WorldWideScience

Sample records for indirect land-use change

  1. Indirect land use change and biofuel policy

    International Nuclear Information System (INIS)

    Kocoloski, Matthew; Griffin, W Michael; Matthews, H Scott

    2009-01-01

    Biofuel debates often focus heavily on carbon emissions, with parties arguing for (or against) biofuels solely on the basis of whether the greenhouse gas emissions of biofuels are less than (or greater than) those of gasoline. Recent studies argue that land use change leads to significant greenhouse gas emissions, making some biofuels more carbon intensive than gasoline. We argue that evaluating the suitability and utility of biofuels or any alternative energy source within the limited framework of plus and minus carbon emissions is too narrow an approach. Biofuels have numerous impacts, and policy makers should seek compromises rather than relying solely on carbon emissions to determine policy. Here, we estimate that cellulosic ethanol, despite having potentially higher life cycle CO 2 emissions (including from land use) than gasoline, would still be cost-effective at a CO 2 price of $80 per ton or less, well above estimated CO 2 mitigation costs for many alternatives. As an example of the broader approach to biofuel policy, we suggest the possibility of using the potential cost reductions of cellulosic ethanol relative to gasoline to balance out additional carbon emissions resulting from indirect land use change as an example of ways in which policies could be used to arrive at workable solutions.

  2. Indirect land use change and biofuel policy

    Science.gov (United States)

    Kocoloski, Matthew; Griffin, W. Michael; Matthews, H. Scott

    2009-09-01

    Biofuel debates often focus heavily on carbon emissions, with parties arguing for (or against) biofuels solely on the basis of whether the greenhouse gas emissions of biofuels are less than (or greater than) those of gasoline. Recent studies argue that land use change leads to significant greenhouse gas emissions, making some biofuels more carbon intensive than gasoline. We argue that evaluating the suitability and utility of biofuels or any alternative energy source within the limited framework of plus and minus carbon emissions is too narrow an approach. Biofuels have numerous impacts, and policy makers should seek compromises rather than relying solely on carbon emissions to determine policy. Here, we estimate that cellulosic ethanol, despite having potentially higher life cycle CO2 emissions (including from land use) than gasoline, would still be cost-effective at a CO2 price of 80 per ton or less, well above estimated CO2 mitigation costs for many alternatives. As an example of the broader approach to biofuel policy, we suggest the possibility of using the potential cost reductions of cellulosic ethanol relative to gasoline to balance out additional carbon emissions resulting from indirect land use change as an example of ways in which policies could be used to arrive at workable solutions.

  3. Indirect Land Use Change – Science or Mission?

    Directory of Open Access Journals (Sweden)

    Matthias Finkbeiner

    2014-05-01

    Full Text Available The current discussions of indirect land use change (iLUC and the greenhouse gas (GHG reduction potential of bioresources have turned into a rather controversial debate. The scientific robustness and consistency of current iLUC models and data are at least unclear. However, representatives of the scientific community still dare to provide straightforward political advice in their papers – way beyond the fact-based ‘proof’ of their data and on a level that is usually not accepted by scientific journals. But the actual task and challenge for the scientific community is to determine the environmental performance of bioresources as objectively and fact-based as possible – with a clear and sober focus on integrity and soundness, not sense of mission.

  4. Indirect land use change – Help beyond the hype?

    International Nuclear Information System (INIS)

    Finkbeiner, Matthias

    2014-01-01

    The ‘food vs. fuel’ debate inspired the concept of indirect land use change (iLUC). Greenhouse gas (GHG) emission factors for iLUC are proposed for inclusion into carbon footprints (CF) of biofuels. The range of published iLUC values is enormous: from about 200% below, up to 1700% above the CF values of fossil fuels. From the perspective of life cycle assessment (LCA) and CF science, single iLUC factors are currently more representative for the approach or model used than for the crop or biofuel assessed. The scientific robustness is not sufficient for political and corporate decision making. None of the relevant international standards of LCA or CF require the inclusion of iLUC. The iLUC concept deserves credit for raising awareness of a relevant problem but it is not the solution. Science and policy should focus on proactive real world mitigation of iLUC rather than reactive and theoretical iLUC factors. - Highlights: • There are international accounting standards for LCA and CF but not for iLUC. • LCA and CF are based on physical flows; iLUC is based on market predictions. • Published iLUC values range from 200% below, up to 1700% above the CF of fossil fuels. • No relevant international standard of LCA or CF requires the inclusion of iLUC. • iLUC was successful at raising awareness but it will not help mitigation

  5. GHG emissions and other environmental impacts of indirect land use change mitigation

    NARCIS (Netherlands)

    Gerssen-Gondelach, Sarah J.; Wicke, Birka; Faaij, Andre P.C.

    2017-01-01

    The implementation of measures to increase productivity and resource efficiency in food and bioenergy chains as well as to more sustainably manage land use can significantly increase the biofuel production potential while limiting the risk of causing indirect land use change (ILUC). However, the

  6. GHG emissions and other environmental impacts of indirect land use change mitigation

    NARCIS (Netherlands)

    Gerssen - Gondelach, Sarah; Wicke, Birka; Faaij, Andre P C

    The implementation of measures to increase productivity and resource efficiency in food and bioenergy chains as well as to more sustainably manage land use can significantly increase the biofuel production potential while limiting the risk of causing indirect land use change (ILUC). However, the

  7. A Framework for Modelling Indirect Land Use Changes in Life Cycle Assessment

    DEFF Research Database (Denmark)

    Schmidt, Jannick Højrup; Weidema, Bo Pedersen; Brandão, Miguel

    2015-01-01

    Around 9% of global CO2 emissions originate from land use changes. Often, these emissions are not appropriately addressed in Life Cycle Assessment. The link between demand for crops in one region and impacts in other regions is referred to here as indirect land use change (iLUC) and includes...... demand for land and land use changes is established through markets for land's production capacity. The iLUC model presented is generally applicable to all land use types, crops and regions of the world in typical LCA decision-making contexts focusing on the long-term effects of small-scale changes...... deforestation, intensification and reduced consumption. Existing models for iLUC tend to ignore intensification and reduced consumption, they most often operate with arbitrary amortisation periods to allocate deforestation emissions over time, and the causal link between land occupation and deforestation...

  8. Indirect land use change and biofuels. Mathematical analysis reveals a fundamental flaw in the regulatory approach

    NARCIS (Netherlands)

    Kim, S.; Dale, B.E.; Heijungs, R.; Azapagic, A.; Darlington, T.; Kahlbaum, D.

    2014-01-01

    In the Renewable Fuel Standard (RFS2) program, the United States Environmental Protection Agency (U.S. EPA) has used partial equilibrium models to estimate the overall indirect land use change (iLUC) associated with the biofuel scenario mandated by the Energy Independence and Security Act of 2007

  9. Indirect land-use changes can overcome carbon savings from biofuels in Brazil

    Science.gov (United States)

    Lapola, David M.; Schaldach, Ruediger; Alcamo, Joseph; Bondeau, Alberte; Koch, Jennifer; Koelking, Christina; Priess, Joerg A.

    2010-01-01

    The planned expansion of biofuel plantations in Brazil could potentially cause both direct and indirect land-use changes (e.g., biofuel plantations replace rangelands, which replace forests). In this study, we use a spatially explicit model to project land-use changes caused by that expansion in 2020, assuming that ethanol (biodiesel) production increases by 35 (4) x 109 liter in the 2003-2020 period. Our simulations show that direct land-use changes will have a small impact on carbon emissions because most biofuel plantations would replace rangeland areas. However, indirect land-use changes, especially those pushing the rangeland frontier into the Amazonian forests, could offset the carbon savings from biofuels. Sugarcane ethanol and soybean biodiesel each contribute to nearly half of the projected indirect deforestation of 121,970 km2 by 2020, creating a carbon debt that would take about 250 years to be repaid using these biofuels instead of fossil fuels. We also tested different crops that could serve as feedstock to fulfill Brazil’s biodiesel demand and found that oil palm would cause the least land-use changes and associated carbon debt. The modeled livestock density increases by 0.09 head per hectare. But a higher increase of 0.13 head per hectare in the average livestock density throughout the country could avoid the indirect land-use changes caused by biofuels (even with soybean as the biodiesel feedstock), while still fulfilling all food and bioenergy demands. We suggest that a closer collaboration or strengthened institutional link between the biofuel and cattle-ranching sectors in the coming years is crucial for effective carbon savings from biofuels in Brazil. PMID:20142492

  10. EMISSIONS FROM INDIRECT LAND USE CHANGE: DO THEY MATTER WITH FUEL MARKET LEAKAGES?

    Directory of Open Access Journals (Sweden)

    Dušan Drabik

    2013-09-01

    Full Text Available Indirect land use change, an agricultural market leakage, has been a major controversy over the Environmental Protection Agency’s (EPA requirement for corn-ethanol to reduce greenhouse gas (GHG emissions by 20 percent relative to gasoline it is assumed to replace. This paper shows that corn-ethanol policies generate far greater carbon leakage in the fuel market itself. Hence, corn-ethanol does not meet EPA’s threshold, regardless of ethanol policy and whether one includes emissions from land use change.

  11. What can and can't we say about indirect land-use change in Brazil using an integrated economic - land-use change model?

    NARCIS (Netherlands)

    Verstegen, J.A.; Hilst, van der Floor; Woltjer, Geert; Karssenberg, Derek; Jong, de S.M.; Faaij, André P.C.

    2016-01-01

    It is commonly recognized that large uncertainties exist in modelled biofuel-induced indirect land-use change, but until now, spatially explicit quantification of such uncertainties by means of error propagation modelling has never been performed. In this study, we demonstrate a general

  12. Spatially explicit integrated modeling and economic valuation of climate driven land use change and its indirect effects.

    OpenAIRE

    Bateman, Ian; Agarwala, M.; Binner, A.; Coombes, E.; Day, B.; Ferrini, Silvia; Fezzi, C.; Hutchins, M.; Lovett, A.; Posen, P.

    2016-01-01

    We present an integrated model of the direct consequences of climate change on land use, and the indirect effects of induced land use change upon the natural environment. The model predicts climate-driven shifts in the profitability of alternative uses of agricultural land. Both the direct impact of climate change and the induced shift in land use patterns will cause secondary effects on the water environment, for which agriculture is the major source of diffuse pollution. We model the impact...

  13. Accounting for indirect land-use change in the life cycle assessment of biofuel supply chains

    Science.gov (United States)

    Sanchez, Susan Tarka; Woods, Jeremy; Akhurst, Mark; Brander, Matthew; O'Hare, Michael; Dawson, Terence P.; Edwards, Robert; Liska, Adam J.; Malpas, Rick

    2012-01-01

    The expansion of land used for crop production causes variable direct and indirect greenhouse gas emissions, and other economic, social and environmental effects. We analyse the use of life cycle analysis (LCA) for estimating the carbon intensity of biofuel production from indirect land-use change (ILUC). Two approaches are critiqued: direct, attributional life cycle analysis and consequential life cycle analysis (CLCA). A proposed hybrid ‘combined model’ of the two approaches for ILUC analysis relies on first defining the system boundary of the resulting full LCA. Choices are then made as to the modelling methodology (economic equilibrium or cause–effect), data inputs, land area analysis, carbon stock accounting and uncertainty analysis to be included. We conclude that CLCA is applicable for estimating the historic emissions from ILUC, although improvements to the hybrid approach proposed, coupled with regular updating, are required, and uncertainly values must be adequately represented; however, the scope and the depth of the expansion of the system boundaries required for CLCA remain controversial. In addition, robust prediction, monitoring and accounting frameworks for the dynamic and highly uncertain nature of future crop yields and the effectiveness of policies to reduce deforestation and encourage afforestation remain elusive. Finally, establishing compatible and comparable accounting frameworks for ILUC between the USA, the European Union, South East Asia, Africa, Brazil and other major biofuel trading blocs is urgently needed if substantial distortions between these markets, which would reduce its application in policy outcomes, are to be avoided. PMID:22467143

  14. Accounting for indirect land-use change in the life cycle assessment of biofuel supply chains.

    Science.gov (United States)

    Sanchez, Susan Tarka; Woods, Jeremy; Akhurst, Mark; Brander, Matthew; O'Hare, Michael; Dawson, Terence P; Edwards, Robert; Liska, Adam J; Malpas, Rick

    2012-06-07

    The expansion of land used for crop production causes variable direct and indirect greenhouse gas emissions, and other economic, social and environmental effects. We analyse the use of life cycle analysis (LCA) for estimating the carbon intensity of biofuel production from indirect land-use change (ILUC). Two approaches are critiqued: direct, attributional life cycle analysis and consequential life cycle analysis (CLCA). A proposed hybrid 'combined model' of the two approaches for ILUC analysis relies on first defining the system boundary of the resulting full LCA. Choices are then made as to the modelling methodology (economic equilibrium or cause-effect), data inputs, land area analysis, carbon stock accounting and uncertainty analysis to be included. We conclude that CLCA is applicable for estimating the historic emissions from ILUC, although improvements to the hybrid approach proposed, coupled with regular updating, are required, and uncertainly values must be adequately represented; however, the scope and the depth of the expansion of the system boundaries required for CLCA remain controversial. In addition, robust prediction, monitoring and accounting frameworks for the dynamic and highly uncertain nature of future crop yields and the effectiveness of policies to reduce deforestation and encourage afforestation remain elusive. Finally, establishing compatible and comparable accounting frameworks for ILUC between the USA, the European Union, South East Asia, Africa, Brazil and other major biofuel trading blocs is urgently needed if substantial distortions between these markets, which would reduce its application in policy outcomes, are to be avoided.

  15. The social inefficiency of regulating indirect land use change due to biofuels

    Science.gov (United States)

    Khanna, Madhu; Wang, Weiwei; Hudiburg, Tara W.; Delucia, Evan H.

    2017-06-01

    Efforts to reduce the indirect land use change (ILUC) -related carbon emissions caused by biofuels has led to inclusion of an ILUC factor as a part of the carbon intensity of biofuels in a Low Carbon Fuel Standard. While previous research has provided varying estimates of this ILUC factor, there has been no research examining the economic effects and additional carbon savings from including this factor in implementing a Low Carbon Fuel Standard. Here we show that inclusion of an ILUC factor in a national Low Carbon Fuel Standard led to additional abatement of cumulative emissions over 2007-2027 by 1.3 to 2.6% (0.6-1.1 billion mega-grams carbon-dioxide-equivalent (Mg CO2e-1) compared to those without an ILUC factor, depending on the ILUC factors utilized. The welfare cost to the US of this additional abatement ranged from $61 to $187 Mg CO2e-1 and was substantially greater than the social cost of carbon of $50 Mg CO2e-1.

  16. Statistical confirmation of indirect land use change in the Brazilian Amazon

    Energy Technology Data Exchange (ETDEWEB)

    Arima, Eugenio Y [Department of Geography and the Environment, The University of Texas, GRG 334, Mailcode A3100, Austin, TX 78712 (United States); Richards, Peter; Walker, Robert [Department of Geography, Michigan State University, 116 Geography Building, East Lansing, MI 48824 (United States); Caldas, Marcellus M, E-mail: arima@austin.utexas.edu [Department of Geography, Kansas State University, 118 Seaton Hall, Manhattan, KS 66506 (United States)

    2011-04-15

    Expansion of global demand for soy products and biofuel poses threats to food security and the environment. One environmental impact that has raised serious concerns is loss of Amazonian forest through indirect land use change (ILUC), whereby mechanized agriculture encroaches on existing pastures, displacing them to the frontier. This phenomenon has been hypothesized by many researchers and projected on the basis of simulation for the Amazonian forests of Brazil. It has not yet been measured statistically, owing to conceptual difficulties in linking distal land cover drivers to the point of impact. The present article overcomes this impasse with a spatial regression model capable of linking the expansion of mechanized agriculture in settled agricultural areas to pasture conversions on distant, forest frontiers. In an application for a recent period (2003-2008), the model demonstrates that ILUC is significant and of considerable magnitude. Specifically, a 10% reduction of soy in old pasture areas would have decreased deforestation by as much as 40% in heavily forested counties of the Brazilian Amazon. Evidently, the voluntary moratorium on primary forest conversions by Brazilian soy farmers has failed to stop the deforestation effects of expanding soy production. Thus, environmental policy in Brazil must pay attention to ILUC, which can complicate efforts to achieve its REDD targets.

  17. Carbon footprint of biofuels: towards a consideration of indirect land use changes

    International Nuclear Information System (INIS)

    Vergez, Antonin; Blanquet, Pascal; Guibert, Olivier de; Bonnet, Xavier

    2013-03-01

    The purpose of this article is to detail the carbon footprint of biofuels and to show the mechanisms and impacts of indirect land use changes (ILUC), which are linked to the production of first generation biofuels. Two studies, finalized in France in 2012, confirm the importance of ILUC linked to biofuel development in France and the European Union, and converge with the European Commission research. Despite of some methodological difficulties to quantify this phenomenon, it appears necessary to take ILUC into account when deciding on public policies that encourage production of biofuels. To combat ILUC the European Commission has considered four strategies that we analyze and compare within this article. In October 2012 the European Commission proposed to take into account estimated ILUC values when evaluating biofuels, in order to limit the share of first generation biofuels in the European objectives and to encourage the development of second generation biofuels, which do not interfere with world food production. This legislative proposal is subject to debate during the first half of 2013 under the Irish Presidency of the European Council. (authors)

  18. Statistical confirmation of indirect land use change in the Brazilian Amazon

    International Nuclear Information System (INIS)

    Arima, Eugenio Y; Richards, Peter; Walker, Robert; Caldas, Marcellus M

    2011-01-01

    Expansion of global demand for soy products and biofuel poses threats to food security and the environment. One environmental impact that has raised serious concerns is loss of Amazonian forest through indirect land use change (ILUC), whereby mechanized agriculture encroaches on existing pastures, displacing them to the frontier. This phenomenon has been hypothesized by many researchers and projected on the basis of simulation for the Amazonian forests of Brazil. It has not yet been measured statistically, owing to conceptual difficulties in linking distal land cover drivers to the point of impact. The present article overcomes this impasse with a spatial regression model capable of linking the expansion of mechanized agriculture in settled agricultural areas to pasture conversions on distant, forest frontiers. In an application for a recent period (2003-2008), the model demonstrates that ILUC is significant and of considerable magnitude. Specifically, a 10% reduction of soy in old pasture areas would have decreased deforestation by as much as 40% in heavily forested counties of the Brazilian Amazon. Evidently, the voluntary moratorium on primary forest conversions by Brazilian soy farmers has failed to stop the deforestation effects of expanding soy production. Thus, environmental policy in Brazil must pay attention to ILUC, which can complicate efforts to achieve its REDD targets.

  19. Bioenergy. The Impact of Indirect Land Use Change. Summary and Conclusions from the IEA Bioenergy ExCo63 Workshop

    International Nuclear Information System (INIS)

    Brown, A.; Tustin, J.

    2009-09-01

    This publication provides the summary and conclusions from the title workshop, held in conjunction with he meeting of the Executive Committee of IEA Bioenergy in Rotterdam, Netherlands, on 12 May 2009. The purpose of the workshop was to inform the Executive Committee on the rapidly evolving international debate on bioenergy and land use - particularly the thorny issue of indirect land use change. The aim was to stimulate discussion between the Executive Committee and invited experts and thereby enhance the new policy-oriented work within IEA Bioenergy.

  20. Spatially explicit integrated modeling and economic valuation of climate driven land use change and its indirect effects.

    Science.gov (United States)

    Bateman, Ian; Agarwala, Matthew; Binner, Amy; Coombes, Emma; Day, Brett; Ferrini, Silvia; Fezzi, Carlo; Hutchins, Michael; Lovett, Andrew; Posen, Paulette

    2016-10-01

    We present an integrated model of the direct consequences of climate change on land use, and the indirect effects of induced land use change upon the natural environment. The model predicts climate-driven shifts in the profitability of alternative uses of agricultural land. Both the direct impact of climate change and the induced shift in land use patterns will cause secondary effects on the water environment, for which agriculture is the major source of diffuse pollution. We model the impact of changes in such pollution on riverine ecosystems showing that these will be spatially heterogeneous. Moreover, we consider further knock-on effects upon the recreational benefits derived from water environments, which we assess using revealed preference methods. This analysis permits a multi-layered examination of the economic consequences of climate change, assessing the sequence of impacts from climate change through farm gross margins, land use, water quality and recreation, both at the individual and catchment scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. An alternative approach to indirect land use change: Allocating greenhouse gas effects among different uses of land

    International Nuclear Information System (INIS)

    Kim, Seungdo; Dale, Bruce E.; Ong, Rebecca G.

    2012-01-01

    Indirect land use change (iLUC) is hypothesized to occur when increasing demand for land due to bioenergy production displaces food and feed production onto new lands, thereby potentially producing large greenhouse gas emissions (GHG) during the land conversion event. Thus far, the totality of the projected iLUC effect has been assigned to biofuel production. In fact, multiple drivers of land use change exist and the resulting GHG releases should, in fairness, be allocated among these drivers. It seems more useful and intellectually rigorous to allocate potential land use change effects among these many drivers. This paper focuses on how to allocate the environmental consequences of iLUC to the multiple drivers through a function-oriented approach, namely human nutritional requirements for calories and protein. “Food versus Biofuel” issues can then be more usefully addressed as “Nutrition versus Biofuel” issues. Human beings actually have many choices in how we provide ourselves with adequate diets, and these choices have very different GHG and land use consequences. Therefore, in this paper, GHG assigned to iLUC is allocated between ethanol and human dietary preferences via a human nutrition-based method. Applying allocation approaches to iLUC lowers the estimated GHG of iLUC by up to 73% compared to GHG estimates in the GTAP model. For example, global warming intensity (GWI) of ethanol measured as CO 2 equivalent becomes 58.2 g MJ −1 , while GWI of ethanol calculated using GREET is 68.9 g MJ −1 . -- Highlights: ► Biofuel production is one of many factors driving indirect land use change (iLUC). ► A proper allocation of the consequences of iLUC among these drivers is required. ► There are many choices in how we provide ourselves nutritionally adequate diets. ► Greenhouse gas emissions of iLUC are allocated via a human nutrition-based method.

  2. Direct and indirect land use changes issues in European sustainability initiatives: State-of-the-art, open issues and future developments

    International Nuclear Information System (INIS)

    Van Stappen, Florence; Brose, Isabelle; Schenkel, Yves

    2011-01-01

    Facing climate change and growing energy prices, the use of bioenergy is continuously increasing in order to diminish greenhouse gas emissions, secure energy supply and create employment in rural areas. Because the production of biomass or biofuels, wherever it takes place, comes along with externalities, positive or negative, the need for biomass and bioenergy sustainability criteria is more than ever felt. Research on sustainability criteria and certification systems has started through several national and international initiatives. Considering the benefits of an increased use of bioenergy but also the urge for limiting potential negative environmental and socio-economic impacts, the aim of these initiatives was to make the first move regarding bioenergy sustainability, while waiting for the European legislation to regulate this crucial issue. Land use changes, whether direct or indirect, are one of the most important consequences of bioenergy production. While direct land use changes are more easily assessed locally, indirect land use changes exceed the company level and need to be considered at a global scale. Methodologies for dealing with direct and indirect land use changes are proposed among others in the European, Dutch, British and German sustainability initiatives. This paper aims at presenting and comparing those four European initiatives, with a focus on their propositions for direct and indirect land use changes assessment. Key issues are discussed and recommendations are made for steps to overcome identified difficulties in accurately assessing the effects of indirect land use change due to bioenergy production.

  3. Make biomass chains part of the solution. Recommendation on Indirect Land Use Change (ILUC); Maak biomassaketens deel van de oplossing. Advies over indirecte veranderingen van landgebruik (ILUC)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    This advice builds on previous advice of the Corbey Committee of November 2009: 'Make agriculture part of the solution'. The advise proposes three measures to prevent indirect land use change (ILUC) in the European framework: (1) Calculate an ILUC value for greenhouse gases by assuming that the use of 1 hectare of agricultural land for biofuels principally leads to the use of 1 hectare additional agricultural land; (2) vary the application of the ILUC value proportionally under the following circumstances: (a) efficiency improvement of agricultural production; (b) if marginal or degraded lands are used; (c) if co-products are used, for example for the food chain; (d) if waste flows are used; and (3) protect biodiversity. The measures are elaborated in this advice. [Dutch] Dit advies bouwt voort op een eerder advies van de Commissie Corbey van november 2009: 'Maak landbouw deel van de oplossing'. Het advies stelde drie maatregelen voor waarmee in Europees verband 'indirect land use change' (ILUC) tegengegaan kan worden: (1) Bereken een ILUC-waarde voor broeikasgasemissies door ervan uit te gaan dat het gebruik van 1 hectare landbouwgrond voor biobrandstoffen in principe leidt tot ingebruikneming van 1 hectare extra landbouwgrond; (2) Varieer de toepassing van de ILUC-waarde proportioneel onder de volgende omstandigheden: (a) efficientieverbetering van de landbouwproductie; (b) indien marginale of gedegradeerde gronden in gebruik worden genomen; (c) indien co-producten worden ingezet voor bijvoorbeeld de voedselketen; (d) Indien reststromen ingezet worden; en (3) Bescherm de biodiversiteit. In dit advies worden deze maatregelen verder uitgewerkt.

  4. Land Use and Change

    Science.gov (United States)

    Irwin, Daniel E.

    2004-01-01

    The overall purpose of this training session is to familiarize Central American project cooperators with the remote sensing and image processing research that is being conducted by the NASA research team and to acquaint them with the data products being produced in the areas of Land Cover and Land Use Change and carbon modeling under the NASA SERVIR project. The training session, therefore, will be both informative and practical in nature. Specifically, the course will focus on the physics of remote sensing, various satellite and airborne sensors (Landsat, MODIS, IKONOS, Star-3i), processing techniques, and commercial off the shelf image processing software.

  5. Effects of oil palm expansion through direct and indirect land use change in Tapi river basin, Thailand

    NARCIS (Netherlands)

    Saswattecha, Kanokwan; Hein, Lars; Kroeze, Carolien; Jawjit, Warit

    2016-01-01

    The Thai government has ambitious plan to further promote the use of biodiesel. However, there has been insufficient consideration on the environmental effects of oil palm expansion in Thailand. This paper focuses on the effects of oil palm expansion on land use. We analysed the direct land use

  6. Land use and climate change

    OpenAIRE

    Koomen, E.; Moel, de, H.; Steingröver, E.G.; Rooij, van, S.A.M.; Eupen, van, M.

    2012-01-01

    Land use is majorly involved with climate change concerns and this chapter discusses and reviews the interrelationships between the vulnerability, adaptation and mitigation aspects of land use and climate change. We review a number of key studies on climate change issues regarding land productivity, land use and land management (LPLULM), identifying key findings, pointing out research needs, and raising economic/policy questions to ponder. Overall, this chapter goes beyond previous reviews ...

  7. Environmental implications of the use of agro-industrial residues for biorefineries: application of a deterministic model for indirect land-use changes

    DEFF Research Database (Denmark)

    Tonini, Davide; Hamelin, Lorie; Astrup, Thomas Fruergaard

    2016-01-01

    pathway, in a short-term context. Focusing on transport fuels, bioethanol was generally preferable to biomethane considering conventional biogas upgrading technologies. Based on the results, agro-industrial residues cannot be considered burden-free simply because they are a residual biomass and careful...... of these residues, a consequential life-cycle assessment (LCA) of 32 energy-focused biorefinery scenarios was performed based on eight selected agro-industrial residues and four conversion pathways (two involving bioethanol and two biogas). To specifically address indirect land-use changes (iLUC) induced.......1 t CO2-eq.ha-1demanded y-1 corresponding to 1.2-1.5 t CO2 t-1 dry biomass used for energy. Only bioenergy from straw and wild grass was shown to perform better than the alternative use, as no competition with the feed sector was involved. Biogas for heat-and-power production was the best performing...

  8. Mitigation of unwanted direct and indirect land-use change - an integrated approach illustrated for palm oil, pulpwood, rubber and rice production in North and East Kalimantan, Indonesia

    NARCIS (Netherlands)

    Van der Laan, Carina; Wicke, Birka; Verweij, Pita A.; Faaij, André P C

    2017-01-01

    The widespread production of cash crops can result in the decline of forests, peatlands, rice fields and local community land. Such unwanted land-use and land-cover (LULC) change can lead to decreased carbon stocks, diminished biodiversity, displaced communities and reduced local food production. In

  9. Land-Use Change and Bioenergy

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-07-01

    This publication describes the Biomass Program’s efforts to examine the intersection of land-use change and bioenergy production. It describes legislation requiring land-use change assessments, key data and modeling challenges, and the research needs to better assess and understand the impact of bioenergy policy on land-use decisions.

  10. Sustainable intensification of agricultural systems in combination with biorefinery processing can produce more biomass for bioenergy without imposing indirect land use change

    DEFF Research Database (Denmark)

    Jørgensen, Uffe; Larsen, S.; Olesen, Jørgen Eivind

    2016-01-01

    EERA Bioenergy Workshops. SP4: Land Use Aspects in Relation to Biomass Development. London, June 2nd, 2016.......EERA Bioenergy Workshops. SP4: Land Use Aspects in Relation to Biomass Development. London, June 2nd, 2016....

  11. Lifestyles and Global Land-use Change

    OpenAIRE

    Heilig, G.K.

    1995-01-01

    One of the most influential publications on land-use change is a small booklet, published by the International Geosphere-Biosphere Programme (IGBP) and the Human Dimensions of Global Environmental Change Programme (HDP). It was written -- as its subtitle says -- as a "proposal for an IGBP-HDP Core Project" on "Relating Land Use and Global Land-Cover Change". The booklet can be seen as some kind of programmatic statement to guide international collaborative research on global land-use change. ...

  12. Land Use and Land-use Changes in Life Cycle Assessment

    DEFF Research Database (Denmark)

    De Rosa, Michele

    2017-01-01

    The assessment of Land Uses and Land-use Changes (LULUC) impacts has become increasingly complex. Sophisticated modelling tools such as Life Cycle Assessment (LCA) are employed to capture both direct and indirect damages. However, quantitative assessments are often incomplete, dominated...... by environmental aspects. Land uses are a multidisciplinary matter and environmental and sustainable development policies intertwine. Yet, LCAs mostly focus on environmental impacts excluding socioeconomic implications of land occupation. This paper investigates the limitations of current LULUC modelling practices....... Consequently, results informing land policies may be biased towards determined development strategies or hide indirect effects and socioeconomic damages caused by large-scale land acquisitions, such as violation of tenure rights, speculation and displacement. Quantitative assessments of LULUC impacts...

  13. Land Use, Climate Change and Ecosystem Services

    OpenAIRE

    Attavanich, Witsanu; Rashford, Benjamin S.; Adams, Richard M.; McCarl, Bruce A.

    2011-01-01

    The combination of shifts in crop production and a reduction in wetland ecosystems associated with climate change are forecast to reduce native grasslands and associated obligate species. Most estimates of climate change impacts to wildlife, however, do not account for how humans are likely to alter land use in response to climate changes. We examine the joint effect of climate change and the resulting land use response of farmers on waterfowl production in the Prairie Pothole Region of Nor...

  14. Bend case study : indirect land use and growth impacts : interim report

    Science.gov (United States)

    2000-01-01

    To improve environmental analysis of indirect land use impacts of highway capacity improvements, this study analyzed the land use and growth patterns of 20 Oregon communities over 20 years. Using a Geographic Information System and aerial photos, gro...

  15. Exploring land use change in the Sahel

    DEFF Research Database (Denmark)

    Rasmussen, Laura Vang

    perceptions of land use changes became apparent, however, already in the beginning of 2000, when researchers within the Land Change Science community raised their concerns about general narratives of field expansions that were assumed to progress linearly and be solely driven by population growth. Calls...... for more research on Sahelian land use changes have thus multiplied as the complexity and sometimes intricate processes of land change became apparent, and especially, the need for novel approaches that combine different perspectives has continuously been highlighted. As part of the interdisciplinary...... research program LASYRE (LAnd SYstem REsilience), this thesis responds to thes calls by applying a portfolio of different perspectives to the study of Sahelian land use changes and the causal mechanisms behind them. It examines the land use changes that have taken place in Northern Burkina Faso over...

  16. Land Competition and Land-Use Change:

    DEFF Research Database (Denmark)

    Vongvisouk, Thoumthone

    Land competition and land-use changes are taking place in many developing countries as the demand for land increases. These changes are leading to changes in the livelihood conditions of rural people. The Government of Laos (GoL), on the one hand, aims to increase forest protection. On the other...... hand, the government is also working to increase national economic growth by promoting private-sector investment in both agriculture and forest resources – two sectors that compete for the same areas intended for protection. This thesis explores how these contradictory drivers of land-use changes...... software. Quantitative data was compiled in a Microsoft Access database and analyzed in Excel. Land-use and livelihood changes are taking place rapidly in the study sites. Overall, land-use change underwent transformation away from subsistence shifting cultivation to cash crops, intensive agriculture...

  17. Changing land use intensity in Europe

    DEFF Research Database (Denmark)

    van der Sluis, Theo; Pedroli, Bas; Kristensen, Søren Bech Pilgaard

    2016-01-01

    In recent decades the intensification of agricultural production in many European countries has been one of the key components of land-use change. The impact of agricultural intensification varies according to national and local contexts and a greater understanding of the drivers of intensification...... will help to mitigate against its negative impacts and harness potential benefits. This paper analyses changes in land use intensity in six case studies in Europe. A total of 437 landowners were interviewed and their responses were analysed in relation to changes in land use intensity and agricultural...... use intensity) versus those in the Netherlands, Denmark and Greece (decreasing). In the Mediterranean cases we observe a process where agriculture is becoming increasingly marginalised, at the same time as changes in function with regard to urbanisation and recreational land uses have taken place...

  18. Climate change, land use and land surveyors

    OpenAIRE

    van der Molen, P.; Mitchell, D.

    2016-01-01

    Research reveals that the land sector is a major emitter of greenhouse gases. But the land sector has also potential to reduce emissions. Different from other emission sectors like energy and transport, the land sector (in particular the rural area including forests) has the potential to also remove greenhouse gases from the atmosphere through sequestration and storage. This requires land use, land use change and forestry to be managed with respect to climate change goals. Carbon storage has ...

  19. Fuzzy optimization model for land use change

    OpenAIRE

    L. Jahanshahloo; E. Haghi

    2014-01-01

    There are some important questions in Land use change literature, for instance How much land to allocate to each of a number of land use type in order to maximization of (household or individual) rent -paying ability, minimization of environmental impacts or maximization of population income. In this paper, we want to investigate them and propose mathematical models to find an answer for these questions. Since Most of the parameters in this process are linguistics and fuzzy logic is a powerfu...

  20. Biodiversity data obsolescence and land uses changes

    Directory of Open Access Journals (Sweden)

    Nora Escribano

    2016-12-01

    Full Text Available Background Primary biodiversity records (PBR are essential in many areas of scientific research as they document the biodiversity through time and space. However, concerns about PBR quality and fitness-for-use have grown, especially as derived from taxonomical, geographical and sampling effort biases. Nonetheless, the temporal bias stemming from data ageing has received less attention. We examine the effect of changes in land use in the information currentness, and therefore data obsolescence, in biodiversity databases. Methods We created maps of land use changes for three periods (1956–1985, 1985–2000 and 2000–2012 at 5-kilometres resolution. For each cell we calculated the percentage of land use change within each period. We then overlaid distribution data about small mammals, and classified each data as ‘non-obsolete or ‘obsolete,’ depending on both the amount of land use changes in the cell, and whether changes occurred at or after the data sampling’s date. Results A total of 14,528 records out of the initial 59,677 turned out to be non-obsolete after taking into account the changes in the land uses in Navarra. These obsolete data existed in 115 of the 156 cells analysed. Furthermore, more than one half of the remaining cells holding non-obsolete records had not been visited at least for the last fifteen years. Conclusion Land use changes challenge the actual information obtainable from biodiversity datasets and therefore its potential uses. With the passage of time, one can expect a steady increase in the availability and use of biological records—but not without them becoming older and likely to be obsolete by land uses changes. Therefore, it becomes necessary to assess records’ obsolescence, as it may jeopardize the knowledge and perception of biodiversity patterns.

  1. Land Use Change Modelling in R

    Science.gov (United States)

    Moulds, S.; Buytaert, W.

    2014-12-01

    Land use activities, through the provision of natural resources, are essential to human existence. In many regions land use change is degrading biodiversity and threatening the sustainability of ecosystem services upon which communities and livelihoods depend. Spatially explicit land use change models are widely used to understand and quantify key processes that affect land use change and make predictions about past and future change. These models typically include a module to estimate the suitability of different locations to particular land use types based on biophysical and socioeconomic predictor variables and a module to allocate change spatially. They are commonly implemented in languages such as C/C++ and Fortran and made available as standalone applications or through proprietary GIS. In many cases the models are released under closed source licences, limiting the reproducibility of scientific results and making model comparison difficult. This work presents a new R package providing methods and classes to support land use change modelling and model development and comparison within the open source R statistical computing environment. The package makes use of existing R implementations of methods such as random forests and recursive partitioning and regression trees to estimate location suitability, as well as providing methods for statistical model building and evaluation. Currently two spatial allocation methods are provided: the first based on the widely used and tested CLUE-S algorithm and the second a novel stochastic procedure developed for large scale applications. Some common tools for evaluating allocation results are implemented. It is hoped that the package will provide a framework for the development of new routines that can be incorporated into future releases of the code.

  2. Biofuels, land use change and smallholder livelihoods

    DEFF Research Database (Denmark)

    Hought, Joy Marie; Birch-Thomsen, Torben; Petersen, Jacob

    2012-01-01

    of biofuel feedstock adoption by smallholders in the northwestern Cambodian province of Banteay Meanchey, a region undergoing rapid land use change following the formal end of the Khmer Rouge era in 1989 and subsequent rural resettlement. Remote sensing data combined with field interviews pointed to three...... discrete phases of land use change in this period: first, as a result of the establishment of new settlements (mainly subsistence rice production); second, via the expansion of cash crop cultivation into forested areas (mainly grown on upland fields); and third, due to the response of smallholders...... market had severe consequences for livelihoods and food security. The paper concludes with a discussion of the probable impacts of the emerging cassava market on trajectories in land use, land ownership, and land access in rural Cambodia. The case looks at biofuel adoption in the context of other land...

  3. Emissions from land use change and forestry

    International Nuclear Information System (INIS)

    Ochanda, N.

    1998-01-01

    This inventory focuses on net input of carbon dioxide into the atmosphere as a result of land use change and forestry. The report shows the importance of dynamics of the afforestation and defforestation processes in determining the presence of carbon dioxide in the air

  4. Biofuels and Land use in Sweden - An overview of land-use change effects

    Energy Technology Data Exchange (ETDEWEB)

    Hoeglund, J. [IVL Swedish Environmental Research Inst., Stockholm (Sweden); Ahlgren, S. [Lund Univ., Lund (Sweden); Grahn, M. [Chalmers Univ. of Technology, Goeteborg (Sweden); Sundberg, C. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden); and others

    2013-09-01

    Supported by policies, biofuel production has been continuously increasing worldwide during recent years owing to a scientific consensus that human-induced global warming is a reality and the need to reduce import dependency of fossil fuels. However, concerns have been raised that bio-fuels, often advocated as the future substitute for greenhouse gas (GHG) intensive fossil fuels, may cause negative effects on the climate and the environment. When assessing GHG emissions from biofuels, the production phase of the biofuel crop is essential since this is the phase in which most of the GHG emissions occur during the life cycle of the fuel (not accounting for biogenic CO{sub 2} from the tailpipe). Much research has been focusing on the GHG performance of biofuels, but there are also a range of other possible environmental effects of biofuel production, often linked to land use and land management. Changes in land use can result from a wide range of anthropogenic activities including agriculture and forestry management, livestock and biofuel production. Direct effects of land-use change (LUC) range from changes of carbon stock in standing biomass to biodiversity impacts and nutrient leakage. Beside the direct effects, indirect effects can influence other uses of land through market forces across countries and continents. These indirect effects are complex to measure and observe. This report provides an overview of a much debated issue: the connection between LUC and bio-fuel production and associated potential impacts on a wide range of aspects (i.e., soil chemistry, biodiversity, socio economics, climate change, and policy). The main purpose of the report is to give a broad overview of the literature on LUC impacts from biofuel production, not only taking into account the link between LUC and GHG, which has been addressed in many other studies. The report first presents a review of the literature in the different scientific areas related to LUC and biofuel production

  5. Modeling biofuel expansion effects on land use change dynamics

    International Nuclear Information System (INIS)

    Warner, Ethan; Inman, Daniel; Kunstman, Benjamin; Bush, Brian; Vimmerstedt, Laura; Macknick, Jordan; Zhang Yimin; Peterson, Steve

    2013-01-01

    Increasing demand for crop-based biofuels, in addition to other human drivers of land use, induces direct and indirect land use changes (LUC). Our system dynamics tool is intended to complement existing LUC modeling approaches and to improve the understanding of global LUC drivers and dynamics by allowing examination of global LUC under diverse scenarios and varying model assumptions. We report on a small subset of such analyses. This model provides insights into the drivers and dynamic interactions of LUC (e.g., dietary choices and biofuel policy) and is not intended to assert improvement in numerical results relative to other works. Demand for food commodities are mostly met in high food and high crop-based biofuel demand scenarios, but cropland must expand substantially. Meeting roughly 25% of global transportation fuel demand by 2050 with biofuels requires >2 times the land used to meet food demands under a presumed 40% increase in per capita food demand. In comparison, the high food demand scenario requires greater pastureland for meat production, leading to larger overall expansion into forest and grassland. Our results indicate that, in all scenarios, there is a potential for supply shortfalls, and associated upward pressure on prices, of food commodities requiring higher land use intensity (e.g., beef) which biofuels could exacerbate. (letter)

  6. Agricultural land use change in the Northeast

    Science.gov (United States)

    The USDA Census of Agriculture (http://www.agcensus.usda.gov/) provides county-level estimates of farm numbers, land use area and livestock and crop production every five years. In 2007, only eight of the 299 counties that make up the twelve Northeastern states had no agricultural land use. About 20...

  7. Does reading scenarios of future land use changes affect willingness to participate in land use planning?

    Science.gov (United States)

    Michelle L. Johnson; Kathleen P. Bell; Mario F. Teisl

    2016-01-01

    Scenarios of future outcomes often provide context for policy decisions and can be a form of science communication, translating complex and uncertain relationships into stories for a broader audience. We conducted a survey experiment (n = 270) to test the effects of reading land use change scenarios on willingness to participate in land use planning activities. In the...

  8. Climate change - Agricultural land use - Food security

    Science.gov (United States)

    Nagy, János; Széles, Adrienn

    2015-04-01

    In Hungary, plougland decreased to 52% of its area by the time of political restructuring (1989) in comparison with the 1950s. Forested areas increased significantly (18%) and lands withdrawn from agricultural production doubled (11%). For today, these proportions further changed. Ploughlands reduced to 46% and forested areas further increased (21%) in 2013. The most significat changes were observed in the proportion of lands withdrawn from agricultural production which increased to 21%. Temperature in Hungary increased by 1°C during the last century and predictions show a further 2.6 °C increase by 2050. The yearly amount of precipitation significantly decreased from 640 mm to 560 mm with a more uneven temporal distribution. The following aspects can be considered in the correlation between climate change and agriculture: a) impact of agriculture on climate, b) future impact of climate change on agriculture and food supply, c) impact of climate change on food security. The reason for the significant change of climate is the accumulation of greenhouse gases (GHG) which results from anthropological activities. Between 2008 and 2012, Hungary had to reduce its GHG emission by 6% compared to the base period between 1985-1987. At the end of 2011, Hungarian GHG emission was 43.1% lower than that of the base period. The total gross emission was 66.2 million CO2 equivalent, while the net emission which also includes land use, land use change and forestry was 62.8 million tons. The emission of agriculture was 8.8 million tons (OMSZ, 2013). The greatest opportunity to reduce agricultural GHG emission is dinitrogen oxides which can be significantly mitigated by the smaller extent and more efficient use of nitrogen-based fertilisers (precision farming) and by using biomanures produced from utilised waste materials. Plant and animal species which better adapt to extreme weather circumstances should be bred and maintained, thereby making an investment in food security. Climate

  9. Linking process and pattern of land use change

    NARCIS (Netherlands)

    Overmars, Koen Pieter

    2006-01-01

    Land use change results from the interaction between the human and the natural system and therefore various scientific disciplines have developed paradigms and methods to study land use change. However, these disciplinary approaches can only cover part of the complex system of land use change. The

  10. Land use change and forestry. Sector 5

    International Nuclear Information System (INIS)

    1994-01-01

    The land use change and forestry considers the following sub-modules in calculating GHG emission by sources or removal by sinks: 1)- Sub-module changes in forestry and other woody biomass stocks. This sub-module has presented considerable difficulties in the data collection activity since no information or records are available at the institutional level. Therefore, the data derived represents a large degree of uncertainty.The stocks of woody biomass, needed to calculate the carbon uptake or storage in Lebanon for 1994, were found to be made of: - 75.000 ha of forest trees (65.000 evergreen and 10.000 deciduous) - 50.280.000 non-forest trees which includes: 49.794.000 farm and village trees (21.980.000 of evergreen fruit and olive trees and 27.814.000 of deciduous fruit trees) 486.000 urban trees (450.000 evergreen urban trees and 36.000 deciduous urban trees). The total carbon uptake increment by these stocks of woody biomass is 169.800475 Kt. The loss of biomass fuelwood consumption and from timber production is 4170298 Kt. As a result the change in woody biomass stocks is considered a source of CO 2 emitting 142.4446 Kt of CO 2 . 2)- Sub-module forest and grassland conversion CO 2 from biomass: Natural and man fires are included in this sub-module. In 1994, around 1300 ha of woodland were affected by fires and the resulting CO)? 2 released was 57.968625 Gg. Forests in 1994 constitute a minor source of CO 2 rather than a sink due to the loss of woody biomass sticks and to forest fires. CO 2 emission from and use change and forestry is 200.413225 Kt

  11. Attributing land-use change carbon emissions to exported biomass

    International Nuclear Information System (INIS)

    Saikku, Laura; Soimakallio, Sampo; Pingoud, Kim

    2012-01-01

    In this study, a simple, transparent and robust method is developed in which land-use change (LUC) emissions are retrospectively attributed to exported biomass products based on the agricultural area occupied for the production. LUC emissions account for approximately one-fifth of current greenhouse gas emissions. Increasing agricultural exports are becoming an important driver of deforestation. Brazil and Indonesia are used as case studies due to their significant deforestation in recent years. According to our study, in 2007, approximately 32% and 15% of the total agricultural land harvested and LUC emissions in Brazil and Indonesia respectively were due to exports. The most important exported single items with regard to deforestation were palm oil for Indonesia and bovine meat for Brazil. To reduce greenhouse gas (GHG) emissions effectively worldwide, leakage of emissions should be avoided. This can be done, for example, by attributing embodied LUC emissions to exported biomass products. With the approach developed in this study, controversial attribution between direct and indirect LUC and amortization of emissions over the product life cycle can be overcome, as the method operates on an average basis and annual level. The approach could be considered in the context of the UNFCCC climate policy instead of, or alongside with, other instruments aimed at reducing deforestation. However, the quality of the data should be improved and some methodological issues, such as the allocation procedure in multiproduct systems and the possible dilution effect through third parties not committed to emission reduction targets, should be considered. - Highlights: ► CO 2 emissions from land use changes are highly important. ► Attribution of land use changes for products is difficult. ► Simple and robust method is developed to attribute land use change emissions.

  12. Attributing land-use change carbon emissions to exported biomass

    Energy Technology Data Exchange (ETDEWEB)

    Saikku, Laura, E-mail: laura.saikku@helsinki.fi [University of Helsinki, P.O Box 65, 00014 University of Helsinki (Finland); Soimakallio, Sampo, E-mail: sampo.soimakallio@vtt.fi [VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 VTT (Finland); Pingoud, Kim, E-mail: kim.pingoud@vtt.fi [VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 VTT (Finland)

    2012-11-15

    In this study, a simple, transparent and robust method is developed in which land-use change (LUC) emissions are retrospectively attributed to exported biomass products based on the agricultural area occupied for the production. LUC emissions account for approximately one-fifth of current greenhouse gas emissions. Increasing agricultural exports are becoming an important driver of deforestation. Brazil and Indonesia are used as case studies due to their significant deforestation in recent years. According to our study, in 2007, approximately 32% and 15% of the total agricultural land harvested and LUC emissions in Brazil and Indonesia respectively were due to exports. The most important exported single items with regard to deforestation were palm oil for Indonesia and bovine meat for Brazil. To reduce greenhouse gas (GHG) emissions effectively worldwide, leakage of emissions should be avoided. This can be done, for example, by attributing embodied LUC emissions to exported biomass products. With the approach developed in this study, controversial attribution between direct and indirect LUC and amortization of emissions over the product life cycle can be overcome, as the method operates on an average basis and annual level. The approach could be considered in the context of the UNFCCC climate policy instead of, or alongside with, other instruments aimed at reducing deforestation. However, the quality of the data should be improved and some methodological issues, such as the allocation procedure in multiproduct systems and the possible dilution effect through third parties not committed to emission reduction targets, should be considered. - Highlights: Black-Right-Pointing-Pointer CO{sub 2} emissions from land use changes are highly important. Black-Right-Pointing-Pointer Attribution of land use changes for products is difficult. Black-Right-Pointing-Pointer Simple and robust method is developed to attribute land use change emissions.

  13. Political ecology of land use change in Indonesia

    Science.gov (United States)

    Novira, Nina

    2014-05-01

    Smallholder Estate Scheme by the government as a form of rural development within oil palm development policy, a policy drawn up following the increasing world market demand. This scheme includes facilitating the sale of oil palm's fresh fruit bunches, indirectly inform the people of the value of oil palm. During the early Reformation Era (1998 - 2000), almost literally, the power is in the hand of the people. The absence of long time oppression gives the people a sense of freedom. Inconsistent law enforcement during this era serves as a kind of authorization of performing land use change, either from forest or from rice field to oil palm estate. The Regional Autonomy Era (2001 to present) can also be named Legalized Land Use Change Era. Regional autonomy policy delivers a large portion of power to regional leaders to manage their region. The idea to give region their right to develop themselves without many interventions from the central government leads to uncontrollable regional policies. Many land use change were endorsed by the regional leaders in the name of regional development.

  14. The Columbian Encounter and Land-Use Change.

    Science.gov (United States)

    Turner, B. L. II, Butzer, Karl W.

    1992-01-01

    Discusses land use patterns in fifteenth-century Europe and in the Americas and the mutual influence (initiated by Columbus's arrival in the Americas) that led to land use change. Presents a historical perspective and categorization of contemporary global land use changes for the purpose of highlighting associations between past and present global…

  15. Land Use Change and Global Adaptations to Climate Change

    Directory of Open Access Journals (Sweden)

    Roxana Juliá

    2013-12-01

    Full Text Available This paper uses the World Trade Model with Climate Sensitive Land (WTMCL to evaluate possible future land-use changes associated with adaptations to climate change in a globalized world. In this approach, changes in regional agricultural production, which are based on comparative advantage, define patterns of land use change in agriculture in all regions of the world. We evaluate four scenarios that combine assumptions about future increases in food demand and future changes in land endowments of different productivities associated with climatic conditions: each scenario generates distinct patterns of regional specialization in the production of agricultural commodities and associated land-use change. The analysis also projects future food availability under the simulated conditions and the direction of likely changes in prices of the major agricultural commodity groups.

  16. Human land-use and soil change

    Science.gov (United States)

    Wills, Skye A.; Williams, Candiss O.; Duniway, Michael C.; Veenstra, Jessica; Seybold, Cathy; Pressley, DeAnn

    2017-01-01

    Soil change refers to the alteration of soil and soil properties over time in one location, as opposed to soil variability across space. Although soils change with pedogensis, this chapter focuses on human caused soil change. Soil change can occur with human use and management over long or short time periods and small or large scales. While change can be negative or positive; often soil change is observed when short-term or narrow goals overshadow the other soil’s ecosystem services. Many soils have been changed in their chemical, physical or biological properties through agricultural activities, including cultivation, tillage, weeding, terracing, subsoiling, deep plowing, manure and fertilizer addition, liming, draining, and irrigation. Assessing soil change depends upon the ecosystem services and soil functions being evaluated. The interaction of soil properties with the type and intensity of management and disturbance determines the changes that will be observed. Tillage of cropland disrupts aggregates and decreases soil organic carbon content which can lead to decreased infiltration, increased erosion, and reduced biological function. Improved agricultural management systems can increase soil functions including crop productivity and sustainability. Forest management is most intensive during harvesting and seedling establishment. Most active management in forests causes disturbance of the soil surface which may include loss of forest floor organic materials, increases in bulk density, and increased risk of erosion. In grazing lands, pasture management often includes periods of biological, chemical and physical disturbance in addition to the grazing management imposed on rangelands. Grazing animals have both direct and indirect impacts on soil change. Hoof action can lead to the disturbance of biological crusts and other surface features impairing the soil’s physical, biological and hydrological function. There are clear feedbacks between vegetative systems

  17. Spatial modeling of agricultural land use change at global scale

    Science.gov (United States)

    Meiyappan, P.; Dalton, M.; O'Neill, B. C.; Jain, A. K.

    2014-11-01

    Long-term modeling of agricultural land use is central in global scale assessments of climate change, food security, biodiversity, and climate adaptation and mitigation policies. We present a global-scale dynamic land use allocation model and show that it can reproduce the broad spatial features of the past 100 years of evolution of cropland and pastureland patterns. The modeling approach integrates economic theory, observed land use history, and data on both socioeconomic and biophysical determinants of land use change, and estimates relationships using long-term historical data, thereby making it suitable for long-term projections. The underlying economic motivation is maximization of expected profits by hypothesized landowners within each grid cell. The model predicts fractional land use for cropland and pastureland within each grid cell based on socioeconomic and biophysical driving factors that change with time. The model explicitly incorporates the following key features: (1) land use competition, (2) spatial heterogeneity in the nature of driving factors across geographic regions, (3) spatial heterogeneity in the relative importance of driving factors and previous land use patterns in determining land use allocation, and (4) spatial and temporal autocorrelation in land use patterns. We show that land use allocation approaches based solely on previous land use history (but disregarding the impact of driving factors), or those accounting for both land use history and driving factors by mechanistically fitting models for the spatial processes of land use change do not reproduce well long-term historical land use patterns. With an example application to the terrestrial carbon cycle, we show that such inaccuracies in land use allocation can translate into significant implications for global environmental assessments. The modeling approach and its evaluation provide an example that can be useful to the land use, Integrated Assessment, and the Earth system modeling

  18. Sourcebook for Land Use, Land-Use Change and Forestry Projects

    OpenAIRE

    Pearson, Timothy; Walker, Sarah; Brown, Sandra

    2013-01-01

    This sourcebook is designed to be a guide for developing and implementing land use, land-use change and forestry (LULUCF) projects for the BioCarbon Fund of the World Bank that meet the requirements for the Clean Development Mechanism (CDM) of the Kyoto Protocol. Only project types and carbon pools that are eligible for credit under the CDM during the first commitment period (2008-2012) ar...

  19. Biofuels, land use change, and greenhouse gas emissions: some unexplored variables.

    Science.gov (United States)

    Kim, Hyungtae; Kim, Seungdo; Dale, Bruce E

    2009-02-01

    Greenhouse gas release from land use change (the so-called "carbon debt") has been identified as a potentially significant contributor to the environmental profile of biofuels. The time required for biofuels to overcome this carbon debt due to land use change and begin providing cumulative greenhouse gas benefits is referred to as the "payback period" and has been estimated to be 100-1000 years depending on the specific ecosystem involved in the land use change event. Two mechanisms for land use change exist: "direct" land use change, in which the land use change occurs as part of a specific supply chain for a specific biofuel production facility, and "indirect" land use change, in which market forces act to produce land use change in land that is not part of a specific biofuel supply chain, including, for example, hypothetical land use change on another continent. Existing land use change studies did not consider many of the potentially important variables that might affect the greenhouse gas emissions of biofuels. We examine here several variables that have not yet been addressed in land use change studies. Our analysis shows that cropping management is a key factor in estimating greenhouse gas emissions associated with land use change. Sustainable cropping management practices (no-till and no-till plus cover crops) reduce the payback period to 3 years for the grassland conversion case and to 14 years for the forest conversion case. It is significant that no-till and cover crop practices also yield higher soil organic carbon (SOC) levels in corn fields derived from former grasslands or forests than the SOC levels that result if these grasslands or forests are allowed to continue undisturbed. The United States currently does not hold any of its domestic industries responsible for its greenhouse gas emissions. Thus the greenhouse gas standards established for renewable fuels such as corn ethanol in the Energy Independence and Security Act (EISA) of 2007 set a

  20. Indirect effects of land-use legacies determine tree colonization patterns in abandoned heathland

    DEFF Research Database (Denmark)

    Kepfer Rojas, Sebastian; Verheyen, Kris; Johannsen, Vivian Kvist

    2015-01-01

    of tree/shrubs in the heathland. Further, we used high-resolution LiDAR data to classify the vegetation and identify forest patches. In the analysis, we first used a logistic mixed model to test whether colonization of tree and shrub species differed between areas with different land-use history......Questions How do land-use legacies and distance to forest patches influence tree colonization at a post-agricultural heathland? Are colonizing species with different life-history traits affected differently by these factors? Is the effect of increased nutrient availability from land-use legacies...... and whether it was influenced by the distance to forest patches and life-history traits (seed mass) of colonizing species. Then, to determine how different factors influence colonization, we explored the direct and indirect relationships among nutrient availability, density of adult trees, canopy cover, cover...

  1. Changing relationships between land use and environmental characteristics and their consequences for spatially explicit land-use change prediction

    NARCIS (Netherlands)

    Bakker, M.; Veldkamp, A.

    2012-01-01

    Spatially explicit land-use change prediction is often based on environmental characteristics of land-use types, such as soil type and slope, as observed at one time instant. This approach presumes that relationships between land use and environment are constant over time. We argue that such

  2. Implications of climate and land use change: Chapter 4

    Science.gov (United States)

    Hall, Jefferson S.; Murgueitio, Enrique; Calle, Zoraida; Raudsepp-Hearne, Ciara; Stallard, Robert F.; Balvanera, Patricia; Hall, Jefferson S.; Kirn, Vanessa; Yanguas-Fernandez, Estrella

    2015-01-01

    This chapter relates ecosystem services to climate change and land use. The bulk of the chapter focuses on ecosystem services and steepland land use in the humid Neotropics – what is lost with land-cover changed, and what is gained with various types of restoration that are sustainable given private ownership. Many case studies are presented later in the white paper. The USGS contribution relates to climate change and the role of extreme weather events in land-use planning.

  3. Implementing land use change models in the developing world

    CSIR Research Space (South Africa)

    Le Roux, Alize

    2013-07-01

    Full Text Available recently adapted land use change models (Dyna-Clue and UrbanSIM) that have been successfully adapted to simulate future land use change policies in the various metro's across South-Africa. The presentation will focus on how these technologies together...

  4. Review of Land Use and Land Cover Change research progress

    Science.gov (United States)

    Chang, Yue; Hou, Kang; Li, Xuxiang; Zhang, Yunwei; Chen, Pei

    2018-02-01

    Land Use and Land Cover Change (LUCC) can reflect the pattern of human land use in a region, and plays an important role in space soil and water conservation. The study on the change of land use patterns in the world is of great significance to cope with global climate change and sustainable development. This paper reviews the main research progress of LUCC at home and abroad, and suggests that land use change has been shifted from land use planning and management to land use change impact and driving factors. The development of remote sensing technology provides the basis and data for LUCC with dynamic monitoring and quantitative analysis. However, there is no uniform standard for land use classification at present, which brings a lot of inconvenience to the collection and analysis of land cover data. Globeland30 is an important milestone contribution to the study of international LUCC system. More attention should be paid to the accuracy and results contrasting test of land use classification obtained by remote sensing technology.

  5. Impact of land use change on soil erodibility

    Directory of Open Access Journals (Sweden)

    F. Taleshian Jeloudar

    2018-01-01

    Full Text Available Vulnerability of soil separates to detachment by water is described as soil erodibility by Universal Soil Loss Equation which can be affected by land use change. In this study it was attempted to quantify the changes of Universal Soil Loss Equation K-factor and its soil driving factors in three land uses including rangeland, rainfed farming, and orchards in Babolrood watershed, northern Iran. Soil composite samples were obtained from two layers in three land uses, and the related soil physico-chemical properties were measured. The rainfed farming land use showed the highest clay contents, but the highest amounts of soil organic matter and sand particles were found in orchard land use. The high intensity of tillage led to the significant decrease of soil aggregate stability and permeability in the rainfed farming land use. The Universal Soil Loss Equation K-factor was negatively correlated with soil permeability (r=-0.77**. In rangeland, the K-factor (0.045 Mg h/MJ/mm was significantly higher and the particle size distribution had a great impact on the K-factor. The orchard land use, converted from the rangeland, did not show any increase of soils erodibility and can potentially be introduced as a good alternative land use in sloping areas. However, more detailed studies on environmental, social and economic aspects of this land use are needed.

  6. Simulating feedbacks in land use and land cover change models

    NARCIS (Netherlands)

    Verburg, P.H.

    2006-01-01

    In spite of the many advances in land use and land cover change modelling over the past decade many challenges remain. One of these challenges relates to the explicit treatment of feedback mechanisms in descriptive models of the land use system. This paper argues for model-based analysis to explore

  7. Validation of land use / land cover changes for Denmark

    DEFF Research Database (Denmark)

    Levin, Gregor; Johannsen, Vivian Kvist; Caspersen, Ole Hjort

    2018-01-01

    This report presents applied methods and results for a validation of land use and land cover changes for 1990 and 2014-2016. Results indicate that generally, accuracies of land use and land cover. However, afforestation and particularly deforestation are significantly overestimated....

  8. Assessing Ecological Impacts According to Land Use Change

    Science.gov (United States)

    Jeong, S.; Lee, D. K.; Jeong, W.; Jeong, S. G.; Jin, Y.

    2015-12-01

    Land use patterns have changed by human activities, and it has affected the structure and dynamics of ecosystems. In particular, the conversion of forests into other land use has caused environmental degradation and loss of biodiversity. The evaluation of species and their habitat can be preferentially considered to prevent or minimize the adverse effects of land use change. The objective of study is identifying the impacts of environmental conditions on forest ecosystems by comparing ecological changes with time series spatial data. Species distribution models were developed for diverse species with presence data and time-series environmental variables, which allowed comparison of the habitat suitability and connectivity. Habitat suitability and connectivity were used to estimate impacts of forest ecosystems due to land use change. Our result suggested that the size and degree of ecological impacts are were different depending on the properties of land use change. The elements and species were greatly affected by the land use change according to the results. This study suggested that a methodology for measuring the interference of land use change in species habitat and connectivity. Furthermore, it will help to conserve and manage forest by identifying priority conservation areas with influence factor and scale.

  9. The dwindling role of population pressure in land use change

    DEFF Research Database (Denmark)

    Birch-Thomsen, Torben; Reenberg, Anette

    2014-01-01

    This paper explores a contemporary coupled human-environmental system on a small island in the South West Pacific. It describes the historical change of the resource management strategies, notably the agricultural land use, in this former subsistence system. Our conceptual mindset draws on Boserup......’s classic theories of land use intensification as well as on her more recently proposed heuristic framework to describe development processes that underpin land use system change. We illustrate how land use has become partially disconnected from the local population pressure and therefore remains relatively...... stable while the larger livelihood portfolio has undergone significant diversification. At present, the agricultural system is a supplement to a range of strategies that support the increasing number of people on the island. This explains why land use patterns continue relatively unchanged while...

  10. Land use allocation model considering climate change impact

    Science.gov (United States)

    Lee, D. K.; Yoon, E. J.; Song, Y. I.

    2017-12-01

    In Korea, climate change adaptation plans are being developed for each administrative district based on impact assessments constructed in various fields. This climate change impact assessments are superimposed on the actual space, which causes problems in land use allocation because the spatial distribution of individual impacts may be different each other. This implies that trade-offs between climate change impacts can occur depending on the composition of land use. Moreover, the actual space is complexly intertwined with various factors such as required area, legal regulations, and socioeconomic values, so land use allocation in consideration of climate change can be very difficult problem to solve (Liu et al. 2012; Porta et al. 2013).Optimization techniques can generate a sufficiently good alternatives for land use allocation at the strategic level if only the fitness function of relationship between impact and land use composition are derived. It has also been noted that land use optimization model is more effective than the scenario-based prediction model in achieving the objectives for problem solving (Zhang et al. 2014). Therefore in this study, we developed a quantitative tool, MOGA (Multi Objective Genetic Algorithm), which can generate a comprehensive land use allocations considering various climate change impacts, and apply it to the Gangwon-do in Korea. Genetic Algorithms (GAs) are the most popular optimization technique to address multi-objective in land use allocation. Also, it allows for immediate feedback to stake holders because it can run a number of experiments with different parameter values. And it is expected that land use decision makers and planners can formulate a detailed spatial plan or perform additional analysis based on the result of optimization model. Acknowledgments: This work was supported by the Korea Ministry of Environment (MOE) as "Climate Change Correspondence Program (Project number: 2014001310006)"

  11. Modelling the effect of land use change on hydrological model ...

    African Journals Online (AJOL)

    Modelling the effect of land use change on hydrological model parameters via linearized calibration method in the upstream of Huaihe River Basin, China. ... is presented, based on the analysis of the problems of the objective function of the ...

  12. Techniques for land use change detection using Landsat imagery

    Science.gov (United States)

    Angelici, G. L.; Bryant, N. A.; Friedman, S. Z.

    1977-01-01

    A variety of procedures were developed for the delineation of areas of land use change using Landsat Multispectral Scanner data and the generation of statistics revealing the nature of the changes involved (i.e., number of acres changed from rural to urban). Techniques of the Image Based Information System were utilized in all stages of the procedure, from logging the Landsat data and registering two frames of imagery, to extracting the changed areas and printing tabulations of land use change in acres. Two alternative methods of delineating land use change are presented while enumerating the steps of the entire process. The Houston, Texas urban area, and the Orlando, Florida urban area, are used as illustrative examples of various procedures.

  13. Response of atmospheric CO2 to changes in land use

    International Nuclear Information System (INIS)

    King, A.W.; Emanuel, W.R.; Post, W.M.

    1991-01-01

    This chapter examines how different histories of CO 2 release from past changes in land use influence the simulation of past and future changes in atmospheric CO 2 . The authors first simulate past change in atmospheric CO 2 using reconstructed histories of land-use CO 2 release from a historical-ecological model of land-use change and CO 2 release. They examine the impact of each history on the coincidence between simulated and observed atmospheric CO 2 . They then compare these CO 2 release histories, and their contribution to coincidence or noncoincidence of simulation and observation, with histories reconstructed by deconvolution of the atmospheric CO 2 record. They conclude by exploring the implications of these deconvolved reconstructions for the simulation of future changes in atmospheric CO 2

  14. Modeling socioeconomic and ecologic aspects of land-use change

    International Nuclear Information System (INIS)

    Dale, V.H.; Pedlowski, M.A.; O'Neill, R.V.; Southworth, F.

    1992-01-01

    Land use change is one of the major factors affecting global environmental conditions. Prevalent types of land-use change include replacing forests with agriculture, mines or ranches; forest degradation from collection of firewood; and forest logging. A global effect of wide-scale deforestation is an increase in atmospheric carbon dioxide concentration, which may affect climate. Regional effects include loss of biodiversity and disruption of hydrologic regimes. Local effects include soil erosion, siltation and decreases in soil fertility, loss of extractive reserves, and disruption of indigenous people. Modeling land use change requires combining socioeconomic and ecological factors because socioeconomic forces frequently initiate land-use change and are affected by the subsequent ecological degradation. This paper describes a modeling system that integrates submodels of human colonization and impacts to estimate patterns and rates of deforestation under different immigration and land use scenarios. Immigration which follows road building or paving is a major factor in the rapid deforestation of previously inaccessible areas. Roads facilitate colonization, allow access for large machines, and provide transportation routes for mort of raw materials and produce

  15. Carbon balance impacts of land use changes related to the life cycle of Malaysian palm oil-derived biodiesel

    DEFF Research Database (Denmark)

    Hansen, Sune Balle; Olsen, Stig Irving; Ujang, Zaini

    2014-01-01

    to oil palm, in a life cycle perspective.LCA methodology is applied to existing land use change data. The assessment includes the issue of temporary carbon storage in the plantations. Through quantification of emissions from state forest reserve and rubber plantation conversions, the average Malaysian...... palm oil-related land use changes are calculated.The results show that there are high emissions associated with the conversion of Malaysian state forest reserve to oil palm, whereas the conversion of rubber leaves a less significant carbon debt when indirect land use change is not included. Looking...... at the average Malaysian land use changes associated with oil palm shows that land use change emissions are responsible for approximately half of the total conventional biodiesel production emissions. The sensitivity analysis shows that the results could be significantly influenced by data variations in indirect...

  16. LAND USE PATTERN, CLIMATE CHANGE, AND ITS IMPLICATION ...

    African Journals Online (AJOL)

    Osondu

    2012-01-30

    Jan 30, 2012 ... impacted seriously on Ethiopia's rich biodiversity, crop production ... change in the rural areas of Ethiopia, this paper therefore reviewed ... Key words: Climate change, Land use pattern, and Food security. .... releasing greenhouse gases, and the major driver ... Agricultural systems worldwide over the last.

  17. Predicted impacts of land use change on groundwater recharge of ...

    African Journals Online (AJOL)

    2012-04-13

    Apr 13, 2012 ... (2003) found no significant effect of a change in forest cover on peaks and low flows for 25 basins across north- western Europe, while deforestation led to an increase in base flow in more temperate climates (Hornbeck et al., 1993). Land use change also has a direct influence on the catch- ment hydrology ...

  18. Land-use change and infectious disease in West Africa

    Science.gov (United States)

    Thomson, M. C.; Ericksen, P. J.; Mohamed, A. Ben; Connor, S. J.

    Land-use change has been associated with changes in the dynamics of infectious disease in West Africa. Here we describe the complex interactions of land-use change with three diseases (both vector- and non-vector-borne) of considerable public health significance in this region, namely, malaria and irrigation; epidemic meningitis and land degradation; onchocerciasis and deforestation. We highlight the confounding effect of climate variability, which acts as a driver of both land-use change and human health. We conclude, as have others, that the scale of observation always matters, and complex and dynamic feedbacks among social-ecological systems are not easily teased apart. We suggest that in order to establish the causal chain of interactions between land-use change and human health outcomes two approaches are necessary. The first is to have a thorough understanding of the aetiology of disease and the specific mechanisms by which land-use and climate variability affect the transmission of pathogens. This is achieved by focused, detailed studies encompassing a wide range of potential drivers, which are inevitably small scale and often cover short time periods. The second consists of large-scale studies of statistical associations between transmission indices or health outcomes and environmental variables stratified by known ecological or socio-economic confounders, and sufficient in size to overcome local biases in results. Such research activities need to be designed to inform each other if we are to develop predictive models for monitoring these diseases and to develop integrated programs for human health and sustainable land use.

  19. External Costs as Driving Forces of Land Use Changes

    Directory of Open Access Journals (Sweden)

    Dirk Loehr

    2010-04-01

    Full Text Available Land conversion is often not carried out in a sustainable way. The loss of arable land and biodiversity, concern about food security and rising costs of infrastructure due to urban sprawl are just some of the problems under discussion. This paper compares Germany, China and Cambodia. The article points out that, despite huge differences in institutions and governance, unsustainable land use changes mostly have some patterns in common: The beneficiaries of land conversion are often well-organized actors, whereas the costs of land conversion are often shifted to poorly organized groups and to society as a whole. A sustainable land use policy has to look for a better coupling of benefits and costs of land use changes. In order to achieve this goal, the article suggests completing the planning law with a suitable economic framework.

  20. Climate and land-use change in wetlands: A dedication

    Science.gov (United States)

    Middleton, Beth A.

    2017-01-01

    Future climate and land-use change may wreak havoc on wetlands, with the potential to erode their values as harbors for biota and providers of human services. Wetlands are important to protect, particularly because these provide a variety of ecosystem services including wildlife habitat, water purification, flood storage, and storm protection (Mitsch, Bernal, and Hernandez 2015). Without healthy wetlands, future generations may become increasingly less in harmony with the sustainability of the Earth. To this end, the thematic feature on climate and land-use change in wetlands explores the critical role of wetlands in the overall health and well-being of humans and our planet. Our special feature contributes to the understanding of the idea that the health of natural ecosystems and humans are linked and potentially stressed by climate change and land-use change (Horton and Lo 2015; McDonald 2015). In particular, this special issue considers the important role of wetlands in the environment, and how land-use and environmental change might affect them in the future.

  1. Agricultural Land-Use Change and Disappearance of Farmlands

    African Journals Online (AJOL)

    The concept of land-use and land-cover change is as old as the town itself. .... Therefore, the impact of such urban growth and human activities would be ..... of Human Settlements. (CityNet) and the Association of Food Marketing Agencies.

  2. Land Use and Land Cover Change Analysis along the Coastal ...

    African Journals Online (AJOL)

    Agribotix GCS 077

    are carried out on the land usually effect changes in its cover. ... The FAO document on land cover classification systems, (2000) partly answers this ... over the surface land, including water, vegetation, bare soils and or artificial structures. ... diseases may occur more readily in areas exposed by Land Use and Land Cover ...

  3. Agricultural land-use change and disappearance of farmlands in ...

    African Journals Online (AJOL)

    The four imageries (Landsat MSS 1980, Landsat TM 1990, Landsat ETM+ 2005 and Nigeria Sat X 2012) used were classified and compared to understand the rate and extent of agricultural land-use change during the different periods. The findings revealed that the study area experienced a significant reduction in

  4. Population, conservation, and land use change in Honduras

    Science.gov (United States)

    Max J. Pfeffer; John W. Schlelhas; Stephen D. DeGloria; Jorge Gomez

    2005-01-01

    This paper examines the role of population density on land use allocation and change. We are especially interested in the management of fallow areas that have come under increasing pressure given restrictions imposed by the creation of protected areas like national parks. It is argued that these restrictions to reduce deforestation create a relative scarcity of land,...

  5. Soil erosion as a driver of land-use change

    NARCIS (Netherlands)

    Bakker, M.M.; Govers, G.; Kosmas, C.; VanAcker, H.; Oost, van K.; Rounsevell, M.

    2005-01-01

    Although much research has been carried out on the crop productivity response to soil erosion, little is known about the role of soil erosion as a driver of land-use change. Given, however, the some-times large erosion-induced reductions in crop yields, it appears likely that erosion has a strong

  6. Analyzing historical land use changes using a Historical Land Use Reconstruction Model: a case study in Zhenlai County, northeastern China

    Science.gov (United States)

    Yang, Yuanyuan; Zhang, Shuwen; Liu, Yansui; Xing, Xiaoshi; de Sherbinin, Alex

    2017-01-01

    Historical land use information is essential to understanding the impact of anthropogenic modification of land use/cover on the temporal dynamics of environmental and ecological issues. However, due to a lack of spatial explicitness, complete thematic details and the conversion types for historical land use changes, the majority of historical land use reconstructions do not sufficiently meet the requirements for an adequate model. Considering these shortcomings, we explored the possibility of constructing a spatially-explicit modeling framework (HLURM: Historical Land Use Reconstruction Model). Then a three-map comparison method was adopted to validate the projected reconstruction map. The reconstruction suggested that the HLURM model performed well in the spatial reconstruction of various land-use categories, and had a higher figure of merit (48.19%) than models used in other case studies. The largest land use/cover type in the study area was determined to be grassland, followed by arable land and wetland. Using the three-map comparison, we noticed that the major discrepancies in land use changes among the three maps were as a result of inconsistencies in the classification of land-use categories during the study period, rather than as a result of the simulation model. PMID:28134342

  7. China’s Land-Use Changes during the Past 300 Years: A Historical Perspective

    Directory of Open Access Journals (Sweden)

    Lijuan Miao

    2016-08-01

    Full Text Available Understanding the processes of historical land-use change is crucial to the research of global environmental sustainability. Here we examine and attempt to disentangle the evolutionary interactions between land-use change and its underlying causes through a historical lens. We compiled and synthesized historical land-use change and various biophysical, political, socioeconomic, and technical datasets, from the Qing dynasty to modern China. The analysis reveals a clear transition period between the 1950s and the 1980s. Before the 1950s, cropland expanded while forested land diminished, which was also accompanied by increasing population; after the 1980s land-use change exhibited new characteristics: changes in cropland, and decoupling of forest from population as a result of agricultural intensification and globalization. Chinese political policies also played an important and complex role, especially during the 1950s–1980s transition periods. Overall, climate change plays an indirect but fundamental role in the dynamics of land use via a series of various cascading effects such as shrinking agricultural production proceeding to population collapse and outbreaks of war. The expected continuation of agricultural intensification this century should be able to support increasing domestic demand for richer diets, but may not be compatible with long-term environmental sustainability.

  8. China’s Land-Use Changes during the Past 300 Years: A Historical Perspective

    Science.gov (United States)

    Miao, Lijuan; Zhu, Feng; Sun, Zhanli; Moore, John C.; Cui, Xuefeng

    2016-01-01

    Understanding the processes of historical land-use change is crucial to the research of global environmental sustainability. Here we examine and attempt to disentangle the evolutionary interactions between land-use change and its underlying causes through a historical lens. We compiled and synthesized historical land-use change and various biophysical, political, socioeconomic, and technical datasets, from the Qing dynasty to modern China. The analysis reveals a clear transition period between the 1950s and the 1980s. Before the 1950s, cropland expanded while forested land diminished, which was also accompanied by increasing population; after the 1980s land-use change exhibited new characteristics: changes in cropland, and decoupling of forest from population as a result of agricultural intensification and globalization. Chinese political policies also played an important and complex role, especially during the 1950s–1980s transition periods. Overall, climate change plays an indirect but fundamental role in the dynamics of land use via a series of various cascading effects such as shrinking agricultural production proceeding to population collapse and outbreaks of war. The expected continuation of agricultural intensification this century should be able to support increasing domestic demand for richer diets, but may not be compatible with long-term environmental sustainability. PMID:27571087

  9. Modeling green infrastructure land use changes on future air ...

    Science.gov (United States)

    Green infrastructure can be a cost-effective approach for reducing stormwater runoff and improving water quality as a result, but it could also bring co-benefits for air quality: less impervious surfaces and more vegetation can decrease the urban heat island effect, and also result in more removal of air pollutants via dry deposition with increased vegetative surfaces. Cooler surface temperatures can also decrease ozone formation through the increases of NOx titration; however, cooler surface temperatures also lower the height of the boundary layer resulting in more concentrated pollutants within the same volume of air, especially for primary emitted pollutants (e.g. NOx, CO, primary particulate matter). To better understand how green infrastructure impacts air quality, the interactions between all of these processes must be considered collectively. In this study, we use a comprehensive coupled meteorology-air quality model (WRF-CMAQ) to simulate the influence of planned land use changes that include green infrastructure in Kansas City (KC) on regional meteorology and air quality. Current and future land use data was provided by the Mid-America Regional Council for 2012 and 2040 (projected land use due to population growth, city planning and green infrastructure implementation). These land use datasets were incorporated into the WRF-CMAQ modeling system allowing the modeling system to propagate the changes in vegetation and impervious surface coverage on meteoro

  10. Society's choices: land use changes, forest fragmentation, and conservation.

    Science.gov (United States)

    Jonathan Thompson

    2006-01-01

    Changing patterns of land use are at the heart of many environmental concerns regarding U.S. forest lands. Of all the human impacts to forests, development is one of the most significant because of the severity and permanency of the change. Concern about the effects of development on America’s forests has risen sharply since the 1990s, when the conversion of forest...

  11. Biofuels that cause land-use change may have much larger non-GHG air quality emissions than fossil fuels.

    Science.gov (United States)

    Tsao, C-C; Campbell, J E; Mena-Carrasco, M; Spak, S N; Carmichael, G R; Chen, Y

    2012-10-02

    Although biofuels present an opportunity for renewable energy production, significant land-use change resulting from biofuels may contribute to negative environmental, economic, and social impacts. Here we examined non-GHG air pollution impacts from both indirect and direct land-use change caused by the anticipated expansion of Brazilian biofuels production. We synthesized information on fuel loading, combustion completeness, and emission factors, and developed a spatially explicit approach with uncertainty and sensitivity analyses to estimate air pollution emissions. The land-use change emissions, ranging from 6.7 to 26.4 Tg PM(2.5), were dominated by deforestation burning practices associated with indirect land-use change. We also found Brazilian sugar cane ethanol and soybean biodiesel including direct and indirect land-use change effects have much larger life-cycle emissions than conventional fossil fuels for six regulated air pollutants. The emissions magnitude and uncertainty decrease with longer life-cycle integration periods. Results are conditional to the single LUC scenario employed here. After LUC uncertainty, the largest source of uncertainty in LUC emissions stems from the combustion completeness during deforestation. While current biofuels cropland burning policies in Brazil seek to reduce life-cycle emissions, these policies do not address the large emissions caused by indirect land-use change.

  12. Climatology (communication arising): Rural land-use change and climate

    Science.gov (United States)

    Trenberth, Kevin E.

    2004-01-01

    Kalnay and Cai claim that urbanization and land-use change have a major effect on the climate in the United States. They used surface temperatures obtained from NCEP/NCAR 50-year reanalyses (NNR) and their difference compared with observed station surface temperatures as the basis for their conclusions, on the grounds that the NNR did not include these anthropogenic effects. However, we note that the NNR also overlooked other factors, such as known changes in clouds and in surface moisture, which are more likely to explain Kalnay and Cai's findings. Although urban heat-island effects are real in cities, direct estimates of the effects of rural land-use change indicate a cooling rather than a warming influence that is due to a greater reflection of sunlight.

  13. Climatology (communication arising): rural land-use change and climate.

    Science.gov (United States)

    Trenberth, Kevin E

    2004-01-15

    Kalnay and Cai claim that urbanization and land-use change have a major effect on the climate in the United States. They used surface temperatures obtained from NCEP/NCAR 50-year reanalyses (NNR) and their difference compared with observed station surface temperatures as the basis for their conclusions, on the grounds that the NNR did not include these anthropogenic effects. However, we note that the NNR also overlooked other factors, such as known changes in clouds and in surface moisture, which are more likely to explain Kalnay and Cai's findings. Although urban heat-island effects are real in cities, direct estimates of the effects of rural land-use change indicate a cooling rather than a warming influence that is due to a greater reflection of sunlight.

  14. Climate change and land use. Towards the Nexus Land Use model

    International Nuclear Information System (INIS)

    Mazas, C.

    2007-01-01

    The objective of this study is to examine the impacts of arbitrations on land use (choice between urban development, agriculture, infrastructures, forests, free spaces, and so on, which are concurrent and exclusive) on greenhouse gas emissions. The first part highlights the complexity of this issue as land use can both generate important greenhouse gas emissions (through deforestation, methane emission by cattle, nitrogenous fertilizers) and absorb large quantities of CO 2 . The second part analyses and discusses the extent and the reasons of deforestation, commenting the situation in developed countries and in the case of the tropical forest. The third part describes the competition between land uses, reviews existing economical models, and presents the Nexus Land Use model which could be able to integrate agricultural and forestry challenges at the planet scale

  15. Quantitative analysis of agricultural land use change in China

    Science.gov (United States)

    Chou, Jieming; Dong, Wenjie; Wang, Shuyu; Fu, Yuqing

    This article reviews the potential impacts of climate change on land use change in China. Crop sown area is used as index to quantitatively analyze the temporal-spatial changes and the utilization of the agricultural land. A new concept is defined as potential multiple cropping index to reflect the potential sowing ability. The impacting mechanism, land use status and its surplus capacity are investigated as well. The main conclusions are as following; During 1949-2010, the agricultural land was the greatest in amount in the middle of China, followed by that in the country's eastern and western regions. The most rapid increase and decrease of agricultural land were observed in Xinjiang and North China respectively, Northwest China and South China is also changed rapid. The variation trend before 1980 differed significantly from that after 1980. Agricultural land was affected by both natural and social factors, such as regional climate and environmental changes, population growth, economic development, and implementation of policies. In this paper, the effects of temperature and urbanization on the coverage of agriculture land are evaluated, and the results show that the urbanization can greatly affects the amount of agriculture land in South China, Northeast China, Xinjiang and Southwest China. From 1980 to 2009, the extent of agricultural land use had increased as the surplus capacity had decreased. Still, large remaining potential space is available, but the future utilization of agricultural land should be carried out with scientific planning and management for the sustainable development.

  16. Efficiency of different techniques to identify changes in land use

    Science.gov (United States)

    Zornoza, Raúl; Mateix-Solera, Jorge; Gerrero, César

    2013-04-01

    The need for the development of sensitive and efficient methodologies for soil quality evaluation is increasing. The ability to assess soil quality and identify key soil properties that serve as indicators of soil function is complicated by the multiplicity of physical, chemical and biological factors that control soil processes. In the mountain region of the Mediterranean Basin of Spain, almond trees have been cultivated in terraced orchards for centuries. These crops are immersed in the Mediterranean forest scenery, configuring a mosaic landscape where orchards are integrated in the forest masses. In the last decades, almond orchards are being abandoned, leading to an increase in vegetation cover, since abandoned fields are naturally colonized by the surrounded natural vegetation. Soil processes and properties are expected to be associated with vegetation successional dynamics. Thus, the establishment of suitable parameters to monitor soil quality related to land use changes is particularly important to guarantee the regeneration of the mature community. In this study, we selected three land uses, constituted by forest, almond trees orchards, and orchards abandoned between 10 and 15 years previously to sampling. Sampling was carried out in four different locations in SE Spain. The main purpose was to evaluate if changes in management have significantly influenced different sets of soil characteristics. For this purpose, we used a discriminant analysis (DA). The different sets of soil characteristics tested in this study were 1: physical, chemical and biochemical properties; 2: soil near infrared (NIR) spectra; and 3: phospholipid fatty acids (PLFAs). After the DA performed with the sets 1 and 2, the three land uses were clearly separated by the two first discriminant functions, and more than 85 % of the samples were correctly classified (grouped). Using the sets 3 and 4 for DA resulted in a slightly better separation of land uses, being more than 85% of the

  17. Land-use change and global climate policies

    International Nuclear Information System (INIS)

    Gitz, V.

    2004-03-01

    This PhD thesis assess the role of land-use dynamics and carbon sequestration within climate policies. First, it describes the emergence, from the Rio-1992 to the Marrakech Accords (2001), of diplomatic controversies upon carbon sinks, in the context of the progressive constitution of a scientific basis on terrestrial carbon sinks. It questions the ability of the actual form of international climate regime to generate the appropriate incentives to sequester within the forestry sector in developed countries, or to control tropical deforestation. Second, the contribution of land-use change to atmospheric CO 2 rise is quantified using a newly designed model of the global carbon cycle and regional land-use (OSCAR). We show that carbon emitted via land-use is not equivalent to fossil carbon emission in respect to atmospheric CO 2 rise. This effect, all the more than land-use emissions are increasing, requires a greater mitigation effort to stabilize atmospheric CO 2 . Finally, optimal timing of mixed climate policies involving fossil emissions mitigation and biological sequestration is assessed within an inter temporal cost-benefit framework. We show that the social value of sequestered carbon depends on anticipating future climate damages. Within optimal control models, this links the timing of sequestration to fossil effort and to the evolution of climate damages; if the latter are uncertain, but might be revealed at a later date, then it might be optimal to reserve part of the limited sequestration potential to cut off an eventual future abatement cost peak, were a climate surprise to finally imply stringent concentration ceilings. (author)

  18. Bioenergy production from perennial energy crops: A consequential LCA of 12 bioenergy scenarios including land use changes

    DEFF Research Database (Denmark)

    Tonini, Davide; Hamelin, Lorie; Wenzel, Henrik

    2012-01-01

    and IV) co-firing in large scale coal-fired CHP plants. Soil carbon changes, direct and indirect land use changes as well as uncertainty analysis (sensitivity, MonteCarlo) were included in the LCA. Results showed that global warming was the bottleneck impact, where only two scenarios, namely willow...... and Miscanthus co-firing, allowed for an improvement as compared with the reference (-82 and -45 t CO2-eq. ha-1, respectively). The indirect land use changes impact was quantified as 310 ± 170 t CO2-eq. ha-1, representing a paramount average of 41% of the induced greenhouse gas emissions. The uncertainty...... analysis confirmed the results robustness and highlighted the indirect land use changes uncertainty as the only uncertainty that can significantly change the outcome of the LCA results. © 2012 American Chemical Society....

  19. Biodiversity scenarios neglect future land-use changes.

    Science.gov (United States)

    Titeux, Nicolas; Henle, Klaus; Mihoub, Jean-Baptiste; Regos, Adrián; Geijzendorffer, Ilse R; Cramer, Wolfgang; Verburg, Peter H; Brotons, Lluís

    2016-07-01

    Efficient management of biodiversity requires a forward-looking approach based on scenarios that explore biodiversity changes under future environmental conditions. A number of ecological models have been proposed over the last decades to develop these biodiversity scenarios. Novel modelling approaches with strong theoretical foundation now offer the possibility to integrate key ecological and evolutionary processes that shape species distribution and community structure. Although biodiversity is affected by multiple threats, most studies addressing the effects of future environmental changes on biodiversity focus on a single threat only. We examined the studies published during the last 25 years that developed scenarios to predict future biodiversity changes based on climate, land-use and land-cover change projections. We found that biodiversity scenarios mostly focus on the future impacts of climate change and largely neglect changes in land use and land cover. The emphasis on climate change impacts has increased over time and has now reached a maximum. Yet, the direct destruction and degradation of habitats through land-use and land-cover changes are among the most significant and immediate threats to biodiversity. We argue that the current state of integration between ecological and land system sciences is leading to biased estimation of actual risks and therefore constrains the implementation of forward-looking policy responses to biodiversity decline. We suggest research directions at the crossroads between ecological and environmental sciences to face the challenge of developing interoperable and plausible projections of future environmental changes and to anticipate the full range of their potential impacts on biodiversity. An intergovernmental platform is needed to stimulate such collaborative research efforts and to emphasize the societal and political relevance of taking up this challenge. © 2016 John Wiley & Sons Ltd.

  20. Assessment of watershed regionalization for the land use change parameterization

    Science.gov (United States)

    Randusová, Beata; Kohnová, Silvia; Studvová, Zuzana; Marková, Romana; Nosko, Radovan

    2016-04-01

    The estimation of design discharges and water levels of extreme floods is one of the most important parts of the design process for a large number of engineering projects and studies. Floods and other natural hazards initiated by climate, soil, and land use changes are highly important in the 21st century. Flood risks and design flood estimation is particularly challenging. Methods of design flood estimation can be applied either locally or regionally. To obtain the design values in such cases where no recorded data exist, many countries have adopted procedures that fit the local conditions and requirements. One of these methods is the Soil Conservation Service - Curve number (SCS-CN) method which is often used in design flood estimation for ungauged sites. The SCS-CN method is an empirical rainfall-runoff model developed by the USDA Natural Resources Conservation Service (formerly called the Soil Conservation Service or SCS). The runoff curve number (CN) is based on the hydrological soil characteristics, land use, land management and antecedent saturation conditions of soil. This study is focused on development of the SCS-CN methodology for the changing land use conditions in Slovak basins (with the pilot site of the Myjava catchment), which regionalize actual state of land use data and actual rainfall and discharge measurements of the selected river basins. In this study the state of the water erosion and sediment transport along with a subsequent proposal of erosion control measures was analyzed as well. The regionalized SCS-CN method was subsequently used for assessing the effectiveness of this control measure to reduce runoff from the selected basin. For the determination of the sediment transport from the control measure to the Myjava basin, the SDR (Sediment Delivery Ratio) model was used.

  1. Agricultural Land Use Change after NAFTA in Central West Mexico

    Directory of Open Access Journals (Sweden)

    Quetzalcóatl Orozco-Ramírez

    2017-10-01

    Full Text Available It has been suggested that agricultural land use change and modernization in agricultural production techniques are related to the loss of crop diversity. Two processes contribute to this loss; first is the replacement of landraces by modern varieties, and second is the abandonment of traditional crops in favor of cash crops. We studied the expression of these processes in a region that is both an agro-biodiversity and cultural center and one of the most significant fruit exporters of Mexico. We analyzed agricultural change based on the transformation of cropping areas and the primary crops’ locations in Michoacán state. We examined the crop-harvested area statistics from 1950 to 2015, and identified 23 crops as the most important in terms of harvested area and monetary value. After NAFTA (North American Free Trade Agreement, harvested area for nine crops changed significantly: seven crops increased, and two decreased. Positive trends were observed for commercial fruits oriented to export markets, and negative trends were observed for traditional crops. These crops, such as beans and maize, are important for food security. Additionally, we analyzed how these land-use and agricultural changes overlap in zones of maize planted-area change. Using a maize-race collection database, we identified three native maize races that could be at risk due to the abandonment of maize in favor of commercial crops.

  2. Evaluation of historical land cover, land use, and land-use change emissions in the GCAM integrated assessment model

    Science.gov (United States)

    Calvin, K. V.; Wise, M.; Kyle, P.; Janetos, A. C.; Zhou, Y.

    2012-12-01

    Integrated Assessment Models (IAMs) are often used as science-based decision-support tools for evaluating the consequences of climate and energy policies, and their use in this framework is likely to increase in the future. However, quantitative evaluation of these models has been somewhat limited for a variety of reasons, including data availability, data quality, and the inherent challenges in projections of societal values and decision-making. In this analysis, we identify and confront methodological challenges involved in evaluating the agriculture and land use component of the Global Change Assessment Model (GCAM). GCAM is a global integrated assessment model, linking submodules of the regionally disaggregated global economy, energy system, agriculture and land-use, terrestrial carbon cycle, oceans and climate. GCAM simulates supply, demand, and prices for energy and agricultural goods from 2005 to 2100 in 5-year increments. In each time period, the model computes the allocation of land across a variety of land cover types in 151 different regions, assuming that farmers maximize profits and that food demand is relatively inelastic. GCAM then calculates both emissions from land-use practices, and long-term changes in carbon stocks in different land uses, thus providing simulation information that can be compared to observed historical data. In this work, we compare GCAM results, both in recent historic and future time periods, to historical data sets. We focus on land use, land cover, land-use change emissions, and albedo.

  3. Hydrological responses of a watershed to historical land use evolution and future land use scenarios under climate change conditions

    Directory of Open Access Journals (Sweden)

    R. Quilbé

    2008-01-01

    Full Text Available Watershed runoff is closely related to land use but this influence is difficult to quantify. This study focused on the Chaudière River watershed (Québec, Canada and had two objectives: (i to quantify the influence of historical agricultural land use evolution on watershed runoff; and (ii to assess the effect of future land use evolution scenarios under climate change conditions (CC. To achieve this, we used the integrated modeling system GIBSI. Past land use evolution was constructed using satellite images that were integrated into GIBSI. The general trend was an increase of agricultural land in the 80's, a slight decrease in the beginning of the 90's and a steady state over the last ten years. Simulations showed strong correlations between land use evolution and water discharge at the watershed outlet. For the prospective approach, we first assessed the effect of CC and then defined two opposite land use evolution scenarios for the horizon 2025 based on two different trends: agriculture intensification and sustainable development. Simulations led to a wide range of results depending on the climatologic models and gas emission scenarios considered, varying from a decrease to an increase of annual and monthly water discharge. In this context, the two land use scenarios induced opposite effects on water discharge and low flow sequences, especially during the growing season. However, due to the large uncertainty linked to CC simulations, it is difficult to conclude that one land use scenario provides a better adaptation to CC than another. Nevertheless, this study shows that land use is a key factor that has to be taken into account when predicting potential future hydrological responses of a watershed.

  4. Impacts of land-use change to ecosystem services

    Science.gov (United States)

    Stohlgren, Tom; Holcombe, Tracy R.

    2013-01-01

    Increasing human populations on the landscape and globe coincide with increasing demands for food, energy, and other natural resources, with generally negative impacts to wildlife habitat, air and water quality, and natural scenery. Here we define and describe the impacts of land-use change on ecosystem services – the services that ecosystems provide humans such as filtering air and water, providing food, resources, recreation, and esthetics. We show how the human footprint is rapidly expanding due to population growth, demand for resources, and globalization. Increased trade and transportation has brought all the continents back together, creating new challenges for conserving native species and ecosystems.

  5. Land Use Change and Land Degradation in Southeastern Mediterranean Spain

    Science.gov (United States)

    Symeonakis, Elias; Calvo-Cases, Adolfo; Arnau-Rosalen, Eva

    2007-07-01

    The magnitude of the environmental and social consequences of soil erosion and land degradation in semiarid areas of the Mediterranean region has long been recognized and studied. This paper investigates the interrelationship between land use/cover (LULC) changes and land degradation using remotely sensed and ancillary data for southeastern Spain. The area of study, the Xaló River catchment situated in the north of the Alicante Province, has been subjected to a number of LULC changes during the second half of the 20th century such as agricultural abandonment, forest fires, and tourist development. Aerial photographs dating back to 1956 were used for the delineation of historic LULC types; Landsat ETM+ data were used for the analysis and mapping of current conditions. Two important indicators of land degradation, namely, susceptibility to surface runoff and soil erosion, were estimated for the two dates using easily parametrizable models. The comparison of 1956 to 2000 conditions shows an overall “recuperating” trend over the catchment and increased susceptibility to soil erosion only in 3% of the catchment area. The results also identify potential degradation hot-spots where mitigation measures should be taken to prevent further degradation. The readily implemented methodology, based on modest data requirements demonstrated by this study, is a useful tool for catchment to regional scale land use change and land degradation studies and strategic planning for environmental management.

  6. U.S. landowner behavior, land use and land cover changes, and climate change mitigation.

    Science.gov (United States)

    Ralph J. Alig

    2003-01-01

    Landowner behavior is a major determinant of land use and land cover changes. an important consideration for policy analysts concerned with global change. Study of landowner behavior aids in designing more effective incentives for inducing land use and land cover changes to help mitigate climate change by reducing net greenhouse gas emissions. Afforestation,...

  7. Impacts of land use change scenarios on hydrology and land use patterns in the Wu-Tu watershed in Northern Taiwan

    NARCIS (Netherlands)

    Lin Yu-Pin,; Hong Nien-Ming,; Wu Pei-Jung,; Wu Chen-Fa,; Verburg, P.H.

    2007-01-01

    Developing an approach for simulating and assessing land use changes and their effects on land use patterns and hydrological processes at the watershed level is essential in land use and water resource planning and management. This study provided a novel approach that combines a land use change

  8. Including land use, land-use change, and forestry in future climate change, agreements. Thinking outside the box

    Energy Technology Data Exchange (ETDEWEB)

    Benndorf, R. [Federal Environment Agency, Bismarckplatz 1, D-1419 Berlin (Germany); Federici, S.; Somogyi, Z. [Joint Research Centre, European Commission, Via Enrico Fermi 1, I-21020 Ispra (Italy); Forner, C. [Center for International Forestry Research CIFOR, Jalan CIFOR Situ Gede, Bogor Barat 16680 (Indonesia); Pena, N. [Pew Center on Global Climate Change, 2101 Wilson Boulevard, Arlington, VA 22201 (United States); Rametsteiner, E. [IIASA, A-2361 Laxenburg (Austria); Sanz, M.J. [Fundacion CEAM, Charles H. Darwin 14, S-46980 Paterna, Valencia (Spain)

    2007-06-15

    This paper presents a framework that encompasses a full range of options for including land use, land-use change, and forestry (LULUCF) within future agreements under the United Nations Convention on Climate Change (UNFCCC). The intent is to provide options that can address the broad range of greenhouse gas (GHG) emissions and removals as well as to bring the broadest possible range of nations into undertaking mitigation efforts. We suggest that the approach taken for the Kyoto Protocol's first commitment period is only one within a much larger universe of possible approaches. This larger universe includes partially or completely 'de-linking' LULUCF commitments from those in other sectors, and allowing commitments specified in terms other than tonnes of greenhouse gases. Such approaches may provide clarity and transparency concerning the role of the various sectors in the agreements and encourage participation in agreements by a more inclusive, diverse set of countries, resulting in a more effective use of LULUCF in addressing climate change.

  9. Including land use, land-use change, and forestry in future climate change, agreements: thinking outside the box

    Energy Technology Data Exchange (ETDEWEB)

    Benndorf, R. [Federal Environment Agency, Bismarckplatz 1, D-1419 Berlin (Germany); Federici, S. [Joint Research Centre, European Commission, Via Enrico Fermi 1, I-21020 Ispra (Italy); Forner, C. [Center for International Forestry Research (CIFOR), Jalan CIFOR Situ Gede, Bogor Barat 16680 (Indonesia); Pena, N. [Pew Center on Global Climate Change, 2101 Wilson Boulevard, Arlington, VA 22201 (United States)]. E-mail: penan@pewclimate.org; Rametsteiner, E. [IIASA, A-2361 Laxenburg (Austria); Sanz, M.J. [Fundacion CEAM, Charles H. Darwin 14, S-46980 Paterna, Valencia (Spain); Somogyi, Z. [Joint Research Centre, European Commission, Via Enrico Fermi 1, I-21020 Ispra (Italy)

    2007-06-15

    This paper presents a framework that encompasses a full range of options for including land use, land-use change, and forestry (LULUCF) within future agreements under the United Nations Convention on Climate Change (UNFCCC). The intent is to provide options that can address the broad range of greenhouse gas (GHG) emissions and removals as well as to bring the broadest possible range of nations into undertaking mitigation efforts. We suggest that the approach taken for the Kyoto Protocol's first commitment period is only one within a much larger universe of possible approaches. This larger universe includes partially or completely 'de-linking' LULUCF commitments from those in other sectors, and allowing commitments specified in terms other than tonnes of greenhouse gases. Such approaches may provide clarity and transparency concerning the role of the various sectors in the agreements and encourage participation in agreements by a more inclusive, diverse set of countries, resulting in a more effective use of LULUCF in addressing climate change.

  10. Including land use, land-use change, and forestry in future climate change, agreements: thinking outside the box

    International Nuclear Information System (INIS)

    Benndorf, R.; Federici, S.; Forner, C.; Pena, N.; Rametsteiner, E.; Sanz, M.J.; Somogyi, Z.

    2007-01-01

    This paper presents a framework that encompasses a full range of options for including land use, land-use change, and forestry (LULUCF) within future agreements under the United Nations Convention on Climate Change (UNFCCC). The intent is to provide options that can address the broad range of greenhouse gas (GHG) emissions and removals as well as to bring the broadest possible range of nations into undertaking mitigation efforts. We suggest that the approach taken for the Kyoto Protocol's first commitment period is only one within a much larger universe of possible approaches. This larger universe includes partially or completely 'de-linking' LULUCF commitments from those in other sectors, and allowing commitments specified in terms other than tonnes of greenhouse gases. Such approaches may provide clarity and transparency concerning the role of the various sectors in the agreements and encourage participation in agreements by a more inclusive, diverse set of countries, resulting in a more effective use of LULUCF in addressing climate change

  11. Bioenergy, Land Use Change and Climate Change Mitigation. Report for Policy Advisors and Policy Makers

    Energy Technology Data Exchange (ETDEWEB)

    Berndes, Goran [Chalmers Univ. of Technology (Sweden); Bird, Nell [Joanneum Research (Austria); Cowle, Annette [National Centre for Rural Greenhouse Gas Research (Australia)

    2010-07-01

    The report addresses a much debated issue - bioenergy and associated land use change, and how the climate change mitigation from use of bioenergy can be influenced by greenhouse gas emissions arising from land use change. The purpose of the report was to produce an unbiased, authoritative statement on this topic aimed especially at policy advisors and policy makers.

  12. Dynamic response of land use and river nutrient concentration to long-term climatic changes.

    Science.gov (United States)

    Bussi, Gianbattista; Janes, Victoria; Whitehead, Paul G; Dadson, Simon J; Holman, Ian P

    2017-07-15

    The combined indirect and direct impacts of land use change and climate change on river water quality were assessed. A land use allocation model was used to evaluate the response of the catchment land use to long-term climatic changes. Its results were used to drive a water quality model and assess the impact of climatic alterations on freshwater nitrate and phosphorus concentrations. Climatic projections were employed to estimate the likelihood of such response. The River Thames catchment (UK) was used as a case-study. If land use is considered as static parameter, according to the model results, climate change alone should reduce the average nitrate concentration, although just by a small amount, by the 2050s in the Lower Thames, due to reduced runoff (and lower export of nitrate from agricultural soils) and increased instream denitrification, and should increase the average phosphorus concentration by 12% by the 2050s in the Lower Thames, due to a reduction of the effluent dilution capacity of the river flow. However, the results of this study also show that these long-term climatic alterations are likely to lead to a reduction in the arable land in the Thames, replaced by improved grassland, due to a decrease in agriculture profitability in the UK. Taking into account the dynamic co-evolution of land use with climate, the average nitrate concentration is expected to be decreased by around 6% by the 2050s in both the upper and the lower Thames, following the model results, and the average phosphorus concentration increased by 13% in the upper Thames and 5% in the lower Thames. On the long term (2080s), nitrate is expected to decrease by 9% and 8% (upper and lower Thames respectively) and phosphorus not to change in the upper thames and increase by 5% in the lower Thames. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Potential synergies between existing multilateral environmental agreements in the implementation of land use, land-use change and forestry activities

    International Nuclear Information System (INIS)

    Cowie, Annette; Schneider, Uwe A.; Montanarella, Luca

    2007-01-01

    There is potential for synergy between the global environmental conventions on climate change, biodiversity and desertification: changes in land management and land use undertaken to reduce net greenhouse gas emissions can simultaneously deliver positive outcomes for conservation of biodiversity, and mitigation of desertification and land degradation. However, while there can be complementarities between the three environmental goals, there are often tradeoffs. Thus, the challenge lies in developing land use policies that promote optimal environmental outcomes, and in implementing these locally to promote sustainable development. The paper considers synergies and tradeoffs in implementing land use measures to address the objectives of the three global environmental conventions, both from an environmental and economic perspective. The intention is to provide environmental scientists and policy makers with a broad overview of these considerations, and the benefits of addressing the conventions simultaneously

  14. Regional feedbacks under changing climate and land-use conditions

    Science.gov (United States)

    Batlle Bayer, L.; van den Hurk, B. J. J. M.; Strengers, B. J.; van Minnen, J. G.

    2012-04-01

    Ecosystem responses to a changing climate and human-induced climate forcings (e.g. deforestation) might amplify (positive feedback) or dampen (negative feedback) the initial climate response. Feedbacks may include the biogeochemical (e.g. carbon cycle) and biogeophysical feedbacks (e.g. albedo and hydrological cycle). Here, we first review the most important feedbacks and put them into the context of a conceptual framework, including the major processes and interactions between terrestrial ecosystems and climate. We explore potential regional feedbacks in four hot spots with pronounced potential changes in land-use/management and local climate: sub-Saharan Africa (SSA), Europe, the Amazon Basin and South and Southeast Asia. For each region, the relevant human-induced climate forcings and feedbacks were identified based on published literature. When evapotranspiration is limited by a soil water deficit, heat waves in Europe are amplified (positive soil moisture-temperature feedback). Drought events in the Amazon lead to further rainfall reduction when water recycling processes are affected (positive soil moisture-precipitation feedback). In SSA, the adoption of irrigation in the commonly rainfed systems can modulate the negative soil moisture-temperature feedback. In contrast, future water shortage in South and Southeast Asia can turn the negative soil moisture-temperature feedback into a positive one. Further research including advanced modeling strategies is needed to isolate the dominant processes affecting the strength and sign of the feedbacks. In addition, the socio-economic dimension needs to be considered in the ecosystems-climate system to include the essential role of human decisions on land-use and land-cover change (LULCC). In this context, enhanced integration between Earth System (ES) and Integrated Assessment (IA) modeling communities is strongly recommended.

  15. Human-induced climate change: the impact of land-use change

    Science.gov (United States)

    Gries, Thomas; Redlin, Margarete; Ugarte, Juliette Espinosa

    2018-02-01

    For hundreds of years, human activity has modified the planet's surface through land-use practices. Policies and decisions on how land is managed and land-use changes due to replacement of forests by agricultural cropping and grazing lands affect greenhouse gas emissions. Agricultural management and agroforestry and the resulting changes to the land surface alter the global carbon cycle as well as the Earth's surface albedo, both of which in turn change the Earth's radiation balance. This makes land-use change the second anthropogenic source of climate change after fossil fuel burning. However, the scientific research community has so far not been able to identify the direction and magnitude of the global impact of land-use change. This paper examines the effects of net carbon flux from land-use change on temperature by applying Granger causality and error correction models. The results reveal a significant positive long-run equilibrium relationship between land-use change and the temperature series as well as an opposing short-term effect such that land-use change tends to lead to global warming; however, a rise in temperature causes a decline in land-use change.

  16. Climatic and land-use driven change of runoff throughout Sweden

    Science.gov (United States)

    Worman, A. L. E.; Riml, J.; Lindstrom, G.

    2015-12-01

    Changes in runoff can be caused by climatic variations, land-use changes and water regulation. In this paper we propose a separation of the power spectral response of runoff in watersheds in terms of the product of the power spectra of precipitation and the impulse response function for the watershed. This allows a formal separation of the spectral response in climatic factors - the precipitation - from those of land-use change and regulation - the impulse response function. The latter function characterizes the surface water-groundwater interaction, stream network topology and open channel hydraulics. Based on daily data of digitalized hydro-climatological data from 1961, we constructed synthetic, but calibrated data of runoff from 1001 watersheds in Sweden. From spectral analysis of the data we found periodic fluctuations occurring on time scales of about a decade and a bi-annual peak. These multi-annual fluctuations could be statistically linked through the coherence spectra to climatic indices like the NAO, PDO, geostrophic wind velocity and sun spot numbers on common periods of 3,6 and 7,6 years. Such long-term fluctuations in runoff are not significantly affected by the land-use or regulation other than indirectly through impact on local hydro-climate. Based on a spectral separation of precipitation and impulse response function of the watersheds, we found that the intra-annual variation in runoff was primarily affected by the land-use change in 79 unregulated catchments with up to century-long time series of measured daily discharge. There is a statistically significant increasing slope of the catchments impulse response function for 63 of the 79 catchments and this suggest a significant hydrological effect of land-use practice in agriculture, urbanisation and forestry.

  17. Quantifying the Climate Impacts of Land Use Change (Invited)

    Science.gov (United States)

    Anderson-Teixeira, K. J.; Snyder, P. K.; Twine, T. E.

    2010-12-01

    Climate change mitigation efforts that involve land use decisions call for comprehensive quantification of the climate services of terrestrial ecosystems. This is particularly imperative for analyses of the climate impact of bioenergy production, as land use change is often the single most important factor in determining bioenergy’s sustainability. However, current metrics of the climate services of terrestrial ecosystems used for policy applications—including biofuels life cycle analyses—account only for biogeochemical climate services (greenhouse gas regulation), ignoring biophysical climate regulation services (regulation of water and energy balances). Policies thereby run the risk of failing to advance the best climate solutions. Here, we present a quantitative metric that combines biogeochemical and biophysical climate services of terrestrial ecosystems, the ‘climate regulation value’ (CRV), which characterizes the climate benefit of maintaining an ecosystem over a multiple-year time frame. Using a combination of data synthesis and modeling, we calculate the CRV for a variety of natural and managed ecosystem types within the western hemisphere. Biogeochemical climate services are generally positive in unmanaged ecosystems (clearing the ecosystem has a warming effect), and may be positive or negative (clearing the ecosystem has a cooling effect) for managed ecosystems. Biophysical climate services may be either positive (e.g., tropical forests) or negative (e.g., high latitude forests). When averaged on a global scale, biogeochemical services usually outweigh biophysical services; however, biophysical climate services are not negligible. This implies that effective analysis of the climate impacts of bioenergy production must consider the integrated effects of biogeochemical and biophysical ecosystem climate services.

  18. The GHG balance of biofuels taking into account land use change

    International Nuclear Information System (INIS)

    Lange, Mareike

    2011-01-01

    The contribution of biofuels to the saving of greenhouse gas (GHG) emissions has recently been questioned because of emissions resulting from land use change (LUC) for bioenergy feedstock production. We investigate how the inclusion of the carbon effect of LUC into the carbon accounting framework, as scheduled by the European Commission, impacts on land use choices for an expanding biofuel feedstock production. We first illustrate the change in the carbon balances of various biofuels, using methodology and data from the IPCC Guidelines for National Greenhouse Gas Inventories. It becomes apparent that the conversion of natural land, apart from grassy savannahs, impedes meeting the EU's 35% minimum emissions reduction target for biofuels. We show that the current accounting method mainly promotes biofuel feedstock production on former cropland, thus increasing the competition between food and fuel production on the currently available cropland area. We further discuss whether it is profitable to use degraded land for commercial bioenergy production as requested by the European Commission to avoid undesirable LUC and conclude that the current regulation provides little incentive to use such land. The exclusive consideration of LUC for bioenergy production minimizes direct LUC at the expense of increasing indirect LUC. - Research highlights: → We analyzed the EC's current sustainability regulations for biofuels with respect to land use change (LUC). → The current regulatory system taking LUCs into account minimizes direct LUC at the cost of increasing indirect LUC. → We propose subjecting all agricultural activities to a carbon accounting system. → In the short run, the indirect LUC risk can be reduced by promoting high energy productive crops and biofuel feedstock production on degraded land.

  19. Integrated Assessment of Climate Change, Land-Use Changes, and Regional Carbon Dynamics in United States

    Science.gov (United States)

    Mu, J. E.; Sleeter, B. M.; Abatzoglou, J. T.

    2015-12-01

    The fact that climate change is likely to accelerate throughout this century means that climate-sensitive sectors such as agriculture will need to adapt increasingly to climate change. This fact also means that understanding the potential for agricultural adaptation, and how it could come about, is important for ongoing technology investments in the public and private sectors, for infrastructure investments, and for the various policies that address agriculture directly or indirectly. This paper is an interdisciplinary study by collaborating with climate scientist, agronomists, economists, and ecologists. We first use statistical models to estimate impacts of climate change on major crop yields (wheat, corn, soybeans, sorghum, and cotton) and predict changes in crop yields under future climate condition using downscaled climate projections from CMIP5. Then, we feed the predicted yield changes to a partial equilibrium economic model (FASOM-GHG) to evaluate economic and environmental outcomes including changes in land uses (i.e., cropland, pastureland, forest land, urban land and land for conservation) in United States. Finally, we use outputs from FASOM-GHG as inputs for the ST-SIM ecological model to simulate future carbon dynamics through changes in land use under future climate conditions and discuss the rate of adaptation through land-use changes. Findings in this paper have several merits compared to previous findings in the literature. First, we add economic components to the carbon calculation. It is important to include socio-economic conditions when calculating carbon emission and/or carbon sequestration because human activities are the major contribution to atmosphere GHG emissions. Second, we use the most recent downscaled climate projections from CMIP5 to capture uncertainties from climate model projections. Instead of using all GCMs, we select five GCMs to represent the ensemble. Third, we use a bottom-up approach because we start from micro-level data

  20. Effect of land use change on soil properties and functions

    Science.gov (United States)

    Tonutare, Tonu; Kõlli, Raimo; Köster, Tiina; Rannik, Kaire; Szajdak, Lech; Shanskiy, Merrit

    2014-05-01

    For good base of sustainable land management and ecologically sound protection of soils are researches on soil properties and functioning. Ecosystem approach to soil properties and functioning is equally important in both natural and cultivated land use conditions. Comparative analysis of natural and agro-ecosystems formed on similar soil types enables to elucidate principal changes caused by land use change (LUC) and to elaborate the best land use practices for local pedo-ecological conditions. Taken for actual analysis mineral soils' catena - rendzina → brown soils → pseudopodzolic soils → gley-podzols - represent ca 1/3 of total area of Estonian normal mineral soils. All soils of this catena differ substantially each from other by calcareousness, acidity, nutrition conditions, fabric and humus cover type. This catena (representative to Estonian pedo-ecological conditions) starts with drought-prone calcareous soils. Brown (distributed in northern and central Estonia) and pseudopodzolic soils (in southern Estonia) are the most broadly acknowledged for agricultural use medium-textured high-quality automorphic soils. Dispersedly distributed gley-podzols are permanently wet and strongly acid, low-productivity sandy soils. In presentation four complex functions of soils are treated: (1) being a suitable soil environment for plant cover productivity (expressed by annual increment, Mg ha-1 yr-1); (2) forming adequate conditions for decomposition, transformation and conversion of fresh falling litter (characterized by humus cover type); (3) deposition of humus, individual organic compounds, plant nutrition elements, air and water, and (4) forming (bio)chemically variegated active space for soil type specific edaphon. Capacity of soil cover as depositor (3) depends on it thickness, texture, calcareousness and moisture conditions. Biological activity of soil (4) is determined by fresh organic matter influx, quality and quantity of biochemical substances and humus

  1. An approach to computing marginal land use change carbon intensities for bioenergy in policy applications

    International Nuclear Information System (INIS)

    Wise, Marshall; Hodson, Elke L.; Mignone, Bryan K.; Clarke, Leon; Waldhoff, Stephanie; Luckow, Patrick

    2015-01-01

    model to analyze direct and indirect land use change and carbon emissions. • Mathematical approach for intertemporal land use change emissions from bioenergy • General method for comparing carbon emissions from bioenergy to fossil fuels

  2. Anthropogenical Drivers on Land Use/Cover Change and their ...

    African Journals Online (AJOL)

    The study recommended to the government to facilitate participatory land use planning at village level, agro-forestry, provision of extensions services, and modern family planning services to check overpopulation for sustainable land use and improvement of rural livelihoods in and beyond the study area. Keywords: Land ...

  3. Land use and land use change effects on nitrous oxide emissions in the seasonally dry ecosystems of Zimbabwe

    DEFF Research Database (Denmark)

    Nyamadzawo, G; Chirinda, Ngoni; Mapanda, F

    2012-01-01

    . The savanna woodlands cover over 95% of Zimbabwe’s forest area, and are divided into five woodland types: Acacia, miombo, mopane, teak (Baikiaea Plurijuga) and Terminalia-Combretaceae. This review is aimed at exploring the effects of land-use changes and land management practices on N2O emissions in Zimbabwe...... emissions were mainly concentrated in the wet season as N2O production is strongly enhanced by high soil moisture. During the dry season pyrogenic emissions were also important sources of N2O, contributing, an estimated 6.7 Gg N2O annually. Land use change in the form of biomass burning and conversion...... of emissions of N2O. Land-use change from savanna to agricultural production results in an immediate increase in N2O emissions. However, the emissions will decrease with time. The current estimates are associated with large uncertainties, thus, there is need for more detailed studies on the effects of land-use...

  4. Using Backcast Land-Use Change and Groundwater Travel-Time Models to Generate Land-Use Legacy Maps for Watershed Management

    OpenAIRE

    Bryan Pijanowski; Deepak K. Ray; Anthony D. Kendall; Jonah M. Duckles; David W. Hyndman

    2007-01-01

    We couple two spatial-temporal models, a backcast land-use change model and a groundwater flow model, to develop what we call "land-use legacy maps." We quantify how a land-use legacy map, created from maps of past land use and groundwater travel times, differs from a current land-use map. We show how these map differences can affect land-use planning and watershed management decisions at a variety of spatial and temporal scales. Our approach demonstrates that land-use legacy maps provide a m...

  5. Perspectives on the Land Use History of North America: A Context for Understanding Our Changing Environment

    National Research Council Canada - National Science Library

    Sisk, Thomas

    1998-01-01

    ... between land use and landcover change. The authors provide the historical context for interpreting recent landcover change in several regions of North America and articulate the value of a comprehensive, continental land use history...

  6. Land use change and human systems dynamics: Cotacachi Ecuador 1963-2000

    OpenAIRE

    Rhoades, Robert E.

    2004-01-01

    This presentation reports on a study to analyze land-use change over 40 years in Cotacachi, Ecuador, link land-use change to human system dynamics, and discuss implications for sustainability. BA-2 (SANREM-Andes Research)

  7. Integrating climate change in transportation and land use scenario planning : an example from central New Mexico

    Science.gov (United States)

    2015-04-01

    The Central New Mexico Climate Change Scenario Planning Project, an Interagency Transportation, Land Use, and Climate Change Initiative, utilized a scenario planning process to develop a multiagency transportation- and land use-focused development st...

  8. Analysis of road development and associated agricultural land use change.

    Science.gov (United States)

    Alphan, Hakan

    2017-12-05

    Development of road network is one of the strongest drivers of habitat fragmentation. It interferes with ecological processes that are based on material and energy flows between landscape patches. Therefore, changes in temporal patterns of roads may be regarded as important landscape-level environmental indicators. The aim of this study is to analyze road development and associated agricultural land use change near the town of Erdemli located in the eastern Mediterranean coast of Turkey. The study area has witnessed an unprecedented development of agriculture since the 2000s. This process has resulted with the expansion of the road network. Associations between agricultural expansion and road development were investigated. High-resolution satellite images of 2004 and 2015 were used to analyze spatial and temporal dimensions of change. Satellite images were classified using a binary approach, in which land areas were labeled as either "agriculture" or "non-agriculture." Road networks were digitized manually. The study area was divided into 23 sublandscapes using a regular grid with 1-km cell spacing. Percentage of landscape (PL) for agriculture and road density (RD) metrics were calculated for the earlier (2004) and later (2015) years. Metric calculations were performed separately for each of the 23 sublandscapes in order to understand spatial diversity of agriculture and road density. Study results showed that both RD and PL exhibited similar increasing trends between 2004 and 2015.

  9. International Conference on Land Use / Cover Change Dynamics

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Organized by: Beijing Normal University, National Natural Science Foundation of China Hosted by: Institute of Resources Science, Beijing Normal University Key Laboratory of Environmental Change and Natural Disaster, Ministry of Education of China Topics: 1) Detecting and monitoring LUCC 2) Temporal-spatial characteristics in LUCC 3) Driving model for LUCC 4) Forecasting and modeling LUCC 5) Phenological and biochemical response on LUCC 6) Regional LUCC and microclimate 7) LUCC in the context of global change 8) Impact of global change on the sustainable land-use modeling Abstract submission: The official language of this conference is English. We invite papers written in English and an abstract of less than one page of standard A4 size to the Conference Secretariat by Apr 15, 2001. Registration Fee: 280 US$ (300 US$ after July 15, 2001) Add:No. 19, Xinjiekouwai Street, 100875, Institute of Resources Science, Beijing Normal University, Beijing, China Tel:86-10-62207656 or 62209024 Fax:010-62208178 http:// 202.112.93.50/LUCCD2001/index.html E-mail: Pwang@bnu.edu.cn Cyh@bnu.edu.cn

  10. Land-use change arising from rural land exchange : an agent-based simulation model

    NARCIS (Netherlands)

    Bakker, Martha M.; Alam, Shah Jamal; van Dijk, Jerry|info:eu-repo/dai/nl/29612642X; Rounsevell, Mark D. A.

    Land exchange can be a major factor driving land-use change in regions with high pressure on land, but is generally not incorporated in land-use change models. Here we present an agent-based model to simulate land-use change arising from land exchange between multiple agent types representing

  11. Land-use protection for climate change mitigation

    Science.gov (United States)

    Popp, Alexander; Humpenöder, Florian; Weindl, Isabelle; Bodirsky, Benjamin Leon; Bonsch, Markus; Lotze-Campen, Hermann; Müller, Christoph; Biewald, Anne; Rolinski, Susanne; Stevanovic, Miodrag; Dietrich, Jan Philipp

    2014-12-01

    Land-use change, mainly the conversion of tropical forests to agricultural land, is a massive source of carbon emissions and contributes substantially to global warming. Therefore, mechanisms that aim to reduce carbon emissions from deforestation are widely discussed. A central challenge is the avoidance of international carbon leakage if forest conservation is not implemented globally. Here, we show that forest conservation schemes, even if implemented globally, could lead to another type of carbon leakage by driving cropland expansion in non-forested areas that are not subject to forest conservation schemes (non-forest leakage). These areas have a smaller, but still considerable potential to store carbon. We show that a global forest policy could reduce carbon emissions by 77 Gt CO2, but would still allow for decreases in carbon stocks of non-forest land by 96 Gt CO2 until 2100 due to non-forest leakage effects. Furthermore, abandonment of agricultural land and associated carbon uptake through vegetation regrowth is hampered. Effective mitigation measures thus require financing structures and conservation investments that cover the full range of carbon-rich ecosystems. However, our analysis indicates that greater agricultural productivity increases would be needed to compensate for such restrictions on agricultural expansion.

  12. A new spatial multiple discrete-continuous modeling approach to land use change analysis.

    Science.gov (United States)

    2013-09-01

    This report formulates a multiple discrete-continuous probit (MDCP) land-use model within a : spatially explicit economic structural framework for land-use change decisions. The spatial : MDCP model is capable of predicting both the type and intensit...

  13. Revisiting Kappa to account for change in the accuracy assessment of land-use models

    NARCIS (Netherlands)

    Vliet, van J.; Bregt, A.K.; Hagen-Zanker, A.

    2011-01-01

    Land-use change models are typically calibrated to reproduce known historic changes. Calibration results can then be assessed by comparing two datasets: the simulated land-use map and the actual land-use map at the same time. A common method for this is the Kappa statistic, which expresses the

  14. Impact of Past Land Use Changes on Drinking Water Quantity and Quality in Ljubljana Aquifer

    Science.gov (United States)

    Bracic Zeleznik, Branka; Cencur Curk, Barbara

    2010-05-01

    Most of the practical problems that we face today with the on-site management of drinking water sources and distribution of healthy drinking water, originate from past actions, interventions and political decisions. In Ljubljana, the capital of the Republic of Slovenia, underlying groundwater is the main drinking water source. The main threat to drinking water sources is constant input of pollutant loads from roads, roofs, sewers, industry and agricultural areas. The main problems are directly and indirectly related to the significant decrease of groundwater level and deterioration of groundwater quality observed in the last decades as an effect of land use practices under varying climate conditions. The Vodovod-Kanalizacija Public Utility is responsible for water supply of the city residents as well as for management of the water supply system, its surveillance and maintenance. In the past, the Ljubljana Municipality was responsible for the protection of water resources and the first delineation of groundwater protection areas was issued in Decree in 1955. In 2004 a Decree on the water protection zones for the aquifer of Ljubljansko polje on the state level was issued and passed the competences of proclamation of the water protection zones to the state. Spatial planning is a domain of The Municipality and land use is limited according to water protection legislation. For several observation wells long-time data sets about groundwater levels and quality are available, which enable us to analyse changes in groundwater quantity and quality parameters. From the data it is obvious that climate variations are affecting groundwater recharge. In addition, changing of land use affects groundwater quality. In spite of the Decree on the water protection there is a heavy pressure of investors to change land use plans and regulations on protection zones, which causes every day problems in managing the drinking water source. Groundwater management in Ljubljana demands strong

  15. Integrating global socio-economic influences into a regional land use change model for China

    Science.gov (United States)

    Xu, Xia; Gao, Qiong; Peng, Changhui; Cui, Xuefeng; Liu, Yinghui; Jiang, Li

    2014-03-01

    With rapid economic development and urbanization, land use in China has experienced huge changes in recent years; and this will probably continue in the future. Land use problems in China are urgent and need further study. Rapid land-use change and economic development make China an ideal region for integrated land use change studies, particularly the examination of multiple factors and global-regional interactions in the context of global economic integration. This paper presents an integrated modeling approach to examine the impact of global socio-economic processes on land use changes at a regional scale. We develop an integrated model system by coupling a simple global socio-economic model (GLOBFOOD) and regional spatial allocation model (CLUE). The model system is illustrated with an application to land use in China. For a given climate change, population growth, and various socio-economic situations, a global socio-economic model simulates the impact of global market and economy on land use, and quantifies changes of different land use types. The land use spatial distribution model decides the type of land use most appropriate in each spatial grid by employing a weighted suitability index, derived from expert knowledge about the ecosystem state and site conditions. A series of model simulations will be conducted and analyzed to demonstrate the ability of the integrated model to link global socioeconomic factors with regional land use changes in China. The results allow an exploration of the future dynamics of land use and landscapes in China.

  16. Climate change and future land use in the United States: an economic approach

    Science.gov (United States)

    David Haim; Ralph J. Alig; Andrew J. Plantinga; Brent Sohngen

    2011-01-01

    An econometric land-use model is used to project regional and national land-use changes in the United States under two IPCC emissions scenarios. The key driver of land-use change in the model is county-level measures of net returns to five major land uses. The net returns are modified for the IPCC scenarios according to assumed trends in population and income and...

  17. An analysis of effect of land use change on river flow variability

    Science.gov (United States)

    Zhang, Tao; Liu, Yuting; Yang, Xinyue; Wang, Xiang

    2018-02-01

    Land use scenario analysis, SWAT model, flow characteristic indices and flow variability technology were used to analyze the effect of land use quantity and location change on river flow. Results showed that river flow variation caused by land use change from forest to crop was larger than that caused by land use change from forest to grass; Land use change neither from upstream to downstream nor from downstream to upstream had little effect on annual average discharge and maximum annual average discharge. But it had obvious effect on maximum daily discharge; Land use change which occurred in upstream could lead to producing larger magnitude flood more easily; Land use change from forest to crop or grass could increase the number of large magnitude floods and their total duration. And it also could increase the number of small magnitude floods but decrease their duration.

  18. Land Use Change Driven by Gold Mining; Peruvian Amazon

    Science.gov (United States)

    Swenson, J. J.; Carter, C. E.; domec, J.; Delgado, C. I.

    2011-12-01

    Many factors such as poverty, ineffective institutions and environmental regulations may prevent developing countries from managing how natural resources are extracted to meet a strong market demand. Extraction for some resources has reached such proportions that evidence is measurable from space. We present recent evidence of the global demand for a single commodity and the ecosystem destruction resulting from commodity extraction, recorded by satellites for one of the most biodiverse areas of the world. We find that since 2003, recent mining deforestation in Madre de Dios, Peru is increasing nonlinearly alongside a constant annual rate of increase in international gold price (~18%/yr). We detect that the new pattern of mining deforestation (1915 ha/year, 2006-2009) is outpacing that of nearby settlement deforestation. We show that gold price is linked with exponential increases in Peruvian national mercury imports over time (R2 = 0.93, p = 0.04, 2003- 2009). Given the past rates of increase we predict that mercury imports may more than double for 2011 (~500 t/year). Virtually all of Peru's mercury imports are used in artisanal gold mining. Much of the mining increase is unregulated/ artisanal in nature, lacking environmental impact analysis or miner education. As a result, large quantities of mercury are being released into the atmosphere, sediments and waterways. Other developing countries endowed with gold deposits are likely experiencing similar environmental destruction in response to recent record high gold prices. The increasing availability of satellite imagery ought to evoke further studies linking economic variables with land use and cover changes on the ground.

  19. Urban Dynamics: Analyzing Land Use Change in Urban Environments

    Science.gov (United States)

    Acevedo, William; Richards, Lora R.; Buchanan, Janis T.; Wegener, Whitney R.

    2000-01-01

    In FY99, the Earth Resource Observation System (EROS) staff at Ames continued managing the U.S. Geological Survey's (USGS) Urban Dynamics Research program, which has mapping and analysis activities at five USGS mapping centers. Historic land use reconstruction work continued while activities in geographic analysis and modeling were expanded. Retrospective geographic information system (GIS) development - the spatial reconstruction of a region's urban land-use history - focused on the Detroit River Corridor, California's Central Valley, and the city of Sioux Falls, South Dakota.

  20. Carbon emissions from land use and land-cover change

    Directory of Open Access Journals (Sweden)

    R. A. Houghton

    2012-12-01

    Full Text Available The net flux of carbon from land use and land-cover change (LULCC accounted for 12.5% of anthropogenic carbon emissions from 1990 to 2010. This net flux is the most uncertain term in the global carbon budget, not only because of uncertainties in rates of deforestation and forestation, but also because of uncertainties in the carbon density of the lands actually undergoing change. Furthermore, there are differences in approaches used to determine the flux that introduce variability into estimates in ways that are difficult to evaluate, and not all analyses consider the same types of management activities. Thirteen recent estimates of net carbon emissions from LULCC are summarized here. In addition to deforestation, all analyses considered changes in the area of agricultural lands (croplands and pastures. Some considered, also, forest management (wood harvest, shifting cultivation. None included emissions from the degradation of tropical peatlands. Means and standard deviations across the thirteen model estimates of annual emissions for the 1980s and 1990s, respectively, are 1.14 ± 0.23 and 1.12 ± 0.25 Pg C yr−1 (1 Pg = 1015 g carbon. Four studies also considered the period 2000–2009, and the mean and standard deviations across these four for the three decades are 1.14 ± 0.39, 1.17 ± 0.32, and 1.10 ± 0.11 Pg C yr−1. For the period 1990–2009 the mean global emissions from LULCC are 1.14 ± 0.18 Pg C yr−1. The standard deviations across model means shown here are smaller than previous estimates of uncertainty as they do not account for the errors that result from data uncertainty and from an incomplete understanding of all the processes affecting the net flux of carbon from LULCC. Although these errors have not been systematically evaluated, based on partial analyses available in the literature and expert opinion, they are estimated to be on the order of ± 0.5 Pg C yr−1.

  1. Land-use change may exacerbate climate change impacts on water resources in the Ganges basin

    Science.gov (United States)

    Tsarouchi, Gina; Buytaert, Wouter

    2018-02-01

    Quantifying how land-use change and climate change affect water resources is a challenge in hydrological science. This work aims to quantify how future projections of land-use and climate change might affect the hydrological response of the Upper Ganges river basin in northern India, which experiences monsoon flooding almost every year. Three different sets of modelling experiments were run using the Joint UK Land Environment Simulator (JULES) land surface model (LSM) and covering the period 2000-2035: in the first set, only climate change is taken into account, and JULES was driven by the CMIP5 (Coupled Model Intercomparison Project Phase 5) outputs of 21 models, under two representative concentration pathways (RCP4.5 and RCP8.5), whilst land use was held fixed at the year 2010. In the second set, only land-use change is taken into account, and JULES was driven by a time series of 15 future land-use pathways, based on Landsat satellite imagery and the Markov chain simulation, whilst the meteorological boundary conditions were held fixed at years 2000-2005. In the third set, both climate change and land-use change were taken into consideration, as the CMIP5 model outputs were used in conjunction with the 15 future land-use pathways to force JULES. Variations in hydrological variables (stream flow, evapotranspiration and soil moisture) are calculated during the simulation period. Significant changes in the near-future (years 2030-2035) hydrologic fluxes arise under future land-cover and climate change scenarios pointing towards a severe increase in high extremes of flow: the multi-model mean of the 95th percentile of streamflow (Q5) is projected to increase by 63 % under the combined land-use and climate change high emissions scenario (RCP8.5). The changes in all examined hydrological components are greater in the combined land-use and climate change experiment. Results are further presented in a water resources context, aiming to address potential implications of

  2. Hydrological Responses to Land-Use Change Scenarios under Constant and Changed Climatic Conditions.

    Science.gov (United States)

    Zhang, Ling; Nan, Zhuotong; Yu, Wenjun; Ge, Yingchun

    2016-02-01

    This study quantified the hydrological responses to land-use change scenarios in the upper and middle Heihe River basin (HRB), northwest China, under constant and changed climatic conditions by combining a land-use/cover change model (dynamic conversion of land use and its effects, Dyna-CLUE) and a hydrological model (soil and water assessment tool, SWAT). Five land-use change scenarios, i.e., historical trend (HT), ecological protection (EP), strict ecological protection (SEP), economic development (ED), and rapid economic development (RED) scenarios, were established. Under constant climatic condition, hydrological variations are only induced by land-use changes in different scenarios. The changes in mean streamflow at the outlets of the upper and the middle HRB are not pronounced, although the different scenarios produce different outcomes. However, more pronounced changes are observed on a subbasin level. The frequency of extreme flood is projected to decrease under the SEP scenario, while under the other scenarios, no changes can be found. Two emission scenarios (A1B and B1) of three general circulation models (HadCM3, CGCM3, and CCSM3) were employed to generate future possible climatic conditions. Under changed climatic condition, hydrological variations are induced by the combination of land-use and climatic changes. The results indicate that the impacts of land-use changes become secondary when the changed climatic conditions have been considered. The frequencies of extreme flood and drought are projected to decrease and increase, respectively, under all climate scenarios. Although some agreements can be reached, pronounced difference of hydrological responses can be observed for different climate scenarios of different GCMs.

  3. Direct and indirect effects of land use on floral resources and flower-visiting insects across an urban landscape

    Science.gov (United States)

    Matteson, K.C.; Grace, James B.; Minor, E.S.

    2013-01-01

    Although urban areas are often considered to have uniformly negative effects on biodiversity, cities are most accurately characterized as heterogeneous mosaics of buildings, streets, parks, and gardens that include both ‘good’ and ‘bad’ areas for wildlife. However, to date, few studies have evaluated how human impacts vary in direction and magnitude across a heterogeneous urban landscape. In this study, we assessed the distribution of floral resources and flower-visiting insects across a variety of land uses in New York City. We visited both green spaces (e.g. parks, cemeteries) and heavily developed neighborhood blocks (e.g. with high or low density residential zoning) and used structural equation modeling (SEM) to evaluate the direct and indirect effects of median income, vegetation, and development intensity on floral resources and insects in both settings. Abundance and taxonomic richness of flower-visiting insects was significantly greater in green spaces than neighborhood blocks. The SEM results indicated that heavily-developed neighborhoods generally had fewer flower-visiting insects consistent with reductions in floral resources. However, some low-density residential neighborhoods maintained high levels of floral resources and flower-visiting insects. We found that the effects of surrounding vegetation on floral resources, and thus indirect effects on insects, varied considerably between green spaces and neighborhood blocks. Along neighborhood blocks, vegetation consisted of a mosaic of open gardens and sparsely distributed trees and had a positive indirect effect on flower-visiting insects. In contrast, vegetation in urban green spaces was associated with increased canopy cover and thus had a negative indirect effect on flower-visiting insects through reductions in floral resources. In both neighborhood blocks and green spaces, vegetation had a positive direct effect on flower-visiting insects independent of the influence of vegetation on floral

  4. Energy and greenhouse gas emission effects of corn and cellulosic ethanol with technology improvements and land use changes

    International Nuclear Information System (INIS)

    Wang, Michael Q.; Han, Jeongwoo; Haq, Zia; Tyner, Wallace E.; Wu, May; Elgowainy, Amgad

    2011-01-01

    Use of ethanol as a transportation fuel in the United States has grown from 76 dam 3 in 1980 to over 40.1 hm 3 in 2009 - and virtually all of it has been produced from corn. It has been debated whether using corn ethanol results in any energy and greenhouse gas benefits. This issue has been especially critical in the past several years, when indirect effects, such as indirect land use changes, associated with U.S. corn ethanol production are considered in evaluation. In the past three years, modeling of direct and indirect land use changes related to the production of corn ethanol has advanced significantly. Meanwhile, technology improvements in key stages of the ethanol life cycle (such as corn farming and ethanol production) have been made. With updated simulation results of direct and indirect land use changes and observed technology improvements in the past several years, we conducted a life-cycle analysis of ethanol and show that at present and in the near future, using corn ethanol reduces greenhouse gas emission by more than 20%, relative to those of petroleum gasoline. On the other hand, second-generation ethanol could achieve much higher reductions in greenhouse gas emissions. In a broader sense, sound evaluation of U.S. biofuel policies should account for both unanticipated consequences and technology potentials. We maintain that the usefulness of such evaluations is to provide insight into how to prevent unanticipated consequences and how to promote efficient technologies with policy intervention.

  5. Multiscale Spatial Assessment of Determinant Factors of Land Use Change: Study at Urban Area of Yogyakarta

    Science.gov (United States)

    Susilo, Bowo

    2017-12-01

    Studies of land use change have been undertaken by different researchers using various methods. Among those methods, modelling is widely utilized. Modelling land use change required several components remarked as model variables. Those represent any conditions or factors which considered relevant or have some degree of correlation to the changes of land use. Variables which have significant correlation to land use change are referred as determinant factors or driving forces. Those factors as well as changes of land use are distributed across space and therefore referred as spatial determinant factors. The main objective of the research was to examine land use change and its determinant factors. Area and location of land use change were analysed based on three different years of land use maps, which are 1993, 2000 and 2007. Spatial and temporal analysis were performed which emphasize to the influence of scale to both of analysis’s. Urban area of Yogyakarta was selected as study area. Study area covered three different districts (kabupaten), involving 20 sub districts and totally consists of 74 villages. Result of this study shows that during 14 years periods (1993 to 2007), there were about 1,460 hectares of land use change had been taken place. Dominant type of land use change is agricultural to residential. The uses of different spatial and temporal scale in analysis were able to reveal different factors related to land use change. In general, factors influencing the quantities of land use change in the study area were population growth and the availability of land. The use of data with different spatial resolution can reveal the presence of various factors associated with the location of the change. Locations of land use change were influenced or determined by accessibility factors.

  6. Land use changes in Europe: Processes of change, environmental transformations, and future patterns

    International Nuclear Information System (INIS)

    Brouwer, F.M.; Thomas, A.J.; Chadwick, M.J.

    1991-01-01

    As the pressures to control costs and resources expended on cleaning up hazardous waste sites increase, there is a growing notion that consideration of ultimate land use or end states should aid in focusing remediation efforts, and thus, controlling costs. Resources would not be expended on all sites equally, rather knowledge that a particular site is most likely to be used for industrial rather than residential purposes, for example, would influence the type of clean-up invoked at a site and the clean-up goals themselves. Thus, land use has become a hot topic among environmental risk assessors and risk managers. This milieu makes the contents of Volume 18 in Kluwer's GeoJournal Library of particular interest. The book is a collection of papers, with contributors from across Europe. The paper generally fall into three categories: analyses of historical land use patterns in particular countries, forecasts of changing land use trends for the EC countries, and analyses of particular factors affecting land use decisions (atmospheric contamination, hydrologic regimes, land use decision methodologies). Although very little of the text deals explicitly with hazardous waste clean up, the perspective provided by a view of the European struggles with land use allocations provides helpful context to those in the historically unlimited spaces of the United States just beginning to come to terms with the concept

  7. Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM). I: Model intercomparison with current land use

    Science.gov (United States)

    Breuer, L.; Huisman, J.A.; Willems, P.; Bormann, H.; Bronstert, A.; Croke, B.F.W.; Frede, H.-G.; Graff, T.; Hubrechts, L.; Jakeman, A.J.; Kite, G.; Lanini, J.; Leavesley, G.; Lettenmaier, D.P.; Lindstrom, G.; Seibert, J.; Sivapalan, M.; Viney, N.R.

    2009-01-01

    This paper introduces the project on 'Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM)' that aims at investigating the envelope of predictions on changes in hydrological fluxes due to land use change. As part of a series of four papers, this paper outlines the motivation and setup of LUCHEM, and presents a model intercomparison for the present-day simulation results. Such an intercomparison provides a valuable basis to investigate the effects of different model structures on model predictions and paves the ground for the analysis of the performance of multi-model ensembles and the reliability of the scenario predictions in companion papers. In this study, we applied a set of 10 lumped, semi-lumped and fully distributed hydrological models that have been previously used in land use change studies to the low mountainous Dill catchment, Germany. Substantial differences in model performance were observed with Nash-Sutcliffe efficiencies ranging from 0.53 to 0.92. Differences in model performance were attributed to (1) model input data, (2) model calibration and (3) the physical basis of the models. The models were applied with two sets of input data: an original and a homogenized data set. This homogenization of precipitation, temperature and leaf area index was performed to reduce the variation between the models. Homogenization improved the comparability of model simulations and resulted in a reduced average bias, although some variation in model data input remained. The effect of the physical differences between models on the long-term water balance was mainly attributed to differences in how models represent evapotranspiration. Semi-lumped and lumped conceptual models slightly outperformed the fully distributed and physically based models. This was attributed to the automatic model calibration typically used for this type of models. Overall, however, we conclude that there was no superior model if several measures of model

  8. Carbon dioxide emissions from forestry and peat land using land-use/land-cover changes in North Sumatra, Indonesia

    Science.gov (United States)

    Basyuni, M.; Sulistyono, N.; Slamet, B.; Wati, R.

    2018-03-01

    Forestry and peat land including land-based is one of the critical sectors in the inventory of CO2 emissions and mitigation efforts of climate change. The present study analyzed the land-use and land-cover changes between 2006 and 2012 in North Sumatra, Indonesia with emphasis to CO2 emissions. The land-use/land-cover consists of twenty-one classes. Redd Abacus software version 1.1.7 was used to measure carbon emission source as well as the predicted 2carbon dioxide emissions from 2006-2024. Results showed that historical emission (2006-2012) in this province, significant increases in the intensive land use namely dry land agriculture (109.65%), paddy field (16.23%) and estate plantation (15.11%). On the other hand, land-cover for forest decreased significantly: secondary dry land forest (7.60%), secondary mangrove forest (9.03%), secondary swamp forest (33.98%), and the largest one in the mixed dry land agriculture (79.96%). The results indicated that North Sumatra province is still a CO2 emitter, and the most important driver of emissions mostly derived from agricultural lands that contributed 2carbon dioxide emissions by 48.8%, changing from forest areas into degraded lands (classified as barren land and shrub) shared 30.6% and estate plantation of 22.4%. Mitigation actions to reduce carbon emissions was proposed such as strengthening the forest land, rehabilitation of degraded area, development and plantation forest, forest protection and forest fire control, and reforestation and conservation activity. These mitigation actions have been simulated to reduce 15% for forestry and 18% for peat land, respectively. This data is likely to contribute to the low emission development in North Sumatra.

  9. Carbon accounting and economic model uncertainty of emissions from biofuels-induced land use change.

    Science.gov (United States)

    Plevin, Richard J; Beckman, Jayson; Golub, Alla A; Witcover, Julie; O'Hare, Michael

    2015-03-03

    Few of the numerous published studies of the emissions from biofuels-induced "indirect" land use change (ILUC) attempt to propagate and quantify uncertainty, and those that have done so have restricted their analysis to a portion of the modeling systems used. In this study, we pair a global, computable general equilibrium model with a model of greenhouse gas emissions from land-use change to quantify the parametric uncertainty in the paired modeling system's estimates of greenhouse gas emissions from ILUC induced by expanded production of three biofuels. We find that for the three fuel systems examined--US corn ethanol, Brazilian sugar cane ethanol, and US soybean biodiesel--95% of the results occurred within ±20 g CO2e MJ(-1) of the mean (coefficient of variation of 20-45%), with economic model parameters related to crop yield and the productivity of newly converted cropland (from forestry and pasture) contributing most of the variance in estimated ILUC emissions intensity. Although the experiments performed here allow us to characterize parametric uncertainty, changes to the model structure have the potential to shift the mean by tens of grams of CO2e per megajoule and further broaden distributions for ILUC emission intensities.

  10. Bioenergy production from perennial energy crops: a consequential LCA of 12 bioenergy scenarios including land use changes.

    Science.gov (United States)

    Tonini, Davide; Hamelin, Lorie; Wenzel, Henrik; Astrup, Thomas

    2012-12-18

    In the endeavor of optimizing the sustainability of bioenergy production in Denmark, this consequential life cycle assessment (LCA) evaluated the environmental impacts associated with the production of heat and electricity from one hectare of Danish arable land cultivated with three perennial crops: ryegrass (Lolium perenne), willow (Salix viminalis) and Miscanthus giganteus. For each, four conversion pathways were assessed against a fossil fuel reference: (I) anaerobic co-digestion with manure, (II) gasification, (III) combustion in small-to-medium scale biomass combined heat and power (CHP) plants and IV) co-firing in large scale coal-fired CHP plants. Soil carbon changes, direct and indirect land use changes as well as uncertainty analysis (sensitivity, MonteCarlo) were included in the LCA. Results showed that global warming was the bottleneck impact, where only two scenarios, namely willow and Miscanthus co-firing, allowed for an improvement as compared with the reference (-82 and -45 t CO₂-eq. ha⁻¹, respectively). The indirect land use changes impact was quantified as 310 ± 170 t CO₂-eq. ha⁻¹, representing a paramount average of 41% of the induced greenhouse gas emissions. The uncertainty analysis confirmed the results robustness and highlighted the indirect land use changes uncertainty as the only uncertainty that can significantly change the outcome of the LCA results.

  11. Land use changing and land use optimization of Lake Baikal basin on the example of two key areas

    Science.gov (United States)

    Solodyankina, S.

    2012-04-01

    Lake Baikal contains roughly 20% of the world's unfrozen surface fresh water. It was declared a UNESCO World Heritage Site in 1996. Today levels of urbanization and economic stress on environmental resources is increasing on the shorts of the lake Baikal. The potential of economic development (industry, local tourism, and mining) of the Severobaykalsky and Sludyansky districts is rather high although they are characterized not only by beneficial features for local economy but also by considerable disadvantages for nature of this world valuable territory. This investigation show human-caused landscape changes during economic development of the two key areas in Baikal water catchment basin during 10 years (point of reference is 2000 year). Key areas are 1) the Baikalo-Patomskoe highland in the north of the Baikal catchment basin (Severobaykalsky district, Republic of Buryatia); 2) Khamar-Daban mountain system in the south of the Baikal catchment basin (Sludyansky districy, Irkutsk region). Since 2000 year land use of the territory has changed. Areas of agriculture were reduced but recreation activity on the bank of the lake was increased. Methods of GIS analysis and local statistic analysis of landscape characteristic were used. Nature, rural and urban areas ratio are estimated. Vegetation and soil condition assessment were made. The essence of this research is in helping to make decisions linked to upcoming problems: situation identification, evaluation and forecasting of the potential landscape condition, optimization of land use, mitigation of impact and mapping of territories and nature resources which have a high ecological value or endangered by industrial impact. For this purpose landscape maps of the territories on the base of the remote sensing information and field investigations were created. They used to calculate potential landscape functions of the territory without taking into account present impact of anthropogenic actions. Land use maps for years

  12. Hydrological impacts of land use change in three diverse South African catchments

    Science.gov (United States)

    Warburton, Michele L.; Schulze, Roland E.; Jewitt, Graham P. W.

    2012-01-01

    SummaryIn order to meet society's needs for water, food, fuel and fibre, the earth's natural land cover and land use have been significantly changed. These changes have impacted on the hydrological responses and thus available water resources, as the hydrological responses of a catchment are dependent upon, and sensitive to, changes in the land use. The degree of anthropogenic modification of the land cover, the intensity of the land use changes and location of land uses within a catchment determines the extent to which land uses influences hydrological response of a catchment. The objective of the study was to improve understanding of the complex interactions between hydrological response and land use to aid in water resources planning. To achieve this, a hydrological model, viz. the ACRU agrohydrological model, which adequately represents hydrological processes and is sensitive to land use changes, was used to generate hydrological responses from three diverse, complex and operational South African catchments under both current land use and a baseline land cover. The selected catchments vary with respect to both land use and climate. The semi-arid sub-tropical Luvuvhu catchment has a large proportion of subsistence agriculture and informal residential areas, whereas in the winter rainfall Upper Breede catchment the primary land uses are commercial orchards and vineyards. The sub-humid Mgeni catchment is dominated by commercial plantation forestry in the upper reaches, commercial sugarcane and urban areas in the middle reaches, with the lower reaches dominated by urban areas. The hydrological responses of the selected catchments to land use change were complex. Results showed that the contributions of different land uses to the streamflow generated from a catchment is not proportional to the relative area of that land use, and the relative contribution of the land use to the catchment streamflow varies with the mean annual rainfall of the catchment. Furthermore

  13. Ignoring detailed fast-changing dynamics of land use overestimates regional terrestrial carbon sequestration

    Directory of Open Access Journals (Sweden)

    S. Q. Zhao

    2009-08-01

    Full Text Available Land use change is critical in determining the distribution, magnitude and mechanisms of terrestrial carbon budgets at the local to global scales. To date, almost all regional to global carbon cycle studies are driven by a static land use map or land use change statistics with decadal time intervals. The biases in quantifying carbon exchange between the terrestrial ecosystems and the atmosphere caused by using such land use change information have not been investigated. Here, we used the General Ensemble biogeochemical Modeling System (GEMS, along with consistent and spatially explicit land use change scenarios with different intervals (1 yr, 5 yrs, 10 yrs and static, respectively, to evaluate the impacts of land use change data frequency on estimating regional carbon sequestration in the southeastern United States. Our results indicate that ignoring the detailed fast-changing dynamics of land use can lead to a significant overestimation of carbon uptake by the terrestrial ecosystem. Regional carbon sequestration increased from 0.27 to 0.69, 0.80 and 0.97 Mg C ha−1 yr−1 when land use change data frequency shifting from 1 year to 5 years, 10 years interval and static land use information, respectively. Carbon removal by forest harvesting and prolonged cumulative impacts of historical land use change on carbon cycle accounted for the differences in carbon sequestration between static and dynamic land use change scenarios. The results suggest that it is critical to incorporate the detailed dynamics of land use change into local to global carbon cycle studies. Otherwise, it is impossible to accurately quantify the geographic distributions, magnitudes, and mechanisms of terrestrial carbon sequestration at the local to global scales.

  14. Change in agricultural land use constrains adaptation of national wildlife refuges to climate change

    Science.gov (United States)

    Hamilton, Christopher M.; Thogmartin, Wayne E.; Radeloff, Volker C.; Plantinga, Andrew J.; Heglund, Patricia J.; Martinuzzi, Sebastian; Pidgeon, Anna M.

    2015-01-01

    Land-use change around protected areas limits their ability to conserve biodiversity by altering ecological processes such as natural hydrologic and disturbance regimes, facilitating species invasions, and interfering with dispersal of organisms. This paper informs USA National Wildlife Refuge System conservation planning by predicting future land-use change on lands within 25 km distance of 461 refuges in the USA using an econometric model. The model contained two differing policy scenarios, namely a ‘business-as-usual’ scenario and a ‘pro-agriculture’ scenario. Regardless of scenario, by 2051, forest cover and urban land use were predicted to increase around refuges, while the extent of range and pasture was predicted to decrease; cropland use decreased under the business-as-usual scenario, but increased under the pro-agriculture scenario. Increasing agricultural land value under the pro-agriculture scenario slowed an expected increase in forest around refuges, and doubled the rate of range and pasture loss. Intensity of land-use change on lands surrounding refuges differed by regions. Regional differences among scenarios revealed that an understanding of regional and local land-use dynamics and management options was an essential requirement to effectively manage these conserved lands. Such knowledge is particularly important given the predicted need to adapt to a changing global climate.

  15. Modelling forest loss and other land use change dynamics in Ashanti Region of Ghana

    Directory of Open Access Journals (Sweden)

    Koranteng Addo

    2015-06-01

    Full Text Available Forest losses amid land use dynamics have become issues of outermost concern in the light of climate change phenomenon which has captivated the world’s attention. It is imperative to monitor land use change and to forecast forms of future land use change on a temporal and spatial basis. The main thrust of this study is to assess land use change in the lower half of the Ashanti Region of Ghana within a 40 year period. The analysis of land use change uses a combination method in Remote Sensing (RS and Geographic Information System (GIS. Cellular Automata and Markov Chain (Cellular Automata-Markov are utilized to predict for land use land cover (LULC change for 2020 and 2030. The processes used include: (i a data pre-processing (geometric corrections, radiometric corrections, subset creation and image enhancement of epoch Landsat images acquired in 1990, 2000, and Disaster Monitoring Constellation (DMC 2010; (ii classification of multispectral imagery (iii Change detection mapping (iv using Cellular Automata-Markov to generate land use change in the next 20 years. The results illustrate that in years 2020 to 2030 in the foreseeable future, there will an upsurge in built up areas, while a decline in agricultural land use is envisaged. Agricultural land use would still be the dominant land use type. Forests would be drastically reduced from close to 50% in 1990 to just fewer than 10% in 2030. Land use decision making must be very circumspect, especially in an era where Ghana has opted to take advantage of REDD+. Studies such as this provide vital pieces of information which may be used to monitor, direct and influence land use change to a more beneficial and sustainable manner

  16. Regional Climate Change Impact on Agricultural Land Use in West Africa

    Science.gov (United States)

    Ahmed, K. F.; Wang, G.; You, L.

    2014-12-01

    Agriculture is a key element of the human-induced land use land cover change (LULCC) that is influenced by climate and can potentially influence regional climate. Temperature and precipitation directly impact the crop yield (by controlling photosynthesis, respiration and other physiological processes) that then affects agricultural land use pattern. In feedback, the resulting changes in land use and land cover play an important role to determine the direction and magnitude of global, regional and local climate change by altering Earth's radiative equilibrium. The assessment of future agricultural land use is, therefore, of great importance in climate change study. In this study, we develop a prototype land use projection model and, using this model, project the changes to land use pattern and future land cover map accounting for climate-induced yield changes for major crops in West Africa. Among the inputs to the land use projection model are crop yield changes simulated by the crop model DSSAT, driven with the climate forcing data from the regional climate model RegCM4.3.4-CLM4.5, which features a projected decrease of future mean crop yield and increase of inter-annual variability. Another input to the land use projection model is the projected changes of food demand in the future. In a so-called "dumb-farmer scenario" without any adaptation, the combined effect of decrease in crop yield and increase in food demand will lead to a significant increase in agricultural land use in future years accompanied by a decrease in forest and grass area. Human adaptation through land use optimization in an effort to minimize agricultural expansion is found to have little impact on the overall areas of agricultural land use. While the choice of the General Circulation Model (GCM) to derive initial and boundary conditions for the regional climate model can be a source of uncertainty in projecting the future LULCC, results from sensitivity experiments indicate that the changes

  17. Effects of changes in land use and climate on water availability of a tropical catchment

    NARCIS (Netherlands)

    Marhaento, Hero

    2018-01-01

    Land use changes such as deforestation and urbanization influence the hydrology of catchments and hence water availability. Together with climate change, land use changes can affect the frequency of floods or droughts and thus threaten local or regional socio-economic development. For Indonesia, the

  18. Structural change, land use and the state in China : Making sense of three divergent processes

    NARCIS (Netherlands)

    M. Arsel (Murat); A. Dasgupta (Anirban)

    2010-01-01

    textabstractRapid economic growth involves significant changes in land use patterns. The paper uses the recent history of Chinese economic growth to highlight and interrogate the implication of such changes within the context of structural transformation. It argues that though land use change is an

  19. Land use change and its drivers in Kurt Bahir wetland, north-western ...

    African Journals Online (AJOL)

    The effects of land-use change on ecosystem services in Kurt Bahir wetland were investigated during 2013 to 2014 using LANDSAT satellite images from 1973, 1986, 2002 and 2013 to identify and map changes in land-use classes over time. To understand perceptions of changes in ecosystem services that resulted from ...

  20. Land cover change or land use intensification: simulating land system change with a global-scale land change model

    NARCIS (Netherlands)

    van Asselen, S.; Verburg, P.H.

    2013-01-01

    Land-use change is both a cause and consequence of many biophysical and socioeconomic changes. The CLUMondo model provides an innovative approach for global land-use change modeling to support integrated assessments. Demands for goods and services are, in the model, supplied by a variety of land

  1. Climate Change Adaptation via U.S. Land Use Transitions: A Spatial Econometric Analysis

    OpenAIRE

    Cho, Sung Ju; McCarl, Bruce A.; Wu, Ximing

    2015-01-01

    Climate change, coupled with biofuels development and other factors may well be changing US land usage patterns. We use a spatial econometric approach to estimate the drivers of US land use transitions in recent years. We consider transitions between six major land uses: agricultural land, forest, grassland, water, urban, and other uses. To examine drivers, we use a two-step linearized, spatial, multinomial logit model and estimate land use transition probabilities. Our results indicate that ...

  2. Land use changes and transnational migration: the impact of remittances in Western Mexico

    OpenAIRE

    Hostettler, Silvia

    2007-01-01

    The present study focuses on the economic, political/institutional, technological, cultural, demographic and environmental drivers of land use change. It aims to understand the factors influencing land use decisions at the household level, in particular the influence of migration. The study is guided by the hypothesis that international migration is driving land use change through the investment of remittances, funds sent back by migrants to their families in the country of origin. This resea...

  3. Land use changes and transnational migration: the impact of remittances in Western Mexico

    OpenAIRE

    Hostettler, Silvia; Bolay, Jean-Claude

    2008-01-01

    The present study focuses on the economic, political/institutional, technological, cultural, demographic and environmental drivers of land use change. It aims to understand the factors influencing land use decisions at the household level, in particular the influence of migration. The study is guided by the hypothesis that international migration is driving land use change through the investment of remittances, funds sent back by migrants to their families in the country of origin. This resea...

  4. Linking the effects of land use change with water quality and discharge :an integrated approach

    OpenAIRE

    Fauss, Lynn Michael

    1992-01-01

    Hydrologic and water-quality equilibria are greatly affected by changing land use. This study presents a methodology that integrates the use of remote sensing, geographical information systems (GIS) and water-quality modeling. Archived aerial photography proved to be a valuable source of historical land use data. GIS technology was used to compile and analyze spatial data. A comprehensive watershed model was used to link the effects of land use change to water quali...

  5. Land use changes and plantation crop development in selected provinces in Sumatra and Kalimantan

    Science.gov (United States)

    Tarigan, S. D.

    2018-05-01

    Most institutions stated that biofuel will not qualify the standard of GHG emission reduction if it was produced in the plantation associated with the forest conversion. Therefore, knowing previous land use before the development of plantation is very important. In Indonesia, plantation development occurs mainly in Sumatra and Kalimantan. A number of studies had been published showing historical LUCC before plantation development. Objective of this study was to review various studies on LUCC carried out in four selected provinces, namely West Kalimantan, Central Kalimantan, East Kalimantan, and Riau. The analysis and comparison was based on the different source of historical data including online spatial data sources and various studies published in various journals. Each data source of LUCC shows significant variation on the amount of plantation developed directly from forest and other land use types. But, our review showed that the plantation areas associated with the forest cover changes far less than those claimed by several international journals. But, the debate concerning which plantation developments indirectly contributed to LUCC and which are directly will probably continue until the information on the land ownership and history of plantation development is available publicly.

  6. Changes in Carbon Emissions in Colombian Savannas Derived From Recent Land use and Land Cover Change

    Science.gov (United States)

    Etter, A.; Sarmiento, A.

    2007-12-01

    The global contribution of carbon emissions from land use dynamics and change to the global carbon (C) cycle is still uncertain, a major concern in global change modeling. Carbon emission from fires in the tropics is significant and represents 9% of the net primary production, and 50% of worldwide C emissions from fires are attributable to savanna fires. Such emissions may vary significantly due to differences in ecosystem types. Most savanna areas are devoted to grazing land uses making methane emissions also important in savanna ecosystems. Land use change driven by intensification of grazing and cropping has become a major factor affecting C emission dynamics from savanna regions. Colombia has some 17 MHa of mesic savannas which have been historically burned. Due to changes in market demands and improved accessibility during the last 20 years, important areas of savannas changed land use from predominantly extensive grazing to crops and intensive grazing systems. This research models and evaluates the impacts of such land use changes on the spatial and temporal burning patterns and C emissions in the Orinoco savannas of Colombia. We address the effects of land use change patterns using remote sensing data from MODIS and Landsat, ecosystem mapping products, and spatial GIS analysis. First we map the expansion of the agricultural frontier from the 1980s-2000s. We then model the changes in land use from the 1980s using a statistical modeling approach to analyze and quantify the impact of accessibility, ecosystem type and land tenure. We calculate the effects on C emissions from fire regimes and other sources of C based on patterns and extent of burned areas in the 2000s for different savanna ecosystem types and land uses. In the Llanos the fire regime exhibits a marked seasonal variability with most fire events occurring during the dry season between December-March. Our analysis shows that fire frequencies vary consistently between 0.6 and 2.8 fires.yr-1 per 2

  7. Quantifying the impact of land use change on hydrological responses in the Upper Ganga Basin, India

    Science.gov (United States)

    Tsarouchi, Georgia-Marina; Mijic, Ana; Moulds, Simon; Chawla, Ila; Mujumdar, Pradeep; Buytaert, Wouter

    2013-04-01

    Quantifying how changes in land use affect the hydrological response at the river basin scale is a challenge in hydrological science and especially in the tropics where many regions are considered data sparse. Earlier work by the authors developed and used high-resolution, reconstructed land cover maps for northern India, based on satellite imagery and historic land-use maps for the years 1984, 1998 and 2010. Large-scale land use changes and their effects on landscape patterns can impact water supply in a watershed by altering hydrological processes such as evaporation, infiltration, surface runoff, groundwater discharge and stream flow. Three land use scenarios were tested to explore the sensitivity of the catchment's response to land use changes: (a) historic land use of 1984 with integrated evolution to 2010; (b) land use of 2010 remaining stable; and (c) hypothetical future projection of land use for 2030. The future scenario was produced with Markov chain analysis and generation of transition probability matrices, indicating transition potentials from one land use class to another. The study used socio-economic (population density), geographic (distances to roads and rivers, and location of protected areas) and biophysical drivers (suitability of soil for agricultural production, slope, aspect, and elevation). The distributed version of the land surface model JULES was integrated at a resolution of 0.01° for the years 1984 to 2030. Based on a sensitivity analysis, the most sensitive parameters were identified. Then, the model was calibrated against measured daily stream flow data. The impact of land use changes was investigated by calculating annual variations in hydrological components, differences in annual stream flow and surface runoff during the simulation period. The land use changes correspond to significant differences on the long-term hydrologic fluxes for each scenario. Once analysed from a future water resources perspective, the results will be

  8. Trends and driving mechanism of land-use change in metropolitan areas of Pearl River Delta

    Science.gov (United States)

    Chen, Feng-gui; Zhang, Hong-ou; Wang, Juan; Wu, Qi-tao

    2008-10-01

    Taking Pearl River Delta for an example this study focuses on the trends and the driving mechanism of land-use changes in metropolises, in order to achieve the fundamental objectives of LUCC study increasing the awareness on dynamics of global land-use and land-cover changes, and improving the ability of forecasting LUCC. By analyzing the land-use change in Pearl River Delta from 1996 to 2006, it is found that the differences among internal space are notable. By establishing time-sequence-curve with SPSS software, it is shown that trends of land-use change are very clear. With factor analysis on land-use change, the study summarizes four factors of driving mechanism, including factors of economic development level, regional industrial structure, demographic and agricultural structure adjustment, which impact land change in Pearl River Delta to a different extent.

  9. Land use mapping and change detection using ERTS imagery in Montgomery County, Alabama

    Science.gov (United States)

    Wilms, R. P.

    1973-01-01

    The feasibility of using remotely sensed data from ERTS-1 for mapping land use and detecting land use change was investigated. Land use information was gathered from 1964 air photo mosaics and from 1972 ERTS data. The 1964 data provided the basis for comparison with ERTS-1 imagery. From this comparison, urban sprawl was quite evident for the city of Montgomery. A significant trend from forestland to agricultural was also discovered. The development of main traffic arteries between 1964 and 1972 was a vital factor in the development of some of the urban centers. Even though certain problems in interpreting and correlating land use data from ERTS imagery were encountered, it has been demonstrated that remotely sensed data from ERTS is useful for inventorying land use and detecting land use change.

  10. Prospects of fen restoration in relation to changing land use-An example from central Poland

    NARCIS (Netherlands)

    Klimkowska, Agata; Dzierża, Paulina; Grootjans, Ab P.; Kotowski, Wiktor; Diggelen, Rudy Van

    2010-01-01

    We carried out an eco-hydrological analysis to evaluate the most important effects of land use changes on the hydrological functioning of a fen system in Poland. We measured water levels (hydraulic heads) and water flow along a transect through the study area and also analysed land use changes using

  11. Modelling interactions and feedback mechanisms between land use change and landscape processes

    NARCIS (Netherlands)

    Claessens, L.; Schoorl, J.M.; Verburg, P.H.; Geraedts, L.; Veldkamp, A.

    2009-01-01

    Land use changes and landscape processes are interrelated and influenced by multiple bio-physical and socio-economic driving factors, resulting in a complex, multi-scale system. Consequently in landscapes with active landscape processes such as erosion, land use changes should not be analysed in

  12. The impact of Future Land Use and Land Cover Changes on Atmospheric Chemistry-Climate Interactions

    NARCIS (Netherlands)

    Ganzeveld, L.N.; Bouwman, L.

    2010-01-01

    To demonstrate potential future consequences of land cover and land use changes beyond those for physical climate and the carbon cycle, we present an analysis of large-scale impacts of land cover and land use changes on atmospheric chemistry using the chemistry-climate model EMAC (ECHAM5/MESSy

  13. Changes in spatiotemporal land use patterns in selected hydrogeomorphic areas of China and the USA

    Science.gov (United States)

    Differences exist in land use/cover pattern and its change between the P. R. China and the USA. In order to describe those differences, land use changes in representative regions were quantitatively analyzed and compared. Xiamen City, Changzhutan region and Liupan Mountains regions were selected to ...

  14. Changes in land use and housing on resource lands in Washington state, 1976–2006

    Science.gov (United States)

    Andrew N. Gray; David L. Azuma; Gary J. Lettman; Joel L. Thompson; Neil McKay

    2013-01-01

    Changes in human land use patterns have wide-ranging social, economic and ecological implications. How urban and residential areas develop to accommodate population increase can have varying effects on forest and agricultural production from resource lands. Estimates of the amount and type of land use change differ substantially with definitions and analytical methods...

  15. SWAT-simulated hydrological impact of land-use change in the Zanjanrood basin, Northwest Iran

    NARCIS (Netherlands)

    Ghaffari, G.; Ghodousi, J.; Ahmadi, H.; Keesstra, S.D.

    2010-01-01

    Understanding the impacts of land-use changes on hydrology at the watershed scale can facilitate development of sustainable water resource strategies. This paper investigates the hydrological effects of land-use change in Zanjanrood basin, Iran. The water balance was simulated using the Soil and

  16. Sustainable Planning of Land Use Changes in farming areas under ecological protection

    NARCIS (Netherlands)

    Montero-García, F.; Montero-Riquelme, F.; Brasa-Ramos, A.; Carsjens, G.J.

    2010-01-01

    Land use has been changing in the last decades because of agricultural intensification and land abandonment which implies deterioration in the optimum habitat structure and quality. Habitat degradation and loss, resulting from changes in land use remain significant drivers of biodiversity loss.

  17. Scenario-Based Analysis on the Structural Change of Land Uses in China

    Directory of Open Access Journals (Sweden)

    Qian Xu

    2013-01-01

    Full Text Available Land Use/Land Cover change (LUCC is a key aspect of global environmental change, which has a significant impact on climate change. In the background of increasing global warming resulting from greenhouse effect, to understand the impact of land use change on climate change is necessary and meaningful. In this study, we choose China as the study area and explore the possible land use change trends based on the AgLU module and ERB module of global change assessment model (GCAM model and Global Change Assessment Model. We design three scenarios based on socioeconomic development and simulated the corresponding structure change of land use according to the three scenarios with different parameters. Then we simulate the different emission of CO2 under different scenarios based on the simulation results of structure change of land use. At last, we choose the most suitable scenario that could control the emission of CO2 best and obtain the relatively better land use structure change for adaption of climate change. Through this research we can provide a theoretical basis for the future land use planning to adapt to climate change.

  18. A coherent set of future land use change scenarios for Europe

    DEFF Research Database (Denmark)

    Rounsevell, M. D. A.; Reginster, I.; Araújo, Miguel B.

    2006-01-01

    This paper presents a range of future, spatially explicit, land use change scenarios for the EU15, Norway and Switzerland based on an interpretation of the global storylines of the Intergovernmental Panel on Climate Change (IPCC) that are presented in the special report on emissions scenarios (SRES......). The methodology is based on a qualitative interpretation of the SRES storylines for the European region, an estimation of the aggregate totals of land use change using various land use change models and the allocation of these aggregate quantities in space using spatially explicit rules. The spatial patterns...... are further downscaled from a resolution of 10 min to 250 m using statistical downscaling procedures. The scenarios include the major land use/land cover classes urban, cropland, grassland and forest land as well as introducing new land use classes such as bioenergy crops. The scenario changes are most...

  19. Relevance of the land use changes related to a megacity development in a Colombian river basin

    Science.gov (United States)

    García-Arias, Alicia; Romero Hernández, Claudia Patricia; Francés, Félix

    2017-04-01

    A megacity development is a main driving force for land uses changes. Population in these megacities usually rise depending on some or all of the natural resources related to the occupied area and, among them, water is a pivotal requirement. On the other hand, land use changes determine the catchment hydrology and, in consequence, its management. The better knowledge on land uses cover distribution and characteristics, the higher capabilities to increase the accuracy of hydrological predictions and the efficiency of water management. This study aims to describe the land uses changes occurred during the recent expansion of the megacity of Bogotá (Colombia) and to understand the expected changes. In addition, we propose the base for the consideration of this land use changes in the TETIS distributed hydrological modelling approach. The discussion focus on the necessity of considering this kind of scenarios in hydrological modelling for a responsible management of the water resources.

  20. Simulating the Impact of Future Land Use and Climate Change on Soil Erosion and Deposition in the Mae Nam Nan Sub-Catchment, Thailand

    Directory of Open Access Journals (Sweden)

    Nitin Kumar Tripathi

    2013-07-01

    Full Text Available This paper evaluates the possible impacts of climate change and land use change and its combined effects on soil loss and net soil loss (erosion and deposition in the Mae Nam Nan sub-catchment, Thailand. Future climate from two general circulation models (GCMs and a regional circulation model (RCM consisting of HadCM3, NCAR CSSM3 and PRECIS RCM ware downscaled using a delta change approach. Cellular Automata/Markov (CA_Markov model was used to characterize future land use. Soil loss modeling using Revised Universal Soil Loss Equation (RUSLE and sedimentation modeling in Idrisi software were employed to estimate soil loss and net soil loss under direct impact (climate change, indirect impact (land use change and full range of impact (climate and land use change to generate results at a 10 year interval between 2020 and 2040. Results indicate that soil erosion and deposition increase or decrease, depending on which climate and land use scenarios are considered. The potential for climate change to increase soil loss rate, soil erosion and deposition in future periods was established, whereas considerable decreases in erosion are projected when land use is increased from baseline periods. The combined climate and land use change analysis revealed that land use planning could be adopted to mitigate soil erosion and deposition in the future, in conjunction with the projected direct impact of climate change.

  1. Agrarian land use decision making in the light of global change and climate change

    CSIR Research Space (South Africa)

    Murambadoro, M

    2014-09-01

    Full Text Available in Limpopo Province to help land beneficiaries to achieve integrated and coordinated agrarian land use decision making. The second project is ongoing and it seeks to build local resilience to climate change by providing people at local government...

  2. Assessing Land Use Change and Its Impact on Ecosystem Services in Northern Thailand

    Directory of Open Access Journals (Sweden)

    Sunsanee Arunyawat

    2016-08-01

    Full Text Available Ecosystem services are highly vulnerable to a number of impacts due to the complex effects of human use of natural resources and subsequent land use change. Assessment of the impact of change in land use with respect to ecosystem services is necessary in order to implement appropriate land uses that enhance ecosystem services. This study analysed the impact of change in land use on ecosystem services using the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST model to map and quantify a set of ecosystem services, namely sediment retention, water yield, carbon stock, and habitat quality, in northern Thailand, which has experienced substantial policy induced land use change. The study also assessed the changes in land use from 1989 to 2013 and their impact on overall ecosystem services using GIS. Increased rubber plantation cultivation and built-up areas resulting in reduced forest cover were the major changes found in land use in the area. The results of the study show a general decrease in ecosystem services for the study period in the watershed, in particular, a negative impact on ecosystem services was observed in agricultural areas. The study findings on spatial and temporal distribution of ecosystem services can help guide the development of appropriate land use options to enhance ecosystem services.

  3. Effects of Climate and Land Use Changes on Water Resources in the Taoer River

    Directory of Open Access Journals (Sweden)

    Jianwei Liu

    2017-01-01

    Full Text Available The changes of both climate and land use/cover have some impacts on water resources. In the Taoer River basin, these changes have directly influenced the land use pattern adjustment, wetland protection, connections between rivers and reservoirs, local social and economic development, and so forth. Therefore, studying the impacts of climate and land use/cover changes is of great practical significance. The Soil and Water Assessment Tool (SWAT model is employed in this study. With historical measured runoff data and remote sensing maps of annual land use classifications, we analyzed the impacts of climate change on the runoff of the Taoer River. Based on the land use/cover classifications of 1990, 2000, and 2010, we analyzed the land use/cover change over the last 30 years and the contribution coefficient of farmland, woodland, grassland, and other major land use types to the runoff. This study can provide a reference for the rational allocation of water resources and the adjustment of land use structure for decision makers.

  4. Land use change impacts on floods at the catchment scale

    NARCIS (Netherlands)

    Rogger, M.; Agnoletti, M.; Alaoui, A.; Bathurst, J.C.; Bodner, G.; Borga, M.; Chaplot, Vincent; Gallart, F.; Glatzel, G.; Hall, J.; Holden, J.; Holko, L.; Horn, R.; Kiss, A.; Kohnová, S.; Leitinger, G.; Lennartz, B.; Parajka, J.; Perdigão, R.; Peth, S.; Plavcová, L.; Quinton, John N.; Robinson, Matthew R.; Salinas, J.L.; Santoro, A.; Szolgay, J.; Tron, S.; Akker, van den J.J.H.; Viglione, A.; Blöschl, G.

    2017-01-01

    Research gaps in understanding flood changes at the catchment scale caused by changes in forest management, agricultural practices, artificial drainage, and terracing are identified. Potential strategies in addressing these gaps are proposed, such as complex systems approaches to link processes

  5. Integrated impact assessment of climate change, land use, and adaptation policies on water quality in Austria

    Science.gov (United States)

    Trautvetter, Helen; Schoenhart, Martin; Parajaka, Juraj; Schmid, Erwin; Zessner, Matthias

    2017-04-01

    Climate change is one of the major challenges of our time and adds considerable stress to the human society and environment. A change in climate will not only shift general weather patterns, but might also increase the recurrence of extreme weather events such as drought and heavy rainfall. These changes in climatic conditions will affect the quality and quantity of water resources both directly as well as indirectly through autonomous adaptation by farmers (e.g. cultivar choices, fertilization intensity or soil management). This will influence the compliance with the good ecological and chemical status according to the EU Water Framework Directive. We present results from an integrated impact modelling framework (IIMF) to tackle those direct and indirect impacts and analyze policy options for planned adaptation in agricultural land use and sustainable management of land and water resources until 2040. The IIMF is the result of an interdisciplinary collaboration among economists, agronomists, and hydrologists. It consists of the bio-physical process model EPIC, the regional land use optimization model PASMA[grid], the quantitative precipitation/runoff TUWmodel and the surface water emission model MONERIS. Scenarios have been developed and parameterized in collaboration with stakeholders in order to facilitate multi-actor knowledge transfer. The set of climate change scenarios until 2040 includes three scenarios with equal temperature changes but varying precipitation patterns. They are combined with potential socio-economic and policy development. The latter include water protection measures on fertilization management, soil management, or crop rotation choices. We will presented the development of interfaces among the research, the definition of scenarios and major scenario results for Austria. We will focus on nutrient emissions to surface waters, which are the major link between the different models. The results, available at watershed level indicate the

  6. Land use/land cover changes around Rameshwaram Island, east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Gowthaman, R.; Dwarakish, G.S.; Sanilkumar, V.

    Land-use/land cover changes are studied using the Indian Remote Sensing satellite (IRS-1C, IRS-6) Linear Image Self-scan Sensor (LISS) III data of 1998 and 2010 Coastal land use categories such as sand, vegetation, coral reef and water have been...

  7. Implications of land-use change on forest carbon stocks in the eastern United States

    Science.gov (United States)

    Joshua Puhlick; Christopher Woodall; Aaron Weiskittel

    2017-01-01

    Given the substantial role that forests play in removing CO2 from the atmosphere, there has been a growing need to evaluate the carbon (C) implications of various forest management and land-use decisions. Although assessment of land-use change is central to national-level greenhouse gas monitoring guidelines, it is rarely incorporated into forest...

  8. Changes in organic carbon stocks upon land use conversion in the Brazilian Cerrado: A review. Agriculture

    NARCIS (Netherlands)

    Batlle-Bayer, L.; Batjes, N.H.; Bindraban, P.S.

    2010-01-01

    This paper reviews current knowledge on changes in carbon stocks upon land use conversion in the Brazilian Cerrado. First, we briefly characterize the savanna ecosystem and summarize the main published data on C stocks under natural conditions. The effects of increased land use pressure in the

  9. A Graph Theory Approach for Geovisualization of Anthropogenic Land Use Change: An application to Lisbon

    Directory of Open Access Journals (Sweden)

    Eric Vaz

    2013-12-01

    Full Text Available Urban sprawl and growth has experienced increased concern in geographic and environmental literature. Preceding the existence of robust frameworks found in regional and urban planning, as well as urban geography and economics, the spatial properties of allocation of urban land use are still far from being completely understood. This is largely due to the underlying complexity of the change found at the spatial level of urban land use, merging social, economic and natural drivers. The spatial patterns formed, and the connectivity established among the different subsets of land-use types, becomes a complex network of interactions over time, helping to shape the structure of the city. The possibility to merge the configuration of land-use with complex networks may be assessed elegantly through graph theory. Nodes and edges can become abstract representations of typologies of space and are represented into a topological space of different land use types which traditionally share common spatial boundaries. Within a regional framework, the links between adjacent and neighboring urban land use types become better understood, by means of a KamadaKawai algorithm. This study uses land use in Lisbon over three years, 1990, 2000 and 2006, to develop a Kamada-Kawai graph interpretation of land-use as a result of neighboring power. The rapid change witnessed in Lisbon since the nineties, as well as the availability of CORINE Land Cover data in these three time stamps, permits a reflection on anthropogenic land-use change in urban and semi-urban areas in Portugal’s capital. This paper responds to (1 the structure and connectivity of urban land use over time, demonstrating that most of the agricultural land is stressed to transform to urban, gaining a central role in future. (2 Offer a systemic approach to land-use transitions generating what we call spatial memory, where land use change is often unpredictable over space, but becomes evident in a graph theory

  10. Land Use, climate change and BIOdiversity in cultural landscapes (LUBIO): Assessing feedbacks and promoting land-use strategies towards a viable future

    Science.gov (United States)

    Dullinger, Iwona; Bohner, Andreas; Dullinger, Stefan; Essl, Franz; Gaube, Veronika; Haberl, Helmut; Mayer, Andreas; Plutzar, Christoph; Remesch, Alexander

    2016-04-01

    Land-use and climate change are important, pervasive drivers of global environmental change and pose major threats to global biodiversity. Research to date has mostly focused either on land-use change or on climate change, but rarely on the interactions between both drivers, even though it is expected that systemic feedbacks between changes in climate and land use will have important effects on biodiversity. In particular, climate change will not only alter the pool of plant and animal species capable of thriving in a specific area, it will also force land owners to reconsider their land use decisions. Such changes in land-use practices may have major additional effects on local and regional species composition and abundance. In LUBIO, we will explore the anticipated systemic feedbacks between (1) climate change, (2) land owner's decisions on land use, (3) land-use change, and (4) changes in biodiversity patterns during the coming decades in a regional context which integrates a broad range of land use practices and intensity gradients. To achieve this goal, an integrated socioecological model will be designed and implemented, consisting of three principal components: (1) an agent based model (ABM) that simulates decisions of important actors, (2) a spatially explicit GIS model that translates these decisions into changes in land cover and land use patterns, and (3) a species distribution model (SDM) that calculates changes in biodiversity patterns following from both changes in climate and the land use decisions as simulated in the ABM. Upon integration of these three components, the coupled socioecological model will be used to generate scenarios of future land-use decisions of landowners under climate change and, eventually, the combined effects of climate and land use changes on biodiversity. Model development of the ABM will be supported by a participatory process intended to collect regional and expert knowledge through a series of expert interviews, a series

  11. Corroborating the Land Use Change as Primary Determinant of Air Quality Degradation in a Concentric City

    Directory of Open Access Journals (Sweden)

    Ariva Sugandi Permana

    2015-05-01

    Full Text Available Bandung City is characterized by concentric land use pattern as found in many naturally grown cities. It radiates from mixed commercial areas in the center to low density residential areas in the periphery. This pattern generates significant traffic volume towards city center. The gener-ated traffic releases emissions and degrades urban air quality since fossil fuel is predominantly used by vehicles in Bandung. In the absence of air polluting industries as well as construction and demolition activities, traffic load generated by land use changes is the only major contribu-tor to air quality degradation in the city. The land use change can therefore be seen as primary determinant of air pollution in Bandung. This study analyses land use changes and its impacts on traffic pattern and air quality. Multivariate correlation between traffic load and land use changes is employed as tool to substantiate the proposition. Relationships between the degree of chang-es in land use, as reflected in traffic loads, and the quantity of two principal air pollutants, namely SO2 and HC are also established to validate the argument. The result of analysis sub-stantiates the correlation between land use changes and air quality degradation.

  12. Land use and land cover change based on historical space-time model

    Science.gov (United States)

    Sun, Qiong; Zhang, Chi; Liu, Min; Zhang, Yongjing

    2016-09-01

    Land use and cover change is a leading edge topic in the current research field of global environmental changes and case study of typical areas is an important approach understanding global environmental changes. Taking the Qiantang River (Zhejiang, China) as an example, this study explores automatic classification of land use using remote sensing technology and analyzes historical space-time change by remote sensing monitoring. This study combines spectral angle mapping (SAM) with multi-source information and creates a convenient and efficient high-precision land use computer automatic classification method which meets the application requirements and is suitable for complex landform of the studied area. This work analyzes the histological space-time characteristics of land use and cover change in the Qiantang River basin in 2001, 2007 and 2014, in order to (i) verify the feasibility of studying land use change with remote sensing technology, (ii) accurately understand the change of land use and cover as well as historical space-time evolution trend, (iii) provide a realistic basis for the sustainable development of the Qiantang River basin and (iv) provide a strong information support and new research method for optimizing the Qiantang River land use structure and achieving optimal allocation of land resources and scientific management.

  13. Monitoring Spatiotemporal Changes of Heat Island in Babol City due to Land Use Changes

    Science.gov (United States)

    Alavi Panah, S. K.; Kiavarz Mogaddam, M.; Karimi Firozjaei, M.

    2017-09-01

    Urban heat island is one of the most vital environmental risks in urban areas. The advent of remote sensing technology provides better visibility due to the integrated view, low-cost, fast and effective way to study and monitor environmental and humanistic changes. The aim of this study is a spatiotemporal evaluation of land use changes and the heat island in the time period of 1985-2015 for the studied area in the city of Babol. For this purpose, multi-temporal Landsat images were used in this study. For calculating the land surface temperature (LST), single-channel and maximum likelihood algorithms were used, to classify Images. Therefore, land use changes and LST were examined, and thereby the relationship between land-use changes was analyzed with the normalized LST. By using the average and standard deviation of normalized thermal images, the area was divided into five temperature categories, inter alia, very low, low, medium, high and very high and then, the heat island changes in the studied time period were investigated. The results indicate that land use changes for built-up lands increased by 92%, and a noticeable decrease was observed for agricultural lands. The Built-up land changes trend has direct relation with the trend of normalized surface temperature changes. Low and very low-temperature categories which follow a decreasing trend, are related to lands far away from the city. Also, high and very high-temperature categories whose areas increase annually, are adjacent to the city center and exit ways of the town. The results emphasize on the importance of attention of urban planners and managers to the urban heat island as an environmental risk.

  14. MONITORING SPATIOTEMPORAL CHANGES OF HEAT ISLAND IN BABOL CITY DUE TO LAND USE CHANGES

    Directory of Open Access Journals (Sweden)

    S. K. Alavi Panah

    2017-09-01

    Full Text Available Urban heat island is one of the most vital environmental risks in urban areas. The advent of remote sensing technology provides better visibility due to the integrated view, low-cost, fast and effective way to study and monitor environmental and humanistic changes. The aim of this study is a spatiotemporal evaluation of land use changes and the heat island in the time period of 1985-2015 for the studied area in the city of Babol. For this purpose, multi-temporal Landsat images were used in this study. For calculating the land surface temperature (LST, single-channel and maximum likelihood algorithms were used, to classify Images. Therefore, land use changes and LST were examined, and thereby the relationship between land-use changes was analyzed with the normalized LST. By using the average and standard deviation of normalized thermal images, the area was divided into five temperature categories, inter alia, very low, low, medium, high and very high and then, the heat island changes in the studied time period were investigated. The results indicate that land use changes for built-up lands increased by 92%, and a noticeable decrease was observed for agricultural lands. The Built-up land changes trend has direct relation with the trend of normalized surface temperature changes. Low and very low-temperature categories which follow a decreasing trend, are related to lands far away from the city. Also, high and very high-temperature categories whose areas increase annually, are adjacent to the city center and exit ways of the town. The results emphasize on the importance of attention of urban planners and managers to the urban heat island as an environmental risk.

  15. Transient simulations of historical climate change including interactive carbon emissions from land-use change.

    Science.gov (United States)

    Matveev, A.; Matthews, H. D.

    2009-04-01

    Carbon fluxes from land conversion are among the most uncertain variables in our understanding of the contemporary carbon cycle, which limits our ability to estimate both the total human contribution to current climate forcing and the net effect of terrestrial biosphere changes on atmospheric CO2 increases. The current generation of coupled climate-carbon models have made significant progress in simulating the coupled climate and carbon cycle response to anthropogenic CO2 emissions, but do not typically include land-use change as a dynamic component of the simulation. In this work we have incorporated a book-keeping land-use carbon accounting model into the University of Victoria Earth System Climate Model (UVic ESCM), and intermediate-complexity coupled climate-carbon model. The terrestrial component of the UVic ESCM allows an aerial competition of five plant functional types (PFTs) in response to climatic conditions and area availability, and tracks the associated changes in affected carbon pools. In order to model CO2 emissions from land conversion in the terrestrial component of the model, we calculate the allocation of carbon to short and long-lived wood products following specified land-cover change, and use varying decay timescales to estimate CO2 emissions. We use recently available spatial datasets of both crop and pasture distributions to drive a series of transient simulations and estimate the net contribution of human land-use change to historical carbon emissions and climate change.

  16. Land Use Pattern, Climate Change, and Its Implication for Food ...

    African Journals Online (AJOL)

    While Ethiopia has always suffered from climatic variability like droughts and consequently food shortage and famine, climate change is set to make the lives of the poorest even harder. Climate change has the potential to adversely affect net farm revenues of small holders with increasing land fragmentation due to ...

  17. A dampened land use change climate response towards the tropics

    NARCIS (Netherlands)

    Molen, van der M.K.; Hurk, van den B.J.J.M.; Hazeleger, W.

    2011-01-01

    In climate simulations we find a pronounced meridional (equator to pole) gradient of climate response to land cover change. Climate response approaches zero in the tropics, and increases towards the poles. The meridional gradient in climate response to land cover change results from damping

  18. Simulated response of water quality in public supply wells to land use change

    Science.gov (United States)

    McMahon, P. B.; Burow, K. R.; Kauffman, L. J.; Eberts, S. M.; BöHlke, J. K.; Gurdak, J. J.

    2008-07-01

    Understanding how changes in land use affect water quality of public supply wells (PSW) is important because of the strong influence of land use on water quality, the rapid pace at which changes in land use are occurring in some parts of the world, and the large contribution of groundwater to the global water supply. In this study, groundwater flow models incorporating particle tracking and reaction were used to analyze the response of water quality in PSW to land use change in four communities: Modesto, California (Central Valley aquifer); York, Nebraska (High Plains aquifer); Woodbury, Connecticut (Glacial aquifer); and Tampa, Florida (Floridan aquifer). The water quality response to measured and hypothetical land use change was dependent on age distributions of water captured by the wells and on the temporal and spatial variability of land use in the area contributing recharge to the wells. Age distributions of water captured by the PSW spanned about 20 years at Woodbury and >1,000 years at Modesto and York, and the amount of water <50 years old captured by the PSW ranged from 30% at York to 100% at Woodbury. Short-circuit pathways in some PSW contributing areas, such as long irrigation well screens that crossed multiple geologic layers (York) and karst conduits (Tampa), affected age distributions by allowing relatively rapid movement of young water to those well screens. The spatial component of land use change was important because the complex distribution of particle travel times within the contributing areas strongly influenced contaminant arrival times and degradation reaction progress. Results from this study show that timescales for change in the quality of water from PSW could be on the order of years to centuries for land use changes that occur over days to decades, which could have implications for source water protection strategies that rely on land use change to achieve water quality objectives.

  19. The Spatial Changes of Land Use in the Bucharest Metropolitan Area 1970s – 2000s

    OpenAIRE

    Gabriel Simion

    2010-01-01

    The article explore the dimension of spatial changes of land use in the Bucharest Metropolitan Area (BMA) over the past forty years. Using GIS-based land use data sets of the years 1970, 1990 and 2000, combining with statistical data, we attempted to quantify the spatial pattern of land use changes in the BMA. Our findings indicate that most significantly changes occurred with arable lands that have been reduced from 77% of total metropolitan area in 1970 to 71.3% in 2000 and in same time th...

  20. Role of Ethanol Plants in Dakotas’ Land Use Change: Analysis Using Remotely Sensed Data

    OpenAIRE

    Arora, Gaurav; Wolter, Peter T.; Feng, Hongli; Hennessy, David A.

    2015-01-01

    North and South Dakota have experienced rapid land-use changes in the past decade. Recent studies have shown that these land-use changes are mainly characterized by conversions of grasslands to crop production, especially corn and soybeans. Approximately 271,000 hectares of grasslands were lost to corn and soy production in 2006-2011 period, almost seven times the losses in 1989-2003. The implications of these changing land-uses range from reduced biodiversity and loss of habitat for waterfow...

  1. LAND USE CHANGE DYNAMICS IN THE UPPER AND MIDDLE RIVER BASIN OF THE STREI VALLEY

    Directory of Open Access Journals (Sweden)

    Ştefania MANEA

    2010-07-01

    Full Text Available Land use change assessment is an interdisciplinary approach, and also, a “key factor” in environmental impact identification caused by anthropogenic activity. In this respect, cartographic materials from three distinct periods were used which allowed data base construction and a staged analysis of the land use change taking into consideration thefactors which triggered the conversions. On the maps obtained, the rates of change were calculated and the areas, where the same land use persists for more than 200 years, were identified.

  2. A dampened land use change climate response towards the tropics

    Energy Technology Data Exchange (ETDEWEB)

    Molen, M.K. van der [Royal Netherlands Meteorological Institute, De Bilt (Netherlands); Wageningen University and Research Centre (WUR), Department of Meteorology and Air Quality, Wageningen (Netherlands); Hurk, B.J.J.M. van den; Hazeleger, W. [Royal Netherlands Meteorological Institute, De Bilt (Netherlands)

    2011-11-15

    In climate simulations we find a pronounced meridional (equator to pole) gradient of climate response to land cover change. Climate response approaches zero in the tropics, and increases towards the poles. The meridional gradient in climate response to land cover change results from damping feedbacks in the tropics, rather than from polar amplification. The main cause for the damping in the tropics is the decrease in cloud cover after deforestation, resulting in increased incoming radiation at the surface and a lower planetary albedo, both counteracting the increase in surface albedo with deforestation. In our simulations, deforestation was also associated with a decrease in sensible heat flux but not a clear signal in evaporation. Meridional differences in climate response have implications for attribution of observed climate change, as well as for climate change mitigation strategies. (orig.)

  3. Scenarios Simulation of Spatio-Temporal Land Use Changes for Exploring Sustainable Management Strategies

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2018-03-01

    Full Text Available Land use and land cover change have received considerable attention from global researchers in recent decades. The conflicts between different development strategies for land uses have become a problem that urgently needs to be solved, especially in those regions with a fragile ecological environment. The development of scenario simulations is essential in order to highlight possible alternative pathways for the future under the backgrounds of urbanization, economic growth and ecological protection. This study simulated land use changes for Tekes in 2020 with the Conversion of Land Use and its Effects at Small regional extent (CLUE-S model under a ‘business as usual’ scenario, cropland protection scenario, ecological security scenario, and artificial modification scenario. The results indicated that the spatial patterns of the land use types were explained well by the environment variables, and the selected models had a satisfactory accuracy in this study. The requirements and the patterns were quite different owing to the variation of the major objectives of the four scenarios. In addition to the constraint rules of the land use transformation, the hot point for land use change was its spatial coherency. Areas near to an existing land use type were more likely to transform to that type than those farther away. The increased cropland and urban land were mainly located around the current cropland and urban land while forests and grassland were more likely to occur in places with flat terrain and good hydrological conditions. The results could contribute to better insight into the relationships between land use changes and their driving factors and provide a scientific basis for regional management strategies and sustainable land use development.

  4. Emissions of carbon from land use change in sub-Saharan Africa

    Science.gov (United States)

    Houghton, R. A.; Hackler, J. L.

    2006-06-01

    Previous estimates of the flux of carbon from land use change in sub-Saharan Africa have been based on highly aggregated data and have ignored important categories of land use. To improve these estimates, we divided the region into four subregions (east, west, central, and southern Africa), each with six types of natural vegetation and five types of land use (permanent crops, pastures, shifting cultivation, industrial wood harvest, and tree plantations). We reconstructed rates of land use change and rates of wood harvest from country-level statistics reported by the Food and Agriculture Organization (FAO) (1961-2000) and extrapolated the rates from 1961 to 1850 on the basis of qualitative histories of demography, economy, and land use. We used a bookkeeping model to calculate the annual flux of carbon associated with these changes in land use. Country-level estimates of average forest biomass from the FAO, together with changes in biomass calculated from the reconstructed rates of land use change, constrained the average biomass of forests in 1850. Comparison of potential (predisturbance) forest areas with the areas present in 1850 and 2000 suggests that 60% of Africa's forests were lost before 1850 and an additional 10% lost in the last 150 years. The annual net flux of carbon from changes in land use was probably small and variable before the early 1900s but increased to a source of 0.3 ± 0.2 PgC/yr by the end of the century. In the 1990s the source was equivalent to about 15% of the global net flux of carbon from land use change.

  5. Landscape Ecological Risk Responses to Land Use Change in the Luanhe River Basin, China

    Directory of Open Access Journals (Sweden)

    Ying Li

    2015-12-01

    Full Text Available Land use change has large effects on natural ecosystems, which is considered to be the main factor in eco-environment change. We analyzed the future characters of land use change by the CLUE-S model and explored landscape ecological risk responses to land use change by the landscape ecological risk index method. Using the Luanhe River Basin as a case study, we simulated future land use change from 2010 to 2030 under 3 scenarios (i.e., trend, high economic growth, and ecological security, and identified the hotspots of land use change. Afterward, we quantitatively investigated the degree of land use development and landscape ecological risk patterns that have occured since 2000 and that are expected to occur until 2030. Results revealed that, under the three scenarios, construction land and forest are expanding mainly at the expense of agriculture land and grassland. The hotspots of land use change are located in the vicinity of Shuangluan and Shuangqiao District of Chengde City in the midstream of the Luanhe River Basin, where urbanization has been strong since 2000 and is projected to continue that way until 2030. During this time period, hotspots of land use development have been gradually transferring from the downstream to the midstream since 2000 and, again, is expected to continue that way until 2030, which will impact the spatial distribution of landscape ecological risk. We found that the landscape ecological risk of the entire basin has shown a negative trend. However, a few areas still have serious ecological risk, which are mainly located in the east of upstream (Duolun County and Weichang County, the middle region (Shuangluan and Shuangqiao District, Chengde County, and Xinglong County, and the downstream (Qinglong County. These can provide key information for land use management, and for helping to prepare future eco-environmental policies in the Luanhe River Basin.

  6. Local understanding of forest conservation in land use change dynamics

    DEFF Research Database (Denmark)

    Shaleh, Muhammad Adha; Guth, Miriam Karen; Rahman, Syed Ajijur

    2016-01-01

    Forest (SEPPSF), Malaysia. Nine in-depth interviews were conducted with Orang Asli Jakun living in SEPPSF using open-ended questions. Local communities have positive perspectives toward the forest conservation program, despite massive environmental changes in their living landscape. This study suggests......The success of local forest conservation program depends on a critical appreciation of local communities. Based on this understanding, the present study aims to explore people’s perspective of forest conservation in a context of changes in their living landscape at South East Pahang Peat Swamp...

  7. Evaluation of Landscape Impacts and Land Use Change: a Tuscan Case Study for CAP Reform Scenarios

    Directory of Open Access Journals (Sweden)

    Iacopo Bernetti

    2010-07-01

    Full Text Available The study uses information from different sources and on different scales in an integrated set of models in order to analyze possible land use change scenarios arising in response to CAP reform. Five main steps were followed: (1 analysis of past land use changes, (2 multivariate analysis of future land use changes using a neural network time series forecast model (Multi-Layer Perceptron Method, (3 modelization of land use change demand (Markovian Chains Method, (4 allocation of the demand to define transition localization, (5 definition of policy scenarios. The final stage is the comparison of CAP scenarios using a multicriteria decision making approach, in order to supply valuable information to policy makers regarding the possible local effects of key direction changes in CAP.

  8. Land use and climate change adaptation strategies in Kenya

    NARCIS (Netherlands)

    Adimo, A.O.; Njoroge, J.B.; Claessens, L.F.G.; Wamocho, L.S.

    2012-01-01

    Climate variability and change mitigation and adaptation policies need to prioritize land users needs at local level because it is at this level that impact is felt most. In order to address the challenge of socio-economic and unique regional geographical setting, a customized methodological

  9. Change effects in the land use about the mineral clay

    International Nuclear Information System (INIS)

    Cespedes Payret, C.; Gutierrez, O; Panario, D.; Pineiro, G

    2012-01-01

    The Pampas land changes during the Quaternary, left their mark on the mineralogy of soil clays. This work is oriented to compare the mineralogical composition of the clays and the value of potassium in an eucalyptus forestation. These results show that the mineralogical illite alteration is the cause of its destruction. This clay is the main reservoir of potassium for the agricultural soils

  10. The effect of land use change to maximum and minimum discharge in Cikapundung River Basin

    Science.gov (United States)

    Kuntoro, Arno Adi; Putro, Anton Winarto; Kusuma, M. Syahril B.; Natasaputra, Suardi

    2017-11-01

    Land use change are become issues for many river basin in the world, including Cikapundung River Basin in West Java. Cikapundung River is one of the main water sources of Bandung City water supply system. In the other hand, as one of the tributaries of Citarum River, Cikapundung also contributes to flooding in the Southern part of Bandung. Therefore, it is important to analyze the effect of land use change on Cikapundung river discharge, to maintain the reliability of water supply system and to minimize flooding in Bandung Basin. Land use map of Cikapundung River in 2009 shows that residential area (49.7%) and mixed farming (42.6%), are the most dominant land use type, while dry agriculture (19.4%) and forest (21.8%) cover the rest. The effect of land use change in Cikapundung River Basin is simulated by using Hydrological Simulation Program FORTRAN (HSPF) through 3 land use change scenarios: extreme, optimum, and existing. By using the calibrated parameters, simulation of the extreme land use change scenario with the decrease of forest area by 77.7% and increase of developed area by 57.0% from the existing condition resulted in increase of Qmax/Qmin ratio from 5.24 to 6.10. Meanwhile, simulation of the optimum land use change scenario with the expansion of forest area by 75.26% from the existing condition resulted in decrease of Qmax/Qmin ratio from 5.24 to 4.14. Although Qmax/Qmin ratio of Cikapundung is still relatively small, but the simulation shows the important of water resources analysis in providing river health indicator, as input for land use planning.

  11. Effects of future land use and ecosystem changes on boundary-layer meteorology and air quality

    Science.gov (United States)

    Tai, A. P. K.; Wang, L.; Sadeke, M.

    2017-12-01

    Land vegetation plays key roles shaping boundary-layer meteorology and air quality via various pathways. Vegetation can directly affect surface ozone via dry deposition and biogenic emissions of volatile organic compounds (VOCs). Transpiration from land plants can also influence surface temperature, soil moisture and boundary-layer mixing depth, thereby indirectly affecting surface ozone. Future changes in the distribution, density and physiology of vegetation are therefore expected to have major ramifications for surface ozone air quality. In our study, we examine two aspects of potential vegetation changes using the Community Earth System Model (CESM) in the fully coupled land-atmosphere configuration, and evaluate their implications on meteorology and air quality: 1) land use change, which alters the distribution of plant functional types and total leaf density; and 2) ozone damage on vegetation, which alters leaf density and physiology (e.g., stomatal resistance). We find that, following the RCP8.5 scenario for 2050, global cropland expansion induces only minor changes in surface ozone in tropical and subtropical regions, but statistically significant changes by up to +4 ppbv in midlatitude North America and East Asia, mostly due to higher surface temperature that enhances biogenic VOC emissions, and reduced dry deposition to a lesser degree. These changes are in turn to driven mostly by meteorological changes that include a shift from latent to sensible heat in the surface energy balance and reduced soil moisture, reflecting not only local responses but also a northward expansion of the Hadley Cell. On the other hand, ozone damage on vegetation driven by rising anthropogenic emissions is shown to induce a further enhancement of ozone by up to +6 ppbv in midlatitude regions by 2050. This reflects a strong localized positive feedback, with severe ozone damage in polluted regions generally inducing stomatal closure, which in turn reduces transpiration, increases

  12. The effects of land use change and precipitation change on direct runoff in Wei River watershed, China.

    Science.gov (United States)

    Dong, Leihua; Xiong, Lihua; Lall, Upmanu; Wang, Jiwu

    2015-01-01

    The principles and degrees to which land use change and climate change affect direct runoff generation are distinctive. In this paper, based on the MODIS data of land use in 1992 and 2003, the impacts of land use and climate change are explored using the Soil Conservation Service Curve Number (SCS-CN) method under two defined scenarios. In the first scenario, the precipitation is assumed to be constant, and thus the consequence of land use change could be evaluated. In the second scenario, the condition of land use is assumed to be constant, so the influence only induced by climate change could be assessed. Combining the conclusions of two scenarios, the effects of land use and climate change on direct runoff volume can be separated. At last, it is concluded: for the study basin, the land use types which have the greatest effect on direct runoff generation are agricultural land and water body. For the big sub basins, the effect of land use change is generally larger than that of climate change; for middle and small sub basins, most of them suffer more from land use change than from climate change.

  13. Land use change in China: implication for human-environmental interactions

    Science.gov (United States)

    cui, Xuefeng

    2013-04-01

    China's land use has undergone significant changes in history due to the continuous transformations caused by natural and human factors. This paper will review the history of land use changes in China during the past 300 years to identify the major transition periods and discuss the implications for environmental management. Population changes are found to be the primary driving factor in cropland expansion and deforestation in history for a long period. In 1950s, after the foundation of the Republic of China, all land use types experience a huge transition showing the determination of socio-economic policies in modern time after agricultural intensifications. Several current environmental policy in China will also be discussed to explore the effect of policy on land use changes.

  14. Estimating land use / land cover changes in Denmark from 1990 - 2012

    DEFF Research Database (Denmark)

    Levin, Gregor; Kastrup Blemmer, Morten; Gyldenkærne, Steen

    According to the article 3(4) of the Kyoto Protocol, Denmark is obliged to document sequestration and emission of carbon dioxide from land use and land cover and changes in these. This report documents and describes applied data end developed methods aiming at estimating amounts and changes in land...... use and land cover for Denmark for since 1990. Estimation of land use and land cover categories and changes in these is predominantly based on existing categorical (i.e. pre-classified) geographical information. Estimations are elaborated for the period from 1990 to 2005, from 2005 to 2011 and from...... 2011 to 2012. Due to limited availability of historical spatially explicit information, estimations of change in land use and land cover from 1990 up to 2011 do, to some degree, involve decisions based on expert knowledge. Due to a significant increase in the availability of detailed spatially specific...

  15. Soil quality attributes induced by land use changes in the Fincha'a ...

    African Journals Online (AJOL)

    Soil quality attributes induced by land use changes in the Fincha'a ... from the upstream to the downstream irrigated land by water soil erosion. ... The main degradation process overcome the study area was waterlogging and soil compaction.

  16. land use changes and its effects on the provision of social facilities

    African Journals Online (AJOL)

    Osondu

    2013-05-07

    May 7, 2013 ... inadequate compared to the existing population. Residents ... Keywords: Ghana, Land, Land Use Changes, Social Facilities, Traditional Authorities, Kumasi Metropolis. ..... interviewed had the belief that once they own the.

  17. Scenario Simulation and the Prediction of Land Use and Land Cover Change in Beijing, China

    Directory of Open Access Journals (Sweden)

    Huiran Han

    2015-04-01

    Full Text Available Land use and land cover (LULC models are essential for analyzing LULC change and predicting land use requirements and are valuable for guiding reasonable land use planning and management. However, each LULC model has its own advantages and constraints. In this paper, we explore the characteristics of LULC change and simulate future land use demand by combining a CLUE-S model with a Markov model to deal with some shortcomings of existing LULC models. Using Beijing as a case study, we describe the related driving factors from land-adaptive variables, regional spatial variables and socio-economic variables and then simulate future land use scenarios from 2010 to 2020, which include a development scenario (natural development and rapid development and protection scenarios (ecological and cultivated land protection. The results indicate good consistency between predicted results and actual land use situations according to a Kappa statistic. The conversion of cultivated land to urban built-up land will form the primary features of LULC change in the future. The prediction for land use demand shows the differences under different scenarios. At higher elevations, the geographical environment limits the expansion of urban built-up land, but the conversion of cultivated land to built-up land in mountainous areas will be more prevalent by 2020; Beijing, however, still faces the most pressure in terms of ecological and cultivated land protection.

  18. Significance of telecoupling for exploration of land use change

    DEFF Research Database (Denmark)

    Eakin, Hallie; Defries, Ruth; Kerr, Suzi

    2014-01-01

    and institutional change in telecoupled interactions. The social, institutional, and ecological processes and conditions through which telecoupling emerges are described. The analysis of these relationships in land science demands both integrative and diverse epistemological perspectives and methods. Such analyses......Land systems are increasingly infl uenced by distal connections: the externalities and unintended consequences of social and ecological processes which occur in distant locations, and the feedback mechanisms that lead to new institutional developments and governance arrangements. Economic...... globalization and urbanization accentuate these novel telecoupling relationships. The prevalence of telecoupling in land systems demands new approaches to research and analysis in land science. This chapter presents a working defi nition of a telecoupled system, emphasizing the role of governance...

  19. Spaceborne Radar for Mapping Forest and Land Use Changes

    DEFF Research Database (Denmark)

    Joshi, Neha Pankaj

    Degradation (REDD+). The implementation and effectiveness of such mechanisms relies partially on continuous observations of forests using satellite technology and partially on ground-based measurements of forest aboveground volume/biomass (AGV/AGB), carbon density and changes therein. Together, these means...... of forest monitoring enable the development of policies and measures to alter current trends in global forest and biodiversity loss. This thesis investigates the use of long wavelength (~23 cm, L-band) spaceborne radar, which has all-weather and canopy-penetration capabilities, acquired by the Advanced Land...... Observing Satellite (ALOS) for forest monitoring. Using a combination of local expert knowledge, plot inventories, and data from lidar and optical sensors, it aims to understand (1) whether forest disturbance dynamics may be detected with radar, and (2) what physical and macroecological properties influence...

  20. THE EFFECT OF LAND USE CHANGE ON LAND SURFACE TEMPERATURE IN THE NETHERLANDS

    Directory of Open Access Journals (Sweden)

    S. Youneszadeh

    2015-12-01

    Full Text Available The Netherlands is a small country with a relatively large population which experienced a rapid rate of land use changes from 2000 to 2008 years due to the industrialization and population increase. Land use change is especially related to the urban expansion and open agriculture reduction due to the enhanced economic growth. This research reports an investigation into the application of remote sensing and geographical information system (GIS in combination with statistical methods to provide a quantitative information on the effect of land use change on the land surface temperature. In this study, remote sensing techniques were used to retrieve the land surface temperature (LST by using the MODIS Terra (MOD11A2 Satellite imagery product. As land use change alters the thermal environment, the land surface temperature (LST could be a proper change indicator to show the thermal changes in relation with land use changes. The Geographical information system was further applied to extract the mean yearly land surface temperature (LST for each land use type and each province in the 2003, 2006 and 2008 years, by using the zonal statistic techniques. The results show that, the inland water and offshore area has the highest night land surface temperature (LST. Furthermore, the Zued (South-Holland province has the highest night LST value in the 2003, 2006 and 2008 years. The result of this research will be helpful tool for urban planners and environmental scientists by providing the critical information about the land surface temperature.

  1. Aerial and surface rivers: downwind impacts on water availability from land use changes in Amazonia

    Science.gov (United States)

    Weng, Wei; Luedeke, Matthias K. B.; Zemp, Delphine C.; Lakes, Tobia; Kropp, Juergen P.

    2018-02-01

    The abundant evapotranspiration provided by the Amazon forests is an important component of the hydrological cycle, both regionally and globally. Since the last century, deforestation and expanding agricultural activities have been changing the ecosystem and its provision of moisture to the atmosphere. However, it remains uncertain how the ongoing land use change will influence rainfall, runoff, and water availability as findings from previous studies differ. Using moisture tracking experiments based on observational data, we provide a spatially detailed analysis recognizing potential teleconnection between source and sink regions of atmospheric moisture. We apply land use scenarios in upwind moisture sources and quantify the corresponding rainfall and runoff changes in downwind moisture sinks. We find spatially varying responses of water regimes to land use changes, which may explain the diverse results from previous studies. Parts of the Peruvian Amazon and western Bolivia are identified as the sink areas most sensitive to land use change in the Amazon and we highlight the current water stress by Amazonian land use change on these areas in terms of the water availability. Furthermore, we also identify the influential source areas where land use change may considerably reduce a given target sink's water reception (from our example of the Ucayali River basin outlet, rainfall by 5-12 % and runoff by 19-50 % according to scenarios). Sensitive sinks and influential sources are therefore suggested as hotspots for achieving sustainable land-water management.

  2. A Framework for the Land Use Change Dynamics Model Compatible with RCMs

    Directory of Open Access Journals (Sweden)

    Xiangzheng Deng

    2013-01-01

    Full Text Available A framework of land use change dynamics (LUCD model compatible with regional climate models (RCMs is introduced in this paper. The LUCD model can be subdivided into three modules, namely, economic module, vegetation change module, and agent-based module. The economic module is capable of estimating the demand of land use changes in economic activities maximizing economic utility. A computable general equilibrium (CGE modeling framework is introduced and an approach to introduce land as a production factor into the economic module is proposed. The vegetation change module provides the probability of vegetation change driven by climate change. The agroecological zone (AEZ model is supposed to be the optimal option for constructing the vegetation change module. The agent-based module identifies whether the land use change demand and vegetation change can be realized and provides the land use change simulation results which are the underlying surfaces needed by RCM. By importing the RCMs' simulation results of climate change and providing the simulation results of land use change for RCMs, the LUCD model would be compatible with RCMs. The coupled simulation system composed of LUCD and RCMs can be very effective in simulating the land surface processes and their changing patterns.

  3. LAND USE LAND COVER CHANGE IMPACT ON WATER RESOURCES - A REVIEW

    OpenAIRE

    Pranav Sharma, Gaurang Gupta, Paritosh Prabhakar, Sheetal Tiwari, Pankaj Kathait, Yash Pathak; Nitin Mishra; Sanjeev Kumar

    2017-01-01

    The land use change has generally occurred locally, regionally and worldwide over the last few decades and will carry on in the future as well. The increment in urbanization has a major impact on groundwater and it is major concern over the few years to those who are involved in groundwater studies. The enlargement of the urbanization area results in decrease in infiltration, which affect the groundwater recharge and storage. The land use change has to be evaluated properly using conventional...

  4. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition

    OpenAIRE

    Allan, Eric; Manning, Pete; et al

    2015-01-01

    Global change, especially land-use intensification, affects human well-being by impacting the deliv-ery of multiple ecosystem services (multifunctionality). However, whether biodiversity loss is amajor component of global change effects on multifunctionality in real-world ecosystems, as inexperimental ones, remains unclear. Therefore, we assessed biodiversity, functional compositionand 14 ecosystem services on 150 agricultural grasslands differing in land-use intensity. We alsointroduce five mu...

  5. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition.

    OpenAIRE

    Allan Eric; Manning Pete; Alt Fabian; Binkenstein Julia; Blaser Stefan; Blüthgen Nico; Böhm Stefan; Grassein Fabrice; Hölzel Norbert; Klaus Valentin H.; Kleinebecker Till; Morrys Elisabeth Kathryn; Oelmann Yvonne; Prati Daniel; Renner Sven C.

    2015-01-01

    Abstract Global change, especially land?use intensification, affects human well?being by impacting the delivery of multiple ecosystem services (multifunctionality). However, whether biodiversity loss is a major component of global change effects on multifunctionality in real?world ecosystems, as in experimental ones, remains unclear. Therefore, we assessed biodiversity, functional composition and 14 ecosystem services on 150 agricultural grasslands differing in land?use intensity. We also int...

  6. Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) Users’ Manual and Technical Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Qin, Zhangcai [Argonne National Lab. (ANL), Argonne, IL (United States); Mueller, Steffen [Univ. of Illinois, Chicago, IL (United States); Kwon, Ho-young [International Food Policy Research Inst., Washington, DC (United States); Wander, Michelle M. [Univ. of Illinois, Urbana-Champaign, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-12-01

    The Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) calculates carbon emissions from land use change (LUC) for four different ethanol production pathways including corn grain ethanol and cellulosic ethanol from corn stover, Miscanthus, and switchgrass, and a soy biodiesel pathway. This document discusses the version of CCLUB released September 30, 2017 which includes five ethanol LUC scenarios and four soy biodiesel LUC scenarios.

  7. The need for simultaneous evaluation of ecosystem services and land use change

    Science.gov (United States)

    Euliss, Ned H.; Smith, Loren M.; Liu, Shu-Guang; Feng, Min; Mushet, David M.; Auch, Roger F.; Loveland, Thomas R.

    2010-01-01

    We are living in a period of massive global change. This rate of change may be almost without precedent in geologic history (1). Even the most remote areas of the planet are influenced by human activities. Modern landscapes have been highly modified to accommodate a growing human population that the United Nations has forecast to peak at 9.1 billion by 2050. Over this past century, reliance on services from ecosystems has increased significantly and, over past decades, sustainability of our modern, intensively managed ecosystems has been a topic of serious international concern (1). Numerous papers addressing a particular land-use change effect on specific ecosystem services have recently been published. For example, there is currently great interest in increasing biofuel production to achieve energy inde- pendence goals and recent papers have independently focused attention on impacts of land-use change on single ecosystem services such as carbon sequestration (2) and many others (e.g., water availability, biodiversity, pollination). However, land-use change clearly affects myriad ecosystem services simultaneously. Hence, a broader perspective and context is needed to evaluate and understand interrelated affects on multiple ecosystem services, especially as we strive for the goal of sustainably managing global ecosystems. Similarly, land uses affect ecosystem services synergistically; single land-use evaluations may be misleading because the overall impact on an ecosystem is not evaluated. A more holistic approach would provide a means and framework to characterize how land-use change affects provisioning of goods and services of complete ecosystems.

  8. LAND USE CHANGE IN SUBURBAN AREA: A CASE OF MALANG CITY, EAST JAVA PROVINCE

    Directory of Open Access Journals (Sweden)

    Siti Nuurlaily Rukmana

    2016-04-01

    Full Text Available The development of suburban areas of Malang City has developed an expansion of built-up areas between urban and suburban areas. There has been a great phenomenon that mostly occurs along the suburban areas where industrial activities took place. This study aims to determine what factors have influenced the land use change in the suburban areas of Malang City by employing “GeoDa” application. It is one of the Geographical Information System applications that particularly deals with statistical analysis. To achieve this purpose, the objectives are: delineating the study area, analyzing the characteristics of land use change, assessing and analyzing the variable influencing the land use change. The results have shown that the characteristics of land use change, such as population, distance, migration, and occupation transformation are directly proportional to the land use change. It has also been identified that the high level of density is only located in the surrounding areas of industries. From the assessed variables through the statistical model, population (X1, density (X2 and migration (X3 are found as the influencing factors of land use change.

  9. Committed climate change due to historical land use and management: the concept

    Science.gov (United States)

    Freibauer, Annette; Dolman, Han; Don, Axel; Poeplau, Christopher

    2013-04-01

    A significant fraction of the European land surface has changed its land use over the last 50 years. Management practices have changed in the same period in most land use systems. These changes have affected the carbon and greenhouse gas (GHG) balance of the European land surface. Land use intensity, defined here loosely as the degree to which humans interfere with the land, strongly affects GHG emissions. Land use and land management changes suggest that the variability of the carbon balance and of GHG emissions of cultivated land areas in Europe is much more driven by land use history and management than driven by climate. Importantly changes in land use and its management have implications for future GHG emissions, and therefore present a committed climate change, defined as inevitable future additional climate change induced by past human activity. It is one of the key goals of the large-scale integrating research project "GHG-Europe - Greenhouse gas management in European land use systems" to quantify the committed climate change due to legacy effects by land use and management. The project is funded by the European Commission in the 7th framework programme (Grant agreement no.: 244122). This poster will present the conceptual approach taken to reach this goal. (1) First of all we need to proof that at site, or regional level the management effects are larger than climate effects on carbon balance and GHG emissions. Observations from managed sites and regions will serve as empirical basis. Attribution experiments with models based on process understanding are run on managed sites and regions will serve to demonstrate that the observed patterns of the carbon balance and GHG emissions can only be reproduced when land use and management are included as drivers. (2) The legacy of land use changes will be quantified by combining spatially explicit time series of land use changes with response functions of carbon pools. This will allow to separate short-term and

  10. The impact of land use and spatial changes on desertification risk in degraded areas in Thailand

    Directory of Open Access Journals (Sweden)

    Saowanee Wijitkosum

    2016-03-01

    Full Text Available Land use, which relates to land cover, is one of the influential factors associated with desertification risk. A study was conducted on the impact of land use and spatial changes on desertification risk in Huay Sai Royal Development Study Centre in southern Thailand. The study used spatial analysis and the MEDALUS model to investigate the extent of land degradation, land use changes and desertification risk in the study area from 1990 to 2010. The Study examined three groups of factors: soils, climate and human activity to classify the severity of desertification risk. The study findings indicate that most areas (74.4% in the Huay Sai area were at high risk of desertification, and the risk remained high (77.2% in 2010. However, the areas classified as at severe risk of desertification decreased at 4.2% per annum. The study finds that land use changes influenced desertification risk.

  11. Land use, climate parameters and water quality changes at surroundings of Code River, Indonesia

    Science.gov (United States)

    Muryanto; Suntoro; Gunawan, T.; Setyono, P.

    2018-03-01

    Regional development of an area has the potential of adverse impact on land use, vegetation, or green space. The reduction of green open space is known to contribute to global warming. According to the Intergovernmental Panel on Climate Change (IPCC), global warming has become a serious and significant phenomenon in human life. It affects not only ecological environment but also social and cultural environment. Global warming is a rise in global annual temperature due to, one of which, greenhouse gases. The purpose of this research is to determine the effects of land use change on water pollution and climate parameters at Code river. The results showed that Code River is experiencing land use conversion. Rice field was the most extensively reduced land use, by 467.496 ha. Meanwhile, the other land uses, namely plantation, grass, and forest, were reduced by 111.475 ha, 31.218 ha, and 1.307 ha, respectively. The least converted land use was bushed, whose decreased 0.403 ha. The land use conversion in the study area deteriorated the water quality of river, as proven by the increasing trend of COD and BOD from 2012 to 2016. The COD from 2012 to 2016 was 14, 16.6, 18.7, 22.5, and 22.8 ppm, respectively. Meanwhile, the BOD from the same observation years was 6, 7.2, 8.9, 9.3, and 10.3 ppm, respectively.

  12. The effects of climate change and land-use change on demographic rates and population viability.

    Science.gov (United States)

    Selwood, Katherine E; McGeoch, Melodie A; Mac Nally, Ralph

    2015-08-01

    Understanding the processes that lead to species extinctions is vital for lessening pressures on biodiversity. While species diversity, presence and abundance are most commonly used to measure the effects of human pressures, demographic responses give a more proximal indication of how pressures affect population viability and contribute to extinction risk. We reviewed how demographic rates are affected by the major anthropogenic pressures, changed landscape condition caused by human land use, and climate change. We synthesized the results of 147 empirical studies to compare the relative effect size of climate and landscape condition on birth, death, immigration and emigration rates in plant and animal populations. While changed landscape condition is recognized as the major driver of species declines and losses worldwide, we found that, on average, climate variables had equally strong effects on demographic rates in plant and animal populations. This is significant given that the pressures of climate change will continue to intensify in coming decades. The effects of climate change on some populations may be underestimated because changes in climate conditions during critical windows of species life cycles may have disproportionate effects on demographic rates. The combined pressures of land-use change and climate change may result in species declines and extinctions occurring faster than otherwise predicted, particularly if their effects are multiplicative. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  13. The role of land use changes in the distribution of shallow landslides.

    Science.gov (United States)

    Persichillo, Maria Giuseppina; Bordoni, Massimiliano; Meisina, Claudia

    2017-01-01

    The role of land use dynamics on shallow landslide susceptibility remains an unresolved problem. Thus, this work aims to assess the influence of land use changes on shallow landslide susceptibility. Three shallow landslide-prone areas that are representative of peculiar land use settings in the Oltrepò Pavese (North Apennines) are analysed: the Rio Frate, Versa and Alta Val Tidone catchments. These areas were affected by widespread land abandonment and modifications in agricultural practices from 1954 to 2012 and relevant shallow landslide phenomena in 2009, 2013 and 2014. A multi-temporal land use change analysis allows us to evaluate the degree of transformation in the three investigated areas and the influence of these changes on the susceptibility to shallow landslides. The results show that the three catchments were characterised by pronounced land abandonment and important changes in agricultural practices. In particular, abandoned cultivated lands that gradually recovered through natural grasses, shrubs and woods were identified as the land use change classes that were most prone to shallow landslides. Additionally, the negative qualities of the agricultural maintenance practices increased the surface water runoff and consequently intensified erosion processes and instability phenomena. Although the land use was identified as the most important predisposing factor in all the study areas, some cases existed in which the predisposition of certain areas to shallow landslides was influenced by the combined effect of land use changes and the geological conditions, as highlighted by the high susceptibility of slopes that are characterised by adverse local geological (thick soils derived from clayey-marly bedrocks) and geomorphological (slope angle higher than 25°) conditions. Thus, the achieved results are particularly useful to understand the best land conservation strategies to be adopted to reduce instability phenomena and the consequent economic losses in

  14. Synergy between land use and climate change increases future fire risk in Amazon forests

    Science.gov (United States)

    Le Page, Yannick; Morton, Douglas; Hartin, Corinne; Bond-Lamberty, Ben; Cardoso Pereira, José Miguel; Hurtt, George; Asrar, Ghassem

    2017-12-01

    Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactions between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change - Representative Concentration Pathway (RCP) 8.5 - projected understory fires increase in frequency and duration, burning 4-28 times more forest in 2080-2100 than during 1990-2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9-5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.

  15. Impacts of Biofuel-Induced Agricultural Land Use Changes on Watershed Hydrology and Water Quality

    Science.gov (United States)

    Lin, Z.; Zheng, H.

    2015-12-01

    The US Energy Independence and Security Act (EISA) of 2007 has contributed to widespread changes in agricultural land uses. The impact of these land use changes on regional water resources could also be significant. Agricultural land use changes were evaluated for the Red River of the North Basin (RRNB), an international river basin shared by the US and Canada. The influence of the land use changes on spring snowmelt flooding and downstream water quality was also assessed using watershed modeling. The planting areas for corn and soybean in the basin increased by 62% and 18%, while those for spring wheat, forest, and pasture decreased by 30%, 18%, and 50%, from 2006 to 2013. Although the magnitude of spring snowmelt peak flows in the Red River did not change from pre-EISA to post-EISA, our uncertainty analysis of the normalized hydrographs revealed that the downstream streamflows had a greater variability under the post-EISA land use scenario, which may lead to greater uncertainty in predicting spring snowmelt floods in the Red River. Hydrological simulation also showed that the sediment and nutrient loads at the basin's outlet in the US and Canada border increased under the post-EISA land use scenario, on average sediment increasing by 2.6%, TP by 14.1%, nitrate nitrogen by 5.9%, and TN by 9.1%. Potential impacts of the future biofuel crop scenarios on watershed hydrology and water quality in the RRNB were also simulated through integrated economic-hydrologic modeling.

  16. Research on Land Use Changes in Panjin City Basing on Remote Sensing Data

    Science.gov (United States)

    Ding, Hua; Li, Ru Ren; Shuang Sun, Li; Wang, Xin; Liu, Yu Mei

    2018-05-01

    Taking Landsat remote sensing image as the main data source, the research on land use changes in Panjin City in 2005 to 2015 is made with the support of remote sensing platform and GIS platform in this paper; the range of land use changes and change rate are analyzed through the classification of remote sensing image; the dynamic analysis on land changes is made with the help of transfer matrix of land use type; the quantitative calculation on all kinds of dynamic change features of land changes is made by utilizing mathematical model; and the analysis on driving factors of land changes of image is made at last. The research results show that, in recent ten years, the area of cultivated land in Panjin City decreased, the area of vegetation increased, and meanwhile the area of road increased drastically, the settlement place decreased than ever, and water area changed slightly.

  17. Effect of Land Use and Climate Change on Runoff in the Dongjiang Basin of South China

    Directory of Open Access Journals (Sweden)

    Yanhu He

    2013-01-01

    Full Text Available Variability and availability of water resources under changing environment in a regional scale have been hot topics in recent years, due to the vulnerability of water resources associated with social and economic development. In this paper, four subbasins in the Dongjiang basin with a significant land use change were selected as case study. Runoffs of the four subbasins were simulated using the SCS monthly model to identify the quantitative impacts of land use and climate change. The results showed that (1, in the Dongjiang basin, temperature increased significantly, evaporation and sunlight decreased strongly, while precipitation showed a nonsignificant increase; (2 since the 1980s, land uses in the Dongjiang basin have experienced a significant change with a prominent increase in urban areas, a moderate increase in farmlands, and a great decrease in forest areas; (3 the SCS monthly model performed well in the four subbasins giving that the more significant land use change in each subbasin, the more runoff change correspondingly; (4 overall, runoff change was contributed half and half by climate change and human activities, respectively, in all the subbasins, in which about 20%~30% change was contributed by land use change.

  18. Evaluating Impacts of climate and land use changes on streamflow using SWAT and land use models based CESM1-CAM5 Climate scenarios

    Science.gov (United States)

    Lin, Tzu Ping; Lin, Yu Pin; Lien, Wan Yu

    2015-04-01

    Climate change projects have various levels of impacts on hydrological cycles around the world. The impact of climate change and uncertainty of climate projections from general circulation models (GCMs) from the Coupled Model Intercomparison Project (CMIP5) which has been just be released in Taiwan, 2014. Since the streamflow run into ocean directly due to the steep terrain and the rainfall difference between wet and dry seasons is apparent; as a result, the allocation water resource reasonable is very challenge in Taiwan, particularly under climate change. The purpose of this study was to evaluate the impacts of climate and land use changes on a small watershed in Taiwan. The AR5 General Circulation Models(GCM) output data was adopted in this study and was downscaled from the monthly to the daily weather data as the input data of hydrological model such as Soil and Water Assessment Tool (SWAT) model in this study. The spatially explicit land uses change model, the Conservation of Land Use and its Effects at Small regional extent (CLUE-s), was applied to simulate land use scenarios in 2020-2039. Combined climate and land use change scenarios were adopted as input data of the hydrological model, the SWAT model, to estimate the future streamflows. With the increasing precipitation, increasing urban area and decreasing agricultural and grass land, the annual streamflow in the most of twenty-three subbasins were also increased. Besides, due to the increasing rainfall in wet season and decreasing rainfall in dry season, the difference of streamflow between wet season and dry season are also increased. This result indicates a more stringent challenge on the water resource management in future. Therefore, impacts on water resource caused by climate change and land use change should be considered in water resource planning for the Datuan river watershed. Keywords: SWAT, GCM, CLUE-s, streamflow, climate change, land use change

  19. Land-Use Change Modelling in the Upper Blue Nile Basin

    Directory of Open Access Journals (Sweden)

    Seleshi G. Yalew

    2016-08-01

    Full Text Available Land-use and land-cover changes are driving unprecedented changes in ecosystems and environmental processes at different scales. This study was aimed at identifying the potential land-use drivers in the Jedeb catchment of the Abbay basin by combining statistical analysis, field investigation and remote sensing. To do so, a land-use change model was calibrated and evaluated using the SITE (SImulation of Terrestrial Environment modelling framework. SITE is cellular automata based multi-criteria decision analysis framework for simulating land-use conversion based on socio-economic and environmental factors. Past land-use trajectories (1986–2009 were evaluated using a reference Landsat-derived map (agreement of 84%. Results show that major land-use change drivers in the study area were population, slope, livestock and distances from various infrastructures (roads, markets and water. It was also found that farmers seem to increasingly prefer plantations of trees such as Eucalyptus by replacing croplands perhaps mainly due to declining crop yield, soil fertility and climate variability. Potential future trajectory of land-use change was also predicted under a business-as-usual scenario (2009–2025. Results show that agricultural land will continue to expand from 69.5% in 2009 to 77.5% in 2025 in the catchment albeit at a declining rate when compared with the period from 1986 to 2009. Plantation forest will also increase at a much higher rate, mainly at the expense of natural vegetation, agricultural land and grasslands. This study provides critical information to land-use planners and policy makers for a more effective and proactive management in this highland catchment.

  20. An Efficient Graph-based Method for Long-term Land-use Change Statistics

    Directory of Open Access Journals (Sweden)

    Yipeng Zhang

    2015-12-01

    Full Text Available Statistical analysis of land-use change plays an important role in sustainable land management and has received increasing attention from scholars and administrative departments. However, the statistical process involving spatial overlay analysis remains difficult and needs improvement to deal with mass land-use data. In this paper, we introduce a spatio-temporal flow network model to reveal the hidden relational information among spatio-temporal entities. Based on graph theory, the constant condition of saturated multi-commodity flow is derived. A new method based on a network partition technique of spatio-temporal flow network are proposed to optimize the transition statistical process. The effectiveness and efficiency of the proposed method is verified through experiments using land-use data in Hunan from 2009 to 2014. In the comparison among three different land-use change statistical methods, the proposed method exhibits remarkable superiority in efficiency.

  1. Land use compounds habitat losses under projected climate change in a threatened California ecosystem.

    Directory of Open Access Journals (Sweden)

    Erin Coulter Riordan

    Full Text Available Given the rapidly growing human population in mediterranean-climate systems, land use may pose a more immediate threat to biodiversity than climate change this century, yet few studies address the relative future impacts of both drivers. We assess spatial and temporal patterns of projected 21(st century land use and climate change on California sage scrub (CSS, a plant association of considerable diversity and threatened status in the mediterranean-climate California Floristic Province. Using a species distribution modeling approach combined with spatially-explicit land use projections, we model habitat loss for 20 dominant shrub species under unlimited and no dispersal scenarios at two time intervals (early and late century in two ecoregions in California (Central Coast and South Coast. Overall, projected climate change impacts were highly variable across CSS species and heavily dependent on dispersal assumptions. Projected anthropogenic land use drove greater relative habitat losses compared to projected climate change in many species. This pattern was only significant under assumptions of unlimited dispersal, however, where considerable climate-driven habitat gains offset some concurrent climate-driven habitat losses. Additionally, some of the habitat gained with projected climate change overlapped with projected land use. Most species showed potential northern habitat expansion and southern habitat contraction due to projected climate change, resulting in sharply contrasting patterns of impact between Central and South Coast Ecoregions. In the Central Coast, dispersal could play an important role moderating losses from both climate change and land use. In contrast, high geographic overlap in habitat losses driven by projected climate change and projected land use in the South Coast underscores the potential for compounding negative impacts of both drivers. Limiting habitat conversion may be a broadly beneficial strategy under climate change

  2. Implications of land use change in tropical West Africa under global warming

    Science.gov (United States)

    Brücher, Tim; Claussen, Martin

    2015-04-01

    Northern Africa, and the Sahel in particular, are highly vulnerable to climate change, due to strong exposure to increasing temperature, precipitation variability, and population growth. A major link between climate and humans in this region is land use and associated land cover change, mainly where subsistence farming prevails. But how strongly does climate change affect land use and how strongly does land use feeds back into climate change? To which extent may climate-induced water, food and wood shortages exacerbate conflict potential and lead changes in land use and to migration? Estimates of possible changes in African climate vary among the Earth System Models participating in the recent Coupled Model Intercomparison (CMIP5) exercise, except for the region adjacent to the Mediterranean Sea, where a significant decrease of precipitation emerges. While all models agree in a strong temperature increase, rainfall uncertainties for most parts of the Sahara, Sahel, and Sudan are higher. Here we present results of complementary experiments based on extreme and idealized land use change scenarios within a future climate.. We use the MPI-ESM forced with a strong green house gas scenario (RCP8.5) and apply an additional land use forcing by varying largely the intensity and kind of agricultural practice. By these transient experiments (until 2100) we elaborate the additional impact on climate due to strong land use forcing. However, the differences are mostly insignificant. The greenhouse gas caused temperature increase and the high variability in the West African Monsoon rainfall superposes the minor changes in climate due to land use. While simulated climate key variables like precipitation and temperature are not distinguishable from the CMIP5 RCP8.5 results, an additional greening is simulated, when crops are demanded. Crops have lower water usage than pastureland has. This benefits available soil water, which is taken up by the natural vegetation and makes it more

  3. Effects of land-use changes on soil properties : volcano watershed in Quito, Ecuador

    OpenAIRE

    Podwojewski, Pascal; Poulenard, J.; Janeau, Jean-Louis

    2015-01-01

    In the highlands of southern Colombia and northern Ecuador, soils developed on volcanic ash deposits have specific properties: high water retention, high hydraulic conductivity and high carbon (C) contents. The main role of the soils is to regulate the water available for the dense population living in the valleys. Soil properties and land use depend on their altitudes. Any important modification of land-use change has a serious effect on soil properties and consequently the ecosystem propert...

  4. Synergy between land use and climate change increases future risk in Amazon forests

    OpenAIRE

    Le Page, Yannick; Morton, Douglas; Hartin, Corinne; Bond-Lamberty, Ben; Pereira, José Miguel Cardoso; Hurtt, George; Asrar, Ghassem

    2017-01-01

    Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest’s future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climatedriven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and ...

  5. Road building, land use and climate change: prospects for environmental governance in the Amazon

    OpenAIRE

    Perz, Stephen; Brilhante, Silvia; Brown, Foster; Caldas, Marcellus; Ikeda, Santos; Mendoza, Elsa; Overdevest, Christine; Reis, Vera; Reyes, Juan Fernando; Rojas, Daniel; Schmink, Marianne; Souza, Carlos; Walker, Robert

    2008-01-01

    Some coupled land?climate models predict a dieback of Amazon forest during the twenty-first century due to climate change, but human land use in the region has already reduced the forest cover. The causation behind land use is complex, and includes economic, institutional, political and demographic factors. Pre-eminent among these factors is road building, which facilitates human access to natural resources that beget forest fragmentation. While official government road projects have received...

  6. Estimating the impact of land use change on surface energy partition based on the Noah model

    Science.gov (United States)

    Chen, Shaohui; Su, Hongbo; Zhan, Jinyan

    2014-03-01

    It is well known that land use has an important impact on surface energy partition. It is important to study the evolving trend of the partition of sensible heat flux (SHF) and latent heat flux (LHF) from the net radiance (NR) with land use change in the context of regional climate changes. In this paper, we studied the response of energy partition to land use using the Noah model. First, the Noah model simulation results of SHF and LHF between 2003 and 2005 were comprehensively validated using the observation data from the Changbai Mountain Station, the Xilinhot Station, and the Yucheng Station. The study domains represent three different types of land use change: excessive deforestation, grassland degeneration aggravation, and groundwater level decline, respectively. The study period was subsequently extended from 2015 through 2034, using four projected land use maps and forcing data from Princeton (2000-2004). The simulation results show that during the land use conversions, the annual average of LHF drops by 10.7%, rises by 10.1%, and drops by 11.5% for the Changbai Mountain, Inner Mongolia, and Northern China stations, respectively while the annual average of SHF rises by 10.6%, drops by 10.1%, and drops by 11.3% for the three areas.

  7. Land use change and prediction in the Baimahe Basin using GIS and CA-Markov model

    International Nuclear Information System (INIS)

    Wang, Shixu; Zhang, Zulu; Wang, Xue

    2014-01-01

    Using ArcGIS and IDRISI, land use dynamics and Shannon entropy information were applied in this paper to analyze the quantity and structure change in the Baimahe Basin from 1996 to 2008. A CA-Markov model was applied to predict the land use patterns in 2020. Results showed that farmland, forest and construction land are the dominant land use types in the Baimahe Basin. From 1996 to 2008, areas of farmland and forest decreased and other land use types increased, with construction land increasing the most. The prediction results showed that the changes in land use patterns from 2008 to 2020 would be the same with those from 1996 to 2008. Main changes are the transiting out of farmland and forest and the transiting in of construction land. The order degree of the whole basin goes on decreasing. Measures of farmland protection and grain for green projects should be adopted to enhance the stability of land use system in the Baimahe Basin in order to promote regional sustainable development

  8. Changes in forest habitat classes under alternative climate and land-use change scenarios in the northeast and midwest, USA

    Science.gov (United States)

    Brian G. Tavernia; Mark D. Nelson; Michael E. Goerndt; Brian F. Walters; Chris Toney

    2013-01-01

    Large-scale and long-term habitat management plans are needed to maintain the diversity of habitat classes required by wildlife species. Planning efforts would benefit from assessments of potential climate and land-use change effects on habitats. We assessed climate and land-use driven changes in areas of closed- and open-canopy forest across the Northeast and Midwest...

  9. The impact of Land use Change on Water Pollution Index of Kali Madiun Sub-watershed

    Directory of Open Access Journals (Sweden)

    Pranatasari Dyah Susanti

    2017-07-01

    Full Text Available Land use change is one of the effects of population growth and increased human activities. Land use change that overlooked the rule of ecosystem sustainability has a propensity to adversely affect the environment, including the decline of water quality. Kali Madiun is a sub-watershed of Bengawan Solo Watershed that allegedly endured the impacts of land use change. This study aimed to investigate the impacts of land use change on the water quality index of Kali Madiun Sub-watershed. Land use change analysis was done by overlay analysis of spatial data including the maps of land use in 2010 and 2015. Samples were the surface water in the upper, middle and lower part of Kali Madiun Sub-Watershed. Water quality analysis was carried out by comparing the results of water quality parameter assessment based on Government Regulation No. 82 of 2001, while water quality index was figured out by an assessment based on the Decree of the Minister of Environment No. 115 of 2003. The results indicated that during the five years observation, there were land use changes in the upper, middle and lower part of Kali Madiun Sub-watershed. Several parameters increased in 2010 to 2015, namely: TDS, BOD, COD, nitrate, detergents, oils and greases. Pollution index shifted from slightly polluted in 2010 into moderately polluted in 2015. We propose a strategy to solve these problems by the involvement of stakeholders and the participation of local community in managing both domestic and industrial wastes. Also, it should be supported by palpable regulations related to land conversion. Furthermore, it is expected that the effort will reduce the potential of pollution and improve the water quality.

  10. Land use change has stronger effects on functional diversity than taxonomic diversity in tropical Andean hummingbirds.

    Science.gov (United States)

    Tinoco, Boris A; Santillán, Vinicio E; Graham, Catherine H

    2018-03-01

    Land use change modifies the environment at multiple spatial scales, and is a main driver of species declines and deterioration of ecosystem services. However, most of the research on the effects of land use change has focused on taxonomic diversity, while functional diversity, an important predictor of ecosystem services, is often neglected. We explored how local and landscape scale characteristics influence functional and taxonomic diversity of hummingbirds in the Andes Mountains in southern Ecuador. Data was collected in six landscapes along a land use gradient, from an almost intact landscape to one dominated by cattle pastures. We used point counts to sample hummingbirds from 2011 to 2012 to assessed how local factors (i.e., vegetation structure, flowering plants richness, nectar availability) and landscape factors (i.e., landscape heterogeneity, native vegetation cover) influenced taxonomic and functional diversity. Then, we analyzed environment - trait relationships (RLQ test) to explore how different hummingbird functional traits influenced species responses to these factors. Taxonomic and functional diversity of hummingbirds were positively associated with landscape heterogeneity but only functional diversity was positively related to native vegetation coverage. We found a weak response of taxonomic and functional diversity to land use change at the local scale. Environment-trait associations showed that body mass of hummingbirds likely influenced species sensitivity to land use change. In conclusion, landscape heterogeneity created by land use change can positively influence hummingbird taxonomic and functional diversity; however, a reduction of native vegetation cover could decrease functional diversity. Given that functional diversity can mediate ecosystem services, the conservation of native vegetation cover could play a key role in the maintenance of hummingbird pollination services in the tropical Andes. Moreover, there are particular functional

  11. Spatio-temporal dynamics of regulating ecosystem services in Europe – The role of past and future land use change

    NARCIS (Netherlands)

    Sturck, J.; Schulp, C.J.E.; Verburg, P.H.

    2015-01-01

    Land use is a main driver for changes in supply and demand of regulating ecosystem services (ES). Most current ES inventories are static and do not address dynamics of ES supply resulting from historic and future land use change. This paper analyzes the role of land use change for the supply of two

  12. Land use change detection based on multi-date imagery from different satellite sensor systems

    Science.gov (United States)

    Stow, Douglas A.; Collins, Doretta; Mckinsey, David

    1990-01-01

    An empirical study is conducted to assess the accuracy of land use change detection using satellite image data acquired ten years apart by sensors with differing spatial resolutions. The primary goals of the investigation were to (1) compare standard change detection methods applied to image data of varying spatial resolution, (2) assess whether to transform the raster grid of the higher resolution image data to that of the lower resolution raster grid or vice versa in the registration process, (3) determine if Landsat/Thermatic Mapper or SPOT/High Resolution Visible multispectral data provide more accurate detection of land use changes when registered to historical Landsat/MSS data. It is concluded that image ratioing of multisensor, multidate satellite data produced higher change detection accuracies than did principal components analysis, and that it is useful as a land use change enhancement method.

  13. The Land Use Change From Agricultural to Non-Agricultural in Bungo Regency, Jambi Province, Indonesia

    Science.gov (United States)

    Dolly, Fajar Ifan; Kismartini, Kismartini; Purnaweni, Hartuti

    2018-02-01

    This study aimed at observing the development of agricultural land use in Bungo Regency, Jambi Province, for other purposes, such as plantation, mining, and other commercial buildings. According to the sustainable agriculture supposed by the government, a change in land use has become an important issue to be taken into account as such that the change does not tend to damage the environment. The research findings from Bungo Regency demonstrated the change in agricultural land into copra and rubber plantation areas. Local people had changed their mindset towards reluctance to become farmers, which caused the loss of farmer regeneration and weakened the farmer exchange rate towards the agricultural commodities.

  14. Using exploratory regression to identify optimal driving factors for cellular automaton modeling of land use change.

    Science.gov (United States)

    Feng, Yongjiu; Tong, Xiaohua

    2017-09-22

    Defining transition rules is an important issue in cellular automaton (CA)-based land use modeling because these models incorporate highly correlated driving factors. Multicollinearity among correlated driving factors may produce negative effects that must be eliminated from the modeling. Using exploratory regression under pre-defined criteria, we identified all possible combinations of factors from the candidate factors affecting land use change. Three combinations that incorporate five driving factors meeting pre-defined criteria were assessed. With the selected combinations of factors, three logistic regression-based CA models were built to simulate dynamic land use change in Shanghai, China, from 2000 to 2015. For comparative purposes, a CA model with all candidate factors was also applied to simulate the land use change. Simulations using three CA models with multicollinearity eliminated performed better (with accuracy improvements about 3.6%) than the model incorporating all candidate factors. Our results showed that not all candidate factors are necessary for accurate CA modeling and the simulations were not sensitive to changes in statistically non-significant driving factors. We conclude that exploratory regression is an effective method to search for the optimal combinations of driving factors, leading to better land use change models that are devoid of multicollinearity. We suggest identification of dominant factors and elimination of multicollinearity before building land change models, making it possible to simulate more realistic outcomes.

  15. The Determinant Factors of Regional Development Toward Land Use Change in Deli Serdang

    Science.gov (United States)

    Lindarto, D.; Sirojuzilam; Badaruddin; Dwira

    2017-03-01

    The concept of regional development Mebidangro (Medan, Binjai, Deli Serdang, and Karo) creating neighboring region hinterland Medan city with Deli Serdang Regency especially in Tembung village, Percut Sei Tuan District. Population structure in Tembung shows occurrence condition of rural-urban change which seen from the sprawl land use change. The aim of the study is to reveal the genius locus as one of land use change factors. The study conducted with quantitative approach intended at obtaining variables which describing several factors forming land use change. Descriptive approach intended to give an idea, justification, and fact-finding with correct interpretation. Data collected through a purposive sampling of 300 respondents who have built the house between 2010 till 2014. With overlay figure/ground technique, scoring analysis, descriptive quantitative and SEM (Structural Equational Models) gained a result that place character/genius locus (p=0,007) potentially as one of the main land use change driving factors besides accessibility (p=0,039), infrastructure (p=0,005), social-economic p=0,038). Topographic (p=0,663) was inversely potentially. The implication of the findings is required intensive control in space utilization considering the rapid change in land use transformation that tend to have the negative impact of urban sprawl.

  16. Modelling land use/cover changes with markov-cellular automata in Komering Watershed, South Sumatera

    Science.gov (United States)

    Kusratmoko, E.; Albertus, S. D. Y.; Supriatna

    2017-01-01

    This research has a purpose to study and develop a model that can representing and simulating spatial distribution pattern of land use change in Komering watershed. The Komering watershed is one of nine sub Musi river basin and is located in the southern part of Sumatra island that has an area of 8060,62 km2. Land use change simulations, achieved through Markov-cellular automata (CA) methodologies. Slope, elevation, distance from road, distance from river, distance from capital sub-district, distance from settlement area area were driving factors that used in this research. Land use prediction result in 2030 also shows decrease of forest acreage up to -3.37%, agricultural land decreased up to -2.13%, and open land decreased up to -0.13%. On the other hand settlement area increased up to 0.07%, and plantation land increased up to 5.56%. Based on the predictive result, land use unconformity percentage to RTRW in Komering watershed is 18.62 % and land use conformity is 58.27%. Based on the results of the scenario, where forest in protected areas and agriculture land are maintained, shows increase the land use conformity amounted to 60.41 % and reduce unconformity that occur in Komering watershed to 17.23 %.

  17. Ecosystem Service Value Assessment and Contribution Factor Analysis of Land Use Change in Miyun County, China

    Directory of Open Access Journals (Sweden)

    Ping Zhang

    2015-06-01

    Full Text Available Unreasonable land use planning can reduce ecosystem service value and result in unsustainable land use. In this paper, the changes of ecosystem service value were investigated by using the GIS and dynamic simulation model of land use in Miyun of Beijing, China, based on the land use at four time points including 1991, 2006, 2021 and one improved scenario, respectively. The results showed the total ecosystem service value of Miyun was about 2968.34 million Yuan in 1991, 3304.72 million Yuan in 2006, 3106.48 million Yuan in 2021, and 3759.77 million Yuan in the improved scenario. In terms of ecosystem service function, the functions of water supply and soil formation and retention accounted for the largest proportion, which were 19.99% and 14.58% respectively; whereas the functions of food supply and recreation and culture were only 1.83% and 5.99%, respectively. Coefficients of sensitivity for forest cover, water bodies and arable land were relatively large, which were 0.73, 0.28 and 0.14, respectively. The contribution factors of total ecosystem service value with the land use change during different periods were mainly the unused land to forest cover and arable land, which respectively accounted for more than 63% and 21% of the contribution rate. These results suggested that sustainable land use planning should be undertaken with emphasis on vegetation restoration and protection of water bodies.

  18. Multiscale mapping of species diversity under changed land use using imaging spectroscopy.

    Science.gov (United States)

    Paz-Kagan, Tarin; Caras, Tamir; Herrmann, Ittai; Shachak, Moshe; Karnieli, Arnon

    2017-07-01

    Land use changes are one of the most important factors causing environmental transformations and species diversity alterations. The aim of the current study was to develop a geoinformatics-based framework to quantify alpha and beta diversity indices in two sites in Israel with different land uses, i.e., an agricultural system of fruit orchards, an afforestation system of planted groves, and an unmanaged system of groves. The framework comprises four scaling steps: (1) classification of a tree species distribution (SD) map using imaging spectroscopy (IS) at a pixel size of 1 m; (2) estimation of local species richness by calculating the alpha diversity index for 30-m grid cells; (3) calculation of beta diversity for different land use categories and sub-categories at different sizes; and (4) calculation of the beta diversity difference between the two sites. The SD was classified based on a hyperspectral image with 448 bands within the 380-2500 nm spectral range and a spatial resolution of 1 m. Twenty-three tree species were classified with high overall accuracy values of 82.57% and 86.93% for the two sites. Significantly high values of the alpha index characterize the unmanaged land use, and the lowest values were calculated for the agricultural land use. In addition, high values of alpha indices were found at the borders between the polygons related to the "edge-effect" phenomenon, whereas low alpha indices were found in areas with high invasion species rates. The beta index value, calculated for 58 polygons, was significantly lower in the agricultural land use. The suggested framework of this study succeeded in quantifying land use effects on tree species distribution, evenness, and richness. IS and spatial statistics techniques offer an opportunity to study woody plant species variation with a multiscale approach that is useful for managing land use, especially under increasing environmental changes. © 2017 by the Ecological Society of America.

  19. The causes of land-use and land-cover change : moving beyond the myths

    NARCIS (Netherlands)

    Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; George, P.S.; Homewood, K.; Imbernon, J.; Leemans, R.; Xiubin Li,; Moran, E.F.; Mortimore, M.; Ramakrishnan, P.S.; Richards, J.F.; Skanes, H.; Steffen, W.; Stone, G.D.; Svedin, U.; Veldkamp, A.; Vogel, C.; Jianchu Xu,

    2001-01-01

    Common understanding of the causes of land-use and land-cover change is dominated by simplifications which, in turn, underlie many environment-development policies. This article tracks some of the major myths on driving forces of land-cover change and proposes alternative pathways of change that are

  20. Effects of land use change on streamflow and stream water quality of ...

    African Journals Online (AJOL)

    This study aimed to link land cover/use change to water quality in an important water supply coastal catchment. The approach followed a spatial and temporal analysis of historical catchment land use change to assess how changes influenced water quality and river flow in the Touws and Duiwe Rivers, southwestern Cape, ...

  1. Land use change monitoring in Maryland using a probabilistic sample and rapid photointerpretation

    Science.gov (United States)

    Tonya Lister; Andrew Lister; Eunice Alexander

    2014-01-01

    The U.S. state of Maryland needs to monitor land use change in order to address land management objectives. This paper presents a change detection method that, through automation and standard geographic information system (GIS) techniques, facilitates the estimation of landscape change via photointerpretation. Using the protocols developed, we show a net loss of forest...

  2. Impact of land use change on wind erosion and dust emission: scenarios from the central US

    Science.gov (United States)

    There will be significant changes in land cover and land use throughout the central United States in the coming years, particularly as a result of climate change, changes in US rangeland/farm policy, and increasing exploitation of land-intensive sustainable energy sources. The purpose of this study ...

  3. Future Land-Use Changes and the Potential for Novelty in Ecosystems of the United States

    Science.gov (United States)

    Sebastian Martinuzzi; Gregorio I. Gavier-Pizarro; Ariel E. Lugo; Volker C. Radeloff

    2015-01-01

    Rapid global changes due to changing land use, climate, and non-native species are altering environmental conditions, resulting in more novel communities with unprecedented species combinations. Understanding how future anthropogenic changes may affect novelty in ecosystems is important to advance environmental management and ecological research in the Anthropocene....

  4. The ecological and economic consequences of changing land use in the southern Drakensberg grasslands, South Africa

    Directory of Open Access Journals (Sweden)

    JK Turpie

    2014-05-01

    Full Text Available The grassland biome of the southern Drakensberg region of South Africa is characterized by a relatively rich floral biodiversity, including a high level of endemics.  Land use in the area was traditionally dominated by livestock ranching based mainly on indigenous grassland that conserved biodiversity to some degree.  Currently however, market demands and risk factors are shifting land use in the area to a matrix of beef, cropping, dairy and particularly, towards plantation forestry.  A spreadsheet model was constructed to understand how expected land use conversion will likely influence the biodiversity, and consequently, the total economic value (TEV of the area.  Six scenarios of increasing dairy and forestry intensification were modelled that incorporated biophysical and legal constraints to development.  Results indicate that enhanced development is likely to have significant negative biodiversity impacts including the reduction of the alpha diversity of the indigenous plants in the region, a diminished local invertebrate diversity, an increase in invasions, and could also jeopardize the long term survival of the rare Wattled Crane and Oribi.  Furthermore, while the direct use value derived from agriculture and forestry increases with increasing development, its negative influence on the indirect value of water runoff, by far the greatest value of the area, is sufficient to potentially offset the benefits.  Other major direct-use, indirect-use, option and existence values are also considered.

  5. Impacts of historic and projected land-cover, land-use, and land-management change on carbon and water fluxes: The Land Use Model Intercomparison Project (LUMIP)

    Science.gov (United States)

    Lawrence, D. M.; Lombardozzi, D. L.; Lawrence, P.; Hurtt, G. C.

    2017-12-01

    Human land-use activities have resulted in large changes to the Earth surface, with resulting implications for climate. In the future, land-use activities are likely to intensify to meet growing demands for food, fiber, and energy. The Land Use Model Intercomparison Project (LUMIP) aims to further advance understanding of the broad question of impacts of land-use and land-cover change (LULCC) as well as more detailed science questions to get at process-level attribution, uncertainty, and data requirements in more depth and sophistication than possible in a multi-model context to date. LUMIP is multi-faceted and aims to advance our understanding of land-use change from several perspectives. In particular, LUMIP includes a factorial set of land-only simulations that differ from each other with respect to the specific treatment of land use or land management (e.g., irrigation active or not, crop fertilization active or not, wood harvest on or not), or in terms of prescribed climate. This factorial series of experiments serves several purposes and is designed to provide a detailed assessment of how the specification of land-cover change and land management affects the carbon, water, and energy cycle response to land-use change. The potential analyses that are possible through this set of experiments are vast. For example, comparing a control experiment with all land management active to an experiment with no irrigation allows a multi-model assessment of whether or not the increasing use of irrigation during the 20th century is likely to have significantly altered trends of regional water and energy fluxes (and therefore climate) and/or crop yield and carbon fluxes in agricultural regions. Here, we will present preliminary results from the factorial set of experiments utilizing the Community Land Model (CLM5). The analyses presented here will help guide multi-model analyses once the full set of LUMIP simulations are available.

  6. Prediction of Land Use Change Based on Markov and GM(1,1 Models

    Directory of Open Access Journals (Sweden)

    SUN Yi-yang

    2016-05-01

    Full Text Available In order to explore the law of land use change in Laiwu City, Markov and GM(1,1 were respectively employed in the prediction of land use change in Laiwu from 2015 to 2050, after which the results were analyzed and discussed. The results showed that:(1The variational trends of all kinds of land use change predicted by the two models were consistent and the goodness of fit of the predictive value in corresponding years in the near future was high, illustrating that the predicted results in the near future were credible and the trend predicted in mid long term could be used as reference. (2The cultivated land would remanin almost no change from 2015 to 2020, and then gradually decreaseed in a small range from 2020 to 2050. The garden, the woodland, the grassland always reducing and the decreare range of the grassland was the largest. The urban village and industrial and mining land, the transportation land would be continuously increased and the range of urban village and industrial and mining land was the largest. The water and water conservancy facilities land and the other land would be always reduced in a very small range. It could be concluded that the results predicted by the two models in the near future were credible and could provide scientific basis for land use planning of Laiwu, while the method could provide reference for the prediction of land use change.

  7. Modelling crop land use change derived from influencing factors selected and ranked by farmers in North temperate agricultural regions.

    Science.gov (United States)

    Mehdi, Bano; Lehner, Bernhard; Ludwig, Ralf

    2018-08-01

    To develop meaningful land use scenarios, drivers that affect changes in the landscape are required. In this study, driving factors that influence farmers to change crops on their farm were determined. A questionnaire was administered to four independent groups of farmers who identified and ranked influencing factors pertaining to their choices of crops. The farmers were located in two mid-latitude agricultural watersheds (in Germany and Canada). The ranked influencing factors were used to develop a "farmer driven" scenario to 2040 in both watersheds. Results showed that the most important influencing factors for farmers to change crops were the "economic return of the crop" and "market factors". Yet, when the drivers of crop land use change were grouped into two categories of "financial" and "indirectly-related financial" factors, the "financial" factors made up approximately half of the influencing factors. For some responses, the "indirectly-related financial" factors (i.e. "access to farm equipment", the "farm experience", and "climate") ranked higher than or just as high as the financial factors. Overall, in the four farmer groups the differences between the rankings of the influencing factors were minor, indicating that drivers may be transferable between farms if the farmers are full-time and the farming regions have comparable growing seasons, access to markets, similar technology, and government programs for farm income. In addition to the "farmer driven" scenario, a "policy driven" scenario was derived for each watershed based only on available information on the financial incentives provided to farmers (i.e. agricultural subsidies, income support, crop insurance). The influencing factors ranked by the farmers provided in-depth information that was not captured by the "policy driven" scenario and contributed to improving predictions for crop land use development. This straight-forward method to rank qualitative data provided by farmers can easily be

  8. Change in land use in the Phoenix (1:250,000) Quadrangle, Arizona between 1970 and 1972: Successful use of proposed land use classification system

    Science.gov (United States)

    Place, J. L.

    1973-01-01

    Changes in land use in the Phoenix (1:250,000 scale) Quadrangle in Arizona have been mapped using only the images from ERTS-1, tending to verify the utility of a land use classification system proposed for use with ERTS images. The period of change investigated was from November 1970 to late summer or early fall, 1972. Seasonal changes also were studied using successive ERTS images. Types of equipment used to aid interpretation included a color additive viewer, a twenty-power magnifier, a density slicer, and a diazo copy machine for making ERTS color composites in hard copy. Types of changes detected have been: (1) cropland or rangeland developed for new residential areas; (2) rangeland converted to new cropland; and (3) possibly new areas of industrial or commercial development. A map of land use previously compiled from air photos was updated in this manner.

  9. Patterns and drivers of land use change in selected European rural landscapes

    DEFF Research Database (Denmark)

    Kristensen, Søren Bech Pilgaard; Busck, Anne Gravsholt; van der Sluis, Theo

    2016-01-01

    concerns are less dominant and many landscape and land use changes are undertaken to improve public goods or fulfil personal and family ambitions and values. This paper investigates the patterns of farm-level land use changes that occurred between 2002 and 2012 in three different landscape regions...... with their engagement in land use changes. Common to all areas is that agricultural production is under pressure due to physical or socio-economic challenges. The results indicate that relatively more nature or landscape features have been added by landowners than removed by them in the six study areas. Furthermore......, the analysis revealed that full-time landowners were responsible for the largest proportion of landscape change and that the areas involved differed greatly. The analysis also underlined the variety of European landscapes, as many landscape activities exhibited strong geographical patterns. A multivariate...

  10. Ecological Risk Assessment of Land Use Change in the Poyang Lake Eco-economic Zone, China

    Science.gov (United States)

    Xie, Hualin; Wang, Peng; Huang, Hongsheng

    2013-01-01

    Land use/land cover change has been attracting increasing attention in the field of global environmental change research because of its role in the social and ecological environment. To explore the ecological risk characteristics of land use change in the Poyang Lake Eco-economic Zone of China, an eco-risk index was established in this study by the combination of a landscape disturbance index with a landscape fragmentation index. Spatial distribution and gradient difference of land use eco-risk are analyzed by using the methods of spatial autocorrelation and semivariance. Results show that ecological risk in the study area has a positive correlation, and there is a decreasing trend with the increase of grain size both in 1995 and 2005. Because the area of high eco-risk value increased from 1995 to 2005, eco-environment quality declined slightly in the study area. There are distinct spatial changes in the concentrated areas with high land use eco-risk values from 1995 to 2005. The step length of spatial separation of land use eco-risk is comparatively long—58 km in 1995 and 11 km in 2005—respectively. There are still nonstructural factors affecting the quality of the regional ecological environment at some small-scales. Our research results can provide some useful information for land eco-management, eco-environmental harnessing and restoration. In the future, some measures should be put forward in the regions with high eco-risk value, which include strengthening land use management, avoiding unreasonable types of land use and reducing the degree of fragmentation and separation. PMID:23343986

  11. Estimation of gross land-use change and its uncertainty using a Bayesian data assimilation approach

    Science.gov (United States)

    Levy, Peter; van Oijen, Marcel; Buys, Gwen; Tomlinson, Sam

    2018-03-01

    We present a method for estimating land-use change using a Bayesian data assimilation approach. The approach provides a general framework for combining multiple disparate data sources with a simple model. This allows us to constrain estimates of gross land-use change with reliable national-scale census data, whilst retaining the detailed information available from several other sources. Eight different data sources, with three different data structures, were combined in our posterior estimate of land use and land-use change, and other data sources could easily be added in future. The tendency for observations to underestimate gross land-use change is accounted for by allowing for a skewed distribution in the likelihood function. The data structure produced has high temporal and spatial resolution, and is appropriate for dynamic process-based modelling. Uncertainty is propagated appropriately into the output, so we have a full posterior distribution of output and parameters. The data are available in the widely used netCDF file format from http://eidc.ceh.ac.uk/.

  12. Projected land use changes impacts on water yields in the karst mountain areas of China

    Science.gov (United States)

    Lang, Yanqing; Song, Wei; Deng, Xiangzheng

    2018-04-01

    Human-induced land use changes over short time scales have significant impacts on water yield, especially in China because of the rapid social economic development. As the biggest developing country of the world, China's economy is expected to continuously grow with a high speed in the next few decades. Therefore, what kind of land use changes will occur in the future in China? How these changes will influence the water yields? To address this issue, we assessed the water yields in the karst mountain area of China during the periods of 1990-2010 and 2010-2030 by coupling an Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model and a Conversion of Land Use and its Effects (CLUE) model. Three different land use scenarios i.e. natural growth, economic development, and ecological protection, were developed in 2030 using the CLUE model. It was concluded that, given land use changes between 1990 and 2010, total water yields in the karst mountain area are characterized by a trend towards fluctuating reduction. However, total water yields of 2030 in the economic development scenario revealed an increase of 1.25% compared to the actual water yields in 2010. The economy development in karst mountain areas of China in the future has a slight positive influence on water yields.

  13. Land use change modeling through scenario-based cellular automata Markov: improving spatial forecasting.

    Science.gov (United States)

    Jahanishakib, Fatemeh; Mirkarimi, Seyed Hamed; Salmanmahiny, Abdolrassoul; Poodat, Fatemeh

    2018-05-08

    Efficient land use management requires awareness of past changes, present actions, and plans for future developments. Part of these requirements is achieved using scenarios that describe a future situation and the course of changes. This research aims to link scenario results with spatially explicit and quantitative forecasting of land use development. To develop land use scenarios, SMIC PROB-EXPERT and MORPHOL methods were used. It revealed eight scenarios as the most probable. To apply the scenarios, we considered population growth rate and used a cellular automata-Markov chain (CA-MC) model to implement the quantified changes described by each scenario. For each scenario, a set of landscape metrics was used to assess the ecological integrity of land use classes in terms of fragmentation and structural connectivity. The approach enabled us to develop spatial scenarios of land use change and detect their differences for choosing the most integrated landscape pattern in terms of landscape metrics. Finally, the comparison between paired forecasted scenarios based on landscape metrics indicates that scenarios 1-1, 2-2, 3-2, and 4-1 have a more suitable integrity. The proposed methodology for developing spatial scenarios helps executive managers to create scenarios with many repetitions and customize spatial patterns in real world applications and policies.

  14. Hydrological Responses to Land Use/Cover Changes in the Olifants Basin, South Africa

    Directory of Open Access Journals (Sweden)

    Charles Gyamfi

    2016-12-01

    Full Text Available This paper discusses the hydrological impacts of land use changes on the Olifants Basin in South Africa using the Soil and Water Assessment Tool (SWAT. A three-phase land use scenario (2000, 2007 and 2013 employing the “fix-changing” method was used to simulate the hydrology of the Olifants Basin. Changes in land uses were related to different hydrological responses through a multi-regression analysis to quantify the effects of land use changes. Results reveal that from 2000 to 2013, a 31.6% decrease in rangeland with concomitant increases in agriculture lands (20.1%, urban areas (10.5% and forest (0.7% led to a 46.97% increase in surface runoff generation. Further, urbanization was revealed as the strongest contributor to increases in surface runoff generation, water yield and evapotranspiration (ET. ET was found to be a key water availability determinant as it has a high negative impact on surface runoff and water yield. Urbanization and agriculture were the most essential environmental factors influencing water resources of the basin with ET playing a dominant role. The output of the paper provides a simplistic approach of evaluating the impacts of land use changes on water resources. The tools and methods used are relevant for policy directions on water resources planning and adaptation of strategies.

  15. A Generalized Deforestation and Land-Use Change Scenario Generator for Use in Climate Modelling Studies

    Science.gov (United States)

    Tompkins, Adrian Mark; Caporaso, Luca; Biondi, Riccardo; Bell, Jean Pierre

    2015-01-01

    A new deforestation and land-use change scenario generator model (FOREST-SAGE) is presented that is designed to interface directly with dynamic vegetation models used in latest generation earth system models. The model requires a regional-scale scenario for aggregate land-use change that may be time-dependent, provided by observational studies or by regional land-use change/economic models for future projections. These land-use categories of the observations/economic model are first translated into equivalent plant function types used by the particular vegetation model, and then FOREST-SAGE disaggregates the regional-scale scenario to the local grid-scale of the earth system model using a set of risk-rules based on factors such as proximity to transport networks, distance weighted population density, forest fragmentation and presence of protected areas and logging concessions. These rules presently focus on the conversion of forest to agriculture and pasture use, but could be generalized to other land use change conversions. After introducing the model, an evaluation of its performance is shown for the land-cover changes that have occurred in the Central African Basin from 2001–2010 using retrievals from MODerate Resolution Imaging Spectroradiometer Vegetation Continuous Field data. The model is able to broadly reproduce the spatial patterns of forest cover change observed by MODIS, and the use of the local-scale risk factors enables FOREST-SAGE to improve land use change patterns considerably relative to benchmark scenarios used in the latest Coupled Model Intercomparison Project integrations. The uncertainty to the various risk factors is investigated using an ensemble of investigations, and it is shown that the model is sensitive to the population density, forest fragmentation and reforestation factors specified. PMID:26394392

  16. Land-use change trajectories up to 2050: insights from a global agro-economic model comparison

    NARCIS (Netherlands)

    Schmitz, C.; Meijl, van J.C.M.; Kyle, P.; Nelson, G.C.; Fujimori, S.; Gurgel, A.; Havlik, P.; Heyhoe, E.; Mason d'Croz, D.; Popp, A.; Sands, R.; Tabeau, A.A.; Mensbrugghe, van der D.; Lampe, von M.; Wise, M.; Blanc, E.; Hasegawa, T.; Kavallari, A.; Valin, H.

    2014-01-01

    Changes in agricultural land use have important implications for environmental services. Previous studies of agricultural land-use futures have been published indicating large uncertainty due to different model assumptions and methodologies. In this article we present a first comprehensive

  17. Impacts of land use/cover change on ecosystem services for Xiamen

    Science.gov (United States)

    Shi, L.; Cui, S.

    2009-12-01

    Based on remote sensing images of Xiamen in 1987, 1997 and 2007, the process of ecosystem service alteration resulting from land use/cover change was quantitatively analyzed through RS and GIS techniques. Consulting relative researches, an integrated assessment model was built to evaluating regional ecosystem services of Xiamen. The results showed that the total ecosystem service value of Xiamen was increased by 14.67%, from 3271.5 million to 3751.39 RMB. The relative change rate of supplying service, regulation service, cultural service and supporting service were 97.8%, -25.1%, 165.0% and -44.7% respectively, which indicated that land use/ cover change had positive effects on supplying and cultural service, whereas it had negatively affected both regulation service and supporting service. Land use/cover types of Xiamen in 1987, 1997 and 2007 Ecosystem values of Xiamen in 1987, 1997 and 2007 10 thousand RMB

  18. Land-use change and costs to rural households: a case study in groundwater nitrate contamination

    Science.gov (United States)

    Keeler, Bonnie L.; Polasky, Stephen

    2014-07-01

    Loss of grassland from conversion to agriculture threatens water quality and other valuable ecosystem services. Here we estimate how land-use change affects the probability of groundwater contamination by nitrate in private drinking water wells. We find that conversion of grassland to agriculture from 2007 to 2012 in Southeastern Minnesota is expected to increase the future number of wells exceeding 10 ppm nitrate-nitrogen by 45% (from 888 to 1292 wells). We link outputs of the groundwater well contamination model to cost estimates for well remediation, well replacement, and avoidance behaviors to estimate the potential economic value lost due to nitrate contamination from observed land-use change. We estimate 0.7-12 million in costs (present values over a 20 year horizon) to address the increased risk of nitrate contamination of private wells. Our study demonstrates how biophysical models and economic valuation can be integrated to estimate the welfare consequences of land-use change.

  19. Land-use change and costs to rural households: a case study in groundwater nitrate contamination

    International Nuclear Information System (INIS)

    Keeler, Bonnie L; Polasky, Stephen

    2014-01-01

    Loss of grassland from conversion to agriculture threatens water quality and other valuable ecosystem services. Here we estimate how land-use change affects the probability of groundwater contamination by nitrate in private drinking water wells. We find that conversion of grassland to agriculture from 2007 to 2012 in Southeastern Minnesota is expected to increase the future number of wells exceeding 10 ppm nitrate-nitrogen by 45% (from 888 to 1292 wells). We link outputs of the groundwater well contamination model to cost estimates for well remediation, well replacement, and avoidance behaviors to estimate the potential economic value lost due to nitrate contamination from observed land-use change. We estimate $0.7–12 million in costs (present values over a 20 year horizon) to address the increased risk of nitrate contamination of private wells. Our study demonstrates how biophysical models and economic valuation can be integrated to estimate the welfare consequences of land-use change. (letter)

  20. 77 FR 13173 - Notice of a Non-Aeronautical Land-Use Change Effecting the Quitclaim Deed and Federal Grant...

    Science.gov (United States)

    2012-03-05

    ... AGENCY: Federal Aviation Administration, DOT. ACTION: Notice of a Non-aeronautical land-use change... application for a non-aeronautical land- use change for approximately 829 acres of airport property at Blythe... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Notice of a Non-Aeronautical Land-Use...

  1. Collaborative development of land use change scenarios for analysing hydro-meteorological risk

    Science.gov (United States)

    Malek, Žiga; Glade, Thomas

    2015-04-01

    Simulating future land use changes remains a difficult task, due to uncontrollable and uncertain driving forces of change. Scenario development emerged as a tool to address these limitations. Scenarios offer the exploration of possible futures and environmental consequences, and enable the analysis of possible decisions. Therefore, there is increasing interest of both decision makers and researchers to apply scenarios when studying future land use changes and their consequences. The uncertainties related to generating land use change scenarios are among others defined by the accuracy of data, identification and quantification of driving forces, and the relation between expected future changes and the corresponding spatial pattern. To address the issue of data and intangible driving forces, several studies have applied collaborative, participatory techniques when developing future scenarios. The involvement of stakeholders can lead to incorporating a broader spectrum of professional values and experience. Moreover, stakeholders can help to provide missing data, improve detail, uncover mistakes, and offer alternatives. Thus, collaborative scenarios can be considered as more reliable and relevant. Collaborative scenario development has been applied to study a variety of issues in environmental sciences on different spatial and temporal scales. Still, these participatory approaches are rarely spatially explicit, making them difficult to apply when analysing changes to hydro-meteorological risk on a local scale. Spatial explicitness is needed to identify potentially critical areas of land use change, leading to locations where the risk might increase. In order to allocate collaboratively developed scenarios of land change, we combined participatory modeling with geosimulation in a multi-step scenario generation framework. We propose a framework able to develop scenarios that are plausible, can overcome data inaccessibility, address intangible and external driving forces

  2. Shifting spatial priorities for ecosystem services in Europe following land use change

    NARCIS (Netherlands)

    Verhagen, Willem; van Teeffelen, Astrid J.A.; Verburg, Peter H.

    2018-01-01

    Policy objectives to maintain ecosystem services are increasingly set. Methods to identify priority areas for ecosystem services can assist in the implementation of such policy objectives. While land use change is an important driver of changes in ecosystem services over time, most prioritization

  3. Hydrologic Futures: Using Scenario Analysis to Evaluate Impacts of Forecasted Land Use Change on Hydrologic Services

    Science.gov (United States)

    Land cover and land use changes can substantially alter hydrologic ecosystem services. Water availability and quality can change with modifications to the type or amount of surface vegetation, the permeability of soil and other surfaces, and the introduction of contaminants throu...

  4. Microeconomic motives of land use change in coastal zone area: agent based modelling approach

    NARCIS (Netherlands)

    Filatova, Tatiana; van der Veen, A.; Voinov, A.; Jakeman, A.; Rizolli, A.

    2006-01-01

    Economic growth causes growing urbanization, extension of tourist sector, infrastructure and change of natural landscape. These processes of land use change attract even more attention if they take place in coastal zone area. In that case not only the efficient allocation and preservation of natural

  5. Projecting land-use and land cover change in a subtropical urban watershed

    Science.gov (United States)

    John J. Lagrosa IV; Wayne C. Zipperer; Michael G. Andreu

    2018-01-01

    Urban landscapes are heterogeneous mosaics that develop via significant land-use and land cover (LULC) change. Current LULC models project future landscape patterns, but generally avoid urban landscapes due to heterogeneity. To project LULC change for an urban landscape, we parameterize an established LULC model (Dyna-CLUE) under baseline conditions (continued current...

  6. Statistics for Time-Series Spatial Data: Applying Survival Analysis to Study Land-Use Change

    Science.gov (United States)

    Wang, Ninghua Nathan

    2013-01-01

    Traditional spatial analysis and data mining methods fall short of extracting temporal information from data. This inability makes their use difficult to study changes and the associated mechanisms of many geographic phenomena of interest, for example, land-use. On the other hand, the growing availability of land-change data over multiple time…

  7. Altered belowground carbon cycling following land use change to perennial bioenergy crops

    Science.gov (United States)

    Belowground carbon (C) dynamics of terrestrial ecosystems play an important role in the global C cycle and thereby in climate regulation, yet remain poorly understood. Globally, land use change is a major driver of changes in belowground C storage; in general, land clearing and tillage for agricult...

  8. Image-based change estimation for land cover and land use monitoring

    Science.gov (United States)

    Jeremy Webb; C. Kenneth Brewer; Nicholas Daniels; Chris Maderia; Randy Hamilton; Mark Finco; Kevin A. Megown; Andrew J. Lister

    2012-01-01

    The Image-based Change Estimation (ICE) project resulted from the need to provide estimates and information for land cover and land use change over large areas. The procedure uses Forest Inventory and Analysis (FIA) plot locations interpreted using two different dates of imagery from the National Agriculture Imagery Program (NAIP). In order to determine a suitable...

  9. Temporal change detection of land use/land cover using GIS and ...

    African Journals Online (AJOL)

    Satellite images for the years 1972, 1989, 1999 and 2016 were used for LULC ... built-up areas, pastures and bare land, agricultural land and water bodies. For the accuracy of assessment classifications, matrix error and KAPPA ... Keywords: land use/land cover change; change detection; classification; remote sensing; GIS ...

  10. The Effect of Land use/cover change on Biomass Stock in Dryland ...

    African Journals Online (AJOL)

    The Effect of Land use/cover change on Biomass Stock in Dryland Areas of Eastern Uganda. ... Journal of Applied Sciences and Environmental Management ... Therefore, there is need for increased use of remote sensing and GIS to quantify change patterns at local scales for essential monitoring and assessment of land ...

  11. Land use/Land Cover Changes and Causes of Deforestation in the ...

    African Journals Online (AJOL)

    The objective of this paper is to provide the non-existent data on land use/land cover changes in the Wilberforce Island for the purposes of determining the causes of deforestation and changes in the vegetation cover for a 13 – year period. Accordingly, 125 questionnaires were administered in five communities to determine ...

  12. Spatiotemporal Land Use Change Analysis Using Open-source GIS and Web Based Application

    Directory of Open Access Journals (Sweden)

    Wan Yusryzal Wan Ibrahim

    2015-05-01

    Full Text Available Spatiotemporal changes are very important information to reveal the characteristics of the urbanization process. Sharing the information is beneficial for public awareness which then improves their participation in adaptive management for spatial planning process. Open-source software and web application are freely available tools that can be the best medium used by any individual or agencies to share this important information. The objective of the paper is to discuss on the spatiotemporal land use change in Iskandar Malaysia by using open-source GIS (Quantum GIS and publish them through web application (Mash-up. Land use in 1994 to 2011 were developed and analyzed to show the landscape change of the region. Subsequently, web application was setup to distribute the findings of the study. The result show there is significant changes of land use in the study area especially on the decline of agricultural and natural land which were converted to urban land uses. Residential and industrial areas largely replaced the agriculture and natural areas particularly along the coastal zone of the region. This information is published through interactive GIS web in order to share it with the public and stakeholders. There are some limitations of web application but still not hindering the advantages of using it. The integration of open-source GIS and web application is very helpful in sharing planning information particularly in the study area that experiences rapid land use and land cover change. Basic information from this study is vital for conducting further study such as projecting future land use change and other related studies in the area.

  13. The place character as land use change determinant in Deli Serdang

    Science.gov (United States)

    Lindarto, D.; Sirojuzilam; Badaruddin; Aulia, DN

    2018-03-01

    The Mebidangro concept of development (Medan, Binjai, Deli Serdang, Karo) in Sumatera Utara creating peri urban area in region hinterland Medan city especially in Tembung village, Percut Sei Tuan District. This peri urban area is a conjunction of several rural-urban activities that forming a friendly atmosphere. The dynamic of population structure shows occurrence the sprawl of land use change condition. In the site of the urban region showing the unique performance that built the place character. The aim of the study is to uncover the place character as one of land use change determinant factors. The study conducted with quantitative approach intended at obtaining variables which describing several factors forming land use change. Descriptive approach give an idea, justification, and fact-finding with correct interpretation. Data collected through a purposive sampling of 320 respondents who stay and built the building and land between 2010 till 2014. With overlay figure/ground technique, scoring analysis, descriptive quantitative and SEM (Structural Equational Models) gained a result that urban heritage (p=0,008) potentially as one of the main land use change driving factors besides accessibility (p=0,039), infrastructure (p=0,010), social-economic (p=0,038) in fact topographic factor (p=0,663) was inversely potentially. The implication of the findings is required intensive attention toward the form of place character (mosque, the quarter, district activity, peri urban edges city and railway) as determinant factors of land use change considering forming the identity of the rapid change in land use transformation.

  14. Integrated assessment of the impact of climate and land use changes on groundwater quantity and quality in Mancha Oriental (Spain)

    OpenAIRE

    M. Pulido-Velazquez; S. Peña-Haro; A. Garcia-Prats; A. F. Mocholi-Almudever; L. Henriquez-Dole; H. Macian-Sorribes; A. Lopez-Nicolas

    2014-01-01

    Climate and land use change (global change) impacts on groundwater systems cannot be studied in isolation, as various and complex interactions in the hydrological cycle take part. Land-use and land-cover (LULC) changes have a great impact on the water cycle and contaminant production and transport. Groundwater flow and storage are changing in response not only to climatic changes but also to human impacts on land uses and demands (global change). Changes in future climate an...

  15. Mediating factors of land use change among coffee farmers in a biological corridor

    DEFF Research Database (Denmark)

    Bosselmann, Aske Skovmand

    2012-01-01

    Trees in agricultural landscapes are important for the provision of environmental services. This study assesses the loss of shade coffee during a 9 year period in a biological corridor in Costa Rica, and investigates the mediating factors of land use change. Following a conceptual framework....... Additional 224 telephone interviews supplement the data on land use change. Results show a 50% reduction in the coffee area and a corresponding loss of trees. Family labor, age of household head, coffee prices, and use of shade tree products significantly reduce the probability of converting the coffee field...

  16. Synergy between land use and climate change increases future fire risk in Amazon forests

    Directory of Open Access Journals (Sweden)

    Y. Le Page

    2017-12-01

    Full Text Available Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactions between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change – Representative Concentration Pathway (RCP 8.5 – projected understory fires increase in frequency and duration, burning 4–28 times more forest in 2080–2100 than during 1990–2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9–5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.

  17. Revolutionary land use change in the 21st century: Is (rangeland) science relevant?

    Science.gov (United States)

    Herrick, J.E.; Brown, J.R.; Bestelmeyer, B.T.; Andrews, S.S.; Baldi, G.; Davies, J.; Duniway, M.; Havstad, K.M.; Karl, J.W.; Karlen, D.L.; Peters, Debra P.C.; Quinton, J.N.; Riginos, C.; Shaver, P.L.; Steinaker, D.; Twomlow, S.

    2012-01-01

    Rapidly increasing demand for food, fiber, and fuel together with new technologies and the mobility of global capital are driving revolutionary changes in land use throughout the world. Efforts to increase land productivity include conversion of millions of hectares of rangelands to crop production, including many marginal lands with low resistance and resilience to degradation. Sustaining the productivity of these lands requires careful land use planning and innovative management systems. Historically, this responsibility has been left to agronomists and others with expertise in crop production. In this article, we argue that the revolutionary land use changes necessary to support national and global food security potentially make rangeland science more relevant now than ever. Maintaining and increasing relevance will require a revolutionary change in range science from a discipline that focuses on a particular land use or land cover to one that addresses the challenge of managing all lands that, at one time, were considered to be marginal for crop production. We propose four strategies to increase the relevance of rangeland science to global land management: 1) expand our awareness and understanding of local to global economic, social, and technological trends in order to anticipate and identify drivers and patterns of conversion; 2) emphasize empirical studies and modeling that anticipate the biophysical (ecosystem services) and societal consequences of large-scale changes in land cover and use; 3) significantly increase communication and collaboration with the disciplines and sectors of society currently responsible for managing the new land uses; and 4) develop and adopt a dynamic and flexible resilience-based land classification system and data-supported conceptual models (e.g., state-and-transition models) that represent all lands, regardless of use and the consequences of land conversion to various uses instead of changes in state or condition that are

  18. Life cycle greenhouse gas emissions impacts of the adoption of the EU Directive on biofuels in Spain. Effect of the import of raw materials and land use changes

    International Nuclear Information System (INIS)

    Lechon, Y.; Cabal, H.; Saez, R.

    2011-01-01

    The objective of this paper is to evaluate the greenhouse gas (GHG) emissions impacts of the use of different alternative biofuels in passenger vehicles in Spain in order to meet EU biofuel goals. Different crop production alternatives are analysed, including the possible import of some raw materials. Availability of land for national production of the raw materials is analysed and indirect land use changes and associated GHG emissions are quantified. There are important differences in GHG emissions of biofuels depending on the raw material used and whether this is domestically produced or imported. Ethanol production using imported cereals and FAME production using domestic rapeseed have the highest GHG emissions per kilometre driven. Fatty acid methyl ester (FAME) production from sunflower has shown the lowest emissions. When taking into account the results of GHG emissions savings per hectare, these findings are somehow reversed. Production of ethanol and around 12% of FAME can be done domestically. The rest will need to be imported and will cause indirect land use change (ILUC). Therefore, ethanol production will not displace any land, whereas FAME production will displace some amounts of land. Calculated ILUC factors are 29%-34%. The additional GHG emissions due to these indirect land use changes are significant (67%-344% of life cycle GHG emissions). Standalone, the EU biofuel targets can have important benefits for Spain in terms of global warming emissions avoided. However, when considering the impact of land use change effects, these benefits are significantly reduced and can even be negative. -- Highlights: → Biofuel greenhouse gas emissions in Spain using domestic and imported raw materials. → Availability of land, indirect land use changes (ILUC) and GHG emissions quantified. → Important differences in biofuels GHG emissions depending on the raw material found. → All ethanol and 12% FAME can be produced domestically with ILUC factors of 29

  19. Remote Sensing Time Series to Evaluate Direct Land Use Change of Recent Expanded Sugarcane Crop in Brazil

    Directory of Open Access Journals (Sweden)

    Marcio Pupin Mello

    2012-04-01

    Full Text Available The use of biofuels to mitigate global carbon emissions is highly dependent on direct and indirect land use changes (LUC. The direct LUC (dLUC can be accurately evaluated using remote sensing images. In this work we evaluated the dLUC of about 4 million hectares of sugarcane expanded from 2005 to 2010 in the South-central region of Brazil. This region has a favorable climate for rain-fed sugarcane, a great potential for agriculture expansion without deforestation, and is currently responsible for almost 90% of Brazilian’s sugarcane production. An available thematic map of sugarcane along with MODIS and Landast images, acquired from 2000 to 2009, were used to evaluate the land use prior to the conversion to sugarcane. A systematic sampling procedure was adopted and the land use identification prior to sugarcane, for each sample, was performed using a web tool developed to visualize both the MODIS time series and the multitemporal Landsat images. Considering 2000 as reference year, it was observed that sugarcane expanded: 69.7% on pasture land; 25.0% on annual crops; 0.6% on forest; while 3.4% was sugarcane land under crop rotation. The results clearly show that the dLUC of recent sugarcane expansion has occurred on more than 99% of either pasture or agriculture land.

  20. Ecological Carrying Capacity of Land Use Changes in Da'an City

    Science.gov (United States)

    Wang, H.; Zhang, J.; Li, B.

    2018-04-01

    Based on GIS and RS technology, this paper analyzed the land use change in Da'an city from 1995 to 2010. land-use ecological evaluation index was constructed to evaluate the land-use ecological risk of Da 'an city dynamically, and the land-use ecological risk level map was made, and then the distribution and change of the land-use ecological carrying capacity pattern of Da'an city were analyzed qualitatively. According to the evaluation results of ecological carrying capacity, the ecological environment of Da'an city has deteriorated in fifteen years. in 1995, the poor ecological environment area is mainly distributed in the northeast area of Da'an city, and the area is small, while the area of the central and southern areas is large; In 2010, the western region also appeared environmental degradation, the northeast environment deterioration is serious, the dominant area is reduced, and a small amount of deterioration in the central and southern regions. According to the study of this paper, in the future, we should strengthen the comprehensive management of this part of the area, strengthen vegetation coverage, reduce soil erosion, ensure the effective improvement of ecological environment.

  1. Spatiotemporal Simulation of Future Land Use/Cover Change Scenarios in the Tokyo Metropolitan Area

    Directory of Open Access Journals (Sweden)

    Ruci Wang

    2018-06-01

    Full Text Available Simulating future land use/cover changes is of great importance for urban planners and decision-makers, especially in metropolitan areas, to maintain a sustainable environment. This study examines the changes in land use/cover in the Tokyo metropolitan area (TMA from 2007 to 2017 as a first step in using supervised classification. Second, based on the map results, we predicted the expected patterns of change in 2027 and 2037 by employing a hybrid model composed of cellular automata and the Markov model. The next step was to decide the model inputs consisting of the modeling variables affecting the distribution of land use/cover in the study area, for instance distance to central business district (CBD and distance to railways, in addition to the classified maps of 2007 and 2017. Finally, we considered three scenarios for simulating land use/cover changes: spontaneous, sub-region development, and green space improvement. Simulation results show varied patterns of change according to the different scenarios. The sub-region development scenario is the most promising because it balances between urban areas, resources, and green spaces. This study provides significant insight for planners about change trends in the TMA and future challenges that might be encountered to maintain a sustainable region.

  2. Implications of agricultural land use change to ecosystem services in the Ganges delta.

    Science.gov (United States)

    Islam, G M Tarekul; Islam, A K M Saiful; Shopan, Ahsan Azhar; Rahman, Md Munsur; Lázár, Attila N; Mukhopadhyay, Anirban

    2015-09-15

    Ecosystems provide the basis for human civilization and natural capital for green economy and sustainable development. Ecosystem services may range from crops, fish, freshwater to those that are harder to see such as erosion regulation, carbon sequestration, and pest control. Land use changes have been identified as the main sources of coastal and marine pollution in Bangladesh. This paper explores the temporal variation of agricultural land use change and its implications with ecosystem services in the Ganges delta. With time agricultural lands have been decreased and wetlands have been increased at a very high rate mainly due to the growing popularity of saltwater shrimp farming. In a span of 28 years, the agricultural lands have been reduced by approximately 50%, while the wetlands have been increased by over 500%. A large portion (nearly 40%) of the study area is covered by the Sundarbans which remained almost constant which can be attributed to the strict regulatory intervention to preserve the Sundarbans. The settlement & others land use type has also been increased to nearly 5%. There is a gradual uptrend of shrimp and fish production in the study area. The findings suggest that there are significant linkages between agricultural land use change and ecosystem services in the Ganges delta in Bangladesh. The continuous decline of agricultural land (due to salinization) and an increase of wetland have been attributed to the conversion of agricultural land into shrimp farming in the study area. Such land use change requires significant capital, therefore, only investors and wealthier land owners can get the higher profit from the land conversion while the poor people is left with the environmental consequences that affect their long-term lives and livelihood. An environmental management plan is proposed for sustainable land use in the Ganges delta in Bangladesh. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Assessing the effects of land-use changes on annual average gross erosion

    Directory of Open Access Journals (Sweden)

    Armando Brath

    2002-01-01

    Full Text Available The effects of land-use changes on potential annual gross erosion in the uplands of the Emilia-Romagna administrative region, a broad geographical area of some 22 000 km2 in northern-central Italy, have been analysed by application of the Universal Soil Loss Equation (USLE. The presence of an extended mountain chain, particularly subject to soil erosion, makes the estimation of annual gross erosion relevant in defining regional soil-conservation strategies. The USLE, derived empirically for plots, is usually applied at the basin scale. In the present study, the method is implemented in a distributed framework for the hilly and mountainous portion of Emilia-Romagna through a discretisation of the region into elementary square cells. The annual gross erosion is evaluated by combining morphological, pedological and climatic information. The stream network and the tributary area drained by each elementary cell, which are needed for the local application of the USLE, are derived automatically from a Digital Elevation Model (DEM of grid size 250 x 250 m. The rainfall erosivity factor is evaluated from local estimates of rainfall of six-hour storm duration and two-year return period. The soil erodibility and slope length-steepness factors are derived from digital maps of land use, pedology and geomorphology. Furthermore, historical land-use maps of the district of Bologna (a large portion — 3720 km2 — of the area under study, allow the effect of actual land use changes on the soil erosion process to be assessed. The analysis shows the influence of land-use changes on annual gross erosion as well as the increasing vulnerability of upland areas to soil erosion processes during recent decades. Keywords: USLE, gross erosion, distributed modelling, land use changes, northern-central Italy

  4. Regional-Scale Forcing and Feedbacks from Alternative Scenarios of Global-Scale Land Use Change

    Science.gov (United States)

    Jones, A. D.; Chini, L. P.; Collins, W.; Janetos, A. C.; Mao, J.; Shi, X.; Thomson, A. M.; Torn, M. S.

    2011-12-01

    Future patterns of land use change depend critically on the degree to which terrestrial carbon management strategies, such as biological carbon sequestration and biofuels, are utilized in order to mitigate global climate change. Furthermore, land use change associated with terrestrial carbon management induces biogeophysical changes to surface energy budgets that perturb climate at regional and possibly global scales, activating different feedback processes depending on the nature and location of the land use change. As a first step in a broader effort to create an integrated earth system model, we examine two scenarios of future anthropogenic activity generated by the Global Change Assessment Model (GCAM) within the full-coupled Community Earth System Model (CESM). Each scenario stabilizes radiative forcing from greenhouse gases and aerosols at 4.5 W/m^2. In the first, stabilization is achieved through a universal carbon tax that values terrestrial carbon equally with fossil carbon, leading to modest afforestation globally and low biofuel utilization. In the second scenario, stabilization is achieved with a tax on fossil fuel and industrial carbon alone. In this case, biofuel utilization increases dramatically and crop area expands to claim approximately 50% of forest cover globally. By design, these scenarios exhibit identical climate forcing from atmospheric constituents. Thus, differences among them can be attributed to the biogeophysical effects of land use change. In addition, we utilize offline radiative transfer and offline land model simulations to identify forcing and feedback mechanisms operating in different regions. We find that boreal deforestation has a strong climatic signature due to significant albedo change coupled with a regional-scale water vapor feedback. Tropical deforestation, on the other hand, has more subtle effects on climate. Globally, the two scenarios yield warming trends over the 21st century that differ by 0.5 degrees Celsius. This

  5. NASA Land Cover and Land Use Change (LCLUC): an interdisciplinary research program.

    Science.gov (United States)

    Justice, Chris; Gutman, Garik; Vadrevu, Krishna Prasad

    2015-01-15

    Understanding Land Cover/Land Use Change (LCLUC) in diverse regions of the world and at varied spatial scales is one of the important challenges in global change research. In this article, we provide a brief overview of the NASA LCLUC program, its focus areas, and the importance of satellite remote sensing observations in LCLUC research including future directions. The LCLUC Program was designed to be a cross-cutting theme within NASA's Earth Science program. The program aims to develop and use remote sensing technologies to improve understanding of human interactions with the environment. Since 1997, the NASA LCLUC program has supported nearly 280 research projects on diverse topics such as forest loss and carbon, urban expansion, land abandonment, wetland loss, agricultural land use change and land use change in mountain systems. The NASA LCLUC program emphasizes studies where land-use changes are rapid or where there are significant regional or global LCLUC implications. Over a period of years, the LCLUC program has contributed to large regional science programs such as Land Biosphere-Atmosphere (LBA), the Northern Eurasia Earth Science Partnership Initiative (NEESPI), and the Monsoon Area Integrated Regional Study (MAIRS). The primary emphasis of the program will remain on using remote sensing datasets for LCLUC research. The program will continue to emphasize integration of physical and social sciences to address regional to global scale issues of LCLUC for the benefit of society. Copyright © 2014. Published by Elsevier Ltd.

  6. Effect of Technology Driven Agricultural Land Use Change on Regional Hydroclimate

    Science.gov (United States)

    Arritt, R. W.; Sines, T. R.; Groisman, P. Y.; Gelder, B. K.

    2017-12-01

    During the mid-20th century motorized equipment replaced work animals in the central U.S. This led to a 95% decrease in farmland for producing oats, which had mostly been used as feed for horses. Much of this land was converted to more profitable crops such as soybeans and maize. The same period also saw a strong shift of the central U.S. precipitation intensity spectrum toward heavier events. Was this a coincidence, or is there a causal relationship? We investigate possible connections between this technology-driven land use change and regional hydroclimate by performing multi-decadal simulations over the central U.S. using the WRF-ARW regional climate model coupled with the Community Land Model (CLM 4.5). Cropland planted in maize, soybean, winter wheat, small grains (which includes oats and spring wheat), and other C3 and C4 crops were reconstructed on a decade by decade basis from 1940-2010 using county-level crop data. These crop distributions were used as land surface boundary conditions for two multi-decadal regional climate simulations, one with 1940s land use and another with modern (circa 2010) land use. Modern land use produced a shift in the simulated daily precipitation intensity spectrum toward heavy events, with higher frequencies of heavy precipitation amounts and lower frequencies of light amounts compared to 1940s land use. The results suggest that replacement of work animals by mechanized transport led to land use changes that produced about 10-30% of the observed trend toward more intense precipitation over the central United States. We therefore recommend that policy- and technology-driven changes in crop type be taken into account when projecting future climate and water resources.

  7. Engagement of scientific community and transparency in C accounting: the Brazilian case for anthropogenic greenhouse gas emissions from land use, land-use change and forestry

    Science.gov (United States)

    Bustamante, M. M. C.; Silva, J. S. O.; Cantinho, R. Z.; Shimbo, J. Z.; Oliveira, P. V. C.; Santos, M. M. O.; Ometto, J. P. H. B.; Cruz, M. R.; Mello, T. R. B.; Godiva, D.; Nobre, C. A.

    2018-05-01

    To effectively implement the Paris Agreement, capacity in carbon accounting must be strengthened in the developing world, and partnerships with local academic institutions can do the accounting for governments and fill the capacity gap. This paper highlights the Brazilian case, focusing on ways in which climate change science information and transparency are being incorporated in national C accounting initiatives, particularly the national inventory of greenhouse gas (GHG) emissions and removals. We report how the third inventory for the sector of land use, land-use change and forestry (LULUCF) was implemented to address scientific challenges involved in the monitoring of carbon stocks and land-use changes of diverse and complex biomes while addressing international and national policy demands (report and decision support) and transparency to various stakeholders. GHG emissions and removals associated with 2002–2010 carbon changes in aboveground, belowground biomass, necromass and soil carbon by land use and land cover changes were estimated for all Brazilian biomes, and for the Amazon estimates were also presented for the periods of 2002–2005 and 2005–2010. The inventory improved regional estimates for carbon stock and national emission factors with the support and engagement of the scientific community. Incorporation of local context is essential to reduce uncertainties and properly monitor efforts to contribute to GHG emission/reduction targets. To promote transparency and make information more accessible, the national inventory results were made available by the National Emissions Registry System (SIRENE). This system was built to support climate change policies as an important legal apparatus and by increasing access to emissions and land-use change data.

  8. 77 FR 40405 - Notice of a Non-Aeronautical Land-Use Change Effecting the Quitclaim Deed and Federal Grant...

    Science.gov (United States)

    2012-07-09

    ... the application for a non-aeronautical land- use change for approximately 38 acres of airport property... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Notice of a Non-Aeronautical Land-Use..., Delano, CA AGENCY: Federal Aviation Administration, DOT. ACTION: Notice of a Non-Aeronautical Land-Use...

  9. An economic framework for forecasting land-use and ecosystem change

    International Nuclear Information System (INIS)

    Lewis, David J.

    2010-01-01

    This paper develops a joint econometric-simulation framework to forecast detailed empirical distributions of the spatial pattern of land-use and ecosystem change. In-sample and out-of-sample forecasting tests are used to examine the performance of the parcel-scale econometric and simulation models, and the importance of multiple forecasting challenges is assessed. The econometric-simulation method is integrated with an ecological model to generate forecasts of the probability of localized extinctions of an amphibian species. The paper demonstrates the potential of integrating economic and ecological models to generate ecological forecasts in the presence of alternative market conditions and land-use policy constraints. (author)

  10. MODELLING THE EFFECTS OF LAND-USE CHANGES ON CLIMATE: A CASE STUDY ON YAMULA DAM

    OpenAIRE

    Ü. Köylü; A. Geymen

    2016-01-01

    Dams block flow of rivers and cause artificial water reservoirs which affect the climate and the land use characteristics of the river basin. In this research, the effect of the huge water body obtained by Yamula Dam in Kızılırmak Basin is analysed over surrounding spatial’s land use and climate change. Mann Kendal non-parametrical statistical test, Theil&Sen Slope method, Inverse Distance Weighting (IDW), Soil Conservation Service-Curve Number (SCS-CN) methods are integrated for spa...

  11. Land use classification and change analysis using ERTS-1 imagery in CARETS

    Science.gov (United States)

    Alexander, R. H.

    1973-01-01

    Land use detail in the CARETS area obtainable from ERTS exceeds the expectations of the Interagency Steering Committee and the USGS proposed standardized classification, which presents Level 1 categories for ERTS and Level 2 for high altitude aircraft data. Some Levels 2 and 3, in addition to Level 1, categories were identified on ERTS data. Significant land use changes totaling 39.2 sq km in the Norfolk-Portsmouth SMSA were identified and mapped at Level 2 detail using a combination of procedures employing ERTS and high altitude aircraft data.

  12. Peri-urban futures: Scenarios and models for land use change in Europe

    DEFF Research Database (Denmark)

    on a pan-European level Has a conclusive didactic approach + text structure (e.g. inserts, boxes ...) Presently, peri-urbanisation is one of the most pervasive processes of land use change in Europe with strong impacts on both the environment and quality of life. It is a matter of great urgency...... to determine strategies and tools in support of sustainable development. The book synthesizes the results of PLUREL, a large European Commission funded research project (2007-2010). Tools and strategies of PLUREL address main challenges of managing land use in peri-urban areas. These results are presented...

  13. Can biofuels be a solution to climate change? The implications of land use change-related emissions for policy

    Science.gov (United States)

    Khanna, Madhu; Crago, Christine L.; Black, Mairi

    2011-01-01

    Biofuels have gained increasing attention as an alternative to fossil fuels for several reasons, one of which is their potential to reduce the greenhouse gas (GHG) emissions from the transportation sector. Recent studies have questioned the validity of claims about the potential of biofuels to reduce GHG emissions relative to the liquid fossil fuels they are replacing when emissions owing to direct (DLUC) and indirect land use changes (ILUC) that accompany biofuels are included in the life cycle GHG intensity of biofuels. Studies estimate that the GHG emissions released from ILUC could more than offset the direct GHG savings by producing biofuels and replacing liquid fossil fuels and create a ‘carbon debt’ with a long payback period. The estimates of this payback period, however, vary widely across biofuels from different feedstocks and even for a single biofuel across different modelling assumptions. In the case of corn ethanol, this payback period is found to range from 15 to 200 years. We discuss the challenges in estimating the ILUC effect of a biofuel and differences across biofuels, and its sensitivity to the assumptions and policy scenarios considered by different economic models. We also discuss the implications of ILUC for designing policies that promote biofuels and seek to reduce GHG emissions. In a first-best setting, a global carbon tax is needed to set both DLUC and ILUC emissions to their optimal levels. However, it is unclear whether unilateral GHG mitigation policies, even if they penalize the ILUC-related emissions, would increase social welfare and lead to optimal emission levels. In the absence of a global carbon tax, incentivizing sustainable land use practices through certification standards, government regulations and market-based pressures may be a viable option for reducing ILUC. PMID:22482030

  14. Ensemble simulations to study the impact of land use change of Atlanta to regional climate

    Science.gov (United States)

    Liu, P.; Hu, Y.; Stone, B.; Vargo, J.; Nenes, A.; Russell, A.; Trail, M.; Tsimpidi, A.

    2012-12-01

    Studies show that urban areas may be the "first responders" to climate change (Rosenzweig et al., 2010). Of particular interest is the potential increased temperatures in urban areas, due to use of structures and surfaces that increase local heating, and how that may impact health, air quality and other environmental factors. In response, interest has grown as to how the modification of land use in urban areas, in order to mitigate the adverse effects of urbanization can serve to reduce local temperatures, and how climate is impacted more regionally. Studies have been conducted to investigate the impact of land use change on local or regional climate by dynamic downscaling using regional climate models (RCMs), the boundary conditions (BCs) and initial conditions (ICs) of which result from coarser-resolution reanalysis data or general circulation models (GCMs). However, few studies have focused on demonstrating whether the land use change in local areas significantly impacts the climate of the larger region of the domain, and the spatial scale of the impact from urban-scale changes. This work investigated the significance of the impact of land use change in the Atlanta city area on different scales, using a range of modeling resolutions, including the contiguous US (with 36km resolution), the southeastern US (with 12km resolution) and the state of Georgia (with 4km resolution). We used WRF version 3.1.1 with and ran continuous from June to August of a simulated year 2050, driven by GISS ModelE with inputs corresponding to RCP4.5. During the simulation, spectral nudging is used in the 36km resolution domain to maintain the climate patterns with scales larger than 2000km. Two-way nesting is also used in order to take into account the feedback of nesting domains across model domains. Two land use cases over the Atlanta city are chosen. For the base case, most of the urban area of Atlanta is covered with forest; while for the second, "impervious" case, all the urban

  15. Simulation of future land use change and climate change impacts on hydrological processes in a tropical catchment

    Science.gov (United States)

    Marhaento, H.; Booij, M. J.; Hoekstra, A. Y.

    2017-12-01

    Future hydrological processes in the Samin catchment (278 km2) in Java, Indonesia have been simulated using the Soil and Water Assessment Tool (SWAT) model using inputs from predicted land use distributions in the period 2030 - 2050, bias corrected Regional Climate Model (RCM) output and output of six Global Climate Models (GCMs) to include climate model uncertainty. Two land use change scenarios namely a business-as-usual (BAU) scenario, where no measures are taken to control land use change, and a controlled (CON) scenario, where the future land use follows the land use planning, were used in the simulations together with two climate change scenarios namely Representative Concentration Pathway (RCP) 4.5 and 8.5. It was predicted that in 2050 settlement and agriculture area of the study catchment will increase by 33.9% and 3.5%, respectively under the BAU scenario, whereas agriculture area and evergreen forest will increase by 15.2% and 10.2%, respectively under the CON scenario. In comparison to the baseline conditions (1983 - 2005), the predicted mean annual maximum and minimum temperature in 2030 - 2050 will increase by an average of +10C, while changes in the mean annual rainfall range from -20% to +19% under RCP 4.5 and from -25% to +15% under RCP 8.5. The results show that land use change and climate change individually will cause changes in the water balance components, but that more pronounced changes are expected if the drivers are combined, in particular for changes in annual stream flow and surface runoff. It was observed that combination of the RCP 4.5 climate scenario and BAU land use scenario resulted in an increase of the mean annual stream flow from -7% to +64% and surface runoff from +21% to +102%, which is 40% and 60% more than when land use change is acting alone. Furthermore, under the CON scenario the annual stream flow and surface runoff could be potentially reduced by up to 10% and 30%, respectively indicating the effectiveness of applied

  16. Theorizing Land Cover and Land Use Changes: The Case of Tropical Deforestation

    Science.gov (United States)

    Walker, Robert

    2004-01-01

    This article addresses land-cover and land-use dynamics from the perspective of regional science and economic geography. It first provides an account of the so-called spatially explicit model, which has emerged in recent years as a key empirical approach to the issue. The article uses this discussion as a springboard to evaluate the potential utility of von Thuenen to the discourse on land-cover and land-use change. After identifying shortcomings of current theoretical approaches to land use in mainly urban models, the article filters a discussion of deforestation through the lens of bid-rent and assesses its effectiveness in helping us comprehend the destruction of tropical forest in the Amazon basin. The article considers the adjustments that would have to be made to existing theory to make it more useful to the empirical issues.

  17. Aquatic insects as Bioindicators of land Use Change in the Grand Traverse Bay Area of Michigan

    Science.gov (United States)

    Robert A. Haack; Toby R. Petrice; Sheridan K. Haack; David Hyndman; David Long; Bryan Pijanowski

    2000-01-01

    In 1996, the US-Canadian International Joint Commission identified five key stresses impacting the Great Lakes Basin Ecosystem: nutrient inputs (e.g., phosphorous and nitrogen), persistent toxic substances, physical alterations (e.g., sedimentation, infiltration, runoff, water levels), human activities and values (as manifested in land-use change, populations growth,...

  18. Estimating fine-scale land use change dynamics using an expedient photointerpretation-based method

    Science.gov (United States)

    Tonya Lister; Andrew Lister; Eunice Alexander

    2009-01-01

    Population growth and urban expansion have resulted in the loss of forest land. With growing concerns about this loss and its implications for global processes and carbon budgets, there is a great need for detailed and reliable land use change data. Currently, the Northern Research Station uses an Annual Inventory design whereby all plots are revisited every 5 years...

  19. Revolutionary land use change in the 21st century: Is (rangeland) science relevant?

    Science.gov (United States)

    Rapidly increasing demand for food, fiber and fuel together with new technologies and the mobility of global capital are driving revolutionary changes in land use throughout the world. Efforts to increase land productivity include conversion of millions of hectares of rangelands to crop production, ...

  20. The potential for agricultural land use change to reduce flood risk in a large watershed

    Science.gov (United States)

    Effects of agricultural land management practices on surface runoff are evident at local scales, but evidence for watershed-scale impacts is limited. In this study, we used the Soil and Water Assessment Tool model to assess changes in downstream flood risks under different land uses for the large, ...

  1. Root for rain : Towards understanding land-use change impacts on the water cycle

    NARCIS (Netherlands)

    Wang-Erlandsson, L.

    2017-01-01

    We live today on a human-dominated planet under unprecedented pressure on both land and water. The water cycle is intrinsically linked to vegetation and land use, and anticipating the consequences of simultaneous changes in land and water systems requires a thorough understanding of their

  2. Exploring land use changes and the role of palm oil production in Indonesia and Malaysia

    NARCIS (Netherlands)

    Wicke, B.; Sikkema, R.; Dornburg, V.; Faaij, A.P.C.

    2011-01-01

    This study compiles and analyses national-level data on land use change (LUC) and its causes in Indonesia and Malaysia over the past 30 years. The study also explores the role that palm oil has played in past LUC and that projected growth in palm oil production may play in LUC until 2020 and

  3. Modelling land use change across elevation gradients in district Swat, Pakistan

    NARCIS (Netherlands)

    Qasim, M.; Termansen, M.; Hubacek, K.; Fleskens, L.

    2013-01-01

    District Swat is part of the high mountain Hindu-Kush Himalayan region of Pakistan. Documentation and analysis of land use change in this region is challenging due to very disparate accounts of the state of forest resources and limited accessible data. Such analysis is, however, important due to

  4. An agent-based approach to model land-use change at a regional scale

    NARCIS (Netherlands)

    Valbuena, D.F.; Verburg, P.H.; Bregt, A.K.; Ligtenberg, A.

    2010-01-01

    Land-use/cover change (LUCC) is a complex process that includes actors and factors at different social and spatial levels. A common approach to analyse and simulate LUCC as the result of individual decisions is agent-based modelling (ABM). However, ABM is often applied to simulate processes at local

  5. Modeling the ecological niche of long-term land use changes

    NARCIS (Netherlands)

    Bajocco, S.; Ceccarelli, T.; Smiraglia, D.; Salvati, L.; Ricotta, C.

    2016-01-01

    Land use/land cover changes (LULCCs) represent the result of the complex interaction between biophysical factors and human activity, acting over a wide range of temporal and spatial scales. The aim of this work is to quantify the role of biophysical factors in constraining the trajectories of

  6. Local variability mediates vulnerability of trout populations to land use and climate change

    Science.gov (United States)

    Brooke E. Penaluna; Jason B. Dunham; Steve F. Railsback; Ivan Arismendi; Sherri L. Johnson; Robert E. Bilby; Mohammad Safeeq; Arne E. Skaugset; James P. Meador

    2015-01-01

    Land use and climate change occur simultaneously around the globe. Fully understanding their separate and combined effects requires a mechanistic understanding at the local scale where their effects are ultimately realized. Here we applied an individual-based model of fish population dynamics to evaluate the role of local stream variability in modifying responses of...

  7. Drivers and Implications of Land Use and Land Cover Change in the ...

    African Journals Online (AJOL)

    This study explores the major drivers of Land-use/Land-cover (LULC) dynamics and the observed environmental degradation as a response to these changes in the Modjo watershed, central Ethiopia. Data for this study were generated through household survey and supplemented with remotely sensed image interpretation ...

  8. Projecting trends in plant invasions in Europe under different scenarios of future land-use change

    Czech Academy of Sciences Publication Activity Database

    Chytrý, M.; Wild, Jan; Pyšek, Petr; Jarošík, Vojtěch; Dendoncker, N.; Reginster, I.; Pino, J.; Maskell, L. C.; Vila, M.; Pergl, Jan; Kühn, I.; Spangenberg, J.H.; Settele, J.

    2012-01-01

    Roč. 21, č. 1 (2012), s. 75-87 ISSN 1466-822X R&D Projects: GA MŠk LC06073 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : plant invasions * land-use change * prediction Subject RIV: EF - Botanics Impact factor: 7.223, year: 2012

  9. Future fire emissions associated with projected land use change in Indonesia

    Science.gov (United States)

    Marlier, M. E.; DeFries, R. S.; Pennington, D.; Ordway, E.; Nelson, E.; Mickley, L.; Koplitz, S.

    2013-12-01

    Indonesia has experienced rapid land use change in past decades as forests and peatlands are cleared for agricultural development, including oil palm and timber plantations1. Fires are the predominant method of clearing and the subsequent emissions can have important public health impacts by contributing to regional particulate matter and ozone concentrations2. This regional haze was dramatically seen in Singapore during June 2013 due to the transport of emissions from fires in Sumatra. Our study is part of a larger project that will quantify the public health impact of various land use development scenarios for Sumatra over the coming decades. Here, we describe how we translate economic projections of land use change into future fire emissions inventories for GEOS-Chem atmospheric transport simulations. We relate past GFED3 fire emissions3 to detailed 1-km land use change data and MODIS fire radiative power observations, and apply these relationships to future estimates of land use change. The goal of this interdisciplinary project is to use modeling results to interact with policy makers and influence development strategies in ways that protect public health. 1Miettinen et al. 2011. Deforestation rates in insular Southeast Asia between 2000 and 2010. Glob. Change Biol.,17 (7), 2261-2270. 2Marlier et al. 2013. El Niño and health risks from landscape fire emissions in southeast Asia. Nature Clim. Change, 3, 131-136. 3van der Werf et al. 2010. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). Atmos. Chem. Physics, 10 (23), 11707-11735.

  10. Relevance of methodological choices for accounting of land use change carbon fluxes

    Science.gov (United States)

    Pongratz, Julia; Hansis, Eberhard; Davis, Steven

    2015-04-01

    To understand and potentially steer how humans shape land-climate interactions it is important to accurately attribute greenhouse gas fluxes from land use and land cover change (LULCC) in space and time. However, such accounting of carbon fluxes from LULCC generally requires choosing from multiple options of how to attribute the fluxes to regions and to LULCC activities. Applying a newly-developed and spatially-explicit bookkeeping model, BLUE ("bookkeeping of land use emissions"), we quantify LULCC carbon fluxes and attribute them to land-use activities and countries by a range of different accounting methods. We present results with respect to a Kyoto Protocol-like ``commitment'' accounting period, using land use emissions of 2008-12 as example scenario. We assess the effect of accounting methods that vary (1) the temporal evolution of carbon stocks, (2) the state of the carbon stocks at the beginning of the period, (3) the temporal attribution of carbon fluxes during the period, and (4) treatment of LULCC fluxes that occurred prior to the beginning of the period. We show that the methodological choices result in grossly different estimates of carbon fluxes for the different attribution definitions. The global net flux in the accounting period varies between 4.3 Pg(C) uptake and 15.2 Pg(C) emissions, depending on the accounting method. Regional results show different modes of variation. This finding has implications for both political and scientific considerations: Not all methodological choices are currently specified under the UNFCCC treaties on land use, land-use change and forestry. Yet, a consistent accounting scheme is crucial to assure comparability of individual LULCC activities, quantify their relevance for the global annual carbon budget, and assess the effects of LULCC policies.

  11. Spatial Predictive Modeling and Remote Sensing of Land Use Change in the Chesapeake Bay Watershed

    Science.gov (United States)

    Goetz, Scott J.; Bockstael, Nancy E.; Jantz, Claire A.

    2005-01-01

    This project was focused on modeling the processes by which increasing demand for developed land uses, brought about by changes in the regional economy and the socio-demographics of the region, are translated into a changing spatial pattern of land use. Our study focused on a portion of the Chesapeake Bay Watershed where the spatial patterns of sprawl represent a set of conditions generally prevalent in much of the U.S. Working in the region permitted us access to (i) a time-series of multi-scale and multi-temporal (including historical) satellite imagery and (ii) an established network of collaborating partners and agencies willing to share resources and to utilize developed techniques and model results. In addition, a unique parcel-level tax assessment database and linked parcel boundary maps exists for two counties in the Maryland portion of this region that made it possible to establish a historical cross-section time-series database of parcel level development decisions. Scenario analyses of future land use dynamics provided critical quantitative insight into the impact of alternative land management and policy decisions. These also have been specifically aimed at addressing growth control policies aimed at curbing exurban (sprawl) development. Our initial technical approach included three components: (i) spatial econometric modeling of the development decision, (ii) remote sensing of suburban change and residential land use density, including comparisons of past change from Landsat analyses and more traditional sources, and (iii) linkages between the two through variable initialization and supplementation of parcel level data. To these we added a fourth component, (iv) cellular automata modeling of urbanization, which proved to be a valuable addition to the project. This project has generated both remote sensing and spatially explicit socio-economic data to estimate and calibrate the parameters for two different types of land use change models and has

  12. Understanding the Relationship between Social Change and Its Impacts: The Experience of Rural Land Use Change in South-Eastern Australia

    Science.gov (United States)

    Williams, Kathryn J. H.; Schirmer, Jacki

    2012-01-01

    This study investigated socio-economic impacts of land use change, giving explicit attention to the relationships between independently observed land use change and associated socio-economic changes, perceived land use change and socio-economic change, attributed cause of change, and experienced impacts of change. Using a case study region in…

  13. Land use and climate change: A global perspective on mitigation options: discussion

    Science.gov (United States)

    R. J. Alig

    2010-01-01

    Land use change can play a very significant role in climate change mitigation and adaptation, as part of efficient portfolios of many land-related activities. Questions involving forestry’s and agriculture’s potential contributions to climate change mitigation are framed within a national context of increased demands for cropland, forage, and wood products to help feed...

  14. Assessing Land Use-Cover Changes and Modelling Change Scenarios in Two Mountain Spanish National Parks

    Directory of Open Access Journals (Sweden)

    Javier Martínez-Vega

    2017-11-01

    Full Text Available Land Use-Cover Changes (LUCCs are one of the main problems for the preservation of biodiversity. Protected Areas (PAs do not escape this threat. Some processes, such as intensive recreational use, forest fires or the expansion of artificial areas taking place inside and around them in response to their appeal, question their environmental sustainability and their efficiency. In this paper, we analyze the LUCCs that took place between 1990 and 2006 in two National Parks (NPs belonging to the Spanish network and in their surroundings: Ordesa and Monte Perdido (Ordesa NP and Sierra de Guadarrama (Guadarrama NP. We also simulate land use changes between 2006 and 2030 by means of Artificial Neural Networks (ANNs, taking into account two scenarios: trend and green. Finally, we perform a multi-temporal analysis of natural habitat fragmentation in each NP. The results show that the NPs analyzed are well-preserved and have seen hardly any significant LUCCs inside them. However, Socioeconomic Influence Zones (SIZs and buffers are subject to different dynamics. In the SIZ and buffer of the Ordesa NP, there has been an expansion of built-up areas (annual rate of change = +1.19 around small urban hubs and ski resorts. There has also been a gradual recovery of natural areas, which had been interrupted by forest fires. The invasion of sub-alpine grasslands by shrubs is clear (+2735 ha. The SIZ and buffer of the Guadarrama NP are subject to urban sprawl in forest areas and to the construction of road infrastructures (+5549 ha and an annual rate of change = +1.20. Industrial area has multiplied by 3.3 in 20 years. The consequences are an increase in the Wildland-Urban Interface (WUI, greater risk of forest fires and greater fragmentation of natural habitats (+0.04 in SIZ. In the change scenarios, if conditions change as expected, the specific threats facing each NP can be expected to increase. There are substantial differences between the scenarios depending on

  15. Ecosystem service impacts of future changes in CO2, climate, and land use as simulated by a coupled vegetation/land-use model system

    Science.gov (United States)

    Rabin, S. S.; Alexander, P.; Henry, R.; Anthoni, P.; Pugh, T.; Rounsevell, M.; Arneth, A.

    2017-12-01

    In a future of increasing atmospheric carbon dioxide (CO2) concentrations, changing climate, increasing human populations, and changing socioeconomic dynamics, the global agricultural system will need to adapt in order to feed the world. Global modeling can help to explore what these adaptations will look like, and their potential impacts on ecosystem services. To do so, however, the complex interconnections among the atmosphere, terrestrial ecosystems, and society mean that these various parts of the Earth system must be examined as an interconnected whole. With the goal of answering these questions, a model system has been developed that couples a biologically-representative global vegetation model, LPJ-GUESS, with the PLUMv2 land use model. LPJ-GUESS first simulates—at 0.5º resolution across the world—the potential yield of various crops and pasture under a range of management intensities for a time step given its atmospheric CO2 level and climatic forcings. These potential yield simulations are fed into PLUMv2, which uses them in conjunction with endogenous agricultural commodity demand and prices to produce land use and management inputs (fertilizer and irrigation water) at a sub-national level for the next time step. This process is performed through 2100 for a range of future climate and societal scenarios—the Representative Concentration Pathways (RCPs) and the Shared Socioeconomic Pathways (SSPs), respectively—providing a thorough exploration of possible trajectories of land use and land cover change. The land use projections produced by PLUMv2 are fed back into LPJ-GUESS to simulate the future impacts of land use change, along with increasing CO2 and climate change, on terrestrial ecosystems. This integrated analysis examines the resulting impacts on regulating and provisioning ecosystem services affecting biophysics (albedo); carbon, nitrogen, and water cycling; and the emission of biogenic volatile organic compounds (BVOCs).

  16. Scenario-Led Habitat Modelling of Land Use Change Impacts on Key Species.

    Directory of Open Access Journals (Sweden)

    Matthew Geary

    Full Text Available Accurate predictions of the impacts of future land use change on species of conservation concern can help to inform policy-makers and improve conservation measures. If predictions are spatially explicit, predicted consequences of likely land use changes could be accessible to land managers at a scale relevant to their working landscape. We introduce a method, based on open source software, which integrates habitat suitability modelling with scenario-building, and illustrate its use by investigating the effects of alternative land use change scenarios on landscape suitability for black grouse Tetrao tetrix. Expert opinion was used to construct five near-future (twenty years scenarios for the 800 km2 study site in upland Scotland. For each scenario, the cover of different land use types was altered by 5-30% from 20 random starting locations and changes in habitat suitability assessed by projecting a MaxEnt suitability model onto each simulated landscape. A scenario converting grazed land to moorland and open forestry was the most beneficial for black grouse, and 'increased grazing' (the opposite conversion the most detrimental. Positioning of new landscape blocks was shown to be important in some situations. Increasing the area of open-canopy forestry caused a proportional decrease in suitability, but suitability gains for the 'reduced grazing' scenario were nonlinear. 'Scenario-led' landscape simulation models can be applied in assessments of the impacts of land use change both on individual species and also on diversity and community measures, or ecosystem services. A next step would be to include landscape configuration more explicitly in the simulation models, both to make them more realistic, and to examine the effects of habitat placement more thoroughly. In this example, the recommended policy would be incentives on grazing reduction to benefit black grouse.

  17. Quantitative analysis and simulation of land use changes in the Pearl River Delta, China

    Science.gov (United States)

    Zhang, Honghui; Zeng, Yongnian; Zou, Bin; Xiao, Pengfeng; Hu, Deyong; Peng, Jianchao

    2007-06-01

    This paper analyzes and simulates the land use changes in the Pearl River Delta, China, using Longgang City as a case study. The region has pioneered the nation in economic development and urbanization process. Tremendous land use changes have been witnessed since the economic reform in 1978. Land use changes are analyzed and simulated by using stochastic cellular automata model, land use trajectories analysis, spatial indices and multi-temporal TM images of Longgang City (TM1987, TM1991, TM1995, TM1999, TM2003, TM2005) in order to understand how urbanization has transformed the non-urban land to urban land and estimate the consequent environment and ecological impacts in this region. The analysis and simulation results show that urban land continues to sprawl along road and fringe of towns, and concomitant to this development is the loss of agricultural land, orchards and fish ponds. This study provides new evidence with spatial details about the uneven land development in the Pearl River Delta.

  18. Land use changes in Pak Phanang Basin using satellite images and geographic information system

    Directory of Open Access Journals (Sweden)

    Yongchalermchai, C.

    2004-01-01

    Full Text Available This study defined major changes in land use in Pak Phanang Basin, Nakhon Si Thammarat Province by using remote sensing and geographic information system techniques. The land use map conducted by Department of Land Development in 1988 was compared with the land use map interpreted from satelliteimages of Landsat-5 TM acquired in 1995 and 1999. The results revealed that between 1988 to 1999, forest area in the basin decreased by a total of 98.08 km2, a drastic decline of 60% that was changed to rubber plantation area. The rubber area increased about 181.7 km2 or 41%. Shrimp farm area increased by 184.87 km2, equivalent to a high increase of 886% while paddy field area decreased by 248.7 km2, or 16% that was converted to shrimp farm and rubber land. A decline in forest area caused soil erosion. The severe expansion of shrimp farm area caused the salinity and affected nearby paddy field and water source areas, that resulted in degradation of the environment. Application of remote sensing and geographic information system was utilized as a tool for monitoring the land use change and planning proper resource utilization for sustainable development in Pak Phanang Basin.

  19. Contribution of land use changes to meteorological parameters in Greater Jakarta: Case 17 January 2014

    Science.gov (United States)

    Nuryanto, D. E.; Pawitan, H.; Hidayat, R.; Aldrian, E.

    2018-05-01

    The impact of land use changes on meteorological parameters during a heavy rainfall event on 17 January 2014 in Greater Jakarta (GJ) was examined using the Weather Research and Forecasting (WRF) model. This study performed two experimental simulation methods. The first WRF simulation uses default land use (CTL). The second simulation applies the experiment by changing the size of urban and built-up land use (SCE). The Global Forecast System (GFS) data is applied to provide more realistic initial and boundary conditions for the nested model domains (3 km, 1 km). The simulations were initiated at 00:00 UTC January 13, 2014 and the period of modeling was equal to six days. The air temperature and the precipitation pattern in GJ shows a good agreement between the observed and simulated data. The results show a consistent significant contribution of urban development and accompany land use changes in air temperature and precipitation. According to the model simulation, urban and built-up land contributed about 6% of heavy rainfall and about 0.2 degrees of air temperatures in the morning. Simulations indicate that new urban developments led to an intensification and expansion of the rain area. The results can support the decision-making of flooding and watershed management.

  20. Biofuels and Land Use Change: Applying Recent Evidence to Model Estimates

    Directory of Open Access Journals (Sweden)

    Wallace E. Tyner

    2013-01-01

    Full Text Available Biofuels impact on global land use has been a controversial yet important topic. Up until recently, there has not been enough biofuels to have caused major land use change, so the evidence from actual global land use data has been scant. However, in the past decade, there have been 72 million hectares added to global crop cover. In this research we take advantage of this new data to calibrate the Global Trade Analysis Project (GTAP model and parameters. We make two major changes. First, we calibrate the land transformation parameters (called constant elasticity of transformation, CET to global regions so that the parameters better reflect the actual land cover change that has occurred. Second, we alter the land cover nesting structure. In the old GTAP model, cropland, pasture, and forest were all in the same nest suggesting, everything else being equal, that pasture or forest convert to cropland with equal ease and cost. However, we now take advantage of the fact that pasture converts to cropland at lower cost than forest. The paper provides the theoretical and empirical justification for these two model improvements. Then it re-evaluates the global land use impacts due to the USA ethanol program using the improved model tuned with actual observations. Finally, it shows that compared to the old model, the new model projects: (1 less expansion in global cropland due to ethanol expansion; (2 lower U.S. share in global cropland expansion; (3 and lower forest share in global cropland expansion.

  1. A GIS BASED EVALUATION OF LAND USE CHANGES AND ECOLOGICAL CONNECTIVITY INDEX

    Directory of Open Access Journals (Sweden)

    Poppy Indrayani

    2017-03-01

    Full Text Available Recently, the Makassar region is a significant land use planning and management issue, and has many impacts on the ecological function and structure landscape. With the development and infrastructure initiatives mostly around the urban centers, the urbanization and sprawl would impact the environment and the natural resources. Therefore, environmental management and careful strategic spatial planning in landscape ecological network is crucial when aiming for sustainable development. In this paper, the impacts of land use changes from 1997 to 2012 on the landscape ecological connectivity in the Makassar region were evaluated using Geographic Information System (GIS. The resulted GIS analysis clearly showed that land use changes occurring in the Makassar region have caused profound changes in landscape pattern. The spatial model had a predictive capability allowing the quantitative assessment and comparison of the impacts resulting from different land use on the ecological connectivity index. The results had an effective performance in identifying the vital ecological areas and connectivity prior to development plan in areas.

  2. Out-migration and land-use change in agricultural frontiers: insights from Altamira settlement project

    Science.gov (United States)

    D’Antona, Álvaro O.

    2012-01-01

    One of Daniel Hogan’s lasting impacts on international demography community comes through his advocacy for studying bidirectional relationships between environment and demography, particularly migration. We build on his holistic approach to mobility and examine dynamic changes in land use and migration among small farm families in Altamira, Pará, Brazil. We find that prior area in either pasture or perennials promotes out-migration of adult children, but that out-migration is not directly associated with land-use change. In contrast to early formulations of household life cycle models that argued that aging parents would decrease productive land use as children left the farm, we find no effect of out-migration of adult children on land-use change. Instead, remittances facilitate increases in area in perennials, a slower to pay off investment that requires scarce capital, but in pasture. While remittances are rare, they appear to permit sound investments in the rural milieu and thus to slow rural exodus and the potential consolidation of land into large holdings. We would do well to promote the conditions that allow them to be sent and to be used productively to keep families on the land to avoid the specter of extensive deforestation for pasture followed by land consolidation. PMID:23129878

  3. Land-use change to bioenergy production in Europe: implications for the greenhouse gas balance and soil carbon

    DEFF Research Database (Denmark)

    Don, Axel; Osborne, Bruce; Hastings, Astley

    2012-01-01

    for Miscanthus). However, there was no positive or even negative effects on the C balance if energy crops are established on former grassland. Increased bioenergy production may also result in direct and indirect land-use changes with potential high C losses when native vegetation is converted to annual crops......Bioenergy from crops is expected to make a considerable contribution to climate change mitigation. However, bioenergy is not necessarily carbon neutral because emissions of CO2, N2O and CH4 during crop production may reduce or completely counterbalance CO2 savings of the substituted fossil fuels...... of lower fertilizer requirements as well as a higher N-use efficiency, due to effective N-recycling. Perennial energy crops have the potential to sequester additional carbon in soil biomass if established on former cropland (0.44 Mg soil C ha 1 yr 1 for poplar and willow and 0.66 Mg soil C ha 1 yr 1...

  4. Land use change and landslide characteristics analysis for community-based disaster mitigation.

    Science.gov (United States)

    Chen, Chien-Yuan; Huang, Wen-Lin

    2013-05-01

    On August 8, 2009, Typhoon Morakot brought heavy rain to Taiwan, causing numerous landslides and debris flows in the Taihe village area of Meishan Township, Chiayi County, in south-central Taiwan. In the Taihe land is primary used for agriculture and land use management may be a factor in the area's landslides. This study explores Typhoon Morakot-induced landslides and land use changes between 1999 and 2009 using GIS with the aid of field investigation. Spot 5 satellite images with a resolution of 2.5 m are used for landslide interpretation and manually digitalized in GIS. A statistical analysis for landslide frequency-area distribution was used to identify the landslide characteristics associated with different types of land use. There were 243 landslides with a total area of 2.75 km(2) in the study area. The area is located in intrinsically fragile combinations of sandstone and shale. Typhoon Morakot-induced landslides show a power-law distribution in the study area. Landslides were mainly located in steep slope areas containing natural forest and in areas planted with bamboo, tea, and betel nut. Land covered with natural forest shows the highest landslide ratio, followed by bamboo, betel nut, and tea. Landslides thus show a higher ratio in areas planted with shallow root vegetation such as bamboo, betel nut, and tea. Furthermore, the degree of basin development is proportional to the landslide ratio. The results show that a change in vegetation cover results in a modified landslide area and frequency and changed land use areas have higher landslide ratios than non-changed. Land use management and community-based disaster prevention are needed in mountainous areas of Taiwan for hazard mitigation.

  5. Integrated modelling of anthropogenic land-use and land-cover change on the global scale

    Science.gov (United States)

    Schaldach, R.; Koch, J.; Alcamo, J.

    2009-04-01

    In many cases land-use activities go hand in hand with substantial modifications of the physical and biological cover of the Earth's surface, resulting in direct effects on energy and matter fluxes between terrestrial ecosystems and the atmosphere. For instance, the conversion of forest to cropland is changing climate relevant surface parameters (e.g. albedo) as well as evapotranspiration processes and carbon flows. In turn, human land-use decisions are also influenced by environmental processes. Changing temperature and precipitation patterns for example are important determinants for location and intensity of agriculture. Due to these close linkages, processes of land-use and related land-cover change should be considered as important components in the construction of Earth System models. A major challenge in modelling land-use change on the global scale is the integration of socio-economic aspects and human decision making with environmental processes. One of the few global approaches that integrates functional components to represent both anthropogenic and environmental aspects of land-use change, is the LandSHIFT model. It simulates the spatial and temporal dynamics of the human land-use activities settlement, cultivation of food crops and grazing management, which compete for the available land resources. The rational of the model is to regionalize the demands for area intensive commodities (e.g. crop production) and services (e.g. space for housing) from the country-level to a global grid with the spatial resolution of 5 arc-minutes. The modelled land-use decisions within the agricultural sector are influenced by changing climate and the resulting effects on biomass productivity. Currently, this causal chain is modelled by integrating results from the process-based vegetation model LPJmL model for changing crop yields and net primary productivity of grazing land. Model output of LandSHIFT is a time series of grid maps with land-use/land-cover information

  6. Evaluating the combined effects of climate and land-use change on tree species distributions

    DEFF Research Database (Denmark)

    Garcia-Valdes, Raul; Svenning, Jens-Christian; Zavala, Miguel A.

    2015-01-01

    Summary: A large proportion of the world's biodiversity is reportedly threatened by habitat loss and climate change. However, there are few studies that investigate the interaction between these two threats using empirical data. Here, we investigate interactions between climate change and land-use...... change in the future distribution of 23 dominant tree species in mainland Spain. We simulated changes up to year 2100 using a climate-dependent Stochastic Patch Occupancy Model, parameterized with colonization and extinction events recorded in 46 596 survey plots. We estimated that the distribution of 17......% of the habitat, was estimated to reduce species occupancies (relative to baseline projections) by an average of 23% if habitat loss was spatially clumped, and by 35% if it was scattered. If habitat loss occurred in areas already impacted by human activities, species occupancies would be reduced by 26%. Land-use...

  7. Additive threats from pathogens, climate and land-use change for global amphibian diversity

    DEFF Research Database (Denmark)

    Hof, Christian; Bastos Araujo, Miguel; Jetz, Walter

    2011-01-01

    Amphibian population declines far exceed those of other vertebrate groups, with 30% of all species listed as threatened by the International Union for Conservation of Nature. The causes of these declines are a matter of continued research, but probably include climate change, land-use change...... to be found in Africa, parts of northern South America and the Andes. Regions with the highest projected impact of land-use and climate change coincide, but there is little spatial overlap with regions highly threatened by the fungal disease. Overall, the areas harbouring the richest amphibian faunas...... and spread of the pathogenic fungal disease chytridiomycosis. Here we assess the spatial distribution and interactions of these primary threats in relation to the global distribution of amphibian species. We show that the greatest proportions of species negatively affected by climate change are projected...

  8. Impact of land cover and land use change on runoff characteristics.

    Science.gov (United States)

    Sajikumar, N; Remya, R S

    2015-09-15

    Change in Land Cover and Land Use (LCLU) influences the runoff characteristics of a drainage basin to a large extent, which in turn, affects the surface and groundwater availability of the area, and hence leads to further change in LCLU. This forms a vicious circle. Hence it becomes essential to assess the effect of change in LCLU on the runoff characteristics of a region in general and of small watershed levels (sub-basin levels) in particular. Such an analysis can effectively be carried out by using watershed simulation models with integrated GIS frame work. SWAT (Soil and Water Analysis Tool) model, being one of the versatile watershed simulation models, is found to be suitable for this purpose as many GIS integration modules are available for this model (e.g. ArcSWAT, MWSWAT). Watershed simulation using SWAT requires the land use and land cover data, soil data and many other features. With the availability of repository of satellite imageries, both from Indian and foreign sources, it becomes possible to use the concurrent local land use and land cover data, thereby enabling more accurate modelling of small watersheds. Such availability will also enable us to assess the effect of LCLU on runoff characteristics and their reverse impact. The current study assesses the effect of land use and land cover on the runoff characteristics of two watersheds in Kerala, India. It also assesses how the change in land use and land cover in the last few decades affected the runoff characteristics of these watersheds. It is seen that the reduction in the forest area amounts to 60% and 32% in the analysed watersheds. However, the changes in the surface runoff for these watersheds are not comparable with the changes in the forest area but are within 20%. Similarly the maximum (peak) value of runoff has increased by an amount of 15% only. The lesser (aforementioned) effect than expected might be due to the fact that forest has been converted to agricultural purpose with major

  9. Land use changes assessment using spatial data: Case study in Cong river basin - Thai Nguyen City - Viet Nam

    Science.gov (United States)

    Nguyen, Hieu

    Land use changes are being interested in most countries, especially in developing countries. Because land use changes always impacts on sustainable development not only in a region or a country but also in whole the world. Viet Nam is a developing country, in the last 10 years, land uses have rapidly changed in most provinces. Many of agriculture areas, forest areas have changed for various purposes as urban sprawl, establishing new industrial parks, public areas, mining and other land uses relate to human activities or economic function associated with a specific piece of land. Beside efficiencies of economic and society, then environment issues have been threatening serious pollution, are from land use changes. Remote sensing images application on studying land use changes, has been done in many countries around the world, and has brought high efficiencies. However, this application is still very new and limited in Viet Nam due to lacking of materials, tools, experts of remote sensing. This study used spatial data as Landsat TM images, SPOT5 images and land use planning maps to rapidly assess on happenings of land uses in the period 2000 -2010 in Cong river basin (Thai Nguyen City, Viet Nam), and to forecast the changes of land uses in the period 2010 - 2020. The results had a good accuracy and to be important references for authorities, policy makers in local land use.

  10. Benefits of collaborative and comparative research on land use change and climate mitigation

    Science.gov (United States)

    Zhu, Zhiliang; Gong, Peng

    2016-04-01

    The world's two largest economies are also the latest greenhouse gas emitters. The United States is committed to reduce the net greenhouse gas emission by 28% below the 2005 level by 2025. Similarly China also announced significant climate mitigation steps at the Paris climate convention. These policy plans will require actions including reduction of GHG emissions as well as protection of carbon stored in biologic pools and increase of carbon sequestration by the natural ecosystems. Major drivers of ecosystem carbon sequestration and protection of existing carbon resources include land use, disturbances, and climate change. Recent studies indicate that vegetated ecosystems in the United States remain as a carbon sink but the sink is weakening due to increased disturbances (such as wildfire and harvesting) and aging of forests. Unique land use policies in China such as large-scale afforestation in the recent decades have reportedly led to significant increase in total forest area and aboveground biomass, although it is not clear to what degree the increase has translated to strengthened net uptake of atmospheric CO2 and the rate of sequestration by vegetated ecosystems. What lessons can we draw from different land management and land use practices in the U.S. and China that can benefit scientific advances and climate mitigation goals? Research conducted collaboratively by the U.S. Geological Survey and China Ministry of Science and Technology has led to improved techniques for tracking and modeling land use change and ecosystem disturbances and improved understanding of consequences of different land use change and management practices on ecosystem carbon sequestration capacities.

  11. Adapting observationally based metrics of biogeophysical feedbacks from land cover/land use change to climate modeling

    International Nuclear Information System (INIS)

    Chen, Liang; Dirmeyer, Paul A

    2016-01-01

    To assess the biogeophysical impacts of land cover/land use change (LCLUC) on surface temperature, two observation-based metrics and their applicability in climate modeling were explored in this study. Both metrics were developed based on the surface energy balance, and provided insight into the contribution of different aspects of land surface change (such as albedo, surface roughness, net radiation and surface heat fluxes) to changing climate. A revision of the first metric, the intrinsic biophysical mechanism, can be used to distinguish the direct and indirect effects of LCLUC on surface temperature. The other, a decomposed temperature metric, gives a straightforward depiction of separate contributions of all components of the surface energy balance. These two metrics well capture observed and model simulated surface temperature changes in response to LCLUC. Results from paired FLUXNET sites and land surface model sensitivity experiments indicate that surface roughness effects usually dominate the direct biogeophysical feedback of LCLUC, while other effects play a secondary role. However, coupled climate model experiments show that these direct effects can be attenuated by large scale atmospheric changes (indirect feedbacks). When applied to real-time transient LCLUC experiments, the metrics also demonstrate usefulness for assessing the performance of climate models and quantifying land–atmosphere interactions in response to LCLUC. (letter)

  12. A Scale-Explicit Framework for Conceptualizing the Environmental Impacts of Agricultural Land Use Changes

    OpenAIRE

    Iago Lowe Hale; Wilfred M. Wollheim; Richard G. Smith; Heidi Asbjornsen; André F. Brito; Kirk Broders; A. Stuart Grandy; Rebecca Rowe

    2014-01-01

    Demand for locally-produced food is growing in areas outside traditionally dominant agricultural regions due to concerns over food safety, quality, and sovereignty; rural livelihoods; and environmental integrity. Strategies for meeting this demand rely upon agricultural land use change, in various forms of either intensification or extensification (converting non-agricultural land, including native landforms, to agricultural use). The nature and extent of the impacts of these changes on non-f...

  13. Analysis of Runoff due to The Change in Land Use at The Watershed of Upstream Ciliwung

    Directory of Open Access Journals (Sweden)

    Dwi Indriastuti

    2016-01-01

    Full Text Available Climate change has triggered extreme climate such as rising temperature, high rainfall intensity, rising sea water level, drought, and others (Thuc, 2014. Challenges of sustainable development are increases in various disasters, climate change and global crisis such as land use change, soil quality degradation, limited water and mineral, environmental pollution, and decreasing in biodiversity. The cause of flooding in Jakarta is due to the overflow of Ciliwung River. The changes of land use greatly affect Ciliwung River flow. Land degradation in upstream of Ciliwung watershed (Puncak area has triggered new problem, annual flooding, especially in downstream area. The change of surface which cannot accommodate water, increasing runoff, moreover, the change of land condition which easily saturated, greatly affected the runoff conditions in Ciliwung watershed. This research using HEC-HMS software in order to know how the land uses changes and rainfall intensity affected the runoff. By using land use maps in 2000, 2005, 2010, and rainfall data in 5 (five rainfall station near location from 1996 to 2013, it can be known how the runoff changes. Parameter calibration is done with measured discharge in Katulampa weir for each occurrence. The parameter value used in simulation later is the real value approach. Simulation by HEC HMS using CN of Spatial Planning in Ciliwung upstream area and rainfall 25 years return period gives that the highest discharge is 226.25 m3/second and water level reaches to 317 cm. If included into the alert in Katulampa weir, then the condition faces to Alert 1 for during ±6 hours.

  14. Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) Users’ Manual and Technical Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Qin, Zhangcai [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Mueller, Steffen [Univ. of Illinois, Chicago, IL (United States). Energy Resources Center; Kwon, Ho-young [International Food Policy Research Institute (IFPRI), Washington, DC (United States); Wander, Michelle M. [Univ. of Illinois at Urbana Champaign, Urbana, IL (United States). Dept. of Natural Resources; Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division

    2016-09-01

    The $\\underline{C}$arbon $\\underline{C}$alculator for $\\underline{L}$and $\\underline{U}$se Change from $\\underline{B}$iofuels Production (CCLUB) calculates carbon emissions from land use change (LUC) for four different ethanol production pathways including corn grain ethanol and cellulosic ethanol from corn stover, Miscanthus, and switchgrass. This document discusses the version of CCLUB released September 30, 2014 which includes corn and three cellulosic feedstocks: corn stover, Miscanthus, and switchgrass.

  15. Correlation between land use changes and shoreline changes around THE Nakdong River in Korea using landsat images.

    Science.gov (United States)

    Kwon, J. S.; Lim, C.; Baek, S. G.; Shin, S.

    2015-12-01

    Coastal erosion has badly affected the marine environment, as well as the safety of various coastal structures. In order to monitor shoreline changes due to coastal erosion, remote sensing techniques are being utilized. The land-cover map classifies the physical material on the surface of the earth, and it can be utilized in establishing eco-policy and land-use policy. In this study, we analyzed the correlation between land-use changes around the Nakdong River and shoreline changes at Busan Dadaepo Beach adjacent to the river. We produced the land-cover map based on the guidelines published by the Ministry of Environment Korea, using eight Landsat satellite images obtained from 1984 to 2015. To observe land use changes around the Nakdong River, the study site was set to include the surroundings areas of the Busan Dadaepo Beach, the Nakdong River as well as its estuary, and also Busan New Port. For the land-use classification of the study site, we also produced a land-cover map divided into seven categories according to the Ministry of Environment, Korea guidelines and using the most accurate Maximum Likelihood Method (MLM). Land use changes inland, at 500m from the shoreline, were excluded for the correlation analysis between land use changes and shoreline changes. The other categories, except for the water category, were transformed into numerical values and the land-use classifications, using all other categories, were analyzed. Shoreline changes were observed by setting the base-line and three cut-lines. We assumed that longshore bars around the Nakdong River and the shoreline of the Busan Dadaepo Beach are affected. Therefore, we expect that shoreline changes happen due to the influence of barren land, wetlands, built-up areas and deposition. The causes are due to natural factors, such as weather, waves, tide currents, longshore currents, and also artificial factors such as coastal structures, construction, and dredging.

  16. Methodological Challenges of Identifying Ultimate Land Use Changes Caused by Biofuel Production

    DEFF Research Database (Denmark)

    Wenzel, Henrik; Kløverpris, Jesper; Nielsen, Per Henning

    2007-01-01

    that is only poorly dealt with by LCA methods. Even though the use of land, or change of land cover and its eco-systems, is acknowledged to be a very important impact of human activities, a methodology for assessing this impact category has not yet  been properly developed within LCA. Some LCA scientists have...... looked into methods for assessing the impacts of given changes of land use, i.e. the impact assessment component of the LCA, but very few have looked into how to actually do the inventory modelling, i.e. how to identify which land is ultimately affected by the decision and system under study. State...... in the systems being studied. The aims of this paper is to analyse the mechanisms influencing the long-term land use consequences of changes in crop demand and propose a methodological framework for identifying these consequences within a global scope. The outset of the paper is the principles of consequential...

  17. Geographically explicit urban land use change scenarios for Mega cities: a case study in Tokyo

    Science.gov (United States)

    Yamagata, Y.; Bagan, H.; Seya, H.; Nakamichi, K.

    2010-12-01

    In preparation for the IPCC 5th assessment report, the international modeling community is developing four Representative Concentration Paths employing the scenarios developed by four different Integrated Assessment Models. These RCPs will be employed as an input to climate models, such as Earth System Models. In these days, the importance of assessment of not only global but also local (city/zone level) impacts of global change has gradually been recognized, thereby downscaling climate models are one of the urgent problems to be solved. Needless to say, reliable downscaling requires spatially high resolution land use change scenarios. So far, there has been proposed a lot of methods for constructing land use change scenarios with considering economic behavior of human, such as agent-based model (e.g., Parker et al., 2001), and land use transport (LUT) model (e.g., Anas and Liu, 2007). The latter approach in particular has widely been applied to actual urban/transport policy; hence modeling the interaction between them is very important for creating reliable land use change scenarios. However, the LUT models are usually built based on the zones of cities/municipalities whose spatial resolutions are too low to derive sensible parameters of the climate models. Moreover, almost all of the works which attempt to build spatially high resolution LUT model employs very small regions as the study area. The objective of this research is deriving various input parameters to climate models such as population density, fractional green vegetation cover, and anthropogenic heat emission with spatially high resolution land use change scenarios constructed with LUT model. The study area of this research is Tokyo metropolitan area, which is the largest urban area in the world (United Nations., 2010). Firstly, this study employs very high ground resolution zones composed of micro districts around 1km2. Secondly, the research attempt to combine remote sensing techniques and LUT models

  18. Coupling integrated assessment and earth system models: concepts and an application to land use change

    Science.gov (United States)

    O'Neill, B. C.; Lawrence, P.; Ren, X.

    2016-12-01

    Collaboration between the integrated assessment modeling (IAM) and earth system modeling (ESM) communities is increasing, driven by a growing interest in research questions that require analysis integrating both social and natural science components. This collaboration often takes the form of integrating their respective models. There are a number of approaches available to implement this integration, ranging from one-way linkages to full two-way coupling, as well as approaches that retain a single modeling framework but improve the representation of processes from the other framework. We discuss the pros and cons of these different approaches and the conditions under which a two-way coupling of IAMs and ESMs would be favored over a one-way linkage. We propose a criterion that is necessary and sufficient to motivate two-way coupling: A human process must have an effect on an earth system process that is large enough to cause a change in the original human process that is substantial compared to other uncertainties in the problem being investigated. We then illustrate a test of this criterion for land use-climate interactions based on work using the Community Earth System Model (CESM) and land use scenarios from the Representative Concentration Pathways (RCPs), in which we find that the land use effect on regional climate is unlikely to meet the criterion. We then show an example of implementing a one-way linkage of land use and agriculture between an IAM, the integrated Population-Economy-Technology-Science (iPETS) model, and CESM that produces fully consistent outcomes between iPETS and the CESM land surface model. We use the linked system to model the influence of climate change on crop yields, agricultural land use, crop prices and food consumption under two alternative future climate scenarios. This application demonstrates the ability to link an IAM to a global land surface and climate model in a computationally efficient manner.

  19. Temporal changes of land use in Asi river delta (Hatay, Southern Turkey).

    Science.gov (United States)

    Korkmaz, Hüseyin; Cetin, Bayram; Kuscu, Veysel; Ege, Ismail; Bom, Ahmet; Ozsahin, Emre; Karatas, Atilla

    2012-04-01

    Increasing non-ecological land use necessitates more efficient using and utilization of land by man. Therefore, in recent years studies on sustainable land use have gained momentum. In this study, temporal change in land use, mainly between years 1940 and 2010, in Asi river delta on Southern Turkey was covered. To this end, in addition to literature, topographical maps and satellite images from year 1940 and after were used. Also, data were collected through field studies and interviews. Collected data were evaluated from geographical viewpoint using Geographical information system (GIS) and Remote sensing (RS) methods. Unplanned settlement in delta has reached levels high enough to threaten agricultural fields. Especially, greattendencyshown by Samandag city and the villages around it towards expanding into delta is an indicatorof this threat In additon, uncontrolled sand mining and touristic facilities on the coastline are also indicators of wrong land use. In future, direction of settlement to slopes around the delta rather than lowlands will be a much more ecological approach.

  20. Internal Migration and Land Use and Land Cover Changes in the Middle Mountains of Nepal

    Directory of Open Access Journals (Sweden)

    Bhawana KC

    2017-11-01

    Full Text Available The movement of rural households from remote uplands to valley floors and to semiurban and urban areas (internal migration is a common phenomenon in the middle mountain districts of Nepal. Understanding the causes and effects of internal migration is critical to the development and implementation of policies that promote land use planning and sustainable resource management. Using geospatial information technologies and social research methods, we investigated the causes and effects of internal migration on land use and land cover patterns in a western mountain district of Nepal between 1998 and 2013. The results show a decreasing number of households at high elevations (above 1400 m, where an increase in forest cover has been observed with a consequent decrease in agricultural land and shrub- or grassland. At lower elevations (below 1400 m, forest cover has remained constant over the last 25 years, and the agricultural land area has increased but has become geometrically complex to meet the diverse needs and living requirements of the growing population. Our findings indicate that internal migration plays an important role in shaping land use and land cover change in the middle mountains of Nepal and largely determines the resource management, utilization, and distribution patterns within a small geographic unit. Therefore, land use planning must take an integrated and interdisciplinary approach rather than considering social, environmental, and demographic information in isolation.

  1. Adapting the Biome-BGC Model to New Zealand Pastoral Agriculture: Climate Change and Land-Use Change

    Science.gov (United States)

    Keller, E. D.; Baisden, W. T.; Timar, L.

    2011-12-01

    We have adapted the Biome-BGC model to make climate change and land-use scenario estimates of New Zealand's pasture production in 2020 and 2050, with comparison to a 2005 baseline. We take an integrated modelling approach with the aim of enabling the model's use for policy assessments across broadly related issues such as climate change mitigation and adaptation, land-use change, and greenhouse gas projections. The Biome-BGC model is a biogeochemical model that simulates carbon, water, and nitrogen cycles in terrestrial ecosystems. We introduce two new 'ecosystems', sheep/beef and dairy pasture, within the existing structure of the Biome-BGC model and calibrate its ecophysiological parameters against pasture clipping data from diverse sites around New Zealand to form a baseline estimate of total New Zealand pasture production. Using downscaled AR4 climate projections, we construct mid- and upper-range climate change scenarios in 2020 and 2050. We produce land-use change scenarios in the same years by combining the Biome-BGC model with the Land Use in Rural New Zealand (LURNZ) model. The LURNZ model uses econometric approaches to predict future land-use change driven by changes in net profits driven by expected pricing, including the introduction of an emission trading system. We estimate the relative change in national pasture production from our 2005 baseline levels for both sheep/beef and dairy systems under each scenario.

  2. Land use/cover change detection and urban sprawl analysis in Bandar Abbas city, Iran.

    Science.gov (United States)

    Dadras, Mohsen; Shafri, Helmi Zulhaidi Mohd; Ahmad, Noordin; Pradhan, Biswajeet; Safarpour, Sahabeh

    2014-01-01

    The process of land use change and urban sprawl has been considered as a prominent characteristic of urban development. This study aims to investigate urban growth process in Bandar Abbas city, Iran, focusing on urban sprawl and land use change during 1956-2012. To calculate urban sprawl and land use changes, aerial photos and satellite images are utilized in different time spans. The results demonstrate that urban region area has changed from 403.77 to 4959.59 hectares between 1956 and 2012. Moreover, the population has increased more than 30 times in last six decades. The major part of population growth is related to migration from other parts the country to Bandar Abbas city. Considering the speed of urban sprawl growth rate, the scale and the role of the city have changed from medium and regional to large scale and transregional. Due to natural and structural limitations, more than 80% of barren lands, stone cliffs, beach zone, and agricultural lands are occupied by built-up areas. Our results revealed that the irregular expansion of Bandar Abbas city must be controlled so that sustainable development could be achieved.

  3. Understanding land use change impacts on microclimate using Weather Research and Forecasting (WRF) model

    Science.gov (United States)

    Li, Xia; Mitra, Chandana; Dong, Li; Yang, Qichun

    2018-02-01

    To explore potential climatic consequences of land cover change in the Kolkata Metropolitan Development area, we projected microclimate conditions in this area using the Weather Research and Forecasting (WRF) model driven by future land use scenarios. Specifically, we considered two land conversion scenarios including an urbanization scenario that all the wetlands and croplands would be converted to built-up areas, and an irrigation expansion scenario in which all wetlands and dry croplands would be replaced by irrigated croplands. Results indicated that land use and land cover (LULC) change would dramatically increase regional temperature in this area under the urbanization scenario, but expanded irrigation tended to have a cooling effect. In the urbanization scenario, precipitation center tended to move eastward and lead to increased rainfall in eastern parts of this region. Increased irrigation stimulated rainfall in central and eastern areas but reduced rainfall in southwestern and northwestern parts of the study area. This study also demonstrated that urbanization significantly reduced latent heat fluxes and albedo of land surface; while increased sensible heat flux changes following urbanization suggested that developed land surfaces mainly acted as heat sources. In this study, climate change projection not only predicts future spatiotemporal patterns of multiple climate factors, but also provides valuable insights into policy making related to land use management, water resource management, and agriculture management to adapt and mitigate future climate changes in this populous region.

  4. Dynamics of land - use change in urban area in West Jakarta

    Science.gov (United States)

    Pangaribowo, R. L.

    2018-01-01

    This aim to research is to know how land use change in West Jakarta period 2000 - 2010. The research method used is descriptive method with a quantitative approach. Data analysis was done by using the result of research instrument to find out the driving of land change and to know the change of was analyzed using GIS (Geographic Information System) in Arc View GIS 3.3 program and Quantitative Analysis Model Location Quotient (LQ) and Shift-Share Analysis (SSA) In this study. The research instrument used in the analysis was observation and documentation. Based on the analysis conducted, the results of research on land use change in West Jakarta in the period of 10 years from 2000 until 2010 is caused by several aspects that are related to each other, namely political, economic, demographic, and cultural aspects. The land use change occurred in the area which decreased by minus 367,79 hectares (2.87%), the open space area decreased by minus 103.36 hectares (0.8%), the built up area increased by 201.13 hectares (1.57%), and the settlement area was 27.14 hectares (0.21%).

  5. A novel method for quantifying the greenhouse gas emissions of biofuels based on historical land use change

    Science.gov (United States)

    Liu, X.; Rhodes, J.; Clarens, A. F.

    2012-12-01

    Land use change (LUC) emissions have been at the center of an ongoing debate about how the carbon footprint of biofuels compare to petroleum-based fuels over their entire life cycle. The debate about LUC has important implications in the US, the EU, and other countries that are working to deploy biofuel policies, informed by life cycle assessment, that promote carbon emission reductions, among other things. LUC calculations often distinguish between direct land use change (DLUC), those that occur onsite, and indirect land use change (ILUC), those that result from market mechanisms leading to emissions that are either spatially or temporally removed from the agricultural activity. These designations are intended to capture the fundamental connection between agricultural production of biofuel feedstock and its physical effects on the land, but both DLUC and ILUC can be difficult to measure and apply broadly. ILUC estimates are especially challenging to quantify because they rely on global economic models to assess how much land would be brought into production in other countries as a consequence of biofuel feedstock cultivation. As a result, ILUC estimates inherently uncertain, are sensitive to complex assumptions, have limited transparency, and have precipitated sufficient controversy to delay development of coherent biofuel policies. To address these shortcomings of conventional LUC methodologies, we have developed a method for estimating land use change emissions that is based on historical emissions from a parcel of land. The method, which we call historical land use change (HLUC) can be readily quantified for any parcel of land in the world using open source datasets of historical emissions. HLUC is easy to use and is directly tied to the physical processes on land used for biofuel production. The emissions from the HLUC calculations are allocated between historical agricultural activity and proposed biofuel feedstock cultivation. This is compatible with

  6. Spatiotemporal analysis of land use and land cover change in the Brazilian Amazon.

    Science.gov (United States)

    Lu, Dengsheng; Li, Guiying; Moran, Emilio; Hetrick, Scott

    2013-01-01

    This paper provides a comparative analysis of land use and land cover (LULC) changes among three study areas with different biophysical environments in the Brazilian Amazon at multiple scales, from per-pixel, polygon, census sector, to study area. Landsat images acquired in the years of 1990/1991, 1999/2000, and 2008/2010 were used to examine LULC change trajectories with the post-classification comparison approach. A classification system composed of six classes - forest, savanna, other-vegetation (secondary succession and plantations), agro-pasture, impervious surface, and water, was designed for this study. A hierarchical-based classification method was used to classify Landsat images into thematic maps. This research shows different spatiotemporal change patterns, composition and rates among the three study areas and indicates the importance of analyzing LULC change at multiple scales. The LULC change analysis over time for entire study areas provides an overall picture of change trends, but detailed change trajectories and their spatial distributions can be better examined at a per-pixel scale. The LULC change at the polygon scale provides the information of the changes in patch sizes over time, while the LULC change at census sector scale gives new insights on how human-induced activities (e.g., urban expansion, roads, and land use history) affect LULC change patterns and rates. This research indicates the necessity to implement change detection at multiple scales for better understanding the mechanisms of LULC change patterns and rates.

  7. Ecosystem-groundwater interactions under changing land uses: Linking water, salts, and carbon across central Argentina

    Science.gov (United States)

    Jobbagy, E. G.; Nosetto, M. D.; Santoni, C. S.; Jackson, R. B.

    2007-05-01

    Although most ecosystems display a one-way connection with groundwater based on the regulation of deep water drainage (recharge), this link can become reciprocal when the saturated zone is shallow and plants take up groundwater (discharge). In what context is the reciprocal link most likely? How is it affected by land use changes? Has it consequences on salt and carbon cycling? We examine these questions across a precipitation gradient in the Pampas and Espinal of Argentina focusing on three vegetation change situations (mean annual rainfall): afforestation of humid (900-1300 mm) and subhumid grassland (700-900 mm/yr of rainfall), annual cultivation of subhumid grasslands (700-800 mm/yr), and annual cultivation of semiarid forests (500-700 mm). Humid and subhumid grasslands have shallow (measurements. Groundwater contributions enhance carbon uptake in plantations compared to grasslands as suggested by aboveground biomass measurements and satellite vegetation indexes from sites with and without access to groundwater. Where rainfall is 15 m deep) and recharge under natural conditions is null. The establishment of crops, however, triggers the onset of recharge, as evidenced by vadose zones getting wetter and leached of atmospheric chloride. Cropping may cause water table raises leading to a two-way coupling of ecosystems and groundwater in the future, as it has been documented for similar settings in Australia and the Sahel. In the Pampas land use change interacts with groundwater consumption leading to higher carbon uptake (humid and subhumid grasslands) and salt accumulation (subhumid grasslands). In the Espinal (semiarid forest) land use change currently involves a one-way effect on groundwater recharge that may switch to a reciprocal connection if regional water table raises occur. Neglecting the role of groundwater in flat sedimentary plains can obscure our understanding of carbon and salt cycling and curtail our attempts to sustain soil and water resources under

  8. Evaluating the Impact of Land Use Change on Submerged Aquatic Vegetation Stressors in Mobile Bay

    Science.gov (United States)

    Al-Hamdan, Mohammad; Estes, Maurice G., Jr.; Quattrochi, Dale; Thom, Ronald; Woodruff, Dana; Judd, Chaeli; Ellis, Jean; Watson, Brian; Rodriquez, Hugo; Johnson, Hoyt

    2009-01-01

    Alabama coastal systems have been subjected to increasing pressure from a variety of activities including urban and rural development, shoreline modifications, industrial activities, and dredging of shipping and navigation channels. The impacts on coastal ecosystems are often observed through the use of indicator species. One such indicator species for aquatic ecosystem health is submerged aquatic vegetation (SAV). Watershed and hydrodynamic modeling has been performed to evaluate the impact of land use change in Mobile and Baldwin counties on SAV stressors and controlling factors (temperature, salinity, and sediment) in Mobile Bay. Watershed modeling using the Loading Simulation Package in C++ (LSPC) was performed for all watersheds contiguous to Mobile Bay for land use scenarios in 1948, 1992, 2001, and 2030. Landsat-derived National Land Cover Data (NLCD) were used in the 1992 and 2001 simulations after having been reclassified to a common classification scheme. The Prescott Spatial Growth Model was used to project the 2030 land use scenario based on current trends. The LSPC model simulations provided output on changes in flow, temperature, and sediment for 22 discharge points into the Bay. Theses results were inputted in the Environmental Fluid Dynamics Computer Code (EFDC) hydrodynamic model to generate data on changes in temperature, salinity, and sediment on a grid with four vertical profiles throughout Mobile Bay. The changes in the aquatic ecosystem were used to perform an ecological analysis to evaluate the impact on SAV habitat suitability. This is the key product benefiting the Mobile Bay coastal environmental managers that integrates the influences of temperature, salinity, and sediment due to land use driven flow changes with the restoration potential of SAVs.

  9. Impact of Land Use Change and Land Management on Irrigation Water Supply in Northern Java Coast

    Directory of Open Access Journals (Sweden)

    Suria DarmaTarigan

    2013-05-01

    Full Text Available In Indonesia, paddy irrigation covers an area of 7,230,183 ha. Ten percent (10% of those area or 797,971 ha were supplied by reservoirs. As many as 237,790 ha (30% of those area supplied by reservoirs are situated downstream of Citarum Watershed called Northern Java Coast Irrigation Area or Pantura. Therefore, Citarum watershed is one of the most important watershed in Indonesia. Citarum is also categorized as one of most degraded watershed in Java. The study aimed to evaluate influence of land use change on irrigation water supply in Citarum watershed and land management strategies to reduce the impact. Tremendous land use change occurred in the past ten years in Citarum watershed. Settlement areas increases more than a double during 2000 to 2009 (81,686 ha to 176,442 ha and forest area decreased from 71,750 ha to 9,899 ha in the same time period. Land use change influences irrigation water supply through 2 factors: a decreasing storage capacity of watershed (hydrologic functions for dry season, and b decreasing storage capacity of reservoirs due to the sedimentation. Change of Citarum watershed hydrologic function was analyzed using 24 years’ time series discharge data (1984-2008 in combination with rainfall data from 2000 to 2008. Due to the land use change in this time period, discharge tend to decrease despite of increasing trend of rainfall. As a result irrigation area decreased 9,355 ha during wet season and 10,170 ha during dry season in the last ten years. Another threat for sustainability of water irrigation supply is reservoir sedimentation. Sedimentation rate in the past 10 years has reduced upper Citarum reservoir (Saguling half-life period (½ capacity sedimented from 294 to 28 years. If proper land management strategies be carried out, the half-life period of Saguling reservoir can be extended up to 86,4 years

  10. Simulation of land use change and effect on potential deforestation using Markov Chain - Cellular Automata

    Science.gov (United States)

    Mujiono, Indra, T. L.; Harmantyo, D.; Rukmana, I. P.; Nadia, Z.

    2017-07-01

    The purpose of this study was to simulate land use change in 1996-2016 and its prediction in 2035 as well as its potential to deforestation. Both of these purposes were obtained through modeling analysis using Markov Chain Cellular Automata. This modeling method was considered important for understanding the causes and impacts. Based on the analysis, the land use change between 1996 to 2007 has caused forest loss (the region and non-region) covering an area of 62,012 ha. While in the period of 2007 to 2016, the change has lead to the east side of the slope grade of 0-15 percent and an altitude between 500-1000 meters above sea level. In this period, plantation area has increased by 50,822 ha, while the forest area has reduced from 80,038 ha. In a period of 20 years, North Bengkulu Regency has lost the forest area of 80,038 ha. The amount of intervention against forest suggested the potential for deforestation in this area. Simulation of land use change in 2035 did not indicate significant deforestation due to the limited land on physical factors such as slope and elevation. However, it should be noted that, in 2035, the area of conservation forest was reduced by 16,793 ha (29 %), while the areas of protected and production forest were reduced by 4,933 ha (19 %) and 2,114 ha (3 %), respectively. Land use change is a serious threat of deforestation, especially in forest areas in North Bengkulu Regency, where any decline in forest area means the addition of plantation area.

  11. Bioenergy from crops and biomass residues: a consequential life-cycle assessment including land-use changes

    DEFF Research Database (Denmark)

    Tonini, Davide; Astrup, Thomas Fruergaard

    Biofuels are promising means to reduce fossil fuel depletion and mitigate greenhouse-gas (GHG) emissions. However, recent studies questioned the environmental benefits earlier attributed to biofuels, when these involve land-use changes (direct/indirect, i.e., dLUC/iLUC) (1-5). Yet, second...... to represent the actual environmental impacts. This study quantified the GHG emissions associated with a number of scenarios involving bioenergy production (as combined-heat-and-power, heating, and transport biofuel) from energy crops, industrial/agricultural residues, algae, and the organic fraction...... of municipal solid waste. Four conversion pathways were considered: combustion, fermentation-to-ethanol, fermentation-to-biogas, and thermal gasification. A total of 80 bioenergy scenarios were assessed. Consequential life-cycle assessment (CLCA) was used to quantify the environmental impacts. CLCA aimed...

  12. Estimating of the impact of land use changes using the conceptual hydrological model THESEUS??a case study

    Science.gov (United States)

    Wegehenkel, Martin

    As a result of a new agricultural funding policy established in 1992 by the European Community, it was assumed that up to 15-20% of arable land would have been set aside in the next years in the new federal states of north-eastern Germany, for example, Brandenburg. As one potential land use option, afforestation of these set aside areas was discussed to obtain deciduous forests. Since the mean annual precipitation in north-eastern Germany, Brandenburg is relatively low (480-530 mm y -1), an increase in interception and evapotranspiration loss by forests compared to arable land would lead to a reduction in ground water recharge. Experimental evidence to determine effects of such land use changes are rarely available. Therefore, there is a need for indirect methods to estimate the impact of afforestation on the water balance of catchments. In this paper, a conceptual hydrological model was verified and calibrated in two steps using data from the Stobber-catchment located in Brandenburg. In the first step, model outputs like daily evapotranspiration rates and soil water contents were verified on the basis of experimental data sets from two test locations. One test site with the land use arable land was located within the Stobber-catchment. The other test site with pine forest was located near by the catchment. In the second step, the model was used to estimate the impact of afforestation on catchment water balance and discharge. For that purpose, the model was calibrated against daily discharge measurements for the period 1995-1997. For a simple afforestation scenario, it was assumed that the area of forest increases from 34% up to 80% of the catchment area. The impact of this change in forest cover proportion was analyzed using the calibrated model. In case of increasing the proportion of forest cover in the catchment due to the scenario afforestation, the model predicts a reduction in discharge and an increase in evapotranspiration.

  13. Analyzing the Impacts of Land Use Land Change on Near Shore Coastal Habitat

    Science.gov (United States)

    Lehman, R. D.; Ta, E.; Boyle, C.; Alwood, B.

    2017-12-01

    The natural beauty of the United States Virgin Islands (USVI) has continued to attract visitors and residents, which overtime has increased human development and impact. The resulting land use change increases sediment loads and the flow of pollutants into surrounding nearshore environments such as coral reefs, mangroves, and seagrass beds. Compounded with regional climate-related processes such as rising ocean temperatures and acidification, future land-use change poses a formidable threat to coral reefs and other susceptible marine environments. Without a healthy environment, the USVI economy also becomes endangered because it is mainly supported by tourism and recreation. Using Google Earth Engine, we created a tool to composite yearly Landsat 5 TM, Landsat 8 OLI/TIRS and Sentinel-2 MSI images identify changes from 1985 to present day. Using these land cover change maps we then analyzed trends at a watershed scale using hydrological data. We found there is a spatial relationship between development intensity and the health of coral reefs. Our work supports the existing knowledge of the link between land use and coastal ecosystem health.

  14. An open and extensible framework for spatially explicit land use change modelling: the lulcc R package

    Science.gov (United States)

    Moulds, S.; Buytaert, W.; Mijic, A.

    2015-10-01

    We present the lulcc software package, an object-oriented framework for land use change modelling written in the R programming language. The contribution of the work is to resolve the following limitations associated with the current land use change modelling paradigm: (1) the source code for model implementations is frequently unavailable, severely compromising the reproducibility of scientific results and making it impossible for members of the community to improve or adapt models for their own purposes; (2) ensemble experiments to capture model structural uncertainty are difficult because of fundamental differences between implementations of alternative models; and (3) additional software is required because existing applications frequently perform only the spatial allocation of change. The package includes a stochastic ordered allocation procedure as well as an implementation of the CLUE-S algorithm. We demonstrate its functionality by simulating land use change at the Plum Island Ecosystems site, using a data set included with the package. It is envisaged that lulcc will enable future model development and comparison within an open environment.

  15. Confirmation of ACRU model results for applications in land use and climate change studies

    Directory of Open Access Journals (Sweden)

    G. P. W. Jewitt

    2010-12-01

    Full Text Available The hydrological responses of a catchment are sensitive to, and strongly coupled to, land use and climate, and changes thereof. The hydrological responses to the impacts of changing land use and climate will be the result of complex interactions, where the change in one may moderate or exacerbate the effects of the other. Further difficulties in assessing these interactions are that dominant drivers of the hydrological system may vary at different spatial and temporal scales. To assess these interactions, a process-based hydrological model, sensitive to land use and climate, and changes thereof, needs to be used. For this purpose the daily time step ACRU model was selected. However, to be able to use a hydrological model such as ACRU with confidence its representation of reality must be confirmed by comparing simulated output against observations across a range of climatic conditions. Comparison of simulated against observed streamflow was undertaken in three climatically diverse South African catchments, ranging from the semi-arid, sub-tropical Luvuvhu catchment, to the winter rainfall Upper Breede catchment and the sub-humid Mgeni catchment. Not only do the climates of the catchments differ, but their primary land uses also vary. In the upper areas of the Mgeni catchment commercial plantation forestry is dominant, while in the middle reaches there are significant areas of commercial plantation sugarcane and urban areas, while the lower reaches are dominated by urban areas. The Luvuvhu catchment has a large proportion of subsistence agriculture and informal residential areas. In the Upper Breede catchment in the Western Cape, commercial orchards and vineyards are the primary land uses. Overall the ACRU model was able to represent the high, low and total flows, with satisfactory Nash-Sutcliffe efficiency indexes obtained for the selected catchments. The study concluded that the ACRU model can be used with confidence to simulate the streamflows

  16. Confirmation of ACRU model results for applications in land use and climate change studies

    Science.gov (United States)

    Warburton, M. L.; Schulze, R. E.; Jewitt, G. P. W.

    2010-12-01

    The hydrological responses of a catchment are sensitive to, and strongly coupled to, land use and climate, and changes thereof. The hydrological responses to the impacts of changing land use and climate will be the result of complex interactions, where the change in one may moderate or exacerbate the effects of the other. Further difficulties in assessing these interactions are that dominant drivers of the hydrological system may vary at different spatial and temporal scales. To assess these interactions, a process-based hydrological model, sensitive to land use and climate, and changes thereof, needs to be used. For this purpose the daily time step ACRU model was selected. However, to be able to use a hydrological model such as ACRU with confidence its representation of reality must be confirmed by comparing simulated output against observations across a range of climatic conditions. Comparison of simulated against observed streamflow was undertaken in three climatically diverse South African catchments, ranging from the semi-arid, sub-tropical Luvuvhu catchment, to the winter rainfall Upper Breede catchment and the sub-humid Mgeni catchment. Not only do the climates of the catchments differ, but their primary land uses also vary. In the upper areas of the Mgeni catchment commercial plantation forestry is dominant, while in the middle reaches there are significant areas of commercial plantation sugarcane and urban areas, while the lower reaches are dominated by urban areas. The Luvuvhu catchment has a large proportion of subsistence agriculture and informal residential areas. In the Upper Breede catchment in the Western Cape, commercial orchards and vineyards are the primary land uses. Overall the ACRU model was able to represent the high, low and total flows, with satisfactory Nash-Sutcliffe efficiency indexes obtained for the selected catchments. The study concluded that the ACRU model can be used with confidence to simulate the streamflows of the three selected

  17. Assessing land use/cover changes: a nationwide multidate spatial database for Mexico

    Science.gov (United States)

    Mas, Jean-François; Velázquez, Alejandro; Díaz-Gallegos, José Reyes; Mayorga-Saucedo, Rafael; Alcántara, Camilo; Bocco, Gerardo; Castro, Rutilio; Fernández, Tania; Pérez-Vega, Azucena

    2004-10-01

    A nationwide multidate GIS database was generated in order to carry out the quantification and spatial characterization of land use/cover changes (LUCC) in Mexico. Existing cartography on land use/cover at a 1:250,000 scale was revised to select compatible inputs regarding the scale, the classification scheme and the mapping method. Digital maps from three different dates (the late 1970s, 1993 and 2000) were revised, evaluated, corrected and integrated into a GIS database. In order to improve the reliability of the database, an attempt was made to assess the accuracy of the digitalisation procedure and to detect and correct unlikely changes due to thematic errors in the maps. Digital maps were overlaid in order to generate LUCC maps, transition matrices and to calculate rates of conversion. Based upon this database, rates of deforestation between 1976 and 2000 were evaluated as 0.25 and 0.76% per year for temperate and tropical forests, respectively.

  18. Historical Image Registration and Land-Use Land-Cover Change Analysis

    Directory of Open Access Journals (Sweden)

    Fang-Ju Jao

    2014-12-01

    Full Text Available Historical aerial images are important to retain past ground surface information. The land-use land-cover change in the past can be identified using historical aerial images. Automatic historical image registration and stitching is essential because the historical image pose information was usually lost. In this study, the Scale Invariant Feature Transform (SIFT algorithm was used for feature extraction. Subsequently, the present study used the automatic affine transformation algorithm for historical image registration, based on SIFT features and control points. This study automatically determined image affine parameters and simultaneously transformed from an image coordinate system to a ground coordinate system. After historical aerial image registration, the land-use land-cover change was analyzed between two different years (1947 and 1975 at the Tseng Wen River estuary. Results show that sandbars and water zones were transformed into a large number of fish ponds between 1947 and 1975.

  19. The role of human activity and land use change in atmospheric chemistry and air quality

    International Nuclear Information System (INIS)

    Penner, J.E.

    1992-07-01

    In the this paper, I review the importance of a mineral of fossil fuel emissions atmospheric chemistry, air quality, and climate. I then review current estimates of the sources for each specie, deriving the fraction of each source that is due to specific land use practices or land cover categories. Understanding the current trends of those species with known increasing abundances and projecting increases into the future is possible if the estimated sources from human activity and land use change can be projected and if the known atmospheric sinks and the interactions in atmospheric chemistry and climate change are appropriately taken into account. Regional trends in the short-lived species can be projected as well, assuming the estimated sources and sinks are correct. However, significant uncertainties continue to surround the estimated budgets for most of these species. Uncertainties and the estimated ranges in different source strength estimates for each are also discussed

  20. Assessing land use and cover change effects on hydrological response in the river C

    Science.gov (United States)

    Nunes, A.

    2009-04-01

    Assessing the impacts of land use change, especially the role of vegetation, on hydrological response from the plot to the catchment scale has become one of the widespread issues of scientific concern,in recent decades. The continuous expansion of urban areas, the dramatic changes in land-cover and land-use patterns and the climate change which have taken place on a global scale explain this increasing interest. Although scientists have long recognized that changes in land use and land cover are important factors affecting water circulation and the spatial-temporal variations in the distribution of water resources, little is known about the quantitative relation between land use/coverage characteristics and runoff generation or processes. Therefore, a better understanding of how land-use changes impact watershed hydrological processes will become a crucial issue for the planning, management, and sustainable development of water resources. In the past decades, abandonment of marginal agricultural land has been a widespread phenomenon in Portugal, as well as in many other countries of Europe, especially in the Mediterranean countries. The abandonment of arable land typically leads to natural succession and to the development of shrub and woodland. Shrubs like Cytisus spp.usually establish in study area. A Quercus pyrenaica Willd. wood generally appears after a long time, about 3 or 4 decades. The general aim of this work is to analyse the temporal evolution of water supplies in a Côa basins (located between 41°00'' N and 40°15'' N and 7°15'' W and 6°55'' W Greenwich)and relate its behaviour with changes undergone by the plant cover and by the main climatic variables (temperatures and precipitation). To achieve this goal, dynamics on the land use and land cover were estimated after the second half of the 20th century. The hydrological response under different land uses and plant covers were monitored during 2005 and 2006, using small permanently establish bounded

  1. Monitoring the effects of land use/landcover changes on urban heat island

    Science.gov (United States)

    Gee, Ong K.; Sarker, Md Latifur Rahman

    2013-10-01

    Urban heat island effects are well known nowadays and observed in cities throughout the World. The main reason behind the effects of urban heat island (UHI) is the transformation of land use/ land cover, and this transformation is associated with UHI through different actions: i) removal of vegetated areas, ii) land reclamation from sea/river, iii) construction of new building as well as other concrete structures, and iv) industrial and domestic activity. In rapidly developing cities, urban heat island effects increases very hastily with the transformation of vegetated/ other types of areas into urban surface because of the increasing population as well as for economical activities. In this research the effect of land use/ land cover on urban heat island was investigated in two growing cities in Asia i.e. Singapore and Johor Bahru, (Malaysia) using 10 years data (from 1997 to 2010) from Landsat TM/ETM+. Multispectral visible band along with indices such as Normalized Difference Vegetation Index (NDVI), Normalized Difference Build Index (NDBI), and Normalized Difference Bareness Index (NDBaI) were used for the classification of major land use/land cover types using Maximum Likelihood Classifiers. On the other hand, land surface temperature (LST) was estimated from thermal image using Land Surface Temperature algorithm. Emissivity correction was applied to the LST map using the emissivity values from the major land use/ land cover types, and validation of the UHI map was carried out using in situ data. Results of this research indicate that there is a strong relationship between the land use/land cover changes and UHI. Over this 10 years period, significant percentage of non-urban surface was decreased but urban heat surface was increased because of the rapid urbanization. With the increase of UHI effect it is expected that local urban climate has been modified and some heat related health problem has been exposed, so appropriate measure should be taken in order to

  2. Land-use change and global climate policies; Usage des terres et politiques climatiques globales

    Energy Technology Data Exchange (ETDEWEB)

    Gitz, V

    2004-03-15

    This PhD thesis assess the role of land-use dynamics and carbon sequestration within climate policies. First, it describes the emergence, from the Rio-1992 to the Marrakech Accords (2001), of diplomatic controversies upon carbon sinks, in the context of the progressive constitution of a scientific basis on terrestrial carbon sinks. It questions the ability of the actual form of international climate regime to generate the appropriate incentives to sequester within the forestry sector in developed countries, or to control tropical deforestation. Second, the contribution of land-use change to atmospheric CO{sub 2} rise is quantified using a newly designed model of the global carbon cycle and regional land-use (OSCAR). We show that carbon emitted via land-use is not equivalent to fossil carbon emission in respect to atmospheric CO{sub 2} rise. This effect, all the more than land-use emissions are increasing, requires a greater mitigation effort to stabilize atmospheric CO{sub 2}. Finally, optimal timing of mixed climate policies involving fossil emissions mitigation and biological sequestration is assessed within an inter temporal cost-benefit framework. We show that the social value of sequestered carbon depends on anticipating future climate damages. Within optimal control models, this links the timing of sequestration to fossil effort and to the evolution of climate damages; if the latter are uncertain, but might be revealed at a later date, then it might be optimal to reserve part of the limited sequestration potential to cut off an eventual future abatement cost peak, were a climate surprise to finally imply stringent concentration ceilings. (author)

  3. Adapting urban land use in a time of climate change; Optimising future land-use patterns to decrease flood risks

    NARCIS (Netherlands)

    van Leeuwen, E.S.; Koomen, E.; Lal, R.; Augustin, B.

    2012-01-01

    It is increasingly acknowledged that a careful planning of urban areas is needed to cope with the negative effects of future climate changes. The planning process calls for fi nding a balance between various ecosystem services, such as, water and air purifi cation, the regulation of rainfall, the

  4. Quantifying the effects of climate change and land use change on water resources in Denmark using an integrated watershed model

    DEFF Research Database (Denmark)

    Van Roosmalen, Lieke Petronella G; Sonnenborg, Torben; Jensen, Karsten Høgh

    2009-01-01

    This paper presents a quantitative comparison of plausible climate and land use change impacts on the hydrology of a large-scale agricultural catchment. An integrated, distributed hydrological model was used to simulate changes in the groundwater system and its discharge to rivers and drains...... to current values. Changing the land use from grass to forest had a minor effect on groundwater recharge, whereas CO2 effects on transpiration resulted in a relatively large increase in recharge. This study has shown that climate change has the most substantial effect on the hydrology in this catchment......, whereas other factors such as irrigation, CO2 effects on transpiration, and land use changes affect the water balance to a lesser extent....

  5. Local extinction and colonisation in native and exotic fish in relation to changes in land use

    OpenAIRE

    Kopp , Dorothée; Figuerola , Jordi; Compin , Arthur; Santoul , Frédéric; Céréghino , Régis

    2011-01-01

    International audience; Distribution patterns of many native and exotic fish species are well documented, yet little is known about the temporal dynamics of native and exotic diversity in relation to changes in land use. We hypothesised that colonisation rates would be higher for exotic fish species and that extinction rates would be higher for native species in large stream systems. We also predicted that cold-water species would be more impacted than thermally tolerant species. To test thes...

  6. [Influence of land use change on dissolved organic carbon export in Naoli River watershed. Northeast China].

    Science.gov (United States)

    Yin, Xiao-min; Lyu, Xian-guo; Liu, Xing-tu; Xue, Zhen-shan

    2015-12-01

    The present study was conducted to evaluate the influence of land use change on dissolved organic carbon (DOC) export in Naoli River watershed, Northeast China. Seasonal variation of DOC concentrations of the river water and its relationship with land use in the whole watershed and 100 m riparian zone at the annual average scale were analyzed using the method of field sampling, laboratory analysis, GIS and statistics analysis. The results showed that the concentrations of DOC under base flow conditions in spring and summer were significantly higher than that in fall in the study watershed. The seasonal trend of DOC concentrations in wetland-watersheds was similar to that in all the sub-watersheds, while significantly different from that in non-wetland watersheds. On the annual average scale, percentage of wetland in the whole watershed and paddy field in the 100 m riparian zone had positive relationship with the DOC concentration in the river water, while percentage of forest in the whole watershed had negative relationship with it (P watershed played a significant role in the seasonal variation of DOC in river water of Naoli River watershed. Wetland in the watershed and paddy field in the 100 m riparian zone significantly promoted DOC export, while forest alleviated it. Land use change in the watershed in the past few decades dramatically changed the DOC balance of river water.

  7. The Spatial Changes of Land Use in the Bucharest Metropolitan Area 1970s – 2000s

    Directory of Open Access Journals (Sweden)

    Gabriel Simion

    2010-11-01

    Full Text Available The article explore the dimension of spatial changes of land use in the Bucharest Metropolitan Area (BMA over the past forty years. Using GIS-based land use data sets of the years 1970, 1990 and 2000, combining with statistical data, we attempted to quantify the spatial pattern of land use changes in the BMA. Our findings indicate that most significantly changes occurred with arable lands that have been reduced from 77% of total metropolitan area in 1970 to 71.3% in 2000 and in same time the built up area increase from 6.2% in 1970 to 10.4% in 2000. Vineyards and orchards suffered a reduced of their spread. In the case of vineyards the percentage of total area decrease from 2.7% in 1970 to 0.8% and regarding orchards from 1.1% in 1970 to 0.6% in 2000. The growth of built up indicate the urban influence of Bucharest city on it the large metropolitan area. The decrease of vineyards and orchards can be correlated with agrarian reform passed after the fall of socialist economic system that generated many problems for the farmers that cannot continue to cultivate the land with these kinds of cultures. These findings have implication with the futures strategies on urban and metropolitan planning in this area.

  8. Historical Carbon Dioxide Emissions Caused by Land-Use Changes are Possibly Larger than Assumed

    Science.gov (United States)

    Arneth, A.; Sitch, S.; Pongratz, J.; Stocker, B. D.; Ciais, P.; Poulter, B.; Bayer, A. D.; Bondeau, A.; Calle, L.; Chini, L. P.; hide

    2017-01-01

    The terrestrial biosphere absorbs about 20% of fossil-fuel CO2 emissions. The overall magnitude of this sink is constrained by the difference between emissions, the rate of increase in atmospheric CO2 concentrations, and the ocean sink. However, the land sink is actually composed of two largely counteracting fluxes that are poorly quantified: fluxes from land-use change andCO2 uptake by terrestrial ecosystems. Dynamic global vegetation model simulations suggest that CO2 emissions from land-use change have been substantially underestimated because processes such as tree harvesting and land clearing from shifting cultivation have not been considered. As the overall terrestrial sink is constrained, a larger net flux as a result of land-use change implies that terrestrial uptake of CO2 is also larger, and that terrestrial ecosystems might have greater potential to sequester carbon in the future. Consequently, reforestation projects and efforts to avoid further deforestation could represent important mitigation pathways, with co-benefits for biodiversity. It is unclear whether a larger land carbon sink can be reconciled with our current understanding of terrestrial carbon cycling. Our possible underestimation of the historical residual terrestrial carbon sink adds further uncertainty to our capacity to predict the future of terrestrial carbon uptake and losses.

  9. Land use change on climate parameters at Samin subwatershed in Central Java, Indonesia

    Science.gov (United States)

    Sutarno; Komariah; Gunawan, T.; Purnomo, D.; Suntoro

    2018-03-01

    The Samin sub-watershed (SSW) is one of the critical watersheds in Indonesia which need conservation. The identification of land-use/land-cover changes (LUCC) can help in deciding the priority of conservation areas as well as limiting the widespread of critical lands in the watershed, which can contribute to climate change. The purpose of this study is to determine the impact of land use change on climate parameters, i.e. precipitation, air temperature and relative air humidity. The method is by using the descriptive explorative. The study employed Indonesian topographic map and Landsat's imageries of 1996, 2001, 2006, 2011 and 2016. The climate data from 1996 to 2016 were obtained from surroundings weather station. Data were analyzed using Geographic Information System (GIS) and SPSS. The results showed that land use was dominated by rice fields 22,552.83 ha (69.20%), and converted to non-agricultural lands 165.05 hectares/year for the last 20 years. Forest area decreased 65.8 ha/year, and settlement (housing and industrial estates) increased 253.87 ha/year (11.07%). The statistical analysis resulted in a negative relationship between forest area and air temperature and, but no significant correlation with rainfall.

  10. Rubber Plantation Expansion Related Land Use Change along the Laos-China Border Region

    Directory of Open Access Journals (Sweden)

    Xiaona Liu

    2016-10-01

    Full Text Available Spatial-temporal changes of land use and land cover in Luang Namtha Province in northern part of Laos was analyzed using Landsat TM (Thematic Mapper/ETM+ (Enhanced Thematic Mapper images from 1990 to 2010 since the opening of the Boten border adjacent to China. The results showed that: (1 “forest land—cultivated land—grassland” was the primary landscape structure. Woodland was the major land cover type, while paddy field was the dominant land use type replaced by rubber plantation in 2010; (2 since the opening of the border crossings in 1994, the rate and intensity of land use change were accelerated and enhanced gradually, especially in the recent decade. Woodland decreased significantly, while shrubland, rubber plantation and swidden land increased obviously. Rubber plantation and swidden land showed the fastest growth derived from woodland and shrubland, indicating continuous human activities and slash-and-burn farming; and (3 during 1990–2010, swidden land was mainly located in northern mountainous areas with frequently increased changing spatial distribution in the recent decade. Rubber plantation was mainly distributed in the border region of China and Laos with the expansion from the border region into the non-frontier of Laos with Luang Namtha City as the center. Woodland reduction was so obvious along the Kunming-Bangkok highway.

  11. Land use change detection in Solan Forest Division, Himachal Pradesh, India

    Directory of Open Access Journals (Sweden)

    Shipra Shah

    2015-09-01

    Full Text Available Background Monitoring the changing pattern of vegetation across diverse landscapes through remote sensing is instrumental in understanding the interactions of human activities and the ecological environment. Land use pattern in the state of Himachal Pradesh in the Indian Western Himalayas has been undergoing rapid modifications due to changing cropping patterns, rising anthropogenic pressure on forests and government policies. We studied land use change in Solan Forest Division of Himachal Pradesh to assess species wise area changes in the forests of the region. Methods The supervised classification (Maximum likelihood on two dates of IRS (LISS III satellite data was performed to assess land use change over the period 1998–2010. Results Seven land use categories were identified namely, chir pine (Pinus roxburghii forest, broadleaved forest, bamboo (Dendrocalamus strictus forest, ban oak (Quercus leucotrichophora forest, khair (Acacia catechu forest, culturable blank and cultivation. The area under chir pine, cultivation and khair forests increased by 191 ha (4.55 %, 129 ha (13.81 % and 77 ha (23.40 %, whereas the area under ban oak, broadleaved, culturable blank and bamboo decreased by 181 ha (16.58 %, 152 ha (6.30 %, 71 ha (2.72 % and 7 ha (0.47 %, respectively. Conclusions The study revealed a decrease in the area under forest and culturable blank categories and a simultaneous increase in the area under cultivation primarily due to the large scale introduction of horticultural cash crops in the state. The composition of forests also exhibited some major changes, with an increase in the area of commercially important monoculture plantation species such as pine and khair, and a decline in the area of oak, broadleaved and bamboo which are facing a high anthropogenic pressure in meeting the livelihood demands of forest dependent communities. In time deforestation, forest degradation and ecological imbalances due to the changing forest species

  12. Cumulative effects of rapid climate and land-use changes on the Yamal Peninsula, Russia

    Science.gov (United States)

    Walker, D. A.; Leibman, M. O.; Forbes, B. C.; Epstein, H. E.

    2008-12-01

    Our principal goal is to develop better, more far-looking tools to predict the cumulative effects of resource development, climate-change, and traditional land use. Here we use remote sensing, climate-change analyses, socio-economic analyses, and vegetation-change models to examine the cumulative effects of climate change, gas development, and reindeer herding on the Yamal Peninsula in northwest Siberia as part of the Northern Eurasia Earth Science Partnership Initiative (NEESPI). We find: 1. Direct (planned) impacts of industrial activities on the Yamal Peninsula are currently local and limited in extent, but this is changing rapidly as extensive gas fields are developed and land and sea transportation corridors are developed to get the gas to market. Indirect impacts of the development at Bovanenkovo, the largest gas field, exceed the direct impacts by a factor of three, and the total area of influence of the development on the reindeer pasturelands (e.g., area where migration routes and access to pasturelands is affected) exceeds the direct impacts by a factor of about 40. 2. The trend in land-surface temperatures has co-varied with the trend in sea-ice. Low sea ice in the preceding December-March period is correlated to warmer land temperature the following summer. The sea- ice trends in the Kara Sea-Yamal region are tied to variation in the North Atlantic Oscillation index. 4. Only a small greening response to warming has been detected on the Yamal in comparison with some other areas in the Arctic (e.g. Northern Alaska). The actual effects of climate-change on vegetation are currently hard to document at the ground level because of lack of baseline and long-term ground observations and difficulty of excluding reindeer in these studies. 5. There is high potential for extensive landscape effects due to unstable sandy soils, and extremely ice-rich permafrost near the surface on slopes. 6. Two different vegetation modeling approaches are being used to predict

  13. [Effects of land use changes on soil water conservation in Hainan Island, China].

    Science.gov (United States)

    Wen, Zhi; Zhao, He; Liu, Lei; OuYang, Zhi Yun; Zheng, Hua; Mi, Hong Xu; Li, Yan Min

    2017-12-01

    In tropical areas, a large number of natural forests have been transformed into other plantations, which affected the water conservation function of terrestrial ecosystems. In order to clari-fy the effects of land use changes on soil water conservation function, we selected four typical land use types in the central mountainous region of Hainan Island, i.e., natural forests with stand age greater than 100 years (VF), secondary forests with stand age of 10 years (SF), areca plantations with stand age of 12 years (AF) and rubber plantations with stand age of 35 years (RF). The effects of land use change on soil water holding capacity and water conservation (presented by soil water index, SWI) were assessed. The results showed that, compared with VF, the soil water holding capacity index of other land types decreased in the top soil layer (0-10 cm). AF had the lowest soil water holding capacity in all soil layers. Soil water content and maximum water holding capacity were significantly related to canopy density, soil organic matter and soil bulk density, which indicated that canopy density, soil organic matter and compactness were important factors influencing soil water holding capacity. Compared to VF, soil water conservation of SF, AF and RF were reduced by 27.7%, 54.3% and 11.5%, respectively. The change of soil water conservation was inconsistent in different soil layers. Vegetation canopy density, soil organic matter and soil bulk density explained 83.3% of the variance of soil water conservation. It was suggested that land use conversion had significantly altered soil water holding capacity and water conservation function. RF could keep the soil water better than AF in the research area. Increasing soil organic matter and reducing soil compaction would be helpful to improve soil water holding capacity and water conservation function in land management.

  14. Soil denitrifier community size changes with land use change to perennial bioenergy cropping systems

    Science.gov (United States)

    Thompson, Karen A.; Deen, Bill; Dunfield, Kari E.

    2016-10-01

    Dedicated biomass crops are required for future bioenergy production. However, the effects of large-scale land use change (LUC) from traditional annual crops, such as corn-soybean rotations to the perennial grasses (PGs) switchgrass and miscanthus, on soil microbial community functioning is largely unknown. Specifically, ecologically significant denitrifying communities, which regulate N2O production and consumption in soils, may respond differently to LUC due to differences in carbon (C) and nitrogen (N) inputs between crop types and management systems. Our objective was to quantify bacterial denitrifying gene abundances as influenced by corn-soybean crop production compared to PG biomass production. A field trial was established in 2008 at the Elora Research Station in Ontario, Canada (n  =  30), with miscanthus and switchgrass grown alongside corn-soybean rotations at different N rates (0 and 160 kg N ha-1) and biomass harvest dates within PG plots. Soil was collected on four dates from 2011 to 2012 and quantitative PCR was used to enumerate the total bacterial community (16S rRNA) and communities of bacterial denitrifiers by targeting nitrite reductase (nirS) and N2O reductase (nosZ) genes. Miscanthus produced significantly larger yields and supported larger nosZ denitrifying communities than corn-soybean rotations regardless of management, indicating large-scale LUC from corn-soybean to miscanthus may be suitable in variable Ontario climatic conditions and under varied management, while potentially mitigating soil N2O emissions. Harvesting switchgrass in the spring decreased yields in N-fertilized plots, but did not affect gene abundances. Standing miscanthus overwinter resulted in higher 16S rRNA and nirS gene copies than in fall-harvested crops. However, the size of the total (16S rRNA) and denitrifying bacterial communities changed differently over time and in response to LUC, indicating varying controls on these communities.

  15. Urban land use and land cover change analysis and modeling a case study area Malatya, Turkey

    OpenAIRE

    Baysal, Gülendam

    2013-01-01

    Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies. This research was conducted to analyze the land use and land cover changes and to model the changes for the case study area Malatya, Turkey. The first step of the study was acquisition of multi temporal data in order to detect the changes over the time. For this purpose satellite images (Landsat 1990-2000-2010) have been used. In order to acquire data from satel...

  16. Land use, fishing, climate change, and decline of Thompson River, British Columbia, coho salmon

    Energy Technology Data Exchange (ETDEWEB)

    Bradford, M. J.; Irvine, J. R. [Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, BC (Canada)

    2000-01-01

    Reasons for the decline in abundance of Pacific salmon population in the Thompson River watershed in British Columbia was investigated. Results suggests that the decline could be the result of a declining trend in productivity related to changes in ocean conditions, overfishing, and changes in the freshwater habitat. The abundance of salmon correlated with agricultural land use, road density, and qualitative changes in stream habitat status; logging appeared to have had no such effect. It was concluded that salmon populations will continue to decline unless limits on fishing are strictly enforced, and unless salmon producing watersheds are restored and ocean conditions are significantly improved . 12 refs., 2 figs.

  17. [Effects of land use structure change on regional ecological health--taking Shapingba County as an example].

    Science.gov (United States)

    Wang, Cheng; Wei, Chaofu; Gao, Ming; Luo, Guanglian; Jiang, Wei

    2005-12-01

    Land resource is the carrier for the exchange of matter, energy and information flows, while the change velocity and the intensity of land use has strong effects on the ecological processes such as matter circulation, energy flow, and biologic diversity. Land use structure change will alter the type, area, and spatial distribution of ecosystem, and in the meantime, result in the changes of regional ecological health. Employing the principles and methods of landscape ecology, and through endowing relative ecological value to land use type, this paper analyzed the charaeteristics of recent 10 years land use change in Shapingba County of Chongqing, and discussed the effects of land use change on regional ecological health, aimed to provide scientific references for land use planning and sustainable land resource utilization. The results indicated that transformation often occurred among different land use types, and the land use structure in each transformation phase differed quite obviously. Under different land use structure, there was a great disparity in relative ecological value of sub-ecosystems, which played various roles in regional ecological health. In general, the regional relative ecological value embodied both increase and decrease. In the future, the relative ecological value of sub-ecosystem would represent three tendencies, i.e., increase first and decrease then, continuous decrease, and continuous increase. The situation of regional ecological health would gradually become better.

  18. The relative importance among anthropogenic forcings of land use/land cover change in affecting temperature extremes

    Science.gov (United States)

    Chen, Liang; Dirmeyer, Paul A.

    2018-05-01

    Land use/land cover change (LULCC) exerts significant influence on regional climate extremes, but its relative importance compared with other anthropogenic climate forcings has not been thoroughly investigated. This study compares land use forcing with other forcing agents in explaining the simulated historical temperature extreme changes since preindustrial times in the CESM-Last Millennium Ensemble (LME) project. CESM-LME suggests that the land use forcing has caused an overall cooling in both warm and cold extremes, and has significantly decreased diurnal temperature range (DTR). Due to the competing effects of the GHG and aerosol forcings, the spatial pattern of changes in 1850-2005 climatology of temperature extremes in CESM-LME can be largely explained by the land use forcing, especially for hot extremes and DTR. The dominance of land use forcing is particularly evident over Europe, eastern China, and the central and eastern US. Temporally, the land-use cooling is relatively stable throughout the historical period, while the warming of temperature extremes is mainly influenced by the enhanced GHG forcing, which has gradually dampened the local dominance of the land use effects. Results from the suite of CMIP5 experiments partially agree with the local dominance of the land use forcing in CESM-LME, but inter-model discrepancies exist in the distribution and sign of the LULCC-induced temperature changes. Our results underline the overall importance of LULCC in historical temperature extreme changes, implying land use forcing should be highlighted in future climate projections.

  19. Climate change and early human land-use in a biodiversity hotspot, the Afromontane region

    Science.gov (United States)

    Ivory, S.; Russell, J. M.; Sax, D. F.; Early, R.

    2015-12-01

    African ecosystems are at great risk due to climate and land-use change. Paleo-records illustrate that changes in precipitation and temperature have led to dramatic alterations of African vegetation distribution over the Quaternary; however, despite the fact that the link between mankind and the environment has a longer history in the African tropics than anywhere else on earth, very little is known about pre-colonial land-use. Disentangling the influence of each is particularly critical in areas of exceptional biodiversity and endemism, such as the Afromontane forest region. This region is generally considered to be highly sensitive to temperature and thus at risk to future climate change. However, new evidence suggests that some high elevation species may have occupied warmer areas in the past and thus are not strongly limited by temperature and may be at greater risk from intensifying land-use. First, we use species distribution models constructed from modern and paleo-distributions of high elevation forests in order to evaluate differences in the climatic space occupied today compared to the past. We find that although modern Afromontane species ranges occupy very narrow climate conditions, and in particular that most species occur only in cold areas, in the past most species have tolerated warmer conditions. This suggests that many montane tree species are not currently limited by warm temperatures, and that the region has already seen significant reduction in the climate space occupied, possibly from Holocene land-use. Second, to evaluate human impacts on montane populations, we examine paleoecological records from lakes throughout sub-Saharan Africa that capture ecological processes at difference time scales to reconstruct Afromontane forest range changes. Over long time scales, we observe phases of forest expansion in the lowlands associated with climate variability alone where composition varies little from phase to phase but include both modern low and

  20. Modelling the Effects of Land-Use Changes on Climate: a Case Study on Yamula DAM

    Science.gov (United States)

    Köylü, Ü.; Geymen, A.

    2016-10-01

    Dams block flow of rivers and cause artificial water reservoirs which affect the climate and the land use characteristics of the river basin. In this research, the effect of the huge water body obtained by Yamula Dam in Kızılırmak Basin is analysed over surrounding spatial's land use and climate change. Mann Kendal non-parametrical statistical test, Theil&Sen Slope method, Inverse Distance Weighting (IDW), Soil Conservation Service-Curve Number (SCS-CN) methods are integrated for spatial and temporal analysis of the research area. For this research humidity, temperature, wind speed, precipitation observations which are collected in 16 weather stations nearby Kızılırmak Basin are analyzed. After that these statistical information is combined by GIS data over years. An application is developed for GIS analysis in Python Programming Language and integrated with ArcGIS software. Statistical analysis calculated in the R Project for Statistical Computing and integrated with developed application. According to the statistical analysis of extracted time series of meteorological parameters, statistical significant spatiotemporal trends are observed for climate change and land use characteristics. In this study, we indicated the effect of big dams in local climate on semi-arid Yamula Dam.

  1. Toward the modeling of land use change: A spatial analysis using remote sensing and historical data

    Science.gov (United States)

    Honea, R. B.

    1976-01-01

    It was hypothesized that the chronological observation of land use change could be shown to follow a predictable pattern and these patterns could be correlated with other statistical data to develop transition probabilities suitable for modeling purposes. A literature review and preliminary research, however, indicated a totally stochastic approach was not practical for simulating land use change and thus a more deterministic approach was adopted. The approach used assumes the determinants of the land use conversion process are found in the market place, where land transactions among buyers and sellers occur. Only one side of the market transaction process is studied, however, namely, the purchaser's desires in securing an ideal or suitable site. The problem was to identify the ideal qualities, quantities or attributes desired in an industrial site (or housing development), and to formulate a general algorithmic statement capable of identifying potential development sites. Research procedures involved developing a list of variables previously noted in the literature to be related to site selection and streamlining the list to a set suitable for statistical testing. A sample of 157 industries which have located (or relocated) in the 16-county Knoxville metropolitan region since 1950 was selected for industrial location analysis. Using NASA color infrared photography and Tennessee Valley Authority historical aerial photography, data were collected on the spatial characteristics of each industrial location event. These data were then subjected to factor analysis to determine the interrelations of variables.

  2. Anthropogenic Influences in Land Use/Land Cover Changes in Mediterranean Forest Landscapes in Sicily

    Directory of Open Access Journals (Sweden)

    Donato S. La Mela Veca

    2016-01-01

    Full Text Available This paper analyzes and quantifies the land use/land cover changes of the main forest and semi-natural landscape types in Sicily between 1955 and 2012. We analyzed seven representative forest and shrubland landscapes in Sicily. These study areas were chosen for their importance in the Sicilian forest panorama. We carried out a diachronic survey on historical and current aerial photos; all the aerial images used to survey the land use/land cover changes were digitalized and georeferenced in the UTM WGS84 system. In order to classify land use, the Regional Forest Inventory 2010 legend was adopted for the more recent images, and the CORINE Land Cover III level used for the older, lower resolution images. This study quantifies forest landscape dynamics; our results show for almost all study areas an increase of forest cover and expansion, whereas a regressive dynamic is found in rural areas due to intensive agricultural and pasturage uses. Understanding the dynamics of forest landscapes could enhance the role of forestry policy as a tool for landscape management and regional planning.

  3. Impacts of Changing Climate, Hydrology and Land Use on the Stormwater Runoff of Urbanizing Central Florida

    Science.gov (United States)

    Huq, E.; Abdul-Aziz, O. I.

    2017-12-01

    We computed the historical and future storm runoff scenarios for the Shingle Creek Basin, including the growing urban centers of central Florida (e.g., City of Orlando). Storm Water Management Model (SWMM 5.1) of US EPA was used to develop a mechanistic hydrologic model for the basin by incorporating components of urban hydrology, hydroclimatological variables, and land use/cover features. The model was calibrated and validated with historical streamflow of 2004-2013 near the outlet of the Shingle Creek. The calibrated model was used to compute the sensitivities of stormwater budget to reference changes in hydroclimatological variables (rainfall and evapotranspiration) and land use/cover features (imperviousness, roughness). Basin stormwater budgets for the historical (2010s = 2004-2013) and future periods (2050s = 2030-2059; 2080s = 2070-2099) were also computed based on downscaled climatic projections of 20 GCMs-RCMs representing the coupled model intercomparison project (CMIP5), and anticipated changes in land use/cover. The sensitivity analyses indicated the dominant drivers of urban runoff in the basin. Comparative assessment of the historical and future stormwater runoff scenarios helped to locate basin areas that would be at a higher risk of future stormwater flooding. Importance of the study lies in providing valuable guidelines for managing stormwater flooding in central Florida and similar growing urban centers around the world.

  4. Land-use change and carbon sinks: Econometric estimation of the carbon sequestration supply function

    Energy Technology Data Exchange (ETDEWEB)

    Lubowski, Ruben N.; Plantinga, Andrew J.; Stavins, Robert N.

    2001-01-01

    Increased attention by policy makers to the threat of global climate change has brought with it considerable interest in the possibility of encouraging the expansion of forest area as a means of sequestering carbon dioxide. The marginal costs of carbon sequestration or, equivalently, the carbon sequestration supply function will determine the ultimate effects and desirability of policies aimed at enhancing carbon uptake. In particular, marginal sequestration costs are the critical statistic for identifying a cost-effective policy mix to mitigate net carbon dioxide emissions. We develop a framework for conducting an econometric analysis of land use for the forty-eight contiguous United States and employing it to estimate the carbon sequestration supply function. By estimating the opportunity costs of land on the basis of econometric evidence of landowners' actual behavior, we aim to circumvent many of the shortcomings of previous sequestration cost assessments. By conducting the first nationwide econometric estimation of sequestration costs, endogenizing prices for land-based commodities, and estimating land-use transition probabilities in a framework that explicitly considers the range of land-use alternatives, we hope to provide better estimates eventually of the true costs of large-scale carbon sequestration efforts. In this way, we seek to add to understanding of the costs and potential of this strategy for addressing the threat of global climate change.

  5. Land-use change and carbon sinks: Econometric estimation of the carbon sequestration supply function; FINAL

    International Nuclear Information System (INIS)

    Lubowski, Ruben N.; Plantinga, Andrew J.; Stavins, Robert N.

    2001-01-01

    Increased attention by policy makers to the threat of global climate change has brought with it considerable interest in the possibility of encouraging the expansion of forest area as a means of sequestering carbon dioxide. The marginal costs of carbon sequestration or, equivalently, the carbon sequestration supply function will determine the ultimate effects and desirability of policies aimed at enhancing carbon uptake. In particular, marginal sequestration conts are the critical statistic for identifying a cost-effective policy mix to mitigate net carbon dioxide emissions. We develop a framework for conducting an econometric analysis of land use for the forty-eight contiguous United States and employing it to estimate the carbon sequestration supply function. By estimating the opportunity costs of land on the basis of econometric evidence of landowners' actual behavior, we aim to circumvent many of the shortcomings of previous sequestration cost assessments. By conducting the first nationwide econometric estimation of sequestration costs, endogenizing prices for land-based commodities, and estimating land-use transition probabilities in a framework that explicitly considers the range of land-use alternatives, we hope to provide better estimates eventually of the true costs of large-scale carbon sequestration efforts. In this way, we seek to add to understanding of the costs and potential of this strategy for addressing the threat of global climate change

  6. The Impacts of Climate Variability and Land Use Change on Streamflow in the Hailiutu River Basin

    Directory of Open Access Journals (Sweden)

    Guangwen Shao

    2018-06-01

    Full Text Available The Hailiutu River basin is a typical semi-arid wind sandy grass shoal watershed in northwest China. Climate and land use have changed significantly during the period 1970–2014. These changes are expected to impact hydrological processes in the basin. The Mann–Kendall (MK test and sequential t-test analysis of the regime shift method were used to detect the trend and shifts of the hydrometeorological time series. Based on the analyzed results, seven scenarios were developed by combining different land use and/or climate situations. The Soil Water Assessment Tool (SWAT model was applied to analyze the impacts of climate variability and land use change on the values of the hydrological components. The China Meteorological Assimilation Driving Datasets for the SWAT model (CMADS was applied to enhance the spatial expressiveness of precipitation data in the study area during the period 2008–2014. Rather than solely using observed precipitation or CMADS precipitation, the precipitation values of CMADS and the observed precipitation values were combined to drive the SWAT model for better simulation results. From the trend analysis, the annual streamflow and wind speed showed a significant downward trend. No significant trend was found for the annual precipitation series; however, the temperature series showed upward trends. With the change point analysis, the whole study period was divided into three sub-periods (1970–1985, 1986–2000, and 2001–2014. The annual precipitation, mean wind speed, and average temperature values were 316 mm, 2.62 m/s, and 7.9 °C, respectively, for the sub-period 1970–1985, 272 mm, 2.58 m/s, and 8.4 °C, respectively, for the sub-period 1986–2000, and 391 mm, 2.2 m/s, and 9.35 °C, respectively, for the sub-period 2001–2014. The simulated mean annual streamflow was 35.09 mm/year during the period 1970–1985. Considering the impact of the climate variability, the simulated mean annual streamflow values were

  7. Effect of land use change on water discharge in Srepok watershed, Central Highland, Viet Nam

    Directory of Open Access Journals (Sweden)

    Nguyen Thi Ngoc Quyen

    2014-09-01

    Full Text Available Srepok watershed plays an important role in Central Highland in Viet Nam. It impacts to developing social-economic conditions. Therefore, it is necessary to research elements which impact to natural resources in this watershed. The Soil and Water Assessment Tool (SWAT model and Geography Information System (GIS were used to simulate water discharge in the Srepok watershed. The objectives of the research were to apply GIS and SWAT model for simulation water discharge and then, we assessed land use change which impacted on water discharge in the watershed. The observed stream flow data from Ban Don Stream gauge station was used to calibrate for the period from 1981 to 2000 and then validate for the period from 2001 to 2009. After using SWAT-CUP software to calibration, NSI reached 0.63 and R square value achieved 0.64 from 2004 to 2008 in calibration and NSI gained good level at 0.74 and R square got 0.75 from 2009 to 2012 in validation step at Ban Don Station. After that, land cover in 2010 was processed like land cover in 2000 and set up SWAT model again. The simulated water discharge in scenario 1 (land use 2000 was compared with scenario 2 (land use 2010, the simulation result was not significant difference between two scenarios because the change of area of land use was not much enough to affect the fluctuation of water discharge. However, the effect of land cover on water resource could be seen clearly via total water yield. The percentage of surface flow in 2000 was twice times more than in 2010; retard and base flow in 2000 was slightly more than in 2010. Therefore, decreased surface flow, increased infiltration capacity of water and enriched base flow resulted in the growth of land cover.

  8. Spatial Dynamic Modelling of Future Scenarios of Land Use Change in Vaud and Valais, Western Switzerland

    Directory of Open Access Journals (Sweden)

    Ana Gago-Silva

    2017-04-01

    Full Text Available We use Bayesian methods with a weights of evidence approach to model the probability of land use change over the Western part of Switzerland. This first model is followed by a cellular automata model for spatial allocation of land use classes. Our results extend and enhance current land use scenarios studies by applying Dinamica Environment for Geoprocessing Objects (Dinamica EG to a study area comprising of the upper Rhone river basin in the Cantons of Vaud and Valais. In order to take into account the topography, we divide the study area into four regions, based on their altitude and administrative region. We show that the different regions are affected in differing ways by the same driving forces. We analyse possible outcomes in land use change in 2050 for three different scenarios: “business as usual”, “liberalisation” and a “lowered agriculture production”. The “business-as-usual” scenario results indicate a decrease in agriculture, mostly in extensive agriculture, with a share in the total area of 12.3% in 2009 decreasing by 3.3% in 2050. Losses expected under a “business-as-usual” scenario in agriculture, are mostly due to the conversion to shrubland and forest. Further losses in extensive agriculture are expected under the “liberalisation” scenario, decreasing by 10.3 % in 2050. Along with a marked increase in the closed and open forest area, increasing from 27.1% in 2009 to 42.3% by 2050. Gains in open land habitat with the increase of the share of extensive agriculture area under the “lowered agricultural production” scenario are expected to increase by 3.2% in 2050, while the share of intensive agriculture area is expected to decrease by 5.6%.

  9. Climate and land-use changes affecting river sediment and brown trout in alpine countries--a review.

    Science.gov (United States)

    Scheurer, Karin; Alewell, Christine; Bänninger, Dominik; Burkhardt-Holm, Patricia

    2009-03-01

    Catch decline of freshwater fish has been recorded in several countries. Among the possible causes, habitat change is discussed. This article focuses on potentially increased levels of fine sediments going to rivers and their effects on gravel-spawning brown trout. Indications of increased erosion rates are evident from land-use change in agriculture, changes in forest management practices, and from climate change. The latter induces an increase in air and river water temperatures, reduction in permafrost, changes in snow dynamics and an increase in heavy rain events. As a result, an increase in river sediment is likely. Suspended sediment may affect fish health and behaviour directly. Furthermore, sediment loads may clog gravel beds impeding fish such as brown trout from spawning and reducing recruitment rates. To assess the potential impact on fine sediments, knowledge of brown trout reproductive needs and the effects of sediment on brown trout health were evaluated. We critically reviewed the literature and included results from ongoing studies to answer the following questions, focusing on recent decades and rivers in alpine countries. Have climate change and land-use change increased erosion and sediment loads in rivers? Do we have indications of an increase in riverbed clogging? Are there indications of direct or indirect effects on brown trout from increased suspended sediment concentrations in rivers or from an increase in riverbed clogging? Rising air temperatures have led to more intensive precipitation in winter months, earlier snow melt in spring, and rising snow lines and hence to increased erosion. Intensification of land use has supported erosion in lowland and pre-alpine areas in the second half of the twentieth century. In the Alps, however, reforestation of abandoned land at high altitudes might reduce the erosion risk while intensification on the lower, more easily accessible slopes increases erosion risk. Data from laboratory experiments show

  10. Changes in land-uses and ecosystem services under multi-scenarios simulation.

    Science.gov (United States)

    Liu, Jingya; Li, Jing; Qin, Keyu; Zhou, Zixiang; Yang, Xiaonan; Li, Ting

    2017-05-15

    Social economy of China has been rapidly developing for more than 30years with efficient reforms and policies being issued. Societal developments have resulted in a greater use of many natural resources to the extent that the ecosystem can no longer self-regulate, thus severely damaging the balance of the ecosystem itself. This in turn has led to a deterioration in people's living environments. Our research is based on a combination of climate scenarios presented in the fifth report of the Intergovernmental Panel on Climate Change (IPCC) and policy scenarios, including the one-child policy and carbon tax policy. We adopted Land Change Modeler of IDRISI software to simulate and analyze land-use change under 16 future scenarios in 2050. Carbon sequestration, soil conservation and water yields were quantified, based on those land-use maps and different ecosystem models. We also analyzed trade-offs and synergy among each ecosystem service and discussed why those interactions happened. The results show that: (1) Global climate change has a strong influence on future changes in land-use. (2) Carbon sequestration, water yield and soil conservation have a mutual relationship in the Guanzhong-Tianshui economic region. (3) Climate change and implementation of policy have a conspicuous impact on the changes in ecosystem services in the Guanzhong-Tianshui economic region. This paper can be used as a reference for further related research, and provide a reliable basis for achieving the sustainable development of the ecosystem. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A comparison of forest and agricultural shallow groundwater chemical status a century after land use change

    International Nuclear Information System (INIS)

    Kellner, Elliott; Hubbart, Jason A.; Ikem, Abua

    2015-01-01

    Considering the increasing pace of global land use change and the importance of groundwater quality to humans and aquatic ecosystems, studies are needed that relate land use types to patterns of groundwater chemical composition. Piezometer grids were installed in a remnant bottomland hardwood forest (BHF) and a historic agricultural field (Ag) to compare groundwater chemical composition between sites with contrasting land use histories. Groundwater was sampled monthly from June 2011 to June 2013, and analyzed for 50 physiochemical metrics. Statistical tests indicated significant differences (p < 0.05) between the study sites for 32 out of 50 parameters. Compared to the Ag site, BHF groundwater was characterized by significantly (p < 0.05) lower pH, higher electrical conductivity, and higher concentrations of total dissolved solids and inorganic carbon. BHF groundwater contained significantly (p < 0.05) higher concentrations of all nitrogen species except nitrate, which was higher in Ag groundwater. BHF groundwater contained significantly (p < 0.05) higher concentrations of nutrients such as sulfur, potassium, magnesium, calcium, and sodium, relative to the Ag site. Ag groundwater was characterized by significantly (p < 0.05) higher concentrations of trace elements such as arsenic, cadmium, cobalt, copper, molybdenum, nickel, and titanium. Comparison of shallow groundwater chemical composition with that of nearby receiving water suggests that subsurface concentration patterns are the result of contrasting site hydrology and vegetation. Results detail impacts of surface vegetation alteration on subsurface chemistry and groundwater quality, thereby illustrating land use impacts on the lithosphere and hydrosphere. This study is among the first to comprehensively characterize and compare shallow groundwater chemical composition at sites with contrasting land use histories. - Highlights: • Shallow groundwater chemical composition was compared at floodplain sites.

  12. A comparison of forest and agricultural shallow groundwater chemical status a century after land use change

    Energy Technology Data Exchange (ETDEWEB)

    Kellner, Elliott, E-mail: rekfh3@mail.missouri.edu [School of Natural Resources, University of Missouri, Columbia, MO 65211 (United States); Hubbart, Jason A. [Water Resources Program, School of Natural Resources, Department of Forestry, University of Missouri, Columbia, MO 65211 (United States); Ikem, Abua, E-mail: Ikema@lincolnu.edu [Lincoln University, Department of Agriculture and Environmental Sciences, 204 Foster Hall, 904 Chestnut Street, Jefferson City, MO 65101 (United States)

    2015-10-01

    Considering the increasing pace of global land use change and the importance of groundwater quality to humans and aquatic ecosystems, studies are needed that relate land use types to patterns of groundwater chemical composition. Piezometer grids were installed in a remnant bottomland hardwood forest (BHF) and a historic agricultural field (Ag) to compare groundwater chemical composition between sites with contrasting land use histories. Groundwater was sampled monthly from June 2011 to June 2013, and analyzed for 50 physiochemical metrics. Statistical tests indicated significant differences (p < 0.05) between the study sites for 32 out of 50 parameters. Compared to the Ag site, BHF groundwater was characterized by significantly (p < 0.05) lower pH, higher electrical conductivity, and higher concentrations of total dissolved solids and inorganic carbon. BHF groundwater contained significantly (p < 0.05) higher concentrations of all nitrogen species except nitrate, which was higher in Ag groundwater. BHF groundwater contained significantly (p < 0.05) higher concentrations of nutrients such as sulfur, potassium, magnesium, calcium, and sodium, relative to the Ag site. Ag groundwater was characterized by significantly (p < 0.05) higher concentrations of trace elements such as arsenic, cadmium, cobalt, copper, molybdenum, nickel, and titanium. Comparison of shallow groundwater chemical composition with that of nearby receiving water suggests that subsurface concentration patterns are the result of contrasting site hydrology and vegetation. Results detail impacts of surface vegetation alteration on subsurface chemistry and groundwater quality, thereby illustrating land use impacts on the lithosphere and hydrosphere. This study is among the first to comprehensively characterize and compare shallow groundwater chemical composition at sites with contrasting land use histories. - Highlights: • Shallow groundwater chemical composition was compared at floodplain sites.

  13. Drivers of land use change and household determinants of sustainability in smallholder farming systems of Eastern Uganda

    NARCIS (Netherlands)

    Ebanyat, P.; Ridder, de N.; Jager, de A.; Delve, R.J.; Bekunda, M.; Giller, K.E.

    2010-01-01

    Smallholder farming systems in sub-Saharan Africa have undergone changes in land use, productivity and sustainability. Understanding of the drivers that have led to changes in land use in these systems and factors that influence the systems’ sustainability is useful to guide appropriate targeting of

  14. Carbon Calculator for Land Use Change from Biofuels Production (CCLUB). Users' Manual and Technical Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Qin, Zhangcai [Argonne National Lab. (ANL), Argonne, IL (United States); Mueller, Steffen [Univ. of Illinois at Chicago, Chicago, IL (United States); Kwon, Ho-young [International Food Policy Research Institute (IFPRI), Washington, DC (United States); Wander, Michelle M. [Univ. of Illinois, Urbana-Champaign, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-09-01

    The Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) calculates carbon emissions from land use change (LUC) for four different ethanol production pathways including corn grain ethanol and cellulosic ethanol from corn stover, Miscanthus, and switchgrass. This document discusses the version of CCLUB released September 30, 2014 which includes corn and three cellulosic feedstocks: corn stover, Miscanthus, and switchgrass.

  15. Remote sensing of land use/cover changes and its effect on wind erosion potential in southern Iran

    NARCIS (Netherlands)

    Rezaei, Mahrooz; Sameni, Abdolmajid; Fallah Shamsi, Seyed Rashid; Bartholomeus, Harm

    2016-01-01

    Wind erosion is a complex process influenced by different factors. Most of these factors are stable over time, but land use/cover and land management practices are changing gradually. Therefore, this research investigates the impact of changing land use/cover and land management on wind erosion

  16. 78 FR 16567 - Notice of Opportunity for Public Comment on Non-Rule Making Action To Change Land Use From...

    Science.gov (United States)

    2013-03-15

    ... Public Comment on Non-Rule Making Action To Change Land Use From Aeronautical to Non-Aeronautical at... layout plan update, if approved, would change the land use on 72.13 acres from aeronautical to non-aeronautical. The property will then be leased for Commercial Development. The location of the land relative to...

  17. Initial turnover rates of two standard wood substrates following land-use change in subalpine ecosystems in the Swiss Alps

    Science.gov (United States)

    Anita C. Risch; Martin F. Jurgensen; Deborah S. Page-Dumroese; Martin Schutz

    2013-01-01

    Forest cover has increased in mountainous areas of Europe over the past decades because of the abandonment of agricultural areas (land-use change). For this reason, understanding how land-use change affects carbon (C) source-sink strength is of great importance. However, most studies have assessed mountainous systems C stocks, and less is known about C turnover rates,...

  18. Large-scale impact of climate change vs. land-use change on future biome shifts in Latin America.

    Science.gov (United States)

    Boit, Alice; Sakschewski, Boris; Boysen, Lena; Cano-Crespo, Ana; Clement, Jan; Garcia-Alaniz, Nashieli; Kok, Kasper; Kolb, Melanie; Langerwisch, Fanny; Rammig, Anja; Sachse, René; van Eupen, Michiel; von Bloh, Werner; Clara Zemp, Delphine; Thonicke, Kirsten

    2016-11-01

    Climate change and land-use change are two major drivers of biome shifts causing habitat and biodiversity loss. What is missing is a continental-scale future projection of the estimated relative impacts of both drivers on biome shifts over the course of this century. Here, we provide such a projection for the biodiverse region of Latin America under four socio-economic development scenarios. We find that across all scenarios 5-6% of the total area will undergo biome shifts that can be attributed to climate change until 2099. The relative impact of climate change on biome shifts may overtake land-use change even under an optimistic climate scenario, if land-use expansion is halted by the mid-century. We suggest that constraining land-use change and preserving the remaining natural vegetation early during this century creates opportunities to mitigate climate-change impacts during the second half of this century. Our results may guide the evaluation of socio-economic scenarios in terms of their potential for biome conservation under global change. © 2016 John Wiley & Sons Ltd.

  19. Land use and land cover change in the Western Cape Province: quantification of changes & understanding of driving factors

    CSIR Research Space (South Africa)

    Tizora, P

    2016-07-01

    Full Text Available changes in land use and land cover (LULC) and incited issues such as urban sprawl, marginalization of the poor, limited public access to resources, land degradation and climate change. This paper seeks to understand the most significant drivers of LULC...

  20. A preliminary investigation of forest carbon changes associated with land-use change in northern New England

    Science.gov (United States)

    Daolan Zheng; Linda S. Heath; Mark J. Ducey; James E. Smith

    2009-01-01

    Maine (ME), New Hampshire (NH), and Vermont (VT) are three of the four most heavily forested states in the United States. In these states, we examined how land-use change, at the Anderson Level I classification, affected regional forest carbon using the 30-m Multi-Resolution Land Characteristics Consortium 1992/2001 Retrofit Land Cover Change product coupled with...

  1. Attribution of changes in the water balance of a tropical catchment to land use change using the SWAT model

    NARCIS (Netherlands)

    Marhaento, Hero; Booij, Martijn J.; Rientjes, T. H.M.; Hoekstra, Arjen Y.

    2017-01-01

    Changes in the water balance of the Samin catchment (277.9 km2) on Java, Indonesia, can be attributed to land use change using the Soil Water Assessment Tool model. A baseline-altered method was used in which the simulation period 1990–2013 was divided into 4 equal periods to represent baseline

  2. Large-scale impact of climate change vs. land-use change on future biome shifts in Latin America

    NARCIS (Netherlands)

    Boit, Alice; Sakschewski, Boris; Boysen, Lena; Cano-Crespo, Ana; Clement, Jan; Garcia-alaniz, Nashieli; Kok, Kasper; Kolb, Melanie; Langerwisch, Fanny; Rammig, Anja; Sachse, René; Eupen, van Michiel; Bloh, von Werner; Clara Zemp, Delphine; Thonicke, Kirsten

    2016-01-01

    Climate change and land-use change are two major drivers of biome shifts causing habitat and biodiversity loss. What is missing is a continental-scale future projection of the estimated relative impacts of both drivers on biome shifts over the course of this century. Here, we provide such a

  3. Land cover/land use change in semi-arid Inner Mongolia: 1992-2004

    Energy Technology Data Exchange (ETDEWEB)

    John, Ranjeet; Chen Jiquan; Lu Nan; Wilske, Burkhard, E-mail: ranjeet.john@utoledo.ed [Department of Environmental Sciences, University of Toledo, Toledo, OH 43606 (United States)

    2009-10-15

    The semi-arid grasslands in Inner Mongolia (IM) are under increasing stress owing to climate change and rapid socio-economic development in the recent past. We investigated changes in land cover/land use and landscape structure between 1992 and 2004 through the analysis of AVHRR and MODIS derived land cover data. The scale of analysis included the regional level (i.e. the whole of IM) as well as the level of the dominant biomes (i.e. the grassland and desert). We quantified proportional change, rate of change and the changes in class-level landscape metrics using the landscape structure analysis program FRAGSTATS. The dominant land cover types, grassland and barren, 0.47 and 0.27 million km{sup 2}, respectively, have increased proportionally. Cropland and urban land use also increased to 0.15 million km{sup 2} and 2197 km{sup 2}, respectively. However, the results further indicated increases in both the homogeneity and fragmentation of the landscape. Increasing homogeneity was mainly related to the reduction in minority cover types such as savanna, forests and permanent wetlands and increasing cohesion, aggregation index and clumpy indices. Conversely, increased fragmentation of the landscape was based on the increase in patch density and the interspersion/juxtaposition index (IJI). It is important to note the socio-economic growth in this fragile ecosystem, manifested by an increasing proportion of agricultural and urban land use not just at the regional level but also at the biome level in the context of regional climate change and increasing water stress.

  4. Land cover/land use change in semi-arid Inner Mongolia: 1992-2004

    International Nuclear Information System (INIS)

    John, Ranjeet; Chen Jiquan; Lu Nan; Wilske, Burkhard

    2009-01-01

    The semi-arid grasslands in Inner Mongolia (IM) are under increasing stress owing to climate change and rapid socio-economic development in the recent past. We investigated changes in land cover/land use and landscape structure between 1992 and 2004 through the analysis of AVHRR and MODIS derived land cover data. The scale of analysis included the regional level (i.e. the whole of IM) as well as the level of the dominant biomes (i.e. the grassland and desert). We quantified proportional change, rate of change and the changes in class-level landscape metrics using the landscape structure analysis program FRAGSTATS. The dominant land cover types, grassland and barren, 0.47 and 0.27 million km 2 , respectively, have increased proportionally. Cropland and urban land use also increased to 0.15 million km 2 and 2197 km 2 , respectively. However, the results further indicated increases in both the homogeneity and fragmentation of the landscape. Increasing homogeneity was mainly related to the reduction in minority cover types such as savanna, forests and permanent wetlands and increasing cohesion, aggregation index and clumpy indices. Conversely, increased fragmentation of the landscape was based on the increase in patch density and the interspersion/juxtaposition index (IJI). It is important to note the socio-economic growth in this fragile ecosystem, manifested by an increasing proportion of agricultural and urban land use not just at the regional level but also at the biome level in the context of regional climate change and increasing water stress.

  5. A method for calculating a land-use change carbon footprint (LUC-CFP) for agricultural commodities - applications to Brazilian beef and soy, Indonesian palm oil.

    Science.gov (United States)

    Persson, U Martin; Henders, Sabine; Cederberg, Christel

    2014-11-01

    The world's agricultural system has come under increasing scrutiny recently as an important driver of global climate change, creating a demand for indicators that estimate the climatic impacts of agricultural commodities. Such carbon footprints, however, have in most cases excluded emissions from land-use change and the proposed methodologies for including this significant emissions source suffer from different shortcomings. Here, we propose a new methodology for calculating land-use change carbon footprints for agricultural commodities and illustrate this methodology by applying it to three of the most prominent agricultural commodities driving tropical deforestation: Brazilian beef and soybeans, and Indonesian palm oil. We estimate land-use change carbon footprints in 2010 to be 66 tCO2 /t meat (carcass weight) for Brazilian beef, 0.89 tCO2 /t for Brazilian soybeans, and 7.5 tCO2 /t for Indonesian palm oil, using a 10 year amortization period. The main advantage of the proposed methodology is its flexibility: it can be applied in a tiered approach, using detailed data where it is available while still allowing for estimation of footprints for a broad set of countries and agricultural commodities; it can be applied at different scales, estimating both national and subnational footprints; it can be adopted to account both for direct (proximate) and indirect drivers of land-use change. It is argued that with an increasing commercialization and globalization of the drivers of land-use change, the proposed carbon footprint methodology could help leverage the power needed to alter environmentally destructive land-use practices within the global agricultural system by providing a tool for assessing the environmental impacts of production, thereby informing consumers about the impacts of consumption and incentivizing producers to become more environmentally responsible. © 2014 John Wiley & Sons Ltd.

  6. LAND USE CHANGES IN THE TRANS-BOUNDARY AMUR RIVER BASIN IN THE 20TH CENTURY

    Directory of Open Access Journals (Sweden)

    Victor Ermoshin

    2013-01-01

    Full Text Available All distinctions in the economic and nature protection policy of the neighboring states are well reflected and shown within trans-boundary river basins. The parts of trans-boundary geosystem of one country can experience an essential negative influence from rash decisions in the field of nature use and nature protection policy of the neighboring state. The Amur River Basin covers the territories of Russia, the Peoples Republic of China, Mongolia and Democratic People’s Republic of Korea and occupies more than 2 million km2. The most intensive development of the basin territory has started since the middle of the 19th century. We compiled two maps of land use in the Amur River basin in the 1930–1940s and in the early 21st century. Results showed that, negative dynamics is marked for forest lands, meadows, wetlands and mountain tundra. The basic features in the change of land use within national parts of the basin in Russia, China and Mongolia are analyzed. The comparative analysis of land use peculiarities of the countries for the last 70 years has been done.

  7. Unprecedented rates of land-use transformation in modeled climate change mitigation pathways

    Science.gov (United States)

    Turner, P. A.; Field, C. B.; Lobell, D. B.; Sanchez, D.; Mach, K. J.

    2017-12-01

    Integrated assessment models (IAMs) generate climate change mitigation scenarios consistent with global temperature targets. To limit warming to 2°, stylized cost-effective mitigation pathways rely on extensive deployments of carbon dioxide (CO2) removal (CDR) technologies, including multi-gigatonne yearly carbon removal from the atmosphere through bioenergy with carbon capture and storage (BECCS) and afforestation/reforestation. These assumed CDR deployments keep ambitious temperature limits in reach, but associated rates of land-use transformation have not been evaluated. For IAM scenarios from the IPCC Fifth Assessment Report, we compare rates of modeled land-use conversion to recent observed commodity crop expansions. In scenarios with a likely chance of limiting warming to 2° in 2100, the rate of energy cropland expansion supporting BECCS exceeds past commodity crop rates by several fold. In some cases, mitigation scenarios include abrupt reversal of deforestation, paired with massive afforestation/reforestation. Specifically, energy cropland in crop. If energy cropland instead increases at rates equal to recent soybean and oil palm expansions, the scale of CO2 removal possible with BECCS is 2.6 to 10-times lower, respectively, than the deployments <2° IAM scenarios rely upon in 2100. IAM mitigation pathways may favor multi-gigatonne biomass-based CDR given undervalued sociopolitical and techno-economic deployment barriers. Heroic modeled rates for land-use transformation imply that large-scale biomass-based CDR is not an easy solution to the climate challenge.

  8. Analysis of relationships between land surface temperature and land use changes in the Yellow River Delta

    Science.gov (United States)

    Ning, Jicai; Gao, Zhiqiang; Meng, Ran; Xu, Fuxiang; Gao, Meng

    2018-06-01

    This study analyzed land use and land cover changes and their impact on land surface temperature using Landsat 5 Thematic Mapper and Landsat 8 Operational Land Imager and Thermal Infrared Sensor imagery of the Yellow River Delta. Six Landsat images comprising two time series were used to calculate the land surface temperature and correlated vegetation indices. The Yellow River Delta area has expanded substantially because of the deposited sediment carried from upstream reaches of the river. Between 1986 and 2015, approximately 35% of the land use area of the Yellow River Delta has been transformed into salterns and aquaculture ponds. Overall, land use conversion has occurred primarily from poorly utilized land into highly utilized land. To analyze the variation of land surface temperature, a mono-window algorithm was applied to retrieve the regional land surface temperature. The results showed bilinear correlation between land surface temperature and the vegetation indices (i.e., Normalized Difference Vegetation Index, Adjusted-Normalized Vegetation Index, Soil-Adjusted Vegetation Index, and Modified Soil-Adjusted Vegetation Index). Generally, values of the vegetation indices greater than the inflection point mean the land surface temperature and the vegetation indices are correlated negatively, and vice versa. Land surface temperature in coastal areas is affected considerably by local seawater temperature and weather conditions.

  9. Hydrological Impacts of Land Use Change and Climate Variability in the Headwater Region of the Heihe River Basin, Northwest China

    Science.gov (United States)

    Zhang, Ling; Nan, Zhuotong; Xu, Yi; Li, Shuo

    2016-01-01

    Land use change and climate variability are two key factors impacting watershed hydrology, which is strongly related to the availability of water resources and the sustainability of local ecosystems. This study assessed separate and combined hydrological impacts of land use change and climate variability in the headwater region of a typical arid inland river basin, known as the Heihe River Basin, northwest China, in the recent past (1995–2014) and near future (2015–2024), by combining two land use models (i.e., Markov chain model and Dyna-CLUE) with a hydrological model (i.e., SWAT). The potential impacts in the near future were explored using projected land use patterns and hypothetical climate scenarios established on the basis of analyzing long-term climatic observations. Land use changes in the recent past are dominated by the expansion of grassland and a decrease in farmland; meanwhile the climate develops with a wetting and warming trend. Land use changes in this period induce slight reductions in surface runoff, groundwater discharge and streamflow whereas climate changes produce pronounced increases in them. The joint hydrological impacts are similar to those solely induced by climate changes. Spatially, both the effects of land use change and climate variability vary with the sub-basin. The influences of land use changes are more identifiable in some sub-basins, compared with the basin-wide impacts. In the near future, climate changes tend to affect the hydrological regimes much more prominently than land use changes, leading to significant increases in all hydrological components. Nevertheless, the role of land use change should not be overlooked, especially if the climate becomes drier in the future, as in this case it may magnify the hydrological responses. PMID:27348224

  10. Hydrological Impacts of Land Use Change and Climate Variability in the Headwater Region of the Heihe River Basin, Northwest China.

    Science.gov (United States)

    Zhang, Ling; Nan, Zhuotong; Xu, Yi; Li, Shuo

    2016-01-01

    Land use change and climate variability are two key factors impacting watershed hydrology, which is strongly related to the availability of water resources and the sustainability of local ecosystems. This study assessed separate and combined hydrological impacts of land use change and climate variability in the headwater region of a typical arid inland river basin, known as the Heihe River Basin, northwest China, in the recent past (1995-2014) and near future (2015-2024), by combining two land use models (i.e., Markov chain model and Dyna-CLUE) with a hydrological model (i.e., SWAT). The potential impacts in the near future were explored using projected land use patterns and hypothetical climate scenarios established on the basis of analyzing long-term climatic observations. Land use changes in the recent past are dominated by the expansion of grassland and a decrease in farmland; meanwhile the climate develops with a wetting and warming trend. Land use changes in this period induce slight reductions in surface runoff, groundwater discharge and streamflow whereas climate changes produce pronounced increases in them. The joint hydrological impacts are similar to those solely induced by climate changes. Spatially, both the effects of land use change and climate variability vary with the sub-basin. The influences of land use changes are more identifiable in some sub-basins, compared with the basin-wide impacts. In the near future, climate changes tend to affect the hydrological regimes much more prominently than land use changes, leading to significant increases in all hydrological components. Nevertheless, the role of land use change should not be overlooked, especially if the climate becomes drier in the future, as in this case it may magnify the hydrological responses.

  11. The influence of changes in land use and landscape patterns on soil erosion in a watershed.

    Science.gov (United States)

    Zhang, Shanghong; Fan, Weiwei; Li, Yueqiang; Yi, Yujun

    2017-01-01

    It is very important to have a good understanding of the relation between soil erosion and landscape patterns so that soil and water conservation in river basins can be optimized. In this study, this relationship was explored, using the Liusha River Watershed, China, as a case study. A distributed water and sediment model based on the Soil and Water Assessment Tool (SWAT) was developed to simulate soil erosion from different land use types in each sub-basin of the Liusha River Watershed. Observed runoff and sediment data from 1985 to 2005 and land use maps from 1986, 1995, and 2000 were used to calibrate and validate the model. The erosion modulus for each sub-basin was calculated from SWAT model results using the different land use maps and 12 landscape indices were chosen and calculated to describe the land use in each sub-basin for the different years. The variations in instead of the absolute amounts of the erosion modulus and the landscape indices for each sub-basin were used as the dependent and independent variables, respectively, for the regression equations derived from multiple linear regression. The results indicated that the variations in the erosion modulus were closely related to changes in the large patch index, patch cohesion index, modified Simpson's evenness index, and the aggregation index. From the regression equation and the corresponding landscape indices, it was found that watershed erosion can be reduced by decreasing the physical connectivity between patches, improving the evenness of the landscape patch types, enriching landscape types, and enhancing the degree of aggregation between the landscape patches. These findings will be useful for water and soil conservation and for optimizing the management of watershed landscapes. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Implications of various land use change scenarios on global water scarcity over the 21st century

    Science.gov (United States)

    Liu, Y.; Hejazi, M. I.; Vernon, C. R.; Li, X.; Le Page, Y.; Calvin, K. V.

    2017-12-01

    While the effects of land use and land cover change (LULCC) on hydrological processes (e.g., runoff, peak flow and discharge) and water availability have been extensively researched, the impacts of LULCC on water scarcity has been rarely investigated. Water scarcity, usually defined as the ratio of water demand to available renewable water supply. The involved water demand is an important human-dimension factor, which is affected by both socio-economic conditions (e.g., population, income) as well as LULCC (e.g., the amount of land we dedicate for food, feed, and fuel crops). Recent studies have assessed the combined effects of climate change and human interventions (e.g., dams, water withdrawals and LULCC) on water scarcity, but none to date has focused on the implications of different pathways of LULCC alone on water scarcity. We establish a set of LULCC scenarios under changing climate and socioeconomic pathways using an integrated assessment model - Global Change Assessment Model (GCAM), which integrates natural systems (e.g., water supply, ecosystems, climate) and human systems (e.g., water demand, land use, economy, food, energy, population). The LULCC scenarios encompass varying degrees of protected areas, different magnitudes of crop/bioenergy production and subsidies, and whether to penalize potential land use emissions from bioenergy production (e.g., loss of wood carbon stock from land conversion). Then we investigate how water scarcity responds to LULCC and how the distribution of global population under severe water stress varies in the 21st century. Preliminary results indicate that the LULCC-induced changes in water scarcity are overall small at the global scale (water stress and population being affected. Findings from this research could be used to inform strategies focused on alleviating water stress around the world.

  13. Adaptation of Land-Use Demands to the Impact of Climate Change on the Hydrological Processes of an Urbanized Watershed

    Science.gov (United States)

    Lin, Yu-Pin; Hong, Nien-Ming; Chiang, Li-Chi; Liu, Yen-Lan; Chu, Hone-Jay

    2012-01-01

    The adaptation of land-use patterns is an essential aspect of minimizing the inevitable impact of climate change at regional and local scales; for example, adapting watershed land-use patterns to mitigate the impact of climate change on a region’s hydrology. The objective of this study is to simulate and assess a region’s ability to adapt to hydrological changes by modifying land-use patterns in the Wu-Du watershed in northern Taiwan. A hydrological GWLF (Generalized Watershed Loading Functions) model is used to simulate three hydrological components, namely, runoff, groundwater and streamflow, based on various land-use scenarios under six global climate models. The land-use allocations are simulated by the CLUE-s model for the various development scenarios. The simulation results show that runoff and streamflow are strongly related to the precipitation levels predicted by different global climate models for the wet and dry seasons, but groundwater cycles are more related to land-use. The effects of climate change on groundwater and runoff can be mitigated by modifying current land-use patterns; and slowing the rate of urbanization would also reduce the impact of climate change on hydrological components. Thus, land-use adaptation on a local/regional scale provides an alternative way to reduce the impacts of global climate change on local hydrology. PMID:23202833

  14. Response of ecosystem services to land use change in Xiamen Island

    Science.gov (United States)

    Gao, L.

    2009-12-01

    : Land use change was a major factor affecting ecosystem services. Taken Xiamen Island as an example, by integrating remote sensing data to examine land use patterns from 1950 to 2007, the regional ecosystem services of Xiamen Island were evaluated based on two revised methods aiming to identify the stress effects and mechanisms of land use change on ecosystem services. The results showed that during 1950~2007, in general, Xiamen Island’s land use intensity had been annually rising. The trends of Xiamen Island’s ecosystem services value acquired by two methods were both consistent with decreasing along with the growth of land use intensity. Before 1987, the ecosystem service value of Xiamen Island had increased by 1.07 million yuan, due to the expanding of 12.87 km2 water and wetland. After the establishment of Xiamen special economic zone in 1984, the rapid urbanization has resulted a sharp decline in ecosystem service value, the average annual loss reached by 619,773 yuan after 1987. As the utilization of land reaching saturation and the launching of ecological projects, such as the Xiamen Eastern Sea Comprehensive Improvement Project, it could be predicted that the decreasing trend of ecosystem services value was going to be slowed down in the near future. The first revised method referencing four eco-system services solved the problem of overestimated value caused by the second revised method based on provisioning service alone. By applying the ESV total correction method, the problem of over counting service value by correction made from a single aspect could be solved.Equivalent value per unit area of ecosystem services in China 2007 and revised value by second method Note: The modified coefficient of crop, orchard & forest, wetland and inland water provisioning ESV revised by the second method is 2.858, 2.405, 1.523, 1.843 respectively; for regulating, ultural and supporting ESV, the coefficient is 2.339, 15.339, 2.339 respectively.

  15. Projecting optimal land-use and -management strategies under population growth and climate change using a coupled ecosystem & land use model framework

    Science.gov (United States)

    Rabin, Sam; Alexander, Peter; Anthoni, Peter; Henry, Roslyn; Huntingford, Chris; Pugh, Thomas; Rounsevell, Mark; Arneth, Almut

    2017-04-01

    A major question facing humanity is how well agricultural production systems will be able to feed the world in a future of rapid climate change, population growth, and demand shifts—all while minimizing our impact on the natural world. Global modeling has frequently been used to investigate certain aspects of this question, but in order to properly address the challenge, no one part of the human-environmental system can be assessed in isolation. It is especially critical that the effect on agricultural yields of changing temperature and precipitation regimes (including seasonal timing and frequency and intensity of extreme events), as well as rising atmospheric carbon dioxide levels, be taken into account when planning for future food security. Coupled modeling efforts, where changes in various parts of the Earth system are allowed to feed back onto one another, represent a powerful strategy in this regard. This presentation describes the structure and initial results of an effort to couple a biologically-representative vegetation and crop production simulator, LPJ-GUESS, with the climate emulator IMOGEN and the land-use model PLUMv2. With IMOGEN providing detailed future weather simulations, LPJ-GUESS simulates natural vegetation as well as cropland and pasture/rangeland; the simulated exchange of greenhouse gases between the land and atmosphere feeds back into IMOGEN's predictions. LPJ-GUESS also produces potential vegetation yields for irrigated vs. rainfed crops under three levels of nitrogen fertilizer addition. PLUMv2 combines these potential yields with endogenous demand and agricultural commodity price to calculate an optimal set of land use distributions and management strategies across the world for the next five years of simulation, based on socio-economic scenario data. These land uses are then fed back into LPJ-GUESS, and the cycle of climate, greenhouse gas emissions, crop yields, and land-use change continues. The globally gridded nature of the

  16. Economic valuation of the downstream hydrological effects of land use change: Large hydroelectric reservoirs

    Science.gov (United States)

    Aylward, Bruce Allan

    1998-12-01

    Land use change that accompanies economic development and population growth is intended to raise the economic productivity of land. An inevitable by product of this process is the alteration of natural vegetation and downstream hydrological function. This dissertation explores hydrological externalities of land use change in detail, particularly with regard to their economic impact on large hydroelectric reservoirs (LHRs). A review of the linkages between land use, hydrological function and downstream economic activity suggests that on theoretical grounds the net welfare effect of land use change on hydrological function will be indeterminate. Review of the literature suggests that, though the effects of downstream sedimentation will typically be negative, they may often be of little practical significance. The literature on water quantity impacts is sparse at best. This is most surprising in the case of the literature on LHRs where the potentially important and positive effects of increased water yield are typically ignored in favor of simplistic efforts to document the negative effects of reservoir sedimentation. In order to improve the methodological basis for the economic valuation of hydrological externalities, the dissertation considers existing techniques for the evaluation of non-marketed goods and services, clarifying the manner in which they have been and, in the future, may be applied to the topic at hand. A deterministic simulation model is then constructed for the case of LHRs. The model incorporates the effect of changes in water yield, the seasonal pattern of water yield and sedimentation of live and dead storage volumes as they affect reservoir operation and the production of hydroelectricity. The welfare effects of changes in the productivity of the LHR in the short run and changes to the power system expansion plan in the long run are evaluated using the marginal opportunity costs of alternative power sources and power plants, respectively. A case

  17. Sustainable Land Use in Mountain Regions Under Global Change: Synthesis Across Scales and Disciplines

    Directory of Open Access Journals (Sweden)

    Robert Huber

    2013-09-01

    Full Text Available Mountain regions provide essential ecosystem goods and services (EGS for both mountain dwellers and people living outside these areas. Global change endangers the capacity of mountain ecosystems to provide key services. The Mountland project focused on three case study regions in the Swiss Alps and aimed to propose land-use practices and alternative policy solutions to ensure the provision of key EGS under climate and land-use changes. We summarized and synthesized the results of the project and provide insights into the ecological, socioeconomic, and political processes relevant for analyzing global change impacts on a European mountain region. In Mountland, an integrative approach was applied, combining methods from economics and the political and natural sciences to analyze ecosystem functioning from a holistic human-environment system perspective. In general, surveys, experiments, and model results revealed that climate and socioeconomic changes are likely to increase the vulnerability of the EGS analyzed. We regard the following key characteristics of coupled human-environment systems as central to our case study areas in mountain regions: thresholds, heterogeneity, trade-offs, and feedback. Our results suggest that the institutional framework should be strengthened in a way that better addresses these characteristics, allowing for (1 more integrative approaches, (2 a more network-oriented management and steering of political processes that integrate local stakeholders, and (3 enhanced capacity building to decrease the identified vulnerability as central elements in the policy process. Further, to maintain and support the future provision of EGS in mountain regions, policy making should also focus on project-oriented, cross-sectoral policies and spatial planning as a coordination instrument for land use in general.

  18. Riparian responses to extreme climate and land-use change scenarios.

    Science.gov (United States)

    Fernandes, Maria Rosário; Segurado, Pedro; Jauch, Eduardo; Ferreira, Maria Teresa

    2016-11-01

    Climate change will induce alterations in the hydrological and landscape patterns with effects on riparian ecotones. In this study we assess the combined effect of an extreme climate and land-use change scenario on riparian woody structure and how this will translate into a future risk of riparian functionality loss. The study was conducted in the Tâmega catchment of the Douro basin. Boosted Regression Trees (BRTs) were used to model two riparian landscape indicators related with the degree of connectivity (Mean Width) and complexity (Area Weighted Mean Patch Fractal Dimension). Riparian data were extracted by planimetric analysis of high spatial-resolution Word Imagery Layer (ESRI). Hydrological, climatic and land-use variables were obtained from available datasets and generated with process-based modeling using current climate data (2008-2014), while also considering the high-end RCP8.5 climate-change and "Icarus" socio-economic scenarios for the 2046-2065 time slice. Our results show that hydrological and land-use changes strongly influence future projections of riparian connectivity and complexity, albeit to diverse degrees and with differing effects. A harsh reduction in average flows may impair riparian zones while an increase in extreme rain events may benefit connectivity by promoting hydrologic dynamics with the surrounding floodplains. The expected increase in broad-leaved woodlands and mixed forests may enhance the riparian galleries by reducing the agricultural pressure on the area in the vicinity of the river. According to our results, 63% of river segments in the Tâmega basin exhibited a moderate risk of functionality loss, 16% a high risk, and 21% no risk. Weaknesses and strengths of the method are highlighted and results are discussed based on a resilience perspective with regard to riparian ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Global projections of 21st century land-use changes in regions adjacent to Protected Areas.

    Directory of Open Access Journals (Sweden)

    Linda J Beaumont

    Full Text Available The conservation efficiency of Protected Areas (PA is influenced by the health and characteristics of the surrounding landscape matrix. Fragmentation of adjacent lands interrupts ecological flows within PAs and will decrease the ability of species to shift their distribution as climate changes. For five periods across the 21(st century, we assessed changes to the extent of primary land, secondary land, pasture and crop land projected to occur within 50 km buffers surrounding IUCN-designated PAs. Four scenarios of land-use were obtained from the Land-Use Harmonization Project, developed for the Intergovernmental Panel on Climate Change's Fifth Assessment Report (AR5. The scenarios project the continued decline of primary lands within buffers surrounding PAs. Substantial losses are projected to occur across buffer regions in the tropical forest biomes of Indo-Malayan and the Temperate Broadleaf forests of the Nearctic. A number of buffer regions are projected to have negligible primary land remaining by 2100, including those in the Afrotropic's Tropical/Subtropical Grassland/Savanna/Shrubland. From 2010-2050, secondary land is projected to increase within most buffer regions, although, as with pasture and crops within tropical and temperate forests, projections from the four land-use scenarios may diverge substantially in magnitude and direction of change. These scenarios demonstrate a range of alternate futures, and show that although effective mitigation strategies may reduce pressure on land surrounding PAs, these areas will contain an increasingly heterogeneous matrix of primary and human-modified landscapes. Successful management of buffer regions will be imperative to ensure effectiveness of PAs and to facilitate climate-induced shifts in species ranges.

  20. Baselines For Land-Use Change In The Tropics: Application ToAvoided Deforestation Projects

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Sandra; Hall, Myrna; Andrasko, Ken; Ruiz, Fernando; Marzoli, Walter; Guerrero, Gabriela; Masera, Omar; Dushku, Aaron; Dejong,Ben; Cornell, Joseph

    2007-06-01

    Although forest conservation activities particularly in thetropics offer significant potential for mitigating carbon emissions,these types of activities have faced obstacles in the policy arena causedby the difficulty in determining key elements of the project cycle,particularly the baseline. A baseline for forest conservation has twomain components: the projected land-use change and the correspondingcarbon stocks in the applicable pools such as vegetation, detritus,products and soil, with land-use change being the most difficult toaddress analytically. In this paper we focus on developing and comparingthree models, ranging from relatively simple extrapolations of pasttrends in land use based on simple drivers such as population growth tomore complex extrapolations of past trends using spatially explicitmodels of land-use change driven by biophysical and socioeconomicfactors. The three models of the latter category used in the analysis atregional scale are The Forest Area Change (FAC) model, the Land Use andCarbon Sequestration (LUCS) model, and the Geographical Modeling (GEOMOD)model. The models were used to project deforestation in six tropicalregions that featured different ecological and socioeconomic conditions,population dynamics, and uses of the land: (1) northern Belize; (2) SantaCruz State, Bolivia; (3) Parana State in Brazil; (4) Campeche, Mexico;(5) Chiapas, Mexico; and (6) Michoacan, Mexico. A comparison of all modeloutputs across all six regions shows that each model produced quitedifferent deforestation baseline. In general, the simplest FAC model,applied at the national administrative-unit scale, projected the highestamount of forest loss (four out of six) and the LUCS model the leastamount of loss (four out of five). Based on simulations of GEOMOD, wefound that readily observable physical and biological factors as well asdistance to areas of past disturbance were each about twice as importantas either sociological/demographic or economic

  1. A project to study SOC evolution after land use change combining chronosequence and gradient methods

    Science.gov (United States)

    Gabarron-Galeote, Miguel A.; van Wesemael, Bas

    2013-04-01

    In the last decades the interest in the global C budget has increased enormously and soils have a great importance in this issue since they contain about twice as much carbon as the atmosphere. Land use change (LUC) can cause a change in land cover and an associated change in carbon stocks in soils, so it has a major impact in the balance between inputs and outputs of soil organic carbon (SOC). Improved understanding of land-use impacts on the world's terrestrial carbon balance is thus a necessary part of the global effort to mitigate climate change. The aim of this project is to predict the effects of land use and land management change on (SOC) stocks, characterizing the soil organic carbon cycle and its relationship to the vegetal cover in croplands abandoned different years ago and under different Mediterranean climatic conditions in South of Spain. The study area is located in the Cordillera Bética Litoral, in South of Spain. In this area, a climatic gradient can be observed from West to East: from >1,500 mm year-1 in the Strait of Gibraltar to <250 mm year-1 in the Cabo de Gata. More specifically, the study is focussed on three different areas from the climatic conditions point of view: Gaucín (1010 mm year-1), Almogía, (576 mm year-1) and Gérgal (240 mm year-1). By means of the analyses of aerial photographs (1956, 1977, 1984, 1998 and 2009) all the experimental plots will be selected. After this procedure, the three study areas will be composed by experimental plots of these classes: a) Lands with natural vegetation since 1956. b) Abandoned lands between 1956 and 1977. c) Abandoned lands between 1977 and 1984. d) Abandoned lands between 1984 and 1998. e) Abandoned lands between 1998 and 2005. f) Cultivated lands since 1956. The main expected outcomes of the research project are the characterization of the temporal evolution of SOC in soils, the compilation of experimental areas under different Mediterranean climatic conditions, and the characterization

  2. Categorical information for assessments of land use change. Opportunities and challenges

    DEFF Research Database (Denmark)

    Levin, Gregor

    2014-01-01

    Access to detailed categorical information on land use and land cover (LULC) has increased significantly during recent years. In Denmark, free access to most categorical information (i.e. pre-classified spatially explicit information) gives opportunities for assessments and analyses of LULC-changes...... not elaborated with the aim to assess LULC-changes with definitions and registration methods changing over time and to categorical data not being spatially synchronized and consequently spatially overlapping (Ahlqvist and Shortridge, 2010; Levin et al., 2012). Presenting an assessment of annual LULC changes...... for Denmark from 1990-2013, which is part of Denmark’s emission inventory according to article 3(4) of the Kyoto protocol, this paper aims at elucidating opportunities, limitations and possible solutions for the application of categorical information. Changes between the LULC- types: settlement...

  3. Simulated carbon emissions from land-use change are substantially enhanced by accounting for agricultural management

    International Nuclear Information System (INIS)

    Pugh, T A M; Arneth, A; Bayer, A D; Olin, S; Lindeskog, M; Schurgers, G; Ahlström, A; Klein Goldewijk, K

    2015-01-01

    It is over three decades since a large terrestrial carbon sink (S T ) was first reported. The magnitude of the net sink is now relatively well known, and its importance for dampening atmospheric CO 2 accumulation, and hence climate change, widely recognised. But the contributions of underlying processes are not well defined, particularly the role of emissions from land-use change (E LUC ) versus the biospheric carbon uptake (S L ; S T  = S L  − E LUC ). One key aspect of the interplay of E LUC and S L is the role of agricultural processes in land-use change emissions, which has not yet been clearly quantified at the global scale. Here we assess the effect of representing agricultural land management in a dynamic global vegetation model. Accounting for harvest, grazing and tillage resulted in cumulative E LUC since 1850 ca. 70% larger than in simulations ignoring these processes, but also changed the timescale over which these emissions occurred and led to underestimations of the carbon sequestered by possible future reforestation actions. The vast majority of Earth system models in the recent IPCC Fifth Assessment Report omit these processes, suggesting either an overestimation in their present-day S T , or an underestimation of S L , of up to 1.0 Pg C a −1 . Management processes influencing crop productivity per se are important for food supply, but were found to have little influence on E LUC . (letter)

  4. Historical and future perspectives of global soil carbon response to climate and land-use changes

    Science.gov (United States)

    Eglin, T.; Ciais, P.; Piao, S. L.; Barre, P.; Bellassen, V.; Cadule, P.; Chenu, C.; Gasser, T.; Koven, C.; Reichstein, M.; Smith, P.

    2010-11-01

    ABSTRACT In this paper, we attempt to analyse the respective influences of land-use and climate changes on the global and regional balances of soil organic carbon (SOC) stocks. Two time periods are analysed: the historical period 1901-2000 and the period 2000-2100. The historical period is analysed using a synthesis of published data as well as new global and regional model simulations, and the future is analysed using models only. Historical land cover changes have resulted globally in SOC release into the atmosphere. This human induced SOC decrease was nearly balanced by the net SOC increase due to higher CO2 and rainfall. Mechanization of agriculture after the 1950s has accelerated SOC losses in croplands, whereas development of carbon-sequestering practices over the past decades may have limited SOC loss from arable soils. In some regions (Europe, China and USA), croplands are currently estimated to be either a small C sink or a small source, but not a large source of CO2 to the atmosphere. In the future, according to terrestrial biosphere and climate models projections, both climate and land cover changes might cause a net SOC loss, particularly in tropical regions. The timing, magnitude, and regional distribution of future SOC changes are all highly uncertain. Reducing this uncertainty requires improving future anthropogenic CO2 emissions and land-use scenarios and better understanding of biogeochemical processes that control SOC turnover, for both managed and un-managed ecosystems.

  5. Economic and Ecological Evaluation of Land Use Change: Evidence from Karelia

    Directory of Open Access Journals (Sweden)

    Anton Sergeevich Strokov

    2017-06-01

    Full Text Available Land use change and a shift in economic activity often bring to unpredictable consequences for local ecosystems. There is a necessity of making preliminary evaluation and analysis of comparing the different types of economic and ecological transformation, including cost and benefit analysis, not only for business and local population, but for the whole environment. We give an example of a particular animal husbandry farm in Karelia and show how potential change in economic specialization can be effective on a 10 years horizon. Among other land use types, we chose peat mining and wetland conservation. Each type of activities was complexly evaluated with different types of costs and benefits. In the paper, we use a method of land use change evaluation including the value of ecosystem services. The monetary values of ecosystem services are given with the respect to foreign analogues and taking into account local realities and prices. Our results have shown that the most beneficial for the society and the environment is wetland conservation, due to their berries picking service, which are highly appreciated on the market, and due to low costs for the third parties, since wetlands contain regulative and refinery services for local ecosystems. As a contrary peat mining is a profitable business, but pollutes the environment because of carbon emissions into the atmosphere. The current specialization for animal husbandry is neither an optimal solution because of low profitability of the chosen farm. The results of the research can be used for optimization in regional politics in the sphere of agriculture and environment economics in order to protect the ecological balance between human activities and nature.

  6. Land use/cover changes, extreme events and ecohydrological responses in the Himalayan region

    Science.gov (United States)

    Singh, R. B.

    1998-10-01

    Land use describes human activities on the earth, and forms a major element of the terrestrial ecosystem modified by humans in the Himalayan region, where developmental activities are increasing rapidly to support the tourism infrastructure. The unprecedented growth in population is putting extremely high pressure on the limited land available for cultivation. Land use and agricultural practices have undergone drastic changes since the mid-1960s through the introduction of development programmes and the application of various newly developed techniques in agrosciences. An analysis of the land use as it has occurred over the last 70 years suggests that it and property rights in the Upper Beas Basin are complex and dynamic. For example, people are giving importance to orchards because of their high profitability. Thus, some agricultural land has been encroached on by orchards. In addition, wastelands are now being used by people for orchards, agriculture and residential and commercial building. Since the Upper Beas River Basin is mountainous, it is fragile and prone to processes like soil erosion, slope instability, landslides and floods. Risks from natural hazards are increasing. However, the state of ecohydrological responses highlight that human-induced ecological changes can be largely proved at the microwatershed level. The findings are not extended to the Himalayan scale. There is also an uncertain correlation between anthropogenic activities (deforestation) in the mountains and hazards in the plains such as floods. Owing to a lack of basic research, there is little effective information which cannot be used for long-term effective monitoring of ecological and hydrological responses to global change. Such an uncertain situation calls for integrated watershed management and development using geographical information systems (GISs).

  7. Analysis of Island Land Use Change Based on Transfer Matrix'a Case Study of Dongtou Island in Zhejiang Province

    Science.gov (United States)

    Wang, Liang; Tao, Kunwang; Qian, Xinlin

    2015-04-01

    With the increasing developments of islands, the protection and management of island's natural resources are imperative. The core of islands' protection and management is to acquire the information of changes of the land use and land cover. What's more, the purpose of the islands' land use change information analysis is to plan the effective protection of land resource, achieve scientific management and sustainable utilization. Based on the improved calculation method of land use change and the computational model of change rate of the land use, an analysis of land use transfer matrix and transfer probability matrix is presented, and the method of land use change analysis based on the transfer matrix is proposed in this paper. And then the comparative analysis of all types of land use transfer is introduced. Taken the island of Dongtou in Zhejiang Province as the case, with the SPOT-5 satellite image in 2005 and the aerial image in 2011 as the data source, the current situation of land utilization of Dongtou Island and its land use change are analyzed. The experiment results show that, from 2005 to 2011, the greatest changes are the structures and water, followed by the forest land, grassland, cultivated land and others. The major change of structure and forest is the net change, while the major change of the water and grassland is the swap change. From the perspective of increment, the conversion from waters to structure has the most advantage, followed by water converted to grassland and road. To see from the loss, structures converted into roads and buildings have the most superiority transformation, followed by structures converted to grassland. The analysis of the case proves that the proposed process and method in this paper could achieve better results in the practical application. The experiment results also demonstrate that the proposed method could effectively obtain the dynamic change information of land use which is much helpful for land management and

  8. The interplay of climate and land use change affects the distribution of EU bumblebees.

    Science.gov (United States)

    Marshall, Leon; Biesmeijer, Jacobus C; Rasmont, Pierre; Vereecken, Nicolas J; Dvorak, Libor; Fitzpatrick, Una; Francis, Frédéric; Neumayer, Johann; Ødegaard, Frode; Paukkunen, Juho P T; Pawlikowski, Tadeusz; Reemer, Menno; Roberts, Stuart P M; Straka, Jakub; Vray, Sarah; Dendoncker, Nicolas

    2018-01-01

    Bumblebees in Europe have been in steady decline since the 1900s. This decline is expected to continue with climate change as the main driver. However, at the local scale, land use and land cover (LULC) change strongly affects the occurrence of bumblebees. At present, LULC change is rarely included in models of future distributions of species. This study's objective is to compare the roles of dynamic LULC change and climate change on the projected distribution patterns of 48 European bumblebee species for three change scenarios until 2100 at the scales of Europe, and Belgium, Netherlands and Luxembourg (BENELUX). We compared three types of models: (1) only climate covariates, (2) climate and static LULC covariates and (3) climate and dynamic LULC covariates. The climate and LULC change scenarios used in the models include, extreme growth applied strategy (GRAS), business as might be usual and sustainable European development goals. We analysed model performance, range gain/loss and the shift in range limits for all bumblebees. Overall, model performance improved with the introduction of LULC covariates. Dynamic models projected less range loss and gain than climate-only projections, and greater range loss and gain than static models. Overall, there is considerable variation in species responses and effects were most pronounced at the BENELUX scale. The majority of species were predicted to lose considerable range, particularly under the extreme growth scenario (GRAS; overall mean: 64% ± 34). Model simulations project a number of local extinctions and considerable range loss at the BENELUX scale (overall mean: 56% ± 39). Therefore, we recommend species-specific modelling to understand how LULC and climate interact in future modelling. The efficacy of dynamic LULC change should improve with higher thematic and spatial resolution. Nevertheless, current broad scale representations of change in major land use classes impact modelled future distribution patterns.

  9. SPATIALLY EXPLICIT MICRO-LEVEL MODELLING OF LAND USE CHANGE AT THE RURAL-URBAN INTERFACE. (R828012)

    Science.gov (United States)

    This paper describes micro-economic models of land use change applicable to the rural–urban interface in the US. Use of a spatially explicit micro-level modelling approach permits the analysis of regional patterns of land use as the aggregate outcomes of many, disparate...

  10. Investigating Historic Parcel Changes to Understand Land Use Trends: A Methodology and Application for the San Pedro River Watershed

    Science.gov (United States)

    Long-term land use and land cover change, and the associated impacts, pose critical challenges to sustaining healthy communities and ecosystems. In this study, a methodology was developed to use parcel data to evaluate land use trends in southeast Arizona’s San Pedro River Water...

  11. Integrated modeling of land-use change: the role of coupling, interactions and feedbacks between the human and Earth systems

    Science.gov (United States)

    Monier, E.; Kicklighter, D. W.; Ejaz, Q.; Winchester, N.; Paltsev, S.; Reilly, J. M.

    2016-12-01

    Land-use change integrates a large number of components of the human and Earth systems, including climate, energy, water, and land. These complex coupling elements, interactions and feedbacks take place on a variety of space and time scales, thus increasing the complexity of land-use change modeling frameworks. In this study, we aim to identify which coupling elements, interactions and feedbacks are important for modeling land-use change, both at the global and regional level. First, we review the existing land-use change modeling framework used to develop land-use change projections for the Representative Concentration Pathways (RCP) scenarios. In such framework, land-use change is simulated by Integrated Assessment Models (IAMs) and mainly influenced by economic, energy, demographic and policy drivers. IAMs focus on representing the demand for agriculture and forestry goods (crops for food and bioenergy, forest products for construction and bioenergy), the interactions with other sectors of the economy and trade between various regions of the world. Then, we investigate how important various coupling elements and feedbacks with the Earth system are for projections of land-use change at the global and regional level. We focus on the following: i) the climate impacts on land productivity and greenhouse gas emissions, which requires climate change information and coupling to a terrestrial ecosystem model/crop model; ii) the climate and economic impacts on irrigation availability, which requires coupling the LUC modeling framework to a water resources management model and disaggregating rainfed and irrigated croplands; iii) the feedback of land-use change on the global and regional climate system through land-use change emissions and changes in the surface albedo and hydrology, which requires coupling to an Earth system model. Finally, we conclude our study by highlighting the current lack of clarity in how various components of the human and Earth systems are

  12. Simulating SOC changes in 11 land use change chronosequences from the Brazilian Amazon with RothC and Century models

    NARCIS (Netherlands)

    Cerri, C.E.P.; Easter, M.; Paustian, K.; Killian, K.; Coleman, K.; Bernoux, M.; Falloon, P.; Powlson, D.S.; Batjes, N.H.; Milne, E.; Cerri, C.C.

    2007-01-01

    Land use and land cover changes in the Brazilian Amazon have major implications for regional and global carbon (C) cycling. Cattle pasture represents the largest single use (about 70%) of this once-forested land in most of the region. The main objective of this study was to evaluate the accuracy of

  13. The Effect of Land Use (Deforestation) on Global Changing and its consequences in Turkey

    Science.gov (United States)

    Onursal Denli, G.; Denli, H. H.

    2015-12-01

    Land use has generally been considered as a local environmental issue, but it is becoming a force of global importance. Global changes to forests, farmlands, waterways, and air are being driven by the need to provide food, water and shelter to more than six billion people. Global croplands, pastures, plantations and urban areas have expanded in recent decades, accompanied by large increases in energy, water and fertilizer consumption, along with considerable losses of biodiversity. Especially the forests influence climate through physical, chemical and biological processes that affect planetary energetics, the hydrologic cycle, and atmospheric composition. Such changes in land use have enabled humans to appropriate an increasing share of the planet's resources, but they also potentially undermine the capacity of ecosystems to sustain food production, maintain freshwater and forest resources, regulate climate and air quality. Global Warming and Climate Change are the two main fundamental problems facing Turkey as well as the World. The expedition and size of this change is becoming noticeably conspicuous now. According to the International Union for Conservation of Nature (IUCN), the global temperature has been increased of about 0.74 degree Celsius since the Industrial Revolution. Interdisciplinary science that integrates knowledge of the many interacting climate services of forests with the impacts of global change is necessary to identify and understand as yet unexplored feedbacks in the Earth system and the potential of forests to mitigate climate change. The general scientific opinions on the climate change states that in the past 50 years, global warming has effected the human life resulting with very obvious influences. High rates of deforestation within a country are most commonly linked to population growth and poverty. In Turkey, the forests are destroyed for various reasons resulting to a change in the climate. This study examines the causes of

  14. Time-varying parameter models for catchments with land use change: the importance of model structure

    Science.gov (United States)

    Pathiraja, Sahani; Anghileri, Daniela; Burlando, Paolo; Sharma, Ashish; Marshall, Lucy; Moradkhani, Hamid

    2018-05-01

    Rapid population and economic growth in Southeast Asia has been accompanied by extensive land use change with consequent impacts on catchment hydrology. Modeling methodologies capable of handling changing land use conditions are therefore becoming ever more important and are receiving increasing attention from hydrologists. A recently developed data-assimilation-based framework that allows model parameters to vary through time in response to signals of change in observations is considered for a medium-sized catchment (2880 km2) in northern Vietnam experiencing substantial but gradual land cover change. We investigate the efficacy of the method as well as the importance of the chosen model structure in ensuring the success of a time-varying parameter method. The method was used with two lumped daily conceptual models (HBV and HyMOD) that gave good-quality streamflow predictions during pre-change conditions. Although both time-varying parameter models gave improved streamflow predictions under changed conditions compared to the time-invariant parameter model, persistent biases for low flows were apparent in the HyMOD case. It was found that HyMOD was not suited to representing the modified baseflow conditions, resulting in extreme and unrealistic time-varying parameter estimates. This work shows that the chosen model can be critical for ensuring the time-varying parameter framework successfully models streamflow under changing land cover conditions. It can also be used to determine whether land cover changes (and not just meteorological factors) contribute to the observed hydrologic changes in retrospective studies where the lack of a paired control catchment precludes such an assessment.

  15. Time-varying parameter models for catchments with land use change: the importance of model structure

    Directory of Open Access Journals (Sweden)

    S. Pathiraja

    2018-05-01

    Full Text Available Rapid population and economic growth in Southeast Asia has been accompanied by extensive land use change with consequent impacts on catchment hydrology. Modeling methodologies capable of handling changing land use conditions are therefore becoming ever more important and are receiving increasing attention from hydrologists. A recently developed data-assimilation-based framework that allows model parameters to vary through time in response to signals of change in observations is considered for a medium-sized catchment (2880 km2 in northern Vietnam experiencing substantial but gradual land cover change. We investigate the efficacy of the method as well as the importance of the chosen model structure in ensuring the success of a time-varying parameter method. The method was used with two lumped daily conceptual models (HBV and HyMOD that gave good-quality streamflow predictions during pre-change conditions. Although both time-varying parameter models gave improved streamflow predictions under changed conditions compared to the time-invariant parameter model, persistent biases for low flows were apparent in the HyMOD case. It was found that HyMOD was not suited to representing the modified baseflow conditions, resulting in extreme and unrealistic time-varying parameter estimates. This work shows that the chosen model can be critical for ensuring the time-varying parameter framework successfully models streamflow under changing land cover conditions. It can also be used to determine whether land cover changes (and not just meteorological factors contribute to the observed hydrologic changes in retrospective studies where the lack of a paired control catchment precludes such an assessment.

  16. Local Variability Mediates Vulnerability of Trout Populations to Land Use and Climate Change.

    Directory of Open Access Journals (Sweden)

    Brooke E Penaluna

    Full Text Available Land use and climate change occur simultaneously around the globe. Fully understanding their separate and combined effects requires a mechanistic understanding at the local scale where their effects are ultimately realized. Here we applied an individual-based model of fish population dynamics to evaluate the role of local stream variability in modifying responses of Coastal Cutthroat Trout (Oncorhynchus clarkii clarkii to scenarios simulating identical changes in temperature and stream flows linked to forest harvest, climate change, and their combined effects over six decades. We parameterized the model for four neighboring streams located in a forested headwater catchment in northwestern Oregon, USA with multi-year, daily measurements of stream temperature, flow, and turbidity (2007-2011, and field measurements of both instream habitat structure and three years of annual trout population estimates. Model simulations revealed that variability in habitat conditions among streams (depth, available habitat mediated the effects of forest harvest and climate change. Net effects for most simulated trout responses were different from or less than the sum of their separate scenarios. In some cases, forest harvest countered the effects of climate change through increased summer flow. Climate change most strongly influenced trout (earlier fry emergence, reductions in biomass of older trout, increased biomass of young-of-year, but these changes did not consistently translate into reductions in biomass over time. Forest harvest, in contrast, produced fewer and less consistent responses in trout. Earlier fry emergence driven by climate change was the most consistent simulated response, whereas survival, growth, and biomass were inconsistent. Overall our findings indicate a host of local processes can strongly influence how populations respond to broad scale effects of land use and climate change.

  17. Modeling land use change impacts on water resources in a tropical West African catchment (Dano, Burkina Faso)

    Science.gov (United States)

    Yira, Y.; Diekkrüger, B.; Steup, G.; Bossa, A. Y.

    2016-06-01

    This study investigates the impacts of land use change on water resources in the Dano catchment, Burkina Faso, using a physically based hydrological simulation model and land use scenarios. Land use dynamic in the catchment was assessed through the analysis of four land use maps corresponding to the land use status in 1990, 2000, 2007, and 2013. A reclassification procedure levels out differences between the classification schemes of the four maps. The land use maps were used to build five land use scenarios corresponding to different levels of land use change in the catchment. Water balance was simulated by applying the Water flow and balance Simulation Model (WaSiM) using observed discharge, soil moisture, and groundwater level for model calibration and validation. Model statistical quality measures (R2, NSE and KGE) achieved during calibration and validation ranged between 0.6 and 0.9 for total discharge, soil moisture, and groundwater level, indicating a good agreement between observed and simulated variables. After a successful multivariate validation the model was applied to the land use scenarios. The land use assessment exhibited a decrease of savannah at an annual rate of 2% since 1990. Conversely, cropland and urban areas have increased. Since urban areas occupy only 3% of the catchment it can be assumed that savannah was mainly converted to cropland. The conversion rate of savannah was lower than the annual population growth of 3%. A clear increase in total discharge (+17%) and decrease in evapotranspiration (-5%) was observed following land use change in the catchment. A strong relationship was established between savannah degradation, cropland expansion, discharge increase and reduction of evapotranspiration. The increase in total discharge is related to high peak flow, suggesting (i) an increase in water resources that are not available for plant growth and human consumption and (ii) an alteration of flood risk for both the population within and

  18. Global isoprene and monoterpene emissions under changing climate, vegetation, CO2 and land use

    DEFF Research Database (Denmark)

    Hantson, Stijn; Knorr, Wolfgang; Schurgers, Guy

    2017-01-01

    Plants emit large quantities of isoprene and monoterpenes, the main components of global biogenic volatile organic compound (BVOC) emissions. BVOCs have an important impact on the atmospheric composition of methane, and of short-lived radiative forcing agents (e.g. ozone, aerosols etc.). It is th......Plants emit large quantities of isoprene and monoterpenes, the main components of global biogenic volatile organic compound (BVOC) emissions. BVOCs have an important impact on the atmospheric composition of methane, and of short-lived radiative forcing agents (e.g. ozone, aerosols etc.......). It is therefore necessary to know how isoprene and monoterpene emissions have changed over the past and how future changes in climate, land-use and other factors will impact them. Here we present emission estimates of isoprene and monoterpenes over the period 1901–2 100 based on the dynamic global vegetation...... model LPJ-GUESS, including the effects of all known important drivers. We find that both isoprene and monoterpene emissions at the beginning of the 20th century were higher than at present. While anthropogenic land-use change largely drives the global decreasing trend for isoprene over the 20th century...

  19. Effect of land use change on methane oxidation in temperate forest and grassland soils

    Energy Technology Data Exchange (ETDEWEB)

    Ojima, D.S.; Valentine, D.W.; Mosier, A.R.; Parton, W.J.; Schimel, D.S. (Colorado State University, Fort Collins, CO (USA). Natural Resources Ecology Lab.)

    Evidence is accumulating that land use changes and other human activity during the past 100 to 200 years have contributed to decreased CH[sub 4] oxidation in the soil. Increased N additions to temperate forest soils in the northeastern United States decreased CH[sub 4] uptake by 30 to 60%, and increased N fertilization and conversion to cropland in temperate grasslands decreased CH[sub 4] uptake by 30 to 75%. Using these data, a series of calculations were made to estimate the impact of land use and management changes which have altered soil, the CH[sub 4] sink in temperate forest and grassland ecosystems. As the atmospheric mixing ratio of CH[sub 4] has increased during the past 150 y, the temperate CH[sub 4] sink has risen from approximately 8 Tg y[sup -1] to 27 Tg y[sup -1], assuming no loss of land cover to cropland conversion. The net effect of intensive land cover changes and extensive chronic disturbance (i.e., increased atmospheric N deposition) to these ecosystems have resulted in about 30% reduction in the CH[sub 4] budget even more as atmospheric CH[sub 4] concentrations increase and as a result of further disturbance to other biomes. Without accounting for this approximately 20 Tg y[sup -1] temperate soil sink, the atmospheric CH[sub 4] concentration would be increasing about 1.5 times the current rate. 39 refs., 2 figs., 1 tab.

  20. Land-Use Change and Emerging Infectious Disease on an Island Continent

    Directory of Open Access Journals (Sweden)

    Rosemary A. McFarlane

    2013-06-01

    Full Text Available A more rigorous and nuanced understanding of land-use change (LUC as a driver of emerging infectious disease (EID is required. Here we examine post hunter-gatherer LUC as a driver of infectious disease in one biogeographical region with a compressed and documented history—continental Australia. We do this by examining land-use and native vegetation change (LUCC associations with infectious disease emergence identified through a systematic (1973–2010 and historical (1788–1973 review of infectious disease literature of humans and animals. We find that 22% (20 of the systematically reviewed EIDs are associated with LUCC, most frequently where natural landscapes have been removed or replaced with agriculture, plantations, livestock or urban development. Historical clustering of vector-borne, zoonotic and environmental disease emergence also follows major periods of extensive land clearing. These advanced stages of LUCC are accompanied by changes in the distribution and density of hosts and vectors, at varying scales and chronology. This review of infectious disease emergence in one continent provides valuable insight into the association between accelerated global LUC and concurrent accelerated infectious disease emergence.

  1. INTERNATIONAL MIGRATION AND CHANGE IN LAND USE IN BELLA ESPERANZA, VERACRUZ

    Directory of Open Access Journals (Sweden)

    Martha Elena Nava-Tablada

    2012-11-01

    Full Text Available An increase in international migration from the State of Veracruz, Mexico, in the decade of the 1990s, mostly occurred as a result of the agricultural crisis in the rural sector. The state coffee producing sector proved to be no exception to the impact of the recurring crises, caused by the fall in the price of coffee grain in the international market. Many coffee growers migrated to the USA to stave off their own economic collapse. This investigation aimed to analyze the relationship between the process of international migration and change in land use in the communal landholding of Bella Esperanza, Veracruz. For this purpose, historic documentation, interviews with 21 coffee producing families -some of which included migrants-, interviews with key informants and geographical information systems were all used. The main change in land use entailed the substitution of shaded coffee plantations for sugarcane monoculture, implying deforestation. Urban expansion was shown to be incipient, in spite of the significant amount of money transfers directed towards housing construction and the proximity of this “ejido” or communal landholding to the cities of Xalapa and Coatepec. These changes are mainly associated with the crisis involving this commodity, but they have been exacerbated by emigration of family members, who were once in charge of coffee production.

  2. Impact of Land Use Change on the Local Climate over the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Jiming Jin

    2010-01-01

    Full Text Available Observational data show that the remotely sensed leaf area index (LAI has a significant downward trend over the east Tibetan Plateau (TP, while a warming trend is found in the same area. Further analysis indicates that this warming trend mainly results from the nighttime warming. The Single-Column Atmosphere Model (SCAM version 3.1 developed by the National Center for Atmospheric Research is used to investigate the role of land use change in the TP local climate system and isolate the contribution of land use change to the warming. Two sets of SCAM simulations were performed at the Xinghai station that is located near the center of the TP Sanjiang (three rivers Nature Reserve where the downward LAI trend is largest. These simulations were forced with the high and low LAIs. The modeling results indicate that, when the LAI changes from high to low, the daytime temperature has a slight decrease, while the nighttime temperature increases significantly, which is consistent with the observations. The modeling results further show that the lower surface roughness length plays a significant role in affecting the nighttime temperature increase.

  3. Effects of Land Use Change for Crops on Water and Carbon Budgets in the Midwest USA

    Directory of Open Access Journals (Sweden)

    Jian Sun

    2017-02-01

    Full Text Available Increasing demand for food and bioenergy has altered the global landscape dramatically in recent years. Land use and land cover change affects the environmental system in many ways through biophysical and biogeochemical mechanisms. In this study, we evaluate the impacts of land use and land cover change driven by recent crop expansion and conversion on the water budget, carbon exchange, and carbon storage in the Midwest USA. A dynamic global vegetation model was used to simulate and examine the impacts of landscape change in a historical case based on crop distribution data from the United States Department of Agriculture National Agricultural Statistics Services. The simulation results indicate that recent crop expansion not only decreased soil carbon sequestration (60 Tg less of soil organic carbon and net carbon flux into ecosystems (3.7 Tg·year−1 less of net biome productivity, but also lessened water consumption through evapotranspiration (1.04 × 1010 m3·year−1 less over 12 states in the Midwest. More water yield at the land surface does not necessarily make more water available for vegetation. Crop residue removal might also exacerbate the soil carbon loss.

  4. Impact of Land Use Change on the Temperate Forest of South Central Chile

    Science.gov (United States)

    Fernandez, A.; Fuentes, R.; Jaque, E.; Fernandez, S.

    2017-12-01

    Chilean temperate forests is a biological hotspot because its high diversity and endemism. Nevertheless, in the last few decades the spatial extent of this forest has been decimated, portraying potentially harmful impacts on the regional biodiversity. In this work, we present our ongoing study on the rate of temperate forest shrinkage and their causes in a section of the BioBío region (37°S), South Central Chile. We derived land cover maps from satellite imagery acquired over 20 years (1990 and 2010) and assessed the effects of changes in land use on native forest. Between 1990 and 2010, there was a 59% reduction in native forest area, which is equivalent to an annual forest loss rate of 4.4% per y