the basis of the experimental results.

  3. Preparation of trialkylindium by alkylation of metallic indium

    International Nuclear Information System (INIS)

    Eremeev, I.V.; Danov, S.M.; Sakhipov, V.R.

    1995-01-01

    The investigation results on production of trialkyl indium by alkylation of metallic indium are presented. In contradistinction to the known techniques for the production of trialkyls on indium by alkylation it is suggested to separate the synthesis into two steps. At the first step indium is alkylated by alkylhalide to alkyl indium halide, and at the second alkylation is carried out using. Grignard reagent. The techniques for preparation of trimethyl- and triethylindium, developed on the bases of this scheme, are noted for good reproducibility, allow to preclude, agglomeration of indium during the synthesis, as well as to reduce the consumption coefficients, and amounts, of the introduced starting reagents, i.e. magnesium and alkylhalide. Refs. 16

  4. Synthesis, characterization, and anomalous dielectric and conductivity performance of one-dimensional (bdaH)InSe{sub 2} (bda = 1,4-butanediamine)

    Energy Technology Data Exchange (ETDEWEB)

    Du, Ke-Zhao; Hu, Wan-Biao [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Hu, Bing; Guan, Xiang-Feng [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Huang, Xiao-Ying, E-mail: xyhuang@fjirsm.ac.cn [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2011-11-15

    Graphical abstract: Anomalous dielectric and conductivity performance have been observed in the organic-containing indium selenide (bdaH)InSe{sub 2}, which are attributed to the water molecules existing in the crystal boundary rather than phase transition. Highlights: {yields} The title compound is the first example of organic-containing one-dimensional indium selenide. {yields} The anomalous dielectric peak is attributed to water molecules in crystal boundary. {yields} The inorganic and organic components of the title compound are connected via hydrogen bonding to form a supramolecular three-dimensional network. -- Abstract: A new indium selenide, namely (bdaH)InSe{sub 2} (1) (bda = 1,4-butanediamine) has been solvothermally synthesized and structurally characterized. It belongs to the non-centrosymmetric space group Fdd2. Its structure features an infinite one-dimensional anionic chain of [InSe{sub 2}]{sub n}{sup n-} with monoprotonated [bdaH]{sup +} as charge compensating cation. The organic [bdaH]{sup +} cations are joined into a supramolecular one-dimensional chain via N-H...N hydrogen bonding, which further interacts with the inorganic chain via N-H...Se and C-H...Se hydrogen bonding, forming a supramolecular three-dimensional network. Based on such a well-defined structure, the thermal stability, optical, conductivity, and dielectric properties were systematically investigated, showing that dielectric constant, as well as conductivity, had a hump at about 95 {sup o}C, which could be attributed to water molecules in the crystal boundary.

  5. Nanomechanical Characterization of Indium Nano/Microwires

    Directory of Open Access Journals (Sweden)

    N Kiran MSR

    2010-01-01

    Full Text Available Abstract Nanomechanical properties of indium nanowires like structures fabricated on quartz substrate by trench template technique, measured using nanoindentation. The hardness and elastic modulus of wires were measured and compared with the values of indium thin film. Displacement burst observed while indenting the nanowire. ‘Wire-only hardness’ obtained using Korsunsky model from composite hardness. Nanowires have exhibited almost same modulus as indium thin film but considerable changes were observed in hardness value.

  6. Liquid phase epitaxy of gallium arsenide - a review

    International Nuclear Information System (INIS)

    Alexiev, D.; Edmondson, M.; Butcher, K.S.A.; Tansley, T.

    1992-07-01

    Liquid phase epitaxy of gallium arsenide has been investigated intensively from the late 1960's to the present and has now a special place in the manufacture of wide band, compound semiconductor radiation detectors. Although this particular process appears to have gained prominence in the last three decades, the authors point out that its origins reach back to 1836 when Frankenheim made his first observations. A brief review is presented from a semiconductor applications point of view on how this subject developed. 70 refs., 5 figs

  7. Electrical Performance and Reliability Improvement of Amorphous-Indium-Gallium-Zinc-Oxide Thin-Film Transistors with HfO2 Gate Dielectrics by CF4 Plasma Treatment

    Science.gov (United States)

    Fan, Ching-Lin; Tseng, Fan-Ping; Tseng, Chiao-Yuan

    2018-01-01

    In this work, amorphous indium-gallium-zinc oxide thin-film transistors (a-IGZO TFTs) with a HfO2 gate insulator and CF4 plasma treatment was demonstrated for the first time. Through the plasma treatment, both the electrical performance and reliability of the a-IGZO TFT with HfO2 gate dielectric were improved. The carrier mobility significantly increased by 80.8%, from 30.2 cm2/V∙s (without treatment) to 54.6 cm2/V∙s (with CF4 plasma treatment), which is due to the incorporated fluorine not only providing an extra electron to the IGZO, but also passivating the interface trap density. In addition, the reliability of the a-IGZO TFT with HfO2 gate dielectric has also been improved by the CF4 plasma treatment. By applying the CF4 plasma treatment to the a-IGZO TFT, the hysteresis effect of the device has been improved and the device’s immunity against moisture from the ambient atmosphere has been enhanced. It is believed that the CF4 plasma treatment not only significantly improves the electrical performance of a-IGZO TFT with HfO2 gate dielectric, but also enhances the device’s reliability. PMID:29772767

  8. Electrical Performance and Reliability Improvement of Amorphous-Indium-Gallium-Zinc-Oxide Thin-Film Transistors with HfO2 Gate Dielectrics by CF4 Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Ching-Lin Fan

    2018-05-01

    Full Text Available In this work, amorphous indium-gallium-zinc oxide thin-film transistors (a-IGZO TFTs with a HfO2 gate insulator and CF4 plasma treatment was demonstrated for the first time. Through the plasma treatment, both the electrical performance and reliability of the a-IGZO TFT with HfO2 gate dielectric were improved. The carrier mobility significantly increased by 80.8%, from 30.2 cm2/V∙s (without treatment to 54.6 cm2/V∙s (with CF4 plasma treatment, which is due to the incorporated fluorine not only providing an extra electron to the IGZO, but also passivating the interface trap density. In addition, the reliability of the a-IGZO TFT with HfO2 gate dielectric has also been improved by the CF4 plasma treatment. By applying the CF4 plasma treatment to the a-IGZO TFT, the hysteresis effect of the device has been improved and the device’s immunity against moisture from the ambient atmosphere has been enhanced. It is believed that the CF4 plasma treatment not only significantly improves the electrical performance of a-IGZO TFT with HfO2 gate dielectric, but also enhances the device’s reliability.

  9. Noise suppression and long-range exchange coupling for gallium arsenide spin qubits

    DEFF Research Database (Denmark)

    Malinowski, Filip

    This thesis presents the results of the experimental study performed on spin qubits realized in gate-defined gallium arsenide quantum dots, with the focus on noise suppression and long-distance coupling. First, we show that the susceptibility to charge noise can be reduced by reducing the gradien...

  10. Face to Face The IGBT and its Creator

    Indian Academy of Sciences (India)

    IAS Admin

    HC: At RPI you had the chance to work on Indium Gallium Arsenide (InGaAs) ..... Safe operating area denotes the current and voltage conditions under which ... conditioning, refrigeration and so on, but what is the impact on the environment?

  11. Modulation of fluorescence signals from biomolecules along nanowires due to interaction of light with oriented nanostructures

    DEFF Research Database (Denmark)

    Frederiksen, Rune Schøneberg; Alarcon-Llado, Esther; Madsen, Morten H.

    2015-01-01

    High aspect ratio nanostructures have gained increasing interest as highly sensitive platforms for biosensing. Here, well-defined biofunctionalized vertical indium arsenide nanowires are used to map the interaction of light with nanowires depending on their orientation and the excitation waveleng...

  12. The bulk modulus of cubic spinel selenides: an experimental and theoretical study

    DEFF Research Database (Denmark)

    Waskowska, A.; Gerward, Leif; Olsen, J.S.

    2009-01-01

    It is argued that mainly the selenium sublattice determines the overall compressibility of the cubic spinel selenides, AB2Se4, and that the bulk modulus for these compounds is about 100GPa. The hypothesis is supported by experiments using high-pressure X-ray diffraction and synchrotron radiation...

  13. A study of the kinetics and mechanisms of electrocrystallization of indium oxide on an in situ prepared metallic indium electrode

    International Nuclear Information System (INIS)

    Omanovic, S.; Metikos-Hukovic, M.

    2004-01-01

    The mechanisms and kinetics of nucleation and growth of indium oxide film on an in situ prepared metallic indium electrode was studied in a borate buffer solution of pH 10.0 using cyclic voltammetry and chroanoamperometry techniques. It was shown that the initial stage of nucleation of the oxide film includes a three-dimensional progressive nucleation process, combined with a diffusion-controlled growth of the stable indium oxide crystals. The thermodynamic data obtained indicated a strong tendency of indium to form an indium oxide film on its surface in an aqueous solution. It was found that the rate-determining step in the nucleation and growth process is the surface diffusion of electroactive species. The nucleation rate constant, and the number of nucleation active sites were calculated independently. It was shown that between 2 and 15% of sites on the indium surface act as active nucleation centers, and that each active site represents a critical nucleus

  14. THE QUANTUM-WELL STRUCTURES OF SELF ELECTROOPTIC-EFFECT DEVICES AND GALLIUM-ARSENIDE

    Directory of Open Access Journals (Sweden)

    Mustafa TEMİZ

    1996-02-01

    Full Text Available Multiple quantum-well (MQW electroabsorptive self electro optic-effect devices (SEEDs are being extensively studied for use in optical switching and computing. The self electro-optic-effect devices which has quantum-well structures is a new optoelectronic technology with capability to obtain both optical inputs and outputs for Gallium-Arsenide/Aluminum Gallium-Arsenide (GaAs/AlGaAs electronic circuits. The optical inputs and outputs are based on quantum-well absorptive properties. These quantum-well structures consist of many thin layers of semiconductors materials of GaAs/AlGaAs which have emerged some important directions recently. The most important advance in the physics of these materials since the early days has been invention of the heterojunction structures which is based at present on GaAs technology. GaAs/AlGaAs structures present some important advantages to relevant band gap and index of refraction which allow to form the quantum-well structures and also to make semiconductor lasers, dedectors and waveguide optical switches.

  15. Comparison of the electrical and optical properties of direct current and radio frequency sputtered amorphous indium gallium zinc oxide films

    International Nuclear Information System (INIS)

    Yao, Jianke; Gong, Li; Xie, Lei; Zhang, Shengdong

    2013-01-01

    The electrical and optical properties of direct current and radio frequency (RF) sputtered amorphous indium gallium zinc oxide (a-IGZO) films are compared. It is found that the RF sputtered a-IGZO films have better stoichiometry (In:Ga:Zn:O = 1:1:1:2.5–3.0), lower electrical conductivity (σ < 8 S/cm), higher refractive index (n = 1.9–2.0) and larger band gap (E g = 3.02–3.29 eV), and show less shift of Fermi level (△ E F ∼ 0.26 eV) and increased concentration of electrons (△ N e ∼ 10 4 ) in the conduction band with the reduction concentration of oxygen vacancy (V O ). Although a-IGZO has intensively been studied for a semiconductor channel material of thin film transistors in next-generation flat panel displays, its fundamental material parameters have not been thoroughly reported. In this work, the work function (φ) of a-IGZO films is tested with the ultraviolet photoelectron spectroscopy. It is found that the φ of a-IGZO films is in the range of 4.0–5.0 eV depending on the V O . - Highlights: ► Amorphous InGaZnO 4 (a-IGZO) films were prepared with different sputtering modes. ► Electrical and optical properties of the different films were compared. ► Fermi level (△E F ) shift in a-IGZO films were tested by X-ray photoelectron spectroscopy. ► The relation of △E F with the properties of a-IGZO films were discussed. ► Work function was tested by ultraviolet photoelectron spectroscopy

  16. Electronic and chemical properties of indium clusters

    International Nuclear Information System (INIS)

    Rayane, D.; Khardi, S.; Tribollet, B.; Broyer, M.; Melinon, P.; Cabaud, B.; Hoareau, A.

    1989-01-01

    Indium clusters are produced by the inert gas condensation technique. The ionization potentials are found higher for small clusters than for the Indium atom. This is explained by the p character of the bonding as in aluminium. Doubly charge clusters are also observed and fragmentation processes discussed. Finally small Indium clusters 3< n<9 are found very reactive with hydrocarbon. (orig.)

  17. Fabrication of an Organic Light-Emitting Diode from New Host π Electron Rich Zinc Complex

    Science.gov (United States)

    Jafari, Mohammad Reza; Janghouri, Mohammad; Shahedi, Zahra

    2017-01-01

    A new π electron rich zinc complex was used as a fluorescent material in organic light-emitting diodes (OLEDs). Devices with a structure of indium tin oxide/poly (3,4-ethylenedi-oxythiophene):poly(styrenesulfonate) (PEDOT: PSS) (50 nm)/polyvinylcarbazole (60 nm)/Zn: %2 porphyrin derivatives (45 nm)/Al (150 nm) were fabricated. Porphyrin derivatives accounting for 2 wt.% in the π electron rich zinc complex were used as a host. The electroluminescence (EL) spectra of porphyrin derivatives indicated a red shift, as π electron rich zinc complex EL spectra. The device (4) has also a luminance of 3420 cd/m2 and maximum efficiency of 1.58 cd/A at 15 V, which are the highest values among four devices. The result of Commission International del'Eclairage (CIE) (X, Y) coordinate and EL spectrum of device (3) indicated that it is more red shifted compared to other devices. Results of this work indicate that π electron rich zinc complex is a promising host material for high efficiency red OLEDs and has a simple structure compared to Alq3-based devices.

  18. Anisotropic formation and distribution of stacking faults in II-VI semiconductor nanorods.

    Science.gov (United States)

    Hughes, Steven M; Alivisatos, A Paul

    2013-01-09

    Nanocrystals of cadmium selenide exhibit a form of polytypism with stable forms in both the wurtzite and zinc blende crystal structures. As a result, wurtzite nanorods of cadmium selenide tend to form stacking faults of zinc blende along the c-axis. These faults were found to preferentially form during the growth of the (001) face, which accounts for 40% of the rod's total length. Since II-VI semiconductor nanorods lack inversion symmetry along the c-axis of the particle, the two ends of the nanorod may be identified by this anisotropic distribution of faults.

  19. InP (Indium Phosphide): Into the future

    International Nuclear Information System (INIS)

    Brandhorst, H.W. Jr.

    1989-03-01

    Major industry is beginning to be devoted to indium phosphide and its potential applications. Key to these applications are high speed and radiation tolerance; however the high cost of indium phosphide may be an inhibitor to progress. The broad applicability of indium phosphide to many devices will be discussed with an emphasis on photovoltaics. Major attention is devoted to radiation tolerance and means of reducing cost of devices. Some of the approaches applicable to solar cells may also be relevant to other devices. The intent is to display the impact of visionary leadership in the field and enable the directions and broad applicability of indium phosphide

  20. InP (Indium Phosphide): Into the future

    Science.gov (United States)

    Brandhorst, Henry W., Jr.

    1989-01-01

    Major industry is beginning to be devoted to indium phosphide and its potential applications. Key to these applications are high speed and radiation tolerance; however the high cost of indium phosphide may be an inhibitor to progress. The broad applicability of indium phosphide to many devices will be discussed with an emphasis on photovoltaics. Major attention is devoted to radiation tolerance and means of reducing cost of devices. Some of the approaches applicable to solar cells may also be relevant to other devices. The intent is to display the impact of visionary leadership in the field and enable the directions and broad applicability of indium phosphide.

  1. Subtractive Plasma-Assisted-Etch Process for Developing High Performance Nanocrystalline Zinc-Oxide Thin-Film-Transistors

    Science.gov (United States)

    2015-03-26

    shift register using amorphous indium-gallium-zinc-oxide (a- IGZO ) TFT technology that was successfully driven at a maximum clock frequency of 40 kHz [36...The shift registers were fabricated utilizing bottom-gate a- IGZO TFT structures with channel lengths down to 10 µm. Additionally, Geng et al...fabricated an 11-stage ring oscillator utilizing both single- and 20 dual-gate a- IGZO TFTs with 2 μm channels that exhibited oscillating frequencies

  2. Use of and occupational exposure to indium in the United States.

    Science.gov (United States)

    Hines, Cynthia J; Roberts, Jennifer L; Andrews, Ronnee N; Jackson, Matthew V; Deddens, James A

    2013-01-01

    Indium use has increased greatly in the past decade in parallel with the growth of flat-panel displays, touchscreens, optoelectronic devices, and photovoltaic cells. Much of this growth has been in the use of indium tin oxide (ITO). This increased use has resulted in more frequent and intense exposure of workers to indium. Starting with case reports and followed by epidemiological studies, exposure to ITO has been linked to serious and sometimes fatal lung disease in workers. Much of this research was conducted in facilities that process sintered ITO, including manufacture, grinding, and indium reclamation from waste material. Little has been known about indium exposure to workers in downstream applications. In 2009-2011, the National Institute for Occupational Safety and Health (NIOSH) contacted 89 potential indium-using companies; 65 (73%) responded, and 43 of the 65 responders used an indium material. Our objective was to identify current workplace applications of indium materials, tasks with potential indium exposure, and exposure controls being used. Air sampling for indium was either conducted by NIOSH or companies provided their data for a total of 63 air samples (41 personal, 22 area) across 10 companies. Indium exposure exceeded the NIOSH recommended exposure limit (REL) of 0.1 mg/m(3) for certain methods of resurfacing ITO sputter targets, cleaning sputter chamber interiors, and in manufacturing some inorganic indium compounds. Indium air concentrations were low in sputter target bonding with indium solder, backside thinning and polishing of fabricated indium phosphide-based semiconductor devices, metal alloy production, and in making indium-based solder pastes. Exposure controls such as containment, local exhaust ventilation (LEV), and tool-mounted LEV can be effective at reducing exposure. In conclusion, occupational hygienists should be aware that the manufacture and use of indium materials can result in indium air concentrations that exceed the NIOSH

  3. Low temperature transport in p-doped InAs nanowires

    DEFF Research Database (Denmark)

    Upadhyay, Shivendra; Jespersen, Thomas Sand; Madsen, Morten Hannibal

    2013-01-01

    We present low temperature electrical measurements of p-type Indium Arsenide nanowires grown via molecular beam epitaxy using Beryllium as a dopant. Growth of p-type wires without stacking faults is demonstrated. Devices in field-effect geometries exhibit ambipolar behavior, and the temperature...

  4. Thin film metrology and microwave loss characterization of indium and aluminum/indium superconducting planar resonators

    Science.gov (United States)

    McRae, C. R. H.; Béjanin, J. H.; Earnest, C. T.; McConkey, T. G.; Rinehart, J. R.; Deimert, C.; Thomas, J. P.; Wasilewski, Z. R.; Mariantoni, M.

    2018-05-01

    Scalable architectures characterized by quantum bits (qubits) with low error rates are essential to the development of a practical quantum computer. In the superconducting quantum computing implementation, understanding and minimizing material losses are crucial to the improvement of qubit performance. A new material that has recently received particular attention is indium, a low-temperature superconductor that can be used to bond pairs of chips containing standard aluminum-based qubit circuitry. In this work, we characterize microwave loss in indium and aluminum/indium thin films on silicon substrates by measuring superconducting coplanar waveguide resonators and estimating the main loss parameters at powers down to the sub-photon regime and at temperatures between 10 and 450 mK. We compare films deposited by thermal evaporation, sputtering, and molecular beam epitaxy. We study the effects of heating in a vacuum and ambient atmospheric pressure as well as the effects of pre-deposition wafer cleaning using hydrofluoric acid. The microwave measurements are supported by thin film metrology including secondary-ion mass spectrometry. For thermally evaporated and sputtered films, we find that two-level state are the dominant loss mechanism at low photon number and temperature, with a loss tangent due to native indium oxide of ˜ 5 × 10 - 5 . The molecular beam epitaxial films show evidence of the formation of a substantial indium-silicon eutectic layer, which leads to a drastic degradation in resonator performance.

  5. Remarkable changes in interface O vacancy and metal-oxide bonds in amorphous indium-gallium-zinc-oxide thin-film transistors by long time annealing at 250 °C

    International Nuclear Information System (INIS)

    Chowdhury, Md Delwar Hossain; Um, Jae Gwang; Jang, Jin

    2014-01-01

    We have studied the effect of long time post-fabrication annealing on negative bias illumination stress (NBIS) of amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film-transistors. Annealing for 100 h at 250 °C increased the field effect mobility from 14.7 cm 2 /V s to 17.9 cm 2 /V s and reduced the NBIS instability remarkably. Using X-ray photoelectron spectroscopy, the oxygen vacancy and OH were found to exist at the interfaces of a-IGZO with top and bottom SiO 2 . Long time annealing helps to decrease the vacancy concentration and increase the metal-oxygen bonds at the interfaces; this leads to increase in the free carrier concentrations in a-IGZO and field-effect mobility. X-ray reflectivity measurement indicated the increment of a-IGZO film density of 5.63 g cm −3 to 5.83 g cm −3 (3.4% increase) by 100 h annealing at 250 °C. The increase in film density reveals the decrease of O vacancy concentration and reduction of weak metal-oxygen bonds in a-IGZO, which substantially helps to improve the NBIS stability

  6. Indium-111 octreotide uptake in the surgical scar

    Energy Technology Data Exchange (ETDEWEB)

    Degirmenci, B.; Bekis, R.; Durak, H.; Derebeck, E. [Dokuz Eylul Univ., Izmir (Turkey). Dept. of Nuclear Medicine; Sen, M. [Dokuz Eylul Univ., Izmir (Turkey). Dept. of Radiation Oncology

    1999-07-01

    Indium-111 octreotide uptake has been reported in various somatostatin receptor positive tumors, granulomas and autoimmune diseases in which activated leucocytes may play a role, subcutaneous cavernous hemangioma and angiofibroma. We present Indium-111 octreotide uptake in a surgical abdominal scar tissue 1.5 to 6 months after surgery in a patient who had been treated for recurrent carcinoid tumor in the rectosigmoid junction. Indium-111 octreotide uptake in a surgical scar may be related to the binding to somatostatin receptors in the activated lymphocytes and fibroblasts that is previously reported. (orig.) [German] In verschiedenen Somatostatinrezeptor-positiven Tumoren, Granulomen, bei Autoimmunerkrankungen, in denen aktivierte Leukozyten eine Rolle spielen, subcutanen kavernoesen Hammangiomen und Angiofibromen wurde ueber die Anreicherung von Indium-111-Oktreotid berichtet. Wir berichten ueber die Anreicherung von Indium-111-Oktreotid in einer chirurgischen Narbe ueber dem Abdomen nach 1,5 und 6 Monaten bei einem Patienten mit einem Rezidiv-Karzinoid im rektosigmoidalen Uebergang. Die Anreicherung von Indium-111-Oktreotid in chirurgischen Narbengewebe koennte in Zusammenhang stehen mit einer Bindung an Somatostationrezeptoren in aktivierten Lymphozyten und Fibroblasten, ueber die schon berichtet wurde. (orig.)

  7. A study of ion implanted gallium arsenide using deep level transient spectroscopy

    International Nuclear Information System (INIS)

    Emerson, N.G.

    1981-03-01

    This thesis is concerned with the study of deep energy levels in ion implanted gallium arsenide (GaAs) using deep level transient spectroscopy (D.L.T.S.). The D.L.T.S. technique is used to characterise deep levels in terms of their activation energies and capture cross-sections and to determine their concentration profiles. The main objective is to characterise the effects on deep levels, of ion implantation and the related annealing processes. In the majority of cases assessment is carried out using Schottky barrier diodes. Low doses of selenium ions 1 to 3 x 10 12 cm -2 are implanted into vapour phase epitaxial (V.P.E.) GaAs and the effects of post-implantation thermal and pulsed laser annealing are compared. The process of oxygen implantation with doses in the range 1 x 10 12 to 5 x 10 13 cm -2 followed by thermal annealing at about 750 deg C, introduces a deep level at 0.79 eV from the conduction band. Oxygen implantation, at doses of 5 x 10 13 cm -2 , into V.P.E. GaAs produces a significant increase in the concentration of the A-centre (0.83 eV). High doses of zinc (10 15 cm -2 ) are implanted into n-type V.P.E. GaAs to form shallow p-type layers. The D.L.T.S. system described in the text is used to measure levels in the range 0.16 to 1.1 eV (for GaAs) with a sensitivity of the order 1:10 3 . (U.K.)

  8. Anomalous tensoelectric effects in gallium arsenide tunnel diodes

    Energy Technology Data Exchange (ETDEWEB)

    Alekseeva, Z.M.; Vyatkin, A.P.; Krivorotov, N.P.; Shchegol' , A.A.

    1988-02-01

    Anomalous tensoelectric phenomena induced in a tunnel p-n junction by a concentrated load and by hydrostatic compression were studied. The anomalous tensoelectric effects are caused by the action of concentrators of mechanical stresses in the vicinity of the p-n junction, giving rise to local microplastic strain. Under the conditions of hydrostatic compression prolate inclusions approx.100-200 A long play the role of concentrators. Analysis of irreversible changes in the current-voltage characteristics of tunnel p-n junctions made it possible to separate the energy levels of the defects produced with plastic strain of gallium arsenide.

  9. All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps

    DEFF Research Database (Denmark)

    Krebs, Frederik C

    2009-01-01

    of a bottom electrode comprising silver nanoparticles on a 130 micron thick polyethyleneternaphthalate (PEN) substrate. Subsequently an electron transporting layer of zinc oxide nanoparticles was applied from solution followed by an active layer of P3HT-PCBM and a hole transporting layer of PEDOT......, 3 and 8 stripes. All five layers in the device were processed from solution in air and no vacuum steps were employed. An additional advantage is that the use of indium-tin-oxide (ITO) is avoided in this process. The devices were tested under simulated sunlight (1000 W m−2, AM1.5G) and gave a typical...

  10. Fabrication, structure and mechanical properties of indium nanopillars

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gyuhyon; Kim, Ju-Young; Budiman, Arief Suriadi; Tamura, Nobumichi; Kunz, Martin; Chen, Kai; Burek, Michael J.; Greer, Julia R.; Tsui, Ting Y.

    2010-01-01

    Solid and hollow cylindrical indium pillars with nanoscale diameters were prepared using electron beam lithography followed by the electroplating fabrication method. The microstructure of the solid-core indium pillars was characterized by scanning micro-X-ray diffraction, which shows that the indium pillars were annealed at room temperature with very few dislocations remaining in the samples. The mechanical properties of the solid pillars were characterized using a uniaxial microcompression technique, which demonstrated that the engineering yield stress is {approx}9 times greater than bulk and is {approx}1/28 of the indium shear modulus, suggesting that the attained stresses are close to theoretical strength. Microcompression of hollow indium nanopillars showed evidence of brittle fracture. This may suggest that the failure mode for one of the most ductile metals can become brittle when the feature size is sufficiently small.

  11. A simple and effective approach to the synthesis of alkynyl selenides from terminal alkynes

    Institute of Scientific and Technical Information of China (English)

    Barahman Movassagh; Mozhgan Navidi

    2012-01-01

    Alkynyl selenides were prepared under very mild conditions by reacting terminal alkynes with respective diorganic diselenides in the presence of potassium t-butoxide.The advantages of this protocol include the use of readily available substrates and reagent and good yield of the products.

  12. Circuit quantum electrodynamics with a spin qubit.

    Science.gov (United States)

    Petersson, K D; McFaul, L W; Schroer, M D; Jung, M; Taylor, J M; Houck, A A; Petta, J R

    2012-10-18

    Electron spins trapped in quantum dots have been proposed as basic building blocks of a future quantum processor. Although fast, 180-picosecond, two-quantum-bit (two-qubit) operations can be realized using nearest-neighbour exchange coupling, a scalable, spin-based quantum computing architecture will almost certainly require long-range qubit interactions. Circuit quantum electrodynamics (cQED) allows spatially separated superconducting qubits to interact via a superconducting microwave cavity that acts as a 'quantum bus', making possible two-qubit entanglement and the implementation of simple quantum algorithms. Here we combine the cQED architecture with spin qubits by coupling an indium arsenide nanowire double quantum dot to a superconducting cavity. The architecture allows us to achieve a charge-cavity coupling rate of about 30 megahertz, consistent with coupling rates obtained in gallium arsenide quantum dots. Furthermore, the strong spin-orbit interaction of indium arsenide allows us to drive spin rotations electrically with a local gate electrode, and the charge-cavity interaction provides a measurement of the resulting spin dynamics. Our results demonstrate how the cQED architecture can be used as a sensitive probe of single-spin physics and that a spin-cavity coupling rate of about one megahertz is feasible, presenting the possibility of long-range spin coupling via superconducting microwave cavities.

  13. Thin-Film Photovoltaic Cells: Long-Term Metal(loid) Leaching at Their End-of-Life

    NARCIS (Netherlands)

    Zimmermann, Y.S.; Schäffer, A.; Corvini, P.F.X.; Lenz, M.

    2013-01-01

    The photovoltaic effect of thin-film copper indium gallium selenide cells (CIGS) is conferred by the latter elements. Organic photovoltaic cells (OPV), relying on organic light-absorbing molecules, also contain a variety of metals (e.g., Zn, Al, In, Sn, Ag). The environmental impact of such

  14. Effect of relativistic electron radiation on Se Zn monocrystal microembrittlement

    International Nuclear Information System (INIS)

    Mazilov, A.V.; Stratienko, V.A.; Migal', V.P.; Lugovskaya, E.I.

    2002-01-01

    The influence of 60 MeV electron irradiation (fluences between 10 9 and 10 16 el/sm 2 ) on the mikrobrittleness of n-type sphalerite-structure zinc selenide has been investigated.It was found that irradiation caused the crack lengths to increase under constant load.In the fluence range of 10 9 to 10 13 el/sm 2 , an increase was observed in the critical load, at which cracks were formed. It is shown that the mechanical properties of zinc selenide are dominantly influenced by the defect clusters, for the formation of which an energy over 400 eV is needed

  15. Indium solar neutrino experiment using superconducting grains

    International Nuclear Information System (INIS)

    Bellefon, A. de; Espigat, P.

    1984-08-01

    In this paper we would like to emphasize the revival of interest for Indium experiment in Europe. Properties of metastable superconducting indium grains are presented and our progress towards making an experiment feasible is reviewed

  16. Macroscopic diffusion models for precipitation in crystalline gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Kimmerle, Sven-Joachim Wolfgang

    2009-09-21

    Based on a thermodynamically consistent model for precipitation in gallium arsenide crystals including surface tension and bulk stresses by Dreyer and Duderstadt, we propose two different mathematical models to describe the size evolution of liquid droplets in a crystalline solid. The first model treats the diffusion-controlled regime of interface motion, while the second model is concerned with the interface-controlled regime of interface motion. Our models take care of conservation of mass and substance. These models generalise the well-known Mullins- Sekerka model for Ostwald ripening. We concentrate on arsenic-rich liquid spherical droplets in a gallium arsenide crystal. Droplets can shrink or grow with time but the centres of droplets remain fixed. The liquid is assumed to be homogeneous in space. Due to different scales for typical distances between droplets and typical radii of liquid droplets we can derive formally so-called mean field models. For a model in the diffusion-controlled regime we prove this limit by homogenisation techniques under plausible assumptions. These mean field models generalise the Lifshitz-Slyozov-Wagner model, which can be derived from the Mullins-Sekerka model rigorously, and is well understood. Mean field models capture the main properties of our system and are well adapted for numerics and further analysis. We determine possible equilibria and discuss their stability. Numerical evidence suggests in which case which one of the two regimes might be appropriate to the experimental situation. (orig.)

  17. Electronic band structure and optical properties of antimony selenide under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Abhijit, B.K.; Jayaraman, Aditya; Molli, Muralikrishna, E-mail: muralikrishnamolli@sssihl.edu.in [Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam, 515 134 (India)

    2016-05-23

    In this work we present the optical properties of Antimony Selenide (Sb{sub 2}Se{sub 3}) under ambient conditions and under pressure of 9.2 GPa obtained using first principles calculations. We investigated the electronic band structure using the FP-LAPW method within the sphere of the density functional theory. Optical properties like refractive index, absorption coefficient and optical conductivity are calculated using the WIEN2k code.

  18. Mn-implanted, polycrystalline indium tin oxide and indium oxide films

    International Nuclear Information System (INIS)

    Scarlat, Camelia; Vinnichenko, Mykola; Xu Qingyu; Buerger, Danilo; Zhou Shengqiang; Kolitsch, Andreas; Grenzer, Joerg; Helm, Manfred; Schmidt, Heidemarie

    2009-01-01

    Polycrystalline conducting, ca. 250 nm thick indium tin oxide (ITO) and indium oxide (IO) films grown on SiO 2 /Si substrates using reactive magnetron sputtering, have been implanted with 1 and 5 at.% of Mn, followed by annealing in nitrogen or in vacuum. The effect of the post-growth treatment on the structural, electrical, magnetic, and optical properties has been studied. The roughness of implanted films ranges between 3 and 15 nm and XRD measurements revealed a polycrystalline structure. A positive MR has been observed for Mn-implanted and post-annealed ITO and IO films. It has been interpreted by considering s-d exchange. Spectroscopic ellipsometry has been used to prove the existence of midgap electronic states in the Mn-implanted ITO and IO films reducing the transmittance below 80%.

  19. Indium oxide/n-silicon heterojunction solar cells

    Science.gov (United States)

    Feng, Tom; Ghosh, Amal K.

    1982-12-28

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  20. Photo-dissociation of hydrogen passivated dopants in gallium arsenide

    International Nuclear Information System (INIS)

    Tong, L.; Larsson, J.A.; Nolan, M.; Murtagh, M.; Greer, J.C.; Barbe, M.; Bailly, F.; Chevallier, J.; Silvestre, F.S.; Loridant-Bernard, D.; Constant, E.; Constant, F.M.

    2002-01-01

    A theoretical and experimental study of the photo-dissociation mechanisms of hydrogen passivated n- and p-type dopants in gallium arsenide is presented. The photo-induced dissociation of the Si Ga -H complex has been observed for relatively low photon energies (3.48 eV), whereas the photo-dissociation of C As -H is not observed for photon energies up to 5.58 eV. This fundamental difference in the photo-dissociation behavior between the two dopants is explained in terms of the localized excitation energies about the Si-H and C-H bonds

  1. Pulsed electron-beam annealing of selenium-implanted gallium arsenide

    International Nuclear Information System (INIS)

    Inada, T.; Tokunaga, K.; Taka, S.

    1979-01-01

    Electrical properties of selenium-implanted gallium arsenide annealed by a single shot of high-power pulsed electron beams have been investigated by differential Hall-effect and sheet-resistivity measurements. It has been shown that higher electrical activation of implanted selenium can be obtained after electron-beam annealing at an incident energy density of 1.2 J/cm 2 , independent of heating of GaAs substrate during implantation. Measured carrier concentrations exhibit uniformly distributed profiles having carrier concentrations of 2--3 x 10 19 /cm 3 , which is difficult to realize by conventional thermal annealing

  2. Adsorption and gas-chromatographic properties of tungsten selenide

    International Nuclear Information System (INIS)

    Gavrilova, T.B.; Kiselev, A.V.; Roshchina, T.M.

    1988-01-01

    Method of gas chromatography was used to investigate the surface properties of a series of tungsten selenide WSe 2 samples as well as to determine the role of geometrical and electronic structure of adsorbate molecules and their orientation with respect to the surface during adsorption on WSe 2 . Thermodynamic characteristics of hydrocarbon C 6 -C 10 adsorption at surface occupation close to the zero one were determined. Correlation of the values of thermodynamic characteristics of saturated and aromatic hydrocarbon adsorption enabled to refer WSe 2 to nonspecific adsorbents. It is noted that the main role during hydrocarbon adsorption on WSe 2 is played by nonpolar basic facets, occupied by selenium atoms

  3. Fast Inline Roll-to-Roll Printing for Indium-Tin-Oxide-Free Polymer Solar Cells Using Automatic Registration

    DEFF Research Database (Denmark)

    Hösel, Markus; Søndergaard, Roar R.; Jørgensen, Mikkel

    2013-01-01

    layer. The third and fourth layers were slot-die coated at the same time again using inline processing at a web speed of 10 mmin1 of firstly zinc oxide as the electron transport layer followed by P3HT:PCBM as the active layer. The first three layers (silver-grid/PEDOT:PSS/ZnO) comprise a generally......Fast inline roll-to-roll printing and coating on polyethylene terephthalate (PET) and barrier foil was demonstrated under ambient conditions at web speeds of 10 mmin1 for the manufacture of indium-tin-oxide-free (ITO-free) polymer solar cells comprising a 6-layer stack: silver-grid/PEDOT:PSS/ Zn...

  4. Indium-granulocyte scanning in the painful prosthetic joint

    International Nuclear Information System (INIS)

    Pring, D.J.; Henderson, R.G.; Keshavarzian, A.; Rivett, A.G.; Krausz, T.; Coombs, R.R.; Lavender, J.P.

    1986-01-01

    The value of indium-111-labeled granulocyte scanning to determine the presence of infection was assessed in 50 prosthetic joints (41 of which were painful) in 40 patients. Granulocytes were obtained from the patients' blood and labeled in plasma with indium 111 tropolonate. Abnormal accumulation of indium 111 in the region of the prosthesis was noted. Proven infection occurred in 11 prostheses, and all of the infections were detected by indium-111-labeled granulocyte scanning. Nineteen were not infected (including nine asymptomatic controls) and only two produced false-positive scans. This represents a specificity of 89.5%, sensitivity of 100%, and overall accuracy of 93.2%. These results compare favorably with plain radiography. There was no radiologic evidence of infection in three of the infected prostheses, and 10 of the noninfected prostheses had some radiologic features that suggested sepsis. We conclude that indium-granulocyte scanning can reliably detect or exclude infection in painful prosthetic joints and should prove useful in clinical management

  5. Combustion synthesized indium-tin-oxide (ITO) thin film for source/drain electrodes in all solution-processed oxide thin-film transistors

    International Nuclear Information System (INIS)

    Tue, Phan Trong; Inoue, Satoshi; Takamura, Yuzuru; Shimoda, Tatsuya

    2016-01-01

    We report combustion solution synthesized (SCS) indium-tin-oxide (ITO) thin film, which is a well-known transparent conductive oxide, for source/drain (S/D) electrodes in solution-processed amorphous zirconium-indium-zinc-oxide TFT. A redox-based combustion synthetic approach is applied to ITO thin film using acetylacetone as a fuel and metal nitrate as oxidizer. The structural and electrical properties of SCS-ITO precursor solution and thin films were systematically investigated with changes in tin concentration, indium metal precursors, and annealing conditions such as temperature, time, and ambient. It was found that at optimal conditions the SCS-ITO thin film exhibited high crystalline quality, atomically smooth surface (RMS ∝ 4.1 Aa), and low electrical resistivity (4.2 x 10 -4 Ω cm). The TFT using SCS-ITO film as the S/D electrodes showed excellent electrical properties with negligible hysteresis. The obtained ''on/off'' current ratio, subthreshold swing factor, subthreshold voltage, and field-effect mobility were 5 x 10 7 , 0.43 V/decade, 0.7 V, and 2.1 cm 2 /V s, respectively. The performance and stability of the SCS-ITO TFT are comparable to those of the sputtered-ITO TFT, emphasizing that the SCS-ITO film is a promising candidate for totally solution-processed oxide TFTs. (orig.)

  6. Compatibility of Pt-3008 with selected components of the selenide isotope generator system

    International Nuclear Information System (INIS)

    Keiser, J.R.

    1979-04-01

    The first in a new generation of radioisotopic thermoelectric generators being built by Teledyne Energy Systems and designated the Selenide Isotope Generator has thermoelectric materials that can be degraded by reaction with O 2 , H 2 O, CO, and other gases. Consequently, for at least the first ground demonstration system a protective xenon atmosphere will be maintained over the thermoelectrics. The high-temperature portion of the atmosphere-retaining structure will be fabricated from the alloy Pt-3008 (Pt--30 wt % Rh--8 wt % W), which was developed at Oak Ridge National Laboratory. For this application Pt-3008 must be compatible with the various insulations and thermoelectric materials. A study of the compatibility of Pt-3008 with these materials and showed that Pt-3008 was embrittled after exposure to some of the insulations that were not adequately outgassed and by one of the thermoelectric materials (Cu 2 Se) in some of the isothermal tests. It is believed that Pt-3008 will be compatible with the Selenide Isotope Generator materials when they are well outgassed and under the temperature gradient conditions of the operating system

  7. Effect of time and deposition method on quality of phosphonic acid modifier self-assembled monolayers on indium zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Sang, Lingzi [Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721 (United States); Knesting, Kristina M. [Department of Chemistry, University of Washington, Seattle, WA 98195-1700 (United States); Bulusu, Anuradha [School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Sigdel, Ajaya K. [National Renewable Energy Laboratory, Golden, CO 80401 (United States); Giordano, Anthony J.; Marder, Seth R. [School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA 30332-0400 (United States); Berry, Joseph J. [National Renewable Energy Laboratory, Golden, CO 80401 (United States); Graham, Samuel [School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Ginger, David S. [Department of Chemistry, University of Washington, Seattle, WA 98195-1700 (United States); Pemberton, Jeanne E., E-mail: pembertn@email.arizona.edu [Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721 (United States)

    2016-12-15

    Highlights: • Deposition of phosphonic acid monolayers on oxides from ethanol solutions occurs by rapid adsorption within 10 s with slower equilibration complete in 48 h. • The slower equilibration step involves molecular reorientation and vacancy filling on the oxide surface. • Soak-free deposition by spray coating and microcontact printing do not provide reproducible, fully-covered, uniform monolayers without substrate etching. • Adjustments to exposure time, substrate temperature, and solution/substrate contact efficiency are necessary to optimize soak-free methods. - Abstract: Phosphonic acid (PA) self-assembled monolayers (SAMs) are utilized at critical interfaces between transparent conductive oxides (TCO) and organic active layers in organic photovoltaic devices (OPVs). The effects of PA deposition method and time on the formation of close-packed, high-quality monolayers is investigated here for SAMs fabricated by solution deposition, micro-contact printing, and spray coating. The solution deposition isotherm for pentafluorinated benzylphosphonic acid (F{sub 5}BnPA) on indium-doped zinc oxide (IZO) is studied using polarization modulation-infrared reflection-absorption spectroscopy (PM-IRRAS) at room temperature as a model PA/IZO system. Fast surface adsorption occurs within the first min; however, well-oriented high-quality SAMs are reached only after ∼48 h, presumably through a continual process of molecular adsorption/desorption and monolayer filling accompanied by molecular reorientation. Two other rapid, soak-free deposition techniques, micro-contact printing and spray coating, are also explored. SAM quality is compared for deposition of phenyl phosphonic acid (PPA), F{sub 13}-octylphosphonic acid (F{sub 13}OPA), and pentafluorinated benzyl phosphonic acid (F{sub 5}BnPA) by solution deposition, micro-contact printing and spray coating using PM-IRRAS. In contrast to micro-contact printing and spray coating techniques, 48–168 h solution

  8. Determination of the some electronic parameters of nanostructure copper selenide and Cu/Cu3Se2/n-GaAs/In structure

    International Nuclear Information System (INIS)

    Güzeldir, B.; Sağlam, M.; Ateş, A.; Türüt, A.

    2015-01-01

    Highlights: • Introducing to a new degree of freedom in the control of effective barrier height by using Cu. • We want to experimentally observe whether or not the diode continues the ideality in the temperature range of 60–400 K. • We have modified the Richardson’s plot using the temperature dependent values of effective area of the patches. - Abstract: The nanostructure copper selenide thin film has been grown on n-type gallium arsenide substrate by Successive Ionic Layer Adsorption and Reaction (SILAR) method. The film has been characterized by X-ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM) measurements. X-ray diffraction analysis of the film confirms a polycrystalline with preferred orientation. The AFM and SEM micrographs of the film reveal smooth and uniform surface pattern without any dark pits, pinholes and microcracks. The Cu/Cu 3 Se 2 /n-GaAs/In structure has been thermally formed in evaporating system after the SILAR process. The electrical analysis of Cu/Cu 3 Se 2 /n-GaAs/In structure has been investigated by means of current–voltage (I–V) measurements in the temperature range of 60–400 K in dark conditions. The values of barrier height (BH) and ideality factor (n) ranged from 0.21 eV and 4.97 (60 K) to 0.83 eV and 1.14 (400 K), respectively. In the calculations, the electrical parameters of the experimental forward bias I–V characteristics of the Cu/Cu 3 Se 2 /n-GaAs/In with the homogeneity in the 60–400 K range have been explained by means of the thermionic emission (TE), considering Gaussian distribution (GD) of BH with linear bias dependence

  9. Coherent light scattering from a buried dipole in a high-aperture optical system

    International Nuclear Information System (INIS)

    Vamivakas, A N; Mueller, T; Atatuere, M; Yurt, A; Koeklue, F H; Uenlue, M S

    2011-01-01

    We develop a theoretical formulation to calculate the absolute and differential transmission of a focused laser beam through a high-aperture optical system. The focused field interacts with a point dipole that is buried in a high-index material, and is situated at the Gaussian focus of the focusing and collection two-lens system. The derived expressions account for the vectorial nature of the focused electromagnetic field and the inhomogeneous focal region environment. The results obtained are in agreement with recent resonant light-scattering experiments where the buried emitter is an indium arsenide semiconductor quantum dot in gallium arsenide.

  10. Work function of oxygen exposed lead and lead/indium alloy films

    International Nuclear Information System (INIS)

    Gundlach, K.H.; Hellemann, H.P.; Hoelzl, J.

    1982-01-01

    The effect of indium in superconducting tunnel junctions with lead/indium alloy base electrodes is investigated by measuring the vacuum work function of lead, indium, and lead/indium alloy films. It is found that the anomalous decrease of the work function of lead upon exposure to oxygen, explained by the penetration of oxygen into the inner surface of the lead film, is reversed into a slight increase in work function when some indium is added to the lead. This result indicates that the addition of indium provides a protection by suppressing the penetration of oxygen (and probably other gases) into the interior of the thin film

  11. Remarkable changes in interface O vacancy and metal-oxide bonds in amorphous indium-gallium-zinc-oxide thin-film transistors by long time annealing at 250 °C

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Md Delwar Hossain; Um, Jae Gwang; Jang, Jin, E-mail: jjang@khu.ac.kr [Advanced Display Research Center and Department of Information Display, Kyung Hee University, Seoul 130-701 (Korea, Republic of)

    2014-12-08

    We have studied the effect of long time post-fabrication annealing on negative bias illumination stress (NBIS) of amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film-transistors. Annealing for 100 h at 250 °C increased the field effect mobility from 14.7 cm{sup 2}/V s to 17.9 cm{sup 2}/V s and reduced the NBIS instability remarkably. Using X-ray photoelectron spectroscopy, the oxygen vacancy and OH were found to exist at the interfaces of a-IGZO with top and bottom SiO{sub 2}. Long time annealing helps to decrease the vacancy concentration and increase the metal-oxygen bonds at the interfaces; this leads to increase in the free carrier concentrations in a-IGZO and field-effect mobility. X-ray reflectivity measurement indicated the increment of a-IGZO film density of 5.63 g cm{sup −3} to 5.83 g cm{sup −3} (3.4% increase) by 100 h annealing at 250 °C. The increase in film density reveals the decrease of O vacancy concentration and reduction of weak metal-oxygen bonds in a-IGZO, which substantially helps to improve the NBIS stability.

  12. Effects of a powered air-purifying respirator intervention on indium exposure reduction and indium related biomarkers among ITO sputter target manufacturing workers.

    Science.gov (United States)

    Liu, Hung-Hsin; Chen, Chang-Yuh; Lan, Cheng-Hang; Chang, Cheng-Ping; Peng, Chiung-Yu

    2016-01-01

    This study aimed to evaluate the efficacy of powered air-purifying respirators (PAPRs) worn by the workers, and to investigate the effect of this application on exposure and preclinical effects in terms of workplace measuring and biomarker monitoring in ITO sputter target manufacturing plants and workers, respectively. Fifty-four workers were recruited and investigated from 2010-2012, during which PAPRs were provided to on-site workers in September 2011. Each worker completed questionnaires and provided blood and urine samples for analysis of biomarkers of indium exposure and preclinical effects. Area and personal indium air samples were randomly collected from selected worksites and from participants. The penetration percentage of the respirator (concentration inside respirator divided by concentration outside respirator) was 6.6%. Some biomarkers, such as S-In, SOD, GPx, GST, MDA, and TMOM, reflected the decrease in exposure and showed lower levels, after implementation of PAPRs. This study is the first to investigate the efficacy of PAPRs for reducing indium exposure. The measurement results clearly showed that the implementation of PAPRs reduces levels of indium-related biomarkers. These findings have practical applications for minimizing occupational exposure to indium and for managing the health of workers exposed to indium.

  13. Determination of dimethyl selenide and dimethyl sulphide compounds causing off-flavours in bottled mineral waters.

    Science.gov (United States)

    Guadayol, Marta; Cortina, Montserrat; Guadayol, Josep M; Caixach, Josep

    2016-04-01

    Sales of bottled drinking water have shown a large growth during the last two decades due to the general belief that this kind of water is healthier, its flavour is better and its consumption risk is lower than that of tap water. Due to the previous points, consumers are more demanding with bottled mineral water, especially when dealing with its organoleptic properties, like taste and odour. This work studies the compounds that can generate obnoxious smells, and that consumers have described like swampy, rotten eggs, sulphurous, cooked vegetable or cabbage. Closed loop stripping analysis (CLSA) has been used as a pre-concentration method for the analysis of off-flavour compounds in water followed by identification and quantification by means of GC-MS. Several bottled water with the aforementioned smells showed the presence of volatile dimethyl selenides and dimethyl sulphides, whose concentrations ranged, respectively, from 4 to 20 ng/L and from 1 to 63 ng/L. The low odour threshold concentrations (OTCs) of both organic selenide and sulphide derivatives prove that several objectionable odours in bottled waters arise from them. Microbial loads inherent to water sources, along with some critical conditions in water processing, could contribute to the formation of these compounds. There are few studies about volatile organic compounds in bottled drinking water and, at the best of our knowledge, this is the first study reporting the presence of dimethyl selenides and dimethyl sulphides causing odour problems in bottled waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Charge transport in dye-sensibilized porous zinc oxide films; Ladungstransport in farbstoffsensibilisierten poroesen Zinkoxidfilmen

    Energy Technology Data Exchange (ETDEWEB)

    Reemts, J.

    2006-05-18

    light is switched on or off. In analogy to the DX-centers in bulk of gallium arsenide, the underlying process of persistent photoconductivity can be attributed to a lattice relaxation of surface states of the zinc oxide. After the relaxation the potential energy of the lattice is lowered and the electron is in a metastable state with a long lifetime. (orig.)

  15. Light forces on an indium atonic beam; Lichtkraefte auf einen Indiumatomstrahl

    Energy Technology Data Exchange (ETDEWEB)

    Kloeter, B.

    2007-07-01

    In this thesis it was studied, whether indium is a possible candidate for the nanostructuration respectively atomic lithography. For this known method for the generation and stabilization of the light necessary for the laser cooling had to be fitted to the special properties of indium. The spectroscopy of indium with the 451 nm and the 410 nm light yielded first hints that the formulae for the atom-light interaction for a two-level atom cannot be directly transferred to the indium atom. By means of the obtained parameters of the present experiment predictions for a possible Doppler cooling of the indium atomic beam were calculated. Furthermore the possibility for the direct deposition of indium on a substrate was studied.

  16. Detection of spin-states in Mn-doped gallium arsenide films

    International Nuclear Information System (INIS)

    Hofer, Werner A; Palotas, Krisztian; Teobaldi, Gilberto; Sadowski, Janusz; Mikkelsen, Anders; Lundgren, Edvin

    2007-01-01

    We show that isolated magnetic dipoles centred at the position of manganese impurities in a gallium arsenide lattice lead to spin polarized states in the bandgap of the III-V semiconductor. Spectroscopy simulations with a tungsten tip agree well with experimental data; in this case, no difference can be observed for the two magnetic groundstates. But if the signal is read with a magnetic iron tip, it changes by a factor of up to 20, depending on the magnetic orientation of the Mn atom

  17. Influence of source and drain contacts on the properties of indium-gallium-zinc-oxide thin-film transistors based on amorphous carbon nanofilm as barrier layer.

    Science.gov (United States)

    Luo, Dongxiang; Xu, Hua; Zhao, Mingjie; Li, Min; Xu, Miao; Zou, Jianhua; Tao, Hong; Wang, Lei; Peng, Junbiao

    2015-02-18

    Amorphous indium-gallium-zinc-oxide thin film transistors (α-IGZO TFTs) with damage-free back channel wet-etch (BCE) process were achieved by introducing a carbon nanofilm as a barrier layer. We investigate the effects of different source-and-drain (S/D) materials on TFT performance. We find the TFT with Ti/C S/D electrodes exhibits a superior performance with higher output current, lower threshold voltage, and higher effective electron mobility compared to that of Mo/C S/D electrodes. Transmittance electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) are employed to analysis the interfacial interaction between S/D metal/C/α-IGZO layers. The results indicate that the better performance of TFTs with Ti/C electrodes should be attributed to the formations of Ti-C and Ti-O at the Ti/C-contact regions, which lead to a lower contact resistance, whereas Mo film is relatively stable and does not react easily with C nanofilm, resulting in a nonohmic contact behavior between Mo/C and α-IGZO layer. However, both kinds of α-IGZO TFTs show good stability under thermal bias stress, indicating that the inserted C nanofilms could avoid the impact on the α-IGZO channel regions during S/D electrodes formation. Finally, we successfully fabricated a high-definition active-matrix organic lighting emitting diode prototype driven by α-IGZO TFTs with Ti/C electrodes in a pilot line.

  18. Depression-like behavior and mechanical allodynia are reduced by bis selenide treatment in mice with chronic constriction injury: a comparison with fluoxetine, amitriptyline, and bupropion.

    Science.gov (United States)

    Jesse, Cristiano R; Wilhelm, Ethel A; Nogueira, Cristina W

    2010-12-01

    Neuropathic pain is associated with significant co-morbidities, including depression, which impact considerably on the overall patient experience. Pain co-morbidity symptoms are rarely assessed in animal models of neuropathic pain. Neuropathic pain is characterized by hyperexcitability within nociceptive pathways and remains difficult to treat with standard analgesics. The present study determined the effect of bis selenide and conventional antidepressants (fluoxetine, amitriptyline, and bupropion) on neuropathic pain using mechanical allodynic and on depressive-like behavior. Male mice were subjected to chronic constriction injury (CCI) or sham surgery and were assessed on day 14 after operation. Mice received oral treatment with bis selenide (1-5 mg/kg), fluoxetine, amitriptyline, or bupropion (10-30 mg/kg). The response frequency to mechanical allodynia in mice was measured with von Frey hairs. Mice were evaluated in the forced swimming test (FST) test for depression-like behavior. The CCI procedure produced mechanical allodynia and increased depressive-like behavior in the FST. All of the drugs produced antiallodynic effects in CCI mice and produced antidepressant effects in control mice without altering locomotor activity. In CCI animals, however, only the amitriptyline and bis selenide treatments significantly reduced immobility in the FST. These data demonstrate an important dissociation between the antiallodynic and antidepressant effects in mice when tested in a model of neuropathic pain. Depressive behavior in CCI mice was reversed by bis selenide and amitriptyline but not by the conventional antidepressants fluoxetine and buproprion. Bis selenide was more potent than the other drugs tested for antidepressant-like and antiallodynic effects in mice.

  19. How metallic is the binding state of indium hosted by excess-metal chalcogenides in ore deposits?

    Science.gov (United States)

    Ondina Figueiredo, Maria; Pena Silva, Teresa; Oliveira, Daniel; Rosa, Diogo

    2010-05-01

    Discovered in 1863, indium is nowadays a strategic scarce metal used both in classical technologic fields (like low melting-temperature alloys and solders) and in innovative nano-technologies to produce "high-tech devices" by means of new materials, namely liquid crystal displays (LCDs), organic light emitting diodes (OLEDs) and the recently introduced transparent flexible thin-films manufactured with ionic amorphous oxide semiconductors (IAOS). Indium is a typical chalcophile element, seldom forming specific minerals and occurring mainly dispersed within polymetallic sulphides, particularly with excess metal ions [1]. The average content of indium in the Earth's crust is very low but a further increase in its demand is still expected in the next years, thus focusing a special interest in uncovering new exploitation sites through promising polymetallic sulphide ores - e.g., the Iberian Pyrite Belt (IPB) [2] - and in improving recycling technologies. Indium recovery stands mostly on zinc extraction from sphalerite, the natural cubic sulphide which is the prototype of so-called "tetrahedral sulphides" where metal ions fill half of the available tetrahedral sites within the cubic closest packing of sulphur anions where the double of unfilled interstices are available for further in-filling. It is worth remarking that such packing array is particularly suitable for accommodating polymetallic cations by filling closely located interstitial sites [3] as happens in excess-metal tetrahedral sulphides - e.g. bornite, ideally Cu5FeS4, recognized as an In-carrying mineral [4]. Studying the tendency towards In-In interactions able of leading to the formation of polycations would efficiently contribute to understand indium crystal chemistry and the metal binding state in natural chalcogenides. Accordingly, an X-ray absorption near-edge spectroscopy (XANES) study at In L3-edge was undertaken using the instrumental set-up of ID21 beamline at the ESRF (European Synchrotron

  20. Asymmetric supercapacitors with metal-like ternary selenides and porous graphene electrodes

    KAUST Repository

    Xia, Chuan

    2016-04-14

    Asymmetric supercapacitors provide a promising approach to fabricate capacitive energy storage devices with high energy and power densities. In this work, asymmetric supercapacitors with excellent performance have been fabricated using ternary (Ni, Co)0.85Se on carbon fabric as bind-free positive electrode and porous free-standing graphene films as negative electrode. Owing to their metal-like conductivity (~1.67×106 S m−1), significant electrochemical activity, and superhydrophilic nature, our nanostructured ternary nickel cobalt selenides result in a much higher areal capacitance (2.33 F cm−2 at 4 mA cm−2), better rate performance and cycling stability than their binary selenide equivalents, and other ternary oxides and chalcogenides. Those hybrid supercapacitors can afford impressive areal capacitance and stack capacitance of 529.3 mF cm−2 and 6330 mF cm−3 at 1 mA cm−2, respectively. More impressively, our optimized asymmetric device operating at 1.8 V delivers a very high stack energy density of 2.85 mWh cm−3 at a stack power density of 10.76 mW cm−3, as well as 85% capacitance retention after 10,000 continuous charge-discharge cycles. Even at a high stack power density of 1173 mW cm−3, this device still deliveries a stack energy density of 1.19 mWh cm−3, superior to most of the reported supercapacitors.

  1. Cathodoluminescence | Materials Science | NREL

    Science.gov (United States)

    shown on a computer screen; the image of a sample semiconductor material appears as a striated oval material sample shown above; the image is a high-contrast light and dark oval on a dark background and was top left of copper indium gallium selenide semiconductor material sample; the image is shown on a

  2. Testing of gallium arsenide solar cells on the CRRES vehicle

    International Nuclear Information System (INIS)

    Trumble, T.M.

    1985-01-01

    A flight experiment was designed to determine the optimum design for gallium arsenide (GaAs) solar cell panels in a radiation environment. Elements of the experiment design include, different coverglass material and thicknesses, welded and soldered interconnects, different solar cell efficiencies, different solar cell types, and measurement of annealing properties. This experiment is scheduled to fly on the Combined Release and Radiation Effects Satellite (CRRES). This satellite will simultaneously measure the radiation environment and provide engineering data on solar cell degradation that can be directly related to radiation damage

  3. Two-step synthesis of silver selenide semiconductor with a linear magnetoresistance effect

    International Nuclear Information System (INIS)

    Yang, Fengxia; Xiong, Shuangtao; Liu, Fengxian; Han, Chong; Zhang, Duanming; Xia, Zhengcai

    2012-01-01

    A two-step synthesis method for polycrystalline β-silver selenide (β-Ag 2 Se) was developed. In the first step, nanopowder was prepared using a chemical conversion method at room temperature. In the second step, the nanopowder was compressed and then the bulk Ag 2 Se was fabricated by the solid-state sintering process. The crystalline phase and morphology were examined. The results showed that β-Ag 2 Se was fast fabricated at room temperature. The dense polycrystalline Ag-rich Ag 2 Se was synthesized successfully at 450 °C for 0.5 h under Argon flow. For the polycrystalline, the electronic properties and transverse magnetoresistance (TMR) in a pulsed magnetic field were investigated. The samples displayed n-type semiconducting behaviors and a critical temperature with a broaden temperature range of 140–150 K. Also, it presented a positive and nearly linear dependence on magnetic field H at H ≥ H c (crossover field) ranging from 2 to 20 T. Moreover, the linear dependence of TMR at strong field was non-saturating up to 35 T. Combining with the observation of morphology, it is thought that this unusual TMR effect was caused by slightly excess Ag. This new synthesis method provided a potential route to synthesize nonstoichiometric silver selenide. (paper)

  4. Bulk Heterojunction Solar Cell Devices Prepared with Composites of Conjugated Polymer and Zinc Oxide Nanorods

    Directory of Open Access Journals (Sweden)

    Nguyen Tam Nguyen Truong

    2017-01-01

    Full Text Available ZnO nanorods (Nrods with ~20–50 nm lengths were synthesized using an aqueous solution of zinc acetate and glacial acetic acid. Bulk heterojunction solar cells were fabricated with the structure of indium tin oxide (ITO/polyethylenedioxythiophene doped with polystyrene-sulfonic acid (PEDOT:PSS/ZnO-Nrods + polymer/electron transport layer (ETL/Al. Current density-voltage characterization of the resulting cells showed that, by adding an ETL and using polymers with a low band gap energy, the photoactive layer surface morphology and the device performance can be dramatically improved.

  5. High thermal conductivity materials for thermal management applications

    Science.gov (United States)

    Broido, David A.; Reinecke, Thomas L.; Lindsay, Lucas R.

    2018-05-29

    High thermal conductivity materials and methods of their use for thermal management applications are provided. In some embodiments, a device comprises a heat generating unit (304) and a thermally conductive unit (306, 308, 310) in thermal communication with the heat generating unit (304) for conducting heat generated by the heat generating unit (304) away from the heat generating unit (304), the thermally conductive unit (306, 308, 310) comprising a thermally conductive compound, alloy or composite thereof. The thermally conductive compound may include Boron Arsenide, Boron Antimonide, Germanium Carbide and Beryllium Selenide.

  6. Confinement - assisted shock-wave-induced thin-film delamination (SWIFD) of copper indium gallium diselenide (CIGS) on a flexible substrate

    Science.gov (United States)

    Lorenz, Pierre; Zagoranskiy, Igor; Ehrhardt, Martin; Han, Bing; Bayer, Lukas; Zimmer, Klaus

    2017-12-01

    The laser structuring of CIGS (copper indium gallium (di)selenide) solar cell material without influence and damaging the functionality of the active layer is a challenge for laser methods The shock-wave-induced thin-film delamination (SWIFD) process allows structuring without thermal modifications due to a spatial separation of the laser absorption from the functional layer removal process. In the present study, SWIFD structuring of CIGS solar cell stacks was investigated. The rear side of the polyimide was irradiated with a KrF-Excimer laser. The laser-induced ablation process generates a traverse shock wave, and the interaction of the shock wave with the layer-substrate interface results in a delamination process. The effect of a water confinement on the SWIFD process was studied where the rear side of the substrate was covered with a ∼2 mm thick water layer. The resultant surface morphology was analysed and discussed. At a sufficient number of laser pulses N and laser fluences Φ, the CIGS layer can be selectively removed from the Mo back contact. The water confinement, as well as the increasing laser beam size A0 and N, results in the reduction of the necessary minimal laser fluence Φth. Further, the delaminated CIGS area increased with increasing Φ, N, and A0.

  7. Properties of Co-deposited indium tin oxide and zinc oxide films using a bipolar pulse power supply and a dual magnetron sputter source

    International Nuclear Information System (INIS)

    Hwang, Man-Soo; Seob Jeong, Heui; Kim, Won Mok; Seo, Yong Woon

    2003-01-01

    Multilayer coatings consisting of metal layers sandwiched between transparent conducting oxide layers are widely used for flat panel display electrodes and electromagnetic shield coatings for plasma displays, due to their high electrical conductivity and light transmittance. The electrical and optical properties of these multilayer films depend largely on the surface characteristics of the transparent conducting oxide thin films. A smoother surface on the transparent conducting oxide thin films makes it easier for the metal layer to form a continuous film, thus resulting in a higher conductivity and visible light transmittance. Indium tin oxide (ITO) and zinc oxide (ZnO) films were co-deposited using a dual magnetron sputter and a bipolar pulse power supply to decrease the surface roughness of the transparent conducting oxide films. The symmetric pulse mode of the power supply was used to simultaneously sputter an In 2 O 3 (90 wt %) : SnO 2 (10 wt %) target and a ZnO target. We varied the duty of the pulses to control the ratio of ITO : ZnO in the thin films. The electrical and optical properties of the films were studied, and special attention was paid to the surface roughness and the crystallinity of the films. By co-depositing ITO and ZnO at a pulse duty ratio of ITO:ZnO=45:45 using a dual magnetron sputter and a bipolar pulse power supply, we were able to obtain amorphous transparent conducting oxide films with a very smooth surface which had a Zn-rich buffer layer under a In-rich surface layer. All of the films exhibited typical electrical and optical properties of transparent conducting oxide films deposited at room temperature

  8. Polarographic determination of selenium in indium

    International Nuclear Information System (INIS)

    Kaplan, B.Ya.; Mikheeva, V.A.; Priz, N.B.

    1978-01-01

    The procedure of determining nx10 -6 % Se in indium after concentrating in an elemental form on arsenic and sulphur has been developed. The selenium content is determined by inversion a.c. polarography on a sulphuric-acid background in the presence of Cu(2), potassium bichromate, and sodium pyrophosphate. 5.7x10 -6 % Se in metal indium has been determined by this procedure, the mean standard deviation being Sr=0.26

  9. Hydrogen Production via Steam Reforming of Ethyl Alcohol over Palladium/Indium Oxide Catalyst

    Directory of Open Access Journals (Sweden)

    Tetsuo Umegaki

    2009-01-01

    Full Text Available We report the synergetic effect between palladium and indium oxide on hydrogen production in the steam reforming reaction of ethyl alcohol. The palladium/indium oxide catalyst shows higher hydrogen production rate than indium oxide and palladium. Palladium/indium oxide affords ketonization of ethyl alcohol with negligible by-product carbon monoxide, while indium oxide mainly affords dehydration of ethyl alcohol, and palladium affords decomposition of ethyl alcohol with large amount of by-product carbon monoxide. The catalytic feature of palladium/indium oxide can be ascribed to the formation of palladium-indium intermetallic component during the reaction as confirmed by X-ray diffraction and X-ray photoelectron spectroscopic measurements.

  10. Catalytic property of an indium-deposited powder-type material containing silicon and its dependence on the dose of indium nano-particles irradiated by a pulse arc plasma process

    Directory of Open Access Journals (Sweden)

    Satoru Yoshimura

    2017-06-01

    Full Text Available Indium nano-particle irradiations onto zeolite powders were carried out using a pulse arc plasma source system. X-ray photoelectron spectroscopic and scanning electron microscopic studies of an indium irradiated zeolite sample revealed that indium nano-particles were successfully deposited on the sample. Besides, the sample was found to be capable of catalyzing an organic chemical reaction (i.e., Friedel-Crafts alkylation. Then, we examined whether or not the catalytic ability depends on the irradiated indium dose, having established the optimal indium dose for inducing the catalytic effect.

  11. Short period strain balanced gallium arsenide nitride/indium arsenide nitride superlattice lattice matched to indium phosphide for mid-infrared photovoltaics

    Science.gov (United States)

    Bhusal, Lekhnath

    Dilute nitrogen-containing III-V-N alloys have been intensively studied for their unusual electronic and optical behavior in the presence of a small amount of nitrogen. Those behaviors can further be manipulated, with a careful consideration of the strain and strain balancing, for example, in the context of a strain-balanced superlattice (SL) based on those alloys. In this work, the k.p approximation and the band anti-crossing model modified for the strain have been used to describe the electronic states of the strained bulk-like GaAs1-xNx and InAs 1-yNy ternaries in the vicinity of the center of the Brillouin zone (Gamma-point). Band-offsets between the conduction and valence bands of GaAs1-xNx and InAs1-yN y have also been evaluated, before implementing them into the SL structure. By minimizing the total mechanical energy of the stack of the alternating layers of GaAs1-xNx and InAs1-yNy in the SL, the ratio of the thicknesses of the epilayers is determined to make the structure lattice-matching on the InP(001), through the strain-balancing. Mini-band energies of the strain-balanced GaAs1-xNx/InAs 1-yNy short-period SL on InP(001) is then investigated using the transfer matrix formalism. This enabled identifying the evolution of the band edge transition energies of the superlattice structure for different nitrogen compositions. Results show the potential of the new proposed design to exceed the existing limits of bulk-like InGaAsN alloys and offer the applications for photon absorption/emission energies in the range of ~0.65-0.35eV at 300K for a typical nitrogen composition of ≤5%. The optical absorption coefficient of such a SL is then estimated under the anisotropic medium approximation, where the optical absorption of the bulk structure is modified according to the anisotropy imposed by the periodic potential in the growth direction. As an application, the developed SL structure is used to investigate the performance of double, triple and quadruple junction thermophotovoltaic devices. Integration of the SL structure, which is lattice matched to InP, in the i region of the p(InGaAs)- i(SL) n(InGaAs) diode allowed the possibility of more than two junction thermophotovoltiac device with the enhanced performance in comparison to the conventional p(InGaAs)n(InGaAs) diode.

  12. Indium sulfide precipitation from hydrochloric acid solutions of calcium and sodium chlorides

    International Nuclear Information System (INIS)

    Kochetkova, N.V.; Bayandina, Yu.E.; Toptygina, G.M.; Shepot'ko, A.O.

    1988-01-01

    The effect of precipitation duration, acid concentration, indium complexing with chloride ions on the process of indium sulfide chemical precipitation in hydrochloric acid solutions, precipitate composition and dispersity are studied. It is established that indium sulfide solubility increases in solutions with acid concentration exceeding 0.40-0.45 mol/l. Calcium and indium chloride addition to diluted hydrochloric solutions greatly increases the solubility of indium sulfide. The effect of calcium chloride on In 2 S 3 solubility is higher than that of sodium chloride

  13. Neutral complexes of the indium dihalides

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, I.; Worrall, I.J. (Lancaster Univ. (UK))

    1982-03-15

    The neutral complexes In/sub 2/X/sub 4/.2L (X=Cl, Br, I; L 1,4-dioxan, tetrahydropyran, tetrahydrofuran, tetrahydrothiophene), In/sub 2/X/sub 4/.2L (X=Br, I; Ldimethylsulphide), In/sub 2/X/sub 4/.4L (X=Cl, Br, I; Lpiperidine, piperazine, morpholine), and In/sub 2/X/sub 4/.4L (X=Br, I; L=pyridine, dimethylsulphoxide) have been prepared. Solid state Raman spectra indicate that the compounds contain indium-indium bonds.

  14. Synthesis, characterization, photophysical, and photochemical properties of novel zinc(II) and indium(III) phthalocyanines containing 2-phenylphenoxy units

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Haytham Elzien Alamin [Department of Chemistry, Marmara University, Istanbul 34722 (Turkey); University of Khartoum, Department of Chemistry, Faculty of Science, P.O. Box 321, Khartoum, 11115 (Sudan); Pişkin, Mehmet [Çanakkale Onsekiz Mart University, Vocational School of Technical Sciences, Department of Food Technology, Çanakkale 17100 (Turkey); Altun, Selçuk [Department of Chemistry, Marmara University, Istanbul 34722 (Turkey); Durmuş, Mahmut [Gebze Technical University, Department of Chemistry, P.O. Box 141, Gebze, Kocaeli 41400 (Turkey); Odabaş, Zafer, E-mail: zodabas@marmara.edu.tr [Department of Chemistry, Marmara University, Istanbul 34722 (Turkey)

    2016-05-15

    The synthesis of highly soluble and non-aggregated peripherally/non-peripherally Zn and In(OAc) phthalocyanines was achieved by 3-/ and 4-(2-phenylphenoxy)phthalonitrile as starting materials. The novel compounds were characterized by elemental analyses, FT-IR, {sup 1}H-NMR (for phthalonitriles), UV–vis and MALDI-TOF mass (for Pcs) spectroscopic techniques. Additionally, photophysical, photochemical and spectral properties of the phthalocyanines were reported. Especially, the indium(OAc) phthalocyanines showed good singlet oxygen quantum yields in DMSO and they can be appropriate candidates as Type II photosensitizers in photodynamic therapy (PDT) applications.

  15. Synthesis, characterization, photophysical, and photochemical properties of novel zinc(II) and indium(III) phthalocyanines containing 2-phenylphenoxy units

    International Nuclear Information System (INIS)

    Ali, Haytham Elzien Alamin; Pişkin, Mehmet; Altun, Selçuk; Durmuş, Mahmut; Odabaş, Zafer

    2016-01-01

    The synthesis of highly soluble and non-aggregated peripherally/non-peripherally Zn and In(OAc) phthalocyanines was achieved by 3-/ and 4-(2-phenylphenoxy)phthalonitrile as starting materials. The novel compounds were characterized by elemental analyses, FT-IR, 1 H-NMR (for phthalonitriles), UV–vis and MALDI-TOF mass (for Pcs) spectroscopic techniques. Additionally, photophysical, photochemical and spectral properties of the phthalocyanines were reported. Especially, the indium(OAc) phthalocyanines showed good singlet oxygen quantum yields in DMSO and they can be appropriate candidates as Type II photosensitizers in photodynamic therapy (PDT) applications.

  16. Determination of the some electronic parameters of nanostructure copper selenide and Cu/Cu{sub 3}Se{sub 2}/n-GaAs/In structure

    Energy Technology Data Exchange (ETDEWEB)

    Güzeldir, B.; Sağlam, M. [Department of Physics, Faculty of Sciences, Atatürk University, 25240 Erzurum (Turkey); Ateş, A. [Department of Material Engineering, Faculty of Engineering and Natural Sciences, Yıldırım Beyazıt University, Ankara (Turkey); Türüt, A. [Department of Physics Engineering, Faculty of Sciences, Istanbul Medeniyet University, 34000 Istanbul (Turkey)

    2015-04-05

    Highlights: • Introducing to a new degree of freedom in the control of effective barrier height by using Cu. • We want to experimentally observe whether or not the diode continues the ideality in the temperature range of 60–400 K. • We have modified the Richardson’s plot using the temperature dependent values of effective area of the patches. - Abstract: The nanostructure copper selenide thin film has been grown on n-type gallium arsenide substrate by Successive Ionic Layer Adsorption and Reaction (SILAR) method. The film has been characterized by X-ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM) measurements. X-ray diffraction analysis of the film confirms a polycrystalline with preferred orientation. The AFM and SEM micrographs of the film reveal smooth and uniform surface pattern without any dark pits, pinholes and microcracks. The Cu/Cu{sub 3}Se{sub 2}/n-GaAs/In structure has been thermally formed in evaporating system after the SILAR process. The electrical analysis of Cu/Cu{sub 3}Se{sub 2}/n-GaAs/In structure has been investigated by means of current–voltage (I–V) measurements in the temperature range of 60–400 K in dark conditions. The values of barrier height (BH) and ideality factor (n) ranged from 0.21 eV and 4.97 (60 K) to 0.83 eV and 1.14 (400 K), respectively. In the calculations, the electrical parameters of the experimental forward bias I–V characteristics of the Cu/Cu{sub 3}Se{sub 2}/n-GaAs/In with the homogeneity in the 60–400 K range have been explained by means of the thermionic emission (TE), considering Gaussian distribution (GD) of BH with linear bias dependence.

  17. Synthesis and photophysical properties of indium(III) phthalocyanine derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Özceşmeci, İbrahim, E-mail: ozcesmecii@itu.edu.tr [Department of Chemistry, Technical University of Istanbul, Maslak 34469, Istanbul (Turkey); Gelir, Ali [Department of Physics, Technical University of Istanbul, Maslak 34469, Istanbul (Turkey); Gül, Ahmet [Department of Chemistry, Technical University of Istanbul, Maslak 34469, Istanbul (Turkey)

    2014-03-15

    Three chloroindium(III) phthalocyanine derivatives bearing four aromatic (naphthalene or pyrene) or aliphatic (hexylthio) groups were prepared from corresponding phthalonitrile compounds. The indium(III) phthalocyanine derivatives were characterized with elemental analyses, mass, proton nuclear magnetic resonance ({sup 1}H NMR), Fourier transform infrared spectroscopy (FT-IR) and ultraviolet–visible spectroscopy (UV–vis) techniques. Quantum yields and the energy transfer from the substituents to phthalocyanine core were examined. No energy transfer was observed for 5. The energy transfer efficiency from pyrene units to indium phthalocyanine core was calculated as 0.27 for 6. Quantum yields of all samples were very small due to heavy atom effect of indium atom in the core. It was also observed that upon binding of pyrene and naphthalene units to indium phthalocyanine as substituents, the quantum yields of indium phthalocyanine parts of 5 and 6 decreased. -- Highlights: • Three chloroindium(III) phthalocyanines were prepared and characterized. • Aggregation properties of these compounds were investigated. • The energy transfer efficiency was examined. • Quantum yield of these systems were calculated.

  18. Electrosynthesis of cadmium selenide films from sodium citrate-selenosulphite bath

    International Nuclear Information System (INIS)

    Lokhande, C.D.; Lee, Eun-Ho; Jung, Kwang-Deog; Joo, Oh-Shim

    2005-01-01

    Electrosynthesis of cadmium selenide (CdSe) film has been carried out from deposition bath containing sodium selenosulphite, along with cadmium complexed with sodium citrate under potentiostatic deposition condition on titanium substrates. The pH of deposition bath was weakly basic (< 9.0). The CdSe films up to 3.0 μm were deposited. The X-ray diffraction (XRD) studies revealed that the CdSe films are microcrystalline with increased grain size after annealing. The scanning electron microscopy showed that the films are porous with cauliflower-like morphology. The photelectrochemical characterization showed that the CdSe films are photoactive

  19. Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains

    International Nuclear Information System (INIS)

    Vallee, B.L.; Auld, D.S.; Coleman, J.E.

    1991-01-01

    The authors recognize three distinct motifs of DNA-binding zinc proteins: (i) zinc fingers, (ii) zinc clusters, and (iii) zinc twists. Until very recently, x-ray crystallographic or NMR three-dimensional structure analyses of DNA-binding zinc proteins have not been available to serve as standards of reference for the zinc binding sites of these families of proteins. Those of the DNA-binding domains of the fungal transcription factor GAL4 and the rat glucocorticoid receptor are the first to have been determined. Both proteins contain two zinc binding sites, and in both, cysteine residues are the sole zinc ligands. In GAL4, two zinc atoms are bound to six cysteine residues which form a zinc cluster akin to that of metallothionein; the distance between the two zinc atoms of GAL4 is ∼3.5 angstrom. In the glucocorticoid receptor, each zinc atom is bound to four cysteine residues; the interatomic zinc-zinc distance is ∼13 angstrom, and in this instance, a zinc twist is represented by a helical DNA recognition site located between the two zinc atoms. Zinc clusters and zinc twists are here recognized as two distinctive motifs in DNA-binding proteins containing multiple zinc atoms. For native zinc fingers, structural data do not exist as yet; consequently, the interatomic distances between zinc atoms are not known. As further structural data become available, the structural and functional significance of these different motifs in their binding to DNA and other proteins participating in the transmission of the genetic message will become apparent

  20. Non-destructive local determination of doping additions and main components in single crystals

    International Nuclear Information System (INIS)

    Ehksperiandova, L.P.; Blank, A.B.; Kukhtina, N.N.; Afanasiadi, L.I.

    1994-01-01

    Procedures for local non-destructive determination of elements in optical and scintillation single crystals are developed. They are applied for determination of the main components (in cadmium tungstate) and doping additions (tellurium in zinc selenide, europium in gadolinium silicate). The metrological characteristics of the developed micro-analysis methods are estimated. Segregation of the main components and doping additions in the objects under consideration are investigated. Tellurium is found to be distributed uniformly on the cross-sections of bulk zinc selenide single crystals. The segregation of europium along gadolinium silicate ingots is almost absent. On the cross-section surface of cadmium tungstate single crystals the microregions are found characterized by the prevailing contents of cadmium or tungsten

  1. In-plane electronic anisotropy of underdoped '122' Fe-arsenide superconductors revealed by measurements of detwinned single crystals

    International Nuclear Information System (INIS)

    Fisher, I R; Shen, Z X; Degiorgi, L

    2011-01-01

    The parent phases of the Fe-arsenide superconductors harbor an antiferromagnetic ground state. Significantly, the Neel transition is either preceded or accompanied by a structural transition that breaks the four-fold symmetry of the high-temperature lattice. Borrowing language from the field of soft condensed matter physics, this broken discrete rotational symmetry is widely referred to as an Ising nematic phase transition. Understanding the origin of this effect is a key component of a complete theoretical description of the occurrence of superconductivity in this family of compounds, motivating both theoretical and experimental investigation of the nematic transition and the associated in-plane anisotropy. Here we review recent experimental progress in determining the intrinsic in-plane electronic anisotropy as revealed by resistivity, reflectivity and angle-resolved photoemission spectroscopy measurements of detwinned single crystals of underdoped Fe-arsenide superconductors in the '122' family of compounds.

  2. In-Plane Electronic Anisotropy of Underdoped ___122___ Fe-Arsenide Superconductors Revealed by Measurements of Detwinned Single Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Ian Randal

    2012-05-08

    The parent phases of the Fe-arsenide superconductors harbor an antiferromagnetic ground state. Significantly, the Neel transition is either preceded or accompanied by a structural transition that breaks the four fold symmetry of the high-temperature lattice. Borrowing language from the field of soft condensed matter physics, this broken discrete rotational symmetry is widely referred to as an Ising nematic phase transition. Understanding the origin of this effect is a key component of a complete theoretical description of the occurrence of superconductivity in this family of compounds, motivating both theoretical and experimental investigation of the nematic transition and the associated in-plane anisotropy. Here we review recent experimental progress in determining the intrinsic in-plane electronic anisotropy as revealed by resistivity, reflectivity and ARPES measurements of detwinned single crystals of underdoped Fe arsenide superconductors in the '122' family of compounds.

  3. An advanced case of indium lung disease with progressive emphysema.

    Science.gov (United States)

    Nakano, Makiko; Tanaka, Akiyo; Hirata, Miyuki; Kumazoe, Hiroyuki; Wakamatsu, Kentaro; Kamada, Dan; Omae, Kazuyuki

    2016-09-30

    To report the occurrence of an advanced case of indium lung disease with severely progressive emphysema in an indium-exposed worker. A healthy 42-year-old male smoker was employed to primarily grind indium-tin oxide (ITO) target plates, exposing him to indium for 9 years (1998-2008). In 2004, an epidemiological study was conducted on indium-exposed workers at the factory in which he worked. The subject's serum indium concentration (In-S) was 99.7 μg/l, while his serum Krebs von den Lungen-6 level was 2,350 U/ml. Pulmonary function tests showed forced vital capacity (FVC) of 4.17 l (91.5% of the JRS predicted value), forced expiratory volume in 1 s (FEV 1 ) of 3.19 l (80.8% of predicted), and an FEV 1 -to-FVC ratio of 76.5%. A high-resolution chest computed tomography (HRCT) scan showed mild interlobular septal thickening and mild emphysematous changes. In 2008, he was transferred from the ITO grinding workplace to an inspection work section, where indium concentrations in total dusts had a range of 0.001-0.002 mg/m 3 . In 2009, the subject's In-S had increased to 132.1 μg/l, and pulmonary function tests revealed obstructive changes. In addition, HRCT scan showed clear evidence of progressive lung destruction with accompanying severe centrilobular emphysema and interlobular septal thickening in both lung fields. The subject's condition gradually worsened, and in 2015, he was registered with the Japan Organ Transplant Network for lung transplantation (LTx). Heavy indium exposure is a risk factor for emphysema, which can lead to a severity level that requires LTx as the final therapeutic option.

  4. Thin film solar cell configuration and fabrication method

    Science.gov (United States)

    Menezes, Shalini

    2009-07-14

    A new photovoltaic device configuration based on an n-copper indium selenide absorber and a p-type window is disclosed. A fabrication method to produce this device on flexible or rigid substrates is described that reduces the number of cell components, avoids hazardous materials, simplifies the process steps and hence the costs for high volume solar cell manufacturing.

  5. (Indium, Aluminum) co-doped Zinc Oxide as a Novel Material System for Quantum-Well Multilayer Thermoelectrics

    Science.gov (United States)

    Teehan, Sean

    Waste heat recovery from low efficiency industrial processes requires high performance thermoelectric materials to meet challenging requirements. The efficiency such a device is quantified by the dimensionless figure of merit ZT=S2sigmaT/kappa, where S is the Seebeck coefficient, sigma is the electrical conductivity, T is the absolute temperature and kappa is the thermal conductivity. For practical applications these devices are only cost-effective if the ZT is higher than 2. Theoretically it has been proven that by engineering nanostructures with lower dimensionality one can significantly increase ZT. A superlattice, or a system of 2-dimensional multilayer quantum wells has previously shown the potential to be used for thermoelectric structures. However, the use of conventional materials within these structures has only allowed this at low temperatures and has utilized cross-plane transport. This study focuses on both high temperature range operation and the in-plane transport properties of such structures, which benefit from both quantum confinement and an enhancement in density of states near EF. The n-type structures are fabricated by alternately sputtering barrier and well materials of Al-doped ZnO (AZO) and indium co-doped AZO, respectively. Samples investigated consist of 50 periods with targeted layer thicknesses of 10nm, which results in sufficient sampling material as well as quantum well effects. The indium doping level within the quantum well was controlled by varying the target power, and ultimately results in a 3x improvement in power factor (S 2sigma) over the parent bulk materials. The film characterization was determined by X-ray reflectometry, transmission electron microscopy, X-ray diffraction, auger electron spectroscopy, as well as other relevant techniques. In addition, process optimization was performed on material parameters such as layer thickness, interface roughness, and band-gap offset which all play a major role in determining the

  6. Polycrystalline thin films of antimony selenide via chemical bath deposition and post deposition treatments

    International Nuclear Information System (INIS)

    Rodriguez-Lazcano, Y.; Pena, Yolanda; Nair, M.T.S.; Nair, P.K.

    2005-01-01

    We report a method for obtaining thin films of polycrystalline antimony selenide via chemical bath deposition followed by heating the thin films at 573 K in selenium vapor. The thin films deposited from chemical baths containing one or more soluble complexes of antimony, and selenosulfate initially did not show X-ray diffraction (XRD) patterns corresponding to crystalline antimony selenide. Composition of the films, studied by energy dispersive X-ray analyses indicated selenium deficiency. Heating these films in presence of selenium vapor at 573 K under nitrogen (2000 mTorr) resulted in an enrichment of Se in the films. XRD peaks of such films matched Sb 2 Se 3 . Evaluation of band gap from optical spectra of such films shows absorption due to indirect transition occurring in the range of 1-1.2 eV. The films are photosensitive, with dark conductivity of about 2 x 10 -8 (Ω cm) -1 and photoconductivity, about 10 -6 (Ω cm) -1 under tungsten halogen lamp illumination with intensity of 700 W m -2 . An estimate for the mobility life time product for the film is 4 x 10 -9 cm 2 V -1

  7. InP solar cell with window layer

    Science.gov (United States)

    Jain, Raj K. (Inventor); Landis, Geoffrey A. (Inventor)

    1994-01-01

    The invention features a thin light transmissive layer of the ternary semiconductor indium aluminum arsenide (InAlAs) as a front surface passivation or 'window' layer for p-on-n InP solar cells. The window layers of the invention effectively reduce front surface recombination of the object semiconductors thereby increasing the efficiency of the cells.

  8. Narrowing the gap: from semiconductor to semimetal in the homologous series of rare-earth zinc arsenides RE(2-y)Zn4As4·n(REAs) and Mn-substituted derivatives RE(2-y)Mn(x)Zn(4-x)As4·n(REAs) (RE = La-Nd, Sm, Gd).

    Science.gov (United States)

    Lin, Xinsong; Tabassum, Danisa; Mar, Arthur

    2015-12-14

    A homologous series of ternary rare-earth zinc arsenides, prepared by reactions of the elements at 750 °C, has been identified with the formula RE(2-y)Zn4As4·n(REAs) (n = 2, 3, 4) for various RE members. They adopt trigonal structures: RE(4-y)Zn4As6 (RE = La-Nd), space group R3̄m1, Z = 3; RE(5-y)Zn4As7 (RE = Pr, Nd, Sm, Gd), space group P3̄m1, Z = 1; RE(6-y)Zn4As8 (RE = La-Nd, Sm, Gd), space group R3̄m1, Z = 3. The Zn atoms can be partially substituted by Mn atoms, resulting in quaternary derivatives RE(2-y)Mn(x)Zn(4-x)As4·n(REAs). Single-crystal structures were determined for nine ternary and quaternary arsenides RE(2-y)M4As4·n(REAs) (M = Mn, Zn) as representative examples of these series. The structures are built by stacking close-packed nets of As atoms, sometimes in very long sequences, with RE atoms occupying octahedral sites and M atoms occupying tetrahedral sites, resulting in an intergrowth of [REAs] and [M2As2] slabs. The recurring feature of all members of the homologous series is a sandwich of [M2As2]-[REAs]-[M2As2] slabs, while rocksalt-type blocks of [REAs] increase in thickness between these sandwiches with higher n. Similar to the previously known related homologous series REM(2-x)As2·n(REAs) which is deficient in M, this new series RE(2-y)M4As4·n(REAs) exhibits deficiencies in RE to reduce the electron excess that would be present in the fully stoichiometric formulas. Enthalpic and entropic factors are considered to account for the differences in site deficiencies in these two homologous series. Band structure calculations indicate that the semiconducting behaviour of the parent n = 0 member (with CaAl2Si2-type structure) gradually evolves, through a narrowing of the gap between valence and conduction bands, to semimetallic behaviour as the number of [REAs] blocks increases, to the limit of n = ∞ for rocksalt-type REAs.

  9. Sources of spontaneous emission based on indium arsenide

    International Nuclear Information System (INIS)

    Zotova, N. V.; Il'inskaya, N. D.; Karandashev, S. A.; Matveev, B. A.; Remennyi, M. A.; Stus', N. M.

    2008-01-01

    The results obtained for light-emitting diodes based on heterostructures that contain InAs in the active region and are grown by the methods of liquid-phase, molecular-beam, and vapor-phase epitaxy from organometallic compounds are reviewed. The emission intensity, the near-field patterns, and the light-current and current-voltage characteristics of light-emitting diodes that have flip-chip structure or feature a point contact are analyzed.

  10. Sources of spontaneous emission based on indium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Zotova, N V; Il' inskaya, N D; Karandashev, S A; Matveev, B. A., E-mail: bmat@iropt3.ioffe.rssi.ru; Remennyi, M A; Stus' , N M [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)

    2008-06-15

    The results obtained for light-emitting diodes based on heterostructures that contain InAs in the active region and are grown by the methods of liquid-phase, molecular-beam, and vapor-phase epitaxy from organometallic compounds are reviewed. The emission intensity, the near-field patterns, and the light-current and current-voltage characteristics of light-emitting diodes that have flip-chip structure or feature a point contact are analyzed.

  11. Labelling of bacteria with indium chelates

    International Nuclear Information System (INIS)

    Kleinert, P.; Pfister, W.; Endert, G.; Sproessig, M.

    1985-01-01

    The indium chelates were prepared by reaction of radioactive indiumchloride with 10 μg oxine, 15 μg tropolone and 3 mg acetylacetone, resp. The formed chelates have been incubated with 10 9 germs/ml for 5 minutes, with labelling outputs from 90 to 95%. Both gram-positive (Streptococcus, Staphylococcus) and gram-negative bacteria (Escherichia coli) can be labelled. The reproductive capacity of the bacteria was not impaired. The application of indium labelled bacteria allows to show the distribution of microorganisms within the living organism and to investigate problems of bacterial adherence. (author)

  12. Indium-111 oxine labelling of white blood cells

    International Nuclear Information System (INIS)

    Lavender, J.P.; Silvester, D.J.; Goldman, J.; Hammersmith Hospital, London

    1978-01-01

    Following work done by Professor John McAfee and Mathew Thakur at the MRS Cyclotron Unit a method is available for labelling cells with indium-111 which results in a stable intracellular marker. The method uses indium-111-8 hydroxyquinoline (111In oxine) which is a lipoid soluble complex which goes across the cell membrane and results in the deposition of indium into various subcellular structures. It has been applied to various preparations of white cells, platelets and also malignant cells. Autologous granulocytes have been used to identify inflammatory lesions in 35 patients. By similar means autologous lymphocytes can also be labelled and reinfused. Lymphocytes have been shown in animals to circulate from the blood via the lymphatic system and then returning to the blood once more. The same phenomenon can be seen in man using indium labelled lymphocytes. Lymph nodes become visible at between 12 and 18 hours and recirculation of labelled cells can be shown on the blood activity curves. Certain problems arise concerning cell behaviour after labelling which appear due to irradiation of cells rather than chemical toxicity. (author)

  13. A Study of Electrical and Optical Stability of GSZO THin Film Transisitors

    Science.gov (United States)

    2014-01-01

    great interest in amorphous indium gallium zinc oxide (a- IGZO ) as the active channel layer due to its promising electrical and photosensitive...a great interest in amorphous indium gallium zinc oxide (a- IGZO ) as the active channel layer due to its promising electrical and photosensitive...the-art Gen-8 substrate size. However, as indium resources are becoming scarce and expensive, replacing the a- IGZO TFT with a less expensive material

  14. The effect of varying the capping agent of magnetic/luminescent Fe{sub 3}O{sub 4}–InP/ZnSe core–shell nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Paulsen, Zuraan [Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville (South Africa); Onani, Martin O., E-mail: monani@uwc.ac.za [Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville (South Africa); Allard, Garvin R.J.; Kiplagat, Ayabei [Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville (South Africa); Okil, Joseph O. [532 Winchester Avenue, Union, NJ 07083 (United States); Dejene, Francis B. [Department of Physics, University of the Free State, QwaQwa Campus, Private bag X13, Phuthaditjhaba 9866 (South Africa); Mahanga, Geoffrey M. [Department of Physical Sciences, Jaramogi Oginga Odinga University of Science and Technology, P.O. Box 210, 40601 Bondo (Kenya)

    2016-01-01

    Magnetic–luminescent nanoparticles have shown great promise in various biomedical applications namely: contrast agents for magnetic resonance imaging, multifunctional drug carrier system, magnetic separation of cells, cell tracking, immunoassay, and magnetic bioseparation. This experiment describes the synthesis of a nanocomposite material, which is composed of an iron oxide (Fe{sub 3}O{sub 4}) superparamagnetic core and an indium phosphide/zinc selenide (InP/ZnSe) quantum dot shell. The magnetic nanoparticles (MNP’s) and quantum dots (QD’s) were synthesized separately before allowing them to conjugate. The MNP’s were functionalized with a thiol-group allowing the QD shell to bind to the surface of the MNP by the formation of a thiol–metal bond. The nanocomposite was capped with 3-mercaptopropionic acid, oleylamine, β-cyclodextrin and their influence on the photoluminescence investigated. The synthesized nanocomposite was characterized with high- resolution transmission electron microscopy (HR-TEM), energy-dispersive spectroscopy (EDS), selective electron area diffraction (SAED), scanning electron microscopy (SEM), superconducting quantum interference device (SQUID), and photoluminescence. These techniques yielded particle size, morphology, dispersion, and chemical composition including luminescence and florescence.

  15. Formation and growth of embedded indium nanoclusters by In2+ implantation in silica

    International Nuclear Information System (INIS)

    Santhana Raman, P.; Nair, K.G.M.; Kesavamoorthy, R.; Panigrahi, B.K.; Dhara, S.; Ravichandran, V.

    2007-01-01

    Indium nanoclusters are synthesized in an amorphous silica matrix using an ion-implantation technique. Indium ions (In 2+ ) with energy of 890 keV are implanted on silica to fluences in the range of 3 x 10 16 -3 x 10 17 cm -2 . The formation of indium nanoclusters is confirmed by optical absorption spectrometry and glancing incidence X-ray diffraction studies. A low frequency Raman scattering technique is used to study the growth of embedded indium nanoclusters in the silica matrix as a function of fluence and post-implantation annealing duration. Rutherford backscattering spectrometry studies show the surface segregation of implanted indium. Photoluminescence studies indicate the formation of a small quantity of indium oxide phase in the ion-implanted samples. (orig.)

  16. Influence of the charge trap density distribution in a gate insulator on the positive-bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eungtaek; Kim, Choong-Ki; Lee, Myung Keun; Bang, Tewook; Choi, Yang-Kyu; Choi, Kyung Cheol, E-mail: shkp@kaist.ac.kr, E-mail: kyungcc@kaist.ac.kr [School of Electrical Engineering, KAIST, Daejeon 34141 (Korea, Republic of); Park, Sang-Hee Ko, E-mail: shkp@kaist.ac.kr, E-mail: kyungcc@kaist.ac.kr [Department of Material Science and Engineering, KAIST, Daejeon 34141 (Korea, Republic of)

    2016-05-02

    We investigated the positive-bias stress (PBS) instability of thin film transistors (TFTs) composed of different types of first-gate insulators, which serve as a protection layer of the active surface. Two different deposition methods, i.e., the thermal atomic layer deposition (THALD) and plasma-enhanced ALD (PEALD) of Al{sub 2}O{sub 3}, were applied for the deposition of the first GI. When THALD was used to deposit the GI, amorphous indium-gallium-zinc oxide (a-IGZO) TFTs showed superior stability characteristics under PBS. For example, the threshold voltage shift (ΔV{sub th}) was 0 V even after a PBS time (t{sub stress}) of 3000 s under a gate voltage (V{sub G}) condition of 5 V (with an electrical field of 1.25 MV/cm). On the other hand, when the first GI was deposited by PEALD, the ΔV{sub th} value of a-IGZO TFTs was 0.82 V after undergoing an identical amount of PBS. In order to interpret the disparate ΔV{sub th} values resulting from PBS quantitatively, the average oxide charge trap density (N{sub T}) in the GI and its spatial distribution were investigated through low-frequency noise characterizations. A higher N{sub T} resulted during in the PEALD type GI than in the THALD case. Specifically, the PEALD process on a-IGZO layer surface led to an increasing trend of N{sub T} near the GI/a-IGZO interface compared to bulk GI owing to oxygen plasma damage on the a-IGZO surface.

  17. Influence of the charge trap density distribution in a gate insulator on the positive-bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors

    International Nuclear Information System (INIS)

    Kim, Eungtaek; Kim, Choong-Ki; Lee, Myung Keun; Bang, Tewook; Choi, Yang-Kyu; Choi, Kyung Cheol; Park, Sang-Hee Ko

    2016-01-01

    We investigated the positive-bias stress (PBS) instability of thin film transistors (TFTs) composed of different types of first-gate insulators, which serve as a protection layer of the active surface. Two different deposition methods, i.e., the thermal atomic layer deposition (THALD) and plasma-enhanced ALD (PEALD) of Al_2O_3, were applied for the deposition of the first GI. When THALD was used to deposit the GI, amorphous indium-gallium-zinc oxide (a-IGZO) TFTs showed superior stability characteristics under PBS. For example, the threshold voltage shift (ΔV_t_h) was 0 V even after a PBS time (t_s_t_r_e_s_s) of 3000 s under a gate voltage (V_G) condition of 5 V (with an electrical field of 1.25 MV/cm). On the other hand, when the first GI was deposited by PEALD, the ΔV_t_h value of a-IGZO TFTs was 0.82 V after undergoing an identical amount of PBS. In order to interpret the disparate ΔV_t_h values resulting from PBS quantitatively, the average oxide charge trap density (N_T) in the GI and its spatial distribution were investigated through low-frequency noise characterizations. A higher N_T resulted during in the PEALD type GI than in the THALD case. Specifically, the PEALD process on a-IGZO layer surface led to an increasing trend of N_T near the GI/a-IGZO interface compared to bulk GI owing to oxygen plasma damage on the a-IGZO surface.

  18. Thermoelectric flux effect in superconducting indium

    International Nuclear Information System (INIS)

    Van Harlingen, D.J.

    1977-01-01

    In this paper we discuss a thermoelectric effect in superconductors which provides a mechanism for studying quasiparticle relaxation and scattering processes in non-equilibrium superconductors by transport measurements. We report measurements of the thermoelecric flux effect in samples consisting of indium and lead near the In transition temperature; in this temperature range, the contribution to DELTA/sub TAU/ from the Pb is insignificant and so values of OMEGA(T) are obtained for indium. The results of our experiments may be summarized as follows: (1) we have a thermally-generated flux effect in 5 superconducting In-Pb toroidal samples, (2) experimental tests suggest that the observed effect does indeed arise from the proposed thermoelectric flux effect, (3) OMEGA(T) for indium is found to diverge as (T/sub c/ - T)/sup -3/2/ more rapidly than predicted by simple theory, (4) OMEGA(T) at T/T sub c/ = .999 is nearly 10/sup 5/ larger than initially expected, (5) OMEGA (T) roughly correlates with the magnitude of the normal state thermoelectric coefficient for our samples

  19. Ultrafast photocurrents and terahertz radiation in gallium arsenide and carbon based nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Prechtel, Hans Leonhard

    2011-08-15

    In this thesis we developed a measurement technique based on a common pump-probe scheme and coplanar stripline circuits that enables time-resolved photocurrent measurements of contacted nanosystems with a micrometer spatial and a picosecond time resolution. The measurement technique was applied to lowtemperature grown gallium arsenide (LT-GaAs), carbon nanotubes (CNTs), graphene, and p-doped gallium arsenide (GaAs) nanowires. The various mechanisms responsible for the generation of current pulses by pulsed laser excitation were reviewed. Furthermore the propagation of the resulting electromagnetic radiation along a coplanar stripline circuit was theoretically and numerically treated. The ultrafast photocurrent response of low-temperature grown GaAs was investigated. We found two photocurrent pulses in the time-resolved response. We showed that the first pulse is consistent with a displacement current pulse. We interpreted the second pulse to result from a transport current process. We further determined the velocity of the photo-generated charge carriers to exceed the drift, thermal and quantum velocities of single charge carriers. Hereby, we interpreted the transport current pulse to stem from an electron-hole plasma excitation. We demonstrated that the photocurrent response of CNTs comprises an ultrafast displacement current and a transport current. The data suggested that the photocurrent is finally terminated by the recombination lifetime of the charge carriers. To the best of our knowledge, we presented in this thesis the first recombination lifetime measurements of contacted, suspended, CVD grown CNT networks. In addition, we studied the ultrafast photocurrent dynamics of freely suspended graphene contacted by metal electrodes. At the graphene-metal interface, we demonstrated that built-in electric fields give rise to a photocurrent with a full-width-half-maximum of a few picoseconds and that a photo-thermoelectric effect generates a current with a decay time

  20. Investigation into cathode polarization during deposition of rhodium-nickel and rhodium-indium alloys

    International Nuclear Information System (INIS)

    Evdokimova, N.V.; Byacheslavov, P.M.; Lokshtanova, O.G.

    1979-01-01

    The results of kinetic regularities experimental investigations during electrodeposition of rhodium-nickel and rhonium-indium alloys are presented. Methods of general and partial polarization curves have been used to show the nature of polarization during the rhonium-nickel and rhodium-indium alloys deposition. It is shown that indium into the rhodium-indium alloy and nickel into the rhodium-nickel alloy deposit with great depolarization ( PHIsub(In)sup(0)=-0.33B, PHIsub(Ni)sup(0)=-0.23B). Indium and nickel in pure form do not deposit from the electrolytes of the given composition (H 2 SO 4 - 50 g/l, HNH 2 SO 3 -10 g/l). The recalculation of partial polarization curve of indium precipitation into the rhodium-indium alloy in the mixed kinetics coordinates gives a straight line with 40 mV inclination angle. This corresponds to the delayed stage of the second electron addition with the imposition of diffusion limitations

  1. Average formation number n-barOH of colloid-type indium hydroxide

    International Nuclear Information System (INIS)

    Stefanowicz, T.; Szent-Kirallyine Gajda, J.

    1983-01-01

    Indium perchlorate in perchloric acid solution was titrated with sodium hydroxide solution to various pH values. Indium hydroxide colloid was removed by ultracentrifugation and supernatant solution was titrated with base to neutral pH. The two-stage titration data were used to calculate the formation number of indium hydroxide colloid, which was found to equal n-bar OH = 2.8. (author)

  2. Characterizing and engineering tunable spin functionality inside indium arsenide/gallium arsenide quantum dot molecules

    Science.gov (United States)

    Liu, Weiwen

    The continual downsizing of the basic functional units used in the electronics industry has motivated the study of the quantum computation and related topics. To overcome the limitations of classical physics and engineering, some unique quantum mechanical features, especially entanglement and superpositions have begun to be considered as important properties for future bits. Including these quantum mechanical features is attractive because the ability to utilize quantum mechanics can dramatically enhance computational power. Among the various ways of constructing the basic building blocks for quantum computation, we are particularly interested in using spins inside epitaxially grown InAs/GaAs quantum dot molecules as quantum bits (qubits). The ability to design and engineer nanostructures with tailored quantum properties is critical to engineering quantum computers and other novel electro-optical devices and is one of the key challenges for scaling up new ideas for device application. In this thesis, we will focus on how the structure and composition of quantum dot molecules can be used to control spin properties and charge interactions. Tunable spin and charge properties can enable new, more scalable, methods of initializing and manipulating quantum information. In this thesis, we demonstrate one method to enable electric-field tunability of Zeeman splitting for a single electron spin inside a quantum dot molecules by using heterostructure engineering techniques to modify the barrier that separates quantum dots. We describe how these structural changes to the quantum dot molecules also change charge interactions and propose ways to use this effect to enable accurate measurement of coulomb interactions and possibly charge occupancy inside these complicated quantum dot molecules.

  3. Preparation of transparent conductive indium tin oxide thin films from nanocrystalline indium tin hydroxide by dip-coating method

    International Nuclear Information System (INIS)

    Koroesi, Laszlo; Papp, Szilvia; Dekany, Imre

    2011-01-01

    Indium tin oxide (ITO) thin films with well-controlled layer thickness were produced by dip-coating method. The ITO was synthesized by a sol-gel technique involving the use of aqueous InCl 3 , SnCl 4 and NH 3 solutions. To obtain stable sols for thin film preparation, as-prepared Sn-doped indium hydroxide was dialyzed, aged, and dispersed in ethanol. Polyvinylpyrrolidone (PVP) was applied to enhance the stability of the resulting ethanolic sols. The transparent, conductive ITO films on glass substrates were characterized by X-ray diffraction, scanning electron microscopy and UV-Vis spectroscopy. The ITO layer thickness increased linearly during the dipping cycles, which permits excellent controllability of the film thickness in the range ∼ 40-1160 nm. After calcination at 550 o C, the initial indium tin hydroxide films were transformed completely to nanocrystalline ITO with cubic and rhombohedral structure. The effects of PVP on the optical, morphological and electrical properties of ITO are discussed.

  4. Quantification of indium in steel using PIXE

    International Nuclear Information System (INIS)

    Oliver, A.; Miranda, J.; Rickards, J.; Cheang, J.C.

    1989-01-01

    The quantitative analysis of steel endodontics tools was carried out using low-energy protons (≤ 700 keV). A computer program for a thick-target analysis which includes enhancement due to secondary fluorescence was used. In this experiment the L-lines of indium are enhanced due to the proximity of other elements' K-lines to the indium absorption edge. The results show that the ionization cross section expression employed to evaluate this magnitude is important. (orig.)

  5. Quantification of indium in steel using PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, A.; Miranda, J.; Rickards, J.; Cheang, J.C.

    1989-04-01

    The quantitative analysis of steel endodontics tools was carried out using low-energy protons (/le/ 700 keV). A computer program for a thick-target analysis which includes enhancement due to secondary fluorescence was used. In this experiment the L-lines of indium are enhanced due to the proximity of other elements' K-lines to the indium absorption edge. The results show that the ionization cross section expression employed to evaluate this magnitude is important. (orig.).

  6. Indium Gallium Zinc Oxide: Phase Formation and Crystallization Kinetics during Millisecond Laser Spike Annealing

    Science.gov (United States)

    Lynch, David Michael

    Flat panel displays have become ubiquitous, enabling products from highresolution cell phones to ultra-large television panels. Amorphous silicon (a- Si) has been the industry workhorse as the active semiconductor in pixeladdressing transistors due to its uniformity and low production costs. However, a-Si can no longer support larger and higher-resolution displays, and new materials with higher electron mobilities are required. Amorphous indium gallium zinc oxide (a-IGZO), which retains the uniformity and low cost of amorphous films, has emerged as a viable candidate due to its enhanced transport properties. However, a-IGZO devices suffer from long-term instabilities--the origins of which are not yet fully understood--causing a drift in switching characteristics over time and affecting product lifetime. More recently, devices fabricated from textured nanocrystalline IGZO, termed c-axis aligned crystalline (CAAC), have demonstrated superior stability. Unfortunately, little is known regarding the phase formation and crystallization kinetics of either the CAAC structure or in the broader ternary IGZO system. Crystallinity and texture of CAAC IGZO films deposited by RF reactive sputtering were studied and characterized over a wide range of deposition conditions. The characteristic CAAC (0 0 9) peak at 2theta = 30° was observed by X-ray diffraction, and nanocrystalline domain texture was determined using a general area detector diffraction system (GADDS). Highly ordered CAAC films were obtained near the InGaZnO4 composition at a substrate temperature of 310 °C and in a 10%O2/90% Ar sputtering ambient. High-resolution transmission electron microscopy (HRTEM) confirmed the formation of CAAC and identified 2-3 nm domains coherently aligned over large ranges extending beyond the field of view (15 nm x 15 nm). Cross-section HRTEM of the CAAC/substrate interface shows formation of an initially disordered IGZO layer prior to CAAC formation, suggesting a nucleation mechanism

  7. The indium-oxygen system, ch. 5

    International Nuclear Information System (INIS)

    Dillen, A.J. van

    1977-01-01

    This chapter is divided into three sections: 1) a survey of the literature concerning the indiumoxygen system, 2) the adsorption of oxygen at pure and partially oxidized indium surfaces in the temperature range 20-180degC, and 3) the oxidation of indium at temperatures above 180degC. The oxygen uptake is determined volumetrically and gravimetrically. The influence of the melting point is considered and the results are compared with data from the literature. The oxide layer is amorphous at lower temperatures but above 350degC, crystallisation of In 2 O 3 takes place

  8. Evolution of end-of-range damage and transient enhanced diffusion of indium in silicon

    Science.gov (United States)

    Noda, T.

    2002-01-01

    Correlation of evolution of end-of-range (EOR) damage and transient enhanced diffusion (TED) of indium has been studied by secondary ion mass spectrometry and transmission electron microscopy. A physically based model of diffusion and defect growth is applied to the indium diffusion system. Indium implantation with 200 keV, 1×1014/cm2 through a 10 nm screen oxide into p-type Czochralski silicon wafer was performed. During postimplantation anneal at 750 °C for times ranging from 2 to 120 min, formation of dislocation loops and indium segregation into loops were observed. Simulation results of evolution of EOR defects show that there is a period that {311} defects dissolve and release free interstitials before the Ostwald ripening step of EOR dislocation loops. Our diffusion model that contains the interaction between indium and loops shows the indium pileup to the loops. Indium segregation to loops occurs at a pure growth step of loops and continues during the Ostwald ripening step. Although dislocation loops and indium segregation in the near-surface region are easily dissolved by high temperature annealing, EOR dislocation loops in the bulk region are rigid and well grown. It is considered that indium trapped by loops with a large radius is energetically stable. It is shown that modeling of the evolution of EOR defects is important for understanding indium TED.

  9. Synthesis and characterization of five-coordinated indium amidinates

    Energy Technology Data Exchange (ETDEWEB)

    Riahi, Yasaman

    2016-07-29

    The focus of this work is synthesis, characterization and exploring the reactivity of new indium amidinate compounds of the type R{sub 2}InX (R = R''NCR'NR''; R' = Ph, R'' = SiMe{sub 3}, iPr, dipp; X = Br, Cl) with the coordination number of five and R{sub 3}In (R = Me{sub 3}SiNCPhNSiMe{sub 3}) with the coordination number of six. By using amidinates as chelating ligands the electron deficiency of indium atom will be resolved. Additionally, by using different substituents the study of the different synthesized indium amidinates has become possible. The selected method for the synthesis allows the carbodiimides to react with organolithium compounds to get the corresponding lithium amidinates. Afterwards the resulting lithium amidinates take part in transmetalation reactions with InBr{sub 3} and InCl{sub 3}. The study of the reactivity of indium amidinate complexes including nucleophilic reactions as well as their reduction were also examined. Beside crystal structure analysis, nuclear magnetic resonance spectroscopy as well as elemental analysis has been applied to characterize the compounds.

  10. Tritium-Powered Radiation Sensor Network

    Science.gov (United States)

    2015-09-01

    Photomultiplier Tube, Scintillator, Geiger counter, Zigbee, Wireless Network, Radiation detector, Dirty Bomb 16. SECURITY CLASSIFICATION OF: 17...operational lifetime of 150 years. Persistent sensing of the environment with vibration and radiation (electromagnetic [ EM ], acoustic, gamma, etc.) in...Transportation E-field electric field EH electron-hole EM electromagnetic GaAs gallium arsenide GPS global positioning system InGaP indium gallium

  11. Effect of top gate bias on photocurrent and negative bias illumination stress instability in dual gate amorphous indium-gallium-zinc oxide thin-film transistor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eunji; Chowdhury, Md Delwar Hossain; Park, Min Sang; Jang, Jin, E-mail: jjang@khu.ac.kr [Advanced Display Research Center and Department of Information Display, Kyung Hee University, Seoul 130-701 (Korea, Republic of)

    2015-12-07

    We have studied the effect of top gate bias (V{sub TG}) on the generation of photocurrent and the decay of photocurrent for back channel etched inverted staggered dual gate structure amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film-transistors. Upon 5 min of exposure of 365 nm wavelength and 0.7 mW/cm{sup 2} intensity light with negative bottom gate bias, the maximum photocurrent increases from 3.29 to 322 pA with increasing the V{sub TG} from −15 to +15 V. By changing V{sub TG} from negative to positive, the Fermi level (E{sub F}) shifts toward conduction band edge (E{sub C}), which substantially controls the conversion of neutral vacancy to charged one (V{sub O} → V{sub O}{sup +}/V{sub O}{sup 2+} + e{sup −}/2e{sup −}), peroxide (O{sub 2}{sup 2−}) formation or conversion of ionized interstitial (O{sub i}{sup 2−}) to neutral interstitial (O{sub i}), thus electron concentration at conduction band. With increasing the exposure time, more carriers are generated, and thus, maximum photocurrent increases until being saturated. After negative bias illumination stress, the transfer curve shows −2.7 V shift at V{sub TG} = −15 V, which gradually decreases to −0.42 V shift at V{sub TG} = +15 V. It clearly reveals that the position of electron quasi-Fermi level controls the formation of donor defects (V{sub O}{sup +}/V{sub O}{sup 2+}/O{sub 2}{sup 2−}/O{sub i}) and/or hole trapping in the a-IGZO /interfaces.

  12. Synthesis of Indium Nanowires by Galvanic Displacement and Their Optical Properties

    Directory of Open Access Journals (Sweden)

    Hope Greg

    2008-01-01

    Full Text Available Abstract Single crystalline indium nanowires were prepared on Zn substrate which had been treated in concentrated sulphuric acid by galvanic displacement in the 0.002 mol L−1In2(SO43-0.002 mol L−1SeO2-0.02 mol L−1SDS-0.01 mol L−1citric acid aqueous solution. The typical diameter of indium nanowires is 30 nm and most of the nanowires are over 30 μm in length. XRD, HRTEM, SAED and structural simulation clearly demonstrate that indium nanowires are single-crystalline with the tetragonal structure, the growth direction of the nanowires is along [100] facet. The UV-Vis absorption spectra showed that indium nanowires display typical transverse resonance of SPR properties. The surfactant (SDS and the pretreatment of Zn substrate play an important role in the growth process. The mechanism of indium nanowires growth is the synergic effect of treated Zn substrate (hard template and SDS (soft template.

  13. Synthesis and decomposition of a novel carboxylate precursor to indium oxide

    Science.gov (United States)

    Hepp, Aloysius F.; Andras, Maria T.; Duraj, Stan A.; Clark, Eric B.; Hehemann, David G.; Scheiman, Daniel A.; Fanwick, Phillip E.

    1994-01-01

    Reaction of metallic indium with benzoyl peroxide in 4-1 methylpyridine (4-Mepy) at 25 C produces an eight-coordinate mononuclear indium(III) benzoate, In(eta(sup 2)-O2CC6H5)3(4-Mepy)2 4H2O (I), in yields of up to 60 percent. The indium(III) benzoate was fully characterized by elemental analysis, spectroscopy, and X-ray crystallography; (I) exists in the crystalline state as discrete eight-coordinate molecules; the coordination sphere around the central indium atom is best described as pseudo-square pyramidal. Thermogravimetric analysis of (I) and X-ray diffraction powder studies on the resulting pyrolysate demonstrate that this new benzoate is an inorganic precursor to indium oxide. Decomposition of (I) occurs first by loss of 4-methylpyridine ligands (100 deg-200 deg C), then loss of benzoates with formation of In2O3 at 450 C. We discuss both use of carboxylates as precursors and our approach to their preparation.

  14. Thermal expansion and volumetric changes during indium phosphide melting

    International Nuclear Information System (INIS)

    Glazov, V.M.; Davletov, K.; Nashel'skij, A.Ya.; Mamedov, M.M.

    1977-01-01

    The results of the measurements of a thermal expansion were summed up at various temperatures as a diagram in coordinates (Δ 1/1) approximately F(t). It was shown that an appreciable deviation of the relationship (Δ1/1) approximately f(t) from the linear law corresponded to a temperature of 500-550 deg C. It was noted that the said deviation was related to an appreciable thermal decomposition of indium phosphide as temperature increased. The strength of the inter-atomic bond of indium phosphide was calculated. Investigated were the volumetric changes of indium phosphide on melting. The resultant data were analyzed with the aid of the Clausius-Clapeyron equation

  15. Structural and electrooptical characteristics of quantum dots emitting at 1.3 μm on gallium arsenide

    DEFF Research Database (Denmark)

    Fiore, A.; Oesterle, U.; Stanley, R.P.

    2001-01-01

    We present a comprehensive study of the structural and emission properties of self-assembled InAs quantum dots emitting at 1.3 mum. The dots are grown by molecular beam epitaxy on gallium arsenide substrates. Room-temperature emission at 1.3 mum is obtained by embedding the dots in an InGaAs layer...

  16. Method for forming indium oxide/n-silicon heterojunction solar cells

    Science.gov (United States)

    Feng, Tom; Ghosh, Amal K.

    1984-03-13

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  17. Evaluation of critical materials in five additional advance design photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.A.; Watts, R.L.; Martin, P.; Gurwell, W.E.

    1981-02-01

    The objective of this study is to identify potential material supply constraints due to the large-scale deployment of five advanced photovoltaic (PV) cell designs, and to suggest strategies to reduce the impacts of these production capacity limitations and potential future material shortages. The Critical Materials Assessment Program (CMAP) screens the designs and their supply chains and identifies potential shortages which might preclude large-scale use of the technologies. The results of the screening of five advanced PV cell designs are presented: (1) indium phosphide/cadmium sulfide, (2) zinc phosphide, (3) cadmium telluride/cadmium sulfide, (4) copper indium selenium, and (5) cadmium selenide photoelectrochemical. Each of these five cells is screened individually assuming that they first come online in 1991, and that 25 Gwe of peak capacity is online by the year 2000. A second computer screening assumes that each cell first comes online in 1991 and that each cell has a 5 GWe of peak capacity by the year 2000, so that the total online capacity for the five cells is 25 GWe. Based on a review of the preliminary baseline screening results, suggestions were made for varying such parameters as the layer thickness, cell production processes, etc. The resulting PV cell characterizations were then screened again by the CMAP computer code. The CMAP methodology used to identify critical materials is described; and detailed characterizations of the advanced photovoltaic cell designs under investigation, descriptions of additional cell production processes, and the results are presented. (WHK)

  18. Symptomatic zinc deficiency in experimental zinc deprivation.

    OpenAIRE

    Taylor, C M; Goode, H F; Aggett, P J; Bremner, I; Walker, B E; Kelleher, J

    1992-01-01

    An evaluation of indices of poor zinc status was undertaken in five male subjects in whom dietary zinc intake was reduced from 85 mumol d-1 in an initial phase of the study to 14 mumol d-1. One of the subjects developed features consistent with zinc deficiency after receiving the low zinc diet for 12 days. These features included retroauricular acneform macullo-papular lesions on the face, neck, and shoulders and reductions in plasma zinc, red blood cell zinc, neutrophil zinc and plasma alkal...

  19. Sputtering of neutral and ionic indium clusters

    International Nuclear Information System (INIS)

    Ma, Z.; Coon, S.R.; Calaway, W.F.; Pellin, M.J.; Gruen, D.M.; Von Nagy-Felsobuki, E.I.

    1993-01-01

    Secondary neutral and secondary ion cluster yields were measured during the sputtering of a polycrystalline indium surface by normally incident ∼4 keV Ar + ions. In the secondary neutral mass spectra, indium clusters as large as In 32 were observed. In the secondary ion mass spectra, indium clusters up to In 18 + were recorded. Cluster yields obtained from both the neutral and ion channel exhibited a power law dependence on the number of constituent atoms, n, in the cluster, with the exponents measured to be -5.6 and -4. 1, respectively. An abundance drop was observed at n=8, 15, and 16 in both the neutral and ion yield distributions suggesting that the stability of the ion (either secondary ion or photoion) plays a significant role in the observed distributions. In addition, our experiments suggest that unimolecular decomposition of the neutral cluster may also plays an important role in the measured yield distributions

  20. The effect of annealing ambient on surface segregation in indium implanted sapphire

    International Nuclear Information System (INIS)

    Sood, D.K.; Victoria University of Technology, Melbourne; Zhou, W.; Victoria University of Technology, Melbourne; Academia Sinica, Shanghai Institute of Metallurgy; Cao, D.X.; Victoria University of Technology, Melbourne; Academia Sinica, Shanghai, SH

    1991-01-01

    A systematic study of the effect of annealing ambient on both indium surface segregation and lattice damage recovery of single crystal Al 2 O 3 has been done by performing 1 hour anneals at 800 deg C for the samples identically implanted with indium ions at 100keV energy to a high dose of 5x10 16 ions/cm 2 . Following solid phase epitaxial re-crystallization of amorphous layer, the indium dopant shows rapid thermal migration. The indium redistribution consists of 2 parts: 1. appreciable broadening corresponding to diffusion within the amorphous layer, and 2. indium segregation to the free surface to form In 2 O 3 , or escape out of the surface to sublime into the surrounding ambient. Lattice damage recovery depends on indium concentration profile in amorphous layer of Al 2 O 3 which is directly influenced by the annealing ambient. It is confirmed that the presence of moisture or oxygen in annealing ambient results in In 2 O 3 formation on the surface. (author). 6 refs.; 3 figs.; 1 tab

  1. Radiation-induced physical ageing in network arsenic-sulfide/selenide glasses

    International Nuclear Information System (INIS)

    Shpotyuk, M; Golovchak, R; Kozdras, A; Shpotyuk, O

    2010-01-01

    Effect of radiation-induced physical ageing is investigated by differential scanning calorimetry method in As x Se 100-x (10 ≤ x ≤ 42) and As x S 100-x (30 ≤ x ≤ 42) glasses. Obtained results are compared with conventional physical ageing at normal conditions. Significant radiation-induced physical ageing is recorded for glassy As x S 100-x within 30 ≤ x x Se 100-x glasses from the same compositional interval do not show any measurable changes in DSC curves after γ-irradiation. Observed difference in radiation-induced physical ageing in arsenic-sulfide/selenide glasses is explained by a greater lifetime of γ-induced excitations within sulfur-based network in comparison with selenium-based one.

  2. Radiochemical studies of the separation of some chloro-complexes of tin, antimony, cadmium and indium

    International Nuclear Information System (INIS)

    Ramamoorthy, N.; Mani, R.S.

    1976-01-01

    Radioisotopes of tin, antimony, cadmium and indium such as tin-113, antimony-124, antimony-125, cadmium-109, cadmium-115, indium-113m and indium-111 find extensive applications as tracers in various fields. These isotopes are produced by irradiation of targets in a reactor or a cyclotron. It is usually observed that in addition to the nuclear reactions giving rise to the desired isotopes, side reactions also take place giving rise to radionuclidic contaminants. Thus, antimony-125, indium-114m and indium-114 will be present in the cyclotron produced indium-111. The authors have studied column chromatography over hydrous zirconia for the separation of antimony from tin and indium, and cadmium from indium. These studies have thrown light on the role and behaviour of antimony-125 present as an impurity in tin-113 during the preparation of tin-113-indium-113m generators and have indicated methods for the preparation of 115 Cd-sup(115m)In generators and for separation of 111 In from proton irradiated cadmium targets. (Authors)

  3. Room temperature synthesis of indium tin oxide nanotubes with high precision wall thickness by electroless deposition

    Directory of Open Access Journals (Sweden)

    Mario Boehme

    2011-02-01

    Full Text Available Conductive nanotubes consisting of indium tin oxide (ITO were fabricated by electroless deposition using ion track etched polycarbonate templates. To produce nanotubes (NTs with thin walls and small surface roughness, the tubes were generated by a multi-step procedure under aqueous conditions. The approach reported below yields open end nanotubes with well defined outer diameter and wall thickness. In the past, zinc oxide films were mostly preferred and were synthesized using electroless deposition based on aqueous solutions. All these methods previously developed, are not adaptable in the case of ITO nanotubes, even with modifications. In the present work, therefore, we investigated the necessary conditions for the growth of ITO-NTs to achieve a wall thickness of around 10 nm. In addition, the effects of pH and reductive concentrations for the formation of ITO-NTs are also discussed.

  4. First-principles investigation of indium diffusion in a silicon substrate

    International Nuclear Information System (INIS)

    Yoon, Kwan-Sun; Hwang, Chi-Ok; Yoo, Jae-Hyun; Won, Tae-Young

    2006-01-01

    In this paper, we report the total energy, the minimum energy path, and the migration energy of indium in a silicon substrate by using ab-initio calculations. Stable configurations during indium diffusion were obtained from the calculation of the total energy, and we estimated the minimum energy path (MEP) with the nudged elastic band (NEB) method. After finding the MEP, we found the energy barrier for the diffusion of indium to be 0.8 eV from an exact calculation of the total energies at the minimum and the transition state.

  5. Spectrophotometric determination of indium with chromazurol S and dimethyllaurylbenzylammonium bromide

    International Nuclear Information System (INIS)

    Kwapulinska, G.; Buhl, F.

    1988-01-01

    The ternary system: indium-chromazurol S (CHAS)-dimethyllaurylbenzylammonium bromide (ST) was applied for determination of microgramme amounts of indium. The addition of ST enhances the sensitivity of the method; at λ max =625 nm the molar absorptivity of In-CHAS-ST complex equals 1.74 x 10 5 . The system obeyes the Lambert-Beer law in the range of indium concentration from 0.04 to 0.48 ppm. The maximal absorbance was obtained at pH 6. The complex is formed immediately and is stable during 2 hours. 3 figs., 10 refs. (author)

  6. Two-Step Plasma Process for Cleaning Indium Bonding Bumps

    Science.gov (United States)

    Greer, Harold F.; Vasquez, Richard P.; Jones, Todd J.; Hoenk, Michael E.; Dickie, Matthew R.; Nikzad, Shouleh

    2009-01-01

    A two-step plasma process has been developed as a means of removing surface oxide layers from indium bumps used in flip-chip hybridization (bump bonding) of integrated circuits. The two-step plasma process makes it possible to remove surface indium oxide, without incurring the adverse effects of the acid etching process.

  7. Selenide mineralization in the Příbram uranium and base-metal district (Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Škácha, P.; Sejkora, J.; Plášil, Jakub

    2017-01-01

    Roč. 7, č. 6 (2017), s. 1-56, č. článku 91. ISSN 2075-163X R&D Projects: GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : selenides * chemical composition * crystal structure * wavelength-dispersive spectroscopy * X-ray diffraction * Příbram Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 2.088, year: 2016

  8. Blocking of indium incorporation by antimony in III-V-Sb nanostructures

    International Nuclear Information System (INIS)

    Sanchez, A M; Beltran, A M; Ben, T; Molina, S I; Beanland, R; Gass, M H; De la Pena, F; Walls, M; Taboada, A G; Ripalda, J M

    2010-01-01

    The addition of antimony to III-V nanostructures is expected to give greater freedom in bandgap engineering for device applications. One of the main challenges to overcome is the effect of indium and antimony surface segregation. Using several very high resolution analysis techniques we clearly demonstrate blocking of indium incorporation by antimony. Furthermore, indium incorporation resumes when the antimony concentration drops below a critical level. This leads to major differences between nominal and actual structures.

  9. Atmospheric spatial atomic layer deposition of in-doped ZnO

    NARCIS (Netherlands)

    Illiberi, A.; Scherpenborg, R.; Roozeboom, F.; Poodt, P.

    2014-01-01

    Indium-doped zinc oxide (ZnO:In) has been grown by spatial atomic layer deposition at atmospheric pressure (spatial-ALD). Trimethyl indium (TMIn), diethyl zinc (DEZ) and deionized water have been used as In, Zn and O precursor, respectively. The metal content of the films is controlled in the range

  10. Anelasticity of polycrystalline indium

    Energy Technology Data Exchange (ETDEWEB)

    Sapozhnikov, K., E-mail: k.sapozhnikov@mail.ioffe.ru [A.F.Ioffe Physical-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); Golyandin, S. [A.F.Ioffe Physical-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); Kustov, S. [Dept. de Fisica, Universitat de les Illes Balears, Cra Valldemossa km 7.5, E 07122 Palma de Mallorca (Spain)

    2009-09-15

    Mechanisms of anelasticity of polycrystalline indium have been studied over wide ranges of temperature (7-320 K) and strain amplitude (2 x 10{sup -7}-3.5 x 10{sup -4}). Measurements of the internal friction and Young's modulus have been performed by means of the piezoelectric resonant composite oscillator technique using longitudinal oscillations at frequencies of about 100 kHz. The stages of the strain amplitude dependence of the internal friction and Young's modulus defect, which can be attributed to dislocation - point defect and dislocation - dislocation interactions, have been revealed. It has been shown that thermal cycling gives rise to microplastic straining of polycrystalline indium due to the anisotropy of thermal expansion and to appearance of a 'recrystallization' internal friction maximum in the temperature spectra of amplitude-dependent anelasticity. The temperature range characterized by formation of Cottrell's atmospheres of point defects around dislocations has been determined from the acoustic data.

  11. Photoluminescence of monovalent indium centres in phosphate glass

    OpenAIRE

    Masai, Hirokazu; Yamada, Yasuhiro; Okumura, Shun; Yanagida, Takayuki; Fujimoto, Yutaka; Kanemitsu, Yoshihiko; Ina, Toshiaki

    2015-01-01

    Valence control of polyvalent cations is important for functionalization of various kinds of materials. Indium oxides have been used in various applications, such as indium tin oxide in transparent electrical conduction films. However, although metastable In+ (5 s2 configuration) species exhibit photoluminescence (PL), they have attracted little attention. Valence control of In+ cations in these materials will be important for further functionalization. Here, we describe In+ species using PL ...

  12. Photocatalysis of zinc oxide nanotip array/titanium oxide film heterojunction prepared by aqueous solution deposition

    Science.gov (United States)

    Lee, Ming-Kwei; Lee, Bo-Wei; Kao, Chen-Yu

    2017-05-01

    A TiO2 film was prepared on indium tin oxide (ITO)/glass by aqueous solution deposition (ASD) with precursors of ammonium hexafluoro-titanate and boric acid at 40 °C. The photocatalysis of annealed TiO2 film increases with increasing growth time and decreases with increasing growth times longer than 60 min. A ZnO nanotip array was prepared on ZnO seed layer/TiO2 film/glass by aqueous solution deposition with precursors of zinc nitrate and ammonium hydroxide at 70 °C. The photocatalysis of ASD-ZnO/ASD-TiO2 film/ITO glass can be better than that of P25.

  13. Zinc

    Science.gov (United States)

    ... Consumer Datos en español Health Professional Other Resources Zinc Fact Sheet for Consumers Have a question? Ask ... find out more about zinc? Disclaimer What is zinc and what does it do? Zinc is a ...

  14. Properties of Polydisperse Tin-doped Dysprosium and Indium Oxides

    Directory of Open Access Journals (Sweden)

    Malinovskaya Tatyana

    2017-01-01

    Full Text Available The results of investigations of the complex permittivity, diffuse-reflectance, and characteristics of crystal lattices of tin-doped indium and dysprosium oxides are presented. Using the methods of spectroscopy and X-ray diffraction analysis, it is shown that doping of indium oxide with tin results in a significant increase of the components of the indium oxide complex permittivity and an appearance of the plasma resonance in its diffuse-reflectance spectra. This indicates the appearance of charge carriers with the concentration of more than 1021 cm−3 in the materials. On the other hand, doping of the dysprosium oxide with the same amount of tin has no effect on its optical and electromagnetic properties.

  15. Synchrotron white beam topographic studies of gallium arsenide crystals

    International Nuclear Information System (INIS)

    Wierzchowski, W.; Wieteska, K.; Graeff, W.

    1997-01-01

    A series of samples cut out from different types of gallium arsenide crystals with low dislocation density were studied by means of white beam synchrotron topography. The investigation was performed with transmission and black-reflection projection methods and transmission section method. Some of topographs in transmission geometry provided a very high sensitivity suitable for revealing small precipitates. The transmission section images significantly differed depending on the wavelength and absorption. In some cases a distinct Pendelloesung fringes and fine details of dislocation and precipitates images were observed. It was possible to reproduce the character of these images by means of numerical simulation based on integration of Takagi-Taupin equations. Due to more convenient choice of radiation, synchrotron back-reflection projection topography provided much better visibility of dislocations than analogous realized with conventional X-ray sources. (author)

  16. Indium 111 leucocyte scintigraphy in abdominal sepsis

    International Nuclear Information System (INIS)

    Baba, A.A.; McKillop, J.H.; Gray, H.W.; Cuthbert, G.F.; Neilson, W.; Anderson, J.R.

    1990-01-01

    We have studied the clinical utility of indium 111 autologous leucocyte scintigraphy retrospectively in 45 patients presenting with suspected intra-abdominal sepsis. The sensitivity was 95% (21/22) and the specificity was 91% (21/23). Some 34 of the studies (17 positive and 17 negative) were considered helpful in furthering patient management (76%) and 8, unhelpful (18%). In 3, the study results were misleading and led to inappropriate treatment. Indium 111 scintigraphy, whether positive or negative, provides information in patients with suspected intra-abdominal sepsis upon which therapeutic decisions can be based. (orig.)

  17. Electrochemical removal of indium ions from aqueous solution using iron electrodes

    International Nuclear Information System (INIS)

    Chou, Wei-Lung; Huang, Yen-Hsiang

    2009-01-01

    The removal of indium ions from aqueous solution was carried out by electrocoagulation in batch mode using an iron electrode. Various operating parameters that could potentially affect the removal efficiency were investigated, including the current density, pH variation, supporting electrolyte, initial concentration, and temperature. The optimum current density, supporting electrolyte concentration, and temperature were found to be 6.4 mA/cm 2 , 0.003N NaCl, and 298 K, respectively. When the pH values lower than 6.1, the removal efficiencies of indium ions via electrocoagulation were up to 5 times greater than those by adding sodium hydroxide. The indium ion removal efficiency decreased with an increase in the initial concentration. Results for the indium ion removal kinetics at various current densities show that the kinetic rates conformed to the pseudo-second-order kinetic model with good correlation. The experimental data were also tested against different adsorption isotherm models for describing the electrocoagulation process. The adsorption of indium ions preferably fitting the Langmuir adsorption isotherm suggests monolayer coverage of adsorbed molecules.

  18. Electrochemical removal of indium ions from aqueous solution using iron electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Wei-Lung, E-mail: wlchou@sunrise.hk.edu.tw [Department of Safety, Health and Environmental Engineering, Hungkuang University, No. 34 Chung-Chie Road, Sha-Lu, Taichung 433, Taiwan (China); Huang, Yen-Hsiang [Department of Safety, Health and Environmental Engineering, Hungkuang University, No. 34 Chung-Chie Road, Sha-Lu, Taichung 433, Taiwan (China)

    2009-12-15

    The removal of indium ions from aqueous solution was carried out by electrocoagulation in batch mode using an iron electrode. Various operating parameters that could potentially affect the removal efficiency were investigated, including the current density, pH variation, supporting electrolyte, initial concentration, and temperature. The optimum current density, supporting electrolyte concentration, and temperature were found to be 6.4 mA/cm{sup 2}, 0.003N NaCl, and 298 K, respectively. When the pH values lower than 6.1, the removal efficiencies of indium ions via electrocoagulation were up to 5 times greater than those by adding sodium hydroxide. The indium ion removal efficiency decreased with an increase in the initial concentration. Results for the indium ion removal kinetics at various current densities show that the kinetic rates conformed to the pseudo-second-order kinetic model with good correlation. The experimental data were also tested against different adsorption isotherm models for describing the electrocoagulation process. The adsorption of indium ions preferably fitting the Langmuir adsorption isotherm suggests monolayer coverage of adsorbed molecules.

  19. Polarographic studies about indium (III) behaviour in aqueous media of sodium azide

    International Nuclear Information System (INIS)

    Tokoro, R.

    1988-01-01

    The present study shows some polarographic behavior of indium (III) in azide media that is close those observed in a thiocyanate solution. The presence of azide ligand decreases the overpotential in the discharge of indium whose catalytic character can be explained by formation of an azide bridge between electrode and indium (III) increasing the speed of electron transfer. The discharge of indium in azide media is diffusion controlled. As the azide concentration is increased the half wave potential displaces in the cathodic direction. This displacement is due to complex formation. The number of electrons, n, involved in the total process was estimates by the reversible polarographic equation to be 2,7. The potentiostatic coulometry of indium in azide/hydrazoic acid buffer showed a catalytic process where the chemistry regeneration was performed by reaction of hydrazoic acid and indium amalgam. The electrochemistry evidence was the constancy of current as the electrolysis proceeded. The chemistry aspect was the presence of ammonium cation in electrolysed solution. The catalytic process with chemistry regeneration and the formation of a bridge by azide could explain the higher value of current in azide media compared to perchlorate solution. (author) [pt

  20. Copper-assisted shape control in colloidal synthesis of indium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Selishcheva, Elena; Parisi, Juergen; Kolny-Olesiak, Joanna, E-mail: joanna.kolny@uni-oldenburg.de [University of Oldenburg, Energy and Semiconductor Research Laboratory, Institute of Physics (Germany)

    2012-02-15

    Indium oxide is an important n-type transparent semiconductor, finding application in solar cells, sensors, and optoelectronic devices. We present here a novel non-injection synthesis route for the preparation of colloidal indium oxide nanocrystals by using oleylamine (OLA) as ligand and as solvent. Indium oxide with cubic crystallographic structure is formed in a reaction between indium acetate and OLA, the latter is converted to oleylamide during the synthesis. The shape of the nanocrystals can be influenced by the addition of copper ions. When only indium (III) acetate is used as precursor flower-shaped indium oxide nanoparticles are obtained. Addition of copper salts such as copper (I) acetate, copper (II) acetate, copper (II) acetylacetonate, or copper (I) chloride, under otherwise identical reaction conditions changes the shape of nanoparticles to quasi-spherical or elongated. The anions, except for chloride, do not influence the shape of the resulting nanocrystals. This finding suggests that adsorption of copper ions on the In{sub 2}O{sub 3} surface during the nanoparticles growth is responsible for shape control, whereas changes in the reactivity of the In cations caused by the presence of different anions play a secondary role. X-ray diffraction, transmission electron microscopy, nuclear magnetic resonance, energy dispersive X-ray analysis, and UV-Vis-absorption spectroscopy are used to characterize the samples.

  1. Copper-assisted shape control in colloidal synthesis of indium oxide nanoparticles

    International Nuclear Information System (INIS)

    Selishcheva, Elena; Parisi, Jürgen; Kolny-Olesiak, Joanna

    2012-01-01

    Indium oxide is an important n-type transparent semiconductor, finding application in solar cells, sensors, and optoelectronic devices. We present here a novel non-injection synthesis route for the preparation of colloidal indium oxide nanocrystals by using oleylamine (OLA) as ligand and as solvent. Indium oxide with cubic crystallographic structure is formed in a reaction between indium acetate and OLA, the latter is converted to oleylamide during the synthesis. The shape of the nanocrystals can be influenced by the addition of copper ions. When only indium (III) acetate is used as precursor flower-shaped indium oxide nanoparticles are obtained. Addition of copper salts such as copper (I) acetate, copper (II) acetate, copper (II) acetylacetonate, or copper (I) chloride, under otherwise identical reaction conditions changes the shape of nanoparticles to quasi-spherical or elongated. The anions, except for chloride, do not influence the shape of the resulting nanocrystals. This finding suggests that adsorption of copper ions on the In 2 O 3 surface during the nanoparticles growth is responsible for shape control, whereas changes in the reactivity of the In cations caused by the presence of different anions play a secondary role. X-ray diffraction, transmission electron microscopy, nuclear magnetic resonance, energy dispersive X-ray analysis, and UV–Vis-absorption spectroscopy are used to characterize the samples.

  2. Selectivity enhancement of indium-doped SnO2 gas sensors

    International Nuclear Information System (INIS)

    Salehi, A.

    2002-01-01

    Indium doping was used to enhance the selectivity of SnO 2 gas sensor. Both indium-doped and undoped SnO 2 gas sensors fabricated with different deposition techniques were investigated. The changes in the sensitivity of the sensors caused by selective gases (hydrogen and wood smoke) ranging from 500 to 3000 ppm were measured at different temperatures from 50 to 300 deg. C. The sensitivity peaks of the samples exhibit different values for selective gases with a response time of approximately 0.5 s. Thermally evaporated indium-doped SnO 2 gas sensor shows a considerable increase in the sensitivity peak of 27% in response to wood smoke, whereas it shows a sensitivity peak of 7% to hydrogen. This is in contrast to the sputter deposited indium-doped SnO 2 gas sensor, which exhibits a much lower sensitivity peak of approximately 2% to hydrogen and wood smoke compared to undoped SnO 2 gas sensors fabricated by chemical vapor deposition and spray pyrolysis. Scanning electron microscopy shows that different deposition techniques result in different porosity of the films. It is observed that the thermally evaporated indium-doped SnO 2 gas sensor shows high porosity, while the sputtered sample exhibits almost no porosity

  3. Natively textured surface hydrogenated gallium-doped zinc oxide transparent conductive thin films with buffer layers for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xin-liang, E-mail: cxlruzhou@163.com; Wang, Fei; Geng, Xin-hua; Huang, Qian; Zhao, Ying; Zhang, Xiao-dan

    2013-09-02

    Natively textured surface hydrogenated gallium-doped zinc oxide (HGZO) thin films have been deposited via magnetron sputtering on glass substrates. These natively textured HGZO thin films exhibit rough pyramid-like textured surface, high optical transmittances in the visible and near infrared region and excellent electrical properties. The experiment results indicate that tungsten-doped indium oxide (In{sub 2}O{sub 3}:W, IWO) buffer layers can effectively improve the surface roughness and enhance the light scattering ability of HGZO thin films. The root-mean-square roughness of HGZO, IWO (10 nm)/HGZO and IWO (30 nm)/HGZO thin films are 28, 44 and 47 nm, respectively. The haze values at the wavelength of 550 nm increase from 7.0% of HGZO thin film without buffer layer to 18.37% of IWO (10 nm)/HGZO thin film. The optimized IWO (10 nm)/HGZO exhibits a high optical transmittance of 82.18% in the visible and near infrared region (λ ∼ 400–1100 nm) and excellent electrical properties with a relatively low sheet resistance of 3.6 Ω/□ and the resistivity of 6.21 × 10{sup −4} Ωcm. - Highlights: • Textured hydrogenated gallium-doped zinc oxide (HGZO) films were developed. • Tungsten-doped indium oxide (IWO) buffer layers were applied for the HGZO films. • Light-scattering ability of the HGZO films can be improved through buffer layers. • Low sheet resistance and high haze were obtained for the IWO(10 nm)/HGZO film. • The IWO/HGZO films are promising transparent conductive layers for solar cells.

  4. Indium determination by spectral overlappings of lines in atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Gomez, J.J.; Huicque, L. d'; Garcia Vior, L.O.

    1991-01-01

    A molybdenum hollow-cathode lamp filled with neon can be used to determine indium. Characteristic concentration for this element is 4.5 mg/L in the 325 nm spectral region for the Mo(I) 325.621 nm line. In addition, values of 0.4 mg/L and 0.3 mg/L are obtained with the Mo(I) 410.215 nm and Ne(I) 451.151 nm lines, respectively. These spectral overlappings allow the determination of indium in silver-cadmium-indium alloys. (Author) [es

  5. Pharmacokinetics of indium-111-labeled antimyosin monoclonal antibody in murine experimental viral myocarditis

    International Nuclear Information System (INIS)

    Yamada, T.; Matsumori, A.; Watanabe, Y.; Tamaki, N.; Yonekura, Y.; Endo, K.; Konishi, J.; Kawai, C.

    1990-01-01

    The pharmacokinetics of indium-111-labeled antimyosin monoclonal antibody Fab were investigated with use of murine experimental viral myocarditis as a model. The biodistribution of indium-111-labeled antimyosin antibody Fab on days 3, 5, 7, 14, 21 and 28 after encephalomyocarditis virus inoculation demonstrated that myocardial uptake increased significantly on days 5, 7 and 14 (maximum on day 7) in infected versus uninfected mice (p less than 0.001). In vivo kinetics in infected mice on day 7 demonstrated that the heart to blood ratio reached a maximum 48 h after the intravenous administration of indium-111-labeled antimyosin Fab, which was considered to be the optimal time for scintigraphy. The scintigraphic images obtained with indium-111-labeled antimyosin Fab demonstrated positive uptake in the cardiac lesion in infected mice. The pathologic study demonstrated that myocardial uptake correlated well with pathologic grades of myocardial necrosis. High performance liquid chromatography revealed the presence of an antigen-antibody complex in the circulation of infected mice after the injection of indium-111-labeled antimyosin Fab. This antigen bound to indium-111-labeled antimyosin Fab in the circulation might be whole myosin and this complex may decrease myocardial uptake and increase liver uptake. It is concluded that indium-111-labeled antimyosin monoclonal antibody Fab accumulates selectively in damaged heart tissue in mice with acute myocarditis and that indium-111-labeled antimyosin Fab scintigraphy may be a useful method for the visualization of acute myocarditis

  6. Effect of substrate temperature on the optical, structural and morphological properties of In{sub 2}Se{sub 3} thin films grown by a two-step process

    Energy Technology Data Exchange (ETDEWEB)

    Clavijo, J; Gordillo, G [Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia); Romero, E, E-mail: jiclavijop@unal.edu.c, E-mail: erromerom@unal.edu.c, E-mail: ggordillog@unal.edu.c

    2009-05-01

    Polycrystalline gamma - In{sub 2}Se{sub 3} thin films with adequate properties to use them as buffer layer in solar cells, were grown on corning glass substrates using a novel procedure which includes the formation of the alpha- In{sub 2}Se{sub 3} phase in a first step followed by thermal annealing in Se ambient to activate the formation of the gamma- In{sub 2}Se{sub 3} phase. X-ray diffraction (XRD) measurements revealed that the substrate temperature strongly affects the phase in which the indium selenide films grow; at substrate temperatures of around 300{sup 0}C the indium selenide grow in the alpha-In{sub 2}Se{sub 3} phase, whereas the samples deposited at temperatures between 300 and 550{sup 0}C grow with a mixture of the alpha-In{sub 2}Se{sub 3} and gamma-In{sub 2}Se{sub 3} phases. The alpha-In{sub 2}Se{sub 3} samples change into the gamma-In{sub 2}Se{sub 3} phase when subjected to heat treatment around 550{sup 0}C in Se ambient. Spectrophotometric measurements also revealed that the phase in which the indium selenide films grow, significantly affects the optical gap Eg. Eg values of 1.47 eV and 2.11 eV were determined for the alpha-In{sub 2}Se{sub 3} and gamma-In{sub 2}Se{sub 3} films respectively, indicating that this gamma-In{sub 2}Se{sub 3} compound has better properties to perform as buffer layer in thin film solar cells. The effect of substrate temperature on the structural, optical and morphological properties was investigated using XRD, spectral transmittance and atomic force microscope (AFM) measurements. Theoretical simulation of the XRD pattern carried out with the help of the PowderCell package, allowed us to identify the phases associated to the X-Ray reflections, with a good degree of confidence.

  7. Design of Indium Arsenide nanowire sensors for pH and biological sensing and low temperature transport through p-doped Indium Arsenide nanowires

    DEFF Research Database (Denmark)

    Upadhyay, Shivendra

    With the goal of real time electrical detection of chemical and biological species, nanowires have shown great promise with high sensitivity due to their large surface to volume ratio. While the focus of such electrical detection has shifted to one dimensional semiconductor nanostuctures, Silicon...

  8. Radiation-induced physical ageing in network arsenic-sulfide/selenide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, M; Golovchak, R; Kozdras, A; Shpotyuk, O, E-mail: shpotyuk@novas.lviv.ua

    2010-11-15

    Effect of radiation-induced physical ageing is investigated by differential scanning calorimetry method in As{sub x}Se{sub 100-x} (10 {<=} x {<=} 42) and As{sub x}S{sub 100-x} (30 {<=} x {<=} 42) glasses. Obtained results are compared with conventional physical ageing at normal conditions. Significant radiation-induced physical ageing is recorded for glassy As{sub x}S{sub 100-x} within 30 {<=} x < 40 range, while As{sub x}Se{sub 100-x} glasses from the same compositional interval do not show any measurable changes in DSC curves after {gamma}-irradiation. Observed difference in radiation-induced physical ageing in arsenic-sulfide/selenide glasses is explained by a greater lifetime of {gamma}-induced excitations within sulfur-based network in comparison with selenium-based one.

  9. Selenide isotope generator for the Galileo mission. Reliability program plan

    International Nuclear Information System (INIS)

    1978-10-01

    The reliability program plan for the Selenide Isotope Generator (SIG) program is presented. It delineates the specific tasks that will be accomplished by Teledyne Energy Systems and its suppliers during design, development, fabrication and test of deliverable Radioisotopic Thermoelectric Generators (RTG), Electrical Heated Thermoelectric Generators (ETG) and associated Ground Support Equipment (GSE). The Plan is formulated in general accordance with procedures specified in DOE Reliability Engineering Program Requirements Publication No. SNS-2, dated June 17, 1974. The Reliability Program Plan presented herein defines the total reliability effort without further reference to Government Specifications. The reliability tasks to be accomplished are delineated herein and become the basis for contract compliance to the extent specified in the SIG contract Statement of Work

  10. Indium nanoparticles for ultraviolet surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Das, Rupali; Soni, R. K.

    2018-05-01

    Ultraviolet Surface-enhanced Raman spectroscopy (UVSERS) has emerged as an efficient molecular spectroscopy technique for ultra-sensitive and ultra-low detection of analyte concentration. The generic SERS substrates based on gold and silver nanostructures have been extensively explored for high local electric field enhancement only in visible-NIR region of the electromagnetic spectrum. The template synthesis of controlled nanoscale size metallic nanostructures supporting localized surface plasmon resonance (LSPR) in the UV region have been recently explored due to their ease of synthesis and potential applications in optoelectronic, catalysis and magnetism. Indium (In0) nanoparticles exhibit active surface plasmon resonance (SPR) in ultraviolet (UV) and deep-ultaviolet (DUV) region with optimal absorption losses. This extended accessibility makes indium a promising material for UV plasmonic, chemical sensing and more recently in UV-SERS. In this work, spherical indium nanoparticles (In NPs) were synthesized by modified polyol reduction method using NaBH4 having local surface plasmon resonance near 280 nm. The as-synthesized spherical In0 nanoparticles were then coated with thin silica shells of thickness ˜ 5nm by a modified Stober method protecting the nanoparticles from agglomeration, direct contact with the probed molecules as well as prevent oxidation of the nanoparticles. Morphological evolution of In0 nanoparticles and SiO2 coating were characterized by transmission electron microscope (TEM). An enhanced near resonant shell-isolated SERS activity from thin film of tryptophan (Tryp) molecules deposited on indium coated substrates under 325nm UV excitation was observed. Finite difference time domain (FDTD) method is employed to comprehend the experimental results and simulate the electric field contours which showed amplified electromagnetic field localized around the nanostructures. The comprehensive analysis indicates that indium is a promising alternate

  11. An anode with aluminum doped on zinc oxide thin films for organic light emitting devices

    International Nuclear Information System (INIS)

    Xu Denghui; Deng Zhenbo; Xu Ying; Xiao Jing; Liang Chunjun; Pei Zhiliang; Sun Chao

    2005-01-01

    Doped zinc oxides are attractive alternative materials as transparent conducting electrode because they are nontoxic and inexpensive compared with indium tin oxide (ITO). Transparent conducting aluminum-doped zinc oxide (AZO) thin films have been deposited on glass substrates by DC reactive magnetron sputtering method. Films were deposited at a substrate temperature of 150-bar o C in 0.03 Pa of oxygen pressure. The electrical and optical properties of the film with the Al-doping amount of 2 wt% in the target were investigated. For the 300-nm thick AZO film deposited using a ZnO target with an Al content of 2 wt%, the lowest electrical resistivity was 4x10 -4 Ωcm and the average transmission in the visible range 400-700 nm was more than 90%. The AZO film was used as an anode contact to fabricate organic light-emitting diodes. The device performance was measured and the current efficiency of 2.9 cd/A was measured at a current density of 100 mA/cm 2

  12. Effect of Zinc Oxide Doping on Electroluminescence and Electrical Behavior of Metalloporphyrins-Doped Samarium Complex

    Science.gov (United States)

    Janghouri, Mohammad; Amini, Mostafa M.

    2018-02-01

    Samarium complex [(Sm(III)] as a new host material was used for preparation of red organic light-emitting diodes (OLEDs). Devices with configurations of indium-doped tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):(poly(styrenesulfonate) (PEDOT:PSS (50 nm)/polyvinyl carbazole (PVK):[zinc oxide (ZnO)] (50 nm)/[(Sm(III)]:[zinc(II) 2,3-tetrakis(dihydroxyphenyl)-porphyrin and Pt(II) 2,3-dimethoxyporphyrin] (60 nm)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) (15 nm)/Al (150 nm) have been fabricated and investigated. An electroplex occurring at the (PVK/Sm: Pt(II) 2,3-dimethoxyporphyrin) interface has been suggested when ZnO nanoparticles were doped in PVK. OLED studies have revealed that the photophysical characteristics and electrical behavior of devices with ZnO nanoparticles are much better than those of devices with pure PVK. The efficiency of devices based on [(Sm(III)] was superior than that of known aluminum tris(8-hydroxyquinoline) (Alq3) and also our earlier reports on red OLEDs under the same conditions.

  13. Acid-catalyzed kinetics of indium tin oxide etching

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae-Hyeok; Kim, Seong-Oh; Hilton, Diana L. [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553 (Singapore); Cho, Nam-Joon, E-mail: njcho@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553 (Singapore); School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 (Singapore)

    2014-08-28

    We report the kinetic characterization of indium tin oxide (ITO) film etching by chemical treatment in acidic and basic electrolytes. It was observed that film etching increased under more acidic conditions, whereas basic conditions led to minimal etching on the time scale of the experiments. Quartz crystal microbalance was employed in order to track the reaction kinetics as a function of the concentration of hydrochloric acid and accordingly solution pH. Contact angle measurements and atomic force microscopy experiments determined that acid treatment increases surface hydrophilicity and porosity. X-ray photoelectron spectroscopy experiments identified that film etching is primarily caused by dissolution of indium species. A kinetic model was developed to explain the acid-catalyzed dissolution of ITO surfaces, and showed a logarithmic relationship between the rate of dissolution and the concentration of undisassociated hydrochloric acid molecules. Taken together, the findings presented in this work verify the acid-catalyzed kinetics of ITO film dissolution by chemical treatment, and support that the corresponding chemical reactions should be accounted for in ITO film processing applications. - Highlights: • Acidic conditions promoted indium tin oxide (ITO) film etching via dissolution. • Logarithm of the dissolution rate depended linearly on the solution pH. • Acid treatment increased ITO surface hydrophilicity and porosity. • ITO film etching led to preferential dissolution of indium species over tin species.

  14. Amperometric titration of indium with edta solution in propanol

    International Nuclear Information System (INIS)

    Gevorgyan, A.M.; Talipov, Sh.T.; Khadeev, V.A.; Kostylev, V.S.; Khadeeva, L.A.

    1980-01-01

    Optimum conditions have been chosen for titration of indium with EDTA solution in anhydrous propanol and its mixtures with some aprotic solvents using amperometric and point detection. A procedure is suggested of determining indium microcontents in the presence of large amounts of other elements. The procedure is based on its extraction preseparation followed by direct titration in the extract with a standard EDTA solution [ru

  15. Design and characterization of Ga-doped indium tin oxide films for pixel electrode in liquid crystal display

    International Nuclear Information System (INIS)

    Choi, J.H.; Kang, S.H.; Oh, H.S.; Yu, T.H.; Sohn, I.S.

    2013-01-01

    Indium tin oxide (ITO) thin films doped with various metal atoms were investigated in terms of phase transition behavior and electro-optical properties for the purpose of upgrading ITO and indium zinc oxide (IZO) films, commonly used for pixel electrodes in flat panel displays. We explored Ce, Mg, Zn, and Ga atoms as dopants to ITO by the co-sputtering technique, and Ga-doped ITO films (In:Sn:Ga = 87.4:6.7:5.9 at.%) showed the phase transition behavior at 210 °C within 20 min with high visible transmittance of 91% and low resistivity of 0.22 mΩ cm. The film also showed etching rate similar to amorphous ITO, and no etching residue on glass surfaces. These results were confirmed with the film formed from a single Ga-doped ITO target with slightly different compositions (In:Sn:Ga = 87:9:4 at.%). Compared to the ITO target, Ga-doped ITO target left 1/4 less nodules on the target surface after sputtering. These results suggest that Ga-doped ITO films could be an excellent alternative to ITO and IZO for pixel electrodes in thin film transistor liquid crystal display (TFT-LCD). - Highlights: ► We report Ga-doped In–Sn–O films for a pixel electrode in liquid crystal display. ► Ga-doped In–Sn–O films show phase transition behavior at 210 °C. ► Ga-doped In–Sn–O films show high wet etchability and low resistivity

  16. Fabrication of Amorphous Indium Gallium Zinc Oxide Thin Film Transistor by using Focused Ion Beam

    Science.gov (United States)

    Zhu, Wencong

    Compared with other transparent semiconductors, amorphous indium gallium zinc oxide (a-IGZO) has both good uniformity and high electron mobility, which make it as a good candidate for displays or large-scale transparent circuit. The goal of this research is to fabricate alpha-IGZO thin film transistor (TFT) with channel milled by focused ion beam (FIB). TFTs with different channel geometries can be achieved by applying different milling strategies, which facilitate modifying complex circuit. Technology Computer-Aided Design (TCAD) was also introduced to understand the effect of trapped charges on the device performance. The investigation of the trapped charge at IGZO/SiO2 interface was performed on the IGZO TFT on p-Silicon substrate with thermally grown SiO2 as dielectric. The subgap density-of-state model was used for the simulation, which includes conduction band-tail trap states and donor-like state in the subgap. The result shows that the de-trapping and donor-state ionization determine the interface trapped charge density at various gate biases. Simulation of IGZO TFT with FIB defined channel on the same substrate was also applied. The drain and source were connected intentionally during metal deposition and separated by FIB milling. Based on the simulation, the Ga ions in SiO2 introduced by the ion beam was drifted by gate bias and affects the saturation drain current. Both side channel and direct channel transparent IGZO TFTs were fabricated on the glass substrate with coated ITO. Higher ion energy (30 keV) was used to etch through the substrate between drain and source and form side channels at the corner of milled trench. Lower ion energy (16 keV) was applied to stop the milling inside IGZO thin film and direct channel between drain and source was created. Annealing after FIB milling removed the residual Ga ions and the devices show switch feature. Direct channel shows higher saturation drain current (~10-6 A) compared with side channel (~10-7 A) because

  17. Regularly arranged indium islands on glass/molybdenum substrates upon femtosecond laser and physical vapor deposition processing

    Energy Technology Data Exchange (ETDEWEB)

    Ringleb, F.; Eylers, K.; Teubner, Th.; Boeck, T., E-mail: torsten.boeck@ikz-berlin.de [Leibniz-Institute for Crystal Growth, Max-Born-Straße 2, Berlin 12489 (Germany); Symietz, C.; Bonse, J.; Andree, S.; Krüger, J. [Bundesanstalt für Materialforschung und-prüfung (BAM), Unter den Eichen 87, Berlin 12205 (Germany); Heidmann, B.; Schmid, M. [Department of Physics, Freie Universität Berlin, Arnimalle 14, Berlin 14195 (Germany); Nanooptical Concepts for PV, Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, Berlin 14109 (Germany); Lux-Steiner, M. [Nanooptical Concepts for PV, Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, Berlin 14109 (Germany); Heterogeneous Material Systems, Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, Berlin 14109 (Germany)

    2016-03-14

    A bottom-up approach is presented for the production of arrays of indium islands on a molybdenum layer on glass, which can serve as micro-sized precursors for indium compounds such as copper-indium-gallium-diselenide used in photovoltaics. Femtosecond laser ablation of glass and a subsequent deposition of a molybdenum film or direct laser processing of the molybdenum film both allow the preferential nucleation and growth of indium islands at the predefined locations in a following indium-based physical vapor deposition (PVD) process. A proper choice of laser and deposition parameters ensures the controlled growth of indium islands exclusively at the laser ablated spots. Based on a statistical analysis, these results are compared to the non-structured molybdenum surface, leading to randomly grown indium islands after PVD.

  18. Dietary phytate, zinc and hidden zinc deficiency.

    Science.gov (United States)

    Sandstead, Harold H; Freeland-Graves, Jeanne H

    2014-10-01

    Epidemiological data suggest at least one in five humans are at risk of zinc deficiency. This is in large part because the phytate in cereals and legumes has not been removed during food preparation. Phytate, a potent indigestible ligand for zinc prevents it's absorption. Without knowledge of the frequency of consumption of foods rich in phytate, and foods rich in bioavailable zinc, the recognition of zinc deficiency early in the illness may be difficult. Plasma zinc is insensitive to early zinc deficiency. Serum ferritin concentration≤20μg/L is a potential indirect biomarker. Early effects of zinc deficiency are chemical, functional and may be "hidden". The clinical problem is illustrated by 2 studies that involved US Mexican-American children, and US premenopausal women. The children were consuming home diets that included traditional foods high in phytate. The premenopausal women were not eating red meat on a regular basis, and their consumption of phytate was mainly from bran breakfast cereals. In both studies the presence of zinc deficiency was proven by functional responses to controlled zinc treatment. In the children lean-mass, reasoning, and immunity were significantly affected. In the women memory, reasoning, and eye-hand coordination were significantly affected. A screening self-administered food frequency questionnaire for office might help caregiver's identify patients at risk of zinc deficiency. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. The digital structural analysis of cadmium selenide crystals by a method of ion beam thinning for high resolution electron microscopy

    International Nuclear Information System (INIS)

    Kanaya, Koichi; Baba, Norio; Naka, Michiaki; Kitagawa, Yukihisa; Suzuki, Kunio

    1986-01-01

    A digital processing method using a scanning densitometer system for structural analysis of electron micrographs was successfully applied to a study of cadmium selenide crystals, which were prepared by an argon-ion beam thinning method. Based on Fourier techniques for structural analysis from a computer-generated diffractogram, it was demonstrated that when cadmium selenide crystals were sufficiently thin to display the higher order diffraction spots at a high resolution approaching the atomic level, they constitute an alternative hexagonal lattice of imperfect wurtzite phase from a superposition of individual harmonic images by the enhanced scattering amplitude and corrected phase. From the structural analysis data, a Fourier synthetic lattice image was reconstructed, representing the precise location and three-dimensional arrangement of each of the atoms in the unit cell. Extensively enhanced lattice defect images of dislocations and stacking faults were also derived and shown graphically. (author)

  20. Influence of nitrogen on magnetic properties of indium oxide

    Science.gov (United States)

    Ashok, Vishal Dev; De, S. K.

    2013-07-01

    Magnetic properties of indium oxide (In2O3) prepared by the decomposition of indium nitrate/indium hydroxide in the presence of ammonium chloride (NH4Cl) has been investigated. Structural and optical characterizations confirm that nitrogen is incorporated into In2O3. Magnetization has been convoluted to individual diamagnetic paramagnetic and ferromagnetic contributions with varying concentration of NH4Cl. Spin wave with diverging thermal exponent dominates in both field cool and zero field cool magnetizations. Uniaxial anisotropy plays an important role in magnetization as a function of magnetic field at higher concentration of NH4Cl. Avrami analysis indicates the absence of pinning effect in the magnetization process. Ferromagnetism has been interpreted in terms of local moments induced by anion dopant and strong hybridization with host cation.