WorldWideScience

Sample records for increases tyrosine phosphorylation

  1. Protein tyrosine phosphorylation in streptomycetes.

    Science.gov (United States)

    Waters, B; Vujaklija, D; Gold, M R; Davies, J

    1994-07-01

    Using phosphotyrosine-specific antibodies, we demonstrate that in several Streptomyces spp. a variety of proteins are phosphorylated on tyrosine residues. Tyrosine phosphorylation was found in a number of Streptomyces species including Streptomyces lividans, Streptomyces hygroscopicus and Streptomyces lavendulae. Each species exhibited a unique pattern of protein tyrosine phosphorylation. Moreover, the patterns of tyrosine phosphorylation varied during the growth phase and were also influenced by culture conditions. We suggest that metabolic shifts during the complex growth cycle of these filamentous bacteria, and possibly secondary metabolic pathways, may be controlled by the action of protein tyrosine kinases and phosphatases, as has been demonstrated in signal transduction pathways in eukaryotic organisms.

  2. Chloride Is Essential for Capacitation and for the Capacitation-associated Increase in Tyrosine Phosphorylation*

    Science.gov (United States)

    Wertheimer, Eva V.; Salicioni, Ana M.; Liu, Weimin; Trevino, Claudia L.; Chavez, Julio; Hernández-González, Enrique O.; Darszon, Alberto; Visconti, Pablo E.

    2008-01-01

    After epididymal maturation, sperm capacitation, which encompasses a complex series of molecular events, endows the sperm with the ability to fertilize an egg. This process can be mimicked in vitro in defined media, the composition of which is based on the electrolyte concentration of the oviductal fluid. It is well established that capacitation requires Na+, \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\mathrm{HCO}}_{3}^{-}\\end{equation*}\\end{document}, Ca2+, and a cholesterol acceptor; however, little is known about the function of Cl– during this important process. To determine whether Cl–, in addition to maintaining osmolarity, actively participates in signaling pathways that regulate capacitation, Cl– was replaced by either methanesulfonate or gluconate two nonpermeable anions. The absence of Cl– did not affect sperm viability, but capacitation-associated processes such as the increase in tyrosine phosphorylation, the increase in cAMP levels, hyperactivation, the zona pellucidae-induced acrosome reaction, and most importantly, fertilization were abolished or significantly reduced. Interestingly, the addition of cyclic AMP agonists to sperm incubated in Cl–-free medium rescued the increase in tyrosine phosphorylation and hyperactivation suggesting that Cl– acts upstream of the cAMP/protein kinase A signaling pathway. To investigate Cl– transport, sperm incubated in complete capacitation medium were exposed to a battery of anion transport inhibitors. Among them, bumetanide and furosemide, two blockers of Na+/K+/Cl– cotransporters (NKCC), inhibited all capacitation-associated events, suggesting that these transporters may mediate Cl– movements in sperm. Consistent with these results, Western blots

  3. Tyrosine Phosphorylation of NR2B Contributes to Chronic Migraines via Increased Expression of CGRP in Rats

    Science.gov (United States)

    Liang, Xiping; Wang, Sha; Qin, Guangcheng; Xie, Jingmei; Tan, Ge; Zhou, Jiying; McBride, Devin W.

    2017-01-01

    Tyrosine phosphorylation of NR2B (NR2B-pTyr), a subunit of the N-methyl-D-aspartate (NMDA) receptor, has been reported to develop central sensitization and persistent pain in the spine, but its effect in chronic migraines has not been examined. We hypothesized that tyrosine phosphorylation of NR2B contributes to chronic migraines (CM) through calcitonin gene-related peptide (CGRP) in rats. Ninety-four male Sprague-Dawley rats were subjected to seven inflammatory soup (IS) injections. In a subset of animals, the time course and location of NR2B tyrosine phosphorylation were detected by western blot and immunofluorescence double staining. Another set of animals were given either genistein, vehicle, or genistein and recombinant CGRP. The mechanical threshold was measured, the expressions of NR2B-pTyr, NR2B, and CGRP were quantified using western blot, and nitric oxide (NO) was measured with the nitric acid reductase method. NR2B-pTyr expression, in neurons, peaked at 24 hours after CM. Genistein improved the mechanical threshold and reduced migraine attacks 24 and 72 hours after CM. Tyrosine phosphorylation of NR2B decreased the mechanical threshold and increased migraine attacks via upregulated CGRP expression in the rat model of CM. Thus, tyrosine phosphorylation of NR2B may be a potential therapeutic target for treatment of CM.

  4. Tyrosine Phosphorylation of NR2B Contributes to Chronic Migraines via Increased Expression of CGRP in Rats

    Directory of Open Access Journals (Sweden)

    Xiping Liang

    2017-01-01

    Full Text Available Tyrosine phosphorylation of NR2B (NR2B-pTyr, a subunit of the N-methyl-D-aspartate (NMDA receptor, has been reported to develop central sensitization and persistent pain in the spine, but its effect in chronic migraines has not been examined. We hypothesized that tyrosine phosphorylation of NR2B contributes to chronic migraines (CM through calcitonin gene-related peptide (CGRP in rats. Ninety-four male Sprague-Dawley rats were subjected to seven inflammatory soup (IS injections. In a subset of animals, the time course and location of NR2B tyrosine phosphorylation were detected by western blot and immunofluorescence double staining. Another set of animals were given either genistein, vehicle, or genistein and recombinant CGRP. The mechanical threshold was measured, the expressions of NR2B-pTyr, NR2B, and CGRP were quantified using western blot, and nitric oxide (NO was measured with the nitric acid reductase method. NR2B-pTyr expression, in neurons, peaked at 24 hours after CM. Genistein improved the mechanical threshold and reduced migraine attacks 24 and 72 hours after CM. Tyrosine phosphorylation of NR2B decreased the mechanical threshold and increased migraine attacks via upregulated CGRP expression in the rat model of CM. Thus, tyrosine phosphorylation of NR2B may be a potential therapeutic target for treatment of CM.

  5. Tyrosine phosphorylation in human lymphomas

    NARCIS (Netherlands)

    Haralambieva, E; Jones, M.; Roncador, GM; Cerroni, L; Lamant, L; Ott, G; Rosenwald, A; Sherman, C; Thorner, P; Kusec, R; Wood, KM; Campo, E; Falini, B; Ramsay, A; Marafioti, T; Stein, H; Kluin, PM; Pulford, K; Mason, DY

    2002-01-01

    In a previous study, we showed that the high level of protein tyrosine phosphorylation present in lymphomas containing an anaplastic lymphoma kinase (ALK) can be demonstrated in routinely processed paraffin tissue sections using immunolabelling techniques. In the present study we investigated

  6. Tyrosine phosphorylation of the human guanylyl cyclase C receptor

    Indian Academy of Sciences (India)

    Rashna Bhandari; Roy Mathew; K Vijayachandra; Sandhya S Visweswariah

    2000-12-01

    Tyrosine phosphorylation events are key components of several cellular signal transduction pathways. This study describes a novel method for identification of substrates for tyrosine kinases. Co-expression of the tyrosine kinase EphB1 with the intracellular domain of guanylyl cyclase C (GCC) in Escherichia coli cells resulted in tyrosine phosphorylation of GCC, indicating that GCC is a potential substrate for tyrosine kinases. Indeed, GCC expressed in mammalian cells is tyrosine phosphorylated, suggesting that tyrosine phosphorylation may play a role in regulation of GCC signalling. This is the first demonstration of tyrosine phosphorylation of any member of the family of membrane-associated guanylyl cyclases.

  7. Yes-mediated phosphorylation of focal adhesion kinase at tyrosine 861 increases metastatic potential of prostate cancer cells.

    Science.gov (United States)

    Chatterji, Tanushree; Varkaris, Andreas S; Parikh, Nila U; Song, Jian H; Cheng, Chien-Jui; Schweppe, Rebecca E; Alexander, Stephanie; Davis, John W; Troncoso, Patricia; Friedl, Peter; Kuang, Jian; Lin, Sue-Hwa; Gallick, Gary E

    2015-04-30

    To study the role of FAK signaling complexes in promoting metastatic properties of prostate cancer (PCa) cells, we selected stable, highly migratory variants, termed PC3 Mig-3 and DU145 Mig-3, from two well-characterized PCa cell lines, PC3 and DU145. These variants were not only increased migration and invasion in vitro, but were also more metastatic to lymph nodes following intraprostatic injection into nude mice. Both PC3 Mig-3 and DU145 Mig-3 were specifically increased in phosphorylation of FAK Y861. We therefore examined potential alterations in Src family kinases responsible for FAK phosphorylation and determined only Yes expression was increased. Overexpression of Yes in PC3 parental cells and src-/-fyn-/-yes-/- fibroblasts selectively increased FAK Y861 phosphorylation, and increased migration. Knockdown of Yes in PC3 Mig-3 cells decreased migration and decreased lymph node metastasis following orthotopic implantation of into nude mice. In human specimens, Yes expression was increased in lymph node metastases relative to paired primary tumors from the same patient, and increased pFAK Y861 expression in lymph node metastases correlated with poor prognosis. These results demonstrate a unique role for Yes in phosphorylation of FAK and in promoting PCa metastasis. Therefore, phosphorylated FAK Y861 and increased Yes expression may be predictive markers for PCa metastasis.

  8. A redox-regulated tyrosine phosphorylation cascade in rat spermatozoa.

    Science.gov (United States)

    Lewis, B; Aitken, R J

    2001-01-01

    Rat spermatozoa from both the caput and cauda epididymidis were shown to generate superoxide anion (O2-.) both spontaneously and following stimulation with NAD(P)H. Caput spermatozoa gave a significantly greater O2- response to NADPH stimulation than caudal cells, whereas in both cell types the responses to exogenous NADPH and NADH were approximately equivalent. Analysis of H2O2 production revealed that this oxidant was generated only by caudal epididymal cells and only in these cells did the stimulation of reactive oxygen species (ROS) production with NADPH lead to an increase in tyrosine phosphorylation. Stimulation of ROS production with NADPH increased intracellular cyclic adenosine monophosphate (cAMP) levels in both caput and caudal epididymal cells, but only in caudal cells did cAMP stimulate tyrosine phosphorylation, in keeping with the NADPH results. On the basis of these findings we propose that tyrosine phosphorylation in rat spermatozoa is driven by ROS acting via 2 different but complementary mechanisms; O2-. stimulates tyrosine kinase activity indirectly through the elevation of intracellular cAMP while H2O2 acts directly on the kinase/phosphatase system, stimulating the former and inhibiting the latter. Zinc was examined as a potential regulator of this signal transduction cascade and was shown to suppress tyrosine phosphorylation in caput cells but to promote this activity in caudal spermatozoa, possibly through an inhibitory effect on tyrosine phosphatase activity. These results reveal the maturation of a redox-regulated, cAMP-mediated, signal transduction cascade during epididymal transit in the rat that is sensitive to zinc and plays a key role in the control of tyrosine phosphorylation events associated with capacitation.

  9. Tyrosine kinase BMX phosphorylates phosphotyrosine-primed motif mediating the activation of multiple receptor tyrosine kinases.

    Science.gov (United States)

    Chen, Sen; Jiang, Xinnong; Gewinner, Christina A; Asara, John M; Simon, Nicholas I; Cai, Changmeng; Cantley, Lewis C; Balk, Steven P

    2013-05-28

    The nonreceptor tyrosine kinase BMX (bone marrow tyrosine kinase gene on chromosome X) is abundant in various cell types and activated downstream of phosphatidylinositol-3 kinase (PI3K) and the kinase Src, but its substrates are unknown. Positional scanning peptide library screening revealed a marked preference for a priming phosphorylated tyrosine (pY) in the -1 position, indicating that BMX substrates may include multiple tyrosine kinases that are fully activated by pYpY sites in the kinase domain. BMX phosphorylated focal adhesion kinase (FAK) at Tyr⁵⁷⁷ subsequent to its Src-mediated phosphorylation at Tyr⁵⁷⁶. Loss of BMX by RNA interference or by genetic deletion in mouse embryonic fibroblasts (MEFs) markedly impaired FAK activity. Phosphorylation of the insulin receptor in the kinase domain at Tyr¹¹⁸⁹ and Tyr¹¹⁹⁰, as well as Tyr¹¹⁸⁵, and downstream phosphorylation of the kinase AKT at Thr³⁰⁸ were similarly impaired by BMX deficiency. However, insulin-induced phosphorylation of AKT at Ser⁴⁷³ was not impaired in Bmx knockout MEFs or liver tissue from Bmx knockout mice, which also showed increased insulin-stimulated glucose uptake, possibly because of decreased abundance of the phosphatase PHLPP (PH domain leucine-rich repeat protein phosphatase). Thus, by identifying the pYpY motif as a substrate for BMX, our findings suggest that BMX functions as a central regulator among multiple signaling pathways mediated by tyrosine kinases.

  10. Cytochrome C is tyrosine 97 phosphorylated by neuroprotective insulin treatment.

    Directory of Open Access Journals (Sweden)

    Thomas H Sanderson

    Full Text Available Recent advancements in isolation techniques for cytochrome c (Cytc have allowed us to discover post-translational modifications of this protein. We previously identified two distinct tyrosine phosphorylated residues on Cytc in mammalian liver and heart that alter its electron transfer kinetics and the ability to induce apoptosis. Here we investigated the phosphorylation status of Cytc in ischemic brain and sought to determine if insulin-induced neuroprotection and inhibition of Cytc release was associated with phosphorylation of Cytc. Using an animal model of global brain ischemia, we found a ∼50% decrease in neuronal death in the CA1 hippocampal region with post-ischemic insulin administration. This insulin-mediated increase in neuronal survival was associated with inhibition of Cytc release at 24 hours of reperfusion. To investigate possible changes in the phosphorylation state of Cytc we first isolated the protein from ischemic pig brain and brain that was treated with insulin. Ischemic brains demonstrated no detectable tyrosine phosphorylation. In contrast Cytc isolated from brains treated with insulin showed robust phosphorylation of Cytc, and the phosphorylation site was unambiguously identified as Tyr97 by immobilized metal affinity chromatography/nano-liquid chromatography/electrospray ionization mass spectrometry. We next confirmed these results in rats by in vivo application of insulin in the absence or presence of global brain ischemia and determined that Cytc Tyr97-phosphorylation is strongly induced under both conditions but cannot be detected in untreated controls. These data suggest a mechanism whereby Cytc is targeted for phosphorylation by insulin signaling, which may prevent its release from the mitochondria and the induction of apoptosis.

  11. Yes-mediated phosphorylation of focal adhesion kinase at tyrosine 861 increases metastatic potential of prostate cancer cells

    NARCIS (Netherlands)

    Chatterji, T.; Varkaris, A.S.; Parikh, N.U.; Song, J.H.; Cheng, C.J.; Schweppe, R.E.; Alexander, S.; Davis, J.W.; Troncoso, P.; Friedl, P.H.; Kuang, J.; Lin, S.H.; Gallick, G.E.

    2015-01-01

    To study the role of FAK signaling complexes in promoting metastatic properties of prostate cancer (PCa) cells, we selected stable, highly migratory variants, termed PC3 Mig-3 and DU145 Mig-3, from two well-characterized PCa cell lines, PC3 and DU145. These variants were not only increased migration

  12. Increased activity of the Vesicular Soluble N-Ethylmaleimide-sensitive Factor Attachment Protein Receptor TI-VAMP/VAMP7 by Tyrosine Phosphorylation in the Longin Domain*

    Science.gov (United States)

    Burgo, Andrea; Casano, Alessandra M.; Kuster, Aurelia; Arold, Stefan T.; Wang, Guan; Nola, Sébastien; Verraes, Agathe; Dingli, Florent; Loew, Damarys; Galli, Thierry

    2013-01-01

    Vesicular (v)- and target (t)-SNAREs play essential roles in intracellular membrane fusion through the formation of cytoplasmic α-helical bundles. Several v-SNAREs have a Longin N-terminal extension that, by promoting a closed conformation, plays an autoinhibitory function and decreases SNARE complex formation and membrane fusion efficiency. The molecular mechanism leading to Longin v-SNARE activation is largely unknown. Here we find that exocytosis mediated by the Longin v-SNARE TI-VAMP/VAMP7 is activated by tonic treatment with insulin and insulin-like growth factor-1 but not by depolarization and intracellular calcium rise. In search of a potential downstream mechanism, we found that TI-VAMP is phosphorylated in vitro by c-Src kinase on tyrosine 45 of the Longin domain. Accordingly, a mutation of tyrosine 45 into glutamate, but not phenylalanine, activates both t-SNARE binding and exocytosis. Activation of TI-VAMP-mediated exocytosis thus relies on tyrosine phosphorylation. PMID:23471971

  13. Increased activity of the vesicular soluble N-ethylmaleimide-sensitive factor attachment protein receptor TI-VAMP/VAMP7 by tyrosine phosphorylation in the Longin domain.

    Science.gov (United States)

    Burgo, Andrea; Casano, Alessandra M; Kuster, Aurelia; Arold, Stefan T; Wang, Guan; Nola, Sébastien; Verraes, Agathe; Dingli, Florent; Loew, Damarys; Galli, Thierry

    2013-04-26

    Vesicular (v)- and target (t)-SNAREs play essential roles in intracellular membrane fusion through the formation of cytoplasmic α-helical bundles. Several v-SNAREs have a Longin N-terminal extension that, by promoting a closed conformation, plays an autoinhibitory function and decreases SNARE complex formation and membrane fusion efficiency. The molecular mechanism leading to Longin v-SNARE activation is largely unknown. Here we find that exocytosis mediated by the Longin v-SNARE TI-VAMP/VAMP7 is activated by tonic treatment with insulin and insulin-like growth factor-1 but not by depolarization and intracellular calcium rise. In search of a potential downstream mechanism, we found that TI-VAMP is phosphorylated in vitro by c-Src kinase on tyrosine 45 of the Longin domain. Accordingly, a mutation of tyrosine 45 into glutamate, but not phenylalanine, activates both t-SNARE binding and exocytosis. Activation of TI-VAMP-mediated exocytosis thus relies on tyrosine phosphorylation.

  14. Tyrosine Phosphorylation Pattern in Sperm Proteins Isolated from Normospermic and Teratospermic Men

    Science.gov (United States)

    Jabbari, Sepideh; Sadeghi, Mohammad Reza; Akhondi, Mohammad Mahdi; Ebrahim Habibi, Azadeh; Amirjanati, Naser; Lakpour, Niknam; Asgharpour, Lima; Ardekani, Ali M.

    2009-01-01

    Introduction In mammalian system, spermatozoa are not able to fertilize the oocyte immediately upon ejaculation, thus they undergo a series of biochemical and molecular changes which is termed capacitation. During sperm capacitation, signal transduction pathways are activated which lead to protein tyrosine phosphorylation. Tyrosine phosphorylated proteins have an important role in sperm capacitation such as hyperactive motility, interaction with zona pellucida and acrosome reaction. Evaluation of tyrosine phosphorylation pattern is important for further understanding of molecular mechanisms of fertilization and the etiology of sperm dysfunctions and abnormalities such as teratospermia. The goal of this study is to characterize tyrosine phosphorylation pattern in sperm proteins isolated from normospermic and teratospermic infertile men attending Avicenna Infertility Clinic in Tehran. Materials and Methods Semen samples were collected and the spermatozoa were isolated using Percoll gradient centrifugation. Then the spermatozoa were incubated up to 6h at 37°C with 5% CO2 in 3% Bovine Serum Albumin-supplemented Ham's F-10 for capacitation to take place. The total proteins from spermatozoa were extracted and were subjected to SDS-PAGE before and after capacitation. To evaluate protein tyrosine phosphorylation pattern, western blotting with specific antibody against phosphorylated tyrosines was performed. Results The results upon western blotting showed: 1) at least six protein bands were detected before capacitation in the spermatozoa from normospermic samples. However, comparable levels of tyrosine phosphorylation was not observed in the spermatozoa from teratospermic samples. 2) The intensity of protein tyrosine phosphorylation appears to have been increased during capacitation in the normospermic relative to the teratospermic group. Conclusion For the first time, these findings demonstrate and suggest that the differences in the types of proteins and diminished

  15. Actin Tyrosine-53-Phosphorylation in Neuronal Maturation and Synaptic Plasticity.

    Science.gov (United States)

    Bertling, Enni; Englund, Jonas; Minkeviciene, Rimante; Koskinen, Mikko; Segerstråle, Mikael; Castrén, Eero; Taira, Tomi; Hotulainen, Pirta

    2016-05-11

    Rapid reorganization and stabilization of the actin cytoskeleton in dendritic spines enables cellular processes underlying learning, such as long-term potentiation (LTP). Dendritic spines are enriched in exceptionally short and dynamic actin filaments, but the studies so far have not revealed the molecular mechanisms underlying the high actin dynamics in dendritic spines. Here, we show that actin in dendritic spines is dynamically phosphorylated at tyrosine-53 (Y53) in rat hippocampal and cortical neurons. Our findings show that actin phosphorylation increases the turnover rate of actin filaments and promotes the short-term dynamics of dendritic spines. During neuronal maturation, actin phosphorylation peaks at the first weeks of morphogenesis, when dendritic spines form, and the amount of Y53-phosphorylated actin decreases when spines mature and stabilize. Induction of LTP transiently increases the amount of phosphorylated actin and LTP induction is deficient in neurons expressing mutant actin that mimics phosphorylation. Actin phosphorylation provides a molecular mechanism to maintain the high actin dynamics in dendritic spines during neuronal development and to induce fast reorganization of the actin cytoskeleton in synaptic plasticity. In turn, dephosphorylation of actin is required for the stabilization of actin filaments that is necessary for proper dendritic spine maturation and LTP maintenance. Dendritic spines are small protrusions from neuronal dendrites where the postsynaptic components of most excitatory synapses reside. Precise control of dendritic spine morphology and density is critical for normal brain function. Accordingly, aberrant spine morphology is linked to many neurological diseases. The actin cytoskeleton is a structural element underlying the proper morphology of dendritic spines. Therefore, defects in the regulation of the actin cytoskeleton in neurons have been implicated in neurological diseases. Here, we revealed a novel mechanism for

  16. Haemophilus ducreyi LspA proteins are tyrosine phosphorylated by macrophage-encoded protein tyrosine kinases.

    Science.gov (United States)

    Deng, Kaiping; Mock, Jason R; Greenberg, Steven; van Oers, Nicolai S C; Hansen, Eric J

    2008-10-01

    The LspA proteins (LspA1 and LspA2) of Haemophilus ducreyi are necessary for this pathogen to inhibit the phagocytic activity of macrophage cell lines, an event that can be correlated with a reduction in the level of active Src family protein tyrosine kinases (PTKs) in these eukaryotic cells. During studies investigating this inhibitory mechanism, it was discovered that the LspA proteins themselves were tyrosine phosphorylated after wild-type H. ducreyi cells were incubated with macrophages. LspA proteins in cell-free concentrated H. ducreyi culture supernatant fluid could also be tyrosine phosphorylated by macrophages. This ability to tyrosine phosphorylate the LspA proteins was not limited to immune cell lineages but could be accomplished by both HeLa and COS-7 cells. Kinase inhibitor studies with macrophages demonstrated that the Src family PTKs were required for this tyrosine phosphorylation activity. In silico methods and site-directed mutagenesis were used to identify EPIYG and EPVYA motifs in LspA1 that contained tyrosines that were targets for phosphorylation. A total of four tyrosines could be phosphorylated in LspA1, with LspA2 containing eight predicted tyrosine phosphorylation motifs. Purified LspA1 fusion proteins containing either the EPIYG or EPVYA motifs were shown to be phosphorylated by purified Src PTK in vitro. Macrophage lysates could also tyrosine phosphorylate the LspA proteins and an LspA1 fusion protein via a mechanism that was dependent on the presence of both divalent cations and ATP. Several motifs known to interact with or otherwise affect eukaryotic kinases were identified in the LspA proteins.

  17. Tyrosine phosphorylation of NEDD4 activates its ubiquitin ligase activity.

    Science.gov (United States)

    Persaud, Avinash; Alberts, Philipp; Mari, Sara; Tong, Jiefei; Murchie, Ryan; Maspero, Elena; Safi, Frozan; Moran, Michael F; Polo, Simona; Rotin, Daniela

    2014-10-07

    Ligand binding to the receptor tyrosine kinase fibroblast growth factor (FGF) receptor 1 (FGFR1) causes dimerization and activation by transphosphorylation of tyrosine residues in the kinase domain. FGFR1 is ubiquitylated by the E3 ligase NEDD4 (also known as NEDD4-1), which promotes FGFR1 internalization and degradation. Although phosphorylation of FGFR1 is required for NEDD4-dependent endocytosis, NEDD4 directly binds to a nonphosphorylated region of FGFR1. We found that activation of FGFR1 led to activation of c-Src kinase-dependent tyrosine phosphorylation of NEDD4, enhancing the ubiquitin ligase activity of NEDD4. Using mass spectrometry, we identified several FGF-dependent phosphorylated tyrosines in NEDD4, including Tyr(43) in the C2 domain and Tyr(585) in the HECT domain. Mutating these tyrosines to phenylalanine to prevent phosphorylation inhibited FGF-dependent NEDD4 activity and FGFR1 endocytosis and enhanced cell proliferation. Mutating the tyrosines to glutamic acid to mimic phosphorylation enhanced NEDD4 activity. Moreover, the NEDD4 C2 domain bound the HECT domain, and the presence of phosphomimetic mutations inhibited this interaction, suggesting that phosphorylation of NEDD4 relieves an inhibitory intra- or intermolecular interaction. Accordingly, activation of FGFR1 was not required for activation of NEDD4 that lacked its C2 domain. Activation of c-Src by epidermal growth factor (EGF) also promoted tyrosine phosphorylation and enhanced the activity of NEDD4. Thus, we identified a feedback mechanism by which receptor tyrosine kinases promote catalytic activation of NEDD4 and that may represent a mechanism of receptor crosstalk.

  18. Loss of Nuclear Localized and Tyrosine Phosphorylated Stat5 in Breast Cancer Predicts Poor Clinical Outcome and Increased Risk of Antiestrogen Therapy Failure

    Science.gov (United States)

    Peck, Amy R.; Witkiewicz, Agnieszka K.; Liu, Chengbao; Stringer, Ginger A.; Klimowicz, Alexander C.; Pequignot, Edward; Freydin, Boris; Tran, Thai H.; Yang, Ning; Rosenberg, Anne L.; Hooke, Jeffrey A.; Kovatich, Albert J.; Nevalainen, Marja T.; Shriver, Craig D.; Hyslop, Terry; Sauter, Guido; Rimm, David L.; Magliocco, Anthony M.; Rui, Hallgeir

    2011-01-01

    Purpose To investigate nuclear localized and tyrosine phosphorylated Stat5 (Nuc-pYStat5) as a marker of prognosis in node-negative breast cancer and as a predictor of response to antiestrogen therapy. Patients and Methods Levels of Nuc-pYStat5 were analyzed in five archival cohorts of breast cancer by traditional diaminobenzidine-chromogen immunostaining and pathologist scoring of whole tissue sections or by immunofluorescence and automated quantitative analysis (AQUA) of tissue microarrays. Results Nuc-pYStat5 was an independent prognostic marker as measured by cancer-specific survival (CSS) in patients with node-negative breast cancer who did not receive systemic adjuvant therapy, when adjusted for common pathology parameters in multivariate analyses both by standard chromogen detection with pathologist scoring of whole tissue sections (cohort I; n = 233) and quantitative immunofluorescence of a tissue microarray (cohort II; n = 291). Two distinct monoclonal antibodies gave concordant results. A progression array (cohort III; n = 180) revealed frequent loss of Nuc-pYStat5 in invasive carcinoma compared to normal breast epithelia or ductal carcinoma in situ, and general loss of Nuc-pYStat5 in lymph node metastases. In cohort IV (n = 221), loss of Nuc-pYStat5 was associated with increased risk of antiestrogen therapy failure as measured by univariate CSS and time to recurrence (TTR). More sensitive AQUA quantification of Nuc-pYStat5 in antiestrogen-treated patients (cohort V; n = 97) identified by multivariate analysis patients with low Nuc-pYStat5 at elevated risk for therapy failure (CSS hazard ratio [HR], 21.55; 95% CI, 5.61 to 82.77; P < .001; TTR HR, 7.30; 95% CI, 2.34 to 22.78; P = .001). Conclusion Nuc-pYStat5 is an independent prognostic marker in node-negative breast cancer. If confirmed in prospective studies, Nuc-pYStat5 may become a useful predictive marker of response to adjuvant hormone therapy. PMID:21576635

  19. Protein tyrosine phosphorylation, hyperactivation and progesterone-induced acrosome reaction are enhanced in IVF media: an effect that is not associated with an increase in protein kinase A activation.

    Science.gov (United States)

    Moseley, F L C; Jha, K N; Björndahl, Lars; Brewis, I A; Publicover, S J; Barratt, C L R; Lefièvre, L

    2005-07-01

    Sperm capacitation is a prerequisite for successful in vitro fertilization (IVF) and therefore a focus of sperm preparation in IVF laboratories. The technology of IVF is, therefore, potentially valuable in advancing our understanding of the molecular processes that occur during sperm capacitation. We have investigated sperm capacitation induced by a commercial IVF medium compared to that occurring in standard capacitating medium (CM) typically used in a nonclinical setting. Percoll-washed spermatozoa were resuspended in Cook Sydney IVF medium, Cook Sydney IVF sperm buffer, Earle's balanced salt medium (capacitating medium) or a modified Earle's balanced salt medium [non-capacitating medium (NCM)] for up to 120 min at 37 degrees C and, if applicable, in the presence of 5% CO2 in air. Sperm protein kinase A (PKA) activity, PKA-dependent serine/threonine phosphorylation, tyrosine phosphorylation, hyperactivation and progesterone-induced acrosome reaction were evaluated. IVF medium was shown to accelerate sperm capacitation (compared with capacitating medium) as determined by tyrosine phosphorylation, sperm hyperactivation and progesterone-induced acrosome reaction. This effect was not associated with enhanced activation of PKA or increased levels of serine/threonine phosphorylation. In contrast, IVF sperm buffer (used for sperm preparation) did not stimulate sperm capacitation when incubated for up to 90 min. We have shown that different capacitating media vary strikingly in their efficacy and that this difference reflects activation of a pathway other than the well-characterized activation of soluble adenylyl cyclase/cAMP/PKA.

  20. Cell entry of Lassa virus induces tyrosine phosphorylation of dystroglycan.

    Science.gov (United States)

    Moraz, Marie-Laurence; Pythoud, Christelle; Turk, Rolf; Rothenberger, Sylvia; Pasquato, Antonella; Campbell, Kevin P; Kunz, Stefan

    2013-05-01

    The extracellular matrix (ECM) receptor dystroglycan (DG) serves as a cellular receptor for the highly pathogenic arenavirus Lassa virus (LASV) that causes a haemorrhagic fever with high mortality in human. In the host cell, DG provides a molecular link between the ECM and the actin cytoskeleton via the adapter proteins utrophin or dystrophin. Here we investigated post-translational modifications of DG in the context of LASV cell entry. Using the tyrosine kinase inhibitor genistein, we found that tyrosine kinases are required for efficient internalization of virus particles, but not virus-receptor binding. Engagement of cellular DG by LASV envelope glycoprotein (LASV GP) in human epithelial cells induced tyrosine phosphorylation of the cytoplasmic domain of DG. LASV GP binding to DG further resulted in dissociation of the adapter protein utrophin from virus-bound DG. This virus-induced dissociation of utrophin was affected by genistein treatment, suggesting a role of receptor tyrosine phosphorylation in the process.

  1. Integrin Ligation Results in Nephrin Tyrosine Phosphorylation In Vitro.

    Directory of Open Access Journals (Sweden)

    Rakesh Verma

    Full Text Available Nephrin is expressed at the basolateral aspect of podocytes and is an important signaling protein at the glomerular slit diaphragm. In vitro studies have demonstrated that Nephrin phosphorylation-dependent signaling is able to assemble a protein complex that is able to polymerize actin. However, proximal signaling events that result in nephrin tyrosine phosphorylation are not well understood. Nephrin deletion in mice and human nephrin mutations result in developmental failure of the podocyte intercellular junction resutling in proteinuria. This has been presumed to be due to a failure to respond to an external polarized cue in the absence of nephrin or a failure to transduce an outside-in signal in patients with nephrin mutations. The nephrin extracellular domain binds to itself or neph1 across the foot process intercellular junction. Nephrin is tyrosine phosphorylation-silent in healthy glomeruli when presumably the nephrin extracellular domain is in an engaged state. These observations raise the possibility of an alternate proximal signaling mechanism that might be responsible for nephrin tyrosine phosphorylation. Here we present data showing that integrin engagement at the basal aspect of cultured podocytes results in nephrin tyrosine phosphorylation. This is abrogated by incubating podocytes with an antibody that prevents integrin β1 ligation and activation in response to binding to extracellular matrix. Furthermore, nephrin tyrosine phosphorylation was observed in podocytes expressing a membrane-targeted nephrin construct that lacks the extracellular domain. We propose, integrin-activation based signaling might be responsible for nephrin phosphorylation rather than engagment of the nephrin extracellular domain by a ligand.

  2. A Crystallographic Snapshot of Tyrosine Trans-phosphorylation in Action

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Xu, C; Ma, J; Eliseenkova, A; Li, W; Pollock, P; Pitteloud, N; Miller, W; Neubert, T; Mohammadi, M

    2008-01-01

    Tyrosine trans-phosphorylation is a key event in receptor tyrosine kinase signaling, yet, the structural basis for this process has eluded definition. Here, we present the crystal structure of the FGF receptor 2 kinases caught in the act of trans-phosphorylation of Y769, the major C-terminal phosphorylation site. The structure reveals that enzyme- and substrate-acting kinases engage each other through elaborate and specific interactions not only in the immediate vicinity of Y769 and the enzyme active site, but also in regions that are as much of 18 {angstrom} away from D626, the catalytic base in the enzyme active site. These interactions lead to an unprecedented level of specificity and precision during the trans-phosphorylation on Y769. Time-resolved mass spectrometry analysis supports the observed mechanism of trans-phosphorylation. Our data provide a molecular framework for understanding the mechanism of action of Kallmann syndrome mutations and the order of trans-phosphorylation reactions in FGFRs. We propose that the salient mechanistic features of Y769 trans-phosphorylation are applicable to trans-phosphorylation of the equivalent major phosphorylation sites in many other RTKs.

  3. Synaptic Clustering of PSD-95 Is Regulated by c-Abl through Tyrosine Phosphorylation

    Science.gov (United States)

    de Arce, Karen Perez; Varela-Nallar, Lorena; Farias, Olivia; Cifuentes, Alejandra; Bull, Paulina; Couch, Brian A.; Koleske, Anthony J.; Inestrosa, Nibaldo C.; Alvarez, Alejandra R.

    2010-01-01

    The c-Abl tyrosine kinase is present in mouse brain synapses, but its precise synaptic function is unknown. We found that c-Abl levels in the rat hippocampus increase postnatally, with expression peaking at the first postnatal week. In 14 d in vitro hippocampal neuron cultures, c-Abl localizes primarily to the postsynaptic compartment, in which it colocalizes with the postsynaptic scaffold protein postsynaptic density protein-95 (PSD-95) in apposition to presynaptic markers. c-Abl associates with PSD-95, and chemical or genetic inhibition of c-Abl kinase activity reduces PSD-95 tyrosine phosphorylation, leading to reduced PSD-95 clustering and reduced synapses in treated neurons. c-Abl can phosphorylate PSD-95 on tyrosine 533, and mutation of this residue reduces the ability of PSD-95 to cluster at postsynaptic sites. Our results indicate that c-Abl regulates synapse formation by mediating tyrosine phosphorylation and clustering of PSD-95. PMID:20220006

  4. Protein-Tyrosine Phosphorylation in Bacillus subtilis

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Bottini, N.

    2005-01-01

    phosphorylation, indicating that this post-translational modifi cation could regulate physiological processes ranging from stress response and exopolysaccharide synthesis to DNA metabolism. Some interesting work in this fi eld was done in Bacillus subtilis , and we here present the current state of knowledge...

  5. The effect of oviductal fluid on protein tyrosine phosphorylation in cryopreserved boar spermatozoa differs with the freezing method.

    Science.gov (United States)

    Kumaresan, A; Johannisson, A; Saravia, F; Bergqvist, A S

    2012-02-01

    Sperm capacitation takes place in the oviduct and protein tyrosine phosphorylation of sperm proteins is a crucial step in capacitation and acquisition of fertilizing potential. Cryopreserved spermatozoa show altered expression of protein tyrosine phosphorylation in the oviduct. The present study compared two freezing methods (conventional-conventional freezing (CF) and simplified-simplified freezing (SF) methods) for their effect on the ability of boar spermatozoa to undergo protein tyrosine phosphorylation in response to oviductal fluid (ODF). Cryopreserved boar-spermatozoa were incubated with pre- and post-ovulatory ODF for 6 h at 38 °C under 5% CO(2). Aliquots of sperm samples were taken at hourly intervals and analyzed for kinematics and protein tyrosine phosphorylation. Global protein tyrosine phosphorylation in spermatozoa was measured using flow cytometry and different patterns of phosphorylation were assessed using confocal microscopy. Immediately after thawing, no significant difference was observed in post-thaw sperm motility, velocity and global tyrosine phosphorylation between the two methods of freezing although the freezing method significantly (P sperm phosphorylation increased in response to both preovulatory (EODF) and postovulatory oviductal fluid. However, if the SF method was used, a significant increase in these patterns was noticed only in the EODF treated group. The present study demonstrates that preovulatory isthmic ODF induce tyrosine phosphorylation in a higher proportion of boar spermatozoa compared to the post-ovulatory fluid and that the method of freezing significantly influences the response of post-thaw spermatozoa to porcine ODF.

  6. Eph-mediated tyrosine phosphorylation of citron kinase controls abscission

    Science.gov (United States)

    Jungas, Thomas; Perchey, Renaud T.; Fawal, Mohamad; Callot, Caroline; Froment, Carine; Burlet-Schiltz, Odile; Besson, Arnaud

    2016-01-01

    Cytokinesis is the last step of cell division, culminating in the physical separation of daughter cells at the end of mitosis. Cytokinesis is a tightly regulated process that until recently was mostly viewed as a cell-autonomous event. Here, we investigated the role of Ephrin/Eph signaling, a well-known local cell-to-cell communication pathway, in cell division. We show that activation of Eph signaling in vitro leads to multinucleation and polyploidy, and we demonstrate that this is caused by alteration of the ultimate step of cytokinesis, abscission. Control of abscission requires Eph kinase activity, and Src and citron kinase (CitK) are downstream effectors in the Eph-induced signal transduction cascade. CitK is phosphorylated on tyrosines in neural progenitors in vivo, and Src kinase directly phosphorylates CitK. We have identified the specific tyrosine residues of CitK that are phosphorylated and show that tyrosine phosphorylation of CitK impairs cytokinesis. Finally, we show that, similar to CitK, Ephrin/Eph signaling controls neuronal ploidy in the developing neocortex. Our study indicates that CitK integrates intracellular and extracellular signals provided by the local environment to coordinate completion of cytokinesis. PMID:27551053

  7. Proteomic analysis of tyrosine phosphorylation during human liver transplantation

    Directory of Open Access Journals (Sweden)

    Boutros Tarek

    2007-01-01

    Full Text Available Abstract Background Ischemia-reperfusion (I/R causes a dramatic reprogramming of cell metabolism during liver transplantation and can be linked to an alteration of the phosphorylation level of several cellular proteins. Over the past two decades, it became clear that tyrosine phosphorylation plays a pivotal role in a variety of important signalling pathways and was linked to a wide spectrum of diseases. Functional profiling of the tyrosine phosphoproteome during liver transplantation is therefore of great biological significance and is likely to lead to the identification of novel targets for drug discovery and provide a basis for novel therapeutic strategies. Results Using liver biopsies collected during the early phases of organ procurement and transplantation, we aimed at characterizing the global patterns of tyrosine phosphorylation during hepatic I/R. A proteomic approach, based on the purification of tyrosine phosphorylated proteins followed by their identification using mass spectrometry, allowed us to identify Nck-1, a SH2/SH3 adaptor, as a potential regulator of I/R injury. Using immunoblot, cell fractionation and immunohistochemistry, we demonstrate that Nck-1 phosphorylation, expression and localization were affected in liver tissue upon I/R. In addition, mass spectrometry identification of Nck-1 binding partners during the course of the transplantation also suggested a dynamic interaction between Nck-1 and actin during I/R. Conclusion Taken together, our data suggest that Nck-1 may play a role in I/R-induced actin reorganization, which was previously reported to be detrimental for the hepatocytes of the transplanted graft. Nck-1 could therefore represent a target of choice for the design of new organ preservation strategies, which could consequently help to reduce post-reperfusion liver damages and improve transplantation outcomes.

  8. Regulation of PCNA Function by Tyrosine Phosphorylation in Prostate Cancer

    Science.gov (United States)

    2012-10-01

    prostate cancer. 15. SUBJECT TERMS PCNA, Tyrosine Phosphorylation, Prostate Cancer 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...directed peptide is a rational strategy to target proliferation-competent PCNA, limitations associated with peptides as a therapeutic agent, particularly...radical prostatectomy: Where have we been? Where are we going? Urol Oncol 2007;25:11–8. 2. Moldovan GL, Pfander B, Jentsch S. PCNA, the maestro of the

  9. Interaction between O-GlcNAc modification and tyrosine phosphorylation of prohibitin: implication for a novel binary switch.

    Directory of Open Access Journals (Sweden)

    Sudharsana R Ande

    Full Text Available Prohibitin (PHB or PHB1 is an evolutionarily conserved, multifunctional protein which is present in various cellular compartments including the plasma membrane. However, mechanisms involved in various functions of PHB are not fully explored yet. Here we report for the first time that PHB interacts with O-linked beta-N-acetylglucosamine transferase (O-GlcNAc transferase, OGT and is O-GlcNAc modified; and also undergoes tyrosine phosphorylation in response to insulin. Tyrosine 114 (Tyr114 and tyrosine 259 (Tyr259 in PHB are in the close proximity of potential O-GlcNAc sites serine 121 (Ser121 and threonine 258 (Thr258 respectively. Substitution of Tyr114 and Tyr259 residues in PHB with phenylalanine by site-directed mutagenesis results in reduced tyrosine phosphorylation as well as reduced O-GlcNAc modification of PHB. Surprisingly, this also resulted in enhanced tyrosine phosphorylation and activity of OGT. This is attributed to the presence of similar tyrosine motifs in PHB and OGT. Substitution of Ser121 and Thr258 with alanine and isoleucine respectively resulted in attenuation of O-GlcNAc modification and increased tyrosine phosphorylation of PHB suggesting an association between these two dynamic modifications. Sequence analysis of O-GlcNAc modified proteins having known O-GlcNAc modification site(s or known tyrosine phosphorylation site(s revealed a strong potential association between these two posttranslational modifications in various proteins. We speculate that O-GlcNAc modification and tyrosine phosphorylation of PHB play an important role in tyrosine kinase signaling pathways including insulin, growth factors and immune receptors signaling. In addition, we propose that O-GlcNAc modification and tyrosine phosphorylation is a novel previously unidentified binary switch which may provide new mechanistic insights into cell signaling pathways and is open for direct experimental examination.

  10. Regulatory Phosphorylation of Ikaros by Bruton's Tyrosine Kinase

    Science.gov (United States)

    Zhang, Jian; Ishkhanian, Rita; Uckun, Fatih M.

    2013-01-01

    Diminished Ikaros function has been implicated in the pathogenesis of acute lymphoblastic leukemia (ALL), the most common form of childhood cancer. Therefore, a stringent regulation of Ikaros is of paramount importance for normal lymphocyte ontogeny. Here we provide genetic and biochemical evidence for a previously unknown function of Bruton's tyrosine kinase (BTK) as a partner and posttranslational regulator of Ikaros, a zinc finger-containing DNA-binding protein that plays a pivotal role in immune homeostasis. We demonstrate that BTK phosphorylates Ikaros at unique phosphorylation sites S214 and S215 in the close vicinity of its zinc finger 4 (ZF4) within the DNA binding domain, thereby augmenting its nuclear localization and sequence-specific DNA binding activity. Our results further demonstrate that BTK-induced activating phosphorylation is critical for the optimal transcription factor function of Ikaros. PMID:23977012

  11. Regulatory phosphorylation of Ikaros by Bruton's tyrosine kinase.

    Directory of Open Access Journals (Sweden)

    Hong Ma

    Full Text Available Diminished Ikaros function has been implicated in the pathogenesis of acute lymphoblastic leukemia (ALL, the most common form of childhood cancer. Therefore, a stringent regulation of Ikaros is of paramount importance for normal lymphocyte ontogeny. Here we provide genetic and biochemical evidence for a previously unknown function of Bruton's tyrosine kinase (BTK as a partner and posttranslational regulator of Ikaros, a zinc finger-containing DNA-binding protein that plays a pivotal role in immune homeostasis. We demonstrate that BTK phosphorylates Ikaros at unique phosphorylation sites S214 and S215 in the close vicinity of its zinc finger 4 (ZF4 within the DNA binding domain, thereby augmenting its nuclear localization and sequence-specific DNA binding activity. Our results further demonstrate that BTK-induced activating phosphorylation is critical for the optimal transcription factor function of Ikaros.

  12. Tyrosine Phosphorylation Modulates the Vascular Responses of Mesenteric Arteries from Human Colorectal Tumors

    Directory of Open Access Journals (Sweden)

    Eduardo Ferrero

    2013-01-01

    Full Text Available The aim of this study was to analyze whether tyrosine phosphorylation in tumoral arteries may modulate their vascular response. To do this, mesenteric arteries supplying blood flow to colorectal tumors or to normal intestine were obtained during surgery and prepared for isometric tension recording in an organ bath. Increasing tyrosine phosphorylation with the phosphatase inhibitor, sodium orthovanadate produced arterial contraction which was lower in tumoral than in control arteries, whereas it reduced the contraction to noradrenaline in tumoral but not in control arteries and reduced the relaxation to bradykinin in control but not in tumoral arteries. Protein expression of VEGF-A and of the VEGF receptor FLT1 was similar in control and tumoral arteries, but expression of the VEGF receptor KDR was increased in tumoral compared with control arteries. This suggests that tyrosine phosphorylation may produce inhibition of the contraction in tumoral mesenteric arteries, which may increase blood flow to the tumor when tyrosine phosphorylation is increased by stimulation of VEGF receptors.

  13. Raf activation is regulated by tyrosine 510 phosphorylation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Fan Xia

    2008-05-01

    Full Text Available The proto-oncoprotein Raf is pivotal for mitogen-activated protein kinase (MAPK signaling, and its aberrant activation has been implicated in multiple human cancers. However, the precise molecular mechanism of Raf activation, especially for B-Raf, remains unresolved. By genetic and biochemical studies, we demonstrate that phosphorylation of tyrosine 510 is essential for activation of Drosophila Raf (Draf, which is an ortholog of mammalian B-Raf. Y510 of Draf is phosphorylated by the c-src homolog Src64B. Acidic substitution of Y510 promotes and phenylalanine substitution impairs Draf activation without affecting its enzymatic activity, suggesting that Y510 plays a purely regulatory role. We further show that Y510 regulates Draf activation by affecting the autoinhibitory interaction between the N- and C-terminal fragments of the protein. Finally, we show that Src64B is required for Draf activation in several developmental processes. Together, these results suggest a novel mechanism of Raf activation via Src-mediated tyrosine phosphorylation. Since Y510 is a conserved residue in the kinase domain of all Raf proteins, this mechanism is likely evolutionarily conserved.

  14. Hamster oviductin regulates tyrosine phosphorylation of sperm proteins during in vitro capacitation.

    Science.gov (United States)

    Saccary, Laurelle; She, Yi-Min; Oko, Richard; Kan, Frederick W K

    2013-08-01

    Oviductin or OVGP1, also known as oviduct-specific glycoprotein, has been shown to enhance sperm capacitation in addition to its other beneficial effects on fertilization and early embryo development. We hypothesized that estrus stage-specific hamster oviductin (eHamOVGP1) can potentiate the enhancement of tyrosine phosphorylation of sperm proteins during capacitation. Immunofluorescent staining and confocal microscopy as well as immunocytochemistry and surface replica technique localized tyrosine-phosphorylated proteins to the equatorial segment and midpiece after incubation of hamster sperm in capacitation medium in the presence or absence of eHamOVGP1. Increase of tyrosine phosphorylation level in the equatorial segment occurred as early as 5 min after incubation in the presence of eHamOVGP1. Immunostaining for eHamOVGP1 further increased upon prolonged incubation of sperm in medium containing the glycoprotein. Regardless of the presence or absence of eHamOVGP1, phosphotyrosine expression was observed along the tail, particularly at the midpiece. Western blotting of NP40-extracted sperm proteins (25, 37, and 44 kDa) and NP40-non-extractable sperm proteins (70, 83, 90 kDa) showed increased immunolabeling intensity after 5, 60, 120, and 180 min of capacitation in the presence of eHamOVGP1. Mass spectrometric analysis identified several proteins of functions known to be involved in metabolic pathways responsible for enhancement of tyrosine phosphorylation in its presence. The present investigation provides evidence that eHamOVGP1 regulates the expression of protein tyrosine phosphorylation in sperm capacitated in vitro, further supporting an important role of the presence of OVGP1 in the oviductal milieu during the process of fertilization.

  15. Propofol directly increases tau phosphorylation.

    Directory of Open Access Journals (Sweden)

    Robert A Whittington

    Full Text Available In Alzheimer's disease (AD and other tauopathies, the microtubule-associated protein tau can undergo aberrant hyperphosphorylation potentially leading to the development of neurofibrillary pathology. Anesthetics have been previously shown to induce tau hyperphosphorylation through a mechanism involving hypothermia-induced inhibition of protein phosphatase 2A (PP2A activity. However, the effects of propofol, a common clinically used intravenous anesthetic, on tau phosphorylation under normothermic conditions are unknown. We investigated the effects of a general anesthetic dose of propofol on levels of phosphorylated tau in the mouse hippocampus and cortex under normothermic conditions. Thirty min following the administration of propofol 250 mg/kg i.p., significant increases in tau phosphorylation were observed at the AT8, CP13, and PHF-1 phosphoepitopes in the hippocampus, as well as at AT8, PHF-1, MC6, pS262, and pS422 epitopes in the cortex. However, we did not detect somatodendritic relocalization of tau. In both brain regions, tau hyperphosphorylation persisted at the AT8 epitope 2 h following propofol, although the sedative effects of the drug were no longer evident at this time point. By 6 h following propofol, levels of phosphorylated tau at AT8 returned to control levels. An initial decrease in the activity and expression of PP2A were observed, suggesting that PP2A inhibition is at least partly responsible for the hyperphosphorylation of tau at multiple sites following 30 min of propofol exposure. We also examined tau phosphorylation in SH-SY5Y cells transfected to overexpress human tau. A 1 h exposure to a clinically relevant concentration of propofol in vitro was also associated with tau hyperphosphorylation. These findings suggest that propofol increases tau phosphorylation both in vivo and in vitro under normothermic conditions, and further studies are warranted to determine the impact of this anesthetic on the acceleration of

  16. Inhibition of phosphorylated tyrosine hydroxylase attenuates ethanol-induced hyperactivity in adult zebrafish (Danio rerio).

    Science.gov (United States)

    Nowicki, Magda; Tran, Steven; Chatterjee, Diptendu; Gerlai, Robert

    2015-11-01

    Zebrafish have been successfully employed in the study of the behavioural and biological effects of ethanol. Like in mammals, low to moderate doses of ethanol induce motor hyperactivity in zebrafish, an effect that has been attributed to the activation of the dopaminergic system. Acute ethanol exposure increases dopamine (DA) in the zebrafish brain, and it has been suggested that tyrosine hydroxylase, the rate-limiting enzyme of DA synthesis, may be activated in response to ethanol via phosphorylation. The current study employed tetrahydropapaveroline (THP), a selective inhibitor of phosphorylated tyrosine hydroxylase, for the first time, in zebrafish. We treated zebrafish with a THP dose that did not alter baseline motor responses to examine whether it can attenuate or abolish the effects of acute exposure to alcohol (ethanol) on motor activity, on levels of DA, and on levels of dopamine's metabolite 3,4-dihydroxyphenylacetic acid (DOPAC). We found that 60-minute exposure to 1% alcohol induced motor hyperactivity and an increase in brain DA. Both of these effects were attenuated by pre-treatment with THP. However, no differences in DOPAC levels were found among the treatment groups. These findings suggest that tyrosine hydroxylase is activated via phosphorylation to increase DA synthesis during alcohol exposure in zebrafish, and this partially mediates alcohol's locomotor stimulant effects. Future studies will investigate other potential candidates in the molecular pathway to further decipher the neurobiological mechanism that underlies the stimulatory properties of this popular psychoactive drug.

  17. The role of GH receptor tyrosine phosphorylation in Stat5 activation

    DEFF Research Database (Denmark)

    Hansen, J A; Hansen, L H; Wang, X;

    1997-01-01

    Stimulation of GH receptors leads to rapid activation of Jak2 kinase and subsequent tyrosine phosphorylation of the GH receptor. Three specific tyrosines located in the C-terminal domain of the GH receptor have been identified as being involved in GH-stimulated transcription of the Spi 2.1 promoter....... Mutated GH receptors lacking all but one of these three tyrosines are able to mediate a transcriptional response when transiently transfected into CHO cells together with a Spi 2.1 promoter/luciferase construct. Similarly, these GH receptors were found to be able to mediate activation of Stat5 DNA......-binding activity, whereas the GH receptor mutant lacking all intracellular tyrosines was not. Synthetic tyrosine phosphorylated peptides corresponding to the GH receptor sequence around the three tyrosines inhibited Stat5 DNA-binding activity while their non-phosphorylated counterparts were ineffective. Tyrosine...

  18. Detection of tyrosine phosphorylated proteins in trichinella spiralis L1 larvae

    Directory of Open Access Journals (Sweden)

    Allegretti S.

    2001-06-01

    Full Text Available Western-blotting analysis showed the presence of tyrosine phosphorylated proteins in crude extracts of T. spiralis larvae and these phosphorylated proteins were located by immunofluorescence on the striations of the larval cuticle. The patterns of phosphorylated proteins were modified when larvae were incubated with bile.

  19. Hexavalent chromium affects sperm motility by influencing protein tyrosine phosphorylation in the midpiece of boar spermatozoa.

    Science.gov (United States)

    Zhen, Linqing; Wang, Lirui; Fu, Jieli; Li, Yuhua; Zhao, Na; Li, Xinhong

    2016-01-01

    Hexavalent chromium reportedly induces reproductive toxicity and further inhibits male fertility in mammals. In this study, we investigated the molecular mechanism by which hexavalent chromium affects motility signaling in boar spermatozoa in vitro. The results indicated that Cr(VI) decreased sperm motility, protein phosphorylation, mitochondrial membrane potential (ΔΨm) and metabolic enzyme activity starting at 4μmol/mL following incubation for 1.5h. Notably, all parameters were potently inhibited by 10μmol/mL Cr, while supplementation with the dibutyryl-cAMP (dbcAMP) and the 3-isobutyl-1-methylxanthine (IBMX) prevented the inhibition of protein phosphorylation. Interestingly, high concentrations of Cr (>10μmol/mL) increased the tyrosine phosphorylation of some high-molecular-weight proteins in the principle piece but decreased that in the middle piece associated with an extreme reduction of sperm motility. These results suggest that chromium affects boar sperm motility by impairing tyrosine phosphorylation in the midpiece of sperm by blocking the cAMP/PKA pathway in boar sperm in vitro.

  20. Phosphorylation of Staphylococcus aureus Protein-Tyrosine Kinase Affects the Function of Glucokinase and Biofilm Formation

    Science.gov (United States)

    Vasu, Dudipeta; Kumar, Pasupuleti Santhosh; Prasad, Uppu Venkateswara; Swarupa, Vimjam; Yeswanth, Sthanikam; Srikanth, Lokanathan; Sunitha, Manne Mudhu; Choudhary, Abhijith; Krishna Sarma, Potukuchi Venkata Gurunadha

    2017-01-01

    Background: When Staphylococcus aureus is grown in the presence of high concentration of external glucose, this sugar is phosphorylated by glucokinase (glkA) to form glucose-6-phosphate. This product subsequently enters into anabolic phase, which favors biofilm formation. The presence of ROK (repressor protein, open reading frame, sugar kinase) motif, phosphate-1 and -2 sites, and tyrosine kinase sites in glkA of S. aureus indicates that phosphorylation must regulate the glkA activity. The aim of the present study was to identify the effect of phosphorylation on the function of S. aureus glkA and biofilm formation. Methods: Pure glkA and protein-tyrosine kinase (BYK) of S. aureus ATCC 12600 were obtained by fractionating the cytosolic fractions of glkA1 and BYK-1 expressing recombinant clones through nickel metal chelate column. The pure glkA was used as a substrate for BYK, and the phosphorylation of glkA was confirmed by treating with reagent A and resolving in SDS-PAGE, as well as staining with reagent A. The kinetic parameters of glkA and phosphorylated glkA were determined spectrophotometrically, and in silico tools were used for validation. S. aureus was grown in brain heart infusion broth, which was supplemented with glucose, and then biofilm units were calculated. Results: Fourfold elevated glkA activity was observed upon the phosphorylation by BYK. Protein-protein docking analysis revealed that glkA structure docked close to the adenosine triphosphate-binding site of BYK structure corroborating the kinetic results. Further, S. aureus grown in the presence of elevated glucose concentration exhibited an increase in the rate of biofilm formation. Conclusion: The elevated function of glkA is an essential requirement for increased biofilm units in S. aureus, a key pathogenic factor that helps its survival and the progress of infection. PMID:27695030

  1. Regulation of the inositol 1,4,5-trisphosphate receptor by tyrosine phosphorylation.

    Science.gov (United States)

    Jayaraman, T; Ondrias, K; Ondriasová, E; Marks, A R

    1996-06-07

    Tyrosine kinases indirectly raise intracellular calcium concentration ([Ca2+]i) by activating phospholipases that generate inositol 1,4,5-trisphosphate (IP3). IP3 activates the IP3 receptor (IP3R), an intracellular calcium release channel on the endoplasmic reticulum. T cell receptor stimulation triggered a physical association between the nonreceptor protein tyrosine kinase Fyn and the IP3R, which induced tyrosine phosphorylation of the IP3R. Fyn activated an IP3-gated calcium channel in vitro, and tyrosine phosphorylation of the IP3R during T cell activation was reduced in thymocytes from fyn-/- mice. Thus, activation of the IP3R by tyrosine phosphorylation may play a role in regulating [Ca2+]i.

  2. An Extensive Survey of Tyrosine Phosphorylation Revealing New Sites in Human Mammary Epithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Heibeck, Tyler H.; Ding, Shi-Jian; Opresko, Lee K.; Zhao, Rui; Schepmoes, Athena A.; Yang, Feng; Tolmachev, Aleksey V.; Monroe, Matthew E.; Camp, David G.; Smith, Richard D.; Wiley, H. S.; Qian, Weijun

    2009-08-01

    Protein tyrosine phosphorylation is a central regulatory mechanism in cell signaling. To extensively characterize the site-specific tyrosine phosphorylation in human cells, we present here a global survey of tyrosine phosphorylation sites in a normal-derived human mammary epithelial cell (HMEC) line by applying anti-phosphotyrosine (pTyr) peptide immunoaffinity purification (IP) coupled with high sensitivity LC-MS/MS. A total of 481 tyrosine phosphorylation sites (covered by 716 unique peptides) from 285 proteins were confidently identified in HMEC following the analysis of both the basal condition and an acute stimulated condition with epidermal growth factor (EGF). The estimated false discovery rate is 1.0% as measured by comparison against a scrambled database search. Comparison of these data to the literature showed significant agreement in site matches. Additionally 281 sites were not previously observed in HMEC culture were found. Twenty-nine of these sites have not been reported in any human cell or tissue system. The global profiling also allowed us to examine the phosphorylation stoichiometry differences based on spectral count information. Comparison of the data to a previous global proteome profiling study illustrates that most of the highly phoshorylated proteins are of relatively low-abundance. Large differences in phosphorylation stoichiometry for sites within the same protein were also observed for many of the identified proteins, suggesting potentially more important functional roles for those highly phosphorylated pTyr sites within a given protein. By mapping to major signaling networks such as EGF receptor and insulin growth factor-1 receptor signaling pathways, many known proteins involved in these pathways were revealed to be tyrosine phosphorylated, which should allow us to select interesting targeted involved in a given pathway for more directed studies. This extensive HMEC tyrosine phosphorylation dataset represents an important database

  3. Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Macek, B

    2006-01-01

    Single-stranded DNA-binding proteins (SSBs) are required for repair, recombination and replication in all organisms. Eukaryotic SSBs are regulated by phosphorylation on serine and threonine residues. To our knowledge, phosphorylation of SSBs in bacteria has not been reported. A systematic search...... for phosphotyrosine-containing proteins in Streptomyces griseus by immunoaffinity chromatography identified bacterial SSBs as a novel target of bacterial tyrosine kinases. Since genes encoding protein-tyrosine kinases (PTKs) have not been recognized in streptomycetes, and SSBs from Streptomyces coelicolor (Sc......SSB) and Bacillus subtilis (BsSSB) share 38.7% identity, we used a B.subtilis protein-tyrosine kinase YwqD to phosphorylate two cognate SSBs (BsSSB and YwpH) in vitro. We demonstrate that in vivo phosphorylation of B.subtilis SSB occurs on tyrosine residue 82, and this reaction is affected antagonistically...

  4. Cross-phosphorylation of bacterial serine/threonine and tyrosine protein kinases on key regulatory residues

    Directory of Open Access Journals (Sweden)

    Lei eShi

    2014-09-01

    Full Text Available Bacteria possess protein serine/threonine and tyrosine kinases which resemble eukaryal kinases in their capacity to phosphorylate multiple substrates. We hypothesized that the analogy might extend further, and bacterial kinases may also undergo mutual phosphorylation and activation, which is currently considered as a hallmark of eukaryal kinase networks. In order to test this hypothesis, we explored the capacity of all members of four different classes of serine/threonine and tyrosine kinases present in the firmicute model organism Bacillus subtilis to phosphorylate each other in vitro and interact with each other in vivo. The interactomics data suggested a high degree of connectivity among all types of kinases, while phosphorylation assays revealed equally wide-spread cross-phosphorylation events. Our findings suggest that the Hanks-type kinases PrkC, PrkD and YabT exhibit the highest capacity to phosphorylate other B. subtilis kinases, while the BY-kinase PtkA and the two-component-like kinases RsbW and SpoIIAB show the highest propensity to be phosphorylated by other kinases. Analysis of phosphorylated residues on several selected recipient kinases suggests that most cross-phosphorylation events concern key regulatory residues. Therefore, cross-phosphorylation events are very likely to influence the capacity of recipient kinases to phosphorylate substrates downstream in the signal transduction cascade. We therefore conclude that bacterial serine/threonine and tyrosine kinases probably engage in a network-type behavior previously described only in eukaryal cells.

  5. Chlamydia trachomatis serovar L2 induces protein tyrosine phosphorylation during uptake by HeLa cells

    DEFF Research Database (Denmark)

    Birkelund, Svend; Johnsen, H; Christiansen, Gunna

    1994-01-01

    . By use of a monoclonal antibody against phosphotyrosine, we showed that three classes of proteins are tyrosine phosphorylated: a triple band of 68, 66, and 64 kDa, a 97-kDa band, and a 140-kDa band. The phosphorylation could be detected by immunoblotting from 15 min after infection of HeLa cells. We...

  6. Selective Sensing of Tyrosine Phosphorylation in Peptides Using Terbium(III Complexes

    Directory of Open Access Journals (Sweden)

    Jun Sumaoka

    2016-01-01

    Full Text Available Phosphorylation of tyrosine residues in proteins, as well as their dephosphorylation, is closely related to various diseases. However, this phosphorylation is usually accompanied by more abundant phosphorylation of serine and threonine residues in the proteins and covers only 0.05% of the total phosphorylation. Accordingly, highly selective detection of phosphorylated tyrosine in proteins is an urgent subject. In this review, recent developments in this field are described. Monomeric and binuclear TbIII complexes, which emit notable luminescence only in the presence of phosphotyrosine (pTyr, have been developed. There, the benzene ring of pTyr functions as an antenna and transfers its photoexcitation energy to the TbIII ion as the emission center. Even in the coexistence of phosphoserine (pSer and phosphothreonine (pThr, pTyr can be efficintly detected with high selectivity. Simply by adding these TbIII complexes to the solutions, phosphorylation of tyrosine in peptides by protein tyrosine kinases and dephosphorylation by protein tyrosine phosphatases can be successfully visualized in a real-time fashion. Furthermore, the activities of various inhibitors on these enzymes are quantitatively evaluated, indicating a strong potential of the method for efficient screening of eminent inhibitors from a number of candidates.

  7. Neuromedin B receptors regulate EGF receptor tyrosine phosphorylation in lung cancer cells

    Science.gov (United States)

    Moody, Terry W.; Berna, Marc J.; Mantey, Samuel; Sancho, Veronica; Ridnour, Lisa; Wink, David A.; Chan, Daniel; Giaccone, Giuseppe; Jensen, Robert T.

    2014-01-01

    Neuromedin B (NMB), a member of the bombesin family of peptides, is an autocrine growth factor for many lung cancer cells. The present study investigated the ability of NMB to cause transactivation of the epidermal growth factor (EGF) receptor in lung cancer cells. By Western blot, addition of NMB or related peptides to NCI-H1299 human non-small cell lung cancer (NSCLC) cells, caused phosphorylation of Tyr1068 of the EGF receptor. The signal was amplified using NCI-H1299 cells stably transected with NMB receptors. The transactivation of the EGF receptor or the tyrosine phosphorylation of ERK caused by NMB-like peptides was inhibited by AG1478 or gefitinib (tyrosine kinase inhibitors) and NMB receptor antagonist PD168368 but not the GRP receptor antagonist, BW2258U89. The transactivation of the EGF receptor caused by NMB-like peptides was inhibited by GM6001 (matrix metalloprotease inhibitor), PP2 (Src inhibitor), or transforming growth factor (TGF)α antibody. The transactivation of the EGF receptor and the increase in reactive oxygen species caused by NMB-like peptides was inhibited by N-acetylcysteine (NAC) or Tiron. Gefitinib inhibited the proliferation of NCI-H1299 cells and its sensitivity was increased by the addition of PD168368. The results indicate that the NMB receptor regulates EGF receptor transactivation by a mechanism dependent on Src as well as metalloprotease activation and generation of reactive oxygen species. PMID:20388507

  8. Tyrosine Phosphorylation of Tau by the Src Family Kinases Lck and Fyn

    Directory of Open Access Journals (Sweden)

    Bird Ian N

    2011-01-01

    Full Text Available Abstract Background Tau protein is the principal component of the neurofibrillary tangles found in Alzheimer's disease, where it is hyperphosphorylated on serine and threonine residues, and recently phosphotyrosine has been demonstrated. The Src-family kinase Fyn has been linked circumstantially to the pathology of Alzheimer's disease, and shown to phosphorylate Tyr18. Recently another Src-family kinase, Lck, has been identified as a genetic risk factor for this disease. Results In this study we show that Lck is a tau kinase. In vitro, comparison of Lck and Fyn showed that while both kinases phosphorylated Tyr18 preferentially, Lck phosphorylated other tyrosines somewhat better than Fyn. In co-transfected COS-7 cells, mutating any one of the five tyrosines in tau to phenylalanine reduced the apparent level of tau tyrosine phosphorylation to 25-40% of that given by wild-type tau. Consistent with this, tau mutants with only one remaining tyrosine gave poor phosphorylation; however, Tyr18 was phosphorylated better than the others. Conclusions Fyn and Lck have subtle differences in their properties as tau kinases, and the phosphorylation of tau is one mechanism by which the genetic risk associated with Lck might be expressed pathogenically.

  9. Insulin and Metabolic Stress Stimulate Multisite Serine/Threonine Phosphorylation of Insulin Receptor Substrate 1 and Inhibit Tyrosine Phosphorylation*

    Science.gov (United States)

    Hançer, Nancy J.; Qiu, Wei; Cherella, Christine; Li, Yedan; Copps, Kyle D.; White, Morris F.

    2014-01-01

    IRS1 and IRS2 are key substrates of the insulin receptor tyrosine kinase. Mass spectrometry reveals more than 50 phosphorylated IRS1 serine and threonine residues (Ser(P)/Thr(P) residues) in IRS1 from insulin-stimulated cells or human tissues. We investigated a subset of IRS1 Ser(P)/Thr(P) residues using a newly developed panel of 25 phospho-specific monoclonal antibodies (αpS/TmAbIrs1). CHO cells overexpressing the human insulin receptor and rat IRS1 were stimulated with insulin in the absence or presence of inhibitors of the PI3K → Akt → mechanistic target of rapamycin (mTOR) → S6 kinase or MEK pathways. Nearly all IRS1 Ser(P)/Thr(P) residues were stimulated by insulin and significantly suppressed by PI3K inhibition; fewer were suppressed by Akt or mTOR inhibition, and none were suppressed by MEK inhibition. Insulin-stimulated Irs1 tyrosine phosphorylation (Tyr(P)Irs1) was enhanced by inhibition of the PI3K → Akt → mTOR pathway and correlated with decreased Ser(P)-302Irs1, Ser(P)-307Irs1, Ser(P)-318Irs1, Ser(P)-325Irs1, and Ser(P)-346Irs1. Metabolic stress modeled by anisomycin, thapsigargin, or tunicamycin increased many of the same Ser(P)/Thr(P) residues as insulin, some of which (Ser(P)-302Irs1, Ser(P)-307Irs1, and four others) correlated significantly with impaired insulin-stimulated Tyr(P)Irs1. Thus, IRS1 Ser(P)/Thr(P) is an integrated response to insulin stimulation and metabolic stress, which associates with reduced Tyr(P)Irs1 in CHOIR/IRS1 cells. PMID:24652289

  10. Protein tyrosine phosphatase PTPRB regulates Src phosphorylation and tumour progression in NSCLC.

    Science.gov (United States)

    Qi, Yinliang; Dai, Yuanchang; Gui, Shuyu

    2016-10-01

    Protein tyrosine-phosphatases (PTPs) play important roles in various biological processes. Deregulation in PTP function has been implicated in carcinogenesis and tumour progression in many cancer types. However, the role of protein tyrosine phosphatase receptor type B (PTPRB) in non-small-cell lung cancer (NSCLC) tumorigenesis has not been investigated. Lentiviral vector expressing PTPRB cDNA or shRNA was infected into A549 and H1299 cell lines, followed by cell proliferation, colony formation, soft agar and invasion assays. A549 xenograft mouse model was used to evaluate in vivo function of PTPRB. Quantitative polymerase chain reaction (PCR) was used to measure PTPRB expression in NSCLC patient samples. Kaplan Meier analysis was performed to assess association between PTPRB expression and patient overall survival (OS). Multivariate analysis was performed to evaluate prognostic significance of PTPRB. Overexpression of PTPRB reduced cell proliferation rate, colony formation efficiency, soft agar growth and cell invasion in A549 and H1299 cells, as well as tumour growth rate in A549 xenograft. Knockdown of PTPRB increased Src phosphorylation and cell invasion, which was reversed by Src inhibitor PP2. Additionally, PTPRB was down-regulated in NSCLC patient and was associated with patient OS. PTPRB regulates Src phosphorylation and tumorigenesis in NSCLC. PTPRB may serve as an independent prognostic biomarker for NSCLC patients.

  11. Effect of nitric oxide-induced tyrosine phosphorylation of calcium-activated potassium channel α subunit on vascular hyporesponsiveness in rats

    Institute of Scientific and Technical Information of China (English)

    ZHOU Rong; LIU Liang-ming; HU De-yao

    2005-01-01

    Objective: To study the effect of nitric oxide-induced tyrosine phosphorylation of large-conductance calcium-activated potassium (BKCa) channel α subunit on vascular hyporesponsiveness in rats. Methods: A total of 46 Wistar rats of either sex, weighing 250 g±20 g, were used in this study. Models of vascular hyporesponsiveness induced by hemorrhagic shock (30 mm Hg for 2 hours) in vivo and by L-arginine in vitro were established respectively. The vascular responsiveness of isolated superior mesenteric arteries to norepinephrine was observed. Tyrosine phosphorylation of BKCa α subunit was evaluated with methods of immunoprecipitation and Western blotting. Results: In the smooth muscle cells of the superior mesenteric arteries, the expression of BKCa α subunit tyrosine phosphorylation increased following hemorrhagic shock, and L-arginine could induce BKCa channel α subunit tyrosine phosphorylation in a time- and dose-dependent manner. L-NAME (Nω-nitro-L-arginine-methyl-ester), a nitric oxide synthetase inhibitor, could partly restore the decreased vasoresponsiveness of the superior mesenteric arteries after hemorrhagic shock in rats. Down-regulating the protein tyrosine phosphorylation with genistein, a widely-used special protein tyrosine kinase inhibitor, could partly improve the decreased vasoresponsiveness of the superior mesenteric arteries induced by L-arginine in vitro, while up-regulating the protein tyrosine phosphorylation with Na3VO4, a protein tyrosine phosphatase inhibitor, could further decrease the nitric oxide-induced vascular hyporesponsiveness, which could be partly ameliorated by 0.1 mmol/L tetrabutylammonium chloride (TEA), a selective BKCa inhibitor at this concentration. Conclusions: Nitric oxide can induce the tyrosine phosphorylation of BKCa α subunit, which influences the vascular hyporesponsiveness in hemorrhagic shock rats or induced by L-arginine in vitro.

  12. A tyrosine phosphorylation switch controls the interaction between the transmembrane modulator protein Wzd and the tyrosine kinase Wze of Lactobacillus rhamnosus.

    Science.gov (United States)

    Kang, Hye-Ji; Gilbert, Christophe; Badeaux, Frédérique; Atlan, Danièle; LaPointe, Gisèle

    2015-02-21

    One proposed mechanism for assembly of secreted heteropolysaccharides by many Gram positive bacteria relies on the coordinated action of a polymerization complex through reversible phosphorylation events. The role of the tyrosine protein kinase transmembrane modulator is, however, not well understood. The protein sequences deduced from the wzb, wzd and wze genes from Lactobacillus rhamnosus ATCC 9595 and RW-9595 M contain motifs also found in corresponding proteins CpsB, CpsC and CpsD from Streptococcus pneumoniae D39 (serotype 2). Use of an anti-phosphotyrosine antibody demonstrated that both Wzd and Wze can be found in tyrosine phosphorylated form. When tyrosine 266 was mutated to phenylalanine, WzdY266F showed slightly less phosphorylated protein than those produced by using eight other tyrosine mutated Wzd genes, when expressed along with Wze and Wzb in Lactococcus lactis subsp. cremoris MG1363. In order to demonstrate the importance of ATP for the interactions among these proteins, native and fusion Wzb, Wzd and Wze proteins were expressed and purified from Escherichia coli cultures. The modulator protein, Wzd, binds with the phosphotyrosine kinase Wze, irrespective of its phosphorylation status. However, Wze attained a higher phosphorylation level after interacting with phosphorylated Wzd in the presence of 10 mM ATP. This highly phosphorylated Wze did not remain in close association with phosphorylated Wzd. The Wze tyrosine kinase protein of Lactobacillus rhamnosus thus carries out tyrosine phosphorylation of Wzd in addition to auto- and trans- phosphorylation of the kinase itself.

  13. Hierarchical Disabled-1 Tyrosine Phosphorylation in Src family Kinase Activation and Neurite Formation

    Science.gov (United States)

    Katyal, Sachin; Gao, Zhihua; Monckton, Elizabeth; Glubrecht, Darryl; Godbout, Roseline

    2013-01-01

    There are two developmentally regulated alternatively spliced forms of Disabled-1 (Dab1) in the chick retina: an early form (Dab1-E) expressed in retinal precursor cells and a late form (Dab1-L) expressed in neuronal cells. The main difference between these two isoforms is the absence of two Src family kinase (SFK) recognition sites in Dab1-E. Both forms retain two Abl/Crk/Nck recognition sites implicated in the recruitment of SH2 domain-containing signaling proteins. One of the Dab1-L-specific SFK recognition sites, at tyrosine(Y)-198, has been shown to be phosphorylated in Reelin-stimulated neurons. Here, we use Reelin-expressing primary retinal cultures to investigate the role of the four Dab1 tyrosine phosphorylation sites on overall tyrosine phosphorylation, Dab1 phosphorylation, SFK activation and neurite formation. We show that Y198 is essential but not sufficient for maximal Dab1 phosphorylation, SFK activation and neurite formation, with Y232 and Y220 playing particularly important roles in SFK activation and neuritogenesis, and Y185 having modifying effects secondary to Y232 and Y220. Our data support a role for all four Dab1 tyrosine phosphorylation sites in mediating the spectrum of activities associated with Reelin-Dab1 signaling in neurons. PMID:17350651

  14. Redox modulation of tyrosine phosphorylation-dependent neutrophil adherence to endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Thibodeau, Paul A. [INSERM U479 Phagocytes et Reponses Inflammatoires, Faculte de Medecine, Universite Paris VII-Denis Diderot, 16, rue Henri Huchard, 75870 Paris, Cedex 18 (France)]. E-mail: pathibodeau@hotmail.com; Gozin, Alexia [INSERM U479 Phagocytes et Reponses Inflammatoires, Faculte de Medecine, Universite Paris VII-Denis Diderot, 16, rue Henri Huchard, 75870 Paris, Cedex 18 (France); Gougerot-Pocidalo, Marie-Anne [INSERM U479 Phagocytes et Reponses Inflammatoires, Faculte de Medecine, Universite Paris VII-Denis Diderot, 16, rue Henri Huchard, 75870 Paris, Cedex 18 (France); Pasquier, Catherine [INSERM U479 Phagocytes et Reponses Inflammatoires, Faculte de Medecine, Universite Paris VII-Denis Diderot, 16, rue Henri Huchard, 75870 Paris, Cedex 18 (France)

    2005-02-01

    Reactive oxygen species (ROS) are now well known to be involved in an increased interaction between neutrophils and endothelial cells. Previously, we have shown that the increased adhesion of neutrophils to ROS-stimulated endothelial cells involves an increase in tyrosine phosphorylation of the focal adhesion kinase, p125{sup FAK}, and several cytoskeleton proteins. This review article focuses on the involvement of adhesion molecules in the increased adhesion of neutrophils to ROS-stimulated endothelial cells, on the oxygen species responsible for this adhesion, and on the intracellular signaling pathway leading to the modification of the cytoskeleton by ROS. The evidence from our laboratory and others describing these events is summarized. Finally, the future perspectives that need to be explored in order to inhibit or reduce the ROS-mediated adhesion of neutrophils to endothelial cells are addressed.

  15. Interleukin-2 induces tyrosine phosphorylation and nuclear translocation of stat3 in human T lymphocytes

    DEFF Research Database (Denmark)

    Nielsen, M; Svejgaard, A; Skov, S

    1994-01-01

    that stimulation through the IL-2R induced tyrosine phosphorylation and subsequent nuclear translocation of stat3, a newly identified member of the signal transducers and activators of transcription (STAT) family of proteins. In contrast, stat1 proteins were not tyrosine phosphorylated after IL-2 ligation, whereas...... an apparent molecular mass of 84 kDa and was not recognized by stat3 or stat1 mAb or antisera. Since IL-2 induced nuclear translocation of the 84 kDa protein and stat3 followed identical kinetics, p84 is a candidate for a new, yet undefined, member of the STAT family. Taken together, we report that IL-2...... induces tyrosine phosphorylation and subsequent nuclear translocation of stat3 and an as yet undefined 84-kDa protein in antigen-specific human T cell lines....

  16. Dynamic modulation of the Kv2.1 channel by Src-dependent tyrosine phosphorylation

    OpenAIRE

    Song, Min-Young; Hong, Chansik; Bae, Seong Han; So, Insuk; Park, Kang-Sik

    2011-01-01

    The voltage-gated K+ channel Kv2.1 is expressed as a highly phosphorylated protein in most central neurons, where it plays a key role in regulating neuronal membrane excitability. Previous studies have shown that Kv2.1 channel activity is upregulated by Src-mediated phosphorylation through an unknown mechanism. However, a systematic analysis of the molecular mechanism of Kv2.1 channel phosphorylation by Src is lacking. Here we show that tyrosine phosphorylation by Src plays a fundamental role...

  17. Tyrosine phosphorylation of Munc18c on residue 521 abrogates binding to Syntaxin 4

    Directory of Open Access Journals (Sweden)

    Bryant Nia J

    2011-05-01

    Full Text Available Abstract Background Insulin stimulates exocytosis of GLUT4 from an intracellular store to the cell surface of fat and muscle cells. Fusion of GLUT4-containing vesicles with the plasma membrane requires the SNARE proteins Syntaxin 4, VAMP2 and the regulatory Sec1/Munc18 protein, Munc18c. Syntaxin 4 and Munc18c form a complex that is disrupted upon insulin treatment of adipocytes. Munc18c is tyrosine phosphorylated in response to insulin in these cells. Here, we directly test the hypothesis that tyrosine phosphorylation of Munc18c is responsible for the observed insulin-dependent abrogation of binding between Munc18c and Syntaxin 4. Results We show that Munc18c is directly phosphorylated by recombinant insulin receptor tyrosine kinase in vitro. Using pull-down assays, we show that phosphorylation abrogates binding of Munc18c to both Syntaxin 4 and the v-SNARE VAMP2, as does the introduction of a phosphomimetic mutation into Munc18c (Y521E. Conclusion Our data indicate that insulin-stimulated tyrosine phosphorylation of Munc18c impairs the ability of Munc18c to bind its cognate SNARE proteins, and may therefore represent a regulatory step in GLUT4 traffic.

  18. Diagnosis and prognosis of male infertility in mammal: the focusing of tyrosine phosphorylation and phosphotyrosine proteins.

    Science.gov (United States)

    Kwon, Woo-Sung; Rahman, Md Saidur; Pang, Myung-Geol

    2014-11-01

    Male infertility refers to the inability of a man to achieve a pregnancy in a fertile female. In more than one-third of cases, infertility arises due to the male factor. Therefore, developing strategies for the diagnosis and prognosis of male infertility is critical. Simultaneously, a satisfactory model for the cellular mechanisms that regulate normal sperm function must be established. In this regard, tyrosine phosphorylation is one of the most common mechanisms through which several signal transduction pathways are adjusted in spermatozoa. It regulates the various aspects of sperm function, for example, motility, hyperactivation, capacitation, the acrosome reaction, fertilization, and beyond. Several recent large-scale studies have identified the proteins that are phosphorylated in spermatozoa to acquire fertilization competence. However, most of these studies are basal and have not presented an overall mechanism through which tyrosine phosphorylation regulates male infertility. In this review, we focus of this mechanism, discussing most of the tyrosine-phosphorylated proteins in spermatozoa that have been identified to date. We categorized tyrosine-phosphorylated proteins in spermatozoa that regulate male infertility using MedScan Reader (v5.0) and Pathway Studio (v9.0).

  19. Egf binding to its receptor triggers a rapid tyrosine phosphorylation of the erbB-2 protein in the mammary tumor cell line SK-BR-3.

    OpenAIRE

    King, C. R.; Borrello, I; Bellot, F; Comoglio, P; Schlessinger, J

    1988-01-01

    The epidermal growth factor receptor (EGF-R) and the erbB-2 proto-oncogene product protein are closely related by their structural homology and their shared enzymatic activity as autophosphorylating tyrosine kinases. We show that in mammary tumor cells (SK-BR-3) EGF causes a rapid increase in tyrosine phosphorylation of the erbB-2 protein. Phosphorylation of erbB-2 does not occur in cells lacking the EGF-R (MDA-MB-453). Phosphorylation of erbB-2 in SK-BR-3 cells is blocked if EGF is prevented...

  20. Dilinoleoyl-phosphatidic acid mediates reduced IRS-1 tyrosine phosphorylation in rat skeletal muscle cells and mouse muscle.

    Science.gov (United States)

    Cazzolli, R; Mitchell, T W; Burchfield, J G; Pedersen, D J; Turner, N; Biden, T J; Schmitz-Peiffer, C

    2007-08-01

    Insulin resistance in skeletal muscle is strongly associated with lipid oversupply, but the intracellular metabolites and underlying mechanisms are unclear. We therefore sought to identify the lipid intermediates through which the common unsaturated fatty acid linoleate causes defects in IRS-1 signalling in L6 myotubes and mouse skeletal muscle. Cells were pre-treated with 1 mmol/l linoleate for 24 h. Subsequent insulin-stimulated IRS-1 tyrosine phosphorylation and its association with the p85 subunit of phosphatidylinositol 3-kinase were determined by immunoblotting. Intracellular lipid species and protein kinase C activation were modulated by overexpression of diacylglycerol kinase epsilon, which preferentially converts unsaturated diacylglycerol into phosphatidic acid, or by inhibition of lysophosphatidic acid acyl transferase with lisofylline, which reduces phosphatidic acid synthesis. Phosphatidic acid species in linoleate-treated cells or muscle from insulin-resistant mice fed a safflower oil-based high-fat diet that was rich in linoleate were analysed by mass spectrometry. Linoleate pretreatment reduced IRS-1 tyrosine phosphorylation and p85 association. Overexpression of diacylglycerol kinase epsilon reversed the activation of protein kinase C isoforms by linoleate, but paradoxically further diminished IRS-1 tyrosine phosphorylation. Conversely, lisofylline treatment restored IRS-1 phosphorylation. Mass spectrometry indicated that the dilinoleoyl-phosphatidic acid content increased from undetectable levels to almost 20% of total phosphatidic acid in L6 cells and to 8% of total in the muscle of mice fed a high-fat diet. Micelles containing dilinoleoyl-phosphatidic acid specifically inhibited IRS-1 tyrosine phosphorylation and glycogen synthesis in L6 cells. These data indicate that linoleate-derived phosphatidic acid is a novel lipid species that contributes independently of protein kinase C to IRS-1 signalling defects in muscle cells in response to lipid

  1. Crk adaptor protein-induced phosphorylation of Gab1 on tyrosine 307 via Src is important for organization of focal adhesions and enhanced cell migration

    Institute of Scientific and Technical Information of China (English)

    Takuya Watanabe; Masumi Tsuda; Yoshinori Makino; Tassos Konstantinou; Hiroshi Nishihara; Tokifumi Majima; Akio Minami; Stephan M Feller; Shinya Tanaka

    2009-01-01

    Upon growth factor stimulation, the scaffold protein, Gabl, is tyrosine phosphorylated and subsequently the adaptor protein, Crk, transmits signals from Gabl. We have previously shown that Crk overexpression, which is detectable in various human cancers, induces tyrosine phosphorylation of Gab1 without extraceilular stimuli. In the present study, the underlying mechanisms were further investigated. Mutational analyses of Crkll demonstrated that the SH2 domain, but not the SH3(N) or the regulatory Y221 residue of Crkll, is critical for the induction of Gabl-Y307 phosphorylation. SH2 mutation of Crkll also decreased the interaction with Gab1. In GST pull-down assay, Crk-SH2 bound to wild-type Gabl, whereas Crk-SH3(N) interacted with the Gabl mutant, which lacks the clus-tered tyrosine region (residues 242-410). Tyrosine phosphorylation of Gabl was induced by all Crk family proteins, but not other SH2-containing signalling adaptors. Src-family kinase inhibitor, PP2, abrogates Crk-induced tyrosine phosphorylations of Gabl. Y307 phosphorylation was undetectable in fibroblasts lacking Src, Yes, and Fyn, even upon overexpression of Crk, whereas cells lacking only Yes and Fyn still contained Gabl with phosphorylated Y307. Furthermore, Crk induced the phosphorylation of Src-Y416; accordingly the interaction between Crk and Csk was increased. The GabI-Y307F mutant failed to localize near the plasma membrane even upon HGF stimulation and decreased cell migration. Moreover, Gabl-Y307F disturbed the localization of Crk, FAK, and paxiilin, which are the typical components of focal adhesions. Taken together, these results indicate that Crk facilitates tyrosine phosphory-lation of Gabl-Y307 through Src, contributing to the organization of focal adhesions and enhanced cell migration, thereby possibly promoting human cancer development.

  2. Tyrosine phosphorylation of Rac1: a role in regulation of cell spreading.

    Directory of Open Access Journals (Sweden)

    Fumin Chang

    Full Text Available Rac1 influences a multiplicity of vital cellular- and tissue-level control functions, making it an important candidate for targeted therapeutics. The activity of the Rho family member Cdc42 has been shown to be modulated by tyrosine phosphorylation at position 64. We therefore investigated consequences of the point mutations Y64F and Y64D in Rac1. Both mutations altered cell spreading from baseline in the settings of wild type, constitutively active, or dominant negative Rac1 expression, and were accompanied by differences in Rac1 targeting to focal adhesions. Rac1-Y64F displayed increased GTP-binding, increased association with βPIX, and reduced binding with RhoGDI as compared with wild type Rac1. Rac1-Y64D had less binding to PAK than Rac1-WT or Rac1-64F. In vitro assays demonstrated that Y64 in Rac1 is a target for FAK and Src. Taken together, these data suggest a mechanism for the regulation of Rac1 activity by non-receptor tyrosine kinases, with consequences for membrane extension.

  3. MHC class I signaling in T cells leads to tyrosine kinase activity and PLC-gamma 1 phosphorylation

    DEFF Research Database (Denmark)

    Skov, S; Odum, Niels; Claesson, M H

    1995-01-01

    phosphorylation and the subsequent calcium response. The early tyrosine kinase activity was found to be dependent on expression of the TCR/CD3 complex and the CD45 molecule on the surface of the T cells. Furthermore, MHC-I cross-linking was shown to tyrosine phosphorylate PLC-gamma 1 (phospholipase C-gamma 1...

  4. Growth hormone-dependent phosphorylation of tyrosine 333 and/or 338 of the growth hormone receptor

    DEFF Research Database (Denmark)

    VanderKuur, J A; Wang, X; Zhang, L

    1995-01-01

    Many signaling pathways initiated by ligands that activate receptor tyrosine kinases have been shown to involve the binding of SH2 domain-containing proteins to specific phosphorylated tyrosines in the receptor. Although the receptor for growth hormone (GH) does not contain intrinsic tyrosine...

  5. Lithium decreased NR2B tyrosine phosphorylation and interactions of NR2B and PSD-95 with Src in rat hippocampus following cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective: To study the effects of chronic lithium on N-methyl-d-aspartate receptor subunit 2B (NR2B) tyrosine phosphorylation and the interactions of NR2B and PSD-95 with Src induced by cerebral ischemia/reperfusion (I/R). Methods: Transient (15 min) cerebral ischemia was induced by four-vessel occlusion procedure in SD rats. Immunoprecipitation (IP) and immunoblotting (IB)were performed to investigate the phosphorylation and interactions of proteins. The effects of lithium on tyrosine phosphorylation of NR2B and its interactions with PSD-95 and Src were examined. Results: Transient cerebral ischemia 15 min followed by reperfusion 6 h (I/R 6h) caused a significant increase in tyrosine phosphorylation of NR2B. Administration of LiCl for 7days before ischemia caused a profound decrease in tyrosine phosphorylation of NR2B. Similiarly, the interactions of NR2B and PSD-95 with Src were also enhanced by I/R 6 h.moreover, these interactions were also inhibited by chronic lithium. Conclusion: Pretreatment with lithium decrease tyrosine phosphorylation of NR2B and interactions of NR2B and PSD-95 with Src during cerebral I/R.

  6. A cytosolic activator of DNA replication is tyrosine phosphorylated in its active form.

    Science.gov (United States)

    Fresa, K L; Autieri, M V; Coffman, F D; Georgoff, I; Cohen, S

    1993-04-01

    Cytosolic extracts from actively dividing lymphoid cells have been shown to induce DNA synthesis in isolated, quiescent nuclei. An initiating factor in such extracts (activator of DNA replication; ADR) is a > 90-kDa aprotinin-binding protein whose activity is inhibitable not only by aprotinin, but also by several other protease inhibitors as well. Although cytosol from non-proliferating lymphocytes is devoid of ADR activity, we have shown that these preparations can be induced to express ADR activity by brief exposure to a membrane-enriched fraction of spontaneously proliferating MOLT-4 cells via a kinase-dependent mechanism. In the present study, we examine the role of tyrosine kinases in this process. Three inhibitors of tyrosine kinases (genistein, kaempferol, and quercetin) can inhibit the in vitro generation of ADR activity. In vitro generation of ADR activity is associated with the de novo phosphorylation of several proteins, many of which are detectable using anti-phosphotyrosine monoclonal antibodies. ADR itself may be tyrosine phosphorylated in active form as immunoprecipitation using such monoclonal antibodies leads to the depletion of its activity. Moreover, immunoprecipitation results in the removal of several de novo tyrosine-phosphorylated proteins, including species at approximately 122, 105, 93, 86, 79, and 65 kDa. A subset of de novo-phosphorylated proteins, migrating at approximately 105, 93, and 70 kDa, also bound to aprotinin, suggesting that at least one of these proteins may represent ADR itself.

  7. Analysis of tyrosine phosphorylation and phosphotyrosine-binding proteins in germinating seeds from Scots pine.

    Science.gov (United States)

    Kovaleva, Valentina; Cramer, Rainer; Krynytskyy, Hryhoriy; Gout, Ivan; Gout, Roman

    2013-06-01

    Protein tyrosine phosphorylation in angiosperms has been implicated in various physiological processes, including seed development and germination. In conifers, the role of tyrosine phosphorylation and the mechanisms of its regulation are yet to be investigated. In this study, we examined the profile of protein tyrosine phosphorylation in Scots pine seeds at different stages of germination. We detected extensive protein tyrosine phosphorylation in extracts from Scots pine (Pinus sylvestris L.) dormant seeds. In addition, the pattern of tyrosine phosphorylation was found to change significantly during seed germination, especially at earlier stages of post-imbibition which coincides with the initiation of cell division, and during the period of intensive elongation of hypocotyls. To better understand the molecular mechanisms of phosphotyrosine signaling, we employed affinity purification and mass spectrometry for the identification of pTyr-binding proteins from the extracts of Scots pine seedlings. Using this approach, we purified two proteins of 10 and 43 kDa, which interacted specifically with pTyr-Sepharose and were identified by mass spectrometry as P. sylvestris defensin 1 (PsDef1) and aldose 1-epimerase (EC:5.1.3.3), respectively. Additionally, we demonstrated that both endogenous and recombinant PsDef1 specifically interact with pTyr-Sepharose, but not Tyr-beads. As the affinity purification approach did not reveal the presence of proteins with known pTyr binding domains (SH2, PTB and C2), we suggest that plants may have evolved a different mode of pTyr recognition, which yet remains to be uncovered.

  8. Tyrosine phosphorylation of Eps15 is required for ligand-regulated, but not constitutive, endocytosis

    DEFF Research Database (Denmark)

    Confalonieri, S; Salcini, A E; Puri, C;

    2000-01-01

    for endocytosis of the epidermal growth factor receptor (EGFR), the prototypical ligand-inducible receptor, but not of the transferrin receptor (TfR), the prototypical constitutively internalized receptor. Eps15, an endocytic protein that is tyrosine phosphorylated by EGFR, is a candidate for such a function...... of the EGFR, but not of the TfR. A phosphopeptide, corresponding to the phosphorylated sequence of Eps15, inhibited EGFR endocytosis, suggesting that phosphotyrosine in Eps15 serves as a docking site for a phosphotyrosine binding protein. Thus, tyrosine phosphorylation of Eps15 represents the first molecular...... determinant, other than those contained in the receptors themselves, which is involved in the differential regulation of constitutive vs. regulated endocytosis....

  9. Engagement of CD81 induces ezrin tyrosine phosphorylation and its cellular redistribution with filamentous actin

    Energy Technology Data Exchange (ETDEWEB)

    Coffey, Greg P.; Rajapaksa, Ranjani; Liu, Raymond; Sharpe, Orr; Kuo, Chiung-Chi; Wald Krauss, Sharon; Sagi, Yael; Davis, R. Eric; Staudt, Louis M.; Sharman, Jeff P.; Robinson, William H.; Levy, Shoshana

    2009-06-09

    CD81 is a tetraspanin family member involved in diverse cellular interactions in the immune and nervous systems and in cell fusion events. However, the mechanism of action of CD81 and of other tetraspanins has not been defined. We reasoned that identifying signaling molecules downstream of CD81 would provide mechanistic clues. We engaged CD81 on the surface of Blymphocytes and identified the induced tyrosine-phosphorylated proteins by mass spectrometry. This analysis showed that the most prominent tyrosine phosphorylated protein was ezrin, an actin binding protein and a member of the ezrin-radixin-moesin family. We also found that CD81 engagement induces spleen tyrosine kinase (Syk) and that Syk was involved in tyrosine phosphorylation of ezrin. Ezrin colocalized with CD81 and F-actin upon stimulation and this association was disrupted when Syk activation was blocked. Taken together, these studies suggest a model in which CD81 interfaces between the plasma membrane and the cytoskeleton by activating Syk, mobilizing ezrin, and recruiting F-actin to facilitate cytoskeletal reorganization and cell signaling. This may be a mechanism explaining the pleiotropic effects induced in response to stimulating cells by anti-CD81 antibodies or by the hepatitis C virus, which uses this molecule as its key receptor.

  10. Evolutionary conservation of mammalian sperm proteins associates with overall, not tyrosine, phosphorylation in human spermatozoa.

    Science.gov (United States)

    Schumacher, Julia; Ramljak, Sanja; Asif, Abdul R; Schaffrath, Michael; Zischler, Hans; Herlyn, Holger

    2013-12-06

    We investigated possible associations between sequence evolution of mammalian sperm proteins and their phosphorylation status in humans. As a reference, spermatozoa from three normozoospermic men were analyzed combining two-dimensional gel electrophoresis, immunoblotting, and mass spectrometry. We identified 99 sperm proteins (thereof 42 newly described) and determined the phosphorylation status for most of them. Sequence evolution was studied across six mammalian species using nonsynonymous/synonymous rate ratios (dN/dS) and amino acid distances. Site-specific purifying selection was assessed employing average ratios of evolutionary rates at phosphorylated versus nonphosphorylated amino acids (α). According to our data, mammalian sperm proteins do not show statistically significant sequence conservation difference, no matter if the human ortholog is a phosphoprotein with or without tyrosine (Y) phosphorylation. In contrast, overall phosphorylation of human sperm proteins, i.e., phosphorylation at serine (S), threonine (T), and/or Y residues, associates with above-average conservation of sequences. Complementary investigations suggest that numerous protein-protein interactants constrain sequence evolution of sperm phosphoproteins. Although our findings reject a special relevance of Y phosphorylation for sperm functioning, they still indicate that overall phosphorylation substantially contributes to proper functioning of sperm proteins. Hence, phosphorylated sperm proteins might be considered as prime candidates for diagnosis and treatment of reduced male fertility.

  11. Phosphorylation impact on Spleen Tyrosine kinase conformation by Surface Enhanced Raman Spectroscopy

    Science.gov (United States)

    Cottat, Maximilien; Yasukuni, Ryohei; Homma, Yo; Lidgi-Guigui, Nathalie; Varin-Blank, Nadine; Lamy de La Chapelle, Marc; Le Roy, Christine

    2017-01-01

    Spleen Tyrosine Kinase (Syk) plays a crucial role in immune cell signalling and its altered expression or activation are involved in several cancers. Syk activity relies on its phosphorylation status and its multiple phosphorylation sites predict several Syk conformations. In this report, we characterized Syk structural changes according to its phosphorylation/activation status by Surface Enhanced Raman Spectroscopy (SERS). Unphosphorylated/inactive and phosphorylated/active Syk forms were produced into two expression systems with different phosphorylation capability. Syk forms were then analysed by SERS that was carried out in liquid condition on a lithographically designed gold nanocylinders array. Our study demonstrated that SERS signatures of the two Syk forms were drastically distinct, indicating structural modifications related to their phosphorylation status. By comparison with the atomic structure of the unphosphorylated Syk, the SERS peak assignments of the phosphorylated Syk nearest gold nanostructures revealed a differential interaction with the gold surface. We finally described a model for Syk conformational variations according to its phosphorylation status. In conclusion, SERS is an efficient technical approach for studying in vitro protein conformational changes and might be a powerful tool to determine protein functions in tumour cells.

  12. Tyrosine-1 and threonine-4 phosphorylation marks complete the RNA polymerase II CTD phospho-code.

    Science.gov (United States)

    Heidemann, Martin; Eick, Dirk

    2012-09-01

    Eukaryotic RNA polymerase II (RNAP II) has evolved an array of heptad repeats with the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 at the carboxy-terminal domain (CTD) of its largest subunit (Rpb1). Dynamic phosphorylation of Ser2, Ser5 and Ser7 residues orchestrates the binding of transcription and RNA processing factors to the transcription machinery. Recent studies show that the two remaining potential phosphorylation sites, tyrosine-1 and threonine-4, are phosphorylated as well and contribute to the previously proposed "CTD code". With the impairment of binding of CTD interacting factors, these novel phosphorylation marks add an accessory layer of regulation to the RNAP II transcription cycle.

  13. Smooth muscle length-dependent PI(4,5)P2 synthesis and paxillin tyrosine phosphorylation.

    Science.gov (United States)

    Sul, D; Baron, C B; Broome, R; Coburn, R F

    2001-07-01

    We studied effects of increasing the length of porcine trachealis muscle on 5.5 microM carbachol (CCh)-evoked phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] synthesis and other parameters of phosphatidylinositol (PI) turnover. PI(4,5)P2 resynthesis rates in muscle held at 1.0 optimal length (L(o)), measured over the first 6 min of CCh stimulation, were 140 +/- 12 and 227 +/- 14% of values found in muscle held at 0.5 L(o) and in free-floating muscle, respectively. Time-dependent changes in cellular masses of PI(4,5)P2, PI, and phosphatidic acid, and PI resynthesis rates, were also altered by the muscle length at which contraction occurred. In free-floating muscle, CCh did not evoke increases in tyrosine-phosphorylated paxillin (PTyr-paxillin), an index of beta1-integrin signaling; however, there were progressive increases in PTyr-paxillin in muscle held at 0.5 and 1.0 L(o) during contraction, which correlated with increases in PI(4,5)P2 synthesis rates. These data indicate that PI(4,5)P2 synthesis rates and other parameters of CCh-stimulated inositol phospholipid turnover are muscle length-dependent and provide evidence that supports the hypothesis that length-dependent beta1-integrin signals may exert control on CCh-activated PI(4,5)P2 synthesis.

  14. Btk29A-mediated tyrosine phosphorylation of armadillo/β-catenin promotes ring canal growth in Drosophila oogenesis.

    Science.gov (United States)

    Hamada-Kawaguchi, Noriko; Nishida, Yasuyoshi; Yamamoto, Daisuke

    2015-01-01

    Drosophila Btk29A is the ortholog of mammalian Btk, a Tec family nonreceptor tyrosine kinase whose deficit causes X-linked agammaglobulinemia in humans. The Btk29AficP mutation induces multiple abnormalities in oogenesis, including the growth arrest of ring canals, large intercellular bridges that allow the flow of cytoplasm carrying maternal products essential for embryonic development from the nurse cells to the oocyte during oogenesis. In this study, inactivation of Parcas, a negative regulator of Btk29A, was found to promote Btk29A accumulation on ring canals with a concomitant increase in the ring canal diameter, counteracting the Btk29AficP mutation. This mutation markedly reduced the accumulation of phosphotyrosine on ring canals and in the regions of cell-cell contact, where adhesion-supporting proteins such as DE-cadherin and β-catenin ortholog Armadillo (Arm) are located. Our previous in vitro and in vivo analyses revealed that Btk29A directly phosphorylates Arm, leading to its release from DE-cadherin. In the present experiments, immunohistological analysis revealed that phosphorylation at tyrosine 150 (Y150) and Y667 of Arm was diminished in Btk29AficP mutant ring canals. Overexpression of an Arm mutant with unphosphorylatable Y150 inhibited ring canal growth. Thus Btk29A-induced Y150 phosphorylation is necessary for the normal growth of ring canals. We suggest that the dissociation of tyrosine-phosphorylated Arm from DE-cadherin allows dynamic actin to reorganize, leading to ring canal expansion and cell shape changes during the course of oogenesis.

  15. Btk29A-mediated tyrosine phosphorylation of armadillo/β-catenin promotes ring canal growth in Drosophila oogenesis.

    Directory of Open Access Journals (Sweden)

    Noriko Hamada-Kawaguchi

    Full Text Available Drosophila Btk29A is the ortholog of mammalian Btk, a Tec family nonreceptor tyrosine kinase whose deficit causes X-linked agammaglobulinemia in humans. The Btk29AficP mutation induces multiple abnormalities in oogenesis, including the growth arrest of ring canals, large intercellular bridges that allow the flow of cytoplasm carrying maternal products essential for embryonic development from the nurse cells to the oocyte during oogenesis. In this study, inactivation of Parcas, a negative regulator of Btk29A, was found to promote Btk29A accumulation on ring canals with a concomitant increase in the ring canal diameter, counteracting the Btk29AficP mutation. This mutation markedly reduced the accumulation of phosphotyrosine on ring canals and in the regions of cell-cell contact, where adhesion-supporting proteins such as DE-cadherin and β-catenin ortholog Armadillo (Arm are located. Our previous in vitro and in vivo analyses revealed that Btk29A directly phosphorylates Arm, leading to its release from DE-cadherin. In the present experiments, immunohistological analysis revealed that phosphorylation at tyrosine 150 (Y150 and Y667 of Arm was diminished in Btk29AficP mutant ring canals. Overexpression of an Arm mutant with unphosphorylatable Y150 inhibited ring canal growth. Thus Btk29A-induced Y150 phosphorylation is necessary for the normal growth of ring canals. We suggest that the dissociation of tyrosine-phosphorylated Arm from DE-cadherin allows dynamic actin to reorganize, leading to ring canal expansion and cell shape changes during the course of oogenesis.

  16. FGFR4 and its novel splice form in myogenic cells: Interplay of glycosylation and tyrosine phosphorylation.

    Science.gov (United States)

    Kwiatkowski, Boguslaw A; Kirillova, Irina; Richard, Robert E; Israeli, David; Yablonka-Reuveni, Zipora

    2008-06-01

    The family of fibroblast growth factor receptors (FGFRs) is encoded by four distinct genes. FGFR1 and FGFR4 are both expressed during myogenesis, but whereas the function of FGFR1 in myoblast proliferation has been documented, the role of FGFR4 remains unknown. Here, we report on a new splice form of FGFR4 cloned from primary cultures of mouse satellite cells. This form, named FGFR4(-16), lacks the entire exon 16, resulting in a deletion within the FGFR kinase domain. Expression of FGFR4(-16) coincided with that of wild-type FGFR4 in all FGFR4-expressing tissues examined. Moreover, expression of both FGFR4 forms correlated with the onset of myogenic differentiation, as determined in mouse C2C12 cells and in the inducible myogenic system of 10T(1/2)-MyoD-ER cell line. Both endogenous and overexpressed forms of FGFR4 exhibited N-glycosylation. In contrast to FGFR1, induced homodimerization of FGFR4 proteins did not result in receptor tyrosine phosphorylation. Surprisingly, coexpression of FGFR4 forms and a chimeric FGFR1 protein resulted in FGFR4 tyrosine phosphorylation, raising the possibility that FGFR4 phosphorylation might be enabled by a heterologous tyrosine kinase activity. Collectively, the present study reveals novel characteristics of mouse FGFR4 gene products and delineates their expression pattern during myogenesis. Our findings suggest that FGFR4 functions in a distinctly different manner than the prototype FGFR during myogenic differentiation.

  17. Phosphorylation of cystic fibrosis transmembrane conductance regulator (CFTR) serine-511 by the combined action of tyrosine kinases and CK2: the implication of tyrosine-512 and phenylalanine-508.

    Science.gov (United States)

    Cesaro, Luca; Marin, Oriano; Venerando, Andrea; Donella-Deana, Arianna; Pinna, Lorenzo A

    2013-12-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) harbors, close to Phe-508, whose deletion is the commonest cause of cystic fibrosis, a conserved potential CK2 phospho-acceptor site (Ser511), which however is not susceptible to phosphorylation by CK2. To shed light on this apparent paradox, a series of systematically substituted peptides encompassing Ser511 were assayed for their ability to be phosphorylated. The main outcomes of our study are the following: (a) Tyr512 plays a prominent role as a negative determinant as its replacement by Ala restores Ser511 phosphorylation by CK2; (b) an even more pronounced phosphorylation of Ser511 is promoted if Tyr512 is replaced by phospho-tyrosine instead of alanine; (c) Tyr512 and, to a lesser extent, Tyr515 are readily phosphorylated by Lyn, a protein tyrosine kinase of the Src family, in a manner which is enhanced by the concomitant Phe508 deletion. Collectively taken, our data, in conjunction with the notion that Tyr515 is phosphorylated in vivo, disclose the possibility that CFTR Ser511 can be phosphorylated by the combined action of tyrosine kinases and CK2 and disclose a new mechanism of hierarchical phosphorylation where the role of the priming kinase is that of removing negative determinant(s).

  18. The tyrosine kinase receptor ROR1 is constitutively phosphorylated in chronic lymphocytic leukemia (CLL cells.

    Directory of Open Access Journals (Sweden)

    Mohammad Hojjat-Farsangi

    Full Text Available Phosphorylation of receptor tyrosine kinases (RTKs has a key role in cellular functions contributing to the malignant phenotype of tumor cells. We and others have previously demonstrated that RTK ROR1 is overexpressed in chronic lymphocytic leukemia (CLL. Silencing siRNA downregulated ROR1 and induced apoptosis of CLL cells. In the present study we analysed ROR1 isoforms and the phosphorylation pattern in CLL cells (n=38 applying western blot and flow-cytometry using anti-ROR1 antibodies and an anti-phospho-ROR1 antibody against the TK domain. Two major ROR1 bands with the size of 105 and 130 kDa respectively were identified, presumably representing unglycosylated (immature and glycosylated (mature ROR1 respectively as well as a 260 kDa band which may represent dimerized ROR1. A ROR1 band of 64 kDa that may correspond to a C-terminal fragment was also noted, present only in the nucleus. The 105 kDa ROR1 isoform was more frequently expressed in non-progressive as compared to progressive CLL patients (p=0.03. The 64, 105, 130 and 260 kDa bands were constitutively phosphorylated both at tyrosine and serine residues. Phosphorylation intensity of the mature (130 kDa isoform was significantly higher in progressive than in non-progressive disease (p<0.001. Incubation of CLL cells with a mouse anti-ROR1 KNG or an anti-ROR1 CRD mAb respectively induced dephosphorylation of ROR1 before entering apoptosis. In conclusion CLL cells expressed different isoforms of ROR1 which were constitutively phosphorylated. The mature, phosphorylated ROR1 isoform was associated with a progressive disease stage. Targeting ROR1 by mAbs induced specific dephosphorylation and leukemic cell death. ROR1 might be an interesting therapeutic target.

  19. Differential regulation of protein-tyrosine phosphatases by integrin alpha IIb beta 3 through cytoskeletal reorganization and tyrosine phosphorylation in human platelets.

    Science.gov (United States)

    Ezumi, Y; Takayama, H; Okuma, M

    1995-05-19

    The major platelet integrin alpha IIb beta 3 (glycoprotein IIb-IIIa) has been implicated in the regulation of tyrosine phosphorylation and dephosphorylation in activated platelets. To investigate the mechanisms of the alpha IIb beta 3-dependent tyrosine dephosphorylation, normal platelets or thrombasthenic platelets lacking alpha IIb beta 3 were stimulated with thrombin and fractionated into Triton X-100-soluble or -insoluble subcellular matrices. We then examined the kinetics of the tyrosine-phosphorylated proteins and distribution of protein-tyrosine phosphatases in these fractions and whole cell lysates. First, alpha IIb beta 3-dependent tyrosine dephosphorylation was recovered mainly in the cytoskeleton with similar kinetics to the whole cell lysate. Second, protein-tyrosine phosphatase (PTP) 1B and its cleaved 42-kDa form were associated with the cytoskeleton in an aggregation-dependent manner, whereas association of PTP1C with the cytoskeleton was regulated differentially both by thrombin stimulation and by alpha IIb beta 3-mediated aggregation. Several calpain inhibitors did not affect either tyrosine phosphorylation and dephosphorylation or relocation of PTP1B, but they did inhibit cleavage of PTP1B. Cytochalasin D blocked relocation of both PTP1B and PTP1C but not PTP1B cleavage. SH-PTP2 was distributed in the other fractions than the cytoskeleton and showed no relocation on thrombin stimulation. Finally, the cytoskeleton-associated PTP1C became tyrosine-phosphorylated in an alpha IIb beta 3-mediated aggregation-dependent manner. Thus, integrin alpha IIb beta 3 was involved differentially in the regulation of PTP1B and PTP1C.

  20. PSD-95 promotes Fyn-mediated tyrosine phosphorylation of the N-methyl-d-aspartate receptor subunit NR2A

    OpenAIRE

    1999-01-01

    Fyn, a member of the Src-family protein-tyrosine kinase (PTK), is implicated in learning and memory that involves N-methyl-d-aspartate (NMDA) receptor function. In this study, we examined how Fyn participates in synaptic plasticity by analyzing the physical and functional interaction between Fyn and NMDA receptors. Results showed that tyrosine phosphorylation of NR2A, one of the NMDA receptor subunits, was reduced in fyn-mutant mice. NR2A was tyrosine-phosphorylated in 293T cells when coexpre...

  1. Chlamydia trachomatis serovar L2 induces protein tyrosine phosphorylation during uptake by HeLa cells

    DEFF Research Database (Denmark)

    Birkelund, Svend; Johnsen, H; Christiansen, Gunna

    1994-01-01

    inactive. Attachment of EBs to host cells is medicated by a heparan sulfate-like glycosaminoglycan. Following attachment, the EB is internalized within a membrane-bound vesicle, and during the first 8 h of infection the vesicles are transported to a perinuclear location where they aggregate and fuse...... followed the movement of the EBs and the tyrosine phosphorylation of proteins by double-labelling immunofluorescence microscopy with the same monoclonal anti-phosphotyrosine antibody and a polyclonal antibody against the C. trachomatis L2 outer membrane complex. During the first 8 h of infection...

  2. Lemur tyrosine kinase-2 signalling regulates kinesin-1 light chain-2 phosphorylation and binding of Smad2 cargo.

    LENUS (Irish Health Repository)

    Manser, C

    2012-05-31

    A recent genome-wide association study identified the gene encoding lemur tyrosine kinase-2 (LMTK2) as a susceptibility gene for prostate cancer. The identified genetic alteration is within intron 9, but the mechanisms by which LMTK2 may impact upon prostate cancer are not clear because the functions of LMTK2 are poorly understood. Here, we show that LMTK2 regulates a known pathway that controls phosphorylation of kinesin-1 light chain-2 (KLC2) by glycogen synthase kinase-3β (GSK3β). KLC2 phosphorylation by GSK3β induces the release of cargo from KLC2. LMTK2 signals via protein phosphatase-1C (PP1C) to increase inhibitory phosphorylation of GSK3β on serine-9 that reduces KLC2 phosphorylation and promotes binding of the known KLC2 cargo Smad2. Smad2 signals to the nucleus in response to transforming growth factor-β (TGFβ) receptor stimulation and transport of Smad2 by kinesin-1 is required for this signalling. We show that small interfering RNA loss of LMTK2 not only reduces binding of Smad2 to KLC2, but also inhibits TGFβ-induced Smad2 signalling. Thus, LMTK2 may regulate the activity of kinesin-1 motor function and Smad2 signalling.

  3. Tyrosine phosphorylation of HSC70 and its interaction with RFC mediates methotrexate resistance in murine L1210 leukemia cells.

    Science.gov (United States)

    Liu, Tuoen; Singh, Ratan; Rios, Zechary; Bhushan, Alok; Li, Mengxiong; Sheridan, Peter P; Bearden, Shawn E; Lai, James C K; Agbenowu, Senyo; Cao, Shousong; Daniels, Christopher K

    2015-02-01

    We previously identified and characterized a 66-68 kDa membrane-associated, tyrosine phosphorylated protein in murine leukemia L1210 cells as HSC70 which is a methotrexate (MTX)-binding protein. In order to further characterize the functional role of HSC70 in regulating MTX resistance in L1210 cells, we first showed that HSC70 colocalizes and interacts with reduced folate carrier (RFC) in L1210 cells by confocal laser scanning microscopy and Duolink in situ proximity ligation assay. The tyrosine phosphorylation status of HSC70 found in the membrane fraction was different from the parental L1210/0 and cisplatin (CDDP)-MTX cross resistant L1210/DDP cells. In MTX-binding assays, HSC70 from L1210/DDP cells showed less affinity for MTX-agarose beads than that of L1210/0 cells. In addition, genistein (a tyrosine phosphorylation inhibitor) significantly enhanced the resistance of L1210/0 cells to MTX. Moreover, site-directed mutation studies indicated the importance of tyrosine phosphorylation of HSC70 in regulating its binding to MTX. These findings suggest that tyrosine phosphorylation of HSC70 regulates the transportation of MTX into the cells via the HSC70-RFC system and contributes to MTX resistance in L1210 cells.

  4. Stress-evoked tyrosine phosphorylation of signal regulatory protein α regulates behavioral immobility in the forced swim test.

    Science.gov (United States)

    Ohnishi, Hiroshi; Murata, Takaaki; Kusakari, Shinya; Hayashi, Yuriko; Takao, Keizo; Maruyama, Toshi; Ago, Yukio; Koda, Ken; Jin, Feng-Jie; Okawa, Katsuya; Oldenborg, Per-Arne; Okazawa, Hideki; Murata, Yoji; Furuya, Nobuhiko; Matsuda, Toshio; Miyakawa, Tsuyoshi; Matozaki, Takashi

    2010-08-01

    Severe stress induces changes in neuronal function that are implicated in stress-related disorders such as depression. The molecular mechanisms underlying the response of the brain to stress remain primarily unknown, however. Signal regulatory protein alpha (SIRPalpha) is an Ig-superfamily protein that undergoes tyrosine phosphorylation and binds the protein tyrosine phosphatase Shp2. Here we show that mice expressing a form of SIRPalpha that lacks most of the cytoplasmic region manifest prolonged immobility (depression-like behavior) in the forced swim (FS) test. FS stress induced marked tyrosine phosphorylation of SIRPalpha in the brain of wild-type mice through activation of Src family kinases. The SIRPalpha ligand CD47 was important for such SIRPalpha phosphorylation, and CD47-deficient mice also manifested prolonged immobility in the FS test. Moreover, FS stress-induced tyrosine phosphorylation of both the NR2B subunit of the NMDA subtype of glutamate receptor and the K+-channel subunit Kvbeta2 was regulated by SIRPalpha. Thus, tyrosine phosphorylation of SIRPalpha is important for regulation of depression-like behavior in the response of the brain to stress.

  5. ADHESION-INDUCE PROTEIN TYROSINE PHOSPHORY-LATION IS ASSOCIATED WITH INVASIVE AND METASTATIC POTENTIALS IN B16-BL6 MELANOMA CELLS

    Institute of Scientific and Technical Information of China (English)

    Yan Chunhong; Han Rui

    1998-01-01

    Objective: The interaction of cancer cell with extracellular matrix (ECM) happens as an earlier and specific event in the invasive and metastatic cascade. To explore the key element(s) in cancer metastasis and observe the cell-ECM interaction and its role. Methods:To interrupt the cell-ECM interaction by suppression of adhesion-induced protein tyrosine phosphorylation with protein tyrosine kinase inhibitor genistein in B16-B16mouse melanoma cells. Results: When B16-BL6 cells attached to Matrigel, a solubilized basement membrane preparation from EHS sarcoma, a 125 kDa protein increased its phosphotyrosine content dramatically. In contrast, when the cells were pretreated with 20μM or 30μM genistein for 3 days, it was revealed a less increase in the phosphotyrosine content of this 125 kDa protein inresponse to cell attachment to ECM was revealed with immunoblot analysis. Accompanied by the lower level of adhesion-induced protein tyrosine phosphorylation the genistein-treated cells exhibited a decrease in their capabilities of adhesion to Matrigel and invasion through reconstituted basement membrane. The potentials of and forming lung metastatic nodules were also shown to be decreased dramatically in these genistein-treated cells.Conclusion: It was suggested that protein tyrosine phosphorylation in cell-ECM interaction might be associated with invasive and metastatic potentials in cancer cells.

  6. ABT-869, a multitargeted receptor tyrosine kinase inhibitor: inhibition of FLT3 phosphorylation and signaling in acute myeloid leukemia.

    Science.gov (United States)

    Shankar, Deepa B; Li, Junling; Tapang, Paul; Owen McCall, J; Pease, Lori J; Dai, Yujia; Wei, Ru-Qi; Albert, Daniel H; Bouska, Jennifer J; Osterling, Donald J; Guo, Jun; Marcotte, Patrick A; Johnson, Eric F; Soni, Niru; Hartandi, Kresna; Michaelides, Michael R; Davidsen, Steven K; Priceman, Saul J; Chang, Jenny C; Rhodes, Katrin; Shah, Neil; Moore, Theodore B; Sakamoto, Kathleen M; Glaser, Keith B

    2007-04-15

    In 15% to 30% of patients with acute myeloid leukemia (AML), aberrant proliferation is a consequence of a juxtamembrane mutation in the FLT3 gene (FMS-like tyrosine kinase 3-internal tandem duplication [FLT3-ITD]), causing constitutive kinase activity. ABT-869 (a multitargeted receptor tyrosine kinase inhibitor) inhibited the phosphorylation of FLT3, STAT5, and ERK, as well as Pim-1 expression in MV-4-11 and MOLM-13 cells (IC(50) approximately 1-10 nM) harboring the FLT3-ITD. ABT-869 inhibited the proliferation of these cells (IC(50) = 4 and 6 nM, respectively) through the induction of apoptosis (increased sub-G(0)/G(1) phase, caspase activation, and PARP cleavage), whereas cells harboring wild-type (wt)-FLT3 were less sensitive. In normal human blood spiked with AML cells, ABT-869 inhibited phosphorylation of FLT3 (IC(50) approximately 100 nM), STAT5, and ERK, and decreased Pim-1 expression. In methylcellulose-based colony-forming assays, ABT-869 had no significant effect up to 1000 nM on normal hematopoietic progenitor cells, whereas in AML patient samples harboring both FLT3-ITD and wt-FLT3, ABT-869 inhibited colony formation (IC(50) = 100 and 1000 nM, respectively). ABT-869 dose-dependently inhibited MV-4-11 and MOLM-13 flank tumor growth, prevented tumor formation, regressed established MV-4-11 xenografts, and increased survival by 20 weeks in an MV-4-11 engraftment model. In tumors, ABT-869 inhibited FLT3 phosphorylation, induced apoptosis (transferase-mediated dUTP nick-end labeling [TUNEL]) and decreased proliferation (Ki67). ABT-869 is under clinical development for AML.

  7. Receptor tyrosine phosphatase R-PTP-alpha is tyrosine-phosphorylated and associated with the adaptor protein Grb2

    DEFF Research Database (Denmark)

    Su, J; Batzer, A; Sap, J

    1994-01-01

    Receptor tyrosine phosphatases (R-PTPases) have generated interest because of their suspected involvement in cellular signal transduction. The adaptor protein Grb2 has been implicated in coupling receptor tyrosine kinases to Ras. We report that a ubiquitous R-PTPase, R-PTP-alpha, is tyrosine-phos...

  8. The phosphorylated C-terminus of cAR1 plays a role in cell-type-specific gene expression and STATa tyrosine phosphorylation.

    Science.gov (United States)

    Briscoe, C; Moniakis, J; Kim, J Y; Brown, J M; Hereld, D; Devreotes, P N; Firtel, R A

    2001-05-01

    cAMP receptors mediate some signaling pathways via coupled heterotrimeric G proteins, while others are G-protein-independent. This latter class includes the activation of the transcription factors GBF and STATa. Within the cellular mounds formed by aggregation of Dictyostelium, micromolar levels of cAMP activate GBF function, thereby inducing the transcription of postaggregative genes and initiating multicellular differentiation. Activation of STATa, a regulator of culmination and ecmB expression, results from cAMP receptor-dependent tyrosine phosphorylation and nuclear localization, also in mound-stage cells. During mound development, the cAMP receptor cAR1 is in a low-affinity state and is phosphorylated on multiple serine residues in its C-terminus. This paper addresses possible roles of cAMP receptor phosphorylation in the cAMP-mediated stimulation of GBF activity, STATa tyrosine phosphorylation, and cell-type-specific gene expression. To accomplish this, we have expressed cAR1 mutants in a strain in which the endogenous cAMP receptors that mediate postaggregative gene expression in vivo are deleted. We then examined the ability of these cells to undergo morphogenesis and induce postaggregative and cell-type-specific gene expression and STATa tyrosine phosphorylation. Analysis of cAR1 mutants in which the C-terminal tail is deleted or the ligand-mediated phosphorylation sites are mutated suggests that the cAR1 C-terminus is not essential for GBF-mediated postaggregative gene expression or STATa tyrosine phosphorylation, but may play a role in regulating cell-type-specific gene expression and morphogenesis. A mutant receptor, in which the C-terminal tail is constitutively phosphorylated, exhibits constitutive activation of STATa tyrosine phosphorylation in pulsed cells in suspension and a significantly impaired ability to induce cell-type-specific gene expression. The constitutively phosphorylated receptor also exerts a partial dominant negative effect on

  9. IDENTIFICATION OF SPECIFIC PEPTIDE LIGANDS FOR B-LYMPHOMA CELL AND ITS EFFECT ON TYROSINE PHOSPHORYLATION AND CELL APOPTOSIS

    Institute of Scientific and Technical Information of China (English)

    宋良文; 马宪梅; 崔雪梅; 李扬; 王晓民

    2004-01-01

    Objective To search novel method for diagnosis and therapy of B-lymphoma, specific small molecular peptide ligands against binding site of tumor cells were screened and its effects on signal transduction and cell apoptosis were tested. Methods Specific peptide ligands were screened by binding with site of human B lymphoma cell (OC1LY8) using peptide-bead libraries. The identified peptides were characterized with responsible cells by rebinding test. The role of tyrosine phosphorylation of peptide ligand was tested by Western blot;and its apoptosispromoting role was observed by confocal fluorescent microscope. Results Specific peptide ligand was able to bind specifically to site on cell surface and enter into cytoplasm. Tetrameric peptide ligand was able to strongly trigger signal transduction resulting in tyrosine phosphorylation and cellular apoptosis in OC1LY8 cell line.Conclusion Screened peptide ligand can effectively bind with OC1LY8 cell, stimulate cellular tyrosine phosphorylation and induce cellular apoptosis.

  10. Myeloid differentiation factor-2 interacts with Lyn kinase and is tyrosine phosphorylated following lipopolysaccharide-induced activation of the TLR4 signaling pathway.

    Science.gov (United States)

    Gray, Pearl; Dagvadorj, Jargalsaikhan; Michelsen, Kathrin S; Brikos, Constantinos; Rentsendorj, Altan; Town, Terrence; Crother, Timothy R; Arditi, Moshe

    2011-10-15

    Stimulation with LPS induces tyrosine phosphorylation of numerous proteins involved in the TLR signaling pathway. In this study, we demonstrated that myeloid differentiation factor-2 (MD-2) is also tyrosine phosphorylated following LPS stimulation. LPS-induced tyrosine phosphorylation of MD-2 is specific; it is blocked by the tyrosine kinase inhibitor, herbimycin A, as well as by an inhibitor of endocytosis, cytochalasin D, suggesting that MD-2 phosphorylation occurs during trafficking of MD-2 and not on the cell surface. Furthermore, we identified two possible phospho-accepting tyrosine residues at positions 22 and 131. Mutant proteins in which these tyrosines were changed to phenylalanine had reduced phosphorylation and significantly diminished ability to activate NF-κB in response to LPS. In addition, MD-2 coprecipitated and colocalized with Lyn kinase, most likely in the endoplasmic reticulum. A Lyn-binding peptide inhibitor abolished MD-2 tyrosine phosphorylation, suggesting that Lyn is a likely candidate to be the kinase required for MD-2 tyrosine phosphorylation. Our study demonstrated that tyrosine phosphorylation of MD-2 is important for signaling following exposure to LPS and underscores the importance of this event in mediating an efficient and prompt immune response.

  11. Plasma adiponectin concentration is associated with skeletal muscle insulin receptor tyrosine phosphorylation, and low plasma concentration precedes a decrease in whole-body insulin sensitivity in humans

    DEFF Research Database (Denmark)

    Stefan, Norbert; Vozarova, Barbora; Funahashi, Tohru;

    2002-01-01

    -induced tyrosine phosphorylation of the insulin receptor (IR) and also increase whole-body insulin sensitivity. To further characterize the relationship between plasma adiponectin concentration and insulin sensitivity in humans, we examined 1) the cross-sectional association between plasma adiponectin......Adiponectin, the most abundant adipose-specific protein, has been found to be negatively associated with degree of adiposity and positively associated with insulin sensitivity in Pima Indians and other populations. Moreover, adiponectin administration to rodents has been shown to increase insulin...... concentration and skeletal muscle IR tyrosine phosphorylation and 2) the prospective effect of plasma adiponectin concentration at baseline on change in insulin sensitivity. Fasting plasma adiponectin concentration, body composition (hydrodensitometry or dual energy X-ray absorptiometry), insulin sensitivity...

  12. BAZ1B is dispensable for H2AX phosphorylation on Tyrosine 142 during spermatogenesis

    Directory of Open Access Journals (Sweden)

    Tyler J. Broering

    2015-07-01

    Full Text Available Meiosis is precisely regulated by the factors involved in DNA damage response in somatic cells. Among them, phosphorylation of H2AX on Serine 139 (γH2AX is an essential signal for the silencing of unsynapsed sex chromosomes during male meiosis. However, it remains unknown how adjacent H2AX phosphorylation on Tyrosine 142 (pTyr142 is regulated in meiosis. Here we investigate the meiotic functions of BAZ1B (WSTF, the only known Tyr142 kinase in somatic cells, using mice possessing a conditional deletion of BAZ1B. Although BAZ1B deletion causes ectopic γH2AX signals on synapsed autosomes during the early pachytene stage, BAZ1B is dispensable for fertility and critical events during spermatogenesis. BAZ1B deletion does not alter events on unsynapsed axes and pericentric heterochromatin formation. Furthermore, BAZ1B is dispensable for localization of the ATP-dependent chromatin remodeling protein SMARCA5 (SNF2h during spermatogenesis despite the complex formation between BAZ1B and SMARCA5, known as the WICH complex, in somatic cells. Notably, pTyr142 is regulated independently of BAZ1B and is dephosphorylated on the sex chromosomes during meiosis in contrast with the presence of adjacent γH2AX. Dephosphorylation of pTyr142 is regulated by MDC1, a binding partner of γH2AX. These results reveal the distinct regulation of two adjacent phosphorylation sites of H2AX during meiosis, and suggest that another kinase mediates Tyr142 phosphorylation.

  13. MD-2 interacts with Lyn kinase and is tyrosine phosphorylated following LPS-induced activation of the Toll-like receptor 4 signaling pathway

    Science.gov (United States)

    Gray, Pearl; Dagvadorj, Jargalsaikhan; Michelsen, Kathrin S.; Brikos, Constantinos; Rentsendorj, Altan; Town, Terrence; Crother, Timothy R.; Arditi, Moshe

    2011-01-01

    Stimulation with LPS induces tyrosine phosphorylation of numerous proteins involved in the TLR signaling pathway. In this study, we demonstrate that MD-2 is also tyrosine phosphorylated following LPS stimulation. LPS-induced tyrosine phosphorylation of MD-2 is specific, it is blocked by the tyrosine kinase inhibitor, Herbimycin A, and by an inhibitor of endocytosis, Cytochalsin-D, suggesting that MD-2 phosphorylation occurs during trafficking of MD2 and not on cell surface. Furthermore, we identify two possible phospho-accepting tyrosine residues at positions 22 and 131. Mutant proteins in which these tyrosines were changed to phenylalanine have reduced phosphorylation and significantly diminished ability to activate NF-κB in response to LPS. In addition, MD2 co-precipitates and colocalizes with Lyn kinase, most likely in ER. A Lyn-binding peptide inhibitor abolished MD2 tyrosine phosphorylation, suggesting that Lyn is a likely candidate to be the kinase required for MD-2 tyrosine phophorylation. Our study demonstrates that tyrosine phosphorylation of MD-2 is important for signaling following exposure to LPS and underscores the importance of this event in mediating an efficient and prompt immune response. PMID:21918188

  14. Inhibition of tyrosine phosphorylation of sperm flagellar proteins, outer dense fiber protein-2 and tektin-2, is associated with impaired motility during capacitation of hamster spermatozoa.

    Science.gov (United States)

    Mariappa, Daniel; Aladakatti, Ravindranath H; Dasari, Santosh K; Sreekumar, Arun; Wolkowicz, Michael; van der Hoorn, Frans; Seshagiri, Polani B

    2010-02-01

    In mammals, acquisition of fertilization competence of spermatozoa is dependent on the phenomenon of sperm capacitation. One of the critical molecular events of sperm capacitation is protein tyrosine phosphorylation. In a previous study, we demonstrated that a specific epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor, tyrphostin-A47, inhibited hamster sperm capacitation, accompanied by a reduced sperm protein tyrosine phosphorylation. Interestingly, a high percentage of tyrphostin-A47-treated spermatozoa exhibited circular motility, which was associated with a distinct hypo-tyrosine phosphorylation of flagellar proteins, predominantly of Mr 45,000-60,000. In this study, we provide evidence on the localization of capacitation-associated tyrosine-phosphorylated proteins to the nonmembranous, structural components of the sperm flagellum. Consistent with this, we show their ultrastructural localization in the outer dense fiber, axoneme, and fibrous sheath of spermatozoa. Among hypo-tyrosine phosphorylated major proteins of tyrphostin-A47-treated spermatozoa, we identified the 45 kDa protein as outer dense fiber protein-2 and the 51 kDa protein as tektin-2, components of the sperm outer dense fiber and axoneme, respectively. This study shows functional association of hypo-tyrosine-phosphorylation status of outer dense fiber protein-2 and tektin-2 with impaired flagellar bending of spermatozoa, following inhibition of EGFR-tyrosine kinase, thereby showing the critical importance of flagellar protein tyrosine phosphorylation during capacitation and hyperactivation of hamster spermatozoa.

  15. Phosphoproteomics identified Endofin, DCBLD2, and KIAA0582 as novel tyrosine phosphorylation targets of EGF signaling and Iressa in human cancer cells

    DEFF Research Database (Denmark)

    Chen, Yunhao; Low, Teck-Yew; Choong, Lee-Yee;

    2007-01-01

    and relatively quantified the tyrosine phosphorylation levels of 21 proteins between control and EGF-treated A431 human cervical cancer cells. Of these, Endofin, DCBLD2, and KIAA0582 were validated to be novel tyrosine-phosphorylation targets of EGF signaling and Iressa, a highly selective inhibitor of EGFR...

  16. Ursolic acid and rosiglitazone combination improves insulin sensitivity by increasing the skeletal muscle insulin-stimulated IRS-1 tyrosine phosphorylation in high-fat diet-fed C57BL/6J mice.

    Science.gov (United States)

    Sundaresan, Arjunan; Radhiga, Thangaiyan; Pugalendi, Kodukkur Viswanathan

    2016-06-01

    The aim of this present study was to investigate the effect of ursolic acid (UA) and rosiglitazone (RSG) on insulin sensitivity and proximal insulin signaling pathways in high-fat diet (HFD)-fed C57/BL/6J mice. Male C57BL/6J mice were fed either normal diet or HFD for 10 weeks, after which animals in each dietary group were divided into the following six groups (normal diet, normal diet plus UA and RSG, HFD alone, HFD plus UA, HFD plus RSG, and HFD plus UA and RSG) for the next 5 weeks. UA (5 mg/kg BW) and RSG (4 mg/kg BW) were administered as suspensions directly into the stomach using a gastric tube. The HFD diet elevated fasting plasma glucose, insulin, and homeostasis model assessment index. The expression of insulin receptor substrate (IRS)-1, phosphoinositide 3-kinase (PI3-kinase), Akt, and glucose transporter (GLUT) 4 were determined by Western blot analyses. The results demonstrated that combination treatment (UA/RSG) ameliorated HFD-induced glucose intolerance and insulin resistance by improving the homeostatic model assessment (HOMA) index. Further, combination treatment (UA/RSG) stimulated the IRS-1, PI3-kinase, Akt, and GLUT 4 translocation. These results strongly suggest that combination treatment (UA/RSG) activates IRS-PI3-kinase-Akt-dependent signaling pathways to induce GLUT 4 translocation and increases the expression of insulin receptor to improve glucose intolerance.

  17. Plasma adiponectin concentration is associated with skeletal muscle insulin receptor tyrosine phosphorylation, and low plasma concentration precedes a decrease in whole-body insulin sensitivity in humans.

    Science.gov (United States)

    Stefan, Norbert; Vozarova, Barbora; Funahashi, Tohru; Matsuzawa, Yuji; Weyer, Christian; Lindsay, Robert S; Youngren, Jack F; Havel, Peter J; Pratley, Richard E; Bogardus, Clifton; Tataranni, P Antonio

    2002-06-01

    Adiponectin, the most abundant adipose-specific protein, has been found to be negatively associated with degree of adiposity and positively associated with insulin sensitivity in Pima Indians and other populations. Moreover, adiponectin administration to rodents has been shown to increase insulin-induced tyrosine phosphorylation of the insulin receptor (IR) and also increase whole-body insulin sensitivity. To further characterize the relationship between plasma adiponectin concentration and insulin sensitivity in humans, we examined 1) the cross-sectional association between plasma adiponectin concentration and skeletal muscle IR tyrosine phosphorylation and 2) the prospective effect of plasma adiponectin concentration at baseline on change in insulin sensitivity. Fasting plasma adiponectin concentration, body composition (hydrodensitometry or dual energy X-ray absorptiometry), insulin sensitivity (insulin-stimulated glucose disposal, hyperinsulinemic clamp), and glucose tolerance (75-g oral glucose tolerance test) were measured in 55 Pima Indians (47 men and 8 women, aged 31 +/- 8 years, body fat 29 +/- 8% [mean +/- SD]; 50 with normal glucose tolerance, 3 with impaired glucose tolerance, and 2 with diabetes). Group 1 (19 subjects) underwent skeletal muscle biopsies for the measurement of basal and insulin-stimulated tyrosine phosphorylation of the IR (stimulated by 100 nmol/l insulin). The fold increase after insulin stimulation was calculated as the ratio between maximal and basal phosphorylation. Group 2 (38 subjects) had follow-up measurements of insulin-stimulated glucose disposal. Cross-sectionally, plasma adiponectin concentration was positively associated with insulin-stimulated glucose disposal (r = 0.58, P < 0.0001) and negatively associated with percent body fat (r = -0.62, P < 0.0001) in the whole group. In group 1 plasma adiponectin was negatively associated with the basal (r = -0.65, P = 0.003) and positively associated with the fold increase in IR

  18. Activation of the TASK-2 channel after cell swelling is dependent on tyrosine phosphorylation

    DEFF Research Database (Denmark)

    Kirkegaard, Signe Skyum; Lambert, Ian Henry; Gammeltoft, Steen;

    2010-01-01

    (K,vol) indicating that inhibition of RVD reflects inhibition of TASK-2. We find that in EATC the tyrosine kinase inhibitor genistein inhibits RVD by 90%, and that the tyrosine phosphatase inhibitor monoperoxo(picolinato)-oxo-vanadate(V) [mpV(pic)] shifted the volume set point for inactivation of the channel...... to a lower cell volume. Swelling-activated K(+) efflux was impaired by genistein and the Src kinase family inhibitor 4-amino-5-(4-chloro-phenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) and enhanced by the tyrosine phosphatase inhibitor mpV(pic). With the use of the TASK-2 inhibitor clofilium......, it is demonstrated that mpV(pic) increased the volume-sensitive part of the K(+) efflux 1.3 times. To exclude K(+) efflux via a KCl cotransporter, cellular Cl(-) was substituted with NO(3)(-). Also under these conditions K(+) efflux was completely blocked by genistein. Thus tyrosine kinases seem to be involved...

  19. PROLACTIN-INDUCED TYROSINE PHOSPHORYLATION, ACTIVATION AND RECEPTOR ASSOCIATION OF FOCAL ADHESION KINASE (FAK) IN MAMMARY EPITHELIAL CELLS

    Science.gov (United States)

    Prolactin-Induced Tyrosine Phosphorylation, Activation and ReceptorAssociation of Focal Adhesion Kinase (FAK) in Mammary Epithelial Cells. Suzanne E. Fenton1 and Lewis G. Sheffield2. 1U.S. Environmental ProtectionAgency, MD-72, Research Triangle Park, NC 27711, and

  20. L-tyrosine administration increases acetylcholinesterase activity in rats.

    Science.gov (United States)

    Ferreira, Gabriela K; Carvalho-Silva, Milena; Gonçalves, Cinara L; Vieira, Júlia S; Scaini, Giselli; Ghedim, Fernando V; Deroza, Pedro F; Zugno, Alexandra I; Pereira, Talita C B; Oliveira, Giovanna M T; Kist, Luiza W; Bogo, Maurício R; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L

    2012-12-01

    Tyrosinemia is a rare genetic disease caused by mutations on genes that codify enzymes responsible for tyrosine metabolism. Considering that tyrosinemics patients usually present symptoms associated with central nervous system alterations that ranges from slight decreases in intelligence to severe mental retardation, we decided to investigate whether acute and chronic administration of L-tyrosine in rats would affect acetylcholinesterase mRNA expression and enzymatic activity during their development. In our acute protocol, Wistar rats (10 and 30 days old) were killed one hour after a single intraperitoneal L-tyrosine injection (500 mg/kg) or saline. Chronic administration consisted of L-tyrosine (500 mg/kg) or saline injections 12 h apart for 24 days in Wistar rats (7 days old) and rats were killed 12 h after last injection. Acetylcholinesterase activity was measured by Ellman's method and acetylcholinesterase expression was carried out by a semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) assay. We observed that acute (10 and 30 days old rats) and chronic L-tyrosine administration increased acetylcholinesterase activity in serum and all tested brain areas (hippocampus, striatum and cerebral cortex) when compared to control group. Moreover, there was a significant decrease in mRNA levels of acetylcholinesterase in hippocampus was observed after acute protocol (10 and 30 days old rats) and in striatum after chronic protocol. In case these alterations also occur in the brain of the patients, our results may explain, at least in part, the neurological sequelae associated with high plasma concentrations of tyrosine seen in patients affected by tyrosinemia type II.

  1. Effects of all-trans-retinoic acid on the expression and tyrosine phosphorylation of gap junction connexin 43 in HeLa cell line and its significance

    Institute of Scientific and Technical Information of China (English)

    CHEN Bi-liang; MA Xiang-dong; XIN Xiao-yan; WANG De-tang; WANG Chun-mei

    2001-01-01

    Objective: To investigate the signal transduction mechanism of gap junctional genes connexin43 in human cervical carcinogenesis. Methods: Human cervical carcinoma cell line HeLa was cultured and treated by all-trans-retinoic acid (ATRA). Flow cytometer (FCM) was employed to detect expression of Cx43 protein in HeLa cells. Fluo-3 AM loading and laser scanning confocal microscope (LSCM) were used to measure the concentrations of intracellular calcium ([Ca2+]i) in HeLa cells. Phosphorylation on tyrosine of connexin43 protein was examined by immunoblot. Results: The positive rate of Cx43 protein increased from 1.9% in untreated HeLa cells to 26.3% in RA-treated HeLa cells as shown by FCM. [Ca2+]i was 35.73 nmol/L in untreated HeLa cells which was increased to 58.16 nmol/L in ATRA-treated cells.Immunoblot showed that ATRA-treated HeLa cells had phosphorylation on tyrosine in Cx43 protein whereas untreated cells had not. Conclusions: Carcinogenesis of human cervical carcinoma is related with the abnormal expression of cx43gene and disorder of signal transduction manifested as the decrease of [Ca2+]i and post-translation phosphorylation on tyrosine of Cx43 protein. The anti-tumor effect of ATRA in HeLa cells might be due to the up-regulation of cx43 gene and its signal transduction pathway.

  2. Stimulation of receptor protein-tyrosine phosphatase alpha activity and phosphorylation by phorbol ester

    DEFF Research Database (Denmark)

    den Hertog, J; Sap, J; Pals, C E

    1995-01-01

    with the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate, a direct activator of protein kinase C, induced a rapid, transient increase in RPTP alpha activity due to a 2- to 3-fold increase in substrate affinity. A transient increase in RPTP alpha serine phosphorylation was concomitant with the enhanced activity....... Tryptic phosphopeptide mapping of RPTP alpha demonstrated that phosphorylation of three tryptic peptides was enhanced in response to phorbol ester. In vitro dephosphorylation of RPTP alpha from phorbol ester-treated cells reduced RPTP alpha activity to prestimulation levels, indicating that enhanced...

  3. Extracellular signal-regulated kinases (ERKs) pathway and reactive oxygen species regulate tyrosine phosphorylation in capacitating boar spermatozoa.

    Science.gov (United States)

    Awda, Basim J; Buhr, Mary M

    2010-11-01

    The extracellular signal-regulated kinase (ERK) family of the mitogen-activated protein kinase (MAPK) pathway is identified for the first time in boar sperm and is associated with capacitation and tyrosine phosphorylation (tyr-P). Reactive oxygen species (ROS) modulate this signal transduction. Western immunoblotting detected the ERK pathway components RAF1, MEK1/2, and ERK1/2 in extracts from fresh boar spermatozoa and determined that their phosphoprotein profiles differed in a capacitation-dependent fashion. Capacitation was accompanied by appearance of two new ERKs (158 and 161 kDa) and disappearance of others. Capacitation was verified with increased tyr-P, which was inhibited by a 30-min pre-exposure of fresh boar sperm to a xanthine/xanthine oxidase ROS-generating system prior to the capacitating incubation; ROS pre-exposure also affected the phosphorylation of RAF1, MEK1/2, and ERK1/2. Preincubating sperm with inhibitors of the ERK components with or without the ROS generator affected subsequent capacitation. Inhibiting ERK1/2 inhibited tyr-P of capacitated boar spermatozoa proteins of 172, 97, and 66 kDa (P ≤ 0.04); with ROS, this inhibition increased (P influence through crosstalk with different pathways. ROS affect RAF1, MEK1/2, and ERK1/2 and could influence the sequential events of boar sperm capacitation.

  4. Tyrosine phosphorylation of 3BP2 is indispensable for the interaction with VAV3 in chicken DT40 cells

    Energy Technology Data Exchange (ETDEWEB)

    Chihara, Kazuyasu [Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-1193 (Japan); Kimura, Yukihiro [Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Honjoh, Chisato [Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Third Department of Internal Medicine, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Yamauchi, Shota; Takeuchi, Kenji [Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-1193 (Japan); Sada, Kiyonao, E-mail: ksada@u-fukui.ac.jp [Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-1193 (Japan)

    2014-03-10

    Adaptor protein c-Abl SH3 domain-binding protein-2 (3BP2) is known to play regulatory roles in immunoreceptor-mediated signal transduction. We have previously demonstrated that Tyr{sup 174}, Tyr{sup 183} and Tyr{sup 446} in mouse 3BP2 are predominantly phosphorylated by Syk, and the phosphorylation of Tyr{sup 183} and the Src homology 2 (SH2) domain of mouse 3BP2 are critical for B cell receptor (BCR)-induced activation of nuclear factor of activated T cells (NFAT) in human B cells. In this report, we have shown that Syk, but not Abl family protein-tyrosine kinases, is critical for BCR-mediated tyrosine phosphorylation of 3BP2 in chicken DT40 cells. Mutational analysis showed that Tyr{sup 174}, Tyr{sup 183} and Tyr{sup 426} of chicken 3BP2 are the major phosphorylation sites by Syk and the SH2 domain of 3BP2 is critical for tyrosine phosphorylation. In addition, phosphorylation of Tyr{sup 426} is required for the inducible interaction with the SH2 domain of Vav3. Moreover, the expression of the mutant form of 3BP2 in which Tyr{sup 426} was substituted to Phe resulted in the reduction in BCR-mediated Rac1 activation, when compared with the case of wild-type. Altogether, these data suggest that 3BP2 is involved in the activation of Rac1 through the regulation of Vav3 by Syk-dependent phosphorylation of Tyr{sup 426} following BCR stimulation. - Highlights: • 3BP2 is phosphorylated by Syk, but not Abl family kinases in BCR signaling. • Tyr183 and Tyr426 in chicken 3BP2 are the major phosphorylation sites by Syk. • The SH2 domain of 3BP2 is critical for tyrosine phosphorylation of 3BP2. • Phosphorylation of Tyr426 in 3BP2 is required for the inducible binding with Vav3. • 3BP2 is involved in the regulation of BCR-mediated Rac1 activation.

  5. Hypoxia- or PDGF-BB-dependent paxillin tyrosine phosphorylation in pulmonary hypertension is reversed by HIF-1α depletion or imatinib treatment.

    Science.gov (United States)

    Veith, C; Zakrzewicz, D; Dahal, B K; Bálint, Z; Murmann, K; Wygrecka, M; Seeger, W; Schermuly, R T; Weissmann, N; Kwapiszewska, G

    2014-12-01

    Chronic exposure to hypoxia induces a pronounced remodelling of the pulmonary vasculature leading to pulmonary hypertension (PH). The remodelling process also entails increased proliferation and decreased apoptosis of pulmonary arterial smooth muscle cells (PASMC), processes regulated by the cytoskeletal protein paxillin. In this study, we aimed to examine the molecular mechanisms leading to deregulation of paxillin in PH. We detected a time-dependent increase in paxillin tyrosine 31 (Y31) and 118 (Y118) phosphorylation following hypoxic exposure (1 % O2) or platelet-derived growth factor (PDGF)-BB stimulation of primary human PASMC. In addition, both, hypoxia- and PDGF-BB increased the nuclear localisation of phospho-paxillin Y31 as indicated by immunofluorescence staining in human PASMC. Elevated paxillin tyrosine phosphorylation in human PASMC was attenuated by hypoxia-inducible factor (HIF)-1α depletion or by treatment with the PDGF-BB receptor antagonist, imatinib. Moreover, we observed elevated paxillin Y31 and Y118 phosphorylation in the pulmonary vasculature of chronic hypoxic mice (21 days, 10 % O2) which was reversible by imatinib-treatment. PDGF-BB-dependent PASMC proliferation was regulated via the paxillin-Erk1/2-cyclin D1 pathway. In conclusion, we suggest paxillin up-regulation and phosphorylation as an important mechanism of vascular remodelling underlying pulmonary hypertension.

  6. Phosphatase of regenerating liver-3 directly interacts with integrin β1 and regulates its phosphorylation at tyrosine 783

    Directory of Open Access Journals (Sweden)

    Tian Wei

    2012-10-01

    Full Text Available Abstract Background Phosphatase of regenerating liver-3 (PRL-3 or PTP4A3 has been implicated in controlling cancer cell proliferation, motility, metastasis, and angiogenesis. Deregulated expression of PRL-3 is highly correlated with cancer progression and predicts poor survival. Although PRL-3 was categorized as a tyrosine phosphatase, its cellular substrates remain largely unknown. Results We demonstrated that PRL-3 interacts with integrin β1 in cancer cells. Recombinant PRL-3 associates with the intracellular domain of integrin β1 in vitro. Silencing of integrin α1 enhances PRL-3-integrin β1 interaction. Furthermore, PRL-3 diminishes tyrosine phosphorylation of integrin β1 in vitro and in vivo. With site-specific anti-phosphotyrosine antibodies against residues in the intracellular domain of integrin β1, tyrosine-783, but not tyrosine-795, is shown to be dephosphorylated by PRL-3 in a catalytic activity-dependant manner. Phosphorylation of Y783 is potentiated by ablation of PRL-3 or by treatment with a chemical inhibitor of PRL-3. Conversely, depletion of integrin α1 decreases the phosphorylation of this site. Conclusions Our results revealed a direct interaction between PRL-3 and integrin β1 and characterized Y783 of integrin β1 as a bona fide substrate of PRL-3, which is negatively regulated by integrin α1.

  7. Receptor-type Protein Tyrosine Phosphatase β Regulates Met Phosphorylation and Function in Head and Neck Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Yiru Xu

    2012-11-01

    Full Text Available Head and neck squamous cell carcinoma (HNSCC is the sixth most common cancer and has a high rate of mortality. Emerging evidence indicates that hepatocyte growth factor receptor (or Met pathway plays a pivotal role in HNSCC metastasis and resistance to chemotherapy. Met function is dependent on tyrosine phosphorylation that is under direct control by receptor-type protein tyrosine phosphatase β (RPTP-β. We report here that RPTP-β expression is significantly downregulated in HNSCC cells derived from metastatic tumors compared to subject-matched cells from primary tumors. Knockdown of endogenous RPTP-β in HNSCC cells from primary tumor potentiated Met tyrosine phosphorylation, downstream mitogen-activated protein (MAP kinase pathway activation, cell migration, and invasion. Conversely, restoration of RPTP-β expression in cells from matched metastatic tumor decreased Met tyrosine phosphorylation and downstream functions. Furthermore, we observed that six of eight HNSCC tumors had reduced levels of RPTP-β protein in comparison with normal oral tissues. Collectively, the results demonstrate the importance of RPTP-β in tumor biology of HNSCC through direct dephosphorylation of Met and regulation of downstream signal transduction pathways. Reduced RPTP-β levels, with or without Met overexpression, could promote Met activation in HNSCC tumors.

  8. PDGF-BB-mediated activation of p42(MAPK) is independent of PDGF beta-receptor tyrosine phosphorylation.

    Science.gov (United States)

    Cartel, N J; Liu, J; Wang, J; Post, M

    2001-10-01

    Herein, we investigated the activity of mitogen-activated protein kinase (MAPK), a key component of downstream signaling events, which is activated subsequent to platelet-derived growth factor (PDGF)-BB stimulation. Specifically, p42(MAPK) activity peaked 60 min after addition of PDGF-BB, declined thereafter, and was determined not to be a direct or necessary component of glycosaminoglycan (GAG) synthesis. PDGF-BB also activated MAPK kinase 2 (MAPKK2) but had no effect on MAPKK1 and Raf-1 activity. Chemical inhibition of Janus kinase, phosphatidylinositol 3-kinase, Src kinase, or tyrosine phosphorylation inhibition of the PDGF beta-receptor (PDGFR-beta) did not abrogate PDGF-BB-induced p42(MAPK) activation or its threonine or tyrosine phosphorylation. A dominant negative cytoplasmic receptor for hyaluronan-mediated motility variant 4 (RHAMMv4), a regulator of MAPKK-MAPK interaction and activation, did not inhibit PDGF-BB-induced p42(MAPK) activation nor did a construct expressing PDGFR-beta with cytoplasmic tyrosines mutated to phenylalanine. However, overexpression of a dominant negative PDGFR-beta lacking the cytoplasmic signaling domain abrogated p42(MAPK) activity. These results suggest that PDGF-BB-mediated activation of p42(MAPK) requires the PDGFR-beta but is independent of its tyrosine phosphorylation.

  9. Phosphorylated-tyrosine based pseudobioaffinity adsorbent for the purification of immunoglobulin G.

    Science.gov (United States)

    Pavan, Gisele Luiza; Lazzarotto Bresolin, Igor Tadeu; Grespan, Angélica; Alves Bueno, Sonia Maria

    2017-05-01

    The present study evaluated the phosphorylated-tyrosine (P-Tyr) based pseudobioaffinity adsorbent for the purification of human immunoglobulin G (IgG). P-Tyr was selected as a ligand to mimic the natural interactions that occur between the immunoreceptor tyrosine-based activation motif and the IgG. The ligand was coupled to bisoxirane-activated agarose gel and the effect of buffer system, pH, and conductivity was performed to elucidate the nature of IgG-P-Tyr interactions. P-Tyr-agarose was able to purify IgG from human plasma solution in HEPES buffer at pH 7.0 exhibiting a purification factor of 9.1 with IgG purity of 91% (based on ELISA analysis of albumin, transferrin, and immunoglobulins A, G, and M). The evaluation of different functional groups of P-Tyr on the adsorption of human IgG indicated the predominance of electrostatic interactions with phosphate groups, although the contributions of aromatic and carboxylic groups also play a role. The thermodynamic parameters (ΔH°, ΔS°, ΔG°) for IgG adsorption onto P-Tyr-agarose were determined from the temperature dependence. The maximum IgG binding capacity at 20°C was 273.51±12.63mgg(-1) and the dissociation constant value of the complex IgG-P-Tyr was in the order of 10(-5)molL(-1) indicating low-affinity. Copyright © 2017. Published by Elsevier B.V.

  10. Phosphorylation of actin-binding protein (ABP-280; filamin) by tyrosine kinase p56lck modulates actin filament cross-linking.

    Science.gov (United States)

    Pal Sharma, C; Goldmann, Wolfgang H

    2004-01-01

    Actin-binding protein (ABP-280; filamin) is a phosphoprotein present in the periphery of the cytoplasm where it can cross-link actin filaments, associate with lipid membranes, and bind to membrane surface receptors. Given its function and localization in the cell, we decided to investigate the possibility of whether it serves as substrate for p56lck, a lymphocyte-specific member of the src family of protein tyrosine kinases associated with cell surface glycoproteins. The interaction of p56lck with membrane glycoproteins is important for cell development and functional activation. Here, we show that purified p56lck interacts and catalyzes in vitro kinase reactions. Tyrosine phosphorylation by p56lck is restricted to a single peptide of labeled ABP-280 shown by protease digest. The addition of phorbol ester to cells results in the inhibition of phosphorylation of ABP-280 by p56lck. These results show a decrease in phosphorylation suggesting conformationally induced regulation. Dynamic light scattering confirmed increased actin filament cross-linking due to phosphorylation of ABP-280 by p56lck.

  11. Ligand-induced tyrosine phosphorylation of cysteinyl leukotriene receptor 1 triggers internalization and signaling in intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Ladan Parhamifar

    Full Text Available BACKGROUND: Leukotriene D(4 (LTD(4 belongs to the bioactive lipid group known as eicosanoids and has implications in pathological processes such as inflammation and cancer. Leukotriene D(4 exerts its effects mainly through two different G-protein-coupled receptors, CysLT(1 and CysLT(2. The high affinity LTD(4 receptor CysLT(1R exhibits tumor-promoting properties by triggering cell proliferation, survival, and migration in intestinal epithelial cells. In addition, increased expression and nuclear localization of CysLT(1R correlates with a poorer prognosis for patients with colon cancer. METHODOLOGY/PRINCIPAL FINDINGS: Using a proximity ligation assay and immunoprecipitation, this study showed that endogenous CysLT(1R formed heterodimers with its counter-receptor CysLT(2R under basal conditions and that LTD(4 triggers reduced dimerization of CysLTRs in intestinal epithelial cells. This effect was dependent upon a parallel LTD(4-induced increase in CysLT(1R tyrosine phosphorylation. Leukotriene D(4 also led to elevated internalization of CysLT(1Rs from the plasma membrane and a simultaneous increase at the nucleus. Using sucrose, a clathrin endocytic inhibitor, dominant-negative constructs, and siRNA against arrestin-3, we suggest that a clathrin-, arrestin-3, and Rab-5-dependent process mediated the internalization of CysLT(1R. Altering the CysLT(1R internalization process at either the clathrin or the arrestin-3 stage led to disruption of LTD(4-induced Erk1/2 activation and up-regulation of COX-2 mRNA levels. CONCLUSIONS/SIGNIFICANCE: Our data suggests that upon ligand activation, CysLT(1R is tyrosine-phosphorylated and released from heterodimers with CysLT(2R and, subsequently, internalizes from the plasma membrane to the nuclear membrane in a clathrin-, arrestin-3-, and Rab-5-dependent manner, thus, enabling Erk1/2 signaling and downstream transcription of the COX-2 gene.

  12. Novel method demonstrates differential ligand activation and phosphatase-mediated deactivation of insulin receptor tyrosine-specific phosphorylation.

    Science.gov (United States)

    Cieniewicz, Anne M; Cooper, Philip R; McGehee, Jennifer; Lingham, Russell B; Kihm, Anthony J

    2016-08-01

    Insulin receptor signaling is a complex cascade leading to a multitude of intracellular functional responses. Three natural ligands, insulin, IGF1 and IGF2, are each capable of binding with different affinities to the insulin receptor, and result in variable biological responses. However, it is likely these affinity differences alone cannot completely explain the myriad of diverse cellular outcomes. Ligand binding initiates activation of a signaling cascade resulting in phosphorylation of the IR itself and other intracellular proteins. The direct catalytic activity along with the temporally coordinated assembly of signaling proteins is critical for insulin receptor signaling. We hypothesized that determining differential phosphorylation among individual tyrosine sites activated by ligand binding or dephosphorylation by phosphatases could provide valuable insight into insulin receptor signaling. Here, we present a sensitive, novel immunoassay adapted from Meso Scale Discovery technology to quantitatively measure changes in site-specific phosphorylation levels on endogenous insulin receptors from HuH7 cells. We identified insulin receptor phosphorylation patterns generated upon differential ligand activation and phosphatase-mediated deactivation. The data demonstrate that insulin, IGF1 and IGF2 elicit different insulin receptor phosphorylation kinetics and potencies that translate to downstream signaling. Furthermore, we show that insulin receptor deactivation, regulated by tyrosine phosphatases, occurs distinctively across specific tyrosine residues. In summary, we present a novel, quantitative and high-throughput assay that has uncovered differential ligand activation and site-specific deactivation of the insulin receptor. These results may help elucidate some of the insulin signaling mechanisms, discriminate ligand activity and contribute to a better understanding of insulin receptor signaling. We propose this methodology as a powerful approach to characterize

  13. Diesel exhaust increases EGFR and phosphorylated C-terminal Tyr 1173 in the bronchial epithelium

    Directory of Open Access Journals (Sweden)

    Wilson Susan J

    2008-05-01

    Full Text Available Abstract Background Epidemiological studies have demonstrated adverse health effects of environmental pollution. Diesel exhaust (DE is a major contributor to particulate matter pollution. DE exposure has been shown to induce a pronounced inflammatory response in the airways, together with an enhanced epithelial expression of cytokines such as IL-8, Gro-α, IL-13 and activation of redox sensitive transcription factors (NFκB, AP-1, and MAP kinases (p38, JNK. The aim of the present investigation was to elucidate the involvement of the epidermal growth factor receptor (EGFR signalling pathway in the epithelial response to DE in-vivo. Results Immunohistochemical staining was used to quantify the expression of the EGFR, phosphorylated Tyrosine residues, MEK and ERK in the bronchial epithelium of archived biopsies from 15 healthy subjects following exposure to DE (PM10, 300 μg/m3 and air. DE induced a significant increases in the expression of EGFR (p = 0.004 and phosphorylated C-terminal Tyr 1173 (p = 0.02. Other investigated EGFR tyrosine residues, Src related tyrosine (Tyr 416, MEK and ERK pathway were not changed significantly by DE. Conclusion Exposure to DE (PM10, 300 μg/m3 caused enhanced EGFR expression and phosphorylation of the tyrosine residue (Tyr 1173 which is in accordance with the previously demonstrated activation of the JNK, AP-1, p38 MAPK and NFkB pathways and associated downstream signalling and cytokine production. No effects were seen on the MEK and ERK pathway suggesting that at the investigated time point (6 hours post exposure there was no proliferative/differentiation signalling in the bronchial epithelium. The present findings suggest a key role for EGFR in the bronchial response to diesel exhaust.

  14. Dopamine pathology in schizophrenia: Analysis of total and phosphorylated tyrosine hydroxylase in the substantia nigra

    Directory of Open Access Journals (Sweden)

    EMMA ePEREZ-COSTAS

    2012-04-01

    Full Text Available Despite the importance of dopamine neurotransmission in schizophrenia, very few studies have addressed anomalies in the mesencephalic dopaminergic neurons of the substantia nigra/ventral tegmental area (SN/VTA. Tyrosine hydroxylase (TH is the rate-limiting enzyme for the production of dopamine, and a possible contributor to the anomalies in the dopaminergic neurotransmission observed in schizophrenia.In this study, we had three objectives: 1 Compare TH expression (mRNA and protein in the SN/VTA of schizophrenia and control postmortem samples. 2 Assess the effect of antipsychotic medications on the expression of TH in the SN/VTA. 3 Examine possible regional differences in TH expression anomalies within the SN/VTA.To achieve these objectives three independent studies were conducted: 1 A pilot study to compare TH mRNA and TH protein levels in the SN/VTA of postmortem samples from schizophrenia and controls. 2 A chronic treatment study was performed in rodents to assess the effect of antipsychotic medications in TH protein levels in the SN/VTA. 3 A second postmortem study was performed to assess TH and phosphorylated TH protein levels in two types of samples: schizophrenia and control samples containing the entire rostro-caudal extent of the SN/VTA, and schizophrenia and control samples containing only mid-caudal regions of the SN/VTA.Our studies showed impairment in the dopaminergic system in schizophrenia that could be mainly (or exclusively located in the rostral region of the SN/VTA. Our studies also showed that TH protein levels were significantly abnormal in schizophrenia, while mRNA expression levels were not affected, indicating that TH pathology in this region may occur posttranscriptionally. Lastly, our antipsychotic animal treatment study showed that TH protein levels were not significantly affected by antipsychotic treatment, indicating that these anomalies are an intrinsic pathology rather than a treatment effect.

  15. In-depth Qualitative and Quantitative Profiling of Tyrosine Phosphorylation Using a Combination of Phosphopeptide Immunoaffinity Purification and Stable Isotope Dimethyl Labeling*

    Science.gov (United States)

    Boersema, Paul J.; Foong, Leong Yan; Ding, Vanessa M. Y.; Lemeer, Simone; van Breukelen, Bas; Philp, Robin; Boekhorst, Jos; Snel, Berend; den Hertog, Jeroen; Choo, Andre B. H.; Heck, Albert J. R.

    2010-01-01

    Several mass spectrometry-based assays have emerged for the quantitative profiling of cellular tyrosine phosphorylation. Ideally, these methods should reveal the exact sites of tyrosine phosphorylation, be quantitative, and not be cost-prohibitive. The latter is often an issue as typically several milligrams of (stable isotope-labeled) starting protein material are required to enable the detection of low abundance phosphotyrosine peptides. Here, we adopted and refined a peptidecentric immunoaffinity purification approach for the quantitative analysis of tyrosine phosphorylation by combining it with a cost-effective stable isotope dimethyl labeling method. We were able to identify by mass spectrometry, using just two LC-MS/MS runs, more than 1100 unique non-redundant phosphopeptides in HeLa cells from about 4 mg of starting material without requiring any further affinity enrichment as close to 80% of the identified peptides were tyrosine phosphorylated peptides. Stable isotope dimethyl labeling could be incorporated prior to the immunoaffinity purification, even for the large quantities (mg) of peptide material used, enabling the quantification of differences in tyrosine phosphorylation upon pervanadate treatment or epidermal growth factor stimulation. Analysis of the epidermal growth factor-stimulated HeLa cells, a frequently used model system for tyrosine phosphorylation, resulted in the quantification of 73 regulated unique phosphotyrosine peptides. The quantitative data were found to be exceptionally consistent with the literature, evidencing that such a targeted quantitative phosphoproteomics approach can provide reproducible results. In general, the combination of immunoaffinity purification of tyrosine phosphorylated peptides with large scale stable isotope dimethyl labeling provides a cost-effective approach that can alleviate variation in sample preparation and analysis as samples can be combined early on. Using this approach, a rather complete qualitative

  16. Tyrosine phosphorylation of the N-Methyl-D-Aspartate receptor 2B subunit in spinal cord contributes to remifentanil-induced postoperative hyperalgesia: the preventive effect of ketamine

    Directory of Open Access Journals (Sweden)

    Cui Songqin

    2009-12-01

    Full Text Available Abstract Background Experimental and clinical studies showed that intraoperative infusionof remifentanil has been associated with postoperative hyperalgesia. Previous reports suggested that spinal N-methyl-D-aspartate (NMDA receptors may contribute to the development and maintenance of opioid-induced hyperalgesia. In the present study, we used a rat model of postoperative pain to investigate the role of tyrosine phosphorylation of NMDA receptor 2B (NR2B subunit in spinal cord in the postoperative hyperalgesia induced by remifentanil and the intervention of pretreatment with ketamine. Results Intraoperative infusion of remifentanil (0.04 mg/kg, subcutaneous significantly enhanced mechanical allodynia and thermal hyperalgesia induced by the plantar incision during the postoperative period (each lasting between 2 h and 48 h, which was attenuated by pretreatment with ketamine (10 mg/kg, subcutaneous. Correlated with the pain behavior changes, immunocytochemical and western blotting experiments in our study revealed that there was a marked increase in NR2B phosphorylation at Tyr1472 in the superficial dorsal horn after intraoperative infusion of remifentanil, which was attenuated by pretreatment with ketamine. Conclusions This study provides direct evidence that tyrosine phosphorylation of the NR2B at Tyr1472 in spinal dosal horn contributes to postoperative hyperalgesia induced by remifentanil and supports the potential therapeutic value of ketamine for improving postoperative hyperalgesia induced by remifentanil.

  17. Tyrosine-phosphorylated Galectin-3 Protein Is Resistant to Prostate-specific Antigen (PSA) Cleavage*

    Science.gov (United States)

    Balan, Vitaly; Nangia-Makker, Pratima; Kho, Dhong Hyo; Wang, Yi; Raz, Avraham

    2012-01-01

    Galectin-3 is a chimeric carbohydrate-binding protein, which interacts with cell surface carbohydrate-containing molecules and extracellular matrix glycoproteins and has been implicated in various biological processes such as cell growth, angiogenesis, motility, and metastasis. It is expressed in a wide range of tumor cells and is associated with tumor progression. The functions of galectin-3 are dependent on its localization and post-translational modifications such as cleavage and phosphorylation. Recently, we showed that galectin-3 Tyr-107 is phosphorylated by c-Abl; concomitantly, it was also shown that galectin-3 can be cleaved at this site by prostate-specific antigen (PSA), a chymotrypsin-like serine protease, after Tyr-107, resulting in loss of galectin-3 multivalency while preserving its carbohydrate binding activity. Galectin-3 is largely a monomer in solution but may form a homodimer by self-association through its carbohydrate recognition domain, whereas, in the presence of a ligand, galectin-3 polymerizes up to pentamers utilizing its N-terminal domain. Oligomerization is a unique feature of secreted galectin-3, which allows its function by forming ordered galectin-glycan structures, i.e. lattices, on the cell surface or through direct engagement of specific cell surface glycoconjugates by traditional ligand-receptor binding. We questioned whether Tyr-107 phosphorylation by c-Abl affects galectin-3 cleavage by PSA. The data suggest a role for galectin-3 in prostate cells associated with increased activity of c-Abl kinase and loss of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) activity. In addition, the ratio of phosphorylated/dephosphorylated galectin-3 might be used as a complementary value to that of PSA for prognosis of prostate cancer and a novel therapeutic target for the treatment of prostate cancer. PMID:22232548

  18. Tyrosine Phosphorylation Based Homo-dimerization of Arabidopsis RACK1A Proteins Regulates Oxidative Stress Signaling Pathways in Yeast.

    Science.gov (United States)

    Sabila, Mercy; Kundu, Nabanita; Smalls, Deana; Ullah, Hemayet

    2016-01-01

    Scaffold proteins are known as important cellular regulators that can interact with multiple proteins to modulate diverse signal transduction pathways. RACK1 (Receptor for Activated C Kinase 1) is a WD-40 type scaffold protein, conserved in eukaryotes, from Chlamydymonas to plants and humans, plays regulatory roles in diverse signal transduction and stress response pathways. RACK1 in humans has been implicated in myriads of neuropathological diseases including Alzheimer and alcohol addictions. Model plant Arabidopsis thaliana genome maintains three different RACK1 genes termed RACK1A, RACK1B, and RACK1C with a very high (85-93%) sequence identity among them. Loss of function mutation in Arabidopsis indicates that RACK1 proteins regulate diverse environmental stress signaling pathways including drought and salt stress resistance pathway. Recently deduced crystal structure of Arabidopsis RACK1A- very first among all of the RACK1 proteins, indicates that it can potentially be regulated by post-translational modifications, like tyrosine phosphorylations and sumoylation at key residues. Here we show evidence that RACK1A proteins, depending on diverse environmental stresses, are tyrosine phosphorylated. Utilizing site-directed mutagenesis of key tyrosine residues, it is found that tyrosine phosphorylation can potentially dictate the homo-dimerization of RACK1A proteins. The homo-dimerized RACK1A proteins play a role in providing UV-B induced oxidative stress resistance. It is proposed that RACK1A proteins ability to function as scaffold protein may potentially be regulated by the homo-dimerized RACK1A proteins to mediate diverse stress signaling pathways.

  19. Acute exercise modifies titin phosphorylation and increases cardiac myofilament stiffness

    Directory of Open Access Journals (Sweden)

    Anna Eliane Müller

    2014-11-01

    Full Text Available Titin-based myofilament stiffness is largely modulated by phosphorylation of its elastic I-band regions N2-Bus (decreases passive stiffness, PT and PEVK (increases PT. Here, we tested the hypothesis that acute exercise changes titin phosphorylation and modifies myofilament stiffness. Adult rats were exercised on a treadmill for 15min, untrained animals served as controls. Titin phosphorylation was determined by Western blot analysis using phosphospecific antibodies to Ser4099 and Ser4010 in the N2-Bus region (PKG and PKA-dependent. respectively, and to Ser11878 and Ser 12022 in the PEVK region (PKCα and CaMKIIδ-dependent, respectively. Passive tension was determined by step-wise stretching of isolated skinned cardiomyocytes to sarcomere length ranging from 1.9-2.4µm and showed a significantly increased PT from exercised samples, compared to controls. In cardiac samples titin N2-Bus phosphorylation was significantly decreased by 40% at Ser4099, however, no significant changes were observed at Ser4010. PEVK phosphorylation at Ser11878 was significantly increased, which is probably mediated by the observed exercise-induced increase in PKCα activity. Interestingly, relative phosphorylation of Ser12022 was substantially decreased in the exercised samples. Surprisingly, in skeletal samples from acutely exercised animals we detected a significant decrease in PEVK phosphorylation at Ser11878 and an increase in Ser12022 phosphorylation; however, PKCα activity remained unchanged. In summary, our data show that a single exercise bout of 15 min affects titin domain phosphorylation and titin-based myocyte stiffness with obviously divergent effects in cardiac and skeletal muscle tissues. The observed changes in titin stiffness could play an important role in adapting the passive and active properties of the myocardium and the skeletal muscle to increased physical activity.

  20. Development of brain injury in mice by Angiostrongylus cantonensis infection is associated with the induction of transcription factor NF-kappaB, nuclear protooncogenes, and protein tyrosine phosphorylation.

    Science.gov (United States)

    Lee, H H; Shiow, S J; Chung, H C; Huang, C Y; Lin, C L; Hsu, J D; Shyu, L Y; Wang, C J

    2000-07-01

    Eosinophilic meningitis or meningoencephalitis caused by Angiostrongylus cantonensis is endemic to the Pacific area of Asia, especially Taiwan, Thailand, and Japan. Although eosinophilia is an important clinical manifestation of A. cantonensis infection, the role of eosinophils in the progress of the infection remains to be elucidated. In this experiment, we showed that A. cantonensis-caused eosinoplia and inflammation might lead to the induction of NF-kappaB and protooncogene expression via activation of the tyrosine phosphorylation signal pathway. After mice were infected daily with 30 third-stage larvae of A. cantonensis by oral adminstration for 6 weeks, no significant differences PKC-alpha, MEK-1, ERK-2, JNK, and p38 protein expression were found between the control and infected mice. However, the protein tyrosine phosphorylation levels, NF-kappaB, and iNOS protein products were significantly increased by 3.5-, 3.3-, and 6.3-fold, respectively, after 3 weeks of A. cantonensis infection. The same pattern was found for c-Myc, c-Jun, and c-Fos proteins, which were elevated by 3.2-, 2.3-, and 3.4-fold, respectively, compared to control animals after 3 weeks. The expression potency of these proteins started increasing in week 1, reaching maximal induction in week 3, and then declining in week 5 after A. cantonensis infection. Another consistent result was noted in the pathological observations, including eosinophilia, leukocyte infiltration, granulomatous reactions, and time responses in brain tissues of infected mice. These data suggest that the development of brain injury by eosinophlia of A. cantonensis infection is associated with NF-kappaB and/or nuclear protooncogenes expression, which is activated by the tyrosine phosphorylation pathway.

  1. Effect of incorporation of additives in tris-based egg yolk extender on buffalo (Bubalus bubalis) sperm tyrosine phosphorylation during cryopreservation.

    Science.gov (United States)

    Kumar, R; Atreja, S K

    2012-06-01

    Phosphorylation of tyrosine residues on sperm protein is a known indicator of capacitation and a major intracellular signalling event. There is evidence that sperm cryopreservation promotes tyrosine phosphorylation and is associated with reduced fertility of spermatozoa. Under this study, cryoprotective role of different additives namely taurine, trehalose, catalase and 4-bromophenacyl bromide on buffalo sperm quality was evaluated. Buffalo semen was cryopreserved in tris-based egg yolk extender supplemented with additives like taurine (50 mm) or trehalose (100 mm) or 4-bromophenacyl bromide (200 μm) or catalase (100 U/ml) and used for assessment of levels of tyrosine phosphorylation in frozen-thawed spermatozoa. The results obtained were compared with the level of protein tyrosine phosphorylation of semen cryopreserved in tris-based egg yolk extender without additives. Proteins were extracted from a total number of nine ejaculates from three individual buffalo bulls chosen at random and analysed for tyrosine phospho-proteins using SDS-PAGE followed by immunoblotting. Monoclonal anti-phosphotyrosine antibody (Clone pT-154) was used as primary antibody followed by treatment with HRP-conjugated secondary antibody. Signals were detected on X-ray film using chemiluminescence. Nine proteins (p20, p30, p32, p38, p49, p56, p59, p72 and p86) were found to be tyrosine phosphorylated in cryopreserved spermatozoa. Supplementation of additives significantly (p<0.05) reduced the level of protein tyrosine phosphorylation in spermatozoa. Moreover, this study showed improved (p<0.05) post-thaw motility, viability and membrane integrity of spermatozoa on addition of these additives. The results obtained clearly indicate reduced level of capacitation like changes on supplementation of additives in terms of protein tyrosine phosphorylation.

  2. Role of Protein Phosphorylation and Tyrosine Phosphatases in the Adrenal Regulation of Steroid Synthesis and Mitochondrial Function.

    Science.gov (United States)

    Paz, Cristina; Cornejo Maciel, Fabiana; Gorostizaga, Alejandra; Castillo, Ana F; Mori Sequeiros García, M Mercedes; Maloberti, Paula M; Orlando, Ulises D; Mele, Pablo G; Poderoso, Cecilia; Podesta, Ernesto J

    2016-01-01

    In adrenocortical cells, adrenocorticotropin (ACTH) promotes the activation of several protein kinases. The action of these kinases is linked to steroid production, mainly through steroidogenic acute regulatory protein (StAR), whose expression and activity are dependent on protein phosphorylation events at genomic and non-genomic levels. Hormone-dependent mitochondrial dynamics and cell proliferation are functions also associated with protein kinases. On the other hand, protein tyrosine dephosphorylation is an additional component of the ACTH signaling pathway, which involves the "classical" protein tyrosine phosphatases (PTPs), such as Src homology domain (SH) 2-containing PTP (SHP2c), and members of the MAP kinase phosphatase (MKP) family, such as MKP-1. PTPs are rapidly activated by posttranslational mechanisms and participate in hormone-stimulated steroid production. In this process, the SHP2 tyrosine phosphatase plays a crucial role in a mechanism that includes an acyl-CoA synthetase-4 (Acsl4), arachidonic acid (AA) release and StAR induction. In contrast, MKPs in steroidogenic cells have a role in the turn-off of the hormonal signal in ERK-dependent processes such as steroid synthesis and, perhaps, cell proliferation. This review analyzes the participation of these tyrosine phosphates in the ACTH signaling pathway and the action of kinases and phosphatases in the regulation of mitochondrial dynamics and steroid production. In addition, the participation of kinases and phosphatases in the signal cascade triggered by different stimuli in other steroidogenic tissues is also compared to adrenocortical cell/ACTH and discussed.

  3. Thrombopoietin, c-Mpl ligand, induces tyrosine phosphorylation of Tyk2, JAK2, and STAT3, and enhances agonists-induced aggregation in platelets in vitro.

    Science.gov (United States)

    Ezumi, Y; Takayama, H; Okuma, M

    1995-10-23

    We investigated in vitro effects of recombinant human thrombopoietin (TPO), or c-Mpl ligand, on human platelets. TPO induced rapid dose-dependent tyrosine phosphorylation of several proteins. We identified Janus tyrosine kinases, Tyk2 and JAK2, and a member of STAT (signal transducers and activators of transcription) family, STAT3, as the tyrosine-phosphorylated proteins in response to TPO. TPO by itself did not cause platelet aggregation and shape change, but augmented ADP-induced aggregation in a dose-dependent manner. Acetylsalicylic acid inhibited the secondary aggregation enhanced by TPO, but not the TPO-induced potentiation of the primary aggregation. TPO modulates platelet activation possibly through protein-tyrosine phosphorylation.

  4. Dynamic quantification of intracellular calcium and protein tyrosine phosphorylation in cryopreserved boar spermatozoa during short-time incubation with oviductal fluid.

    Science.gov (United States)

    Kumaresan, A; González, R; Johannisson, A; Berqvist, A-S

    2014-11-01

    Freshly ejaculated boar spermatozoa require several hours of exposure to capacitating conditions to undergo capacitation. We hypothesized that cryopreserved boar spermatozoa might elicit a capacitation response after a relatively shorter time of exposure to capacitating conditions. Washed, frozen-thawed boar spermatozoa were incubated separately with pre-ovulatory isthmic oviductal fluid (EODF), post-ovulatory ODF (MODF), capacitation medium (CM), and noncapacitating medium (NCM) for 60 minutes. Aliquots of spermatozoa were taken at 0, 5, 15, 30, and 60 minutes during incubation and sperm kinematics, intracellular calcium [Ca2(+)]i content, and protein tyrosine phosphorylation (PTP) were studied. The proportion of motile spermatozoa increased significantly after 5 minutes of incubation with EODF. A similar increase was not observed in the other groups. During the initial 5 minutes of incubation, the proportion of spermatozoa with high [Ca(2+)]i decreased significantly in all four groups. The proportion of tyrosine phosphorylated spermatozoa increased from 6.49 ± 1.93% to 15.42 ± 3.58% and 18.41 ± 1.57% in EODF and MODF groups, respectively, at 5 minutes of incubation. Neither CM nor NCM elicited any immediate effect on PTP in spermatozoa. There was a positive and significant correlation between [Ca(2+)]i and sperm motility (P = 0.009). It may be concluded that frozen-thawed boar spermatozoa undergo capacitation-associated changes after a relatively short exposure to EODF, and there are some subpopulations of spermatozoa that undergo PTP despite possessing low [Ca(2+)]i.

  5. Effect of sex sorting on CTC staining, actin cytoskeleton and tyrosine phosphorylation in bull and boar spermatozoa.

    Science.gov (United States)

    Bucci, D; Galeati, G; Tamanini, C; Vallorani, C; Rodriguez-Gil, J E; Spinaci, M

    2012-04-01

    Sperm sorting is a useful technology that permits sex preselection. It presents some troubles because of low fertility after the process. The main aim of this work was to analyze the putative existence of capacitation-like changes in both boar and bull sperm subjected to sex sorting that could lead to a detriment of semen quality. The parameters used were CTC staining patterns, actin cytoskeleton organization and tyrosine phosphorylation patterns; the last two were determined by both western blotting and immunofluorescence. Sex sorted spermatozoa were compared with fresh, in vitro capacitated and in vitro acrosome reacted sperm. In both species, sex sorted sperm showed a CTC staining pattern similar to that observed after in vitro capacitation. The actin pattern distribution after sperm sorting also tended to be similar to that observed after in vitro capacitation, but this effect was more pronounced in bull than in boar spermatozoa. However, actin expression analysis through western blot did not show any change in either species. The tyrosine phosphorylation pattern in boar sperm was practically unaltered after the sex sorting process, but in bulls about 40% of spermatozoa had a staining pattern indicative of capacitation. Additionally, western blotting analysis evidenced some differences in the expression of protein tyrosine phosphorylation among fresh, capacitated, acrosome reacted and sex sorted sperm cells in both species. Our results indicate that not all the sex-sorted-related modifications of the studied parameters were similar to those occurring after "in vitro" capacitation, thus suggesting that sex sorting-induced alterations of sperm function and structure do not necessarily indicate the achievement of the capacitated status of sorted sperm.

  6. Coarse-grained molecular simulation of epidermal growth factor receptor protein tyrosine kinase multi-site self-phosphorylation.

    Directory of Open Access Journals (Sweden)

    John G Koland

    2014-01-01

    Full Text Available Upon the ligand-dependent dimerization of the epidermal growth factor receptor (EGFR, the intrinsic protein tyrosine kinase (PTK activity of one receptor monomer is activated, and the dimeric receptor undergoes self-phosphorylation at any of eight candidate phosphorylation sites (P-sites in either of the two C-terminal (CT domains. While the structures of the extracellular ligand binding and intracellular PTK domains are known, that of the ∼225-amino acid CT domain is not, presumably because it is disordered. Receptor phosphorylation on CT domain P-sites is critical in signaling because of the binding of specific signaling effector molecules to individual phosphorylated P-sites. To investigate how the combination of conventional substrate recognition and the unique topological factors involved in the CT domain self-phosphorylation reaction lead to selectivity in P-site phosphorylation, we performed coarse-grained molecular simulations of the P-site/catalytic site binding reactions that precede EGFR self-phosphorylation events. Our results indicate that self-phosphorylation of the dimeric EGFR, although generally believed to occur in trans, may well occur with a similar efficiency in cis, with the P-sites of both receptor monomers being phosphorylated to a similar extent. An exception was the case of the most kinase-proximal P-site-992, the catalytic site binding of which occurred exclusively in cis via an intramolecular reaction. We discovered that the in cis interaction of P-site-992 with the catalytic site was facilitated by a cleft between the N-terminal and C-terminal lobes of the PTK domain that allows the short CT domain sequence tethering P-site-992 to the PTK core to reach the catalytic site. Our work provides several new mechanistic insights into the EGFR self-phosphorylation reaction, and demonstrates the potential of coarse-grained molecular simulation approaches for investigating the complexities of self-phosphorylation in

  7. Mapping of p140Cap phosphorylation sites: the EPLYA and EGLYA motifs have a key role in tyrosine phosphorylation and Csk binding, and are substrates of the Abl kinase.

    Directory of Open Access Journals (Sweden)

    Daniele Repetto

    Full Text Available Protein phosphorylation tightly regulates specific binding of effector proteins that control many diverse biological functions of cells (e. g. signaling, migration and proliferation. p140Cap is an adaptor protein, specifically expressed in brain, testis and epithelial cells, that undergoes phosphorylation and tunes its interactions with other regulatory molecules via post-translation modification. In this work, using mass spectrometry, we found that p140Cap is in vivo phosphorylated on tyrosine (Y within the peptide GEGLpYADPYGLLHEGR (from now on referred to as EGLYA as well as on three serine residues. Consistently, EGLYA has the highest score of in silico prediction of p140Cap phosphorylation. To further investigate the p140Cap function, we performed site specific mutagenesis on tyrosines inserted in EGLYA and EPLYA, a second sequence with the same highest score of phosphorylation. The mutant protein, in which both EPLYA/EGLYA tyrosines were converted to phenylalanine, was no longer tyrosine phosphorylated, despite the presence of other tyrosine residues in p140Cap sequence. Moreover, this mutant lost its ability to bind the C-terminal Src kinase (Csk, previously shown to interact with p140Cap by Far Western analysis. In addition, we found that in vitro and in HEK-293 cells, the Abelson kinase is the major kinase involved in p140Cap tyrosine phosphorylation on the EPLYA and EGLYA sequences. Overall, these data represent an original attempt to in vivo characterise phosphorylated residues of p140Cap. Elucidating the function of p140Cap will provide novel insights into its biological activity not only in normal cells, but also in tumors.

  8. Mapping of p140Cap phosphorylation sites: the EPLYA and EGLYA motifs have a key role in tyrosine phosphorylation and Csk binding, and are substrates of the Abl kinase.

    Science.gov (United States)

    Repetto, Daniele; Aramu, Simona; Boeri Erba, Elisabetta; Sharma, Nanaocha; Grasso, Silvia; Russo, Isabella; Jensen, Ole N; Cabodi, Sara; Turco, Emilia; Di Stefano, Paola; Defilippi, Paola

    2013-01-01

    Protein phosphorylation tightly regulates specific binding of effector proteins that control many diverse biological functions of cells (e. g. signaling, migration and proliferation). p140Cap is an adaptor protein, specifically expressed in brain, testis and epithelial cells, that undergoes phosphorylation and tunes its interactions with other regulatory molecules via post-translation modification. In this work, using mass spectrometry, we found that p140Cap is in vivo phosphorylated on tyrosine (Y) within the peptide GEGLpYADPYGLLHEGR (from now on referred to as EGLYA) as well as on three serine residues. Consistently, EGLYA has the highest score of in silico prediction of p140Cap phosphorylation. To further investigate the p140Cap function, we performed site specific mutagenesis on tyrosines inserted in EGLYA and EPLYA, a second sequence with the same highest score of phosphorylation. The mutant protein, in which both EPLYA/EGLYA tyrosines were converted to phenylalanine, was no longer tyrosine phosphorylated, despite the presence of other tyrosine residues in p140Cap sequence. Moreover, this mutant lost its ability to bind the C-terminal Src kinase (Csk), previously shown to interact with p140Cap by Far Western analysis. In addition, we found that in vitro and in HEK-293 cells, the Abelson kinase is the major kinase involved in p140Cap tyrosine phosphorylation on the EPLYA and EGLYA sequences. Overall, these data represent an original attempt to in vivo characterise phosphorylated residues of p140Cap. Elucidating the function of p140Cap will provide novel insights into its biological activity not only in normal cells, but also in tumors.

  9. PTP-S2, a nuclear tyrosine phosphatase, is phosphorylated and excluded from condensed chromosomes during mitosis

    Indian Academy of Sciences (India)

    Sundaram Nambirajan; Vegesna Radha; Shubhangi Kamatkar; Ghanshyam Swarup

    2000-03-01

    PTP-S2 is a tyrosine specific protein phosphatase that binds to DNA and is localized to the nucleus in association with chromatin. It plays a role in the regulation of cell proliferation. Here we show that the subcellular distribution of this protein changes during cell division. While PTP-S2 was localized exclusively to the nucleus in interphase cells, during metaphase and anaphase it was distributed throughout the cytoplasm and excluded from condensed chromosomes. At telophase PTP-S2 began to associate with chromosomes and at cytokinesis it was associated with chromatin in the newly formed nucleus. It was hyperphosphorylated and showed retarded mobility in cells arrested in metaphase. In vitro experiments showed that it was phosphorylated by CK2 resulting in mobility shift. Using a deletion mutant we found that CK2 phosphorylated PTP-S2 in the C-terminal non-catalytic domain. A heparin sensitive kinase from mitotic cell extracts phosphorylated PTP-S2 resulting in mobility shift. These results are consistent with the suggestion that during metaphase PTP-S2 is phosphorylated (possibly by CK2 or a CK2-like enzyme), resulting in its dissociation from chromatin.

  10. Serine/threonine/tyrosine phosphorylation regulates DNA binding of bacterial transcriptional regulators

    DEFF Research Database (Denmark)

    Kalantari, Aida; Derouiche, Abderahmane; Shi, Lei;

    2015-01-01

    Reversible phosphorylation of bacterial transcriptional regulators (TRs) belonging to the family of two-component systems (TCSs) is a well-established mechanism for regulating gene expression. Recent evidence points to the fact that reversible phosphorylation of bacterial TRs on other types...

  11. Cryopreservation-induced alterations in protein tyrosine phosphorylation of spermatozoa from different portions of the boar ejaculate.

    Science.gov (United States)

    Kumaresan, A; Siqueira, A P; Hossain, M S; Bergqvist, A S

    2011-12-01

    Previous studies have shown that boar sperm quality after cryopreservation differs depending on the ejaculate fraction used and that spermatozoa contained in the first 10mL (P1) of the sperm-rich fraction (SRF) show better cryosurvival than those in the SRF-P1. Since protein tyrosine phosphorylation (PTP) in spermatozoa is related with the tolerance of spermatozoa to frozen storage and cryocapacitation, we assessed the dynamics of cryopreservation-induced PTP and intracellular calcium ([Ca(2+)]i) in spermatozoa, using flow cytometry, from P1 and SRF-P1 of the boar ejaculate at different stages of cryopreservation. Sperm kinetics, assessed using a computer-assisted semen analyzer, did not differ between P1 and SRF-P1 during cryopreservation but the decrease in sperm velocity during cryopreservation was significant (Psperm PTP. The proportion of spermatozoa with PTP did not differ significantly between portions of the boar ejaculate. However at any given step during cryopreservation the percentage of spermatozoa with PTP was comparatively higher in SRF-P1 than P1. A 32kDa tyrosine phosphorylated protein, associated with capacitation, appeared after cooling suggesting that cooling induces capacitation-like changes in boar spermatozoa. In conclusion, the study has shown that the cryopreservation process induced PTP in spermatozoa and their proportions were similar between portions of SRF.

  12. Phosphorylation at tyrosine 114 of Proliferating Cell Nuclear Antigen (PCNA) is required for adipogenesis in response to high fat diet

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Yuan-Hung; Ho, Po-Chun; Chen, Min-Shan; Hugo, Eric; Ben-Jonathan, Nira [Department of Cancer Biology, University of Cincinnati College of Medicine, 3125 Eden Avenue, Cincinnati, OH 45267-0521 (United States); Department of Environmental Health, University of Cincinnati College of Medicine, 3223 Eden Avenue, Kettering Laboratory, Cincinnati, OH 45267-0056 (United States); Wang, Shao-Chun, E-mail: shao-chun.wang@uc.edu [Department of Cancer Biology, University of Cincinnati College of Medicine, 3125 Eden Avenue, Cincinnati, OH 45267-0521 (United States); Department of Environmental Health, University of Cincinnati College of Medicine, 3223 Eden Avenue, Kettering Laboratory, Cincinnati, OH 45267-0056 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Proliferating Cell Nuclear Antigen (PCNA) is phosphorylated at Y114. Black-Right-Pointing-Pointer Phospho-Y114 of PCNA is not required for cell proliferation for normal growth. Black-Right-Pointing-Pointer MCE during adipogenesis is abolished in the lack of the phosphorylation. Black-Right-Pointing-Pointer Homozygous Y114F mice are resistant to high fat diet induced obesity. Black-Right-Pointing-Pointer Our results shed light on the interface between proliferation and differentiation. -- Abstract: Clonal proliferation is an obligatory component of adipogenesis. Although several cell cycle regulators are known to participate in the transition between pre-adipocyte proliferation and terminal adipocyte differentiation, how the core DNA synthesis machinery is coordinately regulated in adipogenesis remains elusive. PCNA (Proliferating Cell Nuclear Antigen) is an indispensable component for DNA synthesis during proliferation. Here we show that PCNA is subject to phosphorylation at the highly conserved tyrosine residue 114 (Y114). Replacing the Y114 residue with phenylalanine (Y114F), which is structurally similar to tyrosine but cannot be phosphorylated, does not affect normal animal development. However, when challenged with high fat diet, mice carrying homozygous Y114F alleles (PCNA{sup F/F}) are resistant to adipose tissue enlargement in comparison to wild-type (WT) mice. Mouse embryonic fibroblasts (MEFs) harboring WT or Y114F mutant PCNA proliferate at similar rates. However, when subjected to adipogenesis induction in culture, PCNA{sup F/F} MEFs are not able to re-enter the cell cycle and fail to form mature adipocytes, while WT MEFs undergo mitotic clonal expansion in response to the adipogenic stimulation, accompanied by enhanced Y114 phosphorylation of PCNA, and differentiate to mature adipocytes. Consistent with the function of Y114 phosphorylation in clonal proliferation in adipogenesis, fat tissues isolated from WT

  13. Tyrosine phosphorylation of the NR2B subunit of the NMDA receptor in the spinal cord contributes to chronic visceral pain in rats.

    Science.gov (United States)

    Luo, Xiao-Qing; Cai, Qin-Yan; Chen, Yu; Guo, Li-Xia; Chen, Ai-Qin; Wu, Zhen-Quan; Lin, Chun

    2014-01-13

    The roles of spinal N-methyl-d-aspartic acid receptor 2B (NR2B) subunit in central sensitization of chronic visceral pain were investigated. A rat model with irritable bowel syndrome (IBS) was established by colorectal distention (CRD) on post-natal days 8-14. Responses of the external oblique muscle of the abdomen to CRD were measured to evaluate the sensitivity of visceral pain in rats. The sensitivity of visceral pain significantly increased in IBS-like rats. Expressions of spinal NR2B subunit and phosphorylated NR2B subunit significantly increased by 50-55% in IBS-like rats when compared with those in control rats. Ro 25-6981, a selective antagonist of NR2B subunit, has a dose-dependent anti-allodynic and anti-hyperalgesic effect without causing motor dysfunction in IBS-like rats. Furthermore, the activation mechanism of the spinal NR2B subunit in chronic visceral pain was also investigated. Spinal administration of genistein, a specific inhibitor of tyrosine kinases, also decreased the visceral pain hypersensitivity of IBS-like rats in a dose-dependent manner. In addition, the expression of phosphorylated NR2B subunit was decreased after spinal administration of Ro 25-6981 or genistein in IBS-like rats. In conclusion, tyrosine kinase activation-induced phosphorylation of NR2B subunit may play a crucial role in central sensitization of chronic visceral pain. © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Role of Protein Phosphorylation and Tyrosine Phosphatases in the Adrenal Regulation of Steroid Synthesis and Mitochondrial Function

    Science.gov (United States)

    Paz, Cristina; Cornejo Maciel, Fabiana; Gorostizaga, Alejandra; Castillo, Ana F.; Mori Sequeiros García, M. Mercedes; Maloberti, Paula M.; Orlando, Ulises D.; Mele, Pablo G.; Poderoso, Cecilia; Podesta, Ernesto J.

    2016-01-01

    In adrenocortical cells, adrenocorticotropin (ACTH) promotes the activation of several protein kinases. The action of these kinases is linked to steroid production, mainly through steroidogenic acute regulatory protein (StAR), whose expression and activity are dependent on protein phosphorylation events at genomic and non-genomic levels. Hormone-dependent mitochondrial dynamics and cell proliferation are functions also associated with protein kinases. On the other hand, protein tyrosine dephosphorylation is an additional component of the ACTH signaling pathway, which involves the “classical” protein tyrosine phosphatases (PTPs), such as Src homology domain (SH) 2-containing PTP (SHP2c), and members of the MAP kinase phosphatase (MKP) family, such as MKP-1. PTPs are rapidly activated by posttranslational mechanisms and participate in hormone-stimulated steroid production. In this process, the SHP2 tyrosine phosphatase plays a crucial role in a mechanism that includes an acyl-CoA synthetase-4 (Acsl4), arachidonic acid (AA) release and StAR induction. In contrast, MKPs in steroidogenic cells have a role in the turn-off of the hormonal signal in ERK-dependent processes such as steroid synthesis and, perhaps, cell proliferation. This review analyzes the participation of these tyrosine phosphates in the ACTH signaling pathway and the action of kinases and phosphatases in the regulation of mitochondrial dynamics and steroid production. In addition, the participation of kinases and phosphatases in the signal cascade triggered by different stimuli in other steroidogenic tissues is also compared to adrenocortical cell/ACTH and discussed. PMID:27375556

  15. Tyrosine Phosphorylation of Pyk2 Is Selectively Regulated by Fyn During TCR Signaling

    OpenAIRE

    1997-01-01

    The Src family protein tyrosine kinases (PTKs), Lck and Fyn, are coexpressed in T cells and perform crucial functions involved in the initiation of T cell antigen receptor (TCR) signal transduction. However, the mechanisms by which Lck and Fyn regulate TCR signaling are still not completely understood. One important question is whether Lck and Fyn have specific targets or only provide functional redundancy during TCR signaling. We have previously shown that Lck plays a major role in the tyros...

  16. Heat shock protein 90 has roles in intracellular calcium homeostasis, protein tyrosine phosphorylation regulation, and progesterone-responsive sperm function in human sperm.

    Directory of Open Access Journals (Sweden)

    Kun Li

    Full Text Available Heat shock protein 90 plays critical roles in client protein maturation, signal transduction, protein folding and degradation, and morphological evolution; however, its function in human sperm is not fully understood. Therefore, our objective in this study was to elucidate the mechanism by which heat shock protein 90 exerts its effects on human sperm function. By performing indirect immunofluorescence staining, we found that heat shock protein 90 was localized primarily in the neck, midpiece, and tail regions of human sperm, and that its expression increased with increasing incubation time under capacitation conditions. Geldanamycin, a specific inhibitor of heat shock protein 90, was shown to inhibit this increase in heat shock protein 90 expression in western blotting analyses. Using a multifunctional microplate reader to examine Fluo-3 AM-loaded sperm, we observed for the first time that inhibition of heat shock protein 90 by using geldanamycin significantly decreased intracellular calcium concentrations during capacitation. Moreover, western blot analysis showed that geldanamycin enhanced tyrosine phosphorylation of several proteins, including heat shock protein 90, in a dose-dependent manner. The effects of geldanamycin on human sperm function in the absence or presence of progesterone was evaluated by performing chlortetracycline staining and by using a computer-assisted sperm analyzer. We found that geldanamycin alone did not affect sperm capacitation, hyperactivation, and motility, but did so in the presence of progesterone. Taken together, these data suggest that heat shock protein 90, which increases in expression in human sperm during capacitation, has roles in intracellular calcium homeostasis, protein tyrosine phosphorylation regulation, and progesterone-stimulated sperm function. In this study, we provide new insights into the roles of heat shock protein 90 in sperm function.

  17. Tyrosine phosphorylation of the E3 ubiquitin ligase TRIM21 positively regulates interaction with IRF3 and hence TRIM21 activity.

    Directory of Open Access Journals (Sweden)

    Kevin B Stacey

    Full Text Available Patients suffering from Systemic Lupus Erythematous (SLE have elevated type I interferon (IFN levels which correlate with disease activity and severity. TRIM21, an autoantigen associated with SLE, has been identified as an ubiquitin E3 ligase that targets the transcription factor IRF3 in order to turn off and limit type I IFN production following detection of viral and bacterial infection by Toll Like Receptors (TLRs. However, how the activity of TRIM21 is regulated downstream of TLRs is unknown. In this study we demonstrate that TRIM21 is tyrosine phosphorylated following TLR3 and TLR4 stimulation, suggesting that its activity is potentially regulated by tyrosine phosphorylation. Using Netphos, we have identified three key tyrosines that are strongly predicted to be phosphorylated, two of which are conserved between the human and murine forms of TRIM21, at residues 343, 388, and 393, all of which have been mutated from tyrosine to phenylalanine (Y343F, Y388F, and Y393F. We have observed that tyrosine phosphorylation of TRIM21 only occurs in the substrate binding PRY/SPRY domain, and that Y393, and to a lesser extent, Y388 are required for TRIM21 to function as a negative regulator of IFN-β promoter activity. Further studies revealed that mutating Y393 to phenylalanine inhibits the ability of TRIM21 to interact with its substrate, IRF3, thus providing a molecular explanation for the lack of activity of Y393 on the IFN-β promoter. Our data demonstrates a novel role for tyrosine phosphorylation in regulating the activity of TRIM21 downstream of TLR3 and TLR4. Given the pathogenic role of TRIM21 in systemic autoimmunity, these findings have important implications for the development of novel therapeutics.

  18. α-Tubulin Tyrosination and CLIP-170 Phosphorylation Regulate the Initiation of Dynein-Driven Transport in Neurons

    Directory of Open Access Journals (Sweden)

    Jeffrey J. Nirschl

    2016-03-01

    Full Text Available Motor-cargo recruitment to microtubules is often the rate-limiting step of intracellular transport, and defects in this recruitment can cause neurodegenerative disease. Here, we use in vitro reconstitution assays with single-molecule resolution, live-cell transport assays in primary neurons, computational image analysis, and computer simulations to investigate the factors regulating retrograde transport initiation in the distal axon. We find that phosphorylation of the cytoskeletal-organelle linker protein CLIP-170 and post-translational modifications of the microtubule track combine to precisely control the initiation of retrograde transport. Computer simulations of organelle dynamics in the distal axon indicate that while CLIP-170 primarily regulates the time to microtubule encounter, the tyrosination state of the microtubule lattice regulates the likelihood of binding. These mechanisms interact to control transport initiation in the axon in a manner sensitive to the specialized cytoskeletal architecture of the neuron.

  19. Isothiazolidinone (IZD) as a phosphoryl mimetic in inhibitors of the Yersinia pestis protein tyrosine phosphatase YopH

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Eun; Bahta, Medhanit; Lountos, George T. [National Cancer Institute at Frederick, PO Box B, Frederick, MD 21702-1201 (United States); Ulrich, Robert G. [United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 (United States); Burke, Terrence R. Jr, E-mail: tburke@helix.nih.gov; Waugh, David S., E-mail: tburke@helix.nih.gov [National Cancer Institute at Frederick, PO Box B, Frederick, MD 21702-1201 (United States)

    2011-07-01

    The first X-ray crystal structure of the Y. pestis protein tyrosine phosphatase YopH in complex with an isothiazolidinone-based lead-fragment compound is reported. Isothiazolidinone (IZD) heterocycles can act as effective components of protein tyrosine phosphatase (PTP) inhibitors by simultaneously replicating the binding interactions of both a phosphoryl group and a highly conserved water molecule, as exemplified by the structures of several PTP1B–inhibitor complexes. In the first unambiguous demonstration of IZD interactions with a PTP other than PTP1B, it is shown by X-ray crystallography that the IZD motif binds within the catalytic site of the Yersinia pestis PTP YopH by similarly displacing a highly conserved water molecule. It is also shown that IZD-based bidentate ligands can inhibit YopH in a nonpromiscuous fashion at low micromolar concentrations. Hence, the IZD moiety may represent a useful starting point for the development of YopH inhibitors.

  20. NR2B phosphorylation at tyrosine 1472 in spinal dorsal horn contributed to N-methyl-D-aspartate-induced pain hypersensitivity in mice.

    Science.gov (United States)

    Li, Shuai; Cao, Jing; Yang, Xian; Suo, Zhan-Wei; Shi, Lei; Liu, Yan-Ni; Yang, Hong-Bin; Hu, Xiao-Dong

    2011-11-01

    Calcium influx via N-methyl-D-aspartate (NMDA)-subtype glutamate receptors (NMDARs) regulates the intracellular trafficking of NMDARs, leading to long-lasting modification of NMDAR-mediated synaptic transmission that is involved in development, learning, and synaptic plasticity. The present study investigated the contribution of such NMDAR-dependent synaptic trafficking in spinal dorsal horn to the induction of pain hypersensitivity. Our data showed that direct activation of NMDARs by intrathecal NMDA application elicited pronounced mechanical allodynia in intact mice, which was concurrent with a specific increase in the abundance of NMDAR subunits NR1 and NR2B at the postsynaptic density (PSD)-enriched fraction. Selective inhibition of NR2B-containing NMDARs (NR2BR) by ifenprodil dose dependently attenuated the mechanical allodynia in NMDA-injected mice, suggesting the importance of NR2BR synaptic accumulation in NMDA-induced pain sensitization. The NR2BR redistribution at synapses after NMDA challenge was associated with a significant increase in NR2B phosphorylation at Tyr1472, a catalytic site by Src family protein tyrosine kinases (SFKs) that has been shown to prevent NR2B endocytosis. Intrathecal injection of a specific SFKs inhibitor, PP2, to block NR2B tyrosine phosphorylation eliminated NMDA-induced NR2BR synaptic expression and also attenuated the mechanical allodynia. These data suggested that activation of spinal NMDARs was able to accumulate NR2BR at synapses via SFK signaling, which might exaggerate NMDAR-dependent nociceptive transmission and contribute to NMDA-induced nociceptive behavioral hyperresponsiveness.

  1. MERTK signaling in the retinal pigment epithelium regulates the tyrosine phosphorylation of GDP dissociation inhibitor alpha from the GDI/CHM family of RAB GTPase effectors.

    Science.gov (United States)

    Shelby, Shameka J; Feathers, Kecia L; Ganios, Anna M; Jia, Lin; Miller, Jason M; Thompson, Debra A

    2015-11-01

    Photoreceptor outer segments (OS) in the vertebrate retina undergo a process of continual renewal involving shedding of disc membranes that are cleared by phagocytic uptake into the retinal pigment epithelium (RPE). In dystrophic Royal College of Surgeons (RCS) rats, OS phagocytosis is blocked by a mutation in the gene encoding the receptor tyrosine kinase MERTK. To identify proteins tyrosine-phosphorylated downstream of MERTK in the RPE, MALDI-mass spectrometry with peptide-mass fingerprinting was used in comparative studies of RCS congenic and dystrophic rats. At times corresponding to peak phagocytic activity, the RAB GTPase effector GDP dissociation inhibitor alpha (GDI1) was found to undergo tyrosine phosphorylation only in congenic rats. In cryosections of native RPE/choroid, GDI1 colocalized with MERTK and the intracellular tyrosine-kinase SRC. In cultured RPE-J cells, and in transfected heterologous cells, MERTK stimulated SRC-mediated tyrosine phosphorylation of GDI1. In OS-fed RPE-J cells, GDI1 colocalized with MERTK and SRC on apparent phagosomes located near the apical membrane. In addition, both GDI1 and RAB5, a regulator of vesicular transport, colocalized with ingested OS. Taken together, these findings identify a novel role of MERTK signaling in membrane trafficking in the RPE that is likely to subserve mechanisms of phagosome formation.

  2. Defining Human Tyrosine Kinase Phosphorylation Networks Using Yeast as an In Vivo Model Substrate.

    Science.gov (United States)

    Corwin, Thomas; Woodsmith, Jonathan; Apelt, Federico; Fontaine, Jean-Fred; Meierhofer, David; Helmuth, Johannes; Grossmann, Arndt; Andrade-Navarro, Miguel A; Ballif, Bryan A; Stelzl, Ulrich

    2017-08-23

    Systematic assessment of tyrosine kinase-substrate relationships is fundamental to a better understanding of cellular signaling and its profound alterations in human diseases such as cancer. In human cells, such assessments are confounded by complex signaling networks, feedback loops, conditional activity, and intra-kinase redundancy. Here we address this challenge by exploiting the yeast proteome as an in vivo model substrate. We individually expressed 16 human non-receptor tyrosine kinases (NRTKs) in Saccharomyces cerevisiae and identified 3,279 kinase-substrate relationships involving 1,351 yeast phosphotyrosine (pY) sites. Based on the yeast data without prior information, we generated a set of linear kinase motifs and assigned ∼1,300 known human pY sites to specific NRTKs. Furthermore, experimentally defined pY sites for each individual kinase were shown to cluster within the yeast interactome network irrespective of linear motif information. We therefore applied a network inference approach to predict kinase-substrate relationships for more than 3,500 human proteins, providing a resource to advance our understanding of kinase biology. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Increased expression of tyrosine hydroxylase and anomalous neurites in catecholaminergic neurons of ATF-2 null mice.

    Science.gov (United States)

    Kojima, Masayo; Suzuki, Takahiro; Maekawa, Toshio; Ishii, Shunsuke; Sumi-Ichinose, Chiho; Nomura, Takahide; Ichinose, Hiroshi

    2008-02-15

    ATF-2/CRE-BP1 was originally identified as a cAMP-responsive element (CRE) binding protein abundant in the brain. We previously reported that phosphorylation of ATF-2 increased the expression of tyrosine hydroxylase (TH), which is the rate-limiting enzyme for catecholamine biosynthesis, directly acting on the CRE in the promoter region of the TH gene in PC12D cells (Suzuki et al. [2002] J. Biol. Chem. 277:40768-40774). To examine the role of ATF-2 on transcriptional control of the TH gene in the brain, we investigated the TH expression in ATF-2-/- mice. We found that TH expression was greatly increased in medulla oblongata and locus ceruleus of the ATF-2-deficient embryos. Ectopic expression of TH was observed in the raphe magnus nucleus, where serotonergic neural cell bodies are located. Interestingly, A10 dorsal neurons were lost in the embryos of ATF-2-/- mice. There was no difference in the TH immunoreactivity in the olfactory bulb. The data showed that alteration in TH expression by absence of ATF-2 gradually declined from caudal to rostral part of the brain. We also found anomalous neurite extension in catecholaminergic neurons of ATF-2 null mice, i.e., increased dendritic arborization and shortened axons. These data suggest that ATF-2 plays critical roles for proper expression of the TH gene and for neurite extension of catecholaminergic neurons, possibly through a repressor-like action. (c) 2007 Wiley-Liss, Inc.

  4. NPM-ALK mediates phosphorylation of MSH2 at tyrosine 238, creating a functional deficiency in MSH2 and the loss of mismatch repair.

    Science.gov (United States)

    Bone, K M; Wang, P; Wu, F; Wu, C; Li, L; Bacani, J T; Andrew, S E; Lai, R

    2015-05-15

    The vast majority of anaplastic lymphoma kinase-positive anaplastic large cell lymphoma (ALK+ALCL) tumors express the characteristic oncogenic fusion protein NPM-ALK, which mediates tumorigenesis by exerting its constitutive tyrosine kinase activity on various substrates. We recently identified MSH2, a protein central to DNA mismatch repair (MMR), as a novel binding partner and phosphorylation substrate of NPM-ALK. Here, using liquid chromatography-mass spectrometry, we report for the first time that MSH2 is phosphorylated by NPM-ALK at a specific residue, tyrosine 238. Using GP293 cells transfected with NPM-ALK, we confirmed that the MSH2(Y238F) mutant is not tyrosine phosphorylated. Furthermore, transfection of MSH2(Y238F) into these cells substantially decreased the tyrosine phosphorylation of endogenous MSH2. Importantly, gene transfection of MSH2(Y238F) abrogated the binding of NPM-ALK with endogenous MSH2, re-established the dimerization of MSH2:MSH6 and restored the sensitivity to DNA mismatch-inducing drugs, indicative of MMR return. Parallel findings were observed in two ALK+ALCL cell lines, Karpas 299 and SUP-M2. In addition, we found that enforced expression of MSH2(Y238F) into ALK+ALCL cells alone was sufficient to induce spontaneous apoptosis. In conclusion, our findings have identified NPM-ALK-induced phosphorylation of MSH2 at Y238 as a crucial event in suppressing MMR. Our studies have provided novel insights into the mechanism by which oncogenic tyrosine kinases disrupt MMR.

  5. Tyrosine Phosphorylation of the UDP-Glucose Dehydrogenase of Escherichia coli Is at the Crossroads of Colanic Acid Synthesis and Polymyxin Resistance

    DEFF Research Database (Denmark)

    Lacour, S.; Bechet, E.; Cozzone, A.J.

    2008-01-01

    -kinases have been characterized. BY-kinases have been shown to participate in various physiological processes. Nevertheless, we are at a very early stage of defining their importance in the bacterial cell. In Escherichia coli, two BY-kinases, Wzc and Etk, have been characterized biochemically. Wzc has been...... shown to phosphorylate the UDP-glucose dehydrogenase Ugd in vitro. Not only is Ugd involved in the biosynthesis of extracellular polysaccharides, but also in the production of UDP-4-amino-4-deoxy-L-arabinose, a compound that renders E. coli resistant to cationic antimicrobial peptides. Methodology....../Principal Findings: Here, we studied the role of Ugd phosphorylation. We first confirmed in vivo the phosphorylation of Ugd by Wzc and we demonstrated that Ugd is also phosphorylated by Etk, the other BY-kinase identified in E. coli. Tyrosine 71 (Tyr71) was characterized as the Ugd site phosphorylated by both Wzc...

  6. The hinge region of chicken annexin I contains no site for tyrosine phosphorylation.

    Science.gov (United States)

    Sidis, Y; Horseman, N D

    1993-08-30

    Annexin I (AnxI) is a calcium-dependent membrane binding protein which has been implicated in various physiological activities. The region of the chicken anxI cDNA encoding the first 130 amino terminal residues was cloned by reverse transcription PCR in order to determine the relationship of its variable amino-terminal regulatory region with other known annexins. This nucleotide sequence shows 86% identity with pigeon AnxI isoforms, and 57% with its human homolog. The protein encoded by the chicken anxI cDNA lacks the canonical epidermal growth factor receptor/kinase phosphorylation site, which is present in AnxI of other species. In contrast, the putative protein kinase C phosphorylation site of the amino-terminus is present in the chicken AnxI. Whereas the pigeon genome contains two anxI genes, genomic Southern analysis shows that in the chicken AnxI is encoded by only a single gene. These data suggest that AnxI has undergone significant sequence variation in the avians, and clarifies the relationships of the avian anxI genes with their ancestral homologs.

  7. Tyrosine 705 Phosphorylation of STAT3 Is Associated with Phenotype Severity in TGFβ1 Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Eleonora Guadagnin

    2015-01-01

    Full Text Available Transforming growth factor beta 1 (TGFβ1 is a key player in skeletal muscle degenerative and regenerative processes. We previously showed that conditionally overexpressing TGFβ1 in skeletal muscles caused myofiber atrophy and endomysial fibrosis in mice. However, the disease severity varied significantly among individual mice. While 40% of mice developed severe muscle pathology and lost body weight within 2 weeks of TGFβ1 transgene induction in muscles, the rest showed milder or no phenotype. This study aims at determining whether signal transducer and activator of transcription 3 (STAT3 plays a role in the phenotypic difference and whether it can be activated by TGFβ1 directly in muscle cells. Our results show that while total STAT3 was not differentially expressed between the two groups of mice, there was significantly higher pSTAT3 (Tyr705 in the muscles of the mice with severe phenotype. Immunohistochemistry showed that pSTAT3 (Tyr705 was localized in approximately 50% of the nuclei of the muscles. We further showed that TGFβ1 induced Tyr705 phosphorylation of STAT3 in C2C12 cells within 30 minutes of treatment while total STAT3 was not affected. Our findings suggest that TGFβ1 alone can induce Tyr705 phosphorylation of STAT3 in skeletal muscle cells and contribute to disease severity in transgenic TGFβ1 mice.

  8. Helicobacter pylori VacA, acting through receptor protein tyrosine phosphatase α, is crucial for CagA phosphorylation in human duodenum carcinoma cell line AZ-521

    Science.gov (United States)

    Yahiro, Kinnosuke; Yamasaki, Eiki; Kurazono, Hisao; Akada, Junko; Yamaoka, Yoshio; Niidome, Takuro; Hatakeyama, Masanori; Suzuki, Hidekazu; Yamamoto, Taro; Moss, Joel; Isomoto, Hajime; Hirayama, Toshiya

    2016-01-01

    ABSTRACT Helicobacter pylori, a major cause of gastroduodenal diseases, produces vacuolating cytotoxin (VacA) and cytotoxin-associated gene A (CagA), which seem to be involved in virulence. VacA exhibits pleiotropic actions in gastroduodenal disorders via its specific receptors. Recently, we found that VacA induced the phosphorylation of cellular Src kinase (Src) at Tyr418 in AZ-521 cells. Silencing of receptor protein tyrosine phosphatase (RPTP)α, a VacA receptor, reduced VacA-induced Src phosphorylation. Src is responsible for tyrosine phosphorylation of CagA at its Glu-Pro-Ile-Tyr-Ala (EPIYA) variant C (EPIYA-C) motif in Helicobacter pylori-infected gastric epithelial cells, resulting in binding of CagA to SHP-2 phosphatase. Challenging AZ-521 cells with wild-type H. pylori induced phosphorylation of CagA, but this did not occur when challenged with a vacA gene-disrupted mutant strain. CagA phosphorylation was observed in cells infected with a vacA gene-disrupted mutant strain after addition of purified VacA, suggesting that VacA is required for H. pylori-induced CagA phosphorylation. Following siRNA-mediated RPTPα knockdown in AZ-521 cells, infection with wild-type H. pylori and treatment with VacA did not induce CagA phosphorylation. Taken together, these results support our conclusion that VacA mediates CagA phosphorylation through RPTPα in AZ-521 cells. These data indicate the possibility that Src phosphorylation induced by VacA is mediated through RPTPα, resulting in activation of Src, leading to CagA phosphorylation at Tyr972 in AZ-521 cells. PMID:27935824

  9. STAT1 is phosphorylated and downregulated by the oncogenic tyrosine kinase NPM-ALK in ALK-positive anaplastic large-cell lymphoma.

    Science.gov (United States)

    Wu, Chengsheng; Molavi, Ommoleila; Zhang, Haifeng; Gupta, Nidhi; Alshareef, Abdulraheem; Bone, Kathleen M; Gopal, Keshav; Wu, Fang; Lewis, Jamie T; Douglas, Donna N; Kneteman, Norman M; Lai, Raymond

    2015-07-16

    The tumorigenicity of most cases of ALK-positive anaplastic large-cell lymphoma (ALK+ ALCL) is driven by the oncogenic fusion protein NPM-ALK in a STAT3-dependent manner. Because it has been shown that STAT3 can be inhibited by STAT1 in some experimental models, we hypothesized that the STAT1 signaling pathway is defective in ALK+ ALCL, thereby leaving the STAT3 signaling unchecked. Compared with normal T cells, ALK+ ALCL tumors consistently expressed a low level of STAT1. Inhibition of the ubiquitin-proteasome pathway appreciably increased STAT1 expression in ALK+ ALCL cells. Furthermore, we found evidence that NPM-ALK binds to and phosphorylates STAT1, thereby promoting its proteasomal degradation in a STAT3-dependent manner. If restored, STAT1 is functionally intact in ALK+ ALCL cells, because it effectively upregulated interferon-γ, induced apoptosis/cell-cycle arrest, potentiated the inhibitory effects of doxorubicin, and suppressed tumor growth in vivo. STAT1 interfered with the STAT3 signaling by decreasing STAT3 transcriptional activity/DNA binding and its homodimerization. The importance of the STAT1/STAT3 functional interaction was further highlighted by the observation that short interfering RNA knockdown of STAT1 significantly decreased apoptosis induced by STAT3 inhibition. Thus, STAT1 is a tumor suppressor in ALK+ ALCL. Phosphorylation and downregulation of STAT1 by NPM-ALK represent other mechanisms by which this oncogenic tyrosine kinase promotes tumorigenesis.

  10. An Aberrant Phosphorylation of Amyloid Precursor Protein Tyrosine Regulates Its Trafficking and the Binding to the Clathrin Endocytic Complex in Neural Stem Cells of Alzheimer's Disease Patients

    Science.gov (United States)

    Poulsen, Ebbe T.; Iannuzzi, Filomena; Rasmussen, Helle F.; Maier, Thorsten J.; Enghild, Jan J.; Jørgensen, Arne L.; Matrone, Carmela

    2017-01-01

    Alzheimer's disease (AD) is the most common cause of dementia and is likely caused by defective amyloid precursor protein (APP) trafficking and processing in neurons leading to amyloid plaques containing the amyloid-β (Aβ) APP peptide byproducts. Understanding how APP is targeted to selected destinations inside neurons and identifying the mechanisms responsible for the generation of Aβ are thus the keys for the advancement of new therapies. We previously developed a mouse model with a mutation at tyrosine (Tyr) 682 in the C-terminus of APP. This residue is needed for APP to bind to the coating protein Clathrin and to the Clathrin adaptor protein AP2 as well as for the correct APP trafficking and sorting in neurons. By extending these findings to humans, we found that APP binding to Clathrin is decreased in neural stem cells from AD sufferers. Increased APP Tyr phosphorylation alters APP trafficking in AD neurons and it is associated to Fyn Tyr kinase activation. We show that compounds affecting Tyr kinase activity and counteracting defects in AD neurons can control APP location and compartmentalization. APP Tyr phosphorylation is thus a potential therapeutic target for AD.

  11. Src-mediated phosphorylation of the tyrosine phosphatase PRL-3 is required for PRL-3 promotion of Rho activation, motility and invasion.

    Science.gov (United States)

    Fiordalisi, James J; Dewar, Brian J; Graves, Lee M; Madigan, James P; Cox, Adrienne D

    2013-01-01

    The metastasis-associated tyrosine phosphatase PRL-3/PTP4A is upregulated in numerous cancers, but the mechanisms modulating PRL-3 activity other than its expression levels have not been investigated. Here we report evidence for both Src-dependent tyrosine phosphorylation of PRL-3 and Src-mediated regulation of PRL-3 biological activities. We used structural mutants, pharmacological inhibitors and siRNA to demonstrate Src-dependent phosphorylation of endogenous PRL-3 in SW480 colon cancer cells. We also demonstrated that PRL-3 was not tyrosine phosphorylated in SYF mouse embryo fibroblasts deficient in Src, Yes and Fyn unless Src was re-expressed. Further, we show that platelet-derived growth factor (PDGF) can stimulate PRL-3 phosphorylation in a Src-dependent manner. Finally, we show that PRL-3-induced cell motility, Matrigel invasion and activation of the cytoskeleton-regulating small GTPase RhoC were abrogated in the presence of the phosphodeficient PRL-3 mutant Y53F, or by use of a Src inhibitor. Thus, PRL-3 requires the activity of a Src kinase, likely Src itself, to promote these cancer-associated phenotypes. Our data establish a model for the regulation of PRL-3 by Src that supports the possibility of their coordinate roles in signaling pathways promoting invasion and metastasis, and supports simultaneous use of novel molecularly targeted therapeutics directed at these proteins.

  12. Phosphorylation state-dependent interaction between AKAP7δ/γ and phospholamban increases phospholamban phosphorylation

    Science.gov (United States)

    Rigatti, Marc; Le, Andrew V.; Gerber, Claire; Moraru, Ion I.; Dodge-Kafka, Kimberly L.

    2016-01-01

    Changes in heart rate and contractility in response to sympathetic stimulation occur via activation of cAMP dependent protein kinase A (PKA), leading to phosphorylation of numerous substrates that alter Ca2+ cycling. Phosphorylation of these substrates is coordinated by A-kinase anchoring proteins (AKAPs), which recruit PKA to specific substrates [1]. Phosphorylation of the PKA substrate phospholamban (PLB) is a critical determinant of Ca2+ re-entry into the sarcoplasmic reticulum and is coordinated by AKAP7δ/γ [2,3]. Here, we further these findings by showing that phosphorylation of PLB requires interaction with AKAP7δ/γ and that this interaction occurs only when PLB is unphosphorylated. Additionally, we find that two mutants of PLB (R9C and Δ14), which are associated with dilated cardiomyopathy in humans, prevent association with AKAP7δ/γ and display reduced phosphorylation in vitro. This finding implicates the AKAP7δ/γ-PLB interaction in the pathology of the disease phenotype. Further exploration of the AKAP7δ/γ-PLB association demonstrated a phosphorylation state-dependence of the interaction. Computational modeling revealed that this mode of interaction allows for small amounts of AKAP and PKA (100–200nM) to regulate the phosphorylation of large quantities of PLB (50µM). Our results confirm that AKAP7γ/δ binding to PLB is important for phosphorylation of PLB, and describe a novel phosphorylation state-dependent binding mechanism that explains how phosphorylation of highly abundant PKA substrates can be regulated by AKAPs present at ~100–200 fold lower concentrations. PMID:26027516

  13. Enhancement of TGF-β-induced Smad3 activity by c-Abl-mediated tyrosine phosphorylation of its coactivator SKI-interacting protein (SKIP).

    Science.gov (United States)

    Kuki, Kazumasa; Yamaguchi, Noritaka; Iwasawa, Shuto; Takakura, Yuki; Aoyama, Kazumasa; Yuki, Ryuzaburo; Nakayama, Yuji; Kuga, Takahisa; Hashimoto, Yuuki; Tomonaga, Takeshi; Yamaguchi, Naoto

    2017-08-26

    c-Abl is a non-receptor-type tyrosine kinase that plays an important role in cell proliferation, migration, apoptosis, and fibrosis. Furthermore, although c-Abl is involved in transforming growth factor-β (TGF-β) signaling, its molecular functions in TGF-β signaling are not fully understood. Here, we found that c-Abl phosphorylates SKI-interacting protein (SKIP), a nuclear cofactor of the transcription factor Smad3. The c-Abl inhibitor imatinib suppressed TGF-β-induced expression of Smad3 targets as well as SKIP/Smad3 interaction. TGF-β-stimulation induced tyrosine phosphorylation of SKIP, and this phosphorylation was suppressed by imatinib. Tyr(292), Tyr(430), and Tyr(433) residues in SKIP were shown to be involved in c-Abl-mediated phosphorylation. Phosphomimetic glutamic acid substitution at Tyr(292) in SKIP enhanced, whereas its phospho-dead phenylalanine substitution attenuated TGF-β-induced SKIP/Smad3 interaction. Moreover, the phosphomimetic mutant of SKIP augmented transcriptional activity of Smad3. Taken together, these results suggest that c-Abl phosphorylates SKIP mainly at Tyr(292) and promotes SKIP/Smad3 interaction for the full activation of TGF-β/Smad3 signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Suppressor of Cytokine Signaling 6 (SOCS6) Negatively Regulates Flt3 Signal Transduction through Direct Binding to Phosphorylated Tyrosines 591 and 919 of Flt3

    DEFF Research Database (Denmark)

    Kazi, Julhash U; Sun, Jianmin; Phung, Bengt;

    2012-01-01

    The receptor tyrosine kinase Flt3 is an important growth factor receptor in hematopoiesis, and gain-of-function mutations of the receptor contribute to the transformation of acute myeloid leukemia. SOCS6 (suppressor of cytokine signaling 6) is a member of the SOCS family of E3 ubiquitin ligases...... that can regulate receptor tyrosine kinase signal transduction. In this study, we analyzed the role of SOCS6 in Flt3 signal transduction. The results show that ligand stimulation of Flt3 can induce association of SOCS6 and Flt3 and tyrosine phosphorylation of SOCS6. Phosphopeptide fishing indicated...... that SOCS6 binds directly to phosphotyrosines 591 and 919 of Flt3. By using stably transfected Ba/F3 cells with Flt3 and/or SOCS6, we show that the presence of SOCS6 can enhance ubiquitination of Flt3, as well as internalization and degradation of the receptor. The presence of SOCS6 also induces weaker...

  15. A Lipid Emulsion Reverses Toxic-Dose Bupivacaine-Induced Vasodilation during Tyrosine Phosphorylation-Evoked Contraction in Isolated Rat Aortae

    Science.gov (United States)

    Ok, Seong-Ho; Lee, Soo Hee; Kwon, Seong-Chun; Choi, Mun Hwan; Shin, Il-Woo; Kang, Sebin; Park, Miyeong; Hong, Jeong-Min; Sohn, Ju-Tae

    2017-01-01

    The goal of this in vitro study was to examine the effect of a lipid emulsion on toxic-dose bupivacaine-induced vasodilation in a model of tyrosine phosphatase inhibitor sodium orthovanadate-induced contraction in endothelium-denuded rat aortae and to elucidate the associated cellular mechanism. The effect of a lipid emulsion on vasodilation induced by a toxic dose of a local anesthetic during sodium orthovanadate-induced contraction was examined. In addition, the effects of various inhibitors, either bupivacaine alone or a lipid emulsion plus bupivacaine, on protein kinase phosphorylation induced by sodium orthovanadate in rat aortic vascular smooth muscle cells was examined. A lipid emulsion reversed the vasodilation induced by bupivacaine during sodium orthovanadate-induced contraction. The lipid emulsion attenuated the bupivacaine-mediated inhibition of the sodium orthovanadate-induced phosphorylation of protein tyrosine, c-Jun NH2-terminal kinase (JNK), myosin phosphatase target subunit 1 (MYPT1), phospholipase C (PLC) γ-1 and extracellular signal-regulated kinase (ERK). These results suggest that a lipid emulsion reverses toxic-dose bupivacaine-induced vasodilation during sodium orthovanadate-induced contraction via the activation of a pathway involving either tyrosine kinase, JNK, Rho-kinase and MYPT1 or tyrosine kinase, PLC γ-1 and ERK, and this reversal is associated with the lipid solubility of the local anesthetic and the induction of calcium sensitization. PMID:28208809

  16. A Lipid Emulsion Reverses Toxic-Dose Bupivacaine-Induced Vasodilation during Tyrosine Phosphorylation-Evoked Contraction in Isolated Rat Aortae

    Directory of Open Access Journals (Sweden)

    Seong-Ho Ok

    2017-02-01

    Full Text Available The goal of this in vitro study was to examine the effect of a lipid emulsion on toxic-dose bupivacaine-induced vasodilation in a model of tyrosine phosphatase inhibitor sodium orthovanadate-induced contraction in endothelium-denuded rat aortae and to elucidate the associated cellular mechanism. The effect of a lipid emulsion on vasodilation induced by a toxic dose of a local anesthetic during sodium orthovanadate-induced contraction was examined. In addition, the effects of various inhibitors, either bupivacaine alone or a lipid emulsion plus bupivacaine, on protein kinase phosphorylation induced by sodium orthovanadate in rat aortic vascular smooth muscle cells was examined. A lipid emulsion reversed the vasodilation induced by bupivacaine during sodium orthovanadate-induced contraction. The lipid emulsion attenuated the bupivacaine-mediated inhibition of the sodium orthovanadate-induced phosphorylation of protein tyrosine, c-Jun NH2-terminal kinase (JNK, myosin phosphatase target subunit 1 (MYPT1, phospholipase C (PLC γ-1 and extracellular signal-regulated kinase (ERK. These results suggest that a lipid emulsion reverses toxic-dose bupivacaine-induced vasodilation during sodium orthovanadate-induced contraction via the activation of a pathway involving either tyrosine kinase, JNK, Rho-kinase and MYPT1 or tyrosine kinase, PLC γ-1 and ERK, and this reversal is associated with the lipid solubility of the local anesthetic and the induction of calcium sensitization.

  17. Interleukins 2, 4, 7, and 15 stimulate tyrosine phosphorylation of insulin receptor substrates 1 and 2 in T cells. Potential role of JAK kinases.

    Science.gov (United States)

    Johnston, J A; Wang, L M; Hanson, E P; Sun, X J; White, M F; Oakes, S A; Pierce, J H; O'Shea, J J

    1995-12-01

    The signaling molecules insulin receptor substrate (IRS)-1 and the newly described IRS-2 (4PS) molecule are major insulin and interleukin 4 (IL-4)-dependent phosphoproteins. We report here that IL-2, IL-7, and IL-15, as well as IL-4, rapidly stimulate the tyrosine phosphorylation of IRS-1 and IRS-2 in human peripheral blood T cells, NK cells, and in lymphoid cell lines. In addition, we show that the Janus kinases, JAK1 and JAK3, associate with IRS-1 and IRS-2 in T cells. Coexpression studies demonstrate that these kinases can tyrosine-phosphorylate IRS-2, suggesting a possible mechanism by which cytokine receptors may induce the tyrosine phosphorylation of IRS-1 and IRS-2. We further demonstrate that the p85 subunit of phosphoinositol 3-kinase associates with IRS-1 in response to IL-2 and IL-4 in T cells. Therefore, these data indicate that IRS-1 and IRS-2 may have important roles in T lymphocyte activation not only in response to IL-4, but also in response to IL-2, IL-7, and IL-15.

  18. Tyrosine phosphorylation of transcriptional coactivator WW-domain binding protein 2 regulates estrogen receptor α function in breast cancer via the Wnt pathway.

    Science.gov (United States)

    Lim, Shen Kiat; Orhant-Prioux, Magali; Toy, Weiyi; Tan, Kah Yap; Lim, Yoon Pin

    2011-09-01

    WW-binding protein 2 (WBP2) has been demonstrated in different studies to be a tyrosine kinase substrate, to activate estrogen receptor α (ERα)/progesterone receptor (PR) transcription, and to play a role in breast cancer. However, the role of WBP2 tyrosine phosphorylation in regulating ERα function and breast cancer biology is unknown. Here, we established WBP2 as a tyrosine phosphorylation target of estrogen signaling via EGFR crosstalk. Using dominant-negative, constitutively active mutants, RNAi, and pharmacological studies, we demonstrated that phosphorylation of WBP2 at Tyr192 and Tyr231 could be regulated by c-Src and c-Yes kinases. We further showed that abrogating WBP2 phosphorylation impaired >60% of ERα reporter activity, putatively by blocking nuclear entry of WBP2 and its interaction with ERα. Compared to vector control, overexpression of WBP2 and its phospho-mimic mutant in MCF7 cells resulted in larger tumors in mice, induced loss of cell-cell adhesion, and enhanced cell proliferation, anchorage-independent growth, migration, and invasion in both estrogen-dependent and -independent manners, events of which could be substantially abolished by overexpression of the phosphorylation-defective mutant. Hormone independence of cells expressing WBP2 phospho-mimic mutant was associated with heightened ERα and Wnt reporter activities. Wnt/β-catenin inhibitor FH535 blocked phospho-WBP2-mediated cancer cell growth more pronouncedly than tamoxifen and fulvestrant, in part by reducing the expression of ERα. Wnt pathway is likely to be a critical component in WBP2-mediated breast cancer biology.

  19. Short-term regulation of tyrosine hydroxylase in tonically-active and in tonically-inactive dopamine neurons: effects of haloperidol and protein phosphorylation.

    Science.gov (United States)

    Iuvone, P M

    1983-09-26

    Dopamine (DA)-containing neurons of retina were employed as an experimental model for studying the short-term regulation of tyrosine hydroxylase (TH) in tonically-active and tonically-inactive neurons. These DA-containing neurons are trans-synaptically activated by light. Two mechanisms have been observed in this system for regulation of TH activity. A short-term activation of TH that is characterized by a decreased apparent Km for pteridine cofactors occurs in response to rapid increases of neuronal activity. A second mechanism occurs in response to prolonged, tonic changes of neuronal activity and is characterized by changes of Vmax. Both the Km changes and Vmax changes represent changes of specific activity of TH rather than enzyme induction. To determine the effects of short-term increases of neuronal activity on TH in tonically-active and tonically-inactive neurons, the effects of acute administration of haloperidol were examined in rats that were continuously light-exposed or light-deprived for 4 days. Haloperidol increased TH activity in both light-exposed and light-deprived retinas. The drug elicited the same percent stimulation in both experimental conditions. However, because the basal activity of TH was higher in the light-exposed than the light-deprived retinas, the absolute increase of TH specific activity was greater in the light-exposed samples. The effect of protein phosphorylation on TH activity in extracts of chronically light-exposed or light-deprived retinas was also examined to determine if the differences in the response to haloperidol might be due to a difference in the amount of TH available for short-term activation. Phosphorylation by endogenous cyclic AMP-dependent protein kinase (APK) or by purified catalytic subunit of APK resulted in larger increases of TH specific activity in extracts of light-exposed retinas than in those of light-deprived retinas. As was observed for haloperidol-induced activation, the percent stimulation elicited

  20. Hologram QSAR models of a series of 6-arylquinazolin-4-amine inhibitors of a new Alzheimer's disease target: dual specificity tyrosine-phosphorylation-regulated kinase-1A enzyme.

    Science.gov (United States)

    Leal, Felipe Dias; da Silva Lima, Camilo Henrique; de Alencastro, Ricardo Bicca; Castro, Helena Carla; Rodrigues, Carlos Rangel; Albuquerque, Magaly Girão

    2015-01-01

    Dual specificity tyrosine-phosphorylation-regulated kinase-1A (DYRK1A) is an enzyme directly involved in Alzheimer's disease, since its increased expression leads to β-amyloidosis, Tau protein aggregation, and subsequent formation of neurofibrillary tangles. Hologram quantitative structure-activity relationship (HQSAR, 2D fragment-based) models were developed for a series of 6-arylquinazolin-4-amine inhibitors (36 training, 10 test) of DYRK1A. The best HQSAR model (q2 = 0.757; SEcv = 0.493; R2 = 0.937; SE = 0.251; R2pred = 0.659) presents high goodness-of-fit (R2 > 0.9), as well as high internal (q2 > 0.7) and external (R2pred > 0.5) predictive power. The fragments that increase and decrease the biological activity values were addressed using the colored atomic contribution maps provided by the method. The HQSAR contribution map of the best model is an important tool to understand the activity profiles of new derivatives and may provide information for further design of novel DYRK1A inhibitors.

  1. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation.

    Science.gov (United States)

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G; Beazely, Michael A

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands.

  2. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    Directory of Open Access Journals (Sweden)

    Anshula eSamarajeewa

    2014-11-01

    Full Text Available The serotonin (5-HT type 7 receptor is expressed throughout the CNS including cortical neurons. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA-induced toxicity. The tropomyosin-related kinase B (TrkB receptor is one of the receptors for brain-derived neurotrophic factor (BDNF and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins towards the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands.

  3. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    Science.gov (United States)

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S.; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G.; Beazely, Michael A.

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands. PMID:25426041

  4. Methylglyoxal mediates adipocyte proliferation by increasing phosphorylation of Akt1.

    Directory of Open Access Journals (Sweden)

    Xuming Jia

    Full Text Available Methylglyoxal (MG is a highly reactive metabolite physiologically presented in all biological systems. The effects of MG on diabetes and hypertension have been long recognized. In the present study, we investigated the potential role of MG in obesity, one of the most important factors to cause metabolic syndrome. An increased MG accumulation was observed in the adipose tissue of obese Zucker rats. Cell proliferation assay showed that 5-20 µM of MG stimulated the proliferation of 3T3-L1 cells. Further study suggested that accumulated-MG stimulated the phosphorylation of Akt1 and its targets including p21 and p27. The activated Akt1 then increased the activity of CDK2 and accelerated the cell cycle progression of 3T3-L1 cells. The effects of MG were efficiently reversed by advanced glycation end product (AGE breaker alagebrium and Akt inhibitor SH-6. In summary, our study revealed a previously unrecognized effect of MG in stimulating adipogenesis by up-regulation of Akt signaling pathway and this mechanism might offer a new approach to explain the development of obesity.

  5. Src family protein tyrosine kinase regulates the basolateral K channel in the distal convoluted tubule (DCT) by phosphorylation of KCNJ10 protein.

    Science.gov (United States)

    Zhang, Chengbiao; Wang, Lijun; Thomas, Sherin; Wang, Kemeng; Lin, Dao-Hong; Rinehart, Jesse; Wang, Wen-Hui

    2013-09-01

    The loss of function of the basolateral K channels in the distal nephron causes electrolyte imbalance. The aim of this study is to examine the role of Src family protein tyrosine kinase (SFK) in regulating K channels in the basolateral membrane of the mouse initial distal convoluted tubule (DCT1). Single-channel recordings confirmed that the 40-picosiemen (pS) K channel was the only type of K channel in the basolateral membrane of DCT1. The suppression of SFK reversibly inhibited the basolateral 40-pS K channel activity in cell-attached patches and decreased the Ba(2+)-sensitive whole-cell K currents in DCT1. Inhibition of SFK also shifted the K reversal potential from -65 to -43 mV, suggesting a role of SFK in determining the membrane potential in DCT1. Western blot analysis showed that KCNJ10 (Kir4.1), a key component of the basolateral 40-pS K channel in DCT1, was a tyrosine-phosphorylated protein. LC/MS analysis further confirmed that SFK phosphorylated KCNJ10 at Tyr(8) and Tyr(9). The single-channel recording detected the activity of a 19-pS K channel in KCNJ10-transfected HEK293T cells and a 40-pS K channel in the cells transfected with KCNJ10+KCNJ16 (Kir.5.1) that form a heterotetramer in the basolateral membrane of the DCT. Mutation of Tyr(9) did not alter the channel conductance of the homotetramer and heterotetramer. However, it decreased the whole-cell K currents, the probability of finding K channels, and surface expression of KCNJ10 in comparison to WT KCNJ10. We conclude that SFK stimulates the basolateral K channel activity in DCT1, at least partially, by phosphorylating Tyr(9) on KCNJ10. We speculate that the modulation of tyrosine phosphorylation of KCNJ10 should play a role in regulating membrane transport function in DCT1.

  6. Ras-induced and extracellular signal-regulated kinase 1 and 2 phosphorylation-dependent isomerization of protein tyrosine phosphatase (PTP)-PEST by PIN1 promotes FAK dephosphorylation by PTP-PEST.

    Science.gov (United States)

    Zheng, Yanhua; Yang, Weiwei; Xia, Yan; Hawke, David; Liu, David X; Lu, Zhimin

    2011-11-01

    Protein tyrosine phosphatase (PTP)-PEST is a critical regulator of cell adhesion and migration. However, the mechanism by which PTP-PEST is regulated in response to oncogenic signaling to dephosphorylate its substrates remains unclear. Here, we demonstrate that activated Ras induces extracellular signal-regulated kinase 1 and 2-dependent phosphorylation of PTP-PEST at S571, which recruits PIN1 to bind to PTP-PEST. Isomerization of the phosphorylated PTP-PEST by PIN1 increases the interaction between PTP-PEST and FAK, which leads to the dephosphorylation of FAK Y397 and the promotion of migration, invasion, and metastasis of v-H-Ras-transformed cells. These findings uncover an important mechanism for the regulation of PTP-PEST in activated Ras-induced tumor progression.

  7. Growth inhibition signalled through the interleukin-4/interleukin-13 receptor complex is associated with tyrosine phosphorylation of insulin receptor substrate-1.

    Science.gov (United States)

    Schnyder, B; Lahm, H; Woerly, G; Odartchenko, N; Ryffel, B; Car, B D

    1996-05-01

    Induction of growth inhibition in human colorectal carcinoma cell lines by interleukin (IL)-4 and IL-13 was associated with the neophosphorylation of a 170 kDa cellular protein, identified as insulin receptor substrate-1 (IRS-1) by immunoprecipitation. Tyrosine phosphorylation of IRS-I was also induced by insulin and insulin-like growth factor I. Sublines of colorectal carcinoma cells unresponsive to growth modulation by IL-4, IL-13 or insulin-like growth factor I-induced growth did not phosphorylate IRS-1. A functional, multimeric IL-4 receptor complex was present on all carcinoma cell lines with a subunit composition of 65 kDa, 75 kDa and the previously characterized 130 kDa band as demonstrated by affinity cross-link with 126I labelled IL-4. The 65 kDa subunit is novel whereas the 75 kDa band represents the common IL-2 receptor gama-chain the novel 65 kDa receptor was present as a double band and bound primarily 125I-labelled IL-13. The present study demonstrates the involvement of a novel chain other than the gama-chain in the receptor complexes of IL-4 and IL-13 and and post-receptor tyrosine phosphorylation of IRS-1. The association of IRS-1 with growth inhibitory signals in carcinoma cells suggests a novel mechanism of tumour growth control.

  8. Regulation of G protein-linked guanine nucleotide exchange factors for Rho, PDZ-RhoGEF, and LARG by tyrosine phosphorylation: evidence of a role for focal adhesion kinase.

    Science.gov (United States)

    Chikumi, Hiroki; Fukuhara, Shigetomo; Gutkind, J Silvio

    2002-04-05

    A recently identified family of guanine nucleotide exchange factors for Rho that includes PDZ-RhoGEF, LARG, and p115RhoGEF exhibits a unique structural feature consisting in the presence of area of similarity to regulators of G protein signaling (RGS). This RGS-like (RGL) domain provides a structural motif by which heterotrimeric G protein alpha subunits of the Galpha(12) family can bind and regulate the activity of RhoGEFs. Hence, these newly discovered RGL domain-containing RhoGEFs provide a direct link from Galpha(12) and Galpha(13) to Rho. Recently available data suggest, however, that tyrosine kinases can regulate the ability of G protein-coupled receptors (GPCRs) to stimulate Rho, although the underlying molecular mechanisms are still unknown. Here, we found that the activation of thrombin receptors endogenously expressed in HEK-293T cells leads to a remarkable increase in the levels of GTP-bound Rho within 1 min (11-fold) and a more limited but sustained activation (4-fold) thereafter, which lasts even for several hours. Interestingly, tyrosine kinase inhibitors did not affect the early phase of Rho activation, immediately after thrombin addition, but diminished the levels of GTP-bound Rho during the delayed phase. As thrombin receptors stimulate focal adhesion kinase (FAK) potently, we explored whether this non-receptor tyrosine kinase participates in the activation of Rho by GPCRs. We obtained evidence that FAK can be activated by thrombin, Galpha(12), Galpha(13), and Galpha(q) through both Rho-dependent and Rho-independent mechanisms and that PDZ-RhoGEF and LARG can in turn be tyrosine-phosphorylated through FAK in response to thrombin, thereby enhancing the activation of Rho in vivo. These data indicate that FAK may act as a component of a positive feedback loop that results in the sustained activation of Rho by GPCRs, thus providing evidence of the existence of a novel biochemical route by which tyrosine kinases may regulate the activity of Rho through

  9. Gab2 is phosphorylated on tyrosine upon interleukin-2/interleukin-15 stimulation in mycosis-fungoides-derived tumor T cells and associates inducibly with SHP-2 and Stat5a

    DEFF Research Database (Denmark)

    Brockdorff, J L; Gu, H; Mustelin, T

    2001-01-01

    Cutaneous T cell lymphomas (CTCLs) often show abnormal interleukin-2 (IL-2) receptor signaling. In this study, we investigated the role of Gab2, a recently identified adaptor molecule involved in IL-2 receptor signaling in CTCLs. We show that Gab2 was transiently phosphorylated by tyrosine in human...... mycosis fungoides (MF) tumor T cells upon IL-2 stimulation and that SHP2 as well as Stat5a associated inducibly with Gab2. IL-15, but not IL-4, also induced tyrosine phosphorylation of Gab2, suggesting that the IL-2 receptor beta-chain is important for IL-2-induced Gab2 phosphorylation. Preincubation...

  10. NR2B antagonist CP-101,606 inhibits NR2B phosphorylation at tyrosine-1472 and its interactions with Fyn in levodopa-induced dyskinesia rat model.

    Science.gov (United States)

    Kong, Min; Ba, Maowen; Liu, Chuanyu; Zhang, Yanxiang; Zhang, Hongli; Qiu, Haiyan

    2015-04-01

    The augmented tyrosine phosphorylation of NR2B subunit of N-methyl-d-aspartate receptors (NMDAR) dependent on Fyn kinase has been associated with levodopa (l-dopa)-induced dyskinesia (LID). CP-101,606, one selective NR2B subunit antagonist, can improve dyskinesia. Yet, the accurate action mechanism is less well understood. In the present study, the evidences were investigated. Valid 6-hydroxydopamine-lesioned parkinsonian rats were treated with l-dopa intraperitoneally for 22 days to induce LID rat model. On day 23, rats received either CP-101,606 (0.5mg/kg) or vehicle with each l-dopa dose. On the day of 1, 8, 15, 22, and 23 during l-dopa treatment, we determined abnormal involuntary movements (AIMs) in rats. The levels of NR2B phosphorylation at tyrosine-1472 (pNR2B-Tyr1472) and interactions of NR2B with Fyn in LID rat model were detected by immunoblotting and immunoprecipitation. Results showed that CP-101,606 attenuated l-dopa-induced AIMs. In agreement with behavioral analysis, CP-101,606 reduced the augmented pNR2B-Tyr1472 and its interactions with Fyn triggered during the l-dopa administration in the lesioned striatum of parkinsonian rats. Moreover, CP-101,606 also decreased the level of Ca(2+)/calmodulin-dependent protein kinase II at threonine-286 hyperphosphorylation (pCaMKII-Thr286), which was the downstream signaling amplification molecule of NMDAR overactivation and closely associated with LID. However, the protein level of NR2B and Fyn had no difference under the above conditions. These data indicate that the inhibition of the interactions of NR2B with Fyn and NR2B tyrosine phosphorylation may contribute to the CP-101,606-induced downregulation of NMDAR function and provide benefit for the therapy of LID. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Anethum graveolens Linn. (dill) extract enhances the mounting frequency and level of testicular tyrosine protein phosphorylation in rats

    Institute of Scientific and Technical Information of China (English)

    Sitthichai IAMSAARD; Thawatchai PRABSATTROO; Wannisa SUKHORUM; Supaporn MUCHIMAPURA; Panee SRISAARD; Nongnut UABUNDIT; Wipawee THUKHAMMEE

    2013-01-01

    Objective:To investigate the effect of Anethum graveolens (AG) extracts on the mounting frequency,histology of testis and epididymis,and sperm physiology.Methods:Male rats induced by cold immobilization before treating with vehicle or AG extracts [50,150,and 450 mg/kg body weight (BW)] via gastric tube for consecutive 1,7,and 14 d were examined for mounting frequency,testicular phosphorylation level by immunoblotting,sperm concentration,sperm acrosome reaction,and histological structures of testis and epididymis,respectively.Results:AG (50 mg/kg BW) significantly increased the mounting frequency on Days 1 and 7 compared to the control group.Additionally,rat testis treated with 50 mg/kg BW AG showed high levels of phosphorylated proteins as compared with the control group.In histological analyses,AG extract did not affect the sperm concentration,acrosome reaction,and histological structures of testis and epididymis.Conclusions:AG extract enhances the aphrodisiac activity and is not harmful to sperm and male reproductive organs.

  12. c-Abl Mediated Tyrosine Phosphorylation of Aha1 Activates Its Co-chaperone Function in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Diana M. Dunn

    2015-08-01

    Full Text Available The ability of Heat Shock Protein 90 (Hsp90 to hydrolyze ATP is essential for its chaperone function. The co-chaperone Aha1 stimulates Hsp90 ATPase activity, tailoring the chaperone function to specific “client” proteins. The intracellular signaling mechanisms directly regulating Aha1 association with Hsp90 remain unknown. Here, we show that c-Abl kinase phosphorylates Y223 in human Aha1 (hAha1, promoting its interaction with Hsp90. This, consequently, results in an increased Hsp90 ATPase activity, enhances Hsp90 interaction with kinase clients, and compromises the chaperoning of non-kinase clients such as glucocorticoid receptor and CFTR. Suggesting a regulatory paradigm, we also find that Y223 phosphorylation leads to ubiquitination and degradation of hAha1 in the proteasome. Finally, pharmacologic inhibition of c-Abl prevents hAha1 interaction with Hsp90, thereby hypersensitizing cancer cells to Hsp90 inhibitors both in vitro and ex vivo.

  13. Phosphoproteomics of Klebsiella pneumoniae NTUH-K2044 Reveals a Tight Link between Tyrosine Phosphorylation and Virulence

    National Research Council Canada - National Science Library

    Miao-Hsia Lin; Tung-Li Hsu; Shu-Yu Lin; Yi-Jiun Pan; Jia-Tsrong Jan; Jin-Town Wang; Kay-Hooi Khoo; Shih-Hsiung Wu

    2009-01-01

    .... The capsular polysaccharide on K. pneumoniae surface was determined as the key to virulence. Although the regulation of capsular polysaccharide biosynthesis is largely unclear, it was found that protein-tyrosine kinases and phosphatases are involved...

  14. Application of PCR amplicon sequencing using a single primer pair in PCR amplification to assess variations in Helicobacter pylori CagA EPIYA tyrosine phosphorylation motifs

    OpenAIRE

    Karlsson Anneli; Monstein Hans-Jürg; Ryberg Anna; Borch Kurt

    2010-01-01

    Background The presence of various EPIYA tyrosine phosphorylation motifs in the CagA protein of Helicobacter pylori has been suggested to contribute to pathogenesis in adults. In this study, a unique PCR assay and sequencing strategy was developed to establish the number and variation of cagA EPIYA motifs. Findings MDA-DNA derived from gastric biopsy specimens from eleven subjects with gastritis was used with M13- and T7- sequence-tagged primers for amplification of the cagA EPIYA motif regio...

  15. Ovarian hormones and prolactin increase renal NaCl cotransporter phosphorylation.

    Science.gov (United States)

    Rojas-Vega, Lorena; Reyes-Castro, Luis A; Ramírez, Victoria; Bautista-Pérez, Rocío; Rafael, Chloe; Castañeda-Bueno, María; Meade, Patricia; de Los Heros, Paola; Arroyo-Garza, Isidora; Bernard, Valérie; Binart, Nadine; Bobadilla, Norma A; Hadchouel, Juliette; Zambrano, Elena; Gamba, Gerardo

    2015-04-15

    Unique situations in female physiology require volume retention. Accordingly, a dimorphic regulation of the thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC) has been reported, with a higher activity in females than in males. However, little is known about the hormones and mechanisms involved. Here, we present evidence that estrogens, progesterone, and prolactin stimulate NCC expression and phosphorylation. The sex difference in NCC abundance, however, is species dependent. In rats, NCC phosphorylation is higher in females than in males, while in mice both NCC expression and phosphorylation is higher in females, and this is associated with increased expression and phosphorylation of full-length STE-20 proline-alanine-rich kinase (SPAK). Higher expression/phosphorylation of NCC was corroborated in humans by urinary exosome analysis. Ovariectomy in rats resulted in decreased expression and phosphorylation of the cotransporter and promoted the shift of SPAK isoforms toward the short inhibitory variant SPAK2. Conversely, estradiol or progesterone administration to ovariectomized rats restored NCC phosphorylation levels and shifted SPAK expression and phosphorylation towards the full-length isoform. Estradiol administration to male rats induced a significant increase in NCC phosphorylation. NCC is also modulated by prolactin. Administration of this peptide hormone to male rats induced increased phosphorylation of NCC, an effect that was observed even using the ex vivo kidney perfusion strategy. Our results indicate that estradiol, progesterone, and prolactin, the hormones that are involved in sexual cycle, pregnancy and lactation, upregulate the activity of NCC.

  16. Protein tyrosine phosphatase SHP-1 sensitizes EGFR/HER-2 positive breast cancer cells to trastuzumab through modulating phosphorylation of EGFR and HER-2

    Directory of Open Access Journals (Sweden)

    Wu YF

    2015-09-01

    on tumorigenicity and trastuzumab sensitivity were confirmed via in vivo xenograft model.Results: Trastuzumab-resistant SKBr-3 cells showed aberrant co-expression of EGFR and HER-2. Introduction of wild-type SHP-1 inhibited cell proliferation, clone formation, and promoted the apoptosis induced by trastuzumab. Meanwhile, SHP-1 overexpression reduced phosphorylation levels of EGFR and HER-2 both in parental and trastuzumab-resistant SKBr-3 cells. In vivo study showed an increased antitumor effect of trastuzumab in SHP-1 overexpressed xenografts. At last, we discovered that SHP-1 can make complexes with both EGFR and HER-2, and both phospho-EGFR and phosphor-HER-2 levels in wild-type SHP-1 immunoprecipitates were less than those in phosphatase-inactive SHP-1 (C453S immunoprecipitates, indicating that EGFR and HER-2 are potential substrates of SHP-1.Conclusion: Taken together, we have demonstrated that the SHP-1 is a negative regulatory factor of the tyrosine kinase activity of HER-2 and EGFR through inhibiting phosphorylation. Dual targeting of EGFR and HER-2, by combining trastuzumab with SHP-1 overexpression, may improve response in HER-2 overexpressing breast cancer cells that also express high levels of EGFR. Keywords: breast cancer, trastuzumab, EGFR, HER-2, SHP-1, drug resistance 

  17. A loss-of-function screen for phosphatases that regulate neurite outgrowth identifies PTPN12 as a negative regulator of TrkB tyrosine phosphorylation.

    Directory of Open Access Journals (Sweden)

    Malene Ambjørn

    Full Text Available Alterations in function of the neurotrophin BDNF are associated with neurodegeneration, cognitive decline, and psychiatric disorders. BDNF promotes axonal outgrowth and branching, regulates dendritic tree morphology and is important for axonal regeneration after injury, responses that largely result from activation of its tyrosine kinase receptor TrkB. Although intracellular neurotrophin (NT signaling presumably reflects the combined action of kinases and phosphatases, little is known about the contributions of the latter to TrkB regulation. The issue is complicated by the fact that phosphatases belong to multiple independently evolved families, which are rarely studied together. We undertook a loss-of-function RNA-interference-based screen of virtually all known (254 human phosphatases to understand their function in BDNF/TrkB-mediated neurite outgrowth in differentiated SH-SY5Y cells. This approach identified phosphatases from diverse families, which either positively or negatively modulate BDNF-TrkB-mediated neurite outgrowth, and most of which have little or no previously established function related to NT signaling. "Classical" protein tyrosine phosphatases (PTPs accounted for 13% of the candidate regulatory phosphatases. The top classical PTP identified as a negative regulator of BDNF-TrkB-mediated neurite outgrowth was PTPN12 (also called PTP-PEST. Validation and follow-up studies showed that endogenous PTPN12 antagonizes tyrosine phosphorylation of TrkB itself, and the downstream activation of ERK1/2. We also found PTPN12 to negatively regulate phosphorylation of p130cas and FAK, proteins with previously described functions related to cell motility and growth cone behavior. Our data provide the first comprehensive survey of phosphatase function in NT signaling and neurite outgrowth. They reveal the complexity of phosphatase control, with several evolutionarily unrelated phosphatase families cooperating to affect this biological response

  18. Tyrosine phosphorylation of the BRI1 receptor kinase occurs via a posttranslational modification and is activated by the juxtamembrane domain

    Science.gov (United States)

    In metazoans, receptor kinases control many essential processes related to growth and development and response to the environment. The receptor kinases in plants and animals are structurally similar but evolutionarily distinct from one another, and thus while most animal receptor kinases are tyrosin...

  19. Impaired degradation followed by enhanced recycling of epidermal growth factor receptor caused by hypo-phosphorylation of tyrosine 1045 in RBE cells

    Directory of Open Access Journals (Sweden)

    Gui Anping

    2012-05-01

    Full Text Available Abstract Background Since cholangiocarcinoma has a poor prognosis, several epidermal growth factor receptor (EGFR-targeted therapies with antibody or small molecule inhibitor treatment have been proposed. However, their effect remains limited. The present study sought to understand the molecular genetic characteristics of cholangiocarcinoma related to EGFR, with emphasis on its degradation and recycling. Methods We evaluated EGFR expression and colocalization by immunoblotting and immunofluorescence, cell surface EGFR expression by fluorescence-activated cell sorting (FACS, and EGFR ubiquitination and protein binding by immunoprecipitation in the human cholangiocarcinoma RBE and immortalized cholangiocyte MMNK-1 cell lines. Monensin treatment and Rab11a depletion by siRNA were adopted for inhibition of EGFR recycling. Results Upon stimulation with EGF, ligand-induced EGFR degradation was impaired and the expression of phospho-tyrosine 1068 and phospho-p44/42 MAPK was sustained in RBE cells as compared with MMNK-1 cells. In RBE cells, the process of EGFR sorting for lysosomal degradation was blocked at the early endosome stage, and non-degradated EGFR was recycled to the cell surface. A disrupted association between EGFR and the E3 ubiquitin ligase c-Cbl, as well as hypo-phosphorylation of EGFR at tyrosine 1045 (Tyr1045, were also observed in RBE cells. Conclusion In RBE cells, up-regulation of EGFR Tyr1045 phosphorylation is a potentially useful molecular alteration in EGFR-targeted therapy. The combination of molecular-targeted therapy determined by the characteristics of individual EGFR phosphorylation events and EGFR recycling inhibition show promise in future treatments of cholangiocarcinoma.

  20. Dopamine-induced Tyrosine Phosphorylation of NR2B (Tyr1472 is Essential for ERK1/2 Activation and Processing of Novel Taste Information

    Directory of Open Access Journals (Sweden)

    Orit eDavid

    2014-07-01

    Full Text Available Understanding the heterosynaptic interaction between glutamatergic and neuromodulatory synapses is highly important for revealing brain function in health and disease. For instance, the interaction between dopamine and glutamate neurotransmission is vital for memory and synaptic plasticity consolidation, and is known to converge on ERK-MAPK signaling in neurons. Previous studies suggest that dopamine induces NMDA receptor phosphorylation at the NR2B Y1472 subunit, influencing receptor internalization at the synaptic plasma membrane. However, it is unclear whether this phosphorylation is upstream to and/or necessary for ERK1/2 activation, which is known to be crucial for synaptic plasticity and memory consolidation. Here, we tested the hypothesis that tyrosine phosphorylation of NR2B at Y1472 is correlated with ERK1/2 activation by dopamine and necessary for it as well. We find that dopamine receptor D1, but not D2, activates ERK1/2 and leads to NR2BY1472 phosphorylation in the mature hippocampus and cortex. Moreover, our results indicate that NR2B Y1472 phosphorylation is necessary for ERK1/2 activation. Importantly, application of dopamine or the D1 receptor agonist SKF38393 to hippocampal slices from NR2B F1472 mutant mice did not result in ERK1/2 activation, suggesting this site is not only correlated with ERK1/2 activation by dopamine stimulation, but also necessary for it. In addition, NR2B F1472 mice show impairment in learning of attenuation of taste neophobia, but not associative taste learning. Our study shows that the dopaminergic and glutamatergic transmission converge on the NMDA receptor itself, at the Y1472 site of the NR2B subunit, and that this convergence is essential for ERK1/2 activation in the mature brain and for processing new sensory information in the cortex.

  1. Tyrosine phosphorylation of the BRI1 receptor kinase occurs via a posttranslational modification and is activated by the juxtamembrane domain

    Directory of Open Access Journals (Sweden)

    Man-Ho eOh

    2012-08-01

    Full Text Available In metazoans, receptor kinases control many essential processes related to growth and development and response to the environment. The receptor kinases in plants and animals are structurally similar but evolutionarily distinct and thus while most animal receptor kinases are tyrosine kinases the plant receptor kinases are classified as serine/threonine kinases. One of the best studied plant receptor kinases is BRASSINOSTEROID INSENSITIVE 1 (BRI1, which functions in brassinosteroid (BR signaling. Consistent with its classification, BRI1 was shown in early studies to autophosphorylate in vitro exclusively on serine and threonine residues and subsequently numerous specific phosphoserine and phosphothreonine sites were identified. However, several sites of tyrosine autophosphorylation have recently been identified establishing that BRI1 is a dual-specificity kinase. This raises the paradox that BRI1 contains phosphotyrosine but was only observed to autophosphorylate on serine and threonine sites. In the present study, we demonstrate that autophosphorylation on threonine and tyrosine (and presumably serine residues is a post-translational modification, ruling out a co-translational mechanism that could explain the paradox. Moreover, we show that in general, autophosphorylation of the recombinant protein appears to be hierarchal and proceeds in the order: phosphoserine > phosphothreonine > phosphotyrosine. This may explain why tyrosine autophosphorylation was not observed in some studies. Finally, we also show that the juxtamembrane domain of BRI1 is an activator of the kinase domain, and that kinase specificity (serine/threonine versus tyrosine can be affected by residues outside of the kinase domain. This may have implications for identification of signature motifs that distinguish serine/threonine kinases from dual-specificity kinases.

  2. NPM phosphorylation stimulates Cdk1, overrides G2/M checkpoint and increases leukemic blasts in mice.

    Science.gov (United States)

    Du, Wei; Zhou, Yun; Pike, Suzette; Pang, Qishen

    2010-02-01

    An elevated level of nucleophosmin (NPM) is often found in actively proliferative cells including human tumors. To identify the regulatory role for NPM phosphorylation in proliferation and cell cycle control, a series of mutants targeting the consensus cyclin-dependent kinase (CDK) phosphorylation sites was created to mimic or abrogate either single-site or multi-site phosphorylation. Simultaneous inactivation of two CDK phosphorylation sites at Ser10 and Ser70 (NPM-AA) induced G(2)/M cell cycle arrest, phosphorylation of Cdk1 at Tyr15 (Cdc2(Tyr15)) and increased cytoplasmic accumulation of Cdc25C. Strikingly, stress-induced Cdk1(Tyr15) and Cdc25C sequestration was suppressed by expression of a phosphomimetic NPM mutant created on the same CDK sites (S10E/S70E, NPM-EE). Further analysis revealed that phosphorylation of NPM at both Ser10 and Ser70 was required for proper interaction between Cdk1 and Cdc25C. Moreover, NPM-EE directly bound to Cdc25C and prevented phosphorylation of Cdc25C at Ser216 during mitosis. Finally, NPM-EE overrided stress-induced G(2)/M arrest and increased leukemia blasts in a NOD/SCID xenograft model. Thus, these findings reveal a novel function of NPM on regulation of cell cycle progression, in which phosphorylation of NPM controls cell cycle progression at G(2)/M transition through modulation of Cdk1 and Cdc25C activities.

  3. Adrenal hormones and increase of liver tyrosine aminotransferase and tryptophan pyrrolase activity after immobilization in rats.

    Science.gov (United States)

    Németh, S; Vigas, M

    1975-06-01

    In adrenomedullectomized rats the postimmobilization increase of liver tyrosine aminotransferase and tryptophan pyrrolase activity was similar as in intact animals, wherease in adrenalectomized rats this response was completely absent. In intact animals a positive correlation between the magnitude of the response of both enzymes and the duration of immobilization and/or the extent of plasma corticosterone increase was observedmit is concluded that the postimmobilization hyperactivity of both enzymes arises exclusively as a consequence of hypercorticosteronaemia, catecholamines and other hormones being without any influence on this response.

  4. A specific A/T polymorphism in Western tyrosine phosphorylation B-motifs regulates Helicobacter pylori CagA epithelial cell interactions.

    Science.gov (United States)

    Zhang, Xue-Song; Tegtmeyer, Nicole; Traube, Leah; Jindal, Shawn; Perez-Perez, Guillermo; Sticht, Heinrich; Backert, Steffen; Blaser, Martin J

    2015-02-01

    Helicobacter pylori persistently colonizes the human stomach, with mixed roles in human health. The CagA protein, a key host-interaction factor, is translocated by a type IV secretion system into host epithelial cells, where its EPIYA tyrosine phosphorylation motifs (TPMs) are recognized by host cell kinases, leading to multiple host cell signaling cascades. The CagA TPMs have been described as type A, B, C or D, each with a specific conserved amino acid sequence surrounding EPIYA. Database searching revealed strong non-random distribution of the B-motifs (including EPIYA and EPIYT) in Western H. pylori isolates. In silico analysis of Western H. pylori CagA sequences provided evidence that the EPIYT B-TPMs are significantly less associated with gastric cancer than the EPIYA B-TPMs. By generating and using a phosphorylated CagA B-TPM-specific antibody, we demonstrated the phosphorylated state of the CagA B-TPM EPIYT during H. pylori co-culture with host cells. We also showed that within host cells, CagA interaction with phosphoinositol 3-kinase (PI3-kinase) was B-TPM tyrosine-phosphorylation-dependent, and the recombinant CagA with EPIYT B-TPM had higher affinity to PI3-kinase and enhanced induction of AKT than the isogenic CagA with EPIYA B-TPM. Structural modeling of the CagA B-TPM motif bound to PI3-kinase indicated that the threonine residue at the pY+1 position forms a side-chain hydrogen bond to N-417 of PI3-kinase, which cannot be formed by alanine. During co-culture with AGS cells, an H. pylori strain with a CagA EPIYT B-TPM had significantly attenuated induction of interleukin-8 and hummingbird phenotype, compared to the isogenic strain with B-TPM EPIYA. These results suggest that the A/T polymorphisms could regulate CagA activity through interfering with host signaling pathways related to carcinogenesis, thus influencing cancer risk.

  5. A specific A/T polymorphism in Western tyrosine phosphorylation B-motifs regulates Helicobacter pylori CagA epithelial cell interactions.

    Directory of Open Access Journals (Sweden)

    Xue-Song Zhang

    2015-02-01

    Full Text Available Helicobacter pylori persistently colonizes the human stomach, with mixed roles in human health. The CagA protein, a key host-interaction factor, is translocated by a type IV secretion system into host epithelial cells, where its EPIYA tyrosine phosphorylation motifs (TPMs are recognized by host cell kinases, leading to multiple host cell signaling cascades. The CagA TPMs have been described as type A, B, C or D, each with a specific conserved amino acid sequence surrounding EPIYA. Database searching revealed strong non-random distribution of the B-motifs (including EPIYA and EPIYT in Western H. pylori isolates. In silico analysis of Western H. pylori CagA sequences provided evidence that the EPIYT B-TPMs are significantly less associated with gastric cancer than the EPIYA B-TPMs. By generating and using a phosphorylated CagA B-TPM-specific antibody, we demonstrated the phosphorylated state of the CagA B-TPM EPIYT during H. pylori co-culture with host cells. We also showed that within host cells, CagA interaction with phosphoinositol 3-kinase (PI3-kinase was B-TPM tyrosine-phosphorylation-dependent, and the recombinant CagA with EPIYT B-TPM had higher affinity to PI3-kinase and enhanced induction of AKT than the isogenic CagA with EPIYA B-TPM. Structural modeling of the CagA B-TPM motif bound to PI3-kinase indicated that the threonine residue at the pY+1 position forms a side-chain hydrogen bond to N-417 of PI3-kinase, which cannot be formed by alanine. During co-culture with AGS cells, an H. pylori strain with a CagA EPIYT B-TPM had significantly attenuated induction of interleukin-8 and hummingbird phenotype, compared to the isogenic strain with B-TPM EPIYA. These results suggest that the A/T polymorphisms could regulate CagA activity through interfering with host signaling pathways related to carcinogenesis, thus influencing cancer risk.

  6. Insulin increases phosphorylation of mitochondrial proteins in human skeletal muscle in vivo

    DEFF Research Database (Denmark)

    Zhao, Xiaolu; Bak, Steffen; Pedersen, Andreas James Thestrup;

    2014-01-01

    There is increasing evidence that multiple proteins involved in key regulatory processes in mitochondria are phosphorylated in mammalian tissues. Insulin regulates glucose metabolism by phosphorylation-dependent signaling and has been shown to stimulate ATP synthesis in human skeletal muscle. Here...... the majority of novel sites. Phosphorylation sites detected more often or exclusively in insulin-stimulated samples include multiple sites in mitochondrial proteins involved in oxidative phosphorylation, tricarboxylic acid cycle, and fatty acid metabolism, as well as several components of the newly defined......, we investigated the effect of insulin on the phosphorylation of mitochondrial proteins in human skeletal muscle in vivo. Using a combination of TiO2 phosphopeptide-enrichment, HILIC fractionation, and LC−MS/MS, we compared the phosphoproteomes of isolated mitochondria from skeletal muscle samples...

  7. Analysis of tyrosine phosphorylation sites in signaling molecules by a phosphotyrosine-specific immonium ion scanning method

    DEFF Research Database (Denmark)

    Steen, Hanno; Pandey, Akhilesh; Andersen, Jens S

    2002-01-01

    Signal transduction pathways involve cascades of events, such as formation of second messengers and protein complexes that alter the activities of proteins. This can ultimately lead to changes in gene expression in response to the stimuli. Reversible phosphorylation of proteins is an important...

  8. Interactions between the L1 cell adhesion molecule and ezrin support traction-force generation and can be regulated by tyrosine phosphorylation.

    Science.gov (United States)

    Sakurai, Takeshi; Gil, Orlando D; Whittard, John D; Gazdoiu, Mihaela; Joseph, Todd; Wu, James; Waksman, Adam; Benson, Deanna L; Salton, Stephen R; Felsenfeld, Dan P

    2008-09-01

    An Ig superfamily cell-adhesion molecule, L1, forms an adhesion complex at the cell membrane containing both signaling molecules and cytoskeletal proteins. This complex mediates the transduction of extracellular signals and generates actin-mediated traction forces, both of which support axon outgrowth. The L1 cytoplasmic region binds ezrin, an adapter protein that interacts with the actin cytoskeleton. In this study, we analyzed L1-ezrin interactions in detail, assessed their role in generating traction forces by L1, and identified potential regulatory mechanisms controlling ezrin-L1 interactions. The FERM domain of ezrin binds to the juxtamembrane region of L1, demonstrated by yeast two-hybrid interaction traps and protein binding analyses in vitro. A lysine-to-leucine substitution in this domain of L1 (K1147L) shows reduced binding to the ezrin FERM domain. Additionally, in ND7 cells, the K1147L mutation inhibits retrograde movement of L1 on the cell surface that has been linked to the generation of the traction forces necessary for axon growth. A membrane-permeable peptide consisting of the juxtamembrane region of L1 that can disrupt endogenous L1-ezrin interactions inhibits neurite extension of cerebellar cells on L1 substrates. Moreover, the L1-ezrin interactions can be modulated by tyrosine phosphorylation of the L1 cytoplasmic region, namely, Y1151, possibly through Src-family kinases. Replacement of this tyrosine together with Y1176 with either aspartate or phenylalanine changes ezrin binding and alters colocalization with ezrin in ND7 cells. Collectively, these data suggest that L1-ezrin interactions mediated by the L1 juxtamembrane region are involved in traction-force generation and can be regulated by the phosphorylation of L1. (c) 2008 Wiley-Liss, Inc.

  9. Tyrosine-phosphorylated Ehrlichia chaffeensis and Ehrlichia canis tandem repeat orthologs contain a major continuous cross-reactive antibody epitope in lysine-rich repeats.

    Science.gov (United States)

    McBride, Jere W; Zhang, Xiaofeng; Wakeel, Abdul; Kuriakose, Jeeba A

    2011-08-01

    A small subset of major immunoreactive proteins have been identified in Ehrlichia chaffeensis and Ehrlichia canis, including three molecularly and immunologically characterized pairs of immunoreactive tandem repeat protein (TRP) orthologs with major continuous species-specific epitopes within acidic tandem repeats (TR) that stimulate strong antibody responses during infection. In this study, we identified a fourth major immunoreactive TR-containing ortholog pair and defined a major cross-reactive epitope in homologous nonidentical 24-amino-acid lysine-rich TRs. Antibodies from patients and dogs with ehrlichiosis reacted strongly with recombinant TR regions, and epitopes were mapped to the N-terminal TR region (18 amino acids) in E. chaffeensis and the complete TR (24 amino acids) in E. canis. Two less-dominant epitopes were mapped to adjacent glutamate/aspartate-rich and aspartate/tyrosine-rich regions in the acidic C terminus of E. canis TRP95 but not in E. chaffeensis TRP75. Major immunoreactive proteins in E. chaffeensis (75-kDa) and E. canis (95-kD) whole-cell lysates and supernatants were identified with TR-specific antibodies. Consistent with other ehrlichial TRPs, the TRPs identified in ehrlichial whole-cell lysates and the recombinant proteins migrated abnormally slow electrophoretically a characteristic that was demonstrated with the positively charged TR and negatively charged C-terminal domains. E. chaffeensis TRP75 and E. canis TRP95 were immunoprecipitated with anti-pTyr antibody, demonstrating that they are tyrosine phosphorylated during infection of the host cell.

  10. Cardiac mitochondria in heart failure: normal cardiolipin profile and increased threonine phosphorylation of complex IV.

    Science.gov (United States)

    Rosca, Mariana; Minkler, Paul; Hoppel, Charles L

    2011-11-01

    Mitochondrial dysfunction is a major contributor in heart failure (HF). We investigated whether the decrease in respirasome organization reported by us previously in cardiac mitochondria in HF is due to changes in the phospholipids of the mitochondrial inner membrane or modifications of the subunits of the electron transport chain (ETC) complexes. The contents of the main phospholipid species, including cardiolipin, as well as the molecular species of cardiolipin were unchanged in cardiac mitochondria in HF. Oxidized cardiolipin molecular species were not observed. In heart mitochondria isolated from HF, complex IV not incorporated into respirasomes exhibits increased threonine phosphorylation. Since HF is associated with increased adrenergic drive to cardiomyocytes, this increased protein phosphorylation might be explained by the involvement of cAMP-activated protein kinase. Does the preservation of cAMP-induced phosphorylation changes of mitochondrial proteins or the addition of exogenous cAMP have similar effects on oxidative phosphorylation? The usage of phosphatase inhibitors revealed a specific decrease in complex I-supported respiration with glutamate. In saponin-permeabilized cardiac fibers, pre-incubation with cAMP decreases oxidative phosphorylation due to a defect localized at complex IV of the ETC inter alia. We propose that phosphorylation of specific complex IV subunits decreases oxidative phosphorylation either by limiting the incorporation of complex IV in supercomplexes or by decreasing supercomplex stability.

  11. Acute calcineurin inhibition with tacrolimus increases phosphorylated UT-A1.

    Science.gov (United States)

    Ilori, Titilayo O; Wang, Yanhua; Blount, Mitsi A; Martin, Christopher F; Sands, Jeff M; Klein, Janet D

    2012-04-15

    UT-A1, the urea transporter present in the apical membrane of the inner medullary collecting duct, is crucial to the kidney's ability to concentrate urine. Phosphorylation of UT-A1 on serines 486 and 499 is important for plasma membrane trafficking. The effect of calcineurin on dephosphorylation of UT-A1 was investigated. Inner medullary collecting ducts from Sprague-Dawley rats were metabolically labeled and treated with tacrolimus to inhibit calcineurin or calyculin to inhibit protein phosphatases 1 and 2A. UT-A1 was immunoprecipitated, electrophoresed, blotted, and total UT-A1 phosphorylation was assessed by autoradiography. Total UT-A1 was determined by Western blotting. A phospho-specific antibody to pser486-UT-A1 was used to determine whether serine 486 can be hyperphosphorylated by inhibiting phosphatases. Inhibition of calcineurin showed an increase in phosphorylation per unit protein at serine 486. In contrast, inhibition of phosphatases 1 and 2A resulted in an increase in UT-A1 phosphorylation but no increase in pser486-UT-A1. In vitro perfusion of inner medullary collecting ducts showed tacrolimus-stimulated urea permeability consistent with stimulated urea transport. The location of phosphorylated UT-A1 in rats treated acutely and chronically with tacrolimus was determined using immunohistochemistry. Inner medullary collecting ducts of the acutely treated rats showed increased apical membrane association of phosphorylated UT-A1 while chronic treatment reduced membrane association of phosphorylated UT-A1. We conclude that UT-A1 may be dephosphorylated by multiple phosphatases and that the PKA-phosphorylated serine 486 is dephosphorylated by calcineurin. This is the first documentation of the role of phosphatases and the specific site of phosphorylation of UT-A1, in response to tacrolimus.

  12. Rapid tyrosine phosphorylation of Lck following ligation of the tumor-associated cell surface molecule A6H

    DEFF Research Database (Denmark)

    Labuda, T; Gerwien, J; Ødum, Niels

    1999-01-01

    . In addition, A6H ligation induced an up-regulation of CD3-mediated phosphorylation of the 23 kDa high mol. wt form of TCR zeta and the zeta-associated protein, ZAP-70. Co-precipitation of Lck and ZAP-70 was only seen in T cells activated by combined A6H and anti-CD3 stimulation. In contrast, another Src...... family PTK, Fyn, was not affected by A6H ligation. In conclusion, we now demonstrate, for the first time, that A6H ligation triggers Lck phosphorylation, and that cross-talk between A6H and the TCR-CD3 complex involves Lck, ZAP-70 and the slow migrating isoform of TCR zeta. These results further suggests...

  13. Tyrosine kinase activity, cytoskeletal organization, and motility in human vascular endothelial cells.

    OpenAIRE

    1994-01-01

    Tyrosine phosphorylation of cytoskeletal proteins occurs during integrin-mediated cell adhesion to extracellular matrix proteins. We have investigated the role of tyrosine phosphorylation in the migration and initial spreading of human umbilical vein endothelial cells (HUVEC). Elevated phosphotyrosine concentrations were noted in the focal adhesions of HUVEC migrating into wounds. Anti-phosphotyrosine Western blots of extracts of wounded HUVEC monolayers demonstrated increased phosphorylation...

  14. PKCθ-Mediated PDK1 Phosphorylation Enhances T Cell Activation by Increasing PDK1 Stability

    Science.gov (United States)

    Kang, Jung-Ah; Choi, Hyunwoo; Yang, Taewoo; Cho, Steve K.; Park, Zee-Yong; Park, Sung-Gyoo

    2017-01-01

    PDK1 is essential for T cell receptor (TCR)-mediated activation of NF-κB, and PDK1-induced phosphorylation of PKCθ is important for TCR-induced NF-κB activation. However, inverse regulation of PDK1 by PKCθ during T cell activation has not been investigated. In this study, we found that PKCθ is involved in human PDK1 phosphorylation and that its kinase activity is crucial for human PDK1 phosphorylation. Mass spectrometry analysis of wild-type PKCθ or of kinase-inactive form of PKCθ revealed that PKCθ induced phosphorylation of human PDK1 at Ser-64. This PKCθ-induced PDK1 phosphorylation positively regulated T cell activation and TCR-induced NF-κB activation. Moreover, phosphorylation of human PDK1 at Ser-64 increased the stability of human PDK1 protein. These results suggest that Ser-64 is an important phosphorylation site that is part of a positive feedback loop for human PDK1-PKCθ-mediated T cell activation. PMID:28152304

  15. Increased postexercise insulin sensitivity is accompanied by increased AS160 phosphorylation in slow-twitch soleus muscle.

    Science.gov (United States)

    Iwabe, Maiko; Kawamoto, Emi; Koshinaka, Keiichi; Kawanaka, Kentaro

    2014-12-01

    A single bout of exercise can enhance insulin-stimulated glucose uptake in both fast-twitch (type II) and slow-twitch (type I) skeletal muscle for several hours postexercise. Akt substrate of 160 kDa (AS160) is most distal insulin signaling proteins that have been proposed to contribute to the postexercise enhancement of insulin action in fast-twitch muscle. In this study, we examined whether the postexercise increase in insulin action of glucose uptake in slow-twitch muscle is accompanied by increased phosphorylation of AS160 and its paralog TBC1D1. Male Wistar rats (~1-month-old) were exercised on a treadmill for 180 min (9 m/min). Insulin (50 μU/mL)-stimulated glucose uptake was increased at 2 h after cessation of exercise in soleus muscle composed of predominantly slow-twitch fibers. This postexercise increase in insulin action of glucose uptake was accompanied by increased phosphorylation of AS160 (detected by phospho-Thr642 and phospho-Ser588 antibody). On the other hand, prior exercise did not increase phosphorylation of TBC1D1 (detected by phospho-Thr590) at 2 h postexercise. These results suggest the possibility that an enhancement in AS160 phosphorylation but not TBC1D1 phosphorylation is involved with increased postexercise insulin action of glucose uptake in slow-twitch muscle.

  16. Tyrosine phosphorylation of RNA polymerase II CTD is associated with antisense promoter transcription and active enhancers in mammalian cells

    Science.gov (United States)

    Descostes, Nicolas; Heidemann, Martin; Spinelli, Lionel; Schüller, Roland; Maqbool, Muhammad Ahmad; Fenouil, Romain; Koch, Frederic; Innocenti, Charlène; Gut, Marta; Gut, Ivo; Eick, Dirk; Andrau, Jean-Christophe

    2014-01-01

    In mammals, the carboxy-terminal domain (CTD) of RNA polymerase (Pol) II consists of 52 conserved heptapeptide repeats containing the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. Post-translational modifications of the CTD coordinate the transcription cycle and various steps of mRNA maturation. Here we describe Tyr1 phosphorylation (Tyr1P) as a hallmark of promoter (5′ associated) Pol II in mammalian cells, in contrast to what was described in yeast. Tyr1P is predominantly found in antisense orientation at promoters but is also specifically enriched at active enhancers. Mutation of Tyr1 to phenylalanine (Y1F) prevents the formation of the hyper-phosphorylated Pol IIO form, induces degradation of Pol II to the truncated Pol IIB form, and results in a lethal phenotype. Our results suggest that Tyr1P has evolved specialized and essential functions in higher eukaryotes associated with antisense promoter and enhancer transcription, and Pol II stability. DOI: http://dx.doi.org/10.7554/eLife.02105.001 PMID:24842994

  17. Purified Wnt-5a increases differentiation of midbrain dopaminergic cells and dishevelled phosphorylation.

    Science.gov (United States)

    Schulte, Gunnar; Bryja, Vítezslav; Rawal, Nina; Castelo-Branco, Goncalo; Sousa, Kyle M; Arenas, Ernest

    2005-03-01

    The Wnt family of lipoproteins regulates several aspects of the development of the nervous system. Recently, we reported that Wnt-3a enhances the proliferation of midbrain dopaminergic precursors and that Wnt-5a promotes their differentiation into dopaminergic neurones. Here we report the purification of hemagglutinin-tagged Wnt-5a using a three-step purification method similar to that previously described for Wnt-3a. Haemagglutinin-tagged Wnt-5a was biologically active and induced the differentiation of immature primary midbrain precursors into tyrosine hydroxylase-positive dopaminergic neurones. Using a substantia nigra-derived dopaminergic cell line (SN4741), we found that Wnt-5a, unlike Wnt-3a, did not promote beta-catenin phosphorylation or stabilization. However, both Wnt-5a and Wnt-3a activated dishevelled, as assessed by a phosphorylation-dependent mobility shift. Moreover, the activity of Wnt-5a on dishevelled was blocked by pre-treatment with acyl protein thioesterase-1, indicating that palmitoylation of Wnt-5a is necessary for its function. Thus, our results suggest that Wnt-3a and Wnt-5a, respectively, activate canonical and non-canonical Wnt signalling pathways in ventral midbrain dopaminergic cells. Furthermore, we identify dishevelled as a key player in transducing both Wnt canonical and non-canonical signals in dopaminergic cells.

  18. Insulin-induced Stimulation of Na+,K+-ATPase Activity in Kidney Proximal Tubule Cells Depends on Phosphorylation of the α-Subunit at Tyr-10

    Science.gov (United States)

    Féraille, Eric; Carranza, Maria Luisa; Gonin, Sandrine; Béguin, Pascal; Pedemonte, Carlos; Rousselot, Martine; Caverzasio, Joseph; Geering, Käthi; Martin, Pierre-Yves; Favre, Hervé

    1999-01-01

    Phosphorylation of the α-subunit of Na+,K+-ATPase plays an important role in the regulation of this pump. Recent studies suggest that insulin, known to increase solute and fluid reabsorption in mammalian proximal convoluted tubule (PCT), is stimulating Na+,K+-ATPase activity through the tyrosine phosphorylation process. This study was therefore undertaken to evaluate the role of tyrosine phosphorylation of the Na+,K+-ATPase α-subunit in the action of insulin. In rat PCT, insulin and orthovanadate (a tyrosine phosphatase inhibitor) increased tyrosine phosphorylation level of the α-subunit more than twofold. Their effects were not additive, suggesting a common mechanism of action. Insulin-induced tyrosine phosphorylation was prevented by genistein, a tyrosine kinase inhibitor. The site of tyrosine phosphorylation was identified on Tyr-10 by controlled trypsinolysis in rat PCTs and by site-directed mutagenesis in opossum kidney cells transfected with rat α-subunit. The functional relevance of Tyr-10 phosphorylation was assessed by 1) the abolition of insulin-induced stimulation of the ouabain-sensitive 86Rb uptake in opossum kidney cells expressing mutant rat α1-subunits wherein tyrosine was replaced by alanine or glutamine; and 2) the similarity of the time course and dose dependency of the insulin-induced increase in ouabain-sensitive 86Rb uptake and tyrosine phosphorylation. These findings indicate that phosphorylation of the Na+,K+-ATPase α-subunit at Tyr-10 likely participates in the physiological control of sodium reabsorption in PCT. PMID:10473631

  19. Receptor-like protein-tyrosine phosphatase alpha specifically inhibits insulin-increased prolactin gene expression

    DEFF Research Database (Denmark)

    Jacob, K K; Sap, J; Stanley, F M

    1998-01-01

    A physiologically relevant response to insulin, stimulation of prolactin promoter activity in GH4 pituitary cells, was used as an assay to study the specificity of protein-tyrosine phosphatase function. Receptor-like protein-tyrosine phosphatase alpha (RPTPalpha) blocks the effect of insulin to i...

  20. Retinoic acid increases glucocorticoid receptor phosphorylation via cyclin-dependent kinase 5.

    Science.gov (United States)

    Brossaud, Julie; Roumes, Hélène; Helbling, Jean-Christophe; Moisan, Marie-Pierre; Pallet, Véronique; Ferreira, Guillaume; Biyong, Essi-Fanny; Redonnet, Anabelle; Corcuff, Jean-Benoît

    2017-07-01

    Glucocorticoid receptor (GR) function is modulated by phosphorylation. As retinoic acid (RA) can activate some cytoplasmic kinases able to phosphorylate GR, we investigated whether RA could modulate GR phosphorylation in neuronal cells in a context of long-term glucocorticoid exposure. A 4-day treatment of dexamethasone (Dex) plus RA, showed that RA potentiated the (Dex)-induced phosphorylation on GR Serine 220 (pSer220GR) in the nucleus of a hippocampal HT22 cell line. This treatment increased the cytoplasmic ratio of p35/p25 proteins, which are major CDK5 cofactors. Roscovitine, a pharmacological CDK5 inhibitor, or a siRNA against CDK5 prevented RA potentiation of GR phosphorylation. Furthermore, roscovitine counter-acted the effect of RA on GR sensitive target proteins such as BDNF or tissue-transglutaminase. These data help understanding the interaction between RA- and glucocorticoid-signalling pathways, both of which have strong influences on the adult brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Regulatory light chain phosphorylation increases eccentric contraction-induced injury in skinned fast-twitch fibers.

    Science.gov (United States)

    Childers, Martin K; McDonald, Kerry S

    2004-02-01

    During contraction, activation of Ca(2+)/calmodulin-dependent myosin light chain kinase (MLCK) results in phosphorylation of myosin's regulatory light chain (RLC), which potentiates force and increases speed of force development over a wide range of [Ca(2+)]. We tested the hypothesis that RLC phosphorylation by MLCK mediates the extent of eccentric contraction-induced injury as measured by force deficit in skinned fast-twitch skeletal muscle fibers. Results indicated that RLC phosphorylation in single skinned rat psoas fibers significantly increased Ca(2+) sensitivity of isometric force; isometric force from 50 +/- 16 to 59 +/- 18 kN/m(2) during maximal Ca(2+) activation; peak absolute power output from 38 +/- 15 to 48 +/- 14 nW during maximal Ca(2+) activation; and the magnitude of contraction-induced force deficit during maximal (pCa 4.5) activation from 26 +/- 9.8 to 35 +/- 9.6%. We conclude that RLC phosphorylation increases force deficits following eccentric contractions, perhaps by increasing the number of force-generating cross-bridges.

  2. Neuroprotection of GluR5-containing kainate receptor activation against ischemic brain injury through decreasing tyrosine phosphorylation of N-methyl-D-aspartate receptors mediated by Src kinase.

    Science.gov (United States)

    Xu, Jie; Liu, Yong; Zhang, Guang-Yi

    2008-10-24

    Previous studies indicate that cerebral ischemia breaks the dynamic balance between excitatory and inhibitory inputs. The neural excitotoxicity induced by ionotropic glutamate receptors gain the upper hand during ischemia-reperfusion. In this paper, we investigate whether GluR5 (glutamate receptor 5)-containing kainate receptor activation could lead to a neuroprotective effect against ischemic brain injury and the related mechanism. The results showed that (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl) propanoic acid (ATPA), a selective GluR5 agonist, could suppress Src tyrosine phosphorylation and interactions among N-methyl-D-aspartate (NMDA) receptor subunit 2A (NR2A), postsynaptic density protein 95 (PSD-95), and Src and then decrease NMDA receptor activation through attenuating tyrosine phosphorylation of NR2A and NR2B. More importantly, ATPA had a neuroprotective effect against ischemia-reperfusion-induced neuronal cell death in vivo. However, four separate drugs were found to abolish the effects of ATPA. These were selective GluR5 antagonist NS3763; GluR5 antisense oligodeoxynucleotides; CdCl(2), a broad spectrum blocker of voltage-gated calcium channels; and bicuculline, an antagonist of gamma-aminobutyric acid A (GABA(A)) receptor. GABA(A) receptor agonist muscimol could attenuate Src activation and interactions among NR2A, PSD-95 and Src, resulting the suppression of NMDA receptor tyrosine phosphorylation. Moreover, patch clamp recording proved that the activated GABA(A) receptor could inhibit NMDA receptor-mediated whole-cell currents. Taken together, the results suggest that during ischemia-reperfusion, activated GluR5 may facilitate Ca(2+)-dependent GABA release from interneurons. The released GABA can activate postsynaptic GABA(A) receptors, which then attenuates NMDA receptor tyrosine phosphorylation through inhibiting Src activation and disassembling the signaling module NR2A-PSD-95-Src. The final result of this process is that the pyramidal

  3. aPKC phosphorylation of HDAC6 results in increased deacetylation activity.

    Directory of Open Access Journals (Sweden)

    Yifeng Du

    Full Text Available The Class II histone deacetylase, HDAC6, has been shown to be involved in cell motility, aggresome formation and mitochondria transport. HDAC6 deacetylase activity regulates α-tubulin acetylation levels and thus plays a critical role in these processes. In turn, HDAC6 activity can be regulated by interaction with various proteins including multiple kinases. Kinase mediated phosphorylation of HDAC6 can lead to either increased or reduced activity. Our previous research has shown that sequestosome1/p62 (SQSTM1/p62 interacts with HDAC6 and regulates its activity. As SQSTM1/p62 is a scaffolding protein known to interact directly with the zeta isoform of Protein Kinase C (PKCζ, we sought to examine if HDAC6 could be a substrate for PKCζ phosphorylation and if so, how its activity might be regulated. Our data demonstrate that HDAC6 is not only present in a protein complex with PKCζ but can also be phosphorylated by PKCζ. We also show that specific phosphorylation of HDAC6 by PKCζ increases HDAC6 deacetylase activity resulting in reduced acetylated tubulin levels. Our findings provide novel insight into the molecular mechanism by which HDAC6, PKCζ and SQSTM1/p62 function together in protein aggregate clearance. These results also highlight a new research direction which may prove fruitful for understanding the underlying cause of several neurodegenerative diseases.

  4. Serine 1179 Phosphorylation of Endothelial Nitric Oxide Synthase Increases Superoxide Generation and Alters Cofactor Regulation.

    Science.gov (United States)

    Peng, Hu; Zhuang, Yugang; Harbeck, Mark C; He, Donghong; Xie, Lishi; Chen, Weiguo

    2015-01-01

    Endothelial nitric oxide synthase (eNOS) is responsible for maintaining systemic blood pressure, vascular remodeling and angiogenesis. In addition to producing NO, eNOS can also generate superoxide (O2-.) in the absence of the cofactor tetrahydrobiopterin (BH4). Previous studies have shown that bovine eNOS serine 1179 (Serine 1177/human) phosphorylation critically modulates NO synthesis. However, the effect of serine 1179 phosphorylation on eNOS superoxide generation is unknown. Here, we used the phosphomimetic form of eNOS (S1179D) to determine the effect of S1179 phosphorylation on superoxide generating activity, and its sensitivity to regulation by BH4, Ca2+, and calmodulin (CAM). S1179D eNOS exhibited significantly increased superoxide generating activity and NADPH consumption compared to wild-type eNOS (WT eNOS). The superoxide generating activities of S1179D eNOS and WT eNOS did not differ significantly in their sensitivity to regulation by either Ca2+ or CaM. The sensitivity of the superoxide generating activity of S1179D eNOS to inhibition by BH4 was significantly reduced compared to WT eNOS. In eNOS-overexpressing 293 cells, BH4 depletion with 10mM DAHP for 48 hours followed by 50ng/ml VEGF for 30 min to phosphorylate eNOS S1179 increased ROS accumulation compared to DAHP-only treated cells. Meanwhile, MTT assay indicated that overexpression of eNOS in HEK293 cells decreased cellular viability compared to control cells at BH4 depletion condition (Psuperoxide generation: S1179 phosphorylation increases superoxide production while decreasing sensitivity to the inhibitory effect of BH4 on this activity.

  5. Increased activity of tyrosine hydroxylase in the cerebellum of the x-irradiated dystonic rat

    Energy Technology Data Exchange (ETDEWEB)

    Dopico, A.M.; Rios, H.; Mayo, J.; Zieher, L.M. (Departamentos de Biologia Celular e Histologia y de Farmacologia y Toxicologia, Facultad de Medicina, Universidad de Buenos Aires, (Argentina))

    1990-08-01

    The exposure of the cephalic end of rats to repeated doses of x-irradiation (150 rad) immediately after birth induces a long-term increase in the noradrenaline (NA) content of cerebellum (CE) (+ 37.8%), and a decrease in cerebellar weight (65.2% of controls), which results in an increased NA concentration (+ 109%). This increase in the neurotransmitter level is accompanied by a dystonic syndrome and histological abnormalities: Purkinje cells (the target cells for NA afferents to CE) fail to arrange in a characteristic monolayer, and their primary dendritic tree appears randomly oriented. The injection of reserpine 0.9 and 1.2 mg/kg ip to adult rats for 18 h depletes cerebellar NA content in both controls (15.7 {plus minus} 4 ng/CE and 2.8 {plus minus} 1.5 ng/CE, respectively) and x-irradiated rats (17.1 {plus minus} 1 ng/CE and 8.3 {plus minus} 2 ng/CE, respectively). The activity of tyrosine hydroxylase (TH) in CE of adult rats, measured by an in vitro assay, is significantly increased in neonatally x-irradiated animals when compared to age-matched controls (16.4 {plus minus} 1.4 vs 6.32 {plus minus} 0.6 nmol CO2/h/mg prot., p less than 0.01). As observed for NA levels, a net increase in TH activity induced by the ionizing radiation is also measured: 308.9 {plus minus} 23.8 vs 408.2 {plus minus} 21.5 nmol CO2/h/CE, p less than 0.01 (controls and x-treated, respectively). These results suggest that x-irradiation at birth may induce an abnormal sprouting of noradrenergic afferents to CE. The possibility that these changes represent a response of the NA system to the dystonic syndrome is discussed.

  6. Serine 1179 Phosphorylation of Endothelial Nitric Oxide Synthase Increases Superoxide Generation and Alters Cofactor Regulation.

    Directory of Open Access Journals (Sweden)

    Hu Peng

    Full Text Available Endothelial nitric oxide synthase (eNOS is responsible for maintaining systemic blood pressure, vascular remodeling and angiogenesis. In addition to producing NO, eNOS can also generate superoxide (O2-. in the absence of the cofactor tetrahydrobiopterin (BH4. Previous studies have shown that bovine eNOS serine 1179 (Serine 1177/human phosphorylation critically modulates NO synthesis. However, the effect of serine 1179 phosphorylation on eNOS superoxide generation is unknown. Here, we used the phosphomimetic form of eNOS (S1179D to determine the effect of S1179 phosphorylation on superoxide generating activity, and its sensitivity to regulation by BH4, Ca2+, and calmodulin (CAM. S1179D eNOS exhibited significantly increased superoxide generating activity and NADPH consumption compared to wild-type eNOS (WT eNOS. The superoxide generating activities of S1179D eNOS and WT eNOS did not differ significantly in their sensitivity to regulation by either Ca2+ or CaM. The sensitivity of the superoxide generating activity of S1179D eNOS to inhibition by BH4 was significantly reduced compared to WT eNOS. In eNOS-overexpressing 293 cells, BH4 depletion with 10mM DAHP for 48 hours followed by 50ng/ml VEGF for 30 min to phosphorylate eNOS S1179 increased ROS accumulation compared to DAHP-only treated cells. Meanwhile, MTT assay indicated that overexpression of eNOS in HEK293 cells decreased cellular viability compared to control cells at BH4 depletion condition (P<0.01. VEGF-mediated Serine 1179 phosphorylation further decreased the cellular viability in eNOS-overexpressing 293 cells (P<0.01. Our data demonstrate that eNOS serine 1179 phosphorylation, in addition to enhancing NO production, also profoundly affects superoxide generation: S1179 phosphorylation increases superoxide production while decreasing sensitivity to the inhibitory effect of BH4 on this activity.

  7. Increased phosphorylation of Cx36 gap junctions in the AII amacrine cells of RD retina

    Directory of Open Access Journals (Sweden)

    Elena eIvanova

    2015-10-01

    Full Text Available Retinal degeneration (RD encompasses a family of diseases that lead to photoreceptor death and visual impairment. Visual decline due to photoreceptor cell loss is further compromised by emerging spontaneous hyperactivity in inner retinal cells. This aberrant activity acts as a barrier to signals from the remaining photoreceptors, hindering therapeutic strategies to restore light sensitivity in RD. Gap junctions, particularly those expressed in AII amacrine cells, have been shown to be integral to the generation of aberrant activity. It is unclear whether gap junction expression and coupling are altered in RD. To test this, we evaluated the expression and phosphorylation state of connexin36, the gap junction subunit predominantly expressed in AII amacrine cells, in two mouse models of RD, rd10 (slow degeneration and rd1 (fast degeneration. Using Ser293-P antibody, which recognizes a phosphorylated form of connexin36, we found that phosphorylation of connexin36 in both slow and fast RD models was significantly greater than in wildtype controls. This elevated phosphorylation may underlie the increased gap junction coupling of AII amacrine cells exhibited by RD retina.

  8. Hologram QSAR Models of a Series of 6-Arylquinazolin-4-Amine Inhibitors of a New Alzheimer’s Disease Target: Dual Specificity Tyrosine-Phosphorylation-Regulated Kinase-1A Enzyme

    Directory of Open Access Journals (Sweden)

    Felipe Dias Leal

    2015-03-01

    Full Text Available Dual specificity tyrosine-phosphorylation-regulated kinase-1A (DYRK1A is an enzyme directly involved in Alzheimer’s disease, since its increased expression leads to β-amyloidosis, Tau protein aggregation, and subsequent formation of neurofibrillary tangles. Hologram quantitative structure-activity relationship (HQSAR, 2D fragment-based models were developed for a series of 6-arylquinazolin-4-amine inhibitors (36 training, 10 test of DYRK1A. The best HQSAR model (q2 = 0.757; SEcv = 0.493; R2 = 0.937; SE = 0.251; R2pred = 0.659 presents high goodness-of-fit (R2 > 0.9, as well as high internal (q2 > 0.7 and external (R2pred > 0.5 predictive power. The fragments that increase and decrease the biological activity values were addressed using the colored atomic contribution maps provided by the method. The HQSAR contribution map of the best model is an important tool to understand the activity profiles of new derivatives and may provide information for further design of novel DYRK1A inhibitors.

  9. Ability of Bruton's Tyrosine Kinase Inhibitors to Sequester Y551 and Prevent Phosphorylation Determines Potency for Inhibition of Fc Receptor but not B-Cell Receptor Signaling.

    Science.gov (United States)

    Bender, Andrew T; Gardberg, Anna; Pereira, Albertina; Johnson, Theresa; Wu, Yin; Grenningloh, Roland; Head, Jared; Morandi, Federica; Haselmayer, Philipp; Liu-Bujalski, Lesley

    2017-03-01

    Bruton's tyrosine kinase (Btk) is expressed in a variety of hematopoietic cells. Btk has been demonstrated to regulate signaling downstream of the B-cell receptor (BCR), Fc receptors (FcRs), and toll-like receptors. It has become an attractive drug target because its inhibition may provide significant efficacy by simultaneously blocking multiple disease mechanisms. Consequently, a large number of Btk inhibitors have been developed. These compounds have diverse binding modes, and both reversible and irreversible inhibitors have been developed. Reported herein, we have tested nine Btk inhibitors and characterized on a molecular level how their interactions with Btk define their ability to block different signaling pathways. By solving the crystal structures of Btk inhibitors bound to the enzyme, we discovered that the compounds can be classified by their ability to trigger sequestration of Btk residue Y551. In cells, we found that sequestration of Y551 renders it inaccessible for phosphorylation. The ability to sequester Y551 was an important determinant of potency against FcεR signaling as Y551 sequestering compounds were more potent for inhibiting basophils and mast cells. This result was true for the inhibition of FcγR signaling as well. In contrast, Y551 sequestration was less a factor in determining potency against BCR signaling. We also found that Btk activity is regulated differentially in basophils and B cells. These results elucidate important determinants for Btk inhibitor potency against different signaling pathways and provide insight for designing new compounds with a broader inhibitory profile that will likely result in greater efficacy. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  10. Production of recombinant insulin-like androgenic gland hormones from three decapod species: In vitro testicular phosphorylation and activation of a newly identified tyrosine kinase receptor from the Eastern spiny lobster, Sagmariasus verreauxi.

    Science.gov (United States)

    Aizen, Joseph; Chandler, Jennifer C; Fitzgibbon, Quinn P; Sagi, Amir; Battaglene, Stephen C; Elizur, Abigail; Ventura, Tomer

    2016-04-01

    In crustaceans the insulin-like androgenic gland hormone (IAG) is responsible for male sexual differentiation. To date, the biochemical pathways through which IAG exerts its effects are poorly understood and could be elucidated through the production of a functional recombinant IAG (rIAG). We have successfully expressed glycosylated, biologically active IAG using the Pichia pastoris yeast expression system. We co-expressed recombinant single-chain precursor molecules consisting of the B and A chains (the mature hormone) tethered by a flexible linker, producing rIAGs of the following commercially important species: Eastern spiny lobster Sagmariasus verreauxi (Sv), redclaw crayfish Cherax quadricarinatus (Cq) and giant freshwater prawn Macrobrachium rosenbergii (Mr). We then tested the biological activity of each, through the ability to increase phosphorylation in the testis; both Sv and Cq rIAGs significantly elevated phosphorylation specific to their species, and in a dose-dependent manner. Mr rIAG was tested on Macrobrachium australiense (Ma), eliciting a similar response. Moreover, using bioinformatics analyses of the de novo assembled spiny lobster transcriptome, we identified a spiny lobster tyrosine kinase insulin receptor (Sv-TKIR). We validated this discovery with a receptor activation assay in COS-7 cells expressing Sv-TKIR, using a reporter SRE-LUC system designed for RTKs, with each of the rIAG proteins acting as the activation ligand. Using recombinant proteins, we aim to develop specific tools to control sexual development through the administration of IAG within the critical sexual differentiation time window. The biologically active rIAGs generated might facilitate commercially feasible solutions for the long sought techniques for sex-change induction and monosex population culture in crustaceans and shed new light on the physiological mode of action of IAG in crustaceans.

  11. Phosphorylation of DGCR8 increases its intracellular stability and induces a progrowth miRNA profile.

    Science.gov (United States)

    Herbert, Kristina M; Pimienta, Genaro; DeGregorio, Suzanne J; Alexandrov, Andrei; Steitz, Joan A

    2013-11-27

    During miRNA biogenesis, the microprocessor complex (MC), which is composed minimally of Drosha, an RNase III enzyme, and DGCR8, a double-stranded RNA-binding protein, cleaves the primary miRNA (pri-miRNA) in order to release the pre-miRNA stem-loop structure. Using phosphoproteomics, we mapped 23 phosphorylation sites on full-length human DGCR8 expressed in insect or mammalian cells. DGCR8 can be phosphorylated by mitogenic ERK/MAPK, indicating that DGCR8 phosphorylation may respond to and integrate extracellular cues. The expression of phosphomimetic DGCR8 or inhibition of phosphatases increased the cellular levels of DGCR8 and Drosha proteins. Increased levels of phosphomimetic DGCR8 were not due to higher mRNA levels, altered DGCR8 localization, or DGCR8's ability to self-associate, but rather to an increase in protein stability. MCs incorporating phosphomutant or phosphomimetic DGCR8 were not altered in specific processing activity. However, HeLa cells expressing phosphomimetic DGCR8 exhibited a progrowth miRNA expression profile and increased proliferation and scratch closure rates relative to cells expressing phosphomutant DGCR8.

  12. Phosphorylation of DGCR8 Increases Its Intracellular Stability and Induces a Progrowth miRNA Profile

    Directory of Open Access Journals (Sweden)

    Kristina M. Herbert

    2013-11-01

    Full Text Available During miRNA biogenesis, the microprocessor complex (MC, which is composed minimally of Drosha, an RNase III enzyme, and DGCR8, a double-stranded RNA-binding protein, cleaves the primary miRNA (pri-miRNA in order to release the pre-miRNA stem-loop structure. Using phosphoproteomics, we mapped 23 phosphorylation sites on full-length human DGCR8 expressed in insect or mammalian cells. DGCR8 can be phosphorylated by mitogenic ERK/MAPK, indicating that DGCR8 phosphorylation may respond to and integrate extracellular cues. The expression of phosphomimetic DGCR8 or inhibition of phosphatases increased the cellular levels of DGCR8 and Drosha proteins. Increased levels of phosphomimetic DGCR8 were not due to higher mRNA levels, altered DGCR8 localization, or DGCR8’s ability to self-associate, but rather to an increase in protein stability. MCs incorporating phosphomutant or phosphomimetic DGCR8 were not altered in specific processing activity. However, HeLa cells expressing phosphomimetic DGCR8 exhibited a progrowth miRNA expression profile and increased proliferation and scratch closure rates relative to cells expressing phosphomutant DGCR8.

  13. Serotonin increases ERK1/2 phosphorylation in astrocytes by stimulation of 5-HT2B and 5-HT2C receptors.

    Science.gov (United States)

    Li, Baoman; Zhang, Shiquen; Li, Min; Hertz, Leif; Peng, Liang

    2010-11-01

    We have previously shown that fluoxetine causes ERK(1/2) phosphorylation in cultured mouse astrocytes mediated exclusively by stimulation of 5-HT(2B) receptors (Li et al., 2008b). This raises the question whether this is also the case for serotonin (5-HT) itself. In the present study serotonin was found to induce ERK(1/2) phosphorylation by stimulation of 5-HT(2B) receptors with high affinity (EC(50): 20-30 pM), and by stimulation of 5-HT(2C) receptor with low affinity (EC(50): 1 microM or higher). ERK(1/2) phosphorylation induced by stimulation of either 5-HT(2B) or 5-HT(2C) receptors was mediated by epidermal growth factor (EGF) receptor transactivation (Peng et al., this issue), shown by the inhibitory effect of AG1478, an inhibitor of the EGF receptor tyrosine kinase, and GM6001, an inhibitor of Zn-dependent metalloproteinases, and thus of 5-HT(2B) receptor-mediated EGF receptor agonist release. It is discussed that the high potency of the 5-HT(2B)-mediated effect is consistent with literature data for binding affinity of serotonin to cloned human 5-HT(2B) receptors and with observations of low extracellular concentrations of serotonin in brain, which would allow a demonstrated moderate and modality-dependent increase in specific brain areas to activate 5-HT(2B) receptors. In contrast the relevance of the observed 5-HT(2C) receptors on astrocytes is questioned.

  14. Increased expression of Bruton's tyrosine kinase in peripheral blood is associated with lupus nephritis.

    Science.gov (United States)

    Kong, Wei; Deng, Wei; Sun, Yue; Huang, Saisai; Zhang, Zhuoya; Shi, Bingyu; Chen, Weiwei; Tang, Xiaojun; Yao, Genhong; Feng, Xuebing; Sun, Lingyun

    2017-06-14

    Systemic lupus erythematosus (SLE) is an autoimmune disease manifested by multiorgan impairment. It is reported that B cells participate in the onset of SLE. Bruton's tyrosine kinase (Btk), as a downstream signaling molecule of B cell antigen receptor (BCR) signaling pathway, is involved in the development, activation, and survival of B cells. The aim of our study was to explore the specific role of Btk in lupus nephritis (LN). We determined the percentages of Btk+ B cells in peripheral blood mononuclear cells (PBMCs) from SLE patients by flow cytometry and analyzed the correlation between the percentage of Btk+ B cells and lupus-related clinical indexes. Immunohistochemistry was used to detect the Btk expression in kidney from LN patients and tumor surrounding tissues. Compared with controls, the frequency of Btk+ B cells in SLE patients was upregulated (p < 0.01), and it was significantly correlated with the SLE Disease Activity Index (SLEDAI) (p < 0.01), levels of plasma anti-dsDNA antibody (p < 0.05), the amount of 24-h urine protein (p < 0.05), and levels of plasma C3 (p < 0.05). The frequency of Btk+ B cells in the patients with LN was significantly higher than those without LN (p < 0.05). Although the Btk expression in glomerulus of LN patients was significantly increased compared with controls (p < 0.001), but it had no correlation with the renal pathology activity index, SLEDAI, or 24-h urine protein. In conclusion, the increased expression of Btk in peripheral blood was correlated with LN, indicating that it may be a therapeutic target for SLE.

  15. Protein-tyrosine phosphatases in zebrafish gastrulation

    NARCIS (Netherlands)

    van Eekelen, M.J.L.

    2011-01-01

    Protein tyrosine phosphorylation plays a key role in relaying external stimuli and signals into the cell towards the appropriate responses. This process is mediated by protein-tyrosine kinases adding a phosphor group to a tyrosine residue and protein-tyrosine phosphatases removing a phosphor group f

  16. L-Tyrosine-loaded nanoparticles increase the antitumoral activity of direct electric current in a metastatic melanoma cell model

    Directory of Open Access Journals (Sweden)

    Vânia Emerich Bucco de Campos

    2010-11-01

    Full Text Available Vânia Emerich Bucco de Campos1, Cesar Augusto Antunes Teixeira1, Venicio Feo da Veiga2, Eduardo Ricci Júnior1, Carla Holandino11Departamento de Medicamentos, Faculdade de Farmácia, 2Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, BrazilAbstract: Inhibition of tumor growth induced by treatment with direct electric current (DC has been reported in several models. One of the mechanisms responsible for the antitumoral activity of DC is the generation of oxidative species, known as chloramines. With the aim of increasing chloramine production in the electrolytic medium and optimizing the antitumoral effects of DC, poly(e-caprolactone (PCL nanoparticles (NPs loaded with the amino acid tyrosine were obtained. The physical–chemical characterization showed that the NPs presented size in nanometric range and monomodal distribution. A slightly negative electrokinetic potential was also found in both blank NPs and L-tyrosine-loaded PCL NPs. The yield of the loading process was approximately 50%. Within 3 h of dissolution assay, a burst release of about 80% L-tyrosine was obtained. The in vitro cytotoxicity of DC was significantly increased when associated with L-tyrosine-loaded NPs, using a murine multidrug-resistant melanoma cell line model. This study showed that the use of the combination of nanotechnology and DC has a promising antineoplastic potential and opens a new perspective in cancer therapy.Keywords: direct electric current, nanotechnology, cancer therapy, L-tyrosine, B16F10 cells

  17. TIMP-1 increases expression and phosphorylation of proteins associated with drug resistance in breast cancer cells

    DEFF Research Database (Denmark)

    Hekmat, Omid; Munk, Stephanie; Fogh, Louise

    2013-01-01

    Tissue inhibitor of metalloproteinase 1 (TIMP-1) is a protein with a potential biological role in drug resistance. To elucidate the unknown molecular mechanisms underlying the association between high TIMP-1 levels and increased chemotherapy resistance, we employed SILAC-based quantitative mass...... may explain the resistance phenotype to topoisomerase inhibitors that was observed in cells with high TIMP-1 levels. Pathway analysis showed an enrichment of proteins from functional categories such as apoptosis, cell cycle, DNA repair, transcription factors, drug targets and proteins associated...... with drug resistance or sensitivity and drug transportation. The NetworKIN algorithm predicted the protein kinases CK2a, CDK1, PLK1 and ATM as likely candidates involved in the hyper-phosphorylation of the topoisomerases. Up-regulation of protein and/or phosphorylation levels of topoisomerases in TIMP-1...

  18. Lipopolysaccharide-induced caveolin-1 phosphorylation-dependent increase in transcellular permeability precedes the increase in paracellular permeability

    Directory of Open Access Journals (Sweden)

    Wang N

    2015-08-01

    Full Text Available Nan Wang,1,2 Dan Zhang,1,2 Gengyun Sun,1 Hong Zhang,1,2 Qinghai You,1 Min Shao,1 Yang Yue11Department of Respiration, 2Department of Emergency, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of ChinaBackground: Lipopolysaccharide (LPS was shown to induce an increase in caveolin-1 (Cav-1 expression in endothelial cells; however, the mechanisms regarding this response and the consequences on caveolae-mediated transcellular transport have not been completely investigated. This study aims to investigate the role of LPS-induced Cav-1 phosphorylation in pulmonary microvascular permeability in pulmonary microvascular endothelial cells (PMVECs.Methods: Rat PMVECs were isolated, cultured, and identified. Endocytosis experiments were employed to stain the nuclei by DAPI, and images were obtained with a fluorescence microscope. Permeability of endothelial cultures was measured to analyze the barrier function of endothelial monolayer. Western blot assay was used to examine the expression of Cav-1, pCav-1, triton-insoluble Cav-1, and triton-soluble Cav-1 protein.Results: The LPS treatment induced phosphorylation of Cav-1, but did not alter the total Cav-1 level till 60 min in both rat and human PMVECs. LPS treatment also increased the triton-insoluble Cav-1 level, which peaked 15 min after LPS treatment in both rat and human PMVECs. LPS treatment increases the intercellular cell adhesion molecule-1 expression. Src inhibitors, including PP2, PP1, Saracatinib, and Quercetin, partially inhibited LPS-induced phosphorylation of Cav-1. In addition, both PP2 and caveolae disruptor MβCD inhibited LPS-induced increase of triton-insoluble Cav-1. LPS induces permeability by activating interleukin-8 and vascular endothelial growth factor and targeting other adhesion markers, such as ZO-1 and occludin. LPS treatment also significantly increased the endocytosis of albumin, which could be blocked by PP2 or MβCD. Furthermore, LPS

  19. Increasing plasma [K+] by intravenous potassium infusion reduces NCC phosphorylation and drives kaliuresis and natriuresis.

    Science.gov (United States)

    Rengarajan, Srinivas; Lee, Donna H; Oh, Young Taek; Delpire, Eric; Youn, Jang H; McDonough, Alicia A

    2014-05-01

    Dietary potassium loading results in rapid kaliuresis, natriuresis, and diuresis associated with reduced phosphorylation (p) of the distal tubule Na(+)-Cl(-) cotransporter (NCC). Decreased NCC-p inhibits NCC-mediated Na(+) reabsorption and shifts Na(+) downstream for reabsorption by epithelial Na(+) channels (ENaC), which can drive K(+) secretion. Whether the signal is initiated by ingesting potassium or a rise in plasma K(+) concentration ([K(+)]) is not understood. We tested the hypothesis, in male rats, that an increase in plasma [K(+)] is sufficient to reduce NCC-p and drive kaliuresis. After an overnight fast, a single 3-h 2% potassium (2%K) containing meal increased plasma [K(+)] from 4.0 ± 0.1 to 5.2 ± 0.2 mM; increased urinary K(+), Na(+), and volume excretion; decreased NCC-p by 60%; and marginally reduced cortical Na(+)-K(+)-2Cl(-) cotransporter (NKCC) phosphorylation 25% (P = 0.055). When plasma [K(+)] was increased by tail vein infusion of KCl to 5.5 ± 0.1 mM over 3 h, significant kaliuresis and natriuresis ensued, NCC-p decreased by 60%, and STE20/SPS1-related proline alanine-rich kinase (SPAK) phosphorylation was marginally reduced 35% (P = 0.052). The following were unchanged at 3 h by either the potassium-rich meal or KCl infusion: Na(+)/H(+) exchanger 3 (NHE3), NHE3-p, NKCC, ENaC subunits, and renal outer medullary K(+) channel. In summary, raising plasma [K(+)] by intravenous infusion to a level equivalent to that observed after a single potassium-rich meal triggers renal kaliuretic and natriuretic responses, independent of K(+) ingestion, likely driven by decreased NCC-p and activity sufficient to shift sodium reabsorption downstream to where Na(+) reabsorption and flow drive K(+) secretion.

  20. Central melanocortin stimulation increases phosphorylated perilipin A and hormone-sensitive lipase in adipose tissues.

    Science.gov (United States)

    Shrestha, Y B; Vaughan, C H; Smith, B J; Song, C K; Baro, D J; Bartness, T J

    2010-07-01

    Norepinephrine (NE) released from the sympathetic nerves innervating white adipose tissue (WAT) is the principal initiator of lipolysis in mammals. Central WAT sympathetic outflow neurons express melanocortin 4-receptor (MC4-R) mRNA. Single central injection of melanotan II (MTII; MC3/4-R agonist) nonuniformly increases WAT NE turnover (NETO), increases interscapular brown adipose tissue (IBAT) NETO, and increases the circulating lipolytic products glycerol and free fatty acid. The WAT pads that contributed to this lipolysis were inferred from the increases in NETO. Because phosphorylation of perilipin A (p-perilipin A) and hormone-sensitive lipase are necessary for NE-triggered lipolysis, we tested whether MTII would increase these intracellular markers of lipolysis. Male Siberian hamsters received a single 3rd ventricular injection of MTII or saline. Trunk blood was collected at 0.5, 1.0, and 2.0 h postinjection from excised inguinal, retroperitoneal, and epididymal WAT (IWAT, RWAT, and EWAT, respectively) and IBAT pads. MTII increased circulating glycerol concentrations at 0.5 and 1.0 h, whereas free fatty acid concentrations were increased at 1.0 and 2.0 h. Western blot analysis showed that MTII specifically increased p-perilipin A and hormone-sensitive lipase only in fat pads that previously had MTII-induced increases in NETO. Phosphorylation increased in IWAT at all time points and IBAT at 0.5 h, but not RWAT or EWAT at any time point. These results show for the first time in rodents that p-perilipin A can serve as an in vivo, fat pad-specific indictor of lipolysis and extend our previous findings showing that central melanocortin stimulation increases WAT lipolysis.

  1. Ubiquitin-specific protease 14 regulates cardiac hypertrophy progression by increasing GSK-3β phosphorylation.

    Science.gov (United States)

    Liu, Ningning; Chai, Renjie; Liu, Bin; Zhang, Zhenhui; Zhang, Shuangwei; Zhang, Jingzhi; Liao, Yuning; Cai, Jianyu; Xia, Xiaohong; Li, Aiqun; Liu, Jinbao; Huang, Hongbiao; Liu, Shiming

    2016-09-23

    Cardiac hypertrophy, a compensatory response to various stimuli in the heart, independently predicts cardiovascular ailments and related deaths. Increasing evidence indicates ubiquitin-proteasome signaling contributes to cardiac hypertrophy regulation. Here, we identified ubiquitin-specific protease 14 (USP14), a 19S proteasome associated deubiquitinase (DUB), as a novel target for cardiac hypertrophy therapy via inhibition of the GSK-3β pathway. Indeed, USP14 expression was increased in an animal model of abdominal aorta constriction. In an angiotensin II (AngII) induced primary neonatal rat cardiomyocyte hypertrophy model, USP14 expression was increased in a time-dependent manner, and reduced USP14 deubiquitinase activity or USP14 knockdown resulted in lower expression levels of the myocardial hypertrophy specific marker β-MHC, and subsequent decreased GSK-3β phosphorylation. In conclusion, USP14 mediates the development of cardiac hypertrophy by promoting GSK-3β phosphorylation, suggesting that USP14 might represent a novel therapeutic target for cardiac hypertrophy treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Dexmedetomidine Increases Tau Phosphorylation Under Normothermic Conditions In Vivo and In Vitro

    Science.gov (United States)

    Whittington, Robert A.; Virág, László; Gratuze, Maud; Petry, Franck R.; Noël, Anastasia; Poitras, Isabelle; Truchetti, Geoffrey; Marcouiller, François; Papon, Marie-Amélie; Khoury, Noura El; Wong, Kevin; Bretteville, Alexis; Morin, Françoise; Planel, Emmanuel

    2015-01-01

    There is developing interest in the potential association between anesthesia and the onset and progression of Alzheimer's disease. Several anesthetics have thus been demonstrated to induce tau hyperphosphorylation, an effect mostly mediated by anesthesia-induced hypothermia. Here, we tested the hypothesis that acute normothermic administration of dexmedetomidine, an intravenous sedative used in intensive care units, would result in tau hyperphosphorylation in vivo and in vitro. When administered to non-transgenic mice, dexmedetomidine induced tau hyperphosphorylation persisting up to 6h in the hippocampus for the AT8 epitope. Pretreatment with atipamezole, a highly specific α2-adrenergic receptor (α2-AR) antagonist, blocked dexmedetomidine-induced tau hyperphosphorylation. Furthermore, dexmedetomidine dose-dependently increased tau phosphorylation at AT8 in SH-SY5Y cells, impaired mice spatial memory in the Barnes maze, and promoted tau hyperphosphorylation and aggregation in transgenic hTau mice. These findings suggest that dexmedetomidine: i) increases tau phosphorylation, in vivo and in vitro, in the absence of anesthetic-induced hypothermia and through α2-AR activation, ii) promotes tau aggregation in a mouse model of tauopathy, and iii) impacts spatial reference memory. PMID:26058840

  3. Hunting Increases Phosphorylation of Calcium/Calmodulin-Dependent Protein Kinase Type II in Adult Barn Owls

    Directory of Open Access Journals (Sweden)

    Grant S. Nichols

    2015-01-01

    Full Text Available Juvenile barn owls readily adapt to prismatic spectacles, whereas adult owls living under standard aviary conditions do not. We previously demonstrated that phosphorylation of the cyclic-AMP response element-binding protein (CREB provides a readout of the instructive signals that guide plasticity in juveniles. Here we investigated phosphorylation of calcium/calmodulin-dependent protein kinase II (pCaMKII in both juveniles and adults. In contrast to CREB, we found no differences in pCaMKII expression between prism-wearing and control juveniles within the external nucleus of the inferior colliculus (ICX, the major site of plasticity. For prism-wearing adults that hunted live mice and are capable of adaptation, expression of pCaMKII was increased relative to prism-wearing adults that fed passively on dead mice and are not capable of adaptation. This effect did not bear the hallmarks of instructive information: it was not localized to rostral ICX and did not exhibit a patchy distribution reflecting discrete bimodal stimuli. These data are consistent with a role for CaMKII as a permissive rather than an instructive factor. In addition, the paucity of pCaMKII expression in passively fed adults suggests that the permissive default setting is “off” in adults.

  4. Cyclin-dependent kinase phosphorylation of RUNX1/AML1 on 3 sites increases transactivation potency and stimulates cell proliferation

    Science.gov (United States)

    Zhang, Linsheng; Fried, Florence B.; Guo, Hong

    2008-01-01

    RUNX1/AML1 regulates lineage-specific genes during hematopoiesis and stimulates G1 cell-cycle progression. Within RUNX1, S48, S303, and S424 fit the cyclin-dependent kinase (cdk) phosphorylation consensus, (S/T)PX(R/K). Phosphorylation of RUNX1 by cdks on serine 303 was shown to mediate destabilization of RUNX1 in G2/M. We now use an in vitro kinase assay, phosphopeptide-specific antiserum, and the cdk inhibitor roscovitine to demonstrate that S48 and S424 are also phosphorylated by cdk1 or cdk6 in hematopoietic cells. S48 phosphorylation of RUNX1 paralleled total RUNX1 levels during cell-cycle progression, S303 was more effectively phosphorylated in G2/M, and S424 in G1. Single, double, and triple mutation of the cdk sites to the partially phosphomimetic aspartic acid mildly reduced DNA affinity while progressively increasing transactivation of a model reporter. Mutation to alanine increased DNA affinity, suggesting that in other gene or cellular contexts phosphorylation of RUNX1 by cdks may reduce transactivation. The tripleD RUNX1 mutant rescued Ba/F3 cells from inhibition of proliferation by CBFβ-SMMHC more effectively than the tripleA mutant. Together these findings indicate that cdk phosphorylation of RUNX1 potentially couples stem/progenitor proliferation and lineage progression. PMID:18003885

  5. Intensive training and reduced volume increases muscle FXYD1 expression and phosphorylation at rest and during exercise in athletes.

    Science.gov (United States)

    Thomassen, Martin; Gunnarsson, Thomas P; Christensen, Peter M; Pavlovic, Davor; Shattock, Michael J; Bangsbo, Jens

    2016-04-01

    The present study examined the effect of intensive training in combination with marked reduction in training volume on phospholemman (FXYD1) expression and phosphorylation at rest and during exercise. Eight well-trained cyclists replaced their regular training with speed-endurance training (10-12 × ∼30-s sprints) two or three times per week and aerobic high-intensity training (4-5 × 3-4 min at 90-95% of peak aerobic power output) 1-2 times per week for 7 wk and reduced the training volume by 70%. Muscle biopsies were obtained before and during a repeated high-intensity exercise protocol, and protein expression and phosphorylation were determined by Western blot analysis. Expression of FXYD1 (30%), actin (40%), mammalian target of rapamycin (mTOR) (12%), phospholamban (PLN) (16%), and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) γ/δ (25%) was higher (P exercise, mainly achieved by an increased FXYD1 Ser-68 phosphorylation, compared with before the intervention. CaMKII, Thr-287, and eukaryotic elongation factor 2 Thr-56 phosphorylation at rest and during exercise, overall PKCα/β, Thr-638/641, and mTOR Ser-2448 phosphorylation during repeated intense exercise as well as resting PLN Thr-17 phosphorylation were also higher (P exercise. Furthermore, higher expression of CaMKII and PLN, as well as increased phosphorylation of CaMKII Thr-287 may have improved intracellular Ca(2+) handling.

  6. Effect of acute acid-base disturbances on ErbB1/2 tyrosine phosphorylation in rabbit renal proximal tubules.

    Science.gov (United States)

    Skelton, Lara A; Boron, Walter F

    2013-12-15

    The renal proximal tubule (PT) is a major site for maintaining whole body pH homeostasis and is responsible for reabsorbing ∼80% of filtered HCO3(-), the major plasma buffer, into the blood. The PT adapts its rate of HCO3(-) reabsorption (JHCO3(-)) in response to acute acid-base disturbances. Our laboratory previously showed that single isolated perfused PTs adapt JHCO3(-) in response to isolated changes in basolateral (i.e., blood side) CO2 and HCO3(-) concentrations but, surprisingly, not to pH. The response to CO2 concentration can be blocked by the ErbB family tyrosine kinase inhibitor PD-168393. In the present study, we exposed enriched rabbit PT suspensions to five acute acid-base disturbances for 5 and 20 min using a panel of phosphotyrosine (pY)-specific antibodies to determine the influence of each disturbance on pan-pY, ErbB1-specific pY (four sites), and ErbB2-specific pY (two sites). We found that each acid-base treatment generated a distinct temporal pY pattern. For example, the summated responses of the individual ErbB1/2-pY sites to each disturbance showed that metabolic acidosis (normal CO2 concentration and reduced HCO3(-) concentration) produced a transient summated pY decrease (5 vs. 20 min), whereas metabolic alkalosis produced a transient increase. Respiratory acidosis (normal HCO3(-) concentration and elevated CO2 concentration) had little effect on summated pY at 5 min but produced an elevation at 20 min, whereas respiratory alkalosis produced a reduction at 20 min. Our data show that ErbB1 and ErbB2 in the PT respond to acute acid-base disturbances, consistent with the hypothesis that they are part of the signaling cascade.

  7. Growth-Factor-Driven Rescue to Receptor Tyrosine Kinase (RTK) Inhibitors through Akt and Erk Phosphorylation in Pediatric Low Grade Astrocytoma and Ependymoma

    NARCIS (Netherlands)

    Sie, Mariska; den Dunnen, Wilfred F. A.; Lourens, Harm Jan; Meeuwsen-de Boer, Tiny G. J.; Scherpen, Frank J. G.; Zomerman, Walderik W.; Kampen, Kim R.; Hoving, Eelco W.; de Bont, Eveline S. J. M.

    2015-01-01

    Up to now, several clinical studies have been started investigating the relevance of receptor tyrosine kinase (RTK) inhibitors upon progression free survival in various pediatric brain tumors. However, single targeted kinase inhibition failed, possibly due to tumor resistance mechanisms. The present

  8. Phosphorylation of the Mdm2 oncoprotein by the c-Abl tyrosine kinase regulates p53 tumor suppression and the radiosensitivity of mice.

    Science.gov (United States)

    Carr, Michael I; Roderick, Justine E; Zhang, Hong; Woda, Bruce A; Kelliher, Michelle A; Jones, Stephen N

    2016-12-27

    The p53 tumor suppressor acts as a guardian of the genome by preventing the propagation of DNA damage-induced breaks and mutations to subsequent generations of cells. We have previously shown that phosphorylation of the Mdm2 oncoprotein at Ser394 by the ATM kinase is required for robust p53 stabilization and activation in cells treated with ionizing radiation, and that loss of Mdm2 Ser394 phosphorylation leads to spontaneous tumorigenesis and radioresistance in Mdm2(S394A) mice. Previous in vitro data indicate that the c-Abl kinase phosphorylates Mdm2 at the neighboring residue (Tyr393) in response to DNA damage to regulate p53-dependent apoptosis. In this present study, we have generated an Mdm2 mutant mouse (Mdm2(Y393F)) to determine whether c-Abl phosphorylation of Mdm2 regulates the p53-mediated DNA damage response or p53 tumor suppression in vivo. The Mdm2(Y393F) mice develop accelerated spontaneous and oncogene-induced tumors, yet display no defects in p53 stabilization and activity following acute genotoxic stress. Although apoptosis is unaltered in these mice, they recover more rapidly from radiation-induced bone marrow ablation and are more resistant to whole-body radiation-induced lethality. These data reveal an in vivo role for c-Abl phosphorylation of Mdm2 in regulation of p53 tumor suppression and bone marrow failure. However, c-Abl phosphorylation of Mdm2 Tyr393 appears to play a lesser role in governing Mdm2-p53 signaling than ATM phosphorylation of Mdm2 Ser394. Furthermore, the effects of these phosphorylation events on p53 regulation are not additive, as Mdm2(Y393F/S394A) mice and Mdm2(S394A) mice display similar phenotypes.

  9. Adipocyte-specific protein tyrosine phosphatase 1B deletion increases lipogenesis, adipocyte cell size and is a minor regulator of glucose homeostasis.

    Directory of Open Access Journals (Sweden)

    Carl Owen

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B, a key negative regulator of leptin and insulin signaling, is positively correlated with adiposity and contributes to insulin resistance. Global PTP1B deletion improves diet-induced obesity and glucose homeostasis via enhanced leptin signaling in the brain and increased insulin signaling in liver and muscle. However, the role of PTP1B in adipocytes is unclear, with studies demonstrating beneficial, detrimental or no effect(s of adipose-PTP1B-deficiency on body mass and insulin resistance. To definitively establish the role of adipocyte-PTP1B in body mass regulation and glucose homeostasis, adipocyte-specific-PTP1B knockout mice (adip-crePTP1B(-/- were generated using the adiponectin-promoter to drive Cre-recombinase expression. Chow-fed adip-crePTP1B(-/- mice display enlarged adipocytes, despite having similar body weight/adiposity and glucose homeostasis compared to controls. High-fat diet (HFD-fed adip-crePTP1B(-/- mice display no differences in body weight/adiposity but exhibit larger adipocytes, increased circulating glucose and leptin levels, reduced leptin sensitivity and increased basal lipogenesis compared to controls. This is associated with decreased insulin receptor (IR and Akt/PKB phosphorylation, increased lipogenic gene expression and increased hypoxia-induced factor-1-alpha (Hif-1α expression. Adipocyte-specific PTP1B deletion does not beneficially manipulate signaling pathways regulating glucose homeostasis, lipid metabolism or adipokine secretion in adipocytes. Moreover, PTP1B does not appear to be the major negative regulator of the IR in adipocytes.

  10. Phosphorylation of Serine422 increases the stability and transactivation activities of human Osterix

    DEFF Research Database (Denmark)

    Xu, Yuexin; Yao, Bing; Shi, Kaikai;

    2015-01-01

    Osterix (Osx) is an essential regulator for osteoblast differentiation and bone formation. Although phosphorylation has been reported to be involved in the regulation of Osx activity, the precise underlying mechanisms remain to be elucidated. Here we identified S422 as a novel phosphorylation sit...

  11. Irradiation and various cytotoxic drugs enhance tyrosine phosphorylation and {beta}{sub 1}-integrin clustering in human A549 lung cancer cells in a substratum-dependent manner in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Cordes, N.; Beinke, C.; Beuningen, D. van [Inst. of Radiobiology, German Armed Forces, Munich (Germany); Plasswilm, L. [Dept. of Radiation Oncology, Univ. Hospital Basel (Swaziland)

    2004-03-01

    Background and purpose: interactions of cells with a substratum, especially extracellular matrix proteins, initiate clustering of integrin receptors in the cell membrane. This process represents the initial step for the activation of signaling pathways regulating survival, proliferation, differentiation, adhesion, and migration, and could, furthermore, be important for cellular resistance-mediating mechanisms against radiation or cytotoxic drugs. The lack of data elucidating the impact of irradiation or cytotoxic drugs on this important phenomenon led to this study on human A549 lung cancer cells in vitro. Material and methods: the human lung carcinoma cell line A549 grown on polystyrene or fibronectin (FN) was irradiated with 0-8 Gy or treated with cisplatin (0.1-50 {mu}M), paclitaxel (0.1-50 nM), or mitomycin (0.1-50 {mu}M). Colony formation assays, immunofluorescence staining in combination with activation of integrin clustering using anti-{beta}{sub 1}-integrin antibodies (K20), and Western blotting for tyrosine phosphorylation under treatment of cells with the IC{sub 50} for irradiation (2 Gy; IC{sub 50} = 2.2 Gy), cisplatin (2 {mu}M), paclitaxel (5 nM), or mitomycin (7 {mu}M) were performed. Results: attachment of cells to FN resulted in a significantly reduced radio- and chemosensitivity compared to polystyrene. The clustering of {beta}{sub 1}-integrins examined by immunofluorescence staining was only stimulated by irradiation, cisplatin, paclitaxel, or mitomycin in case of cell attachment to FN. By contrast, tyrosine phosphorylation, as one of the major events following {beta}{sub 1}-integrin clustering, showed a 3.7-fold, FN-related enhancement, and treatment of cells with the IC{sub 50} of radiation, cisplatin, paclitaxel, or mitomycin showed a substratum-dependent induction. Conclusion: for the first time, a strong influence of irradiation and a variety of cytotoxic drugs on the clustering of {beta}{sub 1}-integrins could be shown. This event is a

  12. Does progesterone show neuroprotective effects on traumatic brain injury through increasing phosphorylation of Akt in the hippocampus?

    Institute of Scientific and Technical Information of China (English)

    Richard Justin Garling; Lora Talley Watts; Shane Sprague; Lauren Fletcher; David F Jimenez; Murat Digicaylioglu

    2014-01-01

    There are currently no federally approved neuroprotective agents to treat traumatic brain injury. Progesterone, a hydrophobic steroid hormone, has been shown in recent studies to exhibit neu-roprotective effects in controlled cortical impact rat models. Akt is a protein kinase known to play a role in cell signaling pathways that reduce edema, inlfammation, apoptosis, and promote cell growth in the brain. This study aims to determine if progesterone modulates the phosphor-ylation of Aktvia its threonine 308 phosphorylation site. Phosphorylation at the threonine 308 site is one of several sites responsible for activating Akt and enabling the protein kinase to carry out its neuroprotective effects. To assess the effects of progesterone on Akt phosphorylation, C57BL/6 mice were treated with progesterone (8 mg/kg) at 1 (intraperitonally), 6, 24, and 48 hours (subcutaneously) post closed-skull traumatic brain injury. The hippocampus was harvest-ed at 72 hours post injury and prepared for western blot analysis. Traumatic brain injury caused a signiifcant decrease in Akt phosphorylation compared to sham operation. However, mice treat-ed with progesterone following traumatic brain injury had an increase in phosphorylation of Akt compared to traumatic brain injury vehicle. Our ifndings suggest that progesterone is a viable treatment option for activating neuroprotective pathways after traumatic brain injury.

  13. α-Lipoic acid protects 3T3-L1 adipocytes from NYGGF4 (PID1) overexpression-induced insulin resistance through increasing phosphorylation of IRS-1 and Akt.

    Science.gov (United States)

    Wang, Yu-mei; Lin, Xiao-fei; Shi, Chun-mei; Lu, Lan; Qin, Zhen-Ying; Zhu, Guan-zhong; Cao, Xin-guo; Ji, Chen-bo; Qiu, Jie; Guo, Xi-rong

    2012-06-01

    NYGGF4 (also called PID1) was demonstrated that it may be related to the development of obesity-related IR. We aimed in the present study to further elucidate the effects of NYGGF4 on IR and the underlying mechanisms through using α-Lipoic acid (LA) treatment, which could facilitate glucose transport and utilization in fully differentiated adipocytes. Our data showed that the LA pretreatment strikingly enhanced insulin-stimulated glucose uptake through increasing GLUT4 translocation to the PM in NYGGF4 overexpression adipocytes. The reactive oxygen species (ROS) levels in NYGGF4 overexpression adipocytes were strikingly enhanced, which could be decreased by the LA pretreatment. NYGGF4 overexpression resulted in significant inhibition of tyrosine phosphorylation of IRS-1 and serine phosphorylation of Akt, whereas incubation with LA strongly activated IRS-1 and Akt phosphorylation in NYGGF4 overexpression adipocytes. These results suggest that LA protects 3T3-L1 adipocytes from NYGGF4-induced IR partially through increasing phosphorylation of IRS-1 and Akt and provide evidence that NYGGF4 may be a potential target for the treatment of obesity and obesity-related IR.

  14. Dietary phytoestrogens present in soy dramatically increase cardiotoxicity in male mice receiving a chemotherapeutic tyrosine kinase inhibitor.

    Science.gov (United States)

    Harvey, Pamela Ann; Leinwand, Leslie Anne

    2015-01-05

    Use of soy supplements to inhibit cancer cell growth is increasing among patients due to the perception that phytoestrogens in soy inhibit carcinogenesis via induction of apoptosis. Genistein, the most prevalent phytoestrogen in soy, is a potent endocrine disruptor and tyrosine kinase inhibitor (TKI) that causes apoptosis in many cells types. Chemotherapeutic TKIs limit cancer cell growth via the same mechanisms. However, TKIs such as Sunitinib cause cardiotoxicity in a significant number of patients. Molecular interactions between Sunitinib and dietary TKIs like genistein have not been examined in cardiomyocytes. Significant lethality occurred in mice treated with Sunitinib and fed a phytoestrogen-supplemented diet. Isolated cardiomyocytes co-treated with genistein and Sunitinib exhibited additive inhibition of signaling molecules important for normal cardiac function and increased apoptosis compared with Sunitinib alone. Thus, dietary soy supplementation should be avoided during administration of Sunitinib due to exacerbated cardiotoxicity, despite evidence for positive effects in cancer.

  15. Increased CDK5 Expression in HIV Encephalitis Contributes to Neurodegeneration via Tau Phosphorylation and Is Reversed with Roscovitine

    Science.gov (United States)

    Patrick, Christina; Crews, Leslie; Desplats, Paula; Dumaop, Wilmar; Rockenstein, Edward; Achim, Cristian L.; Everall, Ian P.; Masliah, Eliezer

    2011-01-01

    Recent treatments with highly active antiretroviral therapy (HAART) regimens have been shown to improve general clinical status in patients with human immunodeficiency virus (HIV) infection; however, the prevalence of cognitive alterations and neurodegeneration has remained the same or has increased. These deficits are more pronounced in the subset of HIV patients with the inflammatory condition known as HIV encephalitis (HIVE). Activation of signaling pathways such as GSK3β and CDK5 has been implicated in the mechanisms of HIV neurotoxicity; however, the downstream mediators of these effects are unclear. The present study investigated the involvement of CDK5 and tau phosphorylation in the mechanisms of neurodegeneration in HIVE. In the frontal cortex of patients with HIVE, increased levels of CDK5 and p35 expression were associated with abnormal tau phosphorylation. Similarly, transgenic mice engineered to express the HIV protein gp120 exhibited increased brain levels of CDK5 and p35, alterations in tau phosphorylation, and dendritic degeneration. In contrast, genetic knockdown of CDK5 or treatment with the CDK5 inhibitor roscovitine improved behavioral performance in the water maze test and reduced neurodegeneration, abnormal tau phosphorylation, and astrogliosis in gp120 transgenic mice. These findings indicate that abnormal CDK5 activation contributes to the neurodegenerative process in HIVE via abnormal tau phosphorylation; thus, reducing CDK5 might ameliorate the cognitive impairments associated with HIVE. PMID:21435449

  16. Cofilin/Twinstar phosphorylation levels increase in response to impaired coenzyme a metabolism.

    Directory of Open Access Journals (Sweden)

    Katarzyna Siudeja

    Full Text Available Coenzyme A (CoA is a pantothenic acid-derived metabolite essential for many fundamental cellular processes including energy, lipid and amino acid metabolism. Pantothenate kinase (PANK, which catalyses the first step in the conversion of pantothenic acid to CoA, has been associated with a rare neurodegenerative disorder PKAN. However, the consequences of impaired PANK activity are poorly understood. Here we use Drosophila and human neuronal cell cultures to show how PANK deficiency leads to abnormalities in F-actin organization. Cells with reduced PANK activity are characterized by abnormally high levels of phosphorylated cofilin, a conserved actin filament severing protein. The increased levels of phospho-cofilin coincide with morphological changes of PANK-deficient Drosophila S2 cells and human neuronal SHSY-5Y cells. The latter exhibit also markedly reduced ability to form neurites in culture--a process that is strongly dependent on actin remodeling. Our results reveal a novel and conserved link between a metabolic biosynthesis pathway, and regulation of cellular actin dynamics.

  17. Learning and nicotine interact to increase CREB phosphorylation at the jnk1 promoter in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Justin W Kenney

    Full Text Available Nicotine is known to enhance long-term hippocampus dependent learning and memory in both rodents and humans via its activity at nicotinic acetylcholinergic receptors (nAChRs. However, the molecular basis for the nicotinic modulation of learning is incompletely understood. Both the mitogen activated protein kinases (MAPKs and cAMP response element binding protein (CREB are known to be integral to the consolidation of long-term memory and the disruption of MAPKs and CREB are known to abrogate some of the cognitive effects of nicotine. In addition, the acquisition of contextual fear conditioning in the presence of nicotine is associated with a β2-subunit containing nAChR-dependent increase in jnk1 (mapk8 transcription in the hippocampus. In the present study, chromatin immunoprecipitation (ChIP was used to examine whether learning and nicotine interact to alter transcription factor binding or histone acetylation at the jnk1 promoter region. The acquisition of contextual fear conditioning in the presence of nicotine resulted in an increase in phosphorylated CREB (pCREB binding to the jnk1 promoter in the hippocampus in a β2-subunit containing nAChR dependent manner, but had no effect on CREB binding; neither fear conditioning alone nor nicotine administration alone altered transcription factor binding to the jnk1 promoter. In addition, there were no changes in histone H3 or H4 acetylation at the jnk1 promoter following fear conditioning in the presence of nicotine. These results suggest that contextual fear learning and nicotine administration act synergistically to produce a unique pattern of protein activation and gene transcription in the hippocampus that is not individually generated by fear conditioning or nicotine administration alone.

  18. Protein kinase A increases type-2 inositol 1,4,5-trisphosphate receptor activity by phosphorylation of serine 937.

    Science.gov (United States)

    Betzenhauser, Matthew J; Fike, Jenna L; Wagner, Larry E; Yule, David I

    2009-09-11

    Protein kinase A (PKA) phosphorylation of inositol 1,4,5-trisphosphate receptors (InsP(3)Rs) represents a mechanism for shaping intracellular Ca(2+) signals following a concomitant elevation in cAMP. Activation of PKA results in enhanced Ca(2+) release in cells that express predominantly InsP(3)R2. PKA is known to phosphorylate InsP(3)R2, but the molecular determinants of this effect are not known. We have expressed mouse InsP(3)R2 in DT40-3KO cells that are devoid of endogenous InsP(3)R and examined the effects of PKA phosphorylation on this isoform in unambiguous isolation. Activation of PKA increased Ca(2+) signals and augmented the single channel open probability of InsP(3)R2. A PKA phosphorylation site unique to the InsP(3)R2 was identified at Ser(937). The enhancing effects of PKA activation on this isoform required the phosphorylation of Ser(937), since replacing this residue with alanine eliminated the positive effects of PKA activation. These results provide a mechanism responsible for the enhanced Ca(2+) signaling following PKA activation in cells that express predominantly InsP(3)R2.

  19. Translation initiation factor eIF-5A, the hypusine-containing protein, is phosphorylated on serine and tyrosine and O-glycosylated in Trichomonas vaginalis.

    Science.gov (United States)

    Carvajal-Gamez, Bertha Isabel; Quintas-Granados, Laura Itzel; Arroyo, Rossana; Mendoza-Hernández, Guillermo; Alvarez-Sánchez, Maria Elizbeth

    2012-03-01

    The eukaryotic translation factor eIF-5A is highly conserved throughout eukaryotes and undergoes an unusual polyamine-dependent post-translational modification called hypusination. Trichomonas vaginalis has two tveif-5a genes (tveif-5a1 and tveif-5a2), each encoding a 19-kDa protein. In this report, we describe the detection of two forms with different isoelectric points (5.2 and 5.5) that correspond to the precursor and mature TveIF-5A, respectively. In addition, we demonstrated that only the mature form of TveIF-5A is phosphorylated and glycosylated via two-dimensional gel electrophoresis-western blot (2DE-WB) assays using anti-phosphoserine and anti-phosphotyrosine antibodies and the SNA, ConA and MAA lectins. Interestingly, when the protozoa were grown in 1,4-diamino-2-butanone (DAB), an inhibitor of putrescine biosynthesis, and transferred to medium containing exogenous putrescine, a new spot with an isoelectric point of 5.3 was observed, presumably corresponding to a phosphorylated intermediate or deoxyhypusine form. Our data indicate that, in T. vaginalis, phosphorylations and glycosylations are necessary to obtain the mature TveIF-5A, and we confirm the identity of the precursor, intermediate and mature forms of TveIF-5A by mass spectrometry analysis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. A secreted tyrosine kinase acts in the extracellular environment.

    Science.gov (United States)

    Bordoli, Mattia R; Yum, Jina; Breitkopf, Susanne B; Thon, Jonathan N; Italiano, Joseph E; Xiao, Junyu; Worby, Carolyn; Wong, Swee-Kee; Lin, Grace; Edenius, Maja; Keller, Tracy L; Asara, John M; Dixon, Jack E; Yeo, Chang-Yeol; Whitman, Malcolm

    2014-08-28

    Although tyrosine phosphorylation of extracellular proteins has been reported to occur extensively in vivo, no secreted protein tyrosine kinase has been identified. As a result, investigation of the potential role of extracellular tyrosine phosphorylation in physiological and pathological tissue regulation has not been possible. Here, we show that VLK, a putative protein kinase previously shown to be essential in embryonic development, is a secreted protein kinase, with preference for tyrosine, that phosphorylates a broad range of secreted and ER-resident substrate proteins. We find that VLK is rapidly and quantitatively secreted from platelets in response to stimuli and can tyrosine phosphorylate coreleased proteins utilizing endogenous as well as exogenous ATP sources. We propose that discovery of VLK activity provides an explanation for the extensive and conserved pattern of extracellular tyrosine phosphophorylation seen in vivo, and extends the importance of regulated tyrosine phosphorylation into the extracellular environment.

  1. Ameliorative effect of melatonin against increased intestinal permeability in diabetic rats: possible involvement of MLCK-dependent MLC phosphorylation.

    Science.gov (United States)

    Yang, Xiaoping; Zou, Duobing; Tang, Songtao; Fan, Tingting; Su, Huan; Hu, Ruolei; Zhou, Qing; Gui, Shuyu; Zuo, Li; Wang, Yuan

    2016-05-01

    The increased intestinal permeability and functional impairment play an important role in type 2 diabetes (T2D), and melatonin may possess enteroprotection properties. Therefore, we used streptozotocin-induced diabetic rat model to investigate the regulation of intestinal permeability by melatonin. Rats were randomly divided into three groups, including control, diabetes mellitus (DM), and DM rats treated with melatonin. Melatonin was administered (10 mg/kg/day) by gavage for 24 weeks. The DM rats significantly increased the serum fasting blood glucose and lipid levels, which were alleviated by melatonin treatment. Importantly, the intestinal epithelial permeability was significantly increased in DM rats but was ameliorated following treatment with melatonin. These findings also indicated the expression of myosin light chain kinase (MLCK) and phosphorylation of MLC targeting subunit (MYPT) induced myosin light chain (MLC) phosphorylation level was markedly elevated in hyperglycemic and hyperlipidemic status. They were partly associated with down-regulated membrane type 1 and 2 (MT1 and MT2) expression, and up-regulated Rho-associated protein kinase (ROCK) expression and increased extracellular signal-regulated kinase (ERK) phosphorylation. However, the changes in target protein expression were reversed by melatonin. In conclusion, our results show melatonin beneficial effects on impaired intestinal epithelial permeability in T2D by suppressing ERK/MLCK- and ROCK/MCLP-dependent MLC phosphorylation.

  2. Helicobacter pylori with stronger intensity of CagA phosphorylation lead to an increased risk of gastric intestinal metaplasia and cancer

    Directory of Open Access Journals (Sweden)

    Cheng Hsiu-Chi

    2011-05-01

    Full Text Available Abstract Background Nearly all Taiwanese H. pylori stains are cagA-genopositive and encode CagA protein. In this study, we evaluated whether different intensity of tyrosine phosphorylated-CagA (p-CagA had an impact on the clinical diseases and histological outcomes in this area. Results We enrolled 469 dyspeptic patients and prospectively obtained the gastric biopsy specimens and the H. pylori isolates. These patients were categorized according to the clinical diseases, such as duodenal ulcer, gastric ulcer, gastric cancer, and gastritis with or without intestinal metaplasia. Their gastric specimens were reviewed by the updated Sydney's system. Furthermore, a total of 146 patients were randomly selected from each clinical category for evaluation of their isolates' p-CagA intensity by in vitro AGS cells co-culture. The p-CagA was sparse in 30 (20.5%, weak in 59 (40.5%, and strong in 57 (39% isolates. The isolates from the patients of gastric cancer or gastritis with intestinal metaplasia had stronger p-CagA intensity than those of gastritis without intestinal metaplasia (p ≤ 0.002. Moreover, the patients infected with isolates with strong or weak p-CagA intensity had a higher risk of gastric intestinal metaplasia (p Conclusions Infection with H. pylori stains with stronger p-CagA intensity may lead to an increased risk of gastric intestinal metaplasia and cancer.

  3. Exercise rapidly increases eukaryotic elongation factor 2 phosphorylation in skeletal muscle of men

    DEFF Research Database (Denmark)

    Rose, Adam John; Broholm, Christa; Kiillerich, Kristian;

    2005-01-01

    Protein synthesis in skeletal muscle is known to decrease during contractions but the underlying regulatory mechanisms are unknown. Here, the effect of exercise on skeletal muscle eukaryotic elongation factor 2 (eEF2) phosphorylation, a key component in protein translation machinery, was examined...

  4. Phenotypically Dormant and Immature Leukaemia Cells Display Increased Ribosomal Protein S6 Phosphorylation.

    Directory of Open Access Journals (Sweden)

    Monica Pallis

    Full Text Available Mechanistic/mammalian target of rapamycin (mTOR activity drives a number of key metabolic processes including growth and protein synthesis. Inhibition of the mTOR pathway promotes cellular dormancy. Since cells from patients with acute myeloid leukaemia (AML can be phenotypically dormant (quiescent, we examined biomarkers of their mTOR pathway activity concurrently with Ki-67 and CD71 (indicators of cycling cells by quantitative flow cytometry. Using antibodies to phosphorylated epitopes of mTOR (S2448 and its downstream targets ribosomal protein S6 (rpS6, S235/236 and 4E-BP1 (T36/45, we documented that these phosphorylations were negligible in lymphocytes, but evident in dormant as well as proliferating subsets of both mobilised normal stem cell harvest CD34+ cells and AML blasts. Although mTOR phosphorylation in AML blasts was lower than that of the normal CD34+ cells, p-4E-BP1 was 2.6-fold higher and p-rpS6 was 22-fold higher. Moreover, in contrast to 4E-BP1, rpS6 phosphorylation was higher in dormant than proliferating AML blasts, and was also higher in the immature CD34+CD38- blast subset. Data from the Cancer Genome Atlas show that rpS6 expression is associated with that of respiratory chain enzymes in AML. We conclude that phenotypic quiescence markers do not necessarily predict metabolic dormancy and that elevated rpS6 ser235/236 phosphorylation is characteristic of AML.

  5. Loss of keratin 8 phosphorylation leads to increased tumor progression and correlates with clinico-pathological parameters of OSCC patients.

    Directory of Open Access Journals (Sweden)

    Hunain Alam

    Full Text Available BACKGROUND: Keratins are cytoplasmic intermediate filament proteins expressed in tissue specific and differentiation dependent manner. Keratins 8 and 18 (K8 and K18 are predominantly expressed in simple epithelial tissues and perform both mechanical and regulatory functions. Aberrant expression of K8 and K18 is associated with neoplastic progression, invasion and poor prognosis in human oral squamous cell carcinomas (OSCCs. K8 and K18 undergo several post-translational modifications including phosphorylation, which are known to regulate their functions in various cellular processes. Although, K8 and K18 phosphorylation is known to regulate cell cycle, cell growth and apoptosis, its significance in cell migration and/or neoplastic progression is largely unknown. In the present study we have investigated the role of K8 phosphorylation in cell migration and/or neoplastic progression in OSCC. METHODOLOGY AND PRINCIPAL FINDINGS: To understand the role of K8 phosphorylation in neoplastic progression of OSCC, shRNA-resistant K8 phospho-mutants of Ser73 and Ser431 were overexpressed in K8-knockdown human AW13516 cells (derived from SCC of tongue; generated previously. Wound healing assays and tumor growth in NOD-SCID mice were performed to analyze the cell motility and tumorigenicity respectively in overexpressed clones. The overexpressed K8 phospho-mutants clones showed significant increase in cell migration and tumorigenicity as compared with K8 wild type clones. Furthermore, loss of K8 Ser73 and Ser431 phosphorylation was also observed in human OSCC tissues analyzed by immunohistochemistry, where their dephosphorylation significantly correlated with size, lymph node metastasis and stage of the tumor. CONCLUSION AND SIGNIFICANCE: Our results provide first evidence of a potential role of K8 phosphorylation in cell migration and/or tumorigenicity in OSCC. Moreover, correlation studies of K8 dephosphorylation with clinico-pathological parameters of OSCC

  6. A Loss-of-Function Screen for Phosphatases that Regulate Neurite Outgrowth Identifies PTPN12 as a Negative Regulator of TrkB Tyrosine Phosphorylation

    DEFF Research Database (Denmark)

    Ambjørn, Malene; Dubreuil, Véronique; Miozzo, Federico

    2013-01-01

    Alterations in function of the neurotrophin BDNF are associated with neurodegeneration, cognitive decline, and psychiatric disorders. BDNF promotes axonal outgrowth and branching, regulates dendritic tree morphology and is important for axonal regeneration after injury, responses that largely...... activation of ERK1/2. We also found PTPN12 to negatively regulate phosphorylation of p130cas and FAK, proteins with previously described functions related to cell motility and growth cone behavior. Our data provide the first comprehensive survey of phosphatase function in NT signaling and neurite outgrowth...

  7. Increased hepatic fatty acids uptake and oxidation by LRPPRC-driven oxidative phosphorylation reduces blood lipid levels

    Directory of Open Access Journals (Sweden)

    Ping Zhou

    2016-07-01

    Full Text Available Hyperlipidemia is one of the major risk factors of atherosclerosis and other cardiovascular diseases. This study aimed to investigate the impact of leucine rich pentatricopeptide repeat containing protein (LRPPRC-driven hepatic oxidative phoshorylation on blood lipid levels. The hepatic LRPPRC level was modulated by liver-specific transgenic or adeno-associated virus 8 carried shRNA targeting Lrpprc (aav-shLrpprc. Mice were fed with a high fat diet to induce obesity. Gene expression was analyzed by quantitative real-time PCR and / or western blot. The hepatic ATP level, hepatic and serum lipids contents, and mitochondria oxidative phosphorylation complex activities were measured using specific assay kits. The uptake and oxidation of fatty acid by hepatocytes were assessed using 14C-palmitate. LRPPRC regulated the expression of genes encoded by mitochondrial genome but not those by nuclear genome involved in mitochondria biogenesis, oxidative phosphorylation, and lipid metabolism. Increased oxidative phosphorylation in liver mediated by LRPPRC resulted in the increase of hepatic ATP level. Lrpprc promoted palmitate uptake and oxidation by hypatocytes. The hepatic and serum triglyceride and total cholesterol levels were inversely associated with the hepatic LRPPRC level. These data demonstrated that LRPPRC-driven hepatic oxidative phosphorylation could promote fatty acids uptake and oxidation by hepatocytes and reduce both hepatic and circulating triglyceride and cholesterol levels.

  8. Nitric oxide induces tyrosine nitration and release of cytochrome c preceding an increase of mitochondrial transmembrane potential in macrophages.

    Science.gov (United States)

    Hortelano, S; Alvarez, A M; Boscá, L

    1999-12-01

    Treatment of elicited peritoneal macrophages or the macrophage cell line RAW 264.7 with high concentrations of nitric oxide donors is followed by apoptotic cell death. Analysis of the changes in the mitochondrial transmembrane potential (DeltaPsi(m)) with specific fluorescent probes showed a rapid and persistent increase of DeltaPsi(m), a potential that usually decreases in cells undergoing apoptosis through mitochondrial-dependent mechanisms. Using confocal microscopy, the release of cytochrome c from the mitochondria to the cytosol was characterized as an early event preceding the rise of DeltaPsi(m). The cytochrome c from cells treated with nitric oxide donors was modified chemically, probably through the formation of nitrotyrosine residues, suggesting the synthesis of peroxynitrite in the mitochondria. These results indicate that nitric oxide-dependent apoptosis in macrophages occurs in the presence of a sustained increase of DeltaPsi(m), and that the chemical modification and release of cytochrome c from the mitochondria precede the changes of DeltaPsi(m).-Hortelano, S., Alvarez, A. M., Boscá, L. Nitric oxide induces tyrosine nitration and release of cytochrome c preceding an increase of mitochondrial transmembrane potential in macrophages.

  9. Modulation of human gingival fibroblast adhesion, morphology, tyrosine phosphorylation, and ERK 1/2 localization on polished, grooved and SLA substratum topographies.

    Science.gov (United States)

    Kokubu, Eitoyo; Hamilton, Douglas W; Inoue, Takashi; Brunette, Donald M

    2009-12-01

    Attachment of connective tissue to dental implants, which is influenced by surface topography, is an important determinant of implant success. Approaches employed to alter topography include acid etching or blasting to produce roughened surfaces, and production of precisely defined topographies using microfabrication techniques. The aim of this study was to assess the influence of polished, microgrooved, and sand-blasted, large grit, acid-etched (SLA) topographies on fibroblast adhesion, morphology, activation, and ERK 1/2 phosphorylation and localization. Human gingival fibroblasts (HGFs) spread on all tested surfaces within 2 h, and topography influenced the pattern of phosphotyrosine localization. Fibrillar adhesion formation was prominent in HGFs cultured on microgrooves and SLA at 24 h compared with smooth. No significant difference in ERK 1/2 phosphorylation was observed at 2 or 24 h, but nuclear localization depended on culture time and substratum topography. Nuclear localization of ERK 1/2 occurred at 2 h on polished surfaces, but was not evident at 1 week. In contrast, cells on SLA and grooved surfaces did not exhibit nuclear localization of ERK 1/2 at early times, but did at 1 week. The results of this study suggest that rough and microfabricated topographies influence fibroblast adhesion and intracellular signaling through focal adhesion/integrin-dependent mechanisms in a time-dependent manner. Copyright 2008 Wiley Periodicals, Inc.

  10. Intensive training and reduced volume increases muscle FXYD1 expression and phosphorylation at rest and during exercise in athletes

    DEFF Research Database (Denmark)

    Thomassen, Martin; Gunnarsson, Thomas Gunnar Petursson; Christensen, Peter Møller;

    2016-01-01

    -3 times per week and aerobic high-intensity training (4-5 x 3-4 min at 90-95% of peak aerobic power output) 1-2 times per week for seven weeks and reduced the training volume by 70%. Muscle biopsies were obtained before and during a repeated high-intensity exercise protocol and protein expression......The present study examined the effect of intensive training in combination with marked reduction in training volume on FXYD1 expression and phosphorylation at rest and during exercise. Eight well-trained cyclist replaced their regular training with speed-endurance training (10-12 x ~30-s sprints) 2...... and during exercise, mainly achieved by an increased FXYD1 ser68 phosphorylation, compared to before the intervention. CaMKII thr287 and eEF2 thr56 phosphorylation at rest and during exercise, overall PKCα/β thr638/641 and mTOR ser2448 phosphorylation during repeated intense exercise as well as resting PLN...

  11. Exercise-Mediated Increase in Nigral Tyrosine Hydroxylase Is Accompanied by Increased Nigral GFR-α1 and EAAC1 Expression in Aging Rats.

    Science.gov (United States)

    Arnold, Jennifer C; Salvatore, Michael F

    2016-02-17

    Exercise may alleviate locomotor impairment in Parkinson's disease (PD) or aging. Identifying molecular responses immediately engaged by exercise in the nigrostriatal pathway and allied tissue may reveal critical targets associated with its long-term benefits. In aging, there is loss of tyrosine hydroxylase (TH) and the glial cell line-derived neurotrophic factor (GDNF) receptor, GFR-α1, in the substantia nigra (SN). Exercise can increase GDNF expression, but its effect on GFR-α1 expression is unknown. Infusion of GDNF into striatum or GFR-α1 in SN, respectively, can increase locomotor activity and TH function in SN but not striatum in aged rats. GDNF may also increase glutamate transporter expression, which attenuates TH loss in PD models. We utilized a footshock-free treadmill exercise regimen to determine the immediate impact of short-term exercise on GFR-α1 expression, dopamine regulation, glutamate transporter expression, and glutamate uptake in 18 month old male Brown-Norway/Fischer 344 F1 hybrid rats. GFR-α1 and TH expression significantly increased in SN but not striatum. This exercise regimen did not affect glutamate uptake or glutamate transporter expression in striatum. However, EAAC1 expression increased in SN. These results indicate that nigral GFR-α1 and EAAC1 expression increased in conjunction with increased nigral TH expression following short-term exercise.

  12. Fibroblast growth factor receptor 3 interacts with and activates TGFβ-activated kinase 1 tyrosine phosphorylation and NFκB signaling in multiple myeloma and bladder cancer.

    Directory of Open Access Journals (Sweden)

    Lisa Salazar

    Full Text Available Cancer is a major public health problem worldwide. In the United States alone, 1 in 4 deaths is due to cancer and for 2013 a total of 1,660,290 new cancer cases and 580,350 cancer-related deaths are projected. Comprehensive profiling of multiple cancer genomes has revealed a highly complex genetic landscape in which a large number of altered genes, varying from tumor to tumor, impact core biological pathways and processes. This has implications for therapeutic targeting of signaling networks in the development of treatments for specific cancers. The NFκB transcription factor is constitutively active in a number of hematologic and solid tumors, and many signaling pathways implicated in cancer are likely connected to NFκB activation. A critical mediator of NFκB activity is TGFβ-activated kinase 1 (TAK1. Here, we identify TAK1 as a novel interacting protein and target of fibroblast growth factor receptor 3 (FGFR3 tyrosine kinase activity. We further demonstrate that activating mutations in FGFR3 associated with both multiple myeloma and bladder cancer can modulate expression of genes that regulate NFκB signaling, and promote both NFκB transcriptional activity and cell adhesion in a manner dependent on TAK1 expression in both cancer cell types. Our findings suggest TAK1 as a potential therapeutic target for FGFR3-associated cancers, and other malignancies in which TAK1 contributes to constitutive NFκB activation.

  13. DYRK1A (Dual-Specificity Tyrosine-Phosphorylated and -Regulated Kinase 1A: A Gene with Dosage Effect During Development and Neurogenesis

    Directory of Open Access Journals (Sweden)

    M. Dierssen

    2006-01-01

    Full Text Available DYRKs (dual-specificity tyrosine-regulated kinases are an emerging family of evolutionarily conserved dual-specificity kinases that play key roles in cell proliferation, survival, and development. The research in the last years suggests a relevant conserved function during neuronal development, related to proliferation and/or differentiation for DYRK1A. It is expressed in neural progenitor cells and has been proposed to participate in the signaling mechanisms that regulate dendrite differentiation. In Drosophila, disruption of the homolog minibrain gene results in flies with reduced neuroblast proliferation, decreased numbers of central brain neurons, and learning/memory deficits. Knockout DYRK1A mice are embryonic lethal, and heterozygotes show decreased viability and region-specific reductions in brain size. In humans, DYRK1A has been proposed to be involved in the neurodevelopmental alterations associated with Down syndrome. The large number of protein interaction and putative substrates described for DYRK1A suggest multiple pathways and functions to be involved in its developmental function. This review focuses on the functional role that DYRK1A plays in brain development.

  14. Design and synthesis of phosphoryl-substituted diphenylpyrimidines (Pho-DPPYs) as potent Bruton's tyrosine kinase (BTK) inhibitors: Targeted treatment of B lymphoblastic leukemia cell lines.

    Science.gov (United States)

    Ge, Yang; Yang, Haijun; Wang, Changyuan; Meng, Qiang; Li, Lei; Sun, Huijun; Zhen, Yuhong; Liu, Kexin; Li, Yanxia; Ma, Xiaodong

    2017-01-15

    A family of phosphoryl-substituted diphenylpyrimidine derivatives (Pho-DPPYs) were synthesized and biologically evaluated as potent BTK inhibitors in this study. Compound 7b was found to markedly inhibit BTK activity at concentrations of 0.82nmol/L, as well as to suppress the proliferations of B-cell leukemia cell lines (Ramos and Raji) expressing high levels of BTK at concentrations of 3.17μM and 6.69μM. Moreover, flow cytometry analysis results further indicated that 7b promoted cell apoptosis to a substantial degree. In a word, compound 7b is a promising BTK inhibitor for the treatment of B-cell lymphoblastic leukemia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A Novel Aziridine-based Bruton's Tyrosine Kinase Inhibitor Induces Apoptosis Through Down-regulation of p65/RelA Phosphorylation on Serine 536 and ERK1/2 in Mantle Cell Lymphoma.

    Science.gov (United States)

    Romanchikova, Nadezhda; Strods, Arnis; Strazdina, Julija; Strumfs, Boriss; Trapencieris, Peteris

    2016-11-01

    Mantle cell lymphoma (MCL) is an aggressive non-Hodgkin's lymphoma characterized by hyperactive neoplastic B-cells and extended tumor cell survival. Bruton's tyrosine kinase (BTK), a crucial kinase in the B-cell antigen receptor signaling pathway, has emerged as a novel target of MCL therapy. A novel BTK-targeting inhibitor, JuSt-23F was prepared. The WST-8 assay was used to determine cytotoxicity and half-maximal inhibitory concentration (IC50) values for JuSt-23F against the MCL cell lines Mino and Maver-1. JuSt-23F-mediated apoptosis was assessed using the annexin V assay. We detected phosphorylation of p65/RelA on serine 536 in whole Jurkat, Mino and Maver-1 cells treated with JuSt-23F and stimulated with tumor necrosis factor (TNFα). We assessed JuSt-23F-mediated phosphorylation of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) in T-cell lymphoma and MCL cells stimulated by phorbol-12-myristate-13-acetate (PMA). Our study suggests that JuSt-23F inhibits apoptosis selectively in B-cell lymphoma cells. JuSt-23F exerts its antiproliferative effects on MCL cells through targeting the downstream BTK signaling cascade via down-regulation of nuclear factor kappa-light-chain-enhancer of activated B-cells and ERK1/2 pathways. Thus, our findings propose the novel BTK inhibitor JuSt-23F as an attractive potential agent for investigation and treatment of MCL. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  16. Neurogenesis and Increase in Differentiated Neural Cell Survival via Phosphorylation of Akt1 after Fluoxetine Treatment of Stem Cells

    Directory of Open Access Journals (Sweden)

    Anahita Rahmani

    2013-01-01

    Full Text Available Fluoxetine (FLX is a selective serotonin reuptake inhibitor (SSRI. Its action is possibly through an increase in neural cell survival. The mechanism of improved survival rate of neurons by FLX may relate to the overexpression of some kinases such as Akt protein. Akt1 (a serine/threonine kinase plays a key role in the modulation of cell proliferation and survival. Our study evaluated the effects of FLX on mesenchymal stem cell (MSC fate and Akt1 phosphorylation levels in MSCs. Evaluation tests included reverse transcriptase polymerase chain reaction, western blot, and immunocytochemistry assays. Nestin, MAP-2, and β-tubulin were detected after neurogenesis as neural markers. Ten μM of FLX upregulated phosphorylation of Akt1 protein in induced hEnSC significantly. Also FLX did increase viability of these MSCs. Continuous FLX treatment after neurogenesis elevated the survival rate of differentiated neural cells probably by enhanced induction of Akt1 phosphorylation. This study addresses a novel role of FLX in neurogenesis and differentiated neural cell survival that may contribute to explaining the therapeutic action of fluoxetine in regenerative pharmacology.

  17. Serum- and glucocorticoid-induced protein kinase 1 (SGK1) increases the cystic fibrosis transmembrane conductance regulator (CFTR) in airway epithelial cells by phosphorylating Shank2E protein.

    Science.gov (United States)

    Koeppen, Katja; Coutermarsh, Bonita A; Madden, Dean R; Stanton, Bruce A

    2014-06-13

    The glucocorticoid dexamethasone increases cystic fibrosis transmembrane conductance regulator (CFTR) abundance in human airway epithelial cells by a mechanism that requires serum- and glucocorticoid-induced protein kinase 1 (SGK1) activity. The goal of this study was to determine whether SGK1 increases CFTR abundance by phosphorylating Shank2E, a PDZ domain protein that contains two SGK1 phosphorylation consensus sites. We found that SGK1 phosphorylates Shank2E as well as a peptide containing the first SGK1 consensus motif of Shank2E. The dexamethasone-induced increase in CFTR abundance was diminished by overexpression of a dominant-negative Shank2E in which the SGK1 phosphorylation sites had been mutated. siRNA-mediated reduction of Shank2E also reduced the dexamethasone-induced increase in CFTR abundance. Taken together, these data demonstrate that the glucocorticoid-induced increase in CFTR abundance requires phosphorylation of Shank2E at an SGK1 consensus site.

  18. Phylogenetic analysis, based on EPIYA repeats in the cagA gene of Indian Helicobacter pylori, and the implications of sequence variation in tyrosine phosphorylation motifs on determining the clinical outcome

    Directory of Open Access Journals (Sweden)

    Santosh K. Tiwari

    2011-01-01

    Full Text Available The population of India harbors one of the world's most highly diverse gene pools, owing to the influx of successive waves of immigrants over regular periods in time. Several phylogenetic studies involving mitochondrial DNA and Y chromosomal variation have demonstrated Europeans to have been the first settlers in India. Nevertheless, certain controversy exists, due to the support given to the thesis that colonization was by the Austro-Asiatic group, prior to the Europeans. Thus, the aim was to investigate pre-historic colonization of India by anatomically modern humans, using conserved stretches of five amino acid (EPIYA sequences in the cagA gene of Helicobacter pylori. Simultaneously, the existence of a pathogenic relationship of tyrosine phosphorylation motifs (TPMs, in 32 H. pylori strains isolated from subjects with several forms of gastric diseases, was also explored. High resolution sequence analysis of the above described genes was performed. The nucleotide sequences obtained were translated into amino acids using MEGA (version 4.0 software for EPIYA. An MJ-Network was constructed for obtaining TPM haplotypes by using NETWORK (version 4.5 software. The findings of the study suggest that Indian H. pylori strains share a common ancestry with Europeans. No specific association of haplotypes with the outcome of disease was revealed through additional network analysis of TPMs.

  19. Natural compounds as a source of protein tyrosine phosphatase inhibitors : Application to the rational design of small-molecule derivatives

    NARCIS (Netherlands)

    Ferreira, Carmen V.; Justo, Giselle Z.; Souza, Ana C. S.; Queiroz, Karla C. S.; Zambuzzi, William F.; Aoyama, Hiroshi; Peppelenbosch, Maikel P.

    2006-01-01

    Reversible phosphorylation of tyrosine residues is a key regulatory mechanism for numerous cellular events. Protein tyrosine kinases and protein tyrosine phosphatases (PTPs) have a pivotal role in regulating both normal cell physiology and pathophysiology. Accordingly, deregulated activity of both p

  20. Brain intraventricular injection of amyloid-β in zebrafish embryo impairs cognition and increases tau phosphorylation, effects reversed by lithium.

    Directory of Open Access Journals (Sweden)

    Laura Roesler Nery

    Full Text Available Alzheimer's disease (AD is a devastating neurodegenerative disorder with no effective treatment and commonly diagnosed only on late stages. Amyloid-β (Aβ accumulation and exacerbated tau phosphorylation are molecular hallmarks of AD implicated in cognitive deficits and synaptic and neuronal loss. The Aβ and tau connection is beginning to be elucidated and attributed to interaction with different components of common signaling pathways. Recent evidences suggest that non-fibrillary Aβ forms bind to membrane receptors and modulate GSK-3β activity, which in turn phosphorylates the microtubule-associated tau protein leading to axonal disruption and toxic accumulation. Available AD animal models, ranging from rodent to invertebrates, significantly contributed to our current knowledge, but complementary platforms for mechanistic and candidate drug screenings remain critical for the identification of early stage biomarkers and potential disease-modifying therapies. Here we show that Aβ1-42 injection in the hindbrain ventricle of 24 hpf zebrafish embryos results in specific cognitive deficits and increased tau phosphorylation in GSK-3β target residues at 5dpf larvae. These effects are reversed by lithium incubation and not accompanied by apoptotic markers. We believe this may represent a straightforward platform useful to identification of cellular and molecular mechanisms of early stage AD-like symptoms and the effects of neuroactive molecules in pharmacological screenings.

  1. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten

    2010-01-01

    in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by tyrosine...

  2. Coniferyl Aldehyde Reduces Radiation Damage Through Increased Protein Stability of Heat Shock Transcriptional Factor 1 by Phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seo-Young [Graduate School of Pharmaceutical Sciences, Ewha Women' s University, Seoul (Korea, Republic of); Lee, Hae-June [Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Nam, Joo-Won; Seo, Eun-Kyoung [Graduate School of Pharmaceutical Sciences, Ewha Women' s University, Seoul (Korea, Republic of); Lee, Yun-Sil, E-mail: yslee0425@ewha.ac.kr [Graduate School of Pharmaceutical Sciences, Ewha Women' s University, Seoul (Korea, Republic of)

    2015-03-15

    Purpose: We previously screened natural compounds and found that coniferyl aldehyde (CA) was identified as an inducer of HSF1. In this study, we further examined the protective effects of CA against ionizing radiation (IR) in normal cell system. Methods and Materials: Western blotting and reverse transcription-polymerase chain reaction tests were performed to evaluate expression of HSF1, HSP27, and HSP70 in response to CA. Cell death and cleavage of PARP and caspase-3 were analyzed to determine the protective effects of CA in the presence of IR or taxol. The protective effects of CA were also evaluated using animal models. Results: CA increased stability of the HSF1 protein by phosphorylation at Ser326, which was accompanied by increased expression of HSP27 and HSP70. HSF1 phosphorylation at Ser326 by CA was mediated by EKR1/2 activation. Cotreatment of CA with IR or taxol in normal cells induced protective effects with phosphorylation- dependent patterns at Ser326 of HSF1. The decrease in bone marrow (BM) cellularity and increase of terminal deoxynucleotidyl transferase dUTP nick end labeling–positive BM cells by IR were also significantly inhibited by CA in mice (30.6% and 56.0%, respectively). A549 lung orthotopic lung tumor model indicated that CA did not affect the IR-mediated reduction of lung tumor nodules, whereas CA protected normal lung tissues from the therapeutic irradiation. Conclusions: These results suggest that CA may be useful for inducing HSF1 to protect against normal cell damage after IR or chemotherapeutic agents.

  3. Phosphorylation of PTEN increase in pathological right ventricular hypertrophy in rats with chronic hypoxia induced pulmonary hypertension

    Institute of Scientific and Technical Information of China (English)

    Nie Xin; Shi Yiwei; Yu Wenyan; Xu Jianying; Hu Xiaoyun; Du Yongcheng

    2014-01-01

    Background Phosphatase and tensin homologue on chromosome ten (PTEN) acts as a convergent nodal signalling point for cardiomyocyte hypertrophy,growth and survival.However,the role of PTEN in cardiac conditions such as right ventricular hypertrophy caused by chronic hypoxic pulmonary,hypertension remains unclear.This study preliminarily discussed the role of PTEN in the cardiac response to increased pulmonary vascular resistance using the hypoxia-induced PH rats.Methods Male Sprague Dawley rats were exposed to 10% oxygen for 1,3,7,14 or 21 days to induce hypertension and right ventricular hypertrophy.Right ventricular systolic pressure was measured via catheterization.Hypertrophy index was calculated as the ratio of right ventricular mass to left ventricle plus septum mass.Tissue morphology and fibrosis were measured using hematoxylin,eosin and picrosirius red staining.The expression and phosphorylation levels of PTEN in ventricles were determined by real time PCR and Western blotting.Results Hypoxic exposure of rats resulted in pathological hypertrophy,interstitial fibrosis and remodelling of the right ventricle.The phosphorylation of PTEN increased significantly in the hypertrophic right ventricle compared to the normoxic control group.There were no changes in protein expression in either ventricle.Conclusion Hypoxia induced pulmonary hypertension developed pathological right ventricular hypertrophy and remodelling probablv related to an increased phosohorvlation of PTEN.

  4. Coinjection of CCK and leptin reduces food intake via increased CART/TRH and reduced AMPK phosphorylation in the hypothalamus.

    Science.gov (United States)

    Akieda-Asai, Sayaka; Poleni, Paul-Emile; Date, Yukari

    2014-06-01

    CCK and leptin are anorectic hormones produced in the small intestine and white adipose tissue, respectively. Investigating how these hormones act together as an integrated anorectic signal is important for elucidating the mechanisms by which energy balance is maintained. We found here that coadministration of subthreshold CCK and leptin, which individually have no effect on feeding, dramatically reduced food intake in rats. Phosphorylation of AMP-activated protein kinase (AMPK) in the hypothalamus significantly decreased after coinjection of CCK and leptin. In addition, coadministration of these hormones significantly increased mRNA levels of anorectic cocaine- and amphetamine-regulated transcript (CART) and thyrotropin-releasing hormone (TRH) in the hypothalamus. The interactive effect of CCK and leptin on food intake was abolished by intracerebroventricular preadministration of the AMPK activator AICAR or anti-CART/anti-TRH antibodies. These findings indicate that coinjection of CCK and leptin reduces food intake via reduced AMPK phosphorylation and increased CART/TRH in the hypothalamus. Furthermore, by using midbrain-transected rats, we investigated the role of the neural pathway from the hindbrain to the hypothalamus in the interaction of CCK and leptin to reduce food intake. Food intake reduction induced by coinjection of CCK and leptin was blocked in midbrain-transected rats. Therefore, the neural pathway from hindbrain to hypothalamus plays an important role in transmitting the anorectic signals provided by coinjection of CCK and leptin. Our findings give further insight into the mechanisms of feeding and energy balance. Copyright © 2014 the American Physiological Society.

  5. A potential benefit of albinism in Astyanax cavefish: downregulation of the oca2 gene increases tyrosine and catecholamine levels as an alternative to melanin synthesis.

    Science.gov (United States)

    Bilandžija, Helena; Ma, Li; Parkhurst, Amy; Jeffery, William R

    2013-01-01

    Albinism, the loss of melanin pigmentation, has evolved in a diverse variety of cave animals but the responsible evolutionary mechanisms are unknown. In Astyanax mexicanus, which has a pigmented surface dwelling form (surface fish) and several albino cave-dwelling forms (cavefish), albinism is caused by loss of function mutations in the oca2 gene, which operates during the first step of the melanin synthesis pathway. In addition to albinism, cavefish have evolved differences in behavior, including feeding and sleep, which are under the control of the catecholamine system. The catecholamine and melanin synthesis pathways diverge after beginning with the same substrate, L-tyrosine. Here we describe a novel relationship between the catecholamine and melanin synthesis pathways in Astyanax. Our results show significant increases in L-tyrosine, dopamine, and norepinephrine in pre-feeding larvae and adult brains of Pachón cavefish relative to surface fish. In addition, norepinephrine is elevated in cavefish adult kidneys, which contain the teleost homologs of catecholamine synthesizing adrenal cells. We further show that the oca2 gene is expressed during surface fish development but is downregulated in cavefish embryos. A key finding is that knockdown of oca2 expression in surface fish embryos delays the development of pigmented melanophores and simultaneously increases L-tyrosine and dopamine. We conclude that a potential evolutionary benefit of albinism in Astyanax cavefish may be to provide surplus L-tyrosine as a precursor for the elevated catecholamine synthesis pathway, which could be important for adaptation to the challenging cave environment.

  6. A potential benefit of albinism in Astyanax cavefish: downregulation of the oca2 gene increases tyrosine and catecholamine levels as an alternative to melanin synthesis.

    Directory of Open Access Journals (Sweden)

    Helena Bilandžija

    Full Text Available Albinism, the loss of melanin pigmentation, has evolved in a diverse variety of cave animals but the responsible evolutionary mechanisms are unknown. In Astyanax mexicanus, which has a pigmented surface dwelling form (surface fish and several albino cave-dwelling forms (cavefish, albinism is caused by loss of function mutations in the oca2 gene, which operates during the first step of the melanin synthesis pathway. In addition to albinism, cavefish have evolved differences in behavior, including feeding and sleep, which are under the control of the catecholamine system. The catecholamine and melanin synthesis pathways diverge after beginning with the same substrate, L-tyrosine. Here we describe a novel relationship between the catecholamine and melanin synthesis pathways in Astyanax. Our results show significant increases in L-tyrosine, dopamine, and norepinephrine in pre-feeding larvae and adult brains of Pachón cavefish relative to surface fish. In addition, norepinephrine is elevated in cavefish adult kidneys, which contain the teleost homologs of catecholamine synthesizing adrenal cells. We further show that the oca2 gene is expressed during surface fish development but is downregulated in cavefish embryos. A key finding is that knockdown of oca2 expression in surface fish embryos delays the development of pigmented melanophores and simultaneously increases L-tyrosine and dopamine. We conclude that a potential evolutionary benefit of albinism in Astyanax cavefish may be to provide surplus L-tyrosine as a precursor for the elevated catecholamine synthesis pathway, which could be important for adaptation to the challenging cave environment.

  7. Site-Specific Phosphorylation of PSD-95 PDZ Domains Reveals Fine-Tuned Regulation of Protein-Protein Interactions.

    Science.gov (United States)

    Pedersen, Søren W; Albertsen, Louise; Moran, Griffin E; Levesque, Brié; Pedersen, Stine B; Bartels, Lina; Wapenaar, Hannah; Ye, Fei; Zhang, Mingjie; Bowen, Mark E; Strømgaard, Kristian

    2017-09-15

    The postsynaptic density protein of 95 kDa (PSD-95) is a key scaffolding protein that controls signaling at synapses in the brain through interactions of its PDZ domains with the C-termini of receptors, ion channels, and enzymes. PSD-95 is highly regulated by phosphorylation. To explore the effect of phosphorylation on PSD-95, we used semisynthetic strategies to introduce phosphorylated amino acids at four positions within the PDZ domains and examined the effects on interactions with a large set of binding partners. We observed complex effects on affinity. Most notably, phosphorylation at Y397 induced a significant increase in affinity for stargazin, as confirmed by NMR and single molecule FRET. Additionally, we compared the effects of phosphorylation to phosphomimetic mutations, which revealed that phosphomimetics are ineffective substitutes for tyrosine phosphorylation. Our strategy to generate site-specifically phosphorylated PDZ domains provides a detailed understanding of the role of phosphorylation in the regulation of PSD-95 interactions.

  8. Protein tyrosine phosphatase PTP1 negatively regulates Dictyostelium STATa and is required for proper cell-type proportioning.

    Science.gov (United States)

    Early, A; Gamper, M; Moniakis, J; Kim, E; Hunter, T; Williams, J G; Firtel, R A

    2001-04-01

    The protein tyrosine phosphatase PTP1, which mediates reversible phosphorylation on tyrosine, has been shown to play an important regulatory role during Dictyostelium development. Mutants lacking PTP1 develop more rapidly than normal, while strains that overexpress PTP1 display aberrant morphology. However, the signalling pathways involved have not been characterised. In reexamining these strains, we have found that there is an inverse correlation between levels of PTP1 activity, the extent of tyrosine phosphorylation on Dictyostelium STATa after treatment with cAMP, and the proportion of the slug population exhibiting STATa nuclear enrichment in vivo. This suggests that PTP1 acts to attenuate the tyrosine phosphorylation of STATa and downstream STATa-mediated pathways. Consistent with this, we show that when PTP1 is overexpressed, there is increased expression of a prestalk cell marker at the slug posterior, a phenocopy of STATa null slugs. In ptp1 null strains, STATa tyrosine phosphorylation and nuclear enrichment in the slug anterior is increased. There is also a change in the prestalk to prespore cell ratio. Synergy experiments suggest that this is due to a cell-autonomous defect in forming the subset of prespore cells that are located in the anterior prespore region.

  9. Increased in vitro phosphorylation of rat liver nucleolar proteins following triiodothyronine administration.

    Science.gov (United States)

    Fugassa, E; Gallo, G; Pertica, M

    1976-11-15

    It has been shown that triiodothyronine (Ta) administration to thyroidectomized rats induces an increase in the in vitro net 32P uptake into liver nucleolar proteins. Such an increase depends on a stimulation of the nucleolus-associated protein kinase activity and not on a lower dephosphorylation rate.

  10. Increases in cAMP, MAPK activity, and CREB phosphorylation during REM sleep: implications for REM sleep and memory consolidation.

    Science.gov (United States)

    Luo, Jie; Phan, Trongha X; Yang, Yimei; Garelick, Michael G; Storm, Daniel R

    2013-04-10

    The cyclic adenosine monophosphate (cAMP), mitogen-activated protein kinase (MAPK), and cAMP response element-binding protein (CREB) transcriptional pathway is required for consolidation of hippocampus-dependent memory. In mice, this pathway undergoes a circadian oscillation required for memory persistence that reaches a peak during the daytime. Because mice exhibit polyphasic sleep patterns during the day, this suggested the interesting possibility that cAMP, MAPK activity, and CREB phosphorylation may be elevated during sleep. Here, we report that cAMP, phospho-p44/42 MAPK, and phospho-CREB are higher in rapid eye movement (REM) sleep compared with awake mice but are not elevated in non-REM sleep. This peak of activity during REM sleep does not occur in mice lacking calmodulin-stimulated adenylyl cyclases, a mouse strain that learns but cannot consolidate hippocampus-dependent memory. We conclude that a preferential increase in cAMP, MAPK activity, and CREB phosphorylation during REM sleep may contribute to hippocampus-dependent memory consolidation.

  11. SHP1 tyrosine phosphatase negatively regulates NPM-ALK tyrosine kinase signaling.

    Science.gov (United States)

    Honorat, Jean-François; Ragab, Ashraf; Lamant, Laurence; Delsol, Georges; Ragab-Thomas, Jeannie

    2006-05-15

    Anaplastic large-cell lymphoma (ALCL) is frequently associated with the 2;5 translocation and expresses the NPM-ALK fusion protein, which possesses a constitutive tyrosine kinase activity. We analyzed SHP1 tyrosine phosphatase expression and activity in 3 ALK-positive ALCL cell lines (Karpas 299, Cost, and SU-DHL1) and in lymph node biopsies (n = 40). We found an inverse correlation between the level of NPM-ALK phosphorylation and SHP1 phosphatase activity. Pull-down and coimmunoprecipitation experiments demonstrated a SHP1/NPM-ALK association. Furthermore, confocal microscopy performed on ALCL cell lines and biopsy specimens showed the colocalization of the 2 proteins in cytoplasmic bodies containing Y664-phosphorylated NPM-ALK. Dephosphorylation of NPM-ALK by SHP1 demonstrated that NPM-ALK was a SHP1 substrate. Downregulation of SHP1 expression by RNAi in Karpas cells led to hyperphosphorylation of NPM-ALK, STAT3 activation, and increase in cell proliferation. Furthermore, SHP1 overexpression in 3T3 fibroblasts stably expressing NPM-ALK led to the decrease of NPM-ALK phosphorylation, lower cell proliferation, and tumor progression in nude mice. These findings show that SHP1 is a negative regulator of NPM-ALK signaling. The use of tissue microarrays revealed that 50% of ALK-positive ALCLs were positive for SHP1. Our results suggest that SHP1 could be a critical enzyme in ALCL biology and a potential therapeutic target.

  12. Proteomic analysis of the oil palm fruit mesocarp reveals elevated oxidative phosphorylation activity is critical for increased storage oil production.

    Science.gov (United States)

    Loei, Hendrick; Lim, Justin; Tan, Melvin; Lim, Teck Kwang; Lin, Qing Song; Chew, Fook Tim; Kulaveerasingam, Harikrishna; Chung, Maxey C M

    2013-11-01

    Palm oil is a highly versatile commodity with wide applications in the food, cosmetics, and biofuel industries. Storage oil in the oil palm mesocarp can make up a remarkable 80% of its dry mass, making it the oil crop with the richest oil content in the world. As such, there has been an ongoing interest in understanding the mechanism of oil production in oil palm fruits. To identify the proteome changes during oil palm fruit maturation and factors affecting oil yield in oil palm fruits, we examined the proteomic profiles of oil palm mesocarps at four developing stages--12, 16, 18, and 22 weeks after pollination--by 8-plex iTRAQ labeling coupled to 2D-LC and MALDI-TOF/TOF MS. It was found that proteins from several important metabolic processes, including starch and sucrose metabolism, glycolysis, pentose phosphate shunt, fatty acid biosynthesis, and oxidative phosphorylation, were differentially expressed in a concerted manner. These increases led to an increase in carbon flux and a diversion of resources such as ATP and NADH that are required for lipid biosynthesis. The temporal proteome profiles between the high-oil-yielding (HY) and low-oil-yielding (LY) fruits also showed significant differences in the levels of proteins involved in the regulation of the TCA cycle and oxidative phosphorylation. In particular, the expression level of the β subunit of the ATP synthase complex (complex IV of the electron transport chain) was found to be increased during fruit maturation in HY but decreased in the LY during the fruit maturation. These results suggested that increased energy supply is necessary for augmented oil yield in the HY oil palm trees.

  13. Elevated Serum Levels of Cysteine and Tyrosine: Early Biomarkers in Asymptomatic Adults at Increased Risk of Developing Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Nina Mohorko

    2015-01-01

    Full Text Available As there is effective intervention for delaying or preventing metabolic diseases, which are often present for years before becoming clinically apparent, novel biomarkers that would mark metabolic complications before the onset of metabolic disease should be identified. We investigated the role of fasting serum amino acids and their associations with inflammatory markers, adipokines, and metabolic syndrome (MetS components in subjects prior to the onset of insulin resistance (IR. Anthropometric measurements, food records, adipokines, biochemical markers, and serum levels of amino acids were determined in 96 asymptomatic subjects aged 25–49 years divided into three groups according to the number of MetS components present. Cysteine and tyrosine were significantly higher already in group with one component of MetS present compared to subjects without MetS components. Serum amino acid levels correlated with markers of inflammation and adipokines. Alanine and glycine explained 10% of insulin resistance variability. The role of tyrosine and cysteine, that were higher already with 1 component of MetS present, should be further investigated as they might point to future insulin disturbances.

  14. Tyrosine Phosphorylation of Botulinum Neurotoxin Protease Domains

    Science.gov (United States)

    2012-06-01

    10mM Na-phosphate, pH 7.4. LcA was directly applied to a PD-10 column without pre- treatment with ZnCl2. Src (1255 units/mg, 0.1mg/ml), monoclonal anti... treatment of LcA and varied the temperature of Src reaction incubation.We found that incubation at 20˚C for up to 120 h prevented LcA precipitation...Differences in the pro- tease activities of tetanus and botu- linum B toxins revealed by the cleav- age of vesicle-associated membrane protein and various

  15. Increased postexercise insulin sensitivity is accompanied by increased AS160 phosphorylation in slow‐twitch soleus muscle

    OpenAIRE

    Iwabe, Maiko; Kawamoto, Emi; Koshinaka, Keiichi; Kawanaka, Kentaro

    2014-01-01

    Abstract A single bout of exercise can enhance insulin‐stimulated glucose uptake in both fast‐twitch (type II) and slow‐twitch (type I) skeletal muscle for several hours postexercise. Akt substrate of 160 kDa (AS160) is most distal insulin signaling proteins that have been proposed to contribute to the postexercise enhancement of insulin action in fast‐twitch muscle. In this study, we examined whether the postexercise increase in insulin action of glucose uptake in slow‐twitch muscle is accom...

  16. Intense resistance exercise induces early and transient increases in ryanodine receptor 1 phosphorylation in human skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Sebastian Gehlert

    Full Text Available BACKGROUND: While ryanodine receptor 1 (RyR1 critically contributes to skeletal muscle contraction abilities by mediating Ca²⁺ion oscillation between sarcoplasmatic and myofibrillar compartments, AMP-activated protein kinase (AMPK senses contraction-induced energetic stress by phosphorylation at Thr¹⁷². Phosphorylation of RyR1 at serine²⁸⁴³ (pRyR1Ser²⁸⁴³ results in leaky RyR1 channels and impaired Ca²⁺homeostasis. Because acute resistance exercise exerts decreased contraction performance in skeletal muscle, preceded by high rates of Ca²⁺-oscillation and energetic stress, intense myofiber contractions may induce increased RyR1 and AMPK phosphorylation. However, no data are available regarding the time-course and magnitude of early RyR1 and AMPK phosphorylation in human myofibers in response to acute resistance exercise. PURPOSE: Determine the effects and early time-course of resistance exercise on pRyR1Ser²⁸⁴³ and pAMPKThr¹⁷² in type I and II myofibers. METHODS: 7 male subjects (age 23±2 years, height: 185±7 cm, weight: 82±5 kg performed 3 sets of 8 repetitions of maximum eccentric knee extensions. Muscle biopsies were taken at rest, 15, 30 and 60 min post exercise. pRyR1Ser²⁸⁴³ and pAMPKThr¹⁷² levels were determined by western blot and semi-quantitative immunohistochemistry techniques. RESULTS: While total RyR1 and total AMPK levels remained unchanged, RyR1 was significantly more abundant in type II than type I myofibers. pRyR1Ser²⁸⁴³ increased 15 min and peaked 30 min (p<0.01 post exercise in both myofiber types. Type I fibers showed relatively higher increases in pRyR1Ser²⁸⁴³ levels than type II myofibers and remained elevated up to 60 min post resistance exercise (p<0.05. pAMPKThr¹⁷² also increased 15 to 30 min post exercise (p<0.01 in type I and II myofibers and in whole skeletal muscle. CONCLUSION: Resistance exercise induces acutely increased pRyR1Ser²⁸⁴³ and

  17. Hair cell BK channels interact with RACK1, and PKC increases its expression on the cell surface by indirect phosphorylation.

    Science.gov (United States)

    Surguchev, Alexei; Bai, Jun-Ping; Joshi, Powrnima; Navaratnam, Dhasakumar

    2012-07-15

    Large conductance (BK) calcium activated potassium channels (Slo) are ubiquitous and implicated in a number of human diseases including hypertension and epilepsy. BK channels consist of a pore forming α-subunit (Slo) and a number of accessory subunits. In hair cells of nonmammalian vertebrates these channels play a critical role in electrical resonance, a mechanism of frequency selectivity. Hair cell BK channel clusters on the surface and currents increase along the tonotopic axis and contribute significantly to the responsiveness of these hair cells to sounds of high frequency. In contrast, messenger RNA levels encoding the Slo gene show an opposite decrease in high frequency hair cells. To understand the molecular events underlying this paradox, we used a yeast two-hybrid screen to isolate binding partners of Slo. We identified Rack1 as a Slo binding partner and demonstrate that PKC activation increases Slo surface expression. We also establish that increased Slo recycling of endocytosed Slo is at least partially responsible for the increased surface expression of Slo. Moreover, analysis of several PKC phosphorylation site mutants confirms that the effects of PKC on Slo surface expression are likely indirect. Finally, we show that Slo clusters on the surface of hair cells are also increased by increased PKC activity and may contribute to the increasing amounts of channel clusters on the surface of high-frequency hair cells.

  18. Lithium increases platelet serine-9 phosphorylated GSK-3β levels in drug-free bipolar disorder during depressive episodes.

    Science.gov (United States)

    de Sousa, Rafael T; Zanetti, Marcus V; Talib, Leda L; Serpa, Mauricio H; Chaim, Tiffany M; Carvalho, Andre F; Brunoni, Andre R; Busatto, Geraldo F; Gattaz, Wagner F; Machado-Vieira, Rodrigo

    2015-03-01

    Glycogen synthase kinase-3 β (GSK3β) is an intracellular enzyme directly implicated in several neural processes relevant to bipolar disorder (BD) pathophysiology. GSK3β is also an important target for lithium and antidepressants. When phosphorylated at serine-9, GSK3β becomes inactive. Few studies evaluated serine-9 phosphorylated GSK3β (phospho-GSK3β) levels in BD subjects in vivo and no study has assessed it specifically in bipolar depression. Also, the effect of lithium monotherapy on GSK3β has never been studied in humans. In 27 patients with bipolar depression, total GSK3β and phospho-GSK3β were assessed in platelets by enzyme immunometric assay. Subjects were evaluated before and after 6 weeks of lithium treatment at therapeutic levels. Healthy subjects (n = 22) were used as a control group. No differences in phospho-GSK3β or total GSK3β were observed when comparing drug-free BD subjects in depression and healthy controls. Baseline HAM-D scores were not correlated with phospho-GSK3β and total GSK3β levels. From baseline to endpoint, lithium treatment inactivated GSK3β by significantly increasing phospho-GSK3β levels (p = 0.010). Clinical improvement (baseline HAM-D - endpoint HAM-D) negatively correlated with the increase in phospho-GSK3β (p = 0.03). The present results show that lithium inactivates platelet GSK3β in BD during mood episodes. No direct association with pathophysiology of BD was observed. Further studies are needed to clarify the role of GSK3β as a key biomarker in BD and its association with treatment response as well as the relevance of GSK3β in other neuropsychiatric disorders and as a new therapeutic target per se. Published by Elsevier Ltd.

  19. Increased CSF levels of phosphorylated neurofilament heavy protein following bout in amateur boxers.

    Directory of Open Access Journals (Sweden)

    Sanna Neselius

    Full Text Available INTRODUCTION: Diagnosis of mild TBI is hampered by the lack of imaging or biochemical measurements for identifying or quantifying mild TBI in a clinical setting. We have previously shown increased biomarker levels of protein reflecting axonal (neurofilament light protein and tau and glial (GFAP and S-100B damage in cerebrospinal fluid (CSF after a boxing bout. The aims of this study were to find other biomarkers of mild TBI, which may help clinicians diagnose and monitor mild TBI, and to calculate the role of APOE ε4 allele genotype which has been associated with poor outcome after TBI. MATERIALS AND METHODS: Thirty amateur boxers with a minimum of 45 bouts and 25 non-boxing matched controls were included in a prospective cohort study. CSF and blood were collected at one occasion between 1 and 6 days after a bout, and after a rest period for at least 14 days (follow up. The controls were tested once. CSF levels of neurofilament heavy (pNFH, amyloid precursor proteins (sAPPα and sAPPβ, ApoE and ApoA1 were analyzed. In blood, plasma levels of Aβ42 and ApoE genotype were analyzed. RESULTS: CSF levels of pNFH were significantly increased between 1 and 6 days after boxing as compared with controls (p<0.001. The concentrations decreased at follow up but were still significantly increased compared to controls (p = 0.018. CSF pNFH concentrations correlated with NFL (r =  0.57 after bout and 0.64 at follow up, p<0.001. No significant change was found in the other biomarkers, as compared to controls. Boxers carrying the APOE ε4 allele had similar biomarker concentrations as non-carriers. CONCLUSIONS: Subconcussive repetitive trauma in amateur boxing causes a mild TBI that may be diagnosed by CSF analysis of pNFH, even without unconsciousness or concussion symptoms. Possession of the APOE ε4 allele was not found to influence biomarker levels after acute TBI.

  20. Roles of the tyrosine isomers meta-tyrosine and ortho-tyrosine in oxidative stress.

    Science.gov (United States)

    Ipson, Brett R; Fisher, Alfred L

    2016-05-01

    The damage to cellular components by reactive oxygen species, termed oxidative stress, both increases with age and likely contributes to age-related diseases including Alzheimer's disease, atherosclerosis, diabetes, and cataract formation. In the setting of oxidative stress, hydroxyl radicals can oxidize the benzyl ring of the amino acid phenylalanine, which then produces the abnormal tyrosine isomers meta-tyrosine or ortho-tyrosine. While elevations in m-tyrosine and o-tyrosine concentrations have been used as a biological marker of oxidative stress, there is emerging evidence from bacterial, plant, and mammalian studies demonstrating that these isomers, particularly m-tyrosine, directly produce adverse effects to cells and tissues. These new findings suggest that the abnormal tyrosine isomers could in fact represent mediators of the effects of oxidative stress. Consequently the accumulation of m- and o-tyrosine may disrupt cellular homeostasis and contribute to disease pathogenesis, and as result, effective defenses against oxidative stress can encompass not only the elimination of reactive oxygen species but also the metabolism and ultimately the removal of the abnormal tyrosine isomers from the cellular amino acid pool. Future research in this area is needed to clarify the biologic mechanisms by which the tyrosine isomers damage cells and disrupt the function of tissues and organs and to identify the metabolic pathways involved in removing the accumulated isomers after exposure to oxidative stress.

  1. Telmisartan mitigates hyperglycemia-induced vascular inflammation by increasing GSK3β-Ser(9) phosphorylation in endothelial cells and mouse aortas.

    Science.gov (United States)

    Song, Kee-Ho; Bae, Sun-Ju; Chang, Jiyeon; Park, Jung-Hyun; Jo, Inho; Cho, Kae Won; Cho, Du-Hyong

    2017-09-30

    Telmisartan, an angiotensin II type 1 receptor blocker (ARB), attenuates hyperglycemia-aggravated vascular inflammation by decreasing IκB kinase β (IKKβ) expression in endothelial cells. Because glycogen synthase 3β (GSK3β) is involved in inflammatory process by regulating nuclear factor-κB (NF-κB) activity, we investigated whether GSK3β mediates telmisartan-ameliorated vascular inflammation in hyperglycemia-treated endothelial cells and high-fat diet (HFD)-fed mice. Telmisartan remarkably induced GSK3β-Ser(9) phosphorylation in hyperglycemia-treated endothelial cells that accompanied a decrease in hyperglycemia-induced NF-κB p65-Ser(536) phosphorylation, vascular cell adhesion molecule-1 (VCAM-1) expression, and THP-1 monocyte adhesion. Ectopic expression of GSK3β-S9A, a constitutively active mutant of GSK3β, significantly restored complete telmisartan-inhibited NF-κB p65-Ser(536) phosphorylation, VCAM-1 expression, and THP-1 monocyte adhesion. In addition, it reversed telmisartan-repressed IKKβ expression. Among the ARB, including losartan and fimasartan, only telmisartan increased GSK3β-Ser(9) phosphorylation, and telmisartan-induced GSK3β-Ser(9) phosphorylation remained unchanged by pretreatment with GW9662, a specific and irreversible peroxisome proliferator-activated receptor γ (PPARγ) antagonist. Finally, in the aortas of HFD-fed mice, telmisartan treatment significantly attenuated HFD-induced upregulation of NF-κB p65-Ser(536) phosphorylation, VCAM-1 expression, and IKKβ expression and downregulation of GSK3β-Ser(9) phosphorylation. Taken together, our findings demonstrated that telmisartan ameliorates hyperglycemia-exacerbated vascular inflammation, at least in part, by inducing GSK3β-Ser(9) phosphorylation, which consequently inhibits IKKβ expression, NF-κB p65-Ser(536) phosphorylation, and VCAM-1 expression in a PPARγ-independent manner. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Regulation of phenylalanine hydroxylase: conformational changes upon phosphorylation detected by H/D exchange and mass spectrometry.

    Science.gov (United States)

    Li, Jun; Fitzpatrick, Paul F

    2013-07-15

    The enzyme phenylalanine hydroxylase catalyzes the hydroxylation of excess phenylalanine in the liver to tyrosine. The enzyme is regulated allosterically by phenylalanine and by phosphorylation of Ser16. Hydrogen/deuterium exchange monitored by mass spectrometry has been used to gain insight into any structural change upon phosphorylation. Peptides in both the catalytic and regulatory domains show increased deuterium incorporation into the phosphorylated protein. Deuterium is incorporated into fewer peptides than when the enzyme is activated by phenylalanine, and the incorporation is slower. This establishes that the conformational change upon phosphorylation of phenylalanine hydroxylase is different from and less extensive than that upon phenylalanine activation.

  3. Phosphorylation of hormone-sensitive lipase by protein kinase A in vitro promotes an increase in its hydrophobic surface area

    DEFF Research Database (Denmark)

    Krintel, Christian; Mörgelin, Matthias; Logan, Derek T;

    2009-01-01

    Hormone-sensitive lipase (EC 3.1.1.79; HSL) is a key enzyme in the mobilization of fatty acids from stored triacylglycerols. HSL activity is controlled by phosphorylation of at least four serines. In rat HSL, Ser563, Ser659 and Ser660 are phosphorylated by protein kinase A (PKA) in vitro as well...

  4. Influence of berberine on protein tyrosine kinase of erythrocyte insulin receptors from type 2 diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    Xianglei Deng; Xinrong Li; Chenggong Tian

    2005-01-01

    Objective: Bererine has been used to treat type 2 diabetes mellitus in Chinese traditional medicine because of its hypoglycemic effect. In this report, we compared the intrinsic tyrosine kinase activities of erythrocyte insulin receptors from type 2 diabetes mellitus with or without stimulation by berberine in vitro. Methods: Preparations containing insulin receptors were obtained from soluble human erythrocytes, and the insulin receptors were partially purified by affinity chromatography. The tyrosine kinase activity was measured by the exogenous substrate phosphorylation. Results: Both the membrane tyrosine kinase activity and the purified receptor tyrosine kinase activity from diabetics decreased significantly compared with those of normal individuals (reduced by 67.4 % and 47.2 %, respectively).After incubation with berberine, there is a statistical difference in the activity of membrane tyrosine kinase for diabetic patients (a 150% increase). Bererine had no effect on the tyrosine kinase activity of purified insulin receptors. Conclusion: We concluded from these results that berberine was able to improve the insulin sensitivity by increasing the protein tyrosine kinase activity of membrane-bound insulin receptors from type 2 diabetes mellitus.

  5. Diabetes Increases Cryoinjury Size with Associated Effects on Cx43 Gap Junction Function and Phosphorylation in the Mouse Heart

    Directory of Open Access Journals (Sweden)

    Joseph A. Palatinus

    2016-01-01

    Full Text Available Diabetic patients develop larger myocardial infarctions and have an increased risk of death following a heart attack. The poor response to myocardial injury in the diabetic heart is likely related to the many metabolic derangements from diabetes that create a poor substrate in general for wound healing, response to injury and infection. Studies in rodents have implicated a role for the gap junction protein connexin 43 (Cx43 in regulating the injury response in diabetic skin wounds. In this study, we sought to determine whether diabetes alters Cx43 molecular interactions or intracellular communication in the cryoinjured STZ type I diabetic mouse heart. We found that epicardial cryoinjury size is increased in diabetic mice and this increase is prevented by preinjury insulin administration. Consistent with these findings, we found that intercellular coupling via gap junctions is decreased after insulin administration in diabetic and nondiabetic mice. This decrease in coupling is associated with a concomitant increase in phosphorylation of Cx43 at serine 368, a residue known to decrease channel conductance. Taken together, our results suggest that insulin regulates both gap junction-mediated intercellular communication and injury propagation in the mouse heart.

  6. Age-dependent increase in serum levels of indoxyl sulphate and p-cresol sulphate is not related to their precursors: Tryptophan and tyrosine.

    Science.gov (United States)

    Wyczalkowska-Tomasik, Aleksandra; Czarkowska-Paczek, Bozena; Giebultowicz, Joanna; Wroczynski, Piotr; Paczek, Leszek

    2017-06-01

    Retention of indoxyl sulphate and p-cresol sulphate is associated with many diseases. The aim of the present study was to examine serum levels of indoxyl sulphate and p-cresol sulphate, the dynamics of their changes according to age, and their precursors. The study included 180 healthy individuals aged 20-90 years (n = 180), divided into subgroups by decade (n = 30 in each subgroup) and into subgroups of ≥65 years (n = 42) or p-cresol sulphate, tryptophan, and tyrosine were measured using high-performance liquid chromatography-mass spectrometry. The 70-90 years age group had higher indoxyl sulphate than the 50-59 years age group (P = 0.033). The 70-90 years age group had higher p-cresol sulphate than the 20-29 years (P P P = 0.007) and 50-59 years (P = 0.001) age groups; the 60-69 years age group had higher p-cresol sulphate than the 20-29 years (P = 0.043) and 30-39 years (P = 0.011) age groups. Indoxyl sulphate and p-cresol sulphate serum levels were higher in those aged ≥65 years. Indoxyl sulphate and p-cresol sulphate serum levels correlated positively with age, but not with tryptophan and tyrosine, respectively. Healthy aging is associated with indoxyl sulphate and p-cresol sulphate serum level increases, which are not linked to tryptophan and tyrosine serum levels. Geriatr Gerontol Int 2017; 17: 1022-1026. © 2016 Japan Geriatrics Society.

  7. Interferon-alpha therapy in patients with hepatitis C virus infection increases plasma phenylalanine and the phenylalanine to tyrosine ratio.

    Science.gov (United States)

    Zoller, Heinz; Schloegl, Anna; Schroecksnadel, Sebastian; Vogel, Wolfgang; Fuchs, Dietmar

    2012-05-01

    Higher blood levels of the essential amino acid phenylalanine (Phe) together with impaired conversion of Phe to tyrosine (Tyr) have been observed in patients suffering from inflammatory conditions. Data suggest that inflammatory responses may interfere with Phe metabolism. This study aimed to investigate whether treatment with cytokine interferon-α (IFN-α) influences Phe concentrations and the Phe to Tyr ratios (Phe/Tyr) measured by HPLC. Twenty-five patients (9 females, 16 males, aged mean ± SD: 44.5 ± 11.0 years) with hepatitis C virus (HCV) infection were examined before and after 1 month of effective antiviral therapy with pegylated IFN-α and weight-based ribavirin. Results were compared to HCV-RNA titers and concentrations of neopterin. IFN-α treatment was associated with a drop of HCV load (from median 6.3 to 3.2 log10 copies/μL; Pphenylalanine 4-hydroxylase becomes impaired. Future studies should show whether side effects of IFN-α treatment such as mood changes and depression will be associated with the alterations of Phe metabolism.

  8. Pin1-mediated Sp1 phosphorylation by CDK1 increases Sp1 stability and decreases its DNA-binding activity during mitosis.

    Science.gov (United States)

    Yang, Hang-Che; Chuang, Jian-Ying; Jeng, Wen-Yih; Liu, Chia-I; Wang, Andrew H-J; Lu, Pei-Jung; Chang, Wen-Chang; Hung, Jan-Jong

    2014-12-16

    We have shown that Sp1 phosphorylation at Thr739 decreases its DNA-binding activity. In this study, we found that phosphorylation of Sp1 at Thr739 alone is necessary, but not sufficient for the inhibition of its DNA-binding activity during mitosis. We demonstrated that Pin1 could be recruited to the Thr739(p)-Pro motif of Sp1 to modulate the interaction between phospho-Sp1 and CDK1, thereby facilitating CDK1-mediated phosphorylation of Sp1 at Ser720, Thr723 and Thr737 during mitosis. Loss of the C-terminal end of Sp1 (amino acids 741-785) significantly increased Sp1 phosphorylation, implying that the C-terminus inhibits CDK1-mediated Sp1 phosphorylation. Binding analysis of Sp1 peptides to Pin1 by isothermal titration calorimetry indicated that Pin1 interacts with Thr739(p)-Sp1 peptide but not with Thr739-Sp1 peptide. X-ray crystallography data showed that the Thr739(p)-Sp1 peptide occupies the active site of Pin1. Increased Sp1 phosphorylation by CDK1 during mitosis not only stabilized Sp1 levels by decreasing interaction with ubiquitin E3-ligase RNF4 but also caused Sp1 to move out of the chromosomes completely by decreasing its DNA-binding activity, thereby facilitating cell cycle progression. Thus, Pin1-mediated conformational changes in the C-terminal region of Sp1 are critical for increased CDK1-mediated Sp1 phosphorylation to facilitate cell cycle progression during mitosis.

  9. Mutation of the SHP-2 binding site in growth hormone (GH) receptor prolongs GH-promoted tyrosyl phosphorylation of GH receptor, JAK2, and STAT5B

    DEFF Research Database (Denmark)

    Stofega, M R; Herrington, J; Billestrup, Nils;

    2000-01-01

    that the SH2 domains of SHP-2 bind directly to tyrosyl phosphorylated GHR from GH-treated cells. Tyrosine-to-phenylalanine mutation of tyrosine 595 of rat GHR greatly diminishes association of the SH2 domains of SHP-2 with GHR, and tyrosine-to-phenylalanine mutation of tyrosine 487 partially reduces...... phosphorylation. Consistent with the effects on STAT5B phosphorylation, tyrosine-to-phenylalanine mutation of tyrosine 595 prolongs the duration of tyrosyl phosphorylation of GHR and JAK2. These data suggest that tyrosine 595 is a major site of interaction of GHR with SHP-2, and that GHR-bound SHP-2 negatively...

  10. Cyclic AMP-insensitive activation of c-Src and Syk protein-tyrosine kinases through platelet membrane glycoprotein VI.

    Science.gov (United States)

    Ichinohe, T; Takayama, H; Ezumi, Y; Yanagi, S; Yamamura, H; Okuma, M

    1995-11-24

    Platelet glycoprotein (GP) VI is a so-far uncharacterized 62-kDa membrane protein, whose deficiency results in selective impairment in collagen-induced platelet aggregation. Our group previously reported a human polyclonal antibody (anti-p62 IgG) that induces activation of normal, but not of GPVI-deficient, platelets in an Fc-independent manner. The F(ab')2 fragments of this antibody (F(ab')2-anti-p62) stimulated tyrosine phosphorylation of numerous proteins, which was not prevented even in the presence of cAMP-increasing agents such as prostacyclin. Pretreatment of platelets with the protein-tyrosine kinase (PTK) inhibitor tyrphostin A47 completely abolished F(ab')2-anti-p62-induced platelet aggregation in parallel with dose-dependent inhibition of protein-tyrosine phosphorylation, indicating an essential requirement of PTK activity for generating GPVI-mediated signaling. We found that two cytosolic PTKs, c-Src and Syk, became rapidly activated in response to F(ab')2-anti-p62 in a way insensitive to elevation of cAMP. In contrast, in the presence of prostacyclin, F(ab')2-anti-p62 did not stimulate tyrosine phosphorylation of the focal adhesion kinase. cAMP-insensitive activation of c-Src and Syk was also observed in collagen but not thrombin-stimulated platelets. Moreover, either F(ab')2-anti-p62 or collagen stimulated cAMP-insensitive tyrosine phosphorylation of phospholipase C-gamma 2. These results indicate that the receptor-mediated activation of several PTKs in platelets is regulated through a cAMP-sensitive or -insensitive mechanism depending on the nature of each stimulus, and also suggest that GPVI engagement is coupled to cAMP-insensitive activation of c-Src and Syk accompanied by tyrosine phosphorylation of numerous substrates including phospholipase C-gamma 2 in a manner similar to collagen stimulation.

  11. Protein tyrosine phosphatase SAP-1 protects against colitis through regulation of CEACAM20 in the intestinal epithelium.

    Science.gov (United States)

    Murata, Yoji; Kotani, Takenori; Supriatna, Yana; Kitamura, Yasuaki; Imada, Shinya; Kawahara, Kohichi; Nishio, Miki; Daniwijaya, Edwin Widyanto; Sadakata, Hisanobu; Kusakari, Shinya; Mori, Munemasa; Kanazawa, Yoshitake; Saito, Yasuyuki; Okawa, Katsuya; Takeda-Morishita, Mariko; Okazawa, Hideki; Ohnishi, Hiroshi; Azuma, Takeshi; Suzuki, Akira; Matozaki, Takashi

    2015-08-04

    Intestinal epithelial cells contribute to regulation of intestinal immunity in mammals, but the detailed molecular mechanisms of such regulation have remained largely unknown. Stomach-cancer-associated protein tyrosine phosphatase 1 (SAP-1, also known as PTPRH) is a receptor-type protein tyrosine phosphatase that is localized specifically at microvilli of the brush border in gastrointestinal epithelial cells. Here we show that SAP-1 ablation in interleukin (IL)-10-deficient mice, a model of inflammatory bowel disease, resulted in a marked increase in the severity of colitis in association with up-regulation of mRNAs for various cytokines and chemokines in the colon. Tyrosine phosphorylation of carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 20, an intestinal microvillus-specific transmembrane protein of the Ig superfamily, was greatly increased in the intestinal epithelium of the SAP-1-deficient animals, suggesting that this protein is a substrate for SAP-1. Tyrosine phosphorylation of CEACAM20 by the protein tyrosine kinase c-Src and the consequent association of CEACAM20 with spleen tyrosine kinase (Syk) promoted the production of IL-8 in cultured cells through the activation of nuclear factor-κB (NF-κB). In addition, SAP-1 and CEACAM20 were found to form a complex through interaction of their ectodomains. SAP-1 and CEACAM20 thus constitute a regulatory system through which the intestinal epithelium contributes to intestinal immunity.

  12. Pirenzepine Inhibits Myopia in Guinea Pig Model by Regulating the Balance of MMP-2 and TIMP-2 Expression and Increased Tyrosine Hydroxylase Levels.

    Science.gov (United States)

    Qian, Lifeng; Zhao, Hong; Li, Xiaoxia; Yin, Juanjuan; Tang, Wenjian; Chen, Peng; Wang, Qian; Zhang, Jinsong

    2015-04-01

    In this study, we investigated the effects and mechanism of action of pirenzepine in a guinea pig model of myopia induced by exposure to monochromatic light. It was observed that pirenzepine inhibited the increase of diopter and extension of ocular axial length. Immunohistochemistry staining showed that the number of tyrosine hydroxylase (TH)-positive cells in pirenzepine group was significantly higher compared to the other treatment groups pointing to a highly positive correlation between TH expression levels and the diopter and axial length change. RT-PCR analysis further showed that pirenzepine treatment reduced the expression of matrix metalloproteinase (MMP-2) and enhanced the expression of tissue inhibitors of metalloproteinase (TIMP-2) compared to the other treatment and control groups. To conclude, we demonstrate that pirenzepine may improve the prognosis of monochromatic light-induced myopia in guinea pigs, possibly by both regulating the balance of MMP-2 and TIMP-2 in sclera and increasing the TH expression in retina.

  13. Expression of protein tyrosine phosphatase alpha (RPTPalpha) in human breast cancer correlates with low tumor grade, and inhibits tumor cell growth in vitro and in vivo

    DEFF Research Database (Denmark)

    Ardini, E; Agresti, R; Tagliabue, E;

    2000-01-01

    Tyrosine phosphorylation is controlled by a balance of tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Whereas the contribution of PTKs to breast tumorigenesis is the subject of intense scrutiny, the potential role of PTPs is poorly known. RPTPalpha is implicated in the activation......% of cases manifesting significant overexpression. High RPTPalpha protein levels correlated significantly with low tumor grade and positive estrogen receptor status. Expression of RPTPalpha in breast carcinoma cells led to growth inhibition, associated with increased accumulation in G0 and G1, and delayed...

  14. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation.

    Science.gov (United States)

    Macho, Alberto P; Schwessinger, Benjamin; Ntoukakis, Vardis; Brutus, Alexandre; Segonzac, Cécile; Roy, Sonali; Kadota, Yasuhiro; Oh, Man-Ho; Sklenar, Jan; Derbyshire, Paul; Lozano-Durán, Rosa; Malinovsky, Frederikke Gro; Monaghan, Jacqueline; Menke, Frank L; Huber, Steven C; He, Sheng Yang; Zipfel, Cyril

    2014-03-28

    Innate immunity relies on the perception of pathogen-associated molecular patterns (PAMPs) by pattern-recognition receptors (PRRs) located on the host cell's surface. Many plant PRRs are kinases. Here, we report that the Arabidopsis receptor kinase EF-TU RECEPTOR (EFR), which perceives the elf18 peptide derived from bacterial elongation factor Tu, is activated upon ligand binding by phosphorylation on its tyrosine residues. Phosphorylation of a single tyrosine residue, Y836, is required for activation of EFR and downstream immunity to the phytopathogenic bacterium Pseudomonas syringae. A tyrosine phosphatase, HopAO1, secreted by P. syringae, reduces EFR phosphorylation and prevents subsequent immune responses. Thus, host and pathogen compete to take control of PRR tyrosine phosphorylation used to initiate antibacterial immunity.

  15. Tumor suppressor PTEN affects tau phosphorylation: deficiency in the phosphatase activity of PTEN increases aggregation of an FTDP-17 mutant Tau

    Directory of Open Access Journals (Sweden)

    Zhang Xue

    2006-07-01

    Full Text Available Abstract Background Aberrant hyperphosphorylation of tau protein has been implicated in a variety of neurodegenerative disorders. Although a number of protein kinases have been shown to phosphorylate tau in vitro and in vivo, the molecular mechanisms by which tau phosphorylation is regulated pathophysiologically are largely unknown. Recently, a growing body of evidence suggests a link between tau phosphorylation and PI3K signaling. In this study, phosphorylation, aggregation and binding to the microtubule of a mutant frontal temporal dementia and parkinsonism linked to chromosome 17 (FTDP-17 tau in the presence of tumor suppressor PTEN, a major regulatory component in PI3K signaling, were investigated. Results Phosphorylation of the human mutant FTDP-17 tau, T40RW, was evaluated using different phospho-tau specific antibodies in the presence of human wild-type or phosphatase activity null mutant PTEN. Among the evaluated phosphorylation sites, the levels of Ser214 and Thr212 phospho-tau proteins were significantly decreased in the presence of wild-type PTEN, and significantly increased when the phosphatase activity null mutant PTEN was ectopically expressed. Fractionation of the mutant tau transfected cells revealed a significantly increased level of soluble tau in cytosol when wild-type PTEN was expressed, and an elevated level of SDS-soluble tau aggregates in the presence of the mutant PTEN. In addition, the filter/trap assays detected more SDS-insoluble mutant tau aggregates in the cells overexpressing the mutant PTEN compared to those in the cells overexpressing wild-type PTEN and control DNA. This notion was confirmed by the immunocytochemical experiment which demonstrated that the overexpression of the phosphatase activity null mutant PTEN caused the mutant tau to form aggregates in the COS-7 cells. Conclusion Tumor suppressor PTEN can alleviate the phosporylation of the mutant FTDP-17 tau at specific sites, and the phosphatase activity

  16. Store-operated Ca2+ entry in hippocampal neurons: Regulation by protein tyrosine phosphatase PTP1B.

    Science.gov (United States)

    Koss, David J; Riedel, Gernot; Bence, Kendra; Platt, Bettina

    2013-02-01

    Store operated Ca(2+) entry (SOCE) replenishes intracellular Ca(2+) stores and activates a number of intracellular signalling pathways. Whilst several molecular components forming store operated Ca(2+) channels (SOCC) have been identified, their modulation in neurons remains poorly understood. Here, we extend on our previous findings and show that neuronal SOCE is modulated by tyrosine phosphorylation. Cyclopiazonic acid induced SOCE was characterised in hippocampal cultures derived from forebrain specific protein tyrosine phosphatase 1B knockout (PTP1B KO) mice and wild type (WT) litter mates using Fura-2 Ca(2+) imaging. PTP1B KO cultures expressed elevated SOCE relative to WT cultures without changes in cytoplasmic Ca(2+) homeostasis or depolarisation-induced Ca(2+) influx. WT and PTP1B KO cultures displayed similar pharmacological sensitivities towards the SOCE inhibitors gadolinium and 2-aminoethoxydiphenyl borate, as well as the tyrosine kinase inhibitor Ag126 indicating an augmentation of native SOCCs by PTP1B. Following store depletion WT culture homogenates showed heightened phospho-tyrosine levels, an increase in Src tyrosine kinase activation and two minor PTP1B species. These data suggest tyrosine phosphorylation gating SOCE, and implicate PTP1B as a key regulatory enzyme. The involvement of PTP1B in SOCE and its relation to SOCC components and mechanism of regulation are discussed.

  17. Light-Induced Phosphorylation of Crystallins in the Retinal Pigment Epithelium

    Science.gov (United States)

    Lee, Hyunju; Chung, Hyewon; Lee, Sung Haeng; Jahng, Wan Jin

    2017-01-01

    Protein phosphorylations have essential regulatory roles in visual signaling. Previously, we found that phosphorylation of several proteins in the retina and the retinal pigment epithelium (RPE) is involved in anti-apoptotic signaling under oxidative stress conditions, including light exposure. In this study, we used a phosphoprotein enrichment strategy to evaluate the light-induced phosphoproteome of primary bovine RPE cells. Phosphoprotein-enriched extracts from bovine RPE cells exposed to light or dark conditions for 1 hour were separated by 2D SDS-PAGE. Serine and tyrosine phosphorylation were visualized by 2D phospho western blotting and specific phosphorylation sites were analyzed by tandem mass spectrometry. Light induced a marked increase in tyrosine phosphorylation of beta crystallin A3 and A4. The most abundant light-induced up-regulated phosphoproteins were crystallins of 15–25-kDa, including beta crystallin S and zeta crystallin. Phosphorylation of beta crystallin suggests an anti-apoptotic chaperone function in the RPE. Other chaperones, cytoskeletal proteins, and proteins involved in energy balance were expressed at higher levels in the dark. A detailed analysis of RPE phosphoproteins provides a molecular basis for understanding light-induced signal transduction and anti-apoptosis mechanisms. Our data indicates that phosphorylation of crystallins likely represents an important mechanism for RPE shielding from physiological and pathophysiological light-induced oxidative injury. PMID:21094180

  18. Increased phosphorylation of skeletal muscle glycogen synthase at NH2-terminal sites during physiological hyperinsulinemia in type 2 diabetes

    DEFF Research Database (Denmark)

    Højlund, Kurt; Staehr, Peter; Hansen, Bo Falck;

    2003-01-01

    In type 2 diabetes, insulin activation of muscle glycogen synthase (GS) is impaired. This defect plays a major role for the development of insulin resistance and hyperglycemia. In animal muscle, insulin activates GS by reducing phosphorylation at both NH(2)- and COOH-terminal sites, but the mecha...

  19. A P387L variant in protein tyrosine phosphatase-1B (PTP-1B) is associated with type 2 diabetes and impaired serine phosphorylation of PTP-1B in vitro

    DEFF Research Database (Denmark)

    Echwald, Søren M; Riis, Helle Bach; Vestergaard, Henrik

    2002-01-01

    In the present study, we tested the hypothesis that variability in the protein tyrosine phosphatase-1B (PTP-1B) gene is associated with type 2 diabetes. Using single-strand conformational polymorphism analysis, we examined cDNA of PTP-1B from 56 insulin-resistant patients with type 2 diabetes...

  20. Sepsis-induced cardiac mitochondrial dysfunction involves altered mitochondrial-localization of tyrosine kinase Src and tyrosine phosphatase SHP2.

    Directory of Open Access Journals (Sweden)

    Qun S Zang

    Full Text Available Our previous research demonstrated that sepsis produces mitochondrial dysfunction with increased mitochondrial oxidative stress in the heart. The present study investigated the role of mitochondria-localized signaling molecules, tyrosine kinase Src and tyrosine phosphatase SHP2, in sepsis-induced cardiac mitochondrial dysfunction using a rat pneumonia-related sepsis model. SD rats were given an intratracheal injection of Streptococcus pneumoniae, 4×10(6 CFU per rat, (or vehicle for shams; heart tissues were then harvested and subcellular fractions were prepared. By Western blot, we detected a gradual and significant decrease in Src and an increase in SHP2 in cardiac mitochondria within 24 hours post-inoculation. Furthermore, at 24 hours post-inoculation, sepsis caused a near 70% reduction in tyrosine phosphorylation of all cardiac mitochondrial proteins. Decreased tyrosine phosphorylation of certain mitochondrial structural proteins (porin, cyclophilin D and cytochrome C and functional proteins (complex II subunit 30kD and complex I subunit NDUFB8 were evident in the hearts of septic rats. In vitro, pre-treatment of mitochondrial fractions with recombinant active Src kinase elevated OXPHOS complex I and II-III activity, whereas the effect of SHP2 phosphatase was opposite. Neither Src nor SHP2 affected complex IV and V activity under the same conditions. By immunoprecipitation, we showed that Src and SHP2 consistently interacted with complex I and III in the heart, suggesting that complex I and III contain putative substrates of Src and SHP2. In addition, in vitro treatment of mitochondrial fractions with active Src suppressed sepsis-associated mtROS production and protected aconitase activity, an indirect marker of mitochondrial oxidative stress. On the contrary, active SHP2 phosphatase overproduced mtROS and deactivated aconitase under the same in vitro conditions. In conclusion, our data suggest that changes in mitochondria

  1. The tyrosine phosphatase Shp2 interacts with NPM-ALK and regulates anaplastic lymphoma cell growth and migration.

    Science.gov (United States)

    Voena, Claudia; Conte, Chiara; Ambrogio, Chiara; Boeri Erba, Elisabetta; Boccalatte, Francesco; Mohammed, Shabaz; Jensen, Ole N; Palestro, Giorgio; Inghirami, Giorgio; Chiarle, Roberto

    2007-05-01

    Anaplastic large cell lymphomas (ALCL) are mainly characterized by the reciprocal translocation t(2;5)(p23;q35) that involves the anaplastic lymphoma kinase (ALK) gene and generates the fusion protein NPM-ALK with intrinsic tyrosine kinase activity. NPM-ALK triggers several signaling cascades, leading to increased cell growth, resistance to apoptosis, and changes in morphology and migration of transformed cells. To search for new NPM-ALK interacting molecules, we developed a mass spectrometry-based proteomic approach in HEK293 cells expressing an inducible NPM-ALK and identified the tyrosine phosphatase Shp2 as a candidate substrate. We found that NPM-ALK was able to bind Shp2 in coprecipitation experiments and to induce its phosphorylation in the tyrosine residues Y542 and Y580 both in HEK293 cells and ALCL cell lines. In primary lymphomas, antibodies against the phosphorylated tyrosine Y542 of Shp2 mainly stained ALK-positive cells. In ALCL cell lines, Shp2-constitutive phosphorylation was dependent on NPM-ALK, as it significantly decreased after short hairpin RNA (shRNA)-mediated NPM-ALK knock down. In addition, only the constitutively active NPM-ALK, but not the kinase dead NPM-ALK(K210R), formed a complex with Shp2, Gab2, and growth factor receptor binding protein 2 (Grb2), where Grb2 bound to the phosphorylated Shp2 through its SH2 domain. Shp2 knock down by specific shRNA decreased the phosphorylation of extracellular signal-regulated kinase 1/2 and of the tyrosine residue Y416 in the activation loop of Src, resulting in impaired ALCL cell proliferation and growth disadvantage. Finally, migration of ALCL cells was reduced by Shp2 shRNA. These findings show a direct involvement of Shp2 in NPM-ALK lymphomagenesis, highlighting its critical role in lymphoma cell proliferation and migration.

  2. Enhancement effect of some phosphorylated compounds on fluorescence of quinazoline-based chelating ligand complexed with gallium ion

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Junko; Yamada, Hiroshi; Yajima, Takehiko [Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510 (Japan); Fukushima, Takeshi, E-mail: t-fukushima@phar.toho-u.ac.j [Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510 (Japan)

    2009-11-15

    The chelating ligand, 2,4-[bis-(2,4-dihydroxybenzylidene)]-dihydrazinoquinazoline (DBHQ) can form a fluorescence complex with Ga{sup 3+} ions. The fluorescence intensity of the obtained DBHQ-Ga{sup 3+} complex increases in the presence of some phosphorylated compounds. The addition of phosphorylated serine and tyrosine, pyridoxal-5'-phosphate (PLP), and glucose-6-phosphate (G6P) leads to an increase in the fluorescence quantum yield (phi) of the complex by 1.38-1.59 times, while the addition of serine, tyrosine, pyridoxal, and glucose leads to a small increase in phi (1.02-1.04). This is the first report on the fluorescence enhancement effect of phosphorylated compounds on a Ga{sup 3+} ion complex.

  3. Bruton's tyrosine kinase inhibition increases BCL-2 dependence and enhances sensitivity to venetoclax in chronic lymphocytic leukemia.

    Science.gov (United States)

    Deng, J; Isik, E; Fernandes, S M; Brown, J R; Letai, A; Davids, M S

    2017-02-14

    Although the BTK inhibitor ibrutinib has transformed the management of patients with chronic lymphocytic leukemia (CLL), it does not induce substantial apoptosis in vitro, and as such the mechanisms underlying its ability to kill CLL cells are not well understood. Acalabrutinib, a more specific BTK inhibitor now in development, also appears to be highly effective in CLL, but the connection of its mechanism with CLL cell death is also unclear. Using dynamic BH3 profiling, we analyzed alterations in the function of the mitochondrial apoptotic pathway induced by ibrutinib and acalabrutinib. We studied CLL patient samples treated ex vivo with both drugs, as well as primary samples from CLL patients on clinical trials of both drugs. We found that BTK inhibition enhances mitochondrial BCL-2 dependence without significantly altering overall mitochondrial priming. Enhancement of BCL-2 dependence was accompanied by an increase in the pro-apoptotic protein BIM. In contrast, treatment with the selective BCL-2 inhibitor venetoclax enhanced overall mitochondrial priming without increasing BCL-2 dependence. Pre-treatment of CLL cells with either BTK inhibitor, whether ex vivo or in vivo in patients, enhanced killing by venetoclax. Our data suggest that BTK inhibition enhances mitochondrial BCL-2 dependence, supporting the ongoing development of clinical trials combining BTK and BCL-2 inhibition.Leukemia advance online publication, 14 February 2017; doi:10.1038/leu.2017.32.

  4. Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus.

    Science.gov (United States)

    Bleeker, Petra M; Hakvoort, Henk W J; Bliek, Mattijs; Souer, Erik; Schat, Henk

    2006-03-01

    Decreased arsenate [As(V)] uptake is the major mechanism of naturally selected As(V) hypertolerance in plants. However, As(V)-hypertolerant ecotypes also show enhanced rates of phytochelatin (PC) accumulation, suggesting that improved sequestration might additionally contribute to the hypertolerance phenotype. Here, we show that enhanced PC-based sequestration in As(V)-hypertolerant Holcus lanatus is not due to an enhanced capacity for PC synthesis as such, but to increased As(V) reductase activity. Vacuolar transport of arsenite-thiol complexes was equal in both ecotypes. Based on homology with the yeast As(V) reductase, Acr2p, we identified a Cdc25-like plant candidate, HlAsr, and confirmed the As(V) reductase activity of both HlAsr and the homologous protein from Arabidopsis thaliana. The gene appeared to be As(V)-inducible and its expression was enhanced in the As(V)-hypertolerant H. lanatus ecotype, compared with the non-tolerant ecotype. Homologous ectopic overexpression of the AtASR cDNA in A. thaliana produced a dual phenotype. It improved tolerance to mildly toxic levels of As(V) exposure, but caused hypersensitivity to more toxic levels. Arabidopsis asr T-DNA mutants showed increased As(V) sensitivity at low exposure levels and enhanced arsenic retention in the root. It is argued that, next to decreased uptake, enhanced expression of HlASR might act as an additional determinant of As(V) hypertolerance and As transport in H. lanatus.

  5. Inhibition of catecholamine synthesis with alpha-methyl-p-tyrosine apparently increases brain serotoninergic activity in the rat: no influence of previous chronic immobilization stress.

    Science.gov (United States)

    Pol, O; Campmany, L; Armario, A

    1995-09-01

    The functional relationship between brain catecholamines and serotoninergic function was studied in stress-naive and chronically immobilized rats after blockade of catecholamine synthesis with alpha-methyl-p-tyrosine (alpha MpT). The levels of noradrenaline (NA), serotonin, and 5-hydroxyindole acetic acid (5-HIAA) in pons plus medulla, brainstem, hypothalamus, hippocampus, and frontal cortex, and those of 3-methoxy, 4-hydroxyphenile-tileneglicol sulphate (MHPG-SO4) in the hypothalamus were measured by HPLC. Chronic immobilization (IMO) resulted in higher NA levels in pons plus medulla and hypothalamus, the latter area (the only one in which the NA metabolite was determined) also showing slightly elevated MHPG-SO4 levels as compared to stress-naive rats. Chronic IMO did not alter either serotonin or 5-HIAA levels, but acute stress consistently increased 5-HIAA levels in all areas, independently of previous chronic stress. Administration of alpha-MpT drastically reduced NA and increased 5-HIAA levels in all brain regions excepting the frontal cortex. The effect of the drug on serotoninergic function was not altered by previous chronic exposure to IMO. These data suggest that the noradrenergic system appears to exert a tonic inhibitory effect on serotoninergic activity in the brain, with the intensity of the effect depending on the brain area studied. In addition, chronic stress does not appear to alter the functional relationship between noradrenergic and serotoninergic activities, although interactions might exist in more restricted brain areas; this deserves further study.

  6. Drugging the Undruggable: Therapeutic Potential of Targeting Protein Tyrosine Phosphatases.

    Science.gov (United States)

    Zhang, Zhong-Yin

    2017-01-17

    Protein tyrosine phosphatases (PTPs) are essential signaling enzymes that, together with protein tyrosine kinases, regulate tyrosine phosphorylation inside the cell. Proper level of tyrosine phosphorylation is important for a diverse array of cellular processes, such as proliferation, metabolism, motility, and survival. Aberrant tyrosine phosphorylation, resulting from alteration of PTP expression, misregulation, and mutation, has been linked to the etiology of many human ailments including cancer, diabetes/obesity, autoimmune disorders, and infectious diseases. However, despite the fact that PTPs have been garnering attention as compelling drug targets, they remain a largely underexploited resource for therapeutic intervention. Indeed, PTPs have been widely dismissed as "undruggable", due to concerns that (1) the highly conserved active site (i.e., pTyr-binding pocket) makes it difficult to achieve inhibitor selectivity among closely related family members, and (2) the positive-charged active site prefers negatively charged molecules, which usually lack cell permeability. To address the issue of selectivity, we advanced a novel paradigm for the acquisition of highly potent and selective PTP inhibitors through generation of bivalent ligands that interact with both PTP active site and adjacent unique peripheral pockets. To overcome the bioavailability issue, we have identified nonhydrolyzable pTyr mimetics that are sufficiently polar to bind the PTP active site, yet still capable of efficiently penetrating cell membranes. We show that these pTyr mimetics interact in the desired inhibitory fashion with the PTP active site and tethering them to appropriate molecular fragments to engage less conserved interactions outside of PTP active site can increase PTP inhibitor potency and selectivity. We demonstrate through three pTyr mimetics fragment-based approaches that it is completely feasible to obtain highly potent and selective PTP inhibitors with robust in vivo

  7. Far-infrared radiation acutely increases nitric oxide production by increasing Ca{sup 2+} mobilization and Ca{sup 2+}/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung-Hyun; Lee, Sangmi [Department of Molecular Medicine and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of); Cho, Du-Hyong [Department of Neuroscience, School of Medicine, Konkuk University, Seoul 143-701 (Korea, Republic of); Park, Young Mi [Department of Molecular Medicine and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of); Kang, Duk-Hee [Division of Nephrology, Department of Internal Medicine, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of); Jo, Inho, E-mail: inhojo@ewha.ac.kr [Department of Molecular Medicine and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of)

    2013-07-12

    Highlights: •Far-infrared (FIR) radiation increases eNOS-Ser{sup 1179} phosphorylation and NO production in BAEC. •CaMKII and PKA mediate FIR-stimulated increases in eNOS-Ser{sup 1179} phosphorylation. •FIR increases intracellular Ca{sup 2+} levels. •Thermo-sensitive TRPV Ca{sup 2+} channels are unlikely to be involved in the FIR-mediated eNOS-Ser{sup 1179} phosphorylation pathway. -- Abstract: Repeated thermal therapy manifested by far-infrared (FIR) radiation improves vascular function in both patients and mouse model with coronary heart disease, but its underlying mechanism is not fully understood. Using FIR as a thermal therapy agent, we investigate the molecular mechanism of its effect on endothelial nitric oxide synthase (eNOS) activity and NO production. FIR increased the phosphorylation of eNOS at serine 1179 (eNOS-Ser{sup 1179}) in a time-dependent manner (up to 40 min of FIR radiation) in bovine aortic endothelial cells (BAEC) without alterations in eNOS expression. This increase was accompanied by increases in NO production and intracellular Ca{sup 2+} levels. Treatment with KN-93, a selective inhibitor of Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) and H-89, a protein kinase A inhibitor, inhibited FIR radiation-stimulated eNOS-Ser{sup 1179} phosphorylation. FIR radiation itself also increased the temperature of culture medium. As transient receptors potential vanilloid (TRPV) ion channels are known to be temperature-sensitive calcium channels, we explore whether TRPV channels mediate these observed effects. Reverse transcription-PCR assay revealed two TRPV isoforms in BAEC, TRPV2 and TRPV4. Although ruthenium red, a pan-TRPV inhibitor, completely reversed the observed effect of FIR radiation, a partial attenuation (∼20%) was found in cells treated with Tranilast, TRPV2 inhibitor. However, ectopic expression of siRNA of TRPV2 showed no significant alteration in FIR radiation-stimulated eNOS-Ser{sup 1179} phosphorylation. This

  8. Phosphorylated STAT3 physically interacts with NPM and transcriptionally enhances its expression in cancer.

    Science.gov (United States)

    Ren, Z; Aerts, J L; Pen, J J; Heirman, C; Breckpot, K; De Grève, J

    2015-03-26

    The signal transducer and activator of transcription 3 (STAT3) can be activated by the tyrosine kinase domain of the chimeric protein nucleophosmin/anaplastic lymphoma kinase (NPM/ALK), and has a pivotal role in mediating NPM/ALK-related malignant cell transformation. Although the role of STAT3 and wild-type NPM in oncogenesis has been extensively investigated, the relationship between both molecules in cancer remains poorly understood. In the present study, we first demonstrate that STAT3 phosphorylation at tyrosine 705 is accompanied by a concomitant increase in the expression level of NPM. Nuclear co-translocation of phosphorylated STAT3 with NPM can be triggered by interferon-alpha (IFN-α) stimulation of Jurkat cells and phosphorylated STAT3 co-localizes with NPM in cancer cells showing constitutive STAT3 activation. We further demonstrate that STAT3 phosphorylation can transcriptionally mediate NPM upregulation in IFN-α-stimulated Jurkat cells and is responsible for maintaining its expression in cancer cells showing constitutive STAT3 activation. Inhibition of STAT3 phosphorylation or knockdown of NPM expression abrogates their simultaneous transnuclear movements. Finally, we found evidence for a physical interaction between NPM and STAT3 in conditions of STAT3 activation. In conclusion, NPM is a downstream effector of the STAT3 signaling, and can facilitate the nuclear entry of phosphorylated STAT3. These observations might open novel opportunities for targeting the STAT3 pathway in cancer.

  9. Novel method for the high-throughput production of phosphorylation site-specific monoclonal antibodies

    Science.gov (United States)

    Kurosawa, Nobuyuki; Wakata, Yuka; Inobe, Tomonao; Kitamura, Haruki; Yoshioka, Megumi; Matsuzawa, Shun; Kishi, Yoshihiro; Isobe, Masaharu

    2016-01-01

    Threonine phosphorylation accounts for 10% of all phosphorylation sites compared with 0.05% for tyrosine and 90% for serine. Although monoclonal antibody generation for phospho-serine and -tyrosine proteins is progressing, there has been limited success regarding the production of monoclonal antibodies against phospho-threonine proteins. We developed a novel strategy for generating phosphorylation site-specific monoclonal antibodies by cloning immunoglobulin genes from single plasma cells that were fixed, intracellularly stained with fluorescently labeled peptides and sorted without causing RNA degradation. Our high-throughput fluorescence activated cell sorting-based strategy, which targets abundant intracellular immunoglobulin as a tag for fluorescently labeled antigens, greatly increases the sensitivity and specificity of antigen-specific plasma cell isolation, enabling the high-efficiency production of monoclonal antibodies with desired antigen specificity. This approach yielded yet-undescribed guinea pig monoclonal antibodies against threonine 18-phosphorylated p53 and threonine 68-phosphorylated CHK2 with high affinity and specificity. Our method has the potential to allow the generation of monoclonal antibodies against a variety of phosphorylated proteins. PMID:27125496

  10. RB1 Methylation by SMYD2 Enhances Cell Cycle Progression through an Increase of RB1 Phosphorylation

    Directory of Open Access Journals (Sweden)

    Hyun-Soo Cho

    2012-06-01

    Full Text Available It is well known that RB functions are regulated by posttranslational modifications such as phosphorylation and acetylation, but the significance of lysine methylation on RB has not been fully elucidated. Our expression analysis of SMYD2 by quantitative real-time polymerase chain reaction showed that expression levels of SMYD2 are significantly elevated in human bladder carcinomas compared with nonneoplastic bladder tissues (P < .0001, and its expression levels in tumor tissues were much higher than those of any other normal tissues. SMYD2 knockdown resulted in the suppression of cancer cell growth, and cell cycle analysis indicated that SMYD2 might play a crucial role in the G1/S transition. According to an in vitro methyltransferase assay, we found that SMYD2 methylates RB1 protein, and liquid chromatography-tandem mass spectrometry analysis revealed lysine 810 of RB1 to be methylated by SMYD2. Importantly, this methylation enhanced Ser 807/811 phosphorylation of RB1 both in vitro and in vivo. Furthermore, we demonstrated that methylated RB1 accelerates E2F transcriptional activity and promotes cell cycle progression. SMYD2 is an important oncoprotein in various types of cancer, and SMYD2-dependent RB1 methylation at lysine 810 promotes cell cycle progression of cancer cells. Further study may explore SMYD2-dependent RB1 methylation as a potential therapeutic target in human cancer.

  11. The SHP-2 tyrosine phosphatase: Signaling mechanisms and biological functions

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Cellular biological activities are tightly controlled by intracellular signaling processes initiated by extracellular signals.Protein tyrosine phosphatases, which remove phosphate groups from phosphorylated signaling molecules, play equally important tyrosine roles as protein tyrosine kinases in signal transduction.SHP-2, a cytoplasmic SH2 domain containing protein tyrosine phosphatase, is involved in the signaling pathways of a variety of growth factors and cytokines. Recent studies have clearly demonstrated that this phosphatase plays an important role in transducing signal relay from the cell surface to the nucleus, and is a critical intracellular regulator in mediating cell proliferation and differentiation.

  12. Oxidation of Tyrosine-Phosphopeptides by Titanium Dioxide Photocatalysis.

    Science.gov (United States)

    Ruokolainen, Miina; Ollikainen, Elisa; Sikanen, Tiina; Kotiaho, Tapio; Kostiainen, Risto

    2016-06-22

    Protein phosphorylation has a key role in cell regulation. Oxidation of proteins, in turn, is related to many diseases and to aging, but the effects of phosphorylation on the oxidation of proteins and peptides have been rarely studied. The aim of this study was to examine the mechanistic effect of phosphorylation on peptide oxidation induced by titanium dioxide photocatalysis. The effect of phosphorylation was compared between nonphosphorylated and tyrosine phosphorylated peptides using electrospray tandem mass spectrometry. We observed that tyrosine was the most preferentially oxidized amino acid, but the oxidation reaction was significantly inhibited by its phosphorylation. The study also shows that titanium dioxide photocatalysis provides a fast and easy method to study oxidation reactions of biomolecules, such as peptides.

  13. c-MYC Generates Repair Errors via Increased Transcription of Alternative-NHEJ Factors, LIG3 and PARP1, in Tyrosine Kinase-Activated Leukemias.

    Science.gov (United States)

    Muvarak, Nidal; Kelley, Shannon; Robert, Carine; Baer, Maria R; Perrotti, Danilo; Gambacorti-Passerini, Carlo; Civin, Curt; Scheibner, Kara; Rassool, Feyruz V

    2015-04-01

    Leukemias expressing the constitutively activated tyrosine kinases (TK) BCR-ABL1 and FLT3/ITD activate signaling pathways that increase genomic instability through generation of reactive oxygen species (ROS), DNA double-strand breaks (DSB), and error-prone repair. The nonhomologous end-joining (NHEJ) pathway is a major pathway for DSB repair and is highly aberrant in TK-activated leukemias; an alternative form of NHEJ (ALT-NHEJ) predominates, evidenced by increased expression of DNA ligase IIIα (LIG3) and PARP1, increased frequency of large genomic deletions, and repair using DNA sequence microhomologies. This study, for the first time, demonstrates that the TK target c-MYC plays a role in transcriptional activation and subsequent expression of LIG3 and PARP1 and contributes to the increased error-prone repair observed in TK-activated leukemias. c-MYC negatively regulates microRNAs miR-150 and miR-22, which demonstrate an inverse correlation with LIG3 and PARP1 expression in primary and cultured leukemia cells and chronic myelogenous leukemia human patient samples. Notably, inhibition of c-MYC and overexpression of miR-150 and -22 decreases ALT-NHEJ activity. Thus, BCR-ABL1 or FLT3/ITD induces c-MYC expression, leading to genomic instability via augmented expression of ALT-NHEJ repair factors that generate repair errors. In the context of TK-activated leukemias, c-MYC contributes to aberrant DNA repair through downstream targets LIG3 and PARP1, which represent viable and attractive therapeutic targets. ©2015 American Association for Cancer Research.

  14. A transient increase in total head phosphotyrosine levels is observed upon the emergence of Aedes aegypti from the pupal stage

    Directory of Open Access Journals (Sweden)

    Willy Jablonka

    2011-08-01

    Full Text Available Phosphorylation and dephosphorylation of protein tyrosine residues constitutes a major biochemical regulatory mechanism for the cell. We report a transient increase in the total tyrosine phosphorylation of the Aedes aegypti head during the first days after emergence from the pupal stage. This correlates with an initial reduction in total head protein tyrosine phosphatase (PTP activity. Similarly, phosphotyrosine (pTyr-containing bands are seen in extracts prepared from both male and female heads and are spread among a variety of structures including the antennae, proboscis and the maxillary palps combined with the proboscis. Also, mosquitoes treated with sodium orthovanadate, a classical PTP inhibitor, show reduced blood-feeding activity and higher head tyrosine phosphorylation levels. These results suggest that pTyr-mediated signalling pathways may play a role in the initial days following the emergence of the adult mosquito from the pupal stage.

  15. Transcriptional activation of p21(WAF¹/CIP¹) is mediated by increased DNA binding activity and increased interaction between p53 and Sp1 via phosphorylation during replicative senescence of human embryonic fibroblasts.

    Science.gov (United States)

    Kim, Hyun-Seok; Heo, Jee-In; Park, Seong-Hoon; Shin, Jong-Yeon; Kang, Hong-Jun; Kim, Min-Ju; Kim, Sung Chan; Kim, Jaebong; Park, Jae-Bong; Lee, Jae-Yong

    2014-01-01

    Although p21(WAF1/CIP1) is known to be elevated during replicative senescence of human embryonic fibroblasts (HEFs), the mechanism for p21 up-regulation has not been elucidated clearly. In order to explore the mechanism, we analyzed expression of p21 mRNA and protein and luciferase activity of full-length p21 promoter. The result demonstrated that p21 up-regulation was accomplished largely at transcription level. The promoter assay using serially-deleted p21 promoter constructs revealed that p53 binding site was the most important site and Sp1 binding sites were necessary but not sufficient for transcriptional activation of p21. In addition, p53 protein was shown to interact with Sp1 protein. The interaction was increased in aged fibroblasts and was regulated by phosphorylation of p53 and Sp1. DNA binding activity of p53 was significantly elevated in aged fibroblasts but that of Sp1 was not. DNA binding activities of p53 and Sp1 were also regulated by phosphorylation. Phosphorylation of p53 at serine-15 and of Sp1 at serines appears to be involved. Taken together, the result demonstrated that p21 transcription during replicative senescence of HEFs is up-regulated by increase in DNA binding activity and interaction between p53 and Sp1 via phosphorylation.

  16. Increased palatable food intake and response to food cues in intrauterine growth-restricted rats are related to tyrosine hydroxylase content in the orbitofrontal cortex and nucleus accumbens.

    Science.gov (United States)

    Alves, Márcio Bonesso; Dalle Molle, Roberta; Desai, Mina; Ross, Michael G; Silveira, Patrícia Pelufo

    2015-01-01

    Intrauterine growth restriction (IUGR) is associated with altered food preferences, which may contribute to increased risk of obesity. We evaluated the effects of IUGR on attention to a palatable food cue, as well as tyrosine hydroxylase (TH) content in the orbitofrontal cortex (OFC) and nucleus accumbens (NAcc) in response to sweet food intake. From day 10 of gestation and through lactation, Sprague-Dawley rats received either an ad libitum (Adlib) or a 50% food-restricted (FR) diet. At birth, pups were cross-fostered, generating four groups (gestation/lactation): Adlib/Adlib (control), FR/Adlib (intrauterine growth-restricted), Adlib/FR, and FR/FR. Adult attention to palatable food cues was measured using the Attentional Set-Shifting Task (ASST), which uses a sweet pellet as reward. TH content in the OFC and NAcc was measured at baseline and in response to palatable food intake. At 90 days of age, FR/Adlib males ate more sweet food than controls, without differences in females. However, when compared to Controls, FR/Adlib females needed fewer trials to reach criterion in the ASST (p=0.04) and exhibited increased TH content in the OFC in response to sweet food (p=0.03). In the NAcc, there was a differential response of TH content after sweet food intake in both FR/Adlib males and females (pfood preferences involves the central response to palatable food cues and intake, affecting dopamine release in select structures of the brain reward system. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A novel proteomic approach for specific identification of tyrosine kinase substrates using [13C]tyrosine.

    Science.gov (United States)

    Ibarrola, Nieves; Molina, Henrik; Iwahori, Akiko; Pandey, Akhilesh

    2004-04-16

    Proteomic studies to find substrates of tyrosine kinases generally rely on identification of protein bands that are "pulled down" by antiphosphotyrosine antibodies from ligand-stimulated samples. One can obtain erroneous results from such experiments because of two major reasons. First, some proteins might be basally phosphorylated on tyrosine residues in the absence of ligand stimulation. Second, proteins can bind non-specifically to the antibodies or the affinity matrix. Induction of phosphorylation of proteins by ligand must therefore be confirmed by a different approach, which is not always feasible. We have developed a novel proteomic approach to identify substrates of tyrosine kinases in signaling pathways studies based on in vivo labeling of proteins with "light" (12C-labeled) or "heavy" (13C-labeled) tyrosine. This stable isotope labeling in cell culture method enables the unequivocal identification of tyrosine kinase substrates, as peptides derived from true substrates give rise to a unique signature in a mass spectrometry experiment. By using this approach, from a single experiment, we have successfully identified several known substrates of insulin signaling pathway and a novel substrate, polymerase I and transcript release factor, a protein that is implicated in the control of RNA metabolism and regulation of type I collagen promoters. This approach is amenable to high throughput global studies as it simplifies the specific identification of substrates of tyrosine kinases as well as serine/threonine kinases using mass spectrometry.

  18. Identification of phosphorylated proteins in erythrocytes infected by the human malaria parasite Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Xia Dong

    2009-05-01

    Full Text Available Abstract Background Previous comparative proteomic analysis on Plasmodium falciparum isolates of different adhesion properties suggested that protein phosphorylation varies between isolates with different cytoadherence properties. But the extent and dynamic changes in phosphorylation have not been systematically studied. As a baseline for these future studies, this paper examined changes in the phosphoproteome of parasitized red blood cells (pRBC. Methods Metabolic labelling with [35S] methionine on pRBC and 2D gel electrophoresis (2-DE has previously been used to show the expression of parasite proteins and changes in protein iso-electric point (PI. 2-DE of different parasite strains was combined with immunoblotting using monoclonal antibodies specifically to phosphorylated serine/threonine and tyrosine, to obtain the phosphorylation profiles throughout the erythrocytic lifecycle. Affinity chromatography was used to purify/enrich phosphorylated proteins and these proteins from mature trophozoite stages which were identified using high-accuracy mass spectrometry and MASCOT search. Results 2D-immunoblots showed that P. falciparum infection greatly increased phosphorylation of a set of proteins in pRBC, the dominant size classes for phosphorylated tyrosine proteins were 95, 60, 50 and 30 kDa and for phosphorylated serine/threonine were 120, 95, 60, 50, 43, 40 and 30 kDa. The most abundant molecules from 2D-gel mapping of phosphorylated proteins in ItG infected RBCs were identified by MALDI-TOF. A proteomic overview of phosphorylated proteins in pRBC was achieved by using complementary phosphorylated protein enrichment techniques combined with nano-flow LC/MS/MS analysis and MASCOT MS/MS ions search with phosphorylation as variable modifications. The definite phosphoproteins of pRBC are reported and discussed. Conclusion Protein phosphorylation is a major process in P. falciparum-parasitized erythrocytes. Preliminary screens identified 170 P

  19. Fisetin suppresses ADAM9 expression and inhibits invasion of glioma cancer cells through increased phosphorylation of ERK1/2.

    Science.gov (United States)

    Chen, Chien-Min; Hsieh, Yi-Hsien; Hwang, Jin-Ming; Jan, Hsun-Jin; Hsieh, Shu-Ching; Lin, Shin-Huey; Lai, Chung-Yu

    2015-05-01

    Fisetin (3,3',4',7-tetrahydroxyflavone) is a naturally occurring flavonoid which is widely distributed in plants. It has been reported to possess some anticancer and anti-invasive capabilities. We set out to explore the effects of fisetin on antimetastatic and its mechanism of action in GBM8401 cells. The results indicated that fisetin exhibited effective inhibition of cell migration and inhibited the invasion of GBM8401 cells under non-cytotoxic concentrations. To identify the potential targets of fisetin, human proteinase antibody array analysis was performed, and the results indicated that the fisetin treatment inhibited the expression of ADAM9 protein and mRNA, which are known to contribute to the progression of glioma cancer. Our results showed that fisetin phosphorylated ERK1/2 in a sustained way that contributed to the inhibited ADAM9 protein and mRNA expression determined by Western blot and RT-PCR. Moreover, inhibition of ERK1/2 by U0126 or transfection with the siERK plasmid significantly abolished the fisetin-inhibited migration and invasion through activation of the ERK1/2 pathway. In summary, our results suggest that fisetin might be a potential therapeutic agent against human glioma cells based on its capacity to activate ERK1/2 and to inhibit ADAM9 expression.

  20. Increased serum levels of anti-angiogenic factors soluble fms-like tyrosine kinase and soluble endoglin in sickle cell disease

    NARCIS (Netherlands)

    Landburg, P.P.; Elsenga, H.; Schnog, J.B.; Duits, A.J.

    2008-01-01

    The anti-angiogenic factors soluble fms-like tyrosine kinase (sFlt)-1 and soluble endoglin (sEng) have been shown to be of importance in angiogenesis by sequestering and inhibiting vascular endothelial growth factor, placenta-like growth factor and transforming growth factor-beta(1) signaling. Given

  1. Protein tyrosine kinase and mitogen-activated protein kinase signalling pathways contribute to differences in heterophil-mediated innate immune responsiveness between two lines of broilers

    Science.gov (United States)

    Protein tyrosine phosphorylation mediates signal transduction of cellular processes, with protein tyrosine kinases (PTKs) regulating virtually all signaling events. The mitogen-activated protein kinase (MAPK) super-family consists of three conserved pathways that convert receptor activation into ce...

  2. Increased risk of severe infections in cancer patients treated with vascular endothelial growth factor receptor tyrosine kinase inhibitors: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Ma Q

    2015-08-01

    Full Text Available Qing Ma, Li-Yan Gu, Yao-Yao Ren, Li-Li Zeng, Ting Gong, Dian-Sheng Zhong Department of Oncology, The General Hospital of Tianjin Medical University, Tianjin, People’s Republic of China Background: Vascular endothelial growth factor receptor tyrosine kinase inhibitors (VEGFR-TKIs have been widely used in a variety of solid malignancies. Concerns have arisen regarding the risk of severe infections (≥grade 3 with use of these drugs, but the contribution of VEGFR-TKIs to infections is still unknown.Methods: The databases of PubMed and abstracts presented at oncology conferences’ proceedings were searched for relevant studies from January 2000 to December 2014. Summary incidences, Peto odds ratio (Peto OR, and 95% confidence intervals (CIs were calculated by using either random-effects or fixed-effects models according to the heterogeneity of included studies.Results: A total of 16,488 patients from 27 randomized controlled trials were included. The risk of developing severe (Peto OR 1.69, 95% CI: 1.45–1.96, P<0.001 and fatal infections (Peto OR 1.78, 95% CI: 1.13–2.81, P=0.013 was significantly increased in patients treated with VEGFR-TKIs when compared to controls. Exploratory subgroup analysis showed no effect of tumor types, phase of trials, or agent used on the Peto OR of severe infections. When stratified according to specific infectious events, the risks of high-grade febrile neutropenia, pneumonia, fever, and sepsis were increased compared with controls, with Peto ORs of 1.57 (95% CI: 1.30–1.88, P<0.001, 1.79 (95% CI: 1.29–2.49, P<0.001, 5.35 (95% CI: 1.47–19.51, P=0.011, and 3.68 (95% CI: 1.51–8.99, P=0.004, respectively. Additionally, VEGFR-TKIs significantly increased the risk of fatal sepsis (OR 3.66, 95% CI: 1.47–9.13, P=0.005 but not fatal pneumonia (OR 1.34, 95% CI: 0.80–2.25, P=0.26.Conclusion: The use of VEGFR-TKIs significantly increases the risk of developing severe and fatal infectious events in cancer

  3. Antibody Array Revealed PRL-3 Affects Protein Phosphorylation and Cytokine Secretion.

    Science.gov (United States)

    Yang, Yongyong; Lian, Shenyi; Meng, Lin; Qu, Like; Shou, Chengchao

    2017-01-01

    Phosphatase of regenerating liver 3 (PRL-3) promotes cancer metastasis and progression via increasing cell motility and invasiveness, however the mechanism is still not fully understood. Previous reports showed that PRL-3 increases the phosphorylation of many important proteins and suspected that PRL-3-enhanced protein phosphorylation may be due to its regulation on cytokines. To investigate PRL-3's impact on protein phosphorylation and cytokine secretion, we performed antibody arrays against protein phosphorylation and cytokines separately. The data showed that PRL-3 could enhance tyrosine phosphorylation and serine/threonine phosphorylation of diverse signaling proteins. Meanwhile, PRL-3 could affect the secretion of a subset of cytokines. Furthermore, we discovered the PRL-3-increased IL-1α secretion was regulated by NF-κB and Jak2-Stat3 pathways and inhibiting IL-1α could reduce PRL-3-enhanced cell migration. Therefore, our result indicated that PRL-3 promotes protein phosphorylation by acting as an 'activator kinase' and consequently regulates cytokine secretion.

  4. Behavioral and cognitive effects of tyrosine intake in healthy human adults

    NARCIS (Netherlands)

    Hase, Adrian; Jung, Sophie E.; aan het Rot, Marije

    2015-01-01

    The amino acid tyrosine is the precursor to the catecholamine neurotransmitters dopamine and norepinephrine. Increasing tyrosine uptake may positively influence catecholamine-related psychological functioning. We conducted a systematic review to examine the effects of tyrosine on behavior and cognit

  5. Comprehensive analysis of phosphorylation sites in Tensin1 reveals regulation by p38MAPK.

    Science.gov (United States)

    Hall, Emily H; Balsbaugh, Jeremy L; Rose, Kristie L; Shabanowitz, Jeffrey; Hunt, Donald F; Brautigan, David L

    2010-12-01

    Tensin1 is the archetype of a family of focal adhesion proteins. Tensin1 has a phosphotyrosine binding domain that binds the cytoplasmic tail of β-integrin, a Src homology 2 domain that binds focal adhesion kinase, p130Cas, and the RhoGAP called deleted in liver cancer-1, a phosphatase and tensin homology domain that binds protein phosphatase-1α and other regions that bind F-actin. The association between tensin1 and these partners affects cell polarization, migration, and invasion. In this study we analyzed the phosphorylation of human S-tag-tensin1 expressed in HEK293 cells by mass spectrometry. Peptides covering >90% of the sequence initially revealed 50 phosphorylated serine/phosphorylated threonine (pSer/pThr) but no phosphorylated tyrosine (pTyr) sites. Addition of peroxyvanadate to cells to inhibit protein tyrosine phosphatases exposed 10 pTyr sites and addition of calyculin A to cells to inhibit protein phosphatases type 1 and 2A gave a total of 62 pSer/pThr sites. We also characterized two sites modified by O-linked N-acetylglucosamine. Tensin1 F302A, which does not bind protein phosphatase-1, showed > twofold enhanced phosphorylation of seven sites. The majority of pSer/pThr have adjacent proline (Pro) residues and we show endogenous p38 mitogen activated protein kinase (MAPK) associated with and phosphorylated tensin1 in an in vitro kinase assay. Recombinant p38α MAPK also phosphorylated S-tag-tensin1, resulting in decreased binding with deleted in liver cancer-1. Activation of p38 MAPK in cells by sorbitol-induced hyperosmotic stress increased phosphorylation of S-tag-tensin1, which reduced binding to deleted in liver cancer-1 and increased binding to endogenous pTyr proteins, including p130Cas and focal adhesion kinase. These data demonstrate that tensin1 is extensively phosphorylated on Ser/Thr residues in cells and phosphorylation by p38 MAPK regulates the specificity of the tensin1 Src homology 2 domain for binding to different proteins. Tensin1

  6. PTP-PEST targets a novel tyrosine site in p120 catenin to control epithelial cell motility and Rho GTPase activity.

    Science.gov (United States)

    Espejo, Rosario; Jeng, Yowjiun; Paulucci-Holthauzen, Adriana; Rengifo-Cam, William; Honkus, Krysta; Anastasiadis, Panos Z; Sastry, Sarita K

    2014-02-01

    Tyrosine phosphorylation is implicated in regulating the adherens junction protein, p120 catenin (p120), however, the mechanisms are not well defined. Here, we show, using substrate trapping, that p120 is a direct target of the protein tyrosine phosphatase, PTP-PEST, in epithelial cells. Stable shRNA knockdown of PTP-PEST in colon carcinoma cells results in an increased cytosolic pool of p120 concomitant with its enhanced tyrosine phosphorylation and decreased association with E-cadherin. Consistent with this, PTP-PEST knockdown cells exhibit increased motility, enhanced Rac1 and decreased RhoA activity on a collagen substrate. Furthermore, p120 localization is enhanced at actin-rich protrusions and lamellipodia and has an increased association with the guanine nucleotide exchange factor, VAV2, and cortactin. Exchange factor activity of VAV2 is enhanced by PTP-PEST knockdown whereas overexpression of a VAV2 C-terminal domain or DH domain mutant blocks cell motility. Analysis of point mutations identified tyrosine 335 in the N-terminal domain of p120 as the site of PTP-PEST dephosphorylation. A Y335F mutant of p120 failed to induce the 'p120 phenotype', interact with VAV2, stimulate cell motility or activate Rac1. Together, these data suggest that PTP-PEST affects epithelial cell motility by controlling the distribution and phosphorylation of p120 and its availability to control Rho GTPase activity.

  7. Different modes of endothelial-smooth muscle cell interaction elicit differential β-catenin phosphorylations and endothelial functions.

    Science.gov (United States)

    Chang, Shun-Fu; Chen, Li-Jing; Lee, Pei-Ling; Lee, Ding-Yu; Chien, Shu; Chiu, Jeng-Jiann

    2014-02-04

    β-Catenin phosphorylation plays important roles in modulating its functions, but the effects of different phosphorylated forms of β-catenin in response to heterocellular interaction are unclear. Here we investigated whether distinct modes of phosphorylation on β-catenin could be triggered through heterocellular interactions between endothelial cells (ECs) and smooth muscle cells (SMCs), and the consequent modulation of EC functions. ECs were cocultured with SMCs to initiate direct contact and paracrine interaction. EC-SMC coculture induced EC β-catenin phosphorylations simultaneously at tyrosine 142 (Tyr142) and serine 45/threonine 41 (Ser45/Thr41) at the cytoplasm/nuclei and the membrane, respectively. Treating ECs with SMC-conditional medium induced β-catenin phosphorylation only at Ser45/Thr41. These findings indicate that different phosphorylation effects of EC-SMC coculture were induced through heterocellular direct contact and paracrine effects, respectively. Using specific blocking peptides, antagonists, and siRNAs, we found that the β-catenin Tyr142-phosphorylation was mediated by connexin 43/Fer and that the β-catenin Ser45/Thr41-phosphorylation was mediated by SMC-released bone morphogenetic proteins through VE-cadherin and bone morphogenetic protein receptor-II/Smad5. Transfecting ECs with β-catenin-Tyr142 or -Ser45 mutants showed that these two phosphorylated forms of β-catenin modulate differential EC function: The Tyr142-phosphorylated β-catenin stimulates vascular cell-adhesion molecule-1 expression to increase EC-monocytic adhesion, but the Ser45/Thr41-phosphorylated β-catenin attenuates VE-cadherin-dependent junction structures to increase EC permeability. Our findings provide new insights into the understanding of regulatory complexities of distinct modes of β-catenin phosphorylations under EC-SMC interactions and suggest that different phosphorylated forms of β-catenin play important roles in modulating vascular pathophysiology

  8. Ketamine plus imipramine treatment induces antidepressant-like behavior and increases CREB and BDNF protein levels and PKA and PKC phosphorylation in rat brain.

    Science.gov (United States)

    Réus, Gislaine Z; Stringari, Roberto B; Ribeiro, Karine F; Ferraro, Ana K; Vitto, Marcelo F; Cesconetto, Patrícia; Souza, Claúdio T; Quevedo, João

    2011-08-01

    A growing body of evidence has pointed to the N-methyl-d-aspartate (NMDA) receptor antagonists as a potential therapeutic target for the treatment of major depression. The present study investigated the possibility of synergistic interactions between antidepressant imipramine with the uncompetitive NMDA receptor antagonist ketamine. Wistar rats were acutely treated with ketamine (5 and 10mg/kg) and imipramine (10 and 20mg/kg) and then subjected to forced swimming tests. The cAMP response element bindig (CREB) and brain-derived neurotrophic factor (BDNF) protein levels and protein kinase C (PKC) and protein kinase A (PKA) phosphorylation were assessed in the prefrontal cortex, hippocampus and amygdala by imunoblot. Imipramine at the dose of 10mg/kg and ketamine at the dose of 5mg/kg did not have effect on the immobility time; however, the effect of imipramine (10 and 20mg/kg) was enhanced by both doses of ketamine. Ketamine and imipramine alone or in combination at all doses tested did not modify locomotor activity. Combined treatment with ketamine and imipramine produced stronger increases of CREB and BDNF protein levels in the prefrontal cortex, hippocampus and amygdala, and PKA phosphorylation in the hippocampus and amygdala and PKC phosphorylation in prefrontal cortex. The results described indicate that co-administration of antidepressant imipramine with ketamine may induce a more pronounced antidepressant activity than treatment with each antidepressant alone. This finding may be of particular importance in the case of drug-resistant patients and could suggest a method of obtaining significant antidepressant actions whilst limiting side effects.

  9. Protein phosphorylation in bcterial signaling and regulation

    KAUST Repository

    Mijakovic, Ivan

    2016-01-26

    In 2003, it was demonstrated for the first time that bacteria possess protein-tyrosine kinases (BY-kinases), capable of phosphorylating other cellular proteins and regulating their activity. It soon became apparent that these kinases phosphorylate a number of protein substrates, involved in different cellular processes. More recently, we found out that BY-kinases can be activated by several distinct protein interactants, and are capable of engaging in cross-phosphorylation with other kinases. Evolutionary studies based on genome comparison indicate that BY-kinases exist only in bacteria. They are non-essential (present in about 40% bacterial genomes), and their knockouts lead to pleiotropic phenotypes, since they phosphorylate many substrates. Surprisingly, BY-kinase genes accumulate mutations at an increased rate (non-synonymous substitution rate significantly higher than other bacterial genes). One direct consequence of this phenomenon is no detectable co-evolution between kinases and their substrates. Their promiscuity towards substrates thus seems to be “hard-wired”, but why would bacteria maintain such promiscuous regulatory devices? One explanation is the maintenance of BY-kinases as rapidly evolving regulators, which can readily adopt new substrates when environmental changes impose selective pressure for quick evolution of new regulatory modules. Their role is clearly not to act as master regulators, dedicated to triggering a single response, but they might rather be employed to contribute to fine-tuning and improving robustness of various cellular responses. This unique feature makes BY-kinases a potentially useful tool in synthetic biology. While other bacterial kinases are very specific and their signaling pathways insulated, BY-kinase can relatively easily be engineered to adopt new substrates and control new biosynthetic processes. Since they are absent in humans, and regulate some key functions in pathogenic bacteria, they are also very promising

  10. Use of Tyrosine or Foods to Amplify Catecholamine Release.

    Science.gov (United States)

    1987-11-02

    valine; phenylalanine ; tryptophan) are unaffected (see Figure 2). These observations suggest a second mechanism for the precursor- dependence of...involves the activation by phosphorylation of tyrosine hydroxylase that occurs when the neurons fire frequently. This activation changes the enzyme’s... phenylalanine , as well as their plasma "ratios" no changes were noted in the plasma tryptophan nor tyrosine ratios. The metabolic alterations induced by marathon

  11. Effects of coffee on insulin receptor substance and its tyrosine/serine phosphorylation in rats with insulin resistance%咖啡对胰岛素抵抗大鼠胰岛素受体底物及其酪氨酸、丝氨酸磷酸化的影响

    Institute of Scientific and Technical Information of China (English)

    陈琳; 喻明; 夏娟; 高月锦

    2014-01-01

    目的:观察咖啡对胰岛素抵抗大鼠脂肪组织胰岛素受体底物( IRS)-1、IRS-2及其酪氨酸、丝氨酸磷酸化的影响,评估咖啡对脂肪组织胰岛素受体后信号转导途径影响。方法 Wistar大鼠40只随机分为正常NC、CC、DC、IR组,每组10只。 NC组予正常饮食,CC组、DC组及IR组给予高脂饮食,CC组及DC组每日分别以含咖啡因咖啡和去咖啡因咖啡灌胃。12周后行口服葡萄糖耐量试验( OGTT);根据空腹血清胰岛素和空腹血糖水平及HO-MA-胰岛素抵抗指数( HOMA-IR)反映外周组织胰岛素敏感性;RT-PCR检测大鼠脂肪组织IRS-1、IRS-2 mRNA及蛋白表达;Western blot测定脂肪组织IRS-1酪氨酸磷酸化和丝氨酸磷酸化程度。结果 OGTT显示IR组60和120 min血糖高于NC组( P分别<0.05、0.01)。 IR组、CC 组及DC组空腹血清胰岛素水平均高于NC 组( P均<0.05)。 IR组HOMA-IR高于NC组、CC组和DC组(P均<0.05)。 NC组、CC组脂肪组织IRS-1 mRNA相对表达量均高于IR组(P均<0.01),IRS-2 mRNA表达各组无显著差异(P均>0.05)。各组大鼠脂肪组织IRS-1、IRS-2蛋白含量无明显差异( P均>0.05)。 NC组、CC 组、DC组脂肪组织IRS-1酪氨酸磷酸化水平高于IR组( P均<0.05),丝氨酸磷酸化水平低于IR组(P均<0.05)。结论咖啡灌胃可改善高脂饮食大鼠胰岛素抵抗,其机制可能通过改变脂肪组织IRS-1转录及其酪氨酸/丝氨酸磷酸化水平,影响胰岛素抵抗大鼠胰岛素受体后信号转导。%Objective To observe the effect of coffee on the expression of insulin receptor substance ( IRS)-1 and IRS-2 and their tyrosine/serine phosphorylation in rats with insulin resistance ( IR) and to evaluate its effect on the post-re-ceptor signal transduction in adipose tissues .Methods Totally 40 Wistar rats were randomly divided into the normal con-trol ( NC) group, caffeinated coffee

  12. Protein Kinase A-Mediated Phosphorylation of cMyBP-C Increases Proximity of Myosin Heads to Actin in Resting Myocardium

    Energy Technology Data Exchange (ETDEWEB)

    Colson, Brett A; Bekyarova, Tanya; Locher, Matthew R; Fitzsimons, Daniel P; Irving, Thomas C; Moss, Richard L [IIT; (UW-MED)

    2008-09-16

    Protein kinase A-mediated (PKA) phosphorylation of cardiac myosin binding protein C (cMyBP-C) accelerates the kinetics of cross-bridge cycling and may relieve the tether-like constraint of myosin heads imposed by cMyBP-C. We favor a mechanism in which cMyBP-C modulates cross-bridge cycling kinetics by regulating the proximity and interaction of myosin and actin. To test this idea, we used synchrotron low-angle x-ray diffraction to measure interthick filament lattice spacing and the equatorial intensity ratio, I{sub 11}/I{sub 10}, in skinned trabeculae isolated from wild-type and cMyBP-C null (cMyBP-C{sup -/-}) mice. In wild-type myocardium, PKA treatment appeared to result in radial or azimuthal displacement of cross-bridges away from the thick filaments as indicated by an increase (approximately 50%) in I{sub 11}/I{sub 10} (0.22{+-}0.03 versus 0.33{+-}0.03). Conversely, PKA treatment did not affect cross-bridge disposition in mice lacking cMyBP-C, because there was no difference in I{sub 11}/I{sub 10} between untreated and PKA-treated cMyBP-C{sup -/-} myocardium (0.40{+-}0.06 versus 0.42{+-}0.05). Although lattice spacing did not change after treatment in wild-type (45.68{+-}0.84 nm versus 45.64{+-}0.64 nm), treatment of cMyBP-C{sup -/-} myocardium increased lattice spacing (46.80{+-}0.92 nm versus 49.61{+-}0.59 nm). This result is consistent with the idea that the myofilament lattice expands after PKA phosphorylation of cardiac troponin I, and when present, cMyBP-C, may stabilize the lattice. These data support our hypothesis that tethering of cross-bridges by cMyBP-C is relieved by phosphorylation of PKA sites in cMyBP-C, thereby increasing the proximity of cross-bridges to actin and increasing the probability of interaction with actin on contraction.

  13. Purinergic activation of rat skeletal muscle membranes increases Vmax and Na+ affinity of the Na,K-ATPase and phosphorylates phospholemman and α1 subunits.

    Science.gov (United States)

    Walas, Helle; Juel, Carsten

    2012-02-01

    Muscle activity is associated with an increase in extracellular purines (ATP, ADP), which are involved in signalling mechanisms. The present study investigates the effect of purines on the function of Na,K-ATPase (Na,K-pump) in rat skeletal muscle. Na,K-ATPase activity was quantified by measuring the release of inorganic phosphate in the presence of ATP and variable Na(+) concentrations. In membranes purified from glycolytic muscle fibres, purinergic stimulation increases V (max) and decreases the K (m) (higher Na(+) affinity) of the Na,K-ATPase. Stimulatory effects were obtained using ATP, ADP, 2-methylthio-ADP and UPT, but not UDP and adenosine. The effect of ADP on V (max) can be inhibited by the non-specific P2Y receptor antagonists, suramin and PPADS. Moreover, the P2Y(13) receptor antagonist MRS 2211 strongly inhibited the response to ADP, whereas the specific P2Y(1) receptor antagonist MRS 2500 had less effect. Based on results from these agonists and antagonists, we conclude that P2Y(13) receptors mediate the main effects observed, that P2Y1 receptors are also involved and that some P2Y(2)/P2Y(4) receptors also appear to be involved. Receptor antagonists had no effect on ADP-induced subunit (phospholemman and α1) phosphorylation and changes in K (m) (Na(+) affinity). Thus, the stimulatory effects of purines are mediated by two independent mechanisms: P2Y receptor-mediated increase in Na,K-ATPase capacity (increased V (max)) and P2Y receptor-independent phosphorylation of Na,K-ATPase phospholemman and α1 subunits, which induce changes in ion affinity. These mechanisms may contribute to up-regulation of Na,K-ATPase during muscle activity.

  14. An unusual protein kinase phosphorylates the chemotactic receptor of Dictystelium discoideum

    Energy Technology Data Exchange (ETDEWEB)

    Meier, K.; Klein, C. (St. Louis Univ. School of Medicine, MO (USA))

    1988-04-01

    The authors report the cAMP-dependent phosphorylation of the chemotactic receptor of Dictyostelium discoideum in partially purified plasma membranes. The protein kinase responsible for receptor phosphorylation is associated with this fraction and preferentially phosphorylates the ligand-occupied form of the receptor. 8-Azido({sup 32}P)cAMP labeling of the cell surface has shown that the cAMP receptor exists in two forms. A 45-kDa protein is predominant on unstimulated cells. cAMP stimulation results in an increased receptor phosphorylation such that the receptor migrates on NaDodSO{sub 4}/PAGE as a 47-kDa protein. Phosphorylation of the chemotactic receptor is not detected in membrane preparations unless cAMP is added to the incubation mixture. Only under those conditions is the phosphorylated 47-kDa form observed. The requirement for cAMP reflects the fact that the kinase involved preferentially uses the ligand-occupied receptor as a substrate. In vitro phosphorylation of the receptor does not involve tyrosine residues. The enzyme does not appear to be a cAMP- or cGMP-dependent protein kinase nor is it sensitive to guanine nucleotides, Ca{sup 2+}/calmodulin, Ca{sup 2+}/phospholipid, or EGTA. Similarities with the {beta}-adrenergic receptor protein kinase are discussed.

  15. The Tyrosine Kinome Dictates Breast Cancer Heterogeneity and Therapeutic Responsiveness.

    Science.gov (United States)

    Ha, Jacqueline R; Siegel, Peter M; Ursini-Siegel, Josie

    2016-09-01

    Phospho-tyrosine signaling networks control numerous biological processes including cellular differentiation, cell growth and survival, motility, and invasion. Aberrant regulation of the tyrosine kinome is a hallmark of malignancy and influences all stages of breast cancer progression, from initiation to the development of metastatic disease. The success of specific tyrosine kinase inhibitors strongly validates the clinical relevance of tyrosine phosphorylation networks in breast cancer pathology. However, a significant degree of redundancy exists within the tyrosine kinome. Numerous receptor and cytoplasmic tyrosine kinases converge on a core set of signaling regulators, including adaptor proteins and tyrosine phosphatases, to amplify pro-tumorigenic signal transduction pathways. Mutational activation, amplification, or overexpression of one or more components of the tyrosine kinome represents key contributing events responsible for the tumor heterogeneity that is observed in breast cancers. It is this molecular heterogeneity that has become the most significant barrier to durable clinical responses due to the development of therapeutic resistance. This review focuses on recent literature that supports a prominent role for specific components of the tyrosine kinome in the emergence of unique breast cancer subtypes and in shaping breast cancer plasticity, sensitivity to targeted therapies, and the eventual emergence of acquired resistance. J. Cell. Biochem. 117: 1971-1990, 2016. © 2016 Wiley Periodicals, Inc.

  16. TEC protein tyrosine kinase is involved in the Erk signaling pathway induced by HGF

    Energy Technology Data Exchange (ETDEWEB)

    Li, Feifei; Jiang, Yinan [Department of Pathophysiology, Anhui Medical University, Hefei 230032 (China); Zheng, Qiping [Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612 (United States); Yang, Xiaoming [Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850 (China); Wang, Siying, E-mail: sywang@ahmu.edu.cn [Department of Pathophysiology, Anhui Medical University, Hefei 230032 (China)

    2011-01-07

    Research highlights: {yields} TEC is rapidly tyrosine-phosphorylated and activated by HGF-stimulation in vivo or after partial hepatectomy in mice. {yields} TEC enhances the activity of Elk and serum response element (SRE) in HGF signaling pathway in hepatocyte. {yields} TEC promotes hepatocyte proliferation through the Erk-MAPK pathway. -- Abstract: Background/aims: TEC, a member of the TEC family of non-receptor type protein tyrosine kinases, has recently been suggested to play a role in hepatocyte proliferation and liver regeneration. This study aims to investigate the putative mechanisms of TEC kinase regulation of hepatocyte differentiation, i.e. to explore which signaling pathway TEC is involved in, and how TEC is activated in hepatocyte after hepatectomy and hepatocyte growth factor (HGF) stimulation. Methods: We performed immunoprecipitation (IP) and immunoblotting (IB) to examine TEC tyrosine phosphorylation after partial hepatectomy in mice and HGF stimulation in WB F-344 hepatic cells. The TEC kinase activity was determined by in vitro kinase assay. Reporter gene assay, antisense oligonucleotide and TEC dominant negative mutant (TEC{sup KM}) were used to examine the possible signaling pathways in which TEC is involved. The cell proliferation rate was evaluated by {sup 3}H-TdR incorporation. Results: TEC phosphorylation and kinase activity were increased in 1 h after hepatectomy or HGF treatment. TEC enhanced the activity of Elk and serum response element (SRE). Inhibition of MEK1 suppressed TEC phosphorylation. Blocking TEC activity dramatically decreased the activation of Erk. Reduced TEC kinase activity also suppressed the proliferation of WB F-344 cells. These results suggest TEC is involved in the Ras-MAPK pathway and acts between MEK1 and Erk. Conclusions: TEC promotes hepatocyte proliferation and regeneration and is involved in HGF-induced Erk signaling pathway.

  17. Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage

    DEFF Research Database (Denmark)

    Syljuåsen, Randi G; Sørensen, Claus Storgaard; Hansen, Lasse Tengbjerg

    2005-01-01

    by increased amounts of nonextractable RPA protein, formation of single-stranded DNA, and induction of DNA strand breaks. Moreover, these responses were prevented by siRNA-mediated downregulation of Cdk2 or the replication initiation protein Cdc45, or by addition of the CDK inhibitor roscovitine. We propose...

  18. Mutations in troponin T associated with Hypertrophic Cardiomyopathy increase Ca(2+)-sensitivity and suppress the modulation of Ca(2+)-sensitivity by troponin I phosphorylation.

    Science.gov (United States)

    Messer, Andrew E; Bayliss, Christopher R; El-Mezgueldi, Mohammed; Redwood, Charles S; Ward, Douglas G; Leung, Man-Ching; Papadaki, Maria; Dos Remedios, Cristobal; Marston, Steven B

    2016-07-01

    We investigated the effect of 7 Hypertrophic Cardiomyopathy (HCM)-causing mutations in troponin T (TnT) on troponin function in thin filaments reconstituted with actin and human cardiac tropomyosin. We used the quantitative in vitro motility assay to study Ca(2+)-regulation of unloaded movement and its modulation by troponin I phosphorylation. Troponin from a patient with the K280N TnT mutation showed no difference in Ca(2+)-sensitivity when compared with donor heart troponin and the Ca(2+)-sensitivity was also independent of the troponin I phosphorylation level (uncoupled). The recombinant K280N TnT mutation increased Ca(2+)-sensitivity 1.7-fold and was also uncoupled. The R92Q TnT mutation in troponin from transgenic mouse increased Ca(2+)-sensitivity and was also completely uncoupled. Five TnT mutations (Δ14, Δ28 + 7, ΔE160, S179F and K273E) studied in recombinant troponin increased Ca(2+)-sensitivity and were all fully uncoupled. Thus, for HCM-causing mutations in TnT, Ca(2+)-sensitisation together with uncoupling in vitro is the usual response and both factors may contribute to the HCM phenotype. We also found that Epigallocatechin-3-gallate (EGCG) can restore coupling to all uncoupled HCM-causing TnT mutations. In fact the combination of Ca(2+)-desensitisation and re-coupling due to EGCG completely reverses both the abnormalities found in troponin with a TnT HCM mutation suggesting it may have therapeutic potential.

  19. Monosodium iodoacetate-induced joint pain is associated with increased phosphorylation of mitogen activated protein kinases in the rat spinal cord

    Directory of Open Access Journals (Sweden)

    Jarvis Michael F

    2011-05-01

    Full Text Available Abstract Background Intra-articular injection of monosodium iodoacetate (MIA in the knee joint of rats disrupts chondrocyte metabolism resulting in cartilage degeneration and subsequent nociceptive behavior that has been described as a model of osteoarthritis (OA pain. Central sensitization through activation of mitogen activated protein kinases (MAPKs is recognized as a pathogenic mechanism in chronic pain. In the present studies, induction of central sensitization as indicated by spinal dorsal horn MAPK activation, specifically ERK and p38 phosphorylation, was assessed in the MIA-OA model. Results Behaviorally, MIA-injected rats displayed reduced hind limb grip force 1, 2, and 3 weeks post-MIA treatment. In the same animals, activation of phospho ERK1/2 was gradually increased, reaching a significant level at post injection week 3. Conversely, phosphorylation of p38 MAPK was enhanced maximally at post injection week 1 and decreased, but remained elevated, thereafter. Double labeling from 3-wk MIA rats demonstrated spinal pERK1/2 expression in neurons, but not glia. In contrast, p-p38 was expressed by microglia and a subpopulation of neurons, but not astrocytes. Additionally, there was increased ipsilateral expression of microglia, but not astrocytes, in 3-wk MIA-OA rats. Consistent with increased MAPK immunoreactivity in the contralateral dorsal horn, mechanical allodynia to the contralateral hind-limb was observed 3-wk following MIA. Finally, intrathecal injection of the MEK1 inhibitor PD98059 blocked both reduced hind-limb grip force and pERK1/2 induction in MIA-OA rats. Conclusion Results of these studies support the role of MAPK activation in the progression and maintenance of central sensitization in the MIA-OA experimental pain model.

  20. Lyn tyrosine kinase promotes silencing of ATM-dependent checkpoint signaling during recovery from DNA double-strand breaks

    Energy Technology Data Exchange (ETDEWEB)

    Fukumoto, Yasunori, E-mail: fukumoto@faculty.chiba-u.jp; Kuki, Kazumasa; Morii, Mariko; Miura, Takahito; Honda, Takuya; Ishibashi, Kenichi; Hasegawa, Hitomi; Kubota, Sho; Ide, Yudai; Yamaguchi, Noritaka; Nakayama, Yuji; Yamaguchi, Naoto, E-mail: nyama@faculty.chiba-u.jp

    2014-09-26

    Highlights: • Inhibition of Src family kinases decreased γ-H2AX signal. • Inhibition of Src family increased ATM-dependent phosphorylation of Chk2 and Kap1. • shRNA-mediated knockdown of Lyn increased phosphorylation of Kap1 by ATM. • Ectopic expression of Src family kinase suppressed ATM-mediated Kap1 phosphorylation. • Src is involved in upstream signaling for inactivation of ATM signaling. - Abstract: DNA damage activates the DNA damage checkpoint and the DNA repair machinery. After initial activation of DNA damage responses, cells recover to their original states through completion of DNA repair and termination of checkpoint signaling. Currently, little is known about the process by which cells recover from the DNA damage checkpoint, a process called checkpoint recovery. Here, we show that Src family kinases promote inactivation of ataxia telangiectasia mutated (ATM)-dependent checkpoint signaling during recovery from DNA double-strand breaks. Inhibition of Src activity increased ATM-dependent phosphorylation of Chk2 and Kap1. Src inhibition increased ATM signaling both in G2 phase and during asynchronous growth. shRNA knockdown of Lyn increased ATM signaling. Src-dependent nuclear tyrosine phosphorylation suppressed ATM-mediated Kap1 phosphorylation. These results suggest that Src family kinases are involved in upstream signaling that leads to inactivation of the ATM-dependent DNA damage checkpoint.

  1. Hair cell BK channels interact with RACK1, and PKC increases its expression on the cell surface by indirect phosphorylation

    OpenAIRE

    Surguchev, Alexei; Bai, Jun-Ping; Joshi, Powrnima; Navaratnam, Dhasakumar

    2012-01-01

    Large conductance (BK) calcium activated potassium channels (Slo) are ubiquitous and implicated in a number of human diseases including hypertension and epilepsy. BK channels consist of a pore forming α-subunit (Slo) and a number of accessory subunits. In hair cells of nonmammalian vertebrates these channels play a critical role in electrical resonance, a mechanism of frequency selectivity. Hair cell BK channel clusters on the surface and currents increase along the tonotopic axis and contrib...

  2. Nitration of JAK-2 at the 1007Y-1008Y activation epitope impedes phosphorylation at this site: defining a GH, AKT/protein kinase B and nitric oxide synthase axis

    Science.gov (United States)

    Generalized liver protein tyrosine nitration (3’-nitrotyrosine, 3’-NT) increases in vivo after GH injection with immunohistocellular patterns strikingly similar to those we observed for a specific nitration of JAK2 at its 1007Y-1008Y regulatory phosphorylation epitope following proinflammatory chall...

  3. Rescue of a trafficking defective human pacemaker channel via a novel mechanism: roles of Src, Fyn, and Yes tyrosine kinases.

    Science.gov (United States)

    Lin, Yen-Chang; Huang, Jianying; Kan, Hong; Frisbee, Jefferson C; Yu, Han-Gang

    2009-10-30

    Therapeutic strategies such as using channel blockers and reducing culture temperature have been used to rescue some long QT-associated voltage-gated potassium Kv trafficking defective mutant channels. A hyperpolarization-activated cyclic nucleotide-gated HCN4 pacemaker channel mutant (D553N) has been recently found in a patient associated with cardiac arrhythmias including long QT. D553N showed the defective trafficking to the cell surface, leading to little ionic current expression (loss-of-function). We show in this report that enhanced tyrosine phosphorylation mediated by Src, Fyn, and Yes kinases was able to restore the surface expression of D553N for normal current expression. Src or Yes, but not Fyn, significantly increased the current density and surface expression of D553N. Fyn accelerated the activation kinetics of the rescued D553N. Co-expression of D553N with Yes exhibited the slowest activation kinetics of D553N. Src, Fyn, and Yes significantly enhanced the tyrosine phosphorylation of D553N. A combination of Src, Fyn, and Yes rescued the current expression and the gating of D553N comparable with those of wild-type HCN4. In conclusion, we demonstrate a novel mechanism using three endogenous Src kinases to rescue a trafficking defective HCN4 mutant channel (D553N) by enhancing the tyrosine phosphorylation of the mutant channel protein.

  4. A novel gain-of-function STAT1 mutation resulting in basal phosphorylation of STAT1 and increased distal IFN-γ-mediated responses in chronic mucocutaneous candidiasis.

    Science.gov (United States)

    Martinez-Martinez, Laura; Martinez-Saavedra, Maria Teresa; Fuentes-Prior, Pablo; Barnadas, Maria; Rubiales, Maria Victoria; Noda, Judith; Badell, Isabel; Rodríguez-Gallego, Carlos; de la Calle-Martin, Oscar

    2015-12-01

    Gain-of-function STAT1 mutations have recently been associated with autosomal dominant chronic mucocutaneous candidiasis (CMC). The purpose of this study was to characterize the three members of a non-consanguineous family, the father and his two sons, who presented with recurrent oral thrush and ocular candidiasis since early childhood. The three patients had reduced levels of IL-17-producing T cells. This reduction affected specifically IL-17(+)IFN-γ(-) T cells, because the levels of IL-17(+)IFN-γ(+) T cells were similar to controls. We found that PBMC (peripheral blood mononuclear cells) from the patients did not respond to Candida albicans ex vivo. Moreover, after polyclonal activation, patients' PBMC produced lower levels of IL-17 and IL-6 and higher levels of IL-4 than healthy controls. Genetic analyses showed that the three patients were heterozygous for a new mutation in STAT1 (c.894A>C, p.K298N) that affects a highly conserved residue of the coiled-coil domain of STAT1. STAT1 phosphorylation levels were significantly higher in patients' cells than in healthy controls, both in basal conditions and after IFN-γ stimulation, suggesting a permanent activation of STAT1. Cells from the patients also presented increased IFN-γ-mediated responses measured as MIG and IP-10 production. In conclusion, we report a novel gain-of-function mutation in the coiled-coil domain of STAT1, which increases STAT1 phosphorylation and impairs IL-17-mediated immunity. The mutation is responsible for CMC in this family with autosomal dominant inheritance of the disease.

  5. Detection of novelty, but not memory of spatial habituation, is associated with an increase in phosphorylated cAMP response element-binding protein levels in the hippocampus.

    Science.gov (United States)

    Winograd, Milena; Viola, Haydée

    2004-01-01

    There is a growing body of evidence showing that the formation of associative memories is associated with an increase in phosphorylated cAMP response element-binding protein (pCREB) levels. We recently reported increased pCREB levels in the rat hippocampus after an exploration to a novel environment. In the present work, we studied whether this increment in CREB activation is associated with the formation of memory of habituation to a novel environment or with the detection of novelty. Rats were submitted to consecutive open field sessions at 3-h intervals. Measurement of the hippocampal pCREB level, carried out 1 h after each training session, showed that (1) it did not increase when rats explored a familiar environment; (2) it did not increase after a reexposure that improves the memory of habituation; (3) it increased after a brief novel exploration unable to form memory of habituation; and (4) it increased in amnesic rats for spatial habituation. Taken as a whole, our results suggest that the elevated pCREB level after a single open field exploration is not associated with the memory formation of habituation. It is indeed associated with the detection of a novel environment.

  6. A mathematical model of phosphorylation AKT in Acute Myeloid Leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Adi, Y. A., E-mail: yudi.adi@math.uad.ac.id [Department of Mathematic Faculty of MIPA Universitas Ahmad Dahlan (Indonesia); Department of Mathematic Faculty of MIPA Universitas Gadjah Mada (Indonesia); Kusumo, F. A.; Aryati, L. [Department of Mathematic Faculty of MIPA Universitas Gadjah Mada (Indonesia); Hardianti, M. S. [Department of Internal Medicine, Faculty of Medicine, Universitas Gadjah Mada (Indonesia)

    2016-04-06

    In this paper we consider a mathematical model of PI3K/AKT signaling pathways in phosphorylation AKT. PI3K/AKT pathway is an important mediator of cytokine signaling implicated in regulation of hematopoiesis. Constitutive activation of PI3K/AKT signaling pathway has been observed in Acute Meyloid Leukemia (AML) it caused by the mutation of Fms-like Tyrosine Kinase 3 in internal tandem duplication (FLT3-ITD), the most common molecular abnormality associated with AML. Depending upon its phosphorylation status, protein interaction, substrate availability, and localization, AKT can phosphorylate or inhibite numerous substrates in its downstream pathways that promote protein synthesis, survival, proliferation, and metabolism. Firstly, we present a mass action ordinary differential equation model describing AKT double phosphorylation (AKTpp) in a system with 11 equations. Finally, under the asumtion enzyme catalyst constant and steady state equilibrium, we reduce the system in 4 equation included Michaelis Menten constant. Simulation result suggested that a high concentration of PI3K and/or a low concentration of phospatase increased AKTpp activation. This result also indicates that PI3K is a potential target theraphy in AML.

  7. A mathematical model of phosphorylation AKT in Acute Myeloid Leukemia

    Science.gov (United States)

    Adi, Y. A.; Kusumo, F. A.; Aryati, L.; Hardianti, M. S.

    2016-04-01

    In this paper we consider a mathematical model of PI3K/AKT signaling pathways in phosphorylation AKT. PI3K/AKT pathway is an important mediator of cytokine signaling implicated in regulation of hematopoiesis. Constitutive activation of PI3K/AKT signaling pathway has been observed in Acute Meyloid Leukemia (AML) it caused by the mutation of Fms-like Tyrosine Kinase 3 in internal tandem duplication (FLT3-ITD), the most common molecular abnormality associated with AML. Depending upon its phosphorylation status, protein interaction, substrate availability, and localization, AKT can phosphorylate or inhibite numerous substrates in its downstream pathways that promote protein synthesis, survival, proliferation, and metabolism. Firstly, we present a mass action ordinary differential equation model describing AKT double phosphorylation (AKTpp) in a system with 11 equations. Finally, under the asumtion enzyme catalyst constant and steady state equilibrium, we reduce the system in 4 equation included Michaelis Menten constant. Simulation result suggested that a high concentration of PI3K and/or a low concentration of phospatase increased AKTpp activation. This result also indicates that PI3K is a potential target theraphy in AML.

  8. Consumption of tyrosine in royal jelly increases brain levels of dopamine and tyramine and promotes transition from normal to reproductive workers in queenless honey bee colonies.

    Science.gov (United States)

    Matsuyama, Syuhei; Nagao, Takashi; Sasaki, Ken

    2015-01-15

    Dopamine (DA) and tyramine (TA) have neurohormonal roles in the production of reproductive workers in queenless colonies of honey bees, but the regulation of these biogenic amines in the brain are still largely unclear. Nutrition is an important factor in promoting reproduction and might be involved in the regulation of these biogenic amines in the brain. To test this hypothesis, we examined the effect of oral treatments of tyrosine (Tyr; a common precursor of DA, TA and octopamine, and a component of royal jelly) in queenless workers and quantified the resulting production of biogenic amines. Tyrosine treatments enhanced the levels of DA, TA and their metabolites in the brain. Workers fed royal jelly had significantly larger brain levels of Tyr, DA, TA and the metabolites in the brains compared with those bees fed honey or sucrose (control). Treatment with Tyr also inhibited the behavior of workers outside of the hive and promoted ovarian development. These results suggest that there is a link between nutrition and the regulation of DA and TA in the brain to promote the production of reproductive workers in queenless honey bee colonies.

  9. Identification of two tyrosine residues required for the intramolecular mechanism implicated in GIT1 activation.

    Directory of Open Access Journals (Sweden)

    Antonio Totaro

    Full Text Available GIT1 is an ArfGAP and scaffolding protein regulating cell adhesion and migration. The multidomain structure of GIT1 allows the interaction with several partners. Binding of GIT1 to some of its partners requires activation of the GIT1 polypeptide. Our previous studies indicated that binding of paxillin to GIT1 is enhanced by release of an intramolecular interaction between the amino-terminal and carboxy-terminal portions that keeps the protein in a binding-incompetent state. Here we have addressed the mechanism mediating this intramolecular inhibitory mechanism by testing the effects of the mutation of several formerly identified GIT1 phosphorylation sites on the binding to paxillin. We have identified two tyrosines at positions 246 and 293 of the human GIT1 polypeptide that are needed to keep the protein in the inactive conformation. Interestingly, mutation of these residues to phenylalanine did not affect binding to paxillin, while mutation to either alanine or glutamic acid enhanced binding to paxillin, without affecting the constitutive binding to the Rac/Cdc42 exchange factor βPIX. The involvement of the two tyrosine residues in the intramolecular interaction was supported by reconstitution experiments showing that these residues are important for the binding between the amino-terminal fragment and carboxy-terminal portions of GIT1. Either GIT1 or GIT1-N tyrosine phosphorylation by Src and pervanadate treatment to inhibit protein tyrosine phosphatases did not affect the intramolecular binding between the amino- and carboxy-terminal fragments, nor the binding of GIT1 to paxillin. Mutations increasing the binding of GIT1 to paxillin positively affected cell motility, measured both by transwell migration and wound healing assays. Altogether these results show that tyrosines 246 and 293 of GIT1 are required for the intramolecular inhibitory mechanism that prevents the binding of GIT1 to paxillin. The data also suggest that tyrosine

  10. Impairment of oxidative phosphorylation increases the toxicity of SYD-1 on hepatocarcinoma cells (HepG2).

    Science.gov (United States)

    Brandt, Anna Paula; Gozzi, Gustavo Jabor; Pires, Amanda do Rocio Andrade; Martinez, Glaucia Regina; Dos Santos Canuto, André Vinícius; Echevarria, Aurea; Di Pietro, Attilio; Cadena, Sílvia Maria Suter Correia

    2016-08-25

    Toxicity of the SYD-1 mesoionic compound (3-[4-chloro-3-nitrophenyl]-1,2,3-oxadiazolium-5-olate) was evaluated on human liver cancer cells (HepG2) grown in either high glucose (HG) or galactose (GAL) medium, and also on suspended cells kept in HG medium. SYD-1 was able to decrease the viability of cultured HepG2 cells in a dose-dependent manner, as assessed by MTT, LDH release and dye with crystal violet assays, but no effect was observed on suspended cells after 1-40 min of treatment. Respiration analysis was performed after 2 min (suspended cells) or 24 h (cultured cells) of treatment: no change was observed in suspended cells, whereas SYD-1 inhibited as well basal, leak and uncoupled states of the respiration in cultured cells with HG medium. These inhibitions were consistent with the decrease in pyruvate level and increase in lactate level. Even more extended results were obtained with HepG2 cells grown in GAL medium where, additionally, the ATP amount was reduced. Furthermore, SYD-1 appears not to be transported by the main ABC multidrug transporters. These results show that SYD-1 is able to change the metabolism of HepG2 cells, and suggest that its cytotoxicity is related to impairment of mitochondrial metabolism. Therefore, we may propose that SYD-1 is a potential candidate for hepatocarcinoma treatment.

  11. HSV-2 increases TLR4-dependent phosphorylated IRFs and IFN-β induction in cervical epithelial cells.

    Directory of Open Access Journals (Sweden)

    Hongya Liu

    Full Text Available Our previous studies demonstrated that HSV-2 infection up-regulates TLR4 expression and induces NF-kB activity, thereby facilitating innate immune response in human cervical epithelial cells. This process requires involvement of TLR4 adaptors, Mal and MyD88. In the current study, we found that HSV-2 infection increases levels of phosphoryalted IRF3 and IRF7, then regulating expression of type I IFN. As expected, these changes induced by HSV-2 infection depended upon TLR4. Knockdown of TRIF and/or TRAM by siRNAs indicated that TRIF/TRAM might be involved in expression of IFN-β. Our results demonstrate for the first time that IRF3 and IRF7 are both involved in inducing TLR4-dependent IFN-β expression in response to HSV-2 in its primary infected genital epithelial cells. Thus, TLR4-Mal/MyD88 and TLR4-TRIF/TRAM signaling may synergize and/or cooperate in innate immune response of cervical epithelial cells to HSV-2 infection.

  12. Inhibition of protein tyrosine phosphatase 1B by lignans from Myristica fragrans.

    Science.gov (United States)

    Yang, Senugmi; Na, Min Kyun; Jang, Jun Pil; Kim, Kyung Ah; Kim, Bo Yeon; Sung, Nak Ju; Oh, Won Keun; Ahn, Jong Seog

    2006-08-01

    Inhibition of protein tyrosine phosphatase 1B (PTP1B) has been proposed as one of the drug targets for treating type 2 diabetes and obesity. Bioassay-guided fractionation of a MeOH extract of the semen of Myristica fragrans Houtt. (Myristicaceae) afforded PTP1B inhibitory compounds, meso-dihydroguaiaretic acid (1) and otobaphenol (2). Compounds 1 and 2 inhibited PTP1B with IC(50) values of 19.6 +/- 0.3 and 48.9 +/- 0.5 microM, respectively, in the manner of non-competitive inhibitors. Treatment with compound 1 on 32D cells overexpressing the insulin receptor (IR) resulted in a dose-dependent increase in the tyrosine phosphorylation of IR. These results indicate that compound 1 can act as an enhancing agent in intracellular insulin signaling, possibly through the inhibition of PTP1B activity.

  13. Mechanism of protein tyrosine phosphatase 1B-mediated inhibition of leptin signalling

    DEFF Research Database (Denmark)

    Lund, I K; Hansen, J A; Andersen, H S

    2005-01-01

    Upon leptin binding, the leptin receptor is activated, leading to stimulation of the JAK/STAT signal transduction cascade. The transient character of the tyrosine phosphorylation of JAK2 and STAT3 suggests the involvement of protein tyrosine phosphatases (PTPs) as negative regulators...... of this signalling pathway. Specifically, recent evidence has suggested that PTP1B might be a key regulator of leptin signalling, based on the resistance to diet-induced obesity and increased leptin signalling observed in PTP1B-deficient mice. The present study was undertaken to investigate the mechanism by which...... PTP1B mediates the cessation of the leptin signal transduction. Leptin-induced activation of a STAT3 responsive reporter was dose-dependently inhibited by co-transfection with PTP1B. No inhibition was observed when a catalytically inactive mutant of PTP1B was used or when other PTPs were co...

  14. Atractylenolide III Enhances Energy Metabolism by Increasing the SIRT-1 and PGC1α Expression with AMPK Phosphorylation in C2C12 Mouse Skeletal Muscle Cells.

    Science.gov (United States)

    Song, Mi Young; Jung, Hyo Won; Kang, Seok Yong; Park, Yong-Ki

    2017-01-01

    Targeting energy expenditure provides a potential alternative strategy for achieving energy balance to combat obesity and the development of type 2 diabetes mellitus (T2DM). In the present study, we investigated whether atractylenolide III (AIII) regulates energy metabolism in skeletal muscle cells. Differentiated C2C12 myotubes were treated with AIII (10, 20, or 50 µM) or metformin (2.5 mM) for indicated times. The levels of glucose uptake, the expressions of key mitochondrial biogenesis-related factors and their target genes were measured in C2C12 myotubes. AIII significantly increased the glucose uptake levels, and significantly increased the expressions of peroxisome proliferator-activated receptor coactivator-1α (PGC1α) and mitochondrial biogenesis-related markers, such as, nuclear respiratory factor-1 (NRF-1), and mitochondrial transcription factor A (TFAM) and mitochondrial mass and total ATP contents. In addition, AIII significantly increased the phosphorylation of AMP-activated protein kinase (AMPK) and the expression of sirtuin1 (SIRT1). These results suggest that AIII may have beneficial effects on obesity and T2DM by improving energy metabolism in skeletal muscle.

  15. Coincident regulation of PKCdelta in human platelets by phosphorylation of Tyr311 and Tyr565 and phospholipase C signalling.

    Science.gov (United States)

    Hall, Kellie J; Jones, Matthew L; Poole, Alastair W

    2007-09-15

    PKC (protein kinase C)d plays a complex role in platelets, having effects on both positive and negative signalling functions. It is phosphorylated on tyrosine residues in response to thrombin and collagen, and it has recently been shown that Tyr311 is phosphorylated in response to PAR (protease-activated receptor) 1 and PAR4 receptor activation. In the present study, we show that Tyr311 and Tyr565 are phosphorylated in response to thrombin, and have examined the interplay between phosphorylation and the classical lipid-mediated activation of PKCd. Phosphorylation of both Tyr311 and Tyr565 is dependent on Src kinase and PLC (phospholipase C) activity in response to thrombin. Importantly, direct allosteric activation of PKCd with PMA also induced phosphorylation of Tyr311 and Tyr565, and this was dependent on the activity of Src kinases, but not PLC. Membrane recruitment of PKCd is essential for phosphorylation of this tyrosine residue, but tyrosine phosphorylation is not required for membrane recruitment of PKCd. Both thrombin and PMA induce recruitment of PKCd to the membrane, and for thrombin, this recruitment is a PLC-dependent process. In order to address the functional role of tyrosine residue phosphorylation of PKCd, we demonstrate that phosphorylation can potentiate the activity of the kinase, although phosphorylation does not play a role in membrane recruitment of the kinase. PKCd is therefore regulated in a coincident fashion, PLC-dependent signals recruiting it to the plasma membrane and by phosphorylation on tyrosine residues, potentiating its activity.

  16. Regulation of hERG and hEAG channels by Src and by SHP-1 tyrosine phosphatase via an ITIM region in the cyclic nucleotide binding domain.

    Directory of Open Access Journals (Sweden)

    Lyanne C Schlichter

    Full Text Available Members of the EAG K(+ channel superfamily (EAG/Kv10.x, ERG/Kv11.x, ELK/Kv12.x subfamilies are expressed in many cells and tissues. In particular, two prototypes, EAG1/Kv10.1/KCNH1 and ERG1/Kv11.1/KCNH2 contribute to both normal and pathological functions. Proliferation of numerous cancer cells depends on hEAG1, and in some cases, hERG. hERG is best known for contributing to the cardiac action potential, and for numerous channel mutations that underlie 'long-QT syndrome'. Many cells, particularly cancer cells, express Src-family tyrosine kinases and SHP tyrosine phosphatases; and an imbalance in tyrosine phosphorylation can lead to malignancies, autoimmune diseases, and inflammatory disorders. Ion channel contributions to cell functions are governed, to a large degree, by post-translational modulation, especially phosphorylation. However, almost nothing is known about roles of specific tyrosine kinases and phosphatases in regulating K(+ channels in the EAG superfamily. First, we show that tyrosine kinase inhibitor, PP1, and the selective Src inhibitory peptide, Src40-58, reduce the hERG current amplitude, without altering its voltage dependence or kinetics. PP1 similarly reduces the hEAG1 current. Surprisingly, an 'immuno-receptor tyrosine inhibitory motif' (ITIM is present within the cyclic nucleotide binding domain of all EAG-superfamily members, and is conserved in the human, rat and mouse sequences. When tyrosine phosphorylated, this ITIM directly bound to and activated SHP-1 tyrosine phosphatase (PTP-1C/PTPN6/HCP; the first report that a portion of an ion channel is a binding site and activator of a tyrosine phosphatase. Both hERG and hEAG1 currents were decreased by applying active recombinant SHP-1, and increased by the inhibitory substrate-trapping SHP-1 mutant. Thus, hERG and hEAG1 currents are regulated by activated SHP-1, in a manner opposite to their regulation by Src. Given the widespread distribution of these channels, Src and SHP

  17. Dynamic changes in dopamine neuron function after DNSP-11 treatment: effects in vivo and increased ERK 1/2 phosphorylation in vitro.

    Science.gov (United States)

    Fuqua, Joshua L; Littrell, Ofelia M; Lundblad, Martin; Turchan-Cholewo, Jadwiga; Abdelmoti, Lina G; Galperin, Emilia; Bradley, Luke H; Cass, Wayne A; Gash, Don M; Gerhardt, Greg A

    2014-04-01

    Glial cell-line derived neurotrophic factor (GDNF) has demonstrated robust effects on dopamine (DA) neuron function and survival. A post-translational processing model of the human GDNF proprotein theorizes the formation of smaller, amidated peptide(s) from the proregion that exhibit neurobiological function, including an 11-amino-acid peptide named dopamine neuron stimulating peptide-11 (DNSP-11). A single treatment of DNSP-11 was delivered to the substantia nigra in the rat to investigate effects on DA-neuron function. Four weeks after treatment, potassium (K+) and D-amphetamine evoked DA release were studied in the striatum using microdialysis. There were no significant changes in DA-release after DNSP-11 treatment determined by microdialysis. Dopamine release was further examined in discrete regions of the striatum using high-speed chronoamperometry at 1-, 2-, and 4-weeks after DNSP-11 treatment. Two weeks after DNSP-11 treatment, potassium-evoked DA release was increased in specific subregions of the striatum. However, spontaneous locomotor activity was unchanged by DNSP-11 treatment. In addition, we show that a single treatment of DNSP-11 in the MN9D dopaminergic neuronal cell line results in phosphorylation of ERK1/2, which suggests a novel cellular mechanism responsible for increases in DA function. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Regulation of the EphA2 kinase by the low molecular weight tyrosine phosphatase induces transformation.

    Science.gov (United States)

    Kikawa, Keith D; Vidale, Derika R; Van Etten, Robert L; Kinch, Michael S

    2002-10-18

    Intracellular signaling by protein tyrosine phosphorylation is generally understood to govern many aspects of cellular behavior. The biological consequences of this signaling pathway are important because the levels of protein tyrosine phosphorylation are frequently elevated in cancer cells. In the classic paradigm, tyrosine kinases promote tumor cell growth, survival, and invasiveness, whereas tyrosine phosphatases negatively regulate these same behaviors. Here, we identify one particular tyrosine phosphatase, low molecular weight tyrosine phosphatase (LMW-PTP), which is frequently overexpressed in transformed cells. We also show that overexpression of LMW-PTP is sufficient to confer transformation upon non-transformed epithelial cells. Notably, we show that the EphA2 receptor tyrosine kinase is a prominent substrate for LMW-PTP and that the oncogenic activities of LMW-PTP result from altered EphA2 expression and function. These results suggest a role for LMW-PTP in transformation progression and link its oncogenic potential to EphA2.

  19. c-Abl mediates high NaCl-induced phosphorylation and activation of the transcription factor TonEBP/OREBP

    Science.gov (United States)

    Gallazzini, Morgan; Yu, Ming-Jiun; Gunaratne, Ruwan; Burg, Maurice B.; Ferraris, Joan D.

    2010-01-01

    The transcription factor TonEBP/OREBP promotes cell survival during osmotic stress. High NaCl-induced phosphorylation of TonEBP/OREBP at tyrosine-143 was known to be an important factor in increasing its activity in cell culture. We now find that TonEBP/OREBP also is phosphorylated at tyrosine-143 in rat renal inner medulla, dependent on the interstitial osmolality. c-Abl seemed likely to be the kinase that phosphorylates TonEBP/OREBP because Y143 is in a consensus c-Abl phosphorylation site. We now confirm that, as follows. High NaCl increases c-Abl activity. Specific inhibition of c-Abl by imatinib, siRNA, or c-Abl kinase dead drastically reduces high NaCl-induced TonEBP/OREBP activity by reducing its nuclear location and transactivating activity. c-Abl associates with TonEBP/OREBP (coimmunoprecipitation) and phosphorylates TonEBP/OREBP-Y143 both in cell and in vitro. High NaCl-induced activation of ataxia telangiectasia mutated, previously known to contribute to activation of TonEBP/OREBP, depends on c-Abl activity. Thus, c-Abl is the kinase responsible for high NaCl-induced phosphorylation of TonEBP/OREBP-Y143, which contributes to its increased activity.—Gallazzini, M., Yu, M.-J., Gunaratne, R., Burg, M. B., Ferraris, J. D. c-Abl mediates high NaCl-induced phosphorylation and activation of the transcription factor TonEBP/OREBP. PMID:20585028

  20. Yeast NDI1 Improve Oxidative Phosphorylation Capacity and Increases Protection Against Oxidative Stress and Cell Death in Cells Carrying a Leber’s Hereditary Optic Neuropathy Mutation

    Science.gov (United States)

    Park, Jeong Soon; Li, You-fen; Bai, Yidong

    2007-01-01

    G11778A in the subunit ND4 gene of NADH dehydrogenase complex is the most common primary mutation found in Leber’s hereditary optic neuropathy (LHON) patients. The NDI1 gene, which encodes the internal NADH -quinone oxidoreductase in Saccharomyces cerevisiae, was introduced into the nuclear genome of a mitochondrial defective human cell line, Le1.3.1, carrying the G11778A mutation. In transformant cell lines, LeNDI1-1 and -2, total and complex I-dependent respiration were fully restored and largely resistant to complex I inhibitor, rotenone, indicating a dominant role of NDI1 in the transfer of electrons in the host cells. Whereas the original mutant Le1.3.1 cell grows poorly in medium containing galactose, the transformants have a fully restored growth capacity in galactose medium, although the ATP production was not totally recovered. Furthermore, the increased oxidative stress in the cells carrying the G11778A mutation was alleviated in transformants, demonstrated by a decreased reactive oxygen species (ROS) level. Finally, transformants were also shown to be desensitized to induction to apoptosis and also exhibit greater resistance to paraquat-induced cell death. It is concluded that the yeast ND11 enzyme can improve the oxidative phosphorylation capacity in cells carrying the G11778A mutation and protect the cells from oxidative stress and cell death. PMID:17320357

  1. Yeast NDI1 improves oxidative phosphorylation capacity and increases protection against oxidative stress and cell death in cells carrying a Leber's hereditary optic neuropathy mutation.

    Science.gov (United States)

    Park, Jeong Soon; Li, You-Fen; Bai, Yidong

    2007-05-01

    G11778A in the subunit ND4 gene of NADH dehydrogenase complex is the most common primary mutation found in Leber's hereditary optic neuropathy (LHON) patients. The NDI1 gene, which encodes the internal NADH-quinone oxidoreductase in Saccharomyces cerevisiae, was introduced into the nuclear genome of a mitochondrial defective human cell line, Le1.3.1, carrying the G11778A mutation. In transformant cell lines, LeNDI1-1 and -2, total and complex I-dependent respiration were fully restored and largely resistant to complex I inhibitor, rotenone, indicating a dominant role of NDI1 in the transfer of electrons in the host cells. Whereas the original mutant Le1.3.1 cell grows poorly in medium containing galactose, the transformants have a fully restored growth capacity in galactose medium, although the ATP production was not totally recovered. Furthermore, the increased oxidative stress in the cells carrying the G11778A mutation was alleviated in transformants, demonstrated by a decreased reactive oxygen species (ROS) level. Finally, transformants were also shown to be desensitized to induction to apoptosis and also exhibit greater resistance to paraquat-induced cell death. It is concluded that the yeast NDI1 enzyme can improve the oxidative phosphorylation capacity in cells carrying the G11778A mutation and protect the cells from oxidative stress and cell death.

  2. Complement receptor-3 negatively regulates the phagocytosis of degenerated myelin through tyrosine kinase Syk and cofilin

    Directory of Open Access Journals (Sweden)

    Hadas Smadar

    2012-07-01

    Full Text Available Abstract Background Intact myelin, which normally surrounds axons, breaks down in Wallerian degeneration following axonal injury and during neurodegenerative diseases such as multiple sclerosis. Clearance of degenerated myelin by phagocytosis is essential since myelin impedes repair and exacerbates damage. CR3 (complement receptor-3 is a principal phagocytic receptor in myelin phagocytosis. We studied how tyrosine kinase Syk (spleen tyrosine kinase and cofilin control phagocytosis of degenerated myelin by CR3 in microglia and macrophages. Syk is a non-receptor tyrosine kinase that CR3 recruits to convey cellular functions. Cofilin is an actin-depolymerizing protein that controls F-actin (filamentous actin remodeling (i.e., disassembly and reassembly by shifting between active unphosphorylated and inactive phosphorylated states. Results Syk was continuously activated during prolonged phagocytosis. Phagocytosis increased when Syk activity and expression were reduced, suggesting that normally Syk down regulates CR3-mediated myelin phagocytosis. Levels of inactive p-cofilin (phosphorylated cofilin decreased transiently during prolonged phagocytosis. In contrast, p-cofilin levels decreased continuously when Syk activity and expression were continuously reduced, suggesting that normally Syk advances the inactive state of cofilin. Observations also revealed inverse relationships between levels of phagocytosis and levels of inactive p-cofilin, suggesting that active unphosphorylated cofilin advances phagocytosis. Active cofilin could advance phagocytosis by promoting F-actin remodeling, which supports the production of membrane protrusions (e.g., filopodia, which, as we also revealed, are instrumental in myelin phagocytosis. Conclusions CR3 both activates and downregulates myelin phagocytosis at the same time. Activation was previously documented. We presently demonstrate that downregulation is mediated through Syk, which advances the inactive

  3. Endothelial Bmx tyrosine kinase activity is essential for myocardial hypertrophy and remodeling.

    Science.gov (United States)

    Holopainen, Tanja; Räsänen, Markus; Anisimov, Andrey; Tuomainen, Tomi; Zheng, Wei; Tvorogov, Denis; Hulmi, Juha J; Andersson, Leif C; Cenni, Bruno; Tavi, Pasi; Mervaala, Eero; Kivelä, Riikka; Alitalo, Kari

    2015-10-20

    Cardiac hypertrophy accompanies many forms of heart disease, including ischemic disease, hypertension, heart failure, and valvular disease, and it is a strong predictor of increased cardiovascular morbidity and mortality. Deletion of bone marrow kinase in chromosome X (Bmx), an arterial nonreceptor tyrosine kinase, has been shown to inhibit cardiac hypertrophy in mice. This finding raised the possibility of therapeutic use of Bmx tyrosine kinase inhibitors, which we have addressed here by analyzing cardiac hypertrophy in gene-targeted mice deficient in Bmx tyrosine kinase activity. We found that angiotensin II (Ang II)-induced cardiac hypertrophy is significantly reduced in mice deficient in Bmx and in mice with inactivated Bmx tyrosine kinase compared with WT mice. Genome-wide transcriptomic profiling showed that Bmx inactivation suppresses myocardial expression of genes related to Ang II-induced inflammatory and extracellular matrix responses whereas expression of RNAs encoding mitochondrial proteins after Ang II administration was maintained in Bmx-inactivated hearts. Very little or no Bmx mRNA was expressed in human cardiomyocytes whereas human cardiac endothelial cells expressed abundant amounts. Ang II stimulation of endothelial cells increased Bmx phosphorylation, and Bmx gene silencing inhibited downstream STAT3 signaling, which has been implicated in cardiac hypertrophy. Furthermore, activation of the mechanistic target of rapamycin complex 1 pathway by Ang II treatment was decreased in the Bmx-deficient hearts. Our results demonstrate that inhibition of the cross-talk between endothelial cells and cardiomyocytes by Bmx inactivation suppresses Ang II-induced signals for cardiac hypertrophy. These results suggest that the endothelial Bmx tyrosine kinase could provide a target to attenuate the development of cardiac hypertrophy.

  4. Tyrosine-based signal mediates LRP6 receptor endocytosis and desensitization of Wnt/β-catenin pathway signaling.

    Science.gov (United States)

    Liu, Chia-Chen; Kanekiyo, Takahisa; Roth, Barbara; Bu, Guojun

    2014-10-03

    Wnt/β-catenin signaling orchestrates a number of critical events including cell growth, differentiation, and cell survival during development. Misregulation of this pathway leads to various human diseases, specifically cancers. Endocytosis and phosphorylation of the LDL receptor-related protein 6 (LRP6), an essential co-receptor for Wnt/β-catenin signaling, play a vital role in mediating Wnt/β-catenin signal transduction. However, its regulatory mechanism is not fully understood. In this study, we define the mechanisms by which LRP6 endocytic trafficking regulates Wnt/β-catenin signaling activation. We show that LRP6 mutant with defective tyrosine-based signal in its cytoplasmic tail has an increased cell surface distribution and decreased endocytosis rate. These changes in LRP6 endocytosis coincide with an increased distribution to caveolae, increased phosphorylation, and enhanced Wnt/β-catenin signaling. We further demonstrate that treatment of Wnt3a ligands or blocking the clathrin-mediated endocytosis of LRP6 leads to a redistribution of wild-type receptor to lipid rafts. The LRP6 tyrosine mutant also exhibited an increase in signaling activation in response to Wnt3a stimulation when compared with wild-type LRP6, and this activation is suppressed when caveolae-mediated endocytosis is blocked. Our results reveal molecular mechanisms by which LRP6 endocytosis routes regulate its phosphorylation and the strength of Wnt/β-catenin signaling, and have implications on how this pathway can be modulated in human diseases.

  5. Treadmill Training Increases SIRT-1 and PGC-1α Protein Levels and AMPK Phosphorylation in Quadriceps of Middle-Aged Rats in an Intensity-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Nara R. C. Oliveira

    2014-01-01

    Full Text Available The present study investigated the effects of running at 0.8 or 1.2 km/h on inflammatory proteins (i.e., protein levels of TNF-α, IL-1β, and NF-κB and metabolic proteins (i.e., protein levels of SIRT-1 and PGC-1α, and AMPK phosphorylation in quadriceps of rats. Male Wistar rats at 3 (young and 18 months (middle-aged rats of age were divided into nonexercised (NE and exercised at 0.8 or 1.2 km/h. The rats were trained on treadmill, 50 min per day, 5 days per week, during 8 weeks. Forty-eight hours after the last training session, muscles were removed, homogenized, and analyzed using biochemical and western blot techniques. Our results showed that: (a running at 0.8 km/h decreased the inflammatory proteins and increased the metabolic proteins compared with NE rats; (b these responses were lower for the inflammatory proteins and higher for the metabolic proteins in young rats compared with middle-aged rats; (c running at 1.2 km/h decreased the inflammatory proteins and increased the metabolic proteins compared with 0.8 km/h; (d these responses were similar between young and middle-aged rats when trained at 1.2 km. In summary, the age-related increases in inflammatory proteins, and the age-related declines in metabolic proteins can be reversed and largely improved by treadmill training.

  6. Tyrosine Sulfation of Statherin

    Directory of Open Access Journals (Sweden)

    C. Kasinathan, N. Gandhi, P. Ramaprasad, P. Sundaram, N. Ramasubbu

    2007-01-01

    Full Text Available Tyrosylprotein sulfotransferase (TPST, responsible for the sulfation of a variety of secretory and membrane proteins, has been identified and characterized in submandibular salivary glands (William et al. Arch Biochem Biophys 1997; 338: 90-96. In the present study we demonstrate the sulfation of a salivary secretory protein, statherin, by the tyrosylprotein sulfotransferase present in human saliva. Optimum statherin sulfation was observed at pH 6.5 and at 20 mm MnCl2. Increase in the level of total sulfation was observed with increasing statherin concentration. The Km value of tyrosylprotein sulfotransferase for statherin was 40 μM. Analysis of the sulfated statherin product on SDS-polyacrylamide gel electrophoresis followed by autoradiography revealed 35S-labelling of a 5 kDa statherin. Further analysis of the sulfated statherin revealed the sulfation on tyrosyl residue. This study is the first report demonstrating tyrosine sulfation of a salivary secretory protein. The implications of this sulfation of statherin in hydroxyapatite binding and Actinomyces viscosus interactions are discussed.

  7. Phosphorylation of chicken growth hormone

    Energy Technology Data Exchange (ETDEWEB)

    Aramburo, C.; Montiel, J.L. (Universidad Nacional Autonoma de Mexico (Mexico)); Donoghue, D.; Scanes, C.G. (Rutgers Univ., New Brunswick, NJ (USA)); Berghman, L.R. (Laboratory for Neuroendocrinology and Immunological Biotechnology, Louvain (Belgium))

    1990-01-01

    The possibility that chicken growth hormone (cGH) can be phosphorylated has been examined. Both native and biosynthetic cGH were phosphorylated by cAMP-dependent protein kinase (and {gamma}-{sup 32}P-ATP). The extent of phosphorylation was however less than that observed with ovine prolactin. Under the conditions employed, glycosylated cGH was not phosphorylated. Chicken anterior pituitary cells in primary culture were incubated in the presence of {sup 32}P-phosphate. Radioactive phosphate was incorporated in vitro into the fraction immunoprecipitable with antisera against cGH. Incorporation was increased with cell number and time of incubation. The presence of GH releasing factor (GRF) increased the release of {sup 32}P-phosphate labeled immunoprecipitable GH into the incubation media but not content of immunoprecipitable GH in the cells. The molecular weight of the phosphorylated immunoreactive cGH in the cells corresponded to cGH dimer.

  8. N-acetylcysteine downregulates phosphorylated p-38 expression but does not reverse the increased superoxide anion levels in the spinal cord of rats with neuropathic pain.

    Science.gov (United States)

    Horst, A; de Souza, J A; Santos, M C Q; Riffel, A P K; Kolberg, C; Ribeiro, M F M; de Fraga, L S; Partata, W A

    2017-02-16

    We determined the effect of N-acetylcysteine (NAC) on the expression of the phosphorylated p38 (p-p38) protein and superoxide anion generation (SAG), two important players in the processing of neuropathic pain, in the lumbosacral spinal cord of rats with chronic constriction injury (CCI)-induced neuropathic pain. The sciatic functional index (SFI) was also measured to assess the functional recovery post-nerve lesion. Thirty-six male Wistar rats were divided equally into the following groups: Naive (rats did not undergo surgical manipulation); Sham (rats in which all surgical procedures involved in CCI were used except the ligature), and CCI (rats in which four ligatures were tied loosely around the right common sciatic nerve), which received 2, 4, or 8 intraperitoneal injections of NAC (150 mg·kg-1·day-1) or saline beginning 4 h after CCI. Rats were sacrificed 1, 3, and 7 days after CCI. The SFI was measured on these days and the lumbosacral spinal cord was used for analysis of p-p38 expression and SAG. CCI induced a decrease in SFI as well as an increase in p-p38 expression and SAG in the spinal cord. The SFI showed a partial recovery at day 7 in saline-treated CCI rats, but recovery was improved in NAC-treated CCI rats. NAC induced a downregulation in p-p38 expression at all time-points evaluated, but did not reverse the increased SAG induced by CCI. Since p-p38 is a mediator in neuropathic pain and/or nerve regeneration, modulation of this protein may play a role in NAC-induced effects in CCI rats.

  9. The Adaptogens Rhodiola and Schizandra Modify the Response to Immobilization Stress in Rabbits by Suppressing the Increase of Phosphorylated Stress-activated Protein Kinase, Nitric Oxide and Cortisol

    Directory of Open Access Journals (Sweden)

    Alexander Panossian

    2007-01-01

    Full Text Available Adaptogens possess anti-fatigue and anti-stress activities that can increase mental and physical working performance against a background of fatigue or stress. The aim of the present study was to ascertain which mediators of stress response are significantly involved in the mechanisms of action of adaptogens, and to determine their relevance as biochemical markers for evaluating anti-stress effects in rabbits subjected to restraint stress. Blood levels of stress-activated protein kinase (SAPK/JNK, the phosphorylated kinase p-SAPK/p-JNK, nitric oxide (NO, cortisol, testosterone, prostaglandin E2, leukotriene B4 and thromboxane B2 were determined in groups of animals prior to daily oral administration of placebo, rhodioloside or extracts of Eleutherococcus senticosus, Schizandra chinensis, Rhodiola rosea, Bryonia alba and Panax ginseng over a 7 day period. Ten minutes after the fi nal treatment, animals were immobilized for 2 hours and blood levels of the markers re-determined. In the placebo group, only p-SAPK/p-JNK, NO and cortisol were increased significantly (by 200–300% cf basal levels following restraint stress, whilst in animals that had received multiple doses of adaptogens/stress-protectors, the levels of NO and cortisol remained practically unchanged after acute stress. Rhodioloside and extracts of S. chinensis and R. rosea were the most active inhibitors of stress-induced p-SAPK/p-JNK. E. senticosus, B. alba and P. ginseng exerted little effect on p-SAPK/p-JNK levels. It is suggested that the inhibitory effects of R. rosea and S. chinensis on p-SAPK/p-JNK activation may be associated with their anti-depressant activity as well as their positive effects on mental performance under stress.

  10. The adaptogens rhodiola and schizandra modify the response to immobilization stress in rabbits by suppressing the increase of phosphorylated stress-activated protein kinase, nitric oxide and cortisol.

    Science.gov (United States)

    Panossian, Alexander; Hambardzumyan, Marina; Hovhanissyan, Areg; Wikman, Georg

    2007-01-01

    Adaptogens possess anti-fatigue and anti-stress activities that can increase mental and physical working performance against a background of fatigue or stress. The aim of the present study was to ascertain which mediators of stress response are significantly involved in the mechanisms of action of adaptogens, and to determine their relevance as biochemical markers for evaluating anti-stress effects in rabbits subjected to restraint stress. Blood levels of stress-activated protein kinase (SAPK/JNK), the phosphorylated kinase p-SAPK/p-JNK, nitric oxide (NO), cortisol, testosterone, prostaglandin E(2), leukotriene B(4) and thromboxane B(2) were determined in groups of animals prior to daily oral administration of placebo, rhodioloside or extracts of Eleutherococcus senticosus, Schizandra chinensis, Rhodiola rosea, Bryonia alba and Panax ginseng over a 7 day period. Ten minutes after the final treatment, animals were immobilized for 2 hours and blood levels of the markers re-determined. In the placebo group, only p-SAPK/p-JNK, NO and cortisol were increased significantly (by 200-300% cf basal levels) following restraint stress, whilst in animals that had received multiple doses of adaptogens/stress-protectors, the levels of NO and cortisol remained practically unchanged after acute stress. Rhodioloside and extracts of S. chinensis and R. rosea were the most active inhibitors of stress-induced p-SAPK/p-JNK. E. senticosus, B. alba and P. ginseng exerted little effect on p-SAPK/p-JNK levels. It is suggested that the inhibitory effects of R. rosea and S. chinensis on p-SAPK/p-JNK activation may be associated with their antidepressant activity as well as their positive effects on mental performance under stress.

  11. PKM2 Thr454 phosphorylation increases its nuclear translocation and promotes xenograft tumor growth in A549 human lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhenhai, E-mail: tomsyu@163.com [Center for Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031 (China); Huang, Liangqian [Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine -SJTUSM, Shanghai, 200025 (China); Qiao, Pengyun; Jiang, Aifang; Wang, Li; Yang, Tingting [Center for Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031 (China); Tang, Shengjian; Zhang, Wei [Plastic Surgery Institute of Weifang Medical University, Weifang, Shandong, 261041 (China); Ren, Chune, E-mail: ren@wfmc.edu.cn [Center for Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031 (China)

    2016-05-13

    Pyruvate kinase M2 (PKM2) is a key enzyme of glycolysis which is highly expressed in many tumor cells, and plays an important role in the Warburg effect. In previous study, we found PIM2 phosphorylates PKM2 at Thr454 residue (Yu, etl 2013). However, the functions of PKM2 Thr454 modification in cancer cells still remain unclear. Here we find PKM2 translocates into the nucleus after Thr454 phosphorylation. Replacement of wild type PKM2 with a mutant (T454A) enhances mitochondrial respiration, decreases pentose phosphate pathway, and enhances chemosensitivity in A549 cells. In addition, the mutant (T454A) PKM2 reduces xenograft tumor growth in nude mice. These findings demonstrate that PKM2 T454 phosphorylation is a potential therapeutic target in lung cancer.

  12. Quantitation of multisite EGF receptor phosphorylation using mass spectrometry and a novel normalization approach

    DEFF Research Database (Denmark)

    Erba, Elisabetta Boeri; Matthiesen, Rune; Bunkenborg, Jakob

    2007-01-01

    Using stable isotope labeling and mass spectrometry, we performed a sensitive, quantitative analysis of multiple phosphorylation sites of the epidermal growth factor (EGF) receptor. Phosphopeptide detection efficiency was significantly improved by using the tyrosine phosphatase inhibitor sodium p...

  13. Viral infection increases glucocorticoid-induced interleukin-10 production through ERK-mediated phosphorylation of the glucocorticoid receptor in dendritic cells: potential clinical implications.

    Directory of Open Access Journals (Sweden)

    Sinnie Sin Man Ng

    Full Text Available The hypothalamic-pituitary-adrenal axis plays a central role in the adaptive response to stress including infection of pathogens through glucocorticoids. Physical and/or mental stress alter susceptibility to viral infection possibly by affecting this regulatory system, thus we explored potential cellular targets and mechanisms that underlie this phenomenon in key immune components dendritic cells (DCs. Dexamethasone (DEX treatment and subsequent Newcastle disease virus (NDV infection most significantly and cooperatively stimulated mRNA expression of the interleukin (IL-10 in murine bone marrow-derived DCs among 89 genes involved in the Toll-like receptor signaling pathways. NDV increased DEX-induced IL-10 mRNA and protein expression by 7- and 3-fold, respectively, which was observed from 3 hours after infection. Conventional DCs (cDCs, but not plasmacytoid DCs (pDCs were major sources of IL-10 in bone marrow-derived DCs treated with DEX and/or infected with NDV. Murine cytomegalovirus and DEX increased serum IL-10 cooperatively in female mice. Pre-treatment of DCs with the extracellular signal-regulated kinase (ERK inhibitor U0126 abolished cooperative induction of IL-10 by DEX and NDV. Further, ERK overexpression increased IL-10 promoter activity stimulated by wild-type human GR but not by its mutant defective in serine 203, whereas ERK knockdown abolished NDV/DEX cooperation on IL-10 mRNA and phosphorylation of the mouse GR at serine 213. NDV also increased DEX-induced mRNA expression of three known glucocorticoid-responsive genes unrelated to the Toll-like receptor signaling pathways in DCs. These results indicate that virus and glucocorticoids cooperatively increase production of anti-inflammatory cytokine IL-10 by potentiating the transcriptional activity of GR in DCs, through which virus appears to facilitate its own propagation in infected hosts. The results may further underlie in part known exacerbation of IL-10/T helper-2-related

  14. HER2 Oncogenic Function Escapes EGFR Tyrosine Kinase Inhibitors via Activation of Alternative HER Receptors in Breast Cancer Cells

    Science.gov (United States)

    Kong, Anthony; Calleja, Véronique; Leboucher, Pierre; Harris, Adrian; Parker, Peter J.; Larijani, Banafshé

    2008-01-01

    Background The response rate to EGFR tyrosine kinase inhibitors (TKIs) may be poor and unpredictable in cancer patients with EGFR expression itself being an inadequate response indicator. There is limited understanding of the mechanisms underlying this resistance. Furthermore, although TKIs suppress the growth of HER2-overexpressing breast tumor cells, they do not fully inhibit HER2 oncogenic function at physiological doses. Methodology and Principal Findings Here we have provided a molecular mechanism of how HER2 oncogenic function escapes TKIs' inhibition via alternative HER receptor activation as a result of autocrine ligand release. Using both Förster Resonance Energy Transfer (FRET) which monitors in situ HER receptor phosphorylation as well as classical biochemical analysis, we have shown that the specific tyrosine kinase inhibitors (TKIs) of EGFR, AG1478 and Iressa (Gefitinib) decreased EGFR and HER3 phosphorylation through the inhibition of EGFR/HER3 dimerization. Consequent to this, we demonstrate that cleavage of HER4 and dimerization of HER4/HER2 occur together with reactivation of HER3 via HER2/HER3, leading to persistent HER2 phosphorylation in the now resistant, surviving cells. These drug treatment–induced processes were found to be mediated by the release of ligands including heregulin and betacellulin that activate HER3 and HER4 via HER2. Whereas an anti-betacellulin antibody in combination with Iressa increased the anti-proliferative effect in resistant cells, ligands such as heregulin and betacellulin rendered sensitive SKBR3 cells resistant to Iressa. Conclusions and Significance These results demonstrate the role of drug-induced autocrine events leading to the activation of alternative HER receptors in maintaining HER2 phosphorylation and in mediating resistance to EGFR tyrosine kinase inhibitors (TKIs) in breast cancer cells, and hence specify treatment opportunities to overcome resistance in patients. PMID:18682844

  15. Cellular Functions Regulated by Phosphorylation of EGFR on Tyr845

    Directory of Open Access Journals (Sweden)

    Ken-ichi Sato

    2013-05-01

    Full Text Available The Src gene product (Src and the epidermal growth factor receptor (EGFR are prototypes of oncogene products and function primarily as a cytoplasmic non-receptor tyrosine kinase and a transmembrane receptor tyrosine kinase, respectively. The identification of Src and EGFR, and the subsequent extensive investigations of these proteins have long provided cutting edge research in cancer and other molecular and cellular biological studies. In 1995, we reported that the human epidermoid carcinoma cells, A431, contain a small fraction of Src and EGFR in which these two kinase were in physical association with each other, and that Src phosphorylates EGFR on tyrosine 845 (Y845 in the Src-EGFR complex. Y845 of EGFR is located in the activation segment of the kinase domain, where many protein kinases contain kinase-activating autophosphorylation sites (e.g., cAMP-dependent protein kinase, Src family kinases, transmembrane receptor type tyrosine kinases or trans-phosphorylation sites (e.g., cyclin-dependent protein kinase, mitogen-activated protein kinase, Akt protein kinase. A number of studies have demonstrated that Y845 phosphorylation serves an important role in cancer as well as normal cells. Here we compile the experimental facts involving Src phosphorylation of EGFR on Y845, by which cell proliferation, cell cycle control, mitochondrial regulation of cell metabolism, gamete activation and other cellular functions are regulated. We also discuss the physiological relevance, as well as structural insights of the Y845 phosphorylation.

  16. Intracerebroventricular administration of ouabain, a Na/K-ATPase inhibitor, activates tyrosine hydroxylase through extracellular signal-regulated kinase in rat striatum.

    Science.gov (United States)

    Yu, Hyun Sook; Kim, Se Hyun; Park, Hong Geun; Kim, Yong Sik; Ahn, Yong Min

    2011-11-01

    Alteration in dopamine neurotransmission has been reported to be involved in the mania of bipolar disorder. Tyrosine hydroxylase (TH) is the rate-limiting enzyme that is crucial for dopamine biosynthesis, and its activity is tightly regulated by phosphorylation at multiple N-terminal serine residues. Previously, we have reported that intracerebroventricular (ICV) injection of ouabain, a selective Na/K-ATPase inhibitor, induces hyperactivity in rats that mimics manic symptoms related to the activation of extracellular signal-regulated protein kinase1/2 (ERK1/2), which plays crucial roles in the modulation of TH phosphorylation. In this study, we investigated the effects of ICV injection of ouabain on TH phosphorylation in rat striatum and the involvement of ERK1/2 in ouabain-induced TH activation. ICV ouabain induced an acute dose-dependent increase in locomotor activity and in TH phosphorylation in rat striatum. TH phosphorylation at Ser19 was significantly increased with 100, 500, and 1000μM ouabain, and phosphorylation at Ser31 and Ser40 was significantly increased with 500 and 1000μM. We also found that ICV pretreatment with U0126, a specific MEK1/2 inhibitor, attenuated the 1000μM ouabain-induced increase in TH phosphorylation at Ser19, Ser31, and Ser40, as well as the hyperactivity of rats. Moreover, the increased phosphorylation of TH (Ser19, Ser31, and Ser40) was maintained until 8h after single administration ouabain was accompanied by increased phosphorylation of ERK1/2 (Thr202/Tyr204) and p90RSK (Thr359/Ser363). These findings imply that TH activation of the ERK1/2 signal pathway could play an important role in ouabain-induced hyperactivity of rats, a mania model.

  17. In vivo Regulation of the Allergic Response by the Interleukin 4 Receptor Alpha Chain Immunoreceptor Tyrosine-based Inhibitory Motif

    Science.gov (United States)

    Tachdjian, Raffi; Khatib, Shadi Al; Schwinglshackl, Andreas; Kim, Hong Sook; Chen, Andrew; Blasioli, Julie; Mathias, Clinton; Kim, Hye-Young; Umetsu, Dale T.; Oettgen, Hans C.; Chatila, Talal A.

    2010-01-01

    Background Signaling by IL-4 and IL-13 via the IL-4 receptor alpha chain (IL-4Rα) plays a critical role in the pathology of allergic diseases. The IL-4Rα is endowed with an immunoreceptor tyrosine-based inhibitory motif (ITIM), centered on tyrosine 709 (Y709) in the cytoplasmic domain, that binds a number of regulatory phosphatases. The function of the ITIM in the in vivo regulation of IL-4R signaling remains unknown. Objective To determine the in vivo function of the IL-4Rα ITIM using mice in which the ITIM was inactivated by mutagenesis of the tyrosine Y709 residue into phenylalanine (F709). Methods F709 ITIM mutant mice were derived by knockin mutagenesis. Activation of intracellular signaling cascades by IL-4 and IL-13 was assessed by intracellular staining of phosphorylated signaling intermediates and by gene expression analysis. In vivo responses to allergic sensitization were assessed using models of allergic airway inflammation. Results The F709 mutation increased STAT6 phosphorylation by IL-4 and, disproportionately, by IL-13. This was associated with exaggerated Th2 polarization, enhanced alternative macrophage activation by IL-13, augmented basal and antigen-induced IgE responses and intensified allergen-induced eosinophilic airway inflammation and hyperreactivity. Conclusions These results point to a physiologic negative regulatory role for the Y709 ITIM in signaling via IL-4Rα, especially by IL-13. PMID:20392476

  18. The tyrosine kinase p60c-src regulates the fast gate of the cystic fibrosis transmembrane conductance regulator chloride channel.

    Science.gov (United States)

    Fischer, H; Machen, T E

    1996-12-01

    The role of the tyrosine kinase p60c-src on the gating of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel was investigated with the cell-attached and excised patch clamp technique in conjunction with current noise analysis of recordings containing multiple channels per patch. Spectra of CFTR-generated current noise contained a low-frequency and a high-frequency Lorentzian noise component. In the cell-attached mode, the high-frequency Lorentzian was significantly dependent on the membrane potential, while the low-frequency Lorentzian was unaffected. Excision of forskolin-stimulated patches into ATP-containing solution significantly reduced the amplitude of the voltage-dependent high-frequency Lorentzian. Addition of the tyrosine kinase p60c-src to excised, active, CFTR-containing membrane patches increased mean currents by 54%, increased the corner frequency of the low-frequency Lorentzian, and recovered the high-frequency Lorentzian and its characteristics. Treatment with lambda-phosphatase inactivated src-induced currents and changes in gating. When active patches were excised under conditions in which patch-associated tyrosine phosphatases were blocked with sodium vanadate, the high-frequency gating remained relatively unchanged. The results suggest that CFTR's open probability and its voltage-dependent fast gate are dependent on tyrosine phosphorylation, and that membrane-associated tyrosine phosphatases are responsible for inactivation of the fast gate after patch excision.

  19. Tau Phosphorylation by GSK3 in Different Conditions

    Science.gov (United States)

    Avila, Jesús; León-Espinosa, Gonzalo; García, Esther; García-Escudero, Vega; Hernández, Félix; DeFelipe, Javier

    2012-01-01

    Almost a 20% of the residues of tau protein are phosphorylatable amino acids: serine, threonine, and tyrosine. In this paper we comment on the consequences for tau of being a phosphoprotein. We will focus on serine/threonine phosphorylation. It will be discussed that, depending on the modified residue in tau molecule, phosphorylation could be protective, in processes like hibernation, or toxic like in development of those diseases known as tauopathies, which are characterized by an hyperphosphorylation and aggregation of tau. PMID:22675648

  20. Determination of regulatory phosphorylation sites in nanogram amounts of a synthetic fragment of ZAP-70 using microprobe NMR and on-line coupled capillary HPLC-NMR

    NARCIS (Netherlands)

    Hentschel, P; Krucker, M; Grynbaum, MD; Putzbach, K; Bischoff, R; Albert, K

    2005-01-01

    The protein kinase ZAP-70 is involved in T-cell activation and interacts with tyrosine-phosphorylated peptide sequences known as immunoreceptor tyrosine activation motifs (ITAMs). We have studied the regulatory phosphorylation sites in the tryptic fragment containing amino acids 485-496 (ALGADDSYYTA

  1. Identification and regulation of receptor tyrosine kinases Rse and Mer and their ligand Gas6 in testicular somatic cells.

    Science.gov (United States)

    Chan, M C; Mather, J P; McCray, G; Lee, W M

    2000-01-01

    Receptor tyrosine kinases act to convey extracellular signals to intracellular signaling pathways and ultimately control cell proliferation and differentiation. Rse, Axl, and Mer belong to a newly identified family of cell adhesion molecule-related receptor tyrosine kinase. They bind the vitamin K-dependent protein growth arrest-specific gene 6 (Gas6), which is also structurally related to the anticoagulation factor Protein S. The aim of this study is to investigate the possible role of Rse/Axl/Mer tyrosine kinase receptors and their ligand in regulating testicular functions. Gene expression of Rse, Axl, Mer, and Gas6 in the testis was studied by reverse transcriptase-polymerase chain reaction (RT-PCR) and Northern blot analysis. The results indicated that receptors Rse and Mer and the ligand Gas6 were expressed in the rat endothelial cell line (TR1), mouse Leydig cell line (TM3), rat peritubular myoid cell line (TRM), mouse Sertoli cell line (TM4), and primary rat Sertoli cells. Axl was not expressed in the testicular somatic cells by RT-PCR or Northern blot analysis. The highest level of expression of Gas6 messenger RNA (mRNA) was observed in the Sertoli cells, and its expression was responsive to the addition of forskolin in vitro. The effects of serum, insulin, and transferrin on Gas6 expression by TM4 cells were examined. It was shown that they all exhibited an up-regulating effect on Gas6 expression. The forskolin-stimulated Gas6 expression was accompanied by an increase in tyrosine phosphorylation of the Rse receptor in vitro, suggesting that Gas6 may exhibit an autocrine effect in the Sertoli cells through multiple tyrosine kinase receptors. Our studies so far have demonstrated that tyrosine kinase receptors Rse and Mer and their ligand Gas6 are widely expressed in the testicular somatic cell lines and may play a marked role in promoting testicular cell survival.

  2. PROTEN TYROSINE PHOSPHATASE ACTIVITY IN RAT ASCITES HEPATOMA CELLS

    Directory of Open Access Journals (Sweden)

    M.Saadat

    1998-10-01

    Full Text Available Protein tyrosine phosphatases (PTPases regulate tyrosine phosphorylation of target proteins involved in several aspects of cellular functions. Enzyme activities of the PTPases in cytosolic and particulate fractions of rat ascites hepatoma cell lines were determined and compared with those of normal rat liver. Our present data revealed that although there was no neoplatic-specific alteration of the PTPase activity in examined hepatomas, the activity in particulate fractions of island type of hepatomas was remarkably decreased compared with either rat liver or free type hepatomas.

  3. Chemical Approaches to Studying Labile Amino Acid Phosphorylation.

    Science.gov (United States)

    Marmelstein, Alan M; Moreno, Javier; Fiedler, Dorothea

    2017-04-01

    Phosphorylation of serine, threonine, and tyrosine residues is the archetypal posttranslational modification of proteins. While phosphorylation of these residues has become standard textbook knowledge, phosphorylation of other amino acid side chains is underappreciated and minimally characterized by comparison. This disparity is rooted in the relative instability of these chemically distinct amino acid side chain moieties, namely phosphoramidates, acyl phosphates, thiophosphates, and phosphoanhydrides. In the case of the O-phosphorylated amino acids, synthetic constructs were critical to assessing their stability and developing tools for their study. As the chemical biology community has become more aware of these alternative phosphorylation sites, methodology has been developed for the synthesis of well-characterized standards and close mimics of these phosphorylated amino acids as well. In this article, we review the synthetic chemistry that is a prerequisite to progress in this field.

  4. Roles of mitochondrial Src tyrosine kinase and zinc in nitric oxide-induced cardioprotection against ischemia/reperfusion injury.

    Science.gov (United States)

    Zhang, Y; Xing, F; Zheng, H; Xi, J; Cui, X; Xu, Z

    2013-07-01

    While nitric oxide (NO) induces cardioprotection by targeting the mitochondrial permeability transition pore (mPTP), the precise mitochondrial signaling events that mediate the action of NO remain unclear. The purpose of this study was to test whether NO induces cardioprotection against ischemia/reperfusion by inhibiting oxidative stress through mitochondrial zinc and Src tyrosine kinase. The NO donor S-nitroso-N-acetyl penicillamine (SNAP) given before the onset of ischemia reduced cell death in rat cardiomyocytes subjected to simulated ischemia/reperfusion, and this was abolished by the zinc chelator N,N,N',N'-tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN) and the Src tyrosine kinase inhibitor PP2. SNAP also prevented loss of mitochondrial membrane potential (ΔΨm) at reperfusion, an effect that was blocked by TPEN and PP2. SNAP increased mitochondrion-free zinc upon reperfusion and enhanced mitochondrial Src phosphorylation in a zinc-dependent manner. SNAP inhibited both mitochondrial complex I activity and mitochondrial reactive oxygen species (ROS) generation at reperfusion through zinc and Src tyrosine kinase. Finally, the anti-infarct effect of SNAP was abrogated by TPEN and PP2 applied at reperfusion in isolated rat hearts. In conclusion, NO induces cardioprotection at reperfusion by targeting mitochondria through attenuation of oxidative stress resulted from the inhibition of complex I at reperfusion. Activation of mitochondrial Src tyrosine kinase by zinc may account for the inhibition of complex I.

  5. cAMP/PKA Pathways and S56 Phosphorylation Are Involved in AA/PGE2-Induced Increases in rNaV1.4 Current.

    Directory of Open Access Journals (Sweden)

    Hua Gu

    Full Text Available Arachidonic acid (AA and its metabolites are important second messengers for ion channel modulation. The effects of extracellular application of AA and its non-metabolized analogue on muscle rNaV1.4 Na+ current has been studied, but little is known about the effects of intracellular application of AA on this channel isoform. Here, we report that intracellular application of AA significantly augmented the rNaV1.4 current peak without modulating the steady-state activation and inactivation properties of the rNaV1.4 channel. These results differed from the effects of extracellular application of AA on rNaV1.4 current. The effects of intracellular AA were mimicked by prostaglandin E2 but not eicosatetraynoic acid (ETYA, the non-metabolized analogue of AA, and were eliminated by treatment with cyclooxygenase inhibitors, flufenamic acid, or indomethacin. AA/PGE2-induced activation of rNaV1.4 channels was mimicked by a cAMP analogue (db-cAMP and eliminated by a PKA inhibitor, PKAi. Furthermore, inhibition of EP2 and EP4 (PGE2 receptors with AH6809 and AH23848 reduced the intracellular AA/PGE2-induced increase of rNaV1.4 current. Two mutated channels, rNaV1.4S56A and rNaV1.4T21A, were designed to investigate the role of predicted phosphorylation sites in the AA/PGE2-mediated regulation of rNaV1.4 currents. In rNaV1.4S56A, the effects of intracellular db-cAMP, AA, and PGE2 were significantly reduced. The results of the present study suggest that intracellular AA augments rNaV1.4 current by PGE2/EP receptor-mediated activation of the cAMP/PKA pathway, and that the S56 residue on the channel protein is important for this process.

  6. cAMP/PKA Pathways and S56 Phosphorylation Are Involved in AA/PGE2-Induced Increases in rNaV1.4 Current.

    Science.gov (United States)

    Gu, Hua; Fang, Yan-Jia; Liu, Dong-Dong; Chen, Ping; Mei, Yan-Ai

    2015-01-01

    Arachidonic acid (AA) and its metabolites are important second messengers for ion channel modulation. The effects of extracellular application of AA and its non-metabolized analogue on muscle rNaV1.4 Na+ current has been studied, but little is known about the effects of intracellular application of AA on this channel isoform. Here, we report that intracellular application of AA significantly augmented the rNaV1.4 current peak without modulating the steady-state activation and inactivation properties of the rNaV1.4 channel. These results differed from the effects of extracellular application of AA on rNaV1.4 current. The effects of intracellular AA were mimicked by prostaglandin E2 but not eicosatetraynoic acid (ETYA), the non-metabolized analogue of AA, and were eliminated by treatment with cyclooxygenase inhibitors, flufenamic acid, or indomethacin. AA/PGE2-induced activation of rNaV1.4 channels was mimicked by a cAMP analogue (db-cAMP) and eliminated by a PKA inhibitor, PKAi. Furthermore, inhibition of EP2 and EP4 (PGE2 receptors) with AH6809 and AH23848 reduced the intracellular AA/PGE2-induced increase of rNaV1.4 current. Two mutated channels, rNaV1.4S56A and rNaV1.4T21A, were designed to investigate the role of predicted phosphorylation sites in the AA/PGE2-mediated regulation of rNaV1.4 currents. In rNaV1.4S56A, the effects of intracellular db-cAMP, AA, and PGE2 were significantly reduced. The results of the present study suggest that intracellular AA augments rNaV1.4 current by PGE2/EP receptor-mediated activation of the cAMP/PKA pathway, and that the S56 residue on the channel protein is important for this process.

  7. Cloning of a novel phosphotyrosine binding domain containing molecule, Odin, involved in signaling by receptor tyrosine kinases

    DEFF Research Database (Denmark)

    Pandey, A.; Blagoev, B.; Kratchmarova, I.;

    2002-01-01

    We have used a proteomic approach using mass spectrometry to identify signaling molecules involved in receptor tyrosine kinase signaling pathways. Using affinity purification by anti-phosphotyrosine antibodies to enrich for tyrosine phosphorylated proteins, we have identified a novel signaling mo...

  8. Bruton's Tyrosine Kinase Regulates Shigella flexneri Dissemination in HT-29 Intestinal Cells

    Science.gov (United States)

    Dragoi, Ana-Maria; Talman, Arthur M.

    2013-01-01

    Shigella flexneri is a Gram-negative intracellular pathogen that infects the intestinal epithelium and utilizes actin-based motility to spread from cell to cell. S. flexneri actin-based motility has been characterized in various cell lines, but studies in intestinal cells are limited. Here we characterized S. flexneri actin-based motility in HT-29 intestinal cells. In agreement with studies conducted in various cell lines, we showed that S. flexneri relies on neural Wiskott-Aldrich Syndrome protein (N-WASP) in HT-29 cells. We tested the potential role of various tyrosine kinases involved in N-WASP activation and uncovered a previously unappreciated role for Bruton's tyrosine kinase (Btk) in actin tail formation in intestinal cells. We showed that Btk depletion led to a decrease in N-WASP phosphorylation which affected N-WASP recruitment to the bacterial surface, decreased the number of bacteria displaying actin-based motility, and ultimately affected the efficiency of spread from cell to cell. Finally, we showed that the levels of N-WASP phosphorylation and Btk expression were increased in response to infection, which suggests that S. flexneri infection not only triggers the production of proinflammatory factors as previously described but also manipulates cellular processes required for dissemination in intestinal cells. PMID:23230296

  9. Protein tyrosine phosphatase σ targets apical junction complex proteins in the intestine and regulates epithelial permeability.

    Science.gov (United States)

    Murchie, Ryan; Guo, Cong-Hui; Persaud, Avinash; Muise, Aleixo; Rotin, Daniela

    2014-01-14

    Protein tyrosine phosphatase (PTP)σ (PTPRS) was shown previously to be associated with susceptibility to inflammatory bowel disease (IBD). PTPσ(-/-) mice exhibit an IBD-like phenotype in the intestine and show increased susceptibility to acute models of murine colitis. However, the function of PTPσ in the intestine is uncharacterized. Here, we show an intestinal epithelial barrier defect in the PTPσ(-/-) mouse, demonstrated by a decrease in transepithelial resistance and a leaky intestinal epithelium that was determined by in vivo tracer analysis. Increased tyrosine phosphorylation was observed at the plasma membrane of epithelial cells lining the crypts of the small bowel and colon of the PTPσ(-/-) mouse, suggesting the presence of PTPσ substrates in these regions. Using mass spectrometry, we identified several putative PTPσ intestinal substrates that were hyper-tyrosine-phosphorylated in the PTPσ(-/-) mice relative to wild type. Among these were proteins that form or regulate the apical junction complex, including ezrin. We show that ezrin binds to and is dephosphorylated by PTPσ in vitro, suggesting it is a direct PTPσ substrate, and identified ezrin-Y353/Y145 as important sites targeted by PTPσ. Moreover, subcellular localization of the ezrin phosphomimetic Y353E or Y145 mutants were disrupted in colonic Caco-2 cells, similar to ezrin mislocalization in the colon of PTPσ(-/-) mice following induction of colitis. Our results suggest that PTPσ is a positive regulator of intestinal epithelial barrier, which mediates its effects by modulating epithelial cell adhesion through targeting of apical junction complex-associated proteins (including ezrin), a process impaired in IBD.

  10. Extinction of morphine-dependent conditioned behavior is associated with increased phosphorylation of the GluR1 subunit of AMPA receptors at hippocampal synapses

    OpenAIRE

    Billa, Sophie K.; Sinha, Namita; Rudrabhatla, Sri Rajyalakshmi; Morón, Jose A.

    2008-01-01

    In abstinent opiate addicts, relapse can be triggered by exposure to environmental cues associated with drug use; thus, the disruption of these learned associations may be an effective approach for reducing relapse. Interestingly, glutamatergic systems are thought to be involved in opiate-induced behavioral plasticity. In this study, changes in expression and phosphorylation levels of AMPA glutamate receptor subunits (GluR1, GluR2) in the hippocampus were investigated in rats showing a condit...

  11. Modulating uranium binding affinity in engineered calmodulin EF-hand peptides: effect of phosphorylation.

    Directory of Open Access Journals (Sweden)

    Romain Pardoux

    Full Text Available To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T(9TKE(12 sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from K(d = 25±6 nM to K(d = 5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the subnanomolar range (K(d = 0.25±0.06 nM. FTIR analyses showed that the phosphothreonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the ν(as(P-O and ν(s(P-O IR modes of phosphothreonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in ν(as(UO(2(2+ vibration (from 923 cm(-1 to 908 cm(-1 was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH.

  12. Modulating Uranium Binding Affinity in Engineered Calmodulin EF-Hand Peptides: Effect of Phosphorylation

    Science.gov (United States)

    Pardoux, Romain; Sauge-Merle, Sandrine; Lemaire, David; Delangle, Pascale; Guilloreau, Luc; Adriano, Jean-Marc; Berthomieu, Catherine

    2012-01-01

    To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T9TKE12 sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from Kd = 25±6 nM to Kd = 5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the subnanomolar range (Kd = 0.25±0.06 nM). FTIR analyses showed that the phosphothreonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the νas(P-O) and νs(P-O) IR modes of phosphothreonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in νas(UO2)2+ vibration (from 923 cm−1 to 908 cm−1) was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH. PMID:22870263

  13. A Requirement for SOCS-1 and SOCS-3 Phosphorylation in Bcr-Abl-Induced Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Xiaoxue Qiu

    2012-06-01

    Full Text Available Suppressors of cytokine signaling 1 and 3 (SOCS-1 and SOCS-3 are inhibitors of the Janus tyrosine kinase (JAK/signal transducers and activators of transcription (STAT pathway and function in a negative feedback loop during cytokine signaling. Abl transformation is associated with constitutive activation of JAK/STAT-dependent signaling. However, the mechanism by which Abl oncoproteins bypass SOCS inhibitory regulation remains poorly defined. Here, we demonstrate that coexpression of Bcr-Abl with SOCS-1 or SOCS-3 results in tyrosine phosphorylation of these SOCS proteins. Interestingly, SOCS-1 is highly tyrosine phosphorylated in one of five primary chronic myelogenous leukemia samples. Bcr-Abl-dependent tyrosine phosphorylation of SOCS-1 and SOCS-3 occurs mainly on Tyr 155 and Tyr 204 residues of SOCS-1 and on Tyr 221 residue of SOCS-3. We observed that phosphorylation of these SOCS proteins was associated with their binding to Bcr-Abl. Bcr-Abl-dependent phosphorylation of SOCS-1 and SOCS-3 diminished their inhibitory effects on the activation of JAK and STAT5 and thereby enhanced JAK/STAT5 signaling. Strikingly, disrupting the tyrosine phosphorylation of SOCS-1 or SOCS-3 impaired the expression of Bcl-XL protein and sensitized K562 leukemic cells to undergo apoptosis. Moreover, selective mutation of tyrosine phosphorylation sites of SOCS-1 or SOCS-3 significantly blocked Bcr-Abl-mediated tumorigenesis in nude mice and inhibited Bcr-Abl-mediated murine bone marrow transformation. Together, these results reveal a mechanism of how Bcr-Abl may overcome SOCS-1 and SOCS-3 inhibition to constitutively activate the JAK/STAT-dependent signaling, and suggest that Bcr-Abl may critically requires tyrosine phosphorylation of SOCS-1 and SOCS-3 to mediate tumorigenesis when these SOCS proteins are present in cells.

  14. CCN1 acutely increases nitric oxide production via integrin αvβ3-Akt-S6K-phosphorylation of endothelial nitric oxide synthase at the serine 1177 signaling axis.

    Science.gov (United States)

    Hwang, Soojin; Lee, Hyeon-Ju; Kim, Gyungah; Won, Kyung-Jong; Park, Yoon Shin; Jo, Inho

    2015-12-01

    Although CCN1 (also known as cysteine-rich, angiogenic inducer 61, CYR61) has been reported to promote angiogenesis and neovascularization in endothelial cells (ECs), its effects on endothelial nitric oxide (NO) production have never been studied. Using human umbilical vein ECs, we investigated whether and how CCN1 regulates NO production. CCN1 acutely increased NO production in a time- and dose-dependent manner, which was accompanied by increased phosphorylation of endothelial NO synthase (eNOS) at serine 1177 (eNOS-Ser(1177)), but not that of eNOS-Thr(495) or eNOS-Ser(114). The level of total eNOS expression was unaltered. Treatment with either LY294002, a selective inhibitor of phosphoinositide 3-kinase known as an upstream kinase of Akt, or H-89, an inhibitor of protein kinase A, mitogen- and stress-activated protein kinase 1, Rho-associated protein kinase 2, and ribosomal protein S6 kinase (S6K), inhibited CCN1-stimulated eNOS-Ser(1177) phosphorylation and subsequent NO production. Ectopic expression of small interfering RNA against Akt and S6K significantly inhibited the effects of CCN1. Consistently, CCN1 increased the phosphorylation of Akt-Ser(473) and S6K-Thr(389). However, CCN1 did not alter the expression or secretion of VEGF, a known downstream factor of CCN1 and a potential upstream factor of Akt-mediated eNOS-Ser(1177) phosphorylation. Furthermore, neutralization of integrin αvβ3 with corresponding antibody completely reversed all of the observed effects of CCN1. Moreover, CCN1 increased acetylcholine-induced relaxation in the rat aortas. Finally, we also found that CCN1-stimulated eNOS-Ser(1177) phosphorylation and NO production are true for other types of EC tested. In conclusion, CCN1 acutely increases NO production via activation of a signaling axis in integrin αvβ3-Akt-S6K-eNOS-Ser(1177) phosphorylation, suggesting an important role for CCN1 in vasodilation.

  15. LMTK2-mediated phosphorylation regulates CFTR endocytosis in human airway epithelial cells.

    Science.gov (United States)

    Luz, Simão; Cihil, Kristine M; Brautigan, David L; Amaral, Margarida D; Farinha, Carlos M; Swiatecka-Urban, Agnieszka

    2014-05-23

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl(-)-selective ion channel expressed in fluid-transporting epithelia. Lemur tyrosine kinase 2 (LMTK2) is a transmembrane protein with serine and threonine but not tyrosine kinase activity. Previous work identified CFTR as an in vitro substrate of LMTK2, suggesting a functional link. Here we demonstrate that LMTK2 co-immunoprecipitates with CFTR and phosphorylates CFTR-Ser(737) in human airway epithelial cells. LMTK2 knockdown or expression of inactive LMTK2 kinase domain increases cell surface density of CFTR by attenuating its endocytosis in human airway epithelial cells. Moreover, LMTK2 knockdown increases Cl(-) secretion mediated by the wild-type and rescued ΔF508-CFTR. Compared with the wild-type CFTR, the phosphorylation-deficient mutant CFTR-S737A shows increased cell surface density and decreased endocytosis. These results demonstrate a novel mechanism of the phospho-dependent inhibitory effect of CFTR-Ser(737) mediated by LMTK2 via endocytosis and inhibition of the cell surface density of CFTR Cl(-) channels. These data indicate that targeting LMTK2 may increase the cell surface density of CFTR Cl(-) channels and improve stability of pharmacologically rescued ΔF508-CFTR in patients with cystic fibrosis.

  16. Activation of the low molecular weight protein tyrosine phosphatase in keratinocytes exposed to hyperosmotic stress.

    Directory of Open Access Journals (Sweden)

    Rodrigo A Silva

    Full Text Available Herein, we provide new contribution to the mechanisms involved in keratinocytes response to hyperosmotic shock showing, for the first time, the participation of Low Molecular Weight Protein Tyrosine Phosphatase (LMWPTP activity in this event. We reported that sorbitol-induced osmotic stress mediates alterations in the phosphorylation of pivotal cytoskeletal proteins, particularly Src and cofilin. Furthermore, an increase in the expression of the phosphorylated form of LMWPTP, which was followed by an augment in its catalytic activity, was observed. Of particular importance, these responses occurred in an intracellular milieu characterized by elevated levels of reduced glutathione (GSH and increased expression of the antioxidant enzymes glutathione peroxidase and glutathione reductase. Altogether, our results suggest that hyperosmostic stress provides a favorable cellular environment to the activation of LMWPTP, which is associated with increased expression of antioxidant enzymes, high levels of GSH and inhibition of Src kinase. Finally, the real contribution of LMWPTP in the hyperosmotic stress response of keratinocytes was demonstrated through analysis of the effects of ACP1 gene knockdown in stressed and non-stressed cells. LMWPTP knockdown attenuates the effects of sorbitol induced-stress in HaCaT cells, mainly in the status of Src kinase, Rac and STAT5 phosphorylation and activity. These results describe for the first time the participation of LMWPTP in the dynamics of cytoskeleton rearrangement during exposure of human keratinocytes to hyperosmotic shock, which may contribute to cell death.

  17. Systems-wide analysis of BCR signalosomes and downstream phosphorylation and ubiquitylation

    DEFF Research Database (Denmark)

    Satpathy, Shankha; Wagner, Sebastian A; Beli, Petra;

    2015-01-01

    ) and to investigate the dynamics of downstream phosphorylation and ubiquitylation signaling. We identify most of the previously known components of BCR signaling, as well as many proteins that have not yet been implicated in this system. BCR activation leads to rapid tyrosine phosphorylation and ubiquitylation...

  18. Phosphorylation of brain proteins in generalized convulsions

    Energy Technology Data Exchange (ETDEWEB)

    Horan, M.P.

    1986-01-01

    Phosphorylation of neuronal proteins is being proposed as a modulating influence on several aspects of neuronal function. By labeling proteins with radioactive phosphorus (/sup 32/P) and then separating these proteins by polyacrylamide gel electrophoresis, the author can determine what factors change the phosphorylation of these proteins. They have used such a system to analyze the effects of generalized convulsions on protein phosphorylation. Electroshock (ES) and pentylenetetrazol (PTZ) were utilized to produce generalized convulsions. Brain membranes, taken from rats immediately after a convulsion, exhibited an increase in protein phosphorylation in vitro. The most noticeable change took place in proteins in the 18,000-20,000 MW range. They have designated these proteins as the low molecular weight (LMW) proteins. The change in phosphorylation was basically the same after one convulsions as after six daily convulsions. Twenty-four hours after a single convulsion no change in phosphorylation was observed. When rat membranes are exposed to PTZ in vitro, phosphorylation is increased at 20 sec but has returned to control level at 90 sec of incubation. This effect is produced without a convulsion. In general, as the concentration of magnesium is increased from 5 mM to 10 mM phosphorylation is increased. Increasing the incubation time from 20 sec to 90 sec and increasing the calcium concentration to 10 mM both decrease phosphorylation of the LMW proteins. Human temporal cortex samples present with phosphorylated proteins having patterns very similar to those in rat membranes.

  19. Proteínas tirosina fosfatases: propriedades e funções biológicas Protein tyrosine phosphatases: properties and biological functions

    Directory of Open Access Journals (Sweden)

    Hiroshi Aoyama

    2003-12-01

    Full Text Available Protein phosphorylation-dephosphorylation catalyzed by the opposing and dynamic action of protein kinases and phosphatases probably, is the most crucial chemical reaction taking place in living organisms. Protein phosphatases are classified according to their substrate specificity and sensitivity to inhibitory or activator agents, into two families of protein phosphatases: serine/threonine phosphatases and tyrosine phosphatases (PTPs. PTPs can be divided into 3 groups: tyrosine specific phosphatases, dual and low molecular weight phosphatases. The role of tyrosine phosphorylation in mitogenic signaling is well documented, and one would predict that vanadate, pervanadate and other oxidant agents (protein tyrosine phosphatase inhibitors may act as a growth stimulator.

  20. Tyrosine metabolic enzymes from insects and mammals: a comparative perspective.

    Science.gov (United States)

    Vavricka, Christopher John; Han, Qian; Mehere, Prajwalini; Ding, Haizhen; Christensen, Bruce M; Li, Jianyong

    2014-02-01

    Differences in the metabolism of tyrosine between insects and mammals present an interesting example of molecular evolution. Both insects and mammals possess fine-tuned systems of enzymes to meet their specific demands for tyrosine metabolites; however, more homologous enzymes involved in tyrosine metabolism have emerged in many insect species. Without knowledge of modern genomics, one might suppose that mammals, which are generally more complex than insects and require tyrosine as a precursor for important catecholamine neurotransmitters and for melanin, should possess more enzymes to control tyrosine metabolism. Therefore, the question of why insects actually possess more tyrosine metabolic enzymes is quite interesting. It has long been known that insects rely heavily on tyrosine metabolism for cuticle hardening and for innate immune responses, and these evolutionary constraints are likely the key answers to this question. In terms of melanogenesis, mammals also possess a high level of regulation; yet mammalian systems possess more mechanisms for detoxification whereas insects accelerate pathways like melanogenesis and therefore must bear increased oxidative pressure. Our research group has had the opportunity to characterize the structure and function of many key proteins involved in tyrosine metabolism from both insects and mammals. In this mini review we will give a brief overview of our research on tyrosine metabolic enzymes in the scope of an evolutionary perspective of mammals in comparison to insects.

  1. Incorporation of Ortho- and Meta-Tyrosine Into Cellular Proteins Leads to Erythropoietin-Resistance in an Erythroid Cell Line

    Directory of Open Access Journals (Sweden)

    Esztella Mikolás

    2014-04-01

    Full Text Available Background/Aims: Erythropoietin-resistance is an unsolved concern in the treatment of renal anaemia. We aimed to investigate the possible role of ortho- and meta-tyrosine - the hydroxyl free radical products of L-phenylalanine - in the development of erythropoietin-resistance. Methods: TF-1 erythroblast cell line was used. Cell concentration was determined on day 1; 2 and 3 by two independent observers simultaneously in Bürker cell counting chambers. Protein concentration was determined with colorimetric method. Para-, ortho- and meta-tyrosine levels were measured using reverse phase-HPLC with fluorescence detection. Using Western blot method activating phosphorylation of STAT5 and ERK1/2 were investigated. Results: We found a time- and concentration-dependent decrease of erythropoietin-induced proliferative activity in case of ortho- and meta-tyrosine treated TF-1 erythroblasts, compared to the para-tyrosine cultured cells. Decreased erythropoietin-response could be regained with a competitive dose of para-tyrosine. Proteins of erythroblasts treated by ortho- or meta-tyrosine had lower para-tyrosine and higher ortho- or meta-tyrosine content. Activating phosphorylation of ERK and STAT5 due to erythropoietin was practically prevented by ortho- or meta-tyrosine treatment. Conclusion: According to this study elevated ortho- and meta-tyrosine content of erythroblasts may lead to the dysfunction of intracellular signaling, resulting in erythropoietin-hyporesponsiveness.

  2. Protein tyrosine nitration

    Science.gov (United States)

    Chaki, Mounira; Leterrier, Marina; Barroso, Juan B

    2009-01-01

    Nitric oxide metabolism in plant cells has a relative short history. Nitration is a chemical process which consists of introducing a nitro group (-NO2) into a chemical compound. in biological systems, this process has been found in different molecules such as proteins, lipids and nucleic acids that can affect its function. This mini-review offers an overview of this process with special emphasis on protein tyrosine nitration in plants and its involvement in the process of nitrosative stress. PMID:19826215

  3. Altered regulation of tau phosphorylation in a mouse model of down syndrome aging.

    Science.gov (United States)

    Sheppard, Olivia; Plattner, Florian; Rubin, Anna; Slender, Amy; Linehan, Jacqueline M; Brandner, Sebastian; Tybulewicz, Victor L J; Fisher, Elizabeth M C; Wiseman, Frances K

    2012-04-01

    Down syndrome (DS) results from trisomy of human chromosome 21 (Hsa21) and is associated with an increased risk of Alzheimer's disease (AD). Here, using the unique transchromosomic Tc1 mouse model of DS we investigate the influence of trisomy of Hsa21 on the protein tau, which is hyperphosphorylated in Alzheimer's disease. We show that in old, but not young, Tc1 mice increased phosphorylation of tau occurs at a site suggested to be targeted by the Hsa21 encoded kinase, dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A). We show that DYRK1A is upregulated in young and old Tc1 mice, but that young trisomic mice may be protected from accumulating aberrantly phosphorylated tau. We observe that the key tau kinase, glycogen synthase kinase3-β (GSK-3β) is aberrantly phosphorylated at an inhibitory site in the aged Tc1 brain which may reduce total glycogen synthase kinase3-β activity. It is possible that a similar mechanism may also occur in people with DS.

  4. Expression, purification, characterization and crystallization of non- and phosphorylated states of JAK2 and JAK3 kinase domain

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Troii; Emmons, Thomas L.; Chrencik, Jill E.; Gormley, Jennifer A.; Weinberg, Robin A.; Leone, Joseph W.; Hirsch, Jeffrey L.; Saabye, Matthew J.; Schindler, John F.; Day, Jacqueline E.; Williams, Jennifer M.; Kiefer, James R.; Lightle, Sandra A.; Harris, Melissa S.; Guru, Siradanahalli; Fischer, H. David; Tomasselli, Alfredo G. (Pfizer)

    2012-05-29

    Janus-associated kinases (JAKs) play critical roles in cytokine signaling, and have emerged as viable therapeutic targets in inflammation and oncology related diseases. To date, targeting JAK proteins with highly selective inhibitor compounds have remained elusive. We have expressed the active kinase domains for both JAK2 and JAK3 and devised purification protocols to resolve the non-, mono- (Y1007) and diphosphorylated (Y1007 and Y1008) states of JAK2 and non- and monophosphorylated states of JAK3 (Y980). An optimal purified protein yield of 20, 29 and 69 mg per 20 L cell culture was obtained for the three JAK2 forms, respectively, and 12.2 and 2.3 mg per 10 L fermentation for the two JAK3 forms allowing detailed biochemical and biophysical studies. To monitor the purification process we developed a novel HPLC activity assay where a sequential order of phosphorylation was observed whereby the first tyrosine residue was completely phosphorylated prior to phosphorylation of the tandem tyrosine residue. A Caliper-based microfluidics assay was used to determine the kinetic parameters (K{sub m} and k{sub cat}) for each phosphorylated state, showing that monophosphorylated (Y1007) JAK2 enzyme activity increased 9-fold over that of the nonphosphorylated species, and increased an additional 6-fold for the diphosphorylated (Y1007/Y1008) species, while phosphorylation of JAK3 resulted in a negligible increase in activity. Moreover, crystal structures have been generated for each isolated state of JAK2 and JAK3 with resolutions better than 2.4 {angstrom}. The generation of these reagents has enabled kinetic and structural characterization to inform the design of potent and selective inhibitors of the JAK family.

  5. Global tyrosine kinome profiling of human thyroid tumors identifies Src as a promising target for invasive cancers

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nancy L., E-mail: nlcho@partners.org [Department of Surgery, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Lin, Chi-Iou [Department of Surgery, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Du, Jinyan [Broad Institute, Massachusetts Institute of Technology, Cambridge, MA 02142 (United States); Whang, Edward E. [Department of Surgery, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Ito, Hiromichi [Department of Surgery, Michigan State University, Lansing, MI 48912 (United States); Moore, Francis D.; Ruan, Daniel T. [Department of Surgery, Brigham and Women' s Hospital, Boston, MA 02115 (United States)

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Kinome profiling is a novel technique for identifying activated kinases in human cancers. Black-Right-Pointing-Pointer Src activity is increased in invasive thyroid cancers. Black-Right-Pointing-Pointer Inhibition of Src activity decreased proliferation and invasion in vitro. Black-Right-Pointing-Pointer Further investigation of Src targeted therapies in thyroid cancer is warranted. -- Abstract: Background: Novel therapies are needed for the treatment of invasive thyroid cancers. Aberrant activation of tyrosine kinases plays an important role in thyroid oncogenesis. Because current targeted therapies are biased toward a small subset of tyrosine kinases, we conducted a study to reveal novel therapeutic targets for thyroid cancer using a bead-based, high-throughput system. Methods: Thyroid tumors and matched normal tissues were harvested from twenty-six patients in the operating room. Protein lysates were analyzed using the Luminex immunosandwich, a bead-based kinase phosphorylation assay. Data was analyzed using GenePattern 3.0 software and clustered according to histology, demographic factors, and tumor status regarding capsular invasion, size, lymphovascular invasion, and extrathyroidal extension. Survival and invasion assays were performed to determine the effect of Src inhibition in papillary thyroid cancer (PTC) cells. Results: Tyrosine kinome profiling demonstrated upregulation of nine tyrosine kinases in tumors relative to matched normal thyroid tissue: EGFR, PTK6, BTK, HCK, ABL1, TNK1, GRB2, ERK, and SRC. Supervised clustering of well-differentiated tumors by histology, gender, age, or size did not reveal significant differences in tyrosine kinase activity. However, supervised clustering by the presence of invasive disease showed increased Src activity in invasive tumors relative to non-invasive tumors (60% v. 0%, p < 0.05). In vitro, we found that Src inhibition in PTC cells decreased cell invasion and proliferation

  6. Compensatory upregulation of tyrosine kinase Etk/BMX in response to androgen deprivation promotes castration-resistant growth of prostate cancer cells.

    Science.gov (United States)

    Dai, Bojie; Chen, Hege; Guo, Shengjie; Yang, Xi; Linn, Douglas E; Sun, Feng; Li, Wei; Guo, Zhiyong; Xu, Kexin; Kim, Oekyung; Kong, Xiangtian; Melamed, Jonathan; Qiu, Shaopeng; Chen, Hegang; Qiu, Yun

    2010-07-01

    We previously showed that targeted expression of non-receptor tyrosine kinase Etk/BMX in mouse prostate induces prostate intraepithelial neoplasia, implying a possible causal role of Etk in prostate cancer development and progression. Here, we report that Etk is upregulated in both human and mouse prostates in response to androgen ablation. Etk expression seems to be differentially regulated by androgen and interleukin 6 (IL-6), which is possibly mediated by the androgen receptor (AR) in prostate cancer cells. Our immunohistochemical analysis of tissue microarrays containing 112 human prostate tumor samples revealed that Etk expression is elevated in hormone-resistant prostate cancer and positively correlated with tyrosine phosphorylation of AR (Pearson correlation coefficient rho = 0.71, P < 0.0001). AR tyrosine phosphorylation is increased in Etk-overexpressing cells, suggesting that Etk may be another tyrosine kinase, in addition to Src and Ack-1, which can phosphorylate AR. We also showed that Etk can directly interact with AR through its Src homology 2 domain, and such interaction may prevent the association of AR with Mdm2, leading to stabilization of AR under androgen-depleted conditions. Overexpression of Etk in androgen-sensitive LNCaP cells promotes tumor growth while knocking down Etk expression in hormone-insensitive prostate cancer cells by a specific shRNA that inhibits tumor growth under androgen-depleted conditions. Taken together, our data suggest that Etk may be a component of the adaptive compensatory mechanism activated by androgen ablation in prostate and may play a role in hormone resistance, at least in part, through direct modulation of the AR signaling pathway.

  7. SIMAC - A phosphoproteomic strategy for the rapid separation of mono-phosphorylated from multiply phosphorylated peptides

    DEFF Research Database (Denmark)

    Thingholm, Tine E; Jensen, Ole N; Robinson, Phillip J

    2008-01-01

    spectrometric analysis, such as immobilized metal affinity chromatography or titanium dioxide the coverage of the phosphoproteome of a given sample is limited. Here we report a simple and rapid strategy - SIMAC - for sequential separation of mono-phosphorylated peptides and multiply phosphorylated peptides from...... and an optimized titanium dioxide chromatographic method. More than double the total number of identified phosphorylation sites was obtained with SIMAC, primarily from a three-fold increase in recovery of multiply phosphorylated peptides....

  8. Effects of tyrosine kinase and phosphatase inhibitors on mitosis progression in synchronized tobacco BY-2 cells.

    Science.gov (United States)

    Sheremet, Ya A; Yemets, A I; Azmi, A; Vissenberg, K; Verbelen, J P; Blume, Ya B

    2012-01-01

    To test whether reversible tubulin phosphorylation plays any role in the process of plant mitosis the effects of inhibitors of tyrosine kinases, herbimycin A, genistein and tyrphostin AG 18, and of an inhibitor of tyrosine phosphatases, sodium orthovanadate, on microtubule organization and mitosis progression in a synchronized BY-2 culture has been investigated. It was found that treatment with inhibitors of tyrosine kinases of BY-2 cells at the G2/M transition did not lead to visible disturbances of mitotic microtubule structures, while it did reduce the frequency of their appearance. We assume that a decreased tyrosine phosphorylation level could alter the microtubule dynamic instability parameters during interphase/prophase transition. All types of tyrosine kinase inhibitors used caused a prophase delay: herbimycin A and genistein for 2 h, and tyrphostin AG18 for 1 h. Thereafter the peak of mitosis was displaced for 1 h by herbimycin A or genistein exposure, but after tyrphostin AG18 treatment the timing of the mitosis-peak was comparable to that in control cells. Enhancement of tyrosine phosphorylation induced by the tyrosine phosphatase inhibitor resulted in the opposite effect on BY-2 mitosis transition. Culture treatment with sodium orthovanadate during 1 h resulted in an accelerated start of the prophase and did not lead to the alteration in time of the mitotic index peak formation, as compared to control cells. We suppose that the reversible tyrosine phosphorylation can be involved in the regulation of interphase to M phase transition possibly through regulation of microtubule dynamics in plant cells.

  9. Blockade of Hedgehog Signaling Synergistically Increases Sensitivity to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Non-Small-Cell Lung Cancer Cell Lines.

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Bai

    Full Text Available Aberrant activation of the hedgehog (Hh signaling pathway has been implicated in the epithelial-to-mesenchymal transition (EMT and cancer stem-like cell (CSC maintenance; both processes can result in tumor progression and treatment resistance in several types of human cancer. Hh cooperates with the epidermal growth factor receptor (EGFR signaling pathway in embryogenesis. We found that the Hh signaling pathway was silenced in EGFR-TKI-sensitive non-small-cell lung cancer (NSCLC cells, while it was inappropriately activated in EGFR-TKI-resistant NSCLC cells, accompanied by EMT induction and ABCG2 overexpression. Upregulation of Hh signaling through extrinsic SHH exposure downregulated E-cadherin expression and elevated Snail and ABCG2 expression, resulting in gefitinib tolerance (P < 0.001 in EGFR-TKI-sensitive cells. Blockade of the Hh signaling pathway using the SMO antagonist SANT-1 restored E-cadherin expression and downregulate Snail and ABCG2 in EGFR-TKI-resistant cells. A combination of SANT-1 and gefitinib markedly inhibited tumorigenesis and proliferation in EGFR-TKI-resistant cells (P < 0.001. These findings indicate that hyperactivity of Hh signaling resulted in EGFR-TKI resistance, by EMT introduction and ABCG2 upregulation, and blockade of Hh signaling synergistically increased sensitivity to EGFR-TKIs in primary and secondary resistant NSCLC cells. E-cadherin expression may be a potential biomarker of the suitability of the combined application of an Hh inhibitor and EGFR-TKIs in EGFR-TKI-resistant NSCLCs.

  10. Exploring the diversity of protein modifications: special bacterial phosphorylation systems

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Grangeasse, Christophe; Turgay, Kürşad

    2016-01-01

    that has been most thoroughly investigated. Unlike in eukarya, a large diversity of enzyme families has been shown to phosphorylate and dephosphorylate proteins on various amino acids with different chemical properties in bacteria. In this review, after a brief overview of the known bacterial...... phosphorylation systems, we focus on more recently discovered and less widely known kinases and phosphatases. Namely, we describe in detail tyrosine- and arginine-phosphorylation together with some examples of unusual serine-phosphorylation systems and discuss their potential role and function in bacterial...... physiology, and regulatory networks. Investigating these unusual bacterial kinase and phosphatases is not only important to understand their role in bacterial physiology but will help to generally understand the full potential and evolution of protein phosphorylation for signal transduction, protein...

  11. Oxidative stress-mediated NFκB phosphorylation upregulates p62/SQSTM1 and promotes retinal pigmented epithelial cell survival through increased autophagy

    Science.gov (United States)

    Qi, Xiaoping; Beli, Eleni; Rao, Haripriya V.; Ding, Jindong; Ip, Colin S.; Gu, Hongmei; Akin, Debra; Dunn, William A.; Bowes Rickman, Catherine; Lewin, Alfred S.; Grant, Maria B.; Boulton, Michael E.

    2017-01-01

    p62 is a scaffolding adaptor implicated in the clearance of protein aggregates by autophagy. Reactive oxygen species (ROS) can either stimulate or inhibit NFκB-mediated gene expression influencing cellular fate. We studied the effect of hydrogen peroxide (H2O2)-mediated oxidative stress and NFκB signaling on p62 expression in the retinal pigment epithelium (RPE) and investigated its role in regulation of autophagy and RPE survival against oxidative damage. Cultured human RPE cell line ARPE-19 and primary human adult and fetal RPE cells were exposed to H2O2-induced oxidative stress. The human apolipoprotein E4 targeted-replacement (APOE4) mouse model of AMD was used to study expression of p62 and other autophagy proteins in the retina. p62, NFκB p65 (total, phosphorylated, nuclear and cytoplasmic) and ATG10 expression was assessed by mRNA and protein analyses. Cellular ROS and mitochondrial superoxide were measured by CM-H2DCFDA and MitoSOX staining respectively. Mitochondrial viability was determined using MTT activity. qPCR-array system was used to investigate autophagic genes affected by p62. Nuclear and cytoplasmic levels of NFκB p65 were evaluated after cellular fractionation by Western blotting. We report that p62 is up-regulated in RPE cells under H2O2-induced oxidative stress and promotes autophagic activity. Depletion of endogenous p62 reduces autophagy by downregulation of ATG10 rendering RPE more susceptible to oxidative damage. NFκB p65 phosphorylation at Ser-536 was found to be critical for p62 upregulation in response to oxidative stress. Proteasome inhibition by H2O2 causes p62-NFκB signaling as antioxidant pre-treatment reversed p62 expression and p65 phosphorylation when RPE was challenged by H2O2 but not when by Lactacystin. p62 protein but not RNA levels are elevated in APOE4-HFC AMD mouse model, suggesting reduction of autophagic flux in disease conditions. Our findings suggest that p62 is necessary for RPE cytoprotection under oxidative

  12. Oxidative stress-mediated NFκB phosphorylation upregulates p62/SQSTM1 and promotes retinal pigmented epithelial cell survival through increased autophagy.

    Science.gov (United States)

    Song, Chunjuan; Mitter, Sayak K; Qi, Xiaoping; Beli, Eleni; Rao, Haripriya V; Ding, Jindong; Ip, Colin S; Gu, Hongmei; Akin, Debra; Dunn, William A; Bowes Rickman, Catherine; Lewin, Alfred S; Grant, Maria B; Boulton, Michael E

    2017-01-01

    p62 is a scaffolding adaptor implicated in the clearance of protein aggregates by autophagy. Reactive oxygen species (ROS) can either stimulate or inhibit NFκB-mediated gene expression influencing cellular fate. We studied the effect of hydrogen peroxide (H2O2)-mediated oxidative stress and NFκB signaling on p62 expression in the retinal pigment epithelium (RPE) and investigated its role in regulation of autophagy and RPE survival against oxidative damage. Cultured human RPE cell line ARPE-19 and primary human adult and fetal RPE cells were exposed to H2O2-induced oxidative stress. The human apolipoprotein E4 targeted-replacement (APOE4) mouse model of AMD was used to study expression of p62 and other autophagy proteins in the retina. p62, NFκB p65 (total, phosphorylated, nuclear and cytoplasmic) and ATG10 expression was assessed by mRNA and protein analyses. Cellular ROS and mitochondrial superoxide were measured by CM-H2DCFDA and MitoSOX staining respectively. Mitochondrial viability was determined using MTT activity. qPCR-array system was used to investigate autophagic genes affected by p62. Nuclear and cytoplasmic levels of NFκB p65 were evaluated after cellular fractionation by Western blotting. We report that p62 is up-regulated in RPE cells under H2O2-induced oxidative stress and promotes autophagic activity. Depletion of endogenous p62 reduces autophagy by downregulation of ATG10 rendering RPE more susceptible to oxidative damage. NFκB p65 phosphorylation at Ser-536 was found to be critical for p62 upregulation in response to oxidative stress. Proteasome inhibition by H2O2 causes p62-NFκB signaling as antioxidant pre-treatment reversed p62 expression and p65 phosphorylation when RPE was challenged by H2O2 but not when by Lactacystin. p62 protein but not RNA levels are elevated in APOE4-HFC AMD mouse model, suggesting reduction of autophagic flux in disease conditions. Our findings suggest that p62 is necessary for RPE cytoprotection under oxidative

  13. Association of MMP7 -181A→G Promoter Polymorphism with Gastric Cancer Risk: INFLUENCE OF NICOTINE IN DIFFERENTIAL ALLELE-SPECIFIC TRANSCRIPTION VIA INCREASED PHOSPHORYLATION OF cAMP-RESPONSE ELEMENT-BINDING PROTEIN (CREB).

    Science.gov (United States)

    Kesh, Kousik; Subramanian, Lakshmi; Ghosh, Nillu; Gupta, Vinayak; Gupta, Arnab; Bhattacharya, Samir; Mahapatra, Nitish R; Swarnakar, Snehasikta

    2015-06-05

    Elevated expression of matrix metalloproteinase7 (MMP7) has been demonstrated to play a pivotal role in cancer invasion. The -181A→G (rs11568818) polymorphism in the MMP7 promoter modulates gene expression and possibly affects cancer progression. Here, we evaluated the impact of -181A→G polymorphism on MMP7 promoter activity and its association with gastric cancer risk in eastern Indian case-control cohorts (n = 520). The GG genotype as compared with the AA genotype was predisposed (p = 0.02; odds ratio = 1.9, 95% confidence interval = 1.1-3.3) to gastric cancer risk. Stratification analysis showed that tobacco addiction enhanced gastric cancer risk in GG subjects when compared with AA subjects (p = 0.03, odds ratio = 2.46, and 95% confidence interval = 1.07-5.68). Meta-analysis revealed that tobacco enhanced the risk for cancer more markedly in AG and GG carriers. Activity and expression of MMP7 were significantly higher in GG than in AA carriers. In support, MMP7 promoter-reporter assays showed greater transcriptional activity toward A to G transition under basal/nicotine-induced/cAMP-response element-binding protein (CREB) overexpressed conditions in gastric adenocarcinoma cells. Moreover, nicotine (a major component of tobacco) treatment significantly up-regulated MMP7 expression due to enhanced CREB phosphorylation followed by its nuclear translocation in gastric adenocarcinoma cells. Furthermore, chromatin immunoprecipitation experiments revealed higher binding of phosphorylated CREB with the -181G than the -181A allele. Altogether, specific binding of phosphorylated CREB to the G allele-carrying promoter enhances MMP7 gene expression that is further augmented by nicotine due to increased CREB phosphorylation and thereby increases the risk for gastric cancer.

  14. Enzyme kinetic characterization of protein tyrosine phosphatases

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Branner, S.; Møller, K. B.

    2003-01-01

    Protein tyrosine phosphatases (PTPs) play a central role in cellular signaling processes, resulting in an increased interest in modulating the activities of PTPs. We therefore decided to undertake a detailed enzyme kinetic evaluation of various transmembrane and cytosolic PTPs (PTPalpha, PTPbeta...

  15. Protein kinase CK2 triggers cytosolic zinc signaling pathways by phosphorylation of zinc channel ZIP7.

    Science.gov (United States)

    Taylor, Kathryn M; Hiscox, Stephen; Nicholson, Robert I; Hogstrand, Christer; Kille, Peter

    2012-02-07

    The transition element zinc, which has recently been identified as an intracellular second messenger, has been implicated in various signaling pathways, including those leading to cell proliferation. Zinc channels of the ZIP (ZRT1- and IRT1-like protein) family [also known as solute carrier family 39A (SLC39A)] transiently increase the cytosolic free zinc (Zn(2+)) concentration in response to extracellular signals. We show that phosphorylation of evolutionarily conserved residues in endoplasmic reticulum zinc channel ZIP7 is associated with the gated release of Zn(2+) from intracellular stores, leading to activation of tyrosine kinases and the phosphorylation of AKT and extracellular signal-regulated kinases 1 and 2. Through pharmacological manipulation, proximity ligation assay, and mutagenesis, we identified protein kinase CK2 as the kinase responsible for ZIP7 activation. Together, the present results show that transition element channels in eukaryotes can be activated posttranslationally by phosphorylation, as part of a cell signaling cascade. Our study links the regulated release of zinc from intracellular stores to phosphorylation of kinases involved in proliferative responses and cell migration, suggesting a functional role for ZIP7 and zinc signals in these events. The connection with proliferation and migration, as well as the activation of ZIP7 by CK2, a kinase that is antiapoptotic and promotes cell division, suggests that ZIP7 may provide a target for anticancer drug development.

  16. Cell cycle-dependent phosphorylation of pRb-like protein in root meristem cells of Vicia faba.

    Science.gov (United States)

    Polit, Justyna Teresa; Kaźmierczak, Andrzej; Walczak-Drzewiecka, Aurelia

    2012-01-01

    The retinoblastoma tumor suppressor protein (pRb) regulates cell cycle progression by controlling the G1-to-S phase transition. As evidenced in mammals, pRb has three functionally distinct binding domains and interacts with a number of proteins including the E2F family of transcription factors, proteins with a conserved LxCxE motif (D-type cyclin), and c-Abl tyrosine kinase. CDK-mediated phosphorylation of pRb inhibits its ability to bind target proteins, thus enabling further progression of the cell cycle. As yet, the roles of pRb and pRb-binding factors have not been well characterized in plants. By using antibody which specifically recognizes phosphorylated serines (S807/811) in the c-Abl tyrosine kinase binding C-domain of human pRb, we provide evidence for the cell cycle-dependent changes in pRb-like proteins in root meristems cells of Vicia faba. An increased phosphorylation of this protein has been found correlated with the G1-to-S phase transition.

  17. Exaggerated phosphorylation of brain tau protein in CRH KO mice exposed to repeated immobilization stress.

    Science.gov (United States)

    Kvetnansky, Richard; Novak, Petr; Vargovic, Peter; Lejavova, Katarina; Horvathova, Lubica; Ondicova, Katarina; Manz, George; Filipcik, Peter; Novak, Michal; Mravec, Boris

    2016-07-01

    Neuroendocrine and behavioral stress responses are orchestrated by corticotropin-releasing hormone (CRH) and norepinephrine (NE) synthesizing neurons. Recent findings indicate that stress may promote development of neurofibrillary pathology in Alzheimer's disease. Therefore, we investigated relationships among stress, tau protein phosphorylation, and brain NE using wild-type (WT) and CRH-knockout (CRH KO) mice. We assessed expression of phosphorylated tau (p-tau) at the PHF-1 epitope and NE concentrations in the locus coeruleus (LC), A1/C1 and A2/C2 catecholaminergic cell groups, hippocampus, amygdala, nucleus basalis magnocellularis, and frontal cortex of unstressed, singly stressed or repeatedly stressed mice. Moreover, gene expression and protein levels of tyrosine hydroxylase (TH) and CRH receptor mRNA were determined in the LC. Plasma corticosterone levels were also measured. Exposure to a single stress increases tau phosphorylation throughout the brain in WT mice when compared to singly stressed CRH KO animals. In contrast, repeatedly stressed CRH KO mice showed exaggerated tau phosphorylation relative to WT controls. We also observed differences in extent of tau phosphorylation between investigated structures, e.g. the LC and hippocampus. Moreover, CRH deficiency leads to different responses to stress in gene expression of TH, NE concentrations, CRH receptor mRNA, and plasma corticosterone levels. Our data indicate that CRH effects on tau phosphorylation are dependent on whether stress is single or repeated, and differs between brain regions. Our findings indicate that CRH attenuates mechanisms responsible for development of stress-induced tau neuropathology, particularly in conditions of chronic stress. However, the involvement of central catecholaminergic neurons in these mechanisms remains unclear and is in need of further investigation.

  18. Activation of nonreceptor tyrosine kinase Bmx/Etk mediated by phosphoinositide 3-kinase, epidermal growth factor receptor, and ErbB3 in prostate cancer cells.

    Science.gov (United States)

    Jiang, Xinnong; Borgesi, Robert A; McKnight, Nicole C; Kaur, Ramneet; Carpenter, Christopher L; Balk, Steven P

    2007-11-09

    Pathways activated downstream of constitutively active phosphatidylinositol (PI) 3-kinase in PTEN-deficient prostate cancer (PCa) cells are possible therapeutic targets. We found that the nonreceptor Tec family tyrosine kinase Bmx/Etk was activated by tyrosine phosphorylation downstream of Src and PI 3-kinase in PTEN-deficient LNCaP and PC3 PCa cells and that Bmx down-regulation by short interfering RNA markedly inhibited LNCaP cell growth. Bmx also associated with ErbB3 in LNCaP cells, and heregulin-beta1 enhanced this interaction and further stimulated Bmx activity. Epidermal growth factor (EGF) similarly stimulated an interaction between Bmx and EGF receptor and rapidly increased Bmx kinase activity. Bmx stimulation in response to heregulin-beta1 and EGF was Src-dependent, and heregulin-beta1 stimulation of Bmx was also PI 3-kinase-dependent. In contrast, the rapid tyrosine phosphorylation and activation of Bmx in response to EGF was PI 3-kinase-independent. Taken together, these results demonstrate that Bmx is a critical downstream target of the constitutively active PI 3-kinase in PTEN-deficient PCa cells and further show that Bmx is recruited by the EGF receptor and ErbB3 and activated in response to their respective ligands. Therefore, Bmx may be a valuable therapeutic target in PCa and other epithelial malignancies in which PI 3-kinase or EGF receptor family pathways are activated.

  19. O-GlcNAc modification: why so intimately associated with phosphorylation?

    Directory of Open Access Journals (Sweden)

    Ande Sudharsana R

    2011-01-01

    Full Text Available Abstract Post-translational modification of proteins at serine and threonine side chains by β-N-acetylglucosamine (O-GlcNAc mediated by the enzyme β-N-acetylglucosamine transferase has been emerging as a fundamental regulatory mechanism encompassing a wide range of proteins involved in cell division, metabolism, transcription and cell signaling. Furthermore, an extensive interplay between O-GlcNAc modification and serine/threonine phosphorylation in a variety of proteins has been reported to exist. However, our understanding of the regulatory mechanisms involved in O-GlcNAc modification and its interplay with serine/threonine phosphorylation in proteins is still elusive. Recent success in the mapping of O-GlcNAc modification sites in proteins as a result of technological advancement in mass spectrometry have revealed two important clues which may be inherently connected to the regulation of O-GlcNAc modification and its interplay with phosphorylation in proteins. First, almost all O-GlcNAc modified proteins are known phospho proteins. Second, the prevalence of tyrosine phosphorylation among O-GlcNAc modified proteins is exceptionally higher (~68% than its normal occurrence (~2% alone. We hypothesize that phosphorylation may be a requisite for O-GlcNAc modification and tyrosine phosphorylation plays a role in the interplay between O-GlcNAc modification and serine/threonine phosphorylation in proteins. In other words, the interplay between O-GlcNAc modification and phosphorylation is not limited to serine/threonine phosphorylation but also includes tyrosine phosphorylation. Our hypothesis provides an opportunity to understand the underlying mechanism involved in O-GlcNAc modification and its interplay with serine/threonine phosphorylation in proteins. Furthermore, implication of our hypothesis extends to tyrosine kinase signaling.

  20. CagA-positive Helicobacter pylori strain containing three EPIYA C phosphorylation sites produces increase of G cell and decrease of D cell in experimentally infected gerbils (Meriones unguiculatus).

    Science.gov (United States)

    Júnior, Moacir Ferreira; Batista, Sérgio de Assis; Barbuto, Rafael Calvão; Gomes, Adriana Dias; Queiroz, Dulciene Maria Magalhães; Araújo, Ivana Duval; Caliari, Marcelo Vidigal

    2016-09-01

    Human infection by Helicobacter pylori is associated with an increase in the number of gastrin-producing G cells and a concomitant decrease of somatostatin-producing D cells. However, to our knowledge, changes in G and D cell numbers in response to infection with H. pylori CagA-positive strains containing different number of EPIYA-C phosphorylation sites have not been analyzed to date. Therefore, the aim of this study was to perform a quantitative analysis of the number of G and D cells in Mongolian gerbils challenged with H. pylori strains with different numbers of EPIYA-C motifs. Mongolian gerbils were inoculated with isogenic H. pylori strains containing one to three phosphorylation sites. Mucosal fragments were evaluated by morphometry and immunohistochemistry using primary polyclonal rabbit anti-gastrin and anti-somatostatin antibodies. Positive cells were counted using an image analyzer. Forty-five days after infection, there was a decrease in the number of D cells and an increase in the G/D cell ratio in the group with three EPIYA-C. Six months after infection, there was a progressive and significant increase in the number of G cells and in the G/D cell ratio, with a concomitant decrease in the number of D cells, especially in the three EPIYA-C group. CagA-positive H. pylori strains containing a large number of EPIYA-C phosphorylation sites induce a decrease in D cell number and an increase in G cell number and G/D ratio, which were correlated with the number of inflammatory cells of the lamina propria. Copyright © 2016 Medical University of Bialystok. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  1. Overexpression of KAI1 induces autophagy and increases MiaPaCa-2 cell survival through the phosphorylation of extracellular signal-regulated kinases

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chun-Yan [State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital of Digestive Disease, Fourth Military Medical University, Xi' an 710032 (China); Department of Gastroenterology, Shenyang General Hospital of PLA, 83 Wenhua Road, Shenyang 110016 (China); Yan, Jun; Yang, Yue-Feng; Xiao, Feng-Jun; Li, Qing-Fang; Zhang, Qun-Wei; Wang, Li-Sheng [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Guo, Xiao-Zhong, E-mail: guoxiaozhong1962@163.com [Department of Gastroenterology, Shenyang General Hospital of PLA, 83 Wenhua Road, Shenyang 110016 (China); Wang, Hua, E-mail: wanghua@bmi.ac.cn [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China)

    2011-01-21

    Research highlights: {yields} We first investigate the effects of KAI1 on autophagy in MiaPaCa-2 cells. {yields} Our findings demonstrate that KAI1 induces autophagy, which in turn inhibits KAI1-induced apoptosis. {yields} This study also supplies a possible novel therapeutic method for the treatment of pancreatic cancer using autophagy inhibitors. -- Abstract: KAI1, a metastasis-suppressor gene belonging to the tetraspanin family, is known to inhibit cancer metastasis without affecting the primary tumorigenicity by inhibiting the epidermal growth factor (EGF) signaling pathway. Recent studies have shown that hypoxic conditions of solid tumors induce high-level autophagy and KAI1 expression. However, the relationship between autophagy and KAI1 remains unclear. By using transmission electron microscopy, confocal microscopy, and Western blotting, we found that KAI1 can induce autophagy in a dose- and time-dependent manner in the human pancreatic cell line MiaPaCa-2. KAI1-induced autophagy was confirmed by the expression of autophagy-related proteins LC3 and Beclin 1. KAI1 induces autophagy through phosphorylation of extracellular signal-related kinases rather than that of AKT. KAI1-induced autophagy protects MiaPaCa-2 cells from apoptosis and proliferation inhibition partially through the downregulation of poly [adenosine diphosphate (ADP)-ribose] polymerase (PARP) cleavage and caspase-3 activation.

  2. Striatal-enriched protein tyrosine phosphatase modulates nociception: evidence from genetic deletion and pharmacological inhibition.

    Science.gov (United States)

    Azkona, Garikoitz; Saavedra, Ana; Aira, Zigor; Aluja, David; Xifró, Xavier; Baguley, Tyler; Alberch, Jordi; Ellman, Jonathan A; Lombroso, Paul J; Azkue, Jon J; Pérez-Navarro, Esther

    2016-02-01

    The information from nociceptors is processed in the dorsal horn of the spinal cord by complex circuits involving excitatory and inhibitory interneurons. It is well documented that GluN2B and ERK1/2 phosphorylation contributes to central sensitization. Striatal-enriched protein tyrosine phosphatase (STEP) dephosphorylates GluN2B and ERK1/2, promoting internalization of GluN2B and inactivation of ERK1/2. The activity of STEP was modulated by genetic (STEP knockout mice) and pharmacological (recently synthesized STEP inhibitor, TC-2153) approaches. STEP(61) protein levels in the lumbar spinal cord were determined in male and female mice of different ages. Inflammatory pain was induced by complete Freund's adjuvant injection. Behavioral tests, immunoblotting, and electrophysiology were used to analyze the effect of STEP on nociception. Our results show that both genetic deletion and pharmacological inhibition of STEP induced thermal hyperalgesia and mechanical allodynia, which were accompanied by increased pGluN2B(Tyr1472) and pERK1/2(Thr202/Tyr204)levels in the lumbar spinal cord. Striatal-enriched protein tyrosine phosphatase heterozygous and knockout mice presented a similar phenotype. Furthermore, electrophysiological experiments showed that TC-2153 increased C fiber-evoked spinal field potentials. Interestingly, we found that STEP(61) protein levels in the lumbar spinal cord inversely correlated with thermal hyperalgesia associated with age and female gender in mice. Consistently, STEP knockout mice failed to show age-related thermal hyperalgesia, although gender-related differences were preserved. Moreover, in a model of inflammatory pain, hyperalgesia was associated with increased phosphorylation-mediated STEP(61) inactivation and increased pGluN2B(Tyr1472) and pERK1/2(Thr202/Tyr204)levels in the lumbar spinal cord. Collectively, the present results underscore an important role of spinal STEP activity in the modulation of nociception.

  3. Targeted Inhibition of Multiple Receptor Tyrosine Kinases in Mesothelioma

    Directory of Open Access Journals (Sweden)

    Wen-Bin Ou

    2011-01-01

    Full Text Available The receptor tyrosine kinases (RTKs epidermal growth factor receptor (EGFR and MET are activated in subsets of mesothelioma, suggesting that these kinases might represent novel therapeutic targets in this notoriously chemotherapy-resistant cancer. However, clinical trials have shown little activity for EGFR inhibitors in mesothelioma. Despite the evidence for RTK activation in mesothelioma pathogenesis, it is unclear whether transforming activity is dependent on an individual kinase oncoprotein or the coordinated activity of multiple kinases. Using phospho-RTK and immunoblot assays, we herein demonstrate activation of multiple RTKs (EGFR, MET, AXL, and ERBB3 in individual mesothelioma cell lines but not in normal mesothelioma cells. Inhibition of mesothelioma multi-RTK signaling was accomplished using combinations of RTK direct inhibitors or by inhibition of the RTK chaperone, heat shock protein 90 (HSP90. Multi-RTK inhibition by the HSP90 inhibitor 17-allyloamino-17demethoxygeldanamycin (17-AAG had a substantially greater effect on mesothelioma proliferation and survival compared with inhibition of individual activated RTKs. HSP90 inhibition also suppressed phosphorylation of down-stream signaling intermediates (AKT, mitogen-activated protein kinase, and S6; upregulated the p53, p21, and p27 cell cycle checkpoints; induced G2 phase arrest; induced caspase 3/7 activity; and led to an increase in the sub-G1 apoptotic population. These compelling proapoptotic and antiproliferative responses indicate that HSP90 inhibition warrants clinical evaluation as a novel therapeutic strategy in mesothelioma.

  4. The LAR transmembrane protein tyrosine phosphatase and a coiled-coil LAR-interacting protein co-localize at focal adhesions.

    OpenAIRE

    1995-01-01

    Focal adhesions are sites of cell-extracellular matrix interactions that function in anchoring stress fibers to the plasma membrane and in adhesion-mediated signal transduction. Both focal adhesion structure and signaling ability involve protein tyrosine phosphorylation. LAR is a broadly expressed transmembrane protein tyrosine phosphatase comprised of a cell adhesion-like ectodomain and two intracellular protein tyrosine phosphatase domains. We have identified a novel cytoplasmic 160 kDa pho...

  5. Spleen tyrosine kinase mediates high glucose-induced transforming growth factor-{beta}1 up-regulation in proximal tubular epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Won Seok; Chang, Jai Won [Division of Nephrology, Department of Internal Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul (Korea, Republic of); Han, Nam Jeong [Department of Cell Biology, Asan Institute for Life Sciences, Seoul (Korea, Republic of); Lee, Sang Koo [Division of Nephrology, Department of Internal Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul (Korea, Republic of); Park, Su-Kil, E-mail: skpark@amc.seoul.kr [Division of Nephrology, Department of Internal Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul (Korea, Republic of)

    2012-09-10

    The role of spleen tyrosine kinase (Syk) in high glucose-induced intracellular signal transduction has yet to be elucidated. We investigated whether Syk is implicated in high glucose-induced transforming growth factor-{beta}1 (TGF-{beta}1) up-regulation in cultured human proximal tubular epithelial cells (HK-2 cell). High glucose increased TGF-{beta}1 gene expression through Syk, extracellular signal-regulated kinase (ERK), AP-1 and NF-{kappa}B. High glucose-induced AP-1 DNA binding activity was decreased by Syk inhibitors and U0126 (an ERK inhibitor). Syk inhibitors suppressed high glucose-induced ERK activation, whereas U0126 had no effect on Syk activation. High glucose-induced NF-{kappa}B DNA binding activity was also decreased by Syk inhibitors. High glucose increased nuclear translocation of p65 without serine phosphorylation of I{kappa}B{alpha} and without degradation of I{kappa}B{alpha}, but with an increase in tyrosine phosphorylation of I{kappa}B{alpha} that may account for the activation of NF-{kappa}B. Both Syk inhibitors and Syk-siRNA attenuated high glucose-induced I{kappa}B{alpha} tyrosine phosphorylation and p65 nuclear translocation. Depletion of p21-activated kinase 2 (Pak2) by transfection of Pak2-siRNA abolished high glucose-induced Syk activation. In summary, high glucose-induced TGF-{beta}1 gene transcription occurred through Pak2, Syk and subsequent ERK/AP-1 and NF-{kappa}B pathways. This suggests that Syk might be implicated in the diabetic kidney disease.

  6. Identification of tyrosine residues in the intracellular domain of the growth hormone receptor required for transcriptional signaling and Stat5 activation

    DEFF Research Database (Denmark)

    Hansen, L. H.; Wang, X.; Kopchick, J J;

    1996-01-01

    The binding of growth hormone (GH) to its receptor results in its dimerization followed by activation of Jak2 kinase and tyrosine phosphorylation of the GH receptor itself, as well as Jak2 and the transcription factors Stat1, -3, and -5. In order to study the role of GH receptor tyrosine phosphor...

  7. Evolutionary constraints of phosphorylation in eukaryotes, prokaryotes, and mitochondria.

    Science.gov (United States)

    Gnad, Florian; Forner, Francesca; Zielinska, Dorota F; Birney, Ewan; Gunawardena, Jeremy; Mann, Matthias

    2010-12-01

    High accuracy mass spectrometry has proven to be a powerful technology for the large scale identification of serine/threonine/tyrosine phosphorylation in the living cell. However, despite many described phosphoproteomes, there has been no comparative study of the extent of phosphorylation and its evolutionary conservation in all domains of life. Here we analyze the results of phosphoproteomics studies performed with the same technology in a diverse set of organisms. For the most ancient organisms, the prokaryotes, only a few hundred proteins have been found to be phosphorylated. Applying the same technology to eukaryotic species resulted in the detection of thousands of phosphorylation events. Evolutionary analysis shows that prokaryotic phosphoproteins are preferentially conserved in all living organisms, whereas-site specific phosphorylation is not. Eukaryotic phosphosites are generally more conserved than their non-phosphorylated counterparts (with similar structural constraints) throughout the eukaryotic domain. Yeast and Caenorhabditis elegans are two exceptions, indicating that the majority of phosphorylation events evolved after the divergence of higher eukaryotes from yeast and reflecting the unusually large number of nematode-specific kinases. Mitochondria present an interesting intermediate link between the prokaryotic and eukaryotic domains. Applying the same technology to this organelle yielded 174 phosphorylation sites mapped to 74 proteins. Thus, the mitochondrial phosphoproteome is similarly sparse as the prokaryotic phosphoproteomes. As expected from the endosymbiotic theory, phosphorylated as well as non-phosphorylated mitochondrial proteins are significantly conserved in prokaryotes. However, mitochondrial phosphorylation sites are not conserved throughout prokaryotes, consistent with the notion that serine/threonine phosphorylation in prokaryotes occurred relatively recently in evolution. Thus, the phosphoproteome reflects major events in the

  8. A PLC-γ1 Feedback Pathway Regulates Lck Substrate Phosphorylation at the T-Cell Receptor and SLP-76 Complex.

    Science.gov (United States)

    Belmont, Judson; Gu, Tao; Mudd, Ashley; Salomon, Arthur R

    2017-08-04

    Phospholipase C gamma 1 (PLC-γ1) occupies a critically important position in the T-cell signaling pathway. While its functions as a regulator of both Ca(2+) signaling and PKC-family kinases are well characterized, PLC-γ1's role in the regulation of early T-cell receptor signaling events is incompletely understood. Activation of the T-cell receptor leads to the formation of a signalosome complex between SLP-76, LAT, PLC-γ1, Itk, and Vav1. Recent studies have revealed the existence of both positive and negative feedback pathways from SLP-76 to the apical kinase in the pathway, Lck. To determine if PLC-γ1 contributes to the regulation of these feedback networks, we performed a quantitative phosphoproteomic analysis of PLC-γ1-deficient T cells. These data revealed a previously unappreciated role for PLC-γ1 in the positive regulation of Zap-70 and T-cell receptor tyrosine phosphorylation. Conversely, PLC-γ1 negatively regulated the phosphorylation of SLP-76-associated proteins, including previously established Lck substrate phosphorylation sites within this complex. While the positive and negative regulatory phosphorylation sites on Lck were largely unchanged, Tyr(192) phosphorylation was elevated in Jgamma1. The data supports a model wherein Lck's targeting, but not its kinase activity, is altered by PLC-γ1, possibly through Lck Tyr(192) phosphorylation and increased association of the kinase with protein scaffolds SLP-76 and TSAd.

  9. A positive feedback loop between Gli1 and tyrosine kinase Hck amplifies shh signaling activities in medulloblastoma.

    Science.gov (United States)

    Shi, X; Zhan, X; Wu, J

    2015-11-30

    Sonic hedgehog (Shh) signaling is critical during normal development, and the abnormal activation of the Shh pathway is involved in many human cancers. As a target gene of the Shh pathway and as a transcription activator downstream of Shh signaling, Gli1 autoregulates and increases Shh signaling output. Gli1 is one of the key oncogenic factors in Shh-induced tumors such as medulloblastoma. Gli1 is posttranslationally modified, but the nature of the active form of Gli1 was unclear. Here we identified a Src family kinase Hck as a novel activator of Gli1. In Shh-responsive NIH3T3 cells, Hck interacts with Gli1 and phosphorylates multiple tyrosine residues in Gli1. Gli1-mediated target gene activation was significantly enhanced by Hck with both kinase activity-dependent and -independent mechanisms. We provide evidence showing that Hck disrupts the interaction between Gli1 and its inhibitor Sufu. In both NIH3T3 cells and cerebellum granule neuron precursors, the Hck gene is also a direct target of Gli1. Therefore, Gli1 and Hck form a positive feedback loop that amplifies Shh signaling transcription outcomes. In Shh-induced medulloblastoma, Hck is highly expressed and Gli1 is tyrosine phosphorylated, which may enhance the tumorigenic effects of the Gli1 oncogene. RNAi-mediated inhibition of Hck expression significantly repressed medulloblastoma cell growth. In summary, a novel positive feedback loop contributes to maximal Gli1 oncogenic activities in Shh-induced tumors such as medulloblastoma.

  10. Tyrosine oxidation and nitration in transmembrane peptides is connected to lipid peroxidation.

    Science.gov (United States)

    Bartesaghi, Silvina; Herrera, Daniel; Martinez, Débora M; Petruk, Ariel; Demicheli, Verónica; Trujillo, Madia; Martí, Marcelo A; Estrín, Darío A; Radi, Rafael

    2017-05-15

    Tyrosine nitration is an oxidative post-translational modification that can occur in proteins associated to hydrophobic bio-structures such as membranes and lipoproteins. In this work, we have studied tyrosine nitration in membranes using a model system consisting of phosphatidylcholine liposomes with pre-incorporated tyrosine-containing 23 amino acid transmembrane peptides. Tyrosine residues were located at positions 4, 8 or 12 of the amino terminal, resulting in different depths in the bilayer. Tyrosine nitration was accomplished by exposure to peroxynitrite and a peroxyl radical donor or hemin in the presence of nitrite. In egg yolk phosphatidylcholine liposomes, nitration was highest for the peptide with tyrosine at position 8 and dramatically increased as a function of oxygen levels. Molecular dynamics studies support that the proximity of the tyrosine phenolic ring to the linoleic acid peroxyl radicals contributes to the efficiency of tyrosine oxidation. In turn, α-tocopherol inhibited both lipid peroxidation and tyrosine nitration. The mechanism of tyrosine nitration involves a "connecting reaction" by which lipid peroxyl radicals oxidize tyrosine to tyrosyl radical and was fully recapitulated by computer-assisted kinetic simulations. Altogether, this work underscores unique characteristics of the tyrosine oxidation and nitration process in lipid-rich milieu that is fueled via the lipid peroxidation process. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Inhibitor of the tyrosine phosphatase STEP reverses cognitive deficits in a mouse model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Jian Xu

    2014-08-01

    Full Text Available STEP (STriatal-Enriched protein tyrosine Phosphatase is a neuron-specific phosphatase that regulates N-methyl-D-aspartate receptor (NMDAR and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR trafficking, as well as ERK1/2, p38, Fyn, and Pyk2 activity. STEP is overactive in several neuropsychiatric and neurodegenerative disorders, including Alzheimer's disease (AD. The increase in STEP activity likely disrupts synaptic function and contributes to the cognitive deficits in AD. AD mice lacking STEP have restored levels of glutamate receptors on synaptosomal membranes and improved cognitive function, results that suggest STEP as a novel therapeutic target for AD. Here we describe the first large-scale effort to identify and characterize small-molecule STEP inhibitors. We identified the benzopentathiepin 8-(trifluoromethyl-1,2,3,4,5-benzopentathiepin-6-amine hydrochloride (known as TC-2153 as an inhibitor of STEP with an IC50 of 24.6 nM. TC-2153 represents a novel class of PTP inhibitors based upon a cyclic polysulfide pharmacophore that forms a reversible covalent bond with the catalytic cysteine in STEP. In cell-based secondary assays, TC-2153 increased tyrosine phosphorylation of STEP substrates ERK1/2, Pyk2, and GluN2B, and exhibited no toxicity in cortical cultures. Validation and specificity experiments performed in wild-type (WT and STEP knockout (KO cortical cells and in vivo in WT and STEP KO mice suggest specificity of inhibitors towards STEP compared to highly homologous tyrosine phosphatases. Furthermore, TC-2153 improved cognitive function in several cognitive tasks in 6- and 12-mo-old triple transgenic AD (3xTg-AD mice, with no change in beta amyloid and phospho-tau levels.

  12. Tyrosine-Nitrated Proteins: Proteomic and Bioanalytical Aspects.

    Science.gov (United States)

    Batthyány, Carlos; Bartesaghi, Silvina; Mastrogiovanni, Mauricio; Lima, Analía; Demicheli, Verónica; Radi, Rafael

    2017-03-01

    "Nitroproteomic" is under active development, as 3-nitrotyrosine in proteins constitutes a footprint left by the reactions of nitric oxide-derived oxidants that are usually associated to oxidative stress conditions. Moreover, protein tyrosine nitration can cause structural and functional changes, which may be of pathophysiological relevance for human disease conditions. Biological protein tyrosine nitration is a free radical process involving the intermediacy of tyrosyl radicals; in spite of being a nonenzymatic process, nitration is selectively directed toward a limited subset of tyrosine residues. Precise identification and quantitation of 3-nitrotyrosine in proteins has represented a "tour de force" for researchers. Recent Advances: A small number of proteins are preferential targets of nitration (usually less than 100 proteins per proteome), contrasting with the large number of proteins modified by other post-translational modifications such as phosphorylation, acetylation, and, notably, S-nitrosation. Proteomic approaches have revealed key features of tyrosine nitration both in vivo and in vitro, including selectivity, site specificity, and effects in protein structure and function. Identification of 3-nitrotyrosine-containing proteins and mapping nitrated residues is challenging, due to low abundance of this oxidative modification in biological samples and its unfriendly behavior in mass spectrometry (MS)-based technologies, that is, MALDI, electrospray ionization, and collision-induced dissociation. The use of (i) classical two-dimensional electrophoresis with immunochemical detection of nitrated proteins followed by protein ID by regular MS/MS in combination with (ii) immuno-enrichment of tyrosine-nitrated peptides and (iii) identification of nitrated peptides by a MIDAS™ experiment is arising as a potent methodology to unambiguously map and quantitate tyrosine-nitrated proteins in vivo. Antioxid. Redox Signal. 26, 313-328.

  13. Analysis of mitotic phosphorylation of Borealin

    Directory of Open Access Journals (Sweden)

    Date Dipali A

    2007-01-01

    Full Text Available Abstract Background The main role of the chromosomal passenger complex is to ensure that Aurora B kinase is properly localized and activated before and during mitosis. Borealin, a member of the chromosomal passenger complex, shows increased expression during G2/M phases and is involved in targeting the complex to the centromere and the spindle midzone, where it ensures proper chromosome segregation and cytokinesis. Borealin has a consensus CDK1 phosphorylation site, threonine 106 and can be phosphorylated by Aurora B Kinase at serine 165 in vitro. Results Here, we show that Borealin is phosphorylated during mitosis in human cells. Dephosphorylation of Borealin occurs as cells exit mitosis. The phosphorylated form of Borealin is found in an INCENP-containing complex in mitosis. INCENP-containing complexes from cells in S phase are enriched in the phosphorylated form suggesting that phosphorylation may encourage entry of Borealin into the chromosomal passenger complex. Although Aurora B Kinase is found in complexes that contain Borealin, it is not required for the mitotic phosphorylation of Borealin. Mutation of T106 or S165 of Borealin to alanine does not alter the electrophoretic mobility shift of Borealin. Experiments with cyclohexamide and the phosphatase inhibitor sodium fluoride suggest that Borealin is phosphorylated by a protein kinase that can be active in interphase and mitosis and that the phosphorylation may be regulated by a short-lived phosphatase that is active in interphase but not mitosis. Conclusion Borealin is phosphorylated during mitosis. Neither residue S165, T106 nor phosphorylation of Borealin by Aurora B Kinase is required to generate the mitotic, shifted form of Borealin. Suppression of phosphorylation during interphase is ensured by a labile protein, possibly a cell cycle regulated phosphatase.

  14. Evidence for association of the cloned liver growth hormone receptor with a tyrosine kinase

    DEFF Research Database (Denmark)

    Wang, X; Uhler, M D; Billestrup, N;

    1992-01-01

    The ability of the cloned liver growth hormone (GH) receptor, when expressed in mammalian cell lines, to copurify with tyrosine kinase activity and be tyrosyl phosphorylated was examined. 125I-human growth hormone-GH receptor complexes isolated from COS-7 cells transiently expressing high levels ...

  15. Structural basis for the regulation mechanism of the tyrosine kinase CapB from Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Vanesa Olivares-Illana

    2008-06-01

    Full Text Available Bacteria were thought to be devoid of tyrosine-phosphorylating enzymes. However, several tyrosine kinases without similarity to their eukaryotic counterparts have recently been identified in bacteria. They are involved in many physiological processes, but their accurate functions remain poorly understood due to slow progress in their structural characterization. They have been best characterized as copolymerases involved in the synthesis and export of extracellular polysaccharides. These compounds play critical roles in the virulence of pathogenic bacteria, and bacterial tyrosine kinases can thus be considered as potential therapeutic targets. Here, we present the crystal structures of the phosphorylated and unphosphorylated states of the tyrosine kinase CapB from the human pathogen Staphylococcus aureus together with the activator domain of its cognate transmembrane modulator CapA. This first high-resolution structure of a bacterial tyrosine kinase reveals a 230-kDa ring-shaped octamer that dissociates upon intermolecular autophosphorylation. These observations provide a molecular basis for the regulation mechanism of the bacterial tyrosine kinases and give insights into their copolymerase function.

  16. In vivo regulation of the allergic response by the IL-4 receptor alpha chain immunoreceptor tyrosine-based inhibitory motif.

    Science.gov (United States)

    Tachdjian, Raffi; Al Khatib, Shadi; Schwinglshackl, Andreas; Kim, Hong Sook; Chen, Andrew; Blasioli, Julie; Mathias, Clinton; Kim, Hye Young; Umetsu, Dale T; Oettgen, Hans C; Chatila, Talal A

    2010-05-01

    Signaling by IL-4 and IL-13 through the IL-4 receptor alpha chain (IL-4Ralpha) plays a critical role in the pathology of allergic diseases. The IL-4Ralpha is endowed with an immunoreceptor tyrosine-based inhibitory motif (ITIM) centered on tyrosine 709 (Y709) in the cytoplasmic domain that binds a number of regulatory phosphatases. The function of the ITIM in the in vivo regulation of IL-4 receptor signaling remains unknown. We sought to determine the in vivo function of the IL-4Ralpha ITIM by using mice in which the ITIM was inactivated by mutagenesis of the tyrosine Y709 residue into phenylalanine (F709). F709 ITIM mutant mice were derived by means of knock-in mutagenesis. Activation of intracellular signaling cascades by IL-4 and IL-13 was assessed by means of intracellular staining of phosphorylated signaling intermediates and gene expression analysis. In vivo responses to allergic sensitization were assessed by using models of allergic airway inflammation. The F709 mutation increased signal transducer and activator of transcription 6 phosphorylation by IL-4 and, disproportionately, by IL-13. This was associated with exaggerated T(H)2 polarization, enhanced alternative macrophage activation by IL-13, augmented basal and antigen-induced IgE responses, and intensified allergen-induced eosinophilic airway inflammation and hyperreactivity. These results point to a physiologic negative regulatory role for the Y709 ITIM in signaling through IL-4Ralpha, especially by IL-13. Copyright 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  17. Constitutive Activity in an Ancestral Form of Abl Tyrosine Kinase.

    Science.gov (United States)

    Aleem, Saadat U; Craddock, Barbara P; Miller, W Todd

    2015-01-01

    The c-abl proto-oncogene encodes a nonreceptor tyrosine kinase that is found in all metazoans, and is ubiquitously expressed in mammalian tissues. The Abl tyrosine kinase plays important roles in the regulation of mammalian cell physiology. Abl-like kinases have been identified in the genomes of unicellular choanoflagellates, the closest relatives to the Metazoa, and in related unicellular organisms. Here, we have carried out the first characterization of a premetazoan Abl kinase, MbAbl2, from the choanoflagellate Monosiga brevicollis. The enzyme possesses SH3, SH2, and kinase domains in a similar arrangement to its mammalian counterparts, and is an active tyrosine kinase. MbAbl2 lacks the N-terminal myristoylation and cap sequences that are critical regulators of mammalian Abl kinase activity, and we show that MbAbl2 is constitutively active. When expressed in mammalian cells, MbAbl2 strongly phosphorylates cellular proteins on tyrosine, and transforms cells much more potently than mammalian Abl kinase. Thus, MbAbl2 appears to lack the autoinhibitory mechanism that tightly constrains the activity of mammalian Abl kinases, suggesting that this regulatory apparatus arose more recently in metazoan evolution.

  18. Constitutive Activity in an Ancestral Form of Abl Tyrosine Kinase.

    Directory of Open Access Journals (Sweden)

    Saadat U Aleem

    Full Text Available The c-abl proto-oncogene encodes a nonreceptor tyrosine kinase that is found in all metazoans, and is ubiquitously expressed in mammalian tissues. The Abl tyrosine kinase plays important roles in the regulation of mammalian cell physiology. Abl-like kinases have been identified in the genomes of unicellular choanoflagellates, the closest relatives to the Metazoa, and in related unicellular organisms. Here, we have carried out the first characterization of a premetazoan Abl kinase, MbAbl2, from the choanoflagellate Monosiga brevicollis. The enzyme possesses SH3, SH2, and kinase domains in a similar arrangement to its mammalian counterparts, and is an active tyrosine kinase. MbAbl2 lacks the N-terminal myristoylation and cap sequences that are critical regulators of mammalian Abl kinase activity, and we show that MbAbl2 is constitutively active. When expressed in mammalian cells, MbAbl2 strongly phosphorylates cellular proteins on tyrosine, and transforms cells much more potently than mammalian Abl kinase. Thus, MbAbl2 appears to lack the autoinhibitory mechanism that tightly constrains the activity of mammalian Abl kinases, suggesting that this regulatory apparatus arose more recently in metazoan evolution.

  19. Activation of TYRO3/AXL tyrosine kinase receptors in thyroid cancer.

    Science.gov (United States)

    Avilla, Elvira; Guarino, Valentina; Visciano, Carla; Liotti, Federica; Svelto, Maria; Krishnamoorthy, Gnanaprakasam; Franco, Renato; Melillo, Rosa Marina

    2011-03-01

    Thyroid cancer is the most common endocrine cancer, but its key oncogenic drivers remain undefined. In this study we identified the TYRO3 and AXL receptor tyrosine kinases as transcriptional targets of the chemokine CXCL12/SDF-1 in CXCR4-expressing thyroid cancer cells. Both receptors were constitutively expressed in thyroid cancer cell lines but not normal thyroid cells. AXL displayed high levels of tyrosine phosphorylation in most cancer cell lines due to constitutive expression of its ligand GAS6. In human thyroid carcinoma specimens, but not in normal thyroid tissues, AXL and GAS6 were often coexpressed. In cell lines expressing both receptors and ligand, blocking each receptor or ligand dramatically affected cell viability and decreased resistance to apoptotic stimuli. Stimulation of GAS6-negative cancer cells with GAS6 increased their proliferation and survival. Similarly, siRNA-mediated silencing of AXL inhibited cancer cell viability, invasiveness, and growth of tumor xenografts in nude mice. Our findings suggest that a TYRO3/AXL-GAS6 autocrine circuit sustains the malignant features of thyroid cancer cells and that targeting the circuit could offer a novel therapeutic approach in this cancer. ©2011 AACR.

  20. Activation of tyrosine kinase c-Abl contributes to α-synuclein–induced neurodegeneration

    Science.gov (United States)

    Lee, Su Hyun; Kim, Donghoon; Karuppagounder, Senthilkumar S.; Kumar, Manoj; Mao, Xiaobo; Shin, Joo Ho; Lee, Yunjong; Pletnikova, Olga; Troncoso, Juan C.; Dawson, Valina L.; Dawson, Ted M.; Ko, Han Seok

    2016-01-01

    Aggregation of α-synuclein contributes to the formation of Lewy bodies and neurites, the pathologic hallmarks of Parkinson disease (PD) and α-synucleinopathies. Although a number of human mutations have been identified in familial PD, the mechanisms that promote α-synuclein accumulation and toxicity are poorly understood. Here, we report that hyperactivity of the nonreceptor tyrosine kinase c-Abl critically regulates α-synuclein–induced neuropathology. In mice expressing a human α-synucleinopathy–associated mutation (hA53Tα-syn mice), deletion of the gene encoding c-Abl reduced α-synuclein aggregation, neuropathology, and neurobehavioral deficits. Conversely, overexpression of constitutively active c-Abl in hA53Tα-syn mice accelerated α-synuclein aggregation, neuropathology, and neurobehavioral deficits. Moreover, c-Abl activation led to an age-dependent increase in phosphotyrosine 39 α-synuclein. In human postmortem samples, there was an accumulation of phosphotyrosine 39 α-synuclein in brain tissues and Lewy bodies of PD patients compared with age-matched controls. Furthermore, in vitro studies show that c-Abl phosphorylation of α-synuclein at tyrosine 39 enhances α-synuclein aggregation. Taken together, this work establishes a critical role for c-Abl in α-synuclein–induced neurodegeneration and demonstrates that selective inhibition of c-Abl may be neuroprotective. This study further indicates that phosphotyrosine 39 α-synuclein is a potential disease indicator for PD and related α-synucleinopathies. PMID:27348587

  1. Etk/Bmx tyrosine kinase activates Pak1 and regulates tumorigenicity of breast cancer cells.

    Science.gov (United States)

    Bagheri-Yarmand, R; Mandal, M; Taludker, A H; Wang, R A; Vadlamudi, R K; Kung, H J; Kumar, R

    2001-08-03

    Etk/Bmx, a member of the Tec family of nonreceptor protein-tyrosine kinases, is characterized by an N-terminal pleckstrin homology domain and has been shown to be a downstream effector of phosphatidylinositol 3-kinase. P21-activated kinase 1 (Pak1), another well characterized effector of phosphatidylinositol 3-kinase, has been implicated in the progression of breast cancer cells. In this study, we characterized the role of Etk in mammary development and tumorigenesis and explored the functional interactions between Etk and Pak1. We report that Etk expression is developmentally regulated in the mammary gland. Using transient transfection, coimmunoprecipitation and glutathione S-transferase-pull down assays, we showed that Etk directly associates with Pak1 via its N-terminal pleckstrin homology domain and also phosphorylates Pak1 on tyrosine residues. The expression of wild-type Etk in a non-invasive human breast cancer MCF-7 cells significantly increased proliferation and anchorage-independent growth of epithelial cancer cells. Conversely, expression of kinase-inactive mutant Etk-KQ suppressed the proliferation, anchorage-independent growth, and tumorigenicity of human breast cancer MDA-MB435 cells. These results indicate that Pak1 is a target of Etk and that Etk controls the proliferation as well as the anchorage-independent and tumorigenic growth of mammary epithelial cancer cells.

  2. Tyrosine kinases in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Kobayashi Akiko

    2011-08-01

    Full Text Available Abstract Rheumatoid arthritis (RA is an inflammatory, polyarticular joint disease. A number of cellular responses are involved in the pathogenesis of rheumatoid arthritis, including activation of inflammatory cells and cytokine expression. The cellular responses involved in each of these processes depends on the specific signaling pathways that are activated; many of which include protein tyrosine kinases. These pathways include the mitogen-activated protein kinase pathway, Janus kinases/signal transducers and activators transcription pathway, spleen tyrosine kinase signaling, and the nuclear factor κ-light-chain-enhancer of activated B cells pathway. Many drugs are in development to target tyrosine kinases for the treatment of RA. Based on the number of recently published studies, this manuscript reviews the role of tyrosine kinases in the pathogenesis of RA and the potential role of kinase inhibitors as new therapeutic strategies of RA.

  3. Increased levels of conditioned fear and avoidance be