WorldWideScience

Sample records for indicating heterogeneous oxidation

  1. Heterogeneous Metal Catalysts for Oxidation Reactions

    Directory of Open Access Journals (Sweden)

    Md. Eaqub Ali

    2014-01-01

    Full Text Available Oxidation reactions may be considered as the heart of chemical synthesis. However, the indiscriminate uses of harsh and corrosive chemicals in this endeavor are threating to the ecosystems, public health, and terrestrial, aquatic, and aerial flora and fauna. Heterogeneous catalysts with various supports are brought to the spotlight because of their excellent capabilities to accelerate the rate of chemical reactions with low cost. They also minimize the use of chemicals in industries and thus are friendly and green to the environment. However, heterogeneous oxidation catalysis are not comprehensively presented in literature. In this short review, we clearly depicted the current state of catalytic oxidation reactions in chemical industries with specific emphasis on heterogeneous catalysts. We outlined here both the synthesis and applications of important oxidation catalysts. We believe it would serve as a reference guide for the selection of oxidation catalysts for both industries and academics.

  2. Heterogeneous Oxidation of Atmospheric Organic Aerosol: Kinetics of Changes to the Amount and Oxidation State of Particle-Phase Organic Carbon.

    Science.gov (United States)

    Kroll, Jesse H; Lim, Christopher Y; Kessler, Sean H; Wilson, Kevin R

    2015-11-05

    Atmospheric oxidation reactions are known to affect the chemical composition of organic aerosol (OA) particles over timescales of several days, but the details of such oxidative aging reactions are poorly understood. In this study we examine the rates and products of a key class of aging reaction, the heterogeneous oxidation of particle-phase organic species by the gas-phase hydroxyl radical (OH). We compile and reanalyze a number of previous studies from our laboratories involving the oxidation of single-component organic particles. All kinetic and product data are described on a common basis, enabling a straightforward comparison among different chemical systems and experimental conditions. Oxidation chemistry is described in terms of changes to key ensemble properties of the OA, rather than to its detailed molecular composition, focusing on two quantities in particular, the amount and the oxidation state of the particle-phase carbon. Heterogeneous oxidation increases the oxidation state of particulate carbon, with the rate of increase determined by the detailed chemical mechanism. At the same time, the amount of particle-phase carbon decreases with oxidation, due to fragmentation (C-C scission) reactions that form small, volatile products that escape to the gas phase. In contrast to the oxidation state increase, the rate of carbon loss is nearly uniform among most systems studied. Extrapolation of these results to atmospheric conditions indicates that heterogeneous oxidation can have a substantial effect on the amount and composition of atmospheric OA over timescales of several days, a prediction that is broadly in line with available measurements of OA evolution over such long timescales. In particular, 3-13% of particle-phase carbon is lost to the gas phase after one week of heterogeneous oxidation. Our results indicate that oxidative aging represents an important sink for particulate organic carbon, and more generally that fragmentation reactions play a major

  3. Selective Oxidations using Nanostructured Heterogeneous Catalysts

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen

    and because they produce H2O as the only by-product. Chapter 1 gives a short introduction to basic concepts in heterogeneous catalysis and green chemistry. Furthermore, the chapter gives an overview of the most important strategies to synthesise functional nanostructured materials and highlights how detailed......The aim of this thesis is to investigate and develop new efficient methods to oxidise alcohols and amines using heterogeneous catalysts and either O2 or H2O2 as oxidants. From an economic and environmental point of view, these oxidants are ideal, because they are cheap and readily available...... understanding of size, shape and structure can help in the development of new and more efficient heterogeneous catalysts. The chapter is not intended to give a complete survey, but rather to introduce some of the recent developments in the synthesis of nanostructured heterogeneous catalysts. Finally...

  4. Heterogeneously Catalyzed Oxidation Reactions Using Molecular Oxygen

    DEFF Research Database (Denmark)

    Beier, Matthias Josef

    Heterogeneously catalyzed selective oxidation reactions have attracted a lot of attention in recent time. The first part of the present thesis provides an overview over heterogeneous copper and silver catalysts for selective oxidations in the liquid phase and compared the performance and catalytic...... that both copper and silver can function as complementary catalyst materials to gold showing different catalytic properties and being more suitable for hydrocarbon oxidation reactions. Potential opportunities for future research were outlined. In an experimental study, the potential of silver as a catalyst...... revealed that all catalysts were more active in combination with ceria nanoparticles and that under the tested reaction conditions silver was equally or even more efficient than the gold catalysts. Calcination at 900 °C of silver on silica prepared by impregnation afforded a catalyst which was used...

  5. The kinetics of nonequilibrium chain plasma-chemical oxidation in heterogeneous media

    International Nuclear Information System (INIS)

    Deminskii, M.A.; Potapkin, B.V.; Rusanov, V.D.

    1994-01-01

    The kinetics of oxidation of low-impurity components in air mixtures under heterogeneous conditions was studied. The principal kinetic features of the process were determined on the basis of theoretical analysis of plasma-chemical oxidation in heterogeneous media. The analysis also showed that low concentrations of impurities in liquid aerosol particles can be efficiently oxidized via a chain process induced by reactive species formed in the gas

  6. ESR study into mechanism of heterogeneous-catalytic oxidation on oxides

    Energy Technology Data Exchange (ETDEWEB)

    Topchieva, K V; Loginov, A Yu; Kostikov, S V [Moskovskij Gosudarstvennyj Univ. (USSR)

    1977-12-11

    The role of radical particles in heterogeneous-catalytic oxidation of H/sub 2/; CO; SO/sub 2/; NH/sub 3/; C/sub 3/H/sub 6/ on the rare earth oxides (yttrium, lanthanum, magnesium and scandium oxides) and alkaline earth metal oxides was studied by the ESR method. The conclusion was made about the great reactivity of the peroxide structures O/sub 2//sup -/ in the oxidation catalysis in comparison to other formulas of chemisorption oxigen on oxides. The kinetic investigations are chemisorption oxigen on oxides. The kinetic investigations are carried out on the change of the concentration of paramagnetic particles O/sub 2/ during the catalysis. On the basis of the received data the conclusion is made about the reaction process of catalytic oxidation on rare and alkaline-earth oxides according to radical-chain mechanism with the formation of radical particles O/sub 2//sup -/, CO/sub 3//sup -/, SO/sub 4//sup -/, CO/sub 2//sup -/ as interediate products.

  7. Heterogeneous Oxidation of Laboratory-generated Mixed Composition and Biomass Burning Particles

    Science.gov (United States)

    Lim, C. Y.; Sugrue, R. A.; Hagan, D. H.; Cappa, C. D.; Kroll, J. H.; Browne, E. C.

    2016-12-01

    Heterogeneous oxidation of organic aerosol (OA) can significantly transform the chemical and physical properties of particulate matter in the atmosphere, leading to changes to the chemical composition of OA and potential volatilization of organic compounds. It has become increasingly apparent that the heterogeneous oxidation kinetics of OA depend on the phase and morphology of the particles. However, most laboratory experiments to date have been performed on single-component, purely organic precursors, which may exhibit fundamentally different behavior than more complex particles in the atmosphere. Here we present laboratory studies of the heterogeneous oxidation of two more complex chemical systems: thin, organic coatings on inorganic seed particles and biomass burning OA. In the first system, squalane (C30H62), a model compound for reduced OA, is coated onto dry ammonium sulfate particles at various thicknesses (10-20 nm) and exposed to hydroxyl radical (OH) in a flow tube reactor. In the second, we use a semi-batch reactor to study the heterogeneous OH-initiated oxidation of biomass burning particles as a part of the 2016 FIREX campaign in Missoula, MT. The resulting changes in chemical composition are monitored with an Aerodyne High Resolution Time-of-flight Aerosol Mass Spectrometer (AMS) and a soot-particle AMS for the non-refractory and refractory systems, respectively. We show that the heterogeneous oxidation kinetics of these multicomponent particles are substantially different than that of the single-component particles. The oxidation of organic coatings is rapid, undergoing dramatic changes to carbon oxidation state and losing a significant amount of organic mass after relatively low OH exposures (equivalent to several days of atmospheric processing). In the case of biomass burning particles, the kinetics are complex, with different components (inferred by aerosol mass spectrometry) undergoing oxidation at different rates.

  8. Effect of catalysts on heterogeneous oxidation of coal

    Energy Technology Data Exchange (ETDEWEB)

    Glazkova, A P; Kazarova, Yu A; Suslov, A V

    1978-01-01

    Analyzes the effects of catalysts on the heterogeneous oxidation of coal in deflagration processes of stoichiometric mixtures. The following substances are studied as catalysts: alkali and alkaline-earth metals, and compounds of copper, lead, chromium, iron, and sulfur. In the first case the catalysts are used in the form of nitrates and the nitrate simultaneously plays the role of an oxidizer. In the second case the catalysts are added to stoichiometric mixtures of ammonium nitrate with carbon. It is shown that during carbon oxidation by nitrates the catalytic efficiency of the metals studied forms the following order: sodium > lead > potassium > barium > aluminium > calcium > magnesium > copper. The calculated and experimental parameters of combustion are given. The problem of dependence of combustion rate on combustion heat, the mechanism of the combustion reaction and the catalytic effects of the additives are discussed. Features of heterogeneous catalysis in the oxidation process of carbon by various oxidizers are analyzed. The investigations on the combustion process are important as the process takes place during explosion of coal dust in underground coal mines and during burning of coal in industrial furnaces. (34 refs.) (In Russian)

  9. Heterogeneity in magnetic complex oxides

    Science.gov (United States)

    Arenholz, Elke

    Heterogeneity of quantum materials on the nanoscale can result from the spontaneous formation of regions with distinct atomic, electronic and/or magnetic order, and indicates coexistence of competing quantum phases. In complex oxides, the subtle interplay of lattice, charge, orbital, and spin degrees of freedom gives rise to especially rich phase diagrams. For example, coexisting conducting and insulating phases can occur near metal-insulator transitions, colossal magnetoresistance can emerge where ferromagnetic and antiferromagnetic domains compete, and charge-ordered and superconducting regions are present simultaneously in materials exhibiting high-temperature superconductivity. Additionally, externally applied fields (electric, magnetic, or strain) or other external excitations (light or heat) can tip the energy balance towards one phase, or support heterogeneity and phase coexistence and provide the means to perturb and tailor quantum heterogeneity at the nanoscale. Engineering nanomaterials, with structural, electronic and magnetic characteristics beyond what is found in bulk materials, is possible today through the technique of thin film epitaxy, effectively a method of `spray painting' atoms on single crystalline substrates to create precisely customized layered structures with atomic arrangements defined by the underlying substrate. Charge transfer and spin polarization across interfaces as well as imprinting nanoscale heterogeneity between adjacent layers lead to intriguing and important new phenomena testing our understanding of basic physics and creating new functionalities. Moreover, the abrupt change of orientation of an order parameter between nanoscale domains can lead to unique phases that are localized at domain walls, including conducting domain walls in insulating ferroelectrics, and ferromagnetic domain walls in antiferromagnets. Here we present our recent results on tailoring the electronic anisotropy of multiferroic heterostructures by

  10. Heterogeneous nucleation of calcium oxalate on native oxide surfaces

    International Nuclear Information System (INIS)

    Song, L.; Pattillo, M.J.; Graff, G.L.; Campbell, A.A.; Bunker, B.C.

    1994-04-01

    The aqueous deposition of calcium oxalate onto colloidal oxides has been studied as a model system for understanding heterogeneous nucleation processes of importance in biomimetic synthesis of ceramic thin films. Calcium oxalate nucleation has been monitored by measuring induction times for nucleation using Constant Composition techniques and by measuring nucleation densities on extended oxide surfaces using an atomic force microscope. Results show that the dependence of calcium oxalate nucleation on solution supersaturation fits the functional form predicted by classical nucleation theories. Anionic surfaces appear to promote nucleation better than cationic surfaces, lowering the effective energy barrier to heterogeneous nucleation

  11. Heterogeneous inhibition of the liquid phase oxidation of hydrocarbons by molybdenum compounds

    Energy Technology Data Exchange (ETDEWEB)

    Tavadyan, L.A.; Karapetyan, A.P.; Madatovyan, V.M.

    1988-05-01

    The heterogeneous action of molybdenum compounds: MoB, MoSe/sub 2/, MoSi/sub 2/, Mo/sub 2/C, MoO/sub 3/, Mo on the oxidation of n-decane, ethylbenzene, and nonene-1 has been investigated. A parameter representing the inhibiting effect of the heterogeneous catalyst was calculated theoretically. It was found that NoB, MoSe/sub 2/, and MoSi/sub 2/ inhibited the oxidation of n-decane at 408 K while the remaining heterogeneous contacts catalyzed it. A critical phenomenon was detected in the inhibition by MoSi/sub 2/. All the molybdenum compounds investigated inhibited the oxidation of ethylbenzene at 393 K owing to the formation of phenol by catalytic decomposition of the hydroperoxide. The liquid phase oxidation autoinhibited by phenol is described theoretically.

  12. Fenton-like oxidation of 2,4-DCP in aqueous solution using iron-based nanoparticles as the heterogeneous catalyst.

    Science.gov (United States)

    Li, Renchao; Gao, Ying; Jin, Xiaoying; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravendra

    2015-01-15

    In this report, various iron-based nanoparticles (nZVI, n-Ni/Fe, n-Pd/Fe) were used for both heterogeneous Fenton oxidation of 2,4-dichlorophenol (2,4-DCP) and reductive dechlorination of 2,4-DCP in order to understand their roles in the Fenton oxidation and the reductive degradation of 2,4-DCP. The dechlorination efficiency of 2,4-DCP using nZVI, n-Ni/Fe, n-Fe/Pd and Fe(2)(+) was 6.48%, 6.80%, 15.95%, 5.02%, while Fenton oxidation efficiency of 2,4-DCP was 57.87%, 34.23%, 27.94%, 19.61% after 180 min, respectively. The new findings included a higher dechlorination using n-Fe/Pd due to Pd effective catalysis and the effective heterogeneous Fenton oxidation using nZVI depending on reductive dechlorination and heterogeneous Fenton oxidation occurs simultaneously. However, nZVI as the potential catalyst for heterogeneous Fenton was observed, and SEM, EDS and XRD demonstrate that change on the nZVI surface occurred due to the Fe(2+) leaching, and Total Organic Carbon (TOC) (30.71%) shows that 2,4-DCP was degraded. Furthermore, the experiment indicates that the pH values and concentration of 2,4-DCP significantly impacted on the heterogeneous Fenton oxidation of 2,4-DCP and the data fits well with the pseudo first-order kinetic model, which was a diffusion-controlled reaction. Finally, a possible mechanism for degradation of 2,4-DCP was proposed. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Iron oxide-mediated semiconductor photocatalysis vs. heterogeneous photo-Fenton treatment of viruses in wastewater. Impact of the oxide particle size.

    Science.gov (United States)

    Giannakis, Stefanos; Liu, Siting; Carratalà, Anna; Rtimi, Sami; Talebi Amiri, Masoud; Bensimon, Michaël; Pulgarin, César

    2017-10-05

    The photo-Fenton process is recognized as a promising technique towards microorganism disinfection in wastewater, but its efficiency is hampered at near-neutral pH operating values. In this work, we overcome these obstacles by using the heterogeneous photo-Fenton process as the default disinfecting technique, targeting MS2 coliphage in wastewater. The use of low concentrations of iron oxides in wastewater without H 2 O 2 (wüstite, maghemite, magnetite) has demonstrated limited semiconductor-mediated MS2 inactivation. Changing the operational pH and the size of the oxide particles indicated that the isoelectric point of the iron oxides and the active surface area are crucial in the success of the process, and the possible underlying mechanisms are investigated. Furthermore, the addition of low amounts of Fe-oxides (1mgL -1 ) and H 2 O 2 in the system (1, 5 and 10mgL -1 ) greatly enhanced the inactivation process, leading to heterogeneous photo-Fenton processes on the surface of the magnetically separable oxides used. Additionally, photo-dissolution of iron in the bulk, lead to homogeneous photo-Fenton, further aided by the complexation by the dissolved organic matter in the solution. Finally, we assess the impact of the presence of the bacterial host and the difference caused by the different iron sources (salts, oxides) and the Fe-oxide size (normal, nano-sized). Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Liquid phase oxidation via heterogeneous catalysis organic synthesis and industrial applications

    CERN Document Server

    Clerici, Mario G

    2013-01-01

    Sets the stage for environmentally friendly industrial organic syntheses From basic principles to new and emerging industrial applications, this book offers comprehensive coverage of heterogeneous liquid-phase selective oxidation catalysis. It fully examines the synthesis, characterization, and application of catalytic materials for environmentally friendly organic syntheses. Readers will find coverage of all the important classes of catalysts, with an emphasis on their stability and reusability. Liquid Phase Oxidation via Heterogeneous Catalysis features contributions from an internation

  15. Identifying and quantifying heterogeneity in high content analysis: application of heterogeneity indices to drug discovery.

    Directory of Open Access Journals (Sweden)

    Albert H Gough

    Full Text Available One of the greatest challenges in biomedical research, drug discovery and diagnostics is understanding how seemingly identical cells can respond differently to perturbagens including drugs for disease treatment. Although heterogeneity has become an accepted characteristic of a population of cells, in drug discovery it is not routinely evaluated or reported. The standard practice for cell-based, high content assays has been to assume a normal distribution and to report a well-to-well average value with a standard deviation. To address this important issue we sought to define a method that could be readily implemented to identify, quantify and characterize heterogeneity in cellular and small organism assays to guide decisions during drug discovery and experimental cell/tissue profiling. Our study revealed that heterogeneity can be effectively identified and quantified with three indices that indicate diversity, non-normality and percent outliers. The indices were evaluated using the induction and inhibition of STAT3 activation in five cell lines where the systems response including sample preparation and instrument performance were well characterized and controlled. These heterogeneity indices provide a standardized method that can easily be integrated into small and large scale screening or profiling projects to guide interpretation of the biology, as well as the development of therapeutics and diagnostics. Understanding the heterogeneity in the response to perturbagens will become a critical factor in designing strategies for the development of therapeutics including targeted polypharmacology.

  16. Lignin Valorization using Heterogenous Catalytic Oxidation

    DEFF Research Database (Denmark)

    Melián Rodríguez, Mayra; Shunmugavel, Saravanamurugan; Kegnæs, Søren

    The research interests in biomass conversion to fuels and chemicals has increased significantly in the last decade in view of current problems such as global warming, high oil prices, food crisis and other geopolitical scenarios. Many different reactions and processes to convert biomass into high...... of the reaction conditions 4. Here, we therefore present an overview of the recent research about conversion of some lignin model compounds using heterogeneous catalysis in oxidation reactions....

  17. Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Keller, D.E.

    2003-01-01

    Supported vanadium oxide catalysts are active in a wide range of applications. In this review, an overview is given of the current knowledge available about vanadium oxide-based catalysts. The review starts with the importance of vanadium in heterogeneous catalysis, a discussion of the molecular

  18. Studies of Heterogenous Palladium and Related Catalysts for Aerobic Oxidation of Primary Alcohols

    Science.gov (United States)

    Ahmed, Maaz S.

    Development of aerobic oxidation methods is of critical importance for the advancement of green chemistry, where the only byproduct produced is water. Recent work by our lab has produced an efficient Pd based heterogenous catalyst capable of preforming the aerobic oxidation of a wide spectrum of alcohols to either carboxylic acid or methyl ester. The well-defined catalyst PdBi 0.35Te0.23/C (PBT/C) catalyst has been shown to can perform the aerobic oxidation of alcohols to carboxylic acids in basic conditions. Additionally, we explored this catalyst for a wide range of alcohols and probed the nature of the selectivity of PBT/C for methyl esterification over other side products. Finally, means by which the catalyst operates with respect to oxidation states of the three components, Pd, Bi, and Te, was probed. Carboxylic acids are an important functional group due to their prevalence in various pharmaceutically active agents, agrochemicals, and commodity scale chemicals. The well-defined catalyst PBT/C catalyst was discovered to be effective for the oxidation of a wide spectrum of alcohols to carboxylic acid. The demonstrated substrate scope and functional group tolerance are the widest reported for an aerobic heterogeneous catalyst. Additionally, the catalyst has been implemented in a packed bed reactor with quantitative yield of benzoic acid maintained throughout a two-day run. Biomass derived 5-(hydroxymethyl)furfural (HMF) is also oxidized to 2,5-furandicarboxylic acid (FDCA) in high yield. Exploration of PBT/C for the oxidative methyl esterification was found to exhibit exquisite selectivity for the initial oxidation of primary alcohol instead of methanol, which is the bulk solvent. We explored this selectivity and conclude that it results from various substrate-surface interactions, which are not attainable by methanol. The primary alcohol can outcompete the methanol for binding on the catalyst surface through various interactions between the side chain of the

  19. Large-scale Modeling of Nitrous Oxide Production: Issues of Representing Spatial Heterogeneity

    Science.gov (United States)

    Morris, C. K.; Knighton, J.

    2017-12-01

    Nitrous oxide is produced from the biological processes of nitrification and denitrification in terrestrial environments and contributes to the greenhouse effect that warms Earth's climate. Large scale modeling can be used to determine how global rate of nitrous oxide production and consumption will shift under future climates. However, accurate modeling of nitrification and denitrification is made difficult by highly parameterized, nonlinear equations. Here we show that the representation of spatial heterogeneity in inputs, specifically soil moisture, causes inaccuracies in estimating the average nitrous oxide production in soils. We demonstrate that when soil moisture is averaged from a spatially heterogeneous surface, net nitrous oxide production is under predicted. We apply this general result in a test of a widely-used global land surface model, the Community Land Model v4.5. The challenges presented by nonlinear controls on nitrous oxide are highlighted here to provide a wider context to the problem of extraordinary denitrification losses in CLM. We hope that these findings will inform future researchers on the possibilities for model improvement of the global nitrogen cycle.

  20. Heterogeneous oxidation of mercury in simulated post combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Glenn A. Norton; Hongqun Yang; Robert C. Brown; Dennis L. Laudal; Grant E. Dunham; John Erjavec [Iowa State University, Ames, IA (United States). Center for Sustainable Environmental Technologies

    2003-01-01

    Heterogeneous mercury oxidation was studied by exposing whole fly ash samples and magnetic, nonmagnetic, and size-classified fly ash fractions to elemental mercury vapor in simulated flue gas streams. Fly ash from sub-bituminous Wyodak-Anderson PRB coal and bituminous Blacksville coal were used. Scanning electron microscopy, X-ray diffraction, thermogravimetric analyses, and BET N{sub 2} isothermal sorption analyses were performed to characterize the fly ash samples. Mercury speciation downstream from the ash was determined using the Ontario Hydro method. Results showed that the presence of fly ash was critical for mercury oxidation, and the surface area of the ash appears to be an important parameter. However, for a given fly ash, there were generally no major differences in catalytic oxidation potential between different fly ash fractions. This includes fractions enriched in unburned carbon and iron oxides. The presence of NO{sub 2}, HCl, and SO{sub 2} resulted in greater levels of mercury oxidation, while NO inhibited mercury oxidation. The gas matrix affected mercury oxidation more than the fly ash composition. 21 refs., 10 figs., 2 tabs.

  1. Heterogeneous Partial (ammOxidation and Oxidative Dehydrogenation Catalysis on Mixed Metal Oxides

    Directory of Open Access Journals (Sweden)

    Jacques C. Védrine

    2016-01-01

    Full Text Available This paper presents an overview of heterogeneous partial (ammoxidation and oxidative dehydrogenation (ODH of hydrocarbons. The review has been voluntarily restricted to metal oxide-type catalysts, as the partial oxidation field is very broad and the number of catalysts is quite high. The main factors of solid catalysts for such reactions, designated by Grasselli as the “seven pillars”, and playing a determining role in catalytic properties, are considered to be, namely: isolation of active sites (known to be composed of ensembles of atoms, Me–O bond strength, crystalline structure, redox features, phase cooperation, multi-functionality and the nature of the surface oxygen species. Other important features and physical and chemical properties of solid catalysts, more or less related to the seven pillars, are also emphasized, including reaction sensitivity to metal oxide structure, epitaxial contact between an active phase and a second phase or its support, synergy effect between several phases, acid-base aspects, electron transfer ability, catalyst preparation and activation and reaction atmospheres, etc. Some examples are presented to illustrate the importance of these key factors. They include light alkanes (C1–C4 oxidation, ethane oxidation to ethylene and acetic acid on MoVTe(SbNb-O and Nb doped NiO, propene oxidation to acrolein on BiMoCoFe-O systems, propane (ammoxidation to (acrylonitrile acrylic acid on MoVTe(SbNb-O mixed oxides, butane oxidation to maleic anhydride on VPO: (VO2P2O7-based catalyst, and isobutyric acid ODH to methacrylic acid on Fe hydroxyl phosphates. It is shown that active sites are composed of ensembles of atoms whose size and chemical composition depend on the reactants to be transformed (their chemical and size features and the reaction mechanism, often of Mars and van Krevelen type. An important aspect is the fact that surface composition and surface crystalline structure vary with reaction on stream until

  2. Analysis of heterogeneous oxygen exchange and fuel oxidation on the catalytic surface of perovskite membranes

    KAUST Repository

    Hong, Jongsup

    2013-10-01

    The catalytic kinetics of oxygen surface exchange and fuel oxidation for a perovskite membrane is investigated in terms of the thermodynamic state in the immediate vicinity of or on the membrane surface. Perovskite membranes have been shown to exhibit both oxygen perm-selectivity and catalytic activity for hydrocarbon conversion. A fundamental description of their catalytic surface reactions is needed. In this study, we infer the kinetic parameters for heterogeneous oxygen surface exchange and catalytic fuel conversion reactions, based on permeation rate measurements and a spatially resolved physical model that incorporates detailed chemical kinetics and transport in the gas-phase. The conservation equations for surface and bulk species are coupled with those of the gas-phase species through the species production rates from surface reactions. It is shown that oxygen surface exchange is limited by dissociative/associative adsorption/desorption of oxygen molecules onto/from the membrane surface. On the sweep side, while the catalytic conversion of methane to methyl radical governs the overall surface reactions at high temperature, carbon monoxide oxidation on the membrane surface is dominant at low temperature. Given the sweep side conditions considered in ITM reactor experiments, gas-phase reactions also play an important role, indicating the significance of investigating both homogeneous and heterogeneous chemistry and their coupling when examining the results. We show that the local thermodynamic state at the membrane surface should be considered when constructing and examining models of oxygen permeation and heterogeneous chemistry. © 2013 Elsevier B.V.

  3. Analysis of heterogeneous oxygen exchange and fuel oxidation on the catalytic surface of perovskite membranes

    KAUST Repository

    Hong, Jongsup; Kirchen, Patrick; Ghoniem, Ahmed F.

    2013-01-01

    The catalytic kinetics of oxygen surface exchange and fuel oxidation for a perovskite membrane is investigated in terms of the thermodynamic state in the immediate vicinity of or on the membrane surface. Perovskite membranes have been shown to exhibit both oxygen perm-selectivity and catalytic activity for hydrocarbon conversion. A fundamental description of their catalytic surface reactions is needed. In this study, we infer the kinetic parameters for heterogeneous oxygen surface exchange and catalytic fuel conversion reactions, based on permeation rate measurements and a spatially resolved physical model that incorporates detailed chemical kinetics and transport in the gas-phase. The conservation equations for surface and bulk species are coupled with those of the gas-phase species through the species production rates from surface reactions. It is shown that oxygen surface exchange is limited by dissociative/associative adsorption/desorption of oxygen molecules onto/from the membrane surface. On the sweep side, while the catalytic conversion of methane to methyl radical governs the overall surface reactions at high temperature, carbon monoxide oxidation on the membrane surface is dominant at low temperature. Given the sweep side conditions considered in ITM reactor experiments, gas-phase reactions also play an important role, indicating the significance of investigating both homogeneous and heterogeneous chemistry and their coupling when examining the results. We show that the local thermodynamic state at the membrane surface should be considered when constructing and examining models of oxygen permeation and heterogeneous chemistry. © 2013 Elsevier B.V.

  4. Environmental dynamics of metal oxide nanoparticles in heterogeneous systems: A review

    International Nuclear Information System (INIS)

    Joo, Sung Hee; Zhao, Dongye

    2017-01-01

    Highlights: • Influence of contaminants on the mobility of metal oxide nanoparticles (MNPs). • Synergistic effects of MNPs in the presence of contaminants. • Effect of environmental factors on the transformed MNPs. • Research direction on the toxicity modeling assessment of heterogeneous systems. - Abstract: Metal oxide nanoparticles (MNPs) have been used for many purposes including water treatment, health, cosmetics, electronics, food packaging, and even food products. As their applications continue to expand, concerns have been mounting about the environmental fate and potential health risks of the nanoparticles in the environment. Based on the latest information, this review provides an overview of the factors that affect the fate, transformation and toxicity of MNPs. Emphasis is placed on the effects of various aquatic contaminants under various environmental conditions on the transformation of metal oxides and their transport kinetics – both in homogeneous and heterogeneous systems – and the effects of contaminants on the toxicity of MNPs. The presence of existing contaminants decreases bioavailability through hetero-aggregation, sorption, and/or complexation upon an interaction with MNPs. Contaminants also influence the fate and transport of MNPs and exhibit their synergistic toxic effects that contribute to the extent of the toxicity. This review will help regulators, engineers, and scientists in this field to understand the latest development on MNPs, their interactions with aquatic contaminants as well as the environmental dynamics of their fate and transformation. The knowledge gap and future research needs are also identified, and the challenges in assessing the environmental fate and transport of nanoparticles in heterogeneous systems are discussed.

  5. Environmental dynamics of metal oxide nanoparticles in heterogeneous systems: A review

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Sung Hee, E-mail: s.joo1@miami.edu [Department of Civil, Architectural, and Environmental Engineering, University of Miami, 1251 Memorial Dr. McArthur Engineering Building, Coral Gables, FL 33146-0630 (United States); Zhao, Dongye [Department of Civil and Environmental Engineering, 238 Harbert Engineering Center, Auburn University, Auburn, AL 36849 (United States)

    2017-01-15

    Highlights: • Influence of contaminants on the mobility of metal oxide nanoparticles (MNPs). • Synergistic effects of MNPs in the presence of contaminants. • Effect of environmental factors on the transformed MNPs. • Research direction on the toxicity modeling assessment of heterogeneous systems. - Abstract: Metal oxide nanoparticles (MNPs) have been used for many purposes including water treatment, health, cosmetics, electronics, food packaging, and even food products. As their applications continue to expand, concerns have been mounting about the environmental fate and potential health risks of the nanoparticles in the environment. Based on the latest information, this review provides an overview of the factors that affect the fate, transformation and toxicity of MNPs. Emphasis is placed on the effects of various aquatic contaminants under various environmental conditions on the transformation of metal oxides and their transport kinetics – both in homogeneous and heterogeneous systems – and the effects of contaminants on the toxicity of MNPs. The presence of existing contaminants decreases bioavailability through hetero-aggregation, sorption, and/or complexation upon an interaction with MNPs. Contaminants also influence the fate and transport of MNPs and exhibit their synergistic toxic effects that contribute to the extent of the toxicity. This review will help regulators, engineers, and scientists in this field to understand the latest development on MNPs, their interactions with aquatic contaminants as well as the environmental dynamics of their fate and transformation. The knowledge gap and future research needs are also identified, and the challenges in assessing the environmental fate and transport of nanoparticles in heterogeneous systems are discussed.

  6. Oxide-supported metal clusters: models for heterogeneous catalysts

    International Nuclear Information System (INIS)

    Santra, A K; Goodman, D W

    2003-01-01

    Understanding the size-dependent electronic, structural and chemical properties of metal clusters on oxide supports is an important aspect of heterogeneous catalysis. Recently model oxide-supported metal catalysts have been prepared by vapour deposition of catalytically relevant metals onto ultra-thin oxide films grown on a refractory metal substrate. Reactivity and spectroscopic/microscopic studies have shown that these ultra-thin oxide films are excellent models for the corresponding bulk oxides, yet are sufficiently electrically conductive for use with various modern surface probes including scanning tunnelling microscopy (STM). Measurements on metal clusters have revealed a metal to nonmetal transition as well as changes in the crystal and electronic structures (including lattice parameters, band width, band splitting and core-level binding energy shifts) as a function of cluster size. Size-dependent catalytic reactivity studies have been carried out for several important reactions, and time-dependent catalytic deactivation has been shown to arise from sintering of metal particles under elevated gas pressures and/or reactor temperatures. In situ STM methodologies have been developed to follow the growth and sintering kinetics on a cluster-by-cluster basis. Although several critical issues have been addressed by several groups worldwide, much more remains to be done. This article highlights some of these accomplishments and summarizes the challenges that lie ahead. (topical review)

  7. Synthesis of a molecularly defined single-active site heterogeneous catalyst for selective oxidation of N-heterocycles.

    Science.gov (United States)

    Zhang, Yujing; Pang, Shaofeng; Wei, Zhihong; Jiao, Haijun; Dai, Xingchao; Wang, Hongli; Shi, Feng

    2018-04-13

    Generally, a homogeneous catalyst exhibits good activity and defined active sites but it is difficult to recycle. Meanwhile, a heterogeneous catalyst can easily be reused but its active site is difficult to reveal. It is interesting to bridge the gap between homogeneous and heterogeneous catalysis via controllable construction of a heterogeneous catalyst containing defined active sites. Here, we report that a molecularly defined, single-active site heterogeneous catalyst has been designed and prepared via the oxidative polymerization of maleimide derivatives. These polymaleimide derivatives can be active catalysts for the selective oxidation of heterocyclic compounds to quinoline and indole via the recycling of -C=O and -C-OH groups, which was confirmed by tracing the reaction with GC-MS using maleimide as the catalyst and by FT-IR analysis with polymaleimide as the catalyst. These results might promote the development of heterogeneous catalysts with molecularly defined single active sites exhibiting a comparable activity to homogeneous catalysts.

  8. Enhancement of olive mill wastewater biodegradation by homogeneous and heterogeneous photocatalytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Badawy, M.I.; Gohary, F.El. [Water Pollution Research Department, National Research Centre (NRC), Dokki, Cairo 11312 (Egypt); Ghaly, M.Y., E-mail: ghalynrc@yahoo.com [Chemical Engineering and Pilot Plant Department, National Research Centre (NRC), Dokki, Cairo (Egypt); Ali, M.E.M. [Water Pollution Research Department, National Research Centre (NRC), Dokki, Cairo 11312 (Egypt)

    2009-09-30

    Olive mills wastewater (OMW) is characterized by its high organic content and refractory compounds. In this study, an advanced technology for the treatment of the recalcitrant contaminants of OMW has been investigated. The technique used was either photo-Fenton as homogeneous photocatalytic oxidation or UV/semi-conductor catalyst (such as TiO{sub 2}, ZrO{sub 2} and FAZA) as heterogeneous photocatalytic oxidation for treatment of OMW. For both the processes, the effect of irradiation time, amounts of photocatalysts and semi-conductors, and initial concentration of hydrogen peroxide has been studied. At the optimum conditions, photo-Fenton process achieved COD, TOC, lignin (total phenolic compounds) and total suspended solids (TSSs) removal values of 87%, 84%, 97.44% and 98.31%, respectively. The corresponding values for UV/TiO{sub 2} were 68.8%, 67.3%, 40.19% and 48.9%, respectively, after 80 min irradiation time. The biodegradability expressed by BOD{sub 5}/COD ratio for treated wastewater was ranged from 0.66 to 0.8 compared to 0.19 for raw wastewater indicating enhancement of biodegradation.

  9. Impact of OH Heterogenous Oxidation on the Evolution of Brown Carbon Aerosol Optical Properties

    Science.gov (United States)

    Schnitzler, E.; Abbatt, J.

    2017-12-01

    The effects of varying relative humidity (RH) on the evolution of brown carbon (BrC) optical properties induced by heterogeneous OH oxidation were investigated in a series of photooxidation chamber experiments. A BrC surrogate was generated from aqueous 1,3-dihydroxybenzene (10 mM) and H2O2 (10 mM) exposed to >300 nm radiation, atomized, passed through a series of trace gas denuders, and injected into the chamber, which was conditioned to about 10 or 60% RH. Following aerosol injection, H2O2 was continuously bubbled into the chamber; an hour later, the chamber was irradiated with black-lights (UV-B) to produce OH. Before irradiation, aerosol absorption and scattering at 405 nm, measured using a photoacoustic spectrometer, decreased due only to deposition and dilution, and single scattering albedo (SSA) was relatively steady. In the presence of gas-phase OH, absorption first increased, despite continued particle losses, and SSA decreased. Subsequently, absorption decreased faster than scattering, and SSA increased uniformly. At 60% RH, colour enhancement, likely associated with functionalization, was greatest after only minutes of reaction. In contrast, at 10% RH, peak colour enhancement occurred after about two hours of reaction, indicating that the decrease in RH and the attendant increase in particle viscosity significantly impeded heterogeneous OH oxidation of the BrC surrogate.

  10. Indoor air purification using heterogeneous photocatalytic oxidation. Part I: Experimental study

    NARCIS (Netherlands)

    Yu, Q.; Brouwers, H.J.H.

    2009-01-01

    Heterogeneous photocatalytic oxidation (PCO) has shown to be a promising air purifying technology in outdoor conditions using TiO2 as photocatalyst activated with UV light. Also to indoor air quality more and more attention is paid because of the very important role it plays on human health, and it

  11. Indoor air purificaton using heterogeneous photocatalytic oxidation, Part 2: Kinetic study

    NARCIS (Netherlands)

    Yu, Q.; Ballari, M.; Brouwers, H.J.H.

    2010-01-01

    In part I to this article [1], the application of the heterogeneous photocatalytic oxidation (PCO) theory for the indoor air quality improvement was presented. With a modified TiO2 that can be activated by visible light as the photocatalyst coated on a special wall paper, and one typical indoor air

  12. Heterogeneous reactions of carbonyl sulfide on mineral oxides: mechanism and kinetics study

    Directory of Open Access Journals (Sweden)

    Y. Liu

    2010-11-01

    Full Text Available The heterogeneous reactions of carbonyl sulfide (OCS on the typical mineral oxides in the mineral dust particles were investigated using a Knudsen cell flow reactor and a diffuse reflectance UV-vis spectroscopy. The reaction pathway for OCS on mineral dust was identified based on the gaseous products and surface species. The hydrolysis of OCS and succeeding oxidation of intermediate products readily took place on α-Al2O3, MgO, and CaO. Reversible and irreversible adsorption of OCS were observed on α-Fe2O3 and ZnO, respectively, whereas no apparent uptake of OCS by SiO2 and TiO2 was observed. The reactivity of OCS on these oxides depends on both the basicity of oxides and the decomposition reactivity of oxides for H2S. Based on the individual uptake coefficients and chemical composition of authentic mineral dust, the uptake coefficient (γBET of mineral dust was estimated to be in the range of 3.84×10−7–2.86×10−8. The global flux of OCS due to heterogeneous reactions and adsorption on mineral dust was estimated at 0.13–0.29 Tg yr−1, which is comparable to the annual flux of OCS for its reaction with ·OH.

  13. Effect of Support in Heterogeneous Ruthenium Catalysts Used for the Selective Aerobic Oxidation of HMF in Water

    DEFF Research Database (Denmark)

    Gorbanev, Yury; Kegnæs, Søren; Riisager, Anders

    2011-01-01

    Heterogeneous ruthenium-based catalysts were applied in the selective, aerobic oxidation of 5-hydroxymethylfurfural, a versatile biomass-derived chemical, to form 2,5-furandicarboxylic acid. The oxidation reactions were performed in water with dioxygen as the oxidant at different pressures without...

  14. Computationally Probing the Performance of Hybrid, Heterogeneous, and Homogeneous Iridium-Based Catalysts for Water Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    García-Melchor, Max [SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford CA (United States); Vilella, Laia [Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST),Tarragona (Spain); Departament de Quimica, Universitat Autonoma de Barcelona, Barcelona (Spain); López, Núria [Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Tarragona (Spain); Vojvodic, Aleksandra [SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park CA (United States)

    2016-04-29

    An attractive strategy to improve the performance of water oxidation catalysts would be to anchor a homogeneous molecular catalyst on a heterogeneous solid surface to create a hybrid catalyst. The idea of this combined system is to take advantage of the individual properties of each of the two catalyst components. We use Density Functional Theory to determine the stability and activity of a model hybrid water oxidation catalyst consisting of a dimeric Ir complex attached on the IrO2(110) surface through two oxygen atoms. We find that homogeneous catalysts can be bound to its matrix oxide without losing significant activity. Hence, designing hybrid systems that benefit from both the high tunability of activity of homogeneous catalysts and the stability of heterogeneous systems seems feasible.

  15. Heterogeneous oxidation of SO2 by O3-aged black carbon and its dithiothreitol oxidative potential.

    Science.gov (United States)

    Xu, Weiwei; Li, Qian; Shang, Jing; Liu, Jia; Feng, Xiang; Zhu, Tong

    2015-10-01

    Ozone (O3) is an important atmospheric oxidant. Black carbon (BC) particles released into the atmosphere undergo an aging process via O3 oxidation. O3-aged BC particles may change their uptake ability toward trace reducing gases such as SO2 in the atmosphere, leading to different environmental and health effects. In this paper, the heterogeneous reaction process between O3-aged BC and SO2 was explored via in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Combined with ion chromatography (IC), DRIFTS was used to qualitatively and quantitatively analyze the sulfate product. The results showed that O3-aged BC had stronger SO2 oxidation ability than fresh BC, and the reactive species/sites generated on the surface had an important role in the oxidation of SO2. Relative humidity or 254nm UV (ultraviolet) light illumination enhanced the oxidation uptake of SO2 on O3-aged BC. The oxidation potentials of the BC particles were detected via dithiothreitol (DTT) assay. The DTT activity over BC was decreased in the process of SO2 reduction, with the consumption of oxidative active sites. Copyright © 2015. Published by Elsevier B.V.

  16. Kinetic study of the hydration of propylene oxide in the presence of heterogeneous catalyst

    Directory of Open Access Journals (Sweden)

    Akyalcin Sema

    2017-01-01

    Full Text Available The kinetics of the hydration of propylene oxide was studied using a pressurized batch reactor for both uncatalyzed and heterogeneously catalyzed reactions. Lewatit MonoPlus M500/HCO3 - was used as heterogeneous catalyst, which showed better performance than Dowex Marathon A/HCO3 -. The effects of the parameters, namely internal and external diffusion resistances, temperature, catalyst loading and mole ratios of reactants, on the reaction rate were studied. The uncatalyzed and heterogeneously catalyzed reactions were proven to follow a series-parallel irreversible homogeneous mechanism. The temperature dependencies of the rate constants appearing in the rate expressions were determined.

  17. Heterogeneous OH oxidation of motor oil particles causes selective depletion of branched and less cyclic hydrocarbons.

    Science.gov (United States)

    Isaacman, Gabriel; Chan, Arthur W H; Nah, Theodora; Worton, David R; Ruehl, Chris R; Wilson, Kevin R; Goldstein, Allen H

    2012-10-02

    Motor oil serves as a useful model system for atmospheric oxidation of hydrocarbon mixtures typical of anthropogenic atmospheric particulate matter, but its complexity often prevents comprehensive chemical speciation. In this work we fully characterize this formerly "unresolved complex mixture" at the molecular level using recently developed soft ionization gas chromatography techniques. Nucleated motor oil particles are oxidized in a flow tube reactor to investigate the relative reaction rates of observed hydrocarbon classes: alkanes, cycloalkanes, bicycloalkanes, tricycloalkanes, and steranes. Oxidation of hydrocarbons in a complex aerosol is found to be efficient, with approximately three-quarters (0.72 ± 0.06) of OH collisions yielding a reaction. Reaction rates of individual hydrocarbons are structurally dependent: compared to normal alkanes, reaction rates increased by 20-50% with branching, while rates decreased ∼20% per nonaromatic ring present. These differences in rates are expected to alter particle composition as a function of oxidation, with depletion of branched and enrichment of cyclic hydrocarbons. Due to this expected shift toward ring-opening reactions heterogeneous oxidation of the unreacted hydrocarbon mixture is less likely to proceed through fragmentation pathways in more oxidized particles. Based on the observed oxidation-induced changes in composition, isomer-resolved analysis has potential utility for determining the photochemical age of atmospheric particulate matter with respect to heterogeneous oxidation.

  18. Rhizosphere heterogeneity shapes abundance and activity of sulfur-oxidizing bacteria in vegetated salt marsh sediments

    Directory of Open Access Journals (Sweden)

    François eThomas

    2014-06-01

    Full Text Available Salt marshes are highly productive ecosystems hosting an intense sulfur (S cycle, yet little is known about S-oxidizing microorganisms in these ecosystems. Here, we studied the diversity and transcriptional activity of S-oxidizers in salt marsh sediments colonized by the plant Spartina alterniflora, and assessed variations with sediment depth and small-scale compartments within the rhizosphere. We combined next-generation amplicon sequencing of 16S rDNA and rRNA libraries with phylogenetic analyses of marker genes for two S-oxidation pathways (soxB and rdsrAB. Gene and transcript numbers of soxB and rdsrAB phylotypes were quantified simultaneously, using newly designed (RT-qPCR assays. We identified a diverse assemblage of S-oxidizers, with Chromatiales and Thiotrichales being dominant. The detection of transcripts from S-oxidizers was mostly confined to the upper 5 cm sediments, following the expected distribution of root biomass. A common pool of species dominated by Gammaproteobacteria transcribed S-oxidation genes across roots, rhizosphere, and surrounding sediment compartments, with rdsrAB transcripts prevailing over soxB. However, the root environment fine-tuned the abundance and transcriptional activity of the S-oxidizing community. In particular, the global transcription of soxB was higher on the roots compared to mix and rhizosphere samples. Furthermore, the contribution of Epsilonproteobacteria-related S-oxidizers tended to increase on Spartina roots compared to surrounding sediments. These data shed light on the under-studied oxidative part of the sulfur cycle in salt marsh sediments and indicate small-scale heterogeneities are important factors shaping abundance and potential activity of S-oxidizers in the rhizosphere.

  19. Nitric oxide reduction in coal combustion: role of char surface complexes in heterogeneous reactions

    Energy Technology Data Exchange (ETDEWEB)

    Arenillas, A.; Rubiera, F.; Pis, J.J. [Instituto Nacional del Carbon, CSIC, Oviedo (Spain)

    2002-12-15

    Nitrogen oxides are one of the major environmental problems arising from fossil fuel combustion. Coal char is relatively rich in nitrogen, and so this is an important source of nitrogen oxides during coal combustion. However, due to its carbonaceous nature, char can also reduce NO through heterogeneous reduction. The objectives of this work were on one hand to compare NO emissions from coal combustion in two different types of equipment and on the other hand to study the influence of char surface chemistry on NO reduction. A series of combustion tests were carried out in two different scale devices: a thermogravimetric analyzer coupled to a mass spectrometer and an FTIR (TG-MS-FTIR) and a fluidized bed reactor with on-line battery of analyzers. According to the results obtained, it can be said that the TG-MS-FTIR system provides valuable information about NO heterogeneous reduction and it can give good trends of the behaviour in other combustion equipments, i.e. fluidized bed combustors. It has been also pointed out that NO-char interaction depends to a large extent on temperature. In the low-temperature range NO heterogeneous reduction seems to be controlled by the evolution of surface complexes. In the high-temperature range a different mechanism is involved in NO heterogeneous reduction, the nature of the carbon matrix being a key factor. 27 refs., 6 figs., 1 tab.

  20. Heterogeneous reduction of nitric oxide on synthetic coal chars

    Energy Technology Data Exchange (ETDEWEB)

    C. Pevida; A. Arenillas; F. Rubiera; J.J. Pis [Instituto Nacional del Carbon (CSIC), Oviedo (Spain)

    2005-12-01

    Model compounds, with a controlled heteroatoms content and well-defined functionalities, were used to study the release of nitrogen compounds from char combustion. In the present work, the mechanisms involved in NO-char heterogeneous reduction were studied with a synthetic coal (SC) char as carbon source. Another synthetic char (SN) without any nitrogen in its composition was also employed in these studies. Temperature programmed reduction (TPR) tests with a gas mixture of 400 ppm NO in argon and with isotopically labelled nitric oxide, {sup 15}NO (500 ppm {sup 15}NO in argon), were carried out. The gases produced were quantitatively determined by means of MS and FTIR analysers. Under the conditions of this work the main products of the NO-C reaction were found to be N{sub 2} and CO{sub 2}. The main path of reaction involves the formation of surface nitrogen compounds that afterwards react with nitrogen from the reactive gas to form N{sub 2}. It was observed that fuel-N also participates in the overall heterogeneous reduction reaction, although to a lesser extent.

  1. Nitric oxide reduction in coal combustion: role of char surface complexes in heterogeneous reactions.

    Science.gov (United States)

    Arenillas, Ana; Rubiera, Fernando; Pis, José J

    2002-12-15

    Nitrogen oxides are one of the major environmental problems arising from fossil fuel combustion. Coal char is relatively rich in nitrogen, and so this is an important source of nitrogen oxides during coal combustion. However, due to its carbonaceous nature, char can also reduce NO through heterogeneous reduction. The objectives of this work were on one hand to compare NO emissions from coal combustion in two different types of equipment and on the other hand to study the influence of char surface chemistry on NO reduction. A series of combustion tests were carried out in two different scale devices: a thermogravimetric analyzer coupled to a mass spectrometer and an FTIR (TG-MS-FTIR) and a fluidized bed reactor with an on line battery of analyzers. The TG-MS-FTIR system was also used to perform a specific study on NO heterogeneous reduction reactions using chars with different surface chemistry. According to the results obtained, it can be said that the TG-MS-FTIR system provides valuable information about NO heterogeneous reduction and it can give good trends of the behavior in other combustion equipments (i.e., fluidized bed combustors). It has been also pointed out that NO-char interaction depends to a large extent on temperature. In the low-temperature range (800 degrees C), a different mechanism is involved in NO heterogeneous reduction, the nature of the carbon matrix being a key factor.

  2. Acetic Acid Formation by Selective Aerobic Oxidation of Aqueous Ethanol over Heterogeneous Ruthenium Catalysts

    DEFF Research Database (Denmark)

    Gorbanev, Yury; Kegnæs, Søren; Hanning, Christopher William

    2012-01-01

    Heterogeneous catalyst systems comprising ruthenium hydroxide supported on different carrier materials, titania, alumina, ceria, and spinel (MgAl2O4), were applied in selective aerobic oxidation ethanol to form acetic acid, an important bulk chemical and food ingredient. The catalysts were...

  3. Plants as indicators of photochemical oxidants in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, J.S.

    1977-01-01

    Plant indicators have been important in identifying the photochemical oxidant problem in the USA since the 1940's. They continue to serve as an inexpensive means of detecting oxidants in the atmosphere and determining the geographical extent and frequency of occurrence of oxidants. Plant indicators are particularly useful for land-use planning and in the evaluation of air pollution effects on agriculture, forestry, and native vegetation. Plant indicators are not satisfactory substitutes for chemical monitoring of the atmosphere because their responses lack specificity and are affected by climatic, edaphic, and cultural factors, as well as the concentration and frequency of occurrence of oxidants. Because they integrate many environmental variables, plant indicators may be valuable models for the response of other species but only to the extent that they respond to oxidants in the same manner as these other species. The four most important factors for the successful use of plant indicators are: genetic uniformity of plant material; standardization of cultural conditions; standardization of procedures for scoring foliar symptoms; and uniformity of climatic and edaphic factors among study sites. The species used most frequently as indicators of oxidants in the US have been Bel W-3 tobacco and Pinto bean for 0/sub 3/ and petunia for peroxyacyl nitrate. 41 references, 1 table.

  4. Effects of temperature on the heterogeneous oxidation of sulfur dioxide by ozone on calcium carbonate

    Directory of Open Access Journals (Sweden)

    L. Y. Wu

    2011-07-01

    Full Text Available The heterogeneous oxidation of sulfur dioxide by ozone on CaCO3 was studied as a function of temperature (230 to 298 K at ambient pressure. Oxidation reactions were followed in real time using diffuse reflectance infrared Fourier transform spectrometry (DRIFTS to obtain kinetic and mechanistic data. From the analysis of the spectral features, the formation of sulfate was identified on the surface in the presence of O3 and SO2 at different temperatures from 230 to 298 K. The results showed that the heterogeneous oxidation and the rate of sulfate formation were sensitive to temperature. An interesting stage-transition region was observed at temperatures ranging from 230 to 257 K, but it became ambiguous gradually above 257 K. The reactive uptake coefficients at different temperatures from 230 to 298 K were acquired for the first time, which can be used directly in atmospheric chemistry modeling studies to predict the formation of secondary sulfate aerosol in the troposphere. Furthermore, the rate of sulfate formation had a turning point at about 250 K. The sulfate concentration at 250 K was about twice as large as that at 298 K. The rate of sulfate formation increased with decreasing temperature at temperatures above 250 K, while there is a contrary temperature effect at temperatures below 250 K. The activation energy for heterogeneous oxidation at temperatures from 245 K to 230 K was determined to be 14.63 ± 0.20 kJ mol−1. A mechanism for the temperature dependence was proposed and the atmospheric implications were discussed.

  5. Kinetics and mechanism of heterogeneous oxidation of sulfur dioxide by ozone on surface of calcium carbonate

    Directory of Open Access Journals (Sweden)

    L. Li

    2006-01-01

    Full Text Available Sulfate particles play a key role in the air quality and the global climate, but the heterogeneous formation mechanism of sulfates on surfaces of atmospheric particles is not well established. Carbonates, which act as a reactive component in mineral dust due to their special chemical properties, may contribute significantly to the sulfate formation by heterogeneous processes. This paper presents a study on the oxidation of SO2 by O3 on CaCO3 particles. Using Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS, the formation of sulfite and sulfate on the surface was identified, and the roles of O3 and water in oxidation processes were determined. The results showed that in the presence of O3, SO2can be oxidized to sulfate on the surface of CaCO3 particles. The reaction is first order in SO2 and zero order in O3. The reactive uptake coefficient for SO2 [(0.6–9.8×1014 molecule cm-3] oxidation by O3 [(1.2–12×1014 molecule cm-3] was determined to be (1.4±0.3×10-7 using the BET area as the reactive area and (7.7±1.6×10-4 using the geometric area. A two-stage mechanism that involves adsorption of SO2 followed by O3 oxidation is proposed and the adsorption of SO2 on the CaCO3 surface is the rate-determining step. The proposed mechanism can well explain the experiment results. The atmospheric implications were explored based on a box model calculation. It was found that the heterogeneous reaction might be an important pathway for sulfate formation in the atmosphere.

  6. Heterogeneous oxidation of saturated organic aerosols by hydroxyl radicals: uptake kinetics, condensed-phase products, and particle size change

    Directory of Open Access Journals (Sweden)

    I. J. George

    2007-08-01

    Full Text Available The kinetics and reaction mechanism for the heterogeneous oxidation of saturated organic aerosols by gas-phase OH radicals were investigated under NOx-free conditions. The reaction of 150 nm diameter Bis(2-ethylhexyl sebacate (BES particles with OH was studied as a proxy for chemical aging of atmospheric aerosols containing saturated organic matter. An aerosol reactor flow tube combined with an Aerodyne time-of-flight aerosol mass spectrometer (ToF-AMS and scanning mobility particle sizer (SMPS was used to study this system. Hydroxyl radicals were produced by 254 nm photolysis of O3 in the presence of water vapour. The kinetics of the heterogeneous oxidation of the BES particles was studied by monitoring the loss of a mass fragment of BES with the ToF-AMS as a function of OH exposure. We measured an initial OH uptake coefficient of γ0=1.3 (±0.4, confirming that this reaction is highly efficient. The density of BES particles increased by up to 20% of the original BES particle density at the highest OH exposure studied, consistent with the particle becoming more oxidized. Electrospray ionization mass spectrometry analysis showed that the major particle-phase reaction products are multifunctional carbonyls and alcohols with higher molecular weights than the starting material. Volatilization of oxidation products accounted for a maximum of 17% decrease of the particle volume at the highest OH exposure studied. Tropospheric organic aerosols will become more oxidized from heterogeneous photochemical oxidation, which may affect not only their physical and chemical properties, but also their hygroscopicity and cloud nucleation activity.

  7. Water oxidation catalysis with nonheme iron complexes under acidic and basic conditions: homogeneous or heterogeneous?

    Science.gov (United States)

    Hong, Dachao; Mandal, Sukanta; Yamada, Yusuke; Lee, Yong-Min; Nam, Wonwoo; Llobet, Antoni; Fukuzumi, Shunichi

    2013-08-19

    Thermal water oxidation by cerium(IV) ammonium nitrate (CAN) was catalyzed by nonheme iron complexes, such as Fe(BQEN)(OTf)2 (1) and Fe(BQCN)(OTf)2 (2) (BQEN = N,N'-dimethyl-N,N'-bis(8-quinolyl)ethane-1,2-diamine, BQCN = N,N'-dimethyl-N,N'-bis(8-quinolyl)cyclohexanediamine, OTf = CF3SO3(-)) in a nonbuffered aqueous solution; turnover numbers of 80 ± 10 and 20 ± 5 were obtained in the O2 evolution reaction by 1 and 2, respectively. The ligand dissociation of the iron complexes was observed under acidic conditions, and the dissociated ligands were oxidized by CAN to yield CO2. We also observed that 1 was converted to an iron(IV)-oxo complex during the water oxidation in competition with the ligand oxidation. In addition, oxygen exchange between the iron(IV)-oxo complex and H2(18)O was found to occur at a much faster rate than the oxygen evolution. These results indicate that the iron complexes act as the true homogeneous catalyst for water oxidation by CAN at low pHs. In contrast, light-driven water oxidation using [Ru(bpy)3](2+) (bpy = 2,2'-bipyridine) as a photosensitizer and S2O8(2-) as a sacrificial electron acceptor was catalyzed by iron hydroxide nanoparticles derived from the iron complexes under basic conditions as the result of the ligand dissociation. In a buffer solution (initial pH 9.0) formation of the iron hydroxide nanoparticles with a size of around 100 nm at the end of the reaction was monitored by dynamic light scattering (DLS) in situ and characterized by X-ray photoelectron spectra (XPS) and transmission electron microscope (TEM) measurements. We thus conclude that the water oxidation by CAN was catalyzed by short-lived homogeneous iron complexes under acidic conditions, whereas iron hydroxide nanoparticles derived from iron complexes act as a heterogeneous catalyst in the light-driven water oxidation reaction under basic conditions.

  8. Heterogeneous Reaction of SO2 on Manganese Oxides: the Effect of Crystal Structure and Relative Humidity.

    Science.gov (United States)

    Yang, Weiwei; Zhang, Jianghao; Ma, Qingxin; Zhao, Yan; Liu, Yongchun; He, Hong

    2017-07-03

    Manganese oxides from anthropogenic sources can promote the formation of sulfate through catalytic oxidation of SO 2 . In this study, the kinetics of SO 2 reactions on MnO 2 with different morphologies (α, β, γ and δ) was investigated using flow tube reactor and in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). Under dry conditions, the reactivity towards SO 2 uptake was highest on δ-MnO 2 but lowest on β-MnO 2 , with a geometric uptake coefficient (γ obs ) of (2.42 ± 0.13) ×10 -2 and a corrected uptake coefficient (γ c ) of (1.48 ± 0.21) ×10 -6 for the former while γ obs of (3.35 ± 0.43) ×10 -3 and γ c of (7.46 ± 2.97) ×10 -7 for the latter. Under wet conditions, the presence of water altered the chemical form of sulfate and was in favor for the heterogeneous oxidation of SO 2 . The maximum sulfate formation rate was reached at 25% RH and 45% for δ-MnO 2 and γ-MnO 2 , respectively, possibly due to their different crystal structures. The results suggest that morphologies and RH are important factors influencing the heterogeneous reaction of SO 2 on mineral aerosols, and that aqueous oxidation process involving transition metals of Mn might be a potential important pathway for SO 2 oxidation in the atmosphere.

  9. Heterogeneous catalytic ozonation of ciprofloxacin in water with carbon nanotube supported manganese oxides as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Minghao, E-mail: suiminghao.sui@gmail.com [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Xing, Sichu; Sheng, Li; Huang, Shuhang; Guo, Hongguang [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Ciprofloxacin in water was degraded by heterogeneous catalytic ozonation. Black-Right-Pointing-Pointer MnOx were supported on MWCNTs to serve as catalyst for ozonation. Black-Right-Pointing-Pointer MnOx/MWCNT exhibited highly catalytic activity on ozonation of ciprofloxacin in water. Black-Right-Pointing-Pointer MnOx/MWCNT resulted in effective antibacterial activity inhibition on ciprofloxacin. Black-Right-Pointing-Pointer MnOx/MWCNT promoted the generation of hydroxyl radicals. - Abstract: Carbon nanotube-supported manganese oxides (MnOx/MWCNT) were used as catalysts to assist ozone in degrading ciprofloxacin in water. Manganese oxides were successfully loaded on multi-walled carbon nanotube surfaces by simply impregnating the carbon nanotube with permanganate solution. The catalytic activities of MnOx/MWCNT in ciprofloxacin ozonation, including degradation, mineralization effectiveness, and antibacterial activity change, were investigated. The presence of MnOx/MWCNT significantly elevated the degradation and mineralization efficiency of ozone on ciprofloxacin. The microbiological assay with a reference Escherichia coli strain indicated that ozonation with MnOx/MWCNT results in more effective antibacterial activity inhibition of ciprofloxacin than that in ozonation alone. The effects of catalyst dose, initial ciprofloxacin concentration, and initial pH conditions on ciprofloxacin ozonation with MnOx/MWCNT were surveyed. Electron spin resonance trapping was applied to assess the role of MnOx/MWCNT in generating hydroxyl radicals (HO{center_dot}) during ozonation. Stronger 5,5-dimethyl-1-pyrroline-N-oxide-OH signals were observed in the ozonation with MnOx/MWCNT compared with those in ozonation alone, indicating that MnOx/MWCNT promoted the generation of hydroxyl radicals. The degradation of ciprofloxacin was studied in drinking water and wastewater process samples to gauge the potential effects of water background matrix on

  10. Importance of sulfate radical anion formation and chemistry in heterogeneous OH oxidation of sodium methyl sulfate, the smallest organosulfate

    Science.gov (United States)

    Chung Kwong, Kai; Chim, Man Mei; Davies, James F.; Wilson, Kevin R.; Nin Chan, Man

    2018-02-01

    Organosulfates are important organosulfur compounds present in atmospheric particles. While the abundance, composition, and formation mechanisms of organosulfates have been extensively investigated, it remains unclear how they transform and evolve throughout their atmospheric lifetime. To acquire a fundamental understanding of how organosulfates chemically transform in the atmosphere, this work investigates the heterogeneous OH radical-initiated oxidation of sodium methyl sulfate (CH3SO4Na) droplets, the smallest organosulfate detected in atmospheric particles, using an aerosol flow tube reactor at a high relative humidity (RH) of 85 %. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (direct analysis in real time, DART) coupled with a high-resolution mass spectrometer showed that neither functionalization nor fragmentation products are detected. Instead, the ion signal intensity of the bisulfate ion (HSO4-) has been found to increase significantly after OH oxidation. We postulate that sodium methyl sulfate tends to fragment into a formaldehyde (CH2O) and a sulfate radical anion (SO4 ṡ -) upon OH oxidation. The formaldehyde is likely partitioned back to the gas phase due to its high volatility. The sulfate radical anion, similar to OH radical, can abstract a hydrogen atom from neighboring sodium methyl sulfate to form the bisulfate ion, contributing to the secondary chemistry. Kinetic measurements show that the heterogeneous OH reaction rate constant, k, is (3.79 ± 0.19) × 10-13 cm3 molecule-1 s-1 with an effective OH uptake coefficient, γeff, of 0.17 ± 0.03. While about 40 % of sodium methyl sulfate is being oxidized at the maximum OH exposure (1.27 × 1012 molecule cm-3 s), only a 3 % decrease in particle diameter is observed. This can be attributed to a small fraction of particle mass lost via the formation and volatilization of formaldehyde. Overall, we firstly demonstrate that the heterogeneous OH oxidation of an

  11. Gold nanoparticles on OMS-2 for heterogeneously catalyzed aerobic oxidative α,β-dehydrogenation of β-heteroatom-substituted ketones.

    Science.gov (United States)

    Yoshii, Daichi; Jin, Xiongjie; Yatabe, Takafumi; Hasegawa, Jun-Ya; Yamaguchi, Kazuya; Mizuno, Noritaka

    2016-12-06

    In the presence of Au nanoparticles supported on manganese oxide OMS-2 (Au/OMS-2), various kinds of β-heteroatom-substituted α,β-unsaturated ketones (heteroatom = N, O, S) can be synthesized through α,β-dehydrogenation of the corresponding saturated ketones using O 2 (in air) as the oxidant. The catalysis of Au/OMS-2 is truly heterogeneous, and the catalyst can be reused.

  12. Account for sector heterogeneity in China's energy consumption. Sector price indices vs. GDP deflator

    International Nuclear Information System (INIS)

    Ma, Chunbo

    2010-01-01

    A common practice in decomposition analyses is to deflate output indicators to purge the impact of inflation by using a general deflator. This practice fails to account for sector heterogeneity and can be hazardous. Although the general identified patterns are largely correct, the calculated magnitudes can be misleading or even wrongly signed. Instead, it is strongly recommended that sector heterogeneity is accounted for by using individual sector price indices for all relevant sectors instead of one general (GDP) deflator. This paper analyzes this advanced decomposition using Chinese data and compares to the usual method of using only one deflator. It is found that while most differences are only of quantitative quality, some show even a qualitative difference. Furthermore, the rising energy intensity in the early 2000s, which has been discussed by previous studies, vanishes completely. (author)

  13. Sales Comparison Approach Indicating Heterogeneity of Particular Type of Real Estate and Corresponding Valuation Accuracy

    Directory of Open Access Journals (Sweden)

    Martin Cupal

    2017-01-01

    Full Text Available The article focuses on heterogeneity of goods, namely real estate and consequently deals with market valuation accuracy. The heterogeneity of real estate property is, in particular, that every unit is unique in terms of its construction, condition, financing and mainly location and thus assessing the value must necessarily be difficult. This research also indicates the rate of efficiency of markets across the types based on their level of variability. The research is based on two databases consisting of various types of real estate with specific market parameters. These parameters determine the differences across the types and reveal heterogeneity. The first database has been set on valuations by sales comparison approach and the second one on data of real properties offered on the market. The methodology is based on univariate and multivariate statistics of key variables of those databases. The multivariate analysis is performed by Hotelling T2 control chart and statistics with appropriate numerical characteristics. The results of both databases were joint by weights with regard to the dependence criterion of the variables. The final results indicate potential valuation accuracy across the types. The main contribution of the research is that the evaluation was not only derived from the price deviation or distribution, but it also draws from causes of real property heterogeneity as a whole.

  14. Heterogeneous oxidation of SO2 in the radiation chemical purification of exhaust gases of thermoelectric power plants from oxides of nitrogen and sulfur

    International Nuclear Information System (INIS)

    Gerasimova, T.S.; Gerasimov, G.Ya.; Tokmacheva, I.P.

    1992-01-01

    Questions associated with numerical modeling of the heterogeneous oxidation of SO 2 in exhaust gases of thermoelectric power plants, induced by irradiation of the gas with a flux of fast electrons, are discussed. In constructing a mathematical model of the process it is considered that a phase equilibrium exists between the gas and the aerosol drops formed in the gas under the radiation influence, and the rate of the process is determined by the rate of liquid-phase oxidation of SO 2 by nitrogen dioxide in dissolved form. 7 refs., 4 figs

  15. Formation of acetic acid by aqueous-phase oxidation of ethanol with air in the presence of a heterogeneous gold catalyst

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Jørgensen, Betina; Hansen, Jeppe Rass

    2006-01-01

    Wine into vinegar: It is possible to selectively oxidize ethanol into acetic acid in aqueous solution with air as the oxidant and a heterogeneous gold catalyst (see TEM image of supported gold particles) at temperatures of about 423 K and O2 pressures of 0.6 MPa. This reaction proceeds readily...

  16. Modeling and experimental validation of CO heterogeneous chemistry and electrochemistry in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Yurkiv, Vitaly

    2010-12-17

    In the present work experimental and numerical modeling studies of the heterogeneously catalyzed and electrochemical oxidation of CO at Nickel/yttria-stabilized zirconia (YSZ) solid oxide fuel cell (SOFC) anode systems were performed to evaluate elementary charge-transfer reaction mechanisms taking place at the three-phase boundary of CO/CO{sub 2} gas-phase, Ni electrode, and YSZ electrolyte. Temperature-programmed desorption and reaction experiments along with density functional theory calculations were performed to determine adsorption/desorption and surface diffusion kinetics as well as thermodynamic data for the CO/CO{sub 2}/Ni and CO/CO{sub 2}/YSZ systems. Based on these data elementary reaction based models with four different charge transfer mechanisms for the electrochemical CO oxidation were developed and applied in numerical simulations of literature experimental electrochemical data such as polarization curves and impedance spectra. Comparison between simulation and experiment demonstrated that only one of the four charge transfer mechanisms can consistently reproduce the electrochemical data over a wide range of operating temperatures and CO/CO{sub 2} gas compositions. (orig.) [German] In der vorliegenden Arbeit wurden experimentelle und numerische Untersuchungen zur heterogen katalysierten und elektrochemischen Oxidation von CO an Anodensystemen (bestehend aus Nickel und yttriumdotiertem Zirkoniumdioxid, YSZ) von Festoxidbrennstoffzellen (engl. Solid Oxide Fuel Cells, SOFCs) ausgefuehrt, um den mikroskopischen Mechanismus der an der CO/CO{sub 2}-Gasphase/Ni-Elektrode/YSZ-Elektrolyt- Dreiphasen-Grenzflaeche ablaufenden Ladungsuebertragungsreaktion aufzuklaeren. Temperaturprogrammierte Desorptionsmessungen (TPD) und Temperaturprogrammierte Reaktionsmessungen (TPR) sowie Dichtefunktionaltheorierechnungen wurden ausgefuehrt, um adsorptions-, desorptions- und reaktionskinetische sowie thermodynamische Daten fuer die CO/CO{sub 2}/Ni- und CO/CO{sub 2}/YSZ

  17. Importance of sulfate radical anion formation and chemistry in heterogeneous OH oxidation of sodium methyl sulfate, the smallest organosulfate

    Directory of Open Access Journals (Sweden)

    K. C. Kwong

    2018-02-01

    Full Text Available Organosulfates are important organosulfur compounds present in atmospheric particles. While the abundance, composition, and formation mechanisms of organosulfates have been extensively investigated, it remains unclear how they transform and evolve throughout their atmospheric lifetime. To acquire a fundamental understanding of how organosulfates chemically transform in the atmosphere, this work investigates the heterogeneous OH radical-initiated oxidation of sodium methyl sulfate (CH3SO4Na droplets, the smallest organosulfate detected in atmospheric particles, using an aerosol flow tube reactor at a high relative humidity (RH of 85 %. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (direct analysis in real time, DART coupled with a high-resolution mass spectrometer showed that neither functionalization nor fragmentation products are detected. Instead, the ion signal intensity of the bisulfate ion (HSO4− has been found to increase significantly after OH oxidation. We postulate that sodium methyl sulfate tends to fragment into a formaldehyde (CH2O and a sulfate radical anion (SO4 ⋅ − upon OH oxidation. The formaldehyde is likely partitioned back to the gas phase due to its high volatility. The sulfate radical anion, similar to OH radical, can abstract a hydrogen atom from neighboring sodium methyl sulfate to form the bisulfate ion, contributing to the secondary chemistry. Kinetic measurements show that the heterogeneous OH reaction rate constant, k, is (3.79 ± 0.19  ×  10−13 cm3 molecule−1 s−1 with an effective OH uptake coefficient, γeff, of 0.17 ± 0.03. While about 40 % of sodium methyl sulfate is being oxidized at the maximum OH exposure (1.27  ×  1012 molecule cm−3 s, only a 3 % decrease in particle diameter is observed. This can be attributed to a small fraction of particle mass lost via the formation and volatilization of formaldehyde. Overall, we

  18. Aerobic oxidation of aqueous ethanol using heterogeneous gold catalysts: Efficient routes to acetic acid and ethyl acetate

    DEFF Research Database (Denmark)

    Jørgensen, Betina; Christiansen, Sofie Egholm; Thomsen, M.L.D.

    2007-01-01

    The aerobic oxidation of aqueous ethanol to produce acetic acid and ethyl acetate was studied using heterogeneous gold catalysts. Comparing the performance of Au/MgAl2O4 and Au/TiO2 showed that these two catalysts exhibited similar performance in the reaction. By proper selection of the reaction...

  19. Role of bonding mechanisms during transfer hydrogenation reaction on heterogeneous catalysts of platinum nanoparticles supported on zinc oxide nanorods

    Science.gov (United States)

    Al-Alawi, Reem A.; Laxman, Karthik; Dastgir, Sarim; Dutta, Joydeep

    2016-07-01

    For supported heterogeneous catalysis, the interface between a metal nanoparticle and the support plays an important role. In this work the dependency of the catalytic efficiency on the bonding chemistry of platinum nanoparticles supported on zinc oxide (ZnO) nanorods is studied. Platinum nanoparticles were deposited on ZnO nanorods (ZnO NR) using thermal and photochemical processes and the effects on the size, distribution, density and chemical state of the metal nanoparticles upon the catalytic activities are presented. The obtained results indicate that the bonding at Pt-ZnO interface depends on the deposition scheme which can be utilized to modulate the surface chemistry and thus the activity of the supported catalysts. Additionally, uniform distribution of metal on the catalyst support was observed to be more important than the loading density. It is also found that oxidized platinum Pt(IV) (platinum hydroxide) provided a more suitable surface for enhancing the transfer hydrogenation reaction of cyclohexanone with isopropanol compared to zero valent platinum. Photochemically synthesized ZnO supported nanocatalysts were efficient and potentially viable for upscaling to industrial applications.

  20. Heterogeneous photo-Fenton oxidation with natural clays for phenol and tyrosol remediation

    Directory of Open Access Journals (Sweden)

    Djeffal L.

    2013-09-01

    Full Text Available Due to their excellent properties, clays have been widely used in several applications, particularly in catalysis. In this paper, three clays were used as heterogeneous photo-Fenton catalysts for phenol and tyrosol oxidations. Particular attention was given to the effect of the main operating conditions on the process performance. A total conversion was obtained for both organic pollutants with studied catalysts in 20 minutes reaction. For phenol, a total organic carbon (TOC conversion of 93% was obtained using sieved and calcined smectite clay. The TOC conversion was 60% for tyrosol with the same catalyst. Clays were characterized by chemical analysis, BET, XRD, TPR and SEM.

  1. Homogeneous and Heterogeneous Reaction and Transformation of Hg and Trace Metals in Combustion Systems

    Energy Technology Data Exchange (ETDEWEB)

    J. Helble; Clara Smith; David Miller

    2009-08-31

    The overall goal of this project was to produce a working dynamic model to predict the transformation and partitioning of trace metals resulting from combustion of a broad range of fuels. The information provided from this model will be instrumental in efforts to identify fuels and conditions that can be varied to reduce metal emissions. Through the course of this project, it was determined that mercury (Hg) and arsenic (As) would be the focus of the experimental investigation. Experiments were therefore conducted to examine homogeneous and heterogeneous mercury oxidation pathways, and to assess potential interactions between arsenic and calcium. As described in this report, results indicated that the role of SO{sub 2} on Hg oxidation was complex and depended upon overall gas phase chemistry, that iron oxide (hematite) particles contributed directly to heterogeneous Hg oxidation, and that As-Ca interactions occurred through both gas-solid and within-char reaction pathways. Modeling based on this study indicated that, depending upon coal type and fly ash particle size, vaporization-condensation, vaporization-surface reaction, and As-CaO in-char reaction all play a role in arsenic transformations under combustion conditions.

  2. Synergism between anodic oxidation with diamond anodes and heterogeneous catalytic photolysis for the treatment of pharmaceutical pollutants

    Directory of Open Access Journals (Sweden)

    Juan M. Peralta-Hernández

    2016-03-01

    Full Text Available The mineralization of diclofenac and acetaminophen has been studied by single anodic oxidation with boron-doped diamond (AO-BDD using an undivided electrolysis cell, by single heterogeneous catalytic photolysis with titanium dioxide (HCP-TiO2 and by the combination of both advanced oxidation processes. The results show that mineralization can be obtained with either single technology. The type of functional groups of the pollutant does not influence the results of the single AO-BDD process, but it has a significant influence on the results obtained with HCP-TiO2. A clear synergistic effect appears when both processes are combined showing improvements in the oxidation rate of more than 50% for diclofenac and nearly 200% for acetaminophen at the highest current exerted. Results obtained are explained in terms of the production of oxidants on the surface of BDD (primarily peroxodisulfate and the later homogeneous catalytic light decomposition of these oxidants in the bulk. This mechanism is consistent with the larger improvement observed at higher current densities, for which the production of oxidants is promoted.

  3. Calcium Oxide Derived from Waste Shells of Mussel, Cockle, and Scallop as the Heterogeneous Catalyst for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Achanai Buasri

    2013-01-01

    Full Text Available The waste shell was utilized as a bioresource of calcium oxide (CaO in catalyzing a transesterification to produce biodiesel (methyl ester. The economic and environmen-friendly catalysts were prepared by a calcination method at 700–1,000°C for 4 h. The heterogeneous catalysts were characterized by X-ray diffraction (XRD, X-ray fluorescence (XRF, scanning electron microscopy (SEM, and the Brunauer-Emmett-Teller (BET method. The effects of reaction variables such as reaction time, reaction temperature, methanol/oil molar ratio, and catalyst loading on the yield of biodiesel were investigated. Reusability of waste shell catalyst was also examined. The results indicated that the CaO catalysts derived from waste shell showed good reusability and had high potential to be used as biodiesel production catalysts in transesterification of palm oil with methanol.

  4. Property Mix Heterogeneity and Market Cycles: How Much Can We Rely on Median-Price Indices?

    Directory of Open Access Journals (Sweden)

    Odilon Ricardo da Hora Gonçalves Fernandes Costa

    2017-05-01

    Full Text Available Objective. Understand in which types of location median-price indices could provide reasonable estimates of rent growth. As far as our research allows, the market-based measures developed througout this study are the first to emphasize office properties in Brazil using an hedonic framework.Methodology. Create appraisal-based indices of rent growth using median-price and hedonic-based techniques for two regions with different degrees of property mix heterogeneity and compare their behavior overtime.Findings. Volatility in median-price measures is larger than hedonic-based measures in market peaks and throughs due to different weighting of high and low-tier properties overtime. This result is stronger in the location with higher property mix heterogeneity and, consequently, exacerbates market cycles in this region.  Limitations. We do not find statistically significant differences between the measures considered. Nevertheless, we do not consider whether this similarity would hold when using transactional-based data.    Value. Our results suggest that researchers, policy makers and investors need to take into account the “undesired fluctuation” of median-price measures when interpreting such indices.  

  5. Nanocasted synthesis of magnetic mesoporous iron cerium bimetal oxides (MMIC) as an efficient heterogeneous Fenton-like catalyst for oxidation of arsenite.

    Science.gov (United States)

    Wen, Zhipan; Zhang, Yalei; Dai, Chaomeng; Sun, Zhen

    2015-04-28

    Magnetic mesoporous iron cerium bimetal oxides (MMIC) with large surface area and pore volume was synthesized via the hard template approach. This obtained MMIC was easily separated from aqueous solution with an external magnetic field and was proposed as a heterogeneous Fenton-like catalyst for oxidation of As(III). The MMIC presented excellent catalytic activity for the oxidation of As(III), achieving almost complete oxidation of 1000ppb As(III) after 60min and complete removal of arsenic species after 180min with reaction conditions of 0.4g/L catalyst, pH of 3.0 and 0.4mM H2O2. Kinetics analysis showed that arsenic removal followed the pseudo-first order, and the pseudo-first-order rate constants increased from 0.0014min(-1) to 0.0548min(-1) as the H2O2 concentration increased from 0.04mM to 0.4mM. On the basis of the effects of XPS analysis and reactive oxidizing species, As(III) in aqueous solution was mainly oxidized by OH radicals, including the surface-bound OHads generated on the MMIC surface which were involved in Fe(2+) and Ce(3+), and free OHfree generation by soluble iron ions which were released from the MMIC into the bulk solution, and the generated As(V) was finally removed by MMIC through adsorption. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. RECQL4-deficient cells are hypersensitive to oxidative stress/damage: Insights for osteosarcoma prevalence and heterogeneity in Rothmund-Thomson syndrome

    International Nuclear Information System (INIS)

    Werner, Sean R.; Prahalad, Agasanur K.; Yang Jieping; Hock, Janet M.

    2006-01-01

    Rothmund-Thomson syndrome (RTS) is a heterogeneous disease, associated with increased prevalence of osteosarcoma in very young patients with a mutated RECQL4 gene. In this study, we tested the ability of RECQL4 deficient fibroblasts, derived from a RTS patient to recover from hydrogen peroxide (H 2 O 2 )-induced oxidative stress/damage. Immunoperoxidase staining for 8-oxo-deoxyguanosine (8-oxo-dG) formation in RTS and normal human fibroblasts were compared to assess DNA damage. We determined DNA synthesis, cell growth, cell cycle distribution, and viability in RTS and normal human fibroblasts before and after H 2 O 2 treatment. H 2 O 2 induces 8-oxo-dG formation in both RTS and normal fibroblasts. In normal human fibroblasts, RECQL4 was predominantly localized to cytoplasm; nuclear translocation and foci formation occurred in response to oxidant stimulation. After recovery from oxidant exposure, viable RTS fibroblasts showed irreversible growth arrest compared to normal fibroblasts. DNA synthesis decreased significantly in treated RTS cells, with concomitant reduction of cells in the S-phase. These results suggest that enhanced oxidant sensitivity in RECQL4 deficient fibroblasts derived from RTS patients could be attributed to abnormal DNA metabolism and proliferation failure. The ramifications of these findings on osteosarcoma prevalence and heterogeneity in RTS are discussed

  7. Anionic co-contaminants and the biogeochemical evolution of aquifer heterogeneity. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Fish, W.

    1997-07-01

    Adsorption heterogeneity of subsoils may depend on the sorbate and its concentration. Ligands in natural and contaminated subsoils may dissolve substantial metal oxides thereby altering the subsoil heterogeneity. We investigated these hypotheses on sands artificially and naturally coated with various amounts of metal oxides. The adsorbates Cu, oxalate, and mixtures of Cu and oxalate (Cu-Oxalate) were used as probes of the surface. For the concentration range studied, Binding Strength Analysis revealed that the naturally coated samples were heterogeneous at the microscale and the macroscale when oxalate was used as the probe of the surface. Cu revealed a smaller heterogeneity while Cu-Oxalate indicated an intermediate heterogeneity. Various elaborations of homogeneous-site Surface Complexation Models (SCM), calibrated to the surface protonation properties of goethite, modeled accurately the edges of oxalate, Cu, and mixtures of Cu and oxalate. The poorer fits for large concentrations was probably because of the site heterogeneity. The accuracy of SCMs was insensitive to the choice of surface protonation constants (pK{sub a}) and moderately sensitive to the choice of site density. The effective surface complexation constants (K{sup eff}) obtained from individual edges were somewhat different because of the concentration dependent heterogeneity. It was not always possible to use K{sup eff} values for one sorbate concentration to reproduce adsorption of other concentrations of the same sorbate. A modified version of the discrete pK{sub a} spectrum model closely reproduced the acid-base titration curve with two adsorption sites (four pK{sub a}`s). The adsorption of all concentrations of Cu, oxalate, and Cu-Oxalate was often reproduced with only one of those sites. The competition between the dissolved Al and the surface for the oxalate in solution was accurately reproduced with both sites. The dissolution of the oxide coating was often influenced by the pore velocity.

  8. Electrochemical heterogeneity and chemical stability of anodic oxide films of barrier type on certain valve metals and alloys

    International Nuclear Information System (INIS)

    Isaev, N.I.; Yakovlev, V.B.

    1986-01-01

    Direct current and alternating current electrochemical methods are used to study kinetic regularities and mechanism of titanium films dissolution in NaOH and H 2 SO 4 concentrated solutions. Piece-line dependence of oxidized electrode specific reverse capacitance on the time of C c -1 =α i -β i τ type is stated. Effective activation energy and dissolution reaction apparent order are determined by agressive ions. For amorphous alloys films interrelation of structure heterogeneity, film composition and resistance to pitting corrosion is shown. Decrease of oxide protecting properties is due to crystallization of originally amorphous films

  9. Heterogeneous oxidation of diclofenac in the presence of α-MnO2 nanorods: influence of operating factors and mechanism.

    Science.gov (United States)

    Li, Jian; Zhang, Tuqiao; Ye, Miaomiao

    2015-01-01

    Diclofenac (DCF), one of the pharmaceutical and personal care products that has been widely detected in water, was selected as a model pollutant to evaluate the oxidation activity of α-MnO2 nanorods. The results showed that the heterogeneous oxidation process is highly pH dependent, with higher degradation efficiency at lower pH values. The complete removal of DCF was obtained within 80 min at the solution pH value of 2.5. The oxidation kinetics of DCF can be modeled by Langmuir-Hinshelwood equation (R2>0.999). The effects of various operating parameters, including initial solution pH, α-MnO2 dosage, anions, and cations, on the oxidation efficiency were investigated in detail. A possible reaction pathway for DCF was proposed. In addition, it was demonstrated that the α-MnO2 nanorods can be recycled without decreasing their oxidation activity after 10 cycles.

  10. Correlation of intra-tumor 18F-FDG uptake heterogeneity indices with perfusion CT derived parameters in colorectal cancer.

    Science.gov (United States)

    Tixier, Florent; Groves, Ashley M; Goh, Vicky; Hatt, Mathieu; Ingrand, Pierre; Le Rest, Catherine Cheze; Visvikis, Dimitris

    2014-01-01

    Thirty patients with proven colorectal cancer prospectively underwent integrated 18F-FDG PET/DCE-CT to assess the metabolic-flow phenotype. Both CT blood flow parametric maps and PET images were analyzed. Correlations between PET heterogeneity and perfusion CT were assessed by Spearman's rank correlation analysis. Blood flow visualization provided by DCE-CT images was significantly correlated with 18F-FDG PET metabolically active tumor volume as well as with uptake heterogeneity for patients with stage III/IV tumors (|ρ|:0.66 to 0.78; p-valueheterogeneity of 18F-FDG PET accumulation reflects to some extent tracer distribution and consequently indicates that 18F-FDG PET intra-tumor heterogeneity may be associated with physiological processes such as tumor vascularization.

  11. Preparative treatment with NaOH to selectively concentrate iron oxides of a Chilean volcanic soil material to produce effective heterogeneous Fenton catalyst

    International Nuclear Information System (INIS)

    Manzo, Valentina; Pizarro, Carmen; Rubio, María Angélica; Cavalcante, Luis Carlos Duarte; Garg, Vijayendra Kumar; Fabris, José Domingos

    2011-01-01

    A Chilean volcanic Ultisol material was first size-fractionated so as to obtain the fraction with mean particle sizes φ   − 1 NaOH, in an attempt to evaluate the effectiveness of the selective chemical dissolution to concentrate iron oxides, as a preparation procedure before using the materials as heterogeneous Fenton catalysts. The effects of those treatments on the iron oxides mineralogy were monitored with Mössbauer spectroscopy. The NaOH-treated samples were tested as catalysts towards the H 2 O 2 decomposition. Three or five sequential NaOH treatments were found to be comparably effective, by concentrating nearly the same proportion of iron oxides in the remaining solid phase (25.1 ± 0.4 and 23.3 ± 0.2 mass%, respectively). 298 K-Mössbauer patterns were similar for both samples, with a central (super)paramagnetic Fe 3 +  doublet and a broad sextet, assignable to several closely coexisting magnetically ordered forms of iron oxides. Despite of this nearly similar effect of the two treatments, the Ultisol material treated three times with NaOH presents higher heterogeneous catalytic efficiency and is more suitable to decompose H 2 O 2 than that with five treatments.

  12. Nanocasted synthesis of magnetic mesoporous iron cerium bimetal oxides (MMIC) as an efficient heterogeneous Fenton-like catalyst for oxidation of arsenite

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Zhipan [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Zhang, Yalei, E-mail: zhangyalei@tongji.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Dai, Chaomeng [College of Civil Engineering, Tongji University, Shanghai 200092 (China); Sun, Zhen [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2015-04-28

    Highlights: • MMIC with large surface area and pore volume was synthesized via the hard template. • MMIC could be easily separated from aqueous solution with an external magnetic field. • MMIC presented excellent catalytic activity for the oxidation of As(III). • As(III) was mainly oxidized by surface-bound ·OH{sub ads} and free ·OH{sub free} radicals. • MMIC played a dual function role for the arsenic removal in aqueous solution. - Abstract: Magnetic mesoporous iron cerium bimetal oxides (MMIC) with large surface area and pore volume was synthesized via the hard template approach. This obtained MMIC was easily separated from aqueous solution with an external magnetic field and was proposed as a heterogeneous Fenton-like catalyst for oxidation of As(III). The MMIC presented excellent catalytic activity for the oxidation of As(III), achieving almost complete oxidation of 1000 ppb As(III) after 60 min and complete removal of arsenic species after 180 min with reaction conditions of 0.4 g/L catalyst, pH of 3.0 and 0.4 mM H{sub 2}O{sub 2}. Kinetics analysis showed that arsenic removal followed the pseudo-first order, and the pseudo-first-order rate constants increased from 0.0014 min{sup −1} to 0.0548 min{sup −1} as the H{sub 2}O{sub 2} concentration increased from 0.04 mM to 0.4 mM. On the basis of the effects of XPS analysis and reactive oxidizing species, As(III) in aqueous solution was mainly oxidized by ·OH radicals, including the surface-bound ·OH{sub ads} generated on the MMIC surface which were involved in ≡Fe{sup 2+} and ≡Ce{sup 3+}, and free ·OH{sub free} generation by soluble iron ions which were released from the MMIC into the bulk solution, and the generated As(V) was finally removed by MMIC through adsorption.

  13. Marker Protein Expression Combined With Expression Heterogeneity is a Powerful Indicator of Malignancy in Acral Lentiginous Melanomas.

    Science.gov (United States)

    Cintra Lopes Carapeto, Fernando; Neves Comodo, Andréia; Germano, Andressa; Pereira Guimarães, Daiane; Barcelos, Denise; Fernandes, Mariana; Landman, Gilles

    2017-02-01

    Samples of acral lentiginous melanomas (ALMs) were obtained from the Department of Pathology at Escola Paulista de Medicina-Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil. Demographic, clinical, and follow-up data were obtained from the charts of Hospital São Paulo. From 2 tissue microarrays containing 60 nevi and quadruplicate samples of ≥1.0-mm of 49 ALM, sections were stained to evaluate SCF, KIT, BRAF, CYCLIND1, MYC, and PTEN immunohistochemical protein expression. Nevi and ALM from 2006 to 2010 were reviewed and collected. All specimens were in the vertical growth phase, and histopathological parameters indicated that tumors were at an advanced stage at diagnosis. Average tumor thickness was 6.95 mm, 63% were ulcerated, average mitotic index was 5 mitotic cells per mm, and 43% were at Clark's level V. Compared with nevi, the χ test showed that ALM significantly correlated with SCF protein expression (P = 0.001) and expression heterogeneity (P < 0.000). Similar findings were observed for KIT (P = 0.005, P = 0.003, respectively), MYC (P < 0.000, P < 0.000), and PTEN (P = 0.005, P < 0.000). Malignancy did not correlate with BRAF and CYCLIN D1 expression (P = 0.053 and P = 0.259, respectively), but it did significantly correlate with their heterogeneous expression (P < 0.000, P = 0.024, respectively). Combined protein expression had an odds ratio of greater malignancy when BRAF and MYC were positive and/or heterogeneously expressed (OR of 78 and 95, respectively). We show that marker protein expression, when combined with heterogeneous expression as shown by immunohistochemistry, is a powerful indicator of malignancy in ALMs, especially, when protein pairs are combined.

  14. Heterogeneous nanocomposites composed of silver sulfide and hollow structured Pd nanoparticles with enhanced catalytic activity toward formic acid oxidation

    International Nuclear Information System (INIS)

    Chen, Dong; Cui, Penglei; Liu, Hui; Yang, Jun

    2015-01-01

    Highlights: • Core–shell Ag-Ag/Pd nanoparticles with an Ag core and an Ag/Pd alloy shell are prepared via galvanic replacement reaction. • Heterogeneous Ag2S-hollow Pd nanocomposites are fabricated by converting the Ag component into Ag2S using element sulfur. • The heterogeneous Ag2S-hollow Pd nanocomposites display enhanced activity for formic acid oxidation due to electronic coupling effect. • The methodology may find applications to produce the semiconductor-metal nanocomposites with interesting architectures and tailored functionalities. - Abstract: Nanocomposites consisting semiconductor and noble metal domains are of great interest for their synergistic effect-based enhanced properties in a given application. Herein, we demonstrate a facile approach for the synthesis of heterogeneous nanocomposites consisting of silver sulfide (Ag 2 S) and hollow structured Pd nanoparticles (hPd). It begins with the preparation of core–shell nanoparticles with an Ag core and an alloy Ag/Pd shell in an organic solvent via galvanic replacement reaction (GRR) between Ag seed particles pre-synthesized and Pd 2+ ion precursors. The Ag component is then removed from the core and shell regions of core–shell Ag-Ag/Pd nanoparticles, and converted into Ag 2 S by elemental sulfur (S). The Ag 2 S forms the semiconductor domain in the nanocomposite and shares the solid-state interface with the resultant hollow structured Pd nanoparticle. As demonstrated, the Ag 2 S-hPd nanocomposites exhibit superior catalytic activity and durability for formic acid oxidation, compared to the pure Pd nanoparticles prepared by oleylamine reduction of Pd ion precursors and commercial Pd/C catalyst, due to the electronic coupling between semiconductor and noble metal domains in the nanocomposites. In addition, the structural transformation from core–shell to heterogeneous nanocomposites may provide new opportunities to design and fabricate hybrid nanostructures with interesting

  15. Graphene Oxide Membranes with Heterogeneous Nanodomains for Efficient CO2 Separations.

    Science.gov (United States)

    Wang, Shaofei; Xie, Yu; He, Guangwei; Xin, Qingping; Zhang, Jinhui; Yang, Leixin; Li, Yifan; Wu, Hong; Zhang, Yuzhong; Guiver, Michael D; Jiang, Zhongyi

    2017-11-06

    Achieving high membrane performance in terms of gas permeance and carbon dioxide selectivity is an important target in carbon capture. Aiming to manipulate the channel affinity towards CO 2 to implement efficient separations, gas separation membranes containing CO 2 -philic and non-CO 2 -philic nanodomains in the interlayer channels of graphene oxide (GO) were formed by intercalating poly(ethylene glycol) diamines (PEGDA). PEGDA reacts with epoxy groups on the GO surface, constructing CO 2 -philic nanodomains and rendering a high sorption capacity, whereas unreacted GO surfaces give non-CO 2 -philic nanodomains, rendering low-friction diffusion. Owing to the orderly stacking of nanochannels through cross-linking and the heterogeneous nanodomains with moderate CO 2 affinity, a GO-PEGDA500 membrane exhibits a high CO 2 permeance of 175.5 GPU and a CO 2 /CH 4 selectivity of 69.5, which is the highest performance reported for dry-state GO-stacking membranes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis

    Science.gov (United States)

    Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Bee Abd Hamid, Sharifah

    2014-01-01

    The lack of stability is a challenge for most heterogeneous catalysts. During operations, the agglomeration of particles may block the active sites of the catalyst, which is believed to contribute to its instability. Recently, titanium oxide (TiO2) was introduced as an alternative support material for heterogeneous catalyst due to the effect of its high surface area stabilizing the catalysts in its mesoporous structure. TiO2 supported metal catalysts have attracted interest due to TiO2 nanoparticles high activity for various reduction and oxidation reactions at low pressures and temperatures. Furthermore, TiO2 was found to be a good metal oxide catalyst support due to the strong metal support interaction, chemical stability, and acid-base property. The aforementioned properties make heterogeneous TiO2 supported catalysts show a high potential in photocatalyst-related applications, electrodes for wet solar cells, synthesis of fine chemicals, and others. This review focuses on TiO2 as a support material for heterogeneous catalysts and its potential applications. PMID:25383380

  17. Probing anodic oxidation kinetics and nanoscale heterogeneity within TiO2 films by Conductive Atomic Force Microscopy and combined techniques

    International Nuclear Information System (INIS)

    Diamanti, M.V.; Souier, T.; Stefancich, M.; Chiesa, M.; Pedeferri, M.P.

    2014-01-01

    Graphical abstract: - Highlights: • Nanoscale anodic titanium oxides were investigated with multidisciplinary approach. • Oxide thickness was estimated via spectrophotometry and coulometry. • C-AFM identified nanometric conductivity heterogeneities, ascribed to oxide structure. • High conductivity areas exhibited local memristive behavior. - Abstract: Anodic oxidation of titanium in acid electrolytes allows to obtain a thin, compact oxide layer with thickness, structure, color, and electrical properties that vary with process parameters imposed, among which cell voltage has a key effect. Although oxidation kinetics have been investigated in several research works, a broader vision of oxide properties–including thickness and structure–still has to be achieved, especially in the case of very thin oxide films, few tens of nanometers thick. This is vital for engineered applications of nanostructured TiO 2 films, as in the field of memristive devices, where a precise control of oxide thickness, composition and structure is required to tune its electrical response. In this work, oxide films were produced on titanium with thickness ranging from few nanometers to 200 nm. Oxide thickness was estimated by coulometry and spectrophotometry. These techniques were then combined with C-AFM, which provided a deeper understanding of oxide thickness and uniformity of the metal surface and probed the presence of crystalline nano-domains within the amorphous oxide phase affecting the overall film electrical and optical properties

  18. Magnetic resonance and diffusion tensor imaging analyses indicate heterogeneous strains along human medial gastrocnemius fascicles caused by submaximal plantar-flexion activity.

    Science.gov (United States)

    Karakuzu, Agah; Pamuk, Uluç; Ozturk, Cengizhan; Acar, Burak; Yucesoy, Can A

    2017-05-24

    Sarcomere length changes are central to force production and excursion of skeletal muscle. Previous modeling indicates non-uniformity of that if mechanical interaction of muscle with its surrounding muscular and connective tissues is taken into account. Hence, quantifying length changes along the fascicles of activated human muscle in vivo is crucial, but this is lacking due to technical complexities. Combining magnetic resonance imaging deformation analyses and diffusion tensor imaging tractography, the aim was to test the hypothesis that submaximal plantar flexion activity at 15% MVC causes heterogeneous length changes along the fascicles of human medial gastrocnemius (GM) muscle. A general fascicle strain distribution pattern shown for all subjects indicates that proximal track segments are shortened, whereas distal ones are lengthened (e.g., by 13% and 29%, respectively). Mean fiber direction strains of different tracts also shows heterogeneity (for up to 57.5% of the fascicles). Inter-subject variability of amplitude and distribution of fascicle strains is notable. These findings confirm the hypothesis and are solid indicators for the functionally dependent mechanics of human muscle, in vivo. Heterogeneity of fascicle strains can be explained by epimuscular myofascial force transmission. To the best of our knowledge, this is the first study, which quantified local deformations along human skeletal muscle fascicles caused by sustained submaximal activation. The present approach and indicated fascicle strain heterogeneity has numerous implications for muscle function in health and disease to estimate the muscle's contribution to the joint moment and excursion and to evaluate mechanisms of muscle injury and several treatment techniques. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Ceria-Based Mixed Oxide Supported Nano-Gold as an Efficient and Durable Heterogeneous Catalyst for Oxidative Dehydrogenation of Amines to Imines Using Molecular Oxygen

    Directory of Open Access Journals (Sweden)

    Bashir Ahmad Dar

    2012-06-01

    Full Text Available The present work is intended to determine the catalytic activity of Mixed Oxide supported gold for aerobic oxidative dehydrogenation of amines to imines using Ceria as a main constituent of the each support. The model catalysts Au/CeO2:TiO2 Au/CeO2:SiO2, Au/CeO2:ZrO2 and Au/CeO2:Al2Os were prepared by deposition co-precipitation method and deposition of gold was determined by EDEX analysis. The supported nano-gold catalyzes the dehydrogenation of secondary amines to imines without loss of activity. On recycling good amount of product yield is obtained. Oxidation of secondary amines to imines is carried at 100˚C and almost 90 % conversion was obtained with >99% selectivity. © 2012 BCREC UNDIP. All rights reservedReceived: 26th December 2011; Revised: 7th June 2012; Accepted: 13rd June 2012[How to Cite: B.A. Dar, M. Sharma, B. Singh. (2012. Ceria-Based Mixed Oxide Supported Nano-Gold as an Efficient and Durable Heterogeneous Catalyst for Oxidative Dehydrogenation of Amines to Imines Using Molecular Oxygen. Bulletin of Chemical Reaction Engineering & Catalysis, 7(1: 79-84.  doi:10.9767/bcrec.7.1.1257.79-84][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.1.1257.79-84 ] | View in 

  20. Complete removal of AHPS synthetic dye from water using new electro-fenton oxidation catalyzed by natural pyrite as heterogeneous catalyst.

    Science.gov (United States)

    Labiadh, Lazhar; Oturan, Mehmet A; Panizza, Marco; Hamadi, Nawfel Ben; Ammar, Salah

    2015-10-30

    The mineralization of a new azo dye - the (4-amino-3-hydroxy-2-p-tolylazo-naphthalene-1-sulfonic acid) (AHPS) - has been studied by a novel electrochemical advanced oxidation process (EAOP), consisting in electro-Fenton (EF) oxidation, catalyzed by pyrite as the heterogeneous catalyst - the so-called 'pyrite-EF'. This solid pyrite used as heterogeneous catalyst instead of a soluble iron salt, is the catalyst the system needs for production of hydroxyl radicals. Experiments were performed in an undivided cell equipped with a BDD anode and a commercial carbon felt cathode to electrogenerate in situ H2O2 and regenerate ferrous ions as catalyst. The effects on operating parameters, such as applied current, pyrite concentration and initial dye content, were investigated. AHPS decay and mineralization efficiencies were monitored by HPLC analyses and TOC measurements, respectively. Experimental results showed that AHPS was quickly oxidized by hydroxyl radicals (OH) produced simultaneously both on BDD surface by water discharge and in solution bulk from electrochemically assisted Fenton's reaction with a pseudo-first-order reaction. AHPS solutions with 175 mg L(-1) (100 mg L(-1) initial TOC) content were then almost completely mineralized in 8h. Moreover, the results demonstrated that, under the same conditions, AHPS degradation by pyrite electro-Fenton process was more powerful than the conventional electro-Fenton process. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Biological indication of nitric oxides; Zum bioindikativen Nachweis von Stickoxiden

    Energy Technology Data Exchange (ETDEWEB)

    Belotti, E.; Kaemmerer, D.; Mangold, U.; Tempes, D.; Arndt, U.

    1992-12-31

    The authors demonstrate the need for a nitrogen oxide bio-indicator and suggest to use nitrate reductase activity in exposed plant leaves to be established in vivo as the action criterium. Studies on the suitability of different plants and cultivation conditions are presented. Their results are taken to show that large-leaved plants like sunflower or tomato grown with ammonia as the only nitrogen source are best suited for bio-indication of nitric oxides. (orig.) [Deutsch] Der Beitrag zeigt die Notwendigkeit eines Bioindikators fuer Stickoxide auf und schlaegt als Wirkungskriterium die Nitratreduktase-Aktivitaet in den Blaettern exponierter Pflanzen, ermittelt mit der in-vivo-Methode, vor. Untersuchungen zur Eignung verschiedener Pflanzen und Anzuchtbedingungen werden vorgestellt. Aus ihnen ist abzuleiten, dass mit Ammonium als einziger Stickstoffquelle angezogene grossblaettrige Kulturpflanzen, etwa Sonnenblume oder Tomate, am ehesten fuer den bioindikativen Nachweis von Stickoxiden geeignet sind. (orig.)

  2. Magnetic Fe2MO4 (M:Fe, Mn) activated carbons: Fabrication, characterization and heterogeneous Fenton oxidation of methyl orange

    International Nuclear Information System (INIS)

    Nguyen, Thi Dung; Phan, Ngoc Hoa; Do, Manh Huy; Ngo, Kim Tham

    2011-01-01

    We present a simple and efficient method for the fabrication of magnetic Fe 2 MO 4 (M:Fe and Mn) activated carbons (Fe 2 MO 4 /AC-H, M:Fe and Mn) by impregnating the activated carbon with simultaneous magnetic precursor and carbon modifying agent followed by calcination. The obtained samples were characterized by nitrogen adsorption isotherms, X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM), and the catalytic activity in heterogeneous Fenton oxidation of methyl orange (MO) was evaluated. The resulting Fe 2 MnO 4 /AC-H showed higher catalytic activity in the methyl orange oxidation than Fe 3 O 4 /AC-H. The effect of operational parameters (pH, catalyst loading H 2 O 2 dosage and initial MO concentration) on degradation performance of the oxidation process was investigated. Stability and reusability of selected catalyst were also tested.

  3. Session 4: The influence of elementary heterogeneous reforming chemistry within solid-oxide fuel cell anodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, H.; Kee, R.J. [Engineering Division, Colorado School of Mines, Golden, CO (United States); Janardhanan, V.M.; Deutschmann, O. [Karlsruhe Univ., Institute for Chemical Technology (Germany); Goodwin, D.G. [Engineering and Applied Science., California Inst. of Technology, Pasadena, CA (United States); Sullivan, N.P. [ITN Energy Systems, Littleton, CO (United States)

    2004-07-01

    In the work presented a computational model is developed that represents the coupled effects of fluid flow in fuel channels, porous media transport and chemistry in the anode, and electrochemistry associated with the membrane-electrode assembly. An important objective is to explore the role of heterogeneous chemistry within the anode. In addition to cell electrical performance the chemistry model predicts important behaviors like catalyst-fouling deposit formation (i.e., coking). The model is applied to investigate alternative fuel-cell operating conditions, including varying fuel flow rates, adding air to the fuel stream, and recirculating exhaust gases. Results include assessments of performance metrics like fuel utilization, cell efficiency, power density, and catalyst coking. The model shows that 'direct electrochemical oxidation' of hydrocarbon fuels in solid-oxide fuel cells can be explained by a process that involves reforming the fuel to H{sub 2}, with hydrogen being the only species responsible for charge exchange. The model can be applied to investigate alternative design and operating conditions, seeking to improve the overall performance. (O.M.)

  4. Photodegradation of orange I in the heterogeneous iron oxide-oxalate complex system under UVA irradiation

    International Nuclear Information System (INIS)

    Lei, Jing; Liu Chengshuai; Li Fangbai; Li Xiaomin; Zhou Shungui; Liu Tongxu; Gu Minghua; Wu Qitang

    2006-01-01

    To understand the photodegradation of azo dyes in natural aquatic environment, a novel photo-Fenton-like system, the heterogeneous iron oxide-oxalate complex system was set up with the existence of iron oxides and oxalate. Five iron oxides, including γ-FeOOH, IO-250, IO-320, IO-420 and IO-520, were prepared and their adsorption capacity was investigated in the dark. The results showed that the saturated adsorption amount (Γ max ) was ranked the order of IO-250>IO-320>γ-FeOOH>IO-420>IO-520 and the adsorption equilibrium constant (K a ) followed the order of IO-250>IO-520>γ-FeOOH>IO-420>IO-320. The effect of initial pH value, the initial concentrations of oxalate and orange I on the photodegradation of orange I were also investigated in different iron oxide-oxalate systems. The results showed that the photodegradation of orange I under UVA irradiation could be enhanced greatly in the presence of oxalate. And the optimal oxalate concentrations (C ox 0 ) for γ-FeOOH, IO-250, IO-320, IO-420 and IO-520 were 1.8, 1.6, 3.5, 3.0 and 0.8mM, respectively. The photodegradation of orange I in the presence of optimal C ox 0 was ranked as the order of γ-FeOOH>IO-250>IO-320>IO-420>IO-520. The optimal range of initial pH was at about 3-4. The first-order kinetic constant for the degradation of orange I decreased with the increase in the initial concentration of orange I. Furthermore, the variation of pH, the concentrations of Fe 3+ and Fe 2+ during the photoreaction were also strongly dependent on the C ox 0 and iron oxides

  5. Certain aspects of the formation and identification of nanosized oxide components in heterogeneous catalysts prepared by different methods

    International Nuclear Information System (INIS)

    Ellert, Ol'ga G; Novotortsev, Vladimir M; Tsodikov, Mark V

    2010-01-01

    The results of studies into the relationship 'methods and synthesis conditions of a catalyst→catalyst structure→catalytic properties' in highly efficient crystallo-graphically amorphous copper- and iron-containing heterogeneous systems obtained by different chemical methods are generalized. Polymorphism of active phases and catalytic properties of nanostructured copper-containing zinc, zirconium, manganese and cerium oxides are discussed. Unusual transformations of nanosized Pt- and Pd-containing components on the γ-Al 2 O 3 surface in nanostructured catalysts of ethanol steam reforming into synthesis gas and reductive dehydration of ethanol to alkanes are considered. The results of comparative studies on the crystallographically amorphous mixed iron oxide catalysts synthesized by either the alkoxy method or the deposition on various supports obtained by the Moessbauer and XAFS spectroscopy and magnetic susceptibility measurements are presented. These materials are shown to be efficient catalysts of important processes such as liquid-phase oxidation of hydrocarbons, synthesis of alkenes and alkylaromatic hydrocarbons from CO and H 2 , hydrogenative transformation of brown coal organic mass to hydrocarbons.

  6. Synthesis of heterogeneous catalyst for the production of biodiesel ...

    African Journals Online (AJOL)

    This study explore the comparison of a suitable heterogeneous catalyst for conversion of triglyceride into fatty acid methyl ester. A series of heterogeneous cerium, manganese, and zinc oxide catalyst supported at mixture of cinder was prepared by co-precipitation and applied for conversion of triglyceride in oil to biodiesel ...

  7. Effect of chemical heterogeneity on photoluminescence of graphite oxide treated with S-/N-containing modifiers

    Science.gov (United States)

    Ebrahim, Amani M.; Rodríguez-Castellón, Enrique; Montenegro, José María; Bandosz, Teresa J.

    2015-03-01

    Graphite oxide (GO) obtained using Hummers method was modified by hydrothermal treatment either with sulfanilic acid or polystyrene (3-ammonium) sulfonate at 100 °C or 85 °C, respectively. Both modifiers contain sulfur in the oxidized forms and nitrogen in the reduced forms. The materials were characterized using FTIR, XPS, thermal analysis, potentiometric titration and SEM. Their photoluminescent properties and their alteration with an addition of Ag+ were also measured. As a result of these modifications nitrogen was introduced to the graphene layers as amines, imides, amides, and sulfur as sulfones and sulfonic acids. Moreover, the presence of polyaniline was detected. This significantly affected the polarity, acid-base character, and conductivity of the materials. Apparently carboxylic groups of GO were involved in the surface reactions. The modified GOs lost their layered structure and the modifications resulted in the high degree of structural and chemical heterogeneity. Photoluminescence in visible light was recorded and linked to the presence of heteroatoms. For the polystyrene (3-ammonium) sulfonate modified sample addition of Ag+ quenched the photoluminescence at low wavelength showing sensitivity as a possible optical detector. No apparent effect was found for the sulfanilic acid modified sample.

  8. Fe–Co/sulfonated polystyrene as an efficient and selective catalyst in heterogeneous Baeyer–Villiger oxidation reaction of cyclic ketones

    Directory of Open Access Journals (Sweden)

    Yingting Wang

    2018-02-01

    Full Text Available A highly efficient catalyst Fe–Co/sulfonated polystyrene (Fe–Co/SPS was introduced and synthesized, which catalyzed BV oxidation of ketones with aqueous hydrogen peroxide to give the corresponding lactones in high yield and selectivity. Solid acid catalyst of Fe–Co/SPS has been prepared by using the 98-wt% sulfuric acid as the sulfonating agent and CoCl2 combined FeCl3 as sources of metal ions. Various physical–chemical characterizations including FT-IR, XRD, SEM and TGA, revealed that bimetallic ions Fe3+–Co2+ species in the sulfonated polystyrene framework were responsible for the catalytic activities. The BV reaction catalyzed by Fe–Co/SPS highlighted the special effects between metal ions and protonic acids as well as solvent-free heterogeneous catalytic oxidation with excellent conversion.

  9. Peculiarities of heterogeneous radiolysis of carbon dioxide in the presence of aluminium oxide

    International Nuclear Information System (INIS)

    Rustamov, V.R.; Kurbanov, M.A.; Kerimov, V.K.; Musaeva, P.F.

    1982-01-01

    The effect of ν-radiation dose rate, reaction temperature and treatment of aluminium oxide on the yield of CO at radiolysis of CO 2 /ν-Al 2 O 3 heterogeneous system has been investigated. The measurements have been carried out at 0.55 and 5.5 Gr/s dose rates in 40-300 deg C temperature range. Kinetic curves of CO accumulation are characterized by the saturation region at 0.15-0.2 MG 2 doses. In such a way, the dependence of CO yeild on the dose attests that the reaction of radiation annealing of defects occurs in Al 2 O 3 and that decreases the efficiency of CO 2 decomposition. The rise of temperature from 40 to 300 deg results in the decrease of CO 2 yield and in 100-200 range it is manifested more markedly. This fact is conditioned by the increase of reaction rates leading to the decrease of CO 2 decomposition rate as the temperature rises. The reaction mechanism is discussed

  10. A study of the homogeneous stages in the catalytic oxidation of naphthalene, o-xylene, and benzene over a vibratory-fluidized catalyst bed

    Energy Technology Data Exchange (ETDEWEB)

    Korneichuk, G P; Stasevich, V P; Shaprinskaya, T M; Girushtin, G G; Gritsenko, V I; Zelenchukova, T G

    1978-01-01

    To identify the conditions for minimizing homogeneous states, the reaction kinetics were studied in a vibrating gradientless quartz reactor both in the presence and absence of the catalyst. A tenfold decrease of the reactional space in the absence of catalyst inhibited the oxidation (e.g., from a 68% conversion to 10% at 500/sup 0/C for o-xylene, and from 100% to 2% at 580/sup 0/C for benzene), whereas increasing the surface-volume ratio of the reactor increased the oxidation rate for benzene, which indicated that noncatalytic oxidation follows a radical-chain mechanism and involves both homogeneous (mainly) and heterogeneous stages. Catalytic oxidation carried out in a small volume (to avoid the homogeneous states) followed a heterogeneous mechanism up to 580/sup 0/C for naphthalene and o-xylene, and up to 550/sup 0/C for benzene. At higher temperatures, however, volume oxidation of benzene to carbon oxides was detected, which was favored by intense reactor vibration (i.e., increasing free space between catalyst grains), constituted 27% at 564/sup 0/C and 40% at 584/sup 0/C, and probably followed a heterogeneous-homogeneous mechanism. The partial oxidation products (i.e., phthalic and (for benzene) maleic anhydride) formed entirely by a heterogeneous mechanism. Tables and graphs.

  11. Selecting landscape metrics as indicators of spatial heterogeneity-A comparison among Greek landscapes

    Science.gov (United States)

    Plexida, Sofia G.; Sfougaris, Athanassios I.; Ispikoudis, Ioannis P.; Papanastasis, Vasilios P.

    2014-02-01

    This paper investigates the spatial heterogeneity of three landscapes along an altitudinal gradient and different human land use. The main aim was the identification of appropriate landscape indicators using different extents. ASTER image was used to create a land cover map consisting of three landscapes which differed in altitude and land use. A number of landscape metrics quantifying patch complexity, configuration, diversity and connectivity were derived from the thematic map at the landscape level. There were significant differences among the three landscapes regarding these four aspects of landscape heterogeneity. The analysis revealed a specific pattern of land use where lowlands are being increasingly utilized by humans (percentage of agricultural land = 65.84%) characterized by physical connectedness (high values of Patch Cohesion Index) and relatively simple geometries (low values of fractal dimension index). The landscape pattern of uplands was found to be highly diverse based upon the Shannon Diversity index. After selecting the scale (600 ha) where metrics values stabilized, it was shown that metrics were more correlated at the small scale of 60 ha. From the original 24 metrics, 14 individual metrics with high Spearman correlation coefficient and Variance Inflation Factor criterion were eliminated, leaving 10 representative metrics for subsequent analysis. Data reduction analysis showed that Patch Density, Area-Weighted Mean Fractal Dimension Index and Patch Cohesion Index are suitable to describe landscape patterns irrespective of the scale. A systematic screening of these metrics could enhance a deeper understanding of the results obtained by them and contribute to a sustainable landscape management of Mediterranean landscapes.

  12. A detailed approach to model transport, heterogeneous chemistry, and electrochemistry in solid-oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Janardhanan, V.

    2007-07-01

    This dissertation layes out detailed descriptions for heterogeneous chemistry, electrochemistry, and porous media transport models to simulate solid oxide fuel cells (SOFCs). An elementary like heterogeneous reaction mechanism for the steam reforming of CH4 developed in our research group is used throughout this work. Based on assumption of hydrogen oxidation as the only electrochemical reaction and single step electron transfer reaction as rate limiting, a modified Butler-Volmer equation is used to model the electrochemistry. The pertinence of various porous media transport models such as Modified Fick Model (MFM), Dusty Gas Model (DGM), Mean Transport Pore Model, Modified Maxwell Stefan Model, and Generalized Maxwell Stefan Model under reaction conditions are studied. In general MFM and DGM predictions are in good agreement with experimental data. Physically realistic electrochemical model parameters are very important for fuel cell modeling. Button cell simulations are carried out to deduce the electrochemical model parameters, and those parameters are further used in the modeling of planar cells. Button cell simulations are carried out using the commercial CFD code FLUENT coupled with DETCHEM. For all temperature ranges the model works well in predicting the experimental observations in the high current density region. However, the model predicts much higher open circuit potentials than that observed in the experiments, mainly due to the absence of coking model in the elementary heterogeneous mechanism leading to nonequilibrium compositions. Furthermore, the study presented here employs Nernst equation for the calculation of reversible potential which is strictly valid only for electrochemical equilibrium. It is assumed that the electrochemical charge transfer reaction involving H2 is fast enough to be in equilibrium. However, the comparison of model prediction with thermodynamic equilibrium reveals that this assumption is violated under very low current

  13. Isotopic constraints on heterogeneous sulfate production in Beijing haze

    Science.gov (United States)

    He, Pengzhen; Alexander, Becky; Geng, Lei; Chi, Xiyuan; Fan, Shidong; Zhan, Haicong; Kang, Hui; Zheng, Guangjie; Cheng, Yafang; Su, Hang; Liu, Cheng; Xie, Zhouqing

    2018-04-01

    Discerning mechanisms of sulfate formation during fine-particle pollution (referred to as haze hereafter) in Beijing is important for understanding the rapid evolution of haze and for developing cost-effective air pollution mitigation strategies. Here we present observations of the oxygen-17 excess of PM2.5 sulfate (Δ17O(SO42-)) collected in Beijing haze from October 2014 to January 2015 to constrain possible sulfate formation pathways. Throughout the sampling campaign, the 12-hourly averaged PM2.5 concentrations ranged from 16 to 323 µg m-3 with a mean of (141 ± 88 (1σ)) µg m-3, with SO42- representing 8-25 % of PM2.5 mass. The observed Δ17O(SO42-) varied from 0.1 to 1.6 ‰ with a mean of (0.9 ± 0.3) ‰. Δ17O(SO42-) increased with PM2.5 levels in October 2014 while the opposite trend was observed from November 2014 to January 2015. Our estimate suggested that in-cloud reactions dominated sulfate production on polluted days (PDs, PM2.5 ≥ 75 µg m-3) of Case II in October 2014 due to the relatively high cloud liquid water content, with a fractional contribution of up to 68 %. During PDs of Cases I and III-V, heterogeneous sulfate production (Phet) was estimated to contribute 41-54 % to total sulfate formation with a mean of (48 ± 5) %. For the specific mechanisms of heterogeneous oxidation of SO2, chemical reaction kinetics calculations suggested S(IV) ( = SO2 ⚫ H2O + HSO3- + SO32-) oxidation by H2O2 in aerosol water accounted for 5-13 % of Phet. The relative importance of heterogeneous sulfate production by other mechanisms was constrained by our observed Δ17O(SO42-). Heterogeneous sulfate production via S(IV) oxidation by O3 was estimated to contribute 21-22 % of Phet on average. Heterogeneous sulfate production pathways that result in zero-Δ17O(SO42-), such as S(IV) oxidation by NO2 in aerosol water and/or by O2 via a radical chain mechanism, contributed the remaining 66-73 % of Phet. The assumption about the thermodynamic state of aerosols

  14. Application of Mössbauer spectroscopy in industrial heterogeneous catalysis: effect of oxidant on FePO{sub 4} material phase transformations in direct methanol synthesis from methane

    Energy Technology Data Exchange (ETDEWEB)

    Dasireddy, Venkata D. B. C., E-mail: dasireddy@ki.si [National Institute of Chemistry, Department of Catalysis and Chemical Reaction Engineering (Slovenia); Khan, Faiza B. [Energy Technology (South Africa); Hanzel, Darko [Jozef Stefan Institute (Slovenia); Bharuth-Ram, Krish [Durban University of Technology, Physics Department (South Africa); Likozar, Blaž [National Institute of Chemistry, Department of Catalysis and Chemical Reaction Engineering (Slovenia)

    2017-11-15

    The effect of the FePO{sub 4} material phase transformation in the direct selective oxidation of methane to methanol was studied using various oxidants, i.e. O{sub 2}, H{sub 2}O and N{sub 2}O. The phases of the heterogeneous catalyst applied, before and after the reactions, were characterized by M¨ossbauer spectroscopy. The main reaction products were methanol, carbon monoxide and carbon dioxide, whereas formaldehyde was produced in rather minute amounts. The Mössbauer spectra showed the change of the initial catalyst material, FePO{sub 4} (tridymite-like phase (tdm)), to the reduced metal form, iron(II) pyrophosphate, Fe{sub 2}P{sub 2}O{sub 7}, and thereafter, the material phase change was governed by the oxidation with individual oxidizing species.Mössbauer spectroscopy measurements applied along with X-ray diffraction (XRD) studies on fresh, reduced and spent catalytic materials demonstrated a transformation of the catalyst to a mixture of phases which depended on operating process conditions. Generally, activity was low and should be a subject of further material optimization and engineering, while the selectivity towards methanol at low temperatures applied was adequate. The proceeding redox mechanism should thus play a key role in catalytic material design, while the advantage of iron-based heterogeneous catalysts primarily lies in them being comparably inexpensive and comprising non-critical raw materials only.

  15. Selective oxidation of benzene and cyclohexane using amorphous microporous mixed oxides; Selektive Oxidation von Benzol und Cyclohexan mit amorphen mikroporoesen Mischoxiden

    Energy Technology Data Exchange (ETDEWEB)

    Stoeckmann, M.

    2000-07-01

    Phenol was to be produced by direct oxidation of benzene with environment-friendly oxidants like hydrogen peroxide, oxygen, or ozone. Catalysts were amorphous microporous mixed oxides whose properties can be selected directly in the sol-gel synthesis process. Apart from benzene, also cyclohexane was oxidized with ozone using AMM catalysts in order to get more information on the potential of ozone as oxidant in heterogeneously catalyzed reactions. [German] Ziel dieser Arbeit war die Herstellung von Phenol durch die Direktoxidation von Benzol mit umweltfreundlichen Oxidationsmitteln wie Wasserstoffperoxid, Sauerstoff oder Ozon. Als Katalysatoren dienten amorphe mikroporoese Mischoxide, da deren Eigenschaften direkt in der Synthese durch den Sol-Gel-Prozess gezielt eingestellt werden koennen. Neben Benzol wurde auch Cyclohexan mit Ozon unter der Verwendung von AMM-Katalysatoren oxidiert, um das Potential von Ozon als Oxiationsmittel in heterogen katalysierten Reaktionen naeher zu untersuchen. (orig.)

  16. Impacts of heterogeneous reactions to atmospheric peroxides: Observations and budget analysis study

    Science.gov (United States)

    Qin, Mengru; Chen, Zhongming; Shen, Hengqing; Li, Huan; Wu, Huihui; Wang, Yin

    2018-06-01

    Atmospheric peroxides play important roles in atmospheric chemistry, acting as reactive oxidants and reservoirs of HOX and ROX radicals. Field measurements of atmospheric peroxides were conducted over urban Beijing from 2015 to 2016, including dust storm days, haze days and different seasons. We employed a box model based on RACM2 mechanism to conduct concentration simulation and budget analysis of hydrogen peroxide (H2O2) and peroxyacetic acid (PAA). In this study, heterogeneous reaction is found to be a significant sink for atmospheric H2O2 and PAA in urban Beijing. Here, we recommend a suitable uptake coefficient formula considering the water effect for model research of peroxides. It is found that H2O2 and PAA unexpectedly maintained considerable concentrations on haze days, even higher than that on non-haze days. This phenomenon is mainly ascribed to relatively high levels of volatile organic compounds and ozone on haze days. In addition, high levels of water vapor in pollution episode can promote not only the heterogeneous uptake to aerosol phase but also the production of H2O2. Atmospheric PAA formation is suggested to be sensitive to alkenes and NOX in urban Beijing. In particular, with the help of peroxides, sulfate formation rate from heterogeneous uptake could increase by ∼4 times on haze days, indicating the potential effect of peroxides on enhancement of aerosol oxidative property and secondary sulfate formation.

  17. Thoracic radiography and oxidative stress indices in heartworm affected dogs

    Directory of Open Access Journals (Sweden)

    P. K. Rath

    2014-09-01

    Full Text Available Aim: The aim was to study the pathomorphological changes through thoracic radiography and status of oxidative stress parameters in heartworm affected dogs in Odisha. Materials and Methods: A total of 16 dogs with clinically established diagnosis of dirofilariasis by wet blood smear and modified Knott’s test and equal numbers of dogs as control were included in this study. The present study was conducted in heartworm affected dogs to see the pathomorphological changes through thoracic radiography. Similarly, the evaluation was undertaken for observing any alterations in oxidative stress status in affected as well as non-affected, but healthy control dogs by adopting standard procedure. Results: Thoracic radiography revealed cardiac enlargement, round heart appearance suggestive of right ventricular hypertrophy, tortuous pulmonary artery and darkening of lungs. Alterations in oxidative stress indices showed a significant rise of lipid peroxidase activity, non-significant rise of superoxide dismutase and a significant although reverse trend for catalase levels in affected dogs in comparison to Dirofilaria negative control but apparently healthy dogs. Conclusions: Radiographic changes, as well as alterations in oxidative stress parameters, may not be diagnostic for heartworm infection, but useful for detecting heartworm disease, assessing severity and evaluating cardiopulmonary parenchyma changes and gives a fair idea about the degree of severity of the disease. It aids as contributing factors in disease pathogenesis.

  18. Magnetic Fe{sub 2}MO{sub 4} (M:Fe, Mn) activated carbons: Fabrication, characterization and heterogeneous Fenton oxidation of methyl orange

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thi Dung [Institute of Chemical Technology, Vietnamese Academy of Science and Technology, 01 Mac Dinh Chi, District 1, Ho Chi Minh (Viet Nam); Phan, Ngoc Hoa [Department of Chemical Technology, Hochiminh University of Technology, 268 Ly Thuong Kiet, District 10, Ho Chi Minh (Viet Nam); Do, Manh Huy, E-mail: huydoma@vast-hcm.ac.vn [Institute of Chemical Technology, Vietnamese Academy of Science and Technology, 01 Mac Dinh Chi, District 1, Ho Chi Minh (Viet Nam); Ngo, Kim Tham [Institute of Chemical Technology, Vietnamese Academy of Science and Technology, 01 Mac Dinh Chi, District 1, Ho Chi Minh (Viet Nam); College of science, Can Tho University, 3/2, Can Tho (Viet Nam)

    2011-01-30

    We present a simple and efficient method for the fabrication of magnetic Fe{sub 2}MO{sub 4} (M:Fe and Mn) activated carbons (Fe{sub 2}MO{sub 4}/AC-H, M:Fe and Mn) by impregnating the activated carbon with simultaneous magnetic precursor and carbon modifying agent followed by calcination. The obtained samples were characterized by nitrogen adsorption isotherms, X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM), and the catalytic activity in heterogeneous Fenton oxidation of methyl orange (MO) was evaluated. The resulting Fe{sub 2}MnO{sub 4}/AC-H showed higher catalytic activity in the methyl orange oxidation than Fe{sub 3}O{sub 4}/AC-H. The effect of operational parameters (pH, catalyst loading H{sub 2}O{sub 2} dosage and initial MO concentration) on degradation performance of the oxidation process was investigated. Stability and reusability of selected catalyst were also tested.

  19. Rapid and facile preparation of zinc ferrite (ZnFe{sub 2}O{sub 4}) oxide by microwave-solvothermal technique and its catalytic activity in heterogeneous photo-Fenton reaction

    Energy Technology Data Exchange (ETDEWEB)

    Anchieta, Chayene G.; Severo, Eric C.; Rigo, Caroline; Mazutti, Marcio A. [Department of Chemical Engineering, Federal University of Santa Maria, 97105-900, Santa Maria (Brazil); Kuhn, Raquel C., E-mail: raquelckuhn@yahoo.com.br [Department of Chemical Engineering, Federal University of Santa Maria, 97105-900, Santa Maria (Brazil); Muller, Edson I.; Flores, Erico M.M. [Department of Chemistry, Federal University of Santa Maria, 97105-900, Santa Maria (Brazil); Moreira, Regina F.P.M. [Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, 88040-970, Florianópolis (Brazil); Foletto, Edson L. [Department of Chemical Engineering, Federal University of Santa Maria, 97105-900, Santa Maria (Brazil)

    2015-06-15

    In this work zinc ferrite (ZnFe{sub 2}O{sub 4}) oxide was rapidly and easily prepared by microwave-solvothermal route and its catalytic property in photo-Fenton reaction was evaluated. The effects of microwave heating time and power on the properties of produced particles were investigated. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and nitrogen adsorption–desorption isotherms were the techniques used for characterizing the solid products. The synthesized material was tested as a catalyst in the degradation of the textile dye molecule by the heterogeneous photo-Fenton process. Characterization results showed that the microwave heating time and power have significant influences on the formation of the phase spinel as well as on its physical properties. The reaction results showed that the ZnFe{sub 2}O{sub 4} oxide has good photocatalytic activity, which can be attributed to high surface area and pore volume, and large pore size. The ZnFe{sub 2}O{sub 4} oxide produced by the microwave irradiation exhibited promising photocatalytic activity for the removal of textile dye, reaching nearly 100% of decolorization at 40 min and 60% of mineralization at 240 min. Therefore, ZnFe{sub 2}O{sub 4} particles rapidly prepared by the microwave route have the potential for use in treatment of textile wastewater by the heterogeneous photo-Fenton process. - Highlights: • ZnFe{sub 2}O{sub 4} was synthesized by microwave-solvothermal method. • ZnFe{sub 2}O{sub 4} was prepared by different microwave heating times and powers. • ZnFe{sub 2}O{sub 4} was used as heterogeneous photo-Fenton catalyst. • Degradation of Procion red dye using heterogeneous photo-Fenton process. • ZnFe{sub 2}O{sub 4} was highly efficient to degrade textile dye under visible light.

  20. "Sizing" Heterogeneous Chemistry in the Conversion of Gaseous Dimethyl Sulfide to Atmospheric Particles.

    Science.gov (United States)

    Enami, Shinichi; Sakamoto, Yosuke; Hara, Keiichiro; Osada, Kazuo; Hoffmann, Michael R; Colussi, Agustín J

    2016-02-16

    The oxidation of biogenic dimethyl sulfide (DMS) emissions is a global source of cloud condensation nuclei. The amounts of the nucleating H2SO4(g) species produced in such process, however, remain uncertain. Hydrophobic DMS is mostly oxidized in the gas phase into H2SO4(g) + DMSO(g) (dimethyl sulfoxide), whereas water-soluble DMSO is oxidized into H2SO4(g) in the gas phase and into SO4(2-) + MeSO3(-) (methanesulfonate) on water surfaces. R = MeSO3(-)/(non-sea-salt SO4(2-)) ratios would therefore gauge both the strength of DMS sources and the extent of DMSO heterogeneous oxidation if Rhet = MeSO3(-)/SO4(2-) for DMSO(aq) + ·OH(g) were known. Here, we report that Rhet = 2.7, a value obtained from online electrospray mass spectra of DMSO(aq) + ·OH(g) reaction products that quantifies the MeSO3(-) produced in DMSO heterogeneous oxidation on aqueous aerosols for the first time. On this basis, the inverse R dependence on particle radius in size-segregated aerosol collected over Syowa station and Southern oceans is shown to be consistent with the competition between DMSO gas-phase oxidation and its mass accommodation followed by oxidation on aqueous droplets. Geographical R variations are thus associated with variable contributions of the heterogeneous pathway to DMSO atmospheric oxidation, which increase with the specific surface area of local aerosols.

  1. Imparting magnetic dipole heterogeneity to internalized iron oxide nanoparticles for microorganism swarm control

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Paul Seung Soo, E-mail: psk25@drexel.edu [Drexel University, Department of Mechanical Engineering and Mechanics (United States); Becker, Aaron, E-mail: aaron.becker@childrens.harvard.edu [Harvard University, Department of Cardiovascular Surgery (United States); Ou, Yan, E-mail: ouy2@rpi.edu; Julius, Anak Agung, E-mail: agung@rpi.edu [Rensselaer Polytechnic Institute, Department of Electrical, Computer, and Systems Engineering (United States); Kim, Min Jun, E-mail: mkim@coe.drexel.edu [Drexel University, Department of Mechanical Engineering and Mechanics (United States)

    2015-03-15

    Tetrahymena pyriformis is a single cell eukaryote that can be modified to respond to magnetic fields, a response called magnetotaxis. Naturally, this microorganism cannot respond to magnetic fields, but after modification using iron oxide nanoparticles, cells are magnetized and exhibit a constant magnetic dipole strength. In experiments, a rotating field is applied to cells using a two-dimensional approximate Helmholtz coil system. Using rotating magnetic fields, we characterize discrete cells’ swarm swimming which is affected by several factors. The behavior of the cells under these fields is explained in detail. After the field is removed, relatively straight swimming is observed. We also generate increased heterogeneity within a population of cells to improve controllability of a swarm, which is explored in a cell model. By exploiting this straight swimming behavior, we propose a method to control discrete cells utilizing a single global magnetic input. Successful implementation of this swarm control method would enable teams of microrobots to perform a variety of in vitro microscale tasks impossible for single microrobots, such as pushing objects or simultaneous micromanipulation of discrete entities.

  2. Imparting magnetic dipole heterogeneity to internalized iron oxide nanoparticles for microorganism swarm control

    International Nuclear Information System (INIS)

    Kim, Paul Seung Soo; Becker, Aaron; Ou, Yan; Julius, Anak Agung; Kim, Min Jun

    2015-01-01

    Tetrahymena pyriformis is a single cell eukaryote that can be modified to respond to magnetic fields, a response called magnetotaxis. Naturally, this microorganism cannot respond to magnetic fields, but after modification using iron oxide nanoparticles, cells are magnetized and exhibit a constant magnetic dipole strength. In experiments, a rotating field is applied to cells using a two-dimensional approximate Helmholtz coil system. Using rotating magnetic fields, we characterize discrete cells’ swarm swimming which is affected by several factors. The behavior of the cells under these fields is explained in detail. After the field is removed, relatively straight swimming is observed. We also generate increased heterogeneity within a population of cells to improve controllability of a swarm, which is explored in a cell model. By exploiting this straight swimming behavior, we propose a method to control discrete cells utilizing a single global magnetic input. Successful implementation of this swarm control method would enable teams of microrobots to perform a variety of in vitro microscale tasks impossible for single microrobots, such as pushing objects or simultaneous micromanipulation of discrete entities

  3. Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: A review.

    Science.gov (United States)

    He, Jie; Yang, Xiaofang; Men, Bin; Wang, Dongsheng

    2016-01-01

    The heterogeneous Fenton reaction can generate highly reactive hydroxyl radicals (OH) from reactions between recyclable solid catalysts and H2O2 at acidic or even circumneutral pH. Hence, it can effectively oxidize refractory organics in water or soils and has become a promising environmentally friendly treatment technology. Due to the complex reaction system, the mechanism behind heterogeneous Fenton reactions remains unresolved but fascinating, and is crucial for understanding Fenton chemistry and the development and application of efficient heterogeneous Fenton technologies. Iron-based materials usually possess high catalytic activity, low cost, negligible toxicity and easy recovery, and are a superior type of heterogeneous Fenton catalysts. Therefore, this article reviews the fundamental but important interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials. OH, hydroperoxyl radicals/superoxide anions (HO2/O2(-)) and high-valent iron are the three main types of reactive oxygen species (ROS), with different oxidation reactivity and selectivity. Based on the mechanisms of ROS generation, the interfacial mechanisms of heterogeneous Fenton systems can be classified as the homogeneous Fenton mechanism induced by surface-leached iron, the heterogeneous catalysis mechanism, and the heterogeneous reaction-induced homogeneous mechanism. Different heterogeneous Fenton systems catalyzed by characteristic iron-based materials are comprehensively reviewed. Finally, related future research directions are also suggested. Copyright © 2015. Published by Elsevier B.V.

  4. Sub-Tg enthalpy relaxation in an unstable oxide glass former: insights into the structural heterogeneity

    DEFF Research Database (Denmark)

    Yue, Yuanzheng; Zhang, Yanfei

    Structural heterogeneity plays a crucial role in determining functionality of glasses. In this work we have found that the sub-Tg enthalpy relaxation pattern in a hyperquenched glass is highly sensitive to structural heterogeneity. As a consequence, the former can be used as an effective approach...... to detect and quantify the structural heterogeneity in glass-forming liquids. However, the chemical nature of structural heterogeneity should be revealed by other means such as high resolution microscopic and spectroscopic methods. To study the impact of the structural heterogeneity on the sub-Tg relaxation...... chemical features and degrees of structural heterogeneity in glass-forming liquids. This finding contributes to the microscopic origin of both the primary and secondary relaxation in terms of structural heterogeneity. Finally the results provide insights into the relation between structural heterogeneity...

  5. Effect of conventional cooking methods on lipid oxidation indices in lamb meat

    Directory of Open Access Journals (Sweden)

    A Pourkhalili

    2012-05-01

    Full Text Available Lipid oxidation is one of the most deteriorative reactions occurred in foodstuff which has harmful impacts on the both food quality and consumer's health. This study was designed to speculate the influence of three conventional cooking methods including boiling, frying and grilling on lipid oxidation parameters in cooked lamb meat. Sections of lamb meat from longissimus dorsi muscle, taken from native Lori-Bakhtiary sheep species were cut into uniform pieces and cooked using boiling, frying and roasting methods according to the cooking routine and tradition in Iranian society, in terms of temperature and time. Proximate compositions (moisture, lipid, ash and protein in the raw and cooked meat were determined using the standard methods of analysis. Moreover, weight loss was measured after each treatment. Lipid oxidation parameters such as peroxide value, conjugated diene and TBARS indices were measured in the raw and cooked samples. Evaluation of lipid oxidation parameters showed that peroxide value was significantly decreased in all cooked samples. In contrast, conjugated diene value was significantly increased in the fried and grilled samples (p

  6. Stochastic variation in telomere shortening rate causes heterogeneity of human fibroblast replicative life span.

    Science.gov (United States)

    Martin-Ruiz, Carmen; Saretzki, Gabriele; Petrie, Joanne; Ladhoff, Juliane; Jeyapalan, Jessie; Wei, Wenyi; Sedivy, John; von Zglinicki, Thomas

    2004-04-23

    The replicative life span of human fibroblasts is heterogeneous, with a fraction of cells senescing at every population doubling. To find out whether this heterogeneity is due to premature senescence, i.e. driven by a nontelomeric mechanism, fibroblasts with a senescent phenotype were isolated from growing cultures and clones by flow cytometry. These senescent cells had shorter telomeres than their cycling counterparts at all population doubling levels and both in mass cultures and in individual subclones, indicating heterogeneity in the rate of telomere shortening. Ectopic expression of telomerase stabilized telomere length in the majority of cells and rescued them from early senescence, suggesting a causal role of telomere shortening. Under standard cell culture conditions, there was a minor fraction of cells that showed a senescent phenotype and short telomeres despite active telomerase. This fraction increased under chronic mild oxidative stress, which is known to accelerate telomere shortening. It is possible that even high telomerase activity cannot fully compensate for telomere shortening in all cells. The data show that heterogeneity of the human fibroblast replicative life span can be caused by significant stochastic cell-to-cell variation in telomere shortening.

  7. Isotopic constraints on heterogeneous sulfate production in Beijing haze

    Directory of Open Access Journals (Sweden)

    P. He

    2018-04-01

    Full Text Available Discerning mechanisms of sulfate formation during fine-particle pollution (referred to as haze hereafter in Beijing is important for understanding the rapid evolution of haze and for developing cost-effective air pollution mitigation strategies. Here we present observations of the oxygen-17 excess of PM2.5 sulfate (Δ17O(SO42− collected in Beijing haze from October 2014 to January 2015 to constrain possible sulfate formation pathways. Throughout the sampling campaign, the 12-hourly averaged PM2.5 concentrations ranged from 16 to 323 µg m−3 with a mean of (141  ±  88 (1σ µg m−3, with SO42− representing 8–25 % of PM2.5 mass. The observed Δ17O(SO42− varied from 0.1 to 1.6 ‰ with a mean of (0.9  ±  0.3 ‰. Δ17O(SO42− increased with PM2.5 levels in October 2014 while the opposite trend was observed from November 2014 to January 2015. Our estimate suggested that in-cloud reactions dominated sulfate production on polluted days (PDs, PM2.5  ≥  75 µg m−3 of Case II in October 2014 due to the relatively high cloud liquid water content, with a fractional contribution of up to 68 %. During PDs of Cases I and III–V, heterogeneous sulfate production (Phet was estimated to contribute 41–54 % to total sulfate formation with a mean of (48  ±  5 %. For the specific mechanisms of heterogeneous oxidation of SO2, chemical reaction kinetics calculations suggested S(IV ( =  SO2 ⚫ H2O + HSO3−  +  SO32− oxidation by H2O2 in aerosol water accounted for 5–13 % of Phet. The relative importance of heterogeneous sulfate production by other mechanisms was constrained by our observed Δ17O(SO42−. Heterogeneous sulfate production via S(IV oxidation by O3 was estimated to contribute 21–22 % of Phet on average. Heterogeneous sulfate production pathways that result in zero-Δ17O(SO42−, such as S(IV oxidation by NO2 in aerosol water and/or by O2 via a

  8. Heterogeneity of Systemic Oxidative Stress Profiles in COPD: A Potential Role of Gender

    Directory of Open Access Journals (Sweden)

    Jonathan Maury

    2015-01-01

    Full Text Available Oxidative stress (OS plays a key role in the muscle impairment and exercise capacity of COPD patients. However, the literature reveals that systemic OS markers show great heterogeneity, which may hinder the prescription of effective antioxidant supplementation. This study therefore aimed to identify OS markers imbalance of COPD patients, relative to validated normal reference values, and to investigate the possibility of systemic OS profiles. We measured systemic enzymatic/nonenzymatic antioxidant and lipid peroxidation (LP levels in 54 stable COPD patients referred for a rehabilitation program. The main systemic antioxidant deficits in these patients concerned vitamins and trace elements. Fully 89% of the COPD patients showed a systemic antioxidant imbalance which may have caused the elevated systemic LP levels in 69% of them. Interestingly, two patient profiles (clusters 3 and 4 had a more elevated increase in LP combined with increased copper and/or decreased vitamin C, GSH, and GPx. Further analysis revealed that the systemic LP level was higher in COPD women and associated with exercise capacity. Our present data therefore support future supplementations with antioxidant vitamins and trace elements to improve exercise capacity, but COPD patients will probably show different positive responses.

  9. Molecular ingredients of heterogeneous catalysis

    International Nuclear Information System (INIS)

    Somorjai, G.A.

    1982-06-01

    The purpose of this paper is to present a review and status report to those in theoretical chemistry of the rapidly developing surface science of heterogeneous catalysis. The art of catalysis is developing into science. This profound change provides one with opportunities not only to understand the molecular ingredients of important catalytic systems but also to develop new and improved catalyst. The participation of theorists to find answers to important questions is sorely needed for the sound development of the field. It is the authors hope that some of the outstanding problems of heterogeneous catalysis that are identified in this paper will be investigated. For this purpose the paper is divided into several sections. The brief Introduction to the methodology and recent results of the surface science of heterogeneous catalysis is followed by a review of the concepts of heterogeneous catalysis. Then, the experimental results that identified the three molecular ingredients of catalysis, structure, carbonaceous deposit and the oxidation state of surface atoms are described. Each section is closed with a summary and a list of problems that require theoretical and experimental scrutiny. Finally attempts to build new catalyst systems and the theoretical and experimental problems that appeared in the course of this research are described

  10. Molecular ingredients of heterogeneous catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.

    1982-06-01

    The purpose of this paper is to present a review and status report to those in theoretical chemistry of the rapidly developing surface science of heterogeneous catalysis. The art of catalysis is developing into science. This profound change provides one with opportunities not only to understand the molecular ingredients of important catalytic systems but also to develop new and improved catalyst. The participation of theorists to find answers to important questions is sorely needed for the sound development of the field. It is the authors hope that some of the outstanding problems of heterogeneous catalysis that are identified in this paper will be investigated. For this purpose the paper is divided into several sections. The brief Introduction to the methodology and recent results of the surface science of heterogeneous catalysis is followed by a review of the concepts of heterogeneous catalysis. Then, the experimental results that identified the three molecular ingredients of catalysis, structure, carbonaceous deposit and the oxidation state of surface atoms are described. Each section is closed with a summary and a list of problems that require theoretical and experimental scrutiny. Finally attempts to build new catalyst systems and the theoretical and experimental problems that appeared in the course of this research are described.

  11. Indices of Paraoxonase and Oxidative Status Do Not Enhance the Prediction of Subclinical Cardiovascular Disease in Mixed-Ancestry South Africans

    Directory of Open Access Journals (Sweden)

    M. Macharia

    2014-01-01

    Full Text Available We evaluated the association of indices of paraoxonase (PON1 and oxidative status with subclinical cardiovascular disease (CVD in mixed-ancestry South Africans. Participants were 491 adults (126 men who were stratified by diabetes status and body mass index (BMI. Carotid intima-media thickness (CIMT was used as a measure of subclinical CVD. Indices of PON1 and oxidative status were determined by measuring levels and activities (paraoxonase and arylesterase of PON1, antioxidant activity (ferric reducing antioxidant power and trolox equivalent antioxidant capacity, and lipid peroxidation markers (malondialdehyde and oxidized LDL. Diabetic subjects (28.9% displayed a significant decrease in PON1 status and antioxidant activity as well as increase in oxidized LDL and malondialdehyde. A similar profile was apparent across increasing BMI categories. CIMT was higher in diabetic than nondiabetic subjects (P<0.0001  but showed no variation across BMI categories. Overall, CIMT correlated negatively with indices of antioxidant activity and positively with measures of lipid oxidation. Sex, age, BMI, and diabetes altogether explained 29.2% of CIMT, with no further improvement from adding PON1 and/or antioxidant status indices. Though indices of PON1 and oxidative status correlate with CIMT, their measurements may not be useful for identifying subjects at high CVD risk in this population.

  12. NATURAL IRON OXIDE AS A HETEROGENEOUS PHOTO-FENTON-LIKE CATALYST FOR THE DEGRADATION OF 1-NAPHTHOL UNDER ARTIFICIAL AND SOLAR LIGHT

    Directory of Open Access Journals (Sweden)

    L MAMMERI

    2014-07-01

    Full Text Available A heterogeneous photo-Fenton-like degradation process of 1-naphthol (1-NP promoted by natural iron oxide (NIO in the presence of H2O2 was studied under artificial (365 nm and solar irradiation. This is an important reaction for the environment since both H2O2 and iron oxides are common constituents of natural waters. Furthermore, iron oxides function as catalysts in chemical oxidation processes used with H2O2 for treatment of contaminated waters. The NIO used in this study was characterized by X-ray diffraction (XRD, X-ray fluorescence and Brunauer–Emmett–Teller (BET methods. The results show that the NIO is a composite material that contains predominantly crystalline hematite particales (Fe2O3. The Fe2O3 in NIO was able to initiate the Fenton-like and photo-Fenton-like reactions. The effects of initial pH, catalyst dosage, H2O2 concentration and the wavelength of the light source (UV and solar on the photodegradation of 1-NP were investigated. The optimal content of the NIO was 1 g L-1 and the optimal H2O2 concentration was 10 mM. The degradation could occur efficiently over a wide pH range of 3-8.3. Furthermore, an important effect of light was observed. The photo-oxidation of 1-NP in NIO-H2O2 system under solar light was significantly accelerated in comparison with artificial irradiation at 365 nm.

  13. Tunable Magnetic Properties of Heterogeneous Nanobrush: From Nanowire to Nanofilm

    Directory of Open Access Journals (Sweden)

    Ren Y

    2010-01-01

    Full Text Available Abstract With a bottom-up assemble technology, heterogeneous magnetic nanobrushes, consisting of Co nanowire arrays and ferromagnetic Fe70Co30 nanofilm, have been fabricated using an anodic aluminum oxide template method combining with sputtering technology. Magnetic measurement suggests that the magnetic anisotropy of nanobrush depends on the thickness of Fe70Co30 layer, and its total anisotropy originates from the competition between the shape anisotropy of nanowire arrays and nanofilm. Micromagnetic simulation result indicates that the switching field of nanobrush is 1900 Oe, while that of nanowire array is 2700 Oe. These suggest that the nanobrush film can promote the magnetization reversal processes of nanowire arrays in nanobrush.

  14. Oxidative potential of particulate matter 2.5 as predictive indicator of cellular stress

    International Nuclear Information System (INIS)

    Crobeddu, Bélinda; Aragao-Santiago, Leticia; Bui, Linh-Chi; Boland, Sonja; Baeza Squiban, Armelle

    2017-01-01

    Particulate air pollution being recognized to be responsible for short and long term health effects, regulations for particulate matter with an aerodynamic diameter less than 2.5 (PM 2.5 ) are more and more restrictive. PM 2.5 regulation is based on mass without taking into account PM 2.5 composition that drives toxicity. Measurement of the oxidative potential (OP) of PM could be an additional PM indicator that would encompass the PM components involved in oxidative stress, the main mechanism of PM toxicity. We compared different methods to evaluate the intrinsic oxidative potential of PM 2.5 sampled in Paris and their ability to reflect the oxidative and inflammatory response in bronchial epithelial cells used as relevant target organ cells. The dithiothreitol depletion assay, the antioxidant (ascorbic acid and glutathione) depletion assay (OP AO ), the plasmid scission assay and the dichlorofluorescein (DCFH) oxidation assay used to characterize the OP of PM 2.5 (10–100 μg/mL) provided positive results of different magnitude with all the PM 2.5 samples used with significant correlation with different metals such as Cu and Zn as well as total polyaromatic hydrocarbons and the soluble organic fraction. The OP AO assay showed the best correlation with the production of intracellular reactive oxygen species by NCI-H292 cell line assessed by DCFH oxidation and with the expression of anti-oxidant genes (superoxide dismutase 2, heme-oxygenase-1) as well as the proinflammatory response (Interleukin 6) when exposed from 1 to 10 μg/cm 2 . The OP AO assay appears as the most prone to predict the biological effect driven by PM 2.5 and related to oxidative stress. - Highlights: • 5 Acellular assays were used to compare the intrinsic oxidative potential (OP) of PM. • The amount of ROS generation in bronchial cells is particle dependent. • Particles induce the expression of anti-oxidant and proinflammatory genes. • Biological effects correlates with OP assay

  15. Facile Hydrothermal Preparation of ZNO/CO3O4 Heterogeneous Nanostructures and its Photovoltaic Effect

    Science.gov (United States)

    Wei, Fanan; Jiang, Minlin; Liu, Lianqing

    2015-07-01

    Photovoltaic technology offers great potential in the replacement of fossil fuel resources, but still suffers from high device fabrication cost. Herein, we attempted to provide a solution to these issues with heterogeneous nanostructures. Firstly, Zinc oxide (ZnO)/cobalt oxide (Co3O4) heterojunction nanowires are prepared through facile fabrication methods. By assembling Co(OH)2 nanoplates on ZnO nanowire arrays, the ZnO/Co3O4 heterogeneous nanostructures are uniformly synthesized on ITO coated glass and wafer. Current (I)-voltage (V) measurement through conductive atomic force microscope shows excellent photovoltaic effect. And, the heterojunction nanostructures shows unprecedented high open circuit voltage. Therefore, the potential application of the heterogeneous nanostructures in solar cells is demonstrated.

  16. One-step fabrication of heterogeneous conducting polymers-coated graphene oxide/carbon nanotubes composite films for high-performance supercapacitors

    International Nuclear Information System (INIS)

    Zhou, Haihan; Han, Gaoyi

    2016-01-01

    Highlights: • CPs-GO/CNTs ternary composites have been prepared via one-step electrodeposition. • The composites show a GO supported CPs-coated CNTs ternary hybrid microstructure. • The capacitive nature of CPs-GO is promoted significantly by introducing CNTs. • CPs-GO/CNTs electrodes show high areal capacitance and excellent cycle stability. - Abstract: Composite films of heterogeneous conducting polymers-coated graphene oxide/carbon nanotubes (CPs-GO/CNTs; CPs, PPy and PEDOT) have been fabricated via one-step electrochemical co-deposition. Scanning electron microscope and transmission electron microscopy characterizations indicate that the as-prepared CPs-GO/CNTs composites show a GO supported CPs-coated CNTs ternary hybrid microstructure. The electrochemical measurements including cyclic voltammetry, galvanostatic charge/discharge measurements, and electrochemical impedance spectroscopy tests manifest that the capacitive performances of CPs-GO electrodes are obviously promoted as the introduction of CNTs, and the PEDOT-GO/CNTs electrodes exhibit the more significantly improved electrochemical performances as the more CNTs introduced. Furthermore, the as-prepared PPy-GO/CNTs and PEDOT-GO/CNTs ternary composites achieve a high areal specific capacitance (142.2 mF cm −2 and 99.0 mF cm −2 at 1.0 mA cm −2 , respectively), together with superior rate capability, and excellent cycle stability (maintain 97.3% and 99.2% of initial capacitance for 5000 cycles, respectively), which are essential for their applications in high-performance supercapacitor electrodes.

  17. Mitochondrial NAD(PH in vivo: identifying natural indicators of oxidative phosphorylation in the 31P magnetic resonance spectrum.

    Directory of Open Access Journals (Sweden)

    Kevin eConley

    2016-03-01

    Full Text Available Natural indicators provide intrinsic probes of metabolism, biogenesis and oxidative protection. Nicotinamide adenine dinucleotide metabolites (NAD(P are one class of indicators that have roles as co-factors in oxidative phosphorylation, glycolysis and anti-oxidant protection, as well as signaling in the mitochondrial biogenesis pathway. These many roles are made possible by the distinct redox states (NAD(P+ and NAD(PH, which are compartmentalized between cell and mitochondria. Here we provide evidence for detection of NAD(P+ and NAD(PH in separate mitochondrial and cell pools in vivo in human tissue by phosphorus magnetic resonance spectroscopy (31P MRS. These NAD(P pools are identified by chemical standards (NAD+, NADP+ and NADH and by physiological tests. A unique resonance reflecting mitochondrial NAD(PH is revealed by the changes elicited by elevation of mitochondrial oxidation. The decline of NAD(PH with oxidation is matched by a stoichiometric rise in the NAD(P+ peak. This unique resonance also provides a measure of the improvement in mitochondrial oxidation that parallels the greater phosphorylation found after exercise training in these elderly subjects. The implication is that the dynamics of the mitochondrial NAD(PH peak provides an intrinsic probe of the reversal of mitochondrial dysfunction in elderly muscle. Thus non-invasive detection of NAD(P+ and NAD(PH in cell vs. mitochondria yield natural indicators of redox compartmentalization and sensitive intrinsic probes of the improvement of mitochondrial function with an intervention in human tissues in vivo. These natural indicators hold the promise of providing mechanistic insight into metabolism and mitochondrial function in vivo in a range of tissues in health, disease and with treatment.

  18. Model-based analysis of δ34S signatures to trace sedimentary pyrite oxidation during managed aquifer recharge in a heterogeneous aquifer

    Science.gov (United States)

    Seibert, Simone; Descourvieres, Carlos; Skrzypek, Grzegorz; Deng, Hailin; Prommer, Henning

    2017-05-01

    The oxidation of pyrite is often one of the main drivers affecting groundwater quality during managed aquifer recharge in deep aquifers. Data and techniques that allow detailed identification and quantification of pyrite oxidation are therefore crucial for assessing and predicting the adverse water quality changes that may be associated with this process. In this study, we explore the benefits of combining stable sulphur isotope analysis with reactive transport modelling to improve the identification and characterisation of pyrite oxidation during an aquifer storage and recovery experiment in a chemically and physically heterogeneous aquifer. We characterise the stable sulphur isotope signal (δ34S) in both the ambient groundwater and the injectant as well as its spatial distribution within the sedimentary sulphur species. The identified stable sulphur isotope signal for pyrite was found to vary between -32 and +34‰, while the signal of the injectant ranged between +9.06 and +14.45‰ during the injection phase of the experiment. Both isotope and hydrochemical data together suggest a substantial contribution of pyrite oxidation to the observed, temporally variable δ34S signals. The variability of the δ34S signal in pyrite and the injectant were both found to complicate the analysis of the stable isotope data. However, the incorporation of the data into a numerical modelling approach allowed to successfully employ the δ34S signatures as a valuable additional constraint for identifying and quantifying the contribution of pyrite oxidation to the redox transformations that occur in response to the injection of oxygenated water.

  19. Enhanced heterogeneous nucleation on oxides in Al alloys by intensive shearing

    International Nuclear Information System (INIS)

    Li, H T; Wang, Y; Fan, Z

    2012-01-01

    Oxides, in liquid aluminium alloys, can cause severe difficulties during casting, contribute to the formation of cast defects and degrade the mechanical properties of cast components. In this paper, microstructural characteristics of naturally occurring oxides in the melts of commercial purity aluminium and Al-Mg binary alloys have been investigated. They are characterised by densely populated oxide particles within liquid oxide films. With intensive shearing, the particle agglomerates are dispersed into uniformly distributed individual particles. It was found that with intensive melt shearing, grain refinement of α-Al can be achieved by the dispersed oxide particles. The smaller lattice misfit between the oxide particles and the α-Al phase is characterised by a well defined crystallographic orientation relationship. And the mechanisms of grain refinement are discussed.

  20. Influence of cobalt oxide on structure and phase composition of zirconium-containing materials

    International Nuclear Information System (INIS)

    Vladimirova, O.S.; Gruzdev, A.I.; Koposova, Z.L.; Lyutsareva, L.A.

    1986-01-01

    Effect of Co 3 O 4 addition in a quantity from 10 to 90% on microstructure, phase content, lattice parameter and structure of ZrO 2 ceramics spallings stabilized with yttrium oxide, is studied. It is found out that in the process of ceramics synthesis the formation of three-phased heterogeneous system of matrix type occurs. At cobalt oxide content within the range of 10-30% a matrix consist of ZrO 2 base solid solution, at cobalt oxide content from 50 to 90% it is a matrix base, at 40% Co 3 O 4 the regions with both type matrixes exist. Cobalt oxide introduction decreases the sintering temperature without loss in operation indices of heat sensitive ceramics for resistance transducers

  1. Understanding Atom Probe Tomography of Oxide-Supported Metal Nanoparticles by Correlation with Atomic-Resolution Electron Microscopy and Field Evaporation Simulation.

    Science.gov (United States)

    Devaraj, Arun; Colby, Robert; Vurpillot, François; Thevuthasan, Suntharampillai

    2014-04-17

    Oxide-supported metal nanoparticles are widely used in heterogeneous catalysis. The increasingly detailed design of such catalysts necessitates three-dimensional characterization with high spatial resolution and elemental selectivity. Laser-assisted atom probe tomography (APT) is uniquely suited to the task but faces challenges with the evaporation of metal/insulator systems. Correlation of APT with aberration-corrected scanning transmission electron microscopy (STEM), for Au nanoparticles embedded in MgO, reveals preferential evaporation of the MgO and an inaccurate assessment of nanoparticle composition. Finite element field evaporation modeling is used to illustrate the evolution of the evaporation front. Nanoparticle composition is most accurately predicted when the MgO is treated as having a locally variable evaporation field, indicating the importance of considering laser-oxide interactions and the evaporation of various molecular oxide ions. These results demonstrate the viability of APT for analysis of oxide-supported metal nanoparticles, highlighting the need for developing a theoretical framework for the evaporation of heterogeneous materials.

  2. Consumption of thermally oxidized palm oil diets alters biochemical indices in rats

    Directory of Open Access Journals (Sweden)

    Ayodeji Osmund Falade

    2015-06-01

    Full Text Available Palm oil is thermally oxidized to increase its palatability and this has been a usual practice in most homes. This study sought to assess the biochemical responses of rats to thermally oxidized palm oil diets. Therefore, Wistar strain albino rats (Rattus norveigicus were fed with fresh palm oil (control and thermally oxidized palm oil (test groups diets and water ad libitum for 30 days. Then, the malondialdehyde (MDA contents and total protein of the plasma and liver were determined. Subsequently, the plasma liver function markers [alanine transaminase (ALT, aspartate transaminase (AST, alkaline phosphatase (ALP, albumin (ALB and total bilirubin (TBIL ] and the lipid profile [triglyceride (TRIG, total cholesterol (T-CHOL, high density lipoprotein (HDL-CHOL and low density lipoprotein (LDL-CHOL ] were assayed. The results of the study revealed that there was a significant decrease (P < 0.05 in the plasma and liver total protein, ALB, TRIG and HDL-CHOL of the test groups when compared with the control. Conversely, there was a significant increase (P < 0.05 in the activities of ALT, AST and ALP, TBIL, T-CHOL, LDL-CHOL and plasma/liver MDA of the test groups when compared with the control. These effects were most pronounced in rats fed with 20 min-thermally oxidized palm oil diet. Hence, consumption of thermally oxidized palm oil diets had deleterious effects on biochemical indices in rats. Therefore, cooking with and/or consumption of palm oil subjected to heat treatment for several long periods of time should be discouraged in our homes as this might have deleterious effects on human health.

  3. Compositional evolution of particle-phase reaction products and water in the heterogeneous OH oxidation of model aqueous organic aerosols

    Directory of Open Access Journals (Sweden)

    M. M. Chim

    2017-12-01

    Full Text Available Organic compounds present at or near the surface of aqueous droplets can be efficiently oxidized by gas-phase OH radicals, which alter the molecular distribution of the reaction products within the droplet. A change in aerosol composition affects the hygroscopicity and leads to a concomitant response in the equilibrium amount of particle-phase water. The variation in the aerosol water content affects the aerosol size and physicochemical properties, which in turn governs the oxidation kinetics and chemistry. To attain better knowledge of the compositional evolution of aqueous organic droplets during oxidation, this work investigates the heterogeneous OH-radical-initiated oxidation of aqueous methylsuccinic acid (C5H8O4 droplets, a model compound for small branched dicarboxylic acids found in atmospheric aerosols, at a high relative humidity of 85 % through experimental and modeling approaches. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (Direct Analysis in Real Time, DART coupled with a high-resolution mass spectrometer reveal two major products: a five carbon atom (C5 hydroxyl functionalization product (C5H8O5 and a C4 fragmentation product (C4H6O3. These two products likely originate from the formation and subsequent reactions (intermolecular hydrogen abstraction and carbon–carbon bond scission of tertiary alkoxy radicals resulting from the OH abstraction occurring at the methyl-substituted carbon site. Based on the identification of the reaction products, a kinetic model of oxidation (a two-product model coupled with the Aerosol Inorganic–Organic Mixtures Functional groups Activity Coefficients (AIOMFAC model is built to simulate the size and compositional changes of aqueous methylsuccinic acid droplets during oxidation. Model results show that at the maximum OH exposure, the droplets become slightly more hygroscopic after oxidation, as the mass fraction of water is predicted to increase from

  4. Viscous fingering with permeability heterogeneity

    International Nuclear Information System (INIS)

    Tan, C.; Homsy, G.M.

    1992-01-01

    Viscous fingering in miscible displacements in the presence of permeability heterogeneities is studied using two-dimensional simulations. The heterogeneities are modeled as stationary random functions of space with finite correlation scale. Both the variance and scale of the heterogeneities are varied over modest ranges. It is found that the fingered zone grows linearly in time in a fashion analogous to that found in homogeneous media by Tan and Homsy [Phys. Fluids 31, 1330 (1988)], indicating a close coupling between viscous fingering on the one hand and flow through preferentially more permeable paths on the other. The growth rate of the mixing zone increases monotonically with the variance of the heterogeneity, as expected, but shows a maximum as the correlation scale is varied. The latter is explained as a ''resonance'' between the natural scale of fingers in homogeneous media and the correlation scale

  5. Associations of Job Stress Indicators with Oxidative Biomarkers in Japanese Men and Women

    Directory of Open Access Journals (Sweden)

    Jiro Takaki

    2013-12-01

    Full Text Available Some researchers have suggested that oxidative damage may be one of the mechanisms linking job stress with coronary heart disease. The aim of this study was to investigate the association between job stress indicators and oxidative biomarkers. The study included 567 subjects (272 men, 295 women who answered questionnaires related to their work and underwent a medical examination. Job stress evaluated using the demands-control-support model was measured using the Job Content Questionnaire. Effort-reward imbalance was measured using the Effort-Reward Imbalance Questionnaire. Urinary hydrogen peroxide (H2O2 and 8-hydroxy-2'-deoxyguanosine (8-OHdG were measured by the modified ferrous ion oxidation xylenol orange version-1 method and enzyme-linked immunosorbent assay, respectively. In men, the changes in the odds ratios for high urinary H2O2 associated with a 1-standard-deviation (SD increase in worksite social support were 0.69 (95% confidence interval (CI 0.53, 0.91 univariately and 0.68 (95%CI 0.51, 0.90 after adjustment for covariates. The change in the odds ratio for high urinary H2O2 associated with a 1-SD increase in effort-reward ratio was 1.35 (95% CI 1.03, 1.78 after adjustment for covariates. In women, there were no significant associations of the two job stress indicators with urinary H2O2 and 8-OHdG levels after adjustment for covariates (p > 0.05.

  6. Oxidation of Glycerol and Propanediols in Methanol over Heterogeneous Gold Catalysts

    DEFF Research Database (Denmark)

    Taarning, Esben; Madsen, Anders Theilgaard; Marchetti, Jorge

    2008-01-01

    Aerobic oxidation of glycerol over metal oxide supported gold nanoparticles in methanol results in the formation of dimethyl mesoxalate in selectivities up to 89% at full conversion. The oxidative esterification takes place in methanol, acting both as solvent and reactant, and in the presence of ...

  7. Is dynamic heterogeneity of water in presence of a protein ...

    Indian Academy of Sciences (India)

    Abstract. Rotational and translational dynamic heterogeneities (DHs) of ambient aqueous solutions of trimethylamine-N-oxide (TMAO) and tetramethylurea (TMU) at several solute concentrations have been inves- tigated and compared. Motional characteristics of water molecules at solute interfaces and in bulk solutions.

  8. Heterogeneous time-resolved electrochemiluminoimmunoassay of thyroid stimulating hormone with magnetic beads at oxide-covered aluminum electrode

    Energy Technology Data Exchange (ETDEWEB)

    Ala-Kleme, Timo, E-mail: timo.ala-kleme@utu.fi

    2017-06-15

    The heterogeneous immunoassay of thyroid stimulating hormone (TSH) was detected by the time-resolved cathodic electrochemiluminescence immunoassay (tr-CECLIA) method using magnetic beads as a mobile support. The magnetic beads coated with sandwich type TSH immunoassay were captured with a magnet for washing and detection processes. The time-resolved cathodic electrochemiluminescence (tr-CECL) signal of Tb(III) chelate label was generated by cathodic pulse polarization in the aluminum working electrode and platinum counter electrode system. The detection method causes injection of high energy electrons into the aqueous solution near the aluminum electrode and creates rigid simultaneous oxidative and reductive conditions that excitate the Tb(III) chelate used as a label luminophore in the heterogeneous sandwich type immunoassay of TSH in the surface of the magnetic beads. The limit of detection of the method was about 50 mIU L{sup −1}. The precision of it was noticed to be good; the coefficient variation percentage was realized to be lower than 10 %. Unfortunately the limit of detection is not good enough for determination of analyte levels of very low concentrations for instance TSH in body fluids. The possible application areas of the method are in highly sophisticated micro or nano fluidic detection and sensor systems where the aspiration level of the analyte detection limit is not very high and the mobility and manageability and the large surface area of the magnetic beads can be utilized efficiently in separating, washing, moving, coating and detecting processes. In the case of tr-CECLIA the presented method makes possible to use multipurpose working electrodes instead of disposable ones.

  9. Aerosol Fragmentation Driven by Coupling of Acid-Base and Free-Radical Chemistry in the Heterogeneous Oxidation of Aqueous Citric Acid by OH Radicals.

    Science.gov (United States)

    Liu, Matthew J; Wiegel, Aaron A; Wilson, Kevin R; Houle, Frances A

    2017-08-10

    A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps with physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low molecular

  10. Heterogeneous Nucleation and Growth of Nanoparticles at Environmental Interfaces.

    Science.gov (United States)

    Jun, Young-Shin; Kim, Doyoon; Neil, Chelsea W

    2016-09-20

    Mineral nucleation is a phase transformation of aqueous components to solids with an accompanying creation of new surfaces. In this evolutional, yet elusive, process, nuclei often form at environmental interfaces, which provide remarkably reactive sites for heterogeneous nucleation and growth. Naturally occurring nucleation processes significantly contribute to the biogeochemical cycles of important components in the Earth's crust, such as iron and manganese oxide minerals and calcium carbonate. However, in recent decades, these cycles have been significantly altered by anthropogenic activities, which affect the aqueous chemistry and equilibrium of both surface and subsurface systems. These alterations can trigger the dissolution of existing minerals and formation of new nanoparticles (i.e., nucleation and growth) and consequently change the porosity and permeability of geomedia in subsurface environments. Newly formed nanoparticles can also actively interact with components in natural and engineered aquatic systems, including those posing a significant hazard such as arsenic. These interactions can bilaterally influence the fate and transport of both newly formed nanoparticles and aqueous components. Due to their importance in natural and engineered processes, heterogeneous nucleation at environmental interfaces has started to receive more attention. However, a lack of time-resolved in situ analyses makes the evaluation of heterogeneous nucleation challenging because the physicochemical properties of both the nuclei and surfaces significantly and dynamically change with time and aqueous chemistry. This Account reviews our in situ kinetic studies of the heterogeneous nucleation and growth behaviors of iron(III) (hydr)oxide, calcium carbonate, and manganese (hydr)oxide minerals in aqueous systems. In particular, we utilized simultaneous small-angle and grazing incidence small-angle X-ray scattering (SAXS/GISAXS) to investigate in situ and in real-time the effects of

  11. Heterogeneous metal-oxide nanowire micro-sensor array for gas sensing

    International Nuclear Information System (INIS)

    DeMeo, Dante; E Vandervelde, Thomas; MacNaughton, Sam; Sonkusale, Sameer; Wang, Zhilong; Zhang, Xinjie

    2014-01-01

    Vanadium oxide, manganese oxide, tungsten oxide, and nickel oxide nanowires were investigated for their applicability as chemiresistive gas sensors. Nanowires have excellent surface-to-volume ratios which yield higher sensitivities than bulk materials. Sensing elements consisting of these materials were assembled in an array to create an electronic nose platform. Dielectrophoresis was used to position the nanomaterials onto a microfabricated array of electrodes, which was subsequently mounted onto a leadless chip carrier and printed circuit board for rapid testing. Samples were tested in an enclosed chamber with vapors of acetone, isopropanol, methanol, and aqueous ammonia. The change in resistance of each assembly was measured. Responses varied between nanowire compositions, each demonstrating unique and repeatable responses to different gases; this enabled direct detection of the gases from the ensemble response. Sensitivities were calculated based on the fractional resistance change in a saturated environment and ranged from 6 × 10 −4 to 2 × 10 −5 %change ppm −1 . (papers)

  12. SELECTIVE OXIDATION IN SUPERCRITICAL CARBON DIOXIDE USING CLEAN OXIDANTS

    Science.gov (United States)

    We have systematically investigated heterogeneous catalytic oxidation of different substrates in supercritical carbon dioxide (SC-CO2). Three types of catagysts: a metal complex, 0.5% platinum g-alumina and 0.5% palladium g-alumina were used at a pressure of 200 bar, temperatures...

  13. Water-oxidation catalysis by synthetic manganese oxides--systematic variations of the calcium birnessite theme.

    Science.gov (United States)

    Frey, Carolin E; Wiechen, Mathias; Kurz, Philipp

    2014-03-21

    Layered manganese oxides from the birnessite mineral family have been identified as promising heterogeneous compounds for water-oxidation catalysis (WOC), a key reaction for the conversion of renewable energy into storable fuels. High catalytic rates were especially observed for birnessites which contain calcium as part of their structures. With the aim to systematically improve the catalytic performance of such oxide materials, we used a flexible synthetic route to prepare three series of calcium birnessites, where we varied the calcium concentrations, the ripening times of the original precipitates and the temperature of the heat treatment following the initial synthetic steps (tempering) during the preparation process. The products were carefully analysed by a number of analytical techniques and then probed for WOC activity using the Ce(4+)-system. We find that our set of twenty closely related manganese oxides shows large, but somewhat systematic alterations in catalytic rates, indicating the importance of synthesis parameters for maximum catalytic performance. The catalyst of the series for which the highest water-oxidation rate was found is a birnessite of medium calcium content (Ca : Mn ratio 0.2 : 1) that had been subjected to a tempering temperature of 400 °C. On the basis of the detailed analysis of the results, a WOC reaction scheme for birnessites is proposed to explain the observed trends in reactivity.

  14. Ultrahigh Detective Heterogeneous Photosensor Arrays with In-Pixel Signal Boosting Capability for Large-Area and Skin-Compatible Electronics.

    Science.gov (United States)

    Kim, Jaehyun; Kim, Jaekyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Myungwon; Moon, Juhyuk; Yang, Lin; Kim, Myung-Gil; Kim, Yong-Hoon; Park, Sung Kyu

    2016-04-01

    An ultra-thin and large-area skin-compatible heterogeneous organic/metal-oxide photosensor array is demonstrated which is capable of sensing and boosting signals with high detectivity and signal-to-noise ratio. For the realization of ultra-flexible and high-sensitive heterogeneous photosensor arrays on a polyimide substrate having organic sensor arrays and metal-oxide boosting circuitry, solution-processing and room-temperature alternating photochemical conversion routes are applied. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Converting homogeneous to heterogeneous in electrophilic catalysis using monodisperse metal nanoparticles.

    Science.gov (United States)

    Witham, Cole A; Huang, Wenyu; Tsung, Chia-Kuang; Kuhn, John N; Somorjai, Gabor A; Toste, F Dean

    2010-01-01

    A continuing goal in catalysis is to unite the advantages of homogeneous and heterogeneous catalytic processes. To this end, nanoparticles represent a new frontier in heterogeneous catalysis, where this unification can also be supplemented by the ability to obtain new or divergent reactivity and selectivity. We report a novel method for applying heterogeneous catalysts to known homogeneous catalytic reactions through the design and synthesis of electrophilic platinum nanoparticles. These nanoparticles are selectively oxidized by the hypervalent iodine species PhICl(2), and catalyse a range of π-bond activation reactions previously only catalysed through homogeneous processes. Multiple experimental methods are used to unambiguously verify the heterogeneity of the catalytic process. The discovery of treatments for nanoparticles that induce the desired homogeneous catalytic activity should lead to the further development of reactions previously inaccessible in heterogeneous catalysis. Furthermore, a size and capping agent study revealed that Pt PAMAM dendrimer-capped nanoparticles demonstrate superior activity and recyclability compared with larger, polymer-capped analogues.

  16. Converting Homogeneous to Heterogeneous in Electrophilic Catalysis using Monodisperse Metal Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Witham, Cole A.; Huang, Wenyu; Tsung, Chia-Kuang; Kuhn, John N.; Somorjai, Gabor A.; Toste, F. Dean

    2009-10-15

    A continuing goal in catalysis is the transformation of processes from homogeneous to heterogeneous. To this end, nanoparticles represent a new frontier in heterogeneous catalysis, where this conversion is supplemented by the ability to obtain new or divergent reactivity and selectivity. We report a novel method for applying heterogeneous catalysts to known homogeneous catalytic reactions through the design and synthesis of electrophilic platinum nanoparticles. These nanoparticles are selectively oxidized by the hypervalent iodine species PhICl{sub 2}, and catalyze a range of {pi}-bond activation reactions previously only homogeneously catalyzed. Multiple experimental methods are utilized to unambiguously verify the heterogeneity of the catalytic process. The discovery of treatments for nanoparticles that induce the desired homogeneous catalytic activity should lead to the further development of reactions previously inaccessible in heterogeneous catalysis. Furthermore, our size and capping agent study revealed that Pt PAMAM dendrimer-capped nanoparticles demonstrate superior activity and recyclability compared to larger, polymer-capped analogues.

  17. Depression and oxidative stress: results from a meta-analysis of observational studies.

    Science.gov (United States)

    Palta, Priya; Samuel, Laura J; Miller, Edgar R; Szanton, Sarah L

    2014-01-01

    To perform a systematic review and meta-analysis that quantitatively tests and summarizes the hypothesis that depression results in elevated oxidative stress and lower antioxidant levels. We performed a meta-analysis of studies that reported an association between depression and oxidative stress and/or antioxidant status markers. PubMed and EMBASE databases were searched for articles published from January 1980 through December 2012. A random-effects model, weighted by inverse variance, was performed to pool standard deviation (Cohen's d) effect size estimates across studies for oxidative stress and antioxidant status measures, separately. Twenty-three studies with 4980 participants were included in the meta-analysis. Depression was most commonly measured using the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria. A Cohen's d effect size of 0.55 (95% confidence interval = 0.47-0.63) was found for the association between depression and oxidative stress, indicating a roughly 0.55 of 1-standard-deviation increase in oxidative stress among individuals with depression compared with those without depression. The results of the studies displayed significant heterogeneity (I(2) = 80.0%, p < .001). A statistically significant effect was also observed for the association between depression and antioxidant status markers (Cohen's d = -0.24, 95% confidence interval = -0.33 to -0.15). This meta-analysis observed an association between depression and oxidative stress and antioxidant status across many different studies. Differences in measures of depression and markers of oxidative stress and antioxidant status markers could account for the observed heterogeneity. These findings suggest that well-established associations between depression and poor heath outcomes may be mediated by high oxidative stress.

  18. Intratumor and Intertumor Heterogeneity in Melanoma

    Directory of Open Access Journals (Sweden)

    Tomasz M. Grzywa

    2017-12-01

    Full Text Available Melanoma is a cancer that exhibits one of the most aggressive and heterogeneous features. The incidence rate escalates. A high number of clones harboring various mutations contribute to an exceptional level of intratumor heterogeneity of melanoma. It also refers to metastases which may originate from different subclones of primary lesion. Such component of the neoplasm biology is termed intertumor and intratumor heterogeneity. These levels of tumor heterogeneity hinder accurate diagnosis and effective treatment. The increasing number of research on the topic reflects the need for understanding limitation or failure of contemporary therapies. Majority of analyses concentrate on mutations in cancer-related genes. Novel high-throughput techniques reveal even higher degree of variations within a lesion. Consolidation of theories and researches indicates new routes for treatment options such as targets for immunotherapy. The demand for personalized approach in melanoma treatment requires extensive knowledge on intratumor and intertumor heterogeneity on the level of genome, transcriptome/proteome, and epigenome. Thus, achievements in exploration of melanoma variety are described in details. Particularly, the issue of tumor heterogeneity or homogeneity given BRAF mutations is discussed.

  19. Nitric oxide as an indicator for severity of injury in polytrauma.

    Science.gov (United States)

    Beitl, E; Banasova, A; Vlcek, M; Mikova, D; Hampl, V

    2016-01-01

    Patients with injuries to multiple organs or organ systems are in a serious risk of shock, multiorgan failure and death. Although there are scoring systems available to assess the extent of polytrauma and guide the prognosis, their usefulness is limited by their considerably subjective nature. As the production of nitric oxide (NO) by many cell types is elevated in tissue injury, we hypothesized that serum concentration of NO (and its oxidation products, NOx) represents a suitable marker of polytrauma correlating with prognosis. We wanted to prove that nitric oxide could serve as an indicator for severity of injury in polytrauma. We measured serum NOx and standard biochemical parameters in 93 patients with various degrees of polytrauma, 15 patients with minor injuries and 20 healthy volunteers. On admission, serum NOx was higher in patients with moderate polytrauma than both in controls and patients with minor injury, and it was even higher in patients with severe polytrauma. Surprisingly, NOx on admission was normal in the group of patients that required cardiopulmonary resuscitation or died within 48 hours after admission. In the groups, where it was elevated on admission, serum NOx dropped to normal values within 12 hours. Blood lactate levels on admission were elevated in proportion to the severity of subsequent clinical course. Elevated serum NOx and blood lactate in patients with polytrauma are markers of serious clinical course, while normal NOx combined with a very high lactate may signal a fatal prognosis (Fig. 4, Ref. 8).

  20. Heterogeneous gas core reactor

    International Nuclear Information System (INIS)

    Han, K.I.

    1977-01-01

    Preliminary investigations of a heterogeneous gas core reactor (HGCR) concept suggest that this potential power reactor offers distinct advantages over other existing or conceptual reactor power plants. One of the most favorable features of the HGCR is the flexibility of the power producing system which allows it to be efficiently designed to conform to a desired optimum condition without major conceptual changes. The arrangement of bundles of moderator/coolant channels in a fissionable gas or mixture of gases makes a truly heterogeneous nuclear reactor core. It is this full heterogeneity for a gas-fueled reactor core which accounts for the novelty of the heterogeneous gas core reactor concept and leads to noted significant advantages over previous gas core systems with respect to neutron and fuel economy, power density, and heat transfer characteristics. The purpose of this work is to provide an insight into the design, operating characteristics, and safety of a heterogeneous gas core reactor system. The studies consist mainly of neutronic, energetic and kinetic analyses of the power producing and conversion systems as a preliminary assessment of the heterogeneous gas core reactor concept and basic design. The results of the conducted research indicate a high potential for the heterogeneous gas core reactor system as an electrical power generating unit (either large or small), with an overall efficiency as high as 40 to 45%. The HGCR system is found to be stable and safe, under the conditions imposed upon the analyses conducted in this work, due to the inherent safety of ann expanding gaseous fuel and the intrinsic feedback effects of the gas and water coolant

  1. Reductive reactivity of iron(III) oxides in the east china sea sediments: characterization by selective extraction and kinetic dissolution.

    Science.gov (United States)

    Chen, Liang-Jin; Zhu, Mao-Xu; Yang, Gui-Peng; Huang, Xiang-Li

    2013-01-01

    Reactive Fe(III) oxides in gravity-core sediments collected from the East China Sea inner shelf were quantified by using three selective extractions (acidic hydroxylamine, acidic oxalate, bicarbonate-citrate buffered sodium dithionite). Also the reactivity of Fe(III) oxides in the sediments was characterized by kinetic dissolution using ascorbic acid as reductant at pH 3.0 and 7.5 in combination with the reactive continuum model. Three parameters derived from the kinetic method: m 0 (theoretical initial amount of ascorbate-reducible Fe(III) oxides), k' (rate constant) and γ (heterogeneity of reactivity), enable a quantitative characterization of Fe(III) oxide reactivity in a standardized way. Amorphous Fe(III) oxides quantified by acidic hydroxylamine extraction were quickly consumed in the uppermost layer during early diagenesis but were not depleted over the upper 100 cm depth. The total amounts of amorphous and poorly crystalline Fe(III) oxides are highly available for efficient buffering of dissolved sulfide. As indicated by the m 0, k' and γ, the surface sediments always have the maximum content, reactivity and heterogeneity of reactive Fe(III) oxides, while the three parameters simultaneously downcore decrease, much more quickly in the upper layer than at depth. Albeit being within a small range (within one order of magnitude) of the initial rates among sediments at different depths, incongruent dissolution could result in huge discrepancies of the later dissolution rates due to differentiating heterogeneity, which cannot be revealed by selective extraction. A strong linear correlation of the m 0 at pH 3.0 with the dithionite-extractable Fe(III) suggests that the m 0 may represent Fe(III) oxide assemblages spanning amorphous and crystalline Fe(III) oxides. Maximum microbially available Fe(III) predicted by the m 0 at pH 7.5 may include both amorphous and a fraction of other less reactive Fe(III) phases.

  2. Equilibrium and heat of adsorption of diethyl phthalate on heterogeneous adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W.M.; Xu, Z.W.; Pan, B.C.; Hong, C.H.; Jia, K.; Jiang, P.J.; Zhang, Q.J.; Pan, B.J. [Nanjing University, Nanjing (China)

    2008-09-15

    Removal of phthalate esters from water has been of considerable concern recently. In the present study, the adsorptive removal performance of diethyl phthalate (DEP) from water was investigated with the aminated polystyrene resin (NDA-101) and oxidized polystyrene resin (NDA-702). In addition, the commercial homogeneous polystyrene resin (XAD-4) and acrylic ester resin (Amberlite XAD-7) as well as coal-based granular activated carbon (AC-750) were chosen for comparison. The corresponding equilibrium isotherms are well described by the Freundlich equation and the adsorption capacities for DEP followed the order NDA-702 > NDA-101 > AC-750 > XAD-4 > XAD-7. Analysis of adsorption mechanisms suggested that these adsorbents spontaneously adsorb DEP molecules driven mainly by enthalpy change, and the adsorption process was derived by multiple adsorbent-adsorbate interactions such as hydrogen bonding, {pi}-{pi} stacking, and micropore filling. The information related to the adsorbent surface heterogeneity and the adsorbate-adsorbate interaction was obtained by Do's model. All the results indicate that heterogeneous resins NDA-702 and NDA-101 have excellent potential as an adsorption material for the removal of DEP from the contaminated water.

  3. Removal of bisphenol derivatives through quinone oxidation by polyphenol oxidase and subsequent quinone adsorption on chitosan in the heterogeneous system.

    Science.gov (United States)

    Kimura, Yuji; Takahashi, Ayumi; Kashiwada, Ayumi; Yamada, Kazunori

    2015-01-01

    In this study, the combined use of a biopolymer chitosan and an oxidoreductase polyphenol oxidase (PPO) was systematically investigated for the removal of bisphenol derivatives from aqueous medium. The process parameters, such as the pH value, temperature, and PPO concentration, were estimated to conduct the enzymatic quinone oxidation of bisphenol derivatives by as little enzyme as possible. Bisphenol derivatives effectively underwent PPO-catalysed quinone oxidation without H2O2 unlike other oxidoreductases, such as peroxidase and tyrosinase, and the optimum conditions were determined to be pH 7.0 and 40°C for bisphenol B, bisphenol E, bisphenol O, and bisphenol Z; pH 7.0 and 30°C for bisphenol C and bisphenol F; and pH 8.0 and 40°C for bisphenol T. They were completely removed through adsorption of enzymatically generated quinone derivatives on chitosan beads or chitosan powders. Quinone adsorption on chitosan beads or chitosan powders in the heterogeneous system was found to be a more effective procedure than generation of aggregates in the homogeneous system with chitosan solution. The removal time was shortened by increasing the amount of chitosan beads or decreasing the size of the chitosan powders.

  4. submitter Heterogeneous ice nucleation of viscous secondary organic aerosol produced from ozonolysis of α-pinene

    CERN Document Server

    Ignatius, Karoliina; Järvinen, Emma; Nichman, Leonid; Fuchs, Claudia; Gordon, Hamish; Herenz, Paul; Hoyle, Christopher R; Duplissy, Jonathan; Garimella, Sarvesh; Dias, Antonio; Frege, Carla; Höppel, Niko; Tröstl, Jasmin; Wagner, Robert; Yan, Chao; Amorim, Antonio; Baltensperger, Urs; Curtius, Joachim; Donahue, Neil M; Gallagher, Martin W; Kirkby, Jasper; Kulmala, Markku; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Tomé, Antonio; Virtanen, Annele; Worsnop, Douglas; Stratmann, Frank

    2016-01-01

    There are strong indications that particles containing secondary organic aerosol (SOA) exhibit amorphous solid or semi-solid phase states in the atmosphere. This may facilitate heterogeneous ice nucleation and thus influence cloud properties. However, experimental ice nucleation studies of biogenic SOA are scarce. Here, we investigated the ice nucleation ability of viscous SOA particles. The SOA particles were produced from the ozone initiated oxidation of α-pinene in an aerosol chamber at temperatures in the range from −38 to −10 ◦C at 5–15 % relative humidity with respect to water to ensure their formation in a highly viscous phase state, i.e. semi-solid or glassy. The ice nucleation ability of SOA particles with different sizes was investigated with a new continuous flow diffusion chamber. For the first time, we observed heterogeneous ice nucleation of viscous α-pinene SOA for ice saturation ratios between 1.3 and 1.4 significantly below the homogeneous freezing limit. The maximum frozen fraction...

  5. Sulfur isotope fractionation during heterogeneous oxidation of SO2 on mineral dust

    Directory of Open Access Journals (Sweden)

    P. Hoppe

    2012-06-01

    Full Text Available Mineral dust is a major fraction of global atmospheric aerosol, and the oxidation of SO2 on mineral dust has implications for cloud formation, climate and the sulfur cycle. Stable sulfur isotopes can be used to understand the different oxidation processes occurring on mineral dust. This study presents measurements of the 34S/32S fractionation factor α34 for oxidation of SO2 on mineral dust surfaces and in the aqueous phase in mineral dust leachate. Sahara dust, which accounts for ~60% of global dust emissions and loading, was used for the experiments. The fractionation factor for aqueous oxidation in dust leachate is αleachate = 0.9917±0.0046, which is in agreement with previous measurements of aqueous SO2 oxidation by iron solutions. This fractionation factor is representative of a radical chain reaction oxidation pathway initiated by transition metal ions. Oxidation on the dust surface at subsaturated relative humidity (RH had an overall fractionation factor of αhet = 1.0096±0.0036 and was found to be almost an order of magnitude faster when the dust was simultaneously exposed to ozone, light and RH of ~40%. However, the presence of ozone, light and humidity did not influence isotope fractionation during oxidation on dust surfaces at subsaturated relative humidity. All the investigated reactions showed mass-dependent fractionation of 33S relative to 34S. A positive matrix factorization model was used to investigate surface oxidation on the different components of dust. Ilmenite, rutile and iron oxide were found to be the most reactive components, accounting for 85% of sulfate production with a fractionation factor of α34 = 1.012±0.010. This overlaps within the analytical uncertainty with the fractionation of other major atmospheric oxidation pathways such as the oxidation of SO2 by H2O2 and O3 in the aqueous phase and OH in the gas phase. Clay minerals accounted for roughly 12% of the sulfate production, and oxidation on clay minerals

  6. Temperature Dependence in Homogeneous and Heterogeneous Nucleation

    Energy Technology Data Exchange (ETDEWEB)

    McGraw R. L.; Winkler, P. M.; Wagner, P. E.

    2017-08-01

    Heterogeneous nucleation on stable (sub-2 nm) nuclei aids the formation of atmospheric cloud condensation nuclei (CCN) by circumventing or reducing vapor pressure barriers that would otherwise limit condensation and new particle growth. Aerosol and cloud formation depend largely on the interaction between a condensing liquid and the nucleating site. A new paper published this year reports the first direct experimental determination of contact angles as well as contact line curvature and other geometric properties of a spherical cap nucleus at nanometer scale using measurements from the Vienna Size Analyzing Nucleus Counter (SANC) (Winkler et al., 2016). For water nucleating heterogeneously on silver oxide nanoparticles we find contact angles around 15 degrees compared to around 90 degrees for the macroscopically measured equilibrium angle for water on bulk silver. The small microscopic contact angles can be attributed via the generalized Young equation to a negative line tension that becomes increasingly dominant with increasing curvature of the contact line. These results enable a consistent theoretical description of heterogeneous nucleation and provide firm insight to the wetting of nanosized objects.

  7. Heterogeneous catalytic materials solid state chemistry, surface chemistry and catalytic behaviour

    CERN Document Server

    Busca, Guido

    2014-01-01

    Heterogeneous Catalytic Materials discusses experimental methods and the latest developments in three areas of research: heterogeneous catalysis; surface chemistry; and the chemistry of catalysts. Catalytic materials are those solids that allow the chemical reaction to occur efficiently and cost-effectively. This book provides you with all necessary information to synthesize, characterize, and relate the properties of a catalyst to its behavior, enabling you to select the appropriate catalyst for the process and reactor system. Oxides (used both as catalysts and as supports for cata

  8. Biochemical leaf traits as indicators of tolerance potential in tree species from the Brazilian Atlantic Forest against oxidative environmental stressors.

    Science.gov (United States)

    Brandão, Solange E; Bulbovas, Patricia; Lima, Marcos E L; Domingos, Marisa

    2017-01-01

    The tolerance potential against the oxidative injury in native plants from forest ecosystems affected by environmental stressors depends on how efficiently they keep their pro-oxidant/antioxidant balance. Great variations in plant tolerance are expected, highlighting the higher relevance of measuring biochemical leaf trait indicators of oxidative injury in species with similar functions in the forest than in single species. The use of this functional approach seems very useful in the Brazilian Atlantic Forest because it still holds high plant diversity and was the focus of this study. We aimed at determining the tolerance potential of tree species from the Atlantic Forest remnants in SE Brazil against multiple oxidative environmental stressors. We assumed that pioneer tree species are more tolerant against oxidative stress than non-pioneer tree species and that their tolerance potential vary spatially in response to distinct combined effects of oxidative environmental stressors. The study was carried out in three Atlantic Forest remnants, which differ in physiognomy, species composition, climatic characteristics and air pollution exposure. Leaves of three pioneer and three non-pioneer species were collected from each forest remnant during wet (January 2015) and dry periods (June 2015), for analyses of non-enzymatic and enzymatic antioxidants and oxidative injury indicators. Both hypotheses were confirmed. The pioneer tree species displayed biochemical leaf traits (e.g. high levels of ascorbic acid, glutathione and carotenoids and lower lipid peroxidation) that indicate their higher potential tolerance against oxidative environmental stressors than non-pioneer species. The biochemical leaf traits of both successional groups of species varied between the forest remnants, in response to a linear combination of oxidative environmental stressors, from natural (relative humidity and temperature) and anthropogenic sources (ozone and nitrogen dioxide). Copyright © 2016

  9. Exploring heterogeneous market hypothesis using realized volatility

    Science.gov (United States)

    Chin, Wen Cheong; Isa, Zaidi; Mohd Nor, Abu Hassan Shaari

    2013-04-01

    This study investigates the heterogeneous market hypothesis using high frequency data. The cascaded heterogeneous trading activities with different time durations are modelled by the heterogeneous autoregressive framework. The empirical study indicated the presence of long memory behaviour and predictability elements in the financial time series which supported heterogeneous market hypothesis. Besides the common sum-of-square intraday realized volatility, we also advocated two power variation realized volatilities in forecast evaluation and risk measurement in order to overcome the possible abrupt jumps during the credit crisis. Finally, the empirical results are used in determining the market risk using the value-at-risk approach. The findings of this study have implications for informationally market efficiency analysis, portfolio strategies and risk managements.

  10. Molecular heterogeneous catalysts derived from bipyridine-based organosilica nanotubes for C-H bond activation.

    Science.gov (United States)

    Zhang, Shengbo; Wang, Hua; Li, Mei; Han, Jinyu; Liu, Xiao; Gong, Jinlong

    2017-06-01

    Heterogeneous metal complex catalysts for direct C-H activation with high activity and durability have always been desired for transforming raw materials into feedstock chemicals. This study described the design and synthesis of one-dimensional organosilica nanotubes containing 2,2'-bipyridine (bpy) ligands in the framework (BPy-NT) and their post-synthetic metalation to provide highly active and robust molecular heterogeneous catalysts. By adjusting the ratios of organosilane precursors, very short BPy-NT with ∼50 nm length could be controllably obtained. The post-synthetic metalation of bipyridine-functionalized nanotubes with [IrCp*Cl(μ-Cl)] 2 (Cp* = η 5 -pentamethylcyclopentadienyl) and [Ir(cod)(OMe)] 2 (cod = 1,5-cyclooctadiene) afforded solid catalysts, IrCp*-BPy-NT and Ir(cod)-BPy-NT, which were utilized for C-H oxidation of heterocycles and cycloalkanes as well as C-H borylation of arenes. The cut-short nanotube catalysts displayed enhanced activities and durability as compared to the analogous homogeneous catalysts and other conventional heterogeneous catalysts, benefiting from the isolated active sites as well as the fast transport of substrates and products. After the reactions, a detailed characterization of Ir-immobilized BPy-NT via TEM, SEM, nitrogen adsorption, UV/vis, XPS, and 13 C CP MAS NMR indicated the molecular nature of the active species as well as stable structures of nanotube scaffolds. This study demonstrates the potential of BPy-NT with a short length as an integration platform for the construction of efficient heterogeneous catalytic systems for organic transformations.

  11. Revisiting Rebound Effects from Material Resource Use. Indications for Germany Considering Social Heterogeneity

    Directory of Open Access Journals (Sweden)

    Johannes Buhl

    2014-02-01

    Full Text Available In contrast to the original investigation by William Stanley Jevons, compensations of energy savings due to improved energy efficiency are mostly analyzed by providing energy consumption or greenhouse gas emissions. In support of a sustainable resource management, this paper analyzes so-called rebound effects based on resource use. Material flows and associated expenditures by households allow for calculating resource intensities and marginal propensities to consume. Marginal propensities to consume are estimated from data of the German Socio-Economic Panel (SOEP in order to account for indirect rebound effects for food, housing and mobility. Resource intensities are estimated in terms of total material requirements per household final consumption expenditures along the Classification of Individual Consumption according to Purpose (COICOP. Eventually, rebound effects are indicated on the basis of published saving scenarios in resource and energy demand for Germany. In sum, compensations due to rebound effects are lowest for food while the highest compensations are induced for mobility. This is foremost the result of a relatively high resource intensity of food and a relatively low resource intensity in mobility. Findings are provided by giving various propensity scenarios in order to cope with income differences in Germany. The author concludes that policies on resource conservation need to reconsider rebound effects under the aspect of social heterogeneity.

  12. Memory characteristics of an MOS capacitor structure with double-layer semiconductor and metal heterogeneous nanocrystals

    International Nuclear Information System (INIS)

    Ni Henan; Wu Liangcai; Song Zhitang; Hui Chun

    2009-01-01

    An MOS (metal oxide semiconductor) capacitor structure with double-layer heterogeneous nanocrystals consisting of semiconductor and metal embedded in a gate oxide for nonvolatile memory applications has been fabricated and characterized. By combining vacuum electron-beam co-evaporated Si nanocrystals and self-assembled Ni nanocrystals in a SiO 2 matrix, an MOS capacitor with double-layer heterogeneous nanocrystals can have larger charge storage capacity and improved retention characteristics compared to one with single-layer nanocrystals. The upper metal nanocrystals as an additional charge trap layer enable the direct tunneling mechanism to enhance the flat voltage shift and prolong the retention time. (semiconductor devices)

  13. Different arsenate and phosphate incorporation effects on the nucleation and growth of iron(III) (Hydr)oxides on quartz.

    Science.gov (United States)

    Neil, Chelsea W; Lee, Byeongdu; Jun, Young-Shin

    2014-10-21

    Iron(III) (hydr)oxides play an important role in the geochemical cycling of contaminants in natural and engineered aquatic systems. The ability of iron(III) (hydr)oxides to immobilize contaminants can be related to whether the precipitates form heterogeneously (e.g., at mineral surfaces) or homogeneously in solution. Utilizing grazing incidence small-angle X-ray scattering (GISAXS), we studied heterogeneous iron(III) (hydr)oxide nucleation and growth on quartz substrates for systems containing arsenate and phosphate anions. For the iron(III) only system, the radius of gyration (Rg) of heterogeneously formed precipitates grew from 1.5 to 2.5 (± 1.0) nm within 1 h. For the system containing 10(-5) M arsenate, Rg grew from 3.6 to 6.1 (± 0.5) nm, and for the system containing 10(-5) M phosphate, Rg grew from 2.0 to 4.0 (± 0.2) nm. While the systems containing these oxyanions had more growth, the system containing only iron(III) had the most nucleation events on substrates. Ex situ analyses of homogeneously and heterogeneously formed precipitates indicated that precipitates in the arsenate system had the highest water content and that oxyanions may bridge iron(III) hydroxide polymeric embryos to form a structure similar to ferric arsenate or ferric phosphate. These new findings are important because differences in nucleation and growth rates and particle sizes will impact the number of available reactive sites and the reactivity of newly formed particles toward aqueous contaminants.

  14. Trace metals in antifouling paint particles and their heterogeneous contamination of coastal sediments

    International Nuclear Information System (INIS)

    Singh, Nimisha; Turner, Andrew

    2009-01-01

    Antifouling paint residues collected from the hard-standings of a marine leisure boat facility have been chemically characterised. Scanning electron microscopy revealed distinct layers, many containing oxidic particles of Cu and Zn. Quantitative analysis indicated concentrations of Cu and Zn averaging about 300 and 100 mg g -1 , respectively, and small proportions of these metals ( -1 , respectively. Estuarine sediment collected near a boatyard contained concentrations of Cu and Zn an order of magnitude greater than respective concentrations in 'background' sediment, and mass balance calculations suggested that the former sample was contaminated by about 1% by weight of paint particles. Clearly, antifouling residues represent a highly significant, heterogeneous source of metallic contamination in the marine environment where boating activities occur.

  15. Intratumor and Intertumor Heterogeneity in Melanoma.

    Science.gov (United States)

    Grzywa, Tomasz M; Paskal, Wiktor; Włodarski, Paweł K

    2017-12-01

    Melanoma is a cancer that exhibits one of the most aggressive and heterogeneous features. The incidence rate escalates. A high number of clones harboring various mutations contribute to an exceptional level of intratumor heterogeneity of melanoma. It also refers to metastases which may originate from different subclones of primary lesion. Such component of the neoplasm biology is termed intertumor and intratumor heterogeneity. These levels of tumor heterogeneity hinder accurate diagnosis and effective treatment. The increasing number of research on the topic reflects the need for understanding limitation or failure of contemporary therapies. Majority of analyses concentrate on mutations in cancer-related genes. Novel high-throughput techniques reveal even higher degree of variations within a lesion. Consolidation of theories and researches indicates new routes for treatment options such as targets for immunotherapy. The demand for personalized approach in melanoma treatment requires extensive knowledge on intratumor and intertumor heterogeneity on the level of genome, transcriptome/proteome, and epigenome. Thus, achievements in exploration of melanoma variety are described in details. Particularly, the issue of tumor heterogeneity or homogeneity given BRAF mutations is discussed. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Trichloroethylene degradation by persulphate with magnetite as a heterogeneous activator in aqueous solution.

    Science.gov (United States)

    Ruan, Xiaoxin; Gu, Xiaogang; Lu, Shuguang; Qiu, Zhaofu; Sui, Qian

    2015-01-01

    Iron oxide-magnetite (Fe3O4) as a heterogeneous activator to activate persulphate anions (S2O8(2-)) for trichloroethylene (TCE) degradation was investigated in this study. The experimental results showed that TCE could be completely oxidized within 5 h by using 5 g L(-1) magnetite and 63 mM S2O8(2-), indicating the effectiveness of the process for TCE removal. Various factors of the process, including. (S2O8(2-) and magnetite dosages, and initial solution pH, were evaluated, and TCE degradation fitted well to the pseudo-first-order kinetic model. The calculated kinetic rate constant was increased with increasing S2O8(2-) and magnetite dosages, but it was independent of solution pH. In addition, the changes of magnetite morphology examined by scanning electron microscopy and X-ray powder diffraction, respectively, confirmed the slight corrosion with α-Fe2O3 coated on the magnetite surface. The probe compounds tests clearly identified the generation of the reactive oxygen species in the system. While the free radical quenching studies further demonstrated that •SO4- and •OH were the major radicals responsible for TCE degradation, whereas •O2- contributed less in the system, and therefore the roles of reactive oxygen species on TCE degradation mechanisms were proposed accordingly. To our best knowledge, this is the first time the performance and mechanism of magnetite-activated persulphate oxidation for TCE degradation are reported. The findings of this study provided a new insight into the heterogeneous catalysis mechanism and showed a great potential for the practical application of this technique in in situ TCE-contaminated groundwater remediation.

  17. Characteristics of oxide scale formed on Cu-bearing austenitic stainless steel during early stages of high temperature oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, Srinivasan, E-mail: swaminathan@kist.re.kr [Metallurgy & Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 136 791 (Korea, Republic of); Krishna, Nanda Gopala [Metallurgy & Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Kim, Dong-Ik, E-mail: dongikkim@kist.re.kr [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 136 791 (Korea, Republic of)

    2015-10-30

    Highlights: • Initial oxidation characteristics of Cu-bearing austenitic stainless steel at 650 °C were studied. • Strong segregation and oxidation of Mn and Nb were found in the entire oxide scale. • Surface coverage by metallic Cu-rich precipitates increases with exposure time. • Chemical heterogeneity of oxide scale revealed initial oxidation to be non-selective. • Fe-Cr and Mn-Cr mixed oxides were realized along with binary oxides of Fe, Cr and Mn. - Abstract: Oxide scale evolution on Cu-bearing austenitic stainless steel 304H at 650 °C, in ambient air, for exposure times 100, 300, 500 and 1000 h, has been investigated. Surface morphology and chemistry of the oxide scale grown were examined using SEM/EDX and XPS. The oxidation kinetics was determined by measuring the weight change using an electronic balance. At the initial stage, up to 500 h of exposure time, the oxidation rate was rapid due to surface reactions governed primarily by oxygen ingress, and then, dropped to a low rate after prolonged oxidation for 1000 h. The diffusion of reactants through the initially formed oxide scale limits the oxidation rate at longer times, thus, the progress of reaction followed the parabolic kinetics. The formed oxide scale was enriched significantly with segregation and subsequent oxidation of Nb, and finely dispersed metallic Cu particles. Within the time frame of oxidation, the oxide scale was mainly composed of mixed oxides such as FeCr{sub 2}O{sub 4} and MnCr{sub 2}O{sub 4} along with the binary oxides of Fe, Cr and Mn. Moreover, the precipitation fraction of Cu-rich particles on the oxide scale increased markedly with increase of exposure times. The chemical heterogeneity of oxide scale suggests that the oxidation occurred in a non-selective manner.

  18. Electrochemistry behavior of endogenous thiols on fluorine doped tin oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, Luciana; Molero, Leonard; Tapia, Ricardo A.; Rio, Rodrigo del; Valle, M. Angelica del; Antilen, Monica [Departamento de Quimica Inorganica, Facultad de Quimica, Pontificia Universidad Catolica de Chile, Av Vicuna Mackenna 4860, Casilla 306, Correo 22, Macul, Santiago (Chile); Armijo, Francisco, E-mail: jarmijom@uc.cl [Departamento de Quimica Inorganica, Facultad de Quimica, Pontificia Universidad Catolica de Chile, Av Vicuna Mackenna 4860, Casilla 306, Correo 22, Macul, Santiago (Chile)

    2011-10-01

    Highlights: > The first time that fluorine doped tin oxide electrodes are used for the electrooxidation of endogenous thiols. > Low potentials of electrooxidation were obtained for the different thiols. > The electrochemical behavior of thiols depends on the pH and the ionic electroactive species, the electrooxidation proceeds for a process of adsorption of electroactive species on FTO and high values the heterogeneous electron tranfer rate constant of the reaction were obtained. - Abstract: In this work the electrochemical behavior of different thiols on fluorine doped tin oxide (FTO) electrodes is reported. To this end, the mechanism of electrochemical oxidation of glutathione (GSH), cysteine (Cys), homocysteine (HCys) and acetyl-cysteine (ACys) at different pH was investigated. FTO showed electroactivity for the oxidation of the first three thiols at pH between 2.0 and 4.0, but under these conditions no acetyl-cysteine oxidation was observed on FTO. Voltammetric studies of the electro-oxidation of GSH, Cys and HCys showed peaks at about 0.35, 0.29, and 0.28 V at optimum pH 2.4, 2.8 and 3.4, respectively. In addition, this study demonstrated that GSH, Cys and HCys oxidation occurs when the zwitterion is the electro-active species that interact by adsorption on FTO electrodes. The overall reaction involves 4e{sup -}/4H{sup +} and 2e{sup -}/2H{sup +}, respectively, for HCys and for GSH and Cys and high heterogeneous electron transfer rate constants. Besides, the use of FTO for the determination of different thiols was evaluated. Experimental square wave voltammetry shows a linear current vs. concentrations response between 0.1 and 1.0 mM was found for HCys and GSH, indicating that these FTO electrodes are promising candidates for the efficient electrochemical determination of these endogenous thiols.

  19. Optimization of transesterification of rubber seed oil using heterogeneous catalyst calcium oxide

    Science.gov (United States)

    Inggrid, Maria; Kristanto, Aldi; Santoso, Herry

    2015-12-01

    Biodiesel is an alternative fuel manufactured with the help of alkali hydroxide catalyst through transesterification reaction of vegetable oil. This study aims to examine methods and the most suitable conditions for transesterification reaction producing biodiesel from crude rubber seed oil by varying process parameters such as the molar ratio of alcohol, CaO amount as the alkaline catalyst, and reaction time. The rubber seed oil has a high level of free fatty acid content, which means the use of homogenous alkaline catalyst gives some technological problems such as soap formation which leaded in difficulty in the separation and purification of the product. Calcium oxide (CaO) is one of the most favorable heterogeneous base catalysts because it's reusable, noncorrosive, and low cost. Pre-treatment was performed by acid esterification with H2SO4 as the catalyst to decrease the content of free fatty acid in the rubber seed oil, in this pretreatment process the 12% FFA of crude oil could be reduced to below 3% FFA. The product after esterification process was then transesterified by alkaline transesterification by varying process parameters to convert triglyceride into biodiesel. The study found that maximum curvature for biodiesel yield occurred at 9:1 molar ratio of alcohol, 5%w catalyst loading, and 3 hours reaction time. Design expert software is used to determine the optimum point from experimental data. The result showed that the optimum yield of methyl ester from transesterification was 73.5 % by mass with 0.69 degree of desirability. The yielded methyl ester was tested for its density, viscosity, acid number, and solubility to meet SNI requirement standards.

  20. Application of density functional theory to the nitric oxide heterogeneous reduction mechanism in the presence of hydroxyl and carbonyl groups

    International Nuclear Information System (INIS)

    Zhang, Hai; Jiang, Xiumin; Liu, Jiaxun; Shen, Jun

    2014-01-01

    Highlights: • The role of hydroxyl and carbonyl groups are studied on two modified zigzag models. • Energetics and kinetics for the proposed pathways are chiefly investigated. • New active sites are beneficial for NO adsorption and N-O bond dissociation. • The highly exothermicity of C(NCO) formation is helpful for CO 2 and N 2 elimination. - Abstract: Comprehensive theoretical calculations are carried out to investigate the nitric oxide (NO) heterogeneous reduction mechanism in the presence of hydroxyl (-OH) and carbonyl (>C=O) groups. Energetics (activation energy and thermochemistry data) and kinetics (thermal rate constant) for the proposed pathways are provided by density functional theory (DFT) and conventional transition state theory (TST), respectively. The role played by -OH and >C=O has been clarified. In the presence of -OH, four stepwise reactions with the highest energy barrier of 251.7 kJ/mol are found to produce new active sites. Subsequently, a number of elementary reactions with energy barrier below 116.1 kJ/mol take place to reduce NO. The role of > C=O is to yield NCO intermediate. The formation of NCO is highly exothermic with 709.4 kJ/mol, which contributes to the elimination of carbon dioxide (CO 2 ) and nitrogen (N 2 ). The discovered mechanism is consistent with previous experimental observation that NO heterogeneous reduction is enhanced due to the presence of oxygen

  1. Heterogeneous Catalysis of Polyoxometalate Based Organic–Inorganic Hybrids

    Directory of Open Access Journals (Sweden)

    Yuanhang Ren

    2015-03-01

    Full Text Available Organic–inorganic hybrid polyoxometalate (POM compounds are a subset of materials with unique structures and physical/chemical properties. The combination of metal-organic coordination complexes with classical POMs not only provides a powerful way to gain multifarious new compounds but also affords a new method to modify and functionalize POMs. In parallel with the many reports on the synthesis and structure of new hybrid POM compounds, the application of these compounds for heterogeneous catalysis has also attracted considerable attention. The hybrid POM compounds show noteworthy catalytic performance in acid, oxidation, and even in asymmetric catalytic reactions. This review summarizes the design and synthesis of organic–inorganic hybrid POM compounds and particularly highlights their recent progress in heterogeneous catalysis.

  2. Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: A review on heterogeneous catalysts and applications.

    Science.gov (United States)

    Zhao, Qingxia; Mao, Qiming; Zhou, Yaoyu; Wei, Jianhong; Liu, Xiaocheng; Yang, Junying; Luo, Lin; Zhang, Jiachao; Chen, Hong; Chen, Hongbo; Tang, Lin

    2017-12-01

    In recent years, advanced oxidation processes (AOPs), especially sulfate radical based AOPs have been widely used in various fields of wastewater treatment due to their capability and adaptability in decontamination. Recently, metal-free carbon materials catalysts in sulfate radical production has been more and more concerned because these materials have been demonstrated to be promising alternatives to conventional metal-based catalysts, but the review of metal-free catalysts is rare. The present review outlines the current state of knowledge on the generation of sulfate radical using metal-free catalysts including carbon nanotubes, graphene, mesoporous carbon, activated carbon, activated carbon fiber, nanodiamond. The mechanism such as the radical pathway and non-radical pathway, and factors influencing of the activation of sulfate radical was also be revealed. Knowledge gaps and research needs have been identified, which include the perspectives on challenges related to metal-free catalyst, heterogeneous metal-free catalyst/persulfate systems and their potential in practical environmental remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Catalysis by Design: Well-Defined Single-Site Heterogeneous Catalysts

    KAUST Repository

    Pelletier, Jeremie

    2016-03-09

    ConspectusHeterogeneous catalysis, a field important industrially and scientifically, is increasingly seeking and refining strategies to render itself more predictable. The main issue is due to the nature and the population of catalytically active sites. Their number is generally low to very low, their "acid strengths" or " redox properties" are not homogeneous, and the material may display related yet inactive sites on the same material. In many heterogeneous catalysts, the discovery of a structure-activity reationship is at best challenging. One possible solution is to generate single-site catalysts in which most, if not all, of the sites are structurally identical. Within this context and using the right tools, the catalyst structure can be designed and well-defined, to reach a molecular understanding. It is then feasible to understand the structure-activity relationship and to develop predictable heterogeneous catalysis. Single-site well-defined heterogeneous catalysts can be prepared using concepts and tools of surface organometallic chemistry (SOMC). This approach operates by reacting organometallic compounds with surfaces of highly divided oxides (or of metal nanoparticles). This strategy has a solid track record to reveal structure-activity relationship to the extent that it is becoming now quite predictable. Almost all elements of the periodical table have been grafted on surfaces of oxides (from simple oxides such as silica or alumina to more sophisticated materials regarding composition or porosity).Considering catalytic hydrocarbon transformations, heterogeneous catalysis outcome may now be predicted based on existing mechanistic proposals and the rules of molecular chemistry (organometallic, organic) associated with some concepts of surface sciences. A thorough characterization of the grafted metal centers must be carried out using tools spanning from molecular organometallic or surface chemistry. By selection of the metal, its ligand set, and the

  4. Protein oxidation in plant mitochondria as a stress indicator

    DEFF Research Database (Denmark)

    Møller, I.M.; Kristensen, B.K.

    2004-01-01

    oxidation of cysteine and methionine side chains is an important mechanism for regulating enzyme activity. Mitochondria from both mammalian and plant tissues contain a number of oxidised proteins, but the relative abundance of these post-translationally modified forms is as yet unknown......, as are the consequences of the modification for the properties and turnover time of the proteins. Specific proteins appear to be particularly vulnerable to oxidative carbonylation in the matrix of plant mitochondria; these include several enzymes of the Krebs cycle, glycine decarboxylase, superoxide dismutase and heat...... shock proteins. Plant mitochondria contain a number of different proteases, but their role in removing oxidatively damaged proteins is, as yet, unclear....

  5. Mapping soil heterogeneity using RapidEye satellite images

    Science.gov (United States)

    Piccard, Isabelle; Eerens, Herman; Dong, Qinghan; Gobin, Anne; Goffart, Jean-Pierre; Curnel, Yannick; Planchon, Viviane

    2016-04-01

    In the frame of BELCAM, a project funded by the Belgian Science Policy Office (BELSPO), researchers from UCL, ULg, CRA-W and VITO aim to set up a collaborative system to develop and deliver relevant information for agricultural monitoring in Belgium. The main objective is to develop remote sensing methods and processing chains able to ingest crowd sourcing data, provided by farmers or associated partners, and to deliver in return relevant and up-to-date information for crop monitoring at the field and district level based on Sentinel-1 and -2 satellite imagery. One of the developments within BELCAM concerns an automatic procedure to detect soil heterogeneity within a parcel using optical high resolution images. Such heterogeneity maps can be used to adjust farming practices according to the detected heterogeneity. This heterogeneity may for instance be caused by differences in mineral composition of the soil, organic matter content, soil moisture or soil texture. Local differences in plant growth may be indicative for differences in soil characteristics. As such remote sensing derived vegetation indices may be used to reveal soil heterogeneity. VITO started to delineate homogeneous zones within parcels by analyzing a series of RapidEye images acquired in 2015 (as a precursor for Sentinel-2). Both unsupervised classification (ISODATA, K-means) and segmentation techniques were tested. Heterogeneity maps were generated from images acquired at different moments during the season (13 May, 30 June, 17 July, 31 August, 11 September and 1 November 2015). Tests were performed using blue, green, red, red edge and NIR reflectances separately and using derived indices such as NDVI, fAPAR, CIrededge, NDRE2. The results for selected winter wheat, maize and potato fields were evaluated together with experts from the collaborating agricultural research centers. For a few fields UAV images and/or yield measurements were available for comparison.

  6. Biodiesel production using calcium manganese oxide as catalyst and different raw materials

    International Nuclear Information System (INIS)

    Dias, Joana Maia; Conceição Machado Alvim-Ferraz, Maria; Fonseca Almeida, Manuel; Méndez Díaz, José Diego; Sánchez Polo, Manuel; Rivera Utrilla, José

    2013-01-01

    Highlights: ► Biodiesel production using a calcium manganese oxide catalyst was studied. ► The active specie was Ca 0.9 Mn 0.1 O and its deactivation occurred by hydration. ► The studied catalyst presented lower activation temperature than CaO. ► Biodiesel production and quality using different raw materials is reported. ► Compared to the conventional process, biodiesel water content improved. - Abstract: The use of heterogeneous catalysts for biodiesel production aims to simplify the production process as well as to reduce purification costs and related environmental impacts. Calcium manganese oxide was recently identified by the authors as an interesting heterogeneous catalyst for biodiesel production from animal fat; however, the difference between this and other catalysts, the catalyst activation/deactivation mechanisms, its behaviour in the synthesis using different raw materials as well as the impacts of its use on product quality remained unclear. Therefore, the present work: (i) compared biodiesel production using calcium manganese oxide and other catalysts (CaO and NaOH); (ii) studied the reasons leading to activation/deactivation of the heterogeneous catalyst; (iii) analysed biodiesel heterogeneous synthesis using calcium manganese oxide and different raw materials (lard, waste frying oil and a mixture); and (iv) evaluated raw material and catalyst impact on the product quality. Considering the use of different catalysts, the results showed that, after 8 h of reaction, product purity was similar using the different catalysts, being 92.5 wt.% using both NaOH and calcium manganese oxide and 93.8 wt.% using CaO. The active species of the heterogeneous catalysts were CaO, in the case of calcinated calcium carbonate, and Ca 0.9 Mn 0.1 O, in the case of calcinated calcium manganese oxide. Because the deactivating species were different for both catalysts, the calcium manganese oxide required lower activation temperature, which should be an advantage

  7. Arsenic K-edge X-ray absorption near-edge spectroscopy to determine oxidation states of arsenic of a coastal aquifer–aquitard system

    International Nuclear Information System (INIS)

    Wang, Ya; Jiao, Jiu Jimmy; Zhu, Sanyuan; Li, Yiliang

    2013-01-01

    Determination of oxidation states of solid-phase arsenic in bulk sediments is a valuable step in the evaluation of its bioavailability and environmental fate in deposits, but is difficult when the sediments have low arsenic contents and heterogeneous distribution of arsenic species. As K-edge X-ray absorption near-edge spectroscopy (XANES) was used to determine quantitatively the oxidation states of arsenic in sediments collected from different depths of boreholes in the Pearl River Delta, China, where the highest aquatic arsenic concentration is 161.4 μg/L, but the highest solid arsenic content only 39.6 mg/kg. The results demonstrated that XANES is efficient in determining arsenic oxidation states of the sediments with low arsenic contents and multiple arsenic species. The study on the high-resolution vertical variations of arsenic oxidation states also indicated that these states are influenced strongly by groundwater activities. With the help of geochemical data, solid arsenic speciation, toxicity and availability were further discussed. -- Highlights: •XANES is efficient in determining arsenic oxidation states of the bulk sediments. •Distribution of arsenic oxidation states is consistent with geochemical conditions. •Arsenic oxidation states are influenced strongly by groundwater activities. -- As K-edge X-ray absorption near-edge spectroscopy is efficient in determining arsenic oxidation states of the bulk sediments with low arsenic contents and heterogeneous distribution of arsenic species

  8. Iron oxide hydroxide nanoflower assisted removal of arsenic from water

    Energy Technology Data Exchange (ETDEWEB)

    Raul, Prasanta Kumar, E-mail: prasanta.drdo@gmail.com [Defence Research Laboratory, Post Bag No. 2, Tezpur 784001, Assam (India); Devi, Rashmi Rekha; Umlong, Iohborlang M. [Defence Research Laboratory, Post Bag No. 2, Tezpur 784001, Assam (India); Thakur, Ashim Jyoti [Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, Assam (India); Banerjee, Saumen; Veer, Vijay [Defence Research Laboratory, Post Bag No. 2, Tezpur 784001, Assam (India)

    2014-01-01

    Graphical abstract: Non-magnetic polycrystalline iron oxide hydroxide nanoparticle with flower like morphology is found to play as an effective adsorbent media to remove As(III) from 300 μg L{sup −1} to less than 10 μg L{sup −1} from drinking water over wide range of pH. TEM image clearly reveals that the nanoparticle looks flower like morphology with average particle size less than 20 nm. The maximum sorption capacity of the sorbent is found to be 475 μg g{sup −1} for arsenic at room temperature and the data fitted to different isotherm models indicate the heterogeneity of the adsorbent surface. The material can be regenerated up to 70% using dilute hydrochloric acid and it would be utilized for de-arsenification purposes. - Highlights: • The work includes synthesis of iron oxide hydroxide nanoflower and its applicability for the removal of arsenic from water. • The nanoparticle was characterized using modern instrumental methods like FESEM, TEM, BET, XRD, etc. • The maximum sorption capacity of the sorbent is found to be 475 μg g{sup −1} for arsenic at room temperature. • The sorption is multilayered on the heterogeneous surface of the nano adsorbent. • The mechanism of arsenic removal of IOH nanoflower follows both adsorption and ion-exchange. - Abstract: Non-magnetic polycrystalline iron oxide hydroxide nanoparticle with flower like morphology is found to play as an effective adsorbent media to remove As(III) from 300 μg L{sup −1} to less than 10 μg L{sup −1} from drinking water over wide range of pH. The nanoparticle was characterized by X-ray powder diffraction analysis (XRD), BET surface area, FTIR, FESEM and TEM images. TEM image clearly reveals flower like morphology with average particle size less than 20 nm. The nanoflower morphology is also supported by FESEM images. The maximum sorption capacity of the sorbent is found to be 475 μg g{sup −1} for arsenic and the data fitted to different isotherm models indicate the

  9. Quantification of heterogeneity observed in medical images

    International Nuclear Information System (INIS)

    Brooks, Frank J; Grigsby, Perry W

    2013-01-01

    There has been much recent interest in the quantification of visually evident heterogeneity within functional grayscale medical images, such as those obtained via magnetic resonance or positron emission tomography. In the case of images of cancerous tumors, variations in grayscale intensity imply variations in crucial tumor biology. Despite these considerable clinical implications, there is as yet no standardized method for measuring the heterogeneity observed via these imaging modalities. In this work, we motivate and derive a statistical measure of image heterogeneity. This statistic measures the distance-dependent average deviation from the smoothest intensity gradation feasible. We show how this statistic may be used to automatically rank images of in vivo human tumors in order of increasing heterogeneity. We test this method against the current practice of ranking images via expert visual inspection. We find that this statistic provides a means of heterogeneity quantification beyond that given by other statistics traditionally used for the same purpose. We demonstrate the effect of tumor shape upon our ranking method and find the method applicable to a wide variety of clinically relevant tumor images. We find that the automated heterogeneity rankings agree very closely with those performed visually by experts. These results indicate that our automated method may be used reliably to rank, in order of increasing heterogeneity, tumor images whether or not object shape is considered to contribute to that heterogeneity. Automated heterogeneity ranking yields objective results which are more consistent than visual rankings. Reducing variability in image interpretation will enable more researchers to better study potential clinical implications of observed tumor heterogeneity

  10. Quantification of heterogeneity observed in medical images.

    Science.gov (United States)

    Brooks, Frank J; Grigsby, Perry W

    2013-03-02

    There has been much recent interest in the quantification of visually evident heterogeneity within functional grayscale medical images, such as those obtained via magnetic resonance or positron emission tomography. In the case of images of cancerous tumors, variations in grayscale intensity imply variations in crucial tumor biology. Despite these considerable clinical implications, there is as yet no standardized method for measuring the heterogeneity observed via these imaging modalities. In this work, we motivate and derive a statistical measure of image heterogeneity. This statistic measures the distance-dependent average deviation from the smoothest intensity gradation feasible. We show how this statistic may be used to automatically rank images of in vivo human tumors in order of increasing heterogeneity. We test this method against the current practice of ranking images via expert visual inspection. We find that this statistic provides a means of heterogeneity quantification beyond that given by other statistics traditionally used for the same purpose. We demonstrate the effect of tumor shape upon our ranking method and find the method applicable to a wide variety of clinically relevant tumor images. We find that the automated heterogeneity rankings agree very closely with those performed visually by experts. These results indicate that our automated method may be used reliably to rank, in order of increasing heterogeneity, tumor images whether or not object shape is considered to contribute to that heterogeneity. Automated heterogeneity ranking yields objective results which are more consistent than visual rankings. Reducing variability in image interpretation will enable more researchers to better study potential clinical implications of observed tumor heterogeneity.

  11. Combination of sunlight irradiated oxidative processes for landfill leachate: heterogeneous catalysis (TiO2 versus homogeneous catalysis (H2O2

    Directory of Open Access Journals (Sweden)

    Oswaldo Luiz Cobra Guimarães

    2013-04-01

    Full Text Available The objective of this work was to study the treatment of landfill leachate liquid in nature, after the use of a combination of advanced oxidation processes. More specifically, it compared heterogeneous catalysis with TiO2 to homogeneous catalysis with H2O2, both under photo-irradiated sunlight. The liquid used for the study was the leachate from the landfill of the city of Cachoeira Paulista, São Paulo State, Brazil. The experiments were conducted in a semi-batch reactor open to the absorption of solar UV radiation, with 120 min reaction time. The factors and their respective levels (-1, 0 and 1 were distributed in a experimental design 24-1 with duplicate and triplicate in the central point, resulting in an array with 19 treatment trials. The studied factors in comparing the two catalytic processes were: liquid leachate dilution, TiO2 concentration on the reactor plate, the H2O2 amount and pH level. The leachate had low photo-catalytic degradability, with NOPC reductions ranging from 1% to a maximum of 24.9%. When considering each factor alone, neither homogeneous catalysis with H2O2, nor heterogeneous catalysis with TiO2, could degrade the percolated liquid without significant reductions (5% level in total NOPC. On the other hand, the combined use of homogenous catalysis with H2O2 and heterogeneous catalysis H2O2 resulted in the greatest reductions in NOPC. The optimum condition for the NOPC reduction was obtained at pH 7, dilution of percolated:water at 1:1 (v v-1 rate; excess of 12.5% H2O2 and coating plate reactor with 0.025 g cm-2 TiO2.

  12. A heterogeneous Pd-Bi/C catalyst in the synthesis of L-lyxose and L-ribose from naturally occurring D-sugars.

    Science.gov (United States)

    Fan, Ao; Jaenicke, Stephan; Chuah, Gaik-Khuan

    2011-10-26

    A critical step in the synthesis of the rare sugars, L-lyxose and L-ribose, from the corresponding D-sugars is the oxidation to the lactone. Instead of conventional oxidizing agents like bromine or pyridinium dichromate, it was found that a heterogeneous catalyst, Pd-Bi/C, could be used for the direct oxidation with molecular oxygen. The composition of the catalyst was optimized and the best results were obtained with 5 : 1 atomic ratio of Pd : Bi. The overall yields of the five-step procedure to L-ribose and L-lyxose were 47% and 50%, respectively. The synthetic procedure is advantageous from the viewpoint of overall yield, reduced number of steps, and mild reaction conditions. Furthermore, the heterogeneous oxidation catalyst can be easily separated from the reaction mixture and reused with no loss of activity.

  13. Social capital and community heterogeneity

    NARCIS (Netherlands)

    Coffé, Hilde R.

    2009-01-01

    Abstract Recent findings indicate that more pronounced community heterogeneity is associated with lower levels of social capital. These studies, however, concentrate on specific aspects in which people differ (such as income inequality or ethnic diversity). In the present paper, we introduce the

  14. Current advances and trends in electro-Fenton process using heterogeneous catalysts - A review.

    Science.gov (United States)

    Poza-Nogueiras, Verónica; Rosales, Emilio; Pazos, Marta; Sanromán, M Ángeles

    2018-06-01

    Over the last decades, advanced oxidation processes have often been used alone, or combined with other techniques, for remediation of ground and surface water pollutants. The application of heterogeneous catalysis to electrochemical advanced oxidation processes is especially useful due to its efficiency and environmental safety. Among those processes, electro-Fenton stands out as the one in which heterogeneous catalysis has been broadly applied. Thus, this review has introduced an up-to-date collation of the current knowledge of the heterogeneous electro-Fenton process, highlighting recent advances in the use of different catalysts such as iron minerals (pyrite, magnetite or goethite), prepared catalysts by the load of metals in inorganic and organic materials, nanoparticles, and the inclusion of catalysts on the cathode. The effects of physical-chemical parameters as well as the mechanisms involved are critically assessed. Finally, although the utilization of this process to remediation of wastewater overwhelmingly outnumber other utilities, several applications have been described in the context of regeneration of adsorbent or the remediation of soils as clear examples of the feasibility of the electro-Fenton process to solve different environmental problems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Oxidized Single-Walled Carbon Nanotubes (SWCNs-COOH) as a ...

    African Journals Online (AJOL)

    Nano-materials are considered as suitable heterogeneous catalysts for many organic reactions. Herein oxidized carbon nanotube (SWCNTs-COOH) has been reported as a heterogeneous catalyst, for protection of carbonyl groups as hydrazones in EtOH at 80 °C. The reactions proceed smoothly with good to excellent ...

  16. Breast Cancer Redox Heterogeneity Detectable with Chemical Exchange Satruation Transfer (CEST) MRI

    Science.gov (United States)

    Cai, Kejia; Xu, He N.; Singh, Anup; Moon, Lily; Haris, Mohammad; Reddy, Ravinder; Li, Lin

    2014-01-01

    Purpose Tissue redox state is an important mediator of various biological processes in health and diseases such as cancer. Previously, we discovered that the mitochondrial redox state of ex vivo tissues detected by redox scanning (an optical imaging method) revealed interesting tumor redox state heterogeneity that could differentiate tumor aggressiveness. Because the noninvasive chemical exchange saturation transfer (CEST) MRI can probe the proton transfer and generate contrasts from endogenous metabolites, we aim to investigate if the in vivo CEST contrast is sensitive to proton transfer of the redox reactions so as to reveal the tissue redox states in breast cancer animal models. Procedures CEST MRI has been employed to characterize tumor metabolic heterogeneity and correlated with the redox states measured by the redox scanning in two human breast cancer mouse xenograft models, MDA-MB-231 and MCF-7. The possible biological mechanism on the correlation between the two imaging modalities was further investigated by phantom studies where the reductants and the oxidants of the representative redox reactions were measured. Results The CEST contrast is found linearly correlated with NADH concentration and the NADH redox ratio with high statistical significance, where NADH is the reduced form of nicotinamide adenine dinucleotide. The phantom studies showed that the reductants of the redox reactions have more CEST contrast than the corresponding oxidants, indicating that higher CEST effect corresponds to the more reduced redox state. Conclusions This preliminary study suggests that CEST MRI, once calibrated, might provide a novel noninvasive imaging surrogate for the tissue redox state and a possible diagnostic biomarker for breast cancer in the clinic. PMID:24811957

  17. Characterization of aerosol photooxidation flow reactors: heterogeneous oxidation, secondary organic aerosol formation and cloud condensation nuclei activity measurements

    Directory of Open Access Journals (Sweden)

    A. T. Lambe

    2011-03-01

    Full Text Available Motivated by the need to develop instrumental techniques for characterizing organic aerosol aging, we report on the performance of the Toronto Photo-Oxidation Tube (TPOT and Potential Aerosol Mass (PAM flow tube reactors under a variety of experimental conditions. The PAM system was designed with lower surface-area-to-volume (SA/V ratio to minimize wall effects; the TPOT reactor was designed to study heterogeneous aerosol chemistry where wall loss can be independently measured. The following studies were performed: (1 transmission efficiency measurements for CO2, SO2, and bis(2-ethylhexyl sebacate (BES particles, (2 H2SO4 yield measurements from the oxidation of SO2, (3 residence time distribution (RTD measurements for CO2, SO2, and BES particles, (4 aerosol mass spectra, O/C and H/C ratios, and cloud condensation nuclei (CCN activity measurements of BES particles exposed to OH radicals, and (5 aerosol mass spectra, O/C and H/C ratios, CCN activity, and yield measurements of secondary organic aerosol (SOA generated from gas-phase OH oxidation of m-xylene and α-pinene. OH exposures ranged from (2.0 ± 1.0 × 1010 to (1.8 ± 0.3 × 1012 molec cm−3 s. Where applicable, data from the flow tube reactors are compared with published results from the Caltech smog chamber. The TPOT yielded narrower RTDs. However, its transmission efficiency for SO2 was lower than that for the PAM. Transmission efficiency for BES and H2SO4 particles was size-dependent and was similar for the two flow tube designs. Oxidized BES particles had similar O/C and H/C ratios and CCN activity at OH exposures greater than 1011 molec cm−3 s, but different CCN activity at lower OH exposures. The O/C ratio, H/C ratio, and yield of m-xylene and α-pinene SOA was strongly affected by reactor design and

  18. Heterogeneous Catalysts for VOC Oxidation from Red Mud and Bagasse Ash Carbon

    Science.gov (United States)

    Pande, Gaurav

    A range of VOC oxidation catalysts have been prepared in this study from agricultural and industrial waste as the starting point. The aim is to prepare catalysts with non-noble metal oxides as the active catalytic component (iron in red mud). The same active component was also supported on activated carbon obtained from unburned carbon in bagasse ash. Red mud which is an aluminum industry waste and rich in different phases of iron as oxide and hydroxide is used as the source for the catalytically active species. It is our aim to enhance the catalytic performance of red mud which though high in iron concentration has a low surface area and may not have the properties of an ideal catalyst by itself. In one of the attempts to enhance the catalytic performance, we have tried to leach red mud for which we have explored a range of leaching acids for effecting the leaching most efficiently and then precipitated the iron from the leachate as its hydroxide by precipitating with alkali solution followed by drying and calcination to give high surface area metal oxide material. Extensive surface characterization and VOC oxidation catalytic testing were performed for these solids. In a step to further enhance the catalytic activity towards oxidation, copper was introduced by taking another industrial waste from the copper tubing industry viz. the pickling acid. Copper has a more favourable redox potential making it catalytically more effective than iron. To make the mixed metal oxide, red mud leachate was mixed with the pickling acid in a pre-decided ratio before precipitating with alkali solution followed by drying and calcination as was done with the red mud leachate. The results from these experiments are encouraging. The temperature programmed reduction (TPR) of the solids show that the precipitate of red mud leachates show hydrogen uptake peak at a lower temperature than for just the calcined red mud. This could be due to the greatly enhanced surface area of the prepared

  19. SUPPLEMENTARY INFORMATION Non-oxidative methane ...

    Indian Academy of Sciences (India)

    dell

    SUPPLEMENTARY INFORMATION. Non-oxidative methane dehydroaromatization reaction over highly active α-MoC1-x ZSM-5 derived from pretreatment. BUDDE PRADEEP KUMAR, ARVIND KUMAR SINGH and SREEDEVI UPADHYAYULA*. Heterogeneous Catalysis & Reaction Engineering Laboratory, Department of ...

  20. Advanced Heterogeneous Fenton Treatment of Coalbed Methane-Produced Water Containing Fracturing Fluid

    Directory of Open Access Journals (Sweden)

    Meng Zhang

    2018-04-01

    Full Text Available This study investigated the heterogeneous Fenton treatment to process coalbed methane-produced water containing fracturing fluid and chose the development region of coalbed methane in the Southern Qinshui Basin as a research area. We synthesized the catalyst of Fe-Co/γ-Al2O3 by homogeneous precipitation method and characterized it by BET, XRD, SEM-EDS, FTIR, and XPS. Based on the degradation rate, we studied the influences of the heterogeneous Fenton method on the coalbed methane output water treatment process parameters, including initial pH, H2O2 concentration, and the catalyst concentration. We also investigated the impacts of overall reaction kinetics of heterogeneous catalytic oxidation on coalbed methane-produced water containing fracturing fluid. Results showed that Fe-Co/γ-Al2O3 as a Fenton catalyst has a good catalytic oxidation effect and can effectively process coalbed methane-produced water. This reaction also followed first-order kinetics. The optimal conditions were as follows: the initial pH of 3.5, a H2O2 concentration of 40 mol L−1, a catalyst concentration of 4 g/L, and an apparent reaction rate constant of 0.0172 min−1. Our results provided a basis to establish methods for treating coalbed methane-produced water.

  1. Radiation influence on heterogenous processes in stainless steel contact with sea-water

    International Nuclear Information System (INIS)

    Agayev, T.N.; Garibov, A.A.; Velibekova, G.Z.; Aliyev, A.Q.; Aliyev, S.M.

    2005-01-01

    Full text: Austenitic stainless steel (s.s.) with Cr content 16 %, Ni - 15 % is widely used in nuclear reactors as construction material, for fuel cladding production and also is used in oil and gas production and transportation. They possess comparatively large section of slow neutron capture and as a result high corrosion resistance. In real exploitation condition of nuclear reactors s.s. are exposed to ionizing radiation influence in contact of different media. That's why during their corrosion and destruction processes the surface defect formation processes and further heterogenous processes with their participation are of great importance. The research results of mechanism during radiation-heterogenous processes in nuclear reactor stainless steel contact with sea-water under the influence of γ-radiation in temperature interval 300-1074 K are represented in the given work. Radiolytic processes in water are comprehensively studied and therefore it was taken as model system for dating the surface defects and secondary electrons emitted from metal. The same model system was applied also in sea-water radiolysis processes. It's been established that radiation processes in s.s. lead to molecular hydrogen yield increase and at T=300 K up to 6.5 molec./100 eV. With the temperature increase molecular hydrogen yield increase up to 25.3 molec./100 eV at T≤773 K. During the further temperature increase up to 1073 K radiation constituent of radiation-thermal process in comparison with thermal becomes unnoticeable and W T (H 2 )≅W p (H 2 ). The kinetics of oxide phase formation of investigated sample surface in the result of thermal and radiation-thermal processes in their contact with sea-water has been studied. At that it's been shown that radiation leads to protective oxidation process rate increase and promotes the beginning of stainless steel destruction oxidation in contact with sea-water. At T≥573 K insoluble oxide phase is formed on metal surface that promotes

  2. Effects of soluble flavin on heterogeneous electron transfer between surface-exposed bacterial cytochromes and iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zheming; Shi, Zhi; Shi, Liang; White, Gaye F.; Richardson, David J.; Clarke, Thomas A.; Fredrickson, Jim K.; Zachara, John M.

    2015-08-25

    Dissimilatory iron-reducing bacteria can utilize insoluble Fe(Mn)-oxides as a terminal electron acceptor under anaerobic conditions. For Shewanella species specifically, some evidence suggests that iron reduction is associated with the secretion of flavin mononucleotide (FMN) and riboflavin that are proposed to mediate electron transfer (Marsili et al., 2008). In this work, we used methyl viologen (MV•+)-encapsulated, porin-cytochrome complex (MtrCAB) embedded liposomes (MELs) as a synthetic model of the Shewanella outer membrane to investigate the proposed mediating behavior of secreted flavins. The reduction kinetics of goethite, hematite and lepidocrocite (200 µM) by MELs ([MV•+] ~ 42 µM and MtrABC ≤ 1 nM) were determined in the presence FMN at pH 7.0 in N2 atmosphere by monitoring the concentrations of MV•+ and FMN through their characteristic UV-visible absorption spectra. Experiments were performed where i) FMN and Fe(III)-oxide were mixed and then reacted with the reduced MELs and ii) FMN was reacted with the reduced MELs followed by addition of Fe(III)-oxide. The redox reactions proceeded in two steps: a fast step that was completed in a few seconds, and a slower one lasting over 400 seconds. For all three Fe(III)-oxides, the initial reaction rate in the presence of a low concentration of FMN (≤ 1 µM) was at least a factor of five faster than those with MELs alone, and orders of magnitude faster than those by FMNH2, suggesting that FMN may serve as a co-factor that enhances electron transfer from outer-membrane c-cytochromes to Fe(III)-oxides. The rate and extent of the initial reaction followed the order of lepidocrocite > hematite > goethite, the same as their reduction potentials, implying thermodynamic control on reaction rate. However, at higher FMN concentrations (> 1 µM), the reaction rates for both steps decreased and varied inversely with FMN concentration, indicating that FMN inhibited the MEL to Fe(III)-oxide electron transfer

  3. Heterogeneous recycling in SFR core periphery

    International Nuclear Information System (INIS)

    Varaine, Frederic; Buiron, Laurent; Boucher, Lionel; Chabert, Christine

    2008-01-01

    development, based on the one hand on the solutions offered by the existing fleet (reprocessing, fabrication and NPP) and on the other hand on the solutions offered by the future reactors of fourth generation. The scenario study considers the French nuclear park with a constant nuclear energy demand at 430 TWhe / year. The current nuclear park is replaced between 2020 and 2050 by a mixed nuclear park: 66 % of Generation III EPR reactors and 33% of Generation IV SFR. From 2080 to 2100, the EPR are replaced by SFR. The Plutonium is recycled in the fissile part of the SFR core. The separation of the minor actinides at the reprocessing step starts in 2038. The minor actinides are recycled in the radial blankets of the SFR from 2040 (10% content of MA). Those calculations are performed by the COSI code. The results indicate that the minor actinides inventory can be stabilized with the heterogeneous mode of transmutation using minor actinides in the radial blankets of the SFR. A minor actinides rate around 10% in the radial blankets is sufficient with the condition to involve 100 % of the SFR in the transmutation process. The minor actinides multi-recycling on a depleted uranium oxide matrix in radial blankets of SFR showed good results in terms of transmutation performances. This heterogeneous model allows a massive minor actinides loading while having almost no consequence on the core safety parameters and core fuel management. Two MA enrichment targets have been studied: an ambitious 40% case and a more realistic 10% case. The design of such assembly has to deal with criteria implying multi-physics analysis. The 10% MA content seems a good balance between transmutation performances and back/front end impact (neutrons source, decay heat,..) compared to the 40% content. Investigations, such as dedicated experimental material and fuel irradiation programs, are under process at CEA to set a global vision of an optimized system that can answer all these problems. (authors)

  4. New insights into the methodological issues of the indicator amino acid oxidation method in preterm neonates

    NARCIS (Netherlands)

    de Groof, F.; Huang, L.S.; Twisk, J.W.R.; Voortman, G.J.; Joemai, W.; Hau, C.H.; Schierbeek, H.; Chen, C.; Huang, Y.; van Goudoever, J.B.

    2013-01-01

    Background: We determined the effect of adaptation to the study diet on oxidation of the indicator amino acid and the required tracer washout time in preterms. Methods: Subjects received a study diet for 6 d that entailed a 50% reduction in leucine. Tracer studies using enterally infused [ 13

  5. Volcano Relation for the Deacon Process over Transition-Metal Oxides

    DEFF Research Database (Denmark)

    Studt, Felix; Abild-Pedersen, Frank; Hansen, Heine Anton

    2010-01-01

    We establish an activity relation for the heterogeneous catalytic oxidation of HCI (the Deacon Process) over rutile transition-metal oxide catalysts by combining density functional theory calculations (DFT) with microkinetic modeling. Linear energy relations for the elementary reaction steps...

  6. Treatment of liquid wastes from decontamination of nuclear power plants by heterogeneous photocatalysis

    International Nuclear Information System (INIS)

    Morgada, Maria Eugenia

    2002-01-01

    In nuclear power plants high radiation fields are produced, not only in the core but also in the auxiliary systems, due, mainly, to the activation of corrosion products by means of a mechanism known as 'Activity Transport'.With the purpose of reducing at minimum values the intensity of radiation fields and of avoiding the operative problems generated by the deposition of oxides in tanks and pipelines, it is necessary to remove the oxide films, carriers of activity, from the components in auxiliary systems in nuclear power plants and this is usually carried on by chemical cleaning.This process, known as decontamination, is done employing mixtures of oligocarboxilic acids such as NTA, EDTA, oxalic acid, citric acid, etc., at concentration nearly 1% and pH 3-4.The resulting liquid wastes of this process cannot be discharged directly to the environment but must be properly treated.Conventional treatments such as thermolysis, chemical oxidation and others show some problems and, in addition, some of these substances are resistant to degradation.Previous work done in the Unidad de Actividad Quimica del Centro Atomico Constituyentes (UAQ-CAC) indicated that Heterogeneous Photocatalysis, belonging to the Advanced Oxidation Technologies (AOTs), could be a useful procedure for the treatment of liquid decontamination wastes. This method consists on the irradiation of an aqueous suspension of a semiconductor, generally TiO 2 , containing the substrate to be degraded, employing wavelengths shorter than the semiconductor's 'band-gap'.In this way, oxidant and reducing molecules are generated.The advantages compared to other AOTs are its low cost, the ability to work at room temperature and pressure, it uses only oxygen as oxidizing agent and can be operated in 'batch' and continuum.In the present work we employed a recycling system, with a black-light tubular UV lamp (366nm) installed inside as the source of illumination, to study the degradation of oxalic and citric acid by

  7. Heterogeneous Photocatalysis: Recent Advances and Applications

    Directory of Open Access Journals (Sweden)

    Alex Omo Ibhadon

    2013-03-01

    Full Text Available Semiconductor heterogeneous photocatalysis, the subject of this review, is a versatile, low-cost and environmentally benign treatment technology for a host of pollutants. These may be of biological, organic and inorganic in origin within water and air. The efficient and successful application of photocatalysis demands that the pollutant, the catalyst and source of illumination are in close proximity or contact with each other. The ability of advanced oxidation technology to remove low levels of persistent organic pollutants as well as microorganisms in water has been widely demonstrated and, progressively, the technology is now being commercialized in many areas of the world including developing nations. This review considers recent developments in the research and application of heterogeneous semiconductor photocatalysis for the treatment of low-level concentrations of pollutants in water and air using titanium dioxide as a “model” semiconductor. The review considers charge transport characteristics on the semiconductor surface, photocatalyst reactor design and organic degradation mechanistic pathways. The effects of photoreactor operating parameters on the photocatalytic process are discussed in addition to mineralization and disinfection kinetics.

  8. Heterogeneous catalysis in the liquid-phase oxidation of olefins--3. The activity of supported vanadium-chromium binary oxide catalyst for the oxidation of cyclohexene

    Energy Technology Data Exchange (ETDEWEB)

    Takehira, K; Hayakawa, T; Ishikawa, T

    1979-03-01

    The activity of supported vanadium-chromium binary oxide catalyst for the oxidation of cyclohexene to 1-cyclohexenyl hydroperoxide, 2-cyclohexene-1-one, 2-cyclohexene-1-ol, and cyclohexene oxide was due to the interaction between the metal oxides and the carriers. The oxidation reaction was carried out in benzene at 60/sup 0/C for four hours with the binary oxide supported on (GAMMA)-alumina or silica; three series of catalysts were prepared by combining the vanadium and chromium oxide components with alumina hydrate or silica sol by a kneading method. The silica-supported catalysts had the greatest activity, the highest being the V/sub 2/O/sub 5//SiO/sub 2/ system, which lost its activity quickly during the reaction. This was followed in activity by the Cr/sub 2/O/sub 3//SiO/sub 2/ system, containing the chromium(V) species. The Cr/sub 2/O/sub 3//Al/sub 2/O/sub 3/ system also had high activity and the chromium(V) species. The vanadium and chromium metal ions are probably coordinated tetrahedrally on the support, and these complexes catalyze cyclohexene autoxidation by decomposing 1-cyclohexenyl hydroperoxide.

  9. Copper oxide as efficient catalyst for oxidative dehydrogenation of alcohols with air

    DEFF Research Database (Denmark)

    Poreddy, Raju; Engelbrekt, Christian; Riisager, Anders

    2015-01-01

    The oxidative dehydrogenation of alcohols to carbonyl compounds was studied using CuO nanoparticle catalysts prepared by solution synthesis in buffered media. CuO nanoparticles synthesized in N-cyclohexyl- 3-aminopropanesulfonic acid buffer showed high catalytic activity for the oxidation...... of benzylic, alicyclic and unsaturated alcohols to their corresponding carbonyl compounds with excellent selectivities. The observed trend in activity for conversion of substituted alcohols suggested a β-H elimination step to be involved, thus enabling a possible reaction mechanism for oxidative...... dehydrogenation of benzyl alcohols to be proposed. The use of CuO as an inexpensive and efficient heterogeneous catalyst under aerobic conditions provides a new noble metal-free and green reaction protocol for carbonyl compound synthesis....

  10. Radio-oxidative membrane damage and its possible role as an indicator of radiation exposure

    International Nuclear Information System (INIS)

    Amit Kumar; Pandey, B.N.; Mishra, K.P.

    2004-01-01

    Cellular membranes have been recognized as a sensitive target in the mechanism of ionizing radiation-induced cell killing. In our laboratory, studies have been devoted to investigations on gamma radiation induced oxidative damage to model and cellular membrane damage by employing fluorescence and electron spin resonance (ESR) methods Considerable evidences has accumulated to suggest that radiation induced oxidative damage was related to apoptotic death of a variety of cells in culture. Radiation induced damage involving lipid peroxidation, altered bilayer fluidity, permeability changes and intracellular generated ROS have been evaluated by chemical and physical methods. Modification of damage by structural modulating agents such as cholesterol and antioxidants such as eugenol, ascorbic acid, ellagic acid, triphala have been extensively investigated. Generation of intracellular ROS in radiation stressed normal cell e.g. mouse thymocytes, tumor cells e.g. Ehrlich ascites cells and human cervical cell line were evaluated after exposure from low to moderate doses of α-radiation. Results suggest that modulation of intracellular ROS level may be an important approach to alter radio-cytotoxicity of cells. This presentation would describe results of our study together with an overview of free radical mediated oxidative damage to cellular membrane as an indicator of radiation exposure. (author)

  11. Large epidemic thresholds emerge in heterogeneous networks of heterogeneous nodes

    Science.gov (United States)

    Yang, Hui; Tang, Ming; Gross, Thilo

    2015-08-01

    One of the famous results of network science states that networks with heterogeneous connectivity are more susceptible to epidemic spreading than their more homogeneous counterparts. In particular, in networks of identical nodes it has been shown that network heterogeneity, i.e. a broad degree distribution, can lower the epidemic threshold at which epidemics can invade the system. Network heterogeneity can thus allow diseases with lower transmission probabilities to persist and spread. However, it has been pointed out that networks in which the properties of nodes are intrinsically heterogeneous can be very resilient to disease spreading. Heterogeneity in structure can enhance or diminish the resilience of networks with heterogeneous nodes, depending on the correlations between the topological and intrinsic properties. Here, we consider a plausible scenario where people have intrinsic differences in susceptibility and adapt their social network structure to the presence of the disease. We show that the resilience of networks with heterogeneous connectivity can surpass those of networks with homogeneous connectivity. For epidemiology, this implies that network heterogeneity should not be studied in isolation, it is instead the heterogeneity of infection risk that determines the likelihood of outbreaks.

  12. Large epidemic thresholds emerge in heterogeneous networks of heterogeneous nodes.

    Science.gov (United States)

    Yang, Hui; Tang, Ming; Gross, Thilo

    2015-08-21

    One of the famous results of network science states that networks with heterogeneous connectivity are more susceptible to epidemic spreading than their more homogeneous counterparts. In particular, in networks of identical nodes it has been shown that network heterogeneity, i.e. a broad degree distribution, can lower the epidemic threshold at which epidemics can invade the system. Network heterogeneity can thus allow diseases with lower transmission probabilities to persist and spread. However, it has been pointed out that networks in which the properties of nodes are intrinsically heterogeneous can be very resilient to disease spreading. Heterogeneity in structure can enhance or diminish the resilience of networks with heterogeneous nodes, depending on the correlations between the topological and intrinsic properties. Here, we consider a plausible scenario where people have intrinsic differences in susceptibility and adapt their social network structure to the presence of the disease. We show that the resilience of networks with heterogeneous connectivity can surpass those of networks with homogeneous connectivity. For epidemiology, this implies that network heterogeneity should not be studied in isolation, it is instead the heterogeneity of infection risk that determines the likelihood of outbreaks.

  13. Homogenous and heterogenous advanced oxidation of two commercial reactive dyes.

    Science.gov (United States)

    Balcioglu, I A; Arslan, I; Sacan, M T

    2001-07-01

    Two commercial reactive dyes, the azo dye Reactive Black 5 and the copper phythalocyanine dye Reactive Blue 21, have been treated at a concentration of 75 mg l(-1) by titanium dioxide mediated photocatalytic (TiO2/UV), dark and UV-light assisted Fenton (Fe2+/H2O2) and Fenton-like (Fe3+/H2O2) processes in acidic medium. For the treatment of Reactive Black 5, all investigated advanced oxidation processes were quite effective in terms of colour, COD as well as TOC removal. Moreover, the relative growth inhibition of the azo dye towards the marine algae Dunaliella tertiolecta that was initially 70%, did not exhibit an increase during the studied advanced oxidation reactions and complete detoxification at the end of the treatment period could be achieved for all investigated treatment processes. However, for Reactive Blue 21, abatement in COD and UV-VIS absorbance values was mainly due to the adsorption of the dye on the photocatalyst surface and/or the coagulative effect of Fe3+/Fe2+ ions. Although only a limited fraction of the copper phythalocyanine dye underwent oxidative degradation, 47% of the total copper in the dye was already released after 1 h photocatalytic treatment.

  14. Acridine Orange Indicates Early Oxidation of Wood Cell Walls by Fungi

    Science.gov (United States)

    Carl J. Houtman; Peter Kitin; Jon C. D. Houtman; Kenneth E. Hammel; Christopher G. Hunt

    2016-01-01

    Colonization of wood blocks by brown and white rot fungi rapidly resulted in detectable wood oxidation, as shown by a reduced phloroglucinol response, a loss of autofluorescence, and acridine orange (AO) staining. This last approach is shown to provide a novel method for identifying wood oxidation. When lignin was mildly oxidized, the association between AO and lignin...

  15. Measuring the effects of heterogeneity on distributed systems

    Science.gov (United States)

    El-Toweissy, Mohamed; Zeineldine, Osman; Mukkamala, Ravi

    1991-01-01

    Distributed computer systems in daily use are becoming more and more heterogeneous. Currently, much of the design and analysis studies of such systems assume homogeneity. This assumption of homogeneity has been mainly driven by the resulting simplicity in modeling and analysis. A simulation study is presented which investigated the effects of heterogeneity on scheduling algorithms for hard real time distributed systems. In contrast to previous results which indicate that random scheduling may be as good as a more complex scheduler, this algorithm is shown to be consistently better than a random scheduler. This conclusion is more prevalent at high workloads as well as at high levels of heterogeneity.

  16. Heterogeneous Compression of Large Collections of Evolutionary Trees.

    Science.gov (United States)

    Matthews, Suzanne J

    2015-01-01

    Compressing heterogeneous collections of trees is an open problem in computational phylogenetics. In a heterogeneous tree collection, each tree can contain a unique set of taxa. An ideal compression method would allow for the efficient archival of large tree collections and enable scientists to identify common evolutionary relationships over disparate analyses. In this paper, we extend TreeZip to compress heterogeneous collections of trees. TreeZip is the most efficient algorithm for compressing homogeneous tree collections. To the best of our knowledge, no other domain-based compression algorithm exists for large heterogeneous tree collections or enable their rapid analysis. Our experimental results indicate that TreeZip averages 89.03 percent (72.69 percent) space savings on unweighted (weighted) collections of trees when the level of heterogeneity in a collection is moderate. The organization of the TRZ file allows for efficient computations over heterogeneous data. For example, consensus trees can be computed in mere seconds. Lastly, combining the TreeZip compressed (TRZ) file with general-purpose compression yields average space savings of 97.34 percent (81.43 percent) on unweighted (weighted) collections of trees. Our results lead us to believe that TreeZip will prove invaluable in the efficient archival of tree collections, and enables scientists to develop novel methods for relating heterogeneous collections of trees.

  17. Physiological heterogeneities in microbial populations and implications for physical stress tolerance

    DEFF Research Database (Denmark)

    Carlquist, Magnus; Fernandes, Rita Lencastre; Helmark, Søren

    2012-01-01

    Background: Traditionally average values of the whole population are considered when analysing microbial cell cultivations. However, a typical microbial population in a bioreactor is heterogeneous in most phenotypes measurable at a single-cell level. There are indications that such heterogeneity...

  18. Heterogeneous Fenton-like discoloration of methyl orange using Fe3O4/MWCNTs as catalyst: kinetics and Fenton-like mechanism

    Science.gov (United States)

    Xu, Huan-Yan; Wang, Yuan; Shi, Tian-Nuo; Zhao, Hang; Tan, Qu; Zhao, Bo-Chao; He, Xiu-Lan; Qi, Shu-Yan

    2018-03-01

    The kinetics and Fenton-like mechanism are two challenging tasks for heterogeneous Fenton-like catalytic oxidation of organic pollutants. In this study, three kinetic models were used for the kinetic studies of Fe3O4/MWCNTs-H2O2 Fenton-like reaction for MO degradation. The results indicated that this reaction followed the first-order kinetic model. The relationship of reaction rate constant and temperature followed the Arrhenius equation. The activation energy and frequency factor of this system were calculated as 8.2 kJ·mol-1 and 2.72 s-1, respectively. The quantifications of Fe ions dissolution and •OH radicals generation confirmed that the homogeneous and heterogeneous catalyses were involved in Fe3O4/MWCNTs-H2O2 Fenton-like reaction. The reaction rate constant was closely related with Fe ions dissolution and •OH radicals generation. Fe3O4/MWCNTs nanocomposites had typical ferromagnetic property and could be easily separated from solution by an external magnet after being used. Furthermore, Fe3O4/MWCNTs nanocomposites exhibited good stability and recyclability. Finally, the Fenton-like mechanisms on homogeneous and heterogeneous catalyses were described.

  19. Surface science and heterogeneous catalysis

    International Nuclear Information System (INIS)

    Somorjai, G.A.

    1980-05-01

    The catalytic reactions studied include hydrocarbon conversion over platinum, the transition metal-catalyzed hydrogenation of carbon monoxide, and the photocatalyzed dissociation of water over oxide surfaces. The method of combined surface science and catalytic studies is similar to those used in synthetic organic chemistry. The single-crystal models for the working catalyst are compared with real catalysts by comparing the rates of cyclopropane ring opening on platinum and the hydrogenation of carbon monoxide on rhodium single crystal surface with those on practical commercial catalyst systems. Excellent agreement was obtained for these reactions. This document reviews what was learned about heterogeneous catalysis from these surface science approaches over the past 15 years and present models of the active catalyst surface

  20. Oxidative dissolution of unirradiated Mimas MOX fuel (U/Pu oxides) in carbonated water under oxic and anoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Odorowski, Mélina [CEA/DEN/DTCD/SECM/LMPA, BP 17171, 30207 Bagnols-sur-Cèze Cedex (France); MINES ParisTech, PSL Research University, Centre de Géosciences, 35 rue St Honoré, 77305 Fontainebleau (France); Jégou, Christophe, E-mail: christophe.jegou@cea.fr [CEA/DEN/DTCD/SECM/LMPA, BP 17171, 30207 Bagnols-sur-Cèze Cedex (France); De Windt, Laurent [MINES ParisTech, PSL Research University, Centre de Géosciences, 35 rue St Honoré, 77305 Fontainebleau (France); Broudic, Véronique; Peuget, Sylvain; Magnin, Magali; Tribet, Magaly [CEA/DEN/DTCD/SECM/LMPA, BP 17171, 30207 Bagnols-sur-Cèze Cedex (France); Martin, Christelle [Agence nationale pour la gestion des déchets radioactifs (Andra), DRD/CM, 1-7 rue Jean-Monnet, 92298 Châtenay-Malabry Cedex (France)

    2016-01-15

    Few studies exist concerning the alteration of Mimas Mixed-OXide (MOX) fuel, a mixed plutonium and uranium oxide, and data is needed to better understand its behavior under leaching, especially for radioactive waste disposal. In this study, two leaching experiments were conducted on unirradiated MOX fuel with a strong alpha activity (1.3 × 10{sup 9} Bq.g{sub MOX}{sup −1} reproducing the alpha activity of spent MOX fuel with a burnup of 47 GWd·t{sub HM}{sup −1} after 60 years of decay), one under air (oxic conditions) for 5 months and the other under argon (anoxic conditions with [O{sub 2}] < 1 ppm) for one year in carbonated water (10{sup −2} mol L{sup −1}). For each experiment, solution samples were taken over time and Eh and pH were monitored. The uranium in solution was assayed using a kinetic phosphorescence analyzer (KPA), plutonium and americium were analyzed by a radiochemical route, and H{sub 2}O{sub 2} generated by the water radiolysis was quantified by chemiluminescence. Surface characterizations were performed before and after leaching using Scanning Electron Microscopy (SEM), Electron Probe Microanalyzer (EPMA) and Raman spectroscopy. Solubility diagrams were calculated to support data discussion. The uranium releases from MOX pellets under both oxic and anoxic conditions were similar, demonstrating the predominant effect of alpha radiolysis on the oxidative dissolution of the pellets. The uranium released was found to be mostly in solution as carbonate species according to modeling, whereas the Am and Pu released were significantly sorbed or precipitated onto the TiO{sub 2} reactor. An intermediate fraction of Am (12%) was also present as colloids. SEM and EPMA results indicated a preferential dissolution of the UO{sub 2} matrix compared to the Pu-enriched agglomerates, and Raman spectroscopy showed the Pu-enriched agglomerates were slightly oxidized during leaching. Unlike Pu-enriched zones, the UO{sub 2} grains were much more

  1. Enhanced heterogeneous photo-Fenton process modified by magnetite and EDDS: BPA degradation.

    Science.gov (United States)

    Huang, Wenyu; Luo, Mengqi; Wei, Chaoshuai; Wang, Yinghui; Hanna, Khalil; Mailhot, Gilles

    2017-04-01

    In this research, magnetite and ethylenediamine-N,N'-disuccinic acid (EDDS) are used in a heterogeneous photo-Fenton system in order to find a new way to remove organic contaminants from water. Influence of different parameters including magnetite dosage, EDDS concentration, H 2 O 2 concentration, and pH value were evaluated. The effect of different radical species including HO · and HO 2 · /O 2 ·- was investigated by addition of different scavengers into the system. The addition of EDDS improved the heterogeneous photo-Fenton degradation of bisphenol A (BPA) through the formation of photochemically efficient Fe-EDDS complex. This effect is dependent on the H 2 O 2 and EDDS concentrations and pH value. The high performance observed at pH 6.2 could be explained by the ability of O 2 ·- to generate Fe(II) from Fe(III) species reduction. GC-MS analysis suggested that the cleavage of the two benzene rings is the first degradation step followed by oxidation leading to the formation of the benzene derivatives. Then, the benzene ring was opened due to the attack of HO · radicals producing short-chain organic compounds of low molecular weight like glycerol and ethylene glycol. These findings regarding the capability of EDDS/magnetite system to promote heterogeneous photo-Fenton oxidation have important practical implications for water treatment technologies.

  2. Solar fuels generation and molecular systems: is it homogeneous or heterogeneous catalysis?

    Science.gov (United States)

    Artero, Vincent; Fontecave, Marc

    2013-03-21

    Catalysis is a key enabling technology for solar fuel generation. A number of catalytic systems, either molecular/homogeneous or solid/heterogeneous, have been developed during the last few decades for both the reductive and oxidative multi-electron reactions required for fuel production from water or CO(2) as renewable raw materials. While allowing for a fine tuning of the catalytic properties through ligand design, molecular approaches are frequently criticized because of the inherent fragility of the resulting catalysts, when exposed to extreme redox potentials. In a number of cases, it has been clearly established that the true catalytic species is heterogeneous in nature, arising from the transformation of the initial molecular species, which should rather be considered as a pre-catalyst. Whether such a situation is general or not is a matter of debate in the community. In this review, covering water oxidation and reduction catalysts, involving noble and non-noble metal ions, we limit our discussion to the cases in which this issue has been directly and properly addressed as well as those requiring more confirmation. The methodologies proposed for discriminating homogeneous and heterogeneous catalysis are inspired in part by those previously discussed by Finke in the case of homogeneous hydrogenation reaction in organometallic chemistry [J. A. Widegren and R. G. Finke, J. Mol. Catal. A, 2003, 198, 317-341].

  3. A Possible Indicator of Oxidative Damage in Smokers: (13Z)-Lycopene?

    Science.gov (United States)

    Graham, Daniel L; Lorenz, Mario; Young, Andrew J; Lowe, Gordon M

    2017-09-13

    In vitro, the gaseous phase of cigarette smoke is known to induce both isomerization and degradation of dietary carotenoids, such as β-carotene and lycopene. However, the effects of cigarette smoke on the composition of circulating lycopene in vivo are not well understood. In this study, we examined the lycopene profiles of plasma from non-smokers and smokers. No oxidative intermediates of lycopene that have been observed previously in vitro were detected in the plasma, but evidence of isomerization of the carotenoid was seen. Four geometric forms of lycopene were detected in the plasma of both smokers and non-smokers, namely the (5 Z ), (9 Z ), (13 Z ) and (all- E ) forms. The relative amounts of these isomers differed between the two cohorts and there was a significant difference ( p lycopene, and in the relative amounts of (13 Z ) and (all- E )-lycopene. The ratio of (all- E ):(13 Z )-lycopene was 0.84:1.00 in smokers compared to 1.04:1.00 in non-smokers. In smokers, the (13 Z )-isomer was generated in preference to the more thermodynamically stable (5 Z ) and (9 Z )-isomers. This mirrors the scenario seen in vitro, in which the formation of (13 Z )-lycopene was the main isomer that accompanied the depletion of (all- E ) lycopene, when exposed to cigarette smoke. The results suggest that the relative amount of (13 Z )-lycopene could be used as an indicator of oxidative damage to lycopene in vivo.

  4. Reaction-transport simulations of non-oxidative methane conversion with continuous hydrogen removal: Homogeneous-heterogeneous methane reaction pathways

    International Nuclear Information System (INIS)

    Li, Lin; Borry, Richard W.; Iglesia, Enrique

    2000-01-01

    Detailed kinetic-transport models were used to explore thermodynamic and kinetic barriers in the non-oxidative conversion of CH4 via homogeneous and homogeneous-heterogeneous pathways and the effects of continuous hydrogen removal and of catalytic sites on attainable yields of useful C2-C10 products. The homogeneous kinetic model combines separately developed models for low-conversion pyrolysis and for chain growth to form large aromatics and carbon. The H2 formed in the reaction decreases CH4 pyrolysis rates and equilibrium conversions and it favors the formation of lighter products. The removal of H2 along tubular reactors with permeable walls increases reaction rates and equilibrium CH4 conversions. C2-C10 yields reach values greater than 90 percent at intermediate values of dimensionless transport rates (delta=1-10), defined as the ratio hydrogen transport and methane conversion rates. Homogeneous reactions require impractical residence times, even with H2 removal, because of slow initiation and chain transfer rates. The introduction of heterogeneous chain initiation pathways using surface sites that form methyl radicals eliminates the induction period without influencing the homogeneous product distribution. Methane conversion, however, occurs predominately in the chain transfer regime, within which individual transfer steps and the formation of C2 intermediates become limited by thermodynamic constraints. Catalytic sites alone cannot overcome these constraints. Catalytic membrane reactors with continuous H2 removal remove these thermodynamic obstacles and decrease the required residence time. Reaction rates become limited by homogeneous reactions of C2 products to form C6+ aromatics. Higher delta values lead to subsequent conversion of the desired C2-C10 products to larger polynuclear aromatics. We conclude that catalytic methane pyrolysis at the low temperatures required for restricted chain growth and the elimination of thermodynamics constraints via

  5. Development of Molecular Catalysts to Bridge the Gap between Heterogeneous and Homogeneous Catalysts

    Science.gov (United States)

    Ye, Rong

    Catalysts, heterogeneous, homogeneous, and enzymatic, are comprised of nanometer-sized inorganic and/or organic components. They share molecular factors including charge, coordination, interatomic distance, bonding, and orientation of catalytically active atoms. By controlling the governing catalytic components and molecular factors, catalytic processes of a multichannel and multiproduct nature could be run in all three catalytic platforms to create unique end-products. Unifying the fields of catalysis is the key to achieving the goal of 100% selectivity in catalysis. Recyclable catalysts, especially those that display selective reactivity, are vital for the development of sustainable chemical processes. Among available catalyst platforms, heterogeneous catalysts are particularly well-disposed toward separation from the reaction mixture via filtration methods, which renders them readily recyclable. Furthermore, heterogeneous catalysts offer numerous handles - some without homogeneous analogues - for performance and selectivity optimization. These handles include nanoparticle size, pore profile of porous supports, surface ligands and interface with oxide supports, and flow rate through a solid catalyst bed. Despite these available handles, however, conventional heterogeneous catalysts are themselves often structurally heterogeneous compared to homogeneous catalysts, which complicates efforts to optimize and expand the scope of their reactivity and selectivity. Ongoing efforts are aimed to address the above challenge by heterogenizing homogeneous catalysts, which can be defined as the modification of homogeneous catalysts to render them in a separable (solid) phase from the starting materials and products. Specifically, we grow the small nanoclusters in dendrimers, a class of uniform polymers with the connectivity of fractal trees and generally radial symmetry. Thanks to their dense multivalency, shape persistence and structural uniformity, dendrimers have proven to

  6. Kinetics of oxidic phase dissolution in acids

    International Nuclear Information System (INIS)

    Gorichev, I.G.; Kipriyanov, N.A.

    1981-01-01

    The critical analysis of the experimental data on dissolution kinetics of metal oxides (BeO, V 2 O 5 , UO 2 , Nb 2 O 5 , Ta 2 O 5 etc.) in acid media is carried out. Kinetic peculiarities of oxide dissolution are explained on the basis of the notions of electron- proton theory. It is established that the surface nonstoichiometric ccomposition of oxide phase and potential jump, appearing on the interface of the oxide-electrolyte phase are the important factors, determining the dissolution rate of a solid phase. The dissolution rate of metal oxides is limited by the transition of protons into the solid oxide phase. Morphological models of heterogeneous kinetics are used when explaining kinetic regularities of oxide dissolution process [ru

  7. A Nth-order linear algorithm for extracting diffuse correlation spectroscopy blood flow indices in heterogeneous tissues.

    Science.gov (United States)

    Shang, Yu; Yu, Guoqiang

    2014-09-29

    Conventional semi-infinite analytical solutions of correlation diffusion equation may lead to errors when calculating blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements in tissues with irregular geometries. Very recently, we created an algorithm integrating a N th-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in homogenous tissues with arbitrary geometries for extraction of BFI (i.e., αD B ). The purpose of this study is to extend the capability of the N th-order linear algorithm for extracting BFI in heterogeneous tissues with arbitrary geometries. The previous linear algorithm was modified to extract BFIs in different types of tissues simultaneously through utilizing DCS data at multiple source-detector separations. We compared the proposed linear algorithm with the semi-infinite homogenous solution in a computer model of adult head with heterogeneous tissue layers of scalp, skull, cerebrospinal fluid, and brain. To test the capability of the linear algorithm for extracting relative changes of cerebral blood flow (rCBF) in deep brain, we assigned ten levels of αD B in the brain layer with a step decrement of 10% while maintaining αD B values constant in other layers. Simulation results demonstrate the accuracy (errors model simplifies data analysis, thus allowing for online data processing and displaying. Future study will test this linear algorithm in heterogeneous tissues with different levels of blood flow variations and noises.

  8. CFD analysis of a solid oxide fuel cell with internal reforming: Coupled interactions of transport, heterogeneous catalysis and electrochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Janardhanan, Vinod M.; Deutschmann, Olaf [Institute for Chemical Technology and Polymer Chemistry, Engesserstr. 20, D-76131 Karlsruhe, University of Karlsruhe (TH) (Germany)

    2006-11-22

    Direct internal reforming in solid oxide fuel cell (SOFC) results in increased overall efficiency of the system. Present study focus on the chemical and electrochemical process in an internally reforming anode supported SOFC button cell running on humidified CH{sub 4} (3% H{sub 2} O). The computational approach employs a detailed multi-step model for heterogeneous chemistry in the anode, modified Butler-Volmer formalism for the electrochemistry and Dusty Gas Model (DGM) for the porous media transport. Two-dimensional elliptic model equations are solved for a button cell configuration. The electrochemical model assumes hydrogen as the only electrochemically active species. The predicted cell performances are compared with experimental reports. The results show that model predictions are in good agreement with experimental observation except the open circuit potentials. Furthermore, the steam content in the anode feed stream is found to have remarkable effect on the resulting overpotential losses and surface coverages of various species at the three-phase boundary. (author)

  9. CFD analysis of a solid oxide fuel cell with internal reforming: Coupled interactions of transport, heterogeneous catalysis and electrochemical processes

    Science.gov (United States)

    Janardhanan, Vinod M.; Deutschmann, Olaf

    Direct internal reforming in solid oxide fuel cell (SOFC) results in increased overall efficiency of the system. Present study focus on the chemical and electrochemical process in an internally reforming anode supported SOFC button cell running on humidified CH 4 (3% H 2 O). The computational approach employs a detailed multi-step model for heterogeneous chemistry in the anode, modified Butler-Volmer formalism for the electrochemistry and Dusty Gas Model (DGM) for the porous media transport. Two-dimensional elliptic model equations are solved for a button cell configuration. The electrochemical model assumes hydrogen as the only electrochemically active species. The predicted cell performances are compared with experimental reports. The results show that model predictions are in good agreement with experimental observation except the open circuit potentials. Furthermore, the steam content in the anode feed stream is found to have remarkable effect on the resulting overpotential losses and surface coverages of various species at the three-phase boundary.

  10. Yolk-shell gold nanoparticles as model materials for support-effect studies in heterogeneous catalysis: Au, @C and Au, @ZrO2 for CO oxidation as an example.

    Science.gov (United States)

    Galeano, Carolina; Güttel, Robert; Paul, Michael; Arnal, Pablo; Lu, An-Hui; Schüth, Ferdi

    2011-07-18

    The use of nanostructured yolk-shell materials offers a way to discriminate support and particle-size effects for mechanistic studies in heterogeneous catalysis. Herein, gold yolk-shell materials have been synthesized and used as model catalysts for the investigation of support effects in CO oxidation. Carbon has been selected as catalytically inert support to study the intrinsic activity of the gold nanoparticles, and for comparison, zirconia has been used as oxidic support. Au, @C materials have been synthesized through nanocasting using two different nonporous-core@mesoporous-shell exotemplates: Au@SiO(2)@ZrO(2) and Au@SiO(2)@m-SiO(2). The catalytic activity of Au, @C with a gold core of about 14 nm has been evaluated and compared with Au, @ZrO(2) of the same gold core size. The strong positive effect of metal oxide as support material on the activity of gold has been proved. Additionally, size effects were investigated using carbon as support to determine only the contribution of the nanoparticle size on the catalytic activity of gold. Therefore, Au, @C with a gold core of about 7 nm was studied showing a less pronounced positive effect on the activity than the metal oxide support effect. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Trends in reactivity of oxides

    DEFF Research Database (Denmark)

    Toftelund, Anja

    The results in this thesis are based on Density Functional Theory calculations. The catalytic activity of oxides and other compound materials are investigated. It is found that the adsorption energy of the molecules NH2, NH, OH and SH on transition metal nitride, oxide and sulfide surfaces scales......, and I) and OH on a wide range of rutile oxide surfaces. Furthermore, Brønsted-Evans-Polanyi (BEP) relations are found for the adsorption of a large number of molecules (including Cl, Br and I) on transition metal oxides. In these relations the activation energies scale linearly with the dissociative...... chemisorption energies. It turns out that the BEP relation for rutile oxides is almost coinciding with the dissociation line, i.e. no barrier exists for the reactive surfaces. The heterogeneous catalytic oxidation of hydrogen halides (HCl, HBr, and HI) is investigated. A micro-kinetic model is solved...

  12. Kinetic Modeling of a Heterogeneous Fenton Oxidative Treatment of Petroleum Refining Wastewater

    Science.gov (United States)

    Basheer Hasan, Diya'uddeen; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri

    2014-01-01

    The mineralisation kinetics of petroleum refinery effluent (PRE) by Fenton oxidation were evaluated. Within the ambit of the experimental data generated, first-order kinetic model (FKM), generalised lumped kinetic model (GLKM), and generalized kinetic model (GKM) were tested. The obtained apparent kinetic rate constants for the initial oxidation step (k 2′), their final oxidation step (k 1′), and the direct conversion to endproducts step (k 3′) were 10.12, 3.78, and 0.24 min−1 for GKM; 0.98, 0.98, and nil min−1 for GLKM; and nil, nil, and >0.005 min−1 for FKM. The findings showed that GKM is superior in estimating the mineralization kinetics. PMID:24592152

  13. Heat indicators of oxidative stress, inflammation and metal transport show dependence of cadmium pollution history in the liver of female zebrafish.

    Science.gov (United States)

    Zhu, Qing-Ling; Guo, Sai-Nan; Yuan, Shuang-Shuang; Lv, Zhen-Ming; Zheng, Jia-Lang; Xia, Hu

    2017-10-01

    Environmental stressors such as high temperature and metal exposure may occur sequentially, simultaneously, previously in aquatic ecosystems. However, information about whether responses to high temperature depend on Cd exposure history is still unknown in fish. Zebrafish were exposed to 0 (group 1), 2.5 (group 2) and 5μg/L (group 3) cadmium (Cd) for 10 weeks, and then each group was subjected to Cd-free water maintained at 26°C and 32°C for 7days respectively. 26 indicators were used to compare differences between 26°C and 32°C in the liver of female zebrafish, including 5 biochemical indicators (activity of Cu/Zn-SOD, CAT and iNOS; LPO; MT protein), 8 molecular indicators of oxidative stress (mRNA levels of Nrf2, Cu/Zn-SOD, CAT, HSF1, HSF2, HSP70, MTF-1 and MT), 5 molecular indicators of inflammation (mRNA levels of IL-6, IL-1β, TNF-α, iNOS and NF-κB), 8 molecular indicators of metal transport (mRNA levels of, ZnT1, ZnT5, ZIP8, ZIP10, ATP7A, ATP7B and CTR1). All biochemical indicators were unchanged in group 1 and changed in group 2 and 3. Contrarily, differences were observed in almost all of molecular indicators of inflammation and metal transport in group 1, about half in group 2, and few in group 3. We also found that all molecular indicators of oxidative stress in group 2 and fewer in group 1 and 3 were significantly affected by heat. Our data indicated that heat indicators of oxidative stress, inflammation and metal transport showed dependence of previous cadmium exposure in the liver of zebrafish, emphasizing metal pollution history should be carefully considered when evaluating heat stress in fish. Copyright © 2017. Published by Elsevier B.V.

  14. Heterogeneous Materials I and Heterogeneous Materials II

    International Nuclear Information System (INIS)

    Knowles, K M

    2004-01-01

    In these two volumes the author provides a comprehensive survey of the various mathematically-based models used in the research literature to predict the mechanical, thermal and electrical properties of hetereogeneous materials, i.e., materials containing two or more phases such as fibre-reinforced polymers, cast iron and porous ceramic kiln furniture. Volume I covers linear properties such as linear dielectric constant, effective electrical conductivity and elastic moduli, while Volume II covers nonlinear properties, fracture and atomistic and multiscale modelling. Where appropriate, particular attention is paid to the use of fractal geometry and percolation theory in describing the structure and properties of these materials. The books are advanced level texts reflecting the research interests of the author which will be of significant interest to research scientists working at the forefront of the areas covered by the books. Others working more generally in the field of materials science interested in comparing predictions of properties with experimental results may well find the mathematical level quite daunting initially, as it is apparent that the author assumes a level of mathematics consistent with that taught in final year undergraduate and graduate theoretical physics courses. However, for such readers it is well worth persevering because of the in-depth coverage to which the various models are subjected, and also because of the extensive reference lists at the back of both volumes which direct readers to the various source references in the scientific literature. Thus, for the wider materials science scientific community the two volumes will be a valuable library resource. While I would have liked to see more comparison with experimental data on both ideal and 'real' heterogeneous materials than is provided by the author and a discussion of how to model strong nonlinear current--voltage behaviour in systems such as zinc oxide varistors, my overall

  15. Distinction of heterogeneity on Au nanostructured surface based on phase contrast imaging of atomic force microscopy

    International Nuclear Information System (INIS)

    Jung, Mi; Choi, Jeong-Woo

    2010-01-01

    The discrimination of the heterogeneity of different materials on nanostructured surfaces has attracted a great deal of interest in biotechnology as well as nanotechnology. Phase imaging through tapping mode of atomic force microscopy (TMAFM) can be used to distinguish the heterogeneity on a nanostructured surface. Nanostructures were fabricated using anodic aluminum oxide (AAO). An 11-mercaptoundecanoic acid (11-MUA) layer adsorbed onto the Au nanodots through self-assembly to improve the bio-compatibility. The Au nanostructures that were modified with 11-MUA and the concave surfaces were investigated using the TMAFM phase images to compare the heterogeneous and homogeneous nanostructured surfaces. Although the topography and phase images were taken simultaneously, the images were different. Therefore, the contrast in the TMAFM phase images revealed the different compositional materials on the heterogeneous nanostructure surface.

  16. Heat transfer in heterogeneous propellant combustion systems

    International Nuclear Information System (INIS)

    Brewster, M.Q.

    1992-01-01

    This paper reports that heat transfer plays an important role in several critical areas of heterogeneous, solid-propellant combustion systems. These areas include heat feedback to the propellant surface, heat transfer between burning aluminum droplets and their surroundings, heat transfer to internal insulation systems, and heat transfer to aft-end equipment. Gas conduction dominates heat feedback to the propellant surface in conventional ammonium perchlorate (AP) composite propellants, although particle radiative feedback also plays a significant role in combustion of metalized propellants. Particle radiation plays a dominant role in heat transfer to internal insulation, compared with that of convection. However, conduction by impingement of burning aluminum particles, which has not been extensively studied, may also be significant. Radiative heat loss plays an important role in determining the burning rate of molten aluminum particles due to a highly luminous, oxide particle-laden, detached flame envelope. Radiation by aluminum oxide smoke particles also plays a dominant role in heat transfer from the exhaust plume to aft-end equipment. Uncertainties in aluminum oxide particle-size distribution and optical properties still make it difficult to predict radiative plume heat transfer accurately from first principles

  17. Effects of compositional heterogeneity and nanoporosity of raw and treated biomass-generated soot on adsorption and absorption of organic contaminants

    International Nuclear Information System (INIS)

    Chen Baoliang; Huang Wenhai

    2011-01-01

    A biomass-generated soot was sequentially treated by HCl-HF solution, organic solvent, and oxidative acid to remove ash, extractable native organic matter (EOM), and amorphous carbon. The compositional heterogeneity and nano-structure of the untreated and treated soot samples were characterized by elemental analysis, thermal gravimetric analysis, BET-N 2 surface area, and electron microscopic analysis. Sorption properties of polar and nonpolar organic pollutants onto the soot samples were compared, and individual contributions of adsorption and absorption were quantified. The sorption isotherms for raw sample were practically linear, while were nonlinear for the pretreated-soot. The removal of EOM enhanced adsorption and reduced absorption, indicating that EOM served as a partitioning phase and simultaneously masked the adsorptive sites. By drastic-oxidation, the outer amorphous carbon and the inner disordered core of the soot particles were completely removed, and a fullerene-like nanoporous structure (aromatic shell) was created, which promoted additional π-π interaction between phenanthrene and the soot. - Graphical abstract: The dual sorptive nature of the biomass-generated soot, i.e., the adsorptive effect of the carbonized soot fraction and the partition effect of the amorphous soot component. Research highlights: → The biomass-generated soot owns the heterogeneous compositions and nano-structures. → The soot exhibits the dual sorptive nature, i.e., adsorption and absorption. → Removal of the amorphous component weakens absorption, but strengthens adsorption. → The exposed adsorptive sites with highly aromatic nature promotes π-π interaction. → The dual sorptive nature of the soot depends on the various soot components. - The compositional heterogeneity and nano-structure play a regulating role in the adsorption and absorption of organic contaminants with the untreated and treated soot samples.

  18. Modelling of the partial oxidation of {alpha}, {beta}-unsaturated aldehydes on Mo-V-oxides based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Boehnke, H.; Petzoldt, J.C.; Stein, B.; Weimer, C.; Gaube, J.W. [Technische Univ. Darmstadt (Germany). Inst. fuer Chemische Technologie

    1998-12-31

    A kinetic model based on the Mars-van Krevelen mechanism that allows to describe the microkinetics of the heterogeneously catalysed partial oxidation of {alpha}, {beta}-unsaturated aldehydes is presented. This conversion is represented by a network, composed of the oxidation of the {alpha}, {beta}-unsaturated aldehyde towards the {alpha}, {beta}-unsaturated carboxylic acid and the consecutive oxidation of the acid as well as the parallel reaction of the aldehyde to products of deeper oxidation. The reaction steps of aldehyde respectively acid oxidation and catalyst reoxidation have been investigated separately in transient experiments. The combination of steady state and transient experiments has led to an improved understanding of the interaction of the catalyst with the aldehyde and the carboxylic acids as well as to a support of the kinetic model assumptions. (orig.)

  19. 48Ca HETEROGENEITY IN DIFFERENTIATED METEORITES

    International Nuclear Information System (INIS)

    Chen, Hsin-Wei; Lee, Typhoon; Lee, Der-Chuen; Shen, Jason Jiun-San; Chen, Jiang-Chang

    2011-01-01

    Isotopic heterogeneities of 48 Ca have been found in numerous bulk meteorites that are correlated with 50 Ti and 54 Cr anomalies among differentiated planetary bodies, and the results suggest that a rare subset of neutron-rich Type Ia supernova (nSN Ia) was responsible for contributing these neutron-rich iron-group isotopes into the solar system (SS). The heterogeneity of these isotopes found in differentiated meteorites indicates that the isotopic compositions of the bulk SS are not uniform, and there are significant amounts of nSNe Ia dust incompletely mixed with the rest of SS materials during planetary formation. Combined with the data of now-extinct short-lived nuclide 60 Fe, which can be produced more efficiently from an nSN Ia than a Type II supernova ejecta, the observed planetary-scale isotopic heterogeneity probably reflects a late input of stellar dust grains with neutron-rich nuclear statistical equilibrium nuclides into the early SS.

  20. Assembly-level analysis of heterogeneous Th–Pu PWR fuel

    International Nuclear Information System (INIS)

    Zainuddin, Nurjuanis Zara; Parks, Geoffrey T.; Shwageraus, Eugene

    2017-01-01

    Highlights: • We directly compare homogeneous and heterogeneous Th–Pu fuel. • Examine whether there is an increase in Pu incineration in the latter. • Homogeneous fuel was able to achieve much higher Pu incineration. • In the heterogeneous case, U-233 breeding is faster (larger power fraction), thus decreasing incineration of Pu. - Abstract: This study compares homogeneous and heterogeneous thorium–plutonium (Th–Pu) fuel assemblies (with high Pu content – 20 wt%), and examines whether there is an increase in Pu incineration in the latter. A seed-blanket configuration based on the Radkowsky thorium reactor concept is used for the heterogeneous assembly. This separates the thorium blanket from the uranium seed, or in this case a plutonium seed. The seed supplies neutrons to the subcritical thorium blanket which encourages the in situ breeding and burning of "2"3"3U, allowing the fuel to stay critical for longer, extending burnup of the fuel. While past work on Th–Pu seed-blanket units shows superior Pu incineration compared to conventional U–Pu mixed oxide fuel, there is no literature to date that directly compares the performance of homogeneous and heterogeneous Th–Pu assembly configurations. Use of exactly the same fuel loading for both configurations allows the effects of spatial separation to be fully understood. It was found that the homogeneous fuel with and without burnable poisons was able to achieve much higher Pu incinerations than the heterogeneous fuel configurations, while still attaining a reasonably high discharge burnup. This is because in the heterogeneous cases, "2"3"3U breeding is faster, thereby contributing to a much larger fraction of total power produced by the assembly. In contrast, "2"3"3U build-up is slower in the homogeneous case and therefore Pu burning is greater. This "2"3"3U begins to contribute a significant fraction of power produced only towards the end of life, thus extending criticality, allowing more Pu to

  1. Catalytic oxidation for treatment of ECLSS and PMMS waste streams. [Process Material Management Systems

    Science.gov (United States)

    Akse, James R.; Thompson, John; Scott, Bryan; Jolly, Clifford; Carter, Donald L.

    1992-01-01

    Catalytic oxidation was added to the baseline multifiltration technology for use on the Space Station Freedom in order to convert low-molecular weight organic waste components such as alcohols, aldehydes, ketones, amides, and thiocarbamides to CO2 at low temperature (121 C), thereby reducing the total organic carbon (TOC) to below 500 ppb. The rate of reaction for the catalytic oxidation of aqueous organics to CO2 and water depends primarily upon the catalyst, temperature, and concentration of reactants. This paper describes a kinetic study conducted to determine the impact of each of these parameters upon the reaction rate. The results indicate that a classic kinetic model, the Langmuir-Hinshelwood rate equation for heterogeneous catalysis, can accurately represent the functional dependencies of this rate.

  2. Effect of heterogeneities on evaluating earthquake triggering of volcanic eruptions

    Directory of Open Access Journals (Sweden)

    J. Takekawa

    2013-02-01

    Full Text Available Recent researches have indicated coupling between volcanic eruptions and earthquakes. Some of them calculated static stress transfer in subsurface induced by the occurrences of earthquakes. Most of their analyses ignored the spatial heterogeneity in subsurface, or only took into account the rigidity layering in the crust. On the other hand, a smaller scale heterogeneity of around hundreds of meters has been suggested by geophysical investigations. It is difficult to reflect that kind of heterogeneity in analysis models because accurate distributions of fluctuation are not well understood in many cases. Thus, the effect of the ignorance of the smaller scale heterogeneity on evaluating the earthquake triggering of volcanic eruptions is also not well understood. In the present study, we investigate the influence of the assumption of homogeneity on evaluating earthquake triggering of volcanic eruptions using finite element simulations. The crust is treated as a stochastic media with different heterogeneous parameters (correlation length and magnitude of velocity perturbation in our simulations. We adopt exponential and von Karman functions as spatial auto-correlation functions (ACF. In all our simulation results, the ignorance of the smaller scale heterogeneity leads to underestimation of the failure pressure around a chamber wall, which relates to dyke initiation. The magnitude of the velocity perturbation has a larger effect on the tensile failure at the chamber wall than the difference of the ACF and the correlation length. The maximum effect on the failure pressure in all our simulations is about twice larger than that in the homogeneous case. This indicates that the estimation of the earthquake triggering due to static stress transfer should take account of the heterogeneity of around hundreds of meters.

  3. A distributed scheduling algorithm for heterogeneous real-time systems

    Science.gov (United States)

    Zeineldine, Osman; El-Toweissy, Mohamed; Mukkamala, Ravi

    1991-01-01

    Much of the previous work on load balancing and scheduling in distributed environments was concerned with homogeneous systems and homogeneous loads. Several of the results indicated that random policies are as effective as other more complex load allocation policies. The effects of heterogeneity on scheduling algorithms for hard real time systems is examined. A distributed scheduler specifically to handle heterogeneities in both nodes and node traffic is proposed. The performance of the algorithm is measured in terms of the percentage of jobs discarded. While a random task allocation is very sensitive to heterogeneities, the algorithm is shown to be robust to such non-uniformities in system components and load.

  4. Spatial Heterogeneity of the Forest Canopy Scales with the Heterogeneity of an Understory Shrub Based on Fractal Analysis

    Directory of Open Access Journals (Sweden)

    Catherine K. Denny

    2017-04-01

    Full Text Available Spatial heterogeneity of vegetation is an important landscape characteristic, but is difficult to assess due to scale-dependence. Here we examine how spatial patterns in the forest canopy affect those of understory plants, using the shrub Canada buffaloberry (Shepherdia canadensis (L. Nutt. as a focal species. Evergreen and deciduous forest canopy and buffaloberry shrub presence were measured with line-intercept sampling along ten 2-km transects in the Rocky Mountain foothills of west-central Alberta, Canada. Relationships between overstory canopy and understory buffaloberry presence were assessed for scales ranging from 2 m to 502 m. Fractal dimensions of both canopy and buffaloberry were estimated and then related using box-counting methods to evaluate spatial heterogeneity based on patch distribution and abundance. Effects of canopy presence on buffaloberry were scale-dependent, with shrub presence negatively related to evergreen canopy cover and positively related to deciduous cover. The effect of evergreen canopy was significant at a local scale between 2 m and 42 m, while that of deciduous canopy was significant at a meso-scale between 150 m and 358 m. Fractal analysis indicated that buffaloberry heterogeneity positively scaled with evergreen canopy heterogeneity, but was unrelated to that of deciduous canopy. This study demonstrates that evergreen canopy cover is a determinant of buffaloberry heterogeneity, highlighting the importance of spatial scale and canopy composition in understanding canopy-understory relationships.

  5. The mechanism of degradation of bisphenol A using the magnetically separable CuFe_2O_4/peroxymonosulfate heterogeneous oxidation process

    International Nuclear Information System (INIS)

    Xu, Yin; Ai, Jia; Zhang, Hui

    2016-01-01

    Highlights: • Copper ferrite (CuFe_2O_4) was fabricated and utilized in heterogeneous PMS process. • The influence of reaction parameters for the mineralization of BPA were evaluated. • Possible reaction mechanism and the stability of CuFe_2O_4 were investigated. • Surface bound radicals (mainly ·OH) may be responsible for the BPA degradation. - Abstract: The removal of bisphenol A (BPA) in aqueous solution by an oxidation process involving peroxymonosulfate (PMS) activated by CuFe_2O_4 magnetic nanoparticles (MNPs) is reported herein. The effects of PMS concentration, CuFe_2O_4 dosage, initial pH, initial BPA concentration, catalyst addition mode, and anions (Cl"−, F"−, ClO_4"− and H_2PO_4"−) on BPA degradation were investigated. Results indicate that nearly complete removal of BPA (50 mg/L) within 60 min and 84.0% TOC removal in 120 min could be achieved at neutral pH by using 0.6 g/L CuFe_2O_4 MNPs and 0.3 g/L PMS. The generation of reactive radicals (mainly hydroxyl radicals) was confirmed using electron paramagnetic resonance (EPR). Possible mechanisms on the radical generation from CuFe_2O_4/PMS system are proposed based on the results of radical identification tests and XPS analysis. The lack of inhibition of the reaction by free radical scavengers such as methanol and tert-butyl alcohol suggests that these species may not be generated in the bulk solution, and methylene blue probe experiments confirm that this process does not involve free radical generation. Surface-bound, rather than free radicals generated by a surface catalyzed-redox cycle involving both Fe(III) and Cu(II), are postulated to be responsible for the mineralization of bisphenol A.

  6. Synthesis of fatty acid methyl ester from crude jatropha (Jatropha curcas Linnaeus) oil using aluminium oxide modified Mg-Zn heterogeneous catalyst.

    Science.gov (United States)

    Olutoye, M A; Hameed, B H

    2011-06-01

    The synthesis of fatty acid methyl esters (FAME) as a substitute to petroleum diesel was investigated in this study from crude jatropha oil (CJO), a non-edible, low-cost alternative feedstock, using aluminium modified heterogeneous basic oxide (Mg-Zn) catalyst. The transesterification reaction with methanol to methyl esters yielded 94% in 6h with methanol-oil ratio of 11:1, catalyst loading of 8.68 wt.% at 182°C and the properties of CJO fuel produced were determine and found to be comparable to the standards according to ASTM. In the range of experimental parameters investigated, it showed that the catalyst is selective to production of methyl esters from oil with high free fatty acid (FFA) and water content of 7.23% and 3.28%, respectively in a single stage process. Thus, jatropha oil is a promising feedstock for methyl ester production and large scale cultivation will help to reduce the product cost. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Evaluation of haemato-biochemical and oxidative indices in naturally infected concomitant tick borne intracellular diseases in dogs

    Directory of Open Access Journals (Sweden)

    Kalyan Sarma

    2015-01-01

    Full Text Available Objective: To explore haemato-biochemical and oxidative stress indices due to concomitant tick borne intracellular diseases in dogs presented at Referral Veterinary Polyclinic, Indian Veterinary Research Institute, Bareilly during May 2010 to May 2012. Methods: Microscopy of Giemsa blood smear and ELISA test (SNAP 4D伊 were carried out in suspected cases to confirm haemo-parasitic infection. Blood and serum samples were analyzed for oxidative stress indices and haemato-biochemical changes. All the ailing conditions were recorded to investigate the clinical pattern of concomitant tick borne diseases. Ultrasonographic study was carried out to obtain the hepatic involvement. Results: Examination of 3 650 dogs revealed that 2.77% dog were positive for various tick borne diseases, out of which 21.78% were with concomitant infection. Clinical symptoms were noted with overall mean clinical score of 9.95依0.30. Ultrasonographic examination revealed hepatomegaly, distension of gall bladder, and ascites. Haemato-biochemical evaluation confirmed anaemia, leucopenia, thrombocytopenia, hypoproteinemia, hypoalbuminemia, hyperglobulinemia and hyperbilirubinemia with increased serum alanine amino transferase, alkaline phosphatase and gamma-glutamyl transpeptidase in concomitant infected dogs. The lipid peroxidation level of concomitant infection was significantly higher (P<0.05 than healthy group whereas superoxide dismutase, glutathione-reduced and catalase activity in concomitant infected group were decreased. Conclusions: The severity of infection was more pronounced in dogs harboring Ehrlichia, Babesia and Hepatozoon and the oxidative stress may have a pathophysiological role in concomitant infection in dogs.

  8. Heterogeneous biomimetic catalysis using iron porphyrin for cyclohexane oxidation promoted by chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Guan, E-mail: huangg66@126.com; Liu, Yao; Cai, Jing Li; Chen, Xiang Feng; Zhao, Shu Kai; Guo, Yong An; Wei, Su Juan; Li, Xu

    2017-04-30

    Graphical abstract: A biomimetic catalyst of iron-tetrakis(4-sulfonatophenyl)porphyrin immobilized on powdered chitosan achieves efficient cyclohexane oxidation with high ketone and alcohol yields. - Highlights: • Fe (TPPS)/pd-CTS is an excellent catalyst for cyclohexane oxidation. • Amino ligation alters the electron cloud density around the iron cation. • Amino coordination likely reduces the activation energy of Fe (TPPS). • The catalyst achieved 22.9 mol% yields of cyclohexanone and cyclohexanol. - Abstract: This study investigates how ligands modulate metalloporphyrin activity with the goal of producing a practical biomimetic catalyst for use in the chemical industry. We immobilized iron porphyrinate [iron-tetrakis-(4-sulfonatophenyl)-porphyrin; Fe(III) (TPPS)] on powdered chitosan (pd-CTS) to form an immobilized catalyst Fe(III) (TPPS)/pd-CTS, which was characterized using modern spectroscopic techniques and used for catalytic oxidation of cyclohexane with O{sub 2}. Amino coordination to iron porphyrin in Fe(III) (TPPS)/pd-CTS altered the electron cloud density around the iron cation, probably by reducing the activation energy of Fe(III) (TPPS) and raising the reactivity of the iron ion catalytic center, thereby improving the catalytic efficiency. One milligram of Fe(III) (TPPS) catalyst can be reused three times for the oxidation reaction to yield an average of 22.9 mol% of cyclohexanone and cyclohexanol.

  9. A novel tandem Betti/Ullmann oxidation reaction as an efficient route ...

    Indian Academy of Sciences (India)

    Betti reaction; cross-coupling reaction; oxidation; heterogeneous catalysis. Abstract. A novel tandem Betti/Ullmann/oxidation reaction was used for synthesis of new oxazepine derivatives containing kojic acid. This protocol ... This method provides a new and useful strategy for the construction of heterocycles. Also novel Betti ...

  10. Skill Heterogeneity in Startups and its Development over Time

    DEFF Research Database (Denmark)

    Kaiser, Ulrich; Müller, Bettina

    2015-01-01

    We study how startup teams are assembled in terms of team member human capital characteristics. To this end, we derive a statistically motivated benchmark for new venture team heterogeneity in terms of observed team member characteristics to generate stylized facts about team member diversity...... at startup and how it evolves as the new venture matures. We use the population of Danish startups that were established in 1998 and track them until 2001. Main findings are that teams are relatively more homogeneous at startup compared to our benchmark, indicating that difficulties associated with workforce...... heterogeneity (like affective conflict or coordination cost) as well as “homophily” (people’s inclination to bound with others with similar characteristics) may overweigh the benefits of heterogeneity. While workforce heterogeneity does increase over time, the increase is smaller compared to our benchmark...

  11. Handling preference heterogeneity for river services' adaptation to climate change.

    Science.gov (United States)

    Andreopoulos, Dimitrios; Damigos, Dimitrios; Comiti, Francesco; Fischer, Christian

    2015-09-01

    Climate projection models for the Southern Mediterranean basin indicate a strong drought trend. This pattern is anticipated to affect a range of services derived from river ecosystems and consecutively deteriorate the sectoral outputs and household welfare. This paper aims to evaluate local residents' adaptation preferences for the Piave River basin in Italy. A Discrete Choice Experiment accounting for adaptation scenarios of the Piave River services was conducted and the collected data were econometrically analyzed using Random Parameters Logit, Latent Class and Covariance Heterogeneity models. In terms of policy-relevant outcomes, the analysis indicates that respondents are willing to pay for adaptation plans. This attitude is reflected on the compensating surplus to sustain the current state of the Piave, which corresponds to a monthly contribution of 80€ per household. From an econometric point of view, the results show that it is not sufficient to take solely into account general heterogeneity, provided that distinct treatment of the heterogeneity produces rather different welfare estimates. This implies that analysts should examine a set of criteria when deciding on how to better approach heterogeneity for each empirical data set. Overall, non-market values of environmental services should be considered when formulating cost-effective adaptation measures for river systems undergoing climate change effects and appropriate heterogeneity approximation could render these values unbiased and accurate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Problems of selectivity in liquid-phase oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Emanuel, N M

    1978-07-01

    Based on a kinetic analysis of a generalized scheme for radical-chain process and on published experimental results, factors determining the selectivities of various liquid-phase oxidations of organic compounds are examined, including the kinetic chain length, molecular and chain decomposition of products, and competing routes in the initiated oxidation or autoxidation of hydrocarbons to peroxides. Also discussed are selective inhibition of undesirable routes in chain reactions, e.g., styrene and acetaldehyde co-oxidation; activation of molecular oxygen by variable-valence metal compounds used as homogeneous catalysts; modeling of fermentative processes by oxidation of hydrocarbons in complex catalytic systems, e.g., hydroxylation of alkanes, epoxidation or carbonylation of olefins, or oxidation of alcohols and ketones to acids; and the mechanisms of heterogeneous catalysis in liquid-phase reactions, e.g., oxidation of alkylaromatic hydrocarbons to peroxides and co-oxidation of propylene and acetaldehyde.

  13. Gene expression, glutathione status and indicators of hepatic oxidative stress in laughing gull (Larus atricilla) hatchlings exposed to methylmercury

    Science.gov (United States)

    Jenko, Kathryn; Karouna-Renier, Natalie K.; Hoffman, David J.

    2012-01-01

    Despite extensive studies of methylmercury (MeHg) toxicity in birds, molecular effects on birds are poorly characterized. To improve our understanding of toxicity pathways and identify novel indicators of avian exposure to Hg, the authors investigated genomic changes, glutathione status, and oxidative status indicators in liver from laughing gull (Larus atricilla) hatchlings that were exposed in ovo to MeHg (0.05–1.6 µg/g). Genes involved in the transsulfuration pathway, iron transport and storage, thyroid-hormone related processes, and cellular respiration were identified by suppression subtractive hybridization as differentially expressed. Quantitative polymerase chain reaction (qPCR) identified statistically significant effects of Hg on cytochrome C oxidase subunits I and II, transferrin, and methionine adenosyltransferase RNA expression. Glutathione-S-transferase activity and protein-bound sulfhydryl levels decreased, whereas glucose-6-phosphate dehydrogenase activity increased dose-dependently. Total sulfhydryl concentrations were significantly lower at 0.4 µg/g Hg than in controls. T ogether, these endpoints provided some evidence of compensatory effects, but little indication of oxidative damage at the tested doses, and suggest that sequestration of Hg through various pathways may be important for minimizing toxicity in laughing gulls. This is the first study to describe the genomic response of an avian species to Hg. Laughing gulls are among the less sensitive avian species with regard to Hg toxicity, and their ability to prevent hepatic oxidative stress may be important for surviving levels of MeHg exposures at which other species succumb.

  14. Contribution to the identification of the processes kinetically limiting of the zirconium alloys oxidation; characterization of the oxide films formed at high temperature by solids electrochemistry

    International Nuclear Information System (INIS)

    Vermoyal, J.J.

    2000-06-01

    The corrosion behavior of zirconium alloys used for cladding tubes has been extensively studied under several oxidation conditions (temperature, steam, dry air, oxygen...) in order to clarify the mechanism(s) of oxide growth and breakdown. Oxidation rate is generally assumed to be controlled by oxygen diffusion inwards the oxide layer. Nevertheless, several experimental facts, such as acceleration or inhibition of corrosion rate in coupling conditions, suggest that electrochemical processes are involved as a rate determining step. This work is an attempt to shed light about the rate-limiting-mechanism of two zirconium alloys oxidation: Zircaloy-4 (Zy-4) and Zr-Nb(1%)O(0,13%). Impedance spectroscopy characterizations of oxide films formed in high temperature water and studied in gaseous atmosphere clearly show the difference of electrical properties between the two alloys. The in situ electrochemical and thermogravimetric investigations in gaseous medium, and the polarization effects on oxidation and hydridation of Zr alloys in PWRs conditions indicate that oxygen diffusion can be considered as the limiting kinetic step for Zy-4 oxidation. On the contrary, the acceleration of oxide growth on Zr-Nb(1%)O(0,13%) under anodic polarization in PWRs conditions (360 deg C) suggests that either the electronic conductivity in the oxide or an interfacial process at least partially control the oxidation rate. Catalytic effects observed in gaseous medium when noble metals increase the oxygen reduction rate would tend to corroborate the oxidation control of this alloy by an interfacial mechanism. An electrochemical description and a heterogeneous kinetics approach based on a diffusion-interfacial process as rate determining step are then proposed. (author)

  15. A field-scale test of in situ chemical oxidation through recirculation

    International Nuclear Information System (INIS)

    West, O.R.; Cline, S.R.; Holden, W.L.; Gardner, F.G.; Schlosser, B.M.; Siegrist, R.L.; Houk, T.C.

    1998-01-01

    In situ chemical oxidation is a developing class of remediation technologies in which organic contaminants are degraded in place by powerful oxidants. Successful implementation of this technology requires an effective means for dispersing the oxidant to contaminated regions in the subsurface. An oxidant delivery technique has been developed wherein the treatment solution is made by adding an oxidant to extracted groundwater. The oxidant-laden groundwater is then injected and recirculated into a contaminated aquifer through multiple horizontal and/or vertical wells. This technique, referred to as in situ chemical oxidation through recirculation (ISCOR), can be applied to saturated and hydraulically conductive formations and used with relatively stable oxidants such as potassium permanganate (KMnO 4 ). A field-scale test of ISCOR was conducted at a site (Portsmouth Gaseous Diffusion Plant) where groundwater in a 5-ft thick silty gravel aquifer is contaminated with trichloroethylene (TCE) at levels that indicate the presence of residual dense non-aqueous phase liquids (DNAPLs). The field test was implemented using a pair of parallel horizontal wells with 200-ft screened sections. For approximately one month, groundwater was extracted from one horizontal well, dosed with crystalline KMnO 4 , and re-injected into the other horizontal well 90 ft away. Post-treatment characterization showed that ISCOR was effective at removing TCE in the saturated region. Lateral and vertical heterogeneities within the treatment zone impacted the uniform delivery of the oxidant solution. However, TCE was not detected in groundwater samples collected from monitoring wells and soil samples from borings in locations where the oxidant had permeated

  16. Indicator Based and Indicator - Free Electrochemical DNA Biosensors

    National Research Council Canada - National Science Library

    Kerman, Kagan

    2001-01-01

    The utility and advantages of an indicator free and MB based sequence specific DNA hybridization biosensor based on guanine and adenine oxidation signals and MB reduction signals have been demonstrated...

  17. Protein Thiols as an Indication of Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Yousef Rezaei Chianeh

    2014-06-01

    Full Text Available Thiol is an organic compound that contain sulphhydryl group that have a critical role in preventing any involvement of oxidative stress in the cell. These defensive functions are generally considered to be carried out by the low molecular weight thiol glutathione and by cysteine residues in the active sites of proteins such as thioredoxin and peroxiredoxin. In addition, there are thiols exposed on protein surfaces that are not directly involved with protein function, although they can interact with the intracellular environment.The process of protection of the cell against an oxidative damage occur by thiol and cystein residue that has a low molecular weight. These residue are present in the active sites of a protein like, peroxiredoxin and thioredoxin. Apart from intracellular antioxidant defense mechanism by protein thiol, there are presence of thiol in outer surface of protein that are not involved with the function of protein, even though they can interact with intracellular part of the cell. [Archives Medical Review Journal 2014; 23(3.000: 443-456

  18. Kinetics of heterogeneous nucleation of gas-atomized Sn-5 mass%Pb droplets

    International Nuclear Information System (INIS)

    Li Shu; Wu Ping; Zhou Wei; Ando, Teiichi

    2008-01-01

    A method for predicting the nucleation kinetics of gas-atomized droplets has been developed by combining models predicting the nucleation temperature of cooling droplets with a model simulating the droplet motion and cooling in gas atomization. Application to a Sn-5 mass%Pb alloy has yielded continuous-cooling transformation (CCT) diagrams for the heterogeneous droplet nucleation in helium gas atomization. Both internal nucleation caused by a catalyst present in the melt and surface nucleation caused by oxidation are considered. Droplets atomized at a high atomizing gas velocity get around surface oxidation and nucleate internally at high supercoolings. Low atomization gas velocities promote oxidation-catalyzed nucleation which leads to lower supercoolings. The developed method enables improved screening of atomized powders for critical applications where stringent control of powder microstructure is required

  19. Radiation decomposition of pure and barium doped potassium nitrate and effect of oxides thereon

    International Nuclear Information System (INIS)

    Patil, S.F.; Bedekar, A.G.

    1985-01-01

    Studies of radiation decomposition of naturally and quench cooled fused potassium nitrate and potassium nitrate doped with Ba 2+ ions reveal that in quench cooled samples the nitrite yield is higher than in the naturally cooled samples. This observation is attributed to the higher defect concentration present in the quenched samples. A comparison of G(NO 2 - ) values obtained in heterogeneous mixtures containing PbO and Al 2 O 3 indicates that Al 2 O 3 retards while PbO enhances the rate of formation of nitrite during radiolysis. Further, G(NO 2 - ) values were found to increase with the mole% of PbO in the admixture. These results observed in the heterogeneous systems are explained on the basis of energy transfer processes occurring within the solid and at the surface and also in terms of electron donor-acceptor properties of oxides. (orig.)

  20. Photocatalytic Oxidation in Drinking Water Treatment Using Hypochlorite and Titanium Dioxide

    NARCIS (Netherlands)

    El-Kalliny, A.S.M.

    2013-01-01

    The main focus of this thesis is to study the advanced oxidation processes (AOPs) of water pollutants via UV/hypochlorite (homogeneous AOPs), and UV solar light/TiO2 (heterogeneous AOPs) in which the highly oxidative hydroxyl radicals (•OH) are produced. These radicals are capable of destructing the

  1. Off-line wafer level reliability control: unique measurement method to monitor the lifetime indicator of gate oxide validated within bipolar/CMOS/DMOS technology

    Science.gov (United States)

    Gagnard, Xavier; Bonnaud, Olivier

    2000-08-01

    We have recently published a paper on a new rapid method for the determination of the lifetime of the gate oxide involved in a Bipolar/CMOS/DMOS technology (BCD). Because this previous method was based on a current measurement with gate voltage as a parameter needing several stress voltages, it was applied only by lot sampling. Thus, we tried to find an indicator in order to monitor the gate oxide lifetime during the wafer level parametric test and involving only one measurement of the device on each wafer test cell. Using the Weibull law and Crook model, combined with our recent model, we have developed a new test method needing only one electrical measurement of MOS capacitor to monitor the quality of the gate oxide. Based also on a current measurement, the parameter is the lifetime indicator of the gate oxide. From the analysis of several wafers, we gave evidence of the possibility to detect a low performance wafer, which corresponds to the infantile failure on the Weibull plot. In order to insert this new method in the BCD parametric program, a parametric flowchart was established. This type of measurement is an important challenges, because the actual measurements, breakdown charge, Qbd, and breakdown electric field, Ebd, at parametric level and Ebd and interface states density, Dit during the process cannot guarantee the gate oxide lifetime all along fabrication process. This indicator measurement is the only one, which predicts the lifetime decrease.

  2. Catchment heterogeneity controls emergent archetype concentration-discharge relationships

    Science.gov (United States)

    Musolff, A.; Fleckenstein, J. H.; Rao, P. S.; Jawitz, J. W.

    2017-12-01

    Relationships between in-stream dissolved solute concentrations (C) and discharge (Q) are often-used indicators of catchment-scale processes and their interference with human activities. Here we analyze observational C-Q relationships from 61 catchments and 8 different solutes across a wide range of land-uses and discharge regimes. This analysis is combined with a parsimonious stochastic modeling approach to test how C-Q relationships arise from spatial heterogeneity in catchment solute sources coupled with different timescales of biogeochemical reactions. The observational data exhibit archetypical dilution, enrichment, and constant C-Q patterns. Moreover, with land-use intensification we find decreasing C variability relative to Q variability (chemostatic export regime). Our model indicates that the dominant driver of emergent C-Q patterns was structured heterogeneity of solute sources implemented as correlation of source concentration to travel time. Regardless of the C-Q pattern, with decreasing source heterogeneity we consistently find lower variability in C than in Q and a dominance of chemostatic export regimes. Here, the variance in exported loads is determined primarily by variance of Q. We conclude that efforts to improve stream water quality and ecological integrity in intensely managed catchments should lead away from landscape homogenization by introducing structured source heterogeneity. References: Musolff, A., J. H. Fleckenstein, P. S. C. Rao, and J. W. Jawitz (2017), Emergent archetype patterns of coupled hydrologic and biogeochemical responses in catchments, Geophys. Res. Lett., 44(9), 4143-4151, doi: 10.1002/2017GL072630.

  3. Electrocatalytic oxidation of deferiprone and its determination on a carbon nanotube-modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Yadegari, H. [Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of); Jabbari, A. [Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of)], E-mail: jabbari@kntu.ac.ir; Heli, H.; Moosavi-Movahedi, A.A. [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of); Karimian, K. [Arasto Pharmaceutical Chemicals Inc., Tehran (Iran, Islamic Republic of); Khodadadi, A. [Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2008-02-15

    The electrochemical behavior of the anti-thalassemia and anti-HIV replication drug, deferiprone, was investigated on a carbon nanotube-modified glassy carbon (GC-CNT) electrode in phosphate buffer solution, pH 7.40 (PBS). During oxidation of deferiprone, two irreversible anodic peaks, with E{sub 1}{sup 0}=452 and E{sub 2}{sup 0}=906mV, appeared, using GC-CNT. Cyclic voltammetric study indicated that the oxidation process is irreversible and diffusion controlled. The number of exchanged electrons in the electro-oxidation process was obtained, and the data indicated that deferiprone is oxidized via two two-electron steps. The results revealed that carbon nanotube (CNT) promotes the rate of oxidation by increasing the peak current, so that deferiprone is oxidized at lower potentials, which thermodynamically is more favorable. This result was confirmed by impedance measurements. The diffusion coefficient, electron-transfer coefficient and heterogeneous electron-transfer rate constant of deferiprone were found to be 1.49 x 10{sup -6} cm{sup 2} s{sup -1}, 0.44, and 3.83 x 10{sup -3} cm s{sup -1}, respectively. A sensitive, simple and time-saving differential-pulse voltammetric procedure was developed for the analysis of deferiprone. Using the proposed method, deferiprone can be determined with a detection limit of 5.25 x 10{sup -7} M. The applicability of the method to direct assays of spiked human serum and urine fluids is described.

  4. Microbial drivers of spatial heterogeneity of nitrous oxide pulse dynamics following drought in an experimental tropical rainforest

    Science.gov (United States)

    Young, J. C.; Sengupta, A.; U'Ren, J.; Van Haren, J. L. M.; Meredith, L. K.

    2017-12-01

    Nitrous oxide (N2O) is a long-lived, potent greenhouse gas with increasing atmospheric concentrations. Soil microbes in agricultural and natural ecosystems are the dominant source of N2O, which involves complex interactions between N-cycling microbes, metabolisms, soil properties, and plants. Tropical rainforests are the largest natural source of N2O, however the microbial and environmental drivers are poorly understood as few studies have been performed in these environments. Thus, there is an urgent need for further research to fill in knowledge gaps regarding tropical N-cycling, and the response of soil microbial communities to changes in precipitation patterns, temperature, nitrogen deposition, and land use. To address this data gap, we performed a whole-forest drought in the tropical rainforest biome in Biosphere 2 (B2) and analyzed connections between soil microbes, forest heterogeneity, and N2O emissions. The B2 rainforest is the hottest tropical rainforest on Earth, and is an important model system for studying the response of tropical forests to warming with controlled experimentation. In this study, we measured microbial community abundance and diversity profiles (16S rRNA and ITS2 amplicon sequencing) along with their association with soil properties (e.g. pH, C, N) during the drought and rewetting at five locations (3 depths), including regions that have been previously characterized with high and low N2O drought pulse dynamics (van Haren et al., 2005). In this study, we present the spatial distribution of soil microbial communities within the rainforest at Biosphere 2 and their correlations with edaphic factors. In particular, we focus on microbial, soil, and plant factors that drive high and low N2O pulse zones. As in the past, we found that N2O emissions were highest in response to rewetting in a zone hypothesized to be rich in nutrients from a nearby sugar palm. We will characterize microbial indicator species and nitrogen cycling genes to better

  5. Enhancement of Treatment Efficiency of Recalcitrant Wastewater Containing Textile Dyes Using a Newly Developed Iron Zeolite Socony Mobil-5 Heterogeneous Catalyst

    Science.gov (United States)

    Ahmad, Mushtaq; Asghar, Anam; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri

    2015-01-01

    Fenton oxidation, an advanced oxidation process, is an efficient method for the treatment of recalcitrant wastewaters. Unfortunately, it utilizes H2O2 and iron-based homogeneous catalysts, which lead to the formation of high volumes of sludge and secondary pollutants. To overcome these problems, an alternate option is the usage of heterogeneous catalyst. In this study, a heterogeneous catalyst was developed to provide an alternative solution for homogeneous Fenton oxidation. Iron Zeolite Socony Mobile-5 (Fe-ZSM-5) was synthesized using a new two-step process. Next, the catalyst was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, fourier transform infrared spectroscopy, and Brunauer-Emmett-Teller analysis and tested against a model wastewater containing the azo dye Acid Blue 113. Results showed that the loading of iron particles reduced the surface area of the catalyst from 293.59 to 243.93 m2/g; meanwhile, the average particle size of the loaded material was 12.29 nm. Furthermore, efficiency of the developed catalyst was evaluated by performing heterogeneous Fenton oxidation. Taguchi method was coupled with principal component analysis in order to assess and optimize mineralization efficiency. Experimental results showed that under optimized conditions, over 99.7% degradation and 77% mineralization was obtained, with a 90% reduction in the consumption of the developed catalyst. Furthermore, the developed catalyst was stable and reusable, with less than 2% leaching observed under optimized conditions. Thus, the present study proved that newly developed catalyst has enhanced the oxidation process and reduced the chemicals consumption. PMID:26517827

  6. Enhancement of Treatment Efficiency of Recalcitrant Wastewater Containing Textile Dyes Using a Newly Developed Iron Zeolite Socony Mobil-5 Heterogeneous Catalyst.

    Science.gov (United States)

    Ahmad, Mushtaq; Asghar, Anam; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri

    2015-01-01

    Fenton oxidation, an advanced oxidation process, is an efficient method for the treatment of recalcitrant wastewaters. Unfortunately, it utilizes H2O2 and iron-based homogeneous catalysts, which lead to the formation of high volumes of sludge and secondary pollutants. To overcome these problems, an alternate option is the usage of heterogeneous catalyst. In this study, a heterogeneous catalyst was developed to provide an alternative solution for homogeneous Fenton oxidation. Iron Zeolite Socony Mobile-5 (Fe-ZSM-5) was synthesized using a new two-step process. Next, the catalyst was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, fourier transform infrared spectroscopy, and Brunauer-Emmett-Teller analysis and tested against a model wastewater containing the azo dye Acid Blue 113. Results showed that the loading of iron particles reduced the surface area of the catalyst from 293.59 to 243.93 m2/g; meanwhile, the average particle size of the loaded material was 12.29 nm. Furthermore, efficiency of the developed catalyst was evaluated by performing heterogeneous Fenton oxidation. Taguchi method was coupled with principal component analysis in order to assess and optimize mineralization efficiency. Experimental results showed that under optimized conditions, over 99.7% degradation and 77% mineralization was obtained, with a 90% reduction in the consumption of the developed catalyst. Furthermore, the developed catalyst was stable and reusable, with less than 2% leaching observed under optimized conditions. Thus, the present study proved that newly developed catalyst has enhanced the oxidation process and reduced the chemicals consumption.

  7. A Nth-order linear algorithm for extracting diffuse correlation spectroscopy blood flow indices in heterogeneous tissues

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Yu; Yu, Guoqiang, E-mail: guoqiang.yu@uky.edu [Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40506 (United States)

    2014-09-29

    Conventional semi-infinite analytical solutions of correlation diffusion equation may lead to errors when calculating blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements in tissues with irregular geometries. Very recently, we created an algorithm integrating a Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in homogenous tissues with arbitrary geometries for extraction of BFI (i.e., αD{sub B}). The purpose of this study is to extend the capability of the Nth-order linear algorithm for extracting BFI in heterogeneous tissues with arbitrary geometries. The previous linear algorithm was modified to extract BFIs in different types of tissues simultaneously through utilizing DCS data at multiple source-detector separations. We compared the proposed linear algorithm with the semi-infinite homogenous solution in a computer model of adult head with heterogeneous tissue layers of scalp, skull, cerebrospinal fluid, and brain. To test the capability of the linear algorithm for extracting relative changes of cerebral blood flow (rCBF) in deep brain, we assigned ten levels of αD{sub B} in the brain layer with a step decrement of 10% while maintaining αD{sub B} values constant in other layers. Simulation results demonstrate the accuracy (errors < 3%) of high-order (N ≥ 5) linear algorithm in extracting BFIs in different tissue layers and rCBF in deep brain. By contrast, the semi-infinite homogenous solution resulted in substantial errors in rCBF (34.5% ≤ errors ≤ 60.2%) and BFIs in different layers. The Nth-order linear model simplifies data analysis, thus allowing for online data processing and displaying. Future study will test this linear algorithm in heterogeneous tissues with different levels of blood flow variations and noises.

  8. A Nth-order linear algorithm for extracting diffuse correlation spectroscopy blood flow indices in heterogeneous tissues

    International Nuclear Information System (INIS)

    Shang, Yu; Yu, Guoqiang

    2014-01-01

    Conventional semi-infinite analytical solutions of correlation diffusion equation may lead to errors when calculating blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements in tissues with irregular geometries. Very recently, we created an algorithm integrating a Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in homogenous tissues with arbitrary geometries for extraction of BFI (i.e., αD B ). The purpose of this study is to extend the capability of the Nth-order linear algorithm for extracting BFI in heterogeneous tissues with arbitrary geometries. The previous linear algorithm was modified to extract BFIs in different types of tissues simultaneously through utilizing DCS data at multiple source-detector separations. We compared the proposed linear algorithm with the semi-infinite homogenous solution in a computer model of adult head with heterogeneous tissue layers of scalp, skull, cerebrospinal fluid, and brain. To test the capability of the linear algorithm for extracting relative changes of cerebral blood flow (rCBF) in deep brain, we assigned ten levels of αD B in the brain layer with a step decrement of 10% while maintaining αD B values constant in other layers. Simulation results demonstrate the accuracy (errors < 3%) of high-order (N ≥ 5) linear algorithm in extracting BFIs in different tissue layers and rCBF in deep brain. By contrast, the semi-infinite homogenous solution resulted in substantial errors in rCBF (34.5% ≤ errors ≤ 60.2%) and BFIs in different layers. The Nth-order linear model simplifies data analysis, thus allowing for online data processing and displaying. Future study will test this linear algorithm in heterogeneous tissues with different levels of blood flow variations and noises.

  9. Evaporation rates and surface profiles on heterogeneous surfaces with mass transfer and surface reaction

    Energy Technology Data Exchange (ETDEWEB)

    Flytzani-Stephanopoulos, M; Schmidt, L D

    1979-01-01

    Simple models incorporating surface reaction and diffusion of volatile products through a boundary layer are developed to calculate effective rates of evaporation and local surface profiles on surfaces having active and inactive regions. The coupling between surface heterogeneities with respect to a particular reaction and external mass transfer may provide a mechanism for the surface rearrangement and metal loss encountered in several catalytic systems of practical interest. Calculated transport rates for the volatilization of platinum in oxidizing environments and the rearrangement of this metal during the ammonia oxidation reaction agree well with published experimental data.

  10. HETEROGENEOUS REBURNING BY MIXED FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Yin Chen; Benson B. Gathitu

    2005-01-14

    Recent studies of heterogeneous reburning, i.e., reburning involving a coal-derived char, have elucidated its variables, kinetics and mechanisms that are valuable to the development of a highly efficient reburning process. Young lignite chars contain catalysts that not only reduce NO, but they also reduce HCN that is an important intermediate that recycles to NO in the burnout zone. Gaseous CO scavenges the surface oxides that are formed during NO reduction, regenerating the active sites on the char surface. Based on this mechanistic information, cost-effective mixed fuels containing these multiple features has been designed and tested in a simulated reburning apparatus. Remarkably high reduction of NO and HCN has been observed and it is anticipated that mixed fuel will remove 85% of NO in a three-stage reburning process.

  11. Oxidation of nano-reinforced polyolefins

    International Nuclear Information System (INIS)

    Gutierrez Castro, G.G.

    2010-11-01

    Nano-composite materials attract search due to their improvements on barrier properties by incorporating low level of nano-filler of 5%w. Nowadays, organically modified montmorillonite (MMT-O) is the most used filler due to its high aspect ratio which permits stronger clay/polymer interactions. If nano-reinforced materials are highly performing, the ways in which clay presence affects polyolefin durability have not being subject of a rigorous study, thus they are not yet clear. Our goal was to examine unstabilized clay polypropylene and unstabilized clay polyethylene nano composites to get a better comprehension of the clay effects on their thermo-oxidation process under low temperatures. The effects induced by a dual physic-chemical nature of the clay were explored. The problem was tackled from both experimental and theoretical point of views for degradation process not controlled and controlled by oxygen diffusion (homogenous and heterogeneous respectively). It seems that MMT-O speeds up oxidation. This phenomenon was modeled by adding a catalytic reaction between metallic particles initially present in the MMT-O and hydroperoxide groups (main responsible of oxidation). Regarding the oxygen permeability two situations were confronted: for the clay polypropylene system a decrease of 45% of oxygen permeability was measured. On the other hand, no variation was found for the polyethylene case. This effect was attributed to the fact that polyethylene nano-composite reached a blend morphology less developed than those of the polypropylene nano-composite. Kinetics and oxidation products profiles across the sample thickness were simulated for both systems by coupling oxidation reactions with oxygen diffusion equations. For the polyethylene case, the effects induced by oxidation on molar mass and crystalline morphology were also simulated. Finally, based on a structure-property relationship, simulations of mechanic modulus profiles were performed for the heterogeneous

  12. Preparation of biodiesel from soybean oil by using heterogeneous catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Ferdous, Kaniz; Rakib Uddin, M.; Islam, M.A. [Department of Chemical Engineering and Polymer Science, Shah Jalal University of Science and Technology, Sylhet 3114 (Bangladesh); Khan, Maksudur R. [Department of Chemical Engineering and Polymer Science, Shah Jalal University of Science and Technology, Sylhet 3114 (Bangladesh); Faculty of Chemical and Natural Resources Engineering, University Malaysia Pahang, 26300 Gambang, Kuantan, Pahang (Malaysia)

    2013-07-01

    The predicted shortage of fossil fuels and related environmental concerns has recently attracted significant attention to search alternative fuel. Biodiesel is one of the alternatives to fossil fuel. Now-a-days, most biodiesel is produced by the transesterification of oils using methanol and a homogeneous base catalyst. The use of homogeneous catalysts is normally limited to batch mode processing followed by a catalyst separation step. The immiscible glycerol phase, which accumulates during the course of the reaction, solubilizes the homogeneous base catalyst and therefore, withdraws from the reaction medium. Moreover, other difficulties of using homogeneous base catalysts relate to their sensitivity to free fatty acid (FFA) and water and resulting saponification phenomenon. High energy consumption and costly separation of the catalyst from the reaction mixture have inspired the use of heterogeneous catalyst. The use of heterogeneous catalysts does not lead to the formation of soaps through neutralization of FFA and saponification of oil. In the present paper, biodiesel was prepared from crude (soybean) oil by transesterification reaction using heterogeneous base catalyst name calcium oxide (CaO). Various reaction parameters were optimized and the biodiesel properties were evaluated.

  13. Numerical Study of Critical Role of Rock Heterogeneity in Hydraulic Fracture Propagation

    Energy Technology Data Exchange (ETDEWEB)

    J. Zhou; H. Huang; M. Deo

    2016-03-01

    Log and seismic data indicate that most shale formations have strong heterogeneity. Conventional analytical and semi-analytical fracture models are not enough to simulate the complex fracture propagation in these highly heterogeneous formation. Without considering the intrinsic heterogeneity, predicted morphology of hydraulic fracture may be biased and misleading in optimizing the completion strategy. In this paper, a fully coupling fluid flow and geomechanics hydraulic fracture simulator based on dual-lattice Discrete Element Method (DEM) is used to predict the hydraulic fracture propagation in heterogeneous reservoir. The heterogeneity of rock is simulated by assigning different material force constant and critical strain to different particles and is adjusted by conditioning to the measured data and observed geological features. Based on proposed model, the effects of heterogeneity at different scale on micromechanical behavior and induced macroscopic fractures are examined. From the numerical results, the microcrack will be more inclined to form at the grain weaker interface. The conventional simulator with homogeneous assumption is not applicable for highly heterogeneous shale formation.

  14. Ceriodaphnia dubia as a potential bio-indicator for assessing acute aluminum oxide nanoparticle toxicity in fresh water environment.

    Directory of Open Access Journals (Sweden)

    Sunandan Pakrashi

    Full Text Available Growing nanomaterials based consumer applications have raised concerns about their potential release into the aquatic ecosystems and the consequent toxicological impacts. So environmental monitoring of the nanomaterials in aqueous systems becomes imperative. The current study reveals the potential of Ceriodaphnia dubia (C. dubia as a bio-indicator for aluminum oxide nanoparticles in a fresh water aquatic ecosystem where it occupies an important ecological niche as a primary consumer. This study aims to investigate the aluminium oxide nanoparticle induced acute toxicity on Ceriodaphnia dubia in a freshwater system. The bioavailability of the aluminum oxide nanoparticles has been studied with respect to their aggregation behavior in the system and correlated with the toxicity endpoints. The oxidative stress generated by the particles contributed greatly toward their toxicity. The crucial role of leached aluminium ion mediated toxicity in the later phases (48 h and 72 h in conjunction with the effects from the nano-sized particles in the initial phases (24 h puts forth the dynamics of nanotoxicity in the test system. The internalization of nanoparticles (both gross and systemic uptake as substantiated through the transmission electron microscopy (TEM and inductively coupled plasma optical emission spectral (ICP-OES analysis was another major contributor toward acute toxicity. Concluding the present study, Ceriodaphnia dubia can be a promising candidate for bio-monitoring the aluminium oxide nanoparticles in a fresh water system.

  15. Clinical Relevance of Biomarkers of Oxidative Stress

    DEFF Research Database (Denmark)

    Frijhoff, Jeroen; Winyard, Paul G; Zarkovic, Neven

    2015-01-01

    SIGNIFICANCE: Oxidative stress is considered to be an important component of various diseases. A vast number of methods have been developed and used in virtually all diseases to measure the extent and nature of oxidative stress, ranging from oxidation of DNA to proteins, lipids, and free amino ac....... The vast diversity in oxidative stress between diseases and conditions has to be taken into account when selecting the most appropriate biomarker.......SIGNIFICANCE: Oxidative stress is considered to be an important component of various diseases. A vast number of methods have been developed and used in virtually all diseases to measure the extent and nature of oxidative stress, ranging from oxidation of DNA to proteins, lipids, and free amino...... acids. RECENT ADVANCES: An increased understanding of the biology behind diseases and redox biology has led to more specific and sensitive tools to measure oxidative stress markers, which are very diverse and sometimes very low in abundance. CRITICAL ISSUES: The literature is very heterogeneous...

  16. Heterogeneous Reactions of Limonene on Mineral Dust: Impacts of Adsorbed Water and Nitric Acid.

    Science.gov (United States)

    Lederer, Madeline R; Staniec, Allison R; Coates Fuentes, Zoe L; Van Ry, Daryl A; Hinrichs, Ryan Z

    2016-12-08

    Biogenic volatile organic compounds (BVOCs), including the monoterpene limonene, are a major source of secondary organic aerosol (SOA). While gas-phase oxidation initiates the dominant pathway for BVOC conversion to SOA, recent studies have demonstrated that biogenic hydrocarbons can also directly react with acidic droplets. To investigate whether mineral dust may facilitate similar reactive uptake of biogenic hydrocarbons, we studied the heterogeneous reaction of limonene with mineral substrates using condensed-phase infrared spectroscopy and identified the formation of irreversibly adsorbed organic products. For kaolinite, Arizona Test Dust, and silica at 30% relative humidity, GC-MS identified limonene-1,2-diol as the dominant product with total organic surface concentrations on the order of (3-5) × 10 18 molecules m -2 . Experiments with 18 O-labeled water support a mechanism initiated by oxidation of limonene by surface redox sites forming limonene oxide followed by water addition to the epoxide to form limonenediol. Limonene uptake on α-alumina, γ-alumina, and montmorillonite formed additional products in high yield, including carveol, carvone, limonene oxide, and α-terpineol. To model tropospheric processing of mineral aerosol, we also exposed each mineral substrate to gaseous nitric acid prior to limonene uptake and identified similar surface adsorbed products that were formed at rates 2 to 5 times faster than without nitrate coatings. The initial rate of reaction was linearly dependent on gaseous limonene concentration between 5 × 10 12 and 5 × 10 14 molecules cm -3 (0.22-20.5 ppm) consistent with an Eley-Rideal-type mechanism in which gaseous limonene reacts directly with reactive surface sites. Increasing relative humidity decreased the amount of surface adsorbed products indicating competitive adsorption of surface adsorbed water. Using a laminar flow tube reactor we measured the uptake coefficient for limonene on kaolinite at 25% RH to range from

  17. FDG uptake heterogeneity in FIGO IIb cervical carcinoma does not predict pelvic lymph node involvement.

    Science.gov (United States)

    Brooks, Frank J; Grigsby, Perry W

    2013-12-23

    Many types of cancer are located and assessed via positron emission tomography (PET) using the 18F-fluorodeoxyglucose (FDG) radiotracer of glucose uptake. There is rapidly increasing interest in exploiting the intra-tumor heterogeneity observed in these FDG-PET images as an indicator of disease outcome. If this image heterogeneity is of genuine prognostic value, then it either correlates to known prognostic factors, such as tumor stage, or it indicates some as yet unknown tumor quality. Therefore, the first step in demonstrating the clinical usefulness of image heterogeneity is to explore the dependence of image heterogeneity metrics upon established prognostic indicators and other clinically interesting factors. If it is shown that image heterogeneity is merely a surrogate for other important tumor properties or variations in patient populations, then the theoretical value of quantified biological heterogeneity may not yet translate into the clinic given current imaging technology. We explore the relation between pelvic lymph node status at diagnosis and the visually evident uptake heterogeneity often observed in 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) images of cervical carcinomas. We retrospectively studied the FDG-PET images of 47 node negative and 38 node positive patients, each having FIGO stage IIb tumors with squamous cell histology. Imaged tumors were segmented using 40% of the maximum tumor uptake as the tumor-defining threshold and then converted into sets of three-dimensional coordinates. We employed the sphericity, extent, Shannon entropy (S) and the accrued deviation from smoothest gradients (ζ) as image heterogeneity metrics. We analyze these metrics within tumor volume strata via: the Kolmogorov-Smirnov test, principal component analysis and contingency tables. We found no statistically significant difference between the positive and negative lymph node groups for any one metric or plausible combinations thereof. Additionally

  18. FDG uptake heterogeneity in FIGO IIb cervical carcinoma does not predict pelvic lymph node involvement

    International Nuclear Information System (INIS)

    Brooks, Frank J; Grigsby, Perry W

    2013-01-01

    Many types of cancer are located and assessed via positron emission tomography (PET) using the 18F-fluorodeoxyglucose (FDG) radiotracer of glucose uptake. There is rapidly increasing interest in exploiting the intra-tumor heterogeneity observed in these FDG-PET images as an indicator of disease outcome. If this image heterogeneity is of genuine prognostic value, then it either correlates to known prognostic factors, such as tumor stage, or it indicates some as yet unknown tumor quality. Therefore, the first step in demonstrating the clinical usefulness of image heterogeneity is to explore the dependence of image heterogeneity metrics upon established prognostic indicators and other clinically interesting factors. If it is shown that image heterogeneity is merely a surrogate for other important tumor properties or variations in patient populations, then the theoretical value of quantified biological heterogeneity may not yet translate into the clinic given current imaging technology. We explore the relation between pelvic lymph node status at diagnosis and the visually evident uptake heterogeneity often observed in 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) images of cervical carcinomas. We retrospectively studied the FDG-PET images of 47 node negative and 38 node positive patients, each having FIGO stage IIb tumors with squamous cell histology. Imaged tumors were segmented using 40% of the maximum tumor uptake as the tumor-defining threshold and then converted into sets of three-dimensional coordinates. We employed the sphericity, extent, Shannon entropy (S) and the accrued deviation from smoothest gradients (ζ) as image heterogeneity metrics. We analyze these metrics within tumor volume strata via: the Kolmogorov-Smirnov test, principal component analysis and contingency tables. We found no statistically significant difference between the positive and negative lymph node groups for any one metric or plausible combinations thereof. Additionally

  19. FOTOCATÁLISIS HETEROGÉNEA CON TIO2 PARA EL TRATAMIENTO DE DESECHOS LÍQUIDOS CON PRESENCIA DEL INDICADOR VERDE DE BROMOCRESOL Heterogeneous Photocatalysis with TIO2 for Liquid Wastes Treatment with Presence of the Bromocresol Green Indicator

    Directory of Open Access Journals (Sweden)

    Carolay Yaneth Guarín Llanes

    2011-12-01

    Full Text Available La fotocatálisis heterogénea es un proceso avanzado de oxidación que se aplica en este trabajo para determinar la degradación y mineralización del indicador verde bromocresol, presente en desechos líquidos de laboratorios de análisis químico y ambiental, comúnmente generados en universidades. En el tratamiento se empleó dióxido de titanio Degussa P-25 como catalizador, un reactor tipo Batch, y radiación UV artificial con una longitud de onda de 360 nm. La degradación se cuantificó por espectrofotometría UV-visible, y la mineralización se evaluó por el parámetro de DQO. Las condiciones óptimas de tratamiento para los desechos son: 260 ppm de TiO2 y un tiempo de retención de 60 minutos, con las que se obtuvo una degradación de 84,10% y una mineralización de 82.5 %. Los resultados obtenidos muestran que el proceso de fotocatálisis heterogénea puede ser útil en el tratamiento de efluentes que tenga la presencia del indicador verde de bromocresol.Heterogeneous photocatalysis is an advanced oxidation process applied to this kind of work for determining degradation and mineralization of the Bromocresol Green indicator present in chemical and environmental analysis laboratory liquid wastes, commonly generated in universities. Degussa P-25 titanium dioxide is used in the treatment as a catalyzer, as well as a batch-type reactor, and artificial UV radiation with a 360 nm wavelength. Degradation was quantified by UV-visible spectrophotometry and mineralization was evaluated through the DQO parameter. Optimal conditions of treatment for wastes are: 260 ppm TiO2 and a retention time of 60 minutes; degradation was 84.10% and mineralization was 82.5%. Results obtained show that the heterogeneous photocatalysis process can be useful for treatment of effluents with presence of the Bromocresol Green indicator.

  20. Surface fluxes in heterogeneous landscape

    Energy Technology Data Exchange (ETDEWEB)

    Bay Hasager, C

    1997-01-01

    The surface fluxes in homogeneous landscapes are calculated by similarity scaling principles. The methodology is well establish. In heterogeneous landscapes with spatial changes in the micro scale range, i e from 100 m to 10 km, advective effects are significant. The present work focus on these effects in an agricultural countryside typical for the midlatitudes. Meteorological and satellite data from a highly heterogeneous landscape in the Rhine Valley, Germany was collected in the large-scale field experiment TRACT (Transport of pollutants over complex terrain) in 1992. Classified satellite images, Landsat TM and ERS SAR, are used as basis for roughness maps. The roughnesses were measured at meteorological masts in the various cover classes and assigned pixel by pixel to the images. The roughness maps are aggregated, i e spatially averaged, into so-called effective roughness lengths. This calculation is performed by a micro scale aggregation model. The model solves the linearized atmospheric flow equations by a numerical (Fast Fourier Transform) method. This model also calculate maps of friction velocity and momentum flux pixel wise in heterogeneous landscapes. It is indicated how the aggregation methodology can be used to calculate the heat fluxes based on the relevant satellite data i e temperature and soil moisture information. (au) 10 tabs., 49 ills., 223 refs.

  1. Sensitivity analysis in oxidation ditch modelling: the effect of variations in stoichiometric, kinetic and operating parameters on the performance indices

    NARCIS (Netherlands)

    Abusam, A.A.A.; Keesman, K.J.; Straten, van G.; Spanjers, H.; Meinema, K.

    2001-01-01

    This paper demonstrates the application of the factorial sensitivity analysis methodology in studying the influence of variations in stoichiometric, kinetic and operating parameters on the performance indices of an oxidation ditch simulation model (benchmark). Factorial sensitivity analysis

  2. Experimental and theoretical study of heterogeneous iron precipitation in silicon

    OpenAIRE

    Haarahiltunen, Antti; Väinölä, Hele; Anttila, O.; Yli-Koski, Marko

    2007-01-01

    Heterogeneous iron precipitation in silicon was studied experimentally by measuring the gettering efficiency of oxide precipitate density of 1×10exp10cm−3. The wafers were contaminated with varying iron concentrations, and the gettering efficiency was studied using isothermal annealing in the temperature range from 300 to 780°C. It was found that iron precipitation obeys the so called s-curve behavior: if iron precipitation occurs, nearly all iron is gettered. For example, after 30 min anneal...

  3. Heterogeneous network architectures

    DEFF Research Database (Denmark)

    Christiansen, Henrik Lehrmann

    2006-01-01

    is flexibility. This thesis investigates such heterogeneous network architectures and how to make them flexible. A survey of algorithms for network design is presented, and it is described how using heuristics can increase the speed. A hierarchical, MPLS based network architecture is described......Future networks will be heterogeneous! Due to the sheer size of networks (e.g., the Internet) upgrades cannot be instantaneous and thus heterogeneity appears. This means that instead of trying to find the olution, networks hould be designed as being heterogeneous. One of the key equirements here...... and it is discussed that it is advantageous to heterogeneous networks and illustrated by a number of examples. Modeling and simulation is a well-known way of doing performance evaluation. An approach to event-driven simulation of communication networks is presented and mixed complexity modeling, which can simplify...

  4. Stochastic modeling for reliability shocks, burn-in and heterogeneous populations

    CERN Document Server

    Finkelstein, Maxim

    2013-01-01

    Focusing on shocks modeling, burn-in and heterogeneous populations, Stochastic Modeling for Reliability naturally combines these three topics in the unified stochastic framework and presents numerous practical examples that illustrate recent theoretical findings of the authors.  The populations of manufactured items in industry are usually heterogeneous. However, the conventional reliability analysis is performed under the implicit assumption of homogeneity, which can result in distortion of the corresponding reliability indices and various misconceptions. Stochastic Modeling for Reliability fills this gap and presents the basics and further developments of reliability theory for heterogeneous populations. Specifically, the authors consider burn-in as a method of elimination of ‘weak’ items from heterogeneous populations. The real life objects are operating in a changing environment. One of the ways to model an impact of this environment is via the external shocks occurring in accordance with some stocha...

  5. Preparation of Mn(III)-Porphyrin-Immobilized Fe{sub 3}O{sub 4}@SiO{sub 2} Mesoparticles and Their Use in Heterogeneous Catalysis of Styrene Epoxidation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Yeol; Lee, Kyung Yeon; Kim, Sun Dol; Lee, Suk Joong [Dept. of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul (Korea, Republic of)

    2015-07-15

    They show high stability over their homogeneous counterparts. However, traditional heterogeneous catalysts tend to be less selective for fine chemical synthesis because they usually require high operation temperature and have the nonuniformity of active sites. To overcome these problems, an emerging strategy for preparing heterogeneous catalytic systems with better selectivity and milder reaction condition comprises the immobilization of homogeneous catalysts on organic polymers and inorganic supports. We have designed and synthesized novel Mn(III)-porphyrin-immobilized core-shell magnetic mesoparticles that heterogeneously catalyze styrene to styrene oxide with remarkably high activity compared with its homogeneous counterpart. These magnetic heterogeneous catalysts can be readily separated from the reaction mixture by magnetic manipulation and used for subsequent reactions multiple times without dramatic loss of activity. This immobilization of catalysts on magnetic supports promises a great potential toward the development of new class of oxidation catalysts, and the modification of catalysts to extend their lifetime is in progress.

  6. [Advanced treatment of coking wastewater with a novel heterogeneous electro-Fenton technology].

    Science.gov (United States)

    Li, Hai-Tao; Li, Yu-Ping; Zhang, An-Yang; Cao, Hong-Bin; Li, Xin-Gang; Zhang, Yi

    2011-01-01

    A novel electro-catalytic reactor, with oxygen-reduction cathode (PAQ/GF), dimensionally stable anode (IrO2-RuO2 -TiO2/ Ti) and heterogeneous catalysts, is developed for advanced treatment of coking wastewater after biological process, integrating cathodic and anodic simultaneous oxidation processes. A PAQ/GF electrode was synthesized by the electro-polymerization of 2-ethyl anthraquinone on graphite felt, which was characterized with cyclic voltametry measurements; the results indicated that the PAQ/GF electrode showed high reversibility for oxidation-reduction reaction of anthraquinone and catalytic activity for O2 reduction to H2O2; 13.5 mmol/L H2O2 was obtained after electrolysis for 6 h at -0.7 V (vs. SCE) and pH 6 with a current efficiency of 50% in a membrane reactor. Fe-Cu/Y350 catalysts, prepared by impregnation method, could catalyze the production of hydroxyl radicals (*OH) from H2O2, which was confirmed both by fading reaction of crystal violet and oxidation of *OH-probe compound (p-chlorobenzoic acid); Fe-Cu/Y350 also showed high catalytic-activity for the oxidation of organics by hypochlorous sodium, because COD removal of coking wastewater reached 26% in the catalytic process while only 11% of COD removal was obtained in the absence of Fe-Cu/Y350. COD removal of coking wastewater reached 49.4% (26.0% and 23.4% in cathodic system and anodic system, respectively) in the developed electrolytic-reactor, which was higher than that of conventional cathodic-anodic-oxidation process (29.8%). At optimal reaction condition of initial COD = 192 mg/L, I = 10A x m(-2) and pH 4-5, more than 50% COD were removed after electrolysis for 1 h. The mechanism might be as follows: in cathodic system, H2O2 is generated from reduction of O2 on PAQ/GF cathode, and catalyzed by Fe-Cu/Y350 for production of *OH, which causes mineralization and degradation of organic pollutants; in anodic system, Cl2 and HClO are generated from Cl- oxidation on IrO2-RuO2-TiO2/Ti anode and the

  7. A first-approximation urban-air-quality indicator

    Science.gov (United States)

    David M. Paproski; Julian R. Walker

    1977-01-01

    Development of the first-approximation-urban-air-quality indicator was reported by the Economic Council of Canada. The indicator takes account of ambient concentrations of five pollutants: sulfur dioxide, particulate matter, oxides of nitrogen, carbon monoxide, and total oxidants. Epidemiological evidence indicating the potential impact of these pollutants on human...

  8. Multivariate analysis of the heterogeneous geochemical processes controlling arsenic enrichment in a shallow groundwater system.

    Science.gov (United States)

    Huang, Shuangbing; Liu, Changrong; Wang, Yanxin; Zhan, Hongbin

    2014-01-01

    The effects of various geochemical processes on arsenic enrichment in a high-arsenic aquifer at Jianghan Plain in Central China were investigated using multivariate models developed from combined adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR). The results indicated that the optimum variable group for the AFNIS model consisted of bicarbonate, ammonium, phosphorus, iron, manganese, fluorescence index, pH, and siderite saturation. These data suggest that reductive dissolution of iron/manganese oxides, phosphate-competitive adsorption, pH-dependent desorption, and siderite precipitation could integrally affect arsenic concentration. Analysis of the MLR models indicated that reductive dissolution of iron(III) was primarily responsible for arsenic mobilization in groundwaters with low arsenic concentration. By contrast, for groundwaters with high arsenic concentration (i.e., > 170 μg/L), reductive dissolution of iron oxides approached a dynamic equilibrium. The desorption effects from phosphate-competitive adsorption and the increase in pH exhibited arsenic enrichment superior to that caused by iron(III) reductive dissolution as the groundwater chemistry evolved. The inhibition effect of siderite precipitation on arsenic mobilization was expected to exist in groundwater that was highly saturated with siderite. The results suggest an evolutionary dominance of specific geochemical process over other factors controlling arsenic concentration, which presented a heterogeneous distribution in aquifers. Supplemental materials are available for this article. Go to the publisher's online edition of the Journal of Environmental Science and Health, Part A, to view the supplemental file.

  9. Aging influences multiple indices of oxidative stress in the heart of the Fischer 344/NNia x Brown Norway/BiNia rat.

    Science.gov (United States)

    Asano, Shinichi; Rice, Kevin M; Kakarla, Sunil; Katta, Anjaiah; Desai, Devashish H; Walker, Ernest M; Wehner, Paulette; Blough, Eric R

    2007-01-01

    We report the influence of aging on multiple markers of oxidative-nitrosative stress in the heart of adult (6-month), aged (30-month) and very aged (36-month) Fischer 344/NNiaHSd x Brown Norway/BiNia (F344/NXBN) rats. Compared to adult (6-month) hearts, indices of oxidative (superoxide anion [O2*-], 4-hydroxy-2-nonenal [4-HNE]) and nitrosative (protein nitrotyrosylation) stress were 34.1 +/- 28.1%, 186 +/- 28.1% and 94 +/- 5.8% higher, respectively, in 36-month hearts and these findings were highly correlated with increases in left ventricular wall thickness (r > 0.669; r > 0.710 and P lead to age-associated alterations in cardiac oxidative stress.

  10. Analytic Investigation Into Effect of Population Heterogeneity on Parameter Ratio Estimates

    International Nuclear Information System (INIS)

    Schinkel, Colleen; Carlone, Marco; Warkentin, Brad; Fallone, B. Gino

    2007-01-01

    Purpose: A homogeneous tumor control probability (TCP) model has previously been used to estimate the α/β ratio for prostate cancer from clinical dose-response data. For the ratio to be meaningful, it must be assumed that parameter ratios are not sensitive to the type of tumor control model used. We investigated the validity of this assumption by deriving analytic relationships between the α/β estimates from a homogeneous TCP model, ignoring interpatient heterogeneity, and those of the corresponding heterogeneous (population-averaged) model that incorporated heterogeneity. Methods and Materials: The homogeneous and heterogeneous TCP models can both be written in terms of the geometric parameters D 50 and γ 50 . We show that the functional forms of these models are similar. This similarity was used to develop an expression relating the homogeneous and heterogeneous estimates for the α/β ratio. The expression was verified numerically by generating pseudo-data from a TCP curve with known parameters and then using the homogeneous and heterogeneous TCP models to estimate the α/β ratio for the pseudo-data. Results: When the dominant form of interpatient heterogeneity is that of radiosensitivity, the homogeneous and heterogeneous α/β estimates differ. This indicates that the presence of this heterogeneity affects the value of the α/β ratio derived from analysis of TCP curves. Conclusions: The α/β ratio estimated from clinical dose-response data is model dependent-a heterogeneous TCP model that accounts for heterogeneity in radiosensitivity will produce a greater α/β estimate than that resulting from a homogeneous TCP model

  11. Heterogeneous ice nucleation of viscous secondary organic aerosol produced from ozonolysis of α-pinene

    Science.gov (United States)

    Ignatius, Karoliina; Kristensen, Thomas B.; Järvinen, Emma; Nichman, Leonid; Fuchs, Claudia; Gordon, Hamish; Herenz, Paul; Hoyle, Christopher R.; Duplissy, Jonathan; Garimella, Sarvesh; Dias, Antonio; Frege, Carla; Höppel, Niko; Tröstl, Jasmin; Wagner, Robert; Yan, Chao; Amorim, Antonio; Baltensperger, Urs; Curtius, Joachim; Donahue, Neil M.; Gallagher, Martin W.; Kirkby, Jasper; Kulmala, Markku; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Tomé, Antonio; Virtanen, Annele; Worsnop, Douglas; Stratmann, Frank

    2016-05-01

    There are strong indications that particles containing secondary organic aerosol (SOA) exhibit amorphous solid or semi-solid phase states in the atmosphere. This may facilitate heterogeneous ice nucleation and thus influence cloud properties. However, experimental ice nucleation studies of biogenic SOA are scarce. Here, we investigated the ice nucleation ability of viscous SOA particles. The SOA particles were produced from the ozone initiated oxidation of α-pinene in an aerosol chamber at temperatures in the range from -38 to -10 °C at 5-15 % relative humidity with respect to water to ensure their formation in a highly viscous phase state, i.e. semi-solid or glassy. The ice nucleation ability of SOA particles with different sizes was investigated with a new continuous flow diffusion chamber. For the first time, we observed heterogeneous ice nucleation of viscous α-pinene SOA for ice saturation ratios between 1.3 and 1.4 significantly below the homogeneous freezing limit. The maximum frozen fractions found at temperatures between -39.0 and -37.2 °C ranged from 6 to 20 % and did not depend on the particle surface area. Global modelling of monoterpene SOA particles suggests that viscous biogenic SOA particles are indeed present in regions where cirrus cloud formation takes place. Hence, they could make up an important contribution to the global ice nucleating particle budget.

  12. A polyoxometalate-encapsulating cationic metal-organic framework as a heterogeneous catalyst for desulfurization.

    Science.gov (United States)

    Hao, Xiu-Li; Ma, Yuan-Yuan; Zang, Hong-Ying; Wang, Yong-Hui; Li, Yang-Guang; Wang, En-Bo

    2015-02-23

    A new cationic triazole-based metal-organic framework encapsulating Keggin-type polyoxometalates, with the molecular formula [Co(BBPTZ)3][HPMo12O40]⋅24 H2O [compound 1; BBPTZ = 4,4'-bis(1,2,4-triazol-1-ylmethyl)biphenyl] is hydrothermally synthesized and characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, powder X-ray diffraction, and single-crystal X-ray diffraction. The structure of compound 1 contains a non-interpenetrated 3D CdSO4 (cds)-type framework with two types of channels that are interconnected with each other; straight channels that are occupied by the Keggin-type POM anions, and wavelike channels that contain lattice water molecules. The catalytic activity of compound 1 in the oxidative desulfurization reaction indicates that it is not only an effective and size-selective heterogeneous catalyst, but it also exhibits distinct structural stability in the catalytic reaction system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Booms, busts and behavioural heterogeneity in stock prices

    NARCIS (Netherlands)

    Hommes, C.; in 't Veld, D.

    2014-01-01

    The global financial crisis indicated the limitations of representative rational agent models for asset pricing solely based on economic fundamentals. We estimate a simple behavioural heterogeneous agents model with boundedly rational traders in which the fundamental value of the stock prices is

  14. Integrating mean and variance heterogeneities to identify differentially expressed genes.

    Science.gov (United States)

    Ouyang, Weiwei; An, Qiang; Zhao, Jinying; Qin, Huaizhen

    2016-12-06

    -wide significant MVDE genes. Our results indicate tremendous potential gain of integrating informative variance heterogeneity after adjusting for global confounders and background data structure. The proposed informative integration test better summarizes the impacts of condition change on expression distributions of susceptible genes than do the existent competitors. Therefore, particular attention should be paid to explicitly exploit the variance heterogeneity induced by condition change in functional genomics analysis.

  15. Applications of neutron scattering to heterogeneous catalysis

    International Nuclear Information System (INIS)

    Parker, Stewart F; Lennon, David

    2016-01-01

    Historically, most studies of heterogeneous catalysts that have used neutron vibrational spectroscopy have employed indirect geometry instruments with a low (<40 cm -1 ) final energy. In this paper we examine the reasons why this has been the case and highlight the advantages and disadvantages of this approach. We then show how some of these may be overcome by the use of direct geometry spectrometers. We illustrate the use of direct geometry spectrometers with examples from reforming of methane to synthesis gas (CO + H 2 ) over Ni/Al 2 O 3 catalysts and an operando study of CO oxidation. We conclude with a proposal for a unique instrument that combines both indirect and direct geometry spectrometers. (paper)

  16. Iron oxide nanotube layer fabricated with electrostatic anodization for heterogeneous Fenton like reaction

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jun-Won; Park, Jae-Woo, E-mail: jaewoopark@hanyang.ac.kr

    2014-05-01

    Highlights: • Iron oxide nanotube was newly fabricated with potentiostatic anodization of Fe{sup 0} foil. • Cyanide was oxidized more effectively with the iron oxide nanotube and H{sub 2}O{sub 2}, resulting in fast oxidation of cyanide and cyanate. • This nanotube of Fe{sub 2}O{sub 3} on Fe{sup 0} metal can replace conventional particulate iron catalysts in Fenton-like processes. - Abstract: Iron oxide nanotubes (INT) were fabricated with potentiostatic anodization of zero valent iron foil in 1 M Na{sub 2}SO{sub 4} containing 0.5 wt% NH{sub 4}F electrolyte, holding the potential at 20, 40, and 60 V for 20 min, respectively. Field emission scanning electron microscopy and X-ray diffractometry were used to evaluate the morphology and crystalline structure of the INT film. The potential of 40 V for 20 min was observed to be optimal to produce an optimal catalytic film. Cyanide dissolved in water was degraded through the Fenton-like reaction using the INT film with hydrogen peroxide (H{sub 2}O{sub 2}). In case of INT-40 V in the presence of H{sub 2}O{sub 2} 3%, the first-order rate constant was found to be 1.7 × 10{sup −2} min{sup −1}, and 1.2 × 10{sup −2} min{sup −1} with commercial hematite powder. Degradation of cyanide was much less with only H{sub 2}O{sub 2}. Therefore, this process proposed in this work can be an excellent alternative to traditional catalysts for Fenton-like reaction.

  17. Heterogeneous oxidative desulfurization of diesel fuel catalyzed by mesoporous polyoxometallate-based polymeric hybrid.

    Science.gov (United States)

    Yang, Huawei; Jiang, Bin; Sun, Yongli; Zhang, Luhong; Huang, Zhaohe; Sun, Zhaoning; Yang, Na

    2017-07-05

    In this work, the simple preparation of novel polymer supported polyoxometallates (POMs) catalysts has been reported. Soluble task-specific cross-linked poly (ionic liquid) (PIL) was prepared with N,​N-​dimethyl-​dodecyl-​(4-​vinylbenzyl) ammonium chloride and divinylbenzene as co-monomers. The as-prepared cationic PILs were assembled with different commercial POMs to form the interlinked mesoporous catalysts, and the formation mechanism was provided. The catalytic oxidation activities of the catalysts were closely related to the formation pathway of their corresponding peroxide active species. The catalyst with H 2 W 12 O 42 10- as counterion, which exhibited the best activity in the oxidation of benzothiophene (BT) and dibenzothiophene (DBT) to sulfones in model oil with hydrogen peroxide (H 2 O 2 , 30wt%) as oxidant, was characterized by different techniques and systematically studied for its sulfur removal performance. As for the oxidative desulfurization of a real diesel, it was observed that almost all of the original sulfur compounds could be completely converted, and the catalyst could be reused for at least eight cycles without noticeable changes in both catalytic activity and chemical structure. In the end, a catalytic mechanism was put forward with the assistant of Raman analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Heterogeneous reactions of ozone with methoxyphenols, in presence and absence of light

    Science.gov (United States)

    Net, Sopheak; Alvarez, Elena Gómez; Gligorovski, Sasho; Wortham, Henri

    2011-06-01

    In this work, we investigated the heterogeneous reactions between gaseous ozone and seven particulate methoxyphenols, biomass tracers. The ozonolysis of silica particles coated with vanillin, vanillic acid, syringaldehyde, syringic acid, acetovanillone, acetonsyringone and coniferyl alcohol was studied successively and was carried out both in total darkness and under illumination with simulated solar light at 297 K. The condensed-phase products which emerged in such heterogeneous reactions were analyzed by gas chromatography-mass spectrometry (GC/MS). No reaction product was detected during the ozonolysis of vanillic acid, syringic acid, acetovanillone and acetosyringone under our experimental conditions. The main tranformation of pathway vanillin and syringaldehyde was the conversion of an aldehyde group to a carboxylic fonction. Thus, syringic acid and vanillic acid were respectively the main oxidation products of syringaldehyde and vanillin. The oxidation of coniferyl alcohol was relatively fast and the total degradation was observed after 16 h of ozone exposure. Five oxidation products: glycolic acid, oxalic acid, vanillin, vanillic acid and 3,4-dihydroxybenzoic acid, were identified and confirmed by their corresponding standards. It is interesting to note that 3,4-dihydroxybenzoic acid was detected only in the experiment performed under combined ozone and light exposure of the particles coated with coniferyl alcohol. Vanillin and vanillic acid also absorb light in the tropospheric actinic window and therefore they can be photochemically active which in turn can induce further modifications of the aerosol particles. A mechanistic pathway was proposed in order to elucidate the ozonolysis reaction of coniferyl alcohol and to explain the identified reaction products.

  19. Thermal inertia and surface heterogeneity on Mars

    Science.gov (United States)

    Putzig, Nathaniel E.

    Thermal inertia derived from temperature observations is critical for understanding surface geology and assessing potential landing sites on Mars. Derivation methods generally assume uniform surface properties for any given observation. Consequently, horizontal heterogeneity and near-surface layering may yield apparent thermal inertia that varies with time of day and season. To evaluate the effects of horizontal heterogeneity, I modeled the thermal behavior of surfaces containing idealized material mixtures (dust, sand, duricrust, and rocks) and differing slope facets. These surfaces exhibit diurnal and seasonal variability in apparent thermal inertia of several 100 tiu, 1 even for components with moderately contrasting thermal properties. To isolate surface effects on the derived thermal inertia of Mars, I mapped inter- annual and seasonal changes in albedo and atmospheric dust opacity, accounting for their effects in a modified derivation algorithm. Global analysis of three Mars years of MGS-TES 2 data reveals diurnal and seasonal variations of ~200 tiu in the mid-latitudes and 600 tiu or greater in the polar regions. Correlation of TES results and modeled apparent thermal inertia of heterogeneous surfaces indicates pervasive surface heterogeneity on Mars. At TES resolution, the near-surface thermal response is broadly dominated by layering and is consistent with the presence of duricrusts over fines in the mid-latitudes and dry soils over ground ice in the polar regions. Horizontal surface mixtures also play a role and may dominate at higher resolution. In general, thermal inertia obtained from single observations or annually averaged maps may misrepresent surface properties. In lieu of a robust heterogeneous- surface derivation technique, repeat coverage can be used together with forward-modeling results to constrain the near-surface heterogeneity of Mars. 1 tiu == J m -2 K -1 s - 2 Mars Global Surveyor Thermal Emission Spectrometer

  20. Dynamic heterogeneity in life histories

    DEFF Research Database (Denmark)

    Tuljapurkar, Shripad; Steiner, Uli; Orzack, Steven Hecht

    2009-01-01

    or no fixed heterogeneity influences this trait. We propose that dynamic heterogeneity provides a 'neutral' model for assessing the possible role of unobserved 'quality' differences between individuals. We discuss fitness for dynamic life histories, and the implications of dynamic heterogeneity...... generate dynamic heterogeneity: life-history differences produced by stochastic stratum dynamics. We characterize dynamic heterogeneity in a range of species across taxa by properties of the Markov chain: the entropy, which describes the extent of heterogeneity, and the subdominant eigenvalue, which...... distributions of lifetime reproductive success. Dynamic heterogeneity contrasts with fixed heterogeneity: unobserved differences that generate variation between life histories. We show by an example that observed distributions of lifetime reproductive success are often consistent with the claim that little...

  1. Fabrication of magnetic carbon composites from peanut shells and its application as a heterogeneous Fenton catalyst in removal of methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Lincheng, E-mail: zhoulc@lzu.edu.cn; Ma, Junjun; Zhang, He; Shao, Yanming; Li, Yanfeng

    2015-01-01

    Graphical abstract: Peanut shell magnetic carbon (PMC) were fabricated by carbonized the mixture of peanut shells and (NH{sub 4}){sub 3}Fe(C{sub 2}O{sub 4}){sub 3}. The obtained PMC exhibit high efficiency in catalysis oxidation methylene blue with the help of K{sub 2}S{sub 2}O{sub 8} and it can be easily separated from aqueous by external magnetic field. Meanwhile, the catalyst can be reused for seven times almost without decreased of activity. - Highlights: • Novel peanut shell magnetic carbon (PMC) catalysts were successfully synthesized. • PMC exhibited superior activity as a heterogeneous Fenton-like catalyst. • A high efficient Fenton-like system was set up for removal MB. • PMC posed excellent catalysis oxidation quality, stability and good reusability. - Abstract: Magnetic carbons were prepared from agricultural waste peanut shells and Ferric ammonium oxalate via a simple impregnation and carbonization process. The obtained composites were characterized by element analysis, MÖssbauer spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, X-ray diffraction, vibrating sample magnetometry and the Brunauer-Emmett-Teller surface area method, respectively. The magnetic carbon material was used as catalyst of heterogeneous Fenton reaction to remove methylene blue with the help of persulfate in waste water. The results indicated that both the removal rate and removal efficiency of this catalytic system are very excellent. The degradation efficiency was best (90% within 30 min) using initial concentrations of 0.5 g L{sup −1} persulfate and 40 mg L{sup −1} methylene blue. The removal mechanism was investigated by LC-MS. The catalyst retained its activity after seven reuses, indicating its good stability and reusability. It is inexpensive because it consists mainly of agricultural waste. Its porosity contributed to its high activity, which was achieved without any additional activation process. These indicating that the catalyst is

  2. A Reactive Oxide Overlayer on Rh Nanoparticles during CO Oxidation and Its Size Dependence Studied by in Situ Ambient Pressure XPS

    International Nuclear Information System (INIS)

    Grass, Michael E.; Zhang, Yawen; Butcher, Derek R.; Park, Jeong Y.; Li, Yimin; Bluhm, Hendrik; Bratlie, Kaitlin M.; Zhang, Tianfu; Somorjai, Gabor A.

    2008-01-01

    CO oxidation is one of the most studied heterogeneous reactions, being scientifically and industrially important, particularly for removal of CO from exhaust streams and preferential oxidation for hydrogen purification in fuel cell applications. The precious metals Ru, Rh, Pd, Pt, and Au are most commonly used for this reaction because of their high activity and stability. Despite the wealth of experimental and theoretical data, it remains unclear what is the active surface for CO oxidation under catalytic conditions for these metals. In this communication, we utilize in situ synchrotron ambient pressure X-ray photoelectron spectroscopy (APXPS) to monitor the oxidation state at the surface of Rh nanoparticles during CO oxidation and demonstrate that the active catalyst is a surface oxide, the formation of which is dependent on particle size. The amount of oxide formed and the reaction rate both increase with decreasing particle size.

  3. Discovery of Power-Law Growth in the Self-Renewal of Heterogeneous Glioma Stem Cell Populations.

    Directory of Open Access Journals (Sweden)

    Michiya Sugimori

    Full Text Available Accumulating evidence indicates that cancer stem cells (CSCs drive tumorigenesis. This suggests that CSCs should make ideal therapeutic targets. However, because CSC populations in tumors appear heterogeneous, it remains unclear how CSCs might be effectively targeted. To investigate the mechanisms by which CSC populations maintain heterogeneity during self-renewal, we established a glioma sphere (GS forming model, to generate a population in which glioma stem cells (GSCs become enriched. We hypothesized, based on the clonal evolution concept, that with each passage in culture, heterogeneous clonal sublines of GSs are generated that progressively show increased proliferative ability.To test this hypothesis, we determined whether, with each passage, glioma neurosphere culture generated from four different glioma cell lines become progressively proliferative (i.e., enriched in large spheres. Rather than monitoring self-renewal, we measured heterogeneity based on neurosphere clone sizes (#cells/clone. Log-log plots of distributions of clone sizes yielded a good fit (r>0.90 to a straight line (log(% total clones = k*log(#cells/clone indicating that the system follows a power-law (y = xk with a specific degree exponent (k = -1.42. Repeated passaging of the total GS population showed that the same power-law was maintained over six passages (CV = -1.01 to -1.17. Surprisingly, passage of either isolated small or large subclones generated fully heterogeneous populations that retained the original power-law-dependent heterogeneity. The anti-GSC agent Temozolomide, which is well known as a standard therapy for glioblastoma multiforme (GBM, suppressed the self-renewal of clones, but it never disrupted the power-law behavior of a GS population.Although the data above did not support the stated hypothesis, they did strongly suggest a novel mechanism that underlies CSC heterogeneity. They indicate that power-law growth governs the self-renewal of heterogeneous

  4. Aerobic Oxidation of Veratryl Alcohol to Veratraldehyde with Heterogeneous Ruthenium Catalysts

    DEFF Research Database (Denmark)

    Melián Rodriguez, Mayra; Shunmugavel, Saravanamurugan; Kegnæs, Søren

    2015-01-01

    Lignin is a complex polymeric molecule constituting various linkages between aromatic moieties. Typically, the β-O-4 linkage accounts for more than half of the linkage structures present in lignin. The current study focuses on the oxidative transformation of veratryl alcohol (VA)—a compound that ...

  5. Nanoscale-Agglomerate-Mediated Heterogeneous Nucleation.

    Science.gov (United States)

    Cha, Hyeongyun; Wu, Alex; Kim, Moon-Kyung; Saigusa, Kosuke; Liu, Aihua; Miljkovic, Nenad

    2017-12-13

    Water vapor condensation on hydrophobic surfaces has received much attention due to its ability to rapidly shed water droplets and enhance heat transfer, anti-icing, water harvesting, energy harvesting, and self-cleaning performance. However, the mechanism of heterogeneous nucleation on hydrophobic surfaces remains poorly understood and is attributed to defects in the hydrophobic coating exposing the high surface energy substrate. Here, we observe the formation of high surface energy nanoscale agglomerates on hydrophobic coatings after condensation/evaporation cycles in ambient conditions. To investigate the deposition dynamics, we studied the nanoscale agglomerates as a function of condensation/evaporation cycles via optical and field emission scanning electron microscopy (FESEM), microgoniometric contact angle measurements, nucleation statistics, and energy dispersive X-ray spectroscopy (EDS). The FESEM and EDS results indicated that the nanoscale agglomerates stem from absorption of sulfuric acid based aerosol particles inside the droplet and adsorption of volatile organic compounds such as methanethiol (CH 3 SH), dimethyl disulfide (CH 3 SSCH), and dimethyl trisulfide (CH 3 SSSCH 3 ) on the liquid-vapor interface during water vapor condensation, which act as preferential sites for heterogeneous nucleation after evaporation. The insights gained from this study elucidate fundamental aspects governing the behavior of both short- and long-term heterogeneous nucleation on hydrophobic surfaces, suggest previously unexplored microfabrication and air purification techniques, and present insights into the challenges facing the development of durable dropwise condensing surfaces.

  6. Oxidation of Alcohols by Ferric Nitrate in the Presence of Barium ...

    African Journals Online (AJOL)

    NJD

    Oxidation, ferric nitrate, barium chloride, silica sulphuric acid, heterogeneous or solvent-free conditions. 1. Introduction ... economic advantage and environment protection. ... by TLC. After completion, structure of the product was charac-.

  7. Rare earth oxide aero- and xerogels. Tuning porosity and catalytic properties

    International Nuclear Information System (INIS)

    Neumann, Bjoern

    2013-11-01

    Heterogeneous catalysts to this day are still largely developed on the basis of trial and error. This is due to the great difficulty of creating custom-designed structures at the nanometer scale using traditional preparation methods. In the course of recent rapid developments in the material sciences, however, it has become possible to create materials with custom-designed properties from the macroscopic down into the nanometer range. The purpose of the present study was to make use of this potential for catalysis. The task was to modify the porosity and composition of selected rare earth oxides that promise well as catalysts with the goal of obtaining good results in terms of oxidative reactions and oxidative coupling. One major focus was on chemical sol-gel methods and in particular on what is referred to as the epoxide addition method. Extensive work was put into the characterisation and catalytic testing of aerogels and xerogels of pure rare earth oxides as well as of hybrid systems of rare earth oxides and aluminium oxide. Furthermore, thin xerogel films and macroporous monoliths were produced, the latter using a direct foaming method. The results of this work confirm the high potential of sol-gel chemistry for making porous materials of variable and controllable porosity and composition available for heterogeneous catalysis and creating more powerful catalysts. [de

  8. Optimization of Acid Orange 7 Degradation in Heterogeneous Fenton-like Reaction Using Fe3-xCoxO4 Catalyst

    Science.gov (United States)

    Ibrahim, M. Z.; Alrozi, R.; Zubir, N. A.; Bashah, N. A.; Ali, S. A. Md; Ibrahim, N.

    2018-05-01

    The oxidation process such as heterogeneous Fenton and/or Fenton-like reactions is considered as an effective and efficient method for treatment of dye degradation. In this study, the degradation of Acid Orange 7 (AO7) was investigated by using Fe3-xCoxO4 as a heterogeneous Fenton-like catalyst. Response surface methodology (RSM) was used to optimize the operational parameters condition and the interaction of two or more parameters. The parameter studies were catalyst dosage (X1 ), pH (X2 ) and H2O2 concentration (X3 ) towards AO7 degradation. Based on analysis of variance (ANOVA), the derived quadratic polynomial model was significant whereby the predicted values matched the experimental values with regression coefficient of R2 = 0.9399. The optimum condition for AO7 degradation was obtained at catalyst dosage of 0.84 g/L, pH of 3 and H2O2 concentration of 46.70 mM which resulted in 86.30% removal of AO7 dye. These findings present new insights into the influence of operational parameters in the heterogeneous Fenton-like oxidation of AO7 using Fe3-xCoxO4 catalyst.

  9. Ionizing radiation, antioxidant response and oxidative damage: A meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Einor, D., E-mail: daniel@einor.com [Department of Biological Sciences, University of South Carolina, Columbia, SC 29208 (United States); Bonisoli-Alquati, A., E-mail: andreabonisoli@gmail.com [Department of Biological Sciences, University of South Carolina, Columbia, SC 29208 (United States); School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, LA 70803 (United States); Costantini, D., E-mail: davidcostantini@libero.it [Department of Biology, University of Antwerp, Wilrijk, B-2610, Antwerp (Belgium); Mousseau, T.A., E-mail: mousseau@sc.edu [Department of Biological Sciences, University of South Carolina, Columbia, SC 29208 (United States); Faculty of Bioscience and Biotechnology, Chubu University, Kasugai (Japan); Møller, A.P., E-mail: anders.moller@u-psud.fr [Laboratoire d' Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, Bâtiment 362, F-91405 Orsay Cedex (France)

    2016-04-01

    One mechanism proposed as a link between exposure to ionizing radiation and detrimental effects on organisms is oxidative damage. To test this hypothesis, we surveyed the scientific literature on the effects of chronic low-dose ionizing radiation (LDIR) on antioxidant responses and oxidative damage. We found 40 publications and 212 effect sizes for antioxidant responses and 288 effect sizes for effects of oxidative damage. We performed a meta-analysis of signed and unsigned effect sizes. We found large unsigned effects for both categories (0.918 for oxidative damage; 0.973 for antioxidant response). Mean signed effect size weighted by sample size was 0.276 for oxidative damage and − 0.350 for antioxidant defenses, with significant heterogeneity among effects for both categories, implying that ionizing radiation caused small to intermediate increases in oxidative damage and small to intermediate decreases in antioxidant defenses. Our estimates are robust, as shown by very high fail-safe numbers. Species, biological matrix (tissue, blood, sperm) and age predicted the magnitude of effects for oxidative damage as well as antioxidant response. Meta-regression models showed that effect sizes for oxidative damage varied among species and age classes, while effect sizes for antioxidant responses varied among species and biological matrices. Our results are consistent with the description of mechanisms underlying pathological effects of chronic exposure to LDIR. Our results also highlight the importance of resistance to oxidative stress as one possible mechanism associated with variation in species responses to LDIR-contaminated areas. - Highlights: • There is interest in variation in metabolic effects of chronic low-dose ionizing radiation • A random effect meta-analysis of effect sizes of radioactive contamination was performed • We found significant effects of radiation on oxidative damage and antioxidant response • We found significant heterogeneity among

  10. Efficient electrochemical water oxidation in neutral and near-neutral systems by nanoscale silver-oxide catalyst

    KAUST Repository

    Joya, Khurram Saleem; Ahmad, Zahoor; Joya, Yasir Faheem; Garcia Esparza, Angel T.; de Groot, Huub

    2016-01-01

    In electrocatalytic water splitting systems pursuing for renewable energy using sun light, developing robust, stable and easy accessible materials operating under mild chemical conditions is pivotal. We present here unique nano-particulate type silver-oxide (AgOx-NP) based robust and highly stable electrocatalyst for efficient water oxidation. The AgOx-NP is generated in situ in a HCO3–/CO2 system under benign conditions. Mircographs show that they exhibit nanoscale box type squared nano-bipyramidal configuration. The oxygen generation is initiated at low overpotential, and a sustained O2 evolution current density of > 1.1 mA cm–2 is achieved during prolonged-period water electrolysis. The AgOx-NP electrocatalyst performs exceptionally well in metal-ions free neutral or near-neutral carbonate, phosphate and borate buffers relative to recently reported Co-oxide and Ni-oxide based heterogeneous electrocatalysts, which are unstable in metal-ions free electrolyte and tend to degrade with time and lose catalytic performance during long-term experimental tests.

  11. Efficient electrochemical water oxidation in neutral and near-neutral systems by nanoscale silver-oxide catalyst

    KAUST Repository

    Joya, Khurram Saleem

    2016-07-19

    In electrocatalytic water splitting systems pursuing for renewable energy using sun light, developing robust, stable and easy accessible materials operating under mild chemical conditions is pivotal. We present here unique nano-particulate type silver-oxide (AgOx-NP) based robust and highly stable electrocatalyst for efficient water oxidation. The AgOx-NP is generated in situ in a HCO3–/CO2 system under benign conditions. Mircographs show that they exhibit nanoscale box type squared nano-bipyramidal configuration. The oxygen generation is initiated at low overpotential, and a sustained O2 evolution current density of > 1.1 mA cm–2 is achieved during prolonged-period water electrolysis. The AgOx-NP electrocatalyst performs exceptionally well in metal-ions free neutral or near-neutral carbonate, phosphate and borate buffers relative to recently reported Co-oxide and Ni-oxide based heterogeneous electrocatalysts, which are unstable in metal-ions free electrolyte and tend to degrade with time and lose catalytic performance during long-term experimental tests.

  12. Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria.

    Science.gov (United States)

    Miot, J; Benzerara, K; Morin, G; Bernard, S; Beyssac, O; Larquet, E; Kappler, A; Guyot, F

    2009-06-01

    In phosphate-rich environments, vivianite (Fe(II)(3)(PO(4))(2), 8H(2)O) is an important sink for dissolved Fe(II) and is considered as a very stable mineral due to its low solubility at neutral pH. In the present study, we report the mineralogical transformation of vivianite in cultures of the nitrate-reducing iron-oxidizing bacterial strain BoFeN1 in the presence of dissolved Fe(II). Vivianite was first transformed into a greenish phase consisting mostly of an amorphous mixed valence Fe-phosphate. This precipitate became progressively orange and the final product of iron oxidation consisted of an amorphous Fe(III)-phosphate. The sub-micrometer analysis by scanning transmission X-ray microscopy of the iron redox state in samples collected at different stages of the culture indicated that iron was progressively oxidized at the contact of the bacteria and at a distance from the cells in extracellular minerals. Iron oxidation in the extracellular minerals was delayed by a few days compared with cell-associated Fe-minerals. This led to strong differences of Fe redox in between these two types of minerals and finally to local heterogeneities of redox within the sample. In the absence of dissolved Fe(II), vivianite was not significantly transformed by BoFeN1. Whereas Fe(II) oxidation at the cell contact is most probably directly catalyzed by the bacteria, vivianite transformation at a distance from the cells might result from oxidation by nitrite. In addition, processes leading to the export of Fe(III) from bacterial oxidation sites to extracellular minerals are discussed including some involving colloids observed by cryo-transmission electron microscopy in the culture medium.

  13. Clinical impact of leukemic blast heterogeneity at diagnosis in cytogenetic intermediate-risk acute myeloid leukemia

    DEFF Research Database (Denmark)

    Hoffmann, Marianne Hutchings; Klausen, Tobias Wirenfeldt; Boegsted, Martin

    2012-01-01

    Individual cellular heterogeneity within the acute myeloid leukemia (AML) bone marrow samples can be observed by multi parametric flow cytometry analysis (MFC) indicating that immunophenotypic screening for leukemic blast subsets may have prognostic impact.......Individual cellular heterogeneity within the acute myeloid leukemia (AML) bone marrow samples can be observed by multi parametric flow cytometry analysis (MFC) indicating that immunophenotypic screening for leukemic blast subsets may have prognostic impact....

  14. Nonaqueous electrocatalytic water oxidation by a surface-bound Ru(bda)(L)₂ complex.

    Science.gov (United States)

    Sheridan, Matthew V; Sherman, Benjamin D; Wee, Kyung-Ryang; Marquard, Seth L; Gold, Alexander S; Meyer, Thomas J

    2016-04-21

    The rate of electrocatalytic water oxidation by the heterogeneous water oxidation catalyst [Ru(bda)(4-O(CH2)3P(O3H2)2-pyr)2], , (pyr = pyridine; bda = 2,2'-bipyridine-6,6'-dicarboxylate) on metal oxide surfaces is greatly enhanced relative to water as the solvent. In these experiments with propylene carbonate (PC) as the nonaqueous solvent, water is the limiting reagent. Mechanistic studies point to atom proton transfer (APT) as the rate limiting step in water oxidation catalysis.

  15. Direct aerobic oxidation of primary alcohols to methyl esters catalyzed by a heterogeneous gold catalyst

    DEFF Research Database (Denmark)

    Nielsen, Inger Staunstrup; Taarning, Esben; Egeblad, Kresten

    2007-01-01

    Methyl esters can be produced in high yield by oxidising methanolic solutions of primary alcohols with dioxygen over a heterogeneous gold catalyst. The versatility of this new methodology is demonstrated by the fact that alkylic, benzylic and allylic alcohols, as well as alcohols containing...

  16. Heterogeneous cellular networks

    CERN Document Server

    Hu, Rose Qingyang

    2013-01-01

    A timely publication providing coverage of radio resource management, mobility management and standardization in heterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentum in industry and the research community, attracting the attention of standardization bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are looking into increasing the capacity and coverage of the cellular networks. This book focuses on recent progresses,  covering the related topics including scenarios of heterogeneous network deployment, interference management i

  17. Method for converting uranium oxides to uranium metal

    International Nuclear Information System (INIS)

    Duerksen, W.K.

    1988-01-01

    A method for converting uranium oxide to uranium metal is described comprising the steps of heating uranium oxide in the presence of a reducing agent to a temperature sufficient to reduce the uranium oxide to uranium metal and form a heterogeneous mixture of a uranium metal product and oxide by-products, heating the mixture in a hydrogen atmosphere at a temperature sufficient to convert uranium metal in the mixture to uranium hydride, cooling the resulting uranium hydride-containing mixture to a temperature sufficient to produce a ferromagnetic transition in the uranium hydride, magnetically separating the cooled uranium hydride from the mixture, and thereafter heating the separated uranium hydride in an inert atmosphere to a temperature sufficient to convert the uranium hydride to uranium metal

  18. Experimental validation of a new heterogeneous mechanical test design

    Science.gov (United States)

    Aquino, J.; Campos, A. Andrade; Souto, N.; Thuillier, S.

    2018-05-01

    Standard material parameters identification strategies generally use an extensive number of classical tests for collecting the required experimental data. However, a great effort has been made recently by the scientific and industrial communities to support this experimental database on heterogeneous tests. These tests can provide richer information on the material behavior allowing the identification of a more complete set of material parameters. This is a result of the recent development of full-field measurements techniques, like digital image correlation (DIC), that can capture the heterogeneous deformation fields on the specimen surface during the test. Recently, new specimen geometries were designed to enhance the richness of the strain field and capture supplementary strain states. The butterfly specimen is an example of these new geometries, designed through a numerical optimization procedure where an indicator capable of evaluating the heterogeneity and the richness of strain information. However, no experimental validation was yet performed. The aim of this work is to experimentally validate the heterogeneous butterfly mechanical test in the parameter identification framework. For this aim, DIC technique and a Finite Element Model Up-date inverse strategy are used together for the parameter identification of a DC04 steel, as well as the calculation of the indicator. The experimental tests are carried out in a universal testing machine with the ARAMIS measuring system to provide the strain states on the specimen surface. The identification strategy is accomplished with the data obtained from the experimental tests and the results are compared to a reference numerical solution.

  19. CHARACTERIZING LANDSCAPE SPATIAL HETEROGENEITY USING SEMIVARIOGRAM PARAMETERS DERIVED FROM NDVI IMAGES

    Directory of Open Access Journals (Sweden)

    Eduarda Martiniano de Oliveira Silveira

    2017-12-01

    Full Text Available Assuming a relationship between landscape heterogeneity and measures of spatial dependence by using remotely sensed data, the aim of this work was to evaluate the potential of semivariogram parameters, derived from satellite images with different spatial resolutions, to characterize landscape spatial heterogeneity of forested and human modified areas. The NDVI (Normalized Difference Vegetation Index was generated in an area of Brazilian amazon tropical forest (1,000 km².We selected samples (1 x 1 km from forested and human modified areas distributed throughout the study area, to generate the semivariogram and extract the sill (σ²-overall spatial variability of the surface property and range (φ-the length scale of the spatial structures of objects parameters. The analysis revealed that image spatial resolution influenced the sill and range parameters. The average sill and range values increase from forested to human modified areas and the greatest between-class variation was found for LANDSAT 8 imagery, indicating that this image spatial resolution is the most appropriate for deriving sill and range parameters with the intention of describing landscape spatial heterogeneity. By combining remote sensing and geostatistical techniques, we have shown that the sill and range parameters of semivariograms derived from NDVI images are a simple indicator of landscape heterogeneity and can be used to provide landscape heterogeneity maps to enable researchers to design appropriate sampling regimes. In the future, more applications combining remote sensing and geostatistical features should be further investigated and developed, such as change detection and image classification using object-based image analysis (OBIA approaches.

  20. Rare earth oxide aero- and xerogels. Tuning porosity and catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Bjoern

    2013-11-15

    Heterogeneous catalysts to this day are still largely developed on the basis of trial and error. This is due to the great difficulty of creating custom-designed structures at the nanometer scale using traditional preparation methods. In the course of recent rapid developments in the material sciences, however, it has become possible to create materials with custom-designed properties from the macroscopic down into the nanometer range. The purpose of the present study was to make use of this potential for catalysis. The task was to modify the porosity and composition of selected rare earth oxides that promise well as catalysts with the goal of obtaining good results in terms of oxidative reactions and oxidative coupling. One major focus was on chemical sol-gel methods and in particular on what is referred to as the epoxide addition method. Extensive work was put into the characterisation and catalytic testing of aerogels and xerogels of pure rare earth oxides as well as of hybrid systems of rare earth oxides and aluminium oxide. Furthermore, thin xerogel films and macroporous monoliths were produced, the latter using a direct foaming method. The results of this work confirm the high potential of sol-gel chemistry for making porous materials of variable and controllable porosity and composition available for heterogeneous catalysis and creating more powerful catalysts. [German] Bis heute werden heterogene Katalysatoren ueberwiegend per ''trial and error'' entwickelt. Dies liegt daran, dass es mit Hilfe der traditionellen Herstellungsmethoden sehr schwierig ist, auf der Nanometerskala Strukturen gezielt herzustellen. Im Zuge der rasanten Entwicklungen in den Materialwissenschaften ist es jedoch moeglich geworden, verschiedenste Materialen mit massgeschneiderten Eigenschaften vom makroskopischen bis hinein in den Nanometerbereich herzustellen. Ziel dieser Arbeit war es, dieses Potential fuer die Katalyse zu nutzen. Dabei bestand die Aufgabe darin

  1. Biological iron oxidation by Gallionella spp. in drinking water production under fully aerated conditions.

    Science.gov (United States)

    de Vet, W W J M; Dinkla, I J T; Rietveld, L C; van Loosdrecht, M C M

    2011-11-01

    Iron oxidation under neutral conditions (pH 6.5-8) may be a homo- or heterogeneous chemically- or a biologically-mediated process. The chemical oxidation is supposed to outpace the biological process under slightly alkaline conditions (pH 7-8). The iron oxidation kinetics and growth of Gallionella spp. - obligatory chemolithotrophic iron oxidizers - were assessed in natural, organic carbon-containing water, in continuous lab-scale reactors and full-scale groundwater trickling filters in the Netherlands. From Gallionella cell numbers determined by qPCR, balances were made for all systems. The homogeneous chemical iron oxidation occurred in accordance with the literature, but was retarded by a low water temperature (13 °C). The contribution of the heterogeneous chemical oxidation was, despite the presence of freshly formed iron oxyhydroxides, much lower than in previous studies in ultrapure water. This could be caused by the adsorption of natural organic matter (NOM) on the iron oxide surfaces. In the oxygen-saturated natural water with a pH ranging from 6.5 to 7.7, Gallionella spp. grew uninhibited and biological iron oxidation was an important, and probably the dominant, process. Gallionella growth was not even inhibited in a full-scale filter after plate aeration. From this we conclude that Gallionella spp. can grow under neutral pH and fully aerated conditions when the chemical iron oxidation is retarded by low water temperature and inhibition of the autocatalytic iron oxidation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Mesoscale characterization of local property distributions in heterogeneous electrodes

    Science.gov (United States)

    Hsu, Tim; Epting, William K.; Mahbub, Rubayyat; Nuhfer, Noel T.; Bhattacharya, Sudip; Lei, Yinkai; Miller, Herbert M.; Ohodnicki, Paul R.; Gerdes, Kirk R.; Abernathy, Harry W.; Hackett, Gregory A.; Rollett, Anthony D.; De Graef, Marc; Litster, Shawn; Salvador, Paul A.

    2018-05-01

    The performance of electrochemical devices depends on the three-dimensional (3D) distributions of microstructural features in their electrodes. Several mature methods exist to characterize 3D microstructures over the microscale (tens of microns), which are useful in understanding homogeneous electrodes. However, methods that capture mesoscale (hundreds of microns) volumes at appropriate resolution (tens of nm) are lacking, though they are needed to understand more common, less ideal electrodes. Using serial sectioning with a Xe plasma focused ion beam combined with scanning electron microscopy (Xe PFIB-SEM), two commercial solid oxide fuel cell (SOFC) electrodes are reconstructed over volumes of 126 × 73 × 12.5 and 124 × 110 × 8 μm3 with a resolution on the order of ≈ 503 nm3. The mesoscale distributions of microscale structural features are quantified and both microscale and mesoscale inhomogeneities are found. We analyze the origin of inhomogeneity over different length scales by comparing experimental and synthetic microstructures, generated with different particle size distributions, with such synthetic microstructures capturing well the high-frequency heterogeneity. Effective medium theory models indicate that significant mesoscale variations in local electrochemical activity are expected throughout such electrodes. These methods offer improved understanding of the performance of complex electrodes in energy conversion devices.

  3. Charge Transfer and Support Effects in Heterogeneous Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Hervier, Antoine [Univ. of California, Berkeley, CA (United States)

    2011-12-21

    The kinetic, electronic and spectroscopic properties of two-dimensional oxide-supported catalysts were investigated in order to understand the role of charge transfer in catalysis. Pt/TiO2 nanodiodes were fabricated and used as catalysts for hydrogen oxidation. During the reaction, the current through the diode, as well as its I-V curve, were monitored, while gas chromatography was used to measure the reaction rate. The current and the turnover rate were found to have the same temperature dependence, indicating that hydrogen oxidation leads to the non-adiabatic excitation of electrons in Pt. A fraction of these electrons have enough energy to ballistically transport through Pt and overcome the Schottky barrier at the interface with TiO2. The yield for this phenomenon is on the order of 10-4 electrons per product molecule formed, similar to what has been observed for CO oxidation and for the adsorption of many different molecules. The same Pt/TiO2 system was used to compare currents in hydrogen oxidation and deuterium oxidation. The current through the diode under deuterium oxidation was found to be greater than under hydrogen oxidation by a factor of three. Weighted by the difference in turnover frequencies for the two isotopes, this would imply a chemicurrent yield 5 times greater for D2 compared to H2, contrary to what is expected given the higher mass of D2. Reversible changes in the rectification factor of the diode are observed when switching between D2 and H2. These changes are a likely cause for the differences in current between the two isotopes. In the nanodiode experiments, surface chemistry leads to charge flow, suggesting the possibility of creating charge flow to tune surface chemistry. This was done first by exposing a Pt/Si diode to visible light while using it as a catalyst for H2 oxidation. Absorption of the light in the Si, combined with

  4. Hetero- and homogeneous three-dimensional hierarchical tungsten oxide nanostructures by hot-wire chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Houweling, Z.S., E-mail: Silvester.Houweling@asml.com [Utrecht University, Debye Institute for Nanomaterials Science, Nanophotonics—Physics of Devices, Princetonlaan 4, 3584 CB Utrecht (Netherlands); Harks, P.-P.R.M.L.; Kuang, Y.; Werf, C.H.M. van der [Utrecht University, Debye Institute for Nanomaterials Science, Nanophotonics—Physics of Devices, Princetonlaan 4, 3584 CB Utrecht (Netherlands); Geus, J.W. [Utrecht University, Inorganic Chemistry and Catalysis, Padualaan 8, 3584 CH Utrecht (Netherlands); Schropp, R.E.I. [Utrecht University, Debye Institute for Nanomaterials Science, Nanophotonics—Physics of Devices, Princetonlaan 4, 3584 CB Utrecht (Netherlands)

    2015-01-30

    We present the synthesis of three-dimensional tungsten oxide (WO{sub 3−x}) nanostructures, called nanocacti, using hot-wire chemical vapor deposition. The growth of the nanocacti is controlled through a succession of oxidation, reduction and re-oxidation processes. By using only a resistively heated W filament, a flow of ambient air and hydrogen at subatmospheric pressure, and a substrate heated to about 700 °C, branched nanostructures are deposited. We report three varieties of simple synthesis approaches to obtain hierarchical homo- and heterogeneous nanocacti. Furthermore, by using catalyst nanoparticles site-selection for the growth is demonstrated. The atomic, morphological and crystallographic compositions of the nanocacti are determined using a combination of electron microscopy techniques, energy-dispersive X-ray spectroscopy and electron diffraction. - Highlights: • Continuous upscalable hot-wire CVD of 3D hierarchical nanocacti • Controllable deposition of homo- and heterogeneous WO{sub 3−x}/WO{sub 3−y} nanocacti • Introduction of three synthesis routes comprising oxidation, reduction and re-oxidation processes • Growth of periodic arrays of hetero- and homogeneous hierarchical 3D nanocacti.

  5. The Impact of Epithelial-Stromal Interactions on Human Breast Tumor Heterogeneity

    Science.gov (United States)

    2015-10-01

    Heterogeneity 5b. GRANT NUMBER W81XWH-13-1-0357 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Dr. Crista Thompson 5d. PROJECT NUMBER 5e. TASK NUMBER E-Mail...2005;120:483‐95.   17.   Mateescu B, Batista L,  Cardon  M, et al. miR‐141 and miR‐200a act on ovarian  tumorigenesis by  controlling oxidative stress

  6. Novel metalloporphyrin catalysts for the oxidation of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, M.C.; Nenoff, T.M.; Shelnutt, J.A.

    1996-11-01

    Work was done for developing biomimetic oxidation catalysts. Two classes of metalloporphyrin catalysts were studied. The first class of catalysts studied were a novel series of highly substituted metalloporphyrins, the fluorinated iron dodecaphenylporphyrins. These homogeneous metalloporphyrin catalysts were screened for activity as catalysts in the oxidation of hydrocarbons by dioxygen. Results are discussed with respect to catalyst structural features. The second type of catalysts studied were heterogeneous catalysts consisting of metalloporphyrins applied to inorganic supports. Preliminary catalytic testing results with these materials are presented.

  7. Mini-review: Biofilm responses to oxidative stress.

    Science.gov (United States)

    Gambino, Michela; Cappitelli, Francesca

    2016-01-01

    Biofilms constitute the predominant microbial style of life in natural and engineered ecosystems. Facing harsh environmental conditions, microorganisms accumulate reactive oxygen species (ROS), potentially encountering a dangerous condition called oxidative stress. While high levels of oxidative stress are toxic, low levels act as a cue, triggering bacteria to activate effective scavenging mechanisms or to shift metabolic pathways. Although a complex and fragmentary picture results from current knowledge of the pathways activated in response to oxidative stress, three main responses are shown to be central: the existence of common regulators, the production of extracellular polymeric substances, and biofilm heterogeneity. An investigation into the mechanisms activated by biofilms in response to different oxidative stress levels could have important consequences from ecological and economic points of view, and could be exploited to propose alternative strategies to control microbial virulence and deterioration.

  8. Modeling organic aerosol from the oxidation of α-pinene in a Potential Aerosol Mass (PAM chamber

    Directory of Open Access Journals (Sweden)

    S. Chen

    2013-05-01

    Full Text Available A model has been developed to simulate the formation and evolution of secondary organic aerosol (SOA and was tested against data produced in a Potential Aerosol Mass (PAM flow reactor and a large environmental chamber. The model framework is based on the two-dimensional volatility basis set approach (2D-VBS, in which SOA oxidation products in the model are distributed on the 2-D space of effective saturation concentration (Ci* and oxygen-to-carbon ratio (O : C. The modeled organic aerosol mass concentrations (COA and O : C agree with laboratory measurements within estimated uncertainties. However, while both measured and modeled O : C increase with increasing OH exposure as expected, the increase of modeled O : C is rapid at low OH exposure and then slows as OH exposure increases while the increase of measured O : C is initially slow and then accelerates as OH exposure increases. A global sensitivity analysis indicates that modeled COA values are most sensitive to the assumed values for the number of Ci* bins, the heterogeneous OH reaction rate coefficient, and the yield of first-generation products. Modeled SOA O : C values are most sensitive to the assumed O : C of first-generation oxidation products, the number of Ci* bins, the heterogeneous OH reaction rate coefficient, and the number of O : C bins. All these sensitivities vary as a function of OH exposure. The sensitivity analysis indicates that the 2D-VBS model framework may require modifications to resolve discrepancies between modeled and measured O : C as a function of OH exposure.

  9. Effect of annealing on refractive indices of radio-frequency magnetron sputtered waveguiding zinc oxide films on glass

    International Nuclear Information System (INIS)

    Mehan, Navina; Gupta, Vinay; Sreenivas, Kondepudy; Mansingh, Abhai

    2004-01-01

    The effects of annealing and gas composition on the refractive indices of zinc oxide films were studied in light of the structural properties. ZnO films (1 μm) were deposited by rf magnetron sputtering in different oxygen:argon mixtures on glass and annealed at 380 deg. C in air, at different times. Waveguide modes were excited in the films by prism coupling using a He-Ne laser. The estimated values of the extraordinary and ordinary refractive indices of the films, which were close to the corresponding bulk values (n e =2.006, n o =1.990), initially decreased with annealing time and later increased before becoming constant with further annealing. The variation in refractive indices was explained on the basis of contribution from both packing density p and lattice constant c of the films. The initial decrease in refractive indices was attributed to the observed lattice contraction, and the latter increase was explained in terms of the increase in packing density (p) of the films on annealing. A relation is proposed to estimate the refractive indices of films, which have the lattice constant c different from the bulk value

  10. Biodiesel Production from Castor Oil by Using Calcium Oxide Derived from Mud Clam Shell

    OpenAIRE

    Ismail, S.; Ahmed, A. S.; Anr, Reddy; Hamdan, S.

    2016-01-01

    The catalytic potential of calcium oxide synthesized from mud clam shell as a heterogeneous catalyst for biodiesel production was studied. The mud clam shell calcium oxide was characterized using particle size analyzer, Fourier transform infrared spectroscopy, scanning electron microscopy, and BET gas sorption analyzer. The catalyst performance of mud clam shell calcium oxide was studied in the transesterification of castor oil as biodiesel. Catalyst characterization and transesterification s...

  11. A molybdenum disulfide/carbon nanotube heterogeneous complementary inverter.

    Science.gov (United States)

    Huang, Jun; Somu, Sivasubramanian; Busnaina, Ahmed

    2012-08-24

    We report a simple, bottom-up/top-down approach for integrating drastically different nanoscale building blocks to form a heterogeneous complementary inverter circuit based on layered molybdenum disulfide and carbon nanotube (CNT) bundles. The fabricated CNT/MoS(2) inverter is composed of n-type molybdenum disulfide (MOS(2)) and p-type CNT transistors, with a high voltage gain of 1.3. The CNT channels are fabricated using directed assembly while the layered molybdenum disulfide channels are fabricated by mechanical exfoliation. This bottom-up fabrication approach for integrating various nanoscale elements with unique characteristics provides an alternative cost-effective methodology to complementary metal-oxide-semiconductors, laying the foundation for the realization of high performance logic circuits.

  12. FDG uptake heterogeneity in FIGO IIb cervical carcinoma does not predict pelvic lymph node involvement

    OpenAIRE

    Brooks, Frank J; Grigsby, Perry W

    2013-01-01

    Translational relevance Many types of cancer are located and assessed via positron emission tomography (PET) using the 18F-fluorodeoxyglucose (FDG) radiotracer of glucose uptake. There is rapidly increasing interest in exploiting the intra-tumor heterogeneity observed in these FDG-PET images as an indicator of disease outcome. If this image heterogeneity is of genuine prognostic value, then it either correlates to known prognostic factors, such as tumor stage, or it indicates some as yet unkn...

  13. Ordered meso- and macroporous perovskite oxide catalysts for emerging applications

    DEFF Research Database (Denmark)

    Arandiyan, Hamidreza; Wang, Yuan; Sun, Hongyu

    2018-01-01

    This feature article summarizes the recent progress in porous perovskite oxides as advanced catalysts for both energy conversion applications and various heterogeneous reactions. Recently, research has been focused on specifically designing porous perovskite materials so that large surface areas ...

  14. Geological entropy and solute transport in heterogeneous porous media

    Science.gov (United States)

    Bianchi, Marco; Pedretti, Daniele

    2017-06-01

    We propose a novel approach to link solute transport behavior to the physical heterogeneity of the aquifer, which we fully characterize with two measurable parameters: the variance of the log K values (σY2), and a new indicator (HR) that integrates multiple properties of the K field into a global measure of spatial disorder or geological entropy. From the results of a detailed numerical experiment considering solute transport in K fields representing realistic distributions of hydrofacies in alluvial aquifers, we identify empirical relationship between the two parameters and the first three central moments of the distributions of arrival times of solute particles at a selected control plane. The analysis of experimental data indicates that the mean and the variance of the solutes arrival times tend to increase with spatial disorder (i.e., HR increasing), while highly skewed distributions are observed in more orderly structures (i.e., HR decreasing) or at higher σY2. We found that simple closed-form empirical expressions of the bivariate dependency of skewness on HR and σY2 can be used to predict the emergence of non-Fickian transport in K fields considering a range of structures and heterogeneity levels, some of which based on documented real aquifers. The accuracy of these predictions and in general the results from this study indicate that a description of the global variability and structure of the K field in terms of variance and geological entropy offers a valid and broadly applicable approach for the interpretation and prediction of transport in heterogeneous porous media.

  15. Iron oxides as pedoenvironmental indicators: state of the art, answers and questions (Philippe Duchaufour Medal Lecture)

    Science.gov (United States)

    Torrent, J.

    2012-04-01

    The colour and magnetic properties of soils largely reflect the content and mineralogy of their iron oxides, which in turn relate to the physical, chemical and biological characteristics of the soil environment. For more than 50 years, soil mineralogists and chemists have collected data for iron oxides in soils formed in widely different environments and tried to understand the complex nature of the different suites and formation pathways for these minerals via laboratory experiments. The discovery of ferrihydrite —the poorly crystalline precursor of most Fe oxides— in 1971, and the recognition of its common presence in soils, raised interest in deciphering the environmental factors that affect its transformation into goethite and hematite, the two most abundant crystalline iron oxides in soil. Field observations were consistent with laboratory experiments in which temperature, water activity, pH, foreign ions and organic matter were found to play a key role in the crystallization of ferrihydrite. Thus, the hematite/(hematite + goethite) ratio increased with increasing temperature and also with the likelihood of seasonal soil drying. Exploiting this ratio as a (pedo)environment indicator is, however, not devoid of problems derived from insufficient knowledge of the interactions between the influential chemical variables, difficulties in quantifying the two minerals and changes brought about by reductive dissolution. Soil formation usually leads to magnetic enhancement as a result of the production of magnetite and/or maghemite, which are ferrimagnetic iron oxides, and, possibly, an ordered ferrimagnetic ferrihydrite, as suggested by recent laboratory experiments. The concentration of pedogenic ferrimagnets as estimated via proxies such as magnetic susceptibility or frequency-dependent magnetic susceptibility has been found to relate to climate variables [particularly (paleo)rainfall] in many studies reported over the last 30 years. However, extracting accurate

  16. Measurement of exercise-induced oxidative stress in lymphocytes.

    Science.gov (United States)

    Turner, James E; Bosch, Jos A; Aldred, Sarah

    2011-10-01

    Vigorous exercise is associated with oxidative stress, a state that involves modifications to bodily molecules due to release of pro-oxidant species. Assessment of such modifications provides non-specific measures of oxidative stress in human tissues and blood, including circulating lymphocytes. Lymphocytes are a very heterogeneous group of white blood cells, consisting of subtypes that have different functions in immunity. Importantly, exercise drastically changes the lymphocyte composition in blood by increasing the numbers of some subsets, while leaving other cells unaffected. This fact may imply that observed changes in oxidative stress markers are confounded by changes in lymphocyte composition. For example, lymphocyte subsets may differ in exposure to oxidative stress because of subset differences in cell division and the acquisition of cytotoxic effector functions. The aim of the present review is to raise awareness of interpretational issues related to the assessment of oxidative stress in lymphocytes with exercise and to address the relevance of lymphocyte subset phenotyping in these contexts.

  17. Atomic origins of water-vapour-promoted alloy oxidation.

    Science.gov (United States)

    Luo, Langli; Su, Mao; Yan, Pengfei; Zou, Lianfeng; Schreiber, Daniel K; Baer, Donald R; Zhu, Zihua; Zhou, Guangwen; Wang, Yanting; Bruemmer, Stephen M; Xu, Zhijie; Wang, Chongmin

    2018-05-07

    The presence of water vapour, intentional or unavoidable, is crucial to many materials applications, such as in steam generators, turbine engines, fuel cells, catalysts and corrosion 1-4 . Phenomenologically, water vapour has been noted to accelerate oxidation of metals and alloys 5,6 . However, the atomistic mechanisms behind such oxidation remain elusive. Through direct in situ atomic-scale transmission electron microscopy observations and density functional theory calculations, we reveal that water-vapour-enhanced oxidation of a nickel-chromium alloy is associated with proton-dissolution-promoted formation, migration, and clustering of both cation and anion vacancies. Protons derived from water dissociation can occupy interstitial positions in the oxide lattice, consequently lowering vacancy formation energy and decreasing the diffusion barrier of both cations and anions, which leads to enhanced oxidation in moist environments at elevated temperatures. This work provides insights into water-vapour-enhanced alloy oxidation and has significant implications in other material and chemical processes involving water vapour, such as corrosion, heterogeneous catalysis and ionic conduction.

  18. Spatial coupling in heterogeneous catalysis

    Science.gov (United States)

    Yamamoto, S. Y.; Surko, C. M.; Maple, M. B.

    1995-11-01

    Spatial coupling mechanisms are studied in the heterogeneous catalytic oxidation of carbon monoxide over platinum at atmospheric pressure under oscillatory conditions. Experiments are conducted in a continuous flow reactor, and the reaction rate is monitored using both infrared imaging and thermocouples. The catalysts are in the form of platinum annular thin films on washer-shaped quartz substrates, and they provide highly repeatable oscillatory behavior. Oscillations are typically spatially synchronized with the entire catalyst ``flashing'' on and off uniformly. Spatial coupling is investigated by introducing various barriers which split the annular ring in half. Infrared images show that coupling through the gas phase dominates coupling via the diffusion of CO on the surface or heat diffusion through the substrate. The introduction of a localized heat perturbation to the catalyst surface does not induce a transition in the reaction rate. Thus, it is likely that the primary mode of communication is through the gas-phase diffusion of reactants.

  19. Determining the Influence of Heterogeneity in Graduate Institutions on University-Industry Collaboration Policy in Taiwan

    Science.gov (United States)

    Weng, Hung-Jen; Chang, Dian-Fu

    2016-01-01

    In this study, we assumed that organizational heterogeneity is a key factor influencing the effects of university-industry cooperation policy in higher education institutes. Gender difference, faculty position, faculty member nationality, and diversity in academic expertise were considered as the indicators of heterogeneity. One-hundred graduate…

  20. Heterogeneous biomimetic catalysis using iron porphyrin for cyclohexane oxidation promoted by chitosan

    Science.gov (United States)

    Huang, Guan; Liu, Yao; Cai, Jing Li; Chen, Xiang Feng; Zhao, Shu Kai; Guo, Yong An; Wei, Su Juan; Li, Xu

    2017-04-01

    This study investigates how ligands modulate metalloporphyrin activity with the goal of producing a practical biomimetic catalyst for use in the chemical industry. We immobilized iron porphyrinate [iron-tetrakis-(4-sulfonatophenyl)-porphyrin; Fe(III) (TPPS)] on powdered chitosan (pd-CTS) to form an immobilized catalyst Fe(III) (TPPS)/pd-CTS, which was characterized using modern spectroscopic techniques and used for catalytic oxidation of cyclohexane with O2. Amino coordination to iron porphyrin in Fe(III) (TPPS)/pd-CTS altered the electron cloud density around the iron cation, probably by reducing the activation energy of Fe(III) (TPPS) and raising the reactivity of the iron ion catalytic center, thereby improving the catalytic efficiency. One milligram of Fe(III) (TPPS) catalyst can be reused three times for the oxidation reaction to yield an average of 22.9 mol% of cyclohexanone and cyclohexanol.

  1. Toward heterogeneity in feedforward network with synaptic delays based on FitzHugh-Nagumo model

    Science.gov (United States)

    Qin, Ying-Mei; Men, Cong; Zhao, Jia; Han, Chun-Xiao; Che, Yan-Qiu

    2018-01-01

    We focus on the role of heterogeneity on the propagation of firing patterns in feedforward network (FFN). Effects of heterogeneities both in parameters of neuronal excitability and synaptic delays are investigated systematically. Neuronal heterogeneity is found to modulate firing rates and spiking regularity by changing the excitability of the network. Synaptic delays are strongly related with desynchronized and synchronized firing patterns of the FFN, which indicate that synaptic delays may play a significant role in bridging rate coding and temporal coding. Furthermore, quasi-coherence resonance (quasi-CR) phenomenon is observed in the parameter domain of connection probability and delay-heterogeneity. All these phenomena above enable a detailed characterization of neuronal heterogeneity in FFN, which may play an indispensable role in reproducing the important properties of in vivo experiments.

  2. Preparation and characterization of zinc and cobalt (II, III) oxides ...

    Indian Academy of Sciences (India)

    1Laboratório de Processos de Oxidação Avançados, Departamento de Química, Caixa Postal 10011, ... gated through the heterogeneous photocatalysis mediated by zinc oxide, n-type semiconductor .... 3.2 Band gap energy determination.

  3. Mechanism of calcium oxide excitation by atom hydrogen

    International Nuclear Information System (INIS)

    Kharlamov, V.F.

    1991-01-01

    Heterogeneous recombination of hydrogen atoms on the surface of calcium oxide proceeds according to the Langmuir-Hinshelwood mechanism with participation of atoms in two different states, belonging to adsorption centres of the same type. CaO excitation is broughty about by vibration-electron transitions during associative desorption of H 2 molecules

  4. Emerging heterogeneous integrated photonic platforms on silicon

    Directory of Open Access Journals (Sweden)

    Fathpour Sasan

    2015-05-01

    Full Text Available Silicon photonics has been established as a mature and promising technology for optoelectronic integrated circuits, mostly based on the silicon-on-insulator (SOI waveguide platform. However, not all optical functionalities can be satisfactorily achieved merely based on silicon, in general, and on the SOI platform, in particular. Long-known shortcomings of silicon-based integrated photonics are optical absorption (in the telecommunication wavelengths and feasibility of electrically-injected lasers (at least at room temperature. More recently, high two-photon and free-carrier absorptions required at high optical intensities for third-order optical nonlinear effects, inherent lack of second-order optical nonlinearity, low extinction ratio of modulators based on the free-carrier plasma effect, and the loss of the buried oxide layer of the SOI waveguides at mid-infrared wavelengths have been recognized as other shortcomings. Accordingly, several novel waveguide platforms have been developing to address these shortcomings of the SOI platform. Most of these emerging platforms are based on heterogeneous integration of other material systems on silicon substrates, and in some cases silicon is integrated on other substrates. Germanium and its binary alloys with silicon, III–V compound semiconductors, silicon nitride, tantalum pentoxide and other high-index dielectric or glass materials, as well as lithium niobate are some of the materials heterogeneously integrated on silicon substrates. The materials are typically integrated by a variety of epitaxial growth, bonding, ion implantation and slicing, etch back, spin-on-glass or other techniques. These wide range of efforts are reviewed here holistically to stress that there is no pure silicon or even group IV photonics per se. Rather, the future of the field of integrated photonics appears to be one of heterogenization, where a variety of different materials and waveguide platforms will be used for

  5. Supercritical carbon dioxide as an innovative reaction medium for selective oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Loeker, F.; Leitner, W. [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany)

    1998-12-31

    Although the catalytic efficiency of all catalytic oxidation processes studied in scCO{sub 2} up to now is far from being satisfactory, the principle possibility to carry out such reactions in this medium is clearly evident. Future research in our group will be directed towards the development of homogeneous and heterogeneous catalysts that are adopted to the special requirements of both the oxidation process and the supercritical reaction medium. Preliminary results from these studies regarding the epoxidation of olefins with molecular oxygen as oxidant will be presented on the conference poster. (orig.)

  6. Washing-free heterogeneous immunosensor using proximity-dependent electron mediation between an enzyme label and an electrode.

    Science.gov (United States)

    Dutta, Gorachand; Kim, Sinyoung; Park, Seonhwa; Yang, Haesik

    2014-05-06

    Washing processes, essential in most heterogeneous labeled assays, have been a big hurdle in simplifying the detection procedure and reducing assay time. Nevertheless, less attention has been paid to washing-free heterogeneous labeled assays. We report a purely washing-free immunosensor that allows fast, sensitive, and single-step detection of prostate-specific antigen in serum with low interference. Proximity-dependent electron mediation of ferrocenemethanol (Fc) between an indium-tin oxide (ITO) electrode and a glucose-oxidase (GOx) label allows us to discriminate between a bound and an unbound label: a bound label offers faster electron mediation than an unbound one. The electrooxidation of Fc at a low applied potential (0.13 V vs Ag/AgCl) and a low electrocatalytic ITO electrode and the oxidation of l-ascorbic acid by l-ascorbate oxidase minimize the effect of the interfering species. With a high concentration of glucose (200 mM), the signal and background levels are hardly dependent on the glucose-concentration variation in the sample. The washing-free immunosensor can detect a concentration of ca. 1 pg/mL for mouse IgG in phosphate-buffered saline and a concentration of ca. 10 pg/mL for prostate-specific antigen spiked in female serum after an incubation period of 10 min. The concentrations measured with actual clinical serum samples are in good agreement with the concentrations measured with a commercial instrument, which renders the washing-free heterogeneous immunosensor appealing for practical use.

  7. Doe productivity indices and sire effects of a heterogeneous rabbit ...

    African Journals Online (AJOL)

    IJAAAR

    reproductive data obtained include annual productivity indices for each doe and sire family at birth, ... contributed to their productivity success in ..... susceptible to heat stress at temperatures above. 300c. ... Effects of weaning litter size and sex.

  8. Research on the Effects of Heterogeneity on Pedestrian Dynamics in Walkway of Subway Station

    Directory of Open Access Journals (Sweden)

    Haoling Wu

    2016-01-01

    Full Text Available The major objective of this paper is to study the effects of heterogeneity on pedestrian dynamics in walkway of subway station. We analyze the observed data of the selected facility and find that walking speed and occupied space were varied in the population. In reality, pedestrians are heterogeneous individuals with different attributes. However, the research on how the heterogeneity affects the pedestrian dynamics in facilities of subway stations is insufficient. The improved floor field model is therefore presented to explore the effects of heterogeneity. Pedestrians are classified into pedestrians walking in pairs, fast pedestrians, and ordinary pedestrians. For convenience, they are denoted as P-pedestrians, F-pedestrians, and O-pedestrians, respectively. The proposed model is validated under homogeneous and heterogeneous conditions. Three pedestrian compositions are simulated to analyze the effects of heterogeneity on pedestrian dynamics. The results show that P-pedestrians have negative effect and F-pedestrians have positive effect. All of the results in this paper indicate that the capacity of walkway is not a constant value. It changes with different component proportions of heterogeneous pedestrians. The heterogeneity of pedestrian has an important influence on the pedestrian dynamics in the walkway of the subway station.

  9. Evaluation on island ecological vulnerability and its spatial heterogeneity.

    Science.gov (United States)

    Chi, Yuan; Shi, Honghua; Wang, Yuanyuan; Guo, Zhen; Wang, Enkang

    2017-12-15

    The evaluation on island ecological vulnerability (IEV) can help reveal the comprehensive characteristics of the island ecosystem and provide reference for controlling human activities on islands. An IEV evaluation model which reflects the land-sea dual features, natural and anthropogenic attributes, and spatial heterogeneity of the island ecosystem was established, and the southern islands of Miaodao Archipelago in North China were taken as the study area. The IEV, its spatial heterogeneity, and its sensitivities to the evaluation elements were analyzed. Results indicated that the IEV was in status of mild vulnerability in the archipelago scale, and population pressure, ecosystem productivity, environmental quality, landscape pattern, and economic development were the sensitive elements. The IEV showed significant spatial heterogeneities both in land and surrounding waters sub-ecosystems. Construction scale control, optimization of development allocation, improvement of exploitation methods, and reasonable ecological construction are important measures to control the IEV. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria

    DEFF Research Database (Denmark)

    Miot, Jennyfer; Benzerara, Karim; Morin, Guillaume

    2009-01-01

    Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate-dependent ......Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate...... precipitation in the periplasm (in a few tens of minutes), followed by the formation of surface-bound globules. Moreover, we frequently observed an asymmetric mineral thickening at the cell poles. In parallel, the evolution of iron oxidation was quantified by STXM: iron both contained in the bacteria...... and in the extracellular precipitates reached complete oxidation within 6 days. While a progressive oxidation of Fe in the bacteria and in the medium could be observed, spatial redox (oxido-reduction state) heterogeneities were detected at the cell poles and in the extracellular precipitates after 1 day. All...

  11. Cyclic voltammetric study of electro-oxidation of methanol on platinum electrode in acidic and neutral media

    International Nuclear Information System (INIS)

    Khan, A.S.A.; Ahmed, R.; Mirza, M.L.

    2007-01-01

    The electro-oxidation of methanol on electrochemically treated platinum foil was investigated in acidic and neutral media for comparison of cyclic voltammetric characteristics and elucidation of mechanism of electro-oxidation of methanol. The surface area and roughness factor of platinum electrode was calculated. The electro-oxidation of mathanol is an irreversible process giving. anodic peaks in both anodic and cathodic sweep. The characteristic peaks of electrooxidation of methanol appeared at almost the same potential region in both acidic and neutral media. In neutral medium, certain additional cathodic/anodic peaks appeared which were confirmed to arise by the reduction/oxidation of hydrogen ions. The exchange current density and heterogeneous electron transfer rate constant was higher in neutral medium as. compared with acidic medium. The thermodynamic parameters delta H, delta S, and delta G/sub 298/ were calculated. The values of delta H and delta G/sub 298/were positive which indicated that the process of electro-oxidation of methanol is an endothermic and nonspontaneous. The mechanism of electro-oxidation of methanol was same in both acidic and neutral media involving the formation of various adsorbed intermediate species through dissociative adsorption steps leading to the formation of Co adsorbed radicals, which are removed. during interaction with adsorbed hydrous oxides provided by the oxidation of adsorbed water molecules. The higher rate of electro-oxidation of methanol in neutral medium was interpreted in the tight of electrochemical mechanism and was attributed to the presence of comparatively small amount of hydrogen ions only along the surface of working electrode, which are produced during electro-oxidation of methanol. (author)

  12. Shelf-life modeling of bakery products by using oxidation indices.

    Science.gov (United States)

    Calligaris, Sonia; Manzocco, Lara; Kravina, Giuditta; Nicoli, Maria Cristina

    2007-03-07

    The aim of this work was to develop a shelf-life prediction model of lipid-containing bakery products. To this purpose (i) the temperature dependence of the oxidation rate of bakery products was modeled, taking into account the changes in lipid physical state; (ii) the acceptance limits were assessed by sensory analysis; and (iii) the relationship between chemical oxidation index and acceptance limit was evaluated. Results highlight that the peroxide number, the changes of which are linearly related to consumer acceptability, is a representative index of the quality depletion of biscuits during their shelf life. In addition, the evolution of peroxides can be predicted by a modified Arrhenius equation accounting for the changes in the physical state of biscuit fat. Knowledge of the relationship between peroxides and sensory acceptability together with the temperature dependence of peroxide formation allows a mathematical model to be set up to simply and quickly calculate the shelf life of biscuits.

  13. Green oxidation of alkenes in ionic liquid solvent by hydrogen

    Indian Academy of Sciences (India)

    Additionally, ion liquid solvent efficiently improved all the catalytic performances. Finally, the reaction was extended to different alkenes using the heterogeneous complex 2-L4. Among all the alkenes, those containing -electron-withdrawing groups and trans-orientations exhibited lower tendency for oxidation.

  14. Effect of conventional cooking methods on lipid oxidation indices in lamb meat

    OpenAIRE

    A Pourkhalili; M Mirlohi; E Rahimi; M Hojatoleslami

    2012-01-01

    Lipid oxidation is one of the most deteriorative reactions occurred in foodstuff which has harmful impacts on the both food quality and consumer's health. This study was designed to speculate the influence of three conventional cooking methods including boiling, frying and grilling on lipid oxidation parameters in cooked lamb meat. Sections of lamb meat from longissimus dorsi muscle, taken from native Lori-Bakhtiary sheep species were cut into uniform pieces and cooked using boiling, frying a...

  15. Carbon Inputs From Riparian Vegetation Limit Oxidation of Physically Bound Organic Carbon Via Biochemical and Thermodynamic Processes: OC Oxidation Processes Across Vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Emily B. [Pacific Northwest National Laboratory, Richland WA USA; Tfaily, Malak M. [Environmental Molecular Sciences Laboratory, Richland WA USA; Crump, Alex R. [Pacific Northwest National Laboratory, Richland WA USA; Goldman, Amy E. [Pacific Northwest National Laboratory, Richland WA USA; Bramer, Lisa M. [Pacific Northwest National Laboratory, Richland WA USA; Arntzen, Evan [Pacific Northwest National Laboratory, Richland WA USA; Romero, Elvira [Pacific Northwest National Laboratory, Richland WA USA; Resch, C. Tom [Pacific Northwest National Laboratory, Richland WA USA; Kennedy, David W. [Pacific Northwest National Laboratory, Richland WA USA; Stegen, James C. [Pacific Northwest National Laboratory, Richland WA USA

    2017-12-01

    In light of increasing terrestrial carbon (C) transport across aquatic boundaries, the mechanisms governing organic carbon (OC) oxidation along terrestrial-aquatic interfaces are crucial to future climate predictions. Here, we investigate biochemistry, metabolic pathways, and thermodynamics corresponding to OC oxidation in the Columbia River corridor. We leverage natural vegetative differences to encompass variation in terrestrial C inputs. Our results suggest that decreases in terrestrial C deposition associated with diminished riparian vegetation induce oxidation of physically-bound (i.e., mineral and microbial) OC at terrestrial-aquatic interfaces. We also find that contrasting metabolic pathways oxidize OC in the presence and absence of vegetation and—in direct conflict with the concept of ‘priming’—that inputs of water-soluble and thermodynamically-favorable terrestrial OC protects bound-OC from oxidation. Based on our results, we propose a mechanistic conceptualization of OC oxidation along terrestrial-aquatic interfaces that can be used to model heterogeneous patterns of OC loss under changing land cover distributions.

  16. Transport of Cryptosporidium parvum Oocysts in Charge Heterogeneous Porous Media: Microfluidics Experiment and Numerical Simulation

    Science.gov (United States)

    Liu, Y.; Meng, X.; Guo, Z.; Zhang, C.; Nguyen, T. H.; Hu, D.; Ji, J.; Yang, X.

    2017-12-01

    Colloidal attachment on charge heterogeneous grains has significant environmental implications for transport of hazardous colloids, such as pathogens, in the aquifer, where iron, manganese, and aluminium oxide minerals are the major source of surface charge heterogeneity of the aquifer grains. A patchwise surface charge model is often used to describe the surface charge heterogeneity of the grains. In the patchwise model, the colloidal attachment efficiency is linearly correlated with the fraction of the favorable patches (θ=λ(θf - θu)+θu). However, our previous microfluidic study showed that the attachment efficiency of oocysts of Cryptosporidium parvum, a waterborne protozoan parasite, was not linear correlated with the fraction of the favorable patches (λ). In this study, we developed a pore scale model to simulate colloidal transport and attachment on charge heterogeneous grains. The flow field was simulated using the LBM method and colloidal transport and attachment were simulated using the Lagrange particle tracking method. The pore scale model was calibrated with experimental results of colloidal and oocyst transport in microfluidic devices and was then used to simulate oocyst transport in charge heterogeneous porous media under a variety of environmental relative conditions, i.e. the fraction of favorable patchwise, ionic strength, and pH. The results of the pore scale simulations were used to evaluate the effect of surface charge heterogeneity on upscaling of oocyst transport from pore to continuum scale and to develop an applicable correlation between colloidal attachment efficiency and the fraction of the favorable patches.

  17. The structure heterogeneity of silica mesopores of Sba-15 in respect to the pluronic 123 template concentration

    Science.gov (United States)

    Dhaneswara, D.; Fatriansyah, J. F.; Putranto, D. A.; Utami, S. A. A.; Delayori, F.

    2018-01-01

    The analysis of structure heterogeneity factor of silica mesoporous SBA-15 has been conducted. The structure factor has been found to be different for low and high concentration of Pluronic-123 template. The structure heterogeneity of high concentration of Pluronic-123 has been found less than 1 while for low concentration, the structure heterogeneity was found to be larger than 1. This indicates the dissimilarity of the structure and can be used as a probe to detect the formation of large mesopores. It also was found that the system exhibits type IV and H1 adsorption type which indicates the capillary condensation and interconnected pores.

  18. Features of the kinetics of heterogeneous reactions with phase transformations on catalyst surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Berman, A D; Krylov, O V

    1978-01-01

    This paper presents a review of 41 bibliographic references to experiments on the adsorption of various gases (e.g., carbon monoxide, formic acid, ammonia, and oxygen) on metals (e.g., nickel, molybdenum, and platinum) and oxides covers observations of two-dimensional phases during adsorption; the kinetics of adsorption and catalysis associated with two-dimensional phase transitions; and several approximate models for describing the kinetics of heterogeneous catalysis which account for two-dimensional phase transformations on catalyst surfaces.

  19. Genetic and phenotypic heterogeneity in tropical calcific pancreatitis.

    Science.gov (United States)

    Paliwal, Sumit; Bhaskar, Seema; Chandak, Giriraj R

    2014-12-14

    Tropical calcific pancreatitis (TCP) is a form of chronic non-alcoholic pancreatitis initially reported in the developing parts of the tropical world. The clinical phenotype of TCP has undergone marked changes since its first description in 1968. The disease is now seen in relatively older people with less severe symptoms. In addition, there are varying reports on the proportion of cases presenting with imaging abnormalities like calcification, ductal dilation, and glandular atrophy. Significant progress has also been made in understanding the etiopathology of TCP. The role of malnutrition and cassava toxicity in its pathogenesis is disproven and few studies have focused on the role of micronutrient deficiency and oxidative stress in the etiopathogenesis of TCP. Emerging evidence support an important role for genetic risk factors in TCP. Several studies have shown that, rather than mutations in trypsinogens, variants in serine protease inhibitor kazal type 1, cathepsin B, chymotrypsin C, cystic fibrosis transmembrane regulator, and carboxypeptidase A1, predict risk of TCP. These studies also provided evidence of mutational heterogeneity between TCP and chronic pancreatitis in Western populations. The current review summarizes recent advances that have implications in the understanding of the pathophysiology and thus, heterogeneity in genotype-phenotype correlations in TCP.

  20. Ethnic heterogeneity, social capital and psychological distress in Sweden.

    Science.gov (United States)

    Johnson-Singh, Charisse M; Rostila, Mikael; Ponce de Leon, Antonio; Forsell, Yvonne; Engström, Karin

    2018-05-25

    horizontal trust showed ethnic heterogeneity to be protective for respondents Swedish-background. There was no clear trend between ethnic heterogeneity and psychological distress for respondents with foreign-background. The association between ethnic heterogeneity and psychological distress differs by ethnic background. There was no difference in this association based on the measure of ethnic heterogeneity used, nor in the explanatory role of social capital between ethnic heterogeneity measures. Socioeconomic indicators and some elements of individual and contextual social capital are important explanatory factors of the excess risk of psychological distress with regards to ethnic heterogeneity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Development and Evaluation of an Open-Source Software Package “CGITA” for Quantifying Tumor Heterogeneity with Molecular Images

    Directory of Open Access Journals (Sweden)

    Yu-Hua Dean Fang

    2014-01-01

    Full Text Available Background. The quantification of tumor heterogeneity with molecular images, by analyzing the local or global variation in the spatial arrangements of pixel intensity with texture analysis, possesses a great clinical potential for treatment planning and prognosis. To address the lack of available software for computing the tumor heterogeneity on the public domain, we develop a software package, namely, Chang-Gung Image Texture Analysis (CGITA toolbox, and provide it to the research community as a free, open-source project. Methods. With a user-friendly graphical interface, CGITA provides users with an easy way to compute more than seventy heterogeneity indices. To test and demonstrate the usefulness of CGITA, we used a small cohort of eighteen locally advanced oral cavity (ORC cancer patients treated with definitive radiotherapies. Results. In our case study of ORC data, we found that more than ten of the current implemented heterogeneity indices outperformed SUVmean for outcome prediction in the ROC analysis with a higher area under curve (AUC. Heterogeneity indices provide a better area under the curve up to 0.9 than the SUVmean and TLG (0.6 and 0.52, resp.. Conclusions. CGITA is a free and open-source software package to quantify tumor heterogeneity from molecular images. CGITA is available for free for academic use at http://code.google.com/p/cgita.

  2. Reductive Deprotection of Monolayer Protected Nanoclusters: An Efficient Route to Supported Ultrasmall Au Nanocatalysts for Selective Oxidation

    Czech Academy of Sciences Publication Activity Database

    Das, S.; Goswami, A.; Hesari, M.; Al-Sharab, J. F.; Mikmeková, Eliška; Maran, F.; Asefa, T.

    2014-01-01

    Roč. 10, č. 8 (2014), s. 1473-1478 ISSN 1613-6810 R&D Projects: GA MŠk(CZ) LO1212 Keywords : gold nanoclusters * selective oxidation * heterogeneous nanocatalysis * styrene oxidation * borohydride reduction Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 8.368, year: 2014

  3. Higher rates of sex evolve in spatially heterogeneous environments.

    Science.gov (United States)

    Becks, Lutz; Agrawal, Aneil F

    2010-11-04

    The evolution and maintenance of sexual reproduction has puzzled biologists for decades. Although this field is rich in hypotheses, experimental evidence is scarce. Some important experiments have demonstrated differences in evolutionary rates between sexual and asexual populations; other experiments have documented evolutionary changes in phenomena related to genetic mixing, such as recombination and selfing. However, direct experiments of the evolution of sex within populations are extremely rare (but see ref. 12). Here we use the rotifer, Brachionus calyciflorus, which is capable of both sexual and asexual reproduction, to test recent theory predicting that there is more opportunity for sex to evolve in spatially heterogeneous environments. Replicated experimental populations of rotifers were maintained in homogeneous environments, composed of either high- or low-quality food habitats, or in heterogeneous environments that consisted of a mix of the two habitats. For populations maintained in either type of homogeneous environment, the rate of sex evolves rapidly towards zero. In contrast, higher rates of sex evolve in populations experiencing spatially heterogeneous environments. The data indicate that the higher level of sex observed under heterogeneity is not due to sex being less costly or selection against sex being less efficient; rather sex is sufficiently advantageous in heterogeneous environments to overwhelm its inherent costs. Counter to some alternative theories for the evolution of sex, there is no evidence that genetic drift plays any part in the evolution of sex in these populations.

  4. Numerical simulation for aspects of homogeneous and heterogeneous reactions in forced convection flow of nanofluid

    Science.gov (United States)

    Hayat, Tasawar; Shah, Faisal; Khan, Muhammad Ijaz; Alsaedi, Ahmed

    2018-03-01

    Mixed convection stagnation point flow of nanofluid by a vertical permeable circular cylinder has been addressed. Water is treated as ordinary liquid while nanoparticles include aluminium oxide, copper and titanium dioxide. Homogeneous-heterogeneous reactions are considered. The nonlinear higher order expressions are changed into first ordinary differential equations and then solved by built-in-Shooting method in mathematica. The results of velocity, temperature, concentration, skin friction and local Nusselt number are discussed. Our results demonstrate that surface drag force and heat transfer rate are enhanced linearly for higher estimation of curvature parameter. Further surface drag force decays for aluminium oxide and it enhances for copper nanoparticle. Heat transfer rate enhances with increasing all three types of nanoparticles. In addition, the lowest heat transfer rate is obtained in case of titanium dioxide when compared with copper and aluminium oxide.

  5. Dynamics in population heterogeneity during batch and continuous fermentation of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Heins, Anna-Lena; Lencastre Fernandes, Rita; Lundin, L.

    2012-01-01

    Traditionally, microbial populations in optimization studies of fermentation processes have been considered homogeneous. However, research has shown that a typical microbial population in fermentation is heterogeneous. There are indications that this heterogeneity may be both beneficial...... (facilitates quick adaptation to new conditions) and harmful (reduces yields and productivities)[1,2]. Typically, gradients of e.g. dissolved oxygen, substrates, and pH are observed in industrial scale fermentation processes. Consequently, microbial cells circulating throughout a bioreactor experience rapid...... distribution during different growth stages. To further simulate which effect gradients have on population heterogeneity, glucose and ethanol perturbations during continuous cultivation were performed. Physiological changes were analyzed on single cell level by using flow cytometry followed by cell sorting...

  6. Marked heterogeneity in growth characteristics of myoblast clonal cultures and myoblast mixed cultures obtained from the same individual.

    Science.gov (United States)

    Maier, Andrea B; Cohen, Ron; Blom, Joke; van Heemst, Diana; Westendorp, Rudi G J

    2012-01-01

    Sarcopenia is defined as an age-related decrease in skeletal muscle mass and function while adjacent satellite cells are unable to compensate for this loss. However, myoblast cultures can be established even in the presence of sarcopenia. It is yet unknown whether satellite cells from failing muscle in older age are equally affected, as human satellite cells have been assessed using myoblast mixed cultures and not by using myoblast clonal cultures. We questioned to what extent myoblast mixed cultures reflect the in vivo characteristics of single satellite cells from adult skeletal muscle. We established a myoblast mixed culture and three myoblast clonal cultures out of the same muscle biopsy and cultured these cells for 100 days. Replicative capacity and oxidative stress resistance were compared. We found marked heterogeneity between the myoblast clonal cultures that all had a significantly lower replicative capacity when compared to the mixed culture. Replicative capacity of the clonal cultures was inversely related to the β-galactosidase activity after exposure to oxidative stress. Addition of L-carnosine enhanced the remaining replicative capacity in all cultures with a concomitant marginal decrease in β-galactosidase activity. It is concluded that myoblast mixed cultures in vitro do not reflect the marked heterogeneity between single isolated satellite cells. The consequences of the heterogeneity on muscle performance remain to be established. Copyright © 2011 S. Karger AG, Basel.

  7. Oxidation of organic compounds in wastewater from the humid processing of coffee berries

    International Nuclear Information System (INIS)

    Goncalves, Maraisa; Guerreiro, Mario Cesar; Oliveira, Luiz Carlos Alves; Rocha, Cristian Luciana da

    2008-01-01

    Materials based on pure iron oxide and impregnated with niobia (Nb 2 O 5 ) were prepared. Their catalytic activities were tested on the oxidation of compounds present in the wastewater from the processing of coffee berries. Particularly caffeine and catechol were tested. The oxidation reactions were carried out with the following systems: UV/H 2 O 2 ; photo-Fenton and heterogeneous Fenton. All materials were characterized with X-ray diffraction, Moessbauer and infrared spectroscopy. Iron was mainly in the forms of goethite and maghemite. The oxidation kinetics were monitored by UV-vis and the oxidation products were monitored by mass spectrometry. The photo-Fenton reaction presented highest oxidation efficiency, removing 98% of all caffeine and catechol contents. (author)

  8. Synthesis and crystal structure of an oxovanadium(IV) complex with a pyrazolone ligand and its use as a heterogeneous catalyst for the oxidation of styrene under mild conditions.

    Science.gov (United States)

    Parihar, Sanjay; Pathan, Soyeb; Jadeja, R N; Patel, Anjali; Gupta, Vivek K

    2012-01-16

    1-Phenyl-3-methyl-4-touloyl-5-pyrazolone (ligand) was synthesized and used to prepare an oxovanadium(IV) complex. The complex was characterized by single-crystal X-ray analysis and various spectroscopic techniques. The single-crystal X-ray analysis of the complex shows that the ligands are coordinated in a syn configuration to each other and create a distorted octahedral environment around the metal ion. A heterogeneous catalyst comprising an oxovanadium(IV) complex and hydrous zirconia was synthesized, characterized by various physicochemical techniques, and successfully used for the solvent-free oxidation of styrene. The influence of the reaction parameters (percent loading, molar ratio of the substrate to H(2)O(2), amount of catalyst, and reaction time) was studied. The catalyst was reused three times without any significant loss in the catalytic activity.

  9. Remotely sensed indicators of habitat heterogeneity and biological diversity: A preliminary report

    Science.gov (United States)

    Imhoff, Marc; Sisk, Thomas; Milne, Anthony; Morgan, Garth; Orr, Tony

    1995-01-01

    The relationship between habitat area, spatial dynamics of the landscape, and species diversity is an important theme in population and conservation biology. Of particular interest is how populations of various species are affected by increasing habitat edges due to fragmentation. Over the last decade, assumptions regarding the effects of habitat edges on biodiversity have fluctuated wildly, from the belief that they have a positive effect to the belief that they have a clearly negative effect. This change in viewpoint has been brought about by an increasing recognition of the importance of geographic scale and a reinterpretation of natural history observations. In this preliminary report from an ongoing project, we explore the use of remote sensing technology and geographic information systems to further our understanding of how species diversity and population density are affected by habitat heterogeneity and landscape composition. A primary feature of this study is the investigation of SAR for making more rigorous investigations of habitat structure by exploiting the interaction between radar backscatter and vegetation structure and biomass. A major emphasis will be on the use of SAR data to define relative structural types based on measures of structural consolidation using the vegetation surface area to volume ratio (SA/V). Past research has shown that SAR may be sensitive to this form of structural expression which may affect biodiversity.

  10. Genetic heterogeneity of retinitis pigmentosa

    OpenAIRE

    Hartono, Hartono

    2015-01-01

    Genetic heterogeneity is a phenomenon in which a genetic disease can be transmitted by several modes of inheritance. The understanding of genetic heterogeneity is important in giving genetic counselling.The presence of genetic heterogeneity can be explained by the existence of:1.different mutant alleles at a single locus, and2.mutant alleles at different loci affecting the same enzyme or protein, or affecting different enzymes or proteins.To have an overall understanding of genetic heterogene...

  11. Heterogeneous electro-Fenton catalyst for 1-butylpyridinium chloride degradation.

    Science.gov (United States)

    Meijide, Jessica; Pazos, Marta; Sanromán, Maria Ángeles

    2017-10-15

    The application of the electro-Fenton process for organic compound mineralisation has been widely reported over the past years. However, operational problems related to the use of soluble iron salt as a homogeneous catalyst involve the development of novel catalysts that are able to operate in a wide pH range. For this purpose, polyvinyl alcohol-alginate beads, containing goethite as iron, were synthesised and evaluated as heterogeneous electro-Fenton catalyst for 1-butylpyridinium chloride mineralisation. The influence of catalyst dosage and pH solution on ionic liquid degradation was analysed, achieving almost total oxidation after 60 min under optimal conditions (2 g/L catalyst concentration and pH 3). The results showed good catalyst stability and reusability, although its effectiveness decreases slightly after three successive cycles. Furthermore, a plausible mineralisation pathway was proposed based on the oxidation byproducts determined by chromatographic techniques. Finally, the Microtox® test revealed notable detoxification after treatment which demonstrates high catalyst ability for pyridinium-based ionic liquid degradation by the electro-Fenton process.

  12. (58 Indices, Metaphors and Montages. The Heterogeneous Work in Current Latin American Literary Studies

    Directory of Open Access Journals (Sweden)

    Francisco Gelman Constantin

    2017-09-01

    Full Text Available As contemporary literary scholars challenge the ruling exclusionary criteria for the homogenization of their objects, while at the same time the biopolitical turn on literary theory criticizes representational understandings of the bond between language and the body, this paper suggests to address said relationship with recourse to the Lacanian notion of the ‘montage of heterogeneous’, which was brought forth toward a redefinition of the psychoanalytical concept of drive. Drawing from the notion of ‘heterogeneous literatures’, I advocate a theoretical genealogy from Bataille to Lacan (while Nancy, Foucault and Butler are also summoned to the discussion in order to come to terms with the rethinking of the objects for literary scholarship demanded by works such as Emilio García Wehbi’s performance piece 58 indicios sobre el cuerpo, along with his and Nora Lezano’s poetical- photographical essay Communitas.

  13. Oxidized Lipoprotein as a Major Vessel Cell Proliferator in Oxidized Human Serum.

    Directory of Open Access Journals (Sweden)

    Yoshiro Saito

    Full Text Available Oxidative stress is correlated with the incidence of several diseases such as atherosclerosis and cancer, and oxidized biomolecules have been determined as biomarkers of oxidative stress; however, the detailed molecular relationship between generated oxidation products and the promotion of diseases has not been fully elucidated. In the present study, to clarify the role of serum oxidation products in vessel cell proliferation, which is related to the incidence of atherosclerosis and cancer, the major vessel cell proliferator in oxidized human serum was investigated. Oxidized human serum was prepared by free radical exposure, separated using gel chromatography, and then each fraction was added to several kinds of vessel cells including endothelial cells and smooth muscle cells. It was found that a high molecular weight fraction in oxidized human serum specifically induced vessel cell proliferation. Oxidized lipids were contained in this high molecular weight fraction, while cell proliferation activity was not observed in oxidized lipoprotein-deficient serum. Oxidized low-density lipoproteins induced vessel cell proliferation in a concentration-dependent manner. Taken together, these results indicate that oxidized lipoproteins containing lipid oxidation products function as a major vessel cell proliferator in oxidized human serum. These findings strongly indicate the relevance of determination of oxidized lipoproteins and lipid oxidation products in the diagnosis of vessel cell proliferation-related diseases such as atherosclerosis and cancer.

  14. Repeat immigration: A previously unobserved source of heterogeneity?

    Science.gov (United States)

    Aradhya, Siddartha; Scott, Kirk; Smith, Christopher D

    2017-07-01

    Register data allow for nuanced analyses of heterogeneities between sub-groups which are not observable in other data sources. One heterogeneity for which register data is particularly useful is in identifying unique migration histories of immigrant populations, a group of interest across disciplines. Years since migration is a commonly used measure of integration in studies seeking to understand the outcomes of immigrants. This study constructs detailed migration histories to test whether misclassified migrations may mask important heterogeneities. In doing so, we identify a previously understudied group of migrants called repeat immigrants, and show that they differ systematically from permanent immigrants. In addition, we quantify the degree to which migration information is misreported in the registers. The analysis is carried out in two steps. First, we estimate income trajectories for repeat immigrants and permanent immigrants to understand the degree to which they differ. Second, we test data validity by cross-referencing migration information with changes in income to determine whether there are inconsistencies indicating misreporting. From the first part of the analysis, the results indicate that repeat immigrants systematically differ from permanent immigrants in terms of income trajectories. Furthermore, income trajectories differ based on the way in which years since migration is calculated. The second part of the analysis suggests that misreported migration events, while present, are negligible. Repeat immigrants differ in terms of income trajectories, and may differ in terms of other outcomes as well. Furthermore, this study underlines that Swedish registers provide a reliable data source to analyze groups which are unidentifiable in other data sources.

  15. Heterogeneous reactors

    International Nuclear Information System (INIS)

    Moura Neto, C. de; Nair, R.P.K.

    1979-08-01

    The microscopic study of a cell is meant for the determination of the infinite multiplication factor of the cell, which is given by the four factor formula: K(infinite) = n(epsilon)pf. The analysis of an homogeneous reactor is similar to that of an heterogeneous reactor, but each factor of the four factor formula can not be calculated by the formulas developed in the case of an homogeneous reactor. A great number of methods was developed for the calculation of heterogeneous reactors and some of them are discussed. (Author) [pt

  16. The mechanism of degradation of bisphenol A using the magnetically separable CuFe{sub 2}O{sub 4}/peroxymonosulfate heterogeneous oxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yin; Ai, Jia [Department of Environmental Engineering, Wuhan University, Wuhan 430079 (China); Shenzhen Research Institute of Wuhan University, Shenzhen 518057 (China); Zhang, Hui, E-mail: eeng@whu.edu.cn [Department of Environmental Engineering, Wuhan University, Wuhan 430079 (China); Shenzhen Research Institute of Wuhan University, Shenzhen 518057 (China)

    2016-05-15

    Highlights: • Copper ferrite (CuFe{sub 2}O{sub 4}) was fabricated and utilized in heterogeneous PMS process. • The influence of reaction parameters for the mineralization of BPA were evaluated. • Possible reaction mechanism and the stability of CuFe{sub 2}O{sub 4} were investigated. • Surface bound radicals (mainly ·OH) may be responsible for the BPA degradation. - Abstract: The removal of bisphenol A (BPA) in aqueous solution by an oxidation process involving peroxymonosulfate (PMS) activated by CuFe{sub 2}O{sub 4} magnetic nanoparticles (MNPs) is reported herein. The effects of PMS concentration, CuFe{sub 2}O{sub 4} dosage, initial pH, initial BPA concentration, catalyst addition mode, and anions (Cl{sup −}, F{sup −}, ClO{sub 4}{sup −} and H{sub 2}PO{sub 4}{sup −}) on BPA degradation were investigated. Results indicate that nearly complete removal of BPA (50 mg/L) within 60 min and 84.0% TOC removal in 120 min could be achieved at neutral pH by using 0.6 g/L CuFe{sub 2}O{sub 4} MNPs and 0.3 g/L PMS. The generation of reactive radicals (mainly hydroxyl radicals) was confirmed using electron paramagnetic resonance (EPR). Possible mechanisms on the radical generation from CuFe{sub 2}O{sub 4}/PMS system are proposed based on the results of radical identification tests and XPS analysis. The lack of inhibition of the reaction by free radical scavengers such as methanol and tert-butyl alcohol suggests that these species may not be generated in the bulk solution, and methylene blue probe experiments confirm that this process does not involve free radical generation. Surface-bound, rather than free radicals generated by a surface catalyzed-redox cycle involving both Fe(III) and Cu(II), are postulated to be responsible for the mineralization of bisphenol A.

  17. 高级氧化技术在废水处理中的应用研究进展%Application and Progress of Advanced Oxidation Processes inWastewater Treatment

    Institute of Scientific and Technical Information of China (English)

    钟理; 詹怀宇

    2000-01-01

    探讨了高级氧化技术(Advanced Oxidation Processes,即AOPs)如:O3/H2O2,Fenton试剂均相湿式催化氧化;H2O2/UV、O3/UV、O3/H2O2/UV均相光催化氧化;多相湿式催化氧化,多相光催化氧化,多相催化和生化氧化等过程处理废水及其反应机理,论述了AOPs技术在工业废水处理方面的研究进展。%The wastewater treatment and reaction mechanism by Advanced Oxidation Processes such as homogeneous wet catalytic oxidation of O3/H2O2 and Fenton agent, homogeneous photocatalytic oxidation of H2O2/UV,O3/UV and O2/H2O2/UV, and heterogeneous wet catalytic oxidation, heterogeneous photocatalytic oxidation, heterogeneous catalytic and biochemical oxidation were explored. The investigation and progress of AOPs technique in industrial wastewater treatment were overviewed.

  18. Heterogeneity in pineapple fruit quality results from plant heterogeneity at flower induction.

    Science.gov (United States)

    Fassinou Hotegni, V Nicodème; Lommen, Willemien J M; Agbossou, Euloge K; Struik, Paul C

    2014-01-01

    Heterogeneity in fruit quality constitutes a major constraint in agri-food chains. In this paper the sources of the heterogeneity in pineapple in the field were studied in four experiments in commercial pineapple fields. The aims were to determine (a) whether differences in pineapple fruit quality among individual fruits are associated with differences in vigor of the individual plants within the crop at the time of artificial flower induction; and (b) whether the side shoots produced by the plant during the generative phase account for the fruit quality heterogeneity. Two pineapple cultivars were considered: cv. Sugarloaf and cv. Smooth Cayenne. Plant vigor at the time of artificial flower induction was measured by three variates: the number of functional leaves, the D-leaf length and their cross product. Fruit quality attributes measured at harvest time included external attributes (weight and height of fruit, infructescence and crown) and internal quality attributes [total soluble solids (TSS), pH, translucent flesh]. Results showed that the heterogeneity in fruit weight was a consequence of the heterogeneity in vigor of the plants at the moment of flower induction; that effect was mainly on the infructescence weight and less or not on the crown weight. The associations between plant vigor variates at flower induction and the internal quality attributes of the fruit were poor and/or not consistent across experiments. The weight of the slips (side shoots) explained part of the heterogeneity in fruit weight, infructescence weight and fruit height in cv. Sugarloaf. Possibilities for reducing the variation in fruit quality by precise cultural practices are discussed.

  19. Heterogeneity in pineapple fruit quality results from plant heterogeneity at flower induction

    Directory of Open Access Journals (Sweden)

    V. Nicodeme eFassinou Hotegni

    2014-12-01

    Full Text Available Heterogeneity in fruit quality constitutes a major constraint in agri-food chains. In this paper the sources of the heterogeneity in pineapple in the field were studied in four experiments in commercial pineapple fields. The aims were to determine (a whether differences in pineapple fruit quality among individual fruits are associated with differences in vigor of the individual plants within the crop at the time of artificial flower induction; and (b whether the side shoots produced by the plant during the generative phase account for the fruit quality heterogeneity. Two pineapple cultivars were considered: cv. Sugarloaf and cv. Smooth Cayenne. Plant vigor at the time of artificial flower induction was measured by three variates: the number of functional leaves, the D-leaf length and their cross product. Fruit quality attributes measured at harvest time included external attributes (weight and height of fruit, infructescence and crown and internal quality attributes (total soluble solids, pH, translucent flesh. Results showed that the heterogeneity in fruit weight was a consequence of the heterogeneity in vigor of the plants at the moment of flower induction; that effect was mainly on the infructescence weight and less or not on the crown weight. The association between plant vigor variates at flower induction and the internal quality attributes of the fruit were poor and/or not consistent across experiments. The weight of the slips (side shoots, explained part of the heterogeneity in fruit weight, infructescence weight and fruit height in cv. Sugarloaf. Possibilities for reducing the variation in fruit quality by precise cultural practices are discussed.

  20. Molecular surface science of heterogeneous catalysis. History and perspective

    International Nuclear Information System (INIS)

    Somorjai, G.A.

    1983-08-01

    A personal account is given of how the author became involved with modern surface science and how it was employed for studies of the chemistry of surfaces and heterogeneous catalysis. New techniques were developed for studying the properties of the surface monolayers: Auger electron spectroscopy, LEED, XPS, molecular beam surface scattering, etc. An apparatus was developed and used to study hydrocarbon conversion reactions on Pt, CO hydrogenation on Rh and Fe, and NH 3 synthesis on Fe. A model has been developed for the working Pt reforming catalyst. The three molecular ingredients that control catalytic properties are atomic surface structure, an active carbonaceous deposit, and the proper oxidation state of surface atoms. 40 references, 21 figures

  1. Molecular surface science of heterogeneous catalysis. History and perspective

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.

    1983-08-01

    A personal account is given of how the author became involved with modern surface science and how it was employed for studies of the chemistry of surfaces and heterogeneous catalysis. New techniques were developed for studying the properties of the surface monolayers: Auger electron spectroscopy, LEED, XPS, molecular beam surface scattering, etc. An apparatus was developed and used to study hydrocarbon conversion reactions on Pt, CO hydrogenation on Rh and Fe, and NH/sub 3/ synthesis on Fe. A model has been developed for the working Pt reforming catalyst. The three molecular ingredients that control catalytic properties are atomic surface structure, an active carbonaceous deposit, and the proper oxidation state of surface atoms. 40 references, 21 figures. (DLC)

  2. Macrophage heterogeneity and cholesterol homeostasis: classically-activated macrophages are associated with reduced cholesterol accumulation following treatment with oxidized LDL.

    Science.gov (United States)

    Chu, Eugene M; Tai, Daven C; Beer, Jennifer L; Hill, John S

    2013-02-01

    Macrophages are centrally involved during atherosclerosis development and are the predominant cell type that accumulates cholesterol in the plaque. Macrophages however, are heterogeneous in nature reflecting a variety of microenvironments and different phenotypes may be more prone to contribute towards atherosclerosis progression. Using primary human monocyte-derived macrophages, we sought to evaluate one aspect of atherogenic potential of different macrophage phenotypes by determining their propensity to associate with and accumulate oxidized low density lipoprotein (oxLDL). Classically-activated macrophages treated simultaneously with interferon γ (IFNγ) and tumor necrosis factor α (TNFα) associated with less oxLDL and accumulated less cholesterol compared to untreated controls. The combined treatment of IFNγ and TNFα reduced the mRNA expression of CD36 and the expression of both cell surface CD36 and macrophage scavenger receptor 1 (MSR1) protein. Under oxLDL loaded conditions, IFNγ and TNFα did not reduce macrophage protein expression of the transcription factor peroxisome proliferator-actived receptor γ (PPARγ) which is known to positively regulate CD36 expression. However, macrophages treated with IFNγ attenuated the ability of the PPARγ-specific agonist rosiglitazone from upregulating cell surface CD36 protein expression. Our results demonstrate that the observed reduction of cholesterol accumulation in macrophages treated with IFNγ and TNFα following oxLDL treatment was due at least in part to reduced cell surface CD36 and MSR1 protein expression. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Adhesion mapping of chemically modified and poly(ethylene oxide)-grafted glass surfaces

    OpenAIRE

    Jogikalmath, G.; Stuart, J.K.; Pungor, A.; Hlady, V.

    1999-01-01

    Two-dimensional mapping of the adhesion pull-off forces was used to study the origin of surface heterogeneity in the grafted poly(ethylene oxide) (PEO) layer. The variance of the pull-off forces measured over the μm-sized regions after each chemical step of modifying glass surfaces was taken to be a measure of the surface chemical heterogeneity. The attachment of γ-glycidoxypropyltrimethoxy silane (GPS) to glass decreased the pull-off forces relative to the clean glass and made the surface mo...

  4. Gradient simulation experiments for targeting population heterogeneity in continuous Saccharomyces cerevisiae fermentation

    DEFF Research Database (Denmark)

    Heins, Anna-Lena; Lencastre Fernandes, Rita; Lundin, L.

    Traditionally, a microbial population has been considered homogeneous in optimization studies of fermentation processes. However, research has shown that a typical microbial population in a fermenter is heterogeneous. There are indications that such heterogeneity may be both beneficial (facilitates...... quick adaptation to new conditions) and harmful (reduces yields and productivities) (Bylund et al. (1998); Enfors et al. (2001)). Significant gradients of e.g. dissolved oxygen, substrates, and pH are typically observed in many industrial scale fermentation processes. Consequently, the microbial cells...... reporter strain demonstrated a highly dynamic behaviour with regards to subpopulation distribution during the different growth stages. To simulate which effect glucose gradients, often seen in large scale cultivations, have on population heterogeneity, glucose perturbations during continuous cultivation...

  5. Heterogeneity in pineapple fruit quality results from plant heterogeneity at flower induction

    NARCIS (Netherlands)

    Fassinou Hotegni, V.N.; Lommen, W.J.M.; Agbossou, E.K.; Struik, P.C.

    2014-01-01

    Heterogeneity in fruit quality constitutes a major constraint in agri-food chains. In this paper the sources of the heterogeneity in pineapple in the field were studied in four experiments in commercial pineapple fields. The aims were to determine (a) whether differences in pineapple fruit quality

  6. On Aggregating Human Capital Across Heterogeneous Cohorts

    DEFF Research Database (Denmark)

    Growiec, Jakub; Groth, Christian

    experience. Under the scenarios considered here, the "macro-Mincer" (log-linear) relationship between aggregate human capital and average years of schooling is obtained only in cases which are inconsistent with heterogeneity in years of schooling and based on empirically implausible demographic survival laws....... Our numerical results indicate that the macro-Mincer equation can be a reasonable approximation of the true relationship only if returns to schooling and work experience are roughly constant across countries...

  7. Heterogeneity of FeNO response to inhaled steroid in asthmatic children

    DEFF Research Database (Denmark)

    Buchvald, F; Eiberg, H; Bisgaard, H

    2003-01-01

    asthma, well controlled on regular BUD 400 mcg daily: 20 children with normal FeNO and 20 with raised FeNO. FeNO, BHR and forced expiratory volume in 1 s improved significantly after BUD 1600 mcg (BUD1600). However, FeNO after ICS treatment exhibited a Gaussian distribution and FeNO was significantly...... raised in 15 children. Allergy and BHR, but none of the other independent variables under study were significantly related to FeNO after BUD1600. CONCLUSION: Exhaled nitric oxide exhibited a heterogeneous response to ICS in asthmatic schoolchildren. Allergy and BHR were driving FeNO level independently...

  8. Radiation-heterogeneous processes on the surface of stainless steel in contact with water

    International Nuclear Information System (INIS)

    Garibov, A.; Agayev, T.N.; Velibekova, G.Z.; Ismayilov, Sh.S.; Aliyev, A.G.

    2003-01-01

    Full text: Stainless steels are one of prevailing materials of nuclear power engineering. Under operating conditions in real systems they are exposed to influence of ionizing radiation in contact with various environments. Therefore in the processes of corrosion and destruction of stainless steels special significance takes on surface processes and subsequent heterogeneous processes with their participation. In this report the results of research of nuclear-heterogeneous processes regularities in contact with stainless steel of nuclear reactors with water under influence of γ-quanta in the temperature range 300-573 K are given. Radiolytic processes in water are investigated comprehensively and therefore it was taken as modelling system for titration of surface defects and secondary electrons, emitted from metal. It was determined, that radiation processes in stainless steel give rise to the increasing of energy output of molecular hydrogen at water radiolysis from 0.45 molecule/100 eV at pure water radiolysis at 296 K up to 3.4 molecule/100 eV at the presence of stainless steel at 300 K. With increase of temperature the output of molecular hydrogen increases up to 8.2 molecule/100 eV at 573 K. Processes of lattice damage in samples of stainless steel under influence of γ-rays were investigated by electrophysical method. Influence of γ-radiation on stainless steel in contact with water at temperatures T ≤ 423 K and initial values of radiation dose D ≤ 200 kGy given rise to the reduction of electrical resistivity of samples. At doses D≥200 kGy electrical resistivity is increased. Increase of temperature from 333 K up to 423 K lead to the reduction of dose value, at which the transition to resistance increase, from 200 kGy up to 100 kGy occurs. At T≥523 K insoluble oxide phase is formed on a surface of metal which give rise to the increase of electrical resistivity of stainless steel samples. Surface oxide film formed in contact of stainless steel + H 2 O

  9. Reaction kinetics of oxygen on single-phase alloys, oxidation of nickel and niobium alloys

    International Nuclear Information System (INIS)

    Lalauze, Rene

    1973-01-01

    This research thesis first addresses the reaction kinetics of oxygen on alloys. It presents some generalities on heterogeneous reactions (conventional theory, theory of jumps), discusses the core reaction (with the influence of pressure), discusses the influence of metal self-diffusion on metal oxidation kinetics (equilibrium conditions at the interface, hybrid diffusion regime), reports the application of the hybrid diffusion model to the study of selective oxidation of alloys (Wagner model, hybrid diffusion model) and the study of the oxidation kinetics of an alloy forming a solid solution of two oxides. The second part reports the investigation of the oxidation of single phase nickel and niobium alloys (phase α, β and γ)

  10. Evaluation of palm oil mill fly ash supported calcium oxide as a heterogeneous base catalyst in biodiesel synthesis from crude palm oil

    International Nuclear Information System (INIS)

    Ho, Wilson Wei Sheng; Ng, Hoon Kiat; Gan, Suyin; Tan, Sang Huey

    2014-01-01

    Highlights: • Calcination temperature is an important influencing factor in catalytic activity. • The optimum calcination conditions were determined to be 850 °C for 2 h. • Maximum yield of 79.8% and FAME conversion of 97.1% was achieved. • Kinetic data fitted the pseudo-first order model and the E a was 42.56 kJ mol −1 . • The novel catalyst can be reused for 3 cycles with a final biodiesel yield of 60%. - Abstract: A palm oil mill fly ash supported calcium oxide (CaO) catalyst was developed to be used as a heterogeneous base catalyst in biodiesel synthesis from crude palm oil (CPO). The catalyst preparation procedure was optimised in terms of final calcination temperature and duration. The optimum catalyst preparation conditions were determined as final calcination at 850 °C for 2 h with 45 wt.% loading of calcined calcium carbonate (CaCO 3 ). A maximum biodiesel yield of 75.73% was achieved for this catalyst under fixed transesterification conditions. Characterisation tests showed that the catalyst had higher surface area and basic sites which favoured transesterification. The effects of catalyst loading, methanol to oil molar ratio, reaction temperature and reaction time on biodiesel yield and fatty acid methyl ester (FAME) conversion were also investigated. It was determined that transesterification conditions of 6 wt.% catalyst loading, 12:1 methanol to oil molar ratio, 45 °C reaction temperature, 3 h reaction time and 700 rpm stirring speed resulted in biodiesel yield and FAME conversion of 79.76% and 97.09%, respectively. Experimental kinetic data obtained from the heterogeneous transesterification reactions fitted the pseudo-first order kinetic model. The activation energy (E a ) of the reaction was calculated to be 42.56 kJ mol −1 . Key physicochemical properties of the produced biodiesel were measured and found to be within the limits set by EN 14214. The developed catalyst could feasibly be used up to three consecutive cycles after

  11. Guild-specific responses of avian species richness to LiDAR-derived habitat heterogeneity

    Science.gov (United States)

    Weisberg, Peter J.; Dilts, Thomas E.; Becker, Miles E.; Young, Jock S.; Wong-Kone, Diane C.; Newton, Wesley E.; Ammon, Elisabeth M.

    2014-01-01

    Ecological niche theory implies that more heterogeneous habitats have the potential to support greater biodiversity. Positive heterogeneity-diversity relationships have been found for most studies investigating animal taxa, although negative relationships also occur and the scale dependence of heterogeneity-diversity relationships is little known. We investigated multi-scale, heterogeneity-diversity relationships for bird communities in a semi-arid riparian landscape, using airborne LiDAR data to derive key measures of structural habitat complexity. Habitat heterogeneity-diversity relationships were generally positive, although the overall strength of relationships varied across avian life history guilds (R2 range: 0.03–0.41). Best predicted were the species richness indices of cavity nesters, habitat generalists, woodland specialists, and foliage foragers. Heterogeneity-diversity relationships were also strongly scale-dependent, with strongest associations at the 200-m scale (4 ha) and weakest associations at the 50-m scale (0.25 ha). Our results underscore the value of LiDAR data for fine-grained quantification of habitat structure, as well as the need for biodiversity studies to incorporate variation among life-history guilds and to simultaneously consider multiple guild functional types (e.g. nesting, foraging, habitat). Results suggest that certain life-history guilds (foliage foragers, cavity nesters, woodland specialists) are more susceptible than others (ground foragers, ground nesters, low nesters) to experiencing declines in local species richness if functional elements of habitat heterogeneity are lost. Positive heterogeneity-diversity relationships imply that riparian conservation efforts need to not only provide high-quality riparian habitat locally, but also to provide habitat heterogeneity across multiple scales.

  12. Ionic Strength-Controlled Mn (Hydr)oxide Nanoparticle Nucleation on Quartz: Effect of Aqueous Mn(OH)2.

    Science.gov (United States)

    Jung, Haesung; Jun, Young-Shin

    2016-01-05

    The early formation of manganese (hydr)oxide nanoparticles at mineral-water interfaces is crucial in understanding how Mn oxides control the fate and transport of heavy metals and the cycling of nutrients. Using atomic force microscopy, we investigated the heterogeneous nucleation and growth of Mn (hydr)oxide under varied ionic strengths (IS; 1-100 mM NaNO3). Experimental conditions (i.e., 0.1 mM Mn(2+) (aq) concentration and pH 10.1) were chosen to be relevant to Mn remediation sites. We found that IS controls Mn(OH)2 (aq) formation, and that the controlled Mn(OH)2 (aq) formation can affect the system's saturation and subsequent Mn(OH)2 (s) and further Mn3O4 (s) nanoparticle formation. In 100 mM IS system, nucleated Mn (hydr)oxide particles had more coverage on the quartz substrate than those in 1 mM and 10 mM IS systems. This high IS also resulted in low supersaturation ratio and thus favor heterogeneous nucleation, having better structural matching between nucleating Mn (hydr)oxides and quartz. The unique information obtained in this work improves our understanding of Mn (hydr)oxide formation in natural as well as engineered aqueous environments, such as groundwater contaminated by natural leachate and acid mine drainage remediation.

  13. Heterogeneity effects in neutron transport computations

    International Nuclear Information System (INIS)

    Gelbard, E.M.

    1975-01-01

    A nuclear reactor is, generally, an intricate heterogeneous structure whose adjacent components may differ radically in their neutronic properties. The heterogeneities in the structure of the reactor complicate the work of the reactor analyst and tend to degrade the efficiency of the numerical methods used in reactor computations. Two types of heterogeneity effects are considered. First, certain singularities in the solution of the neutron transport equation, induced by heterogeneities, are briefly described. Second, the effect of heterogeneities on neutron leakage rates, and consequently on effective diffusion coefficients, are discussed. (5 figures) (U.S.)

  14. Large-scale compositional heterogeneity in the Earth's mantle

    Science.gov (United States)

    Ballmer, M.

    2017-12-01

    Seismic imaging of subducted Farallon and Tethys lithosphere in the lower mantle has been taken as evidence for whole-mantle convection, and efficient mantle mixing. However, cosmochemical constraints point to a lower-mantle composition that has a lower Mg/Si compared to upper-mantle pyrolite. Moreover, geochemical signatures of magmatic rocks indicate the long-term persistence of primordial reservoirs somewhere in the mantle. In this presentation, I establish geodynamic mechanisms for sustaining large-scale (primordial) heterogeneity in the Earth's mantle using numerical models. Mantle flow is controlled by rock density and viscosity. Variations in intrinsic rock density, such as due to heterogeneity in basalt or iron content, can induce layering or partial layering in the mantle. Layering can be sustained in the presence of persistent whole mantle convection due to active "unmixing" of heterogeneity in low-viscosity domains, e.g. in the transition zone or near the core-mantle boundary [1]. On the other hand, lateral variations in intrinsic rock viscosity, such as due to heterogeneity in Mg/Si, can strongly affect the mixing timescales of the mantle. In the extreme case, intrinsically strong rocks may remain unmixed through the age of the Earth, and persist as large-scale domains in the mid-mantle due to focusing of deformation along weak conveyor belts [2]. That large-scale lateral heterogeneity and/or layering can persist in the presence of whole-mantle convection can explain the stagnation of some slabs, as well as the deflection of some plumes, in the mid-mantle. These findings indeed motivate new seismic studies for rigorous testing of model predictions. [1] Ballmer, M. D., N. C. Schmerr, T. Nakagawa, and J. Ritsema (2015), Science Advances, doi:10.1126/sciadv.1500815. [2] Ballmer, M. D., C. Houser, J. W. Hernlund, R. Wentzcovitch, and K. Hirose (2017), Nature Geoscience, doi:10.1038/ngeo2898.

  15. Stochastic heterogeneous interaction promotes cooperation in spatial prisoner's dilemma game.

    Directory of Open Access Journals (Sweden)

    Ping Zhu

    Full Text Available Previous studies mostly investigate player's cooperative behavior as affected by game time-scale or individual diversity. In this paper, by involving both time-scale and diversity simultaneously, we explore the effect of stochastic heterogeneous interaction. In our model, the occurrence of game interaction between each pair of linked player obeys a random probability, which is further described by certain distributions. Simulations on a 4-neighbor square lattice show that the cooperation level is remarkably promoted when stochastic heterogeneous interaction is considered. The results are then explained by investigating the mean payoffs, the mean boundary payoffs and the transition probabilities between cooperators and defectors. We also show some typical snapshots and evolution time series of the system. Finally, the 8-neighbor square lattice and BA scale-free network results indicate that the stochastic heterogeneous interaction can be robust against different network topologies. Our work may sharpen the understanding of the joint effect of game time-scale and individual diversity on spatial games.

  16. Zeolite encapsulated Fe-porphyrin for catalytic oxidation with iodobenzene diacetate (PhI(OAc)2)

    International Nuclear Information System (INIS)

    Karimipour, G.; Rezaei, M.; Ashouri, D.

    2013-01-01

    meso-Tetrakis(3-pyridyl)porphyrin ato iron(III) chloride encapsulated on NaY Zeolite [Fe(T-3-PyP)-NaY] was synthesized as a heterogeneous ship-in-a-bottle type catalyst and characterized by Fourier transform infrared, atomic absorption, diffused reflectance UV-Vis, X-ray diffraction and scanning electron microscopy analysis. The catalytic activity of Fe(T-3-PyP-NaY was examined for the epoxidation of cyclohexene by PhI(OAc) 2 in CH 3 CN/H 2 O (5:1) and compared to that of Fe(T-3-PyP) as a homogeneous catalyst. We found that the heterogeneous catalyst Fe(T-3-PyP-NaY was stable and reusable for several times, and provided a mild condition and exhibited high activity and selectivity in the oxidation of alkenes to epoxides (16-94%). As representative examples for the use of Fe(T-3-PyP-NaY/ PhI(OAc) 2 in organic oxidations, oxidation of 4-nitro benzylalcohol to 4-nitrobenzaldehyde (97%), oxidative dehydrogenation of diethyl 4-(2,6-dichlorophenyl)-2,6-dimethyl-1,4-dihydro-3,5-pyridinedicarboxylate to the corresponding pyridine (100%), diphenylacetic acid to benzophenone (64%) was achieved. (Author)

  17. Inefficient skeletal muscle oxidative function flanks impaired motor neuron recruitment in Amyotrophic Lateral Sclerosis during exercise.

    Science.gov (United States)

    Lanfranconi, F; Ferri, A; Corna, G; Bonazzi, R; Lunetta, C; Silani, V; Riva, N; Rigamonti, A; Maggiani, A; Ferrarese, C; Tremolizzo, L

    2017-06-07

    This study aimed to evaluate muscle oxidative function during exercise in amyotrophic lateral sclerosis patients (pALS) with non-invasive methods in order to assess if determinants of reduced exercise tolerance might match ALS clinical heterogeneity. 17 pALS, who were followed for 4 months, were compared with 13 healthy controls (CTRL). Exercise tolerance was assessed by an incremental exercise test on cycle ergometer measuring peak O 2 uptake ([Formula: see text]O 2peak ), vastus lateralis oxidative function by near infrared spectroscopy (NIRS) and breathing pattern ([Formula: see text]E peak ). pALS displayed: (1) 44% lower [Formula: see text]O 2peak vs. CTRL (p motor units recruitment, is a major determinant of pALS clinical heterogeneity and working capacity exercise tolerance. CPET and NIRS are useful tools for detecting early stages of oxidative deficiency in skeletal muscles, disclosing individual impairments in the O 2 transport and utilization chain.

  18. Characterizing heterogeneous cellular responses to perturbations.

    Science.gov (United States)

    Slack, Michael D; Martinez, Elisabeth D; Wu, Lani F; Altschuler, Steven J

    2008-12-09

    Cellular populations have been widely observed to respond heterogeneously to perturbation. However, interpreting the observed heterogeneity is an extremely challenging problem because of the complexity of possible cellular phenotypes, the large dimension of potential perturbations, and the lack of methods for separating meaningful biological information from noise. Here, we develop an image-based approach to characterize cellular phenotypes based on patterns of signaling marker colocalization. Heterogeneous cellular populations are characterized as mixtures of phenotypically distinct subpopulations, and responses to perturbations are summarized succinctly as probabilistic redistributions of these mixtures. We apply our method to characterize the heterogeneous responses of cancer cells to a panel of drugs. We find that cells treated with drugs of (dis-)similar mechanism exhibit (dis-)similar patterns of heterogeneity. Despite the observed phenotypic diversity of cells observed within our data, low-complexity models of heterogeneity were sufficient to distinguish most classes of drug mechanism. Our approach offers a computational framework for assessing the complexity of cellular heterogeneity, investigating the degree to which perturbations induce redistributions of a limited, but nontrivial, repertoire of underlying states and revealing functional significance contained within distinct patterns of heterogeneous responses.

  19. Effect of Iron Enriched Bread Intake on the Oxidative Stress Indices in Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    Sharareh Heidari

    2016-08-01

    Full Text Available Background Contrary to the proven benefits of iron, few concerns in producing the oxidative stress is remained problematic. Objectives The aim of the study was to evaluate the oxidative stress in the male Wistar rats fed bread supplemented with iron in different doses i.e., 35 (basic, 70 (two fold, 140 (four fold, and 210 mg/kg (six fold with or without NaHCO3 (250 mg/kg. Methods In this experimental study Iron, ceruloplasmin, ferritin, total iron binding capacity (TIBC, albumin, total protein, uric acid and plasma superoxide dismutase (SOD, glutathione peroxidase (GPX, catalase (CAT, malondialdehyde (MDA, and total antioxidant capacity (TAC, were evaluated in 30 rats at the first and last day of the experiment (day 30. In addition, phytic acid levels were detected in all baked breads. The data were analyzed by ANOVA and t test procedure though SPSS statistical software version 20. Results Serum iron level in rats that received basic level of iron plus NaHCO3 decreased significantly in the last day of the trial. Higher level of serum iron was seen in rats that received iron twofold, fourfold and sixfold and rats that received iron fourfold plus NaHCO3. Serum ceruloplasmin and ferritin in groups of rats that received fourfold level of iron plus NaHCO3 and rats that received iron sixfold showed a significant increase (P ≤ 0.05. Serum total protein and uric acid in rats that received basic level of iron plus NaHCO3 and rats that received twofold level of iron showed a significant decrease. Serum total protein levels in rats that received fourfold level of iron showed a significant decrease. Bread with NaHCO3 showed higher phytic acid levels than other groups. Conclusions These results indicate that oxidative stress was not induced, whereas some antioxidant activities were significantly changed in rats that received iron-enriched bread.

  20. Modeling connected and autonomous vehicles in heterogeneous traffic flow

    Science.gov (United States)

    Ye, Lanhang; Yamamoto, Toshiyuki

    2018-01-01

    The objective of this study was to develop a heterogeneous traffic-flow model to study the possible impact of connected and autonomous vehicles (CAVs) on the traffic flow. Based on a recently proposed two-state safe-speed model (TSM), a two-lane cellular automaton (CA) model was developed, wherein both the CAVs and conventional vehicles were incorporated in the heterogeneous traffic flow. In particular, operation rules for CAVs are established considering the new characteristics of this emerging technology, including autonomous driving through the adaptive cruise control and inter-vehicle connection via short-range communication. Simulations were conducted under various CAV-penetration rates in the heterogeneous flow. The impact of CAVs on the road capacity was numerically investigated. The simulation results indicate that the road capacity increases with an increase in the CAV-penetration rate within the heterogeneous flow. Up to a CAV-penetration rate of 30%, the road capacity increases gradually; the effect of the difference in the CAV capability on the growth rate is insignificant. When the CAV-penetration rate exceeds 30%, the growth rate is largely decided by the capability of the CAV. The greater the capability, the higher the road-capacity growth rate. The relationship between the CAV-penetration rate and the road capacity is numerically analyzed, providing some insights into the possible impact of the CAVs on traffic systems.

  1. HETEROGENEOUS INTEGRATION TECHNOLOGY

    Science.gov (United States)

    2017-08-24

    AFRL-RY-WP-TR-2017-0168 HETEROGENEOUS INTEGRATION TECHNOLOGY Dr. Burhan Bayraktaroglu Devices for Sensing Branch Aerospace Components & Subsystems...Final September 1, 2016 – May 1, 2017 4. TITLE AND SUBTITLE HETEROGENEOUS INTEGRATION TECHNOLOGY 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER N/A...provide a structure for this review. The history and the current status of integration technologies in each category are examined and product examples are

  2. Rupture Dynamics and Ground Motion from Earthquakes in Heterogeneous Media

    Science.gov (United States)

    Bydlon, S.; Dunham, E. M.; Kozdon, J. E.

    2012-12-01

    Heterogeneities in the material properties of Earth's crust scatter propagating seismic waves. The effects of scattered waves are reflected in the seismic coda and depend on the relative strength of the heterogeneities, spatial arrangement, and distance from source to receiver. In the vicinity of the fault, scattered waves influence the rupture process by introducing fluctuations in the stresses driving propagating ruptures. Further variability in the rupture process is introduced by naturally occurring geometric complexity of fault surfaces, and the stress changes that accompany slip on rough surfaces. We have begun a modeling effort to better understand the origin of complexity in the earthquake source process, and to quantify the relative importance of source complexity and scattering along the propagation path in causing incoherence of high frequency ground motion. To do this we extended our two-dimensional high order finite difference rupture dynamics code to accommodate material heterogeneities. We generate synthetic heterogeneous media using Von Karman correlation functions and their associated power spectral density functions. We then nucleate ruptures on either flat or rough faults, which obey strongly rate-weakening friction laws. Preliminary results for flat faults with uniform frictional properties and initial stresses indicate that off-fault material heterogeneity alone can lead to a complex rupture process. Our simulations reveal the excitation of high frequency bursts of waves, which radiate energy away from the propagating rupture. The average rupture velocity is thus reduced relative to its value in simulations employing homogeneous material properties. In the coming months, we aim to more fully explore parameter space by varying the correlation length, Hurst exponent, and amplitude of medium heterogeneities, as well as the statistical properties characterizing fault roughness.

  3. Impact of mixing chemically heterogeneous groundwaters on the sustainability of an open-loop groundwater heat pump

    Science.gov (United States)

    Burté, L.; Farasin, J.; Cravotta, C., III; Gerard, M. F.; Cotiche Baranger, C.; Aquilina, L.; Le Borgne, T.

    2017-12-01

    Geothermal systems using shallow aquifers are commonly used for heating and cooling. The sustainability of these systems can be severely impacted by the occurrence of clogging process. The geothermal loop operation (including pumping of groundwater, filtering and heat extraction through exchangers and cooled water injection) can lead to an unexpected biogeochemical reactivity and scaling formation that can ultimately lead to the shutdown of the geothermal doublet. Here, we report the results of investigations carried out on a shallow geothermal doublet (dynamic). Hydrochemical data collected at the pumping well showed that groundwater was chemically heterogeneous long the 11 meters well screen. While the aquifer was dominantly oxic, a localized inflow of anoxic water was detected and evaluated to produce about 40% of the total flow . The mixture of chemically heterogeneous water induced by pumping lead to the oxidation of reductive species and thus to the formation of biogenic precipitates responsible for clogging. The impact of pumping waters of different redox potential and chemical characteristics was quantified by numerical modeling using PHREEQC. These results shows that natural chemical heterogeneity can occur at a small scale in heterogeneous aquifers and highlight the importance of their characterization during the production well testing and the geothermal loop operation in order to take preventive measures to avoid clogging.

  4. Visualisation and characterisation of heterogeneous bimodal PDMS networks

    DEFF Research Database (Denmark)

    Bahrt, Frederikke; Daugaard, Anders Egede; Fleury, Clemence

    2014-01-01

    The existence of short-chain domains in heterogeneous bimodal PDMS networks has been confirmed visually, for the first time, through confocal fluorescence microscopy. The networks were prepared using a controlled reaction scheme where short PDMS chains were reacted below the gelation point...... bimodal networks with short-chain domains within a long-chain network. The average sizes of the short-chain domains were found to vary from 2.1 to 5.7 mm depending on the short-chain content. The visualised network structure could be correlated thereafter to the elastic properties, which were determined...... by rheology. All heterogeneous bimodal networks displayed significantly lower moduli than mono-modal PDMS elastomers prepared from the long polymer chains. Low-loss moduli as well as low-sol fractions indicate that low-elastic moduli can be obtained without compromising the network's structure...

  5. Selective catalytic oxidation of hydrocarbons as a challenge to the chemical engineer

    Energy Technology Data Exchange (ETDEWEB)

    Emig, G [Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Inst. fuer Technische Chemie 1

    1977-11-01

    In the conversion of the most important chemical raw materials, natural oil and natural gas, to intermediate or end products, selective catalytic oxidation plays an increasing role. This method makes it possible in many cases to use more economical, single-step processes instead of the older multi-step processes. Using the typical example of propylene oxidation or ammonoxidation, the problems encountered by chemical engineers in the development of a heterogeneous-catalytic method of oxidation are demonstrated. The importance of systematic catalyst development is stressed. General aspects of the development of novel processes or the improvement of existing catalytic processes are discussed.

  6. in Heterogeneous Media

    Directory of Open Access Journals (Sweden)

    Saeed Balouchi

    2013-01-01

    Full Text Available Fractured reservoirs contain about 85 and 90 percent of oil and gas resources respectively in Iran. A comprehensive study and investigation of fractures as the main factor affecting fluid flow or perhaps barrier seems necessary for reservoir development studies. High degrees of heterogeneity and sparseness of data have incapacitated conventional deterministic methods in fracture network modeling. Recently, simulated annealing (SA has been applied to generate stochastic realizations of spatially correlated fracture networks by assuming that the elastic energy of fractures follows Boltzmann distribution. Although SA honors local variability, the objective function of geometrical fracture modeling is defined for homogeneous conditions. In this study, after the introduction of SA and the derivation of the energy function, a novel technique is presented to adjust the model with highly heterogeneous data for a fractured field from the southwest of Iran. To this end, the regular object-based model is combined with a grid-based technique to cover the heterogeneity of reservoir properties. The original SA algorithm is also modified by being constrained in different directions and weighting the energy function to make it appropriate for heterogeneous conditions. The simulation results of the presented approach are in good agreement with the observed field data.

  7. Optimal Control of Heterogeneous Systems with Endogenous Domain of Heterogeneity

    International Nuclear Information System (INIS)

    Belyakov, Anton O.; Tsachev, Tsvetomir; Veliov, Vladimir M.

    2011-01-01

    The paper deals with optimal control of heterogeneous systems, that is, families of controlled ODEs parameterized by a parameter running over a domain called domain of heterogeneity. The main novelty in the paper is that the domain of heterogeneity is endogenous: it may depend on the control and on the state of the system. This extension is crucial for several economic applications and turns out to rise interesting mathematical problems. A necessary optimality condition is derived, where one of the adjoint variables satisfies a differential inclusion (instead of equation) and the maximization of the Hamiltonian takes the form of “min-max”. As a consequence, a Pontryagin-type maximum principle is obtained under certain regularity conditions for the optimal control. A formula for the derivative of the objective function with respect to the control from L ∞ is presented together with a sufficient condition for its existence. A stylized economic example is investigated analytically and numerically.

  8. Bird diversity and environmental heterogeneity in North America: A test of the area-heterogeneity trade-off

    Science.gov (United States)

    Rachel Chocron; Curtis H. Flather; Ronen Kadmon

    2015-01-01

    Aim: Deterministic niche theory predicts that increasing environmental heterogeneity increases species richness. In contrast, a recent stochastic model suggests that heterogeneity has a unimodal effect on species richness since high levels of heterogeneity reduce the effective area available per species, thereby increasing the likelihood of stochastic...

  9. Plasma-assisted heterogeneous catalysis for NOx reduction in lean-burn engine exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Penetrante, B.M.; Hsaio, M.C.; Merritt, B.T.; Vogtlin, G.E. [Lawrence Livermore National Lab., CA (United States); Wan, C.Z.; Rice, G.W.; Voss, K.E. [Engelhard Corp., Iselin, NJ (United States)

    1997-12-31

    This paper discusses the combination of a plasma with a catalyst to improve the reduction of NO{sub x} under lean-burn conditions. The authors have been investigating the effects of a plasma on the NO{sub x} reduction activity and temperature operating window of various catalytic materials. One of the goals is to develop a fundamental understanding of the interaction between the gas-phase plasma chemistry and the heterogeneous chemistry on the catalyst surface. The authors have observed that plasma assisted heterogeneous catalysis can facilitate NO{sub x} reduction under conditions that normally make it difficult for either the plasma or the catalyst to function by itself. By systematically varying the plasma electrode and catalyst configuration, they have been able to elucidate the process by which the plasma chemistry affects the chemical reduction of NO{sub x} on the catalyst surface. They have discovered that the main effect of the plasma is to induce the gas-phase oxidation of NO to NO{sub 21}. The reduction of NO{sub x} to N{sub 2} is then accomplished by heterogeneous reaction of O with activated hydrocarbons on the catalyst surface. The use of a plasma opens the opportunity for a new class of catalysts that are potentially more durable, more active, more selective and more sulfur-tolerant compared to conventional lean-NO{sub x} catalysts.

  10. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Su, Hui [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, we introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, we demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm2 for 40-μm wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection.

  11. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    International Nuclear Information System (INIS)

    Hui Su

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, we introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, we demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm(sub 2) for 40-(micro)m wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection

  12. The theoretical possibility of reducing the doubling time in a fast-reactor by using heterogeneous configurations of various types of fuel

    International Nuclear Information System (INIS)

    Orlov, V.V.; Slesarev, I.S.; Zaritskij, S.M.; Subbotin, S.A.; Alekseev, P.N.; Zverkov, Yu.A.

    1980-01-01

    The authors have derived approximate expressions relating the doubling time of a fast reactor using various types of fuel simultaneously to the doubling time of traditional (homogeneous) reactors in which these types of fuel are used separately. These relationships afford a means of determining the conditions in which the use of various types of fuel can result in an improved doubling time. It was established that the use of heterogeneous compositions formed from assemblies of homogeneous systems gives a notable gain in doubling time over that of any of the original homogeneous systems if the doubling times were similar to each other. This gain is fairly large even in the case of BN reactors with high fuel volume fractions. The size of the gain depends on the degree of ''differentiation'' in the neutron and thermal properties of the components of the heterogeneous reactor. An optimum proportion has been found for the assemblies taken from the original homogeneous systems, governed primarily by the ratio of fuel densities. Estimates were made of the advantages of metallic oxide compositions over the traditional compositions used in large, fast reactors of the BN type. These estimates indicate that the former can be considered as alternative homogeneous compositions with carbide or nitride fuel as far as breeding characteristics are concerned. (author)

  13. Soil phosphorus heterogeneity promotes tree species diversity and phylogenetic clustering in a tropical seasonal rainforest.

    Science.gov (United States)

    Xu, Wumei; Ci, Xiuqin; Song, Caiyun; He, Tianhua; Zhang, Wenfu; Li, Qiaoming; Li, Jie

    2016-12-01

    The niche theory predicts that environmental heterogeneity and species diversity are positively correlated in tropical forests, whereas the neutral theory suggests that stochastic processes are more important in determining species diversity. This study sought to investigate the effects of soil nutrient (nitrogen and phosphorus) heterogeneity on tree species diversity in the Xishuangbanna tropical seasonal rainforest in southwestern China. Thirty-nine plots of 400 m 2 (20 × 20 m) were randomly located in the Xishuangbanna tropical seasonal rainforest. Within each plot, soil nutrient (nitrogen and phosphorus) availability and heterogeneity, tree species diversity, and community phylogenetic structure were measured. Soil phosphorus heterogeneity and tree species diversity in each plot were positively correlated, while phosphorus availability and tree species diversity were not. The trees in plots with low soil phosphorus heterogeneity were phylogenetically overdispersed, while the phylogenetic structure of trees within the plots became clustered as heterogeneity increased. Neither nitrogen availability nor its heterogeneity was correlated to tree species diversity or the phylogenetic structure of trees within the plots. The interspecific competition in the forest plots with low soil phosphorus heterogeneity could lead to an overdispersed community. However, as heterogeneity increase, more closely related species may be able to coexist together and lead to a clustered community. Our results indicate that soil phosphorus heterogeneity significantly affects tree diversity in the Xishuangbanna tropical seasonal rainforest, suggesting that deterministic processes are dominant in this tropical forest assembly.

  14. Structural match of heterogeneously nucleated Mn(OH)_2(s) nanoparticles on quartz under various pH conditions

    International Nuclear Information System (INIS)

    Jung, Haesung; Lee, Byeongdu; Jun, Young-Shin

    2016-01-01

    The early nucleation stage of Mn (hydr)oxide on mineral surfaces is crucial to understand its occurrence and the cycling of nutrients in environmental systems. However, there are only limited studies on the heterogeneous nucleation of Mn(OH)_2(s) as the initial stage of Mn (hydr)oxide precipitation. Here, we investigated the effect of pH on the initial nucleation of Mn(OH)_2(s) on quartz. Under various pH conditions of 9.8, 9.9, and 10.1, we analyzed the structural matches between quartz and heterogeneously nucleated Mn(OH)_2(s). The structural matches were calculated by measuring lateral and vertical dimensions using grazing incidence small angle X-ray scattering (GISAXS) and atomic force microscopy (AFM), respectively. We found that a poorer structural match occurred at a higher pH than at a lower pH. The faster nucleation at a higher pH condition accounted for the observed poorer structural match. By fitting the structural match using classical nucleation theory, we also calculated the interfacial energy between Mn(OH)_2(s) and water (γ_n_f = 71 ± 7 mJ/m"2). The calculated m values and γ_n_f provided the variance of interfacial energy between quartz and Mn(OH)_2(s): γ_s_n = 262–272 mJ/m"2. As a result, this study provides new qualitative and quantitative information about heterogeneous nucleation on environmentally an abundant mineral surface, quartz, and it offers important underpinnings for understanding the fate and transport of trace ions in environmental systems.

  15. Chemoselective Oxidation of Bio-Glycerol with Nano-Sized Metal Catalysts

    DEFF Research Database (Denmark)

    Li, Hu; Kotni, Ramakrishna; Zhang, Qiuyun

    2015-01-01

    to selectively oxidize glycerol and yield products with good selectivity is the use of nano-sized metal particles as heterogeneous catalysts. In this short review, recent developments in chemoselective oxidation of glycerol to specific products over nano-sized metal catalysts are described. Attention is drawn...... to various reaction parameters such as the type of the support, the size of the metal particles, and the acid/base properties of the reaction medium which were illustrated to largely influence the activity of the nanocatalyst and selectivity to the target product. - See more at: http...

  16. The role of eclogite in the mantle heterogeneity at Cape Verde

    DEFF Research Database (Denmark)

    Barker, Abigail Katrine; Holm, Paul Martin; Troll, Valentin R.

    2014-01-01

    The Cape Verde hotspot, like many other Ocean Island Basalt provinces, demonstrates isotopic heterogeneity on a 100–200 km scale. The heterogeneity is represented by the appearance of an EM1-like component at several of the southern islands and with a HIMU-like component present throughout...... have been limited. We apply the minor elements in olivine approach (Sobolev et al. in Nature 434:590–597, 2005; Science, doi:10.1126/science.1138113, 2007), to determine and quantify the contributions of peridotite, pyroxenite and eclogite melts to the mantle heterogeneity observed at Cape Verde. Cores...... of olivine phenocrysts of the Cape Verde volcanics have low Mn/FeO and low Ni*FeO/MgO that deviate from the negative trend of the global array. The global array is defined by mixing between peridotite and pyroxenite, whereas the Cape Verde volcanics indicate contribution of an additional eclogite source...

  17. Quantifying spatial heterogeneity from images

    International Nuclear Information System (INIS)

    Pomerantz, Andrew E; Song Yiqiao

    2008-01-01

    Visualization techniques are extremely useful for characterizing natural materials with complex spatial structure. Although many powerful imaging modalities exist, simple display of the images often does not convey the underlying spatial structure. Instead, quantitative image analysis can extract the most important features of the imaged object in a manner that is easier to comprehend and to compare from sample to sample. This paper describes the formulation of the heterogeneity spectrum to show the extent of spatial heterogeneity as a function of length scale for all length scales to which a particular measurement is sensitive. This technique is especially relevant for describing materials that simultaneously present spatial heterogeneity at multiple length scales. In this paper, the heterogeneity spectrum is applied for the first time to images from optical microscopy. The spectrum is measured for thin section images of complex carbonate rock cores showing heterogeneity at several length scales in the range 10-10 000 μm.

  18. Coupled petrological-geodynamical modeling of a compositionally heterogeneous mantle plume

    Science.gov (United States)

    Rummel, Lisa; Kaus, Boris J. P.; White, Richard W.; Mertz, Dieter F.; Yang, Jianfeng; Baumann, Tobias S.

    2018-01-01

    Self-consistent geodynamic modeling that includes melting is challenging as the chemistry of the source rocks continuously changes as a result of melt extraction. Here, we describe a new method to study the interaction between physical and chemical processes in an uprising heterogeneous mantle plume by combining a geodynamic code with a thermodynamic modeling approach for magma generation and evolution. We pre-computed hundreds of phase diagrams, each of them for a different chemical system. After melt is extracted, the phase diagram with the closest bulk rock chemistry to the depleted source rock is updated locally. The petrological evolution of rocks is tracked via evolving chemical compositions of source rocks and extracted melts using twelve oxide compositional parameters. As a result, a wide variety of newly generated magmatic rocks can in principle be produced from mantle rocks with different degrees of depletion. The results show that a variable geothermal gradient, the amount of extracted melt and plume excess temperature affect the magma production and chemistry by influencing decompression melting and the depletion of rocks. Decompression melting is facilitated by a shallower lithosphere-asthenosphere boundary and an increase in the amount of extracted magma is induced by a lower critical melt fraction for melt extraction and/or higher plume temperatures. Increasing critical melt fractions activates the extraction of melts triggered by decompression at a later stage and slows down the depletion process from the metasomatized mantle. Melt compositional trends are used to determine melting related processes by focusing on K2O/Na2O ratio as indicator for the rock type that has been molten. Thus, a step-like-profile in K2O/Na2O might be explained by a transition between melting metasomatized and pyrolitic mantle components reproducible through numerical modeling of a heterogeneous asthenospheric mantle source. A potential application of the developed method

  19. Heterogeneity and loss of soil nutrient elements under aeolian processes in the Otindag Desert, China

    Science.gov (United States)

    Li, Danfeng; Wang, Xunming; Lou, Junpeng; Liu, Wenbin; Li, Hui; Ma, Wenyong; Jiao, Linlin

    2018-02-01

    The heterogeneity of the composition of surface soils that are affected by aeolian processes plays important roles in ecological evolution and the occurrence of aeolian desertification in fragile ecological zones, but the associated mechanisms are poorly understood. Using field investigation, wind tunnel experiments, and particle size and element analyses, we discuss the variation in the nutrient elements of surface soils that forms in the presence of aeolian processes of four vegetation species (Caragana microphylla Lam, Artemisia frigida Willd. Sp. Pl., Leymus chinensis (Trin.) Tzvel. and Stipa grandis P. Smirn) growing in the Otindag Desert, China. These four vegetation communities correspond to increasing degrees of degradation. A total of 40 macro elements, trace elements, and oxides were measured in the surface soil and in wind-transported samples. The results showed that under the different degradation stages, the compositions and concentrations of nutrients in surface soils differed for the four vegetation species. Aeolian processes may cause higher heterogeneity and higher loss of soil nutrient elements for the communities of Artemisia frigida Willd. Sp. Pl., Leymus chinensis (Trin.) Tzvel, and Stipa grandis P. Smirn than for the Caragana microphylla Lam community. There was remarkable variation in the loss of nutrients under different aeolian transportation processes. Over the past several decades, the highest loss of soil elements occurred in the 1970s, whereas the loss from 2011 to the present was generally 4.0% of that in the 1970s. These results indicate that the evident decrease in nutrient loss has played an important role in the rehabilitation that has occurred in the region recently.

  20. Surface decontamination by heterogeneous foams and suspensions

    International Nuclear Information System (INIS)

    Polyakov, A.; Poluektov, P.; Emets, E.; Kuchumov, V.; Rybakov, K.; Teterin, E.

    2000-01-01

    A variety of methods was used to investigate the surface of stainless steel as delivered or treated (electrochemically polished, machine ground). Micro X-ray spectral analysis evidenced a uniform distribution of alloying elements. Auger spectroscopy revealed the layer-by-layer composition by elements and the thickness of the superficial oxide film. The distribution of heterogeneous uranium dioxide powders on the stainless steel surface was examined by microprobe analysis (using Comebax). In the order of increasing contamination by uranium dioxide, the surfaces can be arranged as: untreated - polished - ground. The behaviour of hydrogen peroxide in alkaline solutions was studied by spectrophotometry and laser analysis. Decontamination of stainless steel surfaces from UO 2 by microgaseous emulsions in alkaline media with surfactants present was tested. The decontamination factor was determined as a function of the size and volume of gas bubbles. It was shown to rise with increasing gas content. (author)

  1. Lateral heterogeneity and vertical stratification of cratonic lithospheric keels: examples from Europe, Siberia, and North America

    DEFF Research Database (Denmark)

    Artemieva, Irina; Cherepanova, Yulia; Herceg, Matija

    of the Precambrian lithosphere based on surface heat flow data, (ii) non-thermal part of upper mantle seismic velocity heterogeneity based on a joint analysis of thermal and seismic tomography data, and (iii) lithosphere density heterogeneity as constrained by free-board and satellite gravity data. The latter...... of the Gondwanaland does not presently exceed 250 km depth. An analysis of temperature-corrected seismic velocity structure indicates strong vertical and lateral heterogeneity of the cratonic lithospheric mantle, with a pronounced stratification in many Precambrian terranes; the latter is supported by xenolith data...

  2. The Enzymatic Oxidation of Graphene Oxide

    Science.gov (United States)

    Kotchey, Gregg P.; Allen, Brett L.; Vedala, Harindra; Yanamala, Naveena; Kapralov, Alexander A.; Tyurina, Yulia Y.; Klein-Seetharaman, Judith; Kagan, Valerian E.; Star, Alexander

    2011-01-01

    Two-dimensional graphitic carbon is a new material with many emerging applications, and studying its chemical properties is an important goal. Here, we reported a new phenomenon – the enzymatic oxidation of a single layer of graphitic carbon by horseradish peroxidase (HRP). In the presence of low concentrations of hydrogen peroxide (~40 µM), HRP catalyzed the oxidation of graphene oxide, which resulted in the formation of holes on its basal plane. During the same period of analysis, HRP failed to oxidize chemically reduced graphene oxide (RGO). The enzymatic oxidation was characterized by Raman, UV-Vis, EPR and FT-IR spectroscopy, TEM, AFM, SDS-PAGE, and GC-MS. Computational docking studies indicated that HRP was preferentially bound to the basal plane rather than the edge for both graphene oxide and RGO. Due to the more dynamic nature of HRP on graphene oxide, the heme active site of HRP was in closer proximity to graphene oxide compared to RGO, thereby facilitating the oxidation of the basal plane of graphene oxide. We also studied the electronic properties of the reduced intermediate product, holey reduced graphene oxide (hRGO), using field-effect transistor (FET) measurements. While RGO exhibited a V-shaped transfer characteristic similar to a single layer of graphene that was attributed to its zero band gap, hRGO demonstrated a p-type semiconducting behavior with a positive shift in the Dirac points. This p-type behavior rendered hRGO, which can be conceptualized as interconnected graphene nanoribbons, as a potentially attractive material for FET sensors. PMID:21344859

  3. Interconnecting heterogeneous database management systems

    Science.gov (United States)

    Gligor, V. D.; Luckenbaugh, G. L.

    1984-01-01

    It is pointed out that there is still a great need for the development of improved communication between remote, heterogeneous database management systems (DBMS). Problems regarding the effective communication between distributed DBMSs are primarily related to significant differences between local data managers, local data models and representations, and local transaction managers. A system of interconnected DBMSs which exhibit such differences is called a network of distributed, heterogeneous DBMSs. In order to achieve effective interconnection of remote, heterogeneous DBMSs, the users must have uniform, integrated access to the different DBMs. The present investigation is mainly concerned with an analysis of the existing approaches to interconnecting heterogeneous DBMSs, taking into account four experimental DBMS projects.

  4. Heterogeneous continuous-time random walks

    Science.gov (United States)

    Grebenkov, Denis S.; Tupikina, Liubov

    2018-01-01

    We introduce a heterogeneous continuous-time random walk (HCTRW) model as a versatile analytical formalism for studying and modeling diffusion processes in heterogeneous structures, such as porous or disordered media, multiscale or crowded environments, weighted graphs or networks. We derive the exact form of the propagator and investigate the effects of spatiotemporal heterogeneities onto the diffusive dynamics via the spectral properties of the generalized transition matrix. In particular, we show how the distribution of first-passage times changes due to local and global heterogeneities of the medium. The HCTRW formalism offers a unified mathematical language to address various diffusion-reaction problems, with numerous applications in material sciences, physics, chemistry, biology, and social sciences.

  5. Oxidative Stress in COPD: Sources, Markers, and Potential Mechanisms

    Directory of Open Access Journals (Sweden)

    Adam John Anthony McGuinness

    2017-02-01

    Full Text Available Markers of oxidative stress are increased in chronic obstructive pulmonary disease (COPD and reactive oxygen species (ROS are able to alter biological molecules, signaling pathways and antioxidant molecule function, many of which have been implicated in the pathogenesis of COPD. However, the involvement of ROS in the development and progression of COPD is not proven. Here, we discuss the sources of ROS, and the defences that have evolved to protect against their harmful effects. We address the role that ROS may have in the development and progression of COPD, as well as current therapeutic attempts at limiting the damage they cause. Evidence has indicated that the function of several key cells appears altered in COPD patients, and expression levels of important oxidant and antioxidant molecules may be abnormal. Therapeutic trials attempting to restore equilibrium to these molecules have not impacted upon all facets of disease and whilst the theory behind ROS influence in COPD appears sound, current models testing relevant pathways to tissue damage are limited. The heterogeneity seen in COPD patients presents a challenge to our understanding, and further research is essential to identify potential targets and stratified COPD patient populations where ROS therapies may be maximally efficacious.

  6. Iron oxide/cassava starch-supported Ziegler-Natta catalysts for in situ ethylene polymerization.

    Science.gov (United States)

    Chancharoenrith, Sittikorn; Kamonsatikul, Choavarit; Namkajorn, Montree; Kiatisevi, Supavadee; Somsook, Ekasith

    2015-03-06

    Iron oxide nanoparticles were used as supporters for in situ polymerization to produce polymer nanocomposites with well-dispersed fillers in polymer matrix. Iron oxide could be sustained as colloidal solutions by cassava starch to produce a good dispersion of iron oxide in the matrix. New supports based on iron oxide/cassava starch or cassava starch for Ziegler-Natta catalysts were utilized as heterogeneous supporters for partially hydrolyzed triethylaluminum. Then, TiCl4 was immobilized on the supports as catalysts for polymerization of ethylene. High-density polyethylene (HDPE) composites were obtained by the synthesized catalysts. A good dispersion of iron oxide/cassava starch particles was observed in the synthesized polymer matrix promoting to good mechanical properties of HDPE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Titanium oxide modification with oxides of mixed cobalt valence for photo catalysis

    International Nuclear Information System (INIS)

    Alanis O, R.; Jimenez B, J.

    2010-01-01

    In the present work, heterogenous photo catalysis, a technique often used for organic compound degradation toxic in water, was used. The photo catalyst most often used in this technique is TiO 2 , which due to its physical and chemical properties, can degrade a great number of organic compounds. In addition, in recent years it has been verified that the doping of semiconductors with metals or metallic oxides increases the photo catalytic activity of these semiconductors, which is why it was proposed for doping by the impregnating method using commercial TiO 2 synthesized by the Degussa company (TiO 2 Degussa P25) with and oxide of mixed cobalt valence (Co 3 O 4 ) synthesized using the sol-gel method. The synthesized photo catalyst TiO 2 /Co 3 O 4 was characterized by the techniques of X-ray diffraction, scanning electronic microscopy, Raman spectroscopy and finally, photo catalytic tests by means of the degradation of methylene blue. (Author)

  8. Bounding the heterogeneous gas uptake on aerosols and ground using resistance model

    Science.gov (United States)

    Su, H.; Li, M.; Cheng, Y.

    2017-12-01

    Heterogeneous uptake on aerosols and ground are potential important atmospheric sinks for gases. Different schemes have been used to characterize the dry deposition and heterogeneous aerosol gas uptake, although they share similar characteristics. In this work, we propose a unified resistance model to compare the uptake flux on both ground and aerosols, to identify the dominate heterogeneous process within the planetary boundary layer (PBL). The Gamma(eq) is introduced to represent the reactive uptake coefficient on aerosols when these two processes are equally important. It's shown that Gamma(eq) is proportional to the dry deposition velocity, inversely proportional to aerosol surface area concentration. Under typical regional background condition, Gamma(eq) vary from 1x10-5 to 4x10-4 with gas species, land-use type and season, which indicates that aerosol gas uptake should be included in atmospheric models when uptake coefficient higher than 10-5. We address the importance of heterogeneous gas uptake on aerosols over ground especially for ozone uptake on liquid organic aerosols and for marine PBL atmosphere.

  9. Tungsten-Based Mesoporous Silicates W-MMM-E as Heterogeneous Catalysts for Liquid-Phase Oxidations with Aqueous H2O2

    Directory of Open Access Journals (Sweden)

    Nataliya Maksimchuk

    2018-02-01

    Full Text Available Mesoporous tungsten-silicates, W-MMM-E, have been prepared following evaporation-induced self-assembly methodology and characterized by elemental analysis, XRD, N2 adsorption, STEM-HAADF (high angle annular dark field in scanning-TEM mode, DRS UV-vis, and Raman techniques. DRS UV-vis showed the presence of two types of tungsten oxo-species in W-MMM-E samples: isolated tetrahedrally and oligomeric octahedrally coordinated ones, with the ratio depending on the content of tungsten in the catalyst. Materials with lower W loading have a higher contribution from isolated species, regardless of the preparation method. W-MMM-E catalyzes selectively oxidize of a range of alkenes and organic sulfides, including bulky terpene or thianthrene molecules, using green aqueous H2O2. The selectivity of corresponding epoxides reached 85–99% in up to 80% alkene conversions, while sulfoxides formed with 84–90% selectivity in almost complete sulfide conversions and a 90–100% H2O2 utilization efficiency. The true heterogeneity of catalysis over W-MMM-E was proved by hot filtration tests. Leaching of inactive W species depended on the reaction conditions and initial W loading in the catalyst. After optimization of the catalyst system, it did not exceed 20 ppm and 3 ppm for epoxidation and sulfoxidation reactions, respectively. Elaborated catalysts could be easily retrieved by filtration and reused several times with maintenance of the catalytic behavior.

  10. Studies of Heterogeneously Catalyzed Liquid-Phase Alcohol Oxidation on Platinum bySum-frequency Generation Vibrational Spectroscopy and Reaction Rate Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Christopher [Univ. of California, Berkeley, CA (United States)

    2014-05-15

    Compared to many branches of chemistry, the molecular level study of catalytically active surfaces is young. Only with the invention of ultrahigh vacuum technology in the past half century has it been possible to carry out experiments that yield useful molecular information about the reactive occurrences at a surface. The reason is two-fold: low pressure is necessary to keep a surface clean for an amount of time long enough to perform an experiment, and most atomic scale techniques that are surface speci c (x-ray photoelectron spectroscopy, electron energy loss spectroscopy, Auger electron spectroscopy, etc.) cannot be used at ambient pressures, because electrons, which act as chemical probes in these techniques, are easily scattered by molecules. Sum-frequency generation (SFG) vibrational spectroscopy is one technique that can provide molecular level information from the surface without the necessity for high vacuum. Since the advent of SFG as a surface spectroscopic tool it has proved its worth in the studies of surface catalyzed reactions in the gas phase, with numerous reactions in the gas phase having been investigated on a multitude of surfaces. However, in situ SFG characterization of catalysis at the solid-liquid interface has yet to be thoroughly pursued despite the broad interest in the use of heterogeneous catalysts in the liquid phase as replacements for homogeneous counterparts. This work describes an attempt to move in that direction, applying SFG to study the solid-liquid interface under conditions of catalytic alcohol oxidation on platinum.

  11. Surface area of antimony oxide by isotope exchange and other methods

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Y.K.; Acharya, B.V.; Rangamannar, B.

    1985-06-17

    Specific surface areas of antimony oxide samples, one commercial, the other prepared from antimony trichloride were measured by heterogeneous isotope exchange, gas adsorption, air permeability and microscopic methods. Specific surface areas obtained by these four methods for the two samples were compared and the observed differences are explained.

  12. Lead Isotope Compositions of Acid Residues from Olivine-Phyric Shergottite Tissint: Implications for Heterogeneous Shergottite Source Reservoirs

    Science.gov (United States)

    Moriwaki, R.; Usui, T.; Yokoyama, T.; Simon, J. I.; Jones, J. H.

    2015-01-01

    Geochemical studies of shergottites suggest that their parental magmas reflect mixtures between at least two distinct geochemical source reservoirs, producing correlations between radiogenic isotope compositions and trace element abundances. These correlations have been interpreted as indicating the presence of a reduced, incompatible element- depleted reservoir and an oxidized, incompatible- element-enriched reservoir. The former is clearly a depleted mantle source, but there is ongoing debate regarding the origin of the enriched reservoir. Two contrasting models have been proposed regarding the location and mixing process of the two geochemical source reservoirs: (1) assimilation of oxidized crust by mantle derived, reduced magmas, or (2) mixing of two distinct mantle reservoirs during melting. The former requires the ancient Martian crust to be the enriched source (crustal assimilation), whereas the latter requires isolation of a long-lived enriched mantle domain that probably originated from residual melts formed during solidification of a magma ocean (heterogeneous mantle model). This study conducts Pb isotope and trace element concentration analyses of sequential acid-leaching fractions (leachates and the final residues) from the geochemically depleted olivine-phyric shergottite Tissint. The results suggest that the Tissint magma is not isotopically uniform and sampled at least two geochemical source reservoirs, implying that either crustal assimilation or magma mixing would have played a role in the Tissint petrogenesis.

  13. Aerobic Oxidation of Alcohols over Gold Catalysts: Role of Acid and Base

    DEFF Research Database (Denmark)

    Klitgaard, Søren Kegnæs; DeLa Riva, Andrew T.; Helveg, Stig

    2008-01-01

    Gold nanoparticles are deposited on potassium titanate nanowires and used as heterogeneous catalysts in the aerobic oxidation of benzyl alcohol in methanol to methyl benzoate at ambient conditions. The presence of a catalytic amount of base promotes the reaction and the formation of free benzoic...

  14. The mechanisms of pyrite oxidation and leaching: A fundamental perspective

    Science.gov (United States)

    Chandra, A. P.; Gerson, A. R.

    2010-09-01

    Pyrite is the earth's most abundant sulfide mineral. Its frequent undesirable association with minerals of economic value such as sphalerite, chalcopyrite and galena, and precious metals such as gold necessitates costly separation processes such as leaching and flotation. Additionally pyrite oxidation is a major contributor to the environmental problem of acid rock drainage. The surface oxidation reactions of pyrite are therefore important both economically and environmentally. Significant variations in electrical properties resulting from lattice substitution of minor and trace elements into the lattice structure exist between pyrite from different geographical locations. Furthermore the presence of low coordination surface sites as a result of conchoidal fracture causes a reduction in the band gap at the surface compared to the bulk thus adding further electrochemical variability. Given the now general acceptance after decades of research that electrochemistry dominates the oxidation process, the geographical location, elemental composition and semi-conductor type (n or p) of pyrite are important considerations. Aqueous pyrite oxidation results in the production of sulfate and ferrous iron. However other products such as elemental sulfur, polysulfides, hydrogen sulfide, ferric hydroxide, iron oxide and iron(III) oxyhydroxide may also form. Intermediate species such as thiosulfate, sulfite and polythionates are also proposed to occur. Oxidation and leach rates are generally influenced by solution Eh, pH, oxidant type and concentration, hydrodynamics, grain size and surface area in relation to solution volume, temperature and pressure. Of these, solution Eh is most critical as expected for an electrochemically controlled process, and directly correlates with surface area normalised rates. Studies using mixed mineral systems further indicate the importance of electrochemical processes during the oxidation process. Spatially resolved surface characterisation of fresh

  15. Aerosol processing: a wind of innovation in the field of advanced heterogeneous catalysts.

    Science.gov (United States)

    Debecker, Damien P; Le Bras, Solène; Boissière, Cédric; Chaumonnot, Alexandra; Sanchez, Clément

    2018-04-16

    Aerosol processing is long known and implemented industrially to obtain various types of divided materials and nanomaterials. The atomisation of a liquid solution or suspension produces a mist of aerosol droplets which can then be transformed via a diversity of processes including spray-drying, spray pyrolysis, flame spray pyrolysis, thermal decomposition, micronisation, gas atomisation, etc. The attractive technical features of these aerosol processes make them highly interesting for the continuous, large scale, and tailored production of heterogeneous catalysts. Indeed, during aerosol processing, each liquid droplet undergoes well-controlled physical and chemical transformations, allowing for example to dry and aggregate pre-existing solid particles or to synthesise new micro- or nanoparticles from mixtures of molecular or colloidal precursors. In the last two decades, more advanced reactive aerosol processes have emerged as innovative means to synthesise tailored-made nanomaterials with tunable surface properties, textures, compositions, etc. In particular, the "aerosol-assisted sol-gel" process (AASG) has demonstrated tremendous potential for the preparation of high-performance heterogeneous catalysts. The method is mainly based on the low-cost, scalable, and environmentally benign sol-gel chemistry process, often coupled with the evaporation-induced self-assembly (EISA) concept. It allows producing micronic or submicronic, inorganic or hybrid organic-inorganic particles bearing tuneable and calibrated porous structures at different scales. In addition, pre-formed nanoparticles can be easily incorporated or formed in a "one-pot" bottom-up approach within the porous inorganic or hybrid spheres produced by such spray drying method. Thus, multifunctional catalysts with tailored catalytic activities can be prepared in a relatively simple way. This account is an overview of aerosol processed heterogeneous catalysts which demonstrated interesting performance in

  16. Properties of photocatalytically generated oxygen species produced by Ag2Se-graphene oxide heterojunction and its application for the visible-light degradation of ammonia

    Science.gov (United States)

    Meng, Ze-Da; Zhao, Wei; Kim, Sukyoung

    2017-11-01

    Reactive oxygen species (ROS) can be produced by the interactions between sunlight and light-absorbing substances in aqueous environments, and these ROS are capable of destroying various organic pollutants in wastewater. In this study, the photocatalytic degradation of ammonia in petrochemical wastewater was investigated by solar light photocatalysis. We used graphene oxide modified Ag2Se nanoparticles to enhance the activity of photochemically generated oxygen (PGO) species. There was a catastrophic decrease in the surface area and pore volume of the Ag2Se-graphene oxide (Ag2Se-G) samples because of the deposition of Ag2Se. The generation of ROS was detected by the oxidation of 1,5- diphenyl carbazide (DPCI) to 1,5-diphenyl carbazone (DPCO). It was revealed that the photocurrent density and PGO effect increased with the graphene oxide modified. The experimental results indicate that this heterogeneous catalyst achieved a degradation of 88.43% under visiblelight irradiation. The NH3 degradation product was N2 and neither NO2- nor NO3- were detected.[Figure not available: see fulltext.

  17. First-principles study on ferrite/TiC heterogeneous nucleation interface

    International Nuclear Information System (INIS)

    Yang, Jian; Zhang, Pengfei; Zhou, Yefei; Guo, Jing; Ren, Xuejun; Yang, Yulin; Yang, Qingxiang

    2013-01-01

    Highlights: ► Interface stability of ferrite (1 0 0)/TiC (1 0 0) was studied. ► The effectiveness of TiC as the heterogeneous nuclei of ferrite was analyzed. ► Ti-termination and C-termination are the two binding modes for ferrite/TiC interface. ► Interfacial energy of the Ti-termination is larger than that of the C-termination. ► On C-termination, ability of TiC promotes ferrite heterogeneous nucleation is strong. -- Abstract: Interface atomic structure, bonding character, cohesive energy and interfacial energy of ferrite (1 0 0)/TiC (1 0 0) were studied using a first-principles density functional plane-wave ultrasoft pseudopotential method. Meanwhile, the effectiveness of TiC as the heterogeneous nuclei of ferrite was analyzed. The results indicated that, TiC bonding is dominated by the C-2p, C-2s and Ti-3d electrons, which exhibits high covalency. With increase of the atomic layers, the interfacial energies of ferrite and TiC are both declined rapidly and stabilized gradually. There are two binding modes for TiC as the heterogeneous nuclei of ferrite, which are Fe atoms above the Ti atoms (Ti-termination) and Fe atoms above the C atoms (C-termination). Interfacial energy of the Ti-termination is larger than that of the C-termination, which means that for Fe atoms above the C atoms, the ability of TiC promotes ferrite heterogeneous nucleation on its surface is larger than that for Fe atoms above the Ti atoms

  18. The influence of small-scale interlayer heterogeneity on DDT removal efficiency for flushing technology

    Science.gov (United States)

    Wang, Xingwei; Chen, Jiajun

    2017-06-01

    With an aim to investigate the influence of small-scale interlayer heterogeneity on DDT removal efficiency, batch test including surfactant-stabilized foam flushing and solution flushing were carried out. Two man-made heterogeneous patterns consisting of coarse and fine quartz sand were designed to reveal the influencing mechanism. Moreover, the removal mechanism and the corresponding contribution by foam flushing were quantitatively studied. Compared with surfactant solution flushing, the DDT removal efficiency by surfactant-stabilized foam flushing increased by 9.47% and 11.28% under heterogeneous patterns 1 and 2, respectively. The DDT removal contributions of improving sweep efficiency for heterogeneous patterns 1 and 2 by foam flushing were 40.82% and 45.98%, and the contribution of dissolving capacity were 59.18% and 54.02%, respectively. The dissolving capacity of DDT played a major role in DDT removal efficiency by foam flushing under laboratory conditions. And the DDT removal contribution of significant improving sweep efficiency was higher than that of removal decline caused by weak solubilizing ability of foam film compared with solution flushing. The obtained results indicated that the difference of DDT removal efficiency by foam flushing was decreased under two different heterogeneous patterns with the increase of the contribution of improving foam flushing sweep efficiency. It suggested that foam flushing can reduce the disturbance from interlayer heterogeneity in remediating DDT contaminated heterogeneous medium.

  19. Volatility and lifetime against OH heterogeneous reaction of ambient isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA)

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Weiwei; Palm, Brett B.; Day, Douglas A.; Campuzano-Jost, Pedro; Krechmer, Jordan E.; Peng, Zhe; de Sá, Suzane S.; Martin, Scot T.; Alexander, M. Lizabeth; Baumann, Karsten; Hacker, Lina; Kiendler-Scharr, Astrid; Koss, Abigail R.; de Gouw, Joost A.; Goldstein, Allen H.; Seco, Roger; Sjostedt, Steven J.; Park, Jeong-Hoo; Guenther, Alex B.; Kim, Saewung; Canonaco, Francesco; Prévôt, André S. H.; Brune, William H.; Jimenez, Jose L.

    2016-01-01

    Isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA) can contribute substantially to organic aerosol (OA) concentrations in forested areas under low NO conditions, hence significantly influencing the regional and global OA budgets, accounting, for example, for 16–36 % of the submicron OA in the southeastern United States (SE US) summer. Particle evaporation measurements from a thermodenuder show that the volatility of ambient IEPOX-SOA is lower than that of bulk OA and also much lower than that of known monomer IEPOX-SOA tracer species, indicating that IEPOX-SOA likely exists mostly as oligomers in the aerosol phase. The OH aging process of ambient IEPOX-SOA was investigated with an oxidation flow reactor (OFR). New IEPOX-SOA formation in the reactor was negligible, as the OFR does not accelerate processes such as aerosol uptake and reactions that do not scale with OH. Simulation results indicate that adding ~100 µg m-3 of pure H2SO4 to the ambient air allows IEPOX-SOA to be efficiently formed in the reactor. The heterogeneous reaction rate coefficient of ambient IEPOX-SOA with OH radical (kOH) was estimated as 4.0 ± 2.0 ×10-13 cm3 molec-1 s-1, which is equivalent to more than a 2-week lifetime. A similar kOH was found for measurements of OH oxidation of ambient Amazon forest air in an OFR. At higher OH exposures in the reactor (> 1 × 1012 molec cm-3 s), the mass loss of IEPOX-SOA due to heterogeneous reaction was mainly due to revolatilization of fragmented reaction products. We report, for the first time, OH reactive uptake coefficients (γOH = 0.59±0.33 in SE US and γOH = 0.68±0.38 in Amazon) for SOA under ambient conditions. A relative humidity dependence of kOH and γOH was observed, consistent with surface-area-limited OH uptake

  20. Volatility and lifetime against OH heterogeneous reaction of ambient isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA

    Directory of Open Access Journals (Sweden)

    W. Hu

    2016-09-01

    Full Text Available Isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA can contribute substantially to organic aerosol (OA concentrations in forested areas under low NO conditions, hence significantly influencing the regional and global OA budgets, accounting, for example, for 16–36 % of the submicron OA in the southeastern United States (SE US summer. Particle evaporation measurements from a thermodenuder show that the volatility of ambient IEPOX-SOA is lower than that of bulk OA and also much lower than that of known monomer IEPOX-SOA tracer species, indicating that IEPOX-SOA likely exists mostly as oligomers in the aerosol phase. The OH aging process of ambient IEPOX-SOA was investigated with an oxidation flow reactor (OFR. New IEPOX-SOA formation in the reactor was negligible, as the OFR does not accelerate processes such as aerosol uptake and reactions that do not scale with OH. Simulation results indicate that adding  ∼  100 µg m−3 of pure H2SO4 to the ambient air allows IEPOX-SOA to be efficiently formed in the reactor. The heterogeneous reaction rate coefficient of ambient IEPOX-SOA with OH radical (kOH was estimated as 4.0 ± 2.0  ×  10−13 cm3 molec−1 s−1, which is equivalent to more than a 2-week lifetime. A similar kOH was found for measurements of OH oxidation of ambient Amazon forest air in an OFR. At higher OH exposures in the reactor (>  1  ×  1012 molec cm−3 s, the mass loss of IEPOX-SOA due to heterogeneous reaction was mainly due to revolatilization of fragmented reaction products. We report, for the first time, OH reactive uptake coefficients (γOH =  0.59 ± 0.33 in SE US and γOH =  0.68 ± 0.38 in Amazon for SOA under ambient conditions. A relative humidity dependence of kOH and γOH was observed, consistent with surface-area-limited OH uptake. No decrease of kOH was observed as OH concentrations increased. These observations of physicochemical

  1. Reuse performance of granular-activated carbon and activated carbon fiber in catalyzed peroxymonosulfate oxidation.

    Science.gov (United States)

    Yang, Shiying; Li, Lei; Xiao, Tuo; Zhang, Jun; Shao, Xueting

    2017-03-01

    Recently, activated carbon was investigated as an efficient heterogeneous metal-free catalyst to directly activate peroxymonosulfate (PMS) for degradation of organic compounds. In this paper, the reuse performance and the possible deactivation reasons of granular-activated carbon (GAC) and activated carbon fiber (ACF) in PMS activation were investigated. As results indicated, the reusability of GAC, especially in the presence of high PMS dosage, was relatively superior to ACF in catalyzed PMS oxidation of Acid Orange 7 (AO7), which is much more easily adsorbed by ACF than by GAC. Pre-oxidation experiments were studied and it was demonstrated that PMS oxidation on ACF would retard ACF's deactivation to a big extent. After pre-adsorption with AO7, the catalytic ability of both GAC and ACF evidently diminished. However, when methanol was employed to extract the AO7-spent ACF, the catalytic ability could recover quite a bit. GAC and ACF could also effectively catalyze PMS to degrade Reactive Black 5 (RB5), which is very difficult to be adsorbed even by ACF, but both GAC and ACF have poor reuse performance for RB5 degradation. The original organic compounds or intermediate products adsorbed by GAC or ACF would be possibly responsible for the deactivation.

  2. Effects of soil nutrient heterogeneity on intraspecific competition in the invasive, clonal plant Alternanthera philoxeroides.

    Science.gov (United States)

    Zhou, Jian; Dong, Bi-Cheng; Alpert, Peter; Li, Hong-Li; Zhang, Ming-Xiang; Lei, Guang-Chun; Yu, Fei-Hai

    2012-03-01

    Fine-scale, spatial heterogeneity in soil nutrient availability can increase the growth of individual plants, the productivity of plant communities and interspecific competition. If this is due to the ability of plants to concentrate their roots where nutrient levels are high, then nutrient heterogeneity should have little effect on intraspecific competition, especially when there are no genotypic differences between individuals in root plasticity. We tested this hypothesis in a widespread, clonal species in which individual plants are known to respond to nutrient heterogeneity. Plants derived from a single clone of Alternanthera philoxeroides were grown in the greenhouse at low or high density (four or 16 plants per 27·5 × 27·5-cm container) with homogeneous or heterogeneous availability of soil nutrients, keeping total nutrient availability per container constant. After 9 weeks, measurements of size, dry mass and morphology were taken. Plants grew more in the heterogeneous than in the homogeneous treatment, showing that heterogeneity promoted performance; they grew less in the high- than in the low-density treatment, showing that plants competed. There was no interactive effect of nutrient heterogeneity and plant density, supporting the hypothesis that heterogeneity does not affect intraspecific competition in the absence of genotypic differences in plasticity. Treatments did not affect morphological characteristics such as specific leaf area or root/shoot ratio. Results indicate that fine-scale, spatial heterogeneity in the availability of soil nutrients does not increase competition when plants are genetically identical, consistent with the suggestion that effects of heterogeneity on competition depend upon differences in plasticity between individuals. Heterogeneity is only likely to increase the spread of monoclonal, invasive populations such as that of A. philoxeroides in China.

  3. Rhodamine B in dissolved and nano-bound forms: Indicators for light-based advanced oxidation processes.

    Science.gov (United States)

    Shabat-Hadas, Efrat; Mamane, Hadas; Gitis, Vitaly

    2017-10-01

    Rhodamine B (RhB) is a water-soluble fluorescent dye that is often used to determine flux and flow direction in biotechnological and environmental applications. In the current research, RhB in soluble (termed free) and virus-bound (termed nano-bound) forms was used as an efficiency indicator for three environmental processes. The degradation of free and nano-bound RhB by (i) direct UV photolysis and (ii) UV/H 2 O 2 advanced oxidation process (AOP) was studied in a collimated beam apparatus equipped with medium-pressure mercury vapor lamp. The degradation by (iii) solar light-induced photocatalysis was studied in a solar simulator with titanium dioxide and bismuth photocatalysts. Results showed negligible RhB degradation by direct UV and solar light, and its nearly linear degradation by UV/H 2 O 2 and photocatalysis/photosensitization in the presence of a solid catalyst. Considerable adsorption of free RhB on bismuth-based catalyst vs. no adsorption of nano-bound RhB on this catalyst or of any form of the dye on titanium dioxide produced two important conclusions. First, the better degradation of free RhB by the bismuth catalyst suggests that close proximity of a catalyst hole and the decomposing molecule significantly influences degradation. Second, the soluble form of the dye might not be the best option for its use as an indicator. Nano-bound RhB showed high potential as an AOP indicator, featuring possible separation from water after the analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Characterization of tin oxide nanoparticles synthesized via oxidation from metal

    International Nuclear Information System (INIS)

    Abruzzi, R.C.; Dedavid, B.A.; Pires, M.J.R.; Streicher, M.

    2014-01-01

    The tin oxide (SnO_2) is a promising material with great potential for applications such as gas sensors and catalysts. This oxide nanostructures show higher activation efficiency due to its larger effective surface. This paper presents the synthesis and characterization of the tin oxide in different conditions, via oxidation of pure tin with nitric acid. Results obtained from the characterization of SnO_2 powder by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDX), Particle size by Dynamic Light Scattering (DLS) and Infrared Spectroscopy (FTIR) indicated that the conditions were suitable for the synthesis to obtain manometric tin oxide granules with crystalline structure of rutile. (author)

  5. SAFIRA project B.3.3: in-situ-treatment of contaminated ground water by catalytic oxidation. Final report; Sanierungsforschung in regional kontaminierten Aquiferen (SAFIRA). Projekt B.3.3: In situ-Behandlung von kontaminierten Grundwaessern durch katalytische Oxidation. Teilvorhaben 1: Untersuchungen im Labormassstab. Teilvorhaben 2: Tests in der bench-scale-Anlage und Teilvorhaben 3: Die Erprobung in der Pilotanlage am Modellstandort. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, J.; Haentzschel, D.; Freier, U.; Wecks, M.

    2003-06-27

    A new technology for treatment of contaminated ground water was developed. In this process heterogeneous catalysts (full metal catalyst, mixed oxide catalyst or iron-containing zeolites) in combination with hydrogen peroxide are used. In the reactor catalytic oxidation and aerob biological degradation occur simultaneously. A complete degradation of chlorobenzene was observed in a bench-scale-equipment (2 liter) and also in the pilot plant at the model site located in Bitterfeld (30 liter reactor). The technology can be applied to the ground and waste water treatment. (orig.) [German] Fuer die Behandlung von Grundwaessern, die mit organischen Schadstoffen belastet sind, wurde ein neuartiges Verfahren entwickelt. Bei der katalytischen Oxidation werden heterogene Katalysatoren in Form von Vollmetall-, Mischoxid- und Traegerkatalysatoren in Verbindung mit Wasserstoffperoxid als Oxidationsmittel eingesetzt. In den Katalysereaktoren laufen die heterogen-katalytische Oxidation und der aerob-biologische Abbau nebeneinander ab. Es werden synergistische Effekte erzielt. Mit dem Verfahren wurde in einer bench-scale-Angle (2 Liter) und in der Pilotanlage am Modellstandort in Bitterfeld (30 l Reaktor) der Schadstoff Chlorbenzol vollstaendig umgesetzt. Das Verfahren kann zur Grund- und Abwasserbehandlung eingesetzt werden. (orig.)

  6. Green Synthesis of Carvenone by Montmorillonite-Catalyzed Isomerization of 1,2-Limonene Oxide

    DEFF Research Database (Denmark)

    Nguyen, Thao-Tran Thi; Chau, Duy-Khiem Nguyen; Duus, Fritz

    2013-01-01

    Montmorillonite was considered as a good heterogeneous catalyst for the isomerization of 1,2-limonene oxide into car-venone under solvent-free condition. Both conventional heating and green activations were tested in this research. The microwave-assisted isomerization afforded carvenone in high...

  7. Stable isotopic indicators of nitrous oxide and methane sources in Los Angeles, California

    Science.gov (United States)

    Townsend-Small, A.; Pataki, D.; Tyler, S.; Trumbore, S.

    2008-12-01

    As urbanization increasingly encroaches upon agricultural landscapes, there are greater potential sources of greenhouse gases and other atmospheric contaminants. Measurements of the isotopic composition of trace gases have the potential to distinguish between pollutant sources and quantify the proportional contribution of agricultural activities to the total atmospheric pool. In this study, we are measuring the isotopic composition of greenhouse gases N2O and CH4 emitted from cropland, animal feeding operations, and urban activities in the South Coast Air Basin in southern California. The ultimate goal of our project is to utilize atmospheric measurements of the isotopic composition of N2O and CH4 combined with studies of source signatures to determine the proportional contributions of cropland, animal operations, and urban sources of greenhouse gases to the atmosphere. Measurements of the δ13C of methane show excellent separation between urban sources, such as vehicle emissions, power plants, oil refineries, landfills, and sewage treatment plants and agricultural sources like cows, biogas, and cattle feedlots. For nitrous oxide, soil N2O sources showed good separation from wastewater treatment facilities using δ15N and δ18O. Within soil N2O sources, the isotopic composition of N2O from cropland soils was similar to N2O emissions from urban turfgrass. These data indicate that nitrification may be as important a source of N2O as denitrification in urban soils. We are also measuring N2O fluxes from soils and from sewage treatment processes, and preliminary data indicate that urban N2O fluxes are higher than initially assumed by managers and regulatory agencies.

  8. Pharmacogenomics Bias - Systematic distortion of study results by genetic heterogeneity

    Directory of Open Access Journals (Sweden)

    Zietemann, Vera

    2008-04-01

    trial. Results: We found four studies that systematically evaluated heterogeneity bias. All of them indicated that there is a potential of heterogeneity bias. However, none of these studies explicitly investigated the effect of genetic heterogeneity. Therefore, we performed our own simulation study. Our generic simulation showed that a purely HT-related bias is negative (conservative and a purely HP-related bias is positive (liberal. For many typical scenarios, the absolute bias is smaller than 10%. In case of joint HP and HT, the overall bias is likely triggered by the HP component and reaches positive values >100% if fractions of „fast progressors" and „strong treatment responders" are low. In the clinical example with pravastatin therapy, the unadjusted model overestimated the true life-years gained (LYG by 5.5% (1.07 LYG vs. 0.99 LYG for 56-year-old men. Conclusions: We have been able to predict the pharmacogenomics bias jointly caused by heterogeneity in progression of disease and heterogeneity in treatment response as a function of characteristics of patients, chronic disease, and treatment. In the case of joint presence of both types of heterogeneity, models ignoring this heterogeneity may generate results that overestimate the treatment benefit.

  9. The impact of individual-level heterogeneity on estimated infectious disease burden: a simulation study.

    Science.gov (United States)

    McDonald, Scott A; Devleesschauwer, Brecht; Wallinga, Jacco

    2016-12-08

    Disease burden is not evenly distributed within a population; this uneven distribution can be due to individual heterogeneity in progression rates between disease stages. Composite measures of disease burden that are based on disease progression models, such as the disability-adjusted life year (DALY), are widely used to quantify the current and future burden of infectious diseases. Our goal was to investigate to what extent ignoring the presence of heterogeneity could bias DALY computation. Simulations using individual-based models for hypothetical infectious diseases with short and long natural histories were run assuming either "population-averaged" progression probabilities between disease stages, or progression probabilities that were influenced by an a priori defined individual-level frailty (i.e., heterogeneity in disease risk) distribution, and DALYs were calculated. Under the assumption of heterogeneity in transition rates and increasing frailty with age, the short natural history disease model predicted 14% fewer DALYs compared with the homogenous population assumption. Simulations of a long natural history disease indicated that assuming homogeneity in transition rates when heterogeneity was present could overestimate total DALYs, in the present case by 4% (95% quantile interval: 1-8%). The consequences of ignoring population heterogeneity should be considered when defining transition parameters for natural history models and when interpreting the resulting disease burden estimates.

  10. Heterogeneous catalysis in liquid-phase oxidation of olefin--2. Dependence of the structure of vanadium-chromium binary oxide catalyst for oxidation of cyclohexene on the method of preparation

    Energy Technology Data Exchange (ETDEWEB)

    Takehira, K; Hayakawa, T; Ishikawa, T

    1978-01-01

    Dependence of the structure of vanadium-chromium binary oxide catalyst for oxidation of cyclohexene on the method of preparation was studied in an extension of previous work by using three series of binary oxide catalysts, D, E, and F, which were prepared by coprecipitation from acidic, neutral, and alkaline media, respectively. The specific activity at 60/sup 0/C, 1 atm oxygen, and benzene solvent decreased in the order D > E > F, but all three series showed maximum activity at 90% chromium. The selectivity for epoxide also followed the order D > E > F, but the maximum selectivity occurred at 50% chromium for D, 75% for E, and 90% for F. Comparison of these results with X-ray diffraction and ESR spectral structural analysis of the various chromium(III) vanadate phases supported the previously proposed mechanism, with cyclohexene autoxidation initiated by free radical decomposition of cyclohexene hydroperoxide occurring on a different type of active site.

  11. Iron Is the Active Site in Nickel/Iron Water Oxidation Electrocatalysts

    Directory of Open Access Journals (Sweden)

    Bryan M. Hunter

    2018-04-01

    Full Text Available Efficient catalysis of the oxygen-evolution half-reaction (OER is a pivotal requirement for the development of practical solar-driven water splitting devices. Heterogeneous OER electrocatalysts containing first-row transition metal oxides and hydroxides have attracted considerable recent interest, owing in part to the high abundance and low cost of starting materials. Among the best performing OER electrocatalysts are mixed Fe/Ni layered double hydroxides (LDH. A review of the available experimental data leads to the conclusion that iron is the active site for [NiFe]-LDH-catalyzed alkaline water oxidation.

  12. Cell heterogeneity problems in the analysis of zero power experiments

    International Nuclear Information System (INIS)

    Grimstone, M.J.; Stevenson, J.M.

    1979-01-01

    Methods are described for treating plate and pin cell heterogeneity in the preparation of broad group cross-sections used in the analysis of zero power fast reactor experiments. Methods used at Karlsruhe and Winfrith are summarised and compared, with particular reference to the treatment of resonance shielding, the calculation of broad group spatial fine structure, the treatment of leakage and the calculation of anisotropic diffusion coefficients. The problems of cells near boundaries such as core-breeder interfaces and of singularities such as control rods are also considered briefly. Numerical studies carried out to investigate approximations in the methods are described. These include tests of the accuracy of one-dimensional cell modelling techniques, and the validation by Monte Carlo of methods for treating streaming in the calculation of diffusion coefficients. Comparisons are shown between the heterogeneity effects calculated by the Karlsruhe and Winfrith methods for typical pin and plate cells used in the BIZET experimental programme, and their effect in a whole reactor calculation is indicated. Comparisons are given with measurements which provide tests of the heterogeneity calculations. These include reaction rate scans within pin and plate cells, and reaction rate measurements across sectors of pin and plate fuel, where the flux tilt is determined by the relative reactivity of the pin and plate cells. Finally, the heterogeneity problems arising in the interpretation of reaction rate measurements are discussed. (author)

  13. Investigation of partial oxidation of hydrogen sulfide for dry desulfurisation of fuel gases; Untersuchung der Partialoxidation von Schwefelwasserstoff zur Trockenentschwefelung von Brenngasen

    Energy Technology Data Exchange (ETDEWEB)

    Kliemczak, U.

    2002-07-01

    Three process variants for direct desulfurisation in the dry state of coal gasification gases by partial oxidation of H{sub 2}S were investigated in Prenflo conditions: 1. Heterogeneously catalyzed partial oxidation of H{sub 2}S on fly dust followed by sulfur deposition on the dust; 2. Non-catalyzed partial oxidation of H{sub 2}S in a homogeneous gaseous phase followed by sulfur deposition in a spray separator; 3. Heterogeneously catalyzed partial oxidation of H{sub 2}S in a fixed bed. The experiments were carried out in conditions similar to the crude gas conditions of slag bath gasification at SVZ Schwarze Pumpe. The fixed bed materials investigated were hearth furnace coke, Berl saddles, and an activated carbon developed specially for the investigations, Oxorbon CJ. The focus of the investigations was on the envisaged continuous operation of the process. [German] Im Rahmen der vorliegenden Arbeit wurde an einer zu diesem Zweck modifizierten Technikumsanlage die trockene Direktentschwefelung von Brenngasen aus der Kohlevergasung durch partielle Oxidation von H{sub 2}S untersucht. Im Vordergrund standen zwei Verfahrensvarianten, deren Eignung fuer die Bedingungen der Prenflo-Vergasung ueberprueft werden sollte: Variante 1: die heterogen katalysierte Partialoxidation von H{sub 2}S an Flugstaub mit anschliessender Schwefelabscheidung auf dem Staub und, Variante 2: die nichtkatalysierte Partialoxidation von H{sub 2}S in homogener Gasphase mit anschliessender Schwefelabscheidung in einem Spruehabscheider. Ausgehend von den Versuchsergebnissen der Verfahrensvarianten 1 und 2 wurde zusaetzlich als Verfahrensvariante 3 die heterogen katalysierte Partialoxidation von H{sub 2}S am Festbett untersucht. Diese Versuche orientierten sich an den Rohgasbedingungen der Schlackebadvergasung des SVZ Schwarze Pumpe. Als Festbettmaterialien kamen Herdofenkoks, Berlsaettel und eine, speziell fuer diese Verfahrensvariante entwickelte Aktivkohle Oxorbon CJ, zum Einsatz. Die Eignung des

  14. The Potential of Fe-exchanged Y Zeolite as a Heterogeneous Fenton-type Catalyst for Oxidative Degradation of Reactive Dye in Water

    OpenAIRE

    Aleksić, M.; Koprivanac, N.; Lončarić Božić, A.; Kušić, H.

    2010-01-01

    The study aimed to investigate the potential of Fe-exchanged zeolites of Y-type as a catalyst in heterogeneous Fenton-type processes for the degradation of model organic pollutant, reactive azo dye C.I. Reactive Blue 137, in water. The research work was directed to investigate the influence of process variables, such as FeY catalyst dosage, Fenton reagent ratio, and initial operating pH on the efficiency of the treatment process. The performance of the studied heterogeneous process was compar...

  15. Mesoporous Nb and Ta Oxides: Synthesis, Characterization and Applications in Heterogeneous Acid Catalysis

    Science.gov (United States)

    Rao, Yuxiang Tony

    In this work, a series of mesoporous Niobium and Tantalum oxides with different pore sizes (C6, C12, C18 , ranging from 12A to 30 A) were synthesized using the ligand-assisted templating approach and investigated for their activities in a wide range of catalytic applications including benzylation, alkylation and isomerization. The as-synthesized mesoporous materials were characterized by nitrogen adsorption, powder X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), and solid-state Nuclear magnetic resonance (NMR) techniques. In order to probe into the structural and coordination geometry of mesoporous Nb oxide and in efforts to make meaningful comparisons of mesoporous niobia prepared by the amine-templating method with the corresponding bulk sol-gel prepared Nb2O5 phase, 17O magic-angle-spinning solid-state NMR studies were conducted. The results showed a very high local order in the mesoporous sample. The oxygen atoms are coordinated only as ONb 2 in contrast with bulk phases in which the oxygen atoms are always present in a mixture of ONb2 and ONb3 coordination environments. To enhance their surface acidities and thus improve their performance as solid acid catalysts in the acid-catalyzed reactions mentioned above, pure mesoporous Nb and Ta oxides were further treated with 1M sulfuric acid or phosphoric acid. Their surface acidities before and after acid treatment were measured by Fourier transform infraRed (FT IR), amine titration and temperature programmed desorption of ammonia (NH3-TPD). Results obtained in this study showed that sulfated mesoporous Nb and Ta oxides materials possess relative high surface areas (up to 612 m 2/g) and amorphous wormhole structure. These mesoporous structures are thus quite stable to acid treatment. It was also found that Bronsted (1540 cm-1) and Lewis (1450 cm-1) acid sites coexist in a roughly 50:50 mixture

  16. Analysis of heterogeneity and epistasis in physiological mixed populations by combined structural equation modelling and latent class analysis

    DEFF Research Database (Denmark)

    Fenger, Mogens; Linneberg, A.; Werge, Thomas Mears

    2008-01-01

    and genetic variations of such networks. METHODS: In this study on type 2 diabetes mellitus, heterogeneity was resolved in a latent class framework combined with structural equation modelling using phenotypic indicators of distinct physiological processes. We modelled the clinical condition "the metabolic......BACKGROUND: Biological systems are interacting, molecular networks in which genetic variation contributes to phenotypic heterogeneity. This heterogeneity is traditionally modelled as a dichotomous trait (e.g. affected vs. non-affected). This is far too simplistic considering the complexity...

  17. Discovery of a metalloenzyme-like cooperative catalytic system of metal nanoclusters and catechol derivatives for the aerobic oxidation of amines.

    Science.gov (United States)

    Yuan, Hao; Yoo, Woo-Jin; Miyamura, Hiroyuki; Kobayashi, Shū

    2012-08-29

    We have discovered a new class of cooperative catalytic system, consisting of heterogeneous polymer-immobilized bimetallic Pt/Ir alloyed nanoclusters (NCs) and 4-tert-butylcatechol, for the aerobic oxidation of amines to imines under ambient conditions. After optimization, the desired imines were obtained in good to excellent yields with broad substrate scope. The reaction rate was determined to be first-order with respect to the substrate and catechol and zero-order for the alloyed Pt/Ir NC catalyst. Control studies revealed that both the heterogeneous NC catalyst and 4-tert-butylcatechol are essential and act cooperatively to facilitate the aerobic oxidation under mild conditions.

  18. Methanolysis of Crude Jatropha Oil using Heterogeneous Catalyst from the Seashells and Eggshells as Green Biodiesel

    Directory of Open Access Journals (Sweden)

    A. N. R. REDDY

    2017-07-01

    Full Text Available In this work, heterogeneous calcium oxide catalysts gleaned from Polymedosa expansa and eggshell were investigated for the transesterification of crude jatropha oil with methanol, to access their prospective performance in biodiesel production as an alternative green energy resource. The best yield of biodiesel achieved was 96% in 1 h for Step 1 using 0.01:1 ratio of acid catalyst to oil and 0.6:1 ratio of alcohol to oil ratio, together with 2 h of Step 2 using 0.02:1 ratio with base catalyst CaO, derived from P. expansa, to oil ratio and 5:1 ratio of alcohol to oil.  The properties of jatropha biodiesel were analyzed and found to have calorific value of 35.43 MJ/kg, density value of 895 kg/m3 and flash point of 167. The biodiesel was blended with mineral diesel from B0 to B50 for a diesel engine performance test. B20 indicated comparable characteristics with pure mineral diesel, like lowest fuel consumption rate, specific fuel consumption rate, highest brake horsepower and mechanical efficiency.

  19. Reduction of Tc(VII) and Np(V) in solution by ferrous iron. A laboratory study of homogeneous and heterogeneous redox processes

    International Nuclear Information System (INIS)

    Cui, D.; Eriksen, T.E.

    1996-03-01

    The redox chemistry of Technetium and Neptunium in deep groundwater systems has been studied under well controlled conditions in laboratory experiments. The measured redox potentials in anoxic deep groundwater systems are consistent with redox reactions between Fe(II) in solution and hydrous Fe(III)-oxide phases. The fracture filling material and groundwater in transmissive fractures in bedrock constitute two different compartments in the groundwater system and experiments were therefore carried out in homogeneous Fe(II) containing solutions and in heterogeneous mixtures of solution with Fe(II) containing solid mineral phases. Reduction of the strongly sorbing neptunyl cation (NpO 2 + ) and the slightly sorbing pertechnetate anion (TcO 4 - ) by Fe(II) in solution was found to proceed very slowly, if at all, in reaction vessels with hydrophobic inner surfaces. However, in the heterogeneous systems we observed surface mediated reduction to the slightly soluble ( -8 mol*dm -3 ) tetravalent (hydr)oxides TcO 2 *nH 2 O (=Tc(OH) 4 ) and NpO 2 *nH 2 O (=Np(OH) 4 ) by Fe(II) sorbed on quartz,precipitated Fe(OH) 2 (s), Fe(II)CO 3 (s) and Fe(II) bearing minerals such as magnetite, hornblende and Fe(II)-chlorite. It is concluded that surface mediated redox-reactions will be the most effective pathway for the reduction of Tc(VII) and Np(V) in deep groundwater systems. On exposure of the surface-precipitated tetravalent (hydr)oxides to air saturated groundwater solutions the oxidative dissolution was found to be a very slow process and high concentration of hydrogen peroxide was required for oxidative dissolution. The slow rate of oxidative dissolution is most probably due to kinetic suppression of the reactions between dissolved oxygen and the precipitated (hydr)oxides. The kinetic suppression is caused by competing redox reactions at the surface of the Fe(II)-bearing minerals which consumes the dissolved oxygen. 30 refs, 22 figs

  20. Reduction of Tc(VII) and Np(V) in solution by ferrous iron. A laboratory study of homogeneous and heterogeneous redox processes

    Energy Technology Data Exchange (ETDEWEB)

    Cui, D.; Eriksen, T.E. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemistry

    1996-03-01

    The redox chemistry of Technetium and Neptunium in deep groundwater systems has been studied under well controlled conditions in laboratory experiments. The measured redox potentials in anoxic deep groundwater systems are consistent with redox reactions between Fe(II) in solution and hydrous Fe(III)-oxide phases. The fracture filling material and groundwater in transmissive fractures in bedrock constitute two different compartments in the groundwater system and experiments were therefore carried out in homogeneous Fe(II) containing solutions and in heterogeneous mixtures of solution with Fe(II) containing solid mineral phases. Reduction of the strongly sorbing neptunyl cation (NpO{sub 2}{sup +}) and the slightly sorbing pertechnetate anion (TcO{sub 4}{sup -}) by Fe(II) in solution was found to proceed very slowly, if at all, in reaction vessels with hydrophobic inner surfaces. However, in the heterogeneous systems we observed surface mediated reduction to the slightly soluble (<10{sub -8} mol*dm{sup -3}) tetravalent (hydr)oxides TcO{sub 2}*nH{sub 2}O (=Tc(OH){sub 4}) and NpO{sub 2}*nH{sub 2}O (=Np(OH){sub 4}) by Fe(II) sorbed on quartz,precipitated Fe(OH){sub 2}(s), Fe(II)CO{sub 3}(s) and Fe(II) bearing minerals such as magnetite, hornblende and Fe(II)-chlorite. It is concluded that surface mediated redox-reactions will be the most effective pathway for the reduction of Tc(VII) and Np(V) in deep groundwater systems. On exposure of the surface-precipitated tetravalent (hydr)oxides to air saturated groundwater solutions the oxidative dissolution was found to be a very slow process and high concentration of hydrogen peroxide was required for oxidative dissolution. The slow rate of oxidative dissolution is most probably due to kinetic suppression of the reactions between dissolved oxygen and the precipitated (hydr)oxides. The kinetic suppression is caused by competing redox reactions at the surface of the Fe(II)-bearing minerals which consumes the dissolved oxygen.

  1. Plasmonic engineering of metal-oxide nanowire heterojunctions in integrated nanowire rectification units

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Luchan; Zhou, Y. Norman, E-mail: liulei@tsinghua.edu.cn, E-mail: nzhou@uwaterloo.ca [Department of Mechanical Engineering, State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Zou, Guisheng; Liu, Lei, E-mail: liulei@tsinghua.edu.cn, E-mail: nzhou@uwaterloo.ca [Department of Mechanical Engineering, State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Duley, Walt W. [Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2016-05-16

    We show that irradiation with femtosecond laser pulses can produce robust nanowire heterojunctions in coupled non-wetting metal-oxide Ag-TiO{sub 2} structures. Simulations indicate that joining arises from the effect of strong plasmonic localization in the region of the junction. Strong electric field effects occur in both Ag and TiO{sub 2} resulting in the modification of both surfaces and an increase in wettability of TiO{sub 2}, facilitating the interconnection of Ag and TiO{sub 2} nanowires. Irradiation leads to the creation of a thin layer of highly defected TiO{sub 2} in the contact region between the Ag and TiO{sub 2} nanowires. The presence of this layer allows the formation of a heterojunction and offers the possibility of engineering the electronic characteristics of interfacial structures. Rectifying junctions with single and bipolar properties have been generated in Ag-TiO{sub 2} nanowire circuits incorporating asymmetrical and symmetrical interfacial structures, respectively. This fabrication technique should be applicable for the interconnection of other heterogeneous metal-oxide nanowire components and demonstrates that femtosecond laser irradiation enables interfacial engineering for electronic applications of integrated nanowire structures.

  2. Plasmonic engineering of metal-oxide nanowire heterojunctions in integrated nanowire rectification units

    Science.gov (United States)

    Lin, Luchan; Zou, Guisheng; Liu, Lei; Duley, Walt W.; Zhou, Y. Norman

    2016-05-01

    We show that irradiation with femtosecond laser pulses can produce robust nanowire heterojunctions in coupled non-wetting metal-oxide Ag-TiO2 structures. Simulations indicate that joining arises from the effect of strong plasmonic localization in the region of the junction. Strong electric field effects occur in both Ag and TiO2 resulting in the modification of both surfaces and an increase in wettability of TiO2, facilitating the interconnection of Ag and TiO2 nanowires. Irradiation leads to the creation of a thin layer of highly defected TiO2 in the contact region between the Ag and TiO2 nanowires. The presence of this layer allows the formation of a heterojunction and offers the possibility of engineering the electronic characteristics of interfacial structures. Rectifying junctions with single and bipolar properties have been generated in Ag-TiO2 nanowire circuits incorporating asymmetrical and symmetrical interfacial structures, respectively. This fabrication technique should be applicable for the interconnection of other heterogeneous metal-oxide nanowire components and demonstrates that femtosecond laser irradiation enables interfacial engineering for electronic applications of integrated nanowire structures.

  3. Top management team heterogeneity and firm performance: An empirical research on Chinese listed companies

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping

    2007-01-01

    An empirical study of the 2001-2002 data from 356 Chinese companies listed in the Shanghai and Shenzhen stock exchanges indicates that within the social context of China the characteristics of a firm's top management team have a different impact on firm performance from those of foreign countries. Also, the tenure heterogeneity and functional experience heterogeneity of the top management team are inversely related to firm performance. This paper analyzes and discusses the findings in detail and points out areas for future research.

  4. Preliminary radiation-oxidizing treatment influence on electrophysical properties of zirconium

    International Nuclear Information System (INIS)

    Garibov, A.A.; Aliyev, A.G.; Agayev, T.N.; Ismailov, S.S.; Aliyev, S.M.; Velibekova, G.Z.

    2004-01-01

    The dependences of resistivity (ρ), thermoelectromotive force (α) voltage-current characteristics of thin zirconium film 80-200 mkm of thick from adsorbed dose of γ-quantum have been investigated. It has been found out that when initial meanings of absorbed dose are insignificant (D ≤ 20 kGy) in Zr-ZrO 2 system ρ is decreased at the expense of formation of point defects (biographic protective oxide film). The further increase of absorbed dose (up to definite value) leads to radiation-heterogeneous processes of protective oxide film formation with high vacancy concentration that is accompanied with ρ increase. (author)

  5. Electrochemical advanced oxidation processes: today and tomorrow. A review.

    Science.gov (United States)

    Sirés, Ignasi; Brillas, Enric; Oturan, Mehmet A; Rodrigo, Manuel A; Panizza, Marco

    2014-01-01

    In recent years, new advanced oxidation processes based on the electrochemical technology, the so-called electrochemical advanced oxidation processes (EAOPs), have been developed for the prevention and remediation of environmental pollution, especially focusing on water streams. These methods are based on the electrochemical generation of a very powerful oxidizing agent, such as the hydroxyl radical ((•)OH) in solution, which is then able to destroy organics up to their mineralization. EAOPs include heterogeneous processes like anodic oxidation and photoelectrocatalysis methods, in which (•)OH are generated at the anode surface either electrochemically or photochemically, and homogeneous processes like electro-Fenton, photoelectro-Fenton, and sonoelectrolysis, in which (•)OH are produced in the bulk solution. This paper presents a general overview of the application of EAOPs on the removal of aqueous organic pollutants, first reviewing the most recent works and then looking to the future. A global perspective on the fundamentals and experimental setups is offered, and laboratory-scale and pilot-scale experiments are examined and discussed.

  6. Simple radiological indicators for staghorn calculi response to ESWL.

    Science.gov (United States)

    Murshidi, M S

    2006-01-01

    To evaluate staghorn calculi response to ESWL using simple radiological indicators which are stone size, stone homogeneity, and stone density. This is a prospective study of 60 patients with staghorn calculi where the majority had ESWL. The relationship between response and size, homogeneity and density is studied. Single staghorn calculus less than 4 cm, heterogeneous with stone density similar to bone or a little denser than bone has best response to ESWL. ESWL is useful as first line therapy for staghorn calculi less than 4 cm, heterogeneous with similar density to bone or a little denser than bone.

  7. Intratumoral heterogeneity as a confounding factor in clonogenic assays for tumour radioresponsiveness

    International Nuclear Information System (INIS)

    Britten, R.A.; Evans, A.J.; Allalunis-Turner, M.J.; Franko, A.J.; Pearcey, R.G.

    1996-01-01

    The level of intra-tumoral heterogeneity of cellular radiosensitivity within primary cultures of three carcinomas of the cervix has been established. All three cultures contained clones that varied by as much as 3-fold in their clinically relevant radiosensitivity (SF 2 ). The level of intra-tumoral heterogeneity observed in these cervical tumour cultures was sufficient to be a major confounding factor to the use of pre-treatment assessments of radiosensitivity to predict for clinical radioresponsiveness. Mathematical modeling of the relative elimination of the tumour clones during fractionated radiotherapy indicates that, in two of the three biopsy samples, the use of pre-treatment derived SF 2 values from the heterogeneous tumour sample would significantly overestimate radioresponsiveness. We conclude that assays of cellular radiosensitivity that identify the radiosensitivity of the most radioresistant clones and measure their relative abundance could potentially increase the effectiveness of SF 2 values as a predictive marker of radioresponsiveness

  8. NADH oxidation on screen-printed electrode modified with a new phenothiazine diazonium salt

    Energy Technology Data Exchange (ETDEWEB)

    Doumeche, Bastien; Blum, Loic J. [GEMBAS, Genie Enzymatique, Membranes Biomimetiques et Assemblages Supramoleculaires, ICBMS UMR 5246, Universite Lyon 1, 43 bd du 11 Novembre 1918, 69622 Villeurbanne (France)

    2010-10-15

    NADH oxidation catalysts are extremely important in the field of electrochemical biosensors and enzymatic biofuel cells. Based on the growing diazonium chemistry, we synthesized the diazonium salt of the well-known NADH mediator toluidine blue O. The electrochemical reduction of the diazonium moiety by cyclic voltammetry onto a screen-printed electrode leads to an electrocatalyst suitable for the oxidation of NADH. The amperometric response for its oxidation shows a maximal current of 1.2 {mu}A ([NADH] = 100 {mu}M). Based on electrochemical measurements, the surface coverage is found to be 3.78 x 10{sup -11} mol cm{sup -2} and the heterogeneous standard rate constant k{sub h} is 1.21 {+-} 0.16 s{sup -1}. The sensitive layer for the oxidation of NADH is improved by electrografting the diazonium salt with a potentiostatic method. Both the surface coverage and the heterogeneous standard rate constant k{sub h} are improved and found to be 6.08 {+-} 0.63 x 10{sup -11} mol cm{sup -2} and {proportional_to} 5.02 s{sup -} {sup 1}, respectively. The amperometric response is also improved by an 8 fold factor, reaching 9.87 {mu}A ([NADH] = 120 {mu}M). These remarkably high values for screen-printed electrodes are comparable to glassy carbon electrodes making this method suitable for low-cost bioelectronical devices. (author)

  9. Differentiating the grades of thymic epithelial tumor malignancy using textural features of intratumoral heterogeneity via (18)F-FDG PET/CT.

    Science.gov (United States)

    Lee, Hyo Sang; Oh, Jungsu S; Park, Young Soo; Jang, Se Jin; Choi, Ik Soo; Ryu, Jin-Sook

    2016-05-01

    We aimed to explore the ability of textural heterogeneity indices determined by (18)F-FDG PET/CT for grading the malignancy of thymic epithelial tumors (TETs). We retrospectively enrolled 47 patients with pathologically proven TETs who underwent pre-treatment (18)F-FDG PET/CT. TETs were classified by pathological results into three subgroups with increasing grades of malignancy: low-risk thymoma (LRT; WHO classification A, AB and B1), high-risk thymoma (B2 and B3), and thymic carcinoma (TC). Using (18)F-FDG PET/CT, we obtained conventional imaging indices including SUVmax and 20 intratumoral heterogeneity indices: i.e., four local-scale indices derived from the neighborhood gray-tone difference matrix (NGTDM), eight regional-scale indices from the gray-level run-length matrix (GLRLM), and eight regional-scale indices from the gray-level size zone matrix (GLSZM). Area under the receiver operating characteristic curve (AUC) was used to demonstrate the abilities of the imaging indices for differentiating subgroups. Multivariable logistic regression analysis was performed to show the independent significance of the textural indices. Combined criteria using optimal cutoff values of the SUVmax and a best-performing heterogeneity index were applied to investigate whether they improved differentiation between the subgroups. Most of the GLRLM and GLSZM indices and the SUVmax showed good or fair discrimination (AUC >0.7) with best performance for some of the GLRLM indices and the SUVmax, whereas the NGTDM indices showed relatively inferior performance. The discriminative ability of some of the GLSZM indices was independent from that of SUVmax in multivariate analysis. Combined use of the SUVmax and a GLSZM index improved positive predictive values for LRT and TC. Texture analysis of (18)F-FDG PET/CT scans has the potential to differentiate between TET tumor grades; regional-scale indices from GLRLM and GLSZM perform better than local-scale indices from the NGTDM. The SUVmax

  10. Evaluation of an educational program on deciphering heterogeneity for medical coverage decisions.

    Science.gov (United States)

    Warholak, Terri L; Hilgaertner, Jianhua W; Dean, Joni L; Taylor, Ann M; Hines, Lisa E; Hurwitz, Jason; Brown, Mary; Malone, Daniel C

    2014-06-01

    necessity for individual appeals, prior authorization, tier placement for pharmaceutical therapies, and other types of medical management. At the 6-month follow-up, 21 of the 49 willing participants (43% response rate) completed the evaluation; participants continued to have a good understanding of heterogeneity, but there was no significant difference in attitudes towards heterogeneity between pre- and 6-month follow-up. A live educational program was effective in improving participants' immediate knowledge and attitudes regarding the topic of heterogeneity. Participating managed care pharmacists and medical managers indicated that heterogeneity of treatment effect was likely to be used in determining prior authorizations and determining necessity.

  11. Heterogeneous Single-Atom Catalyst for Visible-Light-Driven High-Turnover CO2 Reduction: The Role of Electron Transfer.

    Science.gov (United States)

    Gao, Chao; Chen, Shuangming; Wang, Ying; Wang, Jiawen; Zheng, Xusheng; Zhu, Junfa; Song, Li; Zhang, Wenkai; Xiong, Yujie

    2018-03-01

    Visible-light-driven conversion of CO 2 into chemical fuels is an intriguing approach to address the energy and environmental challenges. In principle, light harvesting and catalytic reactions can be both optimized by combining the merits of homogeneous and heterogeneous photocatalysts; however, the efficiency of charge transfer between light absorbers and catalytic sites is often too low to limit the overall photocatalytic performance. In this communication, it is reported that the single-atom Co sites coordinated on the partially oxidized graphene nanosheets can serve as a highly active and durable heterogeneous catalyst for CO 2 conversion, wherein the graphene bridges homogeneous light absorbers with single-atom catalytic sites for the efficient transfer of photoexcited electrons. As a result, the turnover number for CO production reaches a high value of 678 with an unprecedented turnover frequency of 3.77 min -1 , superior to those obtained with the state-of-the-art heterogeneous photocatalysts. This work provides fresh insights into the design of catalytic sites toward photocatalytic CO 2 conversion from the angle of single-atom catalysis and highlights the role of charge kinetics in bridging the gap between heterogeneous and homogeneous photocatalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Transesterification of used vegetable oil catalyzed by barium oxide under simultaneous microwave and ultrasound irradiations

    International Nuclear Information System (INIS)

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar

    2014-01-01

    Graphical abstract: Transesterification reaction mediated by simultaneous microwave and ultrasound irradiations with barium oxide (BaO) heterogeneous catalyst. - Highlights: • Synergistic effect of simultaneous microwave/ultrasound irradiations was evaluated. • Yields were higher for the MW/US reactions compared to MW or US individually. • BaO catalyzed MW/US transesterification reaction is more environmental-friendly. • BaO catalyzed MW/US transesterification reaction provides better biodiesel yields. • Optimum power density must be identified for energy-efficient biodiesel production. - Abstract: This study presents a novel application of simultaneous microwave and ultrasound (MW/US) irradiations on transesterification of used vegetable oil catalyzed by barium oxide, heterogeneous catalyst. Experiments were conducted to study the optimum process conditions, synergistic effect of microwave and ultrasound irradiations and the effect of power density. From the process parametric optimization study, the following conditions were determined as optimum: 6:1 methanol to oil ratio, 0.75% barium oxide catalyst by wt.%, and 2 min of reaction time at a combined power output rate of 200 W (100/100 MW/US). The biodiesel yields were higher for the simultaneous MW/US mediated reactions (∼93.5%) when compared to MW (91%) and US (83.5%) irradiations individually. Additionally, the effect of power density and a discussion on the synergistic effect of the microwave and ultrasound mediated reactions were presented. A power density of 7.6 W/mL appears to be effective for MW, and MW/US irradiated reactions (94.4% and 94.7% biodiesel yields respectively), while a power density of 5.1 W/mL was appropriate for ultrasound irradiation (93.5%). This study concludes that the combined microwave and ultrasound irradiations result in a synergistic effect that reduces the heterogeneity of the transesterification reaction catalyzed by heterogeneous catalysts to enhance the biodiesel

  13. Effect of heterogeneous investments on the evolution of cooperation in spatial public goods game.

    Science.gov (United States)

    Huang, Keke; Wang, Tao; Cheng, Yuan; Zheng, Xiaoping

    2015-01-01

    Understanding the emergence of cooperation in spatial public goods game remains a grand challenge across disciplines. In most previous studies, it is assumed that the investments of all the cooperators are identical, and often equal to 1. However, it is worth mentioning that players are diverse and heterogeneous when choosing actions in the rapidly developing modern society and researchers have shown more interest to the heterogeneity of players recently. For modeling the heterogeneous players without loss of generality, it is assumed in this work that the investment of a cooperator is a random variable with uniform distribution, the mean value of which is equal to 1. The results of extensive numerical simulations convincingly indicate that heterogeneous investments can promote cooperation. Specifically, a large value of the variance of the random variable can decrease the two critical values for the result of behavioral evolution effectively. Moreover, the larger the variance is, the better the promotion effect will be. In addition, this article has discussed the impact of heterogeneous investments when the coevolution of both strategy and investment is taken into account. Comparing the promotion effect of coevolution of strategy and investment with that of strategy imitation only, we can conclude that the coevolution of strategy and investment decreases the asymptotic fraction of cooperators by weakening the heterogeneity of investments, which further demonstrates that heterogeneous investments can promote cooperation in spatial public goods game.

  14. Nitric-phosphoric acid oxidation of organic waste materials

    International Nuclear Information System (INIS)

    Pierce, R.A.; Smith, J.R.

    1995-01-01

    A wet chemical oxidation technology has been developed to address issues facing defense-related facilities, private industry, and small-volume generators such as university and medical laboratories. Initially tested to destroy and decontaminate a heterogenous mixture of radioactive-contaminated solid waste, the technology can also remediate other hazardous waste forms. The process, unique to Savannah River, offers a valuable alternative to incineration and other high-temperature or high-pressure oxidation processes. The process uses nitric acid in phosphoric acid; phosphoric acid allows nitric acid to be retained in solution well above its normal boiling point. The reaction converts organics to carbon dioxide and water, and generates NO x vapors which can be recycled using air and water. Oxidation is complete in one to three hours. In previous studies, many organic compounds were completely oxidized, within experimental error, at atmospheric pressure below 180 degrees C; more stable compounds were decomposed at 200 degrees C and 170 kPa. Recent studies have evaluated processing parameters and potential throughputs for three primary compounds: EDTA, polyethylene, and cellulose. The study of polyvinylchloride oxidation is incomplete at this time

  15. Proteomic indicators of oxidation and hydration state in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Jeffrey M. Dick

    2016-07-01

    Full Text Available New integrative approaches are needed to harness the potential of rapidly growing datasets of protein expression and microbial community composition in colorectal cancer. Chemical and thermodynamic models offer theoretical tools to describe populations of biomacromolecules and their relative potential for formation in different microenvironmental conditions. The average oxidation state of carbon (ZC can be calculated as an elemental ratio from the chemical formulas of proteins, and water demand per residue ( ${\\overline{n}}_{{\\mathrm{H}}_{2}\\mathrm{O}}$ n ¯ H 2 O is computed by writing the overall formation reactions of proteins from basis species. Using results reported in proteomic studies of clinical samples, many datasets exhibit higher mean ZC or ${\\overline{n}}_{{\\mathrm{H}}_{2}\\mathrm{O}}$ n ¯ H 2 O of proteins in carcinoma or adenoma compared to normal tissue. In contrast, average protein compositions in bacterial genomes often have lower ZC for bacteria enriched in fecal samples from cancer patients compared to healthy donors. In thermodynamic calculations, the potential for formation of the cancer-related proteins is energetically favored by changes in the chemical activity of H2O and fugacity of O2 that reflect the compositional differences. The compositional analysis suggests that a systematic change in chemical composition is an essential feature of cancer proteomes, and the thermodynamic descriptions show that the observed proteomic transformations in host tissue could be promoted by relatively high microenvironmental oxidation and hydration states.

  16. Effect of material property heterogeneity on biomechanical modeling of prostate under deformation

    International Nuclear Information System (INIS)

    Samavati, Navid; McGrath, Deirdre M; Ménard, Cynthia; Jewett, Michael A S; Van der Kwast, Theo; Brock, Kristy K

    2015-01-01

    Biomechanical model based deformable image registration has been widely used to account for prostate deformation in various medical imaging procedures. Biomechanical material properties are important components of a biomechanical model. In this study, the effect of incorporating tumor-specific material properties in the prostate biomechanical model was investigated to provide insight into the potential impact of material heterogeneity on the prostate deformation calculations. First, a simple spherical prostate and tumor model was used to analytically describe the deformations and demonstrate the fundamental effect of changes in the tumor volume and stiffness in the modeled deformation. Next, using a clinical prostate model, a parametric approach was used to describe the variations in the heterogeneous prostate model by changing tumor volume, stiffness, and location, to show the differences in the modeled deformation between heterogeneous and homogeneous prostate models. Finally, five clinical prostatectomy examples were used in separately performed homogeneous and heterogeneous biomechanical model based registrations to describe the deformations between 3D reconstructed histopathology images and ex vivo magnetic resonance imaging, and examine the potential clinical impact of modeling biomechanical heterogeneity of the prostate. The analytical formulation showed that increasing the tumor volume and stiffness could significantly increase the impact of the heterogeneous prostate model in the calculated displacement differences compared to the homogeneous model. The parametric approach using a single prostate model indicated up to 4.8 mm of displacement difference at the tumor boundary compared to a homogeneous model. Such differences in the deformation of the prostate could be potentially clinically significant given the voxel size of the ex vivo MR images (0.3  ×  0.3  ×  0.3 mm). However, no significant changes in the registration accuracy were

  17. In situ studies of oxide nucleation, growth, and transformation using slow electrons

    Science.gov (United States)

    Flege, Jan Ingo; Grinter, David C.

    2018-05-01

    Surface processes such as metal oxidation and metal oxide growth invariably influence the physical and chemical properties of materials and determine their interaction with their surroundings and hence their functionality in many technical applications. On a fundamental level, these processes are found to be governed by a complex interplay of thermodynamic variables and kinetic constraints, resulting in a rich variety of material-specific phenomena. In this review article, we discuss recent results and insights on transition metal oxidation and rare-earth oxide growth acquired by low-energy electron microscopy and related techniques. We demonstrate that the use of in situ surface sensitive methods is a prerequisite to gaining a deeper understanding of the underlying concepts and the mechanisms responsible for the emerging oxide structure and morphology. Furthermore, examples will be provided on how structural and chemical modifications of the oxide films and nanostructures can be followed in real-time and analyzed in terms of local reactivity and cooperative effects relevant for heterogeneous model catalysis.

  18. Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof.

    Science.gov (United States)

    Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy

    2016-05-15

    Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%-26% volumetric moisture content) and temperature (21°C-36°C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat

  19. Glioblastoma Multiforme: A Look Inside Its Heterogeneous Nature

    International Nuclear Information System (INIS)

    Inda, Maria-del-Mar; Bonavia, Rudy; Seoane, Joan

    2014-01-01

    Heterogeneity is a hallmark of tumors and has a crucial role in the outcome of the malignancy, because it not only confounds diagnosis, but also challenges the design of effective therapies. There are two types of heterogeneity: inter-tumor and intra-tumor heterogeneity. While inter-tumor heterogeneity has been studied widely, intra-tumor heterogeneity has been neglected even though numerous studies support this aspect of tumor pathobiology. The main reason has been the technical difficulties, but with new advances in single-cell technology, intra-tumor heterogeneity is becoming a key area in the study of cancer. Several models try to explain the origin and maintenance of intra-tumor heterogeneity, however, one prominent model compares cancer with a tree where the ubiquitous mutations compose the trunk and mutations present in subpopulations of cells are represented by the branches. In this review we will focus on the intra-tumor heterogeneity of glioblastoma multiforme (GBM), the most common brain tumor in adults that is characterized by a marked heterogeneity at the cellular and molecular levels. Better understanding of this heterogeneity will be essential to design effective therapies against this devastating disease to avoid tumor escape

  20. Glioblastoma Multiforme: A Look Inside Its Heterogeneous Nature

    Energy Technology Data Exchange (ETDEWEB)

    Inda, Maria-del-Mar, E-mail: mminda@vhio.net; Bonavia, Rudy [Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, 119-129 Passeig Vall d’Hebron, Barcelona 08035 (Spain); Seoane, Joan [Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, 119-129 Passeig Vall d’Hebron, Barcelona 08035 (Spain); Catalan Institution of Research and Advanced Studies (ICREA), Barcelona 08035 (Spain)

    2014-01-27

    Heterogeneity is a hallmark of tumors and has a crucial role in the outcome of the malignancy, because it not only confounds diagnosis, but also challenges the design of effective therapies. There are two types of heterogeneity: inter-tumor and intra-tumor heterogeneity. While inter-tumor heterogeneity has been studied widely, intra-tumor heterogeneity has been neglected even though numerous studies support this aspect of tumor pathobiology. The main reason has been the technical difficulties, but with new advances in single-cell technology, intra-tumor heterogeneity is becoming a key area in the study of cancer. Several models try to explain the origin and maintenance of intra-tumor heterogeneity, however, one prominent model compares cancer with a tree where the ubiquitous mutations compose the trunk and mutations present in subpopulations of cells are represented by the branches. In this review we will focus on the intra-tumor heterogeneity of glioblastoma multiforme (GBM), the most common brain tumor in adults that is characterized by a marked heterogeneity at the cellular and molecular levels. Better understanding of this heterogeneity will be essential to design effective therapies against this devastating disease to avoid tumor escape.

  1. Glioblastoma Multiforme: A Look Inside Its Heterogeneous Nature

    Directory of Open Access Journals (Sweden)

    Maria-del-Mar Inda

    2014-01-01

    Full Text Available Heterogeneity is a hallmark of tumors and has a crucial role in the outcome of the malignancy, because it not only confounds diagnosis, but also challenges the design of effective therapies. There are two types of heterogeneity: inter-tumor and intra-tumor heterogeneity. While inter-tumor heterogeneity has been studied widely, intra-tumor heterogeneity has been neglected even though numerous studies support this aspect of tumor pathobiology. The main reason has been the technical difficulties, but with new advances in single-cell technology, intra-tumor heterogeneity is becoming a key area in the study of cancer. Several models try to explain the origin and maintenance of intra-tumor heterogeneity, however, one prominent model compares cancer with a tree where the ubiquitous mutations compose the trunk and mutations present in subpopulations of cells are represented by the branches. In this review we will focus on the intra-tumor heterogeneity of glioblastoma multiforme (GBM, the most common brain tumor in adults that is characterized by a marked heterogeneity at the cellular and molecular levels. Better understanding of this heterogeneity will be essential to design effective therapies against this devastating disease to avoid tumor escape.

  2. Glioblastoma multiforme: a look inside its heterogeneous nature.

    Science.gov (United States)

    Inda, Maria-Del-Mar; Bonavia, Rudy; Seoane, Joan

    2014-01-27

    Heterogeneity is a hallmark of tumors and has a crucial role in the outcome of the malignancy, because it not only confounds diagnosis, but also challenges the design of effective therapies. There are two types of heterogeneity: inter-tumor and intra-tumor heterogeneity. While inter-tumor heterogeneity has been studied widely, intra-tumor heterogeneity has been neglected even though numerous studies support this aspect of tumor pathobiology. The main reason has been the technical difficulties, but with new advances in single-cell technology, intra-tumor heterogeneity is becoming a key area in the study of cancer. Several models try to explain the origin and maintenance of intra-tumor heterogeneity, however, one prominent model compares cancer with a tree where the ubiquitous mutations compose the trunk and mutations present in subpopulations of cells are represented by the branches. In this review we will focus on the intra-tumor heterogeneity of glioblastoma multiforme (GBM), the most common brain tumor in adults that is characterized by a marked heterogeneity at the cellular and molecular levels. Better understanding of this heterogeneity will be essential to design effective therapies against this devastating disease to avoid tumor escape.

  3. Zeolite encapsulated Fe-porphyrin for catalytic oxidation with iodobenzene diacetate (PhI(OAc){sub 2})

    Energy Technology Data Exchange (ETDEWEB)

    Karimipour, G.; Rezaei, M.; Ashouri, D. [Yasouj University, Department of Chemistry, 75918-74831 Yasouj (Iran, Islamic Republic of)

    2013-07-01

    meso-Tetrakis(3-pyridyl)porphyrin ato iron(III) chloride encapsulated on NaY Zeolite [Fe(T-3-PyP)-NaY] was synthesized as a heterogeneous ship-in-a-bottle type catalyst and characterized by Fourier transform infrared, atomic absorption, diffused reflectance UV-Vis, X-ray diffraction and scanning electron microscopy analysis. The catalytic activity of Fe(T-3-PyP-NaY was examined for the epoxidation of cyclohexene by PhI(OAc){sub 2} in CH{sub 3}CN/H{sub 2}O (5:1) and compared to that of Fe(T-3-PyP) as a homogeneous catalyst. We found that the heterogeneous catalyst Fe(T-3-PyP-NaY was stable and reusable for several times, and provided a mild condition and exhibited high activity and selectivity in the oxidation of alkenes to epoxides (16-94%). As representative examples for the use of Fe(T-3-PyP-NaY/ PhI(OAc){sub 2} in organic oxidations, oxidation of 4-nitro benzylalcohol to 4-nitrobenzaldehyde (97%), oxidative dehydrogenation of diethyl 4-(2,6-dichlorophenyl)-2,6-dimethyl-1,4-dihydro-3,5-pyridinedicarboxylate to the corresponding pyridine (100%), diphenylacetic acid to benzophenone (64%) was achieved. (Author)

  4. Metal ion binding to iron oxides

    Science.gov (United States)

    Ponthieu, M.; Juillot, F.; Hiemstra, T.; van Riemsdijk, W. H.; Benedetti, M. F.

    2006-06-01

    The biogeochemistry of trace elements (TE) is largely dependent upon their interaction with heterogeneous ligands including metal oxides and hydrous oxides of iron. The modeling of TE interactions with iron oxides has been pursued using a variety of chemical models. The objective of this work is to show that it is possible to model the adsorption of protons and TE on a crystallized oxide (i.e., goethite) and on an amorphous oxide (HFO) in an identical way. Here, we use the CD-MUSIC approach in combination with valuable and reliable surface spectroscopy information about the nature of surface complexes of the TE. The other objective of this work is to obtain generic parameters to describe the binding of the following elements (Cd, Co, Cu, Ni, Pb, and Zn) onto both iron oxides for the CD-MUSIC approach. The results show that a consistent description of proton and metal ion binding is possible for goethite and HFO with the same set of model parameters. In general a good prediction of almost all the collected experimental data sets corresponding to metal ion binding to HFO is obtained. Moreover, dominant surface species are in agreement with the recently published surface complexes derived from X-ray absorption spectroscopy (XAS) data. Until more detailed information on the structure of the two iron oxides is available, the present option seems a reasonable approximation and can be used to describe complex geochemical systems. To improve our understanding and modeling of multi-component systems we need more data obtained at much lower metal ion to iron oxide ratios in order to be able to account eventually for sites that are not always characterized in spectroscopic studies.

  5. The implications of heterogeneity for repository performance assessments

    International Nuclear Information System (INIS)

    Jackson, C.P.; Porter, J.D.; Morris, S.T.; Herbert, A.W.

    1991-01-01

    We outline the current views of the Nirex Disposal Safety Assessment Team on heterogeneity, we describe the pragmatic approach to modelling the consequences of heterogeneity that is being currently used, we present work that is being undertaken in the Nirex Safety Assessment Research Programme to develop improved models and we discuss the implications of heterogeneity for site investigation. We point out the need to develop simple models for use in probabilistic analyses. Heterogeneity leads to dispersion, which is currently modelled using a simple diffusion-like model. We discuss the differences between structured heterogeneity, such as fracture zones, and random heterogeneity. We consider that the geostatistical approach to modelling random heterogeneity is probably that most suitable for the needs of Nirex. More measurements are needed in order to characterize heterogeneous media than to characterize homogeneous media. 18 refs., 4 figs

  6. Engineering Microbial Metabolite Dynamics and Heterogeneity.

    Science.gov (United States)

    Schmitz, Alexander C; Hartline, Christopher J; Zhang, Fuzhong

    2017-10-01

    As yields for biological chemical production in microorganisms approach their theoretical maximum, metabolic engineering requires new tools, and approaches for improvements beyond what traditional strategies can achieve. Engineering metabolite dynamics and metabolite heterogeneity is necessary to achieve further improvements in product titers, productivities, and yields. Metabolite dynamics, the ensemble change in metabolite concentration over time, arise from the need for microbes to adapt their metabolism in response to the extracellular environment and are important for controlling growth and productivity in industrial fermentations. Metabolite heterogeneity, the cell-to-cell variation in a metabolite concentration in an isoclonal population, has a significant impact on ensemble productivity. Recent advances in single cell analysis enable a more complete understanding of the processes driving metabolite heterogeneity and reveal metabolic engineering targets. The authors present an overview of the mechanistic origins of metabolite dynamics and heterogeneity, why they are important, their potential effects in chemical production processes, and tools and strategies for engineering metabolite dynamics and heterogeneity. The authors emphasize that the ability to control metabolite dynamics and heterogeneity will bring new avenues of engineering to increase productivity of microbial strains. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Design Technology for Heterogeneous Embedded Systems

    CERN Document Server

    O'Connor, Ian; Piguet, Christian

    2012-01-01

    Designing technology to address the problem of heterogeneous embedded systems, while remaining compatible with standard “More Moore” flows, i.e. capable of handling simultaneously both silicon complexity and system complexity, represents one of the most important challenges facing the semiconductor industry today. While the micro-electronics industry has built its own specific design methods to focus mainly on the management of complexity through the establishment of abstraction levels, the emergence of device heterogeneity requires new approaches enabling the satisfactory design of physically heterogeneous embedded systems for the widespread deployment of such systems. This book, compiled largely from a set of contributions from participants of past editions of the Winter School on Heterogeneous Embedded Systems Design Technology (FETCH), proposes a broad and holistic overview of design techniques used to tackle the various facets of heterogeneity in terms of technology and opportunities at the physical ...

  8. Heterogeneous ozonation reactions of PAHs and fatty acid methyl esters in biodiesel particulate matter

    Science.gov (United States)

    Kasumba, John; Holmén, Britt A.

    2018-02-01

    Numerous studies have examined the oxidation of PAHs found in diesel particulate matter (PM) by ozone, but no studies have investigated the ozone oxidation of biodiesel exhaust PM. Fatty acid methyl esters (FAMEs), found in high abundance in biodiesel PM, can potentially alter the kinetics of the reactions between atmospheric oxidants such as ozone and particle-phase PAHs. In this study, the heterogeneous reactivity of 16 EPA PAHs upon 24 h exposure to 0.4 ppm ozone in the presence (PAH + FAMES) and absence (PAH-only) of FAMEs was investigated at room temperature and 50% relative humidity. The ozone-reactivity of the PAHs detected in 20% biodiesel (B20) exhaust PM was also investigated. In the absence of FAMEs, the pseudo-first order ozone reaction rate constant, kO 3 , of PAHs varied from 0.086 ± 0.030 hr-1 (chrysene) to 0.184 ± 0.078 hr-1 (anthracene). In the presence of FAMEs, kO 3 of the PAHs varied between 0.013 ± 0.012 hr-1 (benzo[b]fluoranthene) and 0.168 ± 0.028 hr-1 (benzo[a]pyrene), and with the exception of benzo[a]pyrene, the kO 3 of PAHs were 1.2-8 times lower compared to those obtained during the PAH-only ozone exposure. Only one PAH, benzo[a]pyrene (BaP), did not show a significant change in kO3 with addition of FAMEs. Phenanthrene, fluoranthene, and pyrene, the only PAHs detected in the B20 PM, had kO 3 values about 4 times lower in B20 PM than those obtained when spiked PAHs-only were exposed to ozone. The kO 3 values of phenanthrene and fluoranthene in the B20 PM were 2 times higher than rates obtained when the PAH mix was exposed to ozone in the presence of the FAMEs. In contrast, pyrene's kO 3 in the B20 PM was about 2 times lower than that obtained for the PAH + FAMEs exposure. Observed differences in PAH behavior demonstrate individual PAH heterogeneous reactivity with gas-phase ozone is sensitive to PAH (vapor pressure, solubility/sorption to matrix components, chemical reactivity) as well as substrate properties (PAH and O3 diffusivity

  9. Oxidation kinetics of Si and SiGe by dry rapid thermal oxidation, in-situ steam generation oxidation and dry furnace oxidation

    Science.gov (United States)

    Rozé, Fabien; Gourhant, Olivier; Blanquet, Elisabeth; Bertin, François; Juhel, Marc; Abbate, Francesco; Pribat, Clément; Duru, Romain

    2017-06-01

    The fabrication of ultrathin compressively strained SiGe-On-Insulator layers by the condensation technique is likely a key milestone towards low-power and high performances FD-SOI logic devices. However, the SiGe condensation technique still requires challenges to be solved for an optimized use in an industrial environment. SiGe oxidation kinetics, upon which the condensation technique is founded, has still not reached a consensus in spite of various studies which gave insights into the matter. This paper aims to bridge the gaps between these studies by covering various oxidation processes relevant to today's technological needs with a new and quantitative analysis methodology. We thus address oxidation kinetics of SiGe with three Ge concentrations (0%, 10%, and 30%) by means of dry rapid thermal oxidation, in-situ steam generation oxidation, and dry furnace oxidation. Oxide thicknesses in the 50 Å to 150 Å range grown with oxidation temperatures between 850 and 1100 °C were targeted. The present work shows first that for all investigated processes, oxidation follows a parabolic regime even for thin oxides, which indicates a diffusion-limited oxidation regime. We also observe that, for all investigated processes, the SiGe oxidation rate is systematically higher than that of Si. The amplitude of the variation of oxidation kinetics of SiGe with respect to Si is found to be strongly dependent on the process type. Second, a new quantitative analysis methodology of oxidation kinetics is introduced. This methodology allows us to highlight the dependence of oxidation kinetics on the Ge concentration at the oxidation interface, which is modulated by the pile-up mechanism. Our results show that the oxidation rate increases with the Ge concentration at the oxidation interface.

  10. Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean

    DEFF Research Database (Denmark)

    Treude, T.; Boetius, A.; Knittel, K.

    2003-01-01

    oxidation was extremely low (2.1 mmol m(-2) d(-1)) and was probably due to aerobic oxidation of methane. SR was fueled largely by methane at flow-impacted sites, but exceeded AOM in some cases, most likely due to sediment heterogeneity. At the Acharax field, SR was decoupled from methane oxidation...... and showed low activity. Aggregates of the AOM consortium were abundant at the fluid-impacted sites (between 5.1 x 10(12) and 7.9 x 10(12) aggregates m(-2)) but showed low numbers at the Acharax field (0.4 x 10(12) aggregates m(-2)). A transportreaction model was applied to estimate AOM at Beggiatoa fields...

  11. Next-Generation Catalysis for Renewables: Combining Enzymatic with Inorganic Heterogeneous Catalysis for Bulk Chemical Production

    DEFF Research Database (Denmark)

    Vennestrøm, Peter Nicolai Ravnborg; Christensen, C.H.; Pedersen, S.

    2010-01-01

    chemical platform under different conditions than those conventionally employed. Indeed, new process and catalyst concepts need to be established. Both enzymatic catalysis (biocatalysis) and heterogeneous inorganic catalysis are likely to play a major role and, potentially, be combined. One type...... of combination involves one-pot cascade catalysis with active sites from bio- and inorganic catalysts. In this article the emphasis is placed specifically on oxidase systems involving the coproduction of hydrogen peroxide, which can be used to create new in situ collaborative oxidation reactions for bulk...

  12. Determination of the smoke-plume heights with scanning lidar using alternative functions for establishing the atmospheric heterogeneity locations

    Science.gov (United States)

    Vladimir A. Kovalev; Alexander Petkov; Cyle Wold; Wei Min Hao

    2010-01-01

    Data-processing techniques for the scanning lidar data are considered that allow determining the upper and lower boundaries of the smoke plume or smoke layering in the vicinity of wildfires. The task is fulfilled by utilizing the Atmospheric Heterogeneity Height Indicator (AHHI). The AHHI is a histogram, which shows a number of heterogeneity events defined by scanning...

  13. A Structural Finite Element Model for Lamellar Unit of Aortic Media Indicates Heterogeneous Stress Field After Collagen Recruitment

    Science.gov (United States)

    Thunes, James R.; Pal, Siladitya; Fortunato, Ronald N.; Phillippi, Julie A.; Gleason, Thomas G.; Vorp, David A.; Maiti, Spandan

    2016-01-01

    Incorporation of collagen structural information into the study of biomechanical behavior of ascending thoracic aortic (ATA) wall tissue should provide better insight into the pathophysiology of ATA. Structurally motivated constitutive models that include fiber dispersion and recruitment can successfully capture overall mechanical response of the arterial wall tissue. However, these models cannot examine local microarchitectural features of the collagen network, such as the effect of fiber disruptions and interaction between fibrous and non-fibrous components, which may influence emergent biomechanical properties of the tissue. Motivated by this need, we developed a finite element based three-dimensional structural model of the lamellar units of the ATA media that directly incorporates the collagen fiber microarchitecture. The fiber architecture was computer generated utilizing network features, namely fiber orientation distribution, intersection density and areal concentration, obtained from image analysis of multiphoton microscopy images taken from human aneurysmal ascending thoracic aortic media specimens with bicuspid aortic valve (BAV) phenotype. Our model reproduces the typical J-shaped constitutive response of the aortic wall tissue. We found that the stress state in the non-fibrous matrix was homogeneous until the collagen fibers were recruited, but became highly heterogeneous after that event. The degree of heterogeneity was dependent upon local network architecture with high stresses observed near disrupted fibers. The magnitude of non-fibrous matrix stress at higher stretch levels was negatively correlated with local fiber density. The localized stress concentrations, elucidated by this model, may be a factor in the degenerative changes in aneurysmal ATA tissue. PMID:27113538

  14. Organizational heterogeneity of vertebrate genomes.

    Science.gov (United States)

    Frenkel, Svetlana; Kirzhner, Valery; Korol, Abraham

    2012-01-01

    Genomes of higher eukaryotes are mosaics of segments with various structural, functional, and evolutionary properties. The availability of whole-genome sequences allows the investigation of their structure as "texts" using different statistical and computational methods. One such method, referred to as Compositional Spectra (CS) analysis, is based on scoring the occurrences of fixed-length oligonucleotides (k-mers) in the target DNA sequence. CS analysis allows generating species- or region-specific characteristics of the genome, regardless of their length and the presence of coding DNA. In this study, we consider the heterogeneity of vertebrate genomes as a joint effect of regional variation in sequence organization superimposed on the differences in nucleotide composition. We estimated compositional and organizational heterogeneity of genome and chromosome sequences separately and found that both heterogeneity types vary widely among genomes as well as among chromosomes in all investigated taxonomic groups. The high correspondence of heterogeneity scores obtained on three genome fractions, coding, repetitive, and the remaining part of the noncoding DNA (the genome dark matter--GDM) allows the assumption that CS-heterogeneity may have functional relevance to genome regulation. Of special interest for such interpretation is the fact that natural GDM sequences display the highest deviation from the corresponding reshuffled sequences.

  15. Organizational heterogeneity of vertebrate genomes.

    Directory of Open Access Journals (Sweden)

    Svetlana Frenkel

    Full Text Available Genomes of higher eukaryotes are mosaics of segments with various structural, functional, and evolutionary properties. The availability of whole-genome sequences allows the investigation of their structure as "texts" using different statistical and computational methods. One such method, referred to as Compositional Spectra (CS analysis, is based on scoring the occurrences of fixed-length oligonucleotides (k-mers in the target DNA sequence. CS analysis allows generating species- or region-specific characteristics of the genome, regardless of their length and the presence of coding DNA. In this study, we consider the heterogeneity of vertebrate genomes as a joint effect of regional variation in sequence organization superimposed on the differences in nucleotide composition. We estimated compositional and organizational heterogeneity of genome and chromosome sequences separately and found that both heterogeneity types vary widely among genomes as well as among chromosomes in all investigated taxonomic groups. The high correspondence of heterogeneity scores obtained on three genome fractions, coding, repetitive, and the remaining part of the noncoding DNA (the genome dark matter--GDM allows the assumption that CS-heterogeneity may have functional relevance to genome regulation. Of special interest for such interpretation is the fact that natural GDM sequences display the highest deviation from the corresponding reshuffled sequences.

  16. Variance heterogeneity in Saccharomyces cerevisiae expression data: trans-regulation and epistasis.

    Science.gov (United States)

    Nelson, Ronald M; Pettersson, Mats E; Li, Xidan; Carlborg, Örjan

    2013-01-01

    Here, we describe the results from the first variance heterogeneity Genome Wide Association Study (VGWAS) on yeast expression data. Using this forward genetics approach, we show that the genetic regulation of gene-expression in the budding yeast, Saccharomyces cerevisiae, includes mechanisms that can lead to variance heterogeneity in the expression between genotypes. Additionally, we performed a mean effect association study (GWAS). Comparing the mean and variance heterogeneity analyses, we find that the mean expression level is under genetic regulation from a larger absolute number of loci but that a higher proportion of the variance controlling loci were trans-regulated. Both mean and variance regulating loci cluster in regulatory hotspots that affect a large number of phenotypes; a single variance-controlling locus, mapping close to DIA2, was found to be involved in more than 10% of the significant associations. It has been suggested in the literature that variance-heterogeneity between the genotypes might be due to genetic interactions. We therefore screened the multi-locus genotype-phenotype maps for several traits where multiple associations were found, for indications of epistasis. Several examples of two and three locus genetic interactions were found to involve variance-controlling loci, with reports from the literature corroborating the functional connections between the loci. By using a new analytical approach to re-analyze a powerful existing dataset, we are thus able to both provide novel insights to the genetic mechanisms involved in the regulation of gene-expression in budding yeast and experimentally validate epistasis as an important mechanism underlying genetic variance-heterogeneity between genotypes.

  17. Selective catalytic oxidation of hydrocarbons as a challenge to the chemical engineer

    Energy Technology Data Exchange (ETDEWEB)

    Emig, G [Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Lehrstuhl fuer Technische Chemie 1

    1978-08-01

    Selective catalytic oxidation is beginning to play a more and more significant role in the process of converting the most important chemical raw materials, crude oil and natural gas, into intermediate and end products. In many cases, this technique makes it possible to replace old processes consisting of many steps by more economical single-step reactions. The typical example of oxidation or ammoxidation of propylene demonstrates the problems which must be solved by the chemical engineer during the development of a heterogeneous catalytic oxidation process. The particular importance of a systematic development of a catalyst is emphasized. General aspects relating to the design of new catalytic processes, or the improvement of existing ones are also discussed.

  18. Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof

    Energy Technology Data Exchange (ETDEWEB)

    Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy, E-mail: jlundholm@smu.ca

    2016-05-15

    Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%–26% volumetric moisture content) and temperature (21 °C–36 °C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat

  19. Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof

    International Nuclear Information System (INIS)

    Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy

    2016-01-01

    Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%–26% volumetric moisture content) and temperature (21 °C–36 °C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat

  20. Fiber Bundle Model Under Heterogeneous Loading

    Science.gov (United States)

    Roy, Subhadeep; Goswami, Sanchari

    2018-03-01

    The present work deals with the behavior of fiber bundle model under heterogeneous loading condition. The model is explored both in the mean-field limit as well as with local stress concentration. In the mean field limit, the failure abruptness decreases with increasing order k of heterogeneous loading. In this limit, a brittle to quasi-brittle transition is observed at a particular strength of disorder which changes with k. On the other hand, the model is hardly affected by such heterogeneity in the limit where local stress concentration plays a crucial role. The continuous limit of the heterogeneous loading is also studied and discussed in this paper. Some of the important results related to fiber bundle model are reviewed and their responses to our new scheme of heterogeneous loading are studied in details. Our findings are universal with respect to the nature of the threshold distribution adopted to assign strength to an individual fiber.

  1. Tumor Heterogeneity and Drug Resistance

    International Nuclear Information System (INIS)

    Kucerova, L.; Skolekova, S.; Kozovska, Z.

    2015-01-01

    New generation of sequencing methodologies revealed unexpected complexity and genomic alterations linked with the tumor subtypes. This diversity exists across the tumor types, histologic tumor subtypes and subsets of the tumor cells within the same tumor. This phenomenon is termed tumor heterogeneity. Regardless of its origin and mechanisms of development it has a major impact in the clinical setting. Genetic, phenotypic and expression pattern diversity of tumors plays critical role in the selection of suitable treatment and also in the prognosis prediction. Intratumoral heterogeneity plays a key role in the intrinsic and acquired chemoresistance to cytotoxic and targeted therapies. In this review we focus on the mechanisms of intratumoral and inter tumoral heterogeneity and their relationship to the drug resistance. Understanding of the mechanisms and spatiotemporal dynamics of tumor heterogeneity development before and during the therapy is important for the ability to design individual treatment protocols suitable in the given molecular context. (author)

  2. Age heterogeneity of soil organic matter

    International Nuclear Information System (INIS)

    Rethemeyer, J.; Grootes, P.M.; Bruhn, F.; Andersen, N.; Nadeau, M.J.; Kramer, C.; Gleixner, G.

    2004-01-01

    Accelerator mass spectrometry (AMS) radiocarbon measurements were used to investigate the heterogeneity of organic matter in soils of agricultural long-term trial sites in Germany and Great Britain. The strong age heterogeneity of the soil organic matter (SOM) is reflected by highly variable 14 C values of different organic components, ranging from modern (>100 pMC) to 7% modern carbon (pMC). At the field experiment in Halle (Germany), located in a heavily industrialized area, an increase of 14 C content with increasing depth was observed even though the input of modern plant debris should be highest in the topsoil. This is attributed to a significant contribution of old carbon (of up to 50% in the topsoil) to SOM. As a test to exclude the old carbon contamination, more specific SOM fractions were extracted. However, even a phospholipid fraction representing viable microbial biomass that is supposed to be short-lived in SOM, shows a strong influence of old, refractory carbon, when radiocarbon dated. In contrast, 14 C data of other field trials distant from industrial areas indicate that there inputs of old carbon to the soil are lower or even absent. Such locations are more favorable to study SOM stabilization and to quantify turnover of organic carbon in soils

  3. Titanium oxide modification with oxides of mixed cobalt valence for photo catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Alanis O, R.; Jimenez B, J., E-mail: jaime.jimenez@inin.gob.m [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    In the present work, heterogenous photo catalysis, a technique often used for organic compound degradation toxic in water, was used. The photo catalyst most often used in this technique is TiO{sub 2}, which due to its physical and chemical properties, can degrade a great number of organic compounds. In addition, in recent years it has been verified that the doping of semiconductors with metals or metallic oxides increases the photo catalytic activity of these semiconductors, which is why it was proposed for doping by the impregnating method using commercial TiO{sub 2} synthesized by the Degussa company (TiO{sub 2} Degussa P25) with and oxide of mixed cobalt valence (Co{sub 3}O{sub 4}) synthesized using the sol-gel method. The synthesized photo catalyst TiO{sub 2}/Co{sub 3}O{sub 4} was characterized by the techniques of X-ray diffraction, scanning electronic microscopy, Raman spectroscopy and finally, photo catalytic tests by means of the degradation of methylene blue. (Author)

  4. Executive Functioning Heterogeneity in Pediatric ADHD.

    Science.gov (United States)

    Kofler, Michael J; Irwin, Lauren N; Soto, Elia F; Groves, Nicole B; Harmon, Sherelle L; Sarver, Dustin E

    2018-04-28

    Neurocognitive heterogeneity is increasingly recognized as a valid phenomenon in ADHD, with most estimates suggesting that executive dysfunction is present in only about 33%-50% of these children. However, recent critiques question the veracity of these estimates because our understanding of executive functioning in ADHD is based, in large part, on data from single tasks developed to detect gross neurological impairment rather than the specific executive processes hypothesized to underlie the ADHD phenotype. The current study is the first to comprehensively assess heterogeneity in all three primary executive functions in ADHD using a criterion battery that includes multiple tests per construct (working memory, inhibitory control, set shifting). Children ages 8-13 (M = 10.37, SD = 1.39) with and without ADHD (N = 136; 64 girls; 62% Caucasian/Non-Hispanic) completed a counterbalanced series of executive function tests. Accounting for task unreliability, results indicated significantly improved sensitivity and specificity relative to prior estimates, with 89% of children with ADHD demonstrating objectively-defined impairment on at least one executive function (62% impaired working memory, 27% impaired inhibitory control, 38% impaired set shifting; 54% impaired on one executive function, 35% impaired on two or all three executive functions). Children with working memory deficits showed higher parent- and teacher-reported ADHD inattentive and hyperactive/impulsive symptoms (BF 10  = 5.23 × 10 4 ), and were slightly younger (BF 10  = 11.35) than children without working memory deficits. Children with vs. without set shifting or inhibitory control deficits did not differ on ADHD symptoms, age, gender, IQ, SES, or medication status. Taken together, these findings confirm that ADHD is characterized by neurocognitive heterogeneity, while suggesting that contemporary, cognitively-informed criteria may provide improved precision for identifying a

  5. Nivalenol induces oxidative stress and increases deoxynivalenol pro-oxidant effect in intestinal epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Del Regno, Marisanta; Adesso, Simona; Popolo, Ada [Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132–84084 Fisciano, Salerno (Italy); Quaroni, Andrea [Department of Biomedical Sciences, Cornell University, Veterinary Research Tower, Cornell University, Ithaca, NY 14853–6401 (United States); Autore, Giuseppina [Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132–84084 Fisciano, Salerno (Italy); Severino, Lorella [Department of Pathology and Animal Health, Division of Toxicology, School of Veterinary Medicine, University of Naples “Federico II”, Via Delpino 1, 80137 Naples (Italy); Marzocco, Stefania, E-mail: smarzocco@unisa.it [Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132–84084 Fisciano, Salerno (Italy)

    2015-06-01

    Mycotoxins are secondary fungal metabolites often found as contaminants in almost all agricultural commodities worldwide, and the consumption of food or feed contaminated by mycotoxins represents a major risk for human and animal health. Reactive oxygen species are normal products of cellular metabolism. However, disproportionate generation of reactive oxygen species poses a serious problem to bodily homeostasis and causes oxidative tissue damage. In this study we analyzed the effect of two trichothecenes mycotoxins: nivalenol and deoxynivalenol, alone and in combination, on oxidative stress in the non-tumorigenic intestinal epithelial cell line IEC-6. Our results indicate the pro-oxidant nivalenol effect in IEC-6, the stronger pro-oxidant effect of nivalenol when compared to deoxynivalenol and, interestingly, that nivalenol increases deoxynivalenol pro-oxidative effects. Mechanistic studies indicate that the observed effects were mediated by NADPH oxidase, calcium homeostasis alteration, NF-kB and Nrf2 pathways activation and by iNOS and nitrotyrosine formation. The toxicological interaction by nivalenol and deoxynivalenol reported in this study in IEC-6, points out the importance of the toxic effect of these mycotoxins, mostly in combination, further highlighting the risk assessment process of these toxins that are of growing concern. - Highlights: • Nivalenol induces oxidative stress in intestinal epithelial cells (IECs). • Nivalenol increases deoxynivalenol pro-oxidant effects in IECs. • Nivalenol and deoxynivalenol trigger antioxidant response IECs. • These results indicate the importance of mycotoxins co-contamination.

  6. The nature and nurture of cell heterogeneity: accounting for macrophage gene-environment interactions with single-cell RNA-Seq.

    Science.gov (United States)

    Wills, Quin F; Mellado-Gomez, Esther; Nolan, Rory; Warner, Damien; Sharma, Eshita; Broxholme, John; Wright, Benjamin; Lockstone, Helen; James, William; Lynch, Mark; Gonzales, Michael; West, Jay; Leyrat, Anne; Padilla-Parra, Sergi; Filippi, Sarah; Holmes, Chris; Moore, Michael D; Bowden, Rory

    2017-01-07

    Single-cell RNA-Seq can be a valuable and unbiased tool to dissect cellular heterogeneity, despite the transcriptome's limitations in describing higher functional phenotypes and protein events. Perhaps the most important shortfall with transcriptomic 'snapshots' of cell populations is that they risk being descriptive, only cataloging heterogeneity at one point in time, and without microenvironmental context. Studying the genetic ('nature') and environmental ('nurture') modifiers of heterogeneity, and how cell population dynamics unfold over time in response to these modifiers is key when studying highly plastic cells such as macrophages. We introduce the programmable Polaris™ microfluidic lab-on-chip for single-cell sequencing, which performs live-cell imaging while controlling for the culture microenvironment of each cell. Using gene-edited macrophages we demonstrate how previously unappreciated knockout effects of SAMHD1, such as an altered oxidative stress response, have a large paracrine signaling component. Furthermore, we demonstrate single-cell pathway enrichments for cell cycle arrest and APOBEC3G degradation, both associated with the oxidative stress response and altered proteostasis. Interestingly, SAMHD1 and APOBEC3G are both HIV-1 inhibitors ('restriction factors'), with no known co-regulation. As single-cell methods continue to mature, so will the ability to move beyond simple 'snapshots' of cell populations towards studying the determinants of population dynamics. By combining single-cell culture, live-cell imaging, and single-cell sequencing, we have demonstrated the ability to study cell phenotypes and microenvironmental influences. It's these microenvironmental components - ignored by standard single-cell workflows - that likely determine how macrophages, for example, react to inflammation and form treatment resistant HIV reservoirs.

  7. The heterogeneous HLA genetic makeup of the Swiss population.

    Science.gov (United States)

    Buhler, Stéphane; Nunes, José Manuel; Nicoloso, Grazia; Tiercy, Jean-Marie; Sanchez-Mazas, Alicia

    2012-01-01

    This study aims at investigating the HLA molecular variation across Switzerland in order to determine possible regional differences, which would be highly relevant to several purposes: optimizing donor recruitment strategies in hematopoietic stem cell transplantation (HSCT), providing reliable reference data in HLA and disease association studies, and understanding the population genetic background(s) of this culturally heterogeneous country. HLA molecular data of more than 20,000 HSCT donors from 9-13 recruitment centers of the whole country were analyzed. Allele and haplotype frequencies were estimated by using new computer tools adapted to the heterogeneity and ambiguity of the data. Non-parametric and resampling statistical tests were performed to assess Hardy-Weinberg equilibrium, selective neutrality and linkage disequilibrium among different loci, both in each recruitment center and in the whole national registry. Genetic variation was explored through genetic distance and hierarchical analysis of variance taking into account both geographic and linguistic subdivisions in Switzerland. The results indicate a heterogeneous genetic makeup of the Swiss population: first, allele frequencies estimated on the whole national registry strongly deviate from Hardy-Weinberg equilibrium, by contrast with the results obtained for individual centers; second, a pronounced differentiation is observed for Ticino, Graubünden, and, to a lesser extent, Wallis, suggesting that the Alps represent(ed) a barrier to gene flow; finally, although cultural (linguistic) boundaries do not represent a main genetic differentiation factor in Switzerland, the genetic relatedness between population from south-eastern Switzerland and Italy agrees with historical and linguistic data. Overall, this study justifies the maintenance of a decentralized donor recruitment structure in Switzerland allowing increasing the genetic diversity of the national--and hence global--donor registry. It also

  8. Ultrasound-assisted oxidative desulfurization process of liquid fuel by phosphotungstic acid encapsulated in a interpenetrating amine-functionalized Zn(II)-based MOF as catalyst.

    Science.gov (United States)

    Afzalinia, Ahmad; Mirzaie, Abbas; Nikseresht, Ahmad; Musabeygi, Tahereh

    2017-01-01

    In this work, ultrasound-assisted oxidative desulfurization (UAOD) of liquid fuels performed with a novel heterogeneous highly dispersed Keggin-type phosphotungstic acid (H 3 PW 12 O 40 , PTA) catalyst that encapsulated into an amino-functionalized MOF (TMU-17-NH 2 ). The prepared composite exhibits high catalytic activity and reusability in oxidative desulfurization of model fuel. Ultrasound-assisted oxidative desulfurization (UAOD) is a new way to performed oxidation reaction of sulfur-contain compounds rapidly, economically, environment-friendly and safely, under mild conditions. Ultrasound waves can be apply as an efficient tool to decrease the reaction time and improves oxidative desulfurization system performance. PTA@TMU-17-NH 2 could be completely performed desulfurization of the model oil by 20mg of catalyst, O/S molar ratio of 1:1 in presence of MeCN as extraction solvent. The obtained results indicated that the conversions of DBT to DBTO 2 achieve 98% after 15min in ambient temperature. In this work, we prepared TMU-17-NH 2 and PTA/TMU-17-NH 2 composite by ultrasound irradiation for first time and employed in UAOD process. Prepared catalyst exhibit an excellent reusability without PTA leaching and loss of activity. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Automated Image Analysis of HER2 Fluorescence In Situ Hybridization to Refine Definitions of Genetic Heterogeneity in Breast Cancer Tissue.

    Science.gov (United States)

    Radziuviene, Gedmante; Rasmusson, Allan; Augulis, Renaldas; Lesciute-Krilaviciene, Daiva; Laurinaviciene, Aida; Clim, Eduard; Laurinavicius, Arvydas

    2017-01-01

    Human epidermal growth factor receptor 2 gene- (HER2-) targeted therapy for breast cancer relies primarily on HER2 overexpression established by immunohistochemistry (IHC) with borderline cases being further tested for amplification by fluorescence in situ hybridization (FISH). Manual interpretation of HER2 FISH is based on a limited number of cells and rather complex definitions of equivocal, polysomic, and genetically heterogeneous (GH) cases. Image analysis (IA) can extract high-capacity data and potentially improve HER2 testing in borderline cases. We investigated statistically derived indicators of HER2 heterogeneity in HER2 FISH data obtained by automated IA of 50 IHC borderline (2+) cases of invasive ductal breast carcinoma. Overall, IA significantly underestimated the conventional HER2, CEP17 counts, and HER2/CEP17 ratio; however, it collected more amplified cells in some cases below the lower limit of GH definition by manual procedure. Indicators for amplification, polysomy, and bimodality were extracted by factor analysis and allowed clustering of the tumors into amplified, nonamplified, and equivocal/polysomy categories. The bimodality indicator provided independent cell diversity characteristics for all clusters. Tumors classified as bimodal only partially coincided with the conventional GH heterogeneity category. We conclude that automated high-capacity nonselective tumor cell assay can generate evidence-based HER2 intratumor heterogeneity indicators to refine GH definitions.

  10. Near-field microwave microscopy of high-κ oxides grown on graphene with an organic seeding layer

    Energy Technology Data Exchange (ETDEWEB)

    Tselev, Alexander, E-mail: tseleva@ornl.gov; Kalinin, Sergei V. [Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, Tennessee 37831 (United States); Sangwan, Vinod K.; Jariwala, Deep; Lauhon, Lincoln J. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Marks, Tobin J.; Hersam, Mark C. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States)

    2013-12-09

    Near-field scanning microwave microscopy (SMM) is used for non-destructive nanoscale characterization of Al{sub 2}O{sub 3} and HfO{sub 2} films grown on epitaxial graphene on SiC by atomic layer deposition using a self-assembled perylene-3,4,9,10-tetracarboxylic dianhydride seeding layer. SMM allows imaging of buried inhomogeneities in the dielectric layer with a spatial resolution close to 100 nm. The results indicate that, while topographic features on the substrate surface cannot be eliminated as possible sites of defect nucleation, the use of a vertically heterogeneous Al{sub 2}O{sub 3}/HfO{sub 2} stack suppresses formation of large outgrowth defects in the oxide film, ultimately improving lateral uniformity of the dielectric film.

  11. Oxidative degradation of lignin by photochemical and chemical radical generating systems

    International Nuclear Information System (INIS)

    Gold, M.H.; Kutsuki, H.; Morgan, M.A.

    1983-01-01

    Oxidation of specifically radiolabeled 14 C-lignins by UV/H 2 O 2 , Fenton's reagent, photosensitizing riboflavin, UV- and γ-irradiation was examined. In the presence of UV/H 2 O 2 , a hydroxyl radical (radicalOH) generating system, 14 C-methoxy, 2-[ 14 C-sidechain] and 14 C-ring labeled lignin were rapidly and extensively degraded as measured by gel filtration of the reaction products on Sephadex LH-20. This suggested that exposure to radicalOH leads to rapid, nonspecific lignin degradation. Rapid degradation of 14 C-methoxy, 2-[ 14 C-sidechain] and 14 C-ring labeled lignin also occurred in the presence of the radicalOH generating system, Fenton's reagent, confirming the primary role of radicalOH in these reactions. Photosensitizing riboflavin, also capable of effecting transformation of organic compounds via Type I hydrogen radical abstractions, caused extensive oxidative degradation of 14 C-methoxy labeled lignin and significant degradation of 2-[ 14 C-sidechain] and 14 C-ring labeled lignin. In addition, UV- and γ-irradiation caused slower but extensive degradation of the polymers, probably via radical type mechanisms. All of these results indicate that radicalOH as well as organic radical generating systems are effective agents for the purpose of degrading this heterogeneous, optically inactive and random biopolymer. (author)

  12. Biodiesel forming reactions using heterogeneous catalysis

    Science.gov (United States)

    Liu, Yijun

    Biodiesel synthesis from biomass provides a means for utilizing effectively renewable resources, a way to convert waste vegetable oils and animal fats to a useful product, a way to recycle carbon dioxide for a combustion fuel, and production of a fuel that is biodegradable, non-toxic, and has a lower emission profile than petroleum-diesel. Free fatty acid (FFA) esterification and triglyceride (TG) transesterification with low molecular weight alcohols constitute the synthetic routes to prepare biodiesel from lipid feedstocks. This project was aimed at developing a better understanding of important fundamental issues involved in heterogeneous catalyzed biodiesel forming reactions using mainly model compounds, representing part of on-going efforts to build up a rational base for assay, design, and performance optimization of solid acids/bases in biodiesel synthesis. As FFA esterification proceeds, water is continuously formed as a byproduct and affects reaction rates in a negative manner. Using sulfuric acid (as a catalyst) and acetic acid (as a model compound for FFA), the impact of increasing concentrations of water on acid catalysis was investigated. The order of the water effect on reaction rate was determined to be -0.83. Sulfuric acid lost up to 90% activity as the amount of water present increased. The nature of the negative effect of water on esterification was found to go beyond the scope of reverse hydrolysis and was associated with the diminished acid strength of sulfuric acid as a result of the preferential solvation by water molecules of its catalytic protons. The results indicate that as esterification progresses and byproduct water is produced, deactivation of a Bronsted acid catalyst like H2SO4 occurs. Using a solid composite acid (SAC-13) as an example of heterogeneous catalysts and sulfuric acid as a homogeneous reference, similar reaction inhibition by water was demonstrated for homogeneous and heterogeneous catalysis. This similarity together with

  13. Kinetics of Carbon Monoxide Electro-Oxidation in Solid-Oxide Fuel Cells from Ni-YSZ Patterned-Anode Measurements

    KAUST Repository

    Hanna, J.; Lee, W. Y.; Ghoniem, A. F.

    2013-01-01

    A mathematical model is developed around the framework of a reduced mechanism describing electrochemical oxidation of carbon monoxide on Ni-YSZ patterned anodes. The electro-oxidation mechanism involves three reactions, one describing adsorption/ desorption of COonNi, and two single-electron charge-transfer steps inwhich the surface adsorbate CO(Ni) participates directly. These steps are coupled with surface transport in a reaction-diffusion model for which analytic equilibrium and steady-state solutions are derived. As much as possible, we make use of existing, independent, published information about heterogeneous chemistry, surface transport, and other model parameters. The only unknowns in our model are taken to be the kinetic rate constants of the electrochemical reactions, which we evaluate by fitting the model predictions to previously published patterned-anode experiments [B. Habibzadeh, Ph.D. Thesis, University of Maryland, College Park, MD, USA (2007)]. The results show that diffusion of CO on the Ni surface to the three-phase boundary is the rate-controlling process for CO electro-oxidation. Moreover, from a reaction standpoint, the charge-transfer process is dominated by a slow step involving CO(Ni). These findings collectively demonstrate the critical dependence of the electro-oxidation process to the direct participation of CO. © 2013 The Electrochemical Society. All rights reserved.

  14. Kinetics of Carbon Monoxide Electro-Oxidation in Solid-Oxide Fuel Cells from Ni-YSZ Patterned-Anode Measurements

    KAUST Repository

    Hanna, J.

    2013-04-17

    A mathematical model is developed around the framework of a reduced mechanism describing electrochemical oxidation of carbon monoxide on Ni-YSZ patterned anodes. The electro-oxidation mechanism involves three reactions, one describing adsorption/ desorption of COonNi, and two single-electron charge-transfer steps inwhich the surface adsorbate CO(Ni) participates directly. These steps are coupled with surface transport in a reaction-diffusion model for which analytic equilibrium and steady-state solutions are derived. As much as possible, we make use of existing, independent, published information about heterogeneous chemistry, surface transport, and other model parameters. The only unknowns in our model are taken to be the kinetic rate constants of the electrochemical reactions, which we evaluate by fitting the model predictions to previously published patterned-anode experiments [B. Habibzadeh, Ph.D. Thesis, University of Maryland, College Park, MD, USA (2007)]. The results show that diffusion of CO on the Ni surface to the three-phase boundary is the rate-controlling process for CO electro-oxidation. Moreover, from a reaction standpoint, the charge-transfer process is dominated by a slow step involving CO(Ni). These findings collectively demonstrate the critical dependence of the electro-oxidation process to the direct participation of CO. © 2013 The Electrochemical Society. All rights reserved.

  15. Development and comparison of the effectivity of oxidation processes initiated by radicals, created by heterogeneous catalysis and by high pressure process for the reduction of persistent organic sewage pollutants. Final report; Entwicklung und vergleichende Bewertung der Leistungsfaehigkeit von radikalisch initiierten oxidativen Verfahren auf Traegerkatalysator- und Hochdruckbasis zum Abbau persistenter organischer Wasserschadstoffe. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Bach, G.; Maeurer, H.

    2002-07-01

    Persistente and highly toxic sewages with an extremely high content of substances are still a problem in the waste water management. Wet oxidation offers a possibility to reduce the pollutant content in the water. Comparative experiments of the efficiency of oxidation initiated by radicals were carried out, using as heterogeneous catalysis on strap catalyst base as cavitation. By means of the wet oxidation on strap catalyst base with H{sub 2}O{sub 2} as oxidation reagent it was possible, to decontaminate effectively as single pollutants in model sewages as complex substance mixtures in real sewages. The tested catalytic systems worked especially effectively for high pollutant concentrations. At lower concentrations of sewage pollutants the amount of H{sub 2}O{sub 2} must be increased in regard to the actual CSB. In real sewages the pollutant decrease was, related on the TOC, in the cut, at 50%, a raise of the average concentration of the oxidation agent didn't produce any further decrease of the pollutant concentration. Aromatic hydrocarbons could be reduced more effectively than aliphatic ones. The conception for a technical plant was developed including cost estimate. The reduction of pollutants by cavitation was fundamentally lower than by using the heterogeneous catalysis way. Without addition of an oxidation agent (i.e. H{sub 2}O{sub 2}) only a TOC decrease of approx. 15% was registered in real sewages. The pollutant reduction increased at higher pollutant concentration. A complete elimination of all pollutants could not be obtained in none of the examined cases neither at model nor at real sewages. Especially the long reaction times (6 to 24 h) of the cavitation process in comparison with those, necessary for the catalytic reaction (2 to 6 h) are hindering a technical realization of the cavitation process, which seems to be doubtful for this and other reasons. So the use of cavitation in industrial scale sewage cleaning plants under the parameter

  16. The Effect of Photon Source on Heterogeneous Photocatalytic Oxidation of Ethanol by a Silica-Titania Composite

    Science.gov (United States)

    Coutts, Janelle L.; Levine, Lanfang H.; Richards, Jeffrey T.; Mazyck, David W.

    2011-01-01

    The objective of this study was to distinguish the effect of photon flux (i.e., photons per unit time reaching a surface) from that of photon energy (i.e., wavelength) of a photon source on the silica-titania composite (STC)-catalyzed degradation of ethanol in the gas phase. Experiments were conducted in a bench-scale annular reactor packed with STC pellets and irradiated with either a UV-A fluorescent black light blue lamp ((gamma)max=365 nm) at its maximum light intensity or a UV-C germicidal lamp ((gamma)max=254 nm) at three levels of light intensity. The STC-catalyzed oxidation of ethanol was found to follow zero-order kinetics with respect to CO2 production, regardless of the photon source. Increased photon flux led to increased EtOH removal, mineralization, and oxidation rate accompanied by lower intermediate concentration in the effluent. The oxidation rate was higher in the reactor irradiated by UV-C than by UV-A (38.4 vs. 31.9 nM/s) at the same photon flux, with similar trends for mineralization (53.9 vs. 43.4%) and reaction quantum efficiency (i.e., photonic efficiency, 63.3 vs. 50.1 nmol CO2 (mu)mol/photons). UV-C irradiation also led to decreased intermediate concentration in the effluent . compared to UV-A irradiation. These results demonstrated that STC-catalyzed oxidation is enhanced by both increased photon flux and photon energy.

  17. Imaging metabolic heterogeneity in cancer.

    Science.gov (United States)

    Sengupta, Debanti; Pratx, Guillem

    2016-01-06

    As our knowledge of cancer metabolism has increased, it has become apparent that cancer metabolic processes are extremely heterogeneous. The reasons behind this heterogeneity include genetic diversity, the existence of multiple and redundant metabolic pathways, altered microenvironmental conditions, and so on. As a result, methods in the clinic and beyond have been developed in order to image and study tumor metabolism in the in vivo and in vitro regimes. Both regimes provide unique advantages and challenges, and may be used to provide a picture of tumor metabolic heterogeneity that is spatially and temporally comprehensive. Taken together, these methods may hold the key to appropriate cancer diagnoses and treatments in the future.

  18. Oxidation Catalysts for Elemental Mercury in Flue Gases—A Review

    Directory of Open Access Journals (Sweden)

    Liliana Lazar

    2012-02-01

    Full Text Available The removal of mercury from flue gases in scrubbers is greatly facilitated if the mercury is present as water-soluble oxidized species. Therefore, increased mercury oxidation upstream of scrubber devices will improve overall mercury removal. For this purpose heterogeneous catalysts have recently attracted a great deal of interest. Selective catalytic reduction (SCR, noble metal and transition metal oxide based catalysts have been investigated at both the laboratory and plant scale with this objective. A review article published in 2006 covers the progress in the elemental mercury (Hgel catalytic oxidation area. This paper brings the review in this area up to date. To this end, 110 papers including several reports and patents are reviewed. For each type of catalyst the possible mechanisms as well as the effect of flue gas components on activity and stability are examined. Advantages and main problems are analyzed. The possible future directions of catalyst development in this environmental research area are outlined.

  19. Heterocatalytic Fenton oxidation process for the treatment of tannery effluent: kinetic and thermodynamic studies.

    Science.gov (United States)

    Karthikeyan, S; Ezhil Priya, M; Boopathy, R; Velan, M; Mandal, A B; Sekaran, G

    2012-06-01

    BACKGROUND, AIM, SCOPE: Treatment of wastewater has become significant with the declining water resources. The presence of recalcitrant organics is the major issue in meeting the pollution control board norms in India. The theme of the present investigation was on partial or complete removal of pollutants or their transformation into less toxic and more biodegradable products by heterogeneous Fenton oxidation process using mesoporous activated carbon (MAC) as the catalyst. Ferrous sulfate (FeSO(4)·7H(2)O), sulfuric acid (36 N, specific gravity 1.81, 98% purity), hydrogen peroxide (50% v/v) and all other chemicals used in this study were of analytical grade (Merck). Two reactors, each of height 50 cm and diameter 6 cm, were fabricated with PVC while one reactor was packed with MAC of mass 150 g and other without MAC served as control. The oxidation process was presented with kinetic and thermodynamic constants for the removal of COD, BOD, and TOC from the wastewater. The activation energy (Ea) for homogeneous and heterogeneous Fenton oxidation processes were 44.79 and 25.89 kJ/mol, respectively. The thermodynamic parameters ΔG, ΔH, and ΔS were calculated for the oxidation processes using Van't Hoff equation. Furthermore, the degradation of organics was confirmed through FTIR and UV-visible spectroscopy, and cyclic voltammetry. The heterocatalytic Fenton oxidation process efficiently increased the biodegradability index (BOD/COD) of the tannery effluent. The optimized conditions for the heterocatalytic Fenton oxidation of organics in tannery effluent were pH 3.5, reaction time-4 h, and H(2)O(2)/FeSO(4)·7H(2)O in the molar ratio of 2:1.

  20. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles.

    Science.gov (United States)

    Liu, Lichen; Corma, Avelino

    2018-05-23

    Metal species with different size (single atoms, nanoclusters, and nanoparticles) show different catalytic behavior for various heterogeneous catalytic reactions. It has been shown in the literature that many factors including the particle size, shape, chemical composition, metal-support interaction, and metal-reactant/solvent interaction can have significant influences on the catalytic properties of metal catalysts. The recent developments of well-controlled synthesis methodologies and advanced characterization tools allow one to correlate the relationships at the molecular level. In this Review, the electronic and geometric structures of single atoms, nanoclusters, and nanoparticles will be discussed. Furthermore, we will summarize the catalytic applications of single atoms, nanoclusters, and nanoparticles for different types of reactions, including CO oxidation, selective oxidation, selective hydrogenation, organic reactions, electrocatalytic, and photocatalytic reactions. We will compare the results obtained from different systems and try to give a picture on how different types of metal species work in different reactions and give perspectives on the future directions toward better understanding of the catalytic behavior of different metal entities (single atoms, nanoclusters, and nanoparticles) in a unifying manner.