WorldWideScience

Sample records for increases pcr effectiveness

  1. Increased yield of PCR products by addition of T4 gene 32 protein to the SMART PCR cDNA synthesis system.

    Science.gov (United States)

    Villalva, C; Touriol, C; Seurat, P; Trempat, P; Delsol, G; Brousset, P

    2001-07-01

    Under certain conditions, T4 gene 32 protein is known to increase the efficiency of different enzymes, such as Taq DNA polymerase, reverse transcriptase, and telomerase. In this study, we compared the efficiency of the SMART PCR cDNA synthesis kit with and without the T4 gene 32 protein. The use of this cDNA synthesis procedure, in combination with T4 gene 32 protein, increases the yield of RT-PCR products from approximately 90% to 150%. This effect is even observed for long mRNA templates and low concentrations of total RNA (25 ng). Therefore, we suggest the addition of T4 gene 32 protein in the RT-PCR mixture to increase the efficiency of cDNA synthesis, particularly in cases when low amounts of tissue are used.

  2. Mung bean nuclease treatment increases capture specificity of microdroplet-PCR based targeted DNA enrichment.

    Directory of Open Access Journals (Sweden)

    Zhenming Yu

    Full Text Available Targeted DNA enrichment coupled with next generation sequencing has been increasingly used for interrogation of select sub-genomic regions at high depth of coverage in a cost effective manner. Specificity measured by on-target efficiency is a key performance metric for target enrichment. Non-specific capture leads to off-target reads, resulting in waste of sequencing throughput on irrelevant regions. Microdroplet-PCR allows simultaneous amplification of up to thousands of regions in the genome and is among the most commonly used strategies for target enrichment. Here we show that carryover of single-stranded template genomic DNA from microdroplet-PCR constitutes a major contributing factor for off-target reads in the resultant libraries. Moreover, treatment of microdroplet-PCR enrichment products with a nuclease specific to single-stranded DNA alleviates off-target load and improves enrichment specificity. We propose that nuclease treatment of enrichment products should be incorporated in the workflow of targeted sequencing using microdroplet-PCR for target capture. These findings may have a broad impact on other PCR based applications for which removal of template DNA is beneficial.

  3. Inhibitory effect of common microfluidic materials on PCR outcome

    KAUST Repository

    Kodzius, Rimantas; Xiao, Kang; Wu, Jinbo; Yi, Xin; Gong, Xiuqing; Foulds, Ian G.; Wen, Weijia

    2013-01-01

    In this study, we established a simple method for evaluating the PCR compatibility of various common materials employed when fabricating microfluidic chips, including silicon, several kinds of silicon oxide, glasses, plastics, wax, and adhesives. Two-temperature PCR was performed with these materials to determine their PCR-inhibitory effect. In most cases, adding bovine serum albumin effectively improved the reaction yield. We also studied the individual PCR components from the standpoint of adsorption. Most of the materials did not inhibit the DNA, although they noticeably interacted with the polymerase. We provide a simple method of performing PCR-compatibility testing of materials using inexpensive instrumentation that is common in molecular biology laboratories. Furthermore, our method is direct, being performed under actual PCR conditions with high temperature. Our results provide an overview of materials that are PCR-friendly for fabricating microfluidic devices. The PCR reaction, without any additives, performed best with pyrex glass, and it performed worst with PMMA or acrylic glue materials.

  4. Inhibitory effect of common microfluidic materials on PCR outcome

    KAUST Repository

    Kodzius, Rimantas

    2013-10-10

    In this study, we established a simple method for evaluating the PCR compatibility of various common materials employed when fabricating microfluidic chips, including silicon, several kinds of silicon oxide, glasses, plastics, wax, and adhesives. Two-temperature PCR was performed with these materials to determine their PCR-inhibitory effect. In most cases, adding bovine serum albumin effectively improved the reaction yield. We also studied the individual PCR components from the standpoint of adsorption. Most of the materials did not inhibit the DNA, although they noticeably interacted with the polymerase. We provide a simple method of performing PCR-compatibility testing of materials using inexpensive instrumentation that is common in molecular biology laboratories. Furthermore, our method is direct, being performed under actual PCR conditions with high temperature. Our results provide an overview of materials that are PCR-friendly for fabricating microfluidic devices. The PCR reaction, without any additives, performed best with pyrex glass, and it performed worst with PMMA or acrylic glue materials.

  5. Effect of age, diet, and tissue type on PCr response to creatine supplementation.

    Science.gov (United States)

    Solis, Marina Yazigi; Artioli, Guilherme Giannini; Otaduy, Maria Concepción García; Leite, Claudia da Costa; Arruda, Walquiria; Veiga, Raquel Ramos; Gualano, Bruno

    2017-08-01

    Creatine/phosphorylcreatine (PCr) responses to creatine supplementation may be modulated by age, diet, and tissue, but studies assessing this possibility are lacking. Therefore we aimed to determine whether PCr responses vary as a function of age, diet, and tissue. Fifteen children, 17 omnivorous and 14 vegetarian adults, and 18 elderly individuals ("elderly") participated in this study. Participants were given placebo and subsequently creatine (0.3 g·kg -1 ·day -1 ) for 7 days in a single-blind fashion. PCr was measured through phosphorus magnetic resonance spectroscopy ( 31 P-MRS) in muscle and brain. Creatine supplementation increased muscle PCr in children ( P creatine supplementation in any group, and delta changes in brain PCr (-0.7 to +3.9%) were inferior to those in muscle PCr content (+10.3 to +27.6%; P creatine protocol (0.3 g·kg -1 ·day -1 for 7 days) may be affected by age, diet, and tissue. Whereas creatine supplementation was able to increase muscle PCr in all groups, although to different extents, brain PCr was shown to be unresponsive overall. These findings demonstrate the need to tailor creatine protocols to optimize creatine/PCr accumulation both in muscle and in brain, enabling a better appreciation of the pleiotropic properties of creatine. NEW & NOTEWORTHY A standardized creatine supplementation protocol (0.3 g·kg -1 ·day -1 for 7 days) effectively increased muscle, but not brain, phosphorylcreatine. Older participants responded better than younger participants whereas vegetarians responded better than omnivores. Responses to supplementation are thus dependent on age, tissue, and diet. This suggests that a single "universal" protocol, originally designed for increasing muscle creatine in young individuals, may lead to heterogeneous muscle responses in different populations or even no responses in tissues other than skeletal muscle. Copyright © 2017 the American Physiological Society.

  6. Material Biocompatibility for PCR Microfluidic Chips

    KAUST Repository

    Kodzius, Rimantas

    2010-04-23

    As part of the current miniaturization trend, biological reactions and processes are being adapted to microfluidics devices. PCR is the primary method employed in DNA amplification, its miniaturization is central to efforts to develop portable devices for diagnostics and testing purposes. A problem is the PCR-inhibitory effect due to interaction between PCR reagents and the surrounding environment, which effect is increased in high-surface-are-to-volume ration microfluidics. In this study, we evaluated the biocompatibility of various common materials employed in the fabrication of microfluidic chips, including silicon, several kinds of silicon oxide, glasses, plastics, wax, and adhesives. Two-temperature PCR was performed with these materials to determine their PCR-inhibitory effect. In most of the cases, addition of bovine serum albumin effectively improved the reaction yield. We also studied the individual PCR components from the standpoint of adsorption. Most of the materials did not inhibit the DNA, whereas they did show noticeable interaction with the DNA polymerase. Our test, instead of using microfluidic devices, can be easily conducted in common PCR tubes using a standard bench thermocycler. Our data supports an overview of the means by which the materials most bio-friendly to microfluidics can be selected.

  7. Material Biocompatibility for PCR Microfluidic Chips

    KAUST Repository

    Kodzius, Rimantas; Chang, Donald Choy; Gong, Xiuqing; Wen, Weijia; Wu, Jinbo; Xiao, Kang; Yi, Xin

    2010-01-01

    As part of the current miniaturization trend, biological reactions and processes are being adapted to microfluidics devices. PCR is the primary method employed in DNA amplification, its miniaturization is central to efforts to develop portable devices for diagnostics and testing purposes. A problem is the PCR-inhibitory effect due to interaction between PCR reagents and the surrounding environment, which effect is increased in high-surface-are-to-volume ration microfluidics. In this study, we evaluated the biocompatibility of various common materials employed in the fabrication of microfluidic chips, including silicon, several kinds of silicon oxide, glasses, plastics, wax, and adhesives. Two-temperature PCR was performed with these materials to determine their PCR-inhibitory effect. In most of the cases, addition of bovine serum albumin effectively improved the reaction yield. We also studied the individual PCR components from the standpoint of adsorption. Most of the materials did not inhibit the DNA, whereas they did show noticeable interaction with the DNA polymerase. Our test, instead of using microfluidic devices, can be easily conducted in common PCR tubes using a standard bench thermocycler. Our data supports an overview of the means by which the materials most bio-friendly to microfluidics can be selected.

  8. Have you tried spermine? A rapid and cost-effective method to eliminate dextran sodium sulfate inhibition of PCR and RT-PCR.

    Science.gov (United States)

    Krych, Łukasz; Kot, Witold; Bendtsen, Katja M B; Hansen, Axel K; Vogensen, Finn K; Nielsen, Dennis S

    2018-01-01

    The Dextran Sulfate Sodium (DSS) induced colitis mouse model is commonly used to investigate human inflammatory bowel disease (IBD). Nucleic acid extracts originating from these animals are often contaminated with DSS, which is a strong inhibitor of many enzymatic based molecular biology reactions including PCR and reverse-transcription (RT). Methods for removing DSS from nucleic acids extracts exist for RNA, but no effective protocol for DNA or cDNA is currently available. However, spermine has previously been shown to be an effective agent for counteracting DSS inhibition of polynucleotide kinase, which led to the hypothesis, that spermine could be used to counteract DSS inhibition of PCR and RT. We investigated the means of adding spermine in an adequate concentration to PCR based protocols (including qPCR, two-step RT-qPCR, and amplicon sequencing library preparation) to remove DSS inhibition. Within the range up to 0.01g/L, spermine can be added to PCR/qPCR or RT prophylactically without a significant reduction of reaction efficiency. Addition of spermine at the concentration of 0.08g/L can be used to recover qualitative PCR signal inhibited by DSS in concentrations up to 0.32g/L. For optimal quantitative analysis, the concentration of spermine requires fine adjustment. Hence, we present here a simple fluorometric based method for adjusting the concentration of spermine ensuring an optimal efficiency of the reaction exposed to an unknown concentration of DSS. In conclusion, we demonstrate a cost effective and easy method to counteract DSS inhibition in PCR and two-step RT-qPCR. Fixed or fine-tuned concentrations of spermine can be administered depending on the qualitative or quantitative character of the analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Modified Polyadenylation-Based RT-qPCR Increases Selectivity of Amplification of 3′-MicroRNA Isoforms

    Directory of Open Access Journals (Sweden)

    Charlotte Nejad

    2018-01-01

    Full Text Available MicroRNA (miRNA detection by reverse transcription (RT quantitative real-time PCR (RT-qPCR is the most popular method currently used to measure miRNA expression. Although the majority of miRNA families are constituted of several 3′-end length variants (“isomiRs”, little attention has been paid to their differential detection by RT-qPCR. However, recent evidence indicates that 3′-end miRNA isoforms can exhibit 3′-length specific regulatory functions, underlining the need to develop strategies to differentiate 3′-isomiRs by RT-qPCR approaches. We demonstrate here that polyadenylation-based RT-qPCR strategies targeted to 20–21 nt isoforms amplify entire miRNA families, but that primers targeted to >22 nt isoforms were specific to >21 nt isoforms. Based on this observation, we developed a simple method to increase selectivity of polyadenylation-based RT-qPCR assays toward shorter isoforms, and demonstrate its capacity to help distinguish short RNAs from longer ones, using synthetic RNAs and biological samples with altered isomiR stoichiometry. Our approach can be adapted to many polyadenylation-based RT-qPCR technologies already exiting, providing a convenient way to distinguish long and short 3′-isomiRs.

  10. Increased detection of mastitis pathogens by real-time PCR compared to bacterial culture.

    Science.gov (United States)

    Keane, O M; Budd, K E; Flynn, J; McCoy, F

    2013-09-21

    Rapid and accurate identification of mastitis pathogens is important for disease control. Bacterial culture and isolate identification is considered the gold standard in mastitis diagnosis but is time consuming and results in many culture-negative samples. Identification of mastitis pathogens by PCR has been proposed as a fast and sensitive alternative to bacterial culture. The results of bacterial culture and PCR for the identification of the aetiological agent of clinical mastitis were compared. The pathogen identified by traditional culture methods was also detected by PCR in 98 per cent of cases indicating good agreement between the positive results of bacterial culture and PCR. A mastitis pathogen could not be recovered from approximately 30 per cent of samples by bacterial culture, however, an aetiological agent was identified by PCR in 79 per cent of these samples. Therefore, a mastitis pathogen was detected in significantly more milk samples by PCR than by bacterial culture (92 per cent and 70 per cent, respectively) although the clinical relevance of PCR-positive culture-negative results remains controversial. A mixed infection of two or more mastitis pathogens was also detected more commonly by PCR. Culture-negative samples due to undetected Staphylococcus aureus infections were rare. The use of PCR technology may assist in rapid mastitis diagnosis, however, accurate interpretation of PCR results in the absence of bacterial culture remains problematic.

  11. Fluorescent-increase kinetics of different fluorescent reporters used for qPCR depend on monitoring chemistry, targeted sequence, type of DNA input and PCR efficiency

    International Nuclear Information System (INIS)

    Ruijter, Jan M.; Hoff, Maurice J. B. van den; Lorenz, Peter; Tuomi, Jari M.; Hecker, Michael

    2014-01-01

    The analysis of quantitative PCR data usually does not take into account the fact that the increase in fluorescence depends on the monitoring chemistry, the input of ds-DNA or ss-cDNA, and the directionality of the targeting of probes or primers. The monitoring chemistries currently available can be categorized into six groups: (A) DNA-binding dyes; (B) hybridization probes; (C) hydrolysis probes; (D) LUX primers; (E) hairpin primers; and (F) the QZyme system. We have determined the kinetics of the increase in fluorescence for each of these groups with respect to the input of both ds-DNA and ss-cDNA. For the latter, we also evaluated mRNA and cDNA targeting probes or primers. This analysis revealed three situations. Hydrolysis probes and LUX primers, compared to DNA-binding dyes, do not require a correction of the observed quantification cycle. Hybridization probes and hairpin primers require a correction of −1 cycle (dubbed C-lag), while the QZyme system requires the C-lag correction and an efficiency-dependent C-shift correction. A PCR efficiency value can be derived from the relative increase in fluorescence in the exponential phase of the amplification curve for all monitoring chemistries. In case of hydrolysis probes, LUX primers and hairpin primers, however, this should be performed after cycle 12, and for the QZyme system after cycle 19, to keep the overestimation of the PCR efficiency below 0.5 %. (author)

  12. Inhibitory effect of common microfluidic materials on PCR outcome

    KAUST Repository

    Kodzius, Rimantas

    2012-02-20

    compatibility of various materials commonly used while producing microfluidic devices is also pertinent and beneficial to other enzymatic reactions in microfluidic devices. Most PCR-friendly materials exhibit similar signals regardless of the inclusion or not of BSA in the PCR mixture; these materials are PP, PTFE, PDMS, wax (Tm 80°C), SiO2 quartz, pyrex and soda-lime glasses, NOA68, and mineral oil. Our results showed that there was near total adsorption of template DNA when the wax (Tm 60°C) was used (RBI = 9.2×101). In contrast, when NOA61, mineral oil and acrylic glue materials were employed, significant adsorption occurred (RBI < 1.5×103). The polymerase-inhibition experiments indicate that following materials do not have strong effects (RBI > 1.1×103) on polymerase: PC, PP, PTFE, PDMS, silicon with a layer of 560 nm SiO2, SiO2 quartz, pyrex, and soda-lime glass. Slight polymerase inhibition (RBI < 9.2×102) was observed with PMMA, PVC, waxes (Tm 56°C and 80°C), silicon, and NOA68. A very strong or near total inhibition (RBI < 1.8×102) was observed with wax (Tm 60°C), ITO glass, SU-8, NOA61, metal tubes, mineral oil, epoxy, and the acrylic glues. \\tOur results show that material selection for microfluidic PCR chips, which are characterized by large SAVR, is a vital part of optimizing PCR outcome. This study of the inhibitory effect of various common microfluidics materials has provided a new rapid testing method using only a PCR cycler, and it has confirmed and expanded the list of tested materials. The type of PCR compatibility test enables the most effectual choice of materials for use in biology-related experiments.

  13. Effects of prolonged chlorine exposures upon PCR detection of Helicobacter pylori DNA.

    Science.gov (United States)

    The effect of low doses of free chlorine on the detection by qPCR of Helicobacter pylori (H. pylori) cells by qPCR in tap water was monitored. H. pylori target sequences (within suspended, intact cells at densities of 102 to 103 cells /ml) were rendered undetectable by qPCR an...

  14. Eliminating PCR contamination

    International Nuclear Information System (INIS)

    Fox, J.C.; Ait-Khaled, Mounir; Webster, Alison; Emery, V.C.

    1991-01-01

    The sensitivity of polymerase chain reaction (PCR) can mean that even very low levels of contamination with the target DNA will result in a positive signal. At present this aspect is a major limitation in the use of PCR as a routine diagnostic method. By exposing PCR reagents to UV light, contaminating DNA can be inactivated, thus providing an opportunity to eradicate false positive reactions. UV irradiation was applied to PCR systems used for detection of human cytomegalovirus CMV and human immunodeficiency virus (HIV) and shown to be effective in eradicating both laboratory encountered contamination and plasmid DNA (below 100 pg) added to PCR systems prior to UV exposure. Sensitivity of a PCR system to amplify the long terminal repeat (LTR) sequence of HIV-1 was not affected by the irradiation procedure; however, ultimate sensitivity of a PCR system for the amplification of an early gene pro-motor sequence of the CMV genome was reduced 1000-fold. UV irradiation did not affect the size of the PCR product as determined by strand separating polyacrylamide gel electrophoresis of a 32 P-labelled amplimer. Thus, a simple pre-exposure to UV light would seem a worth-wile step to incorporate into PCR protocols provided that the effects on sensitivity have been determined empirically for each PCR system. (author). 11 refs.; 3 figs

  15. Gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of Japanese encephalitis virus

    International Nuclear Information System (INIS)

    Huang, S-H; Tsai, M-H; Lin, C-W; Yang, T-C; Chuang, P-H; Tsai, I-S; Lu, H-C; Wan Lei; Lin, Y-J; Lai, C-H

    2008-01-01

    Virus isolation and antibody detection are routinely used for diagnosis of Japanese encephalitis virus (JEV) infection, but the low level of transient viremia in some JE patients makes JEV isolation from clinical and surveillance samples very difficult. We describe the use of gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of JEV from its RNA genome. We tested the effect of gold nanoparticles on four different PCR systems, including conventional PCR, reverse-transcription PCR (RT-PCR), and SYBR green real-time PCR and RT-PCR assays for diagnosis in the acute phase of JEV infection. Gold nanoparticles increased the amplification yield of the PCR product and shortened the PCR time compared to the conventional reaction. In addition, nanogold-based real-time RT-PCR showed a linear relationship between Ct and template amount using ten-fold dilutions of JEV. The nanogold-based RT-PCR and real-time quantitative RT-PCR assays were able to detect low levels (1-10 000 copies) of the JEV RNA genomes extracted from culture medium or whole blood, providing early diagnostic tools for the detection of low-level viremia in the acute-phase infection. The assays described here were simple, sensitive, and rapid approaches for detection and quantitation of JEV in tissue cultured samples as well as clinical samples

  16. Immunocapture reverse transcription-polymerase chain reaction combined with nested PCR greatly increases the detection of Prunus necrotic ring spot virus in the peach.

    Science.gov (United States)

    Helguera, P R; Taborda, R; Docampo, D M; Ducasse, D A

    2001-06-01

    A detection system based on nested PCR after IC-RT-PCR (IC-RT-PCR-Nested PCR) was developed to improve indexing of Prunus necrotic ringspot virus in peach trees. Inhibitory effects and inconsistencies of the standard IC-RT-PCR were overcome by this approach. IC-RT-PCR-Nested PCR improved detection by three orders of magnitude compared with DAS-ELISA for the detection of PNRSV in leaves. Several different tissues were evaluated and equally consistent results were observed. The main advantages of the method are its consistency, high sensitivity and easy application in quarantine programs.

  17. Compartmentalized self-replication under fast PCR cycling conditions yields Taq DNA polymerase mutants with increased DNA-binding affinity and blood resistance.

    Science.gov (United States)

    Arezi, Bahram; McKinney, Nancy; Hansen, Connie; Cayouette, Michelle; Fox, Jeffrey; Chen, Keith; Lapira, Jennifer; Hamilton, Sarah; Hogrefe, Holly

    2014-01-01

    Faster-cycling PCR formulations, protocols, and instruments have been developed to address the need for increased throughput and shorter turn-around times for PCR-based assays. Although run times can be cut by up to 50%, shorter cycle times have been correlated with lower detection sensitivity and increased variability. To address these concerns, we applied Compartmentalized Self Replication (CSR) to evolve faster-cycling mutants of Taq DNA polymerase. After five rounds of selection using progressively shorter PCR extension times, individual mutations identified in the fastest-cycling clones were randomly combined using ligation-based multi-site mutagenesis. The best-performing combinatorial mutants exhibit 35- to 90-fold higher affinity (lower Kd ) for primed template and a moderate (2-fold) increase in extension rate compared to wild-type Taq. Further characterization revealed that CSR-selected mutations provide increased resistance to inhibitors, and most notably, enable direct amplification from up to 65% whole blood. We discuss the contribution of individual mutations to fast-cycling and blood-resistant phenotypes.

  18. Human papillomavirus detection and typing using a nested-PCR-RFLP assay.

    Science.gov (United States)

    Coser, Janaina; Boeira, Thaís da Rocha; Fonseca, André Salvador Kazantzi; Ikuta, Nilo; Lunge, Vagner Ricardo

    2011-01-01

    It is clinically important to detect and type human papillomavirus (HPV) in a sensitive and specific manner. Development of a nested-polymerase chain reaction-restriction fragment length polymorphism (nested-PCR-RFLP) assay to detect and type HPV based on the analysis of L1 gene. Analysis of published DNA sequence of mucosal HPV types to select sequences of new primers. Design of an original nested-PCR assay using the new primers pair selected and classical MY09/11 primers. HPV detection and typing in cervical samples using the nested-PCR-RFLP assay. The nested-PCR-RFLP assay detected and typed HPV in cervical samples. Of the total of 128 clinical samples submitted to simple PCR and nested-PCR for detection of HPV, 37 (28.9%) were positive for the virus by both methods and 25 samples were positive only by nested-PCR (67.5% increase in detection rate compared with single PCR). All HPV positive samples were effectively typed by RFLP assay. The method of nested-PCR proved to be an effective diagnostic tool for HPV detection and typing.

  19. Comparative effectiveness of light-microscopic techniques and PCR in detecting Thelohania solenopsae (Microsporidia) infections in red imported fire ants (Solenopsis invicta).

    Science.gov (United States)

    Milks, Maynard L; Sokolova, Yuliya Y; Isakova, Irina A; Fuxa, James R; Mitchell, Forrest; Snowden, Karen F; Vinson, S Bradleigh

    2004-01-01

    The main goal of this study was to compare the effectiveness of three staining techniques (calcofluor white M2R, Giemsa and modified trichrome), and the polymerase chain reaction (PCR) in detecting the microsporidium Thelohania solenopsae in red imported fire ants (Solenopsis invicta). The effect of the number of ants in a sample on the sensitivity of the staining techniques and the PCR, and the effect of three DNA extraction protocols on the sensitivity of PCR were also examined. In the first protocol, the ants were macerated and the crude homogenate was used immediately in the PCR. In the second protocol, the homogenate was placed on a special membrane (FTA card) that traps DNA, which is subsequently used in the PCR. In the third protocol, the DNA was purified from the homogenate by traditional phenol-chloroform extraction. Except for PCR using FTA cards, the sensitivity (number of samples positive for T. solenopsae) of all detection techniques increased with the number of ants in the sample. Overall, Giemsa was the least sensitive of all detection techniques. Calcofluor was more sensitive than modified trichrome with ants from one site and was equally as sensitive as PCR with crude DNA or a FTA card with ants from both sites. Trichrome staining was equally as sensitive as PCR with a FTA card at both sites, but it was less sensitive than PCR with crude DNA at one site. PCR on FTA cards was less sensitive than PCR with crude DNA for ants from one site but not the other. There was no difference whether crude or phenol-chloroform purified DNA was used as template. In summary, the results of this study show that PCR based on a crude DNA solution is equal to or more sensitive in detecting T. solenopsae than the other detection techniques investigated, and that it can be used as a reliable diagnostic tool for screening field samples of S. invicta for T. solenopsae. Nevertheless, ant smear stained with calcofluor or modified trichrome should be used to buttress findings

  20. From the 'PCR' function to the 'PCR' profession; de la fonction 'PCR' au metier 'PCR'

    Energy Technology Data Exchange (ETDEWEB)

    Perrin, L. [CERAP, 91 - Gif sur Yvette (France)

    2008-07-01

    After having recalled the legal context concerning the appointment and training of a radiation protection expert (PCR for 'personne competente en radioprotection'), the author outlines that the PCR's role has notably evolved: his function is now of primary importance in the company and his activity does not correspond to the legal framework any longer. Moreover, with the application of a European directive, some small establishments possessing ionizing radiation sources are disadvantaged, and the PCR is now facing an increasing number of missions and tasks. The author gives a list of them and assesses a needed time of 146 days per year: this means PCRs cannot have an other activity within their company

  1. Assessment of the real-time PCR and different digital PCR platforms for DNA quantification.

    Science.gov (United States)

    Pavšič, Jernej; Žel, Jana; Milavec, Mojca

    2016-01-01

    Digital PCR (dPCR) is beginning to supersede real-time PCR (qPCR) for quantification of nucleic acids in many different applications. Several analytical properties of the two most commonly used dPCR platforms, namely the QX100 system (Bio-Rad) and the 12.765 array of the Biomark system (Fluidigm), have already been evaluated and compared with those of qPCR. However, to the best of our knowledge, direct comparison between the three of these platforms using the same DNA material has not been done, and the 37 K array on the Biomark system has also not been evaluated in terms of linearity, analytical sensitivity and limit of quantification. Here, a first assessment of qPCR, the QX100 system and both arrays of the Biomark system was performed with plasmid and genomic DNA from human cytomegalovirus. With use of PCR components that alter the efficiency of qPCR, each dPCR platform demonstrated consistent copy-number estimations, which indicates the high resilience of dPCR. Two approaches, one considering the total reaction volume and the other considering the effective reaction size, were used to assess linearity, analytical sensitivity and variability. When the total reaction volume was considered, the best performance was observed with qPCR, followed by the QX100 system and the Biomark system. In contrast, when the effective reaction size was considered, all three platforms showed almost equal limits of detection and variability. Although dPCR might not always be more appropriate than qPCR for quantification of low copy numbers, dPCR is a suitable method for robust and reproducible quantification of viral DNA, and a promising technology for the higher-order reference measurement method.

  2. Molecular diagnostic PCR handbook

    International Nuclear Information System (INIS)

    Viljoen, G.J.; Crowther, J.R.; Nel, L.H.

    2005-01-01

    The uses of nucleic acid-directed methods have increased significantly in the past five years and have made important contributions to disease control country programmes for improving national and international trade. These developments include the more routine use of PCR as a diagnostic tool in veterinary diagnostic laboratories. However, there are many problems associated with the transfer and particularly, the application of this technology. These include lack of consideration of: the establishment of quality-assured procedures, the required set-up of the laboratory and the proper training of staff. This can lead to a situation where results are not assured. This book gives a comprehensive account of the practical aspects of PCR and strong consideration is given to ensure its optimal use in a laboratory environment. This includes the setting-up of a PCR laboratory; Good Laboratory Practice and standardised PCR protocols to detect animal disease pathogens. Examples of Standard Operating Procedures as used in individual specialist laboratories and an outline of training materials necessary for PCR technology transfer are presented. The difficulties, advantages and disadvantages in PCR applications are explained and placed in context with other test systems. Emphasis is placed on the use of PCR for detection of pathogens, with a particular focus on diagnosticians and scientists from the developing world. It is hoped that this book will enable readers from various disciplines and levels of expertise to better judge the merits of PCR and to increase their skills and knowledge in order to assist in a more logical, efficient and assured use of this technology

  3. Effect of ionizing radiation on the quantitative detection of Salmonella using real-time PCR

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sangyong; Jung, Jinwoo [Radiation Research Center for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Kim, Minjeong; Ryu, Sangryeol [Department of Food and Animal Biotechnology, School of Agricultural Biotechnology, Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921 (Korea, Republic of); Kim, Dongho [Radiation Research Center for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of)], E-mail: fungikim@kaeri.re.kr

    2008-09-15

    Food irradiation is an economically viable technology for inactivating foodborne pathogens, but irradiation can mask pathogens in unhygienically prepared food. The aim of this study was to investigate the effect of irradiation treatment on the detection of Salmonella using real-time PCR. Three commercially available kits were tested, of which the InstaGene Matrix procedure was most effective in preparing template DNA from Salmonella exposed to radiation in broth culture. The minimum level of detection by real-time PCR combined with InstaGene Matrix was 3 log units of Salmonella per milliliter. However, when pure cultures of Salmonella were irradiated at 3 and 5 kGy, the cycle threshold (C{sub T}) increased 1-1.5-fold compared to irradiation at 0 and 1 kGy. This indicated that irradiation treatment may result in an underestimation of bacterial counts due to radiation-induced DNA lesions. We also compared C{sub T} values in inoculated chicken homogenates before and after irradiation, which in this model caused a 1.3-3.3-fold underestimation of bacterial counts with respect to irradiation dose.

  4. Detection of adenoviruses in shellfish by means of conventional-PCR, nested-PCR, and integrated cell culture PCR (ICC/PCR).

    Science.gov (United States)

    Rigotto, C; Sincero, T C M; Simões, C M O; Barardi, C R M

    2005-01-01

    We tested three PCR based methodologies to detect adenoviruses associated with cultivated oysters. Conventional-PCR, nested-PCR, and integrated cell culture-PCR (ICC/PCR) were first optimized using oysters seeded with know amounts of Adenovirus serotype 5 (Ad5). The maximum sensitivity for Ad5 detection was determined for each method, and then used to detect natural adenovirus contamination in oysters from three aquiculture farms in Florianopolis, Santa Catarina State, Brazil, over a period of 6 months. The results showed that the nested-PCR was more sensitive (limit of detection: 1.2 PFU/g of tissue) than conventional-PCR and ICC-PCR (limit of detection for both: 1.2 x 10(2)PFU/g of tissue) for detection of Ad5 in oyster extracts. Nested-PCR was able to detect 90% of Ad5 contamination in harvested oyster samples, while conventional-PCR was unable to detect Ad5 in any of the samples. The present work suggests that detection of human adenoviruses can be used as a tool to monitor the presence of human viruses in marine environments where shellfish grow, and that nested-PCR is the method of choice.

  5. Comparison of multiple DNA dyes for real-time PCR: effects of dye concentration and sequence composition on DNA amplification and melting temperature

    DEFF Research Database (Denmark)

    Guðnason, Haukur; Dufva, Hans Martin; Bang, Dang Duong

    2007-01-01

    investigate 15 different intercalating DNA dyes for their inhibitory effects on PCR, effects on DNA melting temperature and possible preferential binding to GC-rich sequences. Our results demonstrated that in contrast to the results of SYBR Green I, two intercalating dyes SYTO-13 and SYTO-82 do not inhibit......The importance of real-time polymerase chain reaction (PCR) has increased steadily in clinical applications over the last decade. Many applications utilize SYBR Green I dye to follow the accumulation of amplicons in real time. SYBR Green I has, however, a number of limitations that include...... the inhibition of PCR, preferential binding to GC-rich sequences and effects on melting curve analysis. Although a few alternative dyes without some of these limitations have been recently proposed, no large-scale investigation into the properties of intercalating dyes has been performed. In this study, we...

  6. Effect of endogenous reference genes on digital PCR assessment of genetically engineered canola events

    Directory of Open Access Journals (Sweden)

    Tigst Demeke

    2018-05-01

    Full Text Available Droplet digital PCR (ddPCR has been used for absolute quantification of genetically engineered (GE events. Absolute quantification of GE events by duplex ddPCR requires the use of appropriate primers and probes for target and reference gene sequences in order to accurately determine the amount of GE materials. Single copy reference genes are generally preferred for absolute quantification of GE events by ddPCR. Study has not been conducted on a comparison of reference genes for absolute quantification of GE canola events by ddPCR. The suitability of four endogenous reference sequences (HMG-I/Y, FatA(A, CruA and Ccf for absolute quantification of GE canola events by ddPCR was investigated. The effect of DNA extraction methods and DNA quality on the assessment of reference gene copy numbers was also investigated. ddPCR results were affected by the use of single vs. two copy reference genes. The single copy, FatA(A, reference gene was found to be stable and suitable for absolute quantification of GE canola events by ddPCR. For the copy numbers measured, the HMG-I/Y reference gene was less consistent than FatA(A reference gene. The expected ddPCR values were underestimated when CruA and Ccf (two copy endogenous Cruciferin sequences were used because of high number of copies. It is important to make an adjustment if two copy reference genes are used for ddPCR in order to obtain accurate results. On the other hand, real-time quantitative PCR results were not affected by the use of single vs. two copy reference genes. Keywords: Canola, Digital PCR, DNA extraction, GMO, Reference genes

  7. Comparison between digital PCR and real-time PCR in detection of Salmonella typhimurium in milk.

    Science.gov (United States)

    Wang, Meng; Yang, Junjie; Gai, Zhongtao; Huo, Shengnan; Zhu, Jianhua; Li, Jun; Wang, Ranran; Xing, Sheng; Shi, Guosheng; Shi, Feng; Zhang, Lei

    2018-02-02

    As a kind of zero-tolerance foodborne pathogens, Salmonella typhimurium poses a great threat to quality of food products and public health. Hence, rapid and efficient approaches to identify Salmonella typhimurium are urgently needed. Combined with PCR and fluorescence technique, real-time PCR (qPCR) and digital PCR (ddPCR) are regarded as suitable tools for detecting foodborne pathogens. To compare the effect between qPCR and ddPCR in detecting Salmonella typhimurium, a series of nucleic acid, pure strain culture and spiking milk samples were applied and the resistance to inhibitors referred in this article as well. Compared with qPCR, ddPCR exhibited more sensitive (10 -4 ng/μl or 10 2 cfu/ml) and less pre-culturing time (saving 2h). Moreover, ddPCR had stronger resistance to inhibitors than qPCR, yet absolute quantification hardly performed when target's concentration over 1ng/μl or 10 6 cfu/ml. This study provides an alternative strategy in detecting foodborne Salmonella typhimurium. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Effect of endogenous reference genes on digital PCR assessment of genetically engineered canola events.

    Science.gov (United States)

    Demeke, Tigst; Eng, Monika

    2018-05-01

    Droplet digital PCR (ddPCR) has been used for absolute quantification of genetically engineered (GE) events. Absolute quantification of GE events by duplex ddPCR requires the use of appropriate primers and probes for target and reference gene sequences in order to accurately determine the amount of GE materials. Single copy reference genes are generally preferred for absolute quantification of GE events by ddPCR. Study has not been conducted on a comparison of reference genes for absolute quantification of GE canola events by ddPCR. The suitability of four endogenous reference sequences ( HMG-I/Y , FatA(A), CruA and Ccf) for absolute quantification of GE canola events by ddPCR was investigated. The effect of DNA extraction methods and DNA quality on the assessment of reference gene copy numbers was also investigated. ddPCR results were affected by the use of single vs. two copy reference genes. The single copy, FatA(A), reference gene was found to be stable and suitable for absolute quantification of GE canola events by ddPCR. For the copy numbers measured, the HMG-I/Y reference gene was less consistent than FatA(A) reference gene. The expected ddPCR values were underestimated when CruA and Ccf (two copy endogenous Cruciferin sequences) were used because of high number of copies. It is important to make an adjustment if two copy reference genes are used for ddPCR in order to obtain accurate results. On the other hand, real-time quantitative PCR results were not affected by the use of single vs. two copy reference genes.

  9. Evaluation of PCR and multiplex PCR in relation to nested PCR for diagnosing Theileria equi

    Directory of Open Access Journals (Sweden)

    Danielle C. Leal

    2011-07-01

    Full Text Available Conventional PCR (PCRTeq for diagnosing Theileria equi and multiplex PCR (M/PCRTeq-Bc for diagnosing T. equi and Babesia caballi were comparatively evaluated with nested PCR (N/PCR-Teq for diagnosing equine piroplasmosis. In DNA sensitivity determinations, in multiple dilutions of equine blood that had tested positive for T. equi, PCR-Teq and N/PCR-Teq detected hemoparasite DNA in the larger dilutions (1:128, but did not differ significantly from the M/PCRTeq-Bc (1:64. In analyses on equine serum tested by ELISA, there was high agreement between this serological test and PCR-Teq (k = 0.780 and moderate agreement with N/PCR-Teq (k = 0.562 and M/PCRTeq-Bc (k = 0.488. PCR-Teq found a higher frequency of T. equi both in extensively and intensively reared horses, but this was not significant in relation to N/PCR-Teq (P>0.05, and both PCRs indicated that there was an endemic situation regarding T. equi in the population of horses of this sample. PCR-Teq was only significantly different from M/PCR-Teq-Bc (P<0.05. PCR-Teq presented high sensitivity and specificity, comparable to N/PCR-Teq, but with the advantage of higher speed in obtaining results and lower costs and risks of laboratory contamination. This accredits PCR-Teq for epidemiological studies and for determinations on affected horses.

  10. Evaluation of Propranolol Effect on Experimental Acute and Chronic Toxoplasmosis Using Quantitative PCR

    Science.gov (United States)

    Montazeri, Mahbobeh; Ebrahimzadeh, Mohammad Ali; Ahmadpour, Ehsan; Sharif, Mehdi; Sarvi, Shahabeddin

    2016-01-01

    Current therapies against toxoplasmosis are limited, and drugs have significant side effects and low efficacies. We evaluated the potential anti-Toxoplasma activity of propranolol at a dose of 2 or 3 mg/kg of body weight/day in vivo in the acute and chronic phases. Propranolol as a cell membrane-stabilizing agent is a suitable drug for inhibiting the entrance of Toxoplasma gondii tachyzoites into cells. The acute-phase assay was performed using propranolol, pyrimethamine, and propranolol plus pyrimethamine before (pretreatment) and after (posttreatment) intraperitoneal challenge with 1 × 103 tachyzoites of the virulent T. gondii strain RH in BALB/c mice. Also, in the chronic phase, treatment was performed 12 h before intraperitoneal challenge with 1 × 106 tachyzoites of the virulent strain RH of T. gondii in rats. One week (in the acute phase) and 2 months (in the chronic phase) after postinfection, tissues were isolated and DNA was extracted. Subsequently, parasite load was calculated using quantitative PCR (qPCR). In the acute phase, in both groups, significant anti-Toxoplasma activity was observed using propranolol (P toxoplasmosis. Also, propranolol combined with pyrimethamine reduced the parasite load as well as significantly increased survival of mice in the pretreatment group. In the chronic phase, anti-Toxoplasma activity and decreased parasite load in tissues were observed with propranolol. In conclusion, the presented results demonstrate that propranolol, as an orally available drug, is effective at low doses against acute and latent murine toxoplasmosis, and the efficiency of the drug is increased when it is used in combination therapy with pyrimethamine. PMID:27645234

  11. ReadqPCR and NormqPCR: R packages for the reading, quality checking and normalisation of RT-qPCR quantification cycle (Cq data

    Directory of Open Access Journals (Sweden)

    Perkins James R

    2012-07-01

    Full Text Available Abstract Background Measuring gene transcription using real-time reverse transcription polymerase chain reaction (RT-qPCR technology is a mainstay of molecular biology. Technologies now exist to measure the abundance of many transcripts in parallel. The selection of the optimal reference gene for the normalisation of this data is a recurring problem, and several algorithms have been developed in order to solve it. So far nothing in R exists to unite these methods, together with other functions to read in and normalise the data using the chosen reference gene(s. Results We have developed two R/Bioconductor packages, ReadqPCR and NormqPCR, intended for a user with some experience with high-throughput data analysis using R, who wishes to use R to analyse RT-qPCR data. We illustrate their potential use in a workflow analysing a generic RT-qPCR experiment, and apply this to a real dataset. Packages are available from http://www.bioconductor.org/packages/release/bioc/html/ReadqPCR.htmland http://www.bioconductor.org/packages/release/bioc/html/NormqPCR.html Conclusions These packages increase the repetoire of RT-qPCR analysis tools available to the R user and allow them to (amongst other things read their data into R, hold it in an ExpressionSet compatible R object, choose appropriate reference genes, normalise the data and look for differential expression between samples.

  12. Real-time PCR in virology

    OpenAIRE

    Mackay, Ian M.; Arden, Katherine E.; Nitsche, Andreas

    2002-01-01

    The use of the polymerase chain reaction (PCR) in molecular diagnostics has increased to the point where it is now accepted as the gold standard for detecting nucleic acids from a number of origins and it has become an essential tool in the research laboratory. Real-time PCR has engendered wider acceptance of the PCR due to its improved rapidity, sensitivity, reproducibility and the reduced risk of carry-over contamination. There are currently five main chemistries used for the detection of P...

  13. Quantitative PCR Profiling of Escherichia coli in Livestock Feces Reveals Increased Population Resilience Relative to Culturable Counts under Temperature Extremes.

    Science.gov (United States)

    Oliver, David M; Bird, Clare; Burd, Emmy; Wyman, Michael

    2016-09-06

    The relationship between culturable counts (CFU) and quantitative PCR (qPCR) cell equivalent counts of Escherichia coli in dairy feces exposed to different environmental conditions and temperature extremes was investigated. Fecal samples were collected in summer and winter from dairy cowpats held under two treatments: field-exposed versus polytunnel-protected. A significant correlation in quantified E. coli was recorded between the qPCR and culture-based methods (r = 0.82). Evaluation of the persistence profiles of E. coli over time revealed no significant difference in the E. coli numbers determined as either CFU or gene copies during the summer for the field-exposed cowpats, whereas significantly higher counts were observed by qPCR for the polytunnel-protected cowpats, which were exposed to higher ambient temperatures. In winter, the qPCR returned significantly higher counts of E. coli for the field-exposed cowpats, thus representing a reversal of the findings from the summer sampling campaign. Results from this study suggest that with increasing time post-defecation and with the onset of challenging environmental conditions, such as extremes in temperature, culture-based counts begin to underestimate the true resilience of viable E. coli populations in livestock feces. This is important not only in the long term as the Earth changes in response to climate-change drivers but also in the short term during spells of extremely cold or hot weather.

  14. Determination of the Effects of Medium Composition on the Monochloramine Disinfection Kinetics of Nitrosomonas europaea by the Propidium Monoazide Quantitative PCR and Live/Dead BacLight Methods ▿

    Science.gov (United States)

    Wahman, David G.; Schrantz, Karen A.; Pressman, Jonathan G.

    2010-01-01

    Various medium compositions (phosphate, 1 to 50 mM; ionic strength, 2.8 to 150 meq/liter) significantly affected Nitrosomonas europaea monochloramine disinfection kinetics, as determined by the Live/Dead BacLight (LD) and propidium monoazide quantitative PCR (PMA-qPCR) methods (lag coefficient, 37 to 490 [LD] and 91 to 490 [PMA-qPCR] mg·min/liter; Chick-Watson rate constant, 4.0 × 10−3 to 9.3 × 10−3 [LD] and 1.6 × 10−3 to 9.6 × 10−3 [PMA-qPCR] liter/mg·min). Two competing effects may account for the variation in disinfection kinetic parameters: (i) increasing kinetics (disinfection rate constant [k] increased, lag coefficient [b] decreased) with increasing phosphate concentration and (ii) decreasing kinetics (k decreased, b increased) with increasing ionic strength. The results support development of a standard medium for evaluating disinfection kinetics in drinking water. PMID:20952645

  15. Increased efficacy for in-house validation of real-time PCR GMO detection methods.

    Science.gov (United States)

    Scholtens, I M J; Kok, E J; Hougs, L; Molenaar, B; Thissen, J T N M; van der Voet, H

    2010-03-01

    To improve the efficacy of the in-house validation of GMO detection methods (DNA isolation and real-time PCR, polymerase chain reaction), a study was performed to gain insight in the contribution of the different steps of the GMO detection method to the repeatability and in-house reproducibility. In the present study, 19 methods for (GM) soy, maize canola and potato were validated in-house of which 14 on the basis of an 8-day validation scheme using eight different samples and five on the basis of a more concise validation protocol. In this way, data was obtained with respect to the detection limit, accuracy and precision. Also, decision limits were calculated for declaring non-conformance (>0.9%) with 95% reliability. In order to estimate the contribution of the different steps in the GMO analysis to the total variation variance components were estimated using REML (residual maximum likelihood method). From these components, relative standard deviations for repeatability and reproducibility (RSD(r) and RSD(R)) were calculated. The results showed that not only the PCR reaction but also the factors 'DNA isolation' and 'PCR day' are important factors for the total variance and should therefore be included in the in-house validation. It is proposed to use a statistical model to estimate these factors from a large dataset of initial validations so that for similar GMO methods in the future, only the PCR step needs to be validated. The resulting data are discussed in the light of agreed European criteria for qualified GMO detection methods.

  16. Synthetic internal control sequences to increase negative call veracity in multiplexed, quantitative PCR assays for Phakopsora pachyrhizi

    Science.gov (United States)

    Quantitative PCR (Q-PCR) utilizing specific primer sequences and a fluorogenic, 5’-exonuclease linear hydrolysis probe is well established as a detection and identification method for Phakopsora pachyrhizi, the soybean rust pathogen. Because of the extreme sensitivity of Q-PCR, the DNA of a single u...

  17. Pneumocystis PCR: It Is Time to Make PCR the Test of Choice.

    Science.gov (United States)

    Doyle, Laura; Vogel, Sherilynn; Procop, Gary W

    2017-01-01

    The testing strategy for Pneumocystis at the Cleveland Clinic changed from toluidine blue staining to polymerase chain reaction (PCR). We studied the differences in positivity rates for these assays and compared each with the detection of Pneumocystis in companion specimens by cytology and surgical pathology. We reviewed the results of all Pneumocystis test orders 1 year before and 1 year after the implementation of a Pneumocystis -specific PCR. We also reviewed the corresponding cytology and surgical pathology results, if performed. Finally, we reviewed the medical records of patients with rare Pneumocystis detected by PCR in an effort to differentiate colonization vs true disease. Toluidine blue staining and surgical pathology had similar sensitivities and negative predictive values, both of which were superior to cytology. There was a >4-fold increase in the annual detection of Pneumocystis by PCR compared with toluidine blue staining (toluidine blue staining: 11/1583 [0.69%] vs PCR: 44/1457 [3.0%]; chi-square P < .001). PCR detected 1 more case than surgical pathology and was far more sensitive than cytology. Chart review demonstrated that the vast majority of patients with rare Pneumocystis detected were immunosuppressed, had radiologic findings supportive of this infection, had no other pathogens detected, and were treated for pneumocystosis by the clinical team. PCR was the most sensitive method for the detection of Pneumocystis and should be considered the diagnostic test of choice. Correlation with clinical and radiologic findings affords discrimination of early true disease from the far rarer instances of colonization.

  18. Real-time PCR in virology.

    Science.gov (United States)

    Mackay, Ian M; Arden, Katherine E; Nitsche, Andreas

    2002-03-15

    The use of the polymerase chain reaction (PCR) in molecular diagnostics has increased to the point where it is now accepted as the gold standard for detecting nucleic acids from a number of origins and it has become an essential tool in the research laboratory. Real-time PCR has engendered wider acceptance of the PCR due to its improved rapidity, sensitivity, reproducibility and the reduced risk of carry-over contamination. There are currently five main chemistries used for the detection of PCR product during real-time PCR. These are the DNA binding fluorophores, the 5' endonuclease, adjacent linear and hairpin oligoprobes and the self-fluorescing amplicons, which are described in detail. We also discuss factors that have restricted the development of multiplex real-time PCR as well as the role of real-time PCR in quantitating nucleic acids. Both amplification hardware and the fluorogenic detection chemistries have evolved rapidly as the understanding of real-time PCR has developed and this review aims to update the scientist on the current state of the art. We describe the background, advantages and limitations of real-time PCR and we review the literature as it applies to virus detection in the routine and research laboratory in order to focus on one of the many areas in which the application of real-time PCR has provided significant methodological benefits and improved patient outcomes. However, the technology discussed has been applied to other areas of microbiology as well as studies of gene expression and genetic disease.

  19. Does more favourable handling of the cerebrospinal fluid increase the diagnostic sensitivity of Borrelia burgdorferi sensu lato-specific PCR in Lyme neuroborreliosis?

    Science.gov (United States)

    Forselv, Kristine J N; Lorentzen, Åslaug R; Ljøstad, Unn; Mygland, Åse; Eikeland, Randi; Kjelland, Vivian; Noraas, Sølvi; Quarsten, Hanne

    2018-04-01

    Tests for direct detection of Borrelia burgdorferi sensu lato (Bb) in Lyme neuroborreliosis (LNB) are needed. Detection of Bb DNA using PCR is promising, but clinical utility is hampered by low diagnostic sensitivity. We aimed to examine whether diagnostic sensitivity can be improved by the use of larger cerebrospinal fluid (CSF) volumes and faster handling of samples. Patients who underwent CSF examination for LNB were included. We collected two millilitres of CSF for PCR analysis, extracted DNA from the pellets within 24 h and analysed the eluate by two real-time PCR protocols (16S rRNA and OspA). Patients who fulfilled diagnostic criteria for LNB were classified as LNB cases and the rest as controls. Bb DNA in CSF was detected by PCR in seven of 28 adults with LNB. Two were Bb antibody negative. No Bb DNA was detected in CSF from 137 controls. Diagnostic sensitivity was 25% and specificity 100%. There was a non-significant trend towards larger CSF sample volume, faster handling of the sample, shorter duration of symptoms, and higher CSF cell count in the PCR-positive cases. We did not find that optimized handling of CSF increased diagnostic sensitivity of PCR in adults with LNB. However, our case series is small and we hypothesize that the importance of these factors will be clarified in further studies with larger case series and altered study design. PCR for diagnosis of LNB may be useful in cases without Bb antibodies due to short duration of symptoms.

  20. Effectiveness of onsite wastewater reuse system in reducing bacterial contaminants measured with human-specific IMS/ATP and qPCR.

    Science.gov (United States)

    Agidi, Senyo; Vedachalam, Sridhar; Mancl, Karen; Lee, Jiyoung

    2013-01-30

    Water shortages and the drive to recycle is increasing interest in reuse of reclaimed wastewater. Timely and cost-effective ways to detect fecal pollutants prior to reuse increases confidence of residents and neighbors concerned about reuse of reclaimed wastewater. The on-site wastewater treatment and reuse systems (OWTRS) used in this study include a septic tank, peat bioreactor, ClO(2) disinfection and land spray irrigation system. Bacteroides fragilis, Escherichia coli and Enterococcus spp., were tested with immunomagnetic separation/ATP bioluminescence (IMS/ATP), qPCR and culture-based methods. The results displayed a 2-log reduction in fecal bacteria in the peat bioreactor and a 5-log reduction following chloride dioxide disinfection. The fecal bacteria levels measured by IMS/ATP correlated with qPCR results: HuBac 16S (R(2) = 0.903), Bf-group 16S (R(2) = 0.956), gyrB (R(2) = 0.673), and Ent 23S (R(2) = 0.724). This is the first study in which the newly developed human-specific IMS/ATP and previously developed IMS/ATP were applied for determining OWTRS efficiency. Results of the study revealed that IMS/ATP is a timely and cost-effective way to detect fecal contaminants, and results were validated with qPCR and culture based methods. The new IMS/ATP can also be applied broadly in the detection of human-originated fecal contamination. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Effects of bacterial contamination of media on the diagnosis of Tritrichomonas foetus by culture and real-time PCR.

    Science.gov (United States)

    Clothier, Kristin A; Villanueva, Michelle; Torain, Andrea; Hult, Cynthia; Wallace, Rachel

    2015-03-15

    The venereal pathogen Tritrichomonas foetus causes early embryonic death and abortion in cattle. With no approved treatment, control involves detection of infected animals and their removal from the herd. Culture is the traditional diagnostic method; standard media are formulated to support protozoal growth while suppressing competing organisms which may prevent microscopic recognition of T. foetus. Real-time PCR increases diagnostic sensitivity and specificity over culture but requires intact T. foetus DNA for detection. The purposes of this study were 1) to evaluate the effects of resident preputial bacteria that are not suppressed by antimicrobials in a commercial culture medium (InPouch™) on T. foetus detection by culture and PCR, and 2) to determine the performance of a laboratory-prepared culture medium on T. foetus detection by culture and PCR in samples with and without this bacterial contamination. A known concentration of one of three different strains of T. foetus inoculated into InPouch™ (IP) or modified Diamonds-Plastridge media (DPM) were co-incubated with a smegma culture media (CONTAM) for 24h and examined microscopically for the presence of identifiable T. foetus. PCR was performed on IP samples to determine if CONTAM also affected T. foetus DNA detection. A PCR protocol was then validated in DPM that performed similarly to the established IP PCR method. IP and DPM with CONTAM were spiked with serial dilutions that mimic field infections of one of four T. foetus strains and evaluated by real-time PCR; cycles to threshold (Ct) values and "positive" classification were compared between media. T. foetus motility and morphology as well as media pH were severely altered in IP samples with CONTAM compared to those without as well as to DPM medium with and without CONTAM (Pmedia interfere with T. foetus identification by culture and PCR and adversely affect diagnostic sensitivity for this fastidious pathogen. Copyright © 2015 Elsevier B.V. All rights

  2. Bias in the Cq value observed with hydrolysis probe based quantitative PCR can be corrected with the estimated PCR efficiency value

    NARCIS (Netherlands)

    Tuomi, Jari Michael; Voorbraak, Frans; Jones, Douglas L.; Ruijter, Jan M.

    2010-01-01

    For real-time monitoring of PCR amplification of DNA, quantitative PCR (qPCR) assays use various fluorescent reporters. DNA binding molecules and hybridization reporters (primers and probes) only fluoresce when bound to DNA and result in the non-cumulative increase in observed fluorescence.

  3. Effect of the addition of phytosterols and tocopherols on Streptococcus thermophilus robustness during industrial manufacture and ripening of a functional cheese as evaluated by qPCR and RT-qPCR.

    Science.gov (United States)

    Pega, J; Rizzo, S; Pérez, C D; Rossetti, L; Díaz, G; Ruzal, S M; Nanni, M; Descalzo, A M

    2016-09-02

    The quality of functional food products designed for the prevention of degenerative diseases can be affected by the incorporation of bioactive compounds. In many types of cheese, the performance of starter microorganisms is critical for optimal elaboration and for providing potential probiotic benefits. Phytosterols are plant lipophilic triterpenes that have been used for the design of functional dairy products because of their ability to lower serum cholesterol levels in humans. However, their effect on the starter culture behavior during cheesemaking has not yet been studied. Here, we followed DNA and RNA kinetics of the bacterium Streptococcus thermophilus, an extensively used dairy starter with probiotic potential, during industrial production of a functional, semi-soft, reduced-fat cheese containing phytosterol esters and alpha-tocopherol as bioactive compounds. For this purpose, real-time quantitative PCR (qPCR) and reverse transcription-qPCR (RT-qPCR) assays were optimized and applied to samples obtained during the manufacture and ripening of functional and control cheeses. An experimental set-up was used to evaluate the detection threshold of free nucleic acids for extraction protocols based on pelleted microorganisms. To our knowledge, this straight-forward approach provides the first experimental evidence indicating that DNA is not a reliable marker of cell integrity, whereas RNA may constitute a more accurate molecular signature to estimate both bacterial viability and metabolic activity. Compositional analysis revealed that the bioactive molecules were effectively incorporated into the cheese matrix, at levels considered optimal to exert their biological action. The starter S. thermophilus was detected by qPCR and RT-qPCR during cheese production at the industrial level, from at least 30min after its inoculation until 81days of ripening, supporting the possible role of this species in shaping organoleptic profiles. We also showed for the first time that

  4. PCR

    African Journals Online (AJOL)

    Elham

    2013-07-03

    Jul 3, 2013 ... was constructed with competitive strategy by PCR-cloning technique and the limitation range was determined. The PCR products of MTB and IAC were 245 and 660 bp, respectively on .... products' differentiation was easy.

  5. Comparison of COBAS AMPLICOR Neissefia gonorrhoeae PCR, including confirmation with N-gonorrhoeae-specific 16S rRNA PCR, with traditional culture

    NARCIS (Netherlands)

    Luijt, DS; Bos, PAJ; van Zwet, AA; Vader, PCV; Schirm, J

    A total of 3,023 clinical specimens were tested for Neisseria gonorrhoeae by using COBAS AMPLICOR (CA) PCR and confirmation of positives by N. gonorrhoeae-specific 16S rRNA PCR. The sensitivity of CA plus 16S rRNA PCR was 98.8%, compared to 68.2% for culture. Confirmation of CA positives increased

  6. The effect of various disinfectants on detection of avian influenza virus by real time RT-PCR.

    Science.gov (United States)

    Suarez, D L; Spackman, E; Senne, D A; Bulaga, L; Welsch, A C; Froberg, K

    2003-01-01

    An avian influenza (AI) real time reverse transcriptase-polymerase chain reaction (RRT-PCR) test was previously shown to be a rapid and sensitive method to identify AI virus-infected birds in live-bird markets (LBMs). The test can also be used to identify avian influenza virus (AIV) from environmental samples. Consequently, the use of RRT-PCR was being considered as a component of the influenza eradication program in the LBMs to assure that each market was properly cleaned and disinfected before allowing the markets to be restocked. However, the RRT-PCR test cannot differentiate between live and inactivated virus, particularly in environmental samples where the RRT-PCR test potentially could amplify virus that had been inactivated by commonly used disinfectants, resulting in a false positive test result. To determine whether this is a valid concern, a study was conducted in three New Jersey LBMs that were previously shown to be positive for the H7N2 AIV. Environmental samples were collected from all three markets following thorough cleaning and disinfection with a phenolic disinfectant. Influenza virus RNA was detected in at least one environmental sample from two of the three markets when tested by RRT-PCR; however, all samples were negative by virus isolation using the standard egg inoculation procedure. As a result of these findings, laboratory experiments were designed to evaluate several commonly used disinfectants for their ability to inactivate influenza as well as disrupt the RNA so that it could not be detected by the RRT-PCR test. Five disinfectants were tested: phenolic disinfectants (Tek-trol and one-stroke environ), a quaternary ammonia compound (Lysol no-rinse sanitizer), a peroxygen compound (Virkon-S), and sodium hypochlorite (household bleach). All five disinfectants were effective at inactivating AIV at the recommended concentrations, but AIV RNA in samples inactivated with phenolic and quaternary ammonia compounds could still be detected by RRT-PCR

  7. Detection of Bacillus spores using PCR and FTA filters.

    Science.gov (United States)

    Lampel, Keith A; Dyer, Deanne; Kornegay, Leroy; Orlandi, Palmer A

    2004-05-01

    Emphasis has been placed on developing and implementing rapid detection systems for microbial pathogens. We have explored the utility of expanding FTA filter technology for the preparation of template DNA for PCR from bacterial spores. Isolated spores from several Bacillus spp., B. subtilis, B. cereus, and B. megaterium, were applied to FTA filters, and specific DNA products were amplified by PCR. Spore preparations were examined microscopically to ensure that the presence of vegetative cells, if any, did not yield misleading results. PCR primers SRM86 and SRM87 targeted a conserved region of bacterial rRNA genes, whereas primers Bsub5F and Bsub3R amplified a product from a conserved sequence of the B. subtilis rRNA gene. With the use of the latter set of primers for nested PCR, the sensitivity of the PCR-based assay was increased. Overall, 53 spores could be detected after the first round of PCR, and the sensitivity was increased to five spores by nested PCR. FTA filters are an excellent platform to remove PCR inhibitors and have universal applications for environmental, clinical, and food samples.

  8. Design and analysis of Q-RT-PCR assays for haematological malignancies using mixed effects models

    DEFF Research Database (Denmark)

    Bøgsted, Martin; Mandrup, Charlotte; Petersen, Anders

    2009-01-01

    research use and needs qualit control for accuracy and precision. Especially the identification of experimental variations and statistical analysis has recently created discussions. The standard analytical technique is to use the Delta-Delta-Ct method. Although this method accounts for sample specific...... developed based on a linear mixed effects model for factorial designs. The model consists of an analysis of variance where the variation of each fixed effect of interest and identified experimental and biological nuisance variations are split. Hereby it accounts for varying efficiency, inhomogeneous......The recent WHO classification of haematological malignancies includes detection of genetic abnormalities with rognostic significance. Consequently, an increasing number of specific real-time quantitative reverse transcription polymerase chain reaction (Q-RT-PCR) based assays are in clinical...

  9. Molecular quantification of environmental DNA using microfluidics and digital PCR.

    Science.gov (United States)

    Hoshino, Tatsuhiko; Inagaki, Fumio

    2012-09-01

    Real-time PCR has been widely used to evaluate gene abundance in natural microbial habitats. However, PCR-inhibitory substances often reduce the efficiency of PCR, leading to the underestimation of target gene copy numbers. Digital PCR using microfluidics is a new approach that allows absolute quantification of DNA molecules. In this study, digital PCR was applied to environmental samples, and the effect of PCR inhibitors on DNA quantification was tested. In the control experiment using λ DNA and humic acids, underestimation of λ DNA at 1/4400 of the theoretical value was observed with 6.58 ng μL(-1) humic acids. In contrast, digital PCR provided accurate quantification data with a concentration of humic acids up to 9.34 ng μL(-1). The inhibitory effect of paddy field soil extract on quantification of the archaeal 16S rRNA gene was also tested. By diluting the DNA extract, quantified copy numbers from real-time PCR and digital PCR became similar, indicating that dilution was a useful way to remedy PCR inhibition. The dilution strategy was, however, not applicable to all natural environmental samples. For example, when marine subsurface sediment samples were tested the copy number of archaeal 16S rRNA genes was 1.04×10(3) copies/g-sediment by digital PCR, whereas real-time PCR only resulted in 4.64×10(2) copies/g-sediment, which was most likely due to an inhibitory effect. The data from this study demonstrated that inhibitory substances had little effect on DNA quantification using microfluidics and digital PCR, and showed the great advantages of digital PCR in accurate quantifications of DNA extracted from various microbial habitats. Copyright © 2012 Elsevier GmbH. All rights reserved.

  10. Absolute quantification by droplet digital PCR versus analog real-time PCR

    Science.gov (United States)

    Hindson, Christopher M; Chevillet, John R; Briggs, Hilary A; Gallichotte, Emily N; Ruf, Ingrid K; Hindson, Benjamin J; Vessella, Robert L; Tewari, Muneesh

    2014-01-01

    Nanoliter-sized droplet technology paired with digital PCR (ddPCR) holds promise for highly precise, absolute nucleic acid quantification. Our comparison of microRNA quantification by ddPCR and real-time PCR revealed greater precision (coefficients of variation decreased by 37–86%) and improved day-to-day reproducibility (by a factor of seven) of ddPCR but with comparable sensitivity. When we applied ddPCR to serum microRNA biomarker analysis, this translated to superior diagnostic performance for identifying individuals with cancer. PMID:23995387

  11. Improved thermal cycling durability and PCR compatibility of polymer coated quantum dot

    International Nuclear Information System (INIS)

    Xun Zhe; Guan Yifu; Zhao Xiaoyun

    2013-01-01

    Quantum dots have experienced rapid development in imaging, labeling and sensing in medicine and life science. To be suitable for polymerase chain reaction (PCR) assay, we have tested QD thermal cycling durability and compatibility, which have not been addressed in previous reports. In this study, we synthesized CdSe/ZnS QDs with a surface modification with high-MW amphiphilic copolymers and observed that Mg 2+ ions in the PCR reaction could induce the QDs to precipitate and reduce their fluorescence signal significantly after thermal cycling. To overcome this problem, we used mPEG2000 to conjugate the QD surface for further protection, and found that this modification enables QDs to endure 40 thermal cycles in the presence of other components essential for PCR reactions. We have also identified that QDs have different effects on rTaq and Ex Taq polymerization systems. A high QD concentration could apparently reduce the PCR efficiency, but this inhibition was relieved significantly in the Ex PCR system as the concentration of Ex Taq polymerase was increased. Real-time PCR amplification results showed that QDs could provide a sufficiently measurable fluorescence signal without excessively inhibiting the DNA amplification. Based on this improved thermal cycling durability and compatibility with the PCR system, QDs have the potential to be developed as stable fluorescent sensors in PCR and real-time PCR amplification. (paper)

  12. Optimization of a 12-hour TaqMan PCR-based method for detection of Salmonella bacteria in meat

    DEFF Research Database (Denmark)

    Josefsen, Mathilde Hartmann; Krause, Michael; Hansen, F.

    2007-01-01

    no positive effects and resulted in decreased reproducibility. Increasing the amount of PCR template DNA from 5 to 20 mu l improved the threshold cycle value by approximately 2. The improved 12-h PCR method was successfully compared to a reference culture method with 100 minced meat and poultry samples...... the highest number of salmonellae. When analyzing minced meat samples, positive effects of increasing the initial sampling volume from 1 to 5 ml and increasing the amount of paramagnetic particles to 90 mu l were observed. However, washing the pellet and eluting the DNA in reduced volumes (25 and 50 mu l) had...

  13. Real-Time PCR (qPCR) Primer Design Using Free Online Software

    Science.gov (United States)

    Thornton, Brenda; Basu, Chhandak

    2011-01-01

    Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most…

  14. Application of reverse transcription-PCR and real-time PCR in nanotoxicity research.

    Science.gov (United States)

    Mo, Yiqun; Wan, Rong; Zhang, Qunwei

    2012-01-01

    Reverse transcription-polymerase chain reaction (RT-PCR) is a relatively simple and inexpensive technique to determine the expression level of target genes and is widely used in biomedical science research including nanotoxicology studies for semiquantitative analysis. Real-time PCR allows for the detection of PCR amplification in the exponential growth phase of the reaction and is much more quantitative than traditional RT-PCR. Although a number of kits and reagents for RT-PCR and real-time PCR are commercially available, the basic principles are the same. Here, we describe the procedures for total RNA isolation by using TRI Reagent, for reverse transcription (RT) by M-MLV reverse transcriptase, and for PCR by GoTaq(®) DNA Polymerase. And real-time PCR will be performed on an iQ5 multicolor real-time PCR detection system by using iQ™ SYBR Green Supermix.

  15. Digital PCR for direct quantification of viruses without DNA extraction

    OpenAIRE

    Pav?i?, Jernej; ?el, Jana; Milavec, Mojca

    2015-01-01

    DNA extraction before amplification is considered an essential step for quantification of viral DNA using real-time PCR (qPCR). However, this can directly affect the final measurements due to variable DNA yields and removal of inhibitors, which leads to increased inter-laboratory variability of qPCR measurements and reduced agreement on viral loads. Digital PCR (dPCR) might be an advantageous methodology for the measurement of virus concentrations, as it does not depend on any calibration mat...

  16. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology.

    Science.gov (United States)

    Smith, Cindy J; Osborn, A Mark

    2009-01-01

    Quantitative PCR (Q-PCR or real-time PCR) approaches are now widely applied in microbial ecology to quantify the abundance and expression of taxonomic and functional gene markers within the environment. Q-PCR-based analyses combine 'traditional' end-point detection PCR with fluorescent detection technologies to record the accumulation of amplicons in 'real time' during each cycle of the PCR amplification. By detection of amplicons during the early exponential phase of the PCR, this enables the quantification of gene (or transcript) numbers when these are proportional to the starting template concentration. When Q-PCR is coupled with a preceding reverse transcription reaction, it can be used to quantify gene expression (RT-Q-PCR). This review firstly addresses the theoretical and practical implementation of Q-PCR and RT-Q-PCR protocols in microbial ecology, highlighting key experimental considerations. Secondly, we review the applications of (RT)-Q-PCR analyses in environmental microbiology and evaluate the contribution and advances gained from such approaches. Finally, we conclude by offering future perspectives on the application of (RT)-Q-PCR in furthering understanding in microbial ecology, in particular, when coupled with other molecular approaches and more traditional investigations of environmental systems.

  17. Methylation-Specific PCR Unraveled

    Directory of Open Access Journals (Sweden)

    Sarah Derks

    2004-01-01

    Full Text Available Methylation‐specific PCR (MSP is a simple, quick and cost‐effective method to analyze the DNA methylation status of virtually any group of CpG sites within a CpG island. The technique comprises two parts: (1 sodium bisulfite conversion of unmethylated cytosine's to uracil under conditions whereby methylated cytosines remains unchanged and (2 detection of the bisulfite induced sequence differences by PCR using specific primer sets for both unmethylated and methylated DNA. This review discusses the critical parameters of MSP and presents an overview of the available MSP variants and the (clinical applications.

  18. Effect of apple pectin on gut microbiota - qPCR in applied microbiology

    DEFF Research Database (Denmark)

    Bergström, Anders; Wilcks, Andrea; Poulsen, Morten

    This study was part of the large European project ISAFRUIT aiming to reveal the biological explanations for the epidemiologically well-established health effects of fruits. The objective was to identify effects of apple and apple product consumption on the composition of the cecal microbial...... community in rats, as well as on a number of cecal parameters, which could be influenced by a changed microbiota. Principal Component Analysis (PCA) of cecal microbiota profiles obtained by PCR-DGGE targeting bacterial 16S rRNA genes showed an effect of whole apples in a long-term feeding study (14 weeks...

  19. Real-time PCR (qPCR) primer design using free online software.

    Science.gov (United States)

    Thornton, Brenda; Basu, Chhandak

    2011-01-01

    Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most commonly used fluorescent chemistries are SYBR® Green dyes and TaqMan®, Molecular Beacon or Scorpion probes. SYBR® Green is very simple to use and cost efficient. As SYBR® Green dye binds to any double-stranded DNA product, its success depends greatly on proper primer design. Many types of online primer design software are available, which can be used free of charge to design desirable SYBR® Green-based qPCR primers. This laboratory exercise is intended for those who have a fundamental background in PCR. It addresses the basic fluorescent chemistries of real-time PCR, the basic rules and pitfalls of primer design, and provides a step-by-step protocol for designing SYBR® Green-based primers with free, online software. Copyright © 2010 Wiley Periodicals, Inc.

  20. The effects of metal ion PCR inhibitors on results obtained with the Quantifiler(®) Human DNA Quantification Kit.

    Science.gov (United States)

    Combs, Laura Gaydosh; Warren, Joseph E; Huynh, Vivian; Castaneda, Joanna; Golden, Teresa D; Roby, Rhonda K

    2015-11-01

    Forensic DNA samples may include the presence of PCR inhibitors, even after extraction and purification. Studies have demonstrated that metal ions, co-purified at specific concentrations, inhibit DNA amplifications. Metal ions are endogenous to sample types, such as bone, and can be introduced from environmental sources. In order to examine the effect of metal ions as PCR inhibitors during quantitative real-time PCR, 2800 M DNA was treated with 0.0025-18.750 mM concentrations of aluminum, calcium, copper, iron, nickel, and lead. DNA samples, both untreated and metal-treated, were quantified using the Quantifiler(®) Human DNA Quantification Kit. Quantification cycle (Cq) values for the Quantifiler(®) Human DNA and internal PCR control (IPC) assays were measured and the estimated concentrations of human DNA were obtained. Comparisons were conducted between metal-treated and control DNA samples to determine the accuracy of the quantification estimates and to test the efficacy of the IPC inhibition detection. This kit is most resistant to the presence of calcium as compared to all metals tested; the maximum concentration tested does not affect the amplification of the IPC or quantification of the sample. This kit is most sensitive to the presence of aluminum; concentrations greater than 0.0750 mM negatively affected the quantification, although the IPC assay accurately assessed the presence of PCR inhibition. The Quantifiler(®) Human DNA Quantification Kit accurately quantifies human DNA in the presence of 0.5000 mM copper, iron, nickel, and lead; however, the IPC does not indicate the presence of PCR inhibition at this concentration of these metals. Unexpectedly, estimates of DNA quantity in samples treated with 18.750 mM copper yielded values in excess of the actual concentration of DNA in the samples; fluorescence spectroscopy experiments indicated this increase was not a direct interaction between the copper metal and 6-FAM dye used to label the probe that

  1. A robust internal control for high-precision DNA methylation analyses by droplet digital PCR.

    Science.gov (United States)

    Pharo, Heidi D; Andresen, Kim; Berg, Kaja C G; Lothe, Ragnhild A; Jeanmougin, Marine; Lind, Guro E

    2018-01-01

    Droplet digital PCR (ddPCR) allows absolute quantification of nucleic acids and has potential for improved non-invasive detection of DNA methylation. For increased precision of the methylation analysis, we aimed to develop a robust internal control for use in methylation-specific ddPCR. Two control design approaches were tested: (a) targeting a genomic region shared across members of a gene family and (b) combining multiple assays targeting different pericentromeric loci on different chromosomes. Through analyses of 34 colorectal cancer cell lines, the performance of the control assay candidates was optimized and evaluated, both individually and in various combinations, using the QX200™ droplet digital PCR platform (Bio-Rad). The best-performing control was tested in combination with assays targeting methylated CDO1 , SEPT9 , and VIM . A 4Plex panel consisting of EPHA3 , KBTBD4 , PLEKHF1 , and SYT10 was identified as the best-performing control. The use of the 4Plex for normalization reduced the variability in methylation values, corrected for differences in template amount, and diminished the effect of chromosomal aberrations. Positive Droplet Calling (PoDCall), an R-based algorithm for standardized threshold determination, was developed, ensuring consistency of the ddPCR results. Implementation of a robust internal control, i.e., the 4Plex, and an algorithm for automated threshold determination, PoDCall, in methylation-specific ddPCR increase the precision of DNA methylation analysis.

  2. Inhibition mechanisms of hemoglobin, immunoglobulin G, and whole blood in digital and real-time PCR.

    Science.gov (United States)

    Sidstedt, Maja; Hedman, Johannes; Romsos, Erica L; Waitara, Leticia; Wadsö, Lars; Steffen, Carolyn R; Vallone, Peter M; Rådström, Peter

    2018-04-01

    Blood samples are widely used for PCR-based DNA analysis in fields such as diagnosis of infectious diseases, cancer diagnostics, and forensic genetics. In this study, the mechanisms behind blood-induced PCR inhibition were evaluated by use of whole blood as well as known PCR-inhibitory molecules in both digital PCR and real-time PCR. Also, electrophoretic mobility shift assay was applied to investigate interactions between inhibitory proteins and DNA, and isothermal titration calorimetry was used to directly measure effects on DNA polymerase activity. Whole blood caused a decrease in the number of positive digital PCR reactions, lowered amplification efficiency, and caused severe quenching of the fluorescence of the passive reference dye 6-carboxy-X-rhodamine as well as the double-stranded DNA binding dye EvaGreen. Immunoglobulin G was found to bind to single-stranded genomic DNA, leading to increased quantification cycle values. Hemoglobin affected the DNA polymerase activity and thus lowered the amplification efficiency. Hemoglobin and hematin were shown to be the molecules in blood responsible for the fluorescence quenching. In conclusion, hemoglobin and immunoglobulin G are the two major PCR inhibitors in blood, where the first affects amplification through a direct effect on the DNA polymerase activity and quenches the fluorescence of free dye molecules, and the latter binds to single-stranded genomic DNA, hindering DNA polymerization in the first few PCR cycles. Graphical abstract PCR inhibition mechanisms of hemoglobin and immunoglobulin G (IgG). Cq quantification cycle, dsDNA double-stranded DNA, ssDNA single-stranded DNA.

  3. Polymerase chain reaction methods (PCR in agrobiotechnology

    Directory of Open Access Journals (Sweden)

    Taški-Ajduković Ksenija

    2006-01-01

    Full Text Available The agricultural biotechnology applies polymerase chain reaction (PCR technology at numerous steps throughout product development. The major uses of PCR technology during product development include gene discovery and cloning, vector construction, transformant identification, screening and characterization as well as seed quality control. Commodity and food companies as well as testing laboratories rely on PCR technology to verify the presence or absence of genetically modification (GM in a product or to quantify the amount of GM material present in the product. This article describes the fundamental elements of PCR analysis and its application to the testing of grains and highlights some of areas to which attention must be paid in order to produce reliable test results. The article also discuses issues related to the analysis of different matrixes and the effect they may have on the accuracy of the PCR analytical results.

  4. Mutant DNA quantification by digital PCR can be confounded by heating during DNA fragmentation.

    Science.gov (United States)

    Kang, Qing; Parkin, Brian; Giraldez, Maria D; Tewari, Muneesh

    2016-04-01

    Digital PCR (dPCR) is gaining popularity as a DNA mutation quantification method for clinical specimens. Fragmentation prior to dPCR is required for non-fragmented genomic DNA samples; however, the effect of fragmentation on DNA analysis has not been well-studied. Here we evaluated three fragmentation methods for their effects on dPCR point mutation assay performance. Wild-type (WT) human genomic DNA was fragmented by heating, restriction digestion, or acoustic shearing using a Covaris focused-ultrasonicator. dPCR was then used to determine the limit of blank (LoB) by quantifying observed WT and mutant allele counts of the proto-oncogenes KRAS and BRAF in the WT DNA sample. DNA fragmentation by heating to 95°C, while the simplest and least expensive method, produced a high background mutation frequency for certain KRAS mutations relative to the other methods. This was due to heat-induced mutations, specifically affecting dPCR assays designed to interrogate guanine to adenine (G>A) mutations. Moreover, heat-induced fragmentation overestimated gene copy number, potentially due to denaturation and partition of single-stranded DNA into different droplets. Covaris acoustic shearing and restriction enzyme digestion showed similar LoBs and gene copy number estimates to one another. It should be noted that moderate heating, commonly used in genomic DNA extraction protocols, did not significantly increase observed KRAS mutation counts.

  5. Mathematical analysis of the real time array PCR (RTA PCR) process

    NARCIS (Netherlands)

    Dijksman, Johan Frederik; Pierik, A.

    2012-01-01

    Real time array PCR (RTA PCR) is a recently developed biochemical technique that measures amplification curves (like with quantitative real time Polymerase Chain Reaction (qRT PCR)) of a multitude of different templates in a sample. It combines two different methods in order to profit from the

  6. Fusion primer and nested integrated PCR (FPNI-PCR: a new high-efficiency strategy for rapid chromosome walking or flanking sequence cloning

    Directory of Open Access Journals (Sweden)

    Wang Zhen

    2011-11-01

    Full Text Available Abstract Background The advent of genomics-based technologies has revolutionized many fields of biological enquiry. However, chromosome walking or flanking sequence cloning is still a necessary and important procedure to determining gene structure. Such methods are used to identify T-DNA insertion sites and so are especially relevant for organisms where large T-DNA insertion libraries have been created, such as rice and Arabidopsis. The currently available methods for flanking sequence cloning, including the popular TAIL-PCR technique, are relatively laborious and slow. Results Here, we report a simple and effective fusion primer and nested integrated PCR method (FPNI-PCR for the identification and cloning of unknown genomic regions flanked known sequences. In brief, a set of universal primers was designed that consisted of various 15-16 base arbitrary degenerate oligonucleotides. These arbitrary degenerate primers were fused to the 3' end of an adaptor oligonucleotide which provided a known sequence without degenerate nucleotides, thereby forming the fusion primers (FPs. These fusion primers are employed in the first step of an integrated nested PCR strategy which defines the overall FPNI-PCR protocol. In order to demonstrate the efficacy of this novel strategy, we have successfully used it to isolate multiple genomic sequences namely, 21 orthologs of genes in various species of Rosaceace, 4 MYB genes of Rosa rugosa, 3 promoters of transcription factors of Petunia hybrida, and 4 flanking sequences of T-DNA insertion sites in transgenic tobacco lines and 6 specific genes from sequenced genome of rice and Arabidopsis. Conclusions The successful amplification of target products through FPNI-PCR verified that this novel strategy is an effective, low cost and simple procedure. Furthermore, FPNI-PCR represents a more sensitive, rapid and accurate technique than the established TAIL-PCR and hiTAIL-PCR procedures.

  7. qRT-PCR quantification of the biological control agent Trichoderma harzianum in peat and compost-based growing media.

    Science.gov (United States)

    Beaulieu, Robert; López-Mondéjar, Rubén; Tittarelli, Fabio; Ros, Margarita; Pascual, José Antonio

    2011-02-01

    To ensure proper use of Trichoderma harzianum in agriculture, accurate data must be obtained in population monitoring. The effectiveness of qRT-PCR to quantify T. harzianum in different growing media was compared to the commonly used techniques of colony counting and qPCR. Results showed that plate counting and qPCR offered similar T. harzianum quantification patterns of an initial rapid increase in fungal population that decreased over time. However, data from qRT-PCR showed a population curve of active T. harzianum with a delayed onset of initial growth which then increased throughout the experiment. Results demonstrated that T. harzianum can successfully grow in these media and that qRT-PCR can offer a more distinct representation of active T. harzianum populations. Additionally, compost amended with T. harzianum exhibited a lower Fusarium oxysporum infection rate (67%) and lower percentage of fresh weight loss (11%) in comparison to amended peat (90% infection rate, 23% fresh weight loss). Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. A Nested-Splicing by Overlap Extension PCR Improves Specificity of this Standard Method.

    Science.gov (United States)

    Karkhane, Ali Asghar; Yakhchali, Bagher; Rastgar Jazii, Ferdous; Bambai, Bijan; Aminzadeh, Saeed; Rahimi, Fatemeh

    2015-06-01

    Splicing by overlap extension (SOE) PCR is used to create mutation in the coding sequence of an enzyme in order to study the role of specific residues in protein's structure and function. We introduced a nested-SOE-PCR (N -SOE-PCR) in order to increase the specificity and generating mutations in a gene by SOE-PCR. Genomic DNA from Bacillus thermocatenulatus was extracted. Nested PCR was used to amplify B. thermocatenulatus lipase gene variants, namely wild type and mutant, using gene specific and mutagenic specific primers, followed by cloning in a suitable vector. Briefly in N-SOE-PCR method, instead of two pairs of primers, three pairs of primers are used to amplify a mutagenic fragment. Moreover, the first and second PCR products are slightly longer than PCR products in a conventional SOE. PCR products obtained from the first round of PCR are used for the second PCR by applying the nested and mutated primers. Following to the purification of the amplified fragments, they will be subject of the further purification and will be used as template to perform the third round of PCR using gene specific primers. In the end, the products will be cloned into a suitable vector for subsequent application. In comparison to the conventional SOE-PCR, the improved method (i.e. N-SOE-PCR) increases the yield and specificity of the products. In addition, the proposed method shows a large reduction in the non-specific products. By applying two more primers in the conventional SOE, the specificity of the method will be improved. This would be in part due to annealing of the primers further inside the amplicon that increases both the efficiency and a better attachment of the primers. Positioning of the primer far from both ends of an amplicon leads to an enhanced binding as well as increased affinity in the third round of amplification in SOE.

  9. Effective PCR-based detection of Naegleria fowleri from cultured sample and PAM-developed mouse.

    Science.gov (United States)

    Kang, Heekyoung; Seong, Gi-Sang; Sohn, Hae-Jin; Kim, Jong-Hyun; Lee, Sang-Eun; Park, Mi Yeoun; Lee, Won-Ja; Shin, Ho-Joon

    2015-10-01

    Increasing numbers of Primary Amoebic Meningoencephalitis (PAM) cases due to Naegleria fowleri are becoming a serious issue in subtropical and tropical countries as a Neglected Tropical Disease (NTD). To establish a rapid and effective diagnostic tool, a PCR-based detection technique was developed based on previous PCR methods. Four kinds of primer pairs, Nfa1, Nae3, Nf-ITS, and Naegl, were employed in the cultured amoebic trophozoites and a mouse with PAM experimentally developed by N. fowleri inoculation (PAM-mouse). For the extraction of genomic DNA from N. fowleri trophozoites (1×10(6)), simple boiling with 10μl of PBS (pH 7.4) at 100°C for 30min was found to be the most rapid and efficient procedure, allowing amplification of 2.5×10(2) trophozoites using the Nfa-1 primer. The primers Nfa1 and Nae3 amplified only N. fowleri DNA, whereas the ITS primer detected N. fowleri and N. gruberi DNA. Using the PAM-mouse brain tissue, the Nfa1 primer was able to amplify the N. fowleri DNA 4 days post infection with 1ng/μl of genomic DNA being detectable. Using the PAM-mouse CSF, amplification of the N. fowleri DNA with the Nae3 primer was possible 5 days post infection showing a better performance than the Nfa1 primer at day 6. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. SASqPCR: robust and rapid analysis of RT-qPCR data in SAS.

    Directory of Open Access Journals (Sweden)

    Daijun Ling

    Full Text Available Reverse transcription quantitative real-time PCR (RT-qPCR is a key method for measurement of relative gene expression. Analysis of RT-qPCR data requires many iterative computations for data normalization and analytical optimization. Currently no computer program for RT-qPCR data analysis is suitable for analytical optimization and user-controllable customization based on data quality, experimental design as well as specific research aims. Here I introduce an all-in-one computer program, SASqPCR, for robust and rapid analysis of RT-qPCR data in SAS. This program has multiple macros for assessment of PCR efficiencies, validation of reference genes, optimization of data normalizers, normalization of confounding variations across samples, and statistical comparison of target gene expression in parallel samples. Users can simply change the macro variables to test various analytical strategies, optimize results and customize the analytical processes. In addition, it is highly automatic and functionally extendable. Thus users are the actual decision-makers controlling RT-qPCR data analyses. SASqPCR and its tutorial are freely available at http://code.google.com/p/sasqpcr/downloads/list.

  11. One-stop polymerase chain reaction (PCR): An improved PCR ...

    African Journals Online (AJOL)

    Yomi

    2011-12-21

    Dec 21, 2011 ... membrane filtration was carried out with a commercial PCR product purification kit (Generay, Shanghai), according to the manufacture's instruction. In brief, 50 µl PCR product was mixed thoroughly with binding buffer, and the resultant mixture was loaded directly onto a silica membrane Gelclean column.

  12. Development of Quantitative Competitive PCR and Absolute Based Real-Time PCR Assays for Quantification of The Butyrate Producing Bacterium: Butyrivibrio fibrisolvens

    Directory of Open Access Journals (Sweden)

    Mojtaba Tahmoorespur

    2016-04-01

    Full Text Available Introduction Butyrivibrio fibrisolvens strains are presently recognized as the major butyrate-producing bacteria found in the rumen and digestive track of many animals and also in the human gut. In this study we reported the development of two DNA based techniques, quantitative competitive (QC PCR and absolute based Real-Time PCR, for enumerating Butyrivibrio fibrisolvens strains. Despite the recent introduction of real-time PCR method for the rapid quantification of the target DNA sequences, use of quantitative competitive PCR (QC-PCR technique continues to play an important role in nucleic acid quantification since it is more cost effective. The procedure relies on the co-amplification of the sequence of interest with a serially diluted synthetic DNA fragment of the known concentration (competitor, using the single set primers. A real-time polymerase chain reaction is a laboratory technique of molecular biology based on the polymerase chain reaction (PCR. It monitors the amplification of a targeted DNA molecule during the PCR. Materials and Methods At first reported species-specific primers targeting the 16S rDNA region of the bacterium Butyrivibrio fibrisolvens were used for amplifying a 213 bp fragment. A DNA competitor differing by 50 bp in length from the 213 bp fragment was constructed and cloned into pTZ57R/T vector. The competitor was quantified by NanoDrop spectrophotometer and serially diluted and co-amplified by PCR with total extracted DNA from rumen fluid samples. PCR products were quantified by photographing agarose gels and analyzed with Image J software and the amount of amplified target DNA was log plotted against the amount of amplified competitor. Coefficient of determination (R2 was used as a criterion of methodology precision. For developing the Real-time PCR technique, the 213 bp fragment was amplified and cloned into pTZ57R/T was used to draw a standard curve. Results and Discussion The specific primers of Butyrivibrio

  13. Splinkerette PCR for mapping transposable elements in Drosophila.

    Directory of Open Access Journals (Sweden)

    Christopher J Potter

    2010-04-01

    Full Text Available Transposable elements (such as the P-element and piggyBac have been used to introduce thousands of transgenic constructs into the Drosophila genome. These transgenic constructs serve many roles, from assaying gene/cell function, to controlling chromosome arm rearrangement. Knowing the precise genomic insertion site for the transposable element is often desired. This enables identification of genomic enhancer regions trapped by an enhancer trap, identification of the gene mutated by a transposon insertion, or simplifying recombination experiments. The most commonly used transgene mapping method is inverse PCR (iPCR. Although usually effective, limitations with iPCR hinder its ability to isolate flanking genomic DNA in complex genomic loci, such as those that contain natural transposons. Here we report the adaptation of the splinkerette PCR (spPCR method for the isolation of flanking genomic DNA of any P-element or piggyBac. We report a simple and detailed protocol for spPCR. We use spPCR to 1 map a GAL4 enhancer trap located inside a natural transposon, pinpointing a master regulatory region for olfactory neuron expression in the brain; and 2 map all commonly used centromeric FRT insertion sites. The ease, efficiency, and efficacy of spPCR could make it a favored choice for the mapping of transposable element in Drosophila.

  14. Cost-effective optimization of real-time PCR based detection of Campylobacter and Salmonella with inhibitor tolerant DNA polymerases

    DEFF Research Database (Denmark)

    Fachmann, Mette Sofie Rousing; Josefsen, Mathilde Hasseldam; Hoorfar, Jeffrey

    2015-01-01

    bacterial cells in two validated real-time PCR assays for Campylobacter and Salmonella. The five best performing (based on: limit of detection (LOD), maximum fluorescence, shape of amplification curves, and amplification efficiency) were subsequently applied to meat and fecal samples. The VeriQuest q......PCR master mix performed best for both meat and fecal samples (LODs of 102 and 104 CFU ml-1 in the purest and crudest DNA extractions, respectively) compared with Tth (LOD=102 -103 and 105 -106 CFU ml-1 ). AmpliTaqGold and HotMasterTaq both performed well (LOD=102 -104 CFU ml-1 ) with meat samples and poorly...... (LOD=103 -106 CFU ml-1 /not detected) with fecal samples. CONCLUSIONS: Applying the VeriQuest qPCR master mix in the two tested real-time PCR assays could allow for simpler sample preparation and thus a reduction in cost. SIGNIFICANCE AND IMPACT OF STUDY: This work exemplifies a cost-effective strategy...

  15. Quantitative (real-time) PCR

    International Nuclear Information System (INIS)

    Denman, S.E.; McSweeney, C.S.

    2005-01-01

    Many nucleic acid-based probe and PCR assays have been developed for the detection tracking of specific microbes within the rumen ecosystem. Conventional PCR assays detect PCR products at the end stage of each PCR reaction, where exponential amplification is no longer being achieved. This approach can result in different end product (amplicon) quantities being generated. In contrast, using quantitative, or real-time PCR, quantification of the amplicon is performed not at the end of the reaction, but rather during exponential amplification, where theoretically each cycle will result in a doubling of product being created. For real-time PCR, the cycle at which fluorescence is deemed to be detectable above the background during the exponential phase is termed the cycle threshold (Ct). The Ct values obtained are then used for quantitation, which will be discussed later

  16. A Ribeiroia spp. (Class: Trematoda) - Specific PCR-based diagnostic

    Science.gov (United States)

    Reinitz, David M.; Yoshino, T.P.; Cole, Rebecca A.

    2007-01-01

    Increased reporting of amphibian malformations in North America has been noted with concern in light of reports that amphibian numbers and species are declining worldwide. Ribeiroia ondatrae has been shown to cause a variety of types of malformations in amphibians. However, little is known about the prevalence of R. ondatrae in North America. To aid in conducting field studies of Ribeiroia spp., we have developed a polymerase chain reaction (PCR)-based diagnostic. Herein, we describe the development of an accurate, rapid, simple, and cost-effective diagnostic for detection of Ribeiroia spp. infection in snails (Planorbella trivolvis). Candidate oligonucleotide primers for PCR were designed via DNA sequence analyses of multiple ribosomal internal transcribed spacer-2 regions from Ribeiroia spp. and Echinostoma spp. Comparison of consensus sequences determined from both genera identified areas of sequence potentially unique to Ribeiroia spp. The PCR reliably produced a diagnostic 290-base pair (bp) product in the presence of a wide concentration range of snail or frog DNA. Sensitivity was examined with DNA extracted from single R. ondatrae cercaria. The single-tube PCR could routinely detect less than 1 cercariae equivalent, because DNA isolated from a single cercaria could be diluted at least 1:50 and still yield a positive result via gel electrophoresis. An even more sensitive nested PCR also was developed that routinely detected 100 fg of the 290-bp fragment. The assay did not detect furcocercous cercariae of certain Schistosomatidae, Echinostoma sp., or Sphaeridiotrema globulus nor adults of Clinostomum sp. or Cyathocotyle bushiensis. Field testing of 137 P. trivolvis identified 3 positives with no overt environmental cross-reactivity, and results concurred with microscopic examinations in all cases. ?? American Society of Parasitologists 2007.

  17. Species Identification of Fox-, Mink-, Dog-, and Rabbit-Derived Ingredients by Multiplex PCR and Real-Time PCR Assay.

    Science.gov (United States)

    Wu, Qingqing; Xiang, Shengnan; Wang, Wenjun; Zhao, Jinyan; Xia, Jinhua; Zhen, Yueran; Liu, Bang

    2018-05-01

    Various detection methods have been developed to date for identification of animal species. New techniques based on PCR approach have raised the hope of developing better identification methods, which can overcome the limitations of the existing methods. PCR-based methods used the mitochondrial DNA (mtDNA) as well as nuclear DNA sequences. In this study, by targeting nuclear DNA, multiplex PCR and real-time PCR methods were developed to assist with qualitative and quantitative analysis. The multiplex PCR was found to simultaneously and effectively distinguish four species (fox, dog, mink, and rabbit) ingredients by the different sizes of electrophoretic bands: 480, 317, 220, and 209 bp. Real-time fluorescent PCR's amplification profiles and standard curves showed good quantitative measurement responses and linearity, as indicated by good repeatability and coefficient of determination R 2  > 0.99. The quantitative results of quaternary DNA mixtures including mink, fox, dog, and rabbit DNA are in line with our expectations: R.D. (relative deviation) varied between 1.98 and 12.23% and R.S.D. (relative standard deviation) varied between 3.06 and 11.51%, both of which are well within the acceptance criterion of ≤ 25%. Combining the two methods is suitable for the rapid identification and accurate quantification of fox-, dog-, mink-, and rabbit-derived ingredients in the animal products.

  18. Purification of nanoparticle PCR products and their topography observed with AFM

    International Nuclear Information System (INIS)

    Mi Lijuan; Wang Hubin; Chinese Academy of Sciences, Beijing; Li Bin; Zhou Hualan; Hu Jun

    2007-01-01

    Nanoparticle PCR (NP-PCR) is a new method to optimize PCR amplification. Suitable amount of Au nanoparticles can improve specificity, sensitivity and extension rate of PCR. In this paper, we compare efficiency of purifying NP-PCR products with different methods. In addition, topographies of DNA products in NP-PCR were observed with atomic force microscope (AFM). The results show that most of DNA products purified directly by routing method remain almost free due to less effect of nanoparticales. The yields decrease when the AuNPs were removed by high-speed centrifugation. A little amount of DNA subsided with AuNPs. (authors)

  19. COMPARISON OF 16S rRNA-PCR-RFLP, LipL32-PCR AND OmpL1-PCR METHODS IN THE DIAGNOSIS OF LEPTOSPIROSIS

    Directory of Open Access Journals (Sweden)

    Tülin GÜVEN GÖKMEN

    Full Text Available SUMMARY Leptospirosis is still one of the most important health problems in developing countries located in humid tropical and subtropical regions. Human infections are generally caused by exposure to water, soil or food contaminated with the urine of infected wild and domestic animals such as rodents and dogs. The clinical course of leptospirosis is variable and may be difficult to distinguish from many other infectious diseases. The dark-field microscopy (DFM, serology and nucleic acid amplification techniques are used to diagnose leptospirosis, however, a distinctive standard reference method is still lacking. Therefore, in this study, we aimed to determine the presence of Leptospira spp., to differentiate the pathogenic L. interrogans and the non-pathogenic L. biflexa, and also to determine the sensitivity and specificity values of molecular methods as an alternative to conventional ones. A total of 133 serum samples, from 47 humans and 86 cattle were evaluated by two conventional tests: the Microagglutination Test (MAT and the DFM, as well as three molecular methods, the 16S rRNA-PCR followed by Restriction Fragment Lenght Polymorphism (RFLP of the amplification products 16S rRNA-PCR-RFLP, LipL32-PCR and OmpL1-PCR. In this study, for L. interrogans, the specificity and sensitivity rates of the 16S rRNA-PCR and the LipL32-PCR were considered similar (100% versus 98.25% and 100% versus 98.68%, respectively. The OmpL1-PCR was able to classify L. interrogans into two intergroups, but this PCR was less sensitive (87.01% than the other two PCR methods. The 16S rRNA-PCR-RFLP could detect L. biflexa DNA, but LipL32-PCR and OmpL1-PCR could not. The 16S rRNA-PCR-RFLP provided an early and accurate diagnosis and was able to distinguish pathogenic and non-pathogenic Leptospira species, hence it may be used as an alternative method to the conventional gold standard techniques for the rapid disgnosis of leptospirosis.

  20. Quantitative Real-Time PCR using the Thermo Scientific Solaris qPCR Assay

    Science.gov (United States)

    Ogrean, Christy; Jackson, Ben; Covino, James

    2010-01-01

    The Solaris qPCR Gene Expression Assay is a novel type of primer/probe set, designed to simplify the qPCR process while maintaining the sensitivity and accuracy of the assay. These primer/probe sets are pre-designed to >98% of the human and mouse genomes and feature significant improvements from previously available technologies. These improvements were made possible by virtue of a novel design algorithm, developed by Thermo Scientific bioinformatics experts. Several convenient features have been incorporated into the Solaris qPCR Assay to streamline the process of performing quantitative real-time PCR. First, the protocol is similar to commonly employed alternatives, so the methods used during qPCR are likely to be familiar. Second, the master mix is blue, which makes setting the qPCR reactions easier to track. Third, the thermal cycling conditions are the same for all assays (genes), making it possible to run many samples at a time and reducing the potential for error. Finally, the probe and primer sequence information are provided, simplifying the publication process. Here, we demonstrate how to obtain the appropriate Solaris reagents using the GENEius product search feature found on the ordering web site (www.thermo.com/solaris) and how to use the Solaris reagents for performing qPCR using the standard curve method. PMID:20567213

  1. Typing DNA profiles from previously enhanced fingerprints using direct PCR.

    Science.gov (United States)

    Templeton, Jennifer E L; Taylor, Duncan; Handt, Oliva; Linacre, Adrian

    2017-07-01

    Fingermarks are a source of human identification both through the ridge patterns and DNA profiling. Typing nuclear STR DNA markers from previously enhanced fingermarks provides an alternative method of utilising the limited fingermark deposit that can be left behind during a criminal act. Dusting with fingerprint powders is a standard method used in classical fingermark enhancement and can affect DNA data. The ability to generate informative DNA profiles from powdered fingerprints using direct PCR swabs was investigated. Direct PCR was used as the opportunity to generate usable DNA profiles after performing any of the standard DNA extraction processes is minimal. Omitting the extraction step will, for many samples, be the key to success if there is limited sample DNA. DNA profiles were generated by direct PCR from 160 fingermarks after treatment with one of the following dactyloscopic fingerprint powders: white hadonite; silver aluminium; HiFi Volcano silk black; or black magnetic fingerprint powder. This was achieved by a combination of an optimised double-swabbing technique and swab media, omission of the extraction step to minimise loss of critical low-template DNA, and additional AmpliTaq Gold ® DNA polymerase to boost the PCR. Ninety eight out of 160 samples (61%) were considered 'up-loadable' to the Australian National Criminal Investigation DNA Database (NCIDD). The method described required a minimum of working steps, equipment and reagents, and was completed within 4h. Direct PCR allows the generation of DNA profiles from enhanced prints without the need to increase PCR cycle numbers beyond manufacturer's recommendations. Particular emphasis was placed on preventing contamination by applying strict protocols and avoiding the use of previously used fingerprint brushes. Based on this extensive survey, the data provided indicate minimal effects of any of these four powders on the chance of obtaining DNA profiles from enhanced fingermarks. Copyright © 2017

  2. Multiplex PCR from Menstrual Blood: A Non-Invasive Cost-Effective Approach to Reduce Diagnostic Dilemma for Genital Tuberculosis.

    Science.gov (United States)

    Paine, Suman K; Basu, Analabha; Choudhury, Rajib Gon; Bhattacharya, Basudev; Chatterjee, Sidhartha; Bhattacharya, Chandra

    2018-03-16

    Genital tuberculosis (GTB) is a potent contributor to irreversible damage to the reproductive system and infertility in females. As no gold standard diagnostic tool is yet available, clinical suspicion and relatively insensitive approaches such as histopathology, laparoscopy and hysterosalpingogram are currently critical determinants in the diagnosis of GTB. Although a polymerase chain reaction (PCR)-based assay using endometrial tissue seems promising, sampling does require an invasive procedure. We hypothesized that menstrual blood may provide an alternate non-invasive source of samples for PCR-based GTB diagnosis. We enrolled 195 women with primary infertility in whom GTB was suspected. We obtained ethics committee approval from our institution and written informed consent from subjects. Endometrial tissue and menstrual blood was collected from the subjects and culture, histopathology, and multiplex PCR with both sample type was performed for each subject. The sensitivity and specificity of multiplex PCR was, respectively, 90.2 and 86.1% for menstrual blood, 95.8 and 84.3% for endometrial tissue, and 64.8 and 93.2% for histopathology staining. A strong clinical suspicion aided with multiplex PCR using menstrual blood may significantly reduce the diagnostic dilemma for GTB diagnosis in a non-invasive, sensitive, rapid, and cost-effective manner.

  3. Sporulation properties and antimicrobial susceptibility in endemic and rare Clostridium difficile PCR ribotypes.

    Science.gov (United States)

    Zidaric, Valerija; Rupnik, Maja

    2016-06-01

    Increased sporulation and antibiotic resistance have been proposed to be associated with certain Clostridium difficile epidemic strains such as PCR ribotype 027. In this study we examined these properties in another widespread PCR ribotype, 014/020, in comparison to prevalent PCR ribotype 002 and a group of rarely represented PCR ribotypes. Highest sporulation was observed in 014/020 strains at 24 h, while after 72 h PCR ribotype 002 and rare PCR ribotypes formed higher total number of spores. PCR ribotype 014/020 strains exhibited slightly higher resistance to tested antimicrobials, followed by group of rare PCR ribotypes and less common PCR ribotype 002. Neither sporulation properties nor antibiotic resistance clearly differed in endemic and rare strains. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Soil Baiting, Rapid PCR Assay and Quantitative Real Time PCR to Diagnose Late Blight of Potato in Quarantine Programs

    Directory of Open Access Journals (Sweden)

    Touseef Hussain

    2018-05-01

    Full Text Available Phytophthora infestans (mont de Bary is a pathogen of great concern across the globe, and accurate detection is an important component in responding to the outbreaks of potential disease. Although the molecular diagnostic protocol used in regulatory programs has been evaluated but till date methods implying direct comparison has rarely used. In this study, a known area soil samples from potato fields where light blight appear every year (both A1 and A2 mating type was assayed by soil bait method, PCR assay detection and quantification of the inoculums. Suspected disease symptoms appeared on bait tubers were further confirmed by rapid PCR, inoculums were quantified through Real Time PCR, which confirms presence of P. infestans. These diagnostic methods can be highly correlated with one another. Potato tuber baiting increased the sensitivity of the assay compared with direct extraction of DNA from tuber and soil samples. Our study determines diagnostic sensitivity and specificity of the assays to determine the performance of each method. Overall, molecular techniques based on different types of PCR amplification and Real-time PCR can lead to high throughput, faster and more accurate detection method which can be used in quarantine programmes in potato industry and diagnostic laboratory.

  5. Development of real-time PCR for detection and quantitation of Streptococcus parauberis.

    Science.gov (United States)

    Nguyen, T L; Lim, Y J; Kim, D-H; Austin, B

    2016-01-01

    Streptococcus parauberis is an increasing threat to aquaculture of olive flounder, Paralichthys olivaceus Temminck & Schlegel, in South Korea. We developed a real-time polymerase chain reaction (PCR) method using the TaqMan probe assay to detect and quantify S. parauberis by targeting the gyrB gene sequences, which are effective for molecular analysis of the genus Streptococcus. Our real-time PCR assay is capable of detecting 10 fg of genomic DNA per reaction. The intra- and interassay coefficient of variation (CV) values ranged from 0.42-1.95%, demonstrating that the assay has good reproducibility. There was not any cross-reactivity to Streptococcus iniae or to other streptococcal/lactococcal fish pathogens, such as S. agalactiae and Lactococcus garvieae, indicating that the assay is highly specific to S. parauberis. The results of the real-time PCR assay corresponded well to those of conventional culture assays for S. parauberis from inoculated tissue homogenates (r = 0.957; P < 0.05). Hence, this sensitive and specific real-time PCR is a valuable tool for diagnostic quantitation of S. parauberis in clinical samples. © 2014 John Wiley & Sons Ltd.

  6. Some factors determining the PCr recovery overshoot in skeletal muscle.

    Science.gov (United States)

    Korzeniewski, Bernard; Zoladz, Jerzy A

    2005-07-01

    It has been proposed recently that the phosphocreatine (PCr) overshoot (increase above the resting level) during muscle recovery after exercise is caused by a slow decay during this recovery of the direct activation of oxidative phosphorylation taking place during muscle work. In the present article the factors determining the appearance and size of the PCr overshoot are studied using the computer model of oxidative phosphorylation in intact skeletal muscle developed previously. It is demonstrated that the appearance and duration of this overshoot is positively correlated with the value of the characteristic decay time of the direct activation of oxidative phosphorylation. It is also shown that the size of PCr overshoot is increased by low resting PCr/Cr ratio (what is confirmed by our unpublished experimental data), by high intensity of the direct activation of oxidative phosphorylation, by high muscle work intensity and by low rate of the return of cytosolic pH to the resting value during muscle recovery.

  7. Detection of Histoplasma capsulatum from clinical specimens by cycling probe-based real-time PCR and nested real-time PCR.

    Science.gov (United States)

    Muraosa, Yasunori; Toyotome, Takahito; Yahiro, Maki; Watanabe, Akira; Shikanai-Yasuda, Maria Aparecida; Kamei, Katsuhiko

    2016-05-01

    We developed new cycling probe-based real-time PCR and nested real-time PCR assays for the detection of Histoplasma capsulatum that were designed to detect the gene encoding N-acetylated α-linked acidic dipeptidase (NAALADase), which we previously identified as an H. capsulatum antigen reacting with sera from patients with histoplasmosis. Both assays specifically detected the DNAs of all H. capsulatum strains but not those of other fungi or human DNA. The limited of detection (LOD) of the real-time PCR assay was 10 DNA copies when using 10-fold serial dilutions of the standard plasmid DNA and 50 DNA copies when using human serum spiked with standard plasmid DNA. The nested real-time PCR improved the LOD to 5 DNA copies when using human serum spiked with standard plasmid DNA, which represents a 10-fold higher than that observed with the real-time PCR assay. To assess the ability of the two assays to diagnose histoplasmosis, we analyzed a small number of clinical specimens collected from five patients with histoplasmosis, such as sera (n = 4), formalin-fixed paraffin-embedded (FFPE) tissue (n = 4), and bronchoalveolar lavage fluid (BALF) (n = 1). Although clinical sensitivity of the real-time PCR assay was insufficiently sensitive (33%), the nested real-time PCR assay increased the clinical sensitivity (77%), suggesting it has a potential to be a useful method for detecting H. capsulatum DNA in clinical specimens. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. External PCR, ASN's decision

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    The French law imposes in some situations the presence of a person skilled in radiation protection (PCR). This article describes the cases when this person must belong to the staff of the enterprise or when this person may be sub-contracted. For instance in most nuclear facilities the PCR must be on the payroll, for enterprises dedicated to nuclear transport the PCR's job can be sub-contracted. A decision given by the ASN (French Nuclear Safety Authority) sets the minimal requests (in terms of training, job contract, activities) of the sub-contracted PCR. (A.C.)

  9. PCR melting profile (PCR MP - a new tool for differentiation of Candida albicans strains

    Directory of Open Access Journals (Sweden)

    Nowak Magdalena

    2009-11-01

    Full Text Available Abstract Background We have previously reported the use of PCR Melting Profile (PCR MP technique based on using low denaturation temperatures during ligation mediated PCR (LM PCR for bacterial strain differentiation. The aim of the current study was to evaluate this method for intra-species differentiation of Candida albicans strains. Methods In total 123 Candida albicans strains (including 7 reference, 11 clinical unrelated, and 105 isolates from patients of two hospitals in Poland were examined using three genotyping methods: PCR MP, macrorestriction analysis of the chromosomal DNA by pulsed-field gel electrophoresis (REA-PFGE and RAPD techniques. Results The genotyping results of the PCR MP were compared with results from REA-PFGE and RAPD techniques giving 27, 26 and 25 unique types, respectively. The results showed that the PCR MP technique has at least the same discriminatory power as REA-PFGE and RAPD. Conclusion Data presented here show for the first time the evaluation of PCR MP technique for candidial strains differentiation and we propose that this can be used as a relatively simple and cheap technique for epidemiological studies in short period of time in hospital.

  10. Application of droplet digital PCR for quantitative detection of Spiroplasma citri in comparison with real time PCR.

    Directory of Open Access Journals (Sweden)

    Yogita Maheshwari

    Full Text Available Droplet digital polymerase chain reaction (ddPCR is a method for performing digital PCR that is based on water-oil emulsion droplet technology. It is a unique approach to measure the absolute copy number of nucleic acid targets without the need of external standards. This study evaluated the applicability of ddPCR as a quantitative detection tool for the Spiroplasma citri, causal agent of citrus stubborn disease (CSD in citrus. Two sets of primers, SP1, based on the spiral in housekeeping gene, and a multicopy prophage gene, SpV1 ORF1, were used to evaluate ddPCR in comparison with real time (quantitative PCR (qPCR for S. citri detection in citrus tissues. Standard curve analyses on tenfold dilution series showed that both ddPCR and qPCR exhibited good linearity and efficiency. However, ddPCR had a tenfold greater sensitivity than qPCR and accurately quantified up to one copy of spiralin gene. Receiver operating characteristic analysis indicated that the ddPCR methodology was more robust for diagnosis of CSD and the area under the curve was significantly broader compared to qPCR. Field samples were used to validate ddPCR efficacy and demonstrated that it was equal or better than qPCR to detect S. citri infection in fruit columella due to a higher pathogen titer. The ddPCR assay detected both the S. citri spiralin and the SpV1 ORF1 targets quantitatively with high precision and accuracy compared to qPCR assay. The ddPCR was highly reproducible and repeatable for both the targets and showed higher resilience to PCR inhibitors in citrus tissue extract for the quantification of S. citri compare to qPCR.

  11. Evaluating Digital PCR for the Quantification of Human Genomic DNA: Accessible Amplifiable Targets.

    Science.gov (United States)

    Kline, Margaret C; Romsos, Erica L; Duewer, David L

    2016-02-16

    Polymerase chain reaction (PCR) multiplexed assays perform best when the input quantity of template DNA is controlled to within about a factor of √2. To help ensure that PCR assays yield consistent results over time and place, results from methods used to determine DNA quantity need to be metrologically traceable to a common reference. Many DNA quantitation systems can be accurately calibrated with solutions of DNA in aqueous buffer. Since they do not require external calibration, end-point limiting dilution technologies, collectively termed "digital PCR (dPCR)", have been proposed as suitable for value assigning such DNA calibrants. The performance characteristics of several commercially available dPCR systems have recently been documented using plasmid, viral, or fragmented genomic DNA; dPCR performance with more complex materials, such as human genomic DNA, has been less studied. With the goal of providing a human genomic reference material traceably certified for mass concentration, we are investigating the measurement characteristics of several dPCR systems. We here report results of measurements from multiple PCR assays, on four human genomic DNAs treated with four endonuclease restriction enzymes using both chamber and droplet dPCR platforms. We conclude that dPCR does not estimate the absolute number of PCR targets in a given volume but rather the number of accessible and amplifiable targets. While enzymatic restriction of human genomic DNA increases accessibility for some assays, in well-optimized PCR assays it can reduce the number of amplifiable targets and increase assay variability relative to uncut sample.

  12. [Optimized application of nested PCR method for detection of malaria].

    Science.gov (United States)

    Yao-Guang, Z; Li, J; Zhen-Yu, W; Li, C

    2017-04-28

    Objective To optimize the application of the nested PCR method for the detection of malaria according to the working practice, so as to improve the efficiency of malaria detection. Methods Premixing solution of PCR, internal primers for further amplification and new designed primers that aimed at two Plasmodium ovale subspecies were employed to optimize the reaction system, reaction condition and specific primers of P . ovale on basis of routine nested PCR. Then the specificity and the sensitivity of the optimized method were analyzed. The positive blood samples and examination samples of malaria were detected by the routine nested PCR and the optimized method simultaneously, and the detection results were compared and analyzed. Results The optimized method showed good specificity, and its sensitivity could reach the pg to fg level. The two methods were used to detect the same positive malarial blood samples simultaneously, the results indicated that the PCR products of the two methods had no significant difference, but the non-specific amplification reduced obviously and the detection rates of P . ovale subspecies improved, as well as the total specificity also increased through the use of the optimized method. The actual detection results of 111 cases of malarial blood samples showed that the sensitivity and specificity of the routine nested PCR were 94.57% and 86.96%, respectively, and those of the optimized method were both 93.48%, and there was no statistically significant difference between the two methods in the sensitivity ( P > 0.05), but there was a statistically significant difference between the two methods in the specificity ( P PCR can improve the specificity without reducing the sensitivity on the basis of the routine nested PCR, it also can save the cost and increase the efficiency of malaria detection as less experiment links.

  13. Influence of DNA extraction methods, PCR inhibitors and quantification methods on real-time PCR assay of biotechnology-derived traits.

    Science.gov (United States)

    Demeke, Tigst; Jenkins, G Ronald

    2010-03-01

    Biotechnology-derived varieties of canola, cotton, corn and soybean are being grown in the USA, Canada and other predominantly grain exporting countries. Although the amount of farmland devoted to production of biotechnology-derived crops continues to increase, lingering concerns that unintended consequences may occur provide the EU and most grain-importing countries with justification to regulate these crops. Legislation in the EU requires traceability of grains/oilseeds, food and feed products, and labelling, when a threshold level of 0.9% w/w of genetically engineered trait is demonstrated to be present in an analytical sample. The GE content is routinely determined by quantitative PCR (qPCR) and plant genomic DNA provides the template for the initial steps in this process. A plethora of DNA extraction methods exist for qPCR applications. Implementing standardized methods for detection of genetically engineered traits is necessary to facilitate grain marketing. The International Organization for Standardization draft standard 21571 identifies detergent-based methods and commercially available kits that are widely used for DNA extraction, but also indicates that adaptations may be necessary depending upon the sample matrix. This review assesses advantages and disadvantages of various commercially available DNA extraction kits, as well as modifications to published cetyltrimethylammonium bromide methods. Inhibitors are a major obstacle for efficient amplification in qPCR. The types of PCR inhibitors and techniques to minimize inhibition are discussed. Finally, accurate quantification of DNA for applications in qPCR is not trivial. Many confounders contribute to differences in analytical measurements when a particular DNA quantification method is applied and different methods do not always provide concordant results on the same DNA sample. How these differences impact measurement uncertainty in qPCR is considered.

  14. Comparison of allele-specific PCR, created restriction-site PCR, and PCR with primer-introduced restriction analysis methods used for screening complex vertebral malformation carriers in Holstein cattle

    Science.gov (United States)

    Altınel, Ahmet

    2017-01-01

    Complex vertebral malformation (CVM) is an inherited, autosomal recessive disorder of Holstein cattle. The aim of this study was to compare sensitivity, specificity, positive and negative predictive values, accuracy, and rapidity of allele-specific polymerase chain reaction (AS-PCR), created restriction-site PCR (CRS-PCR), and PCR with primer-introduced restriction analysis (PCR-PIRA), three methods used in identification of CVM carriers in a Holstein cattle population. In order to screen for the G>T mutation in the solute carrier family 35 member A3 (SLC35A3) gene, DNA sequencing as the gold standard method was used. The prevalence of carriers and the mutant allele frequency were 3.2% and 0.016, respectively, among Holstein cattle in the Thrace region of Turkey. Among the three methods, the fastest but least accurate was AS-PCR. Although the rapidity of CRS-PCR and PCR-PIRA were nearly equal, the accuracy of PCR-PIRA was higher than that of CRS-PCR. Therefore, among the three methods, PCR-PIRA appears to be the most efficacious for screening of mutant alleles when identifying CVM carriers in a Holstein cattle population. PMID:28927256

  15. Analytical Performance of Four Polymerase Chain Reaction (PCR and Real Time PCR (qPCR Assays for the Detection of Six Leishmania Species DNA in Colombia

    Directory of Open Access Journals (Sweden)

    Cielo M. León

    2017-10-01

    Full Text Available Leishmaniasis comprises a spectrum of parasitic diseases caused by protozoans of the genus Leishmania. Molecular tools have been widely employed for the detection of Leishmania due to its high sensitivity and specificity. However, the analytical performance of molecular platforms as PCR and real time PCR (qPCR including a wide variety of molecular markers has never been evaluated. Herein, the aim was to evaluate the analytical performance of 4 PCR-based assays (designed on four different targets and applied on conventional and real-time PCR platforms. We evaluated the analytical performance of conventional PCR and real time PCR, determining exclusivity and inclusivity, Anticipated Reportable Range (ARR, limit of detection (LoD and accuracy using primers directed to kDNA, HSP70, 18S and ITS-1 targets. We observed that the kDNA was the most sensitive but does not meet the criterion of exclusivity. The HSP70 presented a higher LoD in conventional PCR and qPCR in comparison with the other markers (1 × 101 and 1 × 10-1 equivalent parasites/mL respectively and had a higher coefficient of variation in qPCR. No statistically significant differences were found between the days of the test with the four molecular markers. The present study revealed that the 18S marker presented the best performance in terms of analytical sensitivity and specificity for the qPCR in the species tested (species circulating in Colombia. Therefore, we recommend to explore the analytical and diagnostic performance in future studies using a broader number of species across America.

  16. Analytical Performance of Four Polymerase Chain Reaction (PCR) and Real Time PCR (qPCR) Assays for the Detection of Six Leishmania Species DNA in Colombia

    Science.gov (United States)

    León, Cielo M.; Muñoz, Marina; Hernández, Carolina; Ayala, Martha S.; Flórez, Carolina; Teherán, Aníbal; Cubides, Juan R.; Ramírez, Juan D.

    2017-01-01

    Leishmaniasis comprises a spectrum of parasitic diseases caused by protozoans of the genus Leishmania. Molecular tools have been widely employed for the detection of Leishmania due to its high sensitivity and specificity. However, the analytical performance of molecular platforms as PCR and real time PCR (qPCR) including a wide variety of molecular markers has never been evaluated. Herein, the aim was to evaluate the analytical performance of 4 PCR-based assays (designed on four different targets) and applied on conventional and real-time PCR platforms. We evaluated the analytical performance of conventional PCR and real time PCR, determining exclusivity and inclusivity, Anticipated Reportable Range (ARR), limit of detection (LoD) and accuracy using primers directed to kDNA, HSP70, 18S and ITS-1 targets. We observed that the kDNA was the most sensitive but does not meet the criterion of exclusivity. The HSP70 presented a higher LoD in conventional PCR and qPCR in comparison with the other markers (1 × 101 and 1 × 10-1 equivalent parasites/mL respectively) and had a higher coefficient of variation in qPCR. No statistically significant differences were found between the days of the test with the four molecular markers. The present study revealed that the 18S marker presented the best performance in terms of analytical sensitivity and specificity for the qPCR in the species tested (species circulating in Colombia). Therefore, we recommend to explore the analytical and diagnostic performance in future studies using a broader number of species across America. PMID:29046670

  17. A Novel Pretreatment-Free Duplex Chamber Digital PCR Detection System for the Absolute Quantitation of GMO Samples.

    Science.gov (United States)

    Zhu, Pengyu; Wang, Chenguang; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2016-03-18

    Digital polymerase chain reaction (PCR) has developed rapidly since it was first reported in the 1990s. However, pretreatments are often required during preparation for digital PCR, which can increase operation error. The single-plex amplification of both the target and reference genes may cause uncertainties due to the different reaction volumes and the matrix effect. In the current study, a quantitative detection system based on the pretreatment-free duplex chamber digital PCR was developed. The dynamic range, limit of quantitation (LOQ), sensitivity and specificity were evaluated taking the GA21 event as the experimental object. Moreover, to determine the factors that may influence the stability of the duplex system, we evaluated whether the pretreatments, the primary and secondary structures of the probes and the SNP effect influence the detection. The results showed that the LOQ was 0.5% and the sensitivity was 0.1%. We also found that genome digestion and single nucleotide polymorphism (SNP) sites affect the detection results, whereas the unspecific hybridization within different probes had little side effect. This indicated that the detection system was suited for both chamber-based and droplet-based digital PCR. In conclusion, we have provided a simple and flexible way of achieving absolute quantitation for genetically modified organism (GMO) genome samples using commercial digital PCR detection systems.

  18. A Novel Pretreatment-Free Duplex Chamber Digital PCR Detection System for the Absolute Quantitation of GMO Samples

    Directory of Open Access Journals (Sweden)

    Pengyu Zhu

    2016-03-01

    Full Text Available Digital polymerase chain reaction (PCR has developed rapidly since it was first reported in the 1990s. However, pretreatments are often required during preparation for digital PCR, which can increase operation error. The single-plex amplification of both the target and reference genes may cause uncertainties due to the different reaction volumes and the matrix effect. In the current study, a quantitative detection system based on the pretreatment-free duplex chamber digital PCR was developed. The dynamic range, limit of quantitation (LOQ, sensitivity and specificity were evaluated taking the GA21 event as the experimental object. Moreover, to determine the factors that may influence the stability of the duplex system, we evaluated whether the pretreatments, the primary and secondary structures of the probes and the SNP effect influence the detection. The results showed that the LOQ was 0.5% and the sensitivity was 0.1%. We also found that genome digestion and single nucleotide polymorphism (SNP sites affect the detection results, whereas the unspecific hybridization within different probes had little side effect. This indicated that the detection system was suited for both chamber-based and droplet-based digital PCR. In conclusion, we have provided a simple and flexible way of achieving absolute quantitation for genetically modified organism (GMO genome samples using commercial digital PCR detection systems.

  19. Detection and quantification of Roundup Ready soybean residues in sausage samples by conventional and real-time PCR.

    OpenAIRE

    MARCELINO-GUIMARÃES, F. C.; GUIMARÃES, M. F. M.; DE-BARROS, E. G.

    2009-01-01

    The increasing presence of products derived from genetically modified (GM) plants in human and animal diets has led to the development of detection methods to distinguish biotechnology-derived foods from conventional ones. The conventional and real-time PCR have been used, respectively, to detect and quantify GM residues in highly processed foods. DNA extraction is a critical step during the analysis process. Some factors such as DNA degradation, matrix effects, and the presence of PCR inhibi...

  20. IDENTIFIKASI DAGING BABI MENGGUNAKAN METODE PCR-RFLP GEN Cytochrome b DAN PCR PRIMER SPESIFIK GEN AMELOGENIN (Pork Identification Using PCR-RFLP of Cytochrome b Gene and Species Specific PCR of Amelogenin Gene

    Directory of Open Access Journals (Sweden)

    Yuny Erwanto

    2013-03-01

    Full Text Available A polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP and species specific PCR methods had been applied for identifying pork in mixture of meat. Pork sample in various levels (1, 3, 5 and 10% was prepared in mixture with beef, chicken and mutton. The primary CYTb1 and CYTb2 were designed in the mitochondrial cytochrome b b (cytochrome b gene and PCR successfully amplified fragments of 359 bp. To distinguish pig species existence, the amplified PCR products of mitochondrial DNA were cut by BseDI restriction enzyme. The result showed that pig mitochondrial DNA was cut into 131 and 228 bp fragments. A polymerase chain reaction (PCR method based on the nucleotide sequence variation in the amelogenin gene has been chosen for the specific identification of pork DNAs in mixture meat. The primers designed generated specific fragments of 353 and 312 bp length for pork. The specificity of the primary designed was tested on 4 animal species including pig, cattle, chicken and goat species. Analysis of experimental mixture meat demonstrated that 1% of raw pork tissues could be detected using PCR-RFLP with BseDI restriction enzyme but detection using species-specific PCR showed the cross reactivity to beef, chicken and mutton. The cytochrome b PCR-RFLP species identification assay yielded excellent results for identification of pig species. PCR-RFLP is a potentially reliable technique for detection of the existence of pork in animal food product for Halal authentication. Keywords: Pork identification, cytochrome b, amelogenin, polymerase chain reaction   ABSTRAK   Penelitian ini dilakukan untuk mengaplikasikan metode deteksi daging babi dalam campuan daging dengan sapi, kambing dan ayam melalui PCR-RFLP dan PCR dengan primer spesifik untuk babi. Level kontaminasi daging babi dibuat sebesar 1, 3, 5 dan 10% dari total daging dalam campuran. Metode PCR-RFLP menggunakan sepasang primer yaitu gen cytochrome b dari mitokondria yang

  1. Enhancing PCR Amplification of DNA from Recalcitrant Plant Specimens Using a Trehalose-Based Additive

    Directory of Open Access Journals (Sweden)

    Tharangamala Samarakoon

    2013-01-01

    Full Text Available Premise of the study: PCR amplification of DNA extracted from plants is sometimes difficult due to the presence of inhibitory compounds. An effective method to overcome the inhibitory effect of compounds that contaminate DNA from difficult plant specimens is needed. Methods and Results: The effectiveness of a PCR additive reagent containing trehalose, bovine serum albumin (BSA, and polysorbate-20 (Tween-20 (TBT-PAR was tested. PCR of DNA extracted from fresh, silica-dried, and herbarium leaf material of species of Achariaceae, Asteraceae, Lacistemataceae, and Samydaceae that failed using standard techniques were successful with the addition of TBT-PAR. Conclusions: The addition of TBT-PAR during routine PCR is an effective method to improve amplification of DNA extracted from herbarium specimens or plants that are known to contain PCR inhibitors.

  2. Comparative evaluation of conventional RT-PCR and real-time RT-PCR (RRT-PCR) for detection of avian metapneumovirus subtype A

    OpenAIRE

    Ferreira, HL; Spilki, FR; dos Santos, MMAB; de Almeida, RS; Arns, CW

    2009-01-01

    Avian metapneumovirus (AMPV) belongs to Metapneumovirus genus of Paramyxoviridae family. Virus isolation, serology, and detection of genomic RNA are used as diagnostic methods for AMPV. The aim of the present study was to compare the detection of six subgroup A AMPV isolates (AMPV/A) viral RNA by using different conventional and real time RT-PCR methods. Two new RT-PCR tests and two real time RT-PCR tests, both detecting fusion (F) gene and nucleocapsid (N) gene were compared with an establis...

  3. A novel photoinduced electron transfer (PET) primer technique for rapid real-time PCR detection of Cryptosporidium spp

    Energy Technology Data Exchange (ETDEWEB)

    Jothikumar, N., E-mail: jin2@cdc.gov; Hill, Vincent R.

    2013-06-28

    Highlights: •Uses a single-labeled fluorescent primer for real-time PCR. •The detection sensitivity of PET PCR was comparable to TaqMan PCR. •Melt curve analysis can be performed to confirm target amplicon production. •Conventional PCR primers can be converted to PET PCR primers. -- Abstract: We report the development of a fluorescently labeled oligonucleotide primer that can be used to monitor real-time PCR. The primer has two parts, the 3′-end of the primer is complimentary to the target and a universal 17-mer stem loop at the 5′-end forms a hairpin structure. A fluorescent dye is attached to 5′-end of either the forward or reverse primer. The presence of guanosine residues at the first and second position of the 3′ dangling end effectively quenches the fluorescence due to the photo electron transfer (PET) mechanism. During the synthesis of nucleic acid, the hairpin structure is linearized and the fluorescence of the incorporated primer increases several-fold due to release of the fluorescently labeled tail and the absence of guanosine quenching. As amplicons are synthesized during nucleic acid amplification, the fluorescence increase in the reaction mixture can be measured with commercially available real-time PCR instruments. In addition, a melting procedure can be performed to denature the double-stranded amplicons, thereby generating fluorescence peaks that can differentiate primer dimers and other non-specific amplicons if formed during the reaction. We demonstrated the application of PET-PCR for the rapid detection and quantification of Cryptosporidium parvum DNA. Comparison with a previously published TaqMan® assay demonstrated that the two real-time PCR assays exhibited similar sensitivity for a dynamic range of detection of 6000–0.6 oocysts per reaction. PET PCR primers are simple to design and less-expensive than dual-labeled probe PCR methods, and should be of interest for use by laboratories operating in resource

  4. A novel photoinduced electron transfer (PET) primer technique for rapid real-time PCR detection of Cryptosporidium spp

    International Nuclear Information System (INIS)

    Jothikumar, N.; Hill, Vincent R.

    2013-01-01

    Highlights: •Uses a single-labeled fluorescent primer for real-time PCR. •The detection sensitivity of PET PCR was comparable to TaqMan PCR. •Melt curve analysis can be performed to confirm target amplicon production. •Conventional PCR primers can be converted to PET PCR primers. -- Abstract: We report the development of a fluorescently labeled oligonucleotide primer that can be used to monitor real-time PCR. The primer has two parts, the 3′-end of the primer is complimentary to the target and a universal 17-mer stem loop at the 5′-end forms a hairpin structure. A fluorescent dye is attached to 5′-end of either the forward or reverse primer. The presence of guanosine residues at the first and second position of the 3′ dangling end effectively quenches the fluorescence due to the photo electron transfer (PET) mechanism. During the synthesis of nucleic acid, the hairpin structure is linearized and the fluorescence of the incorporated primer increases several-fold due to release of the fluorescently labeled tail and the absence of guanosine quenching. As amplicons are synthesized during nucleic acid amplification, the fluorescence increase in the reaction mixture can be measured with commercially available real-time PCR instruments. In addition, a melting procedure can be performed to denature the double-stranded amplicons, thereby generating fluorescence peaks that can differentiate primer dimers and other non-specific amplicons if formed during the reaction. We demonstrated the application of PET-PCR for the rapid detection and quantification of Cryptosporidium parvum DNA. Comparison with a previously published TaqMan® assay demonstrated that the two real-time PCR assays exhibited similar sensitivity for a dynamic range of detection of 6000–0.6 oocysts per reaction. PET PCR primers are simple to design and less-expensive than dual-labeled probe PCR methods, and should be of interest for use by laboratories operating in resource

  5. Inverse fusion PCR cloning.

    Directory of Open Access Journals (Sweden)

    Markus Spiliotis

    Full Text Available Inverse fusion PCR cloning (IFPC is an easy, PCR based three-step cloning method that allows the seamless and directional insertion of PCR products into virtually all plasmids, this with a free choice of the insertion site. The PCR-derived inserts contain a vector-complementary 5'-end that allows a fusion with the vector by an overlap extension PCR, and the resulting amplified insert-vector fusions are then circularized by ligation prior transformation. A minimal amount of starting material is needed and experimental steps are reduced. Untreated circular plasmid, or alternatively bacteria containing the plasmid, can be used as templates for the insertion, and clean-up of the insert fragment is not urgently required. The whole cloning procedure can be performed within a minimal hands-on time and results in the generation of hundreds to ten-thousands of positive colonies, with a minimal background.

  6. Comparison of Direct Sequencing, Real-Time PCR-High Resolution Melt (PCR-HRM) and PCR-Restriction Fragment Length Polymorphism (PCR-RFLP) Analysis for Genotyping of Common Thiopurine Intolerant Variant Alleles NUDT15 c.415C>T and TPMT c.719A>G (TPMT*3C).

    Science.gov (United States)

    Fong, Wai-Ying; Ho, Chi-Chun; Poon, Wing-Tat

    2017-05-12

    Thiopurine intolerance and treatment-related toxicity, such as fatal myelosuppression, is related to non-function genetic variants encoding thiopurine S-methyltransferase (TPMT) and Nudix hydrolase 15 (NUDT15). Genetic testing of the common variants NUDT15:NM_018283.2:c.415C>T (Arg139Cys, dbSNP rs116855232 T allele) and TPMT: NM_000367.4:c.719A>G (TPMT*3C, dbSNP rs1142345 G allele) in East Asians including Chinese can potentially prevent treatment-related complications. Two complementary genotyping approaches, real-time PCR-high resolution melt (PCR-HRM) and PCR-restriction fragment length morphism (PCR-RFLP) analysis were evaluated using conventional PCR and Sanger sequencing genotyping as the gold standard. Sixty patient samples were tested, revealing seven patients (11.7%) heterozygous for NUDT15 c.415C>T, one patient homozygous for the variant and one patient heterozygous for the TPMT*3C non-function allele. No patient was found to harbor both variants. In total, nine out of 60 (15%) patients tested had genotypic evidence of thiopurine intolerance, which may require dosage adjustment or alternative medication should they be started on azathioprine, mercaptopurine or thioguanine. The two newly developed assays were more efficient and showed complete concordance (60/60, 100%) compared to the Sanger sequencing results. Accurate and cost-effective genotyping assays by real-time PCR-HRM and PCR-RFLP for NUDT15 c.415C>T and TPMT*3C were successfully developed. Further studies may establish their roles in genotype-informed clinical decision-making in the prevention of morbidity and mortality due to thiopurine intolerance.

  7. Quantification of viable spray-dried potential probiotic lactobacilli using real-time PCR

    Directory of Open Access Journals (Sweden)

    Radulović Zorica

    2012-01-01

    Full Text Available The basic requirement for probiotic bacteria to be able to perform expected positive effects is to be alive. Therefore, appropriate quantification methods are crucial. Bacterial quantification based on nucleic acid detection is increasingly used. Spray-drying (SD is one of the possibilities to improve the survival of probiotic bacteria against negative environmental effects. The aim of this study was to investigate the survival of spray-dried Lactobacillus plantarum 564 and Lactobacillus paracasei Z-8, and to investigate the impact on some probiotic properties caused by SD of both tested strains. Besides the plate count technique, the aim was to examine the possibility of using propidium monoazide (PMA in combination with real-time polymerase chain reaction (PCR for determining spray-dried tested strains. The number of intact cells, Lb. plantarum 564 and Lb. paracasei Z-8, was determined by real-time PCR with PMA, and it was similar to the number of investigated strains obtained by the plate count method. Spray-dried Lb. plantarum 564 and Lb. paracasei Z-8 demonstrated very good probiotic ability. It may be concluded that the PMA real-time PCR determination of the viability of probiotic bacteria could complement the plate count method and SD may be a cost-effective way to produce large quantities of some probiotic cultures. [Projekat Ministarstva nauke Republike Srbije, br. 046010

  8. Characterization of spoilage bacteria in pork sausage by PCR-DGGE analysis

    Directory of Open Access Journals (Sweden)

    Francesca Silva Dias

    2013-09-01

    Full Text Available To investigate microbial diversity and identify spoilage bacteria in fresh pork sausages during storage, twelve industrial pork sausages of different trademarks were stored at 4 ºC for 0, 14, 28 and 42 days, 80% relative humidity and packaged in sterile plastic bags. Microbiological analysis was performed. The pH and water activity (a w were measured. The culture-independent method performed was the Polymerase Chain Reaction - Denaturing Gradient Gel Electrophoresis (PCR-DGGE. The culture-dependent method showed that the populations of mesophilic bacteria and Lactic Acid Bacteria (LAB increased linearly over storage time. At the end of the storage time, the average population of microorganisms was detected, in general, at the level of 5 log cfu g-1. A significant (P < 0.005 increase was observed in pH and a w values at the end of the storage time. The PCR-DGGE allowed a rapid identification of dominant communities present in sausages. PCR-DGGE discriminated 15 species and seven genera of bacteria that frequently constitute the microbiota in sausage products. The most frequent spoilage bacteria identified in the sausages were Lactobacillus sakei and Brochothrix thermosphacta. The identification of dominant communities present in fresh pork sausages can help in the choice of the most effective preservation method for extending the product shelf-life.

  9. Quantification of viable bacteria in wastewater treatment plants by using propidium monoazide combined with quantitative PCR (PMA-qPCR).

    Science.gov (United States)

    Li, Dan; Tong, Tiezheng; Zeng, Siyu; Lin, Yiwen; Wu, Shuxu; He, Miao

    2014-02-01

    The detection of viable bacteria in wastewater treatment plants (WWTPs) is very important for public health, as WWTPs are a medium with a high potential for waterborne disease transmission. The aim of this study was to use propidium monoazide (PMA) combined with the quantitative polymerase chain reaction (PMA-qPCR) to selectively detect and quantify viable bacteria cells in full-scale WWTPs in China. PMA was added to the concentrated WWTP samples at a final concentration of 100 micromol/L and the samples were incubated in the dark for 5 min, and then lighted for 4 min prior to DNA extraction and qPCR with specific primers for Escherichia coli and Enterococci, respectively. The results showed that PMA treatment removed more than 99% of DNA from non-viable cells in all the WWTP samples, while matrices in sludge samples markedly reduced the effectiveness of PMA treatment. Compared to qPCR, PMA-qPCR results were similar and highly linearly correlated to those obtained by culture assay, indicating that DNA from non-viable cells present in WWTP samples can be eliminated by PMA treatment, and that PMA-qPCR is a reliable method for detection of viable bacteria in environmental samples. This study demonstrated that PMA-qPCR is a rapid and selective detection method for viable bacteria in WWTP samples, and that WWTPs have an obvious function in removing both viable and non-viable bacteria. The results proved that PMA-qPCR is a promising detection method that has a high potential for application as a complementary method to the standard culture-based method in the future.

  10. Quantification bias caused by plasmid DNA conformation in quantitative real-time PCR assay.

    Science.gov (United States)

    Lin, Chih-Hui; Chen, Yu-Chieh; Pan, Tzu-Ming

    2011-01-01

    Quantitative real-time PCR (qPCR) is the gold standard for the quantification of specific nucleic acid sequences. However, a serious concern has been revealed in a recent report: supercoiled plasmid standards cause significant over-estimation in qPCR quantification. In this study, we investigated the effect of plasmid DNA conformation on the quantification of DNA and the efficiency of qPCR. Our results suggest that plasmid DNA conformation has significant impact on the accuracy of absolute quantification by qPCR. DNA standard curves shifted significantly among plasmid standards with different DNA conformations. Moreover, the choice of DNA measurement method and plasmid DNA conformation may also contribute to the measurement error of DNA standard curves. Due to the multiple effects of plasmid DNA conformation on the accuracy of qPCR, efforts should be made to assure the highest consistency of plasmid standards for qPCR. Thus, we suggest that the conformation, preparation, quantification, purification, handling, and storage of standard plasmid DNA should be described and defined in the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) to assure the reproducibility and accuracy of qPCR absolute quantification.

  11. Comparison of nested PCR and qPCR for the detection and quantitation of BoHV6 DNA.

    Science.gov (United States)

    Kubiś, Piotr; Materniak, Magdalena; Kuźmak, Jacek

    2013-12-01

    Nested PCR and qPCR (quantitative PCR) tests based on glycoprotein B (gB) gene were designed for detecting Bovine herpesvirus 6 (BoHV6) in bovine whole blood samples and wild ruminant blood clots (deer and roe-deer). This virus, commonly known as BLHV (bovine lymphotropic herpesvirus) belongs to the Herpesviridae family, subfamily Gammaherpesvirinae and Macavirus genus. DNA isolated from 92 dairy cow blood samples and 69 wild ruminant clots were examined for the presence of BoHV6 using nested PCR and qPCR tests. Viral DNA was detected by using nested PCR in 59 out of 92 bovine blood samples (64.1%), and by qPCR in 68 out of 92 bovine blood samples (73.9%), but none out of 69 DNA samples isolated from wild ruminant blood clots, was positive in both assays. The specificity of nested PCR and qPCR was confirmed by using BoHV1, BoHV4, BoHV6, BFV, BIV, and BLV DNA. The sensitivity of nested PCR and qPCR was determined using a serially 10-fold diluted vector pCR2.1HgB (2 × 10(0)-2 × 10(6)copies/reaction). In this testing, qPCR was more sensitive than the nested PCR, detecting two copies of BoHV6 whilst the limit of detection for nested PCR was 20 copies. In all qPCR assays, the coefficients of determination (R(2)) ranged between 0.990 and 0.999, and the calculated amplification efficiencies (Eff%) within the range of 89.7-106.9. The intra- and inter-assay CV (coefficient of variation) values did not exceed 4%. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Detection of circulating Mycobacterium tuberculosis-specific DNA by droplet digital PCR for vaccine evaluation in challenged monkeys and TB diagnosis.

    Science.gov (United States)

    Song, Neng; Tan, Yang; Zhang, Lingyun; Luo, Wei; Guan, Qing; Yan, Ming-Zhe; Zuo, Ruiqi; Liu, Weixiang; Luo, Feng-Ling; Zhang, Xiao-Lian

    2018-04-24

    Mycobacterium tuberculosis (M. tb) is emerging as a more serious pathogen due to the increased multidrug-resistant TB and co-infection of human immunodeficiency virus (HIV). The development of an effective and sensitive detection method is urgently needed for bacterial load evaluation in vaccine development, early TB diagnosis, and TB treatment. Droplet digital polymerase chain reaction (ddPCR) is a newly developed sensitive PCR method for the absolute quantification of nucleic acid concentrations. Here, we used ddPCR to quantify the circulating virulent M. tb-specific CFP10 (10-kDa culture filtrate protein, Rv3874) and Rv1768 DNA copy numbers in the blood samples from Bacille Calmette-Guerin (BCG)-vaccinated and/or virulent M. tb H37Rv-challenged rhesus monkeys. We found that ddPCR was more sensitive compared to real-time fluorescence quantitative PCR (qPCR), as the detection limits of CFP10 were 1.2 copies/μl for ddPCR, but 15.8 copies/μl for qPCR. We demonstrated that ddPCR could detect CFP10 and Rv1768 DNA after 3 weeks of infection and at least two weeks earlier than qPCR in M.tb H37Rv-challenged rhesus monkey models. DdPCR could also successfully quantify CFP10 and Rv1768 DNA copy numbers in clinical TB patients' blood samples (active pulmonary TB, extrapulmonary TB (EPTB), and infant TB). To our knowledge, this study is the first to demonstrate that ddPCR is an effective and sensitive method of measuring the circulating CFP10 and Rv1768 DNA for vaccine development, bacterial load evaluation in vivo, and early TB (including EPTB and infant TB) diagnosis as well.

  13. High-throughput STR analysis for DNA database using direct PCR.

    Science.gov (United States)

    Sim, Jeong Eun; Park, Su Jeong; Lee, Han Chul; Kim, Se-Yong; Kim, Jong Yeol; Lee, Seung Hwan

    2013-07-01

    Since the Korean criminal DNA database was launched in 2010, we have focused on establishing an automated DNA database profiling system that analyzes short tandem repeat loci in a high-throughput and cost-effective manner. We established a DNA database profiling system without DNA purification using a direct PCR buffer system. The quality of direct PCR procedures was compared with that of conventional PCR system under their respective optimized conditions. The results revealed not only perfect concordance but also an excellent PCR success rate, good electropherogram quality, and an optimal intra/inter-loci peak height ratio. In particular, the proportion of DNA extraction required due to direct PCR failure could be minimized to <3%. In conclusion, the newly developed direct PCR system can be adopted for automated DNA database profiling systems to replace or supplement conventional PCR system in a time- and cost-saving manner. © 2013 American Academy of Forensic Sciences Published 2013. This article is a U.S. Government work and is in the public domain in the U.S.A.

  14. Multiplex enrichment quantitative PCR (ME-qPCR): a high-throughput, highly sensitive detection method for GMO identification.

    Science.gov (United States)

    Fu, Wei; Zhu, Pengyu; Wei, Shuang; Zhixin, Du; Wang, Chenguang; Wu, Xiyang; Li, Feiwu; Zhu, Shuifang

    2017-04-01

    Among all of the high-throughput detection methods, PCR-based methodologies are regarded as the most cost-efficient and feasible methodologies compared with the next-generation sequencing or ChIP-based methods. However, the PCR-based methods can only achieve multiplex detection up to 15-plex due to limitations imposed by the multiplex primer interactions. The detection throughput cannot meet the demands of high-throughput detection, such as SNP or gene expression analysis. Therefore, in our study, we have developed a new high-throughput PCR-based detection method, multiplex enrichment quantitative PCR (ME-qPCR), which is a combination of qPCR and nested PCR. The GMO content detection results in our study showed that ME-qPCR could achieve high-throughput detection up to 26-plex. Compared to the original qPCR, the Ct values of ME-qPCR were lower for the same group, which showed that ME-qPCR sensitivity is higher than the original qPCR. The absolute limit of detection for ME-qPCR could achieve levels as low as a single copy of the plant genome. Moreover, the specificity results showed that no cross-amplification occurred for irrelevant GMO events. After evaluation of all of the parameters, a practical evaluation was performed with different foods. The more stable amplification results, compared to qPCR, showed that ME-qPCR was suitable for GMO detection in foods. In conclusion, ME-qPCR achieved sensitive, high-throughput GMO detection in complex substrates, such as crops or food samples. In the future, ME-qPCR-based GMO content identification may positively impact SNP analysis or multiplex gene expression of food or agricultural samples. Graphical abstract For the first-step amplification, four primers (A, B, C, and D) have been added into the reaction volume. In this manner, four kinds of amplicons have been generated. All of these four amplicons could be regarded as the target of second-step PCR. For the second-step amplification, three parallels have been taken for

  15. Direct-to-PCR tissue preservation for DNA profiling.

    Science.gov (United States)

    Sorensen, Amy; Berry, Clare; Bruce, David; Gahan, Michelle Elizabeth; Hughes-Stamm, Sheree; McNevin, Dennis

    2016-05-01

    Disaster victim identification (DVI) often occurs in remote locations with extremes of temperatures and humidities. Access to mortuary facilities and refrigeration are not always available. An effective and robust DNA sampling and preservation procedure would increase the probability of successful DNA profiling and allow faster repatriation of bodies and body parts. If the act of tissue preservation also released DNA into solution, ready for polymerase chain reaction (PCR), the DVI process could be further streamlined. In this study, we explored the possibility of obtaining DNA profiles without DNA extraction, by adding aliquots of preservative solutions surrounding fresh human muscle and decomposing human muscle and skin tissue samples directly to PCR. The preservatives consisted of two custom preparations and two proprietary solutions. The custom preparations were a salt-saturated solution of dimethyl sulfoxide (DMSO) with ethylenediaminetetraacetic (EDTA) and TENT buffer (Tris, EDTA, NaCl, Tween 20). The proprietary preservatives were DNAgard (Biomatrica(®)) and Tissue Stabilising Kit (DNA Genotek). We obtained full PowerPlex(®) 21 (Promega) and GlobalFiler(®) (Life Technologies) DNA profiles from fresh and decomposed tissue preserved at 35 °C for up to 28 days for all four preservatives. The preservative aliquots removed from the fresh muscle tissue samples had been stored at -80 °C for 4 years, indicating that long-term archival does not diminish the probability of successful DNA typing. Rather, storage at -80 °C seems to reduce PCR inhibition.

  16. A survey of tools for the analysis of quantitative PCR (qPCR) data.

    Science.gov (United States)

    Pabinger, Stephan; Rödiger, Stefan; Kriegner, Albert; Vierlinger, Klemens; Weinhäusel, Andreas

    2014-09-01

    Real-time quantitative polymerase-chain-reaction (qPCR) is a standard technique in most laboratories used for various applications in basic research. Analysis of qPCR data is a crucial part of the entire experiment, which has led to the development of a plethora of methods. The released tools either cover specific parts of the workflow or provide complete analysis solutions. Here, we surveyed 27 open-access software packages and tools for the analysis of qPCR data. The survey includes 8 Microsoft Windows, 5 web-based, 9 R-based and 5 tools from other platforms. Reviewed packages and tools support the analysis of different qPCR applications, such as RNA quantification, DNA methylation, genotyping, identification of copy number variations, and digital PCR. We report an overview of the functionality, features and specific requirements of the individual software tools, such as data exchange formats, availability of a graphical user interface, included procedures for graphical data presentation, and offered statistical methods. In addition, we provide an overview about quantification strategies, and report various applications of qPCR. Our comprehensive survey showed that most tools use their own file format and only a fraction of the currently existing tools support the standardized data exchange format RDML. To allow a more streamlined and comparable analysis of qPCR data, more vendors and tools need to adapt the standardized format to encourage the exchange of data between instrument software, analysis tools, and researchers.

  17. Digital PCR for direct quantification of viruses without DNA extraction.

    Science.gov (United States)

    Pavšič, Jernej; Žel, Jana; Milavec, Mojca

    2016-01-01

    DNA extraction before amplification is considered an essential step for quantification of viral DNA using real-time PCR (qPCR). However, this can directly affect the final measurements due to variable DNA yields and removal of inhibitors, which leads to increased inter-laboratory variability of qPCR measurements and reduced agreement on viral loads. Digital PCR (dPCR) might be an advantageous methodology for the measurement of virus concentrations, as it does not depend on any calibration material and it has higher tolerance to inhibitors. DNA quantification without an extraction step (i.e. direct quantification) was performed here using dPCR and two different human cytomegalovirus whole-virus materials. Two dPCR platforms were used for this direct quantification of the viral DNA, and these were compared with quantification of the extracted viral DNA in terms of yield and variability. Direct quantification of both whole-virus materials present in simple matrices like cell lysate or Tris-HCl buffer provided repeatable measurements of virus concentrations that were probably in closer agreement with the actual viral load than when estimated through quantification of the extracted DNA. Direct dPCR quantification of other viruses, reference materials and clinically relevant matrices is now needed to show the full versatility of this very promising and cost-efficient development in virus quantification.

  18. Comparison of kDNA PCR-hybridization assay with three PCR methods for canines visceral Leishmaniasis diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Pilatti, Marcia M.; Andrade, Antero S.R. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: marciapilatti@yahoo.com.br, e-mail: antero@cdtn.br; Ferreira, Sidney A. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Parasitologia], e-mail: saninoalmeida@gmail.com

    2009-07-01

    The sensitivity of the kDNA PCR-Hybridization assay, which uses radioactive DNA probes (labeled with {sup 32}P), was compared with three conventional PCR methods used for canine visceral leishmaniasis diagnosis. All PCR methods had two steps: a first amplification followed by hybridization or by a new amplification (nested or semi nested). Two methods (kDNA PCR-Hybridization and kDNA snPCR) used primers addressed to kinetoplast minicircles and the other two methods to the coding (LnPCR) and intergenic noncoding regions (ITS-1 nPCR) of the ribosomal rRNA genes. The comparison was accomplished in two groups of 23 infected dogs using samples collected by the conjunctival swab procedure. In the Group 1 the DNA was extracted from cotton swabs by phenol-chloroform and in Group 2 by boiling. The most efficient PCR methods in the Group 1 were those based on kDNA targets. The kDNA PCR-Hybridization was able to detect parasites in 22/23 dogs (95.6%) and in 40/46 samples (86.9%). The kDNA snPCR was positive for 21/23 dogs (91.3%) and for 40/46 samples (86.9%). The positivities of the kDNA based methods were significantly higher than the positivities verified for the methods based on ribosomal rRNA genes (p<0.05). In the Group 2 the kDNA PCR- Hybridization showed a better performance detecting parasites in 18/23 dogs (78.3%) and in 31/46 samples (67.4%), significantly higher than the other three methods (p<0.05). The higher sensitivity of the minicircle kDNA based assays reported by others was confirmed in this study and kDNA PCR-Hybridization showed the best sensitivity among the assays evaluated. (author)

  19. Comparison of kDNA PCR-hybridization assay with three PCR methods for canines visceral Leishmaniasis diagnosis

    International Nuclear Information System (INIS)

    Pilatti, Marcia M.; Andrade, Antero S.R.; Ferreira, Sidney A.

    2009-01-01

    The sensitivity of the kDNA PCR-Hybridization assay, which uses radioactive DNA probes (labeled with 32 P), was compared with three conventional PCR methods used for canine visceral leishmaniasis diagnosis. All PCR methods had two steps: a first amplification followed by hybridization or by a new amplification (nested or semi nested). Two methods (kDNA PCR-Hybridization and kDNA snPCR) used primers addressed to kinetoplast minicircles and the other two methods to the coding (LnPCR) and intergenic noncoding regions (ITS-1 nPCR) of the ribosomal rRNA genes. The comparison was accomplished in two groups of 23 infected dogs using samples collected by the conjunctival swab procedure. In the Group 1 the DNA was extracted from cotton swabs by phenol-chloroform and in Group 2 by boiling. The most efficient PCR methods in the Group 1 were those based on kDNA targets. The kDNA PCR-Hybridization was able to detect parasites in 22/23 dogs (95.6%) and in 40/46 samples (86.9%). The kDNA snPCR was positive for 21/23 dogs (91.3%) and for 40/46 samples (86.9%). The positivities of the kDNA based methods were significantly higher than the positivities verified for the methods based on ribosomal rRNA genes (p<0.05). In the Group 2 the kDNA PCR- Hybridization showed a better performance detecting parasites in 18/23 dogs (78.3%) and in 31/46 samples (67.4%), significantly higher than the other three methods (p<0.05). The higher sensitivity of the minicircle kDNA based assays reported by others was confirmed in this study and kDNA PCR-Hybridization showed the best sensitivity among the assays evaluated. (author)

  20. Evaluation of chromogenic media and seminested PCR in the identification of Candida species

    Science.gov (United States)

    Daef, Enas; Moharram, Ahmed; Eldin, Salwa Seif; Elsherbiny, Nahla; Mohammed, Mona

    2014-01-01

    Identification of Candida cultured from various clinical specimens to the species level is increasingly necessary for clinical laboratories. Although sn PCR identifies the species within hours but its cost-effectiveness is to be considered. So there is always a need for media which help in the isolation and identification at the species level. The study aimed to evaluate the performance of different chromogenic media and to compare the effectiveness of the traditional phenotypic methods vs. seminested polymerase chain reaction (sn PCR) for identification of Candida species. One hundred and twenty seven Candida strains isolated from various clinical specimens were identified by conventional methods, four different chromogenic media and sn PCR. HiCrome Candida Differential and CHROMagar Candida media showed comparably high sensitivities and specificities in the identification of C. albicans, C. tropicalis, C. glabrata and C. krusei. CHROMagar Candida had an extra advantage of identifying all C. parapsilosis isolates. CHROMagar-Pal’s medium identified C. albicans, C. tropicalis and C. krusei with high sensitivities and specificities, but couldn’t identify C. glabrata or C. parapsilosis. It was the only medium that identified C. dubliniensis with a sensitivity and specificity of 100%. Biggy agar showed the least sensitivities and specificities. The overall concordance of the snPCR compared to the conventional tests including CHROMAgar Candida in the identification of Candida species was 97.5%. The use of CHROMAgar Candida medium is an easy and accurate method for presumptive identification of the most commonly encountered Candida spp. PMID:24948942

  1. Kinetic characterisation of primer mismatches in allele-specific PCR: a quantitative assessment.

    Science.gov (United States)

    Waterfall, Christy M; Eisenthal, Robert; Cobb, Benjamin D

    2002-12-20

    A novel method of estimating the kinetic parameters of Taq DNA polymerase during rapid cycle PCR is presented. A model was constructed using a simplified sigmoid function to represent substrate accumulation during PCR in combination with the general equation describing high substrate inhibition for Michaelis-Menten enzymes. The PCR progress curve was viewed as a series of independent reactions where initial rates were accurately measured for each cycle. Kinetic parameters were obtained for allele-specific PCR (AS-PCR) amplification to examine the effect of mismatches on amplification. A high degree of correlation was obtained providing evidence of substrate inhibition as a major cause of the plateau phase that occurs in the later cycles of PCR.

  2. Quantification of low-expressed mRNA using 5' LNA-containing real-time PCR primers

    International Nuclear Information System (INIS)

    Malgoyre, A.; Banzet, S.; Mouret, C.; Bigard, A.X.; Peinnequin, A.

    2007-01-01

    Real-time RT-PCR is the most sensitive and accurate method for mRNA quantification. Using specific recombinant DNA as a template, real-time PCR allows accurate quantification within a 7-log range and increased sensitivity below 10 copies. However, when using RT-PCR to quantify mRNA in biological samples, a stochastic off-targeted amplification can occur. Classical adjustments of assay parameters have minimal effects on such amplification. This undesirable amplification appears mostly to be dependent on specific to non-specific target ratio rather than on the absolute quantity of the specific target. This drawback, which decreases assay reliability, mostly appears when quantifying low-expressed transcript in a whole organ. An original primer design using properties of LNA allows to block off-target amplification. 5'-LNA substitution strengthens 5'-hybridization. Consequently on-target hybridization is stabilized and the probability for the off-target to lead to amplification is decreased

  3. A high-throughput pipeline for the design of real-time PCR signatures

    Directory of Open Access Journals (Sweden)

    Reifman Jaques

    2010-06-01

    Full Text Available Abstract Background Pathogen diagnostic assays based on polymerase chain reaction (PCR technology provide high sensitivity and specificity. However, the design of these diagnostic assays is computationally intensive, requiring high-throughput methods to identify unique PCR signatures in the presence of an ever increasing availability of sequenced genomes. Results We present the Tool for PCR Signature Identification (TOPSI, a high-performance computing pipeline for the design of PCR-based pathogen diagnostic assays. The TOPSI pipeline efficiently designs PCR signatures common to multiple bacterial genomes by obtaining the shared regions through pairwise alignments between the input genomes. TOPSI successfully designed PCR signatures common to 18 Staphylococcus aureus genomes in less than 14 hours using 98 cores on a high-performance computing system. Conclusions TOPSI is a computationally efficient, fully integrated tool for high-throughput design of PCR signatures common to multiple bacterial genomes. TOPSI is freely available for download at http://www.bhsai.org/downloads/topsi.tar.gz.

  4. Quantitative threefold allele-specific PCR (QuanTAS-PCR) for highly sensitive JAK2 V617F mutant allele detection

    International Nuclear Information System (INIS)

    Zapparoli, Giada V; Jorissen, Robert N; Hewitt, Chelsee A; McBean, Michelle; Westerman, David A; Dobrovic, Alexander

    2013-01-01

    The JAK2 V617F mutation is the most frequent somatic change in myeloproliferative neoplasms, making it an important tumour-specific marker for diagnostic purposes and for the detection of minimal residual disease. Sensitive quantitative assays are required for both applications, particularly for the monitoring of minimal residual disease, which requires not only high sensitivity but also very high specificity. We developed a highly sensitive probe-free quantitative mutant-allele detection method, Quantitative Threefold Allele-Specific PCR (QuanTAS-PCR), that is performed in a closed-tube system, thus eliminating the manipulation of PCR products. QuantTAS-PCR uses a threefold approach to ensure allele-specific amplification of the mutant sequence: (i) a mutant allele-specific primer, (ii) a 3′dideoxy blocker to suppress false-positive amplification from the wild-type template and (iii) a PCR specificity enhancer, also to suppress false-positive amplification from the wild-type template. Mutant alleles were quantified relative to exon 9 of JAK2. We showed that the addition of the 3′dideoxy blocker suppressed but did not eliminate false-positive amplification from the wild-type template. However, the addition of the PCR specificity enhancer near eliminated false-positive amplification from the wild-type allele. Further discrimination between true and false positives was enabled by using the quantification cycle (Cq) value of a single mutant template as a cut-off point, thus enabling robust distinction between true and false positives. As 10,000 JAK2 templates were used per replicate, the assay had a sensitivity of 1/10 -4 per replicate. Greater sensitivity could be reached by increasing the number of replicates analysed. Variation in replicates when low mutant-allele templates were present necessitated the use of a statistics-based approach to estimate the load of mutant JAK2 copies. QuanTAS-PCR showed comparable quantitative results when validated against a

  5. Development and validation of a quantitative PCR assay for Ichthyophonus spp.

    Science.gov (United States)

    White, Vanessa C; Morado, J Frank; Crosson, Lisa M; Vadopalas, Brent; Friedman, Carolyn S

    2013-04-29

    Members of the genus Ichthyophonus are trophically transmitted, cosmopolitan parasites that affect numerous fish species worldwide. A quantitative PCR (qPCR) assay specific for genus Ichthyophonus 18S ribosomal DNA was developed for parasite detection and surveillance. The new assay was tested for precision, repeatability, reproducibility, and both analytical sensitivity and specificity. Diagnostic sensitivity and specificity were estimated using tissue samples from a wild population of walleye pollock Theragra chalcogramma. Ichthyophonus sp. presence in tissue samples was determined by qPCR, conventional PCR (cPCR), and histology. Parasite prevalence estimates varied depending upon the detection method employed and tissue type tested. qPCR identified the greatest number of Ichthyophonus sp.-positive cases when applied to walleye pollock skeletal muscle. The qPCR assay proved sensitive and specific for Ichthyophonus spp. DNA, but like cPCR, is only a proxy for infection. When compared to cPCR, qPCR possesses added benefits of parasite DNA quantification and a 100-fold increase in analytical sensitivity. Because this novel assay is specific for known members of the genus, it is likely appropriate for detecting Ichthyophonus spp. DNA in various hosts from multiple regions. However, species-level identification and isotype variability would require DNA sequencing. In addition to distribution and prevalence applications, this assay could be modified and adapted for use with zooplankton or environmental samples. Such applications could aid in investigating alternate routes of transmission and life history strategies typical to members of the genus Ichthyophonus.

  6. Comparative validation using quantitative real-time PCR (qPCR and conventional PCR of bovine semen centrifuged in continuous density gradient

    Directory of Open Access Journals (Sweden)

    M.V. Resende

    2011-06-01

    Full Text Available The objective of the present study was to determine the sperm enrichment with X-bearing spermatozoa, after one centrifugation in a Percoll or OptiPrep continuous density gradient, using quantitative real-time polymerase chain reaction (qPCR of sperm DNA and resultant in vitro-produced bovine embryos by PCR. Frozen/thawed sperm was layered on density gradients and the tubes were centrifuged. Supernatants were gently aspirated and the sperm recovered from the bottom of the tubes. Cleavage and blastocyst rates were determined through in vitro production of embryos and PCR was performed to identify the embryos' genetic sex. A difference in blastocyst rate was found in the Percoll treatment compared to OptiPrep (P<0.05. The percentage of female embryos in the Percoll and OptiPrep groups was 62.0% and 47.1%, respectively. These results were confirmed by qPCR of spermatozoa DNA and underestimation was seen only in the Percoll group. It was possible to sexing sperm using simple approach.

  7. Comparison between single PCR and nested PCR in detection of human papilloma viruses in paraffin-embedded OSCC and fresh oral mucosa.

    Science.gov (United States)

    Jalouli, Miranda; Jalouli, Jamshid; Ibrahim, Salah O; Hirsch, Jan-Michaél; Sand, Lars

    2015-01-01

    Infection with human papilloma virus (HPV) has been implicated as one of the risk factors for the development of oropharyngeal cancer. Many different HPV tests exist, and information regarding their specific technical, analytical, and clinical properties is increasing. This study aimed to compare the level of detection of HPV using two reliable polymerase chain reaction (PCR) methods, nested PCR (NPCR) and single PCR (SPCR), in archival paraffin-embedded oral squamous cell carcinoma (OSCC) samples and fresh oral mucosa specimens. The presence of HPV genome in two groups of tissue samples was analyzed: (i) 57 paraffin-embedded OSCC samples from Sudan and (ii) eight healthy fresh oral mucosal samples from Swedish volunteers. The specimens were tested by SPCR with primer pair MY9/MY11 and NPCR using GP5+/GP6+ primer sets. Eighteen (32%) out of the 57 paraffin-embedded OSCC samples, and five (62%) out of the eight fresh clinically healthy samples were found to be HPV-positive with NPCR. With SPCR, four (7%) out of the paraffin-embedded OSCC samples were HPV-positive. A statistically significant difference between HPV-positive and -negative samples was found when comparing NPCR and SPCR in OSCC and fresh oral mucosa (pnested PCR increased the positivity rate, efficiency rate and sensitivity of HPV detection in oral samples significantly and should be considered as the method of choice. Copyright © 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  8. Self-Reported Student Confidence in Troubleshooting Ability Increases after Completion of an Inquiry-Based PCR Practical

    Science.gov (United States)

    Cook, Anthony L.; Snow, Elizabeth T.; Binns, Henrica; Cook, Peta S.

    2015-01-01

    Inquiry-based learning (IBL) activities are complementary to the processes of laboratory discovery, as both are focused on producing new findings through research and inquiry. Here, we describe the results of student surveys taken pre- and postpractical to an IBL undergraduate practical on PCR. Our analysis focuses primarily student perceptions of…

  9. Histopathologic Effects of Dirofilaria Immitis Microfilaria on Internal Organs of Dog Confirming by PCR Technique

    Directory of Open Access Journals (Sweden)

    S Simsek

    2012-06-01

    Full Text Available Background: The heartworm disease is an infectious disease of dogs with Dirofilaria immitis combined with cardiovascular and circulatory abnormalities. The heartworm disease can become a serious health risk when associated with a severe infection. In this study, a male, 8 year-old dog that died suddenly was necropsied and all tissues were examined grossly.Methods: Major organs including heart, lungs, liver, spleen, kidneys, brain, eyes, and testis were fixed in 10% neutral formalin, embedded in paraffin, sectioned at 5-µm thickness, stained with hematoxylin and eosin, and examined with a light microscope. For each examined organ, paraffin-embedded tissues were cut and placed in eppendorf tubes for genomic DNA extraction. PCR was performed using two sets of primers for amplification of a 302 bp ITS-2 gene fragment and a 203 bp cytochrome oxidase subunit 1 (CO1 gene fragment of D. immitis.Results: During the necropsy examination, 46 adult D. immitis were found in the portal vein, right ventricle, and atrium of the heart and pulmonary trunk. Microscopically, microfilarias were found throughout the vessels of different organs including lungs, kidneys, liver, heart, brain, and spleen. All tissues examined by PCR were positive for D. immitis ITS-2 and CO1.Conclusion: PCR technique now represents an effective method for identification of D. immitis from formalin-fixed samples.

  10. Galactomannan and Real-Time PCR in the diagnosis of invasive Aspergillosis: preliminary data

    Directory of Open Access Journals (Sweden)

    Cristina Pedrotti

    2014-03-01

    Full Text Available The diagnosis of invasive aspergillosis is notoriously difficult. The standard culture-based methods have shown considerable limitations in performance. For this reason, non-culture methods have been increasingly employed for the diagnosis of invasive aspergillosis, and, among them, the methods based on Real-Time polymerase chain reaction (RT-PCR. In this study we assess the contribution in lowering diagnosis errors provided by the RT-PCR method when run alongside other methods. We analyzed 23 biological samples, 14 serum samples, and 9 bronchoalveolar lavage samples (BAL from 10 immunocompromised patients who were selected according to EORTC/MSG criteria (European Organization for Research and Treatment of Cancer/Mycoses Study Group. On the serum sample we searched the galactomannan (GM (Platelia Aspergillus® and the fungal genome (MycAssayTMAspergillus; the BAL samples were subjected also to the culture tests. In 11 serum samples the results showed concordance between GM and RT–PCR tests, while in 3 samples we report discordance: 2 results were GM positive and RT-PCR negative, and 1 results GM negative and RT-PCR indeterminate. In 5 BAL samples the results showed concordance between the two methods, while 4 were GM positive and RT-PCR negative. The data, although still preliminary, suggest an increased accuracy in the diagnosis of suspected invasive aspergillosis when employing both RT-PCR and GM tests given that the RT-PCR test eliminates the false positive results of the GM test. The PCR methods require, however, further applications of this type of diagnostic because of the severe limit given by the lack of standardization.

  11. A reliable and feasible qPCR strategy for titrating AAV vectors.

    Science.gov (United States)

    Wang, Feng; Cui, Xiuling; Wang, Mingxi; Xiao, Weidong; Xu, Ruian

    2013-07-05

    Previous studies have revealed that traditional real-time quantitative PCR (qPCR) underestimates adeno-associated virus (AAV) titer. Because the inverted terminal repeat (ITR) exists in all AAV vectors, the only remaining element from the wild genome could form special configurations to interfere with qPCR titration. To solve this problem, a modified and universal qPCR method was tested and established. In this work, there was a great variation in titration of ssAAV2-EGFP (Enhanced Green Fluorescence Protein) and scAAV2-EGFP genome by traditional qPCR. For ssAAV2-EGFP, the highest titer was found by using the targeting EGFP primers and the lowest titer was measured by those targeting bovine growth hormone polyA element (pBGH) primers. Experimental data were reverse for ssAAV2-EGFP and scAAV2-EGFP. Here we report an improved and universal SmaI qPCR method, based on cleaving all ITRs in AAV2 genome by SmaI with several advantages: (1) impact of all ITRs in ssAAV2 and scAAV2 was dismissed; (2) titers increased remarkably, up to 7-fold, especially for scAAV2; (3) the variation of titers was reduced when different primers were applied. A similar phenomenon was also observed in other ssAAV2 and scAAV2 products when the range of titration was at 3×107 to 7×109 V.G/µl in this study. This modified qPCR strategy can increase rAAV' titer and reduce titration variance, possibly become a universal method for titrating AAV vectors.

  12. Critical points of DNA quantification by real-time PCR--effects of DNA extraction method and sample matrix on quantification of genetically modified organisms.

    Science.gov (United States)

    Cankar, Katarina; Stebih, Dejan; Dreo, Tanja; Zel, Jana; Gruden, Kristina

    2006-08-14

    Real-time PCR is the technique of choice for nucleic acid quantification. In the field of detection of genetically modified organisms (GMOs) quantification of biotech products may be required to fulfil legislative requirements. However, successful quantification depends crucially on the quality of the sample DNA analyzed. Methods for GMO detection are generally validated on certified reference materials that are in the form of powdered grain material, while detection in routine laboratories must be performed on a wide variety of sample matrixes. Due to food processing, the DNA in sample matrixes can be present in low amounts and also degraded. In addition, molecules of plant origin or from other sources that affect PCR amplification of samples will influence the reliability of the quantification. Further, the wide variety of sample matrixes presents a challenge for detection laboratories. The extraction method must ensure high yield and quality of the DNA obtained and must be carefully selected, since even components of DNA extraction solutions can influence PCR reactions. GMO quantification is based on a standard curve, therefore similarity of PCR efficiency for the sample and standard reference material is a prerequisite for exact quantification. Little information on the performance of real-time PCR on samples of different matrixes is available. Five commonly used DNA extraction techniques were compared and their suitability for quantitative analysis was assessed. The effect of sample matrix on nucleic acid quantification was assessed by comparing 4 maize and 4 soybean matrixes. In addition 205 maize and soybean samples from routine analysis were analyzed for PCR efficiency to assess variability of PCR performance within each sample matrix. Together with the amount of DNA needed for reliable quantification, PCR efficiency is the crucial parameter determining the reliability of quantitative results, therefore it was chosen as the primary criterion by which to

  13. Shape based kinetic outlier detection in real-time PCR

    Directory of Open Access Journals (Sweden)

    D'Atri Mario

    2010-04-01

    Full Text Available Abstract Background Real-time PCR has recently become the technique of choice for absolute and relative nucleic acid quantification. The gold standard quantification method in real-time PCR assumes that the compared samples have similar PCR efficiency. However, many factors present in biological samples affect PCR kinetic, confounding quantification analysis. In this work we propose a new strategy to detect outlier samples, called SOD. Results Richards function was fitted on fluorescence readings to parameterize the amplification curves. There was not a significant correlation between calculated amplification parameters (plateau, slope and y-coordinate of the inflection point and the Log of input DNA demonstrating that this approach can be used to achieve a "fingerprint" for each amplification curve. To identify the outlier runs, the calculated parameters of each unknown sample were compared to those of the standard samples. When a significant underestimation of starting DNA molecules was found, due to the presence of biological inhibitors such as tannic acid, IgG or quercitin, SOD efficiently marked these amplification profiles as outliers. SOD was subsequently compared with KOD, the current approach based on PCR efficiency estimation. The data obtained showed that SOD was more sensitive than KOD, whereas SOD and KOD were equally specific. Conclusion Our results demonstrated, for the first time, that outlier detection can be based on amplification shape instead of PCR efficiency. SOD represents an improvement in real-time PCR analysis because it decreases the variance of data thus increasing the reliability of quantification.

  14. Effectiveness of quantitative real time PCR in long-term follow-up of chronic myeloid leukemia patients

    International Nuclear Information System (INIS)

    Savasoglu, K.; Berber, B.

    2015-01-01

    To determine the use of the Quantitative Real Time PCR (RQ-PCR) assay follow-up with Chronic Myeloid Leukemia (CML) patients. Study Design: Cross-sectional observational. Place and Duration of Study: Izmir Ataturk Education and Research Hospital, Izmir, Turkey, from 2009 to 2013. Methodology: Cytogenetic, FISH, RQ-PCR test results from 177 CML patients materials selected between 2009 - 2013 years was set up for comparison analysis. Statistical analysis was performed to compare between FISH, karyotype and RQ-PCR results of the patients. Karyotyping and FISH specificity and sensitivity rates determined by ROC analysis compared with RQ-PCR results. Chi-square test was used to compare test failure rates. Results:Sensitivity and specificity values were determined for karyotyping 17.6 - 98% (p=0.118, p > 0.05) and for FISH 22.5 - 96% (p=0.064, p > 0.05) respectively. FISH sensitivity was slightly higher than karyotyping but there was calculated a strong correlation between them (p < 0.001). RQ-PCR test failure rate did not correlate with other two tests (p > 0.05); however, karyotyping and FISH test failure rate was statistically significant (p < 0.001). Conclusion: Besides, the situation needed for karyotype analysis, RQ-PCR assay can be used alone in the follow-up of CML disease. (author)

  15. Effectiveness of Quantitative Real Time PCR in Long-Term Follow-up of Chronic Myeloid Leukemia Patients.

    Science.gov (United States)

    Savasoglu, Kaan; Payzin, Kadriye Bahriye; Ozdemirkiran, Fusun; Berber, Belgin

    2015-08-01

    To determine the use of the Quantitative Real Time PCR (RQ-PCR) assay follow-up with Chronic Myeloid Leukemia (CML) patients. Cross-sectional observational. Izmir Ataturk Education and Research Hospital, Izmir, Turkey, from 2009 to 2013. Cytogenetic, FISH, RQ-PCR test results from 177 CMLpatients' materials selected between 2009 - 2013 years was set up for comparison analysis. Statistical analysis was performed to compare between FISH, karyotype and RQ-PCR results of the patients. Karyotyping and FISH specificity and sensitivity rates determined by ROC analysis compared with RQ-PCR results. Chi-square test was used to compare test failure rates. Sensitivity and specificity values were determined for karyotyping 17.6 - 98% (p=0.118, p > 0.05) and for FISH 22.5 - 96% (p=0.064, p > 0.05) respectively. FISH sensitivity was slightly higher than karyotyping but there was calculated a strong correlation between them (p 0.05); however, karyotyping and FISH test failure rate was statistically significant (p < 0.001). Besides, the situation needed for karyotype analysis, RQ-PCR assay can be used alone in the follow-up of CMLdisease.

  16. Effect of food processing on plant DNA degradation and PCR-based GMO analysis: a review.

    Science.gov (United States)

    Gryson, Nicolas

    2010-03-01

    The applicability of a DNA-based method for GMO detection and quantification depends on the quality and quantity of the DNA. Important food-processing conditions, for example temperature and pH, may lead to degradation of the DNA, rendering PCR analysis impossible or GMO quantification unreliable. This review discusses the effect of several food processes on DNA degradation and subsequent GMO detection and quantification. The data show that, although many of these processes do indeed lead to the fragmentation of DNA, amplification of the DNA may still be possible. Length and composition of the amplicon may, however, affect the result, as also may the method of extraction used. Also, many techniques are used to describe the behaviour of DNA in food processing, which occasionally makes it difficult to compare research results. Further research should be aimed at defining ingredients in terms of their DNA quality and PCR amplification ability, and elaboration of matrix-specific certified reference materials.

  17. Real-Time PCR Quantification of Chloroplast DNA Supports DNA Barcoding of Plant Species.

    Science.gov (United States)

    Kikkawa, Hitomi S; Tsuge, Kouichiro; Sugita, Ritsuko

    2016-03-01

    Species identification from extracted DNA is sometimes needed for botanical samples. DNA quantification is required for an accurate and effective examination. If a quantitative assay provides unreliable estimates, a higher quantity of DNA than the estimated amount may be used in additional analyses to avoid failure to analyze samples from which extracting DNA is difficult. Compared with conventional methods, real-time quantitative PCR (qPCR) requires a low amount of DNA and enables quantification of dilute DNA solutions accurately. The aim of this study was to develop a qPCR assay for quantification of chloroplast DNA from taxonomically diverse plant species. An absolute quantification method was developed using primers targeting the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene using SYBR Green I-based qPCR. The calibration curve was generated using the PCR amplicon as the template. DNA extracts from representatives of 13 plant families common in Japan. This demonstrates that qPCR analysis is an effective method for quantification of DNA from plant samples. The results of qPCR assist in the decision-making will determine the success or failure of DNA analysis, indicating the possibility of optimization of the procedure for downstream reactions.

  18. Detection of hepatitis C virus RNA: comparison of one-stage polymerase chain reaction (PCR) with nested-set PCR.

    OpenAIRE

    Gretch, D R; Wilson, J J; Carithers, R L; dela Rosa, C; Han, J H; Corey, L

    1993-01-01

    We evaluated a new hepatitis C virus RNA assay based on one-stage PCR followed by liquid hybridization with an oligonucleotide probe and compared it with nested-set PCR. The one-stage and nested-set PCR assays had identical sensitivities in analytical experiments and showed 100% concordance when clinical specimens were used. One-stage PCR may be less prone to contamination than nested-set PCR.

  19. PCR cycles above routine numbers do not compromise high-throughput DNA barcoding results.

    Science.gov (United States)

    Vierna, J; Doña, J; Vizcaíno, A; Serrano, D; Jovani, R

    2017-10-01

    High-throughput DNA barcoding has become essential in ecology and evolution, but some technical questions still remain. Increasing the number of PCR cycles above the routine 20-30 cycles is a common practice when working with old-type specimens, which provide little amounts of DNA, or when facing annealing issues with the primers. However, increasing the number of cycles can raise the number of artificial mutations due to polymerase errors. In this work, we sequenced 20 COI libraries in the Illumina MiSeq platform. Libraries were prepared with 40, 45, 50, 55, and 60 PCR cycles from four individuals belonging to four species of four genera of cephalopods. We found no relationship between the number of PCR cycles and the number of mutations despite using a nonproofreading polymerase. Moreover, even when using a high number of PCR cycles, the resulting number of mutations was low enough not to be an issue in the context of high-throughput DNA barcoding (but may still remain an issue in DNA metabarcoding due to chimera formation). We conclude that the common practice of increasing the number of PCR cycles should not negatively impact the outcome of a high-throughput DNA barcoding study in terms of the occurrence of point mutations.

  20. Calibrated user-friendly reverse transcriptase-PCR assay

    DEFF Research Database (Denmark)

    Bor, M V; Sørensen, B S; Rammer, P

    1998-01-01

    We report a competitive reverse transcriptase-PCR (RT-PCR) assay and a calibrated user-friendly RT-PCR assay (CURT-PCR) for epidermal growth factor receptor (EGFR) mRNA. A calibrator was prepared from isolated rat liver RNA, and the amount of EGFR mRNA was determined by competitive RT-PCR. In CUR...

  1. Droplet digital PCR (ddPCR) vs quantitative real-time PCR (qPCR) approach for detection and quantification of Merkel cell polyomavirus (MCPyV) DNA in formalin fixed paraffin embedded (FFPE) cutaneous biopsies.

    Science.gov (United States)

    Arvia, Rosaria; Sollai, Mauro; Pierucci, Federica; Urso, Carmelo; Massi, Daniela; Zakrzewska, Krystyna

    2017-08-01

    Merkel cell polyomavirus (MCPyV) is associated with Merkel cell carcinoma and high viral load in the skin was proposed as a risk factor for the occurrence of this tumour. MCPyV DNA was detected, with lower frequency, in different skin cancers but since the viral load was usually low, the real prevalence of viral DNA could be underestimated. To evaluate the performance of two assays (qPCR and ddPCR) for MCPyV detection and quantification in formalin fixed paraffin embedded (FFPE) tissue samples. Both assays were designed to simultaneous detection and quantification of both MCPyV as well as house-keeping DNA in clinical samples. The performance of MCPyV quantification was investigated using serial dilutions of cloned target DNA. We also evaluated the applicability of both tests for the analysis of 76 FFPE cutaneous biopsies. The two approaches resulted equivalent with regard to the reproducibility and repeatability and showed a high degree of linearity in the dynamic range tested in the present study. Moreover, qPCR was able to quantify ≥10 5 copies per reaction, while the upper limit of ddPCR was 10 4 copies. There was not significant difference between viral load measured by the two methods The detection limit of both tests was 0,15 copies per reaction, however, the number of positive samples obtained by ddPCR was higher than that obtained by qPCR (45% and 37% respectively). The ddPCR represents a better method for detection of MCPyV in FFPE biopsies, mostly these containing low copies number of viral genome. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. PCR em tempo real para diagnóstico da leucose enzoótica bovina Enzootic bovine leukosis real time PCR

    Directory of Open Access Journals (Sweden)

    Natanael Lamas Dias

    2012-08-01

    Full Text Available O objetivo deste trabalho foi realizar a validação de uma reação em cadeia da polimerase em tempo real com o sistema Plexor® (qPCR para o diagnóstico da Leucose Enzoótica Bovina (LEB, por meio da comparação com testes de diagnóstico recomendados pela Organização Mundial de Saúde Animal (OIE. A qPCR foi comparada com duas outras técnicas: a PCR nested (nPCR e a imunodifusão em gel de ágar (IDGA. Das 82 amostras analisadas pela qPCR e nPCR, 79 apresentaram resultados concordantes, sendo a concordância, classificada pelo Índice Kappa, como alta. Entre as PCRs e a IDGA, o número de resultados concordantes foi de 71 e 69, respectivamente, para qPCR e nPCR, sendo a concordância classificada como considerável. A qPCR apresentou altos valores de sensibilidade e especificidade. Os valores preditivos da qPCR observados demonstraram a alta capacidade de classificação dos casos positivos e negativos. A qPCR não foi capaz de detectar três amostras positivas e tem custo ligeiramente superior que a nPCR. Entretanto, a qPCR é uma técnica mais rápida, menos susceptível a contaminações, tem alta sensibilidade, não utiliza e não gera resíduos carcinogênicos. Concluímos que a qPCR pode substituir a nPCR recomendada pela OIE no diagnóstico de rotina em áreas em que a LEB é endêmica, como no Brasil.The goal of this research was to validate a Plexor® real time Polymerase Chain Reaction (qPCR for Enzootic Bovine Leukosis (EBL diagnosis by comparison with methods recommend by the World Animal Health Organization (OIE. The qPCR was compared with two other techniques: the nested PCR (nPCR and to the agar gel immunodiffusion (AGID. Of 82 qPCR and nPCR analysed samples, 79 presented concordant results, being the concordance classified by Kappa Index as high. Between the PCRs and AGID, the number of concordant results was 71 and 69, out of 82, to qPCR and nPCR, respectively, being the concordance classified as considerable, in both

  3. PCR performance of a thermostable heterodimeric archaeal DNA polymerase

    Science.gov (United States)

    Killelea, Tom; Ralec, Céline; Bossé, Audrey; Henneke, Ghislaine

    2014-01-01

    DNA polymerases are versatile tools used in numerous important molecular biological core technologies like the ubiquitous polymerase chain reaction (PCR), cDNA cloning, genome sequencing, and nucleic acid based diagnostics. Taking into account the multiple DNA amplification techniques in use, different DNA polymerases must be optimized for each type of application. One of the current tendencies is to reengineer or to discover new DNA polymerases with increased performance and broadened substrate spectra. At present, there is a great demand for such enzymes in applications, e.g., forensics or paleogenomics. Current major limitations hinge on the inability of conventional PCR enzymes, such as Taq, to amplify degraded or low amounts of template DNA. Besides, a wide range of PCR inhibitors can also impede reactions of nucleic acid amplification. Here we looked at the PCR performances of the proof-reading D-type DNA polymerase from P. abyssi, Pab-polD. Fragments, 3 kilobases in length, were specifically PCR-amplified in its optimized reaction buffer. Pab-polD showed not only a greater resistance to high denaturation temperatures than Taq during cycling, but also a superior tolerance to the presence of potential inhibitors. Proficient proof-reading Pab-polD enzyme could also extend a primer containing up to two mismatches at the 3' primer termini. Overall, we found valuable biochemical properties in Pab-polD compared to the conventional Taq, which makes the enzyme ideally suited for cutting-edge PCR-applications. PMID:24847315

  4. PCR performance of a thermostable heterodimeric archaeal DNA polymerase

    Directory of Open Access Journals (Sweden)

    Tom eKillelea

    2014-05-01

    Full Text Available DNA polymerases are versatile tools used in numerous important molecular biological core technologies like the ubiquitous polymerase chain reaction (PCR, cDNA cloning, genome sequencing and nucleic acid based diagnostics. Taking into account the multiple DNA amplification techniques in use, different DNA polymerases must be optimized for each type of application. One of the current tendencies is to reengineer or to discover new DNA polymerases with increased performance and broadened substrate spectra. At present, there is a great demand for such enzymes in applications, e.g., forensics or paleogenomics. Current major limitations hinge on the inability of conventional PCR enzymes, such as Taq, to amplify degraded or low amounts of template DNA. Besides, a wide range of PCR inhibitors can also impede reactions of nucleic acid amplification. Here we looked at the PCR performances of the proof-reading D-type DNA polymerase from P. abyssi, Pab-polD. Fragments, 3 kilobases in length, were specifically PCR-amplified in its optimized reaction buffer. Pab-polD showed not only a greater resistance to high denaturation temperatures than Taq during cycling, but also a superior tolerance to the presence of potential inhibitors. Proficient proof-reading Pab-polD enzyme could also extend a primer containing up to two mismatches at the 3’ primer termini. Overall, we found valuable biochemical properties in Pab-polD compared to the conventional Taq, which makes the enzyme ideally suited for cutting-edge PCR-applications.

  5. Detection of Fusarium verticillioides by PCR-ELISA based on FUM21 gene.

    Science.gov (United States)

    Omori, Aline Myuki; Ono, Elisabete Yurie Sataque; Bordini, Jaqueline Gozzi; Hirozawa, Melissa Tiemi; Fungaro, Maria Helena Pelegrinelli; Ono, Mario Augusto

    2018-08-01

    Fusarium verticillioides is a primary corn pathogen and fumonisin producer which is associated with toxic effects in humans and animals. The traditional methods for detection of fungal contamination based on morphological characteristics are time-consuming and show low sensitivity and specificity. Therefore, the objective of this study was to develop a PCR-ELISA based on the FUM21 gene for F. verticillioides detection. The DNA of the F. verticillioides, Fusarium sp., Aspergillus sp. and Penicillium sp. isolates was analyzed by conventional PCR and PCR-ELISA to determine the specificity. The PCR-ELISA was specific to F. verticillioides isolates, showed a 2.5 pg detection limit and was 100-fold more sensitive than conventional PCR. In corn samples inoculated with F. verticillioides conidia, the detection limit of the PCR-ELISA was 1 × 10 4 conidia/g and was also 100-fold more sensitive than conventional PCR. Naturally contaminated corn samples were analyzed by PCR-ELISA based on the FUM21 gene and PCR-ELISA absorbance values correlated positively (p PCR-ELISA developed in this study can be useful for F. verticillioides detection in corn samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Direct PCR amplification of forensic touch and other challenging DNA samples: A review.

    Science.gov (United States)

    Cavanaugh, Sarah E; Bathrick, Abigail S

    2018-01-01

    DNA evidence sample processing typically involves DNA extraction, quantification, and STR amplification; however, DNA loss can occur at both the DNA extraction and quantification steps, which is not ideal for forensic evidence containing low levels of DNA. Direct PCR amplification of forensic unknown samples has been suggested as a means to circumvent extraction and quantification, thereby retaining the DNA typically lost during those procedures. Direct PCR amplification is a method in which a sample is added directly to an amplification reaction without being subjected to prior DNA extraction, purification, or quantification. It allows for maximum quantities of DNA to be targeted, minimizes opportunities for error and contamination, and reduces the time and monetary resources required to process samples, although data analysis may take longer as the increased DNA detection sensitivity of direct PCR may lead to more instances of complex mixtures. ISO 17025 accredited laboratories have successfully implemented direct PCR for limited purposes (e.g., high-throughput databanking analysis), and recent studies indicate that direct PCR can be an effective method for processing low-yield evidence samples. Despite its benefits, direct PCR has yet to be widely implemented across laboratories for the processing of evidentiary items. While forensic DNA laboratories are always interested in new methods that will maximize the quantity and quality of genetic information obtained from evidentiary items, there is often a lag between the advent of useful methodologies and their integration into laboratories. Delayed implementation of direct PCR of evidentiary items can be attributed to a variety of factors, including regulatory guidelines that prevent laboratories from omitting the quantification step when processing forensic unknown samples, as is the case in the United States, and, more broadly, a reluctance to validate a technique that is not widely used for evidence samples. The

  7. Study On Application Of Molecular Techniques (RAPD-PCR And RAMP-PCR) To Detect Mutation In Rice Breeding

    International Nuclear Information System (INIS)

    Hoang Thi My Linh; Phan, D. T. Son; Nguyen Thi Vang; Nguyen, T. T. Hien; Le XuanTham

    2007-01-01

    The project was carried out in 2007 with the purpose of consideration for using the two simple and inexpensive molecular techniques to estimate changes in DNA of rice mutant after gamma irradiation. Three rice cultivars: Basmati370, Tam Thom (TT1), IR64 and three gamma irradiated mutants BDS, TDS and VND 95-20 respectively, were used. Suitable DNA extraction procedure was obtained. PCR optimization was conducted on three important factors including: amount of MgCl 2 , DNA concentration and annealing temperature. 2.5 mM of MgCl 2 for RAPD-PCR and 3.75 mM for RAMP-PCR were found the best. 40 ng DNA provided a good amplification for RAMP-PCR; this figure was 50 ng for RAPD-PCR. Annealing temperatures were determined at 36 o C for RAPD primer and at 55±3 o C for Microsatellite primer. Final results showed that, both RAPD-PCR and RAMP-PCR could detect changes in DNA of rice mutants after gamma irradiation compared to their parents. Percentage of DNA changes determined by RAPD-PCR and RAMP-PCR on Basmati370 and its mutant BDS were 11.49% and 21.2% respectively; These on TT1 and TDS were 8.98% and 15.4%; and on IR64 and VND 95-20 were 3.45% and 4.95%. (author)

  8. Comparison of a Commercially Available Repetitive-Element PCR System (DiversiLab) with PCR Ribotyping for Typing of Clostridium difficile Strains ▿

    OpenAIRE

    Eckert, C.; Van Broeck, J.; Spigaglia, P.; Burghoffer, B.; Delmée, M.; Mastrantonio, P.; Barbut, F.

    2011-01-01

    This study compared a repetitive-element PCR (rep-PCR) method (DiversiLab system) to PCR ribotyping. The discriminatory power of rep-PCR was 0.997. Among the PCR ribotype 027 isolates tested, different rep types could be distinguished. rep-PCR showed a higher discriminatory power than PCR ribotyping. Nevertheless, this method requires technical skill, and visual interpretation of rep-PCR fingerprint patterns may be difficult.

  9. Effect of carryover and presampling procedures on the results of real-time PCR used for diagnosis of bovine intramammary infections with Streptococcus agalactiae at routine milk recordings

    DEFF Research Database (Denmark)

    Mahmmod, Yasser; Mweu, Marshal Mutinda; Nielsen, Søren Saxmose

    2014-01-01

    with Streptococcus agalactiae (S. agalactiae) in dairy herds with conventional milking parlours. Misclassification may result in unnecessary costs for treatment and culling. The objectives of this study were to (1) determine the effect of carryover on PCR-positivity for S. agalactiae at different PCR cycle threshold...... (Ct) cut-offs by estimating the between-cow correlation while accounting for the milking order, and (2) evaluate the effect of aseptic presampling procedures (PSP) on PCR-positivity at the different Ct-value cut-offs. The study was conducted in four herds with conventional milking parlours at routine...

  10. Cloning-free genome alterations in Saccharomyces cerevisiae using adaptamer-mediated PCR

    DEFF Research Database (Denmark)

    Reid, Robert J D; Lisby, Michael; Rothstein, Rodney

    2002-01-01

    . Furthermore, many of the techniques described here rely on preexisting and commercially available adaptamer sets that can be obtained inexpensively rather than designing new primers for every experiment. Although a cost is incurred when performing multiple PCR amplifications, the increase in recombination...... efficiency is dramatic. Finally, the adaptamer-mediated PCR fusion methodology is versatile and can be applied to varied genome manipulations....

  11. Sources of PCR-induced distortions in high-throughput sequencing data sets

    Science.gov (United States)

    Kebschull, Justus M.; Zador, Anthony M.

    2015-01-01

    PCR permits the exponential and sequence-specific amplification of DNA, even from minute starting quantities. PCR is a fundamental step in preparing DNA samples for high-throughput sequencing. However, there are errors associated with PCR-mediated amplification. Here we examine the effects of four important sources of error—bias, stochasticity, template switches and polymerase errors—on sequence representation in low-input next-generation sequencing libraries. We designed a pool of diverse PCR amplicons with a defined structure, and then used Illumina sequencing to search for signatures of each process. We further developed quantitative models for each process, and compared predictions of these models to our experimental data. We find that PCR stochasticity is the major force skewing sequence representation after amplification of a pool of unique DNA amplicons. Polymerase errors become very common in later cycles of PCR but have little impact on the overall sequence distribution as they are confined to small copy numbers. PCR template switches are rare and confined to low copy numbers. Our results provide a theoretical basis for removing distortions from high-throughput sequencing data. In addition, our findings on PCR stochasticity will have particular relevance to quantification of results from single cell sequencing, in which sequences are represented by only one or a few molecules. PMID:26187991

  12. Optimisation of the PCR-invA primers for the detection of Salmonella ...

    African Journals Online (AJOL)

    A polymerase chain reaction (PCR)-based method for the detection of Salmonella species in water samples was optimised and evaluated for speed, specificity and sensitivity. Optimisation of Mg2+ and primer concentrations and cycling parameters increased the sensitivity and limit of detection of PCR to 2.6 x 104 cfu/m.

  13. Development of single step RT-PCR for detection of Kyasanur forest disease virus from clinical samples

    Directory of Open Access Journals (Sweden)

    Gouri Chaubal

    2018-02-01

    Discussion and conclusion: The previously published sensitive real time RT-PCR assay requires higher cost in terms of reagents and machine setup and technical expertise has been the primary reason for development of this assay. A single step RT-PCR is relatively easy to perform and more cost effective than real time RT-PCR in smaller setups in the absence of Biosafety Level-3 facility. This study reports the development and optimization of single step RT-PCR assay which is more sensitive and less time-consuming than nested RT-PCR and cost effective for rapid diagnosis of KFD viral RNA.

  14. Quantum dots for a high-throughput Pfu polymerase based multi-round polymerase chain reaction (PCR).

    Science.gov (United States)

    Sang, Fuming; Zhang, Zhizhou; Yuan, Lin; Liu, Deli

    2018-02-26

    Multi-round PCR is an important technique for obtaining enough target DNA from rare DNA resources, and is commonly used in many fields including forensic science, ancient DNA analysis and cancer research. However, multi-round PCR is often aborted, largely due to the accumulation of non-specific amplification during repeated amplifications. Here, we developed a Pfu polymerase based multi-round PCR technique assisted by quantum dots (QDs). Different PCR assays, DNA polymerases (Pfu and Taq), DNA sizes and GC amounts were compared in this study. In the presence of QDs, PCR specificity could be retained even in the ninth-round amplification. Moreover, the longer and more complex the targets were, the earlier the abortion happened in multi-round PCR. However, no obvious enhancement of specificity was found in multi-round PCR using Taq DNA polymerase. Significantly, the fidelity of Pfu polymerase based multi-round PCR was not sacrificed in the presence of QDs. Besides, pre-incubation at 50 °C for an hour had no impact on multi-round PCR performance, which further authenticated the hot start effect of QDs modulated in multi-round PCR. The findings of this study demonstrated that a cost-effective and promising multi-round PCR technique for large-scale and high-throughput sample analysis could be established with high specificity, sensibility and accuracy.

  15. Detection of Leishmania infantum in animals and their ectoparasites by conventional PCR and real time PCR.

    Science.gov (United States)

    de Morais, Rayana Carla Silva; Gonçalves, Suênia da Cunha; Costa, Pietra Lemos; da Silva, Kamila Gaudêncio; da Silva, Fernando José; Silva, Rômulo Pessoa E; de Brito, Maria Edileuza Felinto; Brandão-Filho, Sinval Pinto; Dantas-Torres, Filipe; de Paiva-Cavalcanti, Milena

    2013-04-01

    Visceral leishmaniosis (VL) is a parasitic disease caused by Leishmania infantum, which is primarily transmitted by phlebotomine sandflies. However, there has been much speculation on the role of other arthropods in the transmission of VL. Thus, the aim of this study was to assess the presence of L. infantum in cats, dogs and their ectoparasites in a VL-endemic area in northeastern Brazil. DNA was extracted from blood samples and ectoparasites, tested by conventional PCR (cPCR) and quantitative real time PCR (qPCR) targeting the L. infantum kinetoplast DNA. A total of 280 blood samples (from five cats and 275 dogs) and 117 ectoparasites from dogs were collected. Animals were apparently healthy and not previously tested by serological or molecular diagnostic methods. Overall, 213 (76.1 %) animals and 51 (43.6 %) ectoparasites were positive to L. infantum, with mean parasite loads of 795.2, 31.9 and 9.1 fg in dogs, cats and ectoparasites, respectively. Concerning the positivity between dogs and their ectoparasites, 32 (15.3 %) positive dogs were parasitized by positive ectoparasites. The overall concordance between the PCR protocols used was 59.2 %, with qPCR being more efficient than cPCR; 34.1 % of all positive samples were exclusively positive by qPCR. The high number of positive animals and ectoparasites also indicates that they could serve as sentinels or indicators of the circulation of L. infantum in risk areas.

  16. Sequence characterisation of deletion breakpoints in the dystrophin gene by PCR

    Energy Technology Data Exchange (ETDEWEB)

    Abbs, S.; Sandhu, S.; Bobrow, M. [Guy`s Hospital, London (United Kingdom)

    1994-09-01

    Partial deletions of the dystrophin gene account for 65% of cases of Duchenne muscular dystrophy. A high proportion of these structural changes are generated by new mutational events, and lie predominantly within two `hotspot` regions, yet the underlying reasons for this are not known. We are characterizing and sequencing the regions surrounding deletion breakpoints in order to: (i) investigate the mechanisms of deletion mutation, and (ii) enable the design of PCR assays to specifically amplify mutant and normal sequences, allowing us to search for the presence of somatic mosaicism in appropriate family members. Using this approach we have been able to demonstrate the presence of somatic mosaicism in a maternal grandfather of a DMD-affected male, deleted for exons 49-50. Three deletions, namely of exons 48-49, 49-50, and 50, have been characterized using a PCR approach that avoids any cloning procedures. Breakpoints were initially localized to within regions of a few kilobases using Southern blot restriction analyses with exon-specific probes and PCR amplification of exonic and intronic loci. Sequencing was performed directly on PCR products: (i) mutant sequences were obtained from long-range or inverse-PCR across the deletion junction fragments, and (ii) normal sequences were obtained from the products of standard PCR, vectorette PCR, or inverse-PCR performed on YACs. Further characterization of intronic sequences will allow us to amplify and sequence across other deletion breakpoints and increase our knowledge of the mechanisms of mutation in the dystophin gene.

  17. Species identification and quantification in meat and meat products using droplet digital PCR (ddPCR).

    Science.gov (United States)

    Floren, C; Wiedemann, I; Brenig, B; Schütz, E; Beck, J

    2015-04-15

    Species fraud and product mislabelling in processed food, albeit not being a direct health issue, often results in consumer distrust. Therefore methods for quantification of undeclared species are needed. Targeting mitochondrial DNA, e.g. CYTB gene, for species quantification is unsuitable, due to a fivefold inter-tissue variation in mtDNA content per cell resulting in either an under- (-70%) or overestimation (+160%) of species DNA contents. Here, we describe a reliable two-step droplet digital PCR (ddPCR) assay targeting the nuclear F2 gene for precise quantification of cattle, horse, and pig in processed meat products. The ddPCR assay is advantageous over qPCR showing a limit of quantification (LOQ) and detection (LOD) in different meat products of 0.01% and 0.001%, respectively. The specificity was verified in 14 different species. Hence, determining F2 in food by ddPCR can be recommended for quality assurance and control in production systems. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Slow VO2 off-kinetics in skeletal muscle is associated with fast PCr off-kinetics--and inversely.

    Science.gov (United States)

    Korzeniewski, Bernard; Zoladz, Jerzy A

    2013-09-01

    The computer model of the bioenergetic system in skeletal muscle, developed previously, was used to study the effect of the characteristic decay time of the parallel activation of oxidative phosphorylation [τ(OFF)] during muscle recovery on the muscle oxygen consumption rate (Vo2) and phosphocreatine (PCr) work-to-rest transition (off)-kinetics and on the relationship between the Vo2 and PCr rest-to-work transition (on)- and off-kinetics in moderate and heavy exercise. An increase in τ(OFF) slows down the initial phase of the muscle Vo2 off-kinetics and accelerates the PCr off-kinetics. As a result, the relationship between the initial phase of the Vo2 off-kinetics (lasting approximately 3-60 s in computer simulations) and the PCr off-kinetics is inverse: the slower the former, the faster the latter. A faster initial phase of the Vo2 off-kinetics is associated with a slower late phase of the Vo2 off-kinetics, and as a result, the integral of Vo2 above baseline during recovery, representing the oxygen debt, is identical in all cases [values of τ(OFF)] for a given PCr decrease. Depending on τ(OFF), the muscle Vo2 on-kinetics was either equally fast or slower than the Vo2 off-kinetics in moderate exercise and always slower in heavy exercise. PCr on-kinetics was always faster than PCr off-kinetics. This study clearly demonstrates that τ(OFF) has a pronounced impact on the mutual relations between the muscle Vo2 and PCr on- and off-kinetics.

  19. Comparative evaluation of conventional RT-PCR and real-time RT-PCR (RRT-PCR for detection of avian metapneumovirus subtype A Comparação entre as técnicas de RT-PCR convencional e RT-PCR em tempo real para a detecção do metapneumovírus aviários subtipo A

    Directory of Open Access Journals (Sweden)

    Helena Lage Ferreira

    2009-08-01

    Full Text Available Avian metapneumovirus (AMPV belongs to Metapneumovirus genus of Paramyxoviridae family. Virus isolation, serology, and detection of genomic RNA are used as diagnostic methods for AMPV. The aim of the present study was to compare the detection of six subgroup A AMPV isolates (AMPV/A viral RNA by using different conventional and real time RT-PCR methods. Two new RT-PCR tests and two real time RT-PCR tests, both detecting fusion (F gene and nucleocapsid (N gene were compared with an established test for the attachment (G gene. All the RT-PCR tested assays were able to detect the AMPV/A. The lower detection limits were observed using the N-, F- based RRT-PCR and F-based conventional RT-PCR (10(0.3 to 10¹ TCID50 mL-1. The present study suggests that the conventional F-based RT-PCR presented similar detection limit when compared to N- and F-based RRT-PCR and they can be successfully used for AMPV/A detection.O metapneumovírus aviário (AMPV pertence ao gênero Metapneumovirus, família Paramyxoviridae. Isolamento viral, sorologia e detecção do RNA genômico são atualmente as técnicas utilizadas para o diagnóstico desse agente. O objetivo do presente estudo foi comparar a detecção de RNA viral de seis isolados de AMPV, subtipo A (AMPV/A, utilizando diferentes métodos de RT-PCR convencional e real time RT-PCR (RRT-PCR. Duas novas técnicas de RT-PCR convencional e duas técnicas de RRT-PCR, ambas para a detecção dos genes da nucleoproteína (N e da proteína de fusão (F, foram comparadas com um RT-PCR previamente estabelecido para a detecção do AMPV (gene da glicoproteína -G. Todos esses métodos foram capazes de detectar os isolados AMPV/A. As técnicas RRT-PCR (genes F e N mostraram os menores limites de detecção (10(0.3 to 10¹ TCID50 mL-1. Os resultados sugerem que as técnicas RT-PCR convencional (gene F e as técnicas de RRT-PCR (gene F e N desenvolvidas no presente estudo podem ser utilizadas com sucesso para a detecção do

  20. Polymerase study: Improved detection of Salmonella and Campylobacter through the optimized use of DNA polymerases in diagnostic real-time PCR

    DEFF Research Database (Denmark)

    Søndergaard, Mette Sofie Rousing; Löfström, Charlotta; Al-Habib, Zahra Fares Sayer

    DNA extractions and intermediate or bad with the crude extractions, while TaKaRa ExTaq HS only performed well with the purest extractions of fecal samples and intermediate with semi-automated magnetic beads based extracted fecal samples. In conclusion, our data shows that exchanging the DNA polymerase......Diagnostic analyses of foodborne pathogens are increasingly based on molecular methods such as PCR, which can improve the sensitivity and reduce the analysis time. The core of PCR is the enzyme performing the reaction: the DNA polymerase. Changing the polymerase can influence the sensitivity...... commercially available polymerases and four master mixes in two validated PCR assays, for Campylobacter and Salmonella, respectively, to develop more sensitive, robust and cost effective assays. The polymerases were screened on purified DNA and the five best performing, for each PCR assay, were then applied...

  1. Use of Multiplex Real-Time PCR To Diagnose Scrub Typhus.

    Science.gov (United States)

    Tantibhedhyangkul, Wiwit; Wongsawat, Ekkarat; Silpasakorn, Saowaluk; Waywa, Duangdao; Saenyasiri, Nuttawut; Suesuay, Jintapa; Thipmontree, Wilawan; Suputtamongkol, Yupin

    2017-05-01

    Scrub typhus, caused by Orientia tsutsugamushi , is a common cause of acute undifferentiated febrile illness in the Asia-Pacific region. However, its nonspecific clinical manifestation often prevents early diagnosis. We propose the use of PCR and serologic tests as diagnostic tools. Here, we developed a multiplex real-time PCR assay using hydrolysis (TaqMan) probes targeting O. tsutsugamushi 47-kDa, groEL , and human interferon beta (IFN-β gene) genes to improve early diagnosis of scrub typhus. The amplification efficiency was higher than 94%, and the lower detection limit was 10 copies per reaction. We used a human gene as an internal DNA quality and quantity control. To determine the sensitivity of this PCR assay, we selected patients with confirmed scrub typhus who exhibited a clear 4-fold increase in the level of IgG and/or IgM. The PCR assay result was positive in 45 of 52 patients, indicating a sensitivity of 86.5% (95% confidence interval [CI]: 74.2 to 94.4). The PCR assessment was negative for all 136 non-scrub typhus patients, indicating a specificity of 100% (95% CI: 97.3 to 100). In addition, this test helped diagnose patients with inconclusive immunofluorescence assay (IFA) results and using single blood samples. In conclusion, the real-time PCR assay proposed here is sensitive and specific in diagnosing scrub typhus. Combining PCR and serologic tests will improve the diagnosis of scrub typhus among patients presenting with acute febrile illness. Copyright © 2017 American Society for Microbiology.

  2. DNA profiling of spermatozoa by laser capture microdissection and low volume-PCR.

    Directory of Open Access Journals (Sweden)

    Cai-xia Li

    Full Text Available Genetic profiling of sperm from complex biological mixtures such as sexual assault casework samples requires isolation of a pure sperm population and the ability to analyze low abundant samples. Current standard procedure for sperm isolation includes preferential lysis of epithelial contaminants followed by collection of intact sperm by centrifugation. While effective for samples where sperm are abundant, this method is less effective when samples contain few spermatozoa. Laser capture microdissection (LCM is a proven method for the isolation of cells biological mixtures, even when found in low abundance. Here, we demonstrate the efficacy of LCM coupled with on-chip low volume PCR (LV-PCR for the isolation and genotyping of low abundance sperm samples. Our results indicate that this method can obtain complete profiles (13-16 loci from as few as 15 sperm cells with 80% reproducibility, whereas at least 40 sperm cells are required to profile 13-16 loci by standard 'in-tube' PCR. Further, LCM and LV-PCR of a sexual assault casework sample generated a DNA genotype that was consistent with that of the suspect. This method was unable, however, to analyze a casework sample from a gang rape case in which two or more sperm contributors were in a mixed population. The results indicate that LCM and LV-PCR is sensitive and effective for genotyping sperm from sperm/epithelial cell mixtures when epithelial lysis may be insufficient due to low abundance of sperm; LCM and LV-PCR, however, failed in a casework sample when spermatozoa from multiple donors was present, indicating that further study is necessitated.

  3. Development of a high-throughput real time PCR based on a hot-start alternative for Pfu mediated by quantum dots

    Science.gov (United States)

    Sang, Fuming; Yang, Yang; Yuan, Lin; Ren, Jicun; Zhang, Zhizhou

    2015-09-01

    Hot start (HS) PCR is an excellent alternative for high-throughput real time PCR due to its ability to prevent nonspecific amplification at low temperature. Development of a cost-effective and simple HS PCR technique to guarantee high-throughput PCR specificity and consistency still remains a great challenge. In this study, we systematically investigated the HS characteristics of QDs triggered in real time PCR with EvaGreen and SYBR Green I dyes by the analysis of amplification curves, standard curves and melting curves. Two different kinds of DNA polymerases, Pfu and Taq, were employed. Here we showed that high specificity and efficiency of real time PCR were obtained in a plasmid DNA and an error-prone two-round PCR assay using QD-based HS PCR, even after an hour preincubation at 50 °C before real time PCR. Moreover, the results obtained by QD-based HS PCR were comparable to a commercial Taq antibody DNA polymerase. However, no obvious HS effect of QDs was found in real time PCR using Taq DNA polymerase. The findings of this study demonstrated that a cost-effective high-throughput real time PCR based on QD triggered HS PCR could be established with high consistency, sensitivity and accuracy.Hot start (HS) PCR is an excellent alternative for high-throughput real time PCR due to its ability to prevent nonspecific amplification at low temperature. Development of a cost-effective and simple HS PCR technique to guarantee high-throughput PCR specificity and consistency still remains a great challenge. In this study, we systematically investigated the HS characteristics of QDs triggered in real time PCR with EvaGreen and SYBR Green I dyes by the analysis of amplification curves, standard curves and melting curves. Two different kinds of DNA polymerases, Pfu and Taq, were employed. Here we showed that high specificity and efficiency of real time PCR were obtained in a plasmid DNA and an error-prone two-round PCR assay using QD-based HS PCR, even after an hour

  4. A MIQE-compliant real-time PCR assay for Aspergillus detection.

    Directory of Open Access Journals (Sweden)

    Gemma L Johnson

    Full Text Available The polymerase chain reaction (PCR is widely used as a diagnostic tool in clinical laboratories and is particularly effective for detecting and identifying infectious agents for which routine culture and microscopy methods are inadequate. Invasive fungal disease (IFD is a major cause of morbidity and mortality in immunosuppressed patients, and optimal diagnostic criteria are contentious. Although PCR-based methods have long been used for the diagnosis of invasive aspergillosis (IA, variable performance in clinical practice has limited their value. This shortcoming is a consequence of differing sample selection, collection and preparation protocols coupled with a lack of standardisation of the PCR itself. Furthermore, it has become clear that the performance of PCR-based assays in general is compromised by the inadequacy of experimental controls, insufficient optimisation of assay performance as well as lack of transparency in reporting experimental details. The recently published "Minimum Information for the publication of real-time Quantitative PCR Experiments" (MIQE guidelines provide a blueprint for good PCR assay design and unambiguous reporting of experimental detail and results. We report the first real-time quantitative PCR (qPCR assay targeting Aspergillus species that has been designed, optimised and validated in strict compliance with the MIQE guidelines. The hydrolysis probe-based assay, designed to target the 18S rRNA DNA sequence of Aspergillus species, has an efficiency of 100% (range 95-107%, a dynamic range of at least six orders of magnitude and limits of quantification and detection of 6 and 0.6 Aspergillus fumigatus genomes, respectively. It does not amplify Candida, Scedosporium, Fusarium or Rhizopus species and its clinical sensitivity is demonstrated in histological material from proven IA cases, as well as concordant PCR and galactomannan data in matched broncho-alveolar lavage and blood samples. The robustness

  5. Detection of mRNA by reverse transcription PCR as an indicator of viability in Phytophthora ramorum

    Science.gov (United States)

    Antonio Chimento; Santa Olga Cacciola; Matteo Garbelotto

    2008-01-01

    Real-Time PCR technologies offer increasing opportunities to detect and study phytopathogenic fungi. They combine the sensitivity of conventional PCR with the generation of a specific fluorescent signal providing both real-time analysis of the reaction kinetics and quantification of specific DNA targets. Before the development of Real-Time PCR and...

  6. Development of a multiplex real time PCR to detect thermophilic lactic acid bacteria in natural whey starters.

    Science.gov (United States)

    Bottari, Benedetta; Agrimonti, Caterina; Gatti, Monica; Neviani, Erasmo; Marmiroli, Nelson

    2013-01-01

    A multiplex real time PCR (mRealT-PCR) useful to rapidly screen microbial composition of thermophilic starter cultures for hard cooked cheeses and to compare samples with potentially different technological properties was developed. Novel primers directed toward pheS gene were designed and optimized for multiple detection of Lactobacillus helveticus, Lactobacillus delbrueckii, Streptococcus thermophilus and Lactobacillus fermentum. The assay was based on SYBR Green chemistry followed by melting curves analysis. The method was then evaluated for applications in the specific detection of the 4 lactic acid bacteria (LAB) in 29 different natural whey starters for Parmigiano Reggiano cheese production. The results obtained by mRealT-PCR were also compared with those obtained on the same samples by Fluorescence in Situ Hybridization (FISH) and Length-Heterogeneity PCR (LH-PCR). The mRealT-PCR developed in this study, was found to be effective for analyzing species present in the samples with an average sensitivity down to less than 600 copies of DNA and therefore sensitive enough to detect even minor LAB community members of thermophilic starter cultures. The assay was able to describe the microbial population of all the different natural whey starter samples analyzed, despite their natural variability. A higher number of whey starter samples with S. thermophilus and L. fermentum present in their microbial community were revealed, suggesting that these species could be more frequent in Parmigiano Reggiano natural whey starter samples than previously shown. The method was more effective than LH-PCR and FISH and, considering that these two techniques have to be used in combination to detect the less abundant species, the mRealT-PCR was also faster. Providing a single step sensitive detection of L. helveticus, L. delbrueckii, S. thermophilus and L. fermentum, the developed mRealT-PCR could be used for screening thermophilic starter cultures and to follow the presence of

  7. Critical points of DNA quantification by real-time PCReffects of DNA extraction method and sample matrix on quantification of genetically modified organisms

    Directory of Open Access Journals (Sweden)

    Žel Jana

    2006-08-01

    Full Text Available Abstract Background Real-time PCR is the technique of choice for nucleic acid quantification. In the field of detection of genetically modified organisms (GMOs quantification of biotech products may be required to fulfil legislative requirements. However, successful quantification depends crucially on the quality of the sample DNA analyzed. Methods for GMO detection are generally validated on certified reference materials that are in the form of powdered grain material, while detection in routine laboratories must be performed on a wide variety of sample matrixes. Due to food processing, the DNA in sample matrixes can be present in low amounts and also degraded. In addition, molecules of plant origin or from other sources that affect PCR amplification of samples will influence the reliability of the quantification. Further, the wide variety of sample matrixes presents a challenge for detection laboratories. The extraction method must ensure high yield and quality of the DNA obtained and must be carefully selected, since even components of DNA extraction solutions can influence PCR reactions. GMO quantification is based on a standard curve, therefore similarity of PCR efficiency for the sample and standard reference material is a prerequisite for exact quantification. Little information on the performance of real-time PCR on samples of different matrixes is available. Results Five commonly used DNA extraction techniques were compared and their suitability for quantitative analysis was assessed. The effect of sample matrix on nucleic acid quantification was assessed by comparing 4 maize and 4 soybean matrixes. In addition 205 maize and soybean samples from routine analysis were analyzed for PCR efficiency to assess variability of PCR performance within each sample matrix. Together with the amount of DNA needed for reliable quantification, PCR efficiency is the crucial parameter determining the reliability of quantitative results, therefore it was

  8. Critical points of DNA quantification by real-time PCReffects of DNA extraction method and sample matrix on quantification of genetically modified organisms

    Science.gov (United States)

    Cankar, Katarina; Štebih, Dejan; Dreo, Tanja; Žel, Jana; Gruden, Kristina

    2006-01-01

    Background Real-time PCR is the technique of choice for nucleic acid quantification. In the field of detection of genetically modified organisms (GMOs) quantification of biotech products may be required to fulfil legislative requirements. However, successful quantification depends crucially on the quality of the sample DNA analyzed. Methods for GMO detection are generally validated on certified reference materials that are in the form of powdered grain material, while detection in routine laboratories must be performed on a wide variety of sample matrixes. Due to food processing, the DNA in sample matrixes can be present in low amounts and also degraded. In addition, molecules of plant origin or from other sources that affect PCR amplification of samples will influence the reliability of the quantification. Further, the wide variety of sample matrixes presents a challenge for detection laboratories. The extraction method must ensure high yield and quality of the DNA obtained and must be carefully selected, since even components of DNA extraction solutions can influence PCR reactions. GMO quantification is based on a standard curve, therefore similarity of PCR efficiency for the sample and standard reference material is a prerequisite for exact quantification. Little information on the performance of real-time PCR on samples of different matrixes is available. Results Five commonly used DNA extraction techniques were compared and their suitability for quantitative analysis was assessed. The effect of sample matrix on nucleic acid quantification was assessed by comparing 4 maize and 4 soybean matrixes. In addition 205 maize and soybean samples from routine analysis were analyzed for PCR efficiency to assess variability of PCR performance within each sample matrix. Together with the amount of DNA needed for reliable quantification, PCR efficiency is the crucial parameter determining the reliability of quantitative results, therefore it was chosen as the primary

  9. DNA decontamination methods for internal quality management in clinical PCR laboratories.

    Science.gov (United States)

    Wu, Yingping; Wu, Jianyong; Zhang, Zhihui; Cheng, Chen

    2018-03-01

    The polymerase chain reaction (PCR) technique, one of the most commonly applied methods in diagnostic and molecular biology, has a frustrating downside: the occurrence of false-positive signals due to contamination. In previous research, various DNA decontamination methods have been developed to overcome this limitation. Unfortunately, the use of random or poorly focused sampling methods for monitoring air and/or object surfaces leads to the incomplete elimination during decontamination procedures. We herein attempted to develop a novel DNA decontamination method (environmental surveillance, including surface and air sampling) and quality management program for clinical molecular diagnostic laboratories (or clinical PCR laboratories). Here, we performed a step-by-step evaluation of current DNA decontamination methods and developed an effective procedure for assessing the presence of decontaminating DNA via PCR analysis. Performing targeted environmental surveillance by sampling, which reached optimal performance over 2 weeks, and the decontamination process had been verified as reliable. Additionally, the process was validated to not affect PCR amplification efficiency based on a comparative study. In this study, effective guidelines for DNA decontamination were developed. The method employed ensured that surface DNA contamination could be effectively identified and eliminated. Furthermore, our study highlighted the importance of overall quality assurance and good clinical laboratory practices for preventing contamination, which are key factors for compliance with regulatory or accreditation requirements. Taken together, we provided the evidence that the presented scheme ranged from troubleshooting to the elimination of surface contamination, could serve as critical foundation for developing regular environmental surveillance guidelines for PCR laboratories. © 2017 Wiley Periodicals, Inc.

  10. Whole blood Nested PCR and Real-time PCR amplification of Talaromyces marneffei specific DNA for diagnosis.

    Science.gov (United States)

    Lu, Sha; Li, Xiqing; Calderone, Richard; Zhang, Jing; Ma, Jianchi; Cai, Wenying; Xi, Liyan

    2016-02-01

    Talaromyces marneffei is a dimorphic pathogenic fungus, which is a life-threatening invasive mycosis in the immunocompromised host. Prompt diagnosis of T. marneffei infection remains difficult although there has been progress in attempts to expedite the diagnosis of this infection. We previously demonstrated the value of nested polymerase chain reaction (PCR) to detect T. marneffei in paraffin embedded tissue samples with high sensitivity and specificity. In this study, this assay was used to detect the DNA of T. marneffei in whole blood samples. Real-time PCR assay was also evaluated to identify T. marneffei in the same samples. Twenty out of 30 whole blood samples (67%) collected from 23 patients were found positive by using the nested PCR assay, while 23/30 (77%) samples were found positive by using the real-time PCR assay. In order to express accurately the fungal loads, we used a normalized linearized plasmid as an internal control for real-time PCR. The assay results were correlated as the initial quantity (copies/μl) with fungal burden. These data indicate that combination of nested PCR and real-time PCR assay provides an attractive alternative for identification of T. marneffei DNA in whole blood samples of HIV-infected patients. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Improved detection of endoparasite DNA in soil sample PCR by the use of anti-inhibitory substances.

    Science.gov (United States)

    Krämer, F; Vollrath, T; Schnieder, T; Epe, C

    2002-09-26

    Although there have been numerous microbial examinations of soil for the presence of human pathogenic developmental parasite stages of Ancylostoma caninum and Toxocara canis, molecular techniques (e.g. DNA extraction, purification and subsequent PCR) have scarcely been applied. Here, DNA preparations of soil samples artificially contaminated with genomic DNA or parasite eggs were examined by PCR. A. caninum and T. canis-specific primers based on the ITS-2 sequence were used for amplification. After the sheer DNA preparation a high content of PCR-interfering substances was still detectable. Subsequently, two different inhibitors of PCR-interfering agents (GeneReleaser, Bioventures Inc. and Maximator, Connex GmbH) were compared in PCR. Both substances increased PCR sensitivity greatly. However, comparison of the increase in sensitivity achieved with the two compounds demonstrated the superiority of Maximator, which enhanced sensitivity to the point of permitting positive detection of a single A. caninum egg and three T. canis eggs in a soil sample. This degree of sensitivity could not be achieved with GeneReleaser for either parasite Furthermore, Maximator not only increased sensitivity; it also cost less, required less time and had a lower risk of contamination. Future applications of molecular methods in epidemiological examinations of soil samples are discussed/elaborated.

  12. PCR deduction of invasive and colonizing pneumococcal serotypes from Venezuela: a critical appraisal.

    Science.gov (United States)

    Bello Gonzalez, Teresita; Rivera-Olivero, Ismar Alejandra; Sisco, María Carolina; Spadola, Enza; Hermans, Peter W; de Waard, Jacobus H

    2014-04-15

    Serotype surveillance of Streptococcus pneumoniae is indispensable for evaluating the potential impact of pneumococcal conjugate vaccines. Serotyping by the standard Quellung reaction is technically demanding, time consuming, and expensive. A simple and economical strategy is multiplex PCR-based serotyping. We evaluated the cost effectiveness of a modified serial multiplex PCR (mPCR), resolving 24 serotypes in four PCR reactions and optimally targeting the most prevalent invasive and colonizing pneumococcal serotypes found in Venezuela. A total of 223 pneumococcal isolates, 140 invasive and 83 carriage isolates, previously serotyped by the Quellung reaction and representing the 18 most common serotypes/groups identified in Venezuela, were serotyped with the adapted mPCR. The mPCR serotyped 76% of all the strains in the first two PCR reactions and 91% after four reactions, correctly identifying 17 serotypes/groups. An isolate could be serotyped with mPCR in less than 2 minutes versus 15 minutes for the Quellung reaction, considerably lowering labor costs. A restrictive weakness of mPCR was found for the detection of 19F strains. Most Venezuelan 19F strains were not typeable using the mPCR, and two 19F cps serotype variants were identified. The mPCR assay is an accurate, rapid, and economical method for the identification of the vast majority of the serotypes from Venezuela and can be used in place of the standard Quellung reaction. An exception is the identification of serotype 19F. In this setting, most 19F strains were not detectable with mPCR, demonstrating a need of serology-based quality control for PCR-based serotyping.

  13. Comparison of simultaneous splenic sample PCR with blood sample PCR for diagnosis and treatment of experimental Ehrlichia canis infection.

    Science.gov (United States)

    Harrus, Shimon; Kenny, Martin; Miara, Limor; Aizenberg, Itzhak; Waner, Trevor; Shaw, Susan

    2004-11-01

    This report presents evidence that dogs recover from acute canine monocytic ehrlichiosis (CME) after 16 days of doxycycline treatment (10 mg/kg of body weight every 24 h). Blood PCR was as valuable as splenic aspirate PCR for early diagnosis of acute CME. Splenic aspirate PCR was, however, superior to blood PCR for the evaluation of ehrlichial elimination.

  14. Dexamethasone Enhances 1α,25-Dihydroxyvitamin D3 Effects by Increasing Vitamin D Receptor Transcription*

    Science.gov (United States)

    Hidalgo, Alejandro A.; Deeb, Kristin K.; Pike, J. Wesley; Johnson, Candace S.; Trump, Donald L.

    2011-01-01

    Calcitriol, the active form of vitamin D, in combination with the glucocorticoid dexamethasone (Dex) has been shown to increase the antitumor effects of calcitriol in squamous cell carcinoma. In this study we found that pretreatment with Dex potentiates calcitriol effects by inhibiting cell growth and increasing vitamin D receptor (VDR) and VDR-mediated transcription. Treatment with actinomycin D inhibits Vdr mRNA synthesis, indicating that Dex regulates VDR expression at transcriptional level. Real time PCR shows that treatment with Dex increases Vdr transcripts in a time- and a dose-dependent manner, indicating that Dex directly regulates expression of Vdr. RU486, an inhibitor of glucocorticoids, inhibits Dex-induced Vdr expression. In addition, the silencing of glucocorticoid receptor (GR) abolishes the induction of Vdr by Dex, indicating that Dex increases Vdr transcripts in a GR-dependent manner. A fragment located 5.2 kb upstream of Vdr transcription start site containing two putative glucocorticoid response elements (GREs) was evaluated using a luciferase-based reporter assay. Treatment with 100 nm Dex induces transcription of luciferase driven by the fragment. Deletion of the GRE distal to transcription start site was sufficient to abolish Dex induction of luciferase. Also, chromatin immunoprecipitation reveals recruitment of GR to distal GRE with Dex treatment. We conclude that Dex increases VDR and vitamin D effects by increasing Vdr de novo transcription in a GR-dependent manner. PMID:21868377

  15. Digital PCR: A brief history

    OpenAIRE

    Morley, Alexander A.

    2014-01-01

    Digital PCR for quantification of a target of interest has been independently developed several times, being described in 1990 and 1991 using the term “limiting dilution PCR” and in 1999 using the term “digital PCR”. It came into use in the decade following its first development but its use was cut short by the description of real-time PCR in 1996. However digital PCR has now had a renaissance due to the recent development of new instruments and chemistry which have made it a much simpler and...

  16. External and semi-internal controls for PCR amplification of homologous sequences in mixed templates.

    Science.gov (United States)

    Kalle, Elena; Gulevich, Alexander; Rensing, Christopher

    2013-11-01

    In a mixed template, the presence of homologous target DNA sequences creates environments that almost inevitably give rise to artifacts and biases during PCR. Heteroduplexes, chimeras, and skewed template-to-product ratios are the exclusive attributes of mixed template PCR and never occur in a single template assay. Yet, multi-template PCR has been used without appropriate attention to quality control and assay validation, in spite of the fact that such practice diminishes the reliability of results. External and internal amplification controls became obligatory elements of good laboratory practice in different PCR assays. We propose the inclusion of an analogous approach as a quality control system for multi-template PCR applications. The amplification controls must take into account the characteristics of multi-template PCR and be able to effectively monitor particular assay performance. This study demonstrated the efficiency of a model mixed template as an adequate external amplification control for a particular PCR application. The conditions of multi-template PCR do not allow implementation of a classic internal control; therefore we developed a convenient semi-internal control as an acceptable alternative. In order to evaluate the effects of inhibitors, a model multi-template mix was amplified in a mixture with DNAse-treated sample. Semi-internal control allowed establishment of intervals for robust PCR performance for different samples, thus enabling correct comparison of the samples. The complexity of the external and semi-internal amplification controls must be comparable with the assumed complexity of the samples. We also emphasize that amplification controls should be applied in multi-template PCR regardless of the post-assay method used to analyze products. © 2013 Elsevier B.V. All rights reserved.

  17. Analysis of ELA-DQB exon 2 polymorphism in Argentine Creole horses by PCR-RFLP and PCR-SSCP.

    Science.gov (United States)

    Villegas-Castagnasso, E E; Díaz, S; Giovambattista, G; Dulout, F N; Peral-García, P

    2003-08-01

    The second exon of equine leucocyte antigen (ELA)-DQB genes was amplified from genomic DNA of 32 Argentine Creole horses by PCR. Amplified DNA was analysed by PCR-restriction fragment length polymorphism (RFLP) and PCR-single-strand conformation polymorphism (SSCP). The PCR-RFLP analysis revealed two HaeIII patterns, four RsaI patterns, five MspI patterns and two HinfI patterns. EcoRI showed no variation in the analysed sample. Additional patterns that did not account for known exon 2 DNA sequences were observed, suggesting the existence of novel ELA-DQB alleles. PCR-SSCP analysis exhibited seven different band patterns, and the number of bands per animal ranged from four to nine. Both methods indicated that at least two DQB genes are present. The presence of more than two alleles in each animal showed that the primers employed in this work are not specific for a unique DQB locus. The improvement of this PCR-RFLP method should provide a simple and rapid technique for an accurate definition of ELA-DQB typing in horses.

  18. Development and Validation of a Real-Time PCR Assay for Rapid Detection of Candida auris from Surveillance Samples.

    Science.gov (United States)

    Leach, L; Zhu, Y; Chaturvedi, S

    2018-02-01

    Candida auris is an emerging multidrug-resistant yeast causing invasive health care-associated infection with high mortality worldwide. Rapid identification of C. auris is of primary importance for the implementation of public health measures to control the spread of infection. To achieve these goals, we developed and validated a TaqMan-based real-time PCR assay targeting the internal transcribed spacer 2 ( ITS 2) region of the ribosomal gene. The assay was highly specific, reproducible, and sensitive, with the detection limit of 1 C. auris CFU/PCR. The performance of the C. auris real-time PCR assay was evaluated by using 623 surveillance samples, including 365 patient swabs and 258 environmental sponges. Real-time PCR yielded positive results from 49 swab and 58 sponge samples, with 89% and 100% clinical sensitivity with regard to their respective culture-positive results. The real-time PCR also detected C. auris DNA from 1% and 12% of swab and sponge samples with culture-negative results, indicating the presence of dead or culture-impaired C. auris The real-time PCR yielded results within 4 h of sample processing, compared to 4 to 14 days for culture, reducing turnaround time significantly. The new real-time PCR assay allows for accurate and rapid screening of C. auris and can increase effective control and prevention of this emerging multidrug-resistant fungal pathogen in health care facilities. Copyright © 2018 Leach et al.

  19. Two-temperature PCR for Microfluidics

    KAUST Repository

    Kodzius, Rimantas

    2010-05-01

    Since its invention in 1983, polymerase chain reaction (PCR) has been the method of choice for DNA amplification. Successful PCR depends on the optimization of several parameters, which is a cumbersome task due to the many variables (conditions and compon

  20. Two-temperature PCR for Microfluidics

    KAUST Repository

    Kodzius, Rimantas; Chang, Donald Choy; Sheng, Ping; Wen, Weijia; Wu, Jinbo; Xiao, Kang; Yu, Vivian

    2010-01-01

    Since its invention in 1983, polymerase chain reaction (PCR) has been the method of choice for DNA amplification. Successful PCR depends on the optimization of several parameters, which is a cumbersome task due to the many variables (conditions and compon

  1. Implementation of polymerase chain reaction (PCR and Real-Time PCR in quick identification of bovine herpesvirus 1

    Directory of Open Access Journals (Sweden)

    Milić Nenad

    2010-01-01

    Full Text Available Examinations were performed on 65 samples of nasal smeas taken from calves and young cows with clinical symptoms of respiratory infection to determine the presence of the bovine herpes virus 1 using parallel implementation of molecular and standard methods of virological diagnostics. The appearance of a cytopathogenic effect (CPE was not established in inoculated cell lines 24h, 48h and 72h following inoculation, or after two successive passages of the examined material sample through these cell lines. The application of polymerize chain reaction (PCR using a primer for glucoprotein B and thymidine - kinasis, established the presence of bovine herpes virus 1 nucleic acid in one sample of a bovine nasal smear, while the presence of this virus was established in three samples in an examination of the nasal smear samples using the Real-Time PCR method.

  2. Accurate quantification of supercoiled DNA by digital PCR

    Science.gov (United States)

    Dong, Lianhua; Yoo, Hee-Bong; Wang, Jing; Park, Sang-Ryoul

    2016-01-01

    Digital PCR (dPCR) as an enumeration-based quantification method is capable of quantifying the DNA copy number without the help of standards. However, it can generate false results when the PCR conditions are not optimized. A recent international comparison (CCQM P154) showed that most laboratories significantly underestimated the concentration of supercoiled plasmid DNA by dPCR. Mostly, supercoiled DNAs are linearized before dPCR to avoid such underestimations. The present study was conducted to overcome this problem. In the bilateral comparison, the National Institute of Metrology, China (NIM) optimized and applied dPCR for supercoiled DNA determination, whereas Korea Research Institute of Standards and Science (KRISS) prepared the unknown samples and quantified them by flow cytometry. In this study, several factors like selection of the PCR master mix, the fluorescent label, and the position of the primers were evaluated for quantifying supercoiled DNA by dPCR. This work confirmed that a 16S PCR master mix avoided poor amplification of the supercoiled DNA, whereas HEX labels on dPCR probe resulted in robust amplification curves. Optimizing the dPCR assay based on these two observations resulted in accurate quantification of supercoiled DNA without preanalytical linearization. This result was validated in close agreement (101~113%) with the result from flow cytometry. PMID:27063649

  3. Transgene detection by digital droplet PCR.

    Directory of Open Access Journals (Sweden)

    Dirk A Moser

    Full Text Available Somatic gene therapy is a promising tool for the treatment of severe diseases. Because of its abuse potential for performance enhancement in sports, the World Anti-Doping Agency (WADA included the term 'gene doping' in the official list of banned substances and methods in 2004. Several nested PCR or qPCR-based strategies have been proposed that aim at detecting long-term presence of transgene in blood, but these strategies are hampered by technical limitations. We developed a digital droplet PCR (ddPCR protocol for Insulin-Like Growth Factor 1 (IGF1 detection and demonstrated its applicability monitoring 6 mice injected into skeletal muscle with AAV9-IGF1 elements and 2 controls over a 33-day period. A duplex ddPCR protocol for simultaneous detection of Insulin-Like Growth Factor 1 (IGF1 and Erythropoietin (EPO transgenic elements was created. A new DNA extraction procedure with target-orientated usage of restriction enzymes including on-column DNA-digestion was established. In vivo data revealed that IGF1 transgenic elements could be reliably detected for a 33-day period in DNA extracted from whole blood. In vitro data indicated feasibility of IGF1 and EPO detection by duplex ddPCR with high reliability and sensitivity. On-column DNA-digestion allowed for significantly improved target detection in downstream PCR-based approaches. As ddPCR provides absolute quantification, it ensures excellent day-to-day reproducibility. Therefore, we expect this technique to be used in diagnosing and monitoring of viral and bacterial infection, in detecting mutated DNA sequences as well as profiling for the presence of foreign genetic material in elite athletes in the future.

  4. PTR, PCR and Energy Resolution Study of GAGG:Ce Scintillator

    Science.gov (United States)

    Limkitjaroenporn, Pruittipol; Hongtong, Wiraporn; Kim, Hong Joo; Kaewkhao, Jakrapong

    2018-03-01

    In this paper, the peak to total ratio (PTR), the peak to Compton ratio (PCR) and the energy resolution of cerium doped gadolinium aluminium gallium garnet (GAGG:Ce) scintillator are measured in the range of energy from 511 keV to 1332 keV using the radioactive source Na-22, Cs-137 and Co-60. The crystal is coupled with the PMT number R1306 and analyzed by the nuclear instrument module (NIM). The results found that the PTR and PCR of GAGG:Ce scintillator decrease with the increasing of energy. The results of energy resolution show the trend is decrease with the increasing of energy which corresponding to the higher energy resolution at higher energy. Moreover the energy resolution found to be linearly with.

  5. Comparison of ELISA, nested PCR and sequencing and a novel qPCR for detection of Giardia isolates from Jordan.

    Science.gov (United States)

    Hijjawi, Nawal; Yang, Rongchang; Hatmal, Ma'mon; Yassin, Yasmeen; Mharib, Taghrid; Mukbel, Rami; Mahmoud, Sameer Alhaj; Al-Shudifat, Abdel-Ellah; Ryan, Una

    2018-02-01

    Little is known about the prevalence of Giardia duodenalis in human patients in Jordan and all previous studies have used direct microscopy, which lacks sensitivity. The present study developed a novel quantitative PCR (qPCR) assay at the β-giardin (bg) locus and evaluated its use as a frontline test for the diagnosis of giardiasis in comparison with a commercially available ELISA using nested PCR and sequencing of the glutamate dehydrogenase (gdh) locus (gdh nPCR) as the gold standard. A total of 96 human faecal samples were collected from 96 patients suffering from diarrhoea from 5 regions of Jordan and were screened using the ELISA and qPCR. The analytical specificity of the bg qPCR assay revealed no cross-reactions with other genera and detected all the Giardia isolates tested. Analytical sensitivity was 1 Giardia cyst per μl of DNA extract. The overall prevalence of Giardia was 64.6%. The clinical sensitivity and specificity of the bg qPCR was 89.9% and 82.9% respectively compared to 76.5 and 68.0% for the ELISA. This study is the first to compare three different methods (ELISA, bg qPCR, nested PCR and sequencing at the gdh locus) to diagnose Jordanian patients suffering from giardiasis and to analyze their demographic data. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Multiplex PCR with minisequencing as an effective high-throughput SNP typing method for formalin-fixed tissue

    DEFF Research Database (Denmark)

    Gilbert, Marcus T P; Sanchez, Juan J; Haselkorn, Tamara

    2007-01-01

    , multiplex PCR with minisequencing (MPMS), on 92 DNA extractions performed on six archival FFPE samples of variable DNA quality, which date between 9 and 25 years old. On the three extracts with highest quality, we found the assay efficiency to be near 100%. However, the efficiency of the lowest quality...... extracts varied significantly. In this study, we demonstrate that although direct measures of DNA concentration in the extracts provide no useful information with regard to subsequent MPMS success, the success of the assay can be determined to some degree a priori, through initial screening of the DNA...... quality using a simple quantitative real-time PCR (qPCR) assay for nuclear DNA, and/or an assay of the maximum PCR amplifiable size of nuclear DNA. MPMS promises to be of significant use in future genetic studies on FFPE material. It provides a streamlined approach for retrieving a large amount of genetic...

  7. [E-MTAB-587] PCR_artifacts

    NARCIS (Netherlands)

    Muino Acuna, J.M.

    2011-01-01

    WARNING: This library was yield low amount of material and it was over-amplified by PCR. This libraries are used study the robustness of several statitical methods against PCR artifacts. ChIP experiments were performed on Arabidopsis wildtype inflorescences using an antibody raised against a

  8. Evaluation of conventional PCR for detection of Strongylus vulgaris on horse farms.

    Science.gov (United States)

    Bracken, M K; Wøhlk, C B M; Petersen, S L; Nielsen, M K

    2012-03-23

    Strongyle parasites are ubiquitous in grazing horses. Of these, the bloodworm Strongylus vulgaris is regarded as most pathogenic. Increasing levels of anthelmintic resistance in strongyle parasites has led to recommendations of decreased treatment intensities, and there is now a pronounced need for reliable tools for detection of parasite burdens in general and S. vulgaris in particular. The only method currently available for diagnosing S. vulgaris in practice is the larval culture, which is laborious and time-consuming, so veterinary practitioners most often pool samples from several horses together in one culture to save time. Recently, molecular tools have been developed to detect S. vulgaris in faecal samples. The aim of this study was to compare the performance of a conventional polymerase chain reaction (PCR) assay with the traditional larval culture and furthermore test the performance of pooled versus individual PCR for farm screening purposes. Faecal samples were obtained from 331 horses on 18 different farms. Farm size ranged from 6 to 56 horses, and horses aged between 2 months and 31 years. Larval cultures and PCR were performed individually on all horses. In addition, PCR was performed on 66 faecal pools consisting of 3-5 horses each. Species-specific PCR primers previously developed were used for the PCR. PCR and larval culture detected S. vulgaris in 12.1 and 4.5% of individual horses, respectively. On the farm level, eight farms tested positive with the larval culture, while 13 and 11 farms were positive with the individual and pooled PCRs, respectively. The individual PCR method was statistically superior to the larval culture, while no statistical difference could be detected between pooled and individual PCR for farm screening. In conclusion, pooled PCR appears to be a useful tool for farm screening for S. vulgaris. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Molecular methods (digital PCR and real-time PCR) for the quantification of low copy DNA of Phytophthora nicotianae in environmental samples.

    Science.gov (United States)

    Blaya, Josefa; Lloret, Eva; Santísima-Trinidad, Ana B; Ros, Margarita; Pascual, Jose A

    2016-04-01

    Currently, real-time polymerase chain reaction (qPCR) is the technique most often used to quantify pathogen presence. Digital PCR (dPCR) is a new technique with the potential to have a substantial impact on plant pathology research owing to its reproducibility, sensitivity and low susceptibility to inhibitors. In this study, we evaluated the feasibility of using dPCR and qPCR to quantify Phytophthora nicotianae in several background matrices, including host tissues (stems and roots) and soil samples. In spite of the low dynamic range of dPCR (3 logs compared with 7 logs for qPCR), this technique proved to have very high precision applicable at very low copy numbers. The dPCR was able to detect accurately the pathogen in all type of samples in a broad concentration range. Moreover, dPCR seems to be less susceptible to inhibitors than qPCR in plant samples. Linear regression analysis showed a high correlation between the results obtained with the two techniques in soil, stem and root samples, with R(2) = 0.873, 0.999 and 0.995 respectively. These results suggest that dPCR is a promising alternative for quantifying soil-borne pathogens in environmental samples, even in early stages of the disease. © 2015 Society of Chemical Industry.

  10. Comparison of PCR-ELISA and LightCycler real-time PCR assays for detecting Salmonella spp. in milk and meat samples

    DEFF Research Database (Denmark)

    Perelle, Sylvie; Dilasser, Françoise; Malorny, Burkhard

    2004-01-01

    , minced beef and raw milk, and 92 naturally-contaminated milk and meat samples. When using either PCR-ELISA or LC-PCR assays, only Salmonella strains were detected. PCR-ELISA and LC-PCR assays gave with pure Salmonella cultures the same detection limit level of 10(3) CFU/ml, which corresponds respectively...

  11. [Sensitivity and specificity of nested PCR pyrosequencing in hepatitis B virus drug resistance gene testing].

    Science.gov (United States)

    Sun, Shumei; Zhou, Hao; Zhou, Bin; Hu, Ziyou; Hou, Jinlin; Sun, Jian

    2012-05-01

    To evaluate the sensitivity and specificity of nested PCR combined with pyrosequencing in the detection of HBV drug-resistance gene. RtM204I (ATT) mutant and rtM204 (ATG) nonmutant plasmids mixed at different ratios were detected for mutations using nested-PCR combined with pyrosequencing, and the results were compared with those by conventional PCR pyrosequencing to analyze the linearity and consistency of the two methods. Clinical specimens with different viral loads were examined for drug-resistant mutations using nested PCR pyrosequencing and nested PCR combined with dideoxy sequencing (Sanger) for comparison of the detection sensitivity and specificity. The fitting curves demonstrated good linearity of both conventional PCR pyrosequencing and nested PCR pyrosequencing (R(2)>0.99, PNested PCR showed a better consistency with the predicted value than conventional PCR, and was superior to conventional PCR for detection of samples containing 90% mutant plasmid. In the detection of clinical specimens, Sanger sequencing had a significantly lower sensitivity than nested PCR pyrosequencing (92% vs 100%, Pnested PCR and Sanger sequencing method, nested PCR pyrosequencing has a higher sensitivity especially in clinical specimens with low viral copies, which can be important for early detection of HBV mutant strains and hence more effective clinical management.

  12. Pathogen Causing Disease of Diagnosis PCR Tecnology

    OpenAIRE

    SEVİNDİK, Emre; KIR, A. Çağrı; BAŞKEMER, Kadir; UZUN, Veysel

    2013-01-01

    Polimerase chain reaction (PCR) with which, the development of recombinant DNA tecnology, a technique commonly used in field of moleculer biology and genetic. Duplication of the target DNA is provided with this technique without the need for cloning. Some fungus species, bacteria, viruses constitutent an important group of pathogenicity in human, animals and plants. There are routinely applied types of PCR in the detection of pathogens infections diseases. These Nested- PCR, Real- Time PCR, M...

  13. Nested PCR detection of malaria directly using blood filter paper samples from epidemiological surveys.

    Science.gov (United States)

    Li, Peipei; Zhao, Zhenjun; Wang, Ying; Xing, Hua; Parker, Daniel M; Yang, Zhaoqing; Baum, Elizabeth; Li, Wenli; Sattabongkot, Jetsumon; Sirichaisinthop, Jeeraphat; Li, Shuying; Yan, Guiyun; Cui, Liwang; Fan, Qi

    2014-05-08

    Nested PCR is considered a sensitive and specific method for detecting malaria parasites and is especially useful in epidemiological surveys. However, the preparation of DNA templates for PCR is often time-consuming and costly. A simplified PCR method was developed to directly use a small blood filter paper square (2 × 2 mm) as the DNA template after treatment with saponin. This filter paper-based nested PCR method (FP-PCR) was compared to microscopy and standard nested PCR with DNA extracted by using a Qiagen DNA mini kit from filter paper blood spots of 204 febrile cases. The FP-PCR technique was further applied to evaluate malaria infections in 1,708 participants from cross-sectional epidemiological surveys conducted in Myanmar and Thailand. The FP-PCR method had a detection limit of ~0.2 parasites/μL blood, estimated using cultured Plasmodium falciparum parasites. With 204 field samples, the sensitivity of the FP-PCR method was comparable to that of the standard nested PCR method, which was significantly higher than that of microscopy. Application of the FP-PCR method in large cross-sectional studies conducted in Myanmar and Thailand detected 1.9% (12/638) and 6.2% (66/1,070) asymptomatic Plasmodium infections, respectively, as compared to the detection rates of 1.3% (8/638) and 0.04% (4/1,070) by microscopy. This FP-PCR method was much more sensitive than microscopy in detecting Plasmodium infections. It drastically increased the detection sensitivity of asymptomatic infections in cross-sectional surveys conducted in Thailand and Myanmar, suggesting that this FP-PCR method has a potential for future applications in malaria epidemiology studies.

  14. Detection of SEA-type α-thalassemia in embryo biopsies by digital PCR.

    Science.gov (United States)

    Lee, Ta-Hsien; Hsu, Ya-Chiung; Chang, Chia Lin

    2017-08-01

    Accurate and efficient pre-implantation genetic diagnosis (PGD) based on the analysis of single or oligo-cells is needed for timely identification of embryos that are affected by deleterious genetic traits in in vitro fertilization (IVF) clinics. Polymerase chain reaction (PCR) is the backbone of modern genetic diagnoses, and a spectrum of PCR-based techniques have been used to detect various thalassemia mutations in prenatal diagnosis (PND) and PGD. Among thalassemias, SEA-type α-thalassemia is the most common variety found in Asia, and can lead to Bart's hydrops fetalis and serious maternal complications. To formulate an efficient digital PCR for clinical diagnosis of SEA-type α-thalassemia in cultured embryos, we conducted a pilot study to detect the α-globin and SEA-type deletion alleles in blastomere biopsies with a highly sensitive microfluidics-based digital PCR method. Genomic DNA from embryo biopsy samples were extracted, and crude DNA extracts were first amplified by a conventional PCR procedure followed by a nested PCR reaction with primers and probes that are designed for digital PCR amplification. Analysis of microfluidics-based PCR reactions showed that robust signals for normal α-globin and SEA-type deletion alleles, together with an internal control gene, can be routinely generated using crude embryo biopsies after a 10 6 -fold dilution of primary PCR products. The SEA-type deletion in cultured embryos can be sensitively diagnosed with the digital PCR procedure in clinics. The adoption of this robust PGD method could prevent the implantation of IVF embryos that are destined to develop Bart's hydrops fetalis in a timely manner. The results also help inform future development of a standard digital PCR procedure for cost-effective PGD of α-thalassemia in a standard IVF clinic. Copyright © 2017. Published by Elsevier B.V.

  15. Comparison of RT-PCR-Dot blot hybridization based on radioisotope 32P with conventional RT-PCR and commercial ELISA Assays for blood screening of HIV-1

    International Nuclear Information System (INIS)

    Maria Lina R; Andi Yasmon

    2011-01-01

    There are many commercial ELISA and rapid test kits that have been used for blood screening; however, the kits can give false positive and negative results. Therefore, RT-PCR (Reverse Transcription Polymerase Chain Reaction) - Dot Blot Hybridization based on radioisotope 32 P (RDBR) method was developed in this research, to compare the method with the conventional RT-PCR and commercial ELISA Enzyme-Linked lmmunosorbent Assay) kit. This method is efficient for screening of large blood specimens and surveillance study. Eighty seven samples were used and serum of the samples were tested by ELISA to detect HIV-1. The HIV-l RNA genome was extracted from plasma samples and tested using the RT-PCR and RDBR methods. Of 87 samples that were tested, the rates of positive testing of the RT-PCR, the RDBR, and the ELISA were 71.26%, 74.71%, and 80.46%, respectively. The RDBR (a combination of RTPCR and dot blot hybridization) was more sensitive than conventional RT-PCR by showing 3.45% in increase number of positive specimens. The results showed that of 9 samples (10.34%) were negative RDBR and positive ELISA, while 4 samples (4.60%) were negative ELISA and positive RDBR. The two methods showed slightly difference in the results but further validation is still needed. However, RDBR has high potential as an alternative method for screening of blood in large quantities when compared to method of conventional RT-PCR and ELISA. (author)

  16. Purification and Concentration of PCR Products Leads to Increased Signal intensities with Fewer Allelic Drop-Outs and Artifacts

    DEFF Research Database (Denmark)

    Maria Irlund Pedersen, Line; Stangegaard, Michael; Mogensen, Helle Smidt

    2011-01-01

    and the quality of the DNA profiles without re-amplification of the sample. We have validated and implemented an automated method to purify and 2-fold concentrate PCR products resulting in allelic peaks with higher intensity (a median height across all loci from 130 to 404 RFU), fewer allelic dropouts...

  17. Cost-effectiveness of a modified two-step algorithm using a combined glutamate dehydrogenase/toxin enzyme immunoassay and real-time PCR for the diagnosis of Clostridium difficile infection.

    Science.gov (United States)

    Vasoo, Shawn; Stevens, Jane; Portillo, Lena; Barza, Ruby; Schejbal, Debra; Wu, May May; Chancey, Christina; Singh, Kamaljit

    2014-02-01

    The analytical performance and cost-effectiveness of the Wampole Toxin A/B EIA, the C. Diff. Quik Chek Complete (CdQCC) (a combined glutamate dehydrogenase antigen/toxin enzyme immunoassay), two RT-PCR assays (Progastro Cd and BD GeneOhm) and a modified two-step algorithm using the CdQCC reflexed to RT-PCR for indeterminate results were compared. The sensitivity of the Wampole Toxin A/B EIA, CdQCC (GDH antigen), BD GeneOhm and Progastro Cd RT-PCR were 85.4%, 95.8%, 100% and 93.8%, respectively. The algorithm provided rapid results for 86% of specimens and the remaining indeterminate results were resolved by RT-PCR, offering the best balance of sensitivity and cost savings per test (algorithm ∼US$13.50/test versus upfront RT-PCR ∼US$26.00/test). Copyright © 2012. Published by Elsevier B.V.

  18. Simultaneous Detection of Ricin and Abrin DNA by Real-Time PCR (qPCR

    Directory of Open Access Journals (Sweden)

    Roman Wölfel

    2012-08-01

    Full Text Available Ricin and abrin are two of the most potent plant toxins known and may be easily obtained in high yield from the seeds using rather simple technology. As a result, both toxins are potent and available toxins for criminal or terrorist acts. However, as the production of highly purified ricin or abrin requires sophisticated equipment and knowledge, it may be more likely that crude extracts would be used by non-governmental perpetrators. Remaining plant-specific nucleic acids in these extracts allow the application of a real-time PCR (qPCR assay for the detection and identification of abrin or ricin genomic material. Therefore, we have developed a duplex real-time PCR assays for simultaneous detection of ricin and abrin DNA based on the OmniMix HS bead PCR reagent mixture. Novel primers and hybridization probes were designed for detection on a SmartCycler instrument by using 5′-nuclease technology. The assay was thoroughly optimized and validated in terms of analytical sensitivity. Evaluation of the assay sensitivity by probit analysis demonstrated a 95% probability of detection at 3 genomes per reaction for ricin DNA and 1.2 genomes per reaction for abrin DNA. The suitability of the assays was exemplified by detection of ricin and abrin contaminations in a food matrix.

  19. Development of Nested PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Cylindrocladium scoparium on Eucalyptus

    Directory of Open Access Journals (Sweden)

    Tian-Min Qiao

    2016-10-01

    Full Text Available Eucalyptus dieback disease, caused by Cylindrocladium scoparium, has occurred in last few years in large Eucalyptus planting areas in China and other countries. Rapid, simple, and reliable diagnostic techniques are desired for the early detection of Eucalyptus dieback of C. scoparium prior to formulation of efficient control plan. For this purpose, three PCR-based methods of nested PCR, multiplex PCR, loop-mediated isothermal amplification (LAMP were developed for detection of C. scoparium based on factor 1-alpha (tef1 and beta-tubulin gene in this study. All of the three methods showed highly specific to C. scoparium. The sensitivities of the nested PCR and LAMP were much higher than the multiplex PCR. The sensitivity of multiplex PCR was also higher than regular PCR. C. scoparium could be detected within 60 min from infected Eucalyptus plants by LAMP, while at least 2 h was needed by the rest two methods. Using different Eucalyptus tissues as samples for C. scoparium detection, all of the three PCR-based methods showed much better detection results than regular PCR. Base on the results from this study, we concluded that any of the three PCR-based methods could be used as diagnostic technology for the development of efficient strategies of Eucalyptus dieback disease control. Particularly, LAMP was the most practical method in field application because of its one-step and rapid reaction, simple operation, single-tube utilization, and simple visualization of amplification products.

  20. Development of Nested PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Cylindrocladium scoparium on Eucalyptus

    Science.gov (United States)

    Qiao, Tian-Min; Zhang, Jing; Li, Shu-Jiang; Han, Shan; Zhu, Tian-Hui

    2016-01-01

    Eucalyptus dieback disease, caused by Cylindrocladium scoparium, has occurred in last few years in large Eucalyptus planting areas in China and other countries. Rapid, simple, and reliable diagnostic techniques are desired for the early detection of Eucalyptus dieback of C. scoparium prior to formulation of efficient control plan. For this purpose, three PCR-based methods of nested PCR, multiplex PCR, loop-mediated isothermal amplification (LAMP) were developed for detection of C. scoparium based on factor 1-alpha (tef1) and beta-tubulin gene in this study. All of the three methods showed highly specific to C. scoparium. The sensitivities of the nested PCR and LAMP were much higher than the multiplex PCR. The sensitivity of multiplex PCR was also higher than regular PCR. C. scoparium could be detected within 60 min from infected Eucalyptus plants by LAMP, while at least 2 h was needed by the rest two methods. Using different Eucalyptus tissues as samples for C. scoparium detection, all of the three PCR-based methods showed much better detection results than regular PCR. Base on the results from this study, we concluded that any of the three PCR-based methods could be used as diagnostic technology for the development of efficient strategies of Eucalyptus dieback disease control. Particularly, LAMP was the most practical method in field application because of its one-step and rapid reaction, simple operation, single-tube utilization, and simple visualization of amplification products. PMID:27721691

  1. Development of Nested PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Cylindrocladium scoparium on Eucalyptus.

    Science.gov (United States)

    Qiao, Tian-Min; Zhang, Jing; Li, Shu-Jiang; Han, Shan; Zhu, Tian-Hui

    2016-10-01

    Eucalyptus dieback disease, caused by Cylindrocladium scoparium , has occurred in last few years in large Eucalyptus planting areas in China and other countries. Rapid, simple, and reliable diagnostic techniques are desired for the early detection of Eucalyptus dieback of C. scoparium prior to formulation of efficient control plan. For this purpose, three PCR-based methods of nested PCR, multiplex PCR, loop-mediated isothermal amplification (LAMP) were developed for detection of C. scoparium based on factor 1-alpha (tef1) and beta-tubulin gene in this study. All of the three methods showed highly specific to C. scoparium . The sensitivities of the nested PCR and LAMP were much higher than the multiplex PCR. The sensitivity of multiplex PCR was also higher than regular PCR. C. scoparium could be detected within 60 min from infected Eucalyptus plants by LAMP, while at least 2 h was needed by the rest two methods. Using different Eucalyptus tissues as samples for C. scoparium detection, all of the three PCR-based methods showed much better detection results than regular PCR. Base on the results from this study, we concluded that any of the three PCR-based methods could be used as diagnostic technology for the development of efficient strategies of Eucalyptus dieback disease control. Particularly, LAMP was the most practical method in field application because of its one-step and rapid reaction, simple operation, single-tube utilization, and simple visualization of amplification products.

  2. Detection and subtyping (H5 and H7) of avian type A influenza virus by reverse transcription-PCR and PCR-ELISA

    DEFF Research Database (Denmark)

    Munch, M.; Nielsen, L.P.; Handberg, Kurt

    2001-01-01

    A. A panel of reference influenza strains from various hosts including avian species, human, swine and horse were evaluated in a one tube RT-PCR using primers designed for the amplification of a 218 bp fragment of the NP gene. The PCR products were detected by PCR-ELISA by use of an internal......Avian influenza virus infections are a major cause of morbidity and rapid identification of the virus has important clinical, economical and epidemiological implications. We have developed a one-tube Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) for the rapid diagnosis of avian influenza...... catching probe confirming the NP influenza A origin. The PCR-ELISA was about 100 times more sensitive than detection of PCR products by agarose gel electrophoresis. RT-PCR and detection by PCR-ELISA is comparable in sensitivity to virus propagation in eggs. We also designed primers for the detection...

  3. Detection of Mycobacterium tuberculosis in extrapulmonary biopsy samples using PCR targeting IS6110, rpoB, and nested-rpoB PCR Cloning.

    Science.gov (United States)

    Meghdadi, Hossein; Khosravi, Azar D; Ghadiri, Ata A; Sina, Amir H; Alami, Ameneh

    2015-01-01

    Present study was aimed to examine the diagnostic utility of polymerase chain reaction (PCR) and nested PCR techniques for the detection of Mycobacterium tuberculosis (MTB) DNA in samples from patients with extra pulmonary tuberculosis (EPTB). In total 80 formalin-fixed, paraffin-embedded (FFPE) samples comprising 70 samples with definite diagnosis of EPTB and 10 samples from known non- EPTB on the basis of histopathology examination, were included in the study. PCR amplification targeting IS6110, rpoB gene and nested PCR targeting the rpoB gene were performed on the extracted DNAs from 80 FFPE samples. The strong positive samples were directly sequenced. For negative samples and those with weak band in nested-rpoB PCR, TA cloning was performed by cloning the products into the plasmid vector with subsequent sequencing. The 95% confidence intervals (CI) for the estimates of sensitivity and specificity were calculated for each method. Fourteen (20%), 34 (48.6%), and 60 (85.7%) of the 70 positive samples confirmed by histopathology, were positive by rpoB-PCR, IS6110-PCR, and nested-rpoB PCR, respectively. By performing TA cloning on samples that yielded weak (n = 8) or negative results (n = 10) in the PCR methods, we were able to improve their quality for later sequencing. All samples with weak band and 7 out of 10 negative samples, showed strong positive results after cloning. So nested-rpoB PCR cloning revealed positivity in 67 out of 70 confirmed samples (95.7%). The sensitivity of these combination methods was calculated as 95.7% in comparison with histopathology examination. The CI for sensitivity of the PCR methods were calculated as 11.39-31.27% for rpoB-PCR, 36.44-60.83% for IS6110- PCR, 75.29-92.93% for nested-rpoB PCR, and 87.98-99.11% for nested-rpoB PCR cloning. The 10 true EPTB negative samples by histopathology, were negative by all tested methods including cloning and were used to calculate the specificity of the applied methods. The CI for 100

  4. New PCR diagnostic systems for the detection and quantification of porcine cytomegalovirus (PCMV).

    Science.gov (United States)

    Morozov, Vladimir A; Morozov, Alexey V; Denner, Joachim

    2016-05-01

    Pigs are frequently infected with porcine cytomegalovirus (PCMV). Infected adult animals may not present with symptoms of disease, and the virus remains latent. However, the virus may be transmitted to human recipients receiving pig transplants. Recently, it was shown that pig-to-non-human-primate xenotransplantations showed 2 to 3 times lower transplant survival when the donor pig was infected with PCMV. Therefore, highly sensitive methods are required to select virus-free pigs and to examine xenotransplants. Seven previously established PCR detection systems targeting the DNA polymerase gene of PCMV were examined by comparison of thermodynamic parameters of oligonucleotides, and new diagnostic nested PCR and real-time PCR systems with improved parameters and high sensitivity were established. The detection limit of conventional PCR was estimated to be 15 copies, and that of the nested PCR was 5 copies. The sensitivity of the real-time PCR with a TaqMan probe was two copies. An equal efficiency of the newly established detection systems was shown by parallel testing of DNA from sera and blood of six pigs, identifying the same animals as PCMV infected. These new diagnostic PCR systems will improve the detection of PCMV and therefore increase the safety of porcine xenotransplants.

  5. RT-PCR Protocols - Methods in Molecular Biology

    Directory of Open Access Journals (Sweden)

    Manuela Monti

    2011-03-01

    Full Text Available “The first record I have of it, is when I made a computer file which I usually did whenever I had an idea, that would have been on the Monday when I got back, and I called it Chain Reaction.POL, meaning polymerase. That was the identifier for it and later I called the thing the Polymerase Chain Reaction, which a lot of people thought was a dumb name for it, but it stuck, and it became PCR”. With these words the Nobel prize winner, Kary Mullis, explains how he named the PCR: one of the most important techniques ever invented and currently used in molecular biology. This book “RT-PCR Protocols” covers a wide range of aspects important for the setting of a PCR experiment for both beginners and advanced users. In my opinion the book is very well structured in three different sections. The first one describes the different technologies now available, like competitive RT-PCR, nested RT-PCR or RT-PCR for cloning. An important part regards the usage of PCR in single cell mouse embryos, stressing how important...........

  6. Propidium monoazide reverse transcription PCR and RT-qPCR for detecting infectious enterovirus and norovirus

    Science.gov (United States)

    Presently there is no established cell line or small animal model that allows for the detection of infectious human norovirus. Current methods based on RT-PCR and RT-qPCR detect both infectious and non-infectious virus and thus the conclusions that may be drawn regarding the publ...

  7. Retrospective Review of Treponema pallidum PCR and Serology Results: Are Both Tests Necessary?

    Science.gov (United States)

    Brischetto, Anna; Gassiep, Ian; Whiley, David; Norton, Robert

    2018-05-01

    There has been a resurgence of syphilis diagnoses in Australia. We investigated whether our Treponema pallidum PCR test provides any additional diagnostic information over syphilis serology (chemiluminescence immunoassay [CMIA], Treponema pallidum particle agglutination [TPPA] assay, and the rapid plasma reagin [RPR] flocculation test). A retrospective audit of all T. pallidum PCR requests that came through our laboratory from January 2010 to June 2017 was conducted; data collected included age, gender, site of swab, and results from T. pallidum PCR, syphilis serology, and herpes simplex virus 1 (HSV-1) and HSV-2 PCRs. A total of 441 T. pallidum PCR tests were performed; on average, 3 T. pallidum PCRs per month were requested in 2011, and this rate increased to 17.2 requests per month in 2017. A total of 323 patients had both T. pallidum PCR and syphilis serology performed, with 67% of swabs taken from the genitals. T. pallidum PCR gave positive results for 61/323 (19%) patients; of these 61 patients, 59 (97%) also had positive syphilis serology results ( T. pallidum PCR sensitivity, 68%; specificity, 99%; positive predictive value, 97%; negative predictive value, 89%). Syphilis serology was positive for 91/323 patients (28%); of these 91 patients, 61 (66%) were also T. pallidum PCR positive (syphilis serology sensitivity, 97%; specificity, 88%; positive predictive value, 60%; negative predictive value, 99%). The Cohen's kappa value was 0.74, indicating substantial agreement between the two tests. Our results show that most patients with positive T. pallidum PCR results also had positive syphilis serology. Therefore, T. pallidum PCR adds little clinical value over serology for the diagnosis of syphilis in certain clinical settings. Copyright © 2018 American Society for Microbiology.

  8. Effect of gamma radiation on the growth of Aspergillus Flavus aflatoxins producer and on the use of polymerase chain reaction technique (PCR) in samples of maize grains artificially inoculated

    International Nuclear Information System (INIS)

    Aquino, Simone

    2003-01-01

    The aim of this present study was to verify the effects of gamma radiation on the growth of Aspergillus flavus Link aflatoxins producer; to demonstrate the application of Polymerase Chain Reaction (PCR) technique in the diagnostic of A. Flavus, as well to verify the effect of radiation in the profile of DNA bands. Twenty samples of grains maize with 200 g each were individually irradiated with 20 kGy, to eliminate the microbial contamination. In following, the samples were inoculated with an toxigenic A. flavus (1x10 6 spores/ml), incubated for 15 days at 25 deg C with a relative humidity of around 97,5% and irradiated with 0, 2; 5 and 10 kGy. The samples, 5 to each dose of irradiation, were individually analyzed for the number of fungal cells, water activity, viability test (fluorescein diacetate and ethidium bromide), PCR and aflatoxins (AFB) detection. The results showed that the doses used were effective in reducing the number of Colony Forming Units (CFU/g) mainly the doses of 5 and 10 kGy. In addition, the viability test showed a decrease of viable cells with increase of irradiation doses. The reduction of AFB 1 and AFB-2, was more efficient with the use of 2 kGy in comparison with the dose of 5 kGy, while the dose of 10 kGy, degraded the aflatoxins. Thereby, it was observed that AFB2 showed to be more radiosensitive. The use of PCR technique showed the presence of DNA bands, in all samples. (author)

  9. Clostridium difficile PCR Ribotypes from Different Animal Hosts and Different Geographic Regions

    DEFF Research Database (Denmark)

    Zidaric, V.; Janezic, S.; Indra, A.

    Clostridium difficile is an anaerobic sporogenic bacterium traditionally associated with human nosocomial infections, and animals have been recognized as an important potential reservoir for human infections (Rodriguez-Palacios et al., 2013). Ribotype 078 is often reported in animals but according...... was to establish an international C. difficile animal collection with one PCR ribotype per species per country/laboratory and to compare PCR ribotypes across animal hosts and countries....... to recent studies the overlap between PCR ribotypes found in humans and animals seems to be increasing (Bakker et al., 2010; Gould and Limbago, 2010; Janezic et al., 2012; Keel et al., 2007; Koene et al., 2011). However, genetic diversity among animal strains remains poorly understood. The aim of our work...

  10. Analysis of effect of nicotine on microbial community structure in sediment using PCR-DGGE fingerprinting

    Directory of Open Access Journals (Sweden)

    Ai-dong Ruan

    2015-10-01

    Full Text Available Solid or liquid waste containing a high concentration of nicotine can pollute sediment in rivers and lakes, and may destroy the ecological balance if it is directly discharged into the environment without any treatment. In this study, the polymerase chain reaction (PCR and denaturing gradient gel electrophoresis (DGGE method was used to analyze the variation of the microbial community structure in the control and nicotine-contaminated sediment samples with nicotine concentration and time of exposure. The results demonstrated that the growth of some bacterial species in the nicotine-contaminated sediment samples was inhibited during the exposure. Some bacteria decreased in species diversity and in quantity with the increase of nicotine concentration or time of exposure, while other bacteria were enriched under the effect of nicotine, and their DGGE bands changed from undertones to deep colors. The microbial community structure, however, showed a wide variation in the nicotine-contaminated sediment samples, especially in the sediment samples treated with high-concentration nicotine. The Jaccard index was only 35.1% between the initial sediment sample and the sediment sample with a nicotine concentration of 0.030 μg/g after 28 d of exposure. Diversity indices showed that the contaminated groups had a similar trend over time. The diversity indices of contaminated groups all decreased in the first 7 d after exposure, then increased until day 42. It has been found that nicotine decreased the diversity of the microbial community in the sediment.

  11. Analysis of effect of nicotine on microbial community structure in sediment using PCR-DGGE fingerprinting

    Directory of Open Access Journals (Sweden)

    Ai-dong Ruan

    2015-10-01

    Full Text Available Solid or liquid waste containing a high concentration of nicotine can pollute sediment in rivers and lakes, and may destroy the ecological balance if it is directly discharged into the environment without any treatment. In this study, the polymerase chain reaction (PCR and denaturing gradient gel electrophoresis (DGGE method was used to analyze the variation of the microbial community structure in the control and nicotine-contaminated sediment samples with nicotine concentration and time of exposure. The results demonstrated that the growth of some bacterial species in the nicotine-contaminated sediment samples was inhibited during the exposure. Some bacteria decreased in species diversity and in quantity with the increase of nicotine concentration or time of exposure, while other bacteria were enriched under the effect of nicotine, and their DGGE bands changed from undertones to deep colors. The microbial community structure, however, showed a wide variation in the nicotine-contaminated sediment samples, especially in the sediment samples treated with high-concentration nicotine. The Jaccard index was only 35.1% between the initial sediment sample and the sediment sample with a nicotine concentration of 0.030 μg/g after 28 d of exposure. Diversity indices showed that the contaminated groups had a similar trend over time. The diversity indices of contaminated groups all decreased in the first 7 d after exposure, then increased until day 42. It has been found that nicotine decreased the diversity of the microbial community in the sediment.

  12. Principles and technical aspects of PCR amplification

    National Research Council Canada - National Science Library

    Pelt-Verkuil, Elizabeth van; Belkum, Alex van; Hays, John P

    2008-01-01

    ... to illustrate any particularly important concepts or comments. Indeed, all commercial PCR biotechnology companies offer information about their products on internet sites and in online technical manuals. These online resources will be invaluable for any readers requiring more detailed PCR protocols. The authors have provided references for many PCR co...

  13. The PCR revolution: basic technologies and applications

    National Research Council Canada - National Science Library

    Bustin, Stephen A

    2010-01-01

    ... by leading authorities on the many applications of PCR and how this technology has revolutionized their respective areas of interest. This book conveys the ways in which PCR has overcome many obstacles in life science and clinical research and also charts the PCR's development from time-consuming, low throughput, nonquantitative proced...

  14. PCR associated with hybridization with DNA radioactive probes for diagnosis of asymptomatic infection caused by Leishmania Chagasi; PCR associado a hibridizacao com sondas radioativas de DNA para a identificacao de infeccao subclinica causada por Leishmania Chagasi

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Antero Silva Ribeiro de [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil); Moreno, Elizabeth Castro [Fundacao Nacional de Saude, Belo Horizonte, MG (Brazil). Coordenacao Regional de Minas Gerais; Gomes, Rosangela Fatima; Melo, Maria Norma de; Carneiro, Mariangela [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Parasitologia; Fernandes, Octavio [Fundacao Inst. Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ (Brazil). Dept. de Medicina Tropical

    2002-07-01

    Detection systems for diagnosis of leishmaniasis based on PCR are very promising due to their sensitivity and specificity. Secondary detection by specific radioactive DNA probes, able to type the PCR amplified products, increase the specificity and raise about tem-fold the sensitivity of the assay. The aim of this work was evaluate PCR and hybridization as a tool to identify Leishmania (Leishmania) chagasi (the specie that cause the visceral leishmaniasis in Brazil) infection in asymptomatic persons living in a endemic area. Material and Methods: A group of 226 asymptomatic individuals, living in General Carneiro (MG), was selected. Blood samples were harvested and the DNA extracted from the mononucleate cells. PCR was performed using primers addressed to the kinetoplast DNA minicircles. This protocol gives a positive reaction for all Leishmania species. The amplified products were further hybridized with cloned L.chagasi minicircles labeled with {sup 32} P. Results: were identified 111 samples PCR positive, 2 of them hybridization negative and 133 samples hybridization positive, 24 of them PCR negative. The occurrence of samples with hybridization positive and PCR negative was expected since hybridization, with DNA probes labeled with {sup 32} P, increase the sensitivity of the assay. The samples that presented positive PCR and negative hybridization were probably due the presence of other Leishmania species, likely L. (V.) braziliensis (that produce tegumentary leishmaniasis in the region), since L. (L.) chagasi cloned minicircles were used as hybridization probe. We conclude that this procedure is a valuable tool to access subclinical L. (L.) chagasi infections in epidemiological studies. (author)

  15. Subboiling Moist Heat Favors the Selection of Enteric Pathogen Clostridium difficile PCR Ribotype 078 Spores in Food

    Directory of Open Access Journals (Sweden)

    Alexander Rodriguez-Palacios

    2016-01-01

    Full Text Available Emerging enteric pathogens could have not only more antibiotic resistance or virulence traits; they could also have increased resistance to heat. We quantified the effects of minimum recommended cooking and higher temperatures, individually on a collection of C. difficile isolates and on the survival probability of a mixture of emerging C. difficile strains. While minimum recommended cooking time/temperature combinations (63–71°C allowed concurrently tested strains to survive, higher subboiling temperatures reproducibly favored the selection of newly emerging C. difficile PCR ribotype 078. Survival ratios for “ribotypes 078” :  “other ribotypes” (n=49 : 45 isolates from the mid-2000s increased from 1 : 1 and 0.7 : 1 at 85°C (for 5 and 10 minutes, resp. to 2.3 : 1 and 3 : 1 with heating at 96°C (for 5 and 10 minutes, resp. indicating an interaction effect between the heating temperature and survival of C. difficile genotypes. In multistrain heating experiments, with PCR ribotypes 027 and 078 from 2004 and reference type strain ATCC 9689 banked in the 1970s, multinomial logistic regression (P<0.01 revealed PCR ribotype 078 was the most resistant to increasing lethal heat treatments. Thermal processes (during cooking or disinfection may contribute to the selection of emergent specific virulent strains of C. difficile. Despite growing understanding of the role of cooking on human evolution, little is known about the role of cooking temperatures on the selection and evolution of enteric pathogens, especially spore-forming bacteria.

  16. Pitfalls in PCR troubleshooting: Expect the unexpected?

    Directory of Open Access Journals (Sweden)

    Livia Schrick

    2016-01-01

    Full Text Available PCR is a well-understood and established laboratory technique often used in molecular diagnostics. Huge experience has been accumulated over the last years regarding the design of PCR assays and their set-up, including in-depth troubleshooting to obtain the optimal PCR assay for each purpose. Here we report a PCR troubleshooting that came up with a surprising result never observed before. With this report we hope to sensitize the reader to this peculiar problem and to save troubleshooting efforts in similar situations, especially in time-critical and ambitious diagnostic settings.

  17. Ultrasensitive Detection of RNA and DNA Viruses Simultaneously Using Duplex UNDP-PCR Assay.

    Directory of Open Access Journals (Sweden)

    Yong Huang

    Full Text Available Mixed infection of multiple viruses is common in modern intensive pig rearing. However, there are no methods available to detect DNA and RNA viruses in the same reaction system in preclinical level. In this study, we aimed to develop a duplex ultrasensitive nanoparticle DNA probe-based PCR assay (duplex UNDP-PCR that was able to simultaneously detect DNA and RNA viruses in the same reaction system. PCV2 and TGEV are selected as representatives of the two different types of viruses. PCV2 DNA and TGEV RNA were simultaneously released from the serum sample by boiling with lysis buffer, then magnetic beads and gold nanoparticles coated with single and/or duplex specific probes for TGEV and PCV2 were added to form a sandwich-like complex with nucleic acids released from viruses. After magnetic separation, DNA barcodes specific for PCV2 and TGEV were eluted using DTT and characterized by specific PCR assay for specific DNA barcodes subsequently. The duplex UNDP-PCR showed similar sensitivity as that of single UNDP-PCR and was able to detect 20 copies each of PCV2 and TGEV in the serum, showing approximately 250-fold more sensitivity than conventional duplex PCR/RT-PCR assays. No cross-reaction was observed with other viruses. The positive detection rate of single MMPs- and duplex MMPs-based duplex UNDP-PCR was identical, with 29.6% for PCV2, 9.3% for TGEV and 3.7% for PCV2 and TGEV mixed infection. This duplex UNDP-PCR assay could detect TGEV (RNA virus and PCV2 (DNA virus from large-scale serum samples simultaneously without the need for DNA/RNA extraction, purification and reverse transcription of RNA, and showed a significantly increased positive detection rate for PCV2 (29% and TGEV (11.7% preclinical infection than conventional duplex PCR/RT-PCR. Therefore, the established duplex UNDP-PCR is a rapid and economical detection method, exhibiting high sensitivity, specificity and reproducibility.

  18. Ultrasensitive Detection of RNA and DNA Viruses Simultaneously Using Duplex UNDP-PCR Assay

    Science.gov (United States)

    Wang, Zengguo; Zhang, Xiujuan; Zhao, Xiaomin; Du, Qian; Chang, Lingling; Tong, Dewen

    2015-01-01

    Mixed infection of multiple viruses is common in modern intensive pig rearing. However, there are no methods available to detect DNA and RNA viruses in the same reaction system in preclinical level. In this study, we aimed to develop a duplex ultrasensitive nanoparticle DNA probe-based PCR assay (duplex UNDP-PCR) that was able to simultaneously detect DNA and RNA viruses in the same reaction system. PCV2 and TGEV are selected as representatives of the two different types of viruses. PCV2 DNA and TGEV RNA were simultaneously released from the serum sample by boiling with lysis buffer, then magnetic beads and gold nanoparticles coated with single and/or duplex specific probes for TGEV and PCV2 were added to form a sandwich-like complex with nucleic acids released from viruses. After magnetic separation, DNA barcodes specific for PCV2 and TGEV were eluted using DTT and characterized by specific PCR assay for specific DNA barcodes subsequently. The duplex UNDP-PCR showed similar sensitivity as that of single UNDP-PCR and was able to detect 20 copies each of PCV2 and TGEV in the serum, showing approximately 250-fold more sensitivity than conventional duplex PCR/RT-PCR assays. No cross-reaction was observed with other viruses. The positive detection rate of single MMPs- and duplex MMPs-based duplex UNDP-PCR was identical, with 29.6% for PCV2, 9.3% for TGEV and 3.7% for PCV2 and TGEV mixed infection. This duplex UNDP-PCR assay could detect TGEV (RNA virus) and PCV2 (DNA virus) from large-scale serum samples simultaneously without the need for DNA/RNA extraction, purification and reverse transcription of RNA, and showed a significantly increased positive detection rate for PCV2 (29%) and TGEV (11.7%) preclinical infection than conventional duplex PCR/RT-PCR. Therefore, the established duplex UNDP-PCR is a rapid and economical detection method, exhibiting high sensitivity, specificity and reproducibility. PMID:26544710

  19. Ultrasensitive Detection of RNA and DNA Viruses Simultaneously Using Duplex UNDP-PCR Assay.

    Science.gov (United States)

    Huang, Yong; Xing, Na; Wang, Zengguo; Zhang, Xiujuan; Zhao, Xiaomin; Du, Qian; Chang, Lingling; Tong, Dewen

    2015-01-01

    Mixed infection of multiple viruses is common in modern intensive pig rearing. However, there are no methods available to detect DNA and RNA viruses in the same reaction system in preclinical level. In this study, we aimed to develop a duplex ultrasensitive nanoparticle DNA probe-based PCR assay (duplex UNDP-PCR) that was able to simultaneously detect DNA and RNA viruses in the same reaction system. PCV2 and TGEV are selected as representatives of the two different types of viruses. PCV2 DNA and TGEV RNA were simultaneously released from the serum sample by boiling with lysis buffer, then magnetic beads and gold nanoparticles coated with single and/or duplex specific probes for TGEV and PCV2 were added to form a sandwich-like complex with nucleic acids released from viruses. After magnetic separation, DNA barcodes specific for PCV2 and TGEV were eluted using DTT and characterized by specific PCR assay for specific DNA barcodes subsequently. The duplex UNDP-PCR showed similar sensitivity as that of single UNDP-PCR and was able to detect 20 copies each of PCV2 and TGEV in the serum, showing approximately 250-fold more sensitivity than conventional duplex PCR/RT-PCR assays. No cross-reaction was observed with other viruses. The positive detection rate of single MMPs- and duplex MMPs-based duplex UNDP-PCR was identical, with 29.6% for PCV2, 9.3% for TGEV and 3.7% for PCV2 and TGEV mixed infection. This duplex UNDP-PCR assay could detect TGEV (RNA virus) and PCV2 (DNA virus) from large-scale serum samples simultaneously without the need for DNA/RNA extraction, purification and reverse transcription of RNA, and showed a significantly increased positive detection rate for PCV2 (29%) and TGEV (11.7%) preclinical infection than conventional duplex PCR/RT-PCR. Therefore, the established duplex UNDP-PCR is a rapid and economical detection method, exhibiting high sensitivity, specificity and reproducibility.

  20. Quantitative PCR high-resolution melting (qPCR-HRM) curve analysis, a new approach to simultaneously screen point mutations and large rearrangements: application to MLH1 germline mutations in Lynch syndrome.

    Science.gov (United States)

    Rouleau, Etienne; Lefol, Cédrick; Bourdon, Violaine; Coulet, Florence; Noguchi, Tetsuro; Soubrier, Florent; Bièche, Ivan; Olschwang, Sylviane; Sobol, Hagay; Lidereau, Rosette

    2009-06-01

    Several techniques have been developed to screen mismatch repair (MMR) genes for deleterious mutations. Until now, two different techniques were required to screen for both point mutations and large rearrangements. For the first time, we propose a new approach, called "quantitative PCR (qPCR) high-resolution melting (HRM) curve analysis (qPCR-HRM)," which combines qPCR and HRM to obtain a rapid and cost-effective method suitable for testing a large series of samples. We designed PCR amplicons to scan the MLH1 gene using qPCR HRM. Seventy-six patients were fully scanned in replicate, including 14 wild-type patients and 62 patients with known mutations (57 point mutations and five rearrangements). To validate the detected mutations, we used sequencing and/or hybridization on a dedicated MLH1 array-comparative genomic hybridization (array-CGH). All point mutations and rearrangements detected by denaturing high-performance liquid chromatography (dHPLC)+multiplex ligation-dependent probe amplification (MLPA) were successfully detected by qPCR HRM. Three large rearrangements were characterized with the dedicated MLH1 array-CGH. One variant was detected with qPCR HRM in a wild-type patient and was located within the reverse primer. One variant was not detected with qPCR HRM or with dHPLC due to its proximity to a T-stretch. With qPCR HRM, prescreening for point mutations and large rearrangements are performed in one tube and in one step with a single machine, without the need for any automated sequencer in the prescreening process. In replicate, its reagent cost, sensitivity, and specificity are comparable to those of dHPLC+MLPA techniques. However, qPCR HRM outperformed the other techniques in terms of its rapidity and amount of data provided.

  1. Nanoparticles affect PCR primarily via surface interactions with PCR components: using amino-modified silica-coated magnetic nanoparticles as a main model

    Science.gov (United States)

    Nanomaterials have been widely reported to affect the polymerase chain reaction (PCR). However, many studies in which these effects were observed were not comprehensive, and many of the proposed mechanisms have been primarily speculative. In this work, we used amino-modified silica-coated magnetic n...

  2. Quantification of DNA fragmentation in processed foods using real-time PCR.

    Science.gov (United States)

    Mano, Junichi; Nishitsuji, Yasuyuki; Kikuchi, Yosuke; Fukudome, Shin-Ichi; Hayashida, Takuya; Kawakami, Hiroyuki; Kurimoto, Youichi; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Takabatake, Reona; Kitta, Kazumi

    2017-07-01

    DNA analysis of processed foods is performed widely to detect various targets, such as genetically modified organisms (GMOs). Food processing often causes DNA fragmentation, which consequently affects the results of PCR analysis. In order to assess the effects of DNA fragmentation on the reliability of PCR analysis, we investigated a novel methodology to quantify the degree of DNA fragmentation. We designed four real-time PCR assays that amplified 18S ribosomal RNA gene sequences common to various plants at lengths of approximately 100, 200, 400, and 800 base pairs (bp). Then, we created an indicator value, "DNA fragmentation index (DFI)", which is calculated from the Cq values derived from the real-time PCR assays. Finally, we demonstrated the efficacy of this method for the quality control of GMO detection in processed foods by evaluating the relationship between the DFI and the limit of detection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Multiplex PCR detection of waterborne intestinal protozoa: microsporidia, Cyclospora, and Cryptosporidium.

    Science.gov (United States)

    Lee, Seung-Hyun; Joung, Migyo; Yoon, Sejoung; Choi, Kyoungjin; Park, Woo-Yoon; Yu, Jae-Ran

    2010-12-01

    Recently, emerging waterborne protozoa, such as microsporidia, Cyclospora, and Cryptosporidium, have become a challenge to human health worldwide. Rapid, simple, and economical detection methods for these major waterborne protozoa in environmental and clinical samples are necessary to control infection and improve public health. In the present study, we developed a multiplex PCR test that is able to detect all these 3 major waterborne protozoa at the same time. Detection limits of the multiplex PCR method ranged from 10(1) to 10(2) oocysts or spores. The primers for microsporidia or Cryptosporidium used in this study can detect both Enterocytozoon bieneusi and Encephalitozoon intestinalis, or both Cryptosporidium hominis and Cryptosporidium parvum, respectively. Restriction enzyme digestion of PCR products with BsaBI or BsiEI makes it possible to distinguish the 2 species of microsporidia or Cryptosporidium, respectively. This simple, rapid, and cost-effective multiplex PCR method will be useful for detecting outbreaks or sporadic cases of waterborne protozoa infections.

  4. Development and evaluation of new primers for PCR-based identification of Prevotella intermedia.

    Science.gov (United States)

    Zhou, Yanbin; Liu, Dali; Wang, Yiwei; Zhu, Cailian; Liang, Jingping; Shu, Rong

    2014-08-01

    The aim of this study was to develop new Prevotella intermedia-specific PCR primers based on the 16S rRNA. The new primer set, Pi-192 and Pi-468, increased the accuracy of PCR-based P. intermedia identification and could be useful in the detection of P. intermedia as well as epidemiological studies on periodontal disease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Performance of Droplet Digital PCR in Non-Invasive Fetal RHD Genotyping - Comparison with a Routine Real-Time PCR Based Approach.

    Directory of Open Access Journals (Sweden)

    Iveta Svobodová

    Full Text Available Detection and characterization of circulating cell-free fetal DNA (cffDNA from maternal circulation requires an extremely sensitive and precise method due to very low cffDNA concentration. In our study, droplet digital PCR (ddPCR was implemented for fetal RHD genotyping from maternal plasma to compare this new quantification alternative with real-time PCR (qPCR as a golden standard for quantitative analysis of cffDNA. In the first stage of study, a DNA quantification standard was used. Clinical samples, including 10 non-pregnant and 35 pregnant women, were analyzed as a next step. Both methods' performance parameters-standard curve linearity, detection limit and measurement precision-were evaluated. ddPCR in comparison with qPCR has demonstrated sufficient sensitivity for analysing of cffDNA and determination of fetal RhD status from maternal circulation, results of both methods strongly correlated. Despite the more demanding workflow, ddPCR was found to be slightly more precise technology, as evaluated using quantitative standard. Regarding the clinical samples, the precision of both methods equalized with decreasing concentrations of tested DNA samples. In case of cffDNA with very low concentrations, variance parameters of both techniques were comparable. Detected levels of fetal cfDNA in maternal plasma were slightly higher than expected and correlated significantly with gestational age as measured by both methods (ddPCR r = 0.459; qPCR r = 0.438.

  6. Whatman Paper (FTA Cards for Storing and Transferring Leishmania DNA for PCR Examination

    Directory of Open Access Journals (Sweden)

    A Amin-Mohammadi

    2009-12-01

    Full Text Available "nBackground: Diagnosis of cutaneous leishmaniasis (CL is often made based on clinical manifesta­tion. Correct diagnosis and identification of the parasite are crucial for choosing the effective treat­ment and for epidemiological studies. On the other hand, determination of Leishmania species is nec­essary for designing appropriate control programs. Diagnosis by PCR is becoming a 'gold standard'. For PCR preparation, storage and shipments of specimens are necessary. In this study, Whatman filter paper (FTA Card was used to store and transfer samples for Leishmania identification using PCR. "nMethods: Among the patients who had CL lesion and referred to Parasitology Laboratory of Emam Reza Hospital, Mashhad, Iran, 44 consented cases with positive results in their direct smear were se­lected. An informed consent form and a questionnaire were completed and three different types of samples (direct smear, NNN culture, and spot on FTA card were collected. DNA extraction and PCR were carried out on three different samples from each patient. "nResults: PCR results using Whatman paper samples revealed a significant difference (P<0.0001 compared to the culture method but no significant difference was seen between PCR results using samples stored on Whatman paper and direct smears. "nConclusion: The use of FTA cards is simple, rapid, and cost-effective, and can be readily employed for large-scale population screening, especially for regions where the specimens are to be transported from distant places to the laboratory.

  7. Evaluation of different enrichment methods for pathogenic Yersinia species detection by real time PCR

    Science.gov (United States)

    2014-01-01

    Background Yersiniosis is a zoonotic disease reported worldwide. Culture and PCR based protocols are the most common used methods for detection of pathogenic Yersinia species in animal samples. PCR sensitivity could be increased by an initial enrichment step. This step is particularly useful in surveillance programs, where PCR is applied to samples from asymptomatic animals. The aim of this study was to evaluate the improvement in pathogenic Yersinia species detection using a suitable enrichment method prior to the real time PCR (rtPCR). Nine different enrichment protocols were evaluated including six different broth mediums (CASO, ITC, PSB, PBS, PBSMSB and PBSSSB). Results The analysis of variance showed significant differences in Yersinia detection by rtPCR according to the enrichment protocol used. These differences were higher for Y. pseudotuberculosis than for Y. enterocolitica. In general, samples incubated at lower temperatures yielded the highest detection rates. The best results were obtained with PBSMSB and PBS2. Application of PBSMSB protocol to free-ranging wild board samples improved the detection of Y. enterocolitica by 21.2% when compared with direct rtPCR. Y. pseudotuberculosis detection was improved by 10.6% when results obtained by direct rtPCR and by PBSMSB enrichment before rtPCR were analyzed in combination. Conclusions The data obtained in the present study indicate a difference in Yersinia detection by rtPCR related to the enrichment protocol used, being PBSMSB enrichment during 15 days at 4°C and PBS during 7 days at 4°C the most efficient. The use of direct rtPCR in combination with PBSMSB enrichment prior to rtPCR resulted in an improvement in the detection rates of pathogenic Yersinia in wild boar and could be useful for application in other animal samples. PMID:25168886

  8. PCR-based detection of gene transfer vectors: application to gene doping surveillance.

    Science.gov (United States)

    Perez, Irene C; Le Guiner, Caroline; Ni, Weiyi; Lyles, Jennifer; Moullier, Philippe; Snyder, Richard O

    2013-12-01

    Athletes who illicitly use drugs to enhance their athletic performance are at risk of being banned from sports competitions. Consequently, some athletes may seek new doping methods that they expect to be capable of circumventing detection. With advances in gene transfer vector design and therapeutic gene transfer, and demonstrations of safety and therapeutic benefit in humans, there is an increased probability of the pursuit of gene doping by athletes. In anticipation of the potential for gene doping, assays have been established to directly detect complementary DNA of genes that are top candidates for use in doping, as well as vector control elements. The development of molecular assays that are capable of exposing gene doping in sports can serve as a deterrent and may also identify athletes who have illicitly used gene transfer for performance enhancement. PCR-based methods to detect foreign DNA with high reliability, sensitivity, and specificity include TaqMan real-time PCR, nested PCR, and internal threshold control PCR.

  9. Canine distemper virus detection by different methods of One-Step RT-qPCR

    Directory of Open Access Journals (Sweden)

    Claudia de Camargo Tozato

    2016-01-01

    Full Text Available ABSTRACT: Three commercial kits of One-Step RT-qPCR were evaluated for the molecular diagnosis of Canine Distemper Virus. Using the kit that showed better performance, two systems of Real-time RT-PCR (RT-qPCR assays were tested and compared for analytical sensitivity to Canine Distemper Virus RNA detection: a One-Step RT-qPCR (system A and a One-Step RT-qPCR combined with NESTED-qPCR (system B. Limits of detection for both systems were determined using a serial dilution of Canine Distemper Virus synthetic RNA or a positive urine sample. In addition, the same urine sample was tested using samples with prior centrifugation or ultracentrifugation. Commercial kits of One-Step RT-qPCR assays detected canine distemper virus RNA in 10 (100% urine samples from symptomatic animals tested. The One-Step RT-qPCR kit that showed better results was used to evaluate the analytical sensitivity of the A and B systems. Limit of detection using synthetic RNA for the system A was 11 RNA copies µL-1 and 110 RNA copies µl-1 for first round System B. The second round of the NESTED-qPCR for System B had a limit of detection of 11 copies µl-1. Relationship between Ct values and RNA concentration was linear. The RNA extracted from the urine dilutions was detected in dilutions of 10-3 and10-2 by System A and B respectively. Urine centrifugation increased the analytical sensitivity of the test and proved to be useful for routine diagnostics. The One-Step RT-qPCR is a fast, sensitive and specific method for canine distemper routine diagnosis and research projects that require sensitive and quantitative methodology.

  10. Critical assessment of digital PCR for the detection and quantification of genetically modified organisms.

    Science.gov (United States)

    Demeke, Tigst; Dobnik, David

    2018-07-01

    The number of genetically modified organisms (GMOs) on the market is steadily increasing. Because of regulation of cultivation and trade of GMOs in several countries, there is pressure for their accurate detection and quantification. Today, DNA-based approaches are more popular for this purpose than protein-based methods, and real-time quantitative PCR (qPCR) is still the gold standard in GMO analytics. However, digital PCR (dPCR) offers several advantages over qPCR, making this new technique appealing also for GMO analysis. This critical review focuses on the use of dPCR for the purpose of GMO quantification and addresses parameters which are important for achieving accurate and reliable results, such as the quality and purity of DNA and reaction optimization. Three critical factors are explored and discussed in more depth: correct classification of partitions as positive, correctly determined partition volume, and dilution factor. This review could serve as a guide for all laboratories implementing dPCR. Most of the parameters discussed are applicable to fields other than purely GMO testing. Graphical abstract There are generally three different options for absolute quantification of genetically modified organisms (GMOs) using digital PCR: droplet- or chamber-based and droplets in chambers. All have in common the distribution of reaction mixture into several partitions, which are all subjected to PCR and scored at the end-point as positive or negative. Based on these results GMO content can be calculated.

  11. External and semi-internal controls for PCR amplification of homologous sequences in mixed templates

    DEFF Research Database (Denmark)

    Kalle, Elena; Gulevich, Alexander; Rensing, Christopher Günther T

    2013-01-01

    as an acceptable alternative. In order to evaluate the effects of inhibitors, a model multi-template mix was amplified in a mixture with DNAse-treated sample. Semi-internal control allowed establishment of intervals for robust PCR performance for different samples, thus enabling correct comparison of the samples......In a mixed template, the presence of homologous target DNA sequences creates environments that almost inevitably give rise to artifacts and biases during PCR. Heteroduplexes, chimeras, and skewed template-to-product ratios are the exclusive attributes of mixed template PCR and never occur....... This study demonstrated the efficiency of a model mixed template as an adequate external amplification control for a particular PCR application. The conditions of multi-template PCR do not allow implementation of a classic internal control; therefore we developed a convenient semi-internal control...

  12. A multiplex nested PCR for the detection and identification of Candida species in blood samples of critically ill paediatric patients.

    Science.gov (United States)

    Taira, Cleison Ledesma; Okay, Thelma Suely; Delgado, Artur Figueiredo; Ceccon, Maria Esther Jurfest Rivero; de Almeida, Margarete Teresa Gottardo; Del Negro, Gilda Maria Barbaro

    2014-07-21

    Nosocomial candidaemia is associated with high mortality rates in critically ill paediatric patients; thus, the early detection and identification of the infectious agent is crucial for successful medical intervention. The PCR-based techniques have significantly increased the detection of Candida species in bloodstream infections. In this study, a multiplex nested PCR approach was developed for candidaemia detection in neonatal and paediatric intensive care patients. DNA samples from the blood of 54 neonates and children hospitalised in intensive care units with suspected candidaemia were evaluated by multiplex nested PCR with specific primers designed to identify seven Candida species, and the results were compared with those obtained from blood cultures. The multiplex nested PCR had a detection limit of four Candida genomes/mL of blood for all Candida species. Blood cultures were positive in 14.8% of patients, whereas the multiplex nested PCR was positive in 24.0% of patients, including all culture-positive patients. The results obtained with the molecular technique were available within 24 hours, and the assay was able to identify Candida species with 100% of concordance with blood cultures. Additionally, the multiplex nested PCR detected dual candidaemia in three patients. Our proposed PCR method may represent an effective tool for the detection and identification of Candida species in the context of candidaemia diagnosis in children, showing highly sensitive detection and the ability to identify the major species involved in this infection.

  13. Real-time PCR Machine System Modeling and a Systematic Approach for the Robust Design of a Real-time PCR-on-a-Chip System

    Directory of Open Access Journals (Sweden)

    Da-Sheng Lee

    2010-01-01

    Full Text Available Chip-based DNA quantification systems are widespread, and used in many point-of-care applications. However, instruments for such applications may not be maintained or calibrated regularly. Since machine reliability is a key issue for normal operation, this study presents a system model of the real-time Polymerase Chain Reaction (PCR machine to analyze the instrument design through numerical experiments. Based on model analysis, a systematic approach was developed to lower the variation of DNA quantification and achieve a robust design for a real-time PCR-on-a-chip system. Accelerated lift testing was adopted to evaluate the reliability of the chip prototype. According to the life test plan, this proposed real-time PCR-on-a-chip system was simulated to work continuously for over three years with similar reproducibility in DNA quantification. This not only shows the robustness of the lab-on-a-chip system, but also verifies the effectiveness of our systematic method for achieving a robust design.

  14. Detection of five potentially periodontal pathogenic bacteria in peri-implant disease: A comparison of PCR and real-time PCR.

    Science.gov (United States)

    Schmalz, Gerhard; Tsigaras, Sandra; Rinke, Sven; Kottmann, Tanja; Haak, Rainer; Ziebolz, Dirk

    2016-07-01

    The aim of this study was to compare the microbial analysis methods of polymerase chain reaction (PCR) and real-time PCR (RT-PCR) in terms of detection of five selected potentially periodontal pathogenic bacteria in peri-implant disease. Therefore 45 samples of healthy, mucositis and peri-implantitis (n = 15 each) were assessed according to presence of the following bacteria using PCR (DNA-strip technology) and RT-PCR (fluorescent dye SYBR green-system): Aggregatibacter actinomycetemcomitans (Aa), Porphyromonas gingivalis (Pg), Treponema denticola (Td), Tanerella forsythia (Tf), and Fusobacterium nucleatum (Fn). There were no significant correlations between the bacterial and disease patterns, so the benefit of using microbiological tests for the diagnosis of peri-implant diseases is questionable. Correlations between the methods were highest for Tf (Kendall's Tau: 0.65, Spearman: 0.78), Fn (0.49, 0.61) and Td (0.49, 0.59). For Aa (0.38, 0.42) and Pg (0.04, 0.04), lower correlation values were detected. Accordingly, conventional semi-quantitative PCR seems to be sufficient for analyzing potentially periodontal pathogenic bacterial species. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Regulation of bacterial photosynthesis genes by the small noncoding RNA PcrZ.

    Science.gov (United States)

    Mank, Nils N; Berghoff, Bork A; Hermanns, Yannick N; Klug, Gabriele

    2012-10-02

    The small RNA PcrZ (photosynthesis control RNA Z) of the facultative phototrophic bacterium Rhodobacter sphaeroides is induced upon a drop of oxygen tension with similar kinetics to those of genes for components of photosynthetic complexes. High expression of PcrZ depends on PrrA, the response regulator of the PrrB/PrrA two-component system with a central role in redox regulation in R. sphaeroides. In addition the FnrL protein, an activator of some photosynthesis genes at low oxygen tension, is involved in redox-dependent expression of this small (s)RNA. Overexpression of full-length PcrZ in R. sphaeroides affects expression of a small subset of genes, most of them with a function in photosynthesis. Some mRNAs from the photosynthetic gene cluster were predicted to be putative PcrZ targets and results from an in vivo reporter system support these predictions. Our data reveal a negative effect of PcrZ on expression of its target mRNAs. Thus, PcrZ counteracts the redox-dependent induction of photosynthesis genes, which is mediated by protein regulators. Because PrrA directly activates photosynthesis genes and at the same time PcrZ, which negatively affects photosynthesis gene expression, this is one of the rare cases of an incoherent feed-forward loop including an sRNA. Our data identified PcrZ as a trans acting sRNA with a direct regulatory function in formation of photosynthetic complexes and provide a model for the control of photosynthesis gene expression by a regulatory network consisting of proteins and a small noncoding RNA.

  16. PCR-based assays versus direct sequencing for evaluating the effect of KRAS status on anti-EGFR treatment response in colorectal cancer patients: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Lianfeng Shan

    Full Text Available The survival rate of colorectal cancer (CRC patients carrying wild-type KRAS is significantly increased by combining anti-EGFR monoclonal antibody (mAb with standard chemotherapy. However, conflicting data exist in both the wild-type KRAS and mutant KRAS groups, which strongly challenge CRC anti-EGFR treatment. Here we conducted a meta-analysis in an effort to provide more reliable information regarding anti-EGFR treatment in CRC patients.We searched full reports of randomized clinical trials using Medline, the American Society of Clinical Oncology (ASCO, and the European Society for Medical Oncology (ESMO. Two investigators independently screened the published literature according to our inclusive and exclusive criteria and the relative data were extracted. We used Review Manager 5.2 software to analyze the data.The addition of anti-EGFR mAb to standard chemotherapy significantly improved both progression-free survival (PFS and median overall survival (mOS in the wild-type KRAS group; hazard ratios (HRs for PFS and mOS were 0.70 [95% confidence interval (CI, 0.58-0.84] and 0.83 [95% CI, 0.75-0.91], respectively. In sub-analyses of the wild-type KRAS group, when PCR-based assays are employed, PFS and mOS notably increase: the HRs were 0.74 [95% CI, 0.62-0.88] and 0.87 [95% CI, 0.78-0.96], respectively. In sub-analyses of the mutant KRAS group, neither PCR-based assays nor direct sequencing enhance PFS or mOS.Our data suggest that PCR-based assays with high sensitivity and specificity allow accurate identification of patients with wild-type KRAS and thus increase PFS and mOS. Furthermore, such assays liberate patients with mutant KRAS from unnecessary drug side effects, and provide them an opportunity to receive appropriate treatment. Thus, establishing a precise standard reference test will substantially optimize CRC-targeted therapies.

  17. PCR-based techniques for leprosy diagnosis: from the laboratory to the clinic.

    Directory of Open Access Journals (Sweden)

    Alejandra Nóbrega Martinez

    2014-04-01

    Full Text Available In leprosy, classic diagnostic tools based on bacillary counts and histopathology have been facing hurdles, especially in distinguishing latent infection from active disease and diagnosing paucibacillary clinical forms. Serological tests and IFN-gamma releasing assays (IGRA that employ humoral and cellular immune parameters, respectively, are also being used, but recent results indicate that quantitative PCR (qPCR is a key technique due to its higher sensitivity and specificity. In fact, advances concerning the structure and function of the Mycobacterium leprae genome led to the development of specific PCR-based gene amplification assays for leprosy diagnosis and monitoring of household contacts. Also, based on the validation of point-of-care technologies for M. tuberculosis DNA detection, it is clear that the same advantages of rapid DNA detection could be observed in respect to leprosy. So far, PCR has proven useful in the determination of transmission routes, M. leprae viability, and drug resistance in leprosy. However, PCR has been ascertained to be especially valuable in diagnosing difficult cases like pure neural leprosy (PNL, paucibacillary (PB, and patients with atypical clinical presentation and histopathological features compatible with leprosy. Also, the detection of M. leprae DNA in different samples of the household contacts of leprosy patients is very promising. Although a positive PCR result is not sufficient to establish a causal relationship with disease outcome, quantitation provided by qPCR is clearly capable of indicating increased risk of developing the disease and could alert clinicians to follow these contacts more closely or even define rules for chemoprophylaxis.

  18. Solid-phase PCR for rapid multiplex detection of Salmonella spp. at the subspecies level, with amplification efficiency comparable to conventional PCR

    DEFF Research Database (Denmark)

    Chin, Wai Hoe; Sun, Yi; Høgberg, Jonas

    2017-01-01

    Solid-phase PCR (SP-PCR) has attracted considerable interest in different research fields since it allows parallel DNA amplification on the surface of a solid substrate. However, the applications of SP-PCR have been hampered by the low efficiency of the solid-phase amplification. In order to incr...... diagnosis, high-throughput DNA sequencing, and single-nucleotide polymorphism analysis. Graphical abstract Schematic representation of solid-phase PCR....

  19. Development and Evaluation of a PCR and Mass Spectroscopy-based (PCR-MS) Method for Quantitative, Type-specific Detection of Human Papillomavirus

    Science.gov (United States)

    Patel, Divya A.; Shih, Yang-Jen; Newton, Duane W.; Michael, Claire W.; Oeth, Paul A.; Kane, Michael D.; Opipari, Anthony W.; Ruffin, Mack T.; Kalikin, Linda M.; Kurnit, David M.

    2010-01-01

    Knowledge of the central role of high-risk human papillomavirus (HPV) in cervical carcinogenesis, coupled with an emerging need to monitor the efficacy of newly introduced HPV vaccines, warrant development and evaluation of type-specific, quantitative HPV detection methods. In the present study, a prototype PCR and mass spectroscopy (PCR-MS)-based method to detect and quantitate 13 high-risk HPV types is compared to the Hybrid Capture 2 High Risk HPV DNA test (HC2; Digene Corp., Gaithersburg, MD) in 199 cervical scraping samples and to DNA sequencing in 77 cervical tumor samples. High-risk HPV types were detected in 76/77 (98.7%) cervical tumor samples by PCR-MS. Degenerate and type-specific sequencing confirmed the types detected by PCR-MS. In 199 cervical scraping samples, all 13 HPV types were detected by PCR-MS. Eighteen (14.5%) of 124 cervical scraping samples that were positive for high-risk HPV by HC2 were negative by PCR-MS. In all these cases, degenerate DNA sequencing failed to detect any of the 13 high-risk HPV types. Nearly half (46.7%) of the 75 cervical scraping samples that were negative for high-risk HPV by the HC2 assay were positive by PCR-MS. Type-specific sequencing in a subset of these samples confirmed the HPV type detected by PCR-MS. Quantitative PCR-MS results demonstrated that 11/75 (14.7%) samples contained as much HPV copies/cell as HC2-positive samples. These findings suggest that this prototype PCR-MS assay performs at least as well as HC2 for HPV detection, while offering the additional, unique advantages of type-specific identification and quantitation. Further validation work is underway to define clinically meaningful HPV detection thresholds and to evaluate the potential clinical application of future generations of the PCR-MS assay. PMID:19410602

  20. Development and evaluation of a PCR and mass spectroscopy (PCR-MS)-based method for quantitative, type-specific detection of human papillomavirus.

    Science.gov (United States)

    Patel, Divya A; Shih, Yang-Jen; Newton, Duane W; Michael, Claire W; Oeth, Paul A; Kane, Michael D; Opipari, Anthony W; Ruffin, Mack T; Kalikin, Linda M; Kurnit, David M

    2009-09-01

    Knowledge of the central role of high-risk human papillomavirus (HPV) in cervical carcinogenesis, coupled with an emerging need to monitor the efficacy of newly introduced HPV vaccines, warrant development and evaluation of type-specific, quantitative HPV detection methods. In the present study, a prototype PCR and mass spectroscopy (PCR-MS)-based method to detect and quantitate 13 high-risk HPV types is compared to the Hybrid Capture 2 High-Risk HPV DNA test (HC2; Digene Corp., Gaithersburg, MD) in 199 cervical scraping samples and to DNA sequencing in 77 cervical tumor samples. High-risk HPV types were detected in 76/77 (98.7%) cervical tumor samples by PCR-MS. Degenerate and type-specific sequencing confirmed the types detected by PCR-MS. In 199 cervical scraping samples, all 13 HPV types were detected by PCR-MS. Eighteen (14.5%) of 124 cervical scraping samples that were positive for high-risk HPV by HC2 were negative by PCR-MS. In all these cases, degenerate DNA sequencing failed to detect any of the 13 high-risk HPV types. Nearly half (46.7%) of the 75 cervical scraping samples that were negative for high-risk HPV by the HC2 assay were positive by PCR-MS. Type-specific sequencing in a subset of these samples confirmed the HPV type detected by PCR-MS. Quantitative PCR-MS results demonstrated that 11/75 (14.7%) samples contained as much HPV copies/cell as HC2-positive samples. These findings suggest that this prototype PCR-MS assay performs at least as well as HC2 for HPV detection, while offering the additional, unique advantages of type-specific identification and quantitation. Further validation work is underway to define clinically meaningful HPV detection thresholds and to evaluate the potential clinical application of future generations of the PCR-MS assay.

  1. Sensitive simultaneous detection of seven sexually transmitted agents in semen by multiplex-PCR and of HPV by single PCR.

    Directory of Open Access Journals (Sweden)

    Fabrícia Gimenes

    Full Text Available Sexually transmitted diseases (STDs may impair sperm parameters and functions thereby promoting male infertility. To date limited molecular studies were conducted to evaluate the frequency and type of such infections in semen Thus, we aimed at conceiving and validating a multiplex PCR (M-PCR assay for the simultaneous detection of the following STD pathogens in semen: Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma genitalium, Trichomonas vaginalis, Herpes virus simplex (HSV -1 and -2, and Treponema pallidum; We also investigated the potential usefulness of this M-PCR assay in screening programs for semen pathogens. In addition, we aimed: to detect human Papillomavirus (HPV and genotypes by single PCR (sPCR in the same semen samples; to determine the prevalence of the seven STDs, HPV and co-infections; to assess the possibility that these infections affect semen parameters and thus fertility. The overall validation parameters of M-PCR were extremely high including agreement (99.2%, sensitivity (100.00%, specificity (99.70%, positive (96.40% and negative predictive values (100.00% and accuracy (99.80%. The prevalence of STDs was very high (55.3%. Furthermore, associations were observed between STDs and changes in semen parameters, highlighting the importance of STD detection in semen. Thus, this M-PCR assay has great potential for application in semen screening programs for pathogens in infertility and STD clinics and in sperm banks.

  2. Application of real-time PCR (qPCR) for characterization of microbial populations and type of milk in dairy food products.

    Science.gov (United States)

    Agrimonti, Caterina; Bottari, Benedetta; Sardaro, Maria Luisa Savo; Marmiroli, Nelson

    2017-09-08

    Dairy foods represent an important sector of the food market for their nutritional qualities and their organoleptic characteristics, which are often linked to tradition and to region. These products are typically protected by labels such as PDO (Protected Designation of Origin) and PGI (Protected Geographical Indication). Real-time PCR (qPCR) is a fundamental tool in "Food Genomics;" a discipline concerned with the residual DNA in food, which, alongside traditional physical and chemical methods, is frequently used to determine product safety, quality and authenticity. Compared to conventional or "end-point" PCR, qPCR incorporates continuous monitoring of reaction progress, thereby enabling quantification of target DNA. This review describes qPCR applications to the analysis of microbiota, and to the identification of the animal species source of milk from which dairy products have been made. These are important aspects for ensuring safety and authenticity. The various applications of qPCR are discussed, as well as advantages and disadvantages in comparison with other analytical methods.

  3. [A new method of processing quantitative PCR data].

    Science.gov (United States)

    Ke, Bing-Shen; Li, Guang-Yun; Chen, Shi-Min; Huang, Xiang-Yan; Chen, Ying-Jian; Xu, Jun

    2003-05-01

    Today standard PCR can't satisfy the need of biotechnique development and clinical research any more. After numerous dynamic research, PE company found there is a linear relation between initial template number and cycling time when the accumulating fluorescent product is detectable.Therefore,they developed a quantitative PCR technique to be used in PE7700 and PE5700. But the error of this technique is too great to satisfy the need of biotechnique development and clinical research. A better quantitative PCR technique is needed. The mathematical model submitted here is combined with the achievement of relative science,and based on the PCR principle and careful analysis of molecular relationship of main members in PCR reaction system. This model describes the function relation between product quantity or fluorescence intensity and initial template number and other reaction conditions, and can reflect the accumulating rule of PCR product molecule accurately. Accurate quantitative PCR analysis can be made use this function relation. Accumulated PCR product quantity can be obtained from initial template number. Using this model to do quantitative PCR analysis,result error is only related to the accuracy of fluorescence intensity or the instrument used. For an example, when the fluorescence intensity is accurate to 6 digits and the template size is between 100 to 1,000,000, the quantitative result accuracy will be more than 99%. The difference of result error is distinct using same condition,same instrument but different analysis method. Moreover,if the PCR quantitative analysis system is used to process data, it will get result 80 times of accuracy than using CT method.

  4. Development of RT-PCR and Nested PCR for Detecting Four Quarantine Plant Viruses Belonging to Nepovirus

    Directory of Open Access Journals (Sweden)

    Siwon Lee

    2013-09-01

    Full Text Available For quarantine purpose, we developed the RT- and nested PCR module of Tomato black ring virus (TBRV, Arabis mosaic virus (ArMV, Cherry leafroll virus (CLRV and Grapevine fanleaf virus (GFLV. The PCR modules, developed in this study make diagnosis more convenient and speedy because of same PCR condition. And also, the methods are more accurate because it can check whether the result is contamination or not using the mutation-positive control. We discard or return the 27 cases of Nepovirus infection seed by employing the module past 3 years. This study provides a rapid and useful method for detection of four quarantine plant viruses.

  5. IDENTIFIKASI TIPE HLA KELAS II DENGAN TEKNIK PCR

    Directory of Open Access Journals (Sweden)

    Ervi Salwati

    2012-09-01

    Full Text Available HLA (Human Leukocyte Antigen contains a set of genes located together on the short arm of chromosome 6. These genes control immune responses, graft acceptance or rejection and tumor surveillance. These abilities have close relationship with genetic variation (occur in "many forms" or alleles that bind and present antigens to T lymphocytes. Using advanced technology and molecular biology approaches (PCR technique detection of genetic variation in the HLA region (or HLA typing has been performed based on DNA.. PCR is an in vitro technique to amplify the DNA sequence enzymatically. "Sequence Specific Primers" (SSP are designed for this PCR to obtain amplification of specific alleles or groups of alleles. The PCR products are visualized through agarose gel electrophoresis stained with ethidium bromide. The PCR technique requires small amount of whole blood (0.5 - 1 ml, gives rapid, accurate and complete result. This paper discuss identification of HLA class II typing using PCR-SSP technique and show the examples of the results.   Key words: HLA (Human Leukocyte Antigen class II, PCR (Polymerase Chain Reaction

  6. Ureaplasma parvum prosthetic joint infection detected by PCR.

    Science.gov (United States)

    Farrell, John J; Larson, Joshua A; Akeson, Jeffrey W; Lowery, Kristin S; Rounds, Megan A; Sampath, Rangarajan; Bonomo, Robert A; Patel, Robin

    2014-06-01

    We describe the first reported case of Ureaplasma parvum prosthetic joint infection (PJI) detected by PCR. Ureaplasma species do not possess a cell wall and are usually associated with colonization and infection of mucosal surfaces (not prosthetic material). U. parvum is a relatively new species name for certain serovars of Ureaplasma urealyticum, and PCR is useful for species determination. Our patient presented with late infection of his right total knee arthroplasty. Intraoperative fluid and tissue cultures and pre- and postoperative synovial fluid cultures were all negative. To discern the pathogen, we employed PCR coupled with electrospray ionization mass spectrometry (PCR/ESI-MS). Our patient's failure to respond to empirical antimicrobial treatment and our previous experience with PCR/ESI-MS in culture-negative cases of infection prompted us to use this approach over other diagnostic modalities. PCR/ESI-MS detected U. parvum in all samples. U. parvum-specific PCR testing was performed on all synovial fluid samples to confirm the U. parvum detection. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Development of a multiplex PCR for the genetic analysis of paddlefish (Polyodon spathula Walbaum,1792 populations

    Directory of Open Access Journals (Sweden)

    K. Kurta

    2017-12-01

    Full Text Available Purpose. Paddlefish is commercially important species owing to its biological features and consumer characteristics, namely it produces valuable and delicious fish products, such as high quality meat and black caviar. Consequently, its cultivation under Ukrainian fish farm conditions and further realization in domestic and foreign markets are economically efficient. However, the paddlefish broodstock in Ukraine requires the efficient solution of increasing its productivity, identification and assessment of its genetic variation. Thus, the aim of our study was to develop and implement a multiplex PCR-analysis of paddlefish (Polyodon spathula for population-genetic monitoring of its artificial broodstocks in Ukraine. Methodology. A multiplex PCR was used for the study. The multiplex PCR development was performed for four microsatellite DNA markers: Psp12, Psp21, Psp26 and Psp28. Each investigated DNA loci, for which the multiplex PCR was optimized, was selected in such a way that the colored PCR products labeled with fluorescent dye did not overlap the length of the amplified fragments. Evaluation of the multiplex PCR effectiveness and processing of the data were performed by fragment analysis of DNA on the genetic analyzer ABI Prism 3130 (Applied Biosystem, USA. The size of the identified alleles was determined using the "Gene Mapper 3.7" program (Applied Biosystems, USA and LIZ-500 size standard (Applied Biosystems, USA. Results. Based on the results of capillary electrophoresis of multiplex PCR products, it was found that the amplified fragments for each of the four studied loci: Psp12, Psp21, Psp26 and Psp28 in one PCR reaction were within the expected size range. Data analysis on the electrophoregram demonstrated that Psp21 had the highest peak intensity at 611 fluorescent units (FU and the lowest peak intensity at 105 FU was observed for Psp26 locus. In the multiplex PCR after proper interpretation of the data we identified heterozygous

  8. Selecting PCR for the Diagnosis of Intestinal Parasitosis

    DEFF Research Database (Denmark)

    Hartmeyer, G. N.; Hoegh, S. V.; Skov, M. N.

    2017-01-01

    Microscopy of stool samples is a labour-intensive and inaccurate technique for detection of intestinal parasites causing diarrhoea and replacement by PCR is attractive. Almost all cases of diarrhoea induced by parasites over a nine-year period in our laboratory were due to Giardia lamblia......, Cryptosporidium species, or Entamoeba histolytica detected by microscopy. We evaluated and selected in-house singleplex real-time PCR (RT-PCR) assays for these pathogens in 99 stool samples from patients suspected of having intestinal parasitosis tested by microscopy. The strategy included a genus-specific PCR...... assay for C. parvum and C. hominis, with subsequent identification by a PCR that distinguishes between the two species. G. lamblia was detected in five and C. parvum in one out of 68 microscopy-negative samples. The performance of the in-house RT-PCR assays was compared to three commercially available...

  9. [Quantitative fluorogenic real-time PCR assay for respiratory syncytial virus detection].

    Science.gov (United States)

    Zhang, Qi-wei; You, Shang-you; Sun, Ji-min; Wu, Qi; Yu, Chun-hua; Zhang, Chu-yu

    2005-07-01

    To Establish a rapid and objective quantitative fluorogenic real-time PCR assay for early detection of human respiratory syncytial virus (hRSV). Two pairs of primers and one TaqMan Fluorogenic probe that are specific for the recognition of the most conservative N gene of hRSV for virus detection with LighCycler PCR in 93 nasopharyngeal secretion specimens collected from infants and young children. The assay was compared with virus isolation, routine PCR, nested PCR, and enzyme-linked immunosorbent assay (ELISA). This TaqMan assay had a sensitivity of 1 x 10(2) cDNA copies/microl with a dynamic range between 1 x 10(2) and 1 x 10(7) cDNA copies/microl, which was the same as that of nested PCR, but 10 times more sensitive than routine PCR. The specificity of the assay was evaluated by comparing hRSV with polivirus type 1, coxsackie virus type 2, influenza A, influenza B and adenovirus type 7. A PCR product of the expected size (195 bp) was produced and fluorescence signal detected for hRSV, but not for any of the other viruses. The results in LightCycler and Rotor-Gene instrument were consistent. Forty-four specimens (43.9%) were hRSV-positive with this assay and 4 (4/93,4.3%) were hRSV-positive with ELISA, showing rather low correlation between the two methods. No visible relation was found between the concentration of hRSV RNA and severity of the disease. This assay is rapid, sensitive, specific and quantitative, and has the potential of wide application for early diagnosis of hRSV infection and evaluation of the therapeutic effect.

  10. Monitoring and improving the sensitivity of dengue nested RT-PCR used in longitudinal surveillance in Thailand.

    Science.gov (United States)

    Klungthong, Chonticha; Manasatienkij, Wudtichai; Phonpakobsin, Thipwipha; Chinnawirotpisan, Piyawan; Rodpradit, Prinyada; Hussem, Kittinun; Thaisomboonsuk, Butsaya; Ong-ajchaowlerd, Prapapun; Nisalak, Ananda; Kalayanarooj, Siripen; Buddhari, Darunee; Gibbons, Robert V; Jarman, Richard G; Yoon, In-Kyu; Fernandez, Stefan

    2015-02-01

    AFRIMS longitudinal dengue surveillance in Thailand depends on the nested RT-PCR and the dengue IgM/IgG ELISA. To examine and improve the sensitivity of the nested RT-PCR using a panel of archived samples collected during dengue surveillance. A retrospective analysis of 16,454 dengue IgM/IgG ELISA positive cases collected between 2000 and 2013 was done to investigate the sensitivity of the nested RT-PCR. From these cases, 318 acute serum specimens or extracted RNA, previously found to be negative by the nested RT-PCR, were tested using TaqMan real-time RT-PCR (TaqMan rRT-PCR). To improve the sensitivity of nested RT-PCR, we designed a new primer based on nucleotide sequences from contemporary strains found to be positive by the TaqMan rRT-PCR. Sensitivity of the new nested PCR was calculated using a panel of 87 samples collected during 2011-2013. The percentage of dengue IgM/IgG ELISA positive cases that were negative by the nested RT-PCR varied from 17% to 42% for all serotypes depending on the year. Using TaqMan rRT-PCR, dengue RNA was detected in 194 (61%) of the 318 acute sera or extracted RNA previously found to be negative by the nested RT-PCR. The newly designed DENV-1 specific primer increased the sensitivity of DENV-1 detection by the nested RT-PCR from 48% to 88%, and of all 4 serotypes from 73% to 87%. These findings demonstrate the impact of genetic diversity and signal erosion on the sensitivity of PCR-based methods. Published by Elsevier B.V.

  11. Detection of SEA-type α-thalassemia in embryo biopsies by digital PCR

    Directory of Open Access Journals (Sweden)

    Ta-Hsien Lee

    2017-08-01

    Conclusion: The SEA-type deletion in cultured embryos can be sensitively diagnosed with the digital PCR procedure in clinics. The adoption of this robust PGD method could prevent the implantation of IVF embryos that are destined to develop Bart's hydrops fetalis in a timely manner. The results also help inform future development of a standard digital PCR procedure for cost-effective PGD of α-thalassemia in a standard IVF clinic.

  12. Multiplex Amplification Refractory Mutation System PCR (ARMS-PCR) provides sequencing independent typing of canine parvovirus.

    Science.gov (United States)

    Chander, Vishal; Chakravarti, Soumendu; Gupta, Vikas; Nandi, Sukdeb; Singh, Mithilesh; Badasara, Surendra Kumar; Sharma, Chhavi; Mittal, Mitesh; Dandapat, S; Gupta, V K

    2016-12-01

    Canine parvovirus-2 antigenic variants (CPV-2a, CPV-2b and CPV-2c) ubiquitously distributed worldwide in canine population causes severe fatal gastroenteritis. Antigenic typing of CPV-2 remains a prime focus of research groups worldwide in understanding the disease epidemiology and virus evolution. The present study was thus envisioned to provide a simple sequencing independent, rapid, robust, specific, user-friendly technique for detecting and typing of presently circulating CPV-2 antigenic variants. ARMS-PCR strategy was employed using specific primers for CPV-2a, CPV-2b and CPV-2c to differentiate these antigenic types. ARMS-PCR was initially optimized with reference positive controls in two steps; where first reaction was used to differentiate CPV-2a from CPV-2b/CPV-2c. The second reaction was carried out with CPV-2c specific primers to confirm the presence of CPV-2c. Initial validation of the ARMS-PCR was carried out with 24 sequenced samples and the results were matched with the sequencing results. ARMS-PCR technique was further used to screen and type 90 suspected clinical samples. Randomly selected 15 suspected clinical samples that were typed with this technique were sequenced. The results of ARMS-PCR and the sequencing matched exactly with each other. The developed technique has a potential to become a sequencing independent method for simultaneous detection and typing of CPV-2 antigenic variants in veterinary disease diagnostic laboratories globally. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Immunomagnetic separation combined with RT-qPCR for determining the efficacy of disinfectants against human noroviruses

    Directory of Open Access Journals (Sweden)

    Pengbo Liu

    2015-03-01

    Full Text Available Summary: Little is known about the effectiveness of disinfectants against human noroviruses (NoV partially because human NoV cannot be routinely cultured in laboratory. The objective of this study was to develop a NoV monoclonal antibody-conjugated immunomagnetic separation (IMS procedure combined with real-time reverse transcription polymerase chain reaction (RT-qPCR assays to study the in vitro efficacy of disinfectants against human NoV. Monoclonal antibodies against Norwalk virus (NV, GI.1 and NoV GII.4 were produced using unique NoV capsid proteins, and the antibodies were conjugated to magnetic Dynalbeads. The immunomagnetic beads were used to simultaneously capture intact NoV in samples and effectively remove PCR inhibitors. We examined the efficacy of ethanol, sodium hypochlorite, nine commercially available disinfectants, and one prototype disinfectant using the IMS/RT-qPCR. The sensitivity of this procedure was approximately 100 virus particles for both the NV and GII.4 viruses. The average log reductions in in vitro activities varied between disinfectants. The prototype disinfectant produced an average 3.19-log reduction in NV and a 1.38-log reduction in GII.4. The prototype disinfectant is promising of inactivating NoV. This method can be used to evaluate in vitro activity of disinfectants against human NoV. The IMS/RT-qPCR method is promising as an effective method to remove PCR inhibitors in disinfectants and enable the evaluation of the efficacy of disinfectants. Keywords: Disinfectant, Norovirus, Immunomagnetic separation, Real-time RT-PCR, PCR inhibition

  14. Removal of PCR inhibitors using dielectrophoresis as a selective filter in a microsystem

    DEFF Research Database (Denmark)

    Perch-Nielsen, Ivan Ryberg; Bang, Dang Duong; Poulsen, Claus Riber

    2003-01-01

    , the removal of PCR inhibitors in sample preparation steps is essential and several methods have been published. The methods are either chemical or based on filtering. Conventional ways of filtering include mechanical filters or washing e. g. by centrifugation. Another way of filtering is the use of electric...... to manipulate cells in many microstructures. In this study, we used DEP as a selective filter for holding cells in a microsystem while the PCR inhibitors were flushed out of the system. Haemoglobin and heparin-natural components of blood-were selected as PCR inhibitors, since the inhibitory effects...

  15. Integration of nanoparticle cell lysis and microchip PCR for one-step rapid detection of bacteria.

    Science.gov (United States)

    Wan, Weijie; Yeow, John T W

    2012-04-01

    This paper describes an integrated microchip system as an efficient and cost-effective solution involving Nanotechnology and Lab-on-a-Chip technology for the rapid detection of bacteria. The system is based on using surface-modified gold nanoparticles for efficient cell lysis followed by microchip PCR without having to remove the nanoparticles from the PCR solution. Poly(quaternary ammonium) modified gold nanoparticles are used to provide a novel and efficient cell lysis method without the need to go through time-consuming, expensive and complicated microfabrication processes as most of current cell lysis methods for Lab-on-a-Chip applications do. It also facilitates the integration of cell lysis and PCR by sharing the same reaction chamber as PCR uses. It is integrated with a prototype microchip PCR system consisting of a physical microchip PCR device and an automated temperature control mechanism. The research work explores solutions for the problem of PCR inhibition caused by gold nanoparticles as well as for the problem of non-specific PCR amplification in the integrated microchip system. It also explores the possibility of greatly reducing PCR cycling time to achieve the same result compared to the protocol for a regular PCR machine. The simplicity of the setup makes it easy to be integrated with other Lab-on-a-Chip functional modules to create customized solutions for target applications.

  16. Automated PCR setup for forensic casework samples using the Normalization Wizard and PCR Setup robotic methods.

    Science.gov (United States)

    Greenspoon, S A; Sykes, K L V; Ban, J D; Pollard, A; Baisden, M; Farr, M; Graham, N; Collins, B L; Green, M M; Christenson, C C

    2006-12-20

    Human genome, pharmaceutical and research laboratories have long enjoyed the application of robotics to performing repetitive laboratory tasks. However, the utilization of robotics in forensic laboratories for processing casework samples is relatively new and poses particular challenges. Since the quantity and quality (a mixture versus a single source sample, the level of degradation, the presence of PCR inhibitors) of the DNA contained within a casework sample is unknown, particular attention must be paid to procedural susceptibility to contamination, as well as DNA yield, especially as it pertains to samples with little biological material. The Virginia Department of Forensic Science (VDFS) has successfully automated forensic casework DNA extraction utilizing the DNA IQ(trade mark) System in conjunction with the Biomek 2000 Automation Workstation. Human DNA quantitation is also performed in a near complete automated fashion utilizing the AluQuant Human DNA Quantitation System and the Biomek 2000 Automation Workstation. Recently, the PCR setup for casework samples has been automated, employing the Biomek 2000 Automation Workstation and Normalization Wizard, Genetic Identity version, which utilizes the quantitation data, imported into the software, to create a customized automated method for DNA dilution, unique to that plate of DNA samples. The PCR Setup software method, used in conjunction with the Normalization Wizard method and written for the Biomek 2000, functions to mix the diluted DNA samples, transfer the PCR master mix, and transfer the diluted DNA samples to PCR amplification tubes. Once the process is complete, the DNA extracts, still on the deck of the robot in PCR amplification strip tubes, are transferred to pre-labeled 1.5 mL tubes for long-term storage using an automated method. The automation of these steps in the process of forensic DNA casework analysis has been accomplished by performing extensive optimization, validation and testing of the

  17. Comparative Evaluation Of Conventional Rt-pcr And Real-time Rt-pcr (rrt-pcr) For Detection Of Avian Metapneumovirus Subtype A [comparação Entre As Técnicas De Rt-pcr Convencional E Rt-pcr Em Tempo Real Para A Detecção Do Metapneumovírus Aviários Subtipo A

    OpenAIRE

    Ferreira H.L.; Spilki F.R.; dos Santos M.M.A.B.; de Almeida R.S.; Arns C.W.

    2009-01-01

    Avian metapneumovirus (AMPV) belongs to Metapneumovirus genus of Paramyxoviridae family. Virus isolation, serology, and detection of genomic RNA are used as diagnostic methods for AMPV. The aim of the present study was to compare the detection of six subgroup A AMPV isolates (AMPV/A) viral RNA by using different conventional and real time RT-PCR methods. Two new RT-PCR tests and two real time RT-PCR tests, both detecting fusion (F) gene and nucleocapsid (N) gene were compared with an establis...

  18. COMPARISON OF A GENUS-SPECIFIC CONVENTIONAL PCR AND A SPECIES-SPECIFIC NESTED-PCR FOR MALARIA DIAGNOSIS USING FTA COLLECTED SAMPLES FROM KINGDOM OF SAUDI ARABIA.

    Science.gov (United States)

    Al-Harthi, Saeed A

    2015-12-01

    Molecular tools are increasingly accepted as the most sensitive and reliable techniques for malaria diagnosis and epidemiological surveys. Also, collection of finger prick blood spots onto filter papers is the most simple and affordable method for samples preservation and posterior molecular analysis, especially in rural endemic regions where malaria remains a major health problem. Two malaria molecular diagnostic tests, a Plasmodium genus-specific conventional PCR and a Plasmodium species-specific Nested PCR, were evaluated using DNA templates prepared from Whatman-FTA cards' dry blood spots using both, Methanol-fixation/Heat-extraction and FTA commercial purification kit. A total of 121 blood samples were collected from six Saudi south-western endemic districts both, as thick and thin films for routine microscopic screening and onto FTA cards for molecular studies. Out of the 121 samples, 75 were P. falciparum positive by at least one technique. No other species of Plasmodium were detected. P. falciparum parasites were identified in 69/75 (92%) samples by microscopic screening in health care centers. P. genus-specific PCR was able to amplify P. falciparum DNA in 41/75 (55%) and 59/75 (79%) samples using Methanol-fixation/Heat-extraction and FTA purification kit, respectively. P. species-specific Nested PCR revealed 68/75 (91%) and 75/75 (100%) positive samples using DNA templates were isolated by Methanol-fixation/Heat- extraction and FTA purification methods, respectively. The species-specific Nested PCR applied to Whatman-FTA preserved and processed blood samples represents the best alternative to classical microscopy for malaria diagnosis, particularly in epidemiological screening.

  19. Bioinformatic tools for PCR Primer design

    African Journals Online (AJOL)

    ES

    reaction (PCR), oligo hybridization and DNA sequencing. Proper primer design is actually one of the most important factors/steps in successful DNA sequencing. Various bioinformatics programs are available for selection of primer pairs from a template sequence. The plethora programs for PCR primer design reflects the.

  20. Emulating a crowded intracellular environment in vitro dramatically improves RT-PCR performance

    International Nuclear Information System (INIS)

    Lareu, Ricky R.; Harve, Karthik S.; Raghunath, Michael

    2007-01-01

    The polymerase chain reaction's (PCR) phenomenal success in advancing fields as diverse as Medicine, Agriculture, Conservation, or Paleontology is based on the ability of using isolated prokaryotic thermostable DNA polymerases in vitro to copy DNA irrespective of origin. This process occurs intracellularly and has evolved to function efficiently under crowded conditions, namely in an environment packed with macromolecules. However, current in vitro practice ignores this important biophysical parameter of life. In order to more closely emulate conditions of intracellular biochemistry in vitro we added inert macromolecules into reverse transcription (RT) and PCR. We show dramatic improvements in all parameters of RT-PCR including 8- to 10-fold greater sensitivity, enhanced polymerase processivity, higher specific amplicon yield, greater primer annealing and specificity, and enhanced DNA polymerase thermal stability. The faster and more efficient reaction kinetics was a consequence of the cumulative molecular and thermodynamic effects of the excluded volume effect created by macromolecular crowding

  1. MULTIPLEX SYBR® GREEN-REAL TIME PCR (qPCR ASSAY FOR THE DETECTION AND DIFFERENTIATION OF Bartonella henselae AND Bartonella clarridgeiae IN CATS

    Directory of Open Access Journals (Sweden)

    Rodrigo Staggemeier

    2014-04-01

    Full Text Available A novel SYBR® green-real time polymerase chain reaction (qPCR was developed to detect two Bartonella species, B. henselae and B. clarridgeiae, directly from blood samples. The test was used in blood samples obtained from cats living in animal shelters in Southern Brazil. Results were compared with those obtained by conventional PCR targeting Bartonella spp. Among the 47 samples analyzed, eight were positive using the conventional PCR and 12 were positive using qPCR. Importantly, the new qPCR detected the presence of both B. henselae and B. clarridgeiae in two samples. The results show that the qPCR described here may be a reliable tool for the screening and differentiation of two important Bartonella species.

  2. Applications of the rep-PCR DNA fingerprinting technique to study microbial diversity, ecology and evolution.

    Science.gov (United States)

    Ishii, Satoshi; Sadowsky, Michael J

    2009-04-01

    A large number of repetitive DNA sequences are found in multiple sites in the genomes of numerous bacteria, archaea and eukarya. While the functions of many of these repetitive sequence elements are unknown, they have proven to be useful as the basis of several powerful tools for use in molecular diagnostics, medical microbiology, epidemiological analyses and environmental microbiology. The repetitive sequence-based PCR or rep-PCR DNA fingerprint technique uses primers targeting several of these repetitive elements and PCR to generate unique DNA profiles or 'fingerprints' of individual microbial strains. Although this technique has been extensively used to examine diversity among variety of prokaryotic microorganisms, rep-PCR DNA fingerprinting can also be applied to microbial ecology and microbial evolution studies since it has the power to distinguish microbes at the strain or isolate level. Recent advancement in rep-PCR methodology has resulted in increased accuracy, reproducibility and throughput. In this minireview, we summarize recent improvements in rep-PCR DNA fingerprinting methodology, and discuss its applications to address fundamentally important questions in microbial ecology and evolution.

  3. Real-time RT-PCR, a necessary tool to support the diagnosis and surveillance of rotavirus in Mexico.

    Science.gov (United States)

    De La Cruz Hernández, Sergio Isaac; Anaya Molina, Yazmin; Gómez Santiago, Fabián; Terán Vega, Heidi Lizbeth; Monroy Leyva, Elda; Méndez Pérez, Héctor; García Lozano, Herlinda

    2018-04-01

    Rotavirus produces diarrhea in children under 5 years old. Most of those conventional methods such as polyacrylamide gel electrophoresis (PAGE) and reverse transcription-polymerase chain reaction (RT-PCR) have been used for rotavirus detection. However, these techniques need a multi-step process to get the results. In comparison with conventional methods, the real-time RT-PCR is a highly sensitive method, which allows getting the results in only one day. In this study a real-time RT-PCR assay was tested using a panel of 440 samples from patients with acute gastroenteritis, and characterized by PAGE and RT-PCR. The results show that the real-time RT-PCR detected rotavirus from 73% of rotavirus-negative samples analyzed by PAGE and RT-PCR; thus, the percentage of rotavirus-positive samples increased to 81%. The results indicate that this real-time RT-PCR should be part of a routine analysis, and as a support of the diagnosis of rotavirus in Mexico. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Validation of chimerism in pediatric recipients of allogeneic hematopoietic stem cell transplantation (HSCT) a comparison between two methods: real-time PCR (qPCR) vs. variable number tandem repeats PCR (VNTR PCR).

    Science.gov (United States)

    Kletzel, Morris; Huang, Wei; Olszewski, Marie; Khan, Sana

    2013-01-01

    Post-hematopoietic stem cell transplantation (HSCT) chimerism monitoring is important to assess relapse and therapeutic intervention. The purpose of our study is to compare two methods variable number tandem repeats (VNTR) vs. quantitative real- time polymerase chain reaction (qPCR) in terms of determining chimerism. 127 (peripheral blood n=112, bone marrow n=15) samples were simultaneously tested by VNTR using APO-B, D1S80, D1S111, D17S30, gene loci SRY and ZP3 and qPCR using 34 assays (CA001-CA034) that are designed to a bi-allelic insertion/deletion (indel) polymorphism in the human genome. Samples were separated in three subsets: total WBC, T-cell and Myeloid cells. Extraction of DNA was performed then quantified. We analyzed column statistics, paired t-test and regression analysis for both methods. There was complete correlation between the two methods. The simplicity and rapidity of the test results from the qPCR method is more efficient and accurate to assess chimerism.

  5. PCR associated with hybridization with DNA radioactive probes for diagnosis of asymptomatic infection caused by Leishmania Chagasi

    International Nuclear Information System (INIS)

    Andrade, Antero Silva Ribeiro de; Moreno, Elizabeth Castro; Gomes, Rosangela Fatima; Melo, Maria Norma de; Carneiro, Mariangela; Fernandes, Octavio

    2002-01-01

    Detection systems for diagnosis of leishmaniasis based on PCR are very promising due to their sensitivity and specificity. Secondary detection by specific radioactive DNA probes, able to type the PCR amplified products, increase the specificity and raise about tem-fold the sensitivity of the assay. The aim of this work was evaluate PCR and hybridization as a tool to identify Leishmania (Leishmania) chagasi (the specie that cause the visceral leishmaniasis in Brazil) infection in asymptomatic persons living in a endemic area. Material and Methods: A group of 226 asymptomatic individuals, living in General Carneiro (MG), was selected. Blood samples were harvested and the DNA extracted from the mononucleate cells. PCR was performed using primers addressed to the kinetoplast DNA minicircles. This protocol gives a positive reaction for all Leishmania species. The amplified products were further hybridized with cloned L.chagasi minicircles labeled with 32 P. Results: were identified 111 samples PCR positive, 2 of them hybridization negative and 133 samples hybridization positive, 24 of them PCR negative. The occurrence of samples with hybridization positive and PCR negative was expected since hybridization, with DNA probes labeled with 32 P, increase the sensitivity of the assay. The samples that presented positive PCR and negative hybridization were probably due the presence of other Leishmania species, likely L. (V.) braziliensis (that produce tegumentary leishmaniasis in the region), since L. (L.) chagasi cloned minicircles were used as hybridization probe. We conclude that this procedure is a valuable tool to access subclinical L. (L.) chagasi infections in epidemiological studies. (author)

  6. Comparison of the performance in detection of HPV infections between the high-risk HPV genotyping real time PCR and the PCR-reverse dot blot assays.

    Science.gov (United States)

    Zhang, Lahong; Dai, Yibei; Chen, Jiahuan; Hong, Liquan; Liu, Yuhua; Ke, Qiang; Chen, Yiwen; Cai, Chengsong; Liu, Xia; Chen, Zhaojun

    2018-01-01

    A new multiplex real-time PCR assay, the high-risk HPV genotyping real time PCR assay (HR HPV RT-PCR), has been developed to detect 15 high-risk HPV types with respective viral loads. In this report, a total of 684 cervical specimens from women diagnosed with vaginitis were assessed by the HR HPV RT-PCR and the PCR reaction and reverse dot blot (PCR-RDB) assays, using a PCR-sequencing method as a reference standard. A total coincidence of 97.7% between the HR HPV RT PCR and the PCR-RDB assays was determined with a Kappa value of 0.953. The HR HPV RT PCR assay had sensitivity, specificity, and concordance rates (accuracy) of 99.7%, 99.7%, and 99.7%, respectively, as confirmed by PCR-sequencing, while the PCR-RDB assay had respective rates of 98.8%, 97.1%, and 98.0%. The overall rate of HPV infection, determined by PCR-sequencing, in women diagnosed with vaginitis was 49.85%, including 36.26% of single infection and 13.6% of multiple infections. The most common infections among the 15 high-risk HPV types in women diagnosed with vaginitis were HPV-52, HPV-16, and HPV-58, with a total detection rate of 10.23%, 7.75%, and 5.85%, respectively. We conclude that the HR HPV RT PCR assay exhibits better clinical performance than the PCR-RDB assay, and is an ideal alternative method for HPV genotyping. In addition, the HR HPV RT PCR assay provides HPV DNA viral loads, and could serve as a quantitative marker in the diagnosis and treatment of single and multiple HPV infections. © 2017 Wiley Periodicals, Inc.

  7. Digital PCR as a tool to measure HIV persistence.

    Science.gov (United States)

    Rutsaert, Sofie; Bosman, Kobus; Trypsteen, Wim; Nijhuis, Monique; Vandekerckhove, Linos

    2018-01-30

    Although antiretroviral therapy is able to suppress HIV replication in infected patients, the virus persists and rebounds when treatment is stopped. In order to find a cure that can eradicate the latent reservoir, one must be able to quantify the persisting virus. Traditionally, HIV persistence studies have used real-time PCR (qPCR) to measure the viral reservoir represented by HIV DNA and RNA. Most recently, digital PCR is gaining popularity as a novel approach to nucleic acid quantification as it allows for absolute target quantification. Various commercial digital PCR platforms are nowadays available that implement the principle of digital PCR, of which Bio-Rad's QX200 ddPCR is currently the most used platform in HIV research. Quantification of HIV by digital PCR is proving to be a valuable improvement over qPCR as it is argued to have a higher robustness to mismatches between the primers-probe set and heterogeneous HIV, and forfeits the need for a standard curve, both of which are known to complicate reliable quantification. However, currently available digital PCR platforms occasionally struggle with unexplained false-positive partitions, and reliable segregation between positive and negative droplets remains disputed. Future developments and advancements of the digital PCR technology are promising to aid in the accurate quantification and characterization of the persistent HIV reservoir.

  8. Interlaboratory comparison of real-time pcr protocols for quantification of general fecal indicator bacteria

    Science.gov (United States)

    Shanks, O.C.; Sivaganesan, M.; Peed, L.; Kelty, C.A.; Blackwood, A.D.; Greene, M.R.; Noble, R.T.; Bushon, R.N.; Stelzer, E.A.; Kinzelman, J.; Anan'Eva, T.; Sinigalliano, C.; Wanless, D.; Griffith, J.; Cao, Y.; Weisberg, S.; Harwood, V.J.; Staley, C.; Oshima, K.H.; Varma, M.; Haugland, R.A.

    2012-01-01

    The application of quantitative real-time PCR (qPCR) technologies for the rapid identification of fecal bacteria in environmental waters is being considered for use as a national water quality metric in the United States. The transition from research tool to a standardized protocol requires information on the reproducibility and sources of variation associated with qPCR methodology across laboratories. This study examines interlaboratory variability in the measurement of enterococci and Bacteroidales concentrations from standardized, spiked, and environmental sources of DNA using the Entero1a and GenBac3 qPCR methods, respectively. Comparisons are based on data generated from eight different research facilities. Special attention was placed on the influence of the DNA isolation step and effect of simplex and multiplex amplification approaches on interlaboratory variability. Results suggest that a crude lysate is sufficient for DNA isolation unless environmental samples contain substances that can inhibit qPCR amplification. No appreciable difference was observed between simplex and multiplex amplification approaches. Overall, interlaboratory variability levels remained low (<10% coefficient of variation) regardless of qPCR protocol. ?? 2011 American Chemical Society.

  9. Determining Fungi rRNA Copy Number by PCR

    Science.gov (United States)

    The goal of this project is to improve the quantification of indoor fungal pollutants via the specific application of quantitative PCR (qPCR). Improvement will be made in the controls used in current qPCR applications. This work focuses on the use of two separate controls within ...

  10. The diagnosis of microorganism involved in infective endocarditis (IE by polymerase chain reaction (PCR and real-time PCR: A systematic review

    Directory of Open Access Journals (Sweden)

    Reza Faraji

    2018-02-01

    Full Text Available Broad-range bacterial rDNA polymerase chain reaction (PCR followed by sequencing may be identified as the etiology of infective endocarditis (IE from surgically removed valve tissue; therefore, we reviewed the value of molecular testing in identifying organisms' DNA in the studies conducted until 2016. We searched Google Scholar, Scopus, ScienceDirect, Cochrane, PubMed, and Medline electronic databases without any time limitations up to December 2016 for English studies reporting microorganisms involved in infective endocarditis microbiology using PCR and real-time PCR. Most studies were prospective. Eleven out of 12 studies used valve tissue samples and blood cultures while only 1 study used whole blood. Also, 10 studies used the molecular method of PCR while 2 studies used real-time PCR. Most studies used 16S rDNA gene as the target gene. The bacteria were identified as the most common microorganisms involved in infective endocarditis. Streptococcus spp. and Staphylococcus spp. were, by far, the most predominant bacteria detected. In all studies, PCR and real-time PCR identified more pathogens than blood and tissue cultures; moreover, the sensitivity and specificity of PCR and real-time PCR were more than cultures in most of the studies. The highest sensitivity and specificity were 96% and 100%, respectively. The gram positive bacteria were the most frequent cause of infective endocarditis. The molecular methods enjoy a greater sensitivity compared to the conventional blood culture methods; yet, they are applicable only to the valve tissue of the patients undergoing cardiac valve surgery.

  11. The diagnosis of microorganism involved in infective endocarditis (IE) by polymerase chain reaction (PCR) and real-time PCR: A systematic review.

    Science.gov (United States)

    Faraji, Reza; Behjati-Ardakani, Mostafa; Moshtaghioun, Seyed Mohammad; Kalantar, Seyed Mehdi; Namayandeh, Seyedeh Mahdieh; Soltani, Mohammadhossien; Emami, Mahmood; Zandi, Hengameh; Firoozabadi, Ali Dehghani; Kazeminasab, Mahmood; Ahmadi, Nastaran; Sarebanhassanabadi, Mohammadtaghi

    2018-02-01

    Broad-range bacterial rDNA polymerase chain reaction (PCR) followed by sequencing may be identified as the etiology of infective endocarditis (IE) from surgically removed valve tissue; therefore, we reviewed the value of molecular testing in identifying organisms' DNA in the studies conducted until 2016. We searched Google Scholar, Scopus, ScienceDirect, Cochrane, PubMed, and Medline electronic databases without any time limitations up to December 2016 for English studies reporting microorganisms involved in infective endocarditis microbiology using PCR and real-time PCR. Most studies were prospective. Eleven out of 12 studies used valve tissue samples and blood cultures while only 1 study used whole blood. Also, 10 studies used the molecular method of PCR while 2 studies used real-time PCR. Most studies used 16S rDNA gene as the target gene. The bacteria were identified as the most common microorganisms involved in infective endocarditis. Streptococcus spp. and Staphylococcus spp. were, by far, the most predominant bacteria detected. In all studies, PCR and real-time PCR identified more pathogens than blood and tissue cultures; moreover, the sensitivity and specificity of PCR and real-time PCR were more than cultures in most of the studies. The highest sensitivity and specificity were 96% and 100%, respectively. The gram positive bacteria were the most frequent cause of infective endocarditis. The molecular methods enjoy a greater sensitivity compared to the conventional blood culture methods; yet, they are applicable only to the valve tissue of the patients undergoing cardiac valve surgery. Copyright © 2017. Published by Elsevier Taiwan.

  12. Product differentiation during continuous-flow thermal gradient PCR.

    Science.gov (United States)

    Crews, Niel; Wittwer, Carl; Palais, Robert; Gale, Bruce

    2008-06-01

    A continuous-flow PCR microfluidic device was developed in which the target DNA product can be detected and identified during its amplification. This in situ characterization potentially eliminates the requirement for further post-PCR analysis. Multiple small targets have been amplified from human genomic DNA, having sizes of 108, 122, and 134 bp. With a DNA dye in the PCR mixture, the amplification and unique melting behavior of each sample is observed from a single fluorescent image. The melting behavior of the amplifying DNA, which depends on its molecular composition, occurs spatially in the thermal gradient PCR device, and can be observed with an optical resolution of 0.1 degrees C pixel(-1). Since many PCR cycles are within the field of view of the CCD camera, melting analysis can be performed at any cycle that contains a significant quantity of amplicon, thereby eliminating the cycle-selection challenges typically associated with continuous-flow PCR microfluidics.

  13. Comparative evaluation of the nested ITS PCR against the 18S PCR-RFLP in a survey of bovine trypanosomiasis in Kwale County, Kenya.

    Science.gov (United States)

    Odongo, Steven; Delespaux, Vincent; Ngotho, Maina; Bekkele, Serkalem Mindaye; Magez, Stefan

    2016-09-01

    We compared the nested internal transcribed spacer (ITS) PCR and the 18S PCR-RFLP (restriction-fragment length polymorphism) pan-trypanosome assays in a cross-sectional survey of bovine trypanosomiasis in 358 cattle in Kwale County, Kenya. The prevalence of trypanosomiasis as determined by the nested ITS PCR was 19.6% (70/358) and by 18S PCR-RFLP was 16.8% (60/358). Of the pathogenic trypanosomes detected, the prevalence of Trypanosoma congolense and Trypanosoma vivax was greater than that of Trypanosoma simiae The nested ITS PCR detected 83 parasite events, whereas the 18S PCR-RFLP detected 64; however, overall frequencies of infections and the parasite events detected did not differ between the assays (χ(2) = 0.8, df = 1, p > 0.05 and χ(2) = 2.5, df = 1, p > 0.05, respectively). The kappa statistic (0.8) showed good agreement between the tests. The nested ITS PCR and the 18S PCR-RFLP had comparable sensitivity, although the nested ITS PCR was better at detecting mixed infections (χ(2) = 5.4, df = 1, p < 0.05). © 2016 The Author(s).

  14. Multiplexed Single Intact Cell Droplet Digital PCR (MuSIC ddPCR) Method for Specific Detection of Enterohemorrhagic E. coli (EHEC) in Food Enrichment Cultures.

    Science.gov (United States)

    McMahon, Tanis C; Blais, Burton W; Wong, Alex; Carrillo, Catherine D

    2017-01-01

    Foodborne illness attributed to enterohemorrhagic E. coli (EHEC), a highly pathogenic subset of Shiga toxin-producing E. coli (STEC), is increasingly recognized as a significant public health issue. Current microbiological methods for identification of EHEC in foods often use PCR-based approaches to screen enrichment broth cultures for characteristic gene markers [i.e., Shiga toxin ( stx ) and intimin ( eae )]. However, false positives arise when complex food matrices, such as beef, contain mixtures of eae -negative STEC and eae -positive E. coli , but no EHEC with both markers in a single cell. To reduce false-positive detection of EHEC in food enrichment samples, a Multiplexed, Single Intact Cell droplet digital PCR (MuSIC ddPCR) assay capable of detecting the co-occurrence of the stx and eae genes in a single bacterial cell was developed. This method requires: (1) dispersal of intact bacteria into droplets; (2) release of genomic DNA (gDNA) by heat lysis; and (3) amplification and detection of genetic targets ( stx and eae ) using standard TaqMan chemistries with ddPCR. Performance of the method was tested with panels of EHEC and non-target E. coli . By determining the linkage (i.e., the proportion of droplets in which stx and eae targets were both amplified), samples containing EHEC (typically greater than 20% linkage) could be distinguished from samples containing mixtures of eae -negative STEC and eae -positive E. coli (0-2% linkage). The use of intact cells was necessary as this linkage was not observed with gDNA extracts. EHEC could be accurately identified in enrichment broth cultures containing excess amounts of background E. coli and in enrichment cultures derived from ground beef/pork and leafy-green produce samples. To our knowledge, this is the first report of dual-target detection in single bacterial cells using ddPCR. The application of MuSIC ddPCR to enrichment-culture screening would reduce false-positives, thereby improving the cost, speed, and

  15. A comparison of QuantStudio™ 3D Digital PCR and ARMS-PCR for measuring plasma EGFR T790M mutations of NSCLC patients.

    Science.gov (United States)

    Feng, Qin; Gai, Fei; Sang, Yaxiong; Zhang, Jie; Wang, Ping; Wang, Yue; Liu, Bing; Lin, Dongmei; Yu, Yang; Fang, Jian

    2018-01-01

    The AURA3 clinical trial has shown that advanced non-small cell lung cancer (NSCLC) patients with EGFR T790M mutations in circulating tumor DNA (ctDNA) could benefit from osimertinib. The aim of this study was to assess the usefulness of QuantStudio™ 3D Digital PCR System platform for the detection of plasma EGFR T790M mutations in NSCLC patients, and compare the performances of 3D Digital PCR and ARMS-PCR. A total of 119 Chinese patients were enrolled in this study. Mutant allele frequency of plasma EGFR T790M was detected by 3D Digital PCR, then 25 selected samples were verified by ARMS-PCR and four of them were verified by next generation sequencing (NGS). In total, 52.94% (69/119) had EGFR T790M mutations detected by 3D Digital PCR. In 69 positive samples, the median mutant allele frequency (AF) was 1.09% and three cases presented low concentration (AF Digital PCR) was identified as T790M- by ARMS-PCR. Four samples were identified as T790M+ by both NGS and 3D Digital PCR, and typically three samples (3/4) presented at a low ratio (AF Digital PCR is a novel method with high sensitivity and specificity to detect EGFR T790M mutation in plasma.

  16. Detection of Legionella species in environmental water by the quantitative PCR method in combination with ethidium monoazide treatment.

    Science.gov (United States)

    Inoue, Hiroaki; Takama, Tomoko; Yoshizaki, Miwa; Agata, Kunio

    2015-01-01

    We detected Legionella species in 111 bath water samples and 95 cooling tower water samples by using a combination of conventional plate culture, quantitative polymerase chain reaction (qPCR) and qPCR combined with ethidium monoazide treatment (EMA-qPCR) methods. In the case of bath water samples, Legionella spp. were detected in 30 samples by plate culture, in 85 samples by qPCR, and in 49 samples by EMA-qPCR. Of 81 samples determined to be Legionella-negative by plate culture, 56 and 23 samples were positive by qPCR and EMA-qPCR, respectively. Therefore, EMA treatment decreased the number of Legionella-positive bath water samples detected by qPCR. In contrast, EMA treatment had no effect on cooling tower water samples. We therefore expect that EMA-qPCR is a useful method for the rapid detection of viable Legionella spp. from bath water samples.

  17. Designing multiplex PCR system of Campylobacter jejuni for efficient typing by improving monoplex PCR binary typing method.

    Science.gov (United States)

    Yamada, Kazuhiro; Ibata, Ami; Suzuki, Masahiro; Matsumoto, Masakado; Yamashita, Teruo; Minagawa, Hiroko; Kurane, Ryuichiro

    2015-01-01

    Campylobacter jejuni is responsible for the majority of Campylobacter infections. As the molecular epidemiological study of outbreaks, pulsed-field gel electrophoresis (PFGE) is performed in general. But PFGE has several problems. PCR binary typing (P-BIT) method is a typing method for Campylobacter spp. that was recently developed, and was reported to have a similar discriminatory power and stability to those of PFGE. We modified the P-BIT method from 18 monoplex PCRs to two multiplex PCR systems (mP-BIT). The same results were obtained from monoplex PCRs using original primers and multiplex PCR in the representative isolates. The mP-BIT can analyze 48 strains at a time by using 96-well PCR systems and can identify C. jejuni because mP-BIT includes C. jejuni marker. The typing of the isolates by the mP-BIT and PFGE demonstrated generally concordant results and the mP-BIT method (D = 0.980) has a similar discriminatory power to that of PFGE with SmaI digest (D = 0.975) or KpnI digest (D = 0.987) as with original article. The mP-BIT method is quick, simple and easy, and comes to be able to perform it at low cost by having become a multiplex PCR system. Therefore, the mP-BIT method with two multiplex PCR systems has high potential for a rapid first-line surveillance typing assay of C. jejuni and can be used for routine surveillance and outbreak investigations of C. jejuni in the future. Copyright © 2014 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  18. Immuno-PCR, a new technique for the serodiagnosis of tuberculosis.

    Science.gov (United States)

    Mehta, Promod K; Dahiya, Bhawna; Sharma, Suman; Singh, Netrapal; Dharra, Renu; Thakur, Zoozeal; Mehta, Neeru; Gupta, Krishna B; Gupta, Mahesh C; Chaudhary, Dhruva

    2017-08-01

    Rapid and accurate diagnosis of tuberculosis (TB) is essential to control the disease. The conventional microbiological tests have limitations and there is an urgent need to devise a simple, rapid and reliable point-of-care (POC) test. The failure of TB diagnostic tests based on antibody detection due to inconsistent and imprecise results has stimulated renewed interest in the development of rapid antigen detection methods. However, the World Health Organization (WHO) has emphasized to continue research for designing new antibody-based detection tests with improved accuracy. Immuno-polymerase chain reaction (I-PCR) combines the simplicity and versatility of enzyme-linked immunosorbent assay (ELISA) with the exponential amplification capacity and sensitivity of PCR thus leading to several-fold increase in sensitivity in comparison to analogous ELISA. In this review, we have described the serodiagnostic potential of I-PCR assays for an early diagnosis of TB based on the detection of potential mycobacterial antigens and circulating antibodies in body fluids of TB patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. PCR+ In Diesel Fuels and Emissions Research

    Energy Technology Data Exchange (ETDEWEB)

    McAdams, H.T.

    2002-04-15

    In past work for the U.S. Department of Energy (DOE) and Oak Ridge National Laboratory (ORNL), PCR+ was developed as an alternative methodology for building statistical models. PCR+ is an extension of Principal Components Regression (PCR), in which the eigenvectors resulting from Principal Components Analysis (PCA) are used as predictor variables in regression analysis. The work was motivated by the observation that most heavy-duty diesel (HDD) engine research was conducted with test fuels that had been ''concocted'' in the laboratory to vary selected fuel properties in isolation from each other. This approach departs markedly from the real world, where the reformulation of diesel fuels for almost any purpose leads to changes in a number of interrelated properties. In this work, we present new information regarding the problems encountered in the conventional approach to model-building and how the PCR+ method can be used to improve research on the relationship between fuel characteristics and engine emissions. We also discuss how PCR+ can be applied to a variety of other research problems related to diesel fuels.

  20. Cutaneous and visceral leishmaniasis co-infection in dogs from Rio de Janeiro, Brazil: evaluation by specific PCR and RFLP-PCR assays

    Directory of Open Access Journals (Sweden)

    Marize Quinhones Pires

    2014-04-01

    Full Text Available Introduction During a diagnostic evaluation of canine visceral leishmaniasis (VL, two of seventeen dogs were found to be co-infected by Leishmania (Viannia braziliensis and Leishmania (Leishmania chagasi. Methods Specific polymerase chain reaction (PCR and restriction fragment length polymorphism-PCR (RFLP-PCR assays were performed. Results PCR assays for Leishmania subgenus identification followed by RFLP-PCR analysis in biopsies from cutaneous lesions and the spleen confirmed the presence of Leishmania (Viannia braziliensis and Leishmania (Leishmania chagasi in those fragments. Conclusions This report reinforces the importance of using serological and molecular techniques in the epidemiological surveillance of canine populations in endemic areas in which both diseases are known to co-exist. In such cases, a reassessment of the control measures is required.

  1. Simultaneous detection of enteropathogenic viruses in buffalos faeces using multiplex reverse transcription-polymerase chain reaction (mRT-PCR

    Directory of Open Access Journals (Sweden)

    U. Pagnini

    2010-02-01

    Full Text Available A multiplex reverse transcription- polymerase chain reaction (mRT-PCR assay that detects Bovine Viral Diarrhoea Virus, Bovine Coronavirus, and Group A Rotaviruses in infected cell-culture fluids and clinical faecal samples is described. One hundred twenty faecal samples from buffalo calves with acute gastroenteritis were tested. The mRT-PCR was validated against simplex RT-PCR with published primers for Pestivirus, Coronavirus and Rotavirus. The multiplex RT-PCR was equally sensitive and specific in detecting viral infections compared with simplex RT-PCR. The mRT-PCR readily identified viruses by discriminating the size of their amplified gene products. This mRT-PCR may be a sensitive and rapid assay for surveillance of buffalo enteric viruses in field specimens. This novel multiplex RT-PCR is an attractive technique for the rapid, specific, and cost-effective laboratory diagnosis of acute gastroenteritis.

  2. Modeling qRT-PCR dynamics with application to cancer biomarker quantification.

    Science.gov (United States)

    Chervoneva, Inna; Freydin, Boris; Hyslop, Terry; Waldman, Scott A

    2017-01-01

    Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is widely used for molecular diagnostics and evaluating prognosis in cancer. The utility of mRNA expression biomarkers relies heavily on the accuracy and precision of quantification, which is still challenging for low abundance transcripts. The critical step for quantification is accurate estimation of efficiency needed for computing a relative qRT-PCR expression. We propose a new approach to estimating qRT-PCR efficiency based on modeling dynamics of polymerase chain reaction amplification. In contrast, only models for fluorescence intensity as a function of polymerase chain reaction cycle have been used so far for quantification. The dynamics of qRT-PCR efficiency is modeled using an ordinary differential equation model, and the fitted ordinary differential equation model is used to obtain effective polymerase chain reaction efficiency estimates needed for efficiency-adjusted quantification. The proposed new qRT-PCR efficiency estimates were used to quantify GUCY2C (Guanylate Cyclase 2C) mRNA expression in the blood of colorectal cancer patients. Time to recurrence and GUCY2C expression ratios were analyzed in a joint model for survival and longitudinal outcomes. The joint model with GUCY2C quantified using the proposed polymerase chain reaction efficiency estimates provided clinically meaningful results for association between time to recurrence and longitudinal trends in GUCY2C expression.

  3. Diagnosis of trichomonas vaginalis infection by PCR

    International Nuclear Information System (INIS)

    Issa, R.M.; Shalaby, M.A.

    2007-01-01

    To compare the sensitivity of PCR, wet preparation and culture in detecting Trichomonas vaginalis in urine and vaginal fluid. A PCR targeting the beta-tubulin genes of T. vaginalis was used for the detection of the organism in both vaginal swab and urine specimens from infected patients. Random urine samples were collected from 30 patients (23 females and 7 males), and tested for T. vaginalis by wet preparation and the Inpouch T. vaginalis culture systeme. Two vaginal swabs were collected by each woman. PCR detection. was carried out on samples negative by first methods. The positive result was found in 28.57% in male urine and 39.13% in female urine samples, 65.21% in 1st swab and 78.26 % in 2nd swab by wet preparation. By culture, the male urine samples showed 42.85% positive, female urine 69.56% while 1st swab showed 86.95% positive and 2nd swab 91.30% positive. All negative cases by culture in urine and vaginal samples were tested by PCR, which showed 2 cases to be positive in male urine samples and 5 cases positive in female urine sample. PCR assay was as good as or more sensitive than wet preparation and culture and resulted in practical advantage of providing results in shorter time. However, PCR test is still very expensive. (author)

  4. Evaluation of kDNA PCR hybridization and ITS1 nPCR methods in different clinical samples for visceral leishmaniasis diagnosis in dogs with and without clinical signs

    International Nuclear Information System (INIS)

    Ferreira, Aline Leandra C.; Carregal, Virginia M.; Leite, Rodrigo S.; Ferreira, Sidney A.; Andrade, Antero Silva R.; Melo, Maria N.

    2013-01-01

    Visceral leishmaniasis (VL) in Brazil is caused by Leishmania infantum and dogs are considered the main domestic reservoirs of this parasite. The VL control program in Brazil emphasizes the use of serological surveys, followed by elimination of seropositive dogs. However, serologic tests have limitations in terms of sensitivity and specificity. Molecular methods such as PCR (Polymerase Chain Reaction) associated with hybridization using 32 P radiolabeled DNA probes (kDNA PCR hybridization) are useful tools in this scenario, since they are more specific and sensitive than conventional methods. A variety of samples can be employed with PCR; however non-invasive procedures are the most adequate. One of main obstacles for implementation of PCR in the canine visceral leishmaniasis (CVL) diagnosis is the lack of standardization. Few studies up to the moment compared the effectiveness of the different PCR methods and clinical samples available. The objective of this study was to compare the kDNA PCR hybridization and the Internal Transcribed Spacer 1 nested PCR (ITS1 nPCR) methods and four types of clinical samples for the diagnosis of CVL in dogs with and without clinical signs of the disease. The methods were compared using samples of conjunctival swab (SC), bone marrow (BM), skin (S) and peripheral blood (PB). A group of 60 mongrel dogs, all positive in serological and parasitological tests, were equally divided in two groups: S (with clinical signs) and A (without clinical signs). The frequencies of positive results for the kDNA PCR hybridization in the S group were: CS 97% (29/30), BM 83 % (25/30), S 63% (19/30) and PB 4 7% (14/30). By the same method the following results were obtained in the A group: CS 70% (21/30), BM 63% (19/30), S 57% (17/30) and PB 17% (5/30). The ITS1 nPCR allowed the following positivities for the S group: CS 83% (25/30), BM 97% (29/30), S 83% (25/30) and PB 70% (21/30). For the A group the following results were obtained: CS and BM 83% (25

  5. Evaluation of kDNA PCR hybridization and ITS1 nPCR methods in different clinical samples for visceral leishmaniasis diagnosis in dogs with and without clinical signs

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Aline Leandra C.; Carregal, Virginia M.; Leite, Rodrigo S.; Ferreira, Sidney A.; Andrade, Antero Silva R., E-mail: alineleandra@hotmail.com, E-mail: streptos@hotmail.com, E-mail: rleite2005@gmail.com, E-mail: vidasnino@yahoo.com.br, E-mail: antero@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Lab. de Radiobiologia; Melo, Maria N., E-mail: melo@icb.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Parasitologia

    2013-07-01

    Visceral leishmaniasis (VL) in Brazil is caused by Leishmania infantum and dogs are considered the main domestic reservoirs of this parasite. The VL control program in Brazil emphasizes the use of serological surveys, followed by elimination of seropositive dogs. However, serologic tests have limitations in terms of sensitivity and specificity. Molecular methods such as PCR (Polymerase Chain Reaction) associated with hybridization using {sup 32}P radiolabeled DNA probes (kDNA PCR hybridization) are useful tools in this scenario, since they are more specific and sensitive than conventional methods. A variety of samples can be employed with PCR; however non-invasive procedures are the most adequate. One of main obstacles for implementation of PCR in the canine visceral leishmaniasis (CVL) diagnosis is the lack of standardization. Few studies up to the moment compared the effectiveness of the different PCR methods and clinical samples available. The objective of this study was to compare the kDNA PCR hybridization and the Internal Transcribed Spacer 1 nested PCR (ITS1 nPCR) methods and four types of clinical samples for the diagnosis of CVL in dogs with and without clinical signs of the disease. The methods were compared using samples of conjunctival swab (SC), bone marrow (BM), skin (S) and peripheral blood (PB). A group of 60 mongrel dogs, all positive in serological and parasitological tests, were equally divided in two groups: S (with clinical signs) and A (without clinical signs). The frequencies of positive results for the kDNA PCR hybridization in the S group were: CS 97% (29/30), BM 83 % (25/30), S 63% (19/30) and PB 4 7% (14/30). By the same method the following results were obtained in the A group: CS 70% (21/30), BM 63% (19/30), S 57% (17/30) and PB 17% (5/30). The ITS1 nPCR allowed the following positivities for the S group: CS 83% (25/30), BM 97% (29/30), S 83% (25/30) and PB 70% (21/30). For the A group the following results were obtained: CS and BM 83

  6. Nested PCR Biases in Interpreting Microbial Community Structure in 16S rRNA Gene Sequence Datasets.

    Science.gov (United States)

    Yu, Guoqin; Fadrosh, Doug; Goedert, James J; Ravel, Jacques; Goldstein, Alisa M

    2015-01-01

    Sequencing of the PCR-amplified 16S rRNA gene has become a common approach to microbial community investigations in the fields of human health and environmental sciences. This approach, however, is difficult when the amount of DNA is too low to be amplified by standard PCR. Nested PCR can be employed as it can amplify samples with DNA concentration several-fold lower than standard PCR. However, potential biases with nested PCRs that could affect measurement of community structure have received little attention. In this study, we used 17 DNAs extracted from vaginal swabs and 12 DNAs extracted from stool samples to study the influence of nested PCR amplification of the 16S rRNA gene on the estimation of microbial community structure using Illumina MiSeq sequencing. Nested and standard PCR methods were compared on alpha- and beta-diversity metrics and relative abundances of bacterial genera. The effects of number of cycles in the first round of PCR (10 vs. 20) and microbial diversity (relatively low in vagina vs. high in stool) were also investigated. Vaginal swab samples showed no significant difference in alpha diversity or community structure between nested PCR and standard PCR (one round of 40 cycles). Stool samples showed significant differences in alpha diversity (except Shannon's index) and relative abundance of 13 genera between nested PCR with 20 cycles in the first round and standard PCR (Pnested PCR with 10 cycles in the first round and standard PCR. Operational taxonomic units (OTUs) that had low relative abundance (sum of relative abundance 27% of total OTUs in stool). Nested PCR introduced bias in estimated diversity and community structure. The bias was more significant for communities with relatively higher diversity and when more cycles were applied in the first round of PCR. We conclude that nested PCR could be used when standard PCR does not work. However, rare taxa detected by nested PCR should be validated by other technologies.

  7. Comparison of clinical samples for visceral Leishmaniasis diagnosis in asymptomatic dogs by PCR hybridization

    International Nuclear Information System (INIS)

    Ferreira, Sidney A.; Ituassu, Leonardo T.; Melo, Maria N.

    2009-01-01

    The canine visceral leishmaniasis (CVL) diagnosis still represents a challenge because of complexity of this disease. The aim of present study was to compare different clinical samples for diagnosis of CVL by Polymerase Chain Reaction (PCR) combined with hybridization of 32 P labeled probes. Bone marrow (BM), skin biopsy (SB), peripheral blood (PB) and conjunctival swab (CS) were used in this work. With this purpose 40 asymptomatic dogs, all positive by parasitological test, were obtained. From each animal were collected SB with sterile punches from ear internal surface, 1.0 mL of PB, BM aspirates from sternum and CS from both lower eyelid. Each clinical sample was submitted to suitable DNA purification process and PCR-hybridization assays. The positive results obtained with PCR were 55%, 25%, 30% and 22.5% for CS, BM, SB and PB respectively while the PCR followed by hybridization showed a positivity of 87.5%, 50%, 45% and 27.5% respectively. The hybridization assay was able to increase the PCR positivity in all kinds of clinical samples. The best performance was obtained using CS samples. We concluded that the PCR associated with DNA radioactive probes was a very sensitive tool for diagnosis of CVL in asymptomatic dogs and the CS has an important potential for regular screening of dogs. (author)

  8. Development of Nested-PCR Assay to Detect Acidovorax citrulli, a Causal Agent of Bacterial Fruit Blotch at Cucurbitaceae

    Directory of Open Access Journals (Sweden)

    Young-Tak Kim

    2015-06-01

    Full Text Available The specific and sensitive nested-PCR method to detect Acidovorax citrulli, a causal agent of bacterial fruit blotch on cucurbitaceae, was developed. PCR primers were designed from the draft genome sequence which was obtained with the Next Generation Sequencing of A. citrulli KACC10651, and the nested-PCR primer set (Ac-ORF 21F/Ac-ORF 21R were selected by checking of specificity to A. citrulli with PCR assays. The selected nested-PCR primer amplified the 140 bp DNA only from A. citrulli strains, and detection sensitivity of the nested PCR increased 10,000 times of 1st PCR detection limit (10 ng genomic DNA/PCR. The nested PCR detected A. citrulli from the all samples of seed surface wash (external seed detection of the artificially inoculated watermelon seeds with 101 cfu/ml and above population of A. citrulli while the nested PCR could not detected A. citrulli from the mashed seed suspension (internal seed detection of the all artificially inoculated watermelon seeds. When the naturally infested watermelon seeds (10% seed infested rate with grow-out test used, the nested PCR detected A. citrulli from 2 seed samples out of 10 replication samples externally and 5 seed samples out of 10 replication samples internally. We believe that the nested-PCR developed in this study will be useful method to detect A. citrulli from the Cucurbitaceae seeds.

  9. Multiple displacement amplification as an adjunct to PCR-based detection of Staphylococcus aureus in synovial fluid

    Directory of Open Access Journals (Sweden)

    Johnson Sandra

    2010-10-01

    Full Text Available Abstract Background Detection of bacterial nucleic acids in synovial fluid following total joint arthroplasty with suspected infection can be difficult; among other technical challenges, inhibitors in the specimens require extensive sample preparation and can diminish assay sensitivity even using polymerase chain reaction (PCR-based methods. To address this problem a simple protocol for prior use of multiple displacement amplification (MDA as an adjunct to PCR was established and tested on both purified S. aureus DNA as well as on clinical samples known to contain S. aureus nucleic acids. Findings A single round of MDA on purified nucleic acids resulted in a > 300 thousand-fold increase in template DNA on subsequent quantitative PCR (qPCR analysis. MDA use on clinical samples resulted in at least a 100-fold increase in sensitivity on subsequent qPCR and required no sample preparation other than a simple alkali/heat lysis step. Mixed samples of S. aureus DNA with a 103 - 104-fold excess of human genomic DNA still allowed for MDA amplification of the minor bacterial component to the threshold of detectability. Conclusion MDA is a promising technique that may serve to significantly enhance the sensitivity of molecular assays in cases of suspected joint infection while simultaneously reducing the specimen handling required.

  10. Detection of methylated CDO1 in plasma of colorectal cancer; a PCR study.

    Directory of Open Access Journals (Sweden)

    Keishi Yamashita

    Full Text Available BACKGROUND: Cysteine biology is important for the chemosensitivity of cancer cells. Our research has focused on the epigenetic silencing of cysteine dioxygenase type 1 (CDO1 in colorectal cancer (CRC. In this study, we describe detection of CDO1 methylation in the plasma of CRC patients using methylation specific PCR (Q-MSP and extensive analysis of the PCR reaction. METHODS: DNA was extracted from plasma, and analysed for methylation of the CDO1 gene using Q-MSP. The detection rate of CDO1 gene methylation was calculated and compared with that of diluted DNA extracted from "positive control" DLD1 cells. CDO1 gene methylation in the plasma of 40 CRC patients that were clinicopathologically analysed was then determined. RESULTS: (1 The cloned sequence analysis detected 93.3% methylation of the promoter CpG islands of the CDO1 gene of positive control DLD1 cells and 4.7% methylation of the negative control HepG2 CDO1 gene. (2 DLD1 CDO1 DNA could not be detected in this assay if the extracted DNA was diluted ∼1000 fold. The more DNA that was used for the PCR reaction, the more effectively it was amplified in Q-MSP. (3 By increasing the amount of DNA used, methylated CDO1 could be clearly detected in the plasma of 8 (20% of the CRC patients. However, the percentage of CRC patients detected by methylated CDO1 in plasma was lower than that detected by CEA (35.9% or CA19-9 (23.1% in preoperative serum. Combination of CEA/CA19-9 plus plasma methylated CDO1 could increase the rate of detection of curable CRC patients (39.3% as compared to CEA/CA19-9 (25%. CONCLUSION: We have described detection of CDO1 methylation in the plasma of CRC patients. Although CDO1 methylation was not detected as frequently as conventional tumor markers, analysis of plasma CDO1 methylation in combination with CEA/CA19-9 levels increases the detection rate of curable CRC patients.

  11. Development and validation of duplex, triplex, and pentaplex real-time PCR screening assays for the detection of genetically modified organisms in food and feed.

    Science.gov (United States)

    Huber, Ingrid; Block, Annette; Sebah, Daniela; Debode, Frédéric; Morisset, Dany; Grohmann, Lutz; Berben, Gilbert; Stebih, Dejan; Milavec, Mojca; Zel, Jana; Busch, Ulrich

    2013-10-30

    Worldwide, qualitative methods based on PCR are most commonly used as screening tools for genetically modified material in food and feed. However, the increasing number and diversity of genetically modified organisms (GMO) require effective methods for simultaneously detecting several genetic elements marking the presence of transgenic events. Herein we describe the development and validation of a pentaplex, as well as complementary triplex and duplex real-time PCR assays, for the detection of the most common screening elements found in commercialized GMOs: P-35S, T-nos, ctp2-cp4-epsps, bar, and pat. The use of these screening assays allows the coverage of many GMO events globally approved for commercialization. Each multiplex real-time PCR assay shows high specificity and sensitivity with an absolute limit of detection below 20 copies for the targeted sequences. We demonstrate by intra- and interlaboratory tests that the assays are robust as well as cost- and time-effective for GMO screening if applied in routine GMO analysis.

  12. Limitations of Using Propidium Monoazide with qPCR to Discriminate between Live and Dead in Biofilm Samples

    Directory of Open Access Journals (Sweden)

    Michael J. Taylor

    2014-01-01

    Full Text Available Accurately quantifying Legionella for regulatory purposes to protect public health is essential. Real-time PCR (qPCR has been proposed as a better method for detecting and enumerating Legionella in samples than conventional culture method. However, since qPCR amplifies any target DNA in the sample, the technique's inability to discriminate between live and dead cells means that counts are generally significantly overestimated. Propidium monoazide (PMA has been used successfully in qPCR to aid live/dead discrimination. We tested PMA use as a method to count only live Legionella cells in samples collected from a modified chemostat that generates environmentally comparable samples. Counts from PMA-treated samples that were pretreated with either heat or three types of disinfectants (to kill the cells were highly variable, with the only consistent trend being the relationship between biofilm mass and numbers of Legionella cells. Two possibilities explain this result: 1. PMA treatment worked and the subsequent muted response of Legionella to disinfection treatment is a factor of biofilm/microbiological effects; although this does not account for the relationship between the amount of biofilm sampled and the viable Legionella count as determined by PMA-qPCR; or 2. PMA treatment did not work, and any measured decrease or increase in detectable Legionella is because of other factors affecting the method. This is the most likely explanation for our results, suggesting that higher concentrations of PMA might be needed to compensate for the presence of other compounds in an environmental sample or that lower amounts of biofilm need to be sampled. As PMA becomes increasingly toxic at higher concentrations and is very expensive, augmenting the method to include higher PMA concentrations is both counterproductive and cost prohibitive. Conversely, if smaller volumes of biofilm are used, the reproducibility of the method is reduced. Our results suggest that

  13. Two-temperature LATE-PCR endpoint genotyping

    Directory of Open Access Journals (Sweden)

    Reis Arthur H

    2006-12-01

    Full Text Available Abstract Background In conventional PCR, total amplicon yield becomes independent of starting template number as amplification reaches plateau and varies significantly among replicate reactions. This paper describes a strategy for reconfiguring PCR so that the signal intensity of a single fluorescent detection probe after PCR thermal cycling reflects genomic composition. The resulting method corrects for product yield variations among replicate amplification reactions, permits resolution of homozygous and heterozygous genotypes based on endpoint fluorescence signal intensities, and readily identifies imbalanced allele ratios equivalent to those arising from gene/chromosomal duplications. Furthermore, the use of only a single colored probe for genotyping enhances the multiplex detection capacity of the assay. Results Two-Temperature LATE-PCR endpoint genotyping combines Linear-After-The-Exponential (LATE-PCR (an advanced form of asymmetric PCR that efficiently generates single-stranded DNA and mismatch-tolerant probes capable of detecting allele-specific targets at high temperature and total single-stranded amplicons at a lower temperature in the same reaction. The method is demonstrated here for genotyping single-nucleotide alleles of the human HEXA gene responsible for Tay-Sachs disease and for genotyping SNP alleles near the human p53 tumor suppressor gene. In each case, the final probe signals were normalized against total single-stranded DNA generated in the same reaction. Normalization reduces the coefficient of variation among replicates from 17.22% to as little as 2.78% and permits endpoint genotyping with >99.7% accuracy. These assays are robust because they are consistent over a wide range of input DNA concentrations and give the same results regardless of how many cycles of linear amplification have elapsed. The method is also sufficiently powerful to distinguish between samples with a 1:1 ratio of two alleles from samples comprised of

  14. Trypanosoma rangeli: RAPD-PCR and LSSP-PCR analyses of isolates from southeast Brazil and Colombia and their relation with KPI minicircles.

    Science.gov (United States)

    Marquez, D S; Ramírez, L E; Moreno, J; Pedrosa, A L; Lages-Silva, E

    2007-09-01

    This study presents the first genetic characterization of five Trypanosoma rangeli isolates from Minas Gerais, in the southeast of Brazil and their comparison with Colombian populations by minicircle classification, RAPD-PCR and LSSP-PCR analyses. Our results demonstrated a homogenous T. rangeli population circulating among Didelphis albiventris as reservoir host in Brazil while heterogeneous populations were found in different regions of Colombia. KP1(+) minicircles were found in 100% isolates from Brazil and in 36.4% of the Colombian samples, whereas the KP2 and KP3 minicircles were detected in both groups. RAPD-PCR and LSSP-PCR profiles revealed a polymorphism within KP1(+) and KP1(-) T. rangeli populations and allowed the division of T. rangeli in two branches. The Brazilian KP1(+) isolates were more homogenous than the KP1(+) isolates from Colombia. The RAPD-PCR were entirely consistent with the distribution of KP1 minicircles while those obtained by LSSP-PCR were associated in 88.9% and 71.4% with KP1(+) and KP1(-) populations, respectively.

  15. The use of digital PCR to improve the application of quantitative molecular diagnostic methods for tuberculosis.

    Science.gov (United States)

    Devonshire, Alison S; O'Sullivan, Denise M; Honeyborne, Isobella; Jones, Gerwyn; Karczmarczyk, Maria; Pavšič, Jernej; Gutteridge, Alice; Milavec, Mojca; Mendoza, Pablo; Schimmel, Heinz; Van Heuverswyn, Fran; Gorton, Rebecca; Cirillo, Daniela Maria; Borroni, Emanuele; Harris, Kathryn; Barnard, Marinus; Heydenrych, Anthenette; Ndusilo, Norah; Wallis, Carole L; Pillay, Keshree; Barry, Thomas; Reddington, Kate; Richter, Elvira; Mozioğlu, Erkan; Akyürek, Sema; Yalçınkaya, Burhanettin; Akgoz, Muslum; Žel, Jana; Foy, Carole A; McHugh, Timothy D; Huggett, Jim F

    2016-08-03

    Real-time PCR (qPCR) based methods, such as the Xpert MTB/RIF, are increasingly being used to diagnose tuberculosis (TB). While qualitative methods are adequate for diagnosis, the therapeutic monitoring of TB patients requires quantitative methods currently performed using smear microscopy. The potential use of quantitative molecular measurements for therapeutic monitoring has been investigated but findings have been variable and inconclusive. The lack of an adequate reference method and reference materials is a barrier to understanding the source of such disagreement. Digital PCR (dPCR) offers the potential for an accurate method for quantification of specific DNA sequences in reference materials which can be used to evaluate quantitative molecular methods for TB treatment monitoring. To assess a novel approach for the development of quality assurance materials we used dPCR to quantify specific DNA sequences in a range of prototype reference materials and evaluated accuracy between different laboratories and instruments. The materials were then also used to evaluate the quantitative performance of qPCR and Xpert MTB/RIF in eight clinical testing laboratories. dPCR was found to provide results in good agreement with the other methods tested and to be highly reproducible between laboratories without calibration even when using different instruments. When the reference materials were analysed with qPCR and Xpert MTB/RIF by clinical laboratories, all laboratories were able to correctly rank the reference materials according to concentration, however there was a marked difference in the measured magnitude. TB is a disease where the quantification of the pathogen could lead to better patient management and qPCR methods offer the potential to rapidly perform such analysis. However, our findings suggest that when precisely characterised materials are used to evaluate qPCR methods, the measurement result variation is too high to determine whether molecular quantification

  16. Introduction on Using the FastPCR Software and the Related Java Web Tools for PCR and Oligonucleotide Assembly and Analysis.

    Science.gov (United States)

    Kalendar, Ruslan; Tselykh, Timofey V; Khassenov, Bekbolat; Ramanculov, Erlan M

    2017-01-01

    This chapter introduces the FastPCR software as an integrated tool environment for PCR primer and probe design, which predicts properties of oligonucleotides based on experimental studies of the PCR efficiency. The software provides comprehensive facilities for designing primers for most PCR applications and their combinations. These include the standard PCR as well as the multiplex, long-distance, inverse, real-time, group-specific, unique, overlap extension PCR for multi-fragments assembling cloning and loop-mediated isothermal amplification (LAMP). It also contains a built-in program to design oligonucleotide sets both for long sequence assembly by ligase chain reaction and for design of amplicons that tile across a region(s) of interest. The software calculates the melting temperature for the standard and degenerate oligonucleotides including locked nucleic acid (LNA) and other modifications. It also provides analyses for a set of primers with the prediction of oligonucleotide properties, dimer and G/C-quadruplex detection, linguistic complexity as well as a primer dilution and resuspension calculator. The program consists of various bioinformatical tools for analysis of sequences with the GC or AT skew, CG% and GA% content, and the purine-pyrimidine skew. It also analyzes the linguistic sequence complexity and performs generation of random DNA sequence as well as restriction endonucleases analysis. The program allows to find or create restriction enzyme recognition sites for coding sequences and supports the clustering of sequences. It performs efficient and complete detection of various repeat types with visual display. The FastPCR software allows the sequence file batch processing that is essential for automation. The program is available for download at http://primerdigital.com/fastpcr.html , and its online version is located at http://primerdigital.com/tools/pcr.html .

  17. TRANSVERSE MODES IN PHASE-CONJUGATION RESONATORS (PCR) WITH FINITE APERTURES (Ⅱ)——FUNDAMENTAL PROPERTIES OF THE TRANSVERSE MODES IN PCR

    Institute of Scientific and Technical Information of China (English)

    李先枢; 徐家进; 高燕球

    1990-01-01

    Based on the first part of this paper (Science in China, 33(1990), 982—995), further research has been done on quasi-equivalence relation and asymmetrical character of axisymmetrical phase-conjugatlon resonator(PCR). A series of calculations for axisymmetrical PCR(hundreds of transverse modes in 66 axisymmetrical PCRs) have been carried out, and the results are compared with those of corresponding conventional laser resonators. Fundamental properties of the transverse modes (TEMs) in PCR are summarized. This makes possible a rough estimation of the properties of various TEMs in these simple PCR, including different geometrical structures.

  18. Comparison of false-negative rates and limits of detection following macrofoam-swab sampling of Bacillus anthracis surrogates via Rapid Viability PCR and plate culture.

    Science.gov (United States)

    Hutchison, J R; Piepel, G F; Amidan, B G; Hess, B M; Sydor, M A; Deatherage Kaiser, B L

    2018-05-01

    We evaluated the effects of Bacillus anthracis surrogates, low surface concentrations, surface materials and assay methods on false-negative rate (FNR) and limit of detection (LOD 95 ) for recovering Bacillus spores using a macrofoam-swab sampling procedure. Bacillus anthracis Sterne or Bacillus atrophaeus Nakamura spores were deposited over a range of low target concentrations (2-500 per coupon) onto glass, stainless steel, vinyl tile and plastic. Samples were assayed using a modified Rapid Viability-PCR (mRV-PCR) method and the traditional plate culture method to obtain FNR and LOD 95 results. Mean FNRs tended to be lower for mRV-PCR compared to culturing, and increased as spore concentration decreased for all surface materials. Surface material, but not B. anthracis surrogate, influenced FNRs with the mRV-PCR method. The mRV-PCR LOD 95 was lowest for glass and highest for vinyl tile. LOD 95 values overall were lower for mRV-PCR than for the culture method. This study adds to the limited data on FNR and LOD 95 for mRV-PCR and culturing methods with low concentrations of B. anthracis sampled from various surface materials by the CDC macrofoam-swab method. These are key inputs for planning characterization and clearance studies for low contamination levels of B. anthracis. © 2018 The Society for Applied Microbiology.

  19. Quantitative analysis of food and feed samples with droplet digital PCR.

    Directory of Open Access Journals (Sweden)

    Dany Morisset

    Full Text Available In this study, the applicability of droplet digital PCR (ddPCR for routine analysis in food and feed samples was demonstrated with the quantification of genetically modified organisms (GMOs. Real-time quantitative polymerase chain reaction (qPCR is currently used for quantitative molecular analysis of the presence of GMOs in products. However, its use is limited for detecting and quantifying very small numbers of DNA targets, as in some complex food and feed matrices. Using ddPCR duplex assay, we have measured the absolute numbers of MON810 transgene and hmg maize reference gene copies in DNA samples. Key performance parameters of the assay were determined. The ddPCR system is shown to offer precise absolute and relative quantification of targets, without the need for calibration curves. The sensitivity (five target DNA copies of the ddPCR assay compares well with those of individual qPCR assays and of the chamber digital PCR (cdPCR approach. It offers a dynamic range over four orders of magnitude, greater than that of cdPCR. Moreover, when compared to qPCR, the ddPCR assay showed better repeatability at low target concentrations and a greater tolerance to inhibitors. Finally, ddPCR throughput and cost are advantageous relative to those of qPCR for routine GMO quantification. It is thus concluded that ddPCR technology can be applied for routine quantification of GMOs, or any other domain where quantitative analysis of food and feed samples is needed.

  20. Comparison of droplet digital PCR and seminested real-time PCR for quantification of cell-associated HIV-1 RNA

    NARCIS (Netherlands)

    Kiselinova, Maja; Pasternak, Alexander O.; de Spiegelaere, Ward; Vogelaers, Dirk; Berkhout, Ben; Vandekerckhove, Linos

    2014-01-01

    Cell-associated (CA) HIV-1 RNA is considered a potential marker for assessment of viral reservoir dynamics and antiretroviral therapy (ART) response in HIV-infected patients. Recent studies employed sensitive seminested real-time quantitative (q)PCR to quantify CA HIV-1 RNA. Digital PCR has been

  1. In vitro culture, PCR , and nested PCR for the detection of Theileria equi in horses submitted to exercise Cultivo in vitro, PCR e nested PCR na detecção de Theileria equi em eqüinos submetidos a exercícios

    Directory of Open Access Journals (Sweden)

    C.D. Baldani

    2008-06-01

    Full Text Available This study compared the usefulness of in vitro culture, PCR, and nested PCR for the diagnosis of Theileria equi in horses submitted to stress during exercise. Blood samples from 15 apparently healthy horses, previously conditioned to a high-speed equine treadmill, were taken prior to and after exercise. The animals were divided into two experimental groups: 30-day training schedule (G1 and 90-day training schedule (G2. Statistical analysis was performed using a chi-square test and kappa statistic was used in order to assess agreement. No significant difference was observed between samples collected at resting or after exercise. In G1, merozoites of T. equi were detected in the blood smears of four horses before in vitro culture, whereas 14 samples were positive, confirmed by culture. In G2, five and 11 horses were positive before and after culture, respectively. No PCR amplified product was observed in any of the tested animals although the PCR system based on the 16S rRNA gene of T. equi detected DNA in blood with an equivalent 8x10-5% parasitaemia. The nested PCR based on the T. equi merozoite antigen gene (EMA-1 allowed the visualization of amplified products in all the horses. Therefore, nested PCR should be considered as a means of detection of sub-clinical T. equi infections and in vitro culture could be used as a complement to other methods of diagnosis.Comparou-se a utilização do cultivo in vitro, PCR e nested PCR no diagnóstico de Theileria equi em eqüinos submetidos ao estresse induzido por exercícios. Amostras de sangue foram obtidas de 15 eqüinos submetidos a treinamento em esteira rolante de alto desempenho, sendo as amostras colhidas antes e após os exercícios. Os animais foram divididos em dois grupos experimentais: 30 dias de treinamento (G1 e 90 dias de treinamento (G2. O teste do qui-quadrado foi empregado para as análises estatísticas e o índice kappa utilizado para avaliar a concordância. Não houve diferen

  2. Development of Real-Time PCR Methods for the Detection of Bacterial Meningitis Pathogens without DNA Extraction.

    Directory of Open Access Journals (Sweden)

    Jeni Vuong

    Full Text Available Neisseria meningitidis (Nm, Haemophilus influenzae (Hi, and Streptococcus pneumoniae (Sp are the lead causes of bacterial meningitis. Detection of these pathogens from clinical specimens using traditional real-time PCR (rt-PCR requires DNA extraction to remove the PCR inhibitors prior to testing, which is time consuming and labor intensive. In this study, five species-specific (Nm-sodC and -ctrA, Hi-hpd#1 and -hpd#3 and Sp-lytA and six serogroup-specific rt-PCR tests (A, B, C, W, X, Y targeting Nm capsular genes were evaluated in the two direct rt-PCR methods using PerfeCTa and 5x Omni that do not require DNA extraction. The sensitivity and specify of the two direct rt-PCR methods were compared to TaqMan traditional rt-PCR, the current standard rt-PCR method for the detection of meningitis pathogens. The LLD for all 11 rt-PCR tests ranged from 6,227 to 272,229 CFU/ml for TaqMan, 1,824-135,982 for 5x Omni, and 168-6,836 CFU/ml for PerfeCTa. The diagnostic sensitivity using TaqMan ranged from 89.2%-99.6%, except for NmB-csb, which was 69.7%. For 5x Omni, the sensitivity varied from 67.1% to 99.8%, with three tests below 90%. The sensitivity of these tests using PerfeCTa varied from 89.4% to 99.8%. The specificity ranges of the 11 tests were 98.0-99.9%, 97.5-99.9%, and 92.9-99.9% for TaqMan, 5x Omni, and PerfeCTa, respectively. PerfeCTa direct rt-PCR demonstrated similar or better sensitivity compared to 5x Omni direct rt-PCR or TaqMan traditional rt-PCR. Since the direct rt-PCR method does not require DNA extraction, it reduces the time and cost for processing CSF specimens, increases testing throughput, decreases the risk of cross-contamination, and conserves precious CSF. The direct rt-PCR method will be beneficial to laboratories with high testing volume.

  3. Broad-range PCR: past, present, or future of bacteriology?

    Science.gov (United States)

    Renvoisé, A; Brossier, F; Sougakoff, W; Jarlier, V; Aubry, A

    2013-08-01

    PCR targeting the gene encoding 16S ribosomal RNA (commonly named broad-range PCR or 16S PCR) has been used for 20 years as a polyvalent tool to study prokaryotes. Broad-range PCR was first used as a taxonomic tool, then in clinical microbiology. We will describe the use of broad-range PCR in clinical microbiology. The first application was identification of bacterial strains obtained by culture but whose phenotypic or proteomic identification remained difficult or impossible. This changed bacterial taxonomy and allowed discovering many new species. The second application of broad-range PCR in clinical microbiology is the detection of bacterial DNA from clinical samples; we will review the clinical settings in which the technique proved useful (such as endocarditis) and those in which it did not (such as characterization of bacteria in ascites, in cirrhotic patients). This technique allowed identifying the etiological agents for several diseases, such as Whipple disease. This review is a synthesis of data concerning the applications, assets, and drawbacks of broad-range PCR in clinical microbiology. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  4. Absolute quantification of olive oil DNA by droplet digital-PCR (ddPCR): Comparison of isolation and amplification methodologies.

    Science.gov (United States)

    Scollo, Francesco; Egea, Leticia A; Gentile, Alessandra; La Malfa, Stefano; Dorado, Gabriel; Hernandez, Pilar

    2016-12-15

    Olive oil is considered a premium product for its nutritional value and health benefits, and the ability to define its origin and varietal composition is a key step towards ensuring the traceability of the product. However, isolating the DNA from such a matrix is a difficult task. In this study, the quality and quantity of olive oil DNA, isolated using four different DNA isolation protocols, was evaluated using the qRT-PCR and ddPCR techniques. The results indicate that CTAB-based extraction methods were the best for unfiltered oil, while Nucleo Spin-based extraction protocols showed greater overall reproducibility. The use of both qRT-PCR and ddPCR led to the absolute quantification of the DNA copy number. The results clearly demonstrate the importance of the choice of DNA-isolation protocol, which should take into consideration the qualitative aspects of DNA and the evaluation of the amplified DNA copy number. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A multiplex PCR method for rapid identification of Brachionus rotifers.

    Science.gov (United States)

    Vasileiadou, Kalliopi; Papakostas, Spiros; Triantafyllidis, Alexander; Kappas, Ilias; Abatzopoulos, Theodore J

    2009-01-01

    Cryptic species are increasingly being recognized in many organisms. In Brachionus rotifers, many morphologically similar yet genetically distinct species/biotypes have been described. A number of Brachionus cryptic species have been recognized among hatchery strains. In this study, we present a simple, one-step genetic method to detect the presence of those Brachionus sp. rotifers that have been found in hatcheries. With the proposed technique, each of the B. plicatilis sensu stricto, B. ibericus, Brachionus sp. Nevada, Brachionus sp. Austria, Brachionus sp. Manjavacas, and Brachionus sp. Cayman species and/or biotypes can be identified with polymerase chain reaction (PCR) analysis. Based on 233 cytochrome c oxidase subunit I sequences, we reviewed all the available cryptic Brachionus sp. genetic polymorphisms, and we designed six nested primers. With these primers, a specific amplicon of distinct size is produced for every one of the involved species/biotypes. Two highly sensitive protocols were developed for using the primers. Many of the primers can be combined in the same PCR. The proposed method has been found to be an effective and practical tool to investigate the presence of the above six cryptic species/biotypes in both individual and communal (bulk) rotifer deoxyribonucleic acid extractions from hatcheries. With this technique, hatchery managers could easily determine their rotifer composition at the level of cryptic species and monitor their cultures more efficiently.

  6. Rapid detection of pathological mutations and deletions of the haemoglobin beta gene (HBB) by High Resolution Melting (HRM) analysis and Gene Ratio Analysis Copy Enumeration PCR (GRACE-PCR).

    Science.gov (United States)

    Turner, Andrew; Sasse, Jurgen; Varadi, Aniko

    2016-10-19

    Inherited disorders of haemoglobin are the world's most common genetic diseases, resulting in significant morbidity and mortality. The large number of mutations associated with the haemoglobin beta gene (HBB) makes gene scanning by High Resolution Melting (HRM) PCR an attractive diagnostic approach. However, existing HRM-PCR assays are not able to detect all common point mutations and have only a very limited ability to detect larger gene rearrangements. The aim of the current study was to develop a HBB assay, which can be used as a screening test in highly heterogeneous populations, for detection of both point mutations and larger gene rearrangements. The assay is based on a combination of conventional HRM-PCR and a novel Gene Ratio Analysis Copy Enumeration (GRACE) PCR method. HRM-PCR was extensively optimised, which included the use of an unlabelled probe and incorporation of universal bases into primers to prevent interference from common non-pathological polymorphisms. GRACE-PCR was employed to determine HBB gene copy numbers relative to a reference gene using melt curve analysis to detect rearrangements in the HBB gene. The performance of the assay was evaluated by analysing 410 samples. A total of 44 distinct pathological genotypes were detected. In comparison with reference methods, the assay has a sensitivity of 100 % and a specificity of 98 %. We have developed an assay that detects both point mutations and larger rearrangements of the HBB gene. This assay is quick, sensitive, specific and cost effective making it suitable as an initial screening test that can be used for highly heterogeneous cohorts.

  7. DNA microarray-based PCR ribotyping of Clostridium difficile.

    Science.gov (United States)

    Schneeberg, Alexander; Ehricht, Ralf; Slickers, Peter; Baier, Vico; Neubauer, Heinrich; Zimmermann, Stefan; Rabold, Denise; Lübke-Becker, Antina; Seyboldt, Christian

    2015-02-01

    This study presents a DNA microarray-based assay for fast and simple PCR ribotyping of Clostridium difficile strains. Hybridization probes were designed to query the modularly structured intergenic spacer region (ISR), which is also the template for conventional and PCR ribotyping with subsequent capillary gel electrophoresis (seq-PCR) ribotyping. The probes were derived from sequences available in GenBank as well as from theoretical ISR module combinations. A database of reference hybridization patterns was set up from a collection of 142 well-characterized C. difficile isolates representing 48 seq-PCR ribotypes. The reference hybridization patterns calculated by the arithmetic mean were compared using a similarity matrix analysis. The 48 investigated seq-PCR ribotypes revealed 27 array profiles that were clearly distinguishable. The most frequent human-pathogenic ribotypes 001, 014/020, 027, and 078/126 were discriminated by the microarray. C. difficile strains related to 078/126 (033, 045/FLI01, 078, 126, 126/FLI01, 413, 413/FLI01, 598, 620, 652, and 660) and 014/020 (014, 020, and 449) showed similar hybridization patterns, confirming their genetic relatedness, which was previously reported. A panel of 50 C. difficile field isolates was tested by seq-PCR ribotyping and the DNA microarray-based assay in parallel. Taking into account that the current version of the microarray does not discriminate some closely related seq-PCR ribotypes, all isolates were typed correctly. Moreover, seq-PCR ribotypes without reference profiles available in the database (ribotype 009 and 5 new types) were correctly recognized as new ribotypes, confirming the performance and expansion potential of the microarray. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. A random PCR screening system for the identification of type 1 human herpes simplex virus.

    Science.gov (United States)

    Yu, Xuelian; Shi, Bisheng; Gong, Yan; Zhang, Xiaonan; Shen, Silan; Qian, Fangxing; Gu, Shimin; Hu, Yunwen; Yuan, Zhenghong

    2009-10-01

    Several viral diseases exhibit measles-like symptoms. Differentiation of suspected cases of measles with molecular epidemiological techniques in the laboratory is useful for measles surveillance. In this study, a random PCR screening system was undertaken for the identification of isolates from patients with measles-like symptoms who exhibited cytopathic effects, but who had negative results for measles virus-specific reverse transcription (RT)-PCR and indirect immunofluorescence assays. Sequence analysis of random amplified PCR products showed that they were highly homologous to type 1 human herpes simplex virus (HSV-1). The results were further confirmed by an HSV-1-specific TaqMan real-time PCR assay. The random PCR screening system described in this study provides an efficient procedure for the identification of unknown viral pathogens. Measles-like symptoms can also be caused by HSV-1, suggesting the need to include HSV-1 in differential diagnoses of measles-like diseases.

  9. Escherichia coli H-Genotyping PCR: a Complete and Practical Platform for Molecular H Typing.

    Science.gov (United States)

    Banjo, Masaya; Iguchi, Atsushi; Seto, Kazuko; Kikuchi, Taisei; Harada, Tetsuya; Scheutz, Flemming; Iyoda, Sunao

    2018-06-01

    In Escherichia coli , more than 180 O groups and 53 H types have been recognized. The O:H serotyping of E. coli strains is an effective method for identifying strains with pathogenic potential and classifying them into clonal groups. In particular, the serotyping of Shiga toxin-producing E. coli (STEC) strains provides valuable information to evaluate the routes, sources, and prevalence of agents in outbreak investigations and surveillance. Here, we present a complete and practical PCR-based H-typing system, E. coli H-genotyping PCR, consisting of 10 multiplex PCR kits with 51 single PCR primer pairs. Primers were designed based on a detailed comparative analysis of sequences from all H-antigen (flagellin)-encoding genes, fliC and its homologs. The specificity of this system was confirmed by using all H type reference strains. Additionally, 362 serotyped wild strains were also used to evaluate its practicality. All 277 H-type-identified isolates gave PCR products that corresponded to the results of serological H typing. Moreover, 76 nonmotile and nine untypeable strains could be successfully subtyped into any H type by the PCR system. The E. coli H-genotyping PCR developed here allows broader, rapid, and low-cost subtyping of H types and will assist epidemiological studies as well as surveillance of pathogenic E. coli . Copyright © 2018 American Society for Microbiology.

  10. QPCR: Application for real-time PCR data management and analysis

    Directory of Open Access Journals (Sweden)

    Eichhorn Heiko

    2009-08-01

    Full Text Available Abstract Background Since its introduction quantitative real-time polymerase chain reaction (qPCR has become the standard method for quantification of gene expression. Its high sensitivity, large dynamic range, and accuracy led to the development of numerous applications with an increasing number of samples to be analyzed. Data analysis consists of a number of steps, which have to be carried out in several different applications. Currently, no single tool is available which incorporates storage, management, and multiple methods covering the complete analysis pipeline. Results QPCR is a versatile web-based Java application that allows to store, manage, and analyze data from relative quantification qPCR experiments. It comprises a parser to import generated data from qPCR instruments and includes a variety of analysis methods to calculate cycle-threshold and amplification efficiency values. The analysis pipeline includes technical and biological replicate handling, incorporation of sample or gene specific efficiency, normalization using single or multiple reference genes, inter-run calibration, and fold change calculation. Moreover, the application supports assessment of error propagation throughout all analysis steps and allows conducting statistical tests on biological replicates. Results can be visualized in customizable charts and exported for further investigation. Conclusion We have developed a web-based system designed to enhance and facilitate the analysis of qPCR experiments. It covers the complete analysis workflow combining parsing, analysis, and generation of charts into one single application. The system is freely available at http://genome.tugraz.at/QPCR

  11. Utility of a Multiplex PCR Assay for Detecting Herpesvirus DNA in Clinical Samples

    Science.gov (United States)

    Druce, Julian; Catton, Mike; Chibo, Doris; Minerds, Kirsty; Tyssen, David; Kostecki, Renata; Maskill, Bill; Leong-Shaw, Wendy; Gerrard, Marie; Birch, Chris

    2002-01-01

    A multiplex PCR was designed to amplify herpes simplex virus types 1 and 2, cytomegalovirus, and varicella-zoster virus DNA present in a diverse range of clinical material. The susceptibility of these viruses to in vivo inhibition by at least one antiviral drug was an important consideration in their inclusion in the multiplex detection system. An aliquot of equine herpesvirus was introduced into each specimen prior to extraction and served as an indicator of potential inhibitors of the PCR and a detector of suboptimal PCR conditions. Compared to virus isolation and immunofluorescence-based antigen detection, the multiplex assay yielded higher detection rates for all viruses represented in the assay. The turnaround time for performance of the assay was markedly reduced compared to those for the other techniques used to identify these viruses. More than 21,000 tests have been performed using the assay. Overall, the multiplex PCR enabled the detection of substantially increased numbers of herpesviruses, in some cases in specimens or anatomical sites where previously they were rarely if ever identified using traditional detection methods. PMID:11980951

  12. Rapid and sensitive detection of Feline immunodeficiency virus using an insulated isothermal PCR-based assay with a point-of-need PCR detection platform.

    Science.gov (United States)

    Wilkes, Rebecca Penrose; Kania, Stephen A; Tsai, Yun-Long; Lee, Pei-Yu Alison; Chang, Hsiu-Hui; Ma, Li-Juan; Chang, Hsiao-Fen Grace; Wang, Hwa-Tang Thomas

    2015-07-01

    Feline immunodeficiency virus (FIV) is an important infectious agent of cats. Clinical syndromes resulting from FIV infection include immunodeficiency, opportunistic infections, and neoplasia. In our study, a 5' long terminal repeat/gag region-based reverse transcription insulated isothermal polymerase chain reaction (RT-iiPCR) was developed to amplify all known FIV strains to facilitate point-of-need FIV diagnosis. The RT-iiPCR method was applied in a point-of-need PCR detection platform--a field-deployable device capable of generating automatically interpreted RT-iiPCR results from nucleic acids within 1 hr. Limit of detection 95% of FIV RT-iiPCR was calculated to be 95 copies standard in vitro transcription RNA per reaction. Endpoint dilution studies with serial dilutions of an ATCC FIV type strain showed that the sensitivity of lyophilized FIV RT-iiPCR reagent was comparable to that of a reference nested PCR. The established reaction did not amplify any nontargeted feline pathogens, including Felid herpesvirus 1, feline coronavirus, Feline calicivirus, Feline leukemia virus, Mycoplasma haemofelis, and Chlamydophila felis. Based on analysis of 76 clinical samples (including blood and bone marrow) with the FIV RT-iiPCR, test sensitivity was 97.78% (44/45), specificity was 100.00% (31/31), and agreement was 98.65% (75/76), determined against a reference nested-PCR assay. A kappa value of 0.97 indicated excellent correlation between these 2 methods. The lyophilized FIV RT-iiPCR reagent, deployed on a user-friendly portable device, has potential utility for rapid and easy point-of-need detection of FIV in cats. © 2015 The Author(s).

  13. An infinitely expandable cloning strategy plus repeat-proof PCR for working with multiple shRNA.

    Directory of Open Access Journals (Sweden)

    Glen John McIntyre

    Full Text Available Vector construction with restriction enzymes (REs typically involves the ligation of a digested donor fragment (insert to a reciprocally digested recipient fragment (vector backbone. Creating a suitable cloning plan becomes increasingly difficult for complex strategies requiring repeated insertions such as constructing multiple short hairpin RNA (shRNA expression vectors for RNA interference (RNAi studies. The problem lies in the reduced availability of suitable RE recognition sites with an increasing number of cloning events and or vector size. This report details a technically simple, directional cloning solution using REs with compatible cohesive ends that are repeatedly destroyed and simultaneously re-introduced with each round of cloning. Donor fragments can be made by PCR or sub-cloned from pre-existing vectors and inserted ad infinitum in any combination. The design incorporates several cloning cores in order to be compatible with as many donor sequences as possible. We show that joining sub-combinations made in parallel is more time-efficient than sequential construction (of one cassette at a time for any combination of 4 or more insertions. Screening for the successful construction of combinations using Taq polymerase based PCR became increasingly difficult with increasing number of repeated sequence elements. A Pfu polymerase based PCR was developed and successfully used to amplify combinations of up to eleven consecutive hairpin expression cassettes. The identified PCR conditions can be beneficial to others working with multiple shRNA or other repeated sequences, and the infinitely expandable cloning strategy serves as a general solution applicable to many cloning scenarios.

  14. Detection of MPLW515L/K mutations and determination of allele frequencies with a single-tube PCR assay.

    Science.gov (United States)

    Takei, Hiraku; Morishita, Soji; Araki, Marito; Edahiro, Yoko; Sunami, Yoshitaka; Hironaka, Yumi; Noda, Naohiro; Sekiguchi, Yuji; Tsuneda, Satoshi; Ohsaka, Akimichi; Komatsu, Norio

    2014-01-01

    A gain-of-function mutation in the myeloproliferative leukemia virus (MPL) gene, which encodes the thrombopoietin receptor, has been identified in patients with essential thrombocythemia and primary myelofibrosis, subgroups of classic myeloproliferative neoplasms (MPNs). The presence of MPL gene mutations is a critical diagnostic criterion for these diseases. Here, we developed a rapid, simple, and cost-effective method of detecting two major MPL mutations, MPLW515L/K, in a single PCR assay; we termed this method DARMS (dual amplification refractory mutation system)-PCR. DARMS-PCR is designed to produce three different PCR products corresponding to MPLW515L, MPLW515K, and all MPL alleles. The amplicons are later detected and quantified using a capillary sequencer to determine the relative frequencies of the mutant and wild-type alleles. Applying DARMS-PCR to human specimens, we successfully identified MPL mutations in MPN patients, with the exception of patients bearing mutant allele frequencies below the detection limit (5%) of this method. The MPL mutant allele frequencies determined using DARMS-PCR correlated strongly with the values determined using deep sequencing. Thus, we demonstrated the potential of DARMS-PCR to detect MPL mutations and determine the allele frequencies in a timely and cost-effective manner.

  15. Detection of MPLW515L/K mutations and determination of allele frequencies with a single-tube PCR assay.

    Directory of Open Access Journals (Sweden)

    Hiraku Takei

    Full Text Available A gain-of-function mutation in the myeloproliferative leukemia virus (MPL gene, which encodes the thrombopoietin receptor, has been identified in patients with essential thrombocythemia and primary myelofibrosis, subgroups of classic myeloproliferative neoplasms (MPNs. The presence of MPL gene mutations is a critical diagnostic criterion for these diseases. Here, we developed a rapid, simple, and cost-effective method of detecting two major MPL mutations, MPLW515L/K, in a single PCR assay; we termed this method DARMS (dual amplification refractory mutation system-PCR. DARMS-PCR is designed to produce three different PCR products corresponding to MPLW515L, MPLW515K, and all MPL alleles. The amplicons are later detected and quantified using a capillary sequencer to determine the relative frequencies of the mutant and wild-type alleles. Applying DARMS-PCR to human specimens, we successfully identified MPL mutations in MPN patients, with the exception of patients bearing mutant allele frequencies below the detection limit (5% of this method. The MPL mutant allele frequencies determined using DARMS-PCR correlated strongly with the values determined using deep sequencing. Thus, we demonstrated the potential of DARMS-PCR to detect MPL mutations and determine the allele frequencies in a timely and cost-effective manner.

  16. WetLab-2: Providing Quantitative PCR Capabilities on ISS

    Science.gov (United States)

    Parra, Macarena; Jung, Jimmy Kar Chuen; Almeida, Eduardo; Boone, Travis David; Schonfeld, Julie; Tran, Luan Hoang

    2015-01-01

    The objective of NASA Ames Research Centers WetLab-2 Project is to place on the ISS a system capable of conducting gene expression analysis via quantitative real-time PCR (qRT-PCR) of biological specimens sampled or cultured on orbit. The WetLab-2 system is capable of processing sample types ranging from microbial cultures to animal tissues dissected on-orbit. The project has developed a RNA preparation module that can lyse cells and extract RNA of sufficient quality and quantity for use as templates in qRT-PCR reactions. Our protocol has the advantage that it uses non-toxic chemicals, alcohols or other organics. The resulting RNA is transferred into a pipette and then dispensed into reaction tubes that contain all lyophilized reagents needed to perform qRT-PCR reactions. These reaction tubes are mounted on rotors to centrifuge the liquid to the reaction window of the tube using a cordless drill. System operations require simple and limited crew actions including syringe pushes, valve turns and pipette dispenses. The resulting process takes less than 30 min to have tubes ready for loading into the qRT-PCR unit.The project has selected a Commercial-Off-The-Shelf (COTS) qRT-PCR unit, the Cepheid SmartCycler, that will fly in its COTS configuration. The SmartCycler has a number of advantages including modular design (16 independent PCR modules), low power consumption, rapid thermal ramp times and four-color detection. The ability to detect up to four fluorescent channels will enable multiplex assays that can be used to normalize for RNA concentration and integrity, and to study multiple genes of interest in each module. The WetLab-2 system will have the capability to downlink data from the ISS to the ground after a completed run and to uplink new programs. The ability to conduct qRT-PCR on-orbit eliminates the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms or the concern of RNA degradation of fixed samples. The

  17. Absolute determination of single-stranded and self-complementary adeno-associated viral vector genome titers by droplet digital PCR.

    Science.gov (United States)

    Lock, Martin; Alvira, Mauricio R; Chen, Shu-Jen; Wilson, James M

    2014-04-01

    Accurate titration of adeno-associated viral (AAV) vector genome copies is critical for ensuring correct and reproducible dosing in both preclinical and clinical settings. Quantitative PCR (qPCR) is the current method of choice for titrating AAV genomes because of the simplicity, accuracy, and robustness of the assay. However, issues with qPCR-based determination of self-complementary AAV vector genome titers, due to primer-probe exclusion through genome self-annealing or through packaging of prematurely terminated defective interfering (DI) genomes, have been reported. Alternative qPCR, gel-based, or Southern blotting titering methods have been designed to overcome these issues but may represent a backward step from standard qPCR methods in terms of simplicity, robustness, and precision. Droplet digital PCR (ddPCR) is a new PCR technique that directly quantifies DNA copies with an unparalleled degree of precision and without the need for a standard curve or for a high degree of amplification efficiency; all properties that lend themselves to the accurate quantification of both single-stranded and self-complementary AAV genomes. Here we compare a ddPCR-based AAV genome titer assay with a standard and an optimized qPCR assay for the titration of both single-stranded and self-complementary AAV genomes. We demonstrate absolute quantification of single-stranded AAV vector genomes by ddPCR with up to 4-fold increases in titer over a standard qPCR titration but with equivalent readout to an optimized qPCR assay. In the case of self-complementary vectors, ddPCR titers were on average 5-, 1.9-, and 2.3-fold higher than those determined by standard qPCR, optimized qPCR, and agarose gel assays, respectively. Droplet digital PCR-based genome titering was superior to qPCR in terms of both intra- and interassay precision and is more resistant to PCR inhibitors, a desirable feature for in-process monitoring of early-stage vector production and for vector genome biodistribution

  18. Measurement of Epstein-Barr virus DNA loads in whole blood and plasma by TaqMan PCR and in peripheral blood lymphocytes by competitive PCR.

    Science.gov (United States)

    Wadowsky, Robert M; Laus, Stella; Green, Michael; Webber, Steven A; Rowe, David

    2003-11-01

    Epstein-Barr virus (EBV) DNA load values were measured in samples of whole blood (n = 60) and plasma (n = 59) by TaqMan PCR and in samples of peripheral blood lymphocytes (PBLs) (n = 60) by competitive PCR (cPCR). The samples were obtained from 44 transplant recipients. The whole-blood and PBL loads correlated highly (r(2) > 0.900), whereas the plasma and PBL loads correlated poorly (r(2) = 0.512). Testing of whole blood by TaqMan PCR is an acceptable alternative to testing of PBLs by cPCR for quantifying EBV DNA load.

  19. Droplet digital PCR improves absolute quantification of viable lactic acid bacteria in faecal samples.

    Science.gov (United States)

    Gobert, Guillaume; Cotillard, Aurélie; Fourmestraux, Candice; Pruvost, Laurence; Miguet, Jean; Boyer, Mickaël

    2018-03-14

    Analysing correlations between the observed health effects of ingested probiotics and their survival in digestive tract allows adapting their preparations for food. Tracking ingested probiotic in faecal samples requires accurate and specific tools to quantify live vs dead cells at strain level. Traditional culture-based methods are simpler to use but they do not allow quantifying viable but non-cultivable (VBNC) cells and they are poorly discriminant below the species level. We have set up a viable PCR (vPCR) assay combining propidium monoazide (PMA) treatment and either real time quantitative PCR (qPCR) or droplet digital PCR (ddPCR) to quantify a Lactobacillus rhamnosus and two Lactobacillus paracasei subsp. paracasei strains in piglet faeces. Adjustments of the PMA treatment conditions and reduction of the faecal sample size were necessary to obtain accurate discrimination between dead and live cells. The study also revealed differences of PMA efficiency among the two L. paracasei strains. Both PCR methods were able to specifically quantify each strain and provided comparable total bacterial counts. However, quantification of lower numbers of viable cells was best achieved with ddPCR, which was characterized by a reduced lower limit of quantification (improvement of up to 1.76 log 10 compared to qPCR). All three strains were able to survive in the piglets' gut with viability losses between 0.78 and 1.59 log 10 /g faeces. This study shows the applicability of PMA-ddPCR to specific quantification of small numbers of viable bacterial cells in the presence of an important background of unwanted microorganisms, and without the need to set up standard curves. It also illustrates the need to adapt PMA protocols according to the final matrix and target strain, even for closely related strains. The PMA-ddPCR approach provides a new tool to quantify bacterial survival in faecal samples from a preclinical and clinical trial. Copyright © 2018 The Authors. Published by

  20. GENE EXPRESSION CHANGES AND ANTI-PROLIFERATIVE EFFECT OF NONI (Morinda citrifolia FRUIT EXTRACT ANALYSED BY REAL TIME-PCR

    Directory of Open Access Journals (Sweden)

    hermansyah hermansyah

    2017-05-01

    Full Text Available To elucidate the anti-proliferative effect of noni (Morinda citrifolia fruit extract for a Saccharomyces cerevisiae model organism, analysis of gene expression changes related to cell cycle associated with inhibition effect of noni fruit extract was carried out. Anti-proliferative of noni fruit extract was analyzed using gene expression changes of Saccharomyces cerevisiae (strains FY833 and BY4741.  Transcriptional analysis of genes that play a role in cell cycle was conducted by growing cells on YPDAde broth medium containing 1% (w/v noni fruit extract, and then subjected using quantitative real-time polymerase chain reaction (RT-PCR.  Transcriptional level of genes CDC6 (Cell Division Cycle-6, CDC20 (Cell Division Cycle-20, FAR1 (Factor ARrest-1, FUS3 (FUSsion-3, SIC1 (Substrate/Subunit Inhibitor of Cyclin-dependent protein kinase-1, WHI5 (WHIskey-5, YOX1 (Yeast homeobOX-1 and YHP1 (Yeast Homeo-Protein-1 increased, oppositely genes expression of DBF4 (DumbBell Forming, MCM1 (Mini Chromosome Maintenance-1 and TAH11 (Topo-A Hypersensitive-11 decreased, while the expression level of genes CDC7 (Cell Division Cycle-7, MBP1 (MIul-box Binding Protein-1 and SWI6 (SWItching deficient-6 relatively unchanged. These results indicated that gene expression changes might associate with anti-proliferative effect from noni fruit extract. These gene expressions changes lead to the growth inhibition of S.cerevisiae cell because of cell cycle defect.

  1. Optimized PCR with sequence specific primers (PCR-SSP for fast and efficient determination of Interleukin-6 Promoter -597/-572/-174Haplotypes

    Directory of Open Access Journals (Sweden)

    Bugert Peter

    2009-12-01

    Full Text Available Abstract Background Interleukin-6 (IL-6 promoter polymorphisms at positions -597(G→A, -572(G→C and -174(G→C were shown to have a clinical impact on different major diseases. At present PCR-SSP protocols for IL-6 -597/-572/-174haplotyping are elaborate and require large amounts of genomic DNA. Findings We describe an improved typing technique requiring a decreased number of PCR-reactions and a reduced PCR-runtime due to optimized PCR-conditions. Conclusion This enables a fast and efficient determination of IL-6 -597/-572/-174haplotypes in clinical diagnosis and further evaluation of IL-6 promoter polymorphisms in larger patient cohorts.

  2. Differentiating Botulinum Neurotoxin-Producing Clostridia with a Simple, Multiplex PCR Assay.

    Science.gov (United States)

    Williamson, Charles H D; Vazquez, Adam J; Hill, Karen; Smith, Theresa J; Nottingham, Roxanne; Stone, Nathan E; Sobek, Colin J; Cocking, Jill H; Fernández, Rafael A; Caballero, Patricia A; Leiser, Owen P; Keim, Paul; Sahl, Jason W

    2017-09-15

    Diverse members of the genus Clostridium produce botulinum neurotoxins (BoNTs), which cause a flaccid paralysis known as botulism. While multiple species of clostridia produce BoNTs, the majority of human botulism cases have been attributed to Clostridium botulinum groups I and II. Recent comparative genomic studies have demonstrated the genomic diversity within these BoNT-producing species. This report introduces a multiplex PCR assay for differentiating members of C. botulinum group I, C. sporogenes , and two major subgroups within C. botulinum group II. Coding region sequences unique to each of the four species/subgroups were identified by in silico analyses of thousands of genome assemblies, and PCR primers were designed to amplify each marker. The resulting multiplex PCR assay correctly assigned 41 tested isolates to the appropriate species or subgroup. A separate PCR assay to determine the presence of the ntnh gene (a gene associated with the botulinum neurotoxin gene cluster) was developed and validated. The ntnh gene PCR assay provides information about the presence or absence of the botulinum neurotoxin gene cluster and the type of gene cluster present ( ha positive [ ha + ] or orfX + ). The increased availability of whole-genome sequence data and comparative genomic tools enabled the design of these assays, which provide valuable information for characterizing BoNT-producing clostridia. The PCR assays are rapid, inexpensive tests that can be applied to a variety of sample types to assign isolates to species/subgroups and to detect clostridia with botulinum neurotoxin gene ( bont ) clusters. IMPORTANCE Diverse clostridia produce the botulinum neurotoxin, one of the most potent known neurotoxins. In this study, a multiplex PCR assay was developed to differentiate clostridia that are most commonly isolated in connection with human botulism cases: C. botulinum group I, C. sporogenes , and two major subgroups within C. botulinum group II. Since Bo

  3. Comparison of clinical samples for visceral Leishmaniasis diagnosis in asymptomatic dogs by PCR hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Sidney A.; Ituassu, Leonardo T.; Melo, Maria N. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Parasitologia], e-mail: saninoalmeida@gmail.com, e-mail: Itituassu@yahoo.com.br, e-mail: melo@icb.ufmg.br; Leite, Rodrigo S.; Andrade, Antero S.R. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN/MG), Belo Horizonte, MG (Brazil)], e-mail: rleite2005@gmail.com, e-mail: antero@cdtn.br

    2009-07-01

    The canine visceral leishmaniasis (CVL) diagnosis still represents a challenge because of complexity of this disease. The aim of present study was to compare different clinical samples for diagnosis of CVL by Polymerase Chain Reaction (PCR) combined with hybridization of {sup 32}P labeled probes. Bone marrow (BM), skin biopsy (SB), peripheral blood (PB) and conjunctival swab (CS) were used in this work. With this purpose 40 asymptomatic dogs, all positive by parasitological test, were obtained. From each animal were collected SB with sterile punches from ear internal surface, 1.0 mL of PB, BM aspirates from sternum and CS from both lower eyelid. Each clinical sample was submitted to suitable DNA purification process and PCR-hybridization assays. The positive results obtained with PCR were 55%, 25%, 30% and 22.5% for CS, BM, SB and PB respectively while the PCR followed by hybridization showed a positivity of 87.5%, 50%, 45% and 27.5% respectively. The hybridization assay was able to increase the PCR positivity in all kinds of clinical samples. The best performance was obtained using CS samples. We concluded that the PCR associated with DNA radioactive probes was a very sensitive tool for diagnosis of CVL in asymptomatic dogs and the CS has an important potential for regular screening of dogs. (author)

  4. An external standard method for quantification of human cytomegalovirus by PCR

    International Nuclear Information System (INIS)

    Rongsen, Shen; Liren, Ma; Fengqi, Zhou; Qingliang, Luo

    1997-01-01

    An external standard method for PCR quantification of HCMV was reported. [α- 32 P]dATP was used as a tracer. 32 P-labelled specific amplification product was separated by agarose gel electrophoresis. A gel piece containing the specific product band was excised and counted in a plastic scintillation counter. Distribution of [α- 32 P]dATP in the electrophoretic gel plate and effect of separation between the 32 P-labelled specific product and free [α- 32 P]dATP were observed. A standard curve for quantification of HCMV by PCR was established and detective results of quality control templets were presented. The external standard method and the electrophoresis separation effect were appraised. The results showed that the method could be used for relative quantification of HCMV. (author)

  5. A rapid method for screening arrayed plasmid cDNA library by PCR

    International Nuclear Information System (INIS)

    Hu Yingchun; Zhang Kaitai; Wu Dechang; Li Gang; Xiang Xiaoqiong

    1999-01-01

    Objective: To develop a PCR-based method for rapid and effective screening of arrayed plasmid cDNA library. Methods: The plasmid cDNA library was arrayed and screened by PCR with a particular set of primers. Results: Four positive clones were obtained through about one week. Conclusion: This method can be applied to screening not only normal cDNA clones, but also cDNA clones-containing small size fragments. This method offers significant advantages over traditional screening method in terms of sensitivity, specificity and efficiency

  6. Outbreak of hepatitis E virus infection in Darfur, Sudan: effectiveness of real-time reverse transcription-PCR analysis of dried blood spots.

    Science.gov (United States)

    Mérens, Audrey; Guérin, Philippe Jean; Guthmann, Jean-Paul; Nicand, Elisabeth

    2009-06-01

    Biological samples collected in refugee camps during an outbreak of hepatitis E were used to compare the accuracy of hepatitis E virus RNA amplification by real-time reverse transcription-PCR (RT-PCR) for sera and dried blood spots (concordance of 90.6%). Biological profiles (RT-PCR and serology) of asymptomatic individuals were also analyzed.

  7. Quantitative real-time PCR approaches for microbial community studies in wastewater treatment systems: applications and considerations.

    Science.gov (United States)

    Kim, Jaai; Lim, Juntaek; Lee, Changsoo

    2013-12-01

    Quantitative real-time PCR (qPCR) has been widely used in recent environmental microbial ecology studies as a tool for detecting and quantifying microorganisms of interest, which aids in better understandings of the complexity of wastewater microbial communities. Although qPCR can be used to provide more specific and accurate quantification than other molecular techniques, it does have limitations that must be considered when applying it in practice. This article reviews the principle of qPCR quantification and its applications to microbial ecology studies in various wastewater treatment environments. Here we also address several limitations of qPCR-based approaches that can affect the validity of quantification data: template nucleic acid quality, nucleic acid extraction efficiency, specificity of group-specific primers and probes, amplification of nonviable DNA, gene copy number variation, and limited number of sequences in the database. Even with such limitations, qPCR is reportedly among the best methods for quantitatively investigating environmental microbial communities. The application of qPCR is and will continue to be increasingly common in studies of wastewater treatment systems. To obtain reliable analyses, however, the limitations that have often been overlooked must be carefully considered when interpreting the results. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Development and validation of a real-time PCR assay for the detection of anguillid herpesvirus 1.

    Science.gov (United States)

    van Beurden, S J; Voorbergen-Laarman, M A; Roozenburg, I; van Tellingen, J; Haenen, O L M; Engelsma, M Y

    2016-01-01

    Anguillid herpesvirus 1 (AngHV1) causes a haemorrhagic disease with increased mortality in wild and farmed European eel, Anguilla anguilla (L.) and Japanese eel Anguilla japonica, Temminck & Schlegel). Detection of AngHV1 is currently based on virus isolation in cell culture, antibody-based typing assays or conventional PCR. We developed, optimized and concisely validated a diagnostic TaqMan probe based real-time PCR assay for the detection of AngHV1. The primers and probe target AngHV1 open reading frame 57, encoding the capsid protease and scaffold protein. Compared to conventional PCR, the developed real-time PCR is faster, less labour-intensive and has a reduced risk of cross-contamination. The real-time PCR assay was shown to be analytically sensitive and specific and has a high repeatability, efficiency and r(2) -value. The diagnostic performance of the assay was determined by testing 10% w/v organ suspensions and virus cultures from wild and farmed European eels from the Netherlands by conventional and real-time PCR. The developed real-time PCR assay is a useful tool for the rapid and sensitive detection of AngHV1 in 10% w/v organ suspensions from wild and farmed European eels. © 2015 John Wiley & Sons Ltd.

  9. Digital PCR for detection of citrus pathogens

    Science.gov (United States)

    Citrus trees are often infected with multiple pathogens of economic importance, especially those with insect or mite vectors. Real-time/quantitative PCR (qPCR) has been used for high-throughput detection and relative quantification of pathogens; however, target reference or standards are required. I...

  10. PCR in forensic genetics

    DEFF Research Database (Denmark)

    Morling, Niels

    2009-01-01

    Since the introduction in the mid-1980s of analyses of minisatellites for DNA analyses, a revolution has taken place in forensic genetics. The subsequent invention of the PCR made it possible to develop forensic genetics tools that allow both very informative routine investigations and still more...... and more advanced, special investigations in cases concerning crime, paternity, relationship, disaster victim identification etc. The present review gives an update on the use of DNA investigations in forensic genetics.......Since the introduction in the mid-1980s of analyses of minisatellites for DNA analyses, a revolution has taken place in forensic genetics. The subsequent invention of the PCR made it possible to develop forensic genetics tools that allow both very informative routine investigations and still more...

  11. Comparison of three human papillomavirus DNA detection methods: Next generation sequencing, multiplex-PCR and nested-PCR followed by Sanger based sequencing.

    Science.gov (United States)

    da Fonseca, Allex Jardim; Galvão, Renata Silva; Miranda, Angelica Espinosa; Ferreira, Luiz Carlos de Lima; Chen, Zigui

    2016-05-01

    To compare the diagnostic performance for HPV infection using three laboratorial techniques. Ninty-five cervicovaginal samples were randomly selected; each was tested for HPV DNA and genotypes using 3 methods in parallel: Multiplex-PCR, the Nested PCR followed by Sanger sequencing, and the Next_Gen Sequencing (NGS) with two assays (NGS-A1, NGS-A2). The study was approved by the Brazilian National IRB (CONEP protocol 16,800). The prevalence of HPV by the NGS assays was higher than that using the Multiplex-PCR (64.2% vs. 45.2%, respectively; P = 0.001) and the Nested-PCR (64.2% vs. 49.5%, respectively; P = 0.003). NGS also showed better performance in detecting high-risk HPV (HR-HPV) and HPV16. There was a weak interobservers agreement between the results of Multiplex-PCR and Nested-PCR in relation to NGS for the diagnosis of HPV infection, and a moderate correlation for HR-HPV detection. Both NGS assays showed a strong correlation for detection of HPVs (k = 0.86), HR-HPVs (k = 0.91), HPV16 (k = 0.92) and HPV18 (k = 0.91). NGS is more sensitive than the traditional Sanger sequencing and the Multiplex PCR to genotype HPVs, with promising ability to detect multiple infections, and may have the potential to establish an alternative method for the diagnosis and genotyping of HPV. © 2015 Wiley Periodicals, Inc.

  12. Detection of enteroviruses and hepatitis a virus in water by consensus primer multiplex RT-PCR

    Science.gov (United States)

    Li, Jun-Wen; Wang, Xin-Wei; Yuan, Chang-Qing; Zheng, Jin-Lai; Jin, Min; Song, Nong; Shi, Xiu-Quan; Chao, Fu-Huan

    2002-01-01

    AIM: To develop a rapid detection method of enteroviruses and Hepatitis A virus (HAV). METHODS: A one-step, single-tube consensus primers multiplex RT-PCR was developed to simultaneously detect Poliovirus, Coxsackie virus, Echovirus and HAV. A general upstream primer and a HAV primer and four different sets of primers (5 primers) specific for Poliovirus, Coxsacki evirus, Echovirus and HAV cDNA were mixed in the PCR mixture to reverse transcript and amplify the target DNA. Four distinct amplified DNA segments representing Poliovirus, Coxsackie virus, Echovirus and HAV were identified by gel electrophoresis as 589-, 671-, 1084-, and 1128 bp sequences, respectively. Semi-nested PCR was used to confirm the amplified products for each enterovirus and HAV. RESULTS: All four kinds of viral genome RNA were detected, and producing four bands which could be differentiated by the band size on the gel. To confirm the specificity of the multiplex PCR products, semi-nested PCR was performed. For all the four strains tested gave positive results. The detection sensitivity of multiplex PCR was similar to that of monoplex RT-PCR which was 24 PFU for Poliovrus, 21 PFU for Coxsackie virus, 60 PFU for Echovirus and 105 TCID50 for HAV. The minimum amount of enteric viral RNA detected by semi-nested PCR was equivalent to 2.4 PFU for Poliovrus, 2.1 PFU for Coxsackie virus, 6.0 PFU for Echovirus and 10.5 TCID50 for HAV. CONCLUSION: The consensus primers multiplex RT-PCR has more advantages over monoplex RT-PCR for enteric viruses detection, namely, the rapid turnaround time and cost effectiveness. PMID:12174381

  13. Real-Time PCR for Universal Phytoplasma Detection and Quantification

    DEFF Research Database (Denmark)

    Christensen, Nynne Meyn; Nyskjold, Henriette; Nicolaisen, Mogens

    2013-01-01

    Currently, the most efficient detection and precise quantification of phytoplasmas is by real-time PCR. Compared to nested PCR, this method is less sensitive to contamination and is less work intensive. Therefore, a universal real-time PCR method will be valuable in screening programs and in other...

  14. Cara Preservasi Fitoplasma dari Jaringan Kacang Tanah Bergejala Sapu untuk Deteksi DNA dengan Teknik PCR

    Directory of Open Access Journals (Sweden)

    Siska Irhamnawati Pulogu

    2017-07-01

    Full Text Available Witches‘ broom of peanut caused by phytoplasma is a common disease found in Indonesia. Phytoplasma is able to be detected using polymerase chain reaction (PCR technique. One of important factor which determine the successful of phytoplasma amplification is the DNA availability from fresh tissues. The research was aimed to evaluate some preservation methods of phytoplasma from infected plant samples. The aspects to be evaluated consisted of time (1, 2, 3, and 4 weeks, temperature (-20 °C, 4 °C, and 25 °C, and preservation medium (1X PGB buffer, 3 M NaCl, CTAB buffer, 70% ethanol, non medium, and FTA-card for storing the fresh phytoplasma infected samples. Good preservation method will optimize the phytoplasma DNA amplification using PCR standard technique followed by nested-PCR. The results showed that preservation of samples at -20 °C, 4 °C, and 25 °C in CTAB buffer was able to maintain the tissue freshness for 4 weeks and was able to provide the DNA of either quality or quantity sufficiently for PCR detection. PCR standard using a primer pair P1/P7 showed that not all of the preserved DNA of phytoplasma were amplified positively. However, standard PCR followed by nested-PCR using primer pair fU5/rU3 was able to increase the DNA detectability. Preserved samples derived from various medium and stored for 4 weeks gave positive results.  This results were in contrary with previous same samples which were detected negatively by standard PCR technique.

  15. Diagnóstico temprano en un brote epidémico del virus Dengue en Piura usando RT-PCR y nested-PCR

    Directory of Open Access Journals (Sweden)

    Oscar Nolasco

    1997-07-01

    Full Text Available Un test de diagnóstico temprano (RT-PCR y Nested-PCR fue evaluado y comparado con métodos convencionales (cultivo in vitro, IFI y MAC-ELISA. Treinta y cuatro sueros de pacientes correspondientes de un brote epidémico de la costa norte peruana (Mancora, Piura en mayo de 1997 fueron incluidos en este estudio. Todos los sueros fueron obtenidos de pacientes que presentaron en los primeros cinco días manifestaciones clínicas siendo diagnosticados luego como dengue serotipo 1. Asimismo, RT-PCR permitió diagnosticar 82% de los sueros (28/34, sin embargo Mac-ELISA y cultivo in vitro reconocieron unicamente 41% de los sueros (14/34 y 38% de los sueros (13/34 respectivamente. Por lo tanto, el uso de esta herramienta molecular (RT-PCR y Nested-PCR permitiró dar un diagnóstico temprano a estos pacientes y actuar inmediatamente ante la presencia de un brote epidémico.

  16. Analysis of Light Gathering Abilities of Dynamically Solidified Micro-lenses, and Their Implementation to Improve Sensitivity of Fluorescent PCR Micro-detectors.

    Science.gov (United States)

    Wu, Jian; Guo, Wei; Wang, Chunyan; Yu, Kuanxin; Chen, Tao; Li, Yinghui

    2015-06-01

    Fluorescent polymerase chain reaction (PCR) is becoming the preferred method of quantitative analysis due to its high specificity and sensitivity. We propose to use a new kind of micro-lens, dynamically solidified with optic glue, to improve the sensitivity of fluorescent PCR micro-detector. We developed light ray track equations for these lenses and used them to calculate relative light intensity distribution curve for stimulation lenses and illumination point probability distribution curve for detection lenses. We manufactured dynamically solidified micro-lenses using optic glue NOA61, and measured their light gathering ability. Lenses with radius/thickness (R/H) ratio of 4 reached light focusing ratio of 3.85 (stimulation lens) and photon collection efficiency of 0.86 (detection lens). We then used dynamically solidified lenses in PCR fluorescence micro-detector and analyzed their effect on the detector sensitivity. We showed that the use of dynamically solidified micro-lenses with R/H = 4 resulted in over 4.4-fold increased sensitivity of the detector.

  17. Establishing a novel single-copy primer-internal intron-spanning PCR (spiPCR) procedure for the direct detection of gene doping.

    Science.gov (United States)

    Beiter, Thomas; Zimmermann, Martina; Fragasso, Annunziata; Armeanu, Sorin; Lauer, Ulrich M; Bitzer, Michael; Su, Hua; Young, William L; Niess, Andreas M; Simon, Perikles

    2008-01-01

    So far, the abuse of gene transfer technology in sport, so-called gene doping, is undetectable. However, recent studies in somatic gene therapy indicate that long-term presence of transgenic DNA (tDNA) following various gene transfer protocols can be found in DNA isolated from whole blood using conventional PCR protocols. Application of these protocols for the direct detection of gene doping would require almost complete knowledge about the sequence of the genetic information that has been transferred. Here, we develop and describe the novel single-copy primer-internal intron-spanning PCR (spiPCR) procedure that overcomes this difficulty. Apart from the interesting perspectives that this spiPCR procedure offers in the fight against gene doping, this technology could also be of interest in biodistribution and biosafety studies for gene therapeutic applications.

  18. Comprehensive and Rapid Real-Time PCR Analysis of 21 Foodborne Outbreaks

    Directory of Open Access Journals (Sweden)

    Hiroshi Fukushima

    2009-01-01

    Full Text Available A set of four duplex SYBR Green I PCR (SG-PCR assay combined with DNA extraction using QIAamp DNA Stool Mini kit was evaluated for the detection of foodborne bacteria from 21 foodborne outbreaks. The causative pathogens were detected in almost all cases in 2 hours or less. The first run was for the detection of 8 main foodborne pathogens in 5 stool specimens within 2 hours and the second run was for the detection of other unusual suspect pathogens within a further 45 minutes. After 2 to 4 days, the causative agents were isolated and identified. The results proved that for comprehensive and rapid molecular diagnosis in foodborne outbreaks, Duplex SG-PCR assay is not only very useful, but is also economically viable for one-step differentiation of causative pathogens in fecal specimens obtained from symptomatic patients. This then allows for effective diagnosis and management of foodborne outbreaks.

  19. Study on sensitivity of southern blotting hybridization using a 32P-labeled probe of PCR products in detecting human cytomegalovirus

    International Nuclear Information System (INIS)

    Bu Hengfu; Chen Juan; Shen Rongsen; Ma Liren; Xu Yongqiang

    1996-01-01

    Southern blotting hybridization (SBH) using a 32 P-labeled probe is one of the most practical methods for genetic diagnosis of pathogen. On the basis of establishing PCR and nested PCR for detecting human cytomegalovirus (HCMV), a 32 P-labeled probe was prepared with the amplified products of 613 bp PCR outer primers and hybridized with 300 bp inner primer amplified product, resulting in increase in detecting sensitivity from 17 ng (in 1.2% agarose electrophoresis) before SBH to 500 pg (autoradiographed), in other words, increasing the sensitivity of detecting HCMV by 10 2 dilutions after using SBH. The method of PCR and SBH using a 32 P-labeled probe could detect less than 1 gene copy of HCMV, therefore, it is a rapid and reliable diagnosis method for detecting HCMV latent infection

  20. Whatman Paper (FTA Cards) for Storing and Transferring Leishmania DNA for PCR Examination

    OpenAIRE

    A Amin-Mohammadi; E Eskandari; AA Akhavan; M Ganjbakhsh; Z Hosseininejad; M Afzalaghaei; F Berenji; M Mohajery; A Khamesipour; A Fata

    2009-01-01

    "nBackground: Diagnosis of cutaneous leishmaniasis (CL) is often made based on clinical manifesta­tion. Correct diagnosis and identification of the parasite are crucial for choosing the effective treat­ment and for epidemiological studies. On the other hand, determination of Leishmania species is nec­essary for designing appropriate control programs. Diagnosis by PCR is becoming a 'gold standard'. For PCR preparation, storage and shipments of specimens are necessary. In this study, ...

  1. A fully sealed plastic chip for multiplex PCR and its application in bacteria identification.

    Science.gov (United States)

    Xu, Youchun; Yan, He; Zhang, Yan; Jiang, Kewei; Lu, Ying; Ren, Yonghong; Wang, Hui; Wang, Shan; Xing, Wanli

    2015-07-07

    Multiplex PCR is an effective tool for simultaneous multiple target detection but is limited by the intrinsic interference and competition among primer pairs when it is performed in one reaction tube. Dividing a multiplex PCR into many single PCRs is a simple strategy to overcome this issue. Here, we constructed a plastic, easy-to-use, fully sealed multiplex PCR chip based on reversible centrifugation for the simultaneous detection of 63 target DNA sequences. The structure of the chip is quite simple, which contains sine-shaped infusing channels and a number of reaction chambers connecting to one side of these channels. Primer pairs for multiplex PCR were sequentially preloaded in the different reaction chambers, and the chip was enclosed with PCR-compatible adhesive tape. For usage, the PCR master mix containing a DNA template is pipetted into the infusing channels and centrifuged into the reaction chambers, leaving the infusing channels filled with air to avoid cross-contamination of the different chambers. Then, the chip is sealed and placed on a flat thermal cycler for PCR. Finally, amplification products can be detected in situ using a fluorescence scanner or recovered by reverse centrifugation for further analyses. Therefore, our chip possesses two functions: 1) it can be used for multi-target detection based on end-point in situ fluorescence detection; and 2) it can work as a sample preparation unit for analyses that need multiplex PCR such as hybridization and target sequencing. The performance of this chip was carefully examined and further illustrated in the identification of 8 pathogenic bacterial genomic DNA samples and 13 drug-resistance genes. Due to simplicity of its structure and operation, accuracy and generality, high-throughput capacity, and versatile functions (i.e., for in situ detection and sample preparation), our multiplex PCR chip has great potential in clinical diagnostics and nucleic acid-based point-of-care testing.

  2. Application of a Multiplex Quantitative PCR to Assess Prevalence and Intensity Of Intestinal Parasite Infections in a Controlled Clinical Trial

    Science.gov (United States)

    Llewellyn, Stacey; Inpankaew, Tawin; Nery, Susana Vaz; Gray, Darren J.; Verweij, Jaco J.; Clements, Archie C. A.; Gomes, Santina J.; Traub, Rebecca; McCarthy, James S.

    2016-01-01

    Background Accurate quantitative assessment of infection with soil transmitted helminths and protozoa is key to the interpretation of epidemiologic studies of these parasites, as well as for monitoring large scale treatment efficacy and effectiveness studies. As morbidity and transmission of helminth infections are directly related to both the prevalence and intensity of infection, there is particular need for improved techniques for assessment of infection intensity for both purposes. The current study aimed to evaluate two multiplex PCR assays to determine prevalence and intensity of intestinal parasite infections, and compare them to standard microscopy. Methodology/Principal Findings Faecal samples were collected from a total of 680 people, originating from rural communities in Timor-Leste (467 samples) and Cambodia (213 samples). DNA was extracted from stool samples and subject to two multiplex real-time PCR reactions the first targeting: Necator americanus, Ancylostoma spp., Ascaris spp., and Trichuris trichiura; and the second Entamoeba histolytica, Cryptosporidium spp., Giardia. duodenalis, and Strongyloides stercoralis. Samples were also subject to sodium nitrate flotation for identification and quantification of STH eggs, and zinc sulphate centrifugal flotation for detection of protozoan parasites. Higher parasite prevalence was detected by multiplex PCR (hookworms 2.9 times higher, Ascaris 1.2, Giardia 1.6, along with superior polyparasitism detection with this effect magnified as the number of parasites present increased (one: 40.2% vs. 38.1%, two: 30.9% vs. 12.9%, three: 7.6% vs. 0.4%, four: 0.4% vs. 0%). Although, all STH positive samples were low intensity infections by microscopy as defined by WHO guidelines the DNA-load detected by multiplex PCR suggested higher intensity infections. Conclusions/Significance Multiplex PCR, in addition to superior sensitivity, enabled more accurate determination of infection intensity for Ascaris, hookworms and

  3. Universally Primed-PCR indicates geographical variation of Peronospora farinosa ex. Chenopodium quinoa.

    Science.gov (United States)

    Danielsen, Solveig; Lübeck, Mette

    2010-02-01

    In the Andean region of South America downy mildew, caused by Peronospora farinosa, is the most important disease of quinoa (Chenopodium quinoa). Peronospora farinosa, a highly polyphyletic species, occurs on quinoa and wild relatives on all continents. However, very little is known about the geographic diversity of the pathogen. As the interest in quinoa as a novel crop is increasing worldwide, geographical differences in the population structure of the downy mildew pathogen must be taken into consideration in order to design appropriate control strategies under a variety of circumstances. As a step towards understanding the geographic diversity of P. farinosa from quinoa, 40 downy mildew isolates from the Andean highlands and Denmark were characterized using universally primed PCR (UP-PCR). Eight UP-PCR primers were tested. A combined analysis of markers separated the Danish and Andean isolates in two distinct clusters. This study raises new questions about the origin and spread of P. farinosa on quinoa, its geographic diversity and host specificity.

  4. Early diagnosis of typhoid fever by nested PCR for flagellin gene of Salmonella enterica serotype Typhi.

    Science.gov (United States)

    Khan, S; Harish, B N; Menezes, G A; Acharya, N S; Parija, S C

    2012-11-01

    Typhoid fever caused by Salmonella Typhi continues to be a major health problem in spite of the use of antibiotics and the development of newer antibacterial drugs. Inability to make an early laboratory diagnosis and resort to empirical therapy, often lead to increased morbidity and mortality in cases of typhoid fever. This study was aimed to optimize a nested PCR for early diagnosis of typhoid fever and using it as a diagnostic tool in culture negative cases of suspected typhoid fever. Eighty patients with clinical diagnosis of typhoid fever and 40 controls were included in the study. The blood samples collected were subjected to culture, Widal and nested PCR targeting the flagellin gene of S. Typhi. The sensitivity of PCR on blood was found to be 100 per cent whereas the specificity was 76.9 per cent. The positive predictive value (PPV) of PCR was calculated to be 76.9 per cent with an accuracy of 86 per cent. None of the 40 control samples gave a positive PCR. Due to its high sensitivity and specificity nested PCR can be used as a useful tool to diagnose clinically suspected, culture negative cases of typhoid fever.

  5. Validation of RNAi by real time PCR

    DEFF Research Database (Denmark)

    Josefsen, Knud; Lee, Ying Chiu

    2011-01-01

    Real time PCR is the analytic tool of choice for quantification of gene expression, while RNAi is concerned with downregulation of gene expression. Together, they constitute a powerful approach in any loss of function studies of selective genes. We illustrate here the use of real time PCR to verify...

  6. Diagnosis of Cutaneous Leishmaniasis by Multiplex PCR

    Directory of Open Access Journals (Sweden)

    M Heiat

    2010-07-01

    Full Text Available Introduction: Annually, more than 14 million people are reported to be infected with Leishmaniasis all over the world. In Iran, this disease is seen in the form of cutaneous and visceral leishmaniasis, of which the cutaneous form is more wide spread. In recent years, cutaneous leishmaniaisis is diagnosed by PCR utilizing specific primers in order to amplify different parasite genes including ribosomal RNA genes, kinetoplast DNA or tandem repeating sequences. The aim of this research was to detect early stage cutaneous leishmaniasis using Multiplex-PCR technique. Methods: In this study, 67 samples were prepared from patients with cutaneous leishmaniasis. DNA was extracted with phenolchloroform. Each specimen was analyzed using two different pairs of PCR primers. The sensitivity of each PCR was optimized on pure Leishmania DNA prior to use for diagnosis. Two standard parasites L. major and L. tropica were used as positive control. Results: DNA amplification fragments were two 115 bp and 683 bp for AB and UL primers, respectively. The sensitivity of two primers was not equal for detection of L. major and L. tropica. The sensivity of PCR with AB primer was 35 cells, while that for UL primer was 40 cells. Conclusion: The results of this study indicate that PCR is a sensitive diagnostic assay for cutaneous leishmaniasis and could be employed as the new standard for routine diagnosis when species identification is not required. However, the ability to identify species is especially important in prognosis of the disease and in deciding appropriate therapy, especially in regions where more than one type of species and disease are seen by clinicians.

  7. A quantitative method to evaluate mesenchymal stem cell lipofection using real-time PCR.

    Science.gov (United States)

    Ribeiro, S C; Mendes, R; Madeira, C; Monteiro, G A; da Silva, C L; Cabral, J M S

    2010-01-01

    Genetic modification of human mesenchymal stem cells (MSC) is a powerful tool to improve the therapeutic utility of these cells and to increase the knowledge on their regulation mechanisms. In this context, strong efforts have been made recently to develop efficient nonviral gene delivery systems. Although several studies addressed this question most of them use the end product of a reporter gene instead of the DNA uptake quantification to test the transfection efficiency. In this study, we established a method based on quantitative real-time PCR (RT-PCR) to determine the intracellular plasmid DNA copy number in human MSC after lipofection. The procedure requires neither specific cell lysis nor DNA purification. The influence of cell number on the RT-PCR sensitivity was evaluated. The method showed good reproducibility, high sensitivity, and a wide linear range of 75-2.5 x 10⁶ plasmid DNA copies per cell. RT-PCR results were then compared with the percentage of transfected cells assessed by flow cytometry analysis, which showed that flow cytometry-based results are not always proportional to plasmid cellular uptake determined by RT-PCR. This work contributed for the establishment of a rapid quantitative assay to determine intracellular plasmid DNA in stem cells, which will be extremely beneficial for the optimization of gene delivery strategies. © 2010 American Institute of Chemical Engineers

  8. A Point-of-Need infrared mediated PCR platform with compatible lateral flow strip for HPV detection.

    Science.gov (United States)

    Liu, Wenjia; Zhang, Mingfang; Liu, Xiaoyan; Sharma, Alok; Ding, Xianting

    2017-10-15

    With the increasing need of monitoring the epidemiology of serious infectious diseases, food hygiene, food additives and pesticide residues, it is urgent to develop portable, easy-to-use, inexpensive and rapid molecular diagnostic tools. Herein, we demonstrate a prototype of IR mediated Conducting Oil and CarbOn Nanotube circUlaTing PCR (IR-COCONUT PCR) platform for nucleic acid amplification. The presented platform offers a new solution for miniaturized PCR instruments with non-contact heaters by using conducting oil and carbon nanotube as a medium in IR mediated PCR. This novel platform offers accurate and flexible control of temperature through the integration of PID (proportional-integral-derivative) algorithms to manipulate the duty cycle of the voltage signals of IR LED and a peristaltic pump. The ramping rate of the introduced platform in current study is 1.5°C/s for heating speed and -2.0°C/s for cooling speed. This platform fulfills 30 thermal cycles within 50min which is a match to the conventional bench-top PCR thermo cyclers. For demonstration purpose, human papillomavirus (HPV) patient cervical swab specimens were examined. Downstream lateral flow strip (LFS) was also developed to quantity the PCR products from the IR-COCONUT PCR device within 25min. This PCR platform together with the compatible LFS shows great potential for in-field and Point-of-Need (PoN) testing of genetic or contagious diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Identification of some Fusarium species from selected crop seeds using traditional method and BIO-PCR

    Directory of Open Access Journals (Sweden)

    Tomasz Kulik

    2012-12-01

    Full Text Available We identified a species level of the fungal cultures isolated from selected crop seeds using traditional method and BIO-PCR. The use of BIO-PCR did not correspond completely to the morphological analyses. Both methods showed increased infection with F. poae in winter wheat seed sample originated from north Poland. Fungal culture No 40 (isolated from faba bean and identified with traditional method as mixed culture with F. culmorum and F. graminearum did not produce expected product after PCR reaction with species specific primers OPT18F470, OPT18R470. However, the use of additional primers Fc01F, Fc01R allowed for reliable identification of F. culmorum in the culture.

  10. The PCR-GLOBWB global hydrological reanalysis product

    Science.gov (United States)

    Wanders, Niko; Bierkens, Marc; Sutanudjaja, Edwin; van Beek, Rens

    2014-05-01

    fields with consideration of local topographic and orographic effects. Results show that the model parameters can be successfully calibrated, while corrections to the forcing precipitation fields are substantial. Topography has the largest impact on the corrected precipitation and globally the precipitation is reduced by 3%. The calibrated model output is compared to the reference run of PCR-GLOBWB before calibration showing significant improvement in simulation of the global terrestrial water cycle. The RMSE is reduced by 10% on average, leading to improved discharge simulations, especially under base flow situations. The main outcome of this work is a 1960-2010 global reanalysis dataset that includes extensive daily hydrological components, such as precipitation, evaporation and transpiration, snow, soil moisture, groundwater storage and discharge. This reanalysis product may be used for understanding land surface memory processes, initializing regional studies and operational forecasts, as well as evaluating and improving our understanding of spatio-temporal variation of meteorological and hydrological processes. Moreover, The PCR-GLOBWB data assimilation framework developed in this work can also be extended by including more observational data, including remotely sensed data reflecting the distribution of energy and water (e.g., heat fluxes and soil moisture storage).

  11. Codon optimizing for increased membrane protein production

    DEFF Research Database (Denmark)

    Mirzadeh, K.; Toddo, S.; Nørholm, Morten

    2016-01-01

    . As demonstrated with two membrane-embedded transporters in Escherichia coli, the method was more effective than optimizing the entire coding sequence. The method we present is PCR based and requires three simple steps: (1) the design of two PCR primers, one of which is degenerate; (2) the amplification...

  12. Interlaboratory diagnostic accuracy of a Salmonella specific PCR-based method

    DEFF Research Database (Denmark)

    Malorny, B.; Hoorfar, Jeffrey; Hugas, M.

    2003-01-01

    A collaborative study involving four European laboratories was conducted to investigate the diagnostic accuracy of a Salmonella specific PCR-based method, which was evaluated within the European FOOD-PCR project (http://www.pcr.dk). Each laboratory analysed by the PCR a set of independent obtained...... presumably naturally contaminated samples and compared the results with the microbiological culture method. The PCR-based method comprised a preenrichment step in buffered peptone water followed by a thermal cell lysis using a closed tube resin-based method. Artificially contaminated minced beef and whole......-based diagnostic methods and is currently proposed as international standard document....

  13. Standardization of diagnostic PCR for the detection of foodborne pathogens

    DEFF Research Database (Denmark)

    Malorny, B.; Tassios, P.T.; Radstrom, P.

    2003-01-01

    In vitro amplification of nucleic acids using the polymerase chain reaction (PCR) has become, since its discovery in the 1980s, a powerful diagnostic tool for the analysis of microbial infections as well as for the analysis of microorganisms in food samples. However, despite its potential, PCR has...... neither gained wide acceptance in routine diagnostics nor been widely incorporated in standardized methods. Lack of validation and standard protocols, as well as variable quality of reagents and equipment, influence the efficient dissemination of PCR methodology from expert research laboratories to end......-user laboratories. Moreover, the food industry understandably requires and expects officially approved standards. Recognizing this, in 1999, the European Commission approved the research project, FOOD-PCR (http://www.PCR.dk), which aims to validate and standardize the use of diagnostic PCR for the detection...

  14. Comparison of false-negative rates and limits of detection following macrofoam-swab sampling of Bacillus anthracis surrogates via Rapid Viability PCR and plate culture

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, J. R. [National Security Directorate, Pacific Northwest National Laboratory, Richland WA USA; Piepel, G. F. [National Security Directorate, Pacific Northwest National Laboratory, Richland WA USA; Amidan, B. G. [National Security Directorate, Pacific Northwest National Laboratory, Richland WA USA; Hess, B. M. [National Security Directorate, Pacific Northwest National Laboratory, Richland WA USA; Sydor, M. A. [National Security Directorate, Pacific Northwest National Laboratory, Richland WA USA; Deatherage Kaiser, B. L. [National Security Directorate, Pacific Northwest National Laboratory, Richland WA USA

    2018-03-13

    Aims: We evaluated the effects of Bacillus anthracis surrogates, low surface concentrations, surface materials, and assay methods on false-negative rate (FNR) and limit of detection (LOD95) for recovering Bacillus spores using a macrofoam-swab sampling procedure. Methods and Results: Bacillus anthracis Sterne or Bacillus atrophaeus Nakamura spores were deposited over a range of low target concentrations (2 – 500 coupon-1) onto glass, stainless steel, vinyl tile, and plastic. Samples were assayed using a modified Rapid Viability-PCR (mRV-PCR) method and the traditional plate culture method to obtain FNR and LOD95 results. Conclusions: Mean FNRs tended to be lower for mRV-PCR compared to culturing, and increased as spore concentration decreased for all surface materials. Surface material, but not B. anthracis surrogate, influenced FNRs with the mRV-PCR method. The mRV-PCR LOD95 was lowest for glass and highest for vinyl tile. LOD95 values overall were lower for mRV-PCR than for the culture method. Significance and Impact of Study: This study adds to the limited data on FNR and LOD95 for mRV-PCR and culturing methods with low concentrations of B. anthracis sampled from various surface materials by the CDC macrofoam-swab method. These are key inputs for planning characterization and clearance studies for low contamination levels of B. anthracis.

  15. Diagnosis of Trichomonous vaginalis by microscopy, latex agglutination, diamond's media, and PCR in symptomatic women, Khartoum, Sudan.

    Science.gov (United States)

    Saleh, Amir M; Abdalla, Hamid S; Satti, Abdelsalam B; Babiker, Suad M; Gasim, Gasim I; Adam, Ishag

    2014-03-06

    Trichomoniasis is the most common sexually transmitted disease. However, limited data are available on an effective technique for the diagnosis of Trichomonas vaginalis. A cross-sectional study was conducted to evaluate the accuracy of wet mount microscopy, latex agglutination, Diamond's media, and polymerase chain reaction (PCR) for detection of T. vaginalis among symptomatic women who attended the gynecological clinic at Khartoum, Sudan. Of the 297 women studied, 252 (84.8%) were positive for T. vaginalis by wet mount microscopy, 257 (86.5%) by latex agglutination, 253 (85.2%) by Diamond's media, and 253 (85.2%) by PCR. The sensitivity and specificity of wet mount microscopy were 99.2% and 97.7%, respectively, compared with PCR. The sensitivity and specificity of latex agglutination and Diamond's media were 99.6% and 88.6%, and 100.0% and 86.4%, respectively, compared with PCR. In this study, wet mount microscopy, latex agglutination, and Diamond's media were found to be highly sensitive and specific. However, the availability and cost effectiveness might limit the use of Diamond's media and PCR in routine practice. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/7859723851211496.

  16. A fast and highly sensitive blood culture PCR method for clinical detection of Salmonella enterica serovar Typhi

    Directory of Open Access Journals (Sweden)

    Zhou Liqing

    2010-04-01

    Full Text Available Abstract Background Salmonella Typhi causes an estimated 21 million new cases of typhoid fever and 216,000 deaths every year. Blood culture is currently the gold standard for diagnosis of typhoid fever, but it is time-consuming and takes several days for isolation and identification of causative organisms. It is then too late to initiate proper antibiotic therapy. Serological tests have very low sensitivity and specificity, and no practical value in endemic areas. As early diagnosis of the disease and prompt treatment are essential for optimal management, especially in children, a rapid sensitive detection method for typhoid fever is urgently needed. Although PCR is sensitive and rapid, initial research indicated similar sensitivity to blood culture and lower specificity. We developed a fast and highly sensitive blood culture PCR method for detection of Salmonella Typhi, allowing same-day initiation of treatment after accurate diagnosis of typhoid. Methods An ox bile tryptone soy broth was optimized for blood culture, which allows the complete lysis of blood cells to release intracellular bacteria without inhibiting the growth of Salmonella Typhi. Using the optimised broth Salmonella Typhi bacteria in artificial blood samples were enriched in blood culture and then detected by a PCR targeting the fliC-d gene of Salmonella Typhi. Results Tests demonstrated that 2.4% ox bile in blood culture not only lyzes blood cells completely within 1.5 hours so that the intracellular bacteria could be released, but also has no inhibiting effect on the growth of Salmonella Typhi. Three hour enrichment of Salmonella Typhi in tryptone soya broth containing 2.4% ox bile could increase the bacterial number from 0.75 CFU per millilitre of blood which is similar to clinical typhoid samples to the level which regular PCR can detect. The whole blood culture PCR assay takes less than 8 hours to complete rather than several days for conventional blood culture

  17. Evaluation and validation of candidate endogenous control genes for real-time quantitative PCR studies of breast cancer

    Directory of Open Access Journals (Sweden)

    Miller Nicola

    2007-11-01

    Full Text Available Abstract Background Real-time quantitative PCR (RQ-PCR forms the basis of many breast cancer biomarker studies and novel prognostic assays, paving the way towards personalised cancer treatments. Normalisation of relative RQ-PCR data is required to control for non-biological variation introduced during sample preparation. Endogenous control (EC genes, used in this context, should ideally be expressed constitutively and uniformly across treatments in all test samples. Despite widespread recognition that the accuracy of the normalised data is largely dependent on the reliability of the EC, there are no reports of the systematic validation of genes commonly used for this purpose in the analysis of gene expression by RQ-PCR in primary breast cancer tissues. The aim of this study was to identify the most suitable endogenous control genes for RQ-PCR analysis of primary breast tissue from a panel of eleven candidates in current use. Oestrogen receptor alpha (ESR1 was used a target gene to compare the effect of choice of EC on the estimate of gene quantity. Results The expression and validity of candidate ECs (GAPDH, TFRC, ABL, PPIA, HPRT1, RPLP0, B2M, GUSB, MRPL19, PUM1 and PSMC4 was determined in 6 benign and 21 malignant primary breast cancer tissues. Gene expression data was analysed using two different statistical models. MRPL19 and PPIA were identified as the most stable and reliable EC genes, while GUSB, RPLP0 and ABL were least stable. There was a highly significant difference in variance between ECs. ESR1 expression was appreciably higher in malignant compared to benign tissues and there was a significant effect of EC on the magnitude of the error associated with the relative quantity of ESR1. Conclusion We have validated two endogenous control genes, MRPL19 and PPIA, for RQ-PCR analysis of gene expression in primary breast tissue. Of the genes in current use in this field, the above combination offers increased accuracy and resolution in the

  18. Comparison of LAMP and PCR for molecular mass screening of sand flies for Leishmania martiniquensis infection.

    Science.gov (United States)

    Tiwananthagorn, Saruda; Kato, Hirotomo; Yeewa, Ranchana; Muengpan, Amontip; Polseela, Raxsina; Leelayoova, Saovanee

    2017-02-01

    Leishmaniasis caused by Leishmania martiniquensis infection has been reported in human and domestic animals of Martinique Island, Germany, Switzerland, USA, Myanmar and Thailand. The peculiar clinical features of disseminated cutaneous and visceral forms co-existence render the urgent need of specific diagnostic tool to identify the natural sand fly vectors for effective prevention and control strategies. Loop-mediated isothermal amplification (LAMP) of 18S rRNA gene as well as polymerase chain reaction (PCR) of minicircle kinetoplast DNA gene (PCR-mkDNA) have never been applied to detect L. martiniquensis and L. siamensis in sand fly vectors. The present study was aimed to validate malachite green-LAMP (MG-LAMP) and PCR-mkDNA techniques to detect L. martiniquensis in sand fly vectors, compared with the conventional PCR of internal transcribed spacer 1 (PCR-ITS1). We compared the validity of LAMP of 18S rRNA gene and PCR-mkDNA, to PCR-ITS1 in simulation model of L. martiniquensis infection in Sergentomyia gemmea sand flies. Attributable to the sensitivity and specificity, PCR-mkDNA was consecutively applied to detect L. martiniquensis in 380 female sand fly individuals captured in the newly identified affected region of Lamphun Province, Thailand. Results showed that PCR-mkDNA could detect at least one promastigote per sand fly, which was 10-time superior to LAMP and PCR-ITS1. In addition, PCR-mkDNA was more specific, able to differentiate L. martiniquensis from other viscerotropic Leishmania species, such as L. siamensis, L. (L.) donovani, and L. (L.) infantum. Consecutively, mass screening of L. martiniquensis in 380 female sand fly individuals by PCR-mkDNA was implemented in a new affected area of Thailand where a patient with leishmaniasis/HIV co-infection resides; however Leishmania DNA was undetected. In conclusion, PCR-mkDNA is a promising tool for molecular mass screening of L. martiniquensis infection in outbreak areas where several species of Leishmania

  19. Comparison of LAMP and PCR for molecular mass screening of sand flies for Leishmania martiniquensis infection

    Science.gov (United States)

    Tiwananthagorn, Saruda; Kato, Hirotomo; Yeewa, Ranchana; Muengpan, Amontip; Polseela, Raxsina; Leelayoova, Saovanee

    2017-01-01

    BACKGROUND Leishmaniasis caused by Leishmania martiniquensis infection has been reported in human and domestic animals of Martinique Island, Germany, Switzerland, USA, Myanmar and Thailand. The peculiar clinical features of disseminated cutaneous and visceral forms co-existence render the urgent need of specific diagnostic tool to identify the natural sand fly vectors for effective prevention and control strategies. Loop-mediated isothermal amplification (LAMP) of 18S rRNA gene as well as polymerase chain reaction (PCR) of minicircle kinetoplast DNA gene (PCR-mkDNA) have never been applied to detect L. martiniquensis and L. siamensis in sand fly vectors. OBJECTIVE The present study was aimed to validate malachite green-LAMP (MG-LAMP) and PCR-mkDNA techniques to detect L. martiniquensis in sand fly vectors, compared with the conventional PCR of internal transcribed spacer 1 (PCR-ITS1). METHODS We compared the validity of LAMP of 18S rRNA gene and PCR-mkDNA, to PCR-ITS1 in simulation model of L. martiniquensis infection in Sergentomyia gemmea sand flies. Attributable to the sensitivity and specificity, PCR-mkDNA was consecutively applied to detect L. martiniquensis in 380 female sand fly individuals captured in the newly identified affected region of Lamphun Province, Thailand. FINDINGS AND MAIN CONCLUSIONS Results showed that PCR-mkDNA could detect at least one promastigote per sand fly, which was 10-time superior to LAMP and PCR-ITS1. In addition, PCR-mkDNA was more specific, able to differentiate L. martiniquensis from other viscerotropic Leishmania species, such as L. siamensis, L. (L.) donovani, and L. (L.) infantum. Consecutively, mass screening of L. martiniquensis in 380 female sand fly individuals by PCR-mkDNA was implemented in a new affected area of Thailand where a patient with leishmaniasis/HIV co-infection resides; however Leishmania DNA was undetected. In conclusion, PCR-mkDNA is a promising tool for molecular mass screening of L. martiniquensis

  20. Real-Time PCR in Clinical Microbiology: Applications for Routine Laboratory Testing

    Science.gov (United States)

    Espy, M. J.; Uhl, J. R.; Sloan, L. M.; Buckwalter, S. P.; Jones, M. F.; Vetter, E. A.; Yao, J. D. C.; Wengenack, N. L.; Rosenblatt, J. E.; Cockerill, F. R.; Smith, T. F.

    2006-01-01

    Real-time PCR has revolutionized the way clinical microbiology laboratories diagnose many human microbial infections. This testing method combines PCR chemistry with fluorescent probe detection of amplified product in the same reaction vessel. In general, both PCR and amplified product detection are completed in an hour or less, which is considerably faster than conventional PCR detection methods. Real-time PCR assays provide sensitivity and specificity equivalent to that of conventional PCR combined with Southern blot analysis, and since amplification and detection steps are performed in the same closed vessel, the risk of releasing amplified nucleic acids into the environment is negligible. The combination of excellent sensitivity and specificity, low contamination risk, and speed has made real-time PCR technology an appealing alternative to culture- or immunoassay-based testing methods for diagnosing many infectious diseases. This review focuses on the application of real-time PCR in the clinical microbiology laboratory. PMID:16418529

  1. PCR specific for Actinobacillus pleuropneumoniae serotype 3

    DEFF Research Database (Denmark)

    Zhou, L.; Jones, S.C.P.; Angen, Øystein

    2008-01-01

    , but the method has liminations, for example, cross-reactions between serotypes 3, 6, and 8. This study describes the development of a serotype 3-specific PCR, based on the capsule locus, which can be used in a multiplex format with the organism's specific gene apxIV. The PCR test was evaluated on 266 strains...

  2. Diagnostic efficacy of a real time-PCR assay for Chlamydia trachomatis infection in infertile women in north India

    Directory of Open Access Journals (Sweden)

    Benu Dhawan

    2014-01-01

    Full Text Available Background & objectives: Little is known about the prevalence of Chlamydia trachomatis infection in Indian women with infertility. To improve the diagnosis of C. trachomatis infection in developing countries, there is an urgent need to establish cost-effective molecular test with high sensitivity and specificity. This study was conducted to determine the diagnostic utility of a real time-PCR assay for detention of C. trachomatis infection in infertile women attending an infertility clinic in north India. The in house real time-PCR assay was also compared with a commercial real-time PCR based detection system. Methods: Endocervical swabs, collected from 200 infertile women were tested for C. trachomatis by three different PCR assays viz. in-house real time-PCR targeting the cryptic plasmid using published primers, along with omp1 gene and cryptic plasmid based conventional PCR assays. Specimens were also subjected to direct fluorescence assay (DFA and enzyme immunoassay (EIA Performance of in-house real time-PCR was compared with that of COBAS Taqman C. trachomatis Test, version 2.0 on all in-house real time-PCR positive sample and 30 consecutive negative samples. Results: C. trachomatis infection was found in 13.5 per cent (27/200 infertile women by in-house real time-PCR, 11.5 per cent (23/200 by cryptic plasmid and/or omp1 gene based conventional PCR, 9 per cent (18/200 by DFA and 6.5 per cent (7/200 by EIA. The in-house real time-PCR exhibited a sensitivity and specificity of 100 per cent, considering COBAS Taqman CT Test as the gold standard. The negative and positive predictive values of the in-house real time-PCR were 100 per cent. The in-house real time-PCR could detect as low as 10 copies of C. trachomatis DNA per reaction. Interpretation & conclusions: In-house real time-PCR targeting the cryptic plasmid of C. trachomatis exhibited an excellent sensitivity and specificity similar to that of COBAS Taqman CT Test, v2.0 for detection of C

  3. Clinical evaluation of β-tubulin real-time PCR for rapid diagnosis of dermatophytosis, a comparison with mycological methods.

    Science.gov (United States)

    Motamedi, Marjan; Mirhendi, Hossein; Zomorodian, Kamiar; Khodadadi, Hossein; Kharazi, Mahboobeh; Ghasemi, Zeinab; Shidfar, Mohammad Reza; Makimura, Koichi

    2017-10-01

    Following our previous report on evaluation of the beta tubulin real-time PCR for detection of dermatophytosis, this study aimed to compare the real-time PCR assay with conventional methods for the clinical assessment of its diagnostic performance. Samples from a total of 853 patients with suspected dermatophyte lesions were subjected to direct examination (all samples), culture (499 samples) and real-time PCR (all samples). Fungal DNA was extracted directly from clinical samples using a conical steel bullet, followed by purification with a commercial kit and subjected to the Taq-Man probe-based real-time PCR. The study showed that among the 499 specimens for which all three methods were used, 156 (31.2%), 128 (25.6%) and 205 (41.0%) were found to be positive by direct microscopy, culture and real-time PCR respectively. Real-time PCR significantly increased the detection rate of dermatophytes compared with microscopy (288 vs 229) with 87% concordance between the two methods. The sensitivity, specificity, positive predictive value, and negative predictive value of the real-time PCR was 87.5%, 85%, 66.5% and 95.2% respectively. Although real-time PCR performed better on skin than on nail samples, it should not yet fully replace conventional diagnosis. © 2017 Blackwell Verlag GmbH.

  4. A real-time, quantitative PCR protocol for assessing the relative parasitemia of Leucocytozoon in waterfowl

    Science.gov (United States)

    Smith, Matthew M.; Schmutz, Joel A.; Apelgren, Chloe; Ramey, Andy M.

    2015-01-01

    Microscopic examination of blood smears can be effective at diagnosing and quantifying hematozoa infections. However, this method requires highly trained observers, is time consuming, and may be inaccurate for detection of infections at low levels of parasitemia. To develop a molecular methodology for identifying and quantifying Leucocytozoon parasite infection in wild waterfowl (Anseriformes), we designed a real-time, quantitative PCR protocol to amplify Leucocytozoon mitochondrial DNA using TaqMan fluorogenic probes and validated our methodology using blood samples collected from waterfowl in interior Alaska during late summer and autumn (n = 105). By comparing our qPCR results to those derived from a widely used nested PCR protocol, we determined that our assay showed high levels of sensitivity (91%) and specificity (100%) in detecting Leucocytozoon DNA from host blood samples. Additionally, results of a linear regression revealed significant correlation between the raw measure of parasitemia produced by our qPCR assay (Ct values) and numbers of parasites observed on blood smears (R2 = 0.694, P = 0.003), indicating that our assay can reliably determine the relative parasitemia levels among samples. This methodology provides a powerful new tool for studies assessing effects of haemosporidian infection in wild avian species.

  5. Investigation of Legionella Contamination in Bath Water Samples by Culture, Amoebic Co-Culture, and Real-Time Quantitative PCR Methods.

    Science.gov (United States)

    Edagawa, Akiko; Kimura, Akio; Kawabuchi-Kurata, Takako; Adachi, Shinichi; Furuhata, Katsunori; Miyamoto, Hiroshi

    2015-10-19

    We investigated Legionella contamination in bath water samples, collected from 68 bathing facilities in Japan, by culture, culture with amoebic co-culture, real-time quantitative PCR (qPCR), and real-time qPCR with amoebic co-culture. Using the conventional culture method, Legionella pneumophila was detected in 11 samples (11/68, 16.2%). Contrary to our expectation, the culture method with the amoebic co-culture technique did not increase the detection rate of Legionella (4/68, 5.9%). In contrast, a combination of the amoebic co-culture technique followed by qPCR successfully increased the detection rate (57/68, 83.8%) compared with real-time qPCR alone (46/68, 67.6%). Using real-time qPCR after culture with amoebic co-culture, more than 10-fold higher bacterial numbers were observed in 30 samples (30/68, 44.1%) compared with the same samples without co-culture. On the other hand, higher bacterial numbers were not observed after propagation by amoebae in 32 samples (32/68, 47.1%). Legionella was not detected in the remaining six samples (6/68, 8.8%), irrespective of the method. These results suggest that application of the amoebic co-culture technique prior to real-time qPCR may be useful for the sensitive detection of Legionella from bath water samples. Furthermore, a combination of amoebic co-culture and real-time qPCR might be useful to detect viable and virulent Legionella because their ability to invade and multiply within free-living amoebae is considered to correlate with their pathogenicity for humans. This is the first report evaluating the efficacy of the amoebic co-culture technique for detecting Legionella in bath water samples.

  6. Study comparing human papillomavirus (HPV) real-time multiplex PCR and Hybrid Capture II INNO-LiPA v2 HPV genotyping PCR assays

    DEFF Research Database (Denmark)

    Iftner, Thomas; Germ, Liesje; Swoyer, Ryan

    2009-01-01

    methods has not been well characterized. Clinically, cytology is used to establish possible HPV infection. We evaluated the sensitivity and specificity of HPV multiplex PCR assays compared to those of the testing scheme of the Hybrid Capture II (HCII) assay followed by an HPV PCR/line hybridization assay...... (HCII-LiPA v2). SurePath residual samples were split into two aliquots. One aliquot was subjected to HCII testing followed by DNA extraction and LiPA v2 genotyping. The second aliquot was shipped to a second laboratory, where DNA was extracted and HPV multiplex PCR testing was performed. Comparisons...... were evaluated for 15 HPV types common in both assays. A slightly higher proportion of samples tested positive by the HPV multiplex PCR than by the HCII-LiPA v2 assay. The sensitivities of the multiplex PCR assay relative to those of the HCII-LiPA v2 assay for HPV types 6, 11, 16, and 18, for example...

  7. Development of a real-time PCR for the detection of pathogenic Leptospira spp. in California sea lions.

    Science.gov (United States)

    Wu, Qingzhong; Prager, Katherine C; Goldstein, Tracey; Alt, David P; Galloway, Renee L; Zuerner, Richard L; Lloyd-Smith, James O; Schwacke, Lori

    2014-08-11

    Several real-time PCR assays are currently used for detection of pathogenic Leptospira spp.; however, few methods have been described for the successful evaluation of clinical urine samples. This study reports a rapid assay for the detection of pathogenic Leptospira spp. in California sea lions Zalophus californianus using real-time PCR with primers and a probe targeting the lipL32 gene. The PCR assay had high analytic sensitivity-the limit of detection was 3 genome copies per PCR volume using L. interrogans serovar Pomona DNA and 100% analytic specificity; it detected all pathogenic leptospiral serovars tested and none of the non-pathogenic Leptospira species (L. biflexa and L. meyeri serovar Semaranga), the intermediate species L. inadai, or the non-Leptospira pathogens tested. Our assay had an amplification efficiency of 1.00. Comparisons between the real-time PCR assay and culture isolation for detection of pathogenic Leptospira spp. in urine and kidney tissue samples from California sea lions showed that samples were more often positive by real-time PCR than by culture methods. Inclusion of an internal amplification control in the real-time PCR assay showed no inhibitory effects in PCR negative samples. These studies indicated that our real-time PCR assay has high analytic sensitivity and specificity for the rapid detection of pathogenic Leptospira species in urine and kidney tissue samples.

  8. A comparison of QuantStudio™ 3D Digital PCR and ARMS-PCR for measuring plasma EGFR T790M mutations of NSCLC patients

    Directory of Open Access Journals (Sweden)

    Feng Q

    2018-01-01

    Full Text Available Qin Feng,1,* Fei Gai,2,* Yaxiong Sang,2 Jie Zhang,3 Ping Wang,1 Yue Wang,1 Bing Liu,2 Dongmei Lin,1 Yang Yu,2 Jian Fang3 1Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Department of Pathology, Peking University Cancer Hospital & Institute, 2Oncology Business Division, Beijing Novogene Bioinformatics Technology Co., Ltd, 3Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Department of Thoracic Oncology II, Peking University Cancer Hospital & Institute, Beijing, China *These authors contributed equally to this work Background: The AURA3 clinical trial has shown that advanced non-small cell lung cancer (NSCLC patients with EGFR T790M mutations in circulating tumor DNA (ctDNA could benefit from osimertinib.Purpose: The aim of this study was to assess the usefulness of QuantStudio™ 3D Digital PCR System platform for the detection of plasma EGFR T790M mutations in NSCLC patients, and compare the performances of 3D Digital PCR and ARMS-PCR.Patients and methods: A total of 119 Chinese patients were enrolled in this study. Mutant allele frequency of plasma EGFR T790M was detected by 3D Digital PCR, then 25 selected samples were verified by ARMS-PCR and four of them were verified by next generation sequencing (NGS.Results: In total, 52.94% (69/119 had EGFR T790M mutations detected by 3D Digital PCR. In 69 positive samples, the median mutant allele frequency (AF was 1.09% and three cases presented low concentration (AF <0.1%. Limited by the amount of plasma DNA, 17 samples (AF <2.5% and eight samples (T790M- were selected for verification by ARMS-PCR. Four of those samples were verified by NGS as a third verification method. Among the selected 17 positive cases, ten samples presented mutant allele frequency <0.5%, and seven samples presented intermediate mutant allele frequency (0.5%<AF<2.5%. However, only three samples (3/17 were identified as positive by ARMS-PCR, namely, P6

  9. A Comparison of Molecular Typing Methods Applied to Enterobacter cloacae complex: hsp60 Sequencing, Rep-PCR, and MLST

    Directory of Open Access Journals (Sweden)

    Roberto Viau

    2017-02-01

    Full Text Available Molecular typing using repetitive sequenced-based PCR (rep-PCR and hsp60 sequencing were applied to a collection of diverse Enterobacter cloacae complex isolates. To determine the most practical method for reference laboratories, we analyzed 71 E. cloacae complex isolates from sporadic and outbreak occurrences originating from 4 geographic areas. While rep-PCR was more discriminating, hsp60 sequencing provided a broader and a more objective geographical tracking method similar to multilocus sequence typing (MLST. In addition, we suggest that MLST may have higher discriminative power compared to hsp60 sequencing, although rep-PCR remains the most discriminative method for local outbreak investigations. In addition, rep-PCR can be an effective and inexpensive method for local outbreak investigation.

  10. Comparison between ICT and PCR for diagnosis of Chlamydia trachomatis.

    Science.gov (United States)

    Khan, E R; Hossain, M A; Paul, S K; Mahmud, C; Hasan, M M; Rahman, M M; Nahar, K; Kubayashi, N

    2012-04-01

    Chlamydia trachomatis is an obligate intracellular gram-negative bacterium which is the most prevalent cause of bacterial sexually transmitted infections (STI). The present study was carried to diagnose genital Chlamydia trachomatis infection among women of reproductive age, attending Mymensingh Medical College Hospital, during July 2009 to June 2010 by Immunochromatographic test (ICT) and Polymerase chain reaction (PCR). A total of 70 females were included in this study. Out of 70 cases 56 were symptomatic and 14 asymptomatic. Endocervical swabs were collected from each of the cases and examined by Immunochromatographic test (ICT) for antigen detection and Polymerase chain reaction (PCR) for detection of endogenous plasmid-based nucleic acid. A total 29(41.4%) of the cases were found positive for C. trachomatis either by ICT or PCR. Of the 56 symptomatic cases, 19(33.9%) were found ICT positive and 17(30.4%) were PCR positive. Among 14 asymptomatic females, 2(14.3%) were ICT positive and none were PCR positive. Though PCR is highly sensitive but a total of twelve cases were found ICT positive but PCR negative. It may be due to presence of plasmid deficient strain of C trachomatis which could be amplified by ompA based (Chromosomal gene) multiplex PCR.

  11. Principal component reconstruction (PCR) for cine CBCT with motion learning from 2D fluoroscopy.

    Science.gov (United States)

    Gao, Hao; Zhang, Yawei; Ren, Lei; Yin, Fang-Fang

    2018-01-01

    This work aims to generate cine CT images (i.e., 4D images with high-temporal resolution) based on a novel principal component reconstruction (PCR) technique with motion learning from 2D fluoroscopic training images. In the proposed PCR method, the matrix factorization is utilized as an explicit low-rank regularization of 4D images that are represented as a product of spatial principal components and temporal motion coefficients. The key hypothesis of PCR is that temporal coefficients from 4D images can be reasonably approximated by temporal coefficients learned from 2D fluoroscopic training projections. For this purpose, we can acquire fluoroscopic training projections for a few breathing periods at fixed gantry angles that are free from geometric distortion due to gantry rotation, that is, fluoroscopy-based motion learning. Such training projections can provide an effective characterization of the breathing motion. The temporal coefficients can be extracted from these training projections and used as priors for PCR, even though principal components from training projections are certainly not the same for these 4D images to be reconstructed. For this purpose, training data are synchronized with reconstruction data using identical real-time breathing position intervals for projection binning. In terms of image reconstruction, with a priori temporal coefficients, the data fidelity for PCR changes from nonlinear to linear, and consequently, the PCR method is robust and can be solved efficiently. PCR is formulated as a convex optimization problem with the sum of linear data fidelity with respect to spatial principal components and spatiotemporal total variation regularization imposed on 4D image phases. The solution algorithm of PCR is developed based on alternating direction method of multipliers. The implementation is fully parallelized on GPU with NVIDIA CUDA toolbox and each reconstruction takes about a few minutes. The proposed PCR method is validated and

  12. Blood grouping based on PCR methods and agarose gel electrophoresis.

    Science.gov (United States)

    Sell, Ana Maria; Visentainer, Jeane Eliete Laguila

    2015-01-01

    The study of erythrocyte antigens continues to be an intense field of research, particularly after the development of molecular testing methods. More than 300 specificities have been described by the International Society for Blood Transfusion as belonging to 33 blood group systems. The polymerase chain reaction (PCR) is a central tool for red blood cells (RBC) genotyping. PCR and agarose gel electrophoresis are low cost, easy, and versatile in vitro methods for amplifying defined target DNA (RBC polymorphic region). Multiplex-PCR, AS-PCR (Specific Allele Polymerase Chain Reaction), and RFLP-PCR (Restriction Fragment Length Polymorphism-Polymerase Chain Reaction) techniques are usually to identify RBC polymorphisms. Furthermore, it is an easy methodology to implement. This chapter describes the PCR methodology and agarose gel electrophoresis to identify the polymorphisms of the Kell, Duffy, Kidd, and MNS blood group systems.

  13. Testing for Genetically Modified Foods Using PCR

    Science.gov (United States)

    Taylor, Ann; Sajan, Samin

    2005-01-01

    The polymerase chain reaction (PCR) is a Nobel Prize-winning technique that amplifies a specific segment of DNA and is commonly used to test for the presence of genetic modifications. Students use PCR to test corn meal and corn-muffin mixes for the presence of a promoter commonly used in genetically modified foods, the cauliflower mosaic virus 35S…

  14. Utility of the cytochrome c oxidase subunit I gene for the diagnosis of toxoplasmosis using PCR.

    Science.gov (United States)

    Feng, Xue; Norose, Kazumi; Li, Kexin; Hikosaka, Kenji

    2017-10-01

    Toxoplasmosis is caused by the protozoan parasite Toxoplasma gondii, which belongs to the phylum Apicomplexa. Since this parasite causes severe clinical symptoms in immunocompromised patients, early diagnosis of toxoplasmosis is essential. PCR is currently used for early diagnosis, but there is no consensus regarding the most effective method for amplifying Toxoplasma DNA. In this study, we considered the utility of the cytochrome c subunit I (cox1) gene, which is encoded in the mitochondrial DNA of this parasite, as a novel target of PCR for the diagnosis of toxoplasmosis. To do this, we compared its copy number per haploid nuclear genome and the detection sensitivity of cox1-PCR with the previously reported target genes B1 and 18S rRNA and the AF146527 repeat element. We found that the copy number of cox1 was high and that the PCR using cox1 primers was more efficient at amplifying Toxoplasma DNA than the other PCR targets examined. In addition, PCR using clinical samples indicated that the cox1 gene would be useful for the diagnosis of toxoplasmosis. These findings suggest that use of cox1-PCR would facilitate the diagnosis of toxoplasmosis in clinical laboratories. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. NanoPCR observation: different levels of DNA replication fidelity in nanoparticle-enhanced polymerase chain reactions

    International Nuclear Information System (INIS)

    Shen Cenchao; Yang Wenjuan; Ji Qiaoli; Zhang Zhizhou; Maki, Hisaji; Dong Anjie

    2009-01-01

    Nanoparticle-assisted PCR (polymerase chain reaction) technology is getting more and more attention recently. It is believed that some of the DNA recombinant technologies will be upgraded by nanotechnology in the near future, among which DNA replication is one of the core manipulation techniques. So whether or not the DNA replication fidelity is compromised in nanoparticle-assisted PCR is a question. In this study, a total of 16 different metallic and non-metallic nanoparticles (NPs) were tested for their effects on DNA replication fidelity in vitro and in vivo. Sixteen types of nanomaterials were distinctly different in enhancing the PCR efficiency, and their relative capacity to retain DNA replication fidelity was largely different from each other based on rpsL gene mutation assay. Generally speaking, metallic nanoparticles induced larger error rates in DNA replication fidelity than non-metallic nanoparticles, and non-metallic nanomaterials such as carbon nanopowder or nanotubes were still safe as PCR enhancers because they did not compromise the DNA replication fidelity in the Taq DNA polymerase-based PCR system.

  16. RAPD-PCR – still a suitable Method for Genetically Underexplored Species?

    Directory of Open Access Journals (Sweden)

    Konstanze Ursula Behrmann

    2015-11-01

    Full Text Available Saithe (Pollachius virens is a commercially important fish species; the annual catch quota in the Northeast Atlantic exceeds 100.000 t. Despite that saithe is underexplored from a fish population genetically view. Because saithe is a highly migratory species, which undergoes a long larval drift, the population structure of saithe within the Northeast Atlantic is not fully understood. Models used as a basis for the management plan are based on tagging studies, which have been carried out in the 1960th. But still there are doubts regarding the numbers of stocks living in the Northeast Atlantic. Migration routes are affected by salmon farming, growing steadily from the 1990th. In the last years a hyperstability of the saithe stock in the North Sea had been detected underlining the need to have a closer look on the saithe stocks in the Northeast Atlantic. Random amplified polymorphic DNA (RAPD - PCR is a DNA fingerprinting technique often used in species identification and population genetic research for species, whose genome has not been sequenced very extensive as being the case for most of the food fishes. We applied RAPD-PCR in a study of saithe populations from the North Atlantic. The suitability of RAPD-PCR was improved by optimisations for enhanced reproducibility. The “classical” protocol for RAPD-PCR was modified by increasing the annealing temperature and shortening the time of annealing, providing a much better reproducibility. Thus, RAPD-PCR was found to be a straightforward and low-cost way, compared to other population genetic tools, to get a first insight into the population structure of less sequenced fish species within a very short time, being useful for preliminary studies or laboratories without large capacities for DNA sequencing.

  17. One-step triplex PCR/RT-PCR to detect canine distemper virus, canine parvovirus, and canine kobuvirus.

    Science.gov (United States)

    Liu, Dafei; Liu, Fei; Guo, Dongchun; Hu, Xiaoliang; Li, Zhijie; Li, Zhigang; Ma, Jianzhang; Liu, Chunguo

    2018-01-23

    To rapidly distinguish Canine distemper virus (CDV), canine parvovirus (CPV), and canine kobuvirus (CaKoV) in practice, a one-step multiplex PCR/RT-PCR assay was developed, with detection limits of 10 2.1 TCID 50 for CDV, 10 1.9 TCID 50 for CPV and 10 3 copies for CaKoV. This method did not amplify nonspecific DNA or RNA from other canine viruses. Therefore, the assay provides a sensitive tool for the rapid clinical detection and epidemiological surveillance of CDV, CPV and CaKoV in dogs.

  18. Ultrasensitive quantitation of human papillomavirus type 16 E6 oncogene sequences by nested real time PCR

    Directory of Open Access Journals (Sweden)

    López-Revilla Rubén

    2010-05-01

    Full Text Available Abstract Background We have developed an ultrasensitive method based on conventional PCR preamplification followed by nested amplification through real time PCR (qPCR in the presence of the DNA intercalating agent EvaGreen. Results Amplification mixtures calibrated with a known number of pHV101 copies carrying a 645 base pair (bp-long insert of the human papillomavirus type 16 (HPV16 E6 oncogene were used to generate the E6-1 amplicon of 645 bp by conventional PCR and then the E6-2 amplicon of 237 bp by nested qPCR. Direct and nested qPCR mixtures for E6-2 amplification corresponding to 2.5 × 102-2.5 × 106 initial pHV101 copies had threshold cycle (Ct values in the ranges of 18.7-29.0 and 10.0-25.0, respectively. The Ct of qPCR mixtures prepared with 1/50 volumes of preamplified mixtures containing 50 ng of DNA of the SiHa cell line (derived from an invasive cervical cancer with one HPV16 genome per cell was 19.9. Thermal fluorescence extinction profiles of E6-2 amplicons generated from pHV101 and SiHa DNA were identical, with a peak at 85.5°C. Conclusions Our method based on conventional preamplification for 15 cycles increased 10,750 times the sensitivity of nested qPCR for the quantitation of the E6 viral oncogene and confirmed that the SiHa cell line contains one E6-HPV16 copy per cell.

  19. Detection of Streptococcus pneumoniae in whole blood by PCR.

    Science.gov (United States)

    Zhang, Y; Isaacman, D J; Wadowsky, R M; Rydquist-White, J; Post, J C; Ehrlich, G D

    1995-03-01

    Streptococcus pneumoniae is a major cause of bacteremia in both children and adults. Currently, the diagnosis of pneumococcal bacteremia relies on the isolation and identification of the bacteria from blood cultures. We have developed a sensitive assay for the detection of S. pneumoniae in whole blood by the PCR. A specific primer-probe set (JM201 and JM202 primers with JM204 probe) designed from the penicillin-binding protein 2B gene was demonstrated to reproducibly detect between 10 and 100 fg of input purified S. pneumoniae DNA. This assay system was shown to be inclusive for all strains of S. pneumoniae evaluated, including 15 different serotypes and a battery of penicillin-resistant and -sensitive strains. The specificity of this PCR-based assay was demonstrated by its inability to support amplification from a series of human, bacterial, and yeast genomic DNAs. A general specimen preparation method which should be suitable for the purification of DNA from any pathogens in whole blood was developed. With this protocol it was possible to detect S. pneumoniae-specific DNA from whole blood specimens inoculated with as little as 4 CFU/ml. Copurified human blood DNA, ranging from 0 to 4.5 micrograms per PCR, did not affect the sensitivity of S. pneumoniae detection by PCR. A blinded clinical trial was used to compare the PCR-based assay with standard microbiological blood culture for the detection of S. pneumoniae bacteremia in 36 specimens obtained from pediatric patients seen in the emergency room of Children's Hospital of Pittsburgh. With culture as the "gold standard," the PCR-based assay had a sensitivity of 80% (4 of 5 culture-positive specimens were PCR positive) and a specificity of 84% (26 of 31 culture-negative specimens were PCR negative). However, three patients whose specimens were PCR positive and culture negative had histories suggestive of bacteremia, including recent positive blood cultures, treatment with antibiotics, cellulitis, and multiple

  20. MPprimer: a program for reliable multiplex PCR primer design

    Directory of Open Access Journals (Sweden)

    Wang Xiaolei

    2010-03-01

    Full Text Available Abstract Background Multiplex PCR, defined as the simultaneous amplification of multiple regions of a DNA template or multiple DNA templates using more than one primer set (comprising a forward primer and a reverse primer in one tube, has been widely used in diagnostic applications of clinical and environmental microbiology studies. However, primer design for multiplex PCR is still a challenging problem and several factors need to be considered. These problems include mis-priming due to nonspecific binding to non-target DNA templates, primer dimerization, and the inability to separate and purify DNA amplicons with similar electrophoretic mobility. Results A program named MPprimer was developed to help users for reliable multiplex PCR primer design. It employs the widely used primer design program Primer3 and the primer specificity evaluation program MFEprimer to design and evaluate the candidate primers based on genomic or transcript DNA database, followed by careful examination to avoid primer dimerization. The graph-expanding algorithm derived from the greedy algorithm was used to determine the optimal primer set combinations (PSCs for multiplex PCR assay. In addition, MPprimer provides a virtual electrophotogram to help users choose the best PSC. The experimental validation from 2× to 5× plex PCR demonstrates the reliability of MPprimer. As another example, MPprimer is able to design the multiplex PCR primers for DMD (dystrophin gene which caused Duchenne Muscular Dystrophy, which has 79 exons, for 20×, 20×, 20×, 14×, and 5× plex PCR reactions in five tubes to detect underlying exon deletions. Conclusions MPprimer is a valuable tool for designing specific, non-dimerizing primer set combinations with constrained amplicons size for multiplex PCR assays.

  1. DNA extraction method for PCR in mycorrhizal fungi.

    Science.gov (United States)

    Manian, S; Sreenivasaprasad, S; Mills, P R

    2001-10-01

    To develop a simple and rapid DNA extraction protocol for PCR in mycorrhizal fungi. The protocol combines the application of rapid freezing and boiling cycles and passage of the extracts through DNA purification columns. PCR amplifiable DNA was obtained from a number of endo- and ecto-mycorrhizal fungi using minute quantities of spores and mycelium, respectively. DNA extracted following the method, was used to successfully amplify regions of interest from high as well as low copy number genes. The amplicons were suitable for further downstream applications such as sequencing and PCR-RFLPs. The protocol described is simple, short and facilitates rapid isolation of PCR amplifiable genomic DNA from a large number of fungal isolates in a single day. The method requires only minute quantities of starting material and is suitable for mycorrhizal fungi as well as a range of other fungi.

  2. Identification of genus Acinetobacter: Standardization of in-house PCR and its comparison with conventional phenotypic methods.

    Science.gov (United States)

    Kulkarni, Sughosh S; Madalgi, Radhika; Ajantha, Ganavalli S; Kulkarni, Raghavendra D

    2017-01-01

    Acinetobacter is grouped under nonfermenting Gram-negative bacilli. It is increasingly isolated from pathological samples. The ability of this genus to acquire drug resistance and spread in the hospital settings is posing a grave problem in healthcare. Specific treatment protocols are advocated for Acinetobacter infections. Hence, rapid identification and drug susceptibility profiling are critical in the management of these infections. To standardize an in-house polymerase chain reaction (PCR) for identification of genus Acinetobacter and to compare PCR with two protocols for its phenotypic identification. A total of 96 clinical isolates of Acinetobacter were included in the study. An in-house PCR for genus level identification of Acinetobacter was standardized. All the isolates were phenotypically identified by two protocols. The results of PCR and phenotypic identification protocols were compared. The in-house PCR standardized was highly sensitive and specific for the genus Acinetobacter . There was 100% agreement between the phenotypic and molecular identification of the genus. The preliminary identification tests routinely used in clinical laboratories were also in complete agreement with phenotypic and molecular identification. The in-house PCR for genus level identification is specific and sensitive. However, it may not be essential for routine identification as the preliminary phenotypic identification tests used in the clinical laboratory reliably identify the genus Acinetobacter .

  3. Modified Proofreading PCR for Detection of Point Mutations, Insertions and Deletions Using a ddNTP-Blocked Primer

    Science.gov (United States)

    Chen, Qianqian; Chen, Xiaoxiang; Zhang, Sichao; Lan, Ke; Lu, Jian; Zhang, Chiyu

    2015-01-01

    The development of simple, accurate, rapid and cost-effective technologies for mutation detection is crucial to the early diagnosis and prevention of numerous genetic diseases, pharmacogenetics, and drug resistance. Proofreading PCR (PR-PCR) was developed for mutation detection in 1998 but is rarely applied due to its low efficiency in allele discrimination. Here we developed a modified PR-PCR method using a ddNTP-blocked primer and a mixture of DNA polymerases with and without the 3'-5' proofreading function. The ddNTP-blocked primer exhibited the best blocking efficiency to avoid nonspecific primer extension while the mixture of a tiny amount of high-fidelity DNA polymerase with a routine amount of Taq DNA polymerase provided the best discrimination and amplification effects. The modified PR-PCR method is quite capable of detecting various mutation types, including point mutations and insertions/deletions (indels), and allows discrimination amplification when the mismatch is located within the last eight nucleotides from the 3'-end of the ddNTP-blocked primer. The modified PR-PCR has a sensitivity of 1-5 × 102 copies and a selectivity of 5 × 10-5 mutant among 107 copies of wild-type DNA. It showed a 100% accuracy rate in the detection of P72R germ-line mutation in the TP53 gene among 60 clinical blood samples, and a high potential to detect rifampin-resistant mutations at low frequency in Mycobacterium tuberculosis using an adaptor and a fusion-blocked primer. These results suggest that the modified PR-PCR technique is effective in detection of various mutations or polymorphisms as a simple, sensitive and promising approach. PMID:25915410

  4. A comparative study of digital PCR and real-time qPCR for the detection and quantification of HPV mRNA in sentinel lymph nodes of cervical cancer patients.

    Science.gov (United States)

    Carow, Katrin; Read, Christina; Häfner, Norman; Runnebaum, Ingo B; Corner, Adam; Dürst, Matthias

    2017-10-30

    Qualitative analyses showed that the presence of HPV mRNA in sentinel lymph nodes of cervical cancer patients with pN0 status is associated with significantly decreased recurrence free survival. To further address the clinical potential of the strategy and to define prognostic threshold levels it is necessary to use a quantitative assay. Here, we compare two methods of quantification: digital PCR and standard quantitative PCR. Serial dilutions of 5 ng-5 pg RNA (≙ 500-0.5 cells) of the cervical cancer cell line SiHa were prepared in 5 µg RNA of the HPV-negative human keratinocyte cell line HaCaT. Clinical samples consisted of 10 sentinel lymph nodes with varying HPV transcript levels. Reverse transcription of total RNA (5 µg RNA each) was performed in 100 µl and cDNA aliquots were analyzed by qPCR and dPCR. Digital PCR was run in the RainDrop ® Digital PCR system (RainDance Technologies) using a probe-based detection of HPV E6/E7 cDNA PCR products with 11 µl template. qPCR was done using a Rotor Gene Q 5plex HRM (Qiagen) amplifying HPV E6/E7 cDNA in a SYBR Green format with 1 µl template. For the analysis of both, clinical samples and serial dilution samples, dPCR and qPCR showed comparable sensitivity. With regard to reproducibility, both methods differed considerably, especially for low template samples. Here, we found with qPCR a mean variation coefficient of 126% whereas dPCR enabled a significantly lower mean variation coefficient of 40% (p = 0.01). Generally, we saw with dPCR a substantial reduction of subsampling errors, which most likely reflects the large cDNA amounts available for analysis. Compared to real-time PCR, dPCR shows higher reliability. Thus, our HPV mRNA dPCR assay holds promise for the clinical evaluation of occult tumor cells in histologically tumor-free lymph nodes in future studies.

  5. PCR amplification on microarrays of gel immobilized oligonucleotides

    Science.gov (United States)

    Strizhkov, Boris; Tillib, Sergei; Mikhailovich, Vladimir; Mirzabekov, Andrei

    2003-11-04

    The invention relates two general methods for performing PCR amplification, combined with the detection and analysis of the PCR products on a microchip. In the first method, the amplification occurs both outside and within a plurality of gel pads on a microchip, with at least one oligonucleotide primer immobilized in a gel pad. In the second method, PCR amplification also takes place within gel pads on a microchip, but the pads are surrounded by a hydrophobic liquid such as that which separates the individual gel pads into environments which resemble micro-miniaturized test tubes.

  6. Accurate, Fast and Cost-Effective Diagnostic Test for Monosomy 1p36 Using Real-Time Quantitative PCR

    Directory of Open Access Journals (Sweden)

    Pricila da Silva Cunha

    2014-01-01

    Full Text Available Monosomy 1p36 is considered the most common subtelomeric deletion syndrome in humans and it accounts for 0.5–0.7% of all the cases of idiopathic intellectual disability. The molecular diagnosis is often made by microarray-based comparative genomic hybridization (aCGH, which has the drawback of being a high-cost technique. However, patients with classic monosomy 1p36 share some typical clinical characteristics that, together with its common prevalence, justify the development of a less expensive, targeted diagnostic method. In this study, we developed a simple, rapid, and inexpensive real-time quantitative PCR (qPCR assay for targeted diagnosis of monosomy 1p36, easily accessible for low-budget laboratories in developing countries. For this, we have chosen two target genes which are deleted in the majority of patients with monosomy 1p36: PRKCZ and SKI. In total, 39 patients previously diagnosed with monosomy 1p36 by aCGH, fluorescent in situ hybridization (FISH, and/or multiplex ligation-dependent probe amplification (MLPA all tested positive on our qPCR assay. By simultaneously using these two genes we have been able to detect 1p36 deletions with 100% sensitivity and 100% specificity. We conclude that qPCR of PRKCZ and SKI is a fast and accurate diagnostic test for monosomy 1p36, costing less than 10 US dollars in reagent costs.

  7. Viability qPCR, a new tool for Legionella risk management.

    Science.gov (United States)

    Lizana, X; López, A; Benito, S; Agustí, G; Ríos, M; Piqué, N; Marqués, A M; Codony, F

    2017-11-01

    Viability quantitative Polymerase Chain Reaction (v-qPCR) is a recent analytical approach for only detecting live microorganisms by DNA amplification-based methods This approach is based on the use of a reagent that irreversibly fixes dead cells DNA. In this study, we evaluate the utility of v-qPCR versus culture method for Legionellosis risk management. The present study was performed using 116 real samples. Water samples were simultaneously analysed by culture, v-qPCR and qPCR methods. Results were compared by means of a non-parametric test. In 11.6% of samples using both methods (culture method and v-qPCR) results were positive, in 50.0% of samples both methods gave rise to negative results. As expected, equivalence between methods was not observed in all cases, as in 32.1% of samples positive results were obtained by v-qPCR and all of them gave rise to negative results by culture. Only in 6.3% of samples, with very low Legionella levels, was culture positive and v-qPCR negative. In 3.5% of samples, overgrowth of other bacteria did not allow performing the culture. When comparing both methods, significant differences between culture and v-qPCR were in the samples belonging to the cooling towers-evaporative condensers group. The v-qPCR method detected greater presence and obtained higher concentrations of Legionella spp. (p<0.001). Otherwise, no significant differences between methods were found in the rest of the groups. The v-qPCR method can be used as a quick tool to evaluate Legionellosis risk, especially in cooling towers-evaporative condensers, where this technique can detect higher levels than culture. The combined interpretation of PCR results along with the ratio of live cells is proposed as a tool for understanding the sample context and estimating the Legionellosis risk potential according to 4 levels of hierarchy. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Unequal distribution of RT-PCR artifacts along the E1-E2 region of Hepatitis C virus.

    Science.gov (United States)

    Domingo-Calap, Pilar; Sentandreu, Vicente; Bracho, Maria Alma; González-Candelas, Fernando; Moya, Andrés; Sanjuán, Rafael

    2009-10-01

    Although viral variability studies have focused traditionally on consensus sequences, the relevance of molecular clone sequences for studying viral evolution at the intra-host level is being increasingly recognized. However, for this approach to be reliable, RT-PCR artifacts do not have to contribute excessively to the observed variability. Molecular clone sequences were obtained from an in vitro transcript to estimate the maximum error rate associated to RT-PCR for the Hepatitis C virus (HCV) E1-E2 region. On average, the frequency of RT-PCR errors was one order of magnitude lower than the level of intra-host genetic variability observed in samples from an HCV outbreak. However, RT-PCR errors were not distributed evenly along the E1-E2 region and were concentrated heavily in the hypervariable region 2 (HVR 2). Although it is concluded that RT-PCR molecular clone sequences are reliable, these results warn against extrapolation of RT-PCR error rates to different genome regions. The data suggest that the RNA sequence context or secondary structure can determine the fidelity of in vitro transcription or reverse transcription. Potentially, these factors might also modify the fidelity of the viral polymerase.

  9. A multiplex PCR for detection of six viruses in ducks.

    Science.gov (United States)

    Wang, Yongjuan; Zhu, Shanyuan; Hong, Weiming; Wang, Anping; Zuo, Weiyong

    2017-10-01

    In this study, six pairs of specific primers that can amplify DNA fragments of different sizes were designed and synthesized according to viral protein gene sequences published in GenBank. Then, a multiplex PCR method was established for rapid detection of duck hepatitis virus 1, duck plague virus, duck Tembusu virus, muscovy duck parvovirus, muscovy duck reovirus, and duck H9N2 avian influenza virus, and achieve simple and rapid detection of viral diseases in ducks. Single PCR was used to confirm primer specificity, and PCR conditions were optimized to construct a multiplex PCR system. Specificity and sensitivity assays were also developed. The multiplex PCR was used to detect duck embryos infected with mixed viruses and those with clinically suspected diseases to verify the feasibility of the multiplex PCR. Results show that the primers can specifically amplify target fragments, without any cross-amplification with other viruses. The multiplex PCR system can amplify six DNA fragments from the pooled viral genomes and specifically detect nucleic acids of the six duck susceptible viruses when the template amount is 10 2 copies/μl. In addition, the system can be used to detect viral nucleic acids in duck embryos infected with the six common viruses. The detection results for clinical samples are consistent with those detected by single PCR. Therefore, the established multiplex PCR method can perform specific, sensitive, and high-throughput detection of six duck-infecting viruses and can be applied to clinical identification and diagnosis of viral infection in ducks. Copyright © 2017. Published by Elsevier B.V.

  10. PCR analysis is superior to histology for diagnosis of Whipple's disease mimicking seronegative rheumatic diseases.

    Science.gov (United States)

    Lehmann, P; Ehrenstein, B; Hartung, W; Dragonas, C; Reischl, U; Fleck, M

    2017-03-01

    The diagnosis of Whipple's disease (WD) is commonly confirmed by histology demonstrating Periodic Acid Schiff (PAS)-positive macrophages in the duodenal mucosa. Analysis of intestinal tissue or other specimens using polymerase chain reaction (PCR) is a more sensitive method. However, the relevance of positive PCR findings is still controversial. Therefore, we evaluated the relevance of histology and PCR findings to establishing the diagnosis of WD in a series of WD patients initially presenting with suspected rheumatic diseases. Between 2006 and 2014, 20 patients with seronegative rheumatic diseases tested positive for Tropheryma whipplei (Tw) by PCR and/or histology and were enrolled in a retrospective analysis of the diagnostic value of both procedures. Seven of the 20 cases (35%) were diagnosed with 'classic' WD as indicated by PAS-positive macrophages. In the remaining 13 patients, the presence of Tw was detected by intestinal (n = 10) or synovial PCR analysis (n = 3). Two of the 20 patients (10%) with evidence of Tw did not respond to antibiotic therapy. They were not considered to suffer from WD. Therefore, relying only on histological findings of intestinal biopsies would have missed 11 (61%) of the 18 patients with WD in our cohort. In comparison, PCR of intestinal biopsies detected Tw-DNA in 14 (93%) of the 15 WD patients evaluated. Patients with a positive histology did not differ from PCR-positive patients with regard to sex, age, or duration of disease, but more often presented with gastrointestinal symptoms. A substantial number of WD patients present without typical intestinal histology findings. Additional PCR analysis of intestinal tissue or synovial fluid increased the sensitivity of the diagnostic evaluation and should be considered particularly in patients presenting with atypical seronegative rheumatic diseases and a high-risk profile for WD.

  11. Restriction site extension PCR: a novel method for high-throughput characterization of tagged DNA fragments and genome walking.

    Directory of Open Access Journals (Sweden)

    Jiabing Ji

    Full Text Available BACKGROUND: Insertion mutant isolation and characterization are extremely valuable for linking genes to physiological function. Once an insertion mutant phenotype is identified, the challenge is to isolate the responsible gene. Multiple strategies have been employed to isolate unknown genomic DNA that flanks mutagenic insertions, however, all these methods suffer from limitations due to inefficient ligation steps, inclusion of restriction sites within the target DNA, and non-specific product generation. These limitations become close to insurmountable when the goal is to identify insertion sites in a high throughput manner. METHODOLOGY/PRINCIPAL FINDINGS: We designed a novel strategy called Restriction Site Extension PCR (RSE-PCR to efficiently conduct large-scale isolation of unknown genomic DNA fragments linked to DNA insertions. The strategy is a modified adaptor-mediated PCR without ligation. An adapter, with complementarity to the 3' overhang of the endonuclease (KpnI, NsiI, PstI, or SacI restricted DNA fragments, extends the 3' end of the DNA fragments in the first cycle of the primary RSE-PCR. During subsequent PCR cycles and a second semi-nested PCR (secondary RSE-PCR, touchdown and two-step PCR are combined to increase the amplification specificity of target fragments. The efficiency and specificity was demonstrated in our characterization of 37 tex mutants of Arabidopsis. All the steps of RSE-PCR can be executed in a 96 well PCR plate. Finally, RSE-PCR serves as a successful alternative to Genome Walker as demonstrated by gene isolation from maize, a plant with a more complex genome than Arabidopsis. CONCLUSIONS/SIGNIFICANCE: RSE-PCR has high potential application in identifying tagged (T-DNA or transposon sequence or walking from known DNA toward unknown regions in large-genome plants, with likely application in other organisms as well.

  12. Improved quantification accuracy for duplex real-time PCR detection of genetically modified soybean and maize in heat processed foods

    Directory of Open Access Journals (Sweden)

    CHENG Fang

    2013-04-01

    Full Text Available Real-time PCR technique has been widely used in quantitative GMO detection in recent years.The accuracy of GMOs quantification based on the real-time PCR methods is still a difficult problem,especially for the quantification of high processed samples.To develop the suitable and accurate real-time PCR system for high processed GM samples,we made ameliorations to several real-time PCR parameters,including re-designed shorter target DNA fragment,similar lengths of amplified endogenous and exogenous gene targets,similar GC contents and melting temperatures of PCR primers and TaqMan probes.Also,one Heat-Treatment Processing Model (HTPM was established using soybean flour samples containing GM soybean GTS 40-3-2 to validate the effectiveness of the improved real-time PCR system.Tested results showed that the quantitative bias of GM content in heat processed samples were lowered using the new PCR system.The improved duplex real-time PCR was further validated using processed foods derived from GM soybean,and more accurate GM content values in these foods was also achieved.These results demonstrated that the improved duplex real-time PCR would be quite suitable in quantitative detection of high processed food products.

  13. Applicazioni della PCR e PCR in situ nella diagnosi di infezioni batteriche e virali da biopsie fissate in formalina e incluse in paraffina

    Directory of Open Access Journals (Sweden)

    Stefania Cazzavillan

    2003-03-01

    Full Text Available In situ PCR, amplification of target DNA sequences in fixed cells, is a very useful molecular biology tecnique with potential to combine the high sensitivity of tube PCR with the precise anatomical localization of the targeted bsequences. It allows the study of low copy viral or bacterial DNA. In this study we document the utility of directin situ PCR with single primer pair by applying it to 3 infectious agents in different model systems: Borrelia burgdorferi in 5 Eritema migrans lesions and 55 primitive cutaneous B cell lymphomas, Chlamydia pneumoniae in 200 autoptic atheromasic lesions, and Papilloma virus in 20 CIN 1 (mild cervical dysplasia. In situ PCR seems to be a very promising tecnique; however, the prerequisite for the success of in situ PCR is conditioned by optimal standardization of the key variables which, on the other hand, are influenced by tissue composition.

  14. Real-Time PCR using a PCR Microchip with Integrated Thermal System and Polymer Waveguides for the Detection of Campylobacter jejuni

    DEFF Research Database (Denmark)

    Wang, Zhenyu; Sekulovic, Andrea; Kutter, Jörg Peter

    2006-01-01

    A novel real-time PCR microchip platform with integrated thermal system and polymer waveguides has been developed. By using the integrated optical system of the real-time PCR chip, cadF – a virulence gene of Campylobacter jejuni, could specifically be detected. Two different DNA binding dyes, SYTOX...

  15. Single Cell HLA Matching Feasibility by Whole Genomic Amplification and Nested PCR

    Institute of Scientific and Technical Information of China (English)

    Xiao-hong Li; Fang-yin Meng

    2004-01-01

    @@ PCR based single-cell DNA analysis has been widely used in forensic science, preimplantation genetic diagnosis and so on. However, the original sample cannot be efficiently retrieved following single cell PCR, consequently the amount of information gained is limited. HLA system is too sophisticated that it is very hard to complete HLA typing by single cell. A Taq polymerase-based method using random primers to amplify whole genome termed as whole genome amplification (WGA) has demonstrated to be a useful method in increasing the copies of minimum sample. We establish a technique in this study to amplify HLA-A and HLA-B loci at same time in a single cell using WGA.

  16. A one-step multiplex RT-PCR assay for simultaneous detection of four viruses that infect peach.

    Science.gov (United States)

    Yu, Y; Zhao, Z; Jiang, D; Wu, Z; Li, S

    2013-10-01

    A multiplex reverse transcription polymerase chain reaction (mRT-PCR) assay was developed to enable the simultaneous detection and differentiation of four viruses that infect peach, namely Apple chlorotic leaf spot virus (ACLSV), Cherry green ring mottle virus (CGRMV), Prunus necrotic ringspot virus (PNRSV) and Apricot pseudo-chlorotic leaf spot virus (APCLSV). In this study, four pairs of primers, one specific for each virus, were designed; the corresponding PCR products were 632, 439, 346 and 282 bp in length for ACLSV, CGRMV, PNRSV and APCLSV, respectively, and the fragments could be distinguished clearly by agarose gel electrophoresis. The sensitivity and specificity of the method were tested using individual RT-PCR and enzyme-linked immunosorbent assay (ELISA), and the identity of the RT-PCR amplification products was also confirmed by DNA sequencing. The results of RT-PCR and ELISA, along with batch detection using samples collected from peach orchards, revealed that this rapid and simple technique is an effective way to identify the four viruses simultaneously. The mRT-PCR assay described in this study was developed for the simultaneous detection of four peach viruses from infected peach samples is reliable and sensitive. In contrast to conventional uniplex RT-PCR, mRT-PCR is more efficient, reducing costs, time and handling when testing large numbers of samples. This rapid and simple method is useful for large-scale surveys of viruses that infect peach. © 2013 The Society for Applied Microbiology.

  17. A disposable laser print-cut-laminate polyester microchip for multiplexed PCR via infra-red-mediated thermal control

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Yiwen [Department of Chemistry, University of Virginia, Charlottesville, VA 22904 (United States); Duarte, Gabriela R.M. [Department of Chemistry, University of Virginia, Charlottesville, VA 22904 (United States); Universidade Federal de Goiás, Goiânia, GO 74690-900 (Brazil); Poe, Brian L.; Riehl, Paul S. [Department of Chemistry, University of Virginia, Charlottesville, VA 22904 (United States); Santos, Fernando M. dos; Martin-Didonet, Claudia C.G. [Universidade Estadual de Goiás, Anápolis, GO 75132-400 (Brazil); Carrilho, Emanuel [Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP 13566-590 (Brazil); Instituto Nacional de Ciência e Tecnologia de Bioanalítica, CP 6154, Campinas, SP 13083-970 (Brazil); Landers, James P., E-mail: landers@virginia.edu [Department of Chemistry, University of Virginia, Charlottesville, VA 22904 (United States); Department of Mechanical Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Department of Pathology, University of Virginia Health Science Center, Charlottesville, VA (United States)

    2015-12-11

    Infrared (IR)-mediated thermal cycling system, a method proven to be a effective for sub-μL scale polymerase chain reaction (PCR) on microchips, has been integrated with DNA extraction and separation on a glass microchip in a fully integrated micro Total Analysis System by Easley et al., in 2006. IR-PCR has been demonstrated on both glass and PMMA microdevices where the fabrication (bonding) is not trivial. Polyester-toner (PeT) microfluidic devices have significant potential as cost-effective, disposable microdevices as a result of the ease of fabrication (∼$0.25 USD and <10 min per device) and availability of commercial substrates. For the first time, we demonstrate here the thermal cycling in PeT microchips on the IR-PCR system. Undesirable IR absorption by the black-toner bonding layer was eliminated with a spatial filter in the form of an aluminum foil mask. The solution heating rate for a black PeT microchip using a tungsten lamp was 10.1 ± 0.7 °C s{sup −1} with a cooling rate of roughly −12 ± 0.9 °C s{sup −1} assisted by forced air cooling. Dynamic surface passivation strategies allowed the successful amplification of a 520 bp fragment of the λ-phage genome (in 11 min) and a 1500 bp region of Azospirillum brasilense. Using a centrosymmetric chamber configuration in a multichamber PeT microchip, homogenous temperature distribution over all chambers was achieved with inter-chamber temperature differences at annealing, extension and denaturing steps of less than ±2 °C. The effectiveness of the multichamber system was demonstrated with the simultaneous amplification of a 390 bp amplicon of human β-globin gene in five PeT PCR microchambers. The relative PCR amplification efficiency with a human β-globin DNA fragment ranged from 70% to 90%, in comparison to conventional thermal cyclers, with an inter-chamber standard deviation of ∼10%. Development of PeT microchips for IR-PCR has the potential to provide rapid, low

  18. A disposable laser print-cut-laminate polyester microchip for multiplexed PCR via infra-red-mediated thermal control

    International Nuclear Information System (INIS)

    Ouyang, Yiwen; Duarte, Gabriela R.M.; Poe, Brian L.; Riehl, Paul S.; Santos, Fernando M. dos; Martin-Didonet, Claudia C.G.; Carrilho, Emanuel; Landers, James P.

    2015-01-01

    Infrared (IR)-mediated thermal cycling system, a method proven to be a effective for sub-μL scale polymerase chain reaction (PCR) on microchips, has been integrated with DNA extraction and separation on a glass microchip in a fully integrated micro Total Analysis System by Easley et al., in 2006. IR-PCR has been demonstrated on both glass and PMMA microdevices where the fabrication (bonding) is not trivial. Polyester-toner (PeT) microfluidic devices have significant potential as cost-effective, disposable microdevices as a result of the ease of fabrication (∼$0.25 USD and <10 min per device) and availability of commercial substrates. For the first time, we demonstrate here the thermal cycling in PeT microchips on the IR-PCR system. Undesirable IR absorption by the black-toner bonding layer was eliminated with a spatial filter in the form of an aluminum foil mask. The solution heating rate for a black PeT microchip using a tungsten lamp was 10.1 ± 0.7 °C s −1 with a cooling rate of roughly −12 ± 0.9 °C s −1 assisted by forced air cooling. Dynamic surface passivation strategies allowed the successful amplification of a 520 bp fragment of the λ-phage genome (in 11 min) and a 1500 bp region of Azospirillum brasilense. Using a centrosymmetric chamber configuration in a multichamber PeT microchip, homogenous temperature distribution over all chambers was achieved with inter-chamber temperature differences at annealing, extension and denaturing steps of less than ±2 °C. The effectiveness of the multichamber system was demonstrated with the simultaneous amplification of a 390 bp amplicon of human β-globin gene in five PeT PCR microchambers. The relative PCR amplification efficiency with a human β-globin DNA fragment ranged from 70% to 90%, in comparison to conventional thermal cyclers, with an inter-chamber standard deviation of ∼10%. Development of PeT microchips for IR-PCR has the potential to provide rapid, low-volume amplification

  19. qPCR-based mitochondrial DNA quantification: Influence of template DNA fragmentation on accuracy

    International Nuclear Information System (INIS)

    Jackson, Christopher B.; Gallati, Sabina; Schaller, André

    2012-01-01

    Highlights: ► Serial qPCR accurately determines fragmentation state of any given DNA sample. ► Serial qPCR demonstrates different preservation of the nuclear and mitochondrial genome. ► Serial qPCR provides a diagnostic tool to validate the integrity of bioptic material. ► Serial qPCR excludes degradation-induced erroneous quantification. -- Abstract: Real-time PCR (qPCR) is the method of choice for quantification of mitochondrial DNA (mtDNA) by relative comparison of a nuclear to a mitochondrial locus. Quantitative abnormal mtDNA content is indicative of mitochondrial disorders and mostly confines in a tissue-specific manner. Thus handling of degradation-prone bioptic material is inevitable. We established a serial qPCR assay based on increasing amplicon size to measure degradation status of any DNA sample. Using this approach we can exclude erroneous mtDNA quantification due to degraded samples (e.g. long post-exicision time, autolytic processus, freeze–thaw cycles) and ensure abnormal DNA content measurements (e.g. depletion) in non-degraded patient material. By preparation of degraded DNA under controlled conditions using sonification and DNaseI digestion we show that erroneous quantification is due to the different preservation qualities of the nuclear and the mitochondrial genome. This disparate degradation of the two genomes results in over- or underestimation of mtDNA copy number in degraded samples. Moreover, as analysis of defined archival tissue would allow to precise the molecular pathomechanism of mitochondrial disorders presenting with abnormal mtDNA content, we compared fresh frozen (FF) with formalin-fixed paraffin-embedded (FFPE) skeletal muscle tissue of the same sample. By extrapolation of measured decay constants for nuclear DNA (λ nDNA ) and mtDNA (λ mtDNA ) we present an approach to possibly correct measurements in degraded samples in the future. To our knowledge this is the first time different degradation impact of the two

  20. qPCR-based mitochondrial DNA quantification: Influence of template DNA fragmentation on accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Christopher B., E-mail: Christopher.jackson@insel.ch [Division of Human Genetics, Departements of Pediatrics and Clinical Research, Inselspital, University of Berne, Freiburgstrasse, CH-3010 Berne (Switzerland); Gallati, Sabina, E-mail: sabina.gallati@insel.ch [Division of Human Genetics, Departements of Pediatrics and Clinical Research, Inselspital, University of Berne, Freiburgstrasse, CH-3010 Berne (Switzerland); Schaller, Andre, E-mail: andre.schaller@insel.ch [Division of Human Genetics, Departements of Pediatrics and Clinical Research, Inselspital, University of Berne, Freiburgstrasse, CH-3010 Berne (Switzerland)

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer Serial qPCR accurately determines fragmentation state of any given DNA sample. Black-Right-Pointing-Pointer Serial qPCR demonstrates different preservation of the nuclear and mitochondrial genome. Black-Right-Pointing-Pointer Serial qPCR provides a diagnostic tool to validate the integrity of bioptic material. Black-Right-Pointing-Pointer Serial qPCR excludes degradation-induced erroneous quantification. -- Abstract: Real-time PCR (qPCR) is the method of choice for quantification of mitochondrial DNA (mtDNA) by relative comparison of a nuclear to a mitochondrial locus. Quantitative abnormal mtDNA content is indicative of mitochondrial disorders and mostly confines in a tissue-specific manner. Thus handling of degradation-prone bioptic material is inevitable. We established a serial qPCR assay based on increasing amplicon size to measure degradation status of any DNA sample. Using this approach we can exclude erroneous mtDNA quantification due to degraded samples (e.g. long post-exicision time, autolytic processus, freeze-thaw cycles) and ensure abnormal DNA content measurements (e.g. depletion) in non-degraded patient material. By preparation of degraded DNA under controlled conditions using sonification and DNaseI digestion we show that erroneous quantification is due to the different preservation qualities of the nuclear and the mitochondrial genome. This disparate degradation of the two genomes results in over- or underestimation of mtDNA copy number in degraded samples. Moreover, as analysis of defined archival tissue would allow to precise the molecular pathomechanism of mitochondrial disorders presenting with abnormal mtDNA content, we compared fresh frozen (FF) with formalin-fixed paraffin-embedded (FFPE) skeletal muscle tissue of the same sample. By extrapolation of measured decay constants for nuclear DNA ({lambda}{sub nDNA}) and mtDNA ({lambda}{sub mtDNA}) we present an approach to possibly correct measurements in

  1. Investigation of Legionella Contamination in Bath Water Samples by Culture, Amoebic Co-Culture, and Real-Time Quantitative PCR Methods

    Directory of Open Access Journals (Sweden)

    Akiko Edagawa

    2015-10-01

    Full Text Available We investigated Legionella contamination in bath water samples, collected from 68 bathing facilities in Japan, by culture, culture with amoebic co-culture, real-time quantitative PCR (qPCR, and real-time qPCR with amoebic co-culture. Using the conventional culture method, Legionella pneumophila was detected in 11 samples (11/68, 16.2%. Contrary to our expectation, the culture method with the amoebic co-culture technique did not increase the detection rate of Legionella (4/68, 5.9%. In contrast, a combination of the amoebic co-culture technique followed by qPCR successfully increased the detection rate (57/68, 83.8% compared with real-time qPCR alone (46/68, 67.6%. Using real-time qPCR after culture with amoebic co-culture, more than 10-fold higher bacterial numbers were observed in 30 samples (30/68, 44.1% compared with the same samples without co-culture. On the other hand, higher bacterial numbers were not observed after propagation by amoebae in 32 samples (32/68, 47.1%. Legionella was not detected in the remaining six samples (6/68, 8.8%, irrespective of the method. These results suggest that application of the amoebic co-culture technique prior to real-time qPCR may be useful for the sensitive detection of Legionella from bath water samples. Furthermore, a combination of amoebic co-culture and real-time qPCR might be useful to detect viable and virulent Legionella because their ability to invade and multiply within free-living amoebae is considered to correlate with their pathogenicity for humans. This is the first report evaluating the efficacy of the amoebic co-culture technique for detecting Legionella in bath water samples.

  2. PCR detection of Helicobacter pylori in string-absorbed gastric juice.

    Science.gov (United States)

    Domínguez-Bello, M G; Cienfuentes, C; Romero, R; García, P; Gómez, I; Mago, V; Reyes, N; Gueneau de Novoa, P

    2001-04-20

    Molecular methods for detection of Helicobacter pylori infection have been shown to be highly sensitive in gastric biopsies and cultures. The objective of this work was to compare PCR detection of H. pylori DNA in string-absorbed gastric juice and in gastric biopsies. The study was performed in 47 dyspeptic adult patients undergoing endoscopy, and infection was detected by amplification of a segment of H. pylori ureA gene. Of the 29 patients positive in biopsy analysis, 23 (79%) were also positive in the gastric string. PCR analysis of gastric strings is a sensitive and safe procedure to detect H. pylori when endoscopy is not indicated, and may be of great clinical and epidemiological usefulness in determining effectiveness of eradication therapies, typing virulence genes and detecting antibiotic resistance mutations.

  3. Increased DNA methylation of scavenger receptor class B type I contributes to inhibitory effects of prenatal caffeine ingestion on cholesterol uptake and steroidogenesis in fetal adrenals

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dong-Mei; He, Zheng; Ma, Liang-Peng; Wang, Lin-Long [Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071 (China); Ping, Jie, E-mail: pingjie@whu.edu.cn [Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071 (China); Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Wang, Hui [Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071 (China); Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2015-06-01

    Steroid hormones synthesized from cholesterol in the fetal adrenal are crucial for fetal development. We have observed the inhibited fetal adrenal corticosterone synthesis and increased intrauterine growth retardation (IUGR) rate in rats under prenatal caffeine ingestion. The aim of this study is to evaluate the effects of prenatal caffeine ingestion on cholesterol supply in fetal adrenal steroidogenesis in rats and explore the underlying epigenetic mechanisms. Pregnant Wistar rats were treated with 60 mg/kg·d caffeine from gestational day (GD) 7 to GD17. Histological changes of fetal adrenals and increased IUGR rates were observed in the caffeine group. There were significantly decreased steroid hormone contents and cholesterol supply in caffeine-treated fetal adrenals. Data from the gene expression array suggested that prenatal caffeine ingestion caused increased expression of genes related to DNA methylation and decreased expression of genes related to cholesterol uptake. The following conjoint analysis of DNA methylation array with these differentially expressed genes suggested that scavenger receptor class B type I (SR-BI) may play an important role in caffeine-induced cholesterol supply deficiency. Moreover, real-time RT-PCR and immunohistochemical detection certified the inhibitory effects of caffeine on both mRNA expression and protein expression of SR-BI in the fetal adrenal. And the increased DNA methylation frequency in the proximal promoter of SR-BI was confirmed by bisulfite-sequencing PCR. In conclusion, prenatal caffeine ingestion can induce DNA hypermethylation of the SR-BI promoter in the rat fetal adrenal. These effects may lead to decreased SR-BI expression and cholesterol uptake, which inhibits steroidogenesis in the fetal adrenal. - Highlights: • Prenatal caffeine ingestion inhibits steroid hormone production in the fetal adrenal. • Prenatal caffeine ingestion inhibits cholesterol uptake in the fetal adrenal. • Prenatal caffeine

  4. Increased DNA methylation of scavenger receptor class B type I contributes to inhibitory effects of prenatal caffeine ingestion on cholesterol uptake and steroidogenesis in fetal adrenals

    International Nuclear Information System (INIS)

    Wu, Dong-Mei; He, Zheng; Ma, Liang-Peng; Wang, Lin-Long; Ping, Jie; Wang, Hui

    2015-01-01

    Steroid hormones synthesized from cholesterol in the fetal adrenal are crucial for fetal development. We have observed the inhibited fetal adrenal corticosterone synthesis and increased intrauterine growth retardation (IUGR) rate in rats under prenatal caffeine ingestion. The aim of this study is to evaluate the effects of prenatal caffeine ingestion on cholesterol supply in fetal adrenal steroidogenesis in rats and explore the underlying epigenetic mechanisms. Pregnant Wistar rats were treated with 60 mg/kg·d caffeine from gestational day (GD) 7 to GD17. Histological changes of fetal adrenals and increased IUGR rates were observed in the caffeine group. There were significantly decreased steroid hormone contents and cholesterol supply in caffeine-treated fetal adrenals. Data from the gene expression array suggested that prenatal caffeine ingestion caused increased expression of genes related to DNA methylation and decreased expression of genes related to cholesterol uptake. The following conjoint analysis of DNA methylation array with these differentially expressed genes suggested that scavenger receptor class B type I (SR-BI) may play an important role in caffeine-induced cholesterol supply deficiency. Moreover, real-time RT-PCR and immunohistochemical detection certified the inhibitory effects of caffeine on both mRNA expression and protein expression of SR-BI in the fetal adrenal. And the increased DNA methylation frequency in the proximal promoter of SR-BI was confirmed by bisulfite-sequencing PCR. In conclusion, prenatal caffeine ingestion can induce DNA hypermethylation of the SR-BI promoter in the rat fetal adrenal. These effects may lead to decreased SR-BI expression and cholesterol uptake, which inhibits steroidogenesis in the fetal adrenal. - Highlights: • Prenatal caffeine ingestion inhibits steroid hormone production in the fetal adrenal. • Prenatal caffeine ingestion inhibits cholesterol uptake in the fetal adrenal. • Prenatal caffeine

  5. Sensitivity of PCR IS6110 in relation to culture and staining in Pott′s disease

    Directory of Open Access Journals (Sweden)

    Manoj Kumar

    2013-01-01

    Full Text Available Background: Rapid diagnosis is essential to decrease the morbidity and mortality of Pott′s disease. The bacteriological methods are time-consuming or insensitive. Polymerase chain reaction (PCR provides a rapid diagnostic tool and hope for early diagnosis of this disease. The aim of this study was to compare and assess of a rapid and effective method among diagnostic battery (Ziehl-Neelsen (ZN microscopy, BACTEC culture and PCR of Pott′s disease. Materials and Methods: Sixty-five specimens from clinico-radiological suspected cases of Pott′s disease were included in this study. They were processed for ZN microscopy, BACTEC culture, and PCR IS6110. The tests tool′s efficiency, positive agreement Kc (Kappa coefficient, and significance level (P value were calculated for correlation between PCR and performed tests. Results: The PCR sensitivity reached to 96% and 46.3% among positive and negative specimens on ZN microscopy. Further, 94% and 36.4% sensitivity were found among positive and negative specimens by BACTEC culture. The total 38 (58.5% specimens were detected either ZN microscopy or by BACTEC culture. Thus, the overall sensitivity and specificity of PCR were 95% and 74.1%. The kappa coefficient and P value, calculated for PCR against BACTEC culture and combined results of performed bacteriological tests were (Kc=0.60, (P<0.001 and (Kc=0.70, (P<0.001, respectively. Above statistical relations showed a fair agreement with significant differences. Conclusion: The PCR IS6110 may be useful in rapid detection of clinico-radiological suspected cases of Pott′s disease and those that are negative with bacteriological methods.

  6. Technical aspects and recommendations for single-cell qPCR.

    Science.gov (United States)

    Ståhlberg, Anders; Kubista, Mikael

    2018-02-01

    Single cells are basic physiological and biological units that can function individually as well as in groups in tissues and organs. It is central to identify, characterize and profile single cells at molecular level to be able to distinguish different kinds, to understand their functions and determine how they interact with each other. During the last decade several technologies for single-cell profiling have been developed and used in various applications, revealing many novel findings. Quantitative PCR (qPCR) is one of the most developed methods for single-cell profiling that can be used to interrogate several analytes, including DNA, RNA and protein. Single-cell qPCR has the potential to become routine methodology but the technique is still challenging, as it involves several experimental steps and few molecules are handled. Here, we discuss technical aspects and provide recommendation for single-cell qPCR analysis. The workflow includes experimental design, sample preparation, single-cell collection, direct lysis, reverse transcription, preamplification, qPCR and data analysis. Detailed reporting and sharing of experimental details and data will promote further development and make validation studies possible. Efforts aiming to standardize single-cell qPCR open up means to move single-cell analysis from specialized research settings to standard research laboratories. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Transmission trials, ITS2-PCR and RAPD-PCR show identity of Toxocara canis isolates from red fox and dog.

    Science.gov (United States)

    Epe, C; Meuwissen, M; Stoye, M; Schnieder, T

    1999-07-01

    Toxocara canis isolates from dog and from red fox were compared in transmission trials and with molecular analysis using RAPD-PCR technique and comparison of the ITS2 sequence. After oral infection of bitches with 20,000 embryonated T. canis eggs of vulpine and canine origin, the vertical transmission to pup's was examined. All animals of both groups developed typical clinical symptoms of toxocarosis. The haematological, serological, parasitological and post mortem results showed no differences between both isolates except for the infectivity of T. canis stages in mice where the fox isolate showed a significant higher infectivity than the dog isolate. The RAPD-PCR showed a similarity coefficient of 0.95, similar to the range of intraspecific variation in Toxocara cati and Toxascaris leonina specimens as outgroups. The ITS2 comparison showed a 100% identity between both isolates with no intraspecific variations. Therefore, the study shows that the fox and the dog isolate of T. canis were identical in infectivity, transmission and molecular structure; a host adaptation could not be found and the fox has to be seen as a reservoir for T. canis infections in dogs. Considering the increasing number of foxes in urban areas the importance of helminth control in dogs is stressed.

  8. Extraction of PCR-amplifiable genomic DNA from Bacillus anthracisspores

    Energy Technology Data Exchange (ETDEWEB)

    Torok, Tamas

    2003-05-19

    Bacterial endospore disruption and nucleic acid extractionresulting in DNA of PCR-amplifiable quality and quantity are not trivial.Responding to the needs of the Hazardous Materials Response Unit (HMRU),Laboratory Division, Federal Bureau of Investigation, protocols weredeveloped to close these gaps. Effectiveness and reproducibility of thetechniques were validated with laboratory grown pure spores of Bacillusanthracis and its close phylogenetic neighbors, and with spiked soils anddamaged samples.

  9. FastCloning: a highly simplified, purification-free, sequence- and ligation-independent PCR cloning method

    Directory of Open Access Journals (Sweden)

    Lu Jia

    2011-10-01

    Full Text Available Abstract Background Although a variety of methods and expensive kits are available, molecular cloning can be a time-consuming and frustrating process. Results Here we report a highly simplified, reliable, and efficient PCR-based cloning technique to insert any DNA fragment into a plasmid vector or into a gene (cDNA in a vector at any desired position. With this method, the vector and insert are PCR amplified separately, with only 18 cycles, using a high fidelity DNA polymerase. The amplified insert has the ends with ~16-base overlapping with the ends of the amplified vector. After DpnI digestion of the mixture of the amplified vector and insert to eliminate the DNA templates used in PCR reactions, the mixture is directly transformed into competent E. coli cells to obtain the desired clones. This technique has many advantages over other cloning methods. First, it does not need gel purification of the PCR product or linearized vector. Second, there is no need of any cloning kit or specialized enzyme for cloning. Furthermore, with reduced number of PCR cycles, it also decreases the chance of random mutations. In addition, this method is highly effective and reproducible. Finally, since this cloning method is also sequence independent, we demonstrated that it can be used for chimera construction, insertion, and multiple mutations spanning a stretch of DNA up to 120 bp. Conclusion Our FastCloning technique provides a very simple, effective, reliable, and versatile tool for molecular cloning, chimera construction, insertion of any DNA sequences of interest and also for multiple mutations in a short stretch of a cDNA.

  10. Effectiveness of various cleaning and disinfectant products on Clostridium difficile spores of PCR ribotypes 010, 014 and 027

    Directory of Open Access Journals (Sweden)

    N. Kenters

    2017-06-01

    Full Text Available Abstract Background In healthcare facilities, Clostridium difficile infections spread by transmission of bacterial spores. Appropriate sporicidal disinfectants are needed to prevent development of clusters and outbreaks. In this study different cleaning/disinfecting wipes and sprays were tested for their efficacy against spores of distinctive C. difficile PCR ribotypes. Methods Four different products were tested; 1 hydrogen peroxide 1.5%; 2 glucoprotamin 1.5%; 3 a mixture of ethanol, propane and N-alkyl amino propyl glycine; and 4 a mixture of didecyldimonium chloride, benzalkonium chloride, polyaminopropyl, biguanide and dimenthicone as active ingredients. Tiles were contaminated with a test solution containing a concentration of 5x106CFU/ml spores of C. difficile strains belonging to PCR ribotypes 010, 014 or 027. The tiles were left to dry for an hour and then wiped or sprayed with one of the sprays or wipes as intended by the manufacturers. When products neutralized after 5 min, microbiological cultures and ATP measures were performed. Results Irrespective of the disinfection method, the microbial count log10 reduction of C. difficile PCR ribotype 010 was highest, followed by the reduction of C. difficile 014 and C. difficile 027. Overall, the wipes performed better than the sprays with the same active ingredient. On average, although not significantly, a difference in relative light units (RLU reduction between the wipes and sprays was found. The wipes had a higher RLU log10 reduction, but no significant difference for RLU reduction was observed between the different C. difficile strains (p = 0.16. Conclusion C. difficile spores of PCR ribotypes 014 and 027 strains are more difficult to eradicate than non-toxigenic PCR ribotype 010. In general, impregnated cleaning/disinfection wipes performed better than ready-to-use sprays. Wipes with hydrogen peroxide (1.5% showed the highest bactericidal activity.

  11. PCR detection of malaria parasites in desiccated Anopheles mosquitoes is uninhibited by storage time and temperature

    Directory of Open Access Journals (Sweden)

    Rider Mark A

    2012-06-01

    Full Text Available Abstract Background Reliable methods to preserve mosquito vectors for malaria studies are necessary for detecting Plasmodium parasites. In field settings, however, maintaining a cold chain of storage from the time of collection until laboratory processing, or accessing other reliable means of sample preservation is often logistically impractical or cost prohibitive. As the Plasmodium infection rate of Anopheles mosquitoes is a central component of the entomological inoculation rate and other indicators of transmission intensity, storage conditions that affect pathogen detection may bias malaria surveillance indicators. This study investigated the effect of storage time and temperature on the ability to detect Plasmodium parasites in desiccated Anopheles mosquitoes by real-time polymerase chain reaction (PCR. Methods Laboratory-infected Anopheles stephensi mosquitoes were chloroform-killed and stored over desiccant for 0, 1, 3, and 6 months while being held at four different temperatures: 28, 37, -20 and -80°C. The detection of Plasmodium DNA was evaluated by real-time PCR amplification of a 111 base pair region of block 4 of the merozoite surface protein. Results Varying the storage time and temperature of desiccated mosquitoes did not impact the sensitivity of parasite detection. A two-way factorial analysis of variance suggested that storage time and temperature were not associated with a loss in the ability to detect parasites. Storage of samples at 28°C resulted in a significant increase in the ability to detect parasite DNA, though no other positive associations were observed between the experimental storage treatments and PCR amplification. Conclusions Cold chain maintenance of desiccated mosquito samples is not necessary for real-time PCR detection of parasite DNA. Though field-collected mosquitoes may be subjected to variable conditions prior to molecular processing, the storage of samples over an inexpensive and logistically

  12. Real-time PCR-based detection of Bordetella pertussis and Bordetella parapertussis in an Irish paediatric population.

    LENUS (Irish Health Repository)

    Grogan, Juanita A

    2011-06-01

    Novel real-time PCR assays targeting the Bordetella pertussis insertion sequence IS481, the toxin promoter region and Bordetella parapertussis insertion sequence IS1001 were designed. PCR assays were capable of detecting ≤10 copies of target DNA per reaction, with an amplification efficiency of ≥90 %. From September 2003 to December 2009, per-nasal swabs and nasopharyngeal aspirates submitted for B. pertussis culture from patients ≤1 month to >15 years of age were examined by real-time PCR. Among 1324 patients, 76 (5.7 %) were B. pertussis culture positive and 145 (10.95 %) were B. pertussis PCR positive. Of the B. pertussis PCR-positive patients, 117 (81 %) were aged 6 months or less. A total of 1548 samples were examined, of which 87 (5.6 %) were culture positive for B. pertussis and 169 (10.92 %) were B. pertussis PCR positive. All culture-positive samples were PCR positive. Seven specimens (0.5 %) were B. parapertussis culture positive and 10 (0.8 %) were B. parapertussis PCR positive, with all culture-positive samples yielding PCR-positive results. A review of patient laboratory records showed that of the 1324 patients tested for pertussis 555 (42 %) had samples referred for respiratory syncytial virus (RSV) testing and 165 (30 %) were positive, as compared to 19.4 % of the total 5719 patients tested for RSV in this period. Analysis of the age distribution of RSV-positive patients identified that 129 (78 %) were aged 6 months or less, similar to the incidence observed for pertussis in that patient age group. In conclusion, the introduction of the real-time PCR assays for the routine detection of B. pertussis resulted in a 91 % increase in the detection of the organism as compared to microbiological culture. The incidence of infection with B. parapertussis is low while the incidence of RSV infection in infants suspected of having pertussis is high, with a similar age distribution to B. pertussis infection.

  13. Inter-laboratory analysis of selected genetically modified plant reference materials with digital PCR.

    Science.gov (United States)

    Dobnik, David; Demšar, Tina; Huber, Ingrid; Gerdes, Lars; Broeders, Sylvia; Roosens, Nancy; Debode, Frederic; Berben, Gilbert; Žel, Jana

    2018-01-01

    Digital PCR (dPCR), as a new technology in the field of genetically modified (GM) organism (GMO) testing, enables determination of absolute target copy numbers. The purpose of our study was to test the transferability of methods designed for quantitative PCR (qPCR) to dPCR and to carry out an inter-laboratory comparison of the performance of two different dPCR platforms when determining the absolute GM copy numbers and GM copy number ratio in reference materials certified for GM content in mass fraction. Overall results in terms of measured GM% were within acceptable variation limits for both tested dPCR systems. However, the determined absolute copy numbers for individual genes or events showed higher variability between laboratories in one third of the cases, most possibly due to variability in the technical work, droplet size variability, and analysis of the raw data. GMO quantification with dPCR and qPCR was comparable. As methods originally designed for qPCR performed well in dPCR systems, already validated qPCR assays can most generally be used for dPCR technology with the purpose of GMO detection. Graphical abstract The output of three different PCR-based platforms was assessed in an inter-laboratory comparison.

  14. A naked-eye colorimetric "PCR developer"

    Science.gov (United States)

    Valentini, Paola; Pompa, Pier Paolo

    2016-04-01

    Despite several advances in molecular biology and diagnostics, Polymerase Chain Reaction (PCR) is currently the gold standard for nucleic acids amplification and detection, due to its versatility, low-cost and universality, with estimated genetically modified organisms, and pathogens). The PCR developer proved to be highly specific and ultra-sensitive, discriminating down to few copies of HIV viral DNA, diluted in an excess of interfering human genomic DNA, which is a clinically relevant viral load. Hence, it could be a valuable tool for both academic research and clinical applications.

  15. Diagnosis of Hepatozoon canis in young dogs by cytology and PCR

    Directory of Open Access Journals (Sweden)

    Decaprariis Donato

    2011-04-01

    Full Text Available Abstract Background Hepatozoon canis is a widespread tick-borne protozoan affecting dogs. The diagnosis of H. canis infection is usually performed by cytology of blood or buffy coat smears, but this method may not be sensitive. Our study aimed to evaluate the best method to achieve a parasitological diagnosis of H. canis infection in a population of receptive young dogs, previously negative by cytology and exposed to tick infestation for one summer season. Results A total of 73 mongrel dogs and ten beagles younger than 18 months of age, living in an animal shelter in southern Italy where dogs are highly infested by Rhipicephalus sanguineus, were included in this study. In March-April 2009 and in October 2009, blood and bone marrow were sampled from each dog. Blood, buffy coat and bone marrow were examined by cytology only (at the first sampling and also by PCR for H. canis (second sampling. In March-April 2009, only one dog was positive for H. canis by cytological examination, whereas in October 2009 (after the summer season, the overall incidence of H. canis infection by cytological examinations was 43.9%. Molecular tests carried out on samples taken in October 2009 showed a considerably higher number of dogs positive by PCR (from 27.7% up to 51.2% on skin and buffy coat tissues, respectively, with an overall positivity of 57.8%. All animals, but one, which were positive by cytology were also PCR-positive. PCR on blood or buffy coat detected the highest number of H. canis-positive dogs displaying a sensitivity of 85.7% for both tissues that increased up to 98% when used in parallel. Twenty-six (74.8% out of the 28 H. canis-positive dogs presented hematological abnormalities, eosinophilia being the commonest alteration observed. Conclusions The results suggest that PCR on buffy coat and blood is the best diagnostic assay for detecting H. canis infection in dogs, although when PCR is not available, cytology on buffy coat should be preferred to

  16. Diagnosis of Hepatozoon canis in young dogs by cytology and PCR

    Science.gov (United States)

    2011-01-01

    Background Hepatozoon canis is a widespread tick-borne protozoan affecting dogs. The diagnosis of H. canis infection is usually performed by cytology of blood or buffy coat smears, but this method may not be sensitive. Our study aimed to evaluate the best method to achieve a parasitological diagnosis of H. canis infection in a population of receptive young dogs, previously negative by cytology and exposed to tick infestation for one summer season. Results A total of 73 mongrel dogs and ten beagles younger than 18 months of age, living in an animal shelter in southern Italy where dogs are highly infested by Rhipicephalus sanguineus, were included in this study. In March-April 2009 and in October 2009, blood and bone marrow were sampled from each dog. Blood, buffy coat and bone marrow were examined by cytology only (at the first sampling) and also by PCR for H. canis (second sampling). In March-April 2009, only one dog was positive for H. canis by cytological examination, whereas in October 2009 (after the summer season), the overall incidence of H. canis infection by cytological examinations was 43.9%. Molecular tests carried out on samples taken in October 2009 showed a considerably higher number of dogs positive by PCR (from 27.7% up to 51.2% on skin and buffy coat tissues, respectively), with an overall positivity of 57.8%. All animals, but one, which were positive by cytology were also PCR-positive. PCR on blood or buffy coat detected the highest number of H. canis-positive dogs displaying a sensitivity of 85.7% for both tissues that increased up to 98% when used in parallel. Twenty-six (74.8%) out of the 28 H. canis-positive dogs presented hematological abnormalities, eosinophilia being the commonest alteration observed. Conclusions The results suggest that PCR on buffy coat and blood is the best diagnostic assay for detecting H. canis infection in dogs, although when PCR is not available, cytology on buffy coat should be preferred to blood smear evaluation

  17. Diagnosis of Hepatozoon canis in young dogs by cytology and PCR.

    Science.gov (United States)

    Otranto, Domenico; Dantas-Torres, Filipe; Weigl, Stefania; Latrofa, Maria Stefania; Stanneck, Dorothee; Decaprariis, Donato; Capelli, Gioia; Baneth, Gad

    2011-04-13

    Hepatozoon canis is a widespread tick-borne protozoan affecting dogs. The diagnosis of H. canis infection is usually performed by cytology of blood or buffy coat smears, but this method may not be sensitive. Our study aimed to evaluate the best method to achieve a parasitological diagnosis of H. canis infection in a population of receptive young dogs, previously negative by cytology and exposed to tick infestation for one summer season. A total of 73 mongrel dogs and ten beagles younger than 18 months of age, living in an animal shelter in southern Italy where dogs are highly infested by Rhipicephalus sanguineus, were included in this study. In March-April 2009 and in October 2009, blood and bone marrow were sampled from each dog. Blood, buffy coat and bone marrow were examined by cytology only (at the first sampling) and also by PCR for H. canis (second sampling). In March-April 2009, only one dog was positive for H. canis by cytological examination, whereas in October 2009 (after the summer season), the overall incidence of H. canis infection by cytological examinations was 43.9%. Molecular tests carried out on samples taken in October 2009 showed a considerably higher number of dogs positive by PCR (from 27.7% up to 51.2% on skin and buffy coat tissues, respectively), with an overall positivity of 57.8%. All animals, but one, which were positive by cytology were also PCR-positive. PCR on blood or buffy coat detected the highest number of H. canis-positive dogs displaying a sensitivity of 85.7% for both tissues that increased up to 98% when used in parallel. Twenty-six (74.8%) out of the 28 H. canis-positive dogs presented hematological abnormalities, eosinophilia being the commonest alteration observed. The results suggest that PCR on buffy coat and blood is the best diagnostic assay for detecting H. canis infection in dogs, although when PCR is not available, cytology on buffy coat should be preferred to blood smear evaluation. This study has also demonstrated

  18. Pathway-focused PCR array profiling of enriched populations of laser capture microdissected hippocampal cells after traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Deborah R Boone

    Full Text Available Cognitive deficits in survivors of traumatic brain injury (TBI are associated with irreversible neurodegeneration in brain regions such as the hippocampus. Comparative gene expression analysis of dying and surviving neurons could provide insight into potential therapeutic targets. We used two pathway-specific PCR arrays (RT2 Profiler Apoptosis and Neurotrophins & Receptors PCR arrays to identify and validate TBI-induced gene expression in dying (Fluoro-Jade-positive or surviving (Fluoro-Jade-negative pyramidal neurons obtained by laser capture microdissection (LCM. In the Apoptosis PCR array, dying neurons showed significant increases in expression of genes associated with cell death, inflammation, and endoplasmic reticulum (ER stress compared with adjacent, surviving neurons. Pro-survival genes with pleiotropic functions were also significantly increased in dying neurons compared to surviving neurons, suggesting that even irreversibly injured neurons are able to mount a protective response. In the Neurotrophins & Receptors PCR array, which consists of genes that are normally expected to be expressed in both groups of hippocampal neurons, only a few genes were expressed at significantly different levels between dying and surviving neurons. Immunohistochemical analysis of selected, differentially expressed proteins supported the gene expression data. This is the first demonstration of pathway-focused PCR array profiling of identified populations of dying and surviving neurons in the brain after TBI. Combining precise laser microdissection of identifiable cells with pathway-focused PCR array analysis is a practical, low-cost alternative to microarrays that provided insight into neuroprotective signals that could be therapeutically targeted to ameliorate TBI-induced neurodegeneration.

  19. DNA extraction methods for panbacterial and panfungal PCR detection in intraocular fluids.

    Science.gov (United States)

    Mazoteras, Paloma; Bispo, Paulo José Martins; Höfling-Lima, Ana Luisa; Casaroli-Marano, Ricardo P

    2015-07-01

    Three different methods of DNA extraction from intraocular fluids were compared with subsequent detection for bacterial and fungal DNA by universal PCR amplification. Three DNA extraction methods, from aqueous and vitreous humors, were evaluated to compare their relative efficiency. Bacterial (Gram positive and negative) and fungal strains were used in this study: Escherichia coli, Staphylococcus epidermidis and Candida albicans. The quality, quantification, and detection limit for DNA extraction and PCR amplification were analyzed. Validation procedures for 13 aqueous humor and 14 vitreous samples, from 20 patients with clinically suspected endophthalmitis were carried out. The column-based extraction method was the most time-effective, achieving DNA detection limits ≥10(2) and 10(3 )CFU/100 µL for bacteria and fungi, respectively. PCR amplification detected 100 fg, 1 pg and 10 pg of genomic DNA of E. coli, S. epidermidis and C. albicans respectively. PCR detected 90.0% of the causative agents from 27 intraocular samples collected from 20 patients with clinically suspected endophthalmitis, while standard microbiological techniques could detect only 60.0%. The most frequently found organisms were Streptococcus spp. in 38.9% (n = 7) of patients and Staphylococcus spp. found in 22.2% (n = 4). The column-based extraction method for very small inocula in small volume samples (50-100 µL) of aqueous and/or vitreous humors allowed PCR amplification in all samples with sufficient quality for subsequent sequencing and identification of the microorganism in the majority of them.

  20. Evaluation of PCR for diagnosis of visceral leishmaniasis

    NARCIS (Netherlands)

    Osman, O. F.; Oskam, L.; Zijlstra, E. E.; Kroon, N. C.; Schoone, G. J.; Khalil, E. T.; El-Hassan, A. M.; Kager, P. A.

    1997-01-01

    An evaluation of Leishmania PCR was performed with bone marrow, lymph node, and blood samples from 492 patients, 60 positive controls, and 90 negative controls. Results were compared with microscopy results for Giemsa-stained smears. PCR and microscopy of lymph node and bone marrow aspirates from

  1. Incidence of pulmonary aspergillosis and correlation of conventional diagnostic methods with nested PCR and real-time PCR assay using BAL fluid in intensive care unit patients.

    Science.gov (United States)

    Zarrinfar, Hossein; Makimura, Koichi; Satoh, Kazuo; Khodadadi, Hossein; Mirhendi, Hossein

    2013-05-01

    Although the incidence of invasive aspergillosis in the intensive care unit (ICU) is scarce, it has emerged as major problems in critically ill patients. In this study, the incidence of pulmonary aspergillosis (PA) in ICU patients has evaluated and direct microscopy and culture has compared with nested polymerase chain reaction (PCR) and real-time PCR for detection of Aspergillus fumigatus and A. flavus in bronchoalveolar lavage (BAL) samples of the patients. Thirty BAL samples obtained from ICU patients during a 16-month period were subjected to direct examinations on 20% potassium hydroxide (KOH) and culture on two culture media. Nested PCR targeting internal transcribed spacer ribosomal DNA and TaqMan real-time PCR assay targeting β-tubulin gene were used for the detection of A. fumigatus and A. flavus. Of 30 patients, 60% were men and 40% were women. The diagnosis of invasive PA was probable in 1 (3%), possible in 11 (37%), and not IPA in 18 (60%). Nine samples were positive in nested PCR including seven samples by A. flavus and two by A. fumigatus specific primers. The lowest amount of DNA that TaqMan real-time PCR could detect was ≥40 copy numbers. Only one of the samples had a positive result of A. flavus real-time PCR with Ct value of 37.5. Although a significant number of specimens were positive in nested PCR, results of this study showed that establishment of a correlation between the conventional methods with nested PCR and real-time PCR needs more data confirmed by a prospective study with a larger sample group. © 2013 Wiley Periodicals, Inc.

  2. Detection and quantification of Spirocerca lupi by HRM qPCR in fecal samples from dogs with spirocercosis.

    Science.gov (United States)

    Rojas, Alicia; Segev, Gilad; Markovics, Alex; Aroch, Itamar; Baneth, Gad

    2017-09-19

    Spirocerca lupi, the dog oesophageal nematode, causes a potentially fatal disease in domestic dogs, and is currently clinically diagnosed by coproscopy and oesophagoscopy. To date, a single molecular method, a semi-nested PCR, targeting the cox1 gene, has been developed to aid in the diagnosis of spirocercosis. The present study describes three novel high-resolution melt (HRM) quantitative PCR (qPCR) assays targeting fragments of the ITS1, 18S and cytb loci of S. lupi. The performance of these molecular assays in feces was compared to fecal flotation and to the previously described cox1 gene semi-nested PCR in 18 fecal samples from dogs with clinical oesophageal spirocercosis diagnosed by oesophagoscopy. The HRM qPCR for ITS1 and 18S were both able to detect 0.2 S. lupi eggs per gram (epg), while the HRM qPCR for the cytb and the semi-nested PCR for the cox1 detected 6 epg and 526 epg, respectively. Spirocerca lupi was detected in 61.1%, 44.4%, 27.8%, 11.1% and 5.6% of the fecal samples of dogs diagnosed with spirocercosis by using the ITS1 and 18S HRM qPCR assays, fecal flotation, cytb HRM qPCR and cox1 semi-nested PCR, respectively. All dogs positive by fecal flotation were also positive by ITS1 and 18S HRM qPCRs. Quantification of S. lupi eggs was successfully achieved in the HRM qPCRs and compared to the fecal flotation with no significant difference in the calculated concentrations between the HRM qPCRs that detected the 18S and ITS1 loci and the fecal flotation. The HRM qPCR for the 18S cross-amplified DNA from Toxocara canis and Toxascaris leonina. In contrast, the HRM qPCR for ITS1 did not cross-amplify DNA from other canine gastrointestinal parasites. This study presents two new molecular assays with significantly increased sensitivity for confirming and quantifying fecal S. lupi eggs. Of these, the HRM qPCR for ITS1 showed the best performance in terms of the limit of detection and absence of cross-amplification with other parasites. These assays will be

  3. Interlaboratory study of DNA extraction from multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR for individual kernel detection system of genetically modified maize.

    Science.gov (United States)

    Akiyama, Hiroshi; Sakata, Kozue; Makiyma, Daiki; Nakamura, Kosuke; Teshima, Reiko; Nakashima, Akie; Ogawa, Asako; Yamagishi, Toru; Futo, Satoshi; Oguchi, Taichi; Mano, Junichi; Kitta, Kazumi

    2011-01-01

    In many countries, the labeling of grains, feed, and foodstuff is mandatory if the genetically modified (GM) organism content exceeds a certain level of approved GM varieties. We previously developed an individual kernel detection system consisting of grinding individual kernels, DNA extraction from the individually ground kernels, GM detection using multiplex real-time PCR, and GM event detection using multiplex qualitative PCR to analyze the precise commingling level and varieties of GM maize in real sample grains. We performed the interlaboratory study of the DNA extraction with multiple ground samples, multiplex real-time PCR detection, and multiplex qualitative PCR detection to evaluate its applicability, practicality, and ruggedness for the individual kernel detection system of GM maize. DNA extraction with multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR were evaluated by five laboratories in Japan, and all results from these laboratories were consistent with the expected results in terms of the commingling level and event analysis. Thus, the DNA extraction with multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR for the individual kernel detection system is applicable and practicable in a laboratory to regulate the commingling level of GM maize grain for GM samples, including stacked GM maize.

  4. Health Care Resource Utilization and Costs in Patients with Chronic Myeloid Leukemia with Better Adherence to Tyrosine Kinase Inhibitors and Increased Molecular Monitoring Frequency.

    Science.gov (United States)

    Latremouille-Viau, Dominick; Guerin, Annie; Gagnon-Sanschagrin, Patrick; Dea, Katherine; Cohen, Benjamin G; Joseph, George J

    2017-02-01

    Frequent molecular monitoring (qPCR tests), as recommended by evidence-based monitoring guidelines, is associated with higher adherence to tyrosine kinase inhibitors (TKIs) in the management of chronic myeloid leukemia (CML); both factors have been associated with better clinical and economic outcomes. To (a) estimate the effect of more frequent qPCR tests on health care resource utilization (HRU) and associated costs, including direct (effect of qPCR test frequency on HRU) and indirect (through TKI adherence) effects, and (b) develop an economic model applicable to multiple clinical practice scenarios. Adult patients newly diagnosed with CML who started TKI firstline therapy were identified from U.S. administrative claims data (2010-2015). TKI adherence (medication possession ratio [MPR]), number of inpatient days, emergency room (ER) visits, outpatient service days, and mean costs per HRU event were measured during the first year of CML treatment. Direct and indirect effects of qPCR test frequency were estimated using multivariate regression models. Subsequently, an economic model was developed to assess the overall effect of varying qPCR test frequency on HRU and associated costs during the first year of CML treatment under different clinical practice scenarios; the scenario reported is the increase from 1 to 2 qPCR tests. Of the 1,431 patients included, 36% had no qPCR tests, the average qPCR test frequency was 1.6, and the average MPR was 0.86 during the first year of CML treatment. The direct effect of increasing qPCR test frequency by 1 was associated with 13.0% fewer inpatient days (adjusted incidence rate ratio [adjusted IRR] = 0.87; P = 0.010); 8.3% fewer ER visits (adjusted IRR = 0.92; P = 0.043); and 3.0% more outpatient service days (adjusted IRR = 1.03; P = 0.002). Each increase of 1 test was associated with an increase in TKI adherence by 2.2 percentage points (adjusted MPR difference = 0.022; P better adherence to TKIs were associated with lower HRU

  5. Latent class analysis of the diagnostic characteristics of PCR and conventional bacteriological culture in diagnosing intramammary infections caused by Staphylococcus aureus in dairy cows at dry off

    Directory of Open Access Journals (Sweden)

    Cederlöf Sara Ellinor

    2012-11-01

    Full Text Available Abstract Background Staphylococcus aureus is one of the most common causes of intramammary infections in dairy cows at dry off. Reliable identification is important for disease management on herd level and for antimicrobial treatment of infected animals. Our objective was to evaluate the test characteristics of PathoProof ™ Mastitis PCR Assay and bacteriological culture (BC in diagnosing bovine intramammary infections caused by S. aureus at dry off at different PCR cycle threshold (Ct-value cut-offs. Methods Sterile quarter samples and non-sterile composite samples from 140 animals in seven herds were collected in connection with the dairy herd improvement (DHI milk recording. All quarter samples were analyzed using BC whereas all composite samples were analyzed with PathoProof ™ Mastitis PCR Assay. Latent class analysis was used to estimate test properties for PCR and BC in the absence of a perfect reference test. The population was divided into two geographically divided subpopulations and the Hui-Walter 2-test 2-populations model applied to estimate Se, Sp for the two tests, and prevalence for the two subpopulations. Results The Se for PCR increased with increasing Ct-value cut-off, accompanied by a small decrease in Sp. For BC the Se decreased and Sp increased with increasing Ct-value cut-off. Most optimal test estimates for the real-time PCR assay were at a Ct-value cut-off of 37; 0.93 [95% posterior probability interval (PPI 0.60-0.99] for Se and 0.95 [95% PPI 0.95-0.99] for Sp. At the same Ct-value cut-off, Se and Sp for BC were 0.83 [95% PPI 0.66-0.99] and 0.97 [95% PPI 0.91-0.99] respectively. Depending on the chosen PCR Ct-value cut-off, the prevalence in the subpopulations varied; the prevalence increased with increasing PCR Ct-value cut-offs. Conclusion Neither BC nor real-time PCR is a perfect test in detecting IMI in dairy cows at dry off. The changes in sensitivity and prevalence at different Ct-value cut-offs for both PCR and

  6. Modified DNA extraction for rapid PCR detection of methicillin-resistant staphylococci

    International Nuclear Information System (INIS)

    Japoni, A.; Alborzi, A.; Rasouli, M.; Pourabbas, B.

    2004-01-01

    Nosocomial infection caused by methicillin-resistant staphylococci poses a serious problem in many countries. The aim of this study was to rapidly and reliably detect methicillin-resistant-staphylococci in order to suggest appropriate therapy. The presence or absence of the methicillin-resistance gene in 115 clinical isolates of staphylococcus aureus and 50 isolates of coagulase negative staphylococci was examined by normal PCR. DNA extraction for PCR performance was then modified by omission of achromopeptadiase and proteinase K digestion, phenol/chloroform extraction and ethanol precipitation. All isolates with Mic>8 μ g/ml showed positive PCR. No differences in PCR detection have been observed when normal and modified DNA extractions have been performed. Our modified DNA extraction can quickly detect methicillin-resistant staphylococci by PCR. The advantage of rapid DNA extraction extends to both reduction of time and cost of PCR performance. This modified DNA extraction is suitable for different PCR detection, when staphylococci are the subject of DNA analysis

  7. An optimized one-tube, semi-nested PCR assay for Paracoccidioides brasiliensis detection.

    Science.gov (United States)

    Pitz, Amanda de Faveri; Koishi, Andrea Cristine; Tavares, Eliandro Reis; Andrade, Fábio Goulart de; Loth, Eduardo Alexandre; Gandra, Rinaldo Ferreira; Venancio, Emerson José

    2013-01-01

    Herein, we report a one-tube, semi-nested-polymerase chain reaction (OTsn-PCR) assay for the detection of Paracoccidioides brasiliensis. We developed the OTsn-PCR assay for the detection of P. brasiliensis in clinical specimens and compared it with other PCR methods. The OTsn-PCR assay was positive for all clinical samples, and the detection limit was better or equivalent to the other nested or semi-nested PCR methods for P. brasiliensis detection. The OTsn-PCR assay described in this paper has a detection limit similar to other reactions for the molecular detection of P. brasiliensis, but this approach is faster and less prone to contamination than other conventional nested or semi-nested PCR assays.

  8. Phage-Mediated Immuno-PCR for Ultrasensitive Detection of Cry1Ac Protein Based on Nanobody.

    Science.gov (United States)

    Liu, Yuanyuan; Jiang, Dongjian; Lu, Xin; Wang, Wei; Xu, Yang; He, Qinghua

    2016-10-11

    The widespread use of Cry proteins in transgenic plants for insect control has raised concerns about the environment and food safety in the public. An effective detection method for introduced Cry proteins is of significance for environmental risk assessment and product quality control. This paper describes a novel phage mediated immuno-PCR (iPCR) for the ultrasensitive determination of Cry proteins based on nanobodies. Three nanobodies against Cry1Ac protein were obtained from a naı̈ve phage displayed nanobody library without animal immunization process and were applied to the iPCR assay for Cry1Ac. The phage-mediated iPCR for Cry1Ac based on nanobodies showed a dynamic range of 0.001-100 ng/mL and a limit detection of 0.1 pg/mL. Specific measurement of this established method was performed by testing cross-reativity of other Cry1Ac analogues, and the result showed negligible cross-reactivity with other test Cry proteins (Cry1Ab, Cry1F, Cry3B). Furthermore, the phage-mediated iPCR based on nanobody should be easily applicable to the detection of many other Cry proteins.

  9. Evaluation of CANDU6 PCR (power coefficient of reactivity) with a 3-D whole-core Monte Carlo Analysis

    International Nuclear Information System (INIS)

    Motalab, Mohammad Abdul; Kim, Woosong; Kim, Yonghee

    2015-01-01

    Highlights: • The PCR of the CANDU6 reactor is slightly negative at low power, e.g. <80% P. • Doppler broadening of scattering resonances improves noticeably the FTC and make the PCR more negative or less positive in CANDU6. • The elevated inlet coolant condition can worsen significantly the PCR of CANDU6. • Improved design tools are needed for the safety evaluation of CANDU6 reactor. - Abstract: The power coefficient of reactivity (PCR) is a very important parameter for inherent safety and stability of nuclear reactors. The combined effect of a relatively less negative fuel temperature coefficient and a positive coolant temperature coefficient make the CANDU6 (CANada Deuterium Uranium) PCR very close to zero. In the original CANDU6 design, the PCR was calculated to be clearly negative. However, the latest physics design tools predict that the PCR is slightly positive for a wide operational range of reactor power. It is upon this contradictory observation that the CANDU6 PCR is re-evaluated in this work. In our previous study, the CANDU6 PCR was evaluated through a standard lattice analysis at mid-burnup and was found to be negative at low power. In this paper, the study was extended to a detailed 3-D CANDU6 whole-core model using the Monte Carlo code Serpent2. The Doppler broadening rejection correction (DBRC) method was implemented in the Serpent2 code in order to take into account thermal motion of the heavy uranium nucleus in the neutron-U scattering reactions. Time-average equilibrium core was considered for the evaluation of the representative PCR of CANDU6. Two thermal hydraulic models were considered in this work: one at design condition and the other at operating condition. Bundle-wise distributions of the coolant properties are modeled and the bundle-wise fuel temperature is also considered in this study. The evaluated nuclear data library ENDF/B-VII.0 was used throughout this Serpent2 evaluation. In these Monte Carlo calculations, a large number

  10. Real-Time PCR in HIV/Trypanosoma cruzi Coinfection with and without Chagas Disease Reactivation: Association with HIV Viral Load and CD4+ Level

    Science.gov (United States)

    de Freitas, Vera Lúcia Teixeira; da Silva, Sheila Cristina Vicente; Sartori, Ana Marli; Bezerra, Rita Cristina; Westphalen, Elizabeth Visone Nunes; Molina, Tatiane Decaris; Teixeira, Antonio R. L.; Ibrahim, Karim Yaqub; Shikanai-Yasuda, Maria Aparecida

    2011-01-01

    Background Reactivation of chronic Chagas disease, which occurs in approximately 20% of patients coinfected with HIV/Trypanosoma cruzi (T. cruzi), is commonly characterized by severe meningoencephalitis and myocarditis. The use of quantitative molecular tests to monitor Chagas disease reactivation was analyzed. Methodology Polymerase chain reaction (PCR) of kDNA sequences, competitive (C-) PCR and real-time quantitative (q) PCR were compared with blood cultures and xenodiagnosis in samples from 91 patients (57 patients with chronic Chagas disease and 34 with HIV/T. cruzi coinfection), of whom 5 had reactivation of Chagas disease and 29 did not. Principal Findings qRT-PCR showed significant differences between groups; the highest parasitemia was observed in patients infected with HIV/T. cruzi with Chagas disease reactivation (median 1428.90 T. cruzi/mL), followed by patients with HIV/T. cruzi infection without reactivation (median 1.57 T. cruzi/mL) and patients with Chagas disease without HIV (median 0.00 T. cruzi/mL). Spearman's correlation coefficient showed that xenodiagnosis was correlated with blood culture, C-PCR and qRT-PCR. A stronger Spearman correlation index was found between C-PCR and qRT-PCR, the number of parasites and the HIV viral load, expressed as the number of CD4+ cells or the CD4+/CD8+ ratio. Conclusions qRT-PCR distinguished the groups of HIV/T. cruzi coinfected patients with and without reactivation. Therefore, this new method of qRT-PCR is proposed as a tool for prospective studies to analyze the importance of parasitemia (persistent and/or increased) as a criterion for recommending pre-emptive therapy in patients with chronic Chagas disease with HIV infection or immunosuppression. As seen in this study, an increase in HIV viral load and decreases in the number of CD4+ cells/mm3 and the CD4+/CD8+ ratio were identified as cofactors for increased parasitemia that can be used to target the introduction of early, pre-emptive therapy. PMID

  11. No control genes required: Bayesian analysis of qRT-PCR data.

    Directory of Open Access Journals (Sweden)

    Mikhail V Matz

    Full Text Available Model-based analysis of data from quantitative reverse-transcription PCR (qRT-PCR is potentially more powerful and versatile than traditional methods. Yet existing model-based approaches cannot properly deal with the higher sampling variances associated with low-abundant targets, nor do they provide a natural way to incorporate assumptions about the stability of control genes directly into the model-fitting process.In our method, raw qPCR data are represented as molecule counts, and described using generalized linear mixed models under Poisson-lognormal error. A Markov Chain Monte Carlo (MCMC algorithm is used to sample from the joint posterior distribution over all model parameters, thereby estimating the effects of all experimental factors on the expression of every gene. The Poisson-based model allows for the correct specification of the mean-variance relationship of the PCR amplification process, and can also glean information from instances of no amplification (zero counts. Our method is very flexible with respect to control genes: any prior knowledge about the expected degree of their stability can be directly incorporated into the model. Yet the method provides sensible answers without such assumptions, or even in the complete absence of control genes. We also present a natural Bayesian analogue of the "classic" analysis, which uses standard data pre-processing steps (logarithmic transformation and multi-gene normalization but estimates all gene expression changes jointly within a single model. The new methods are considerably more flexible and powerful than the standard delta-delta Ct analysis based on pairwise t-tests.Our methodology expands the applicability of the relative-quantification analysis protocol all the way to the lowest-abundance targets, and provides a novel opportunity to analyze qRT-PCR data without making any assumptions concerning target stability. These procedures have been implemented as the MCMC.qpcr package in R.

  12. Molecular Quantification of Zooplankton Gut Content: The Case For qPCR

    Science.gov (United States)

    Frischer, M. E.; Walters, T. L.; Gibson, D. M.; Nejstgaard, J. C.; Troedsson, C.

    2016-02-01

    The ability to obtain information about feeding selectivity and rates in situ for zooplankton is vital for understanding the mechanisms structuring marine ecosystems. However, directly estimating feeding selection and rates of zooplankton, without bias, associated with culturing conditions has been notoriously difficult. A potential approach for addressing this problem is to target prey-specific DNA as a marker for prey ingestion and selection. In this study we report the development of a differential length amplification quantitative PCR (dla-qPCR) assay targeting the 18S rRNA gene to validate the use of a DNA-based approach to quantify consumption of specific plankton prey by the pelagic tunicate (doliolid) Dolioletta gegenbauri. Compared to copepods and other marine animals, the digestion of prey genomic DNA inside the gut of doliolids is low. This method minimizes potential underestimations, and therefore allows prey DNA to be used as an effective indicator of prey consumption. We also present an initial application of a qPCR-assay to estimate consumption of specific prey species on the southeastern continental shelf of the U.S., where doliolids stochastically bloom in response to upwelling events. Estimated feeding rates, based on qPCR, were in the same range as those estimated from clearance rates in laboratory feeding studies. In the field, consumption of specific prey, including the centric diatom Thalassiosira spp. was detected in the gut of wild caught D. gegenbauri at the levels consistent with their abundance in the water column at the time of collection. Thus, both experimental and field investigations support the hypothesis that a qPCR approach will be useful for the quantitative investigation of the in situ diet of D. gegenbauri without introduced bias' associated with cultivation.

  13. No control genes required: Bayesian analysis of qRT-PCR data.

    Science.gov (United States)

    Matz, Mikhail V; Wright, Rachel M; Scott, James G

    2013-01-01

    Model-based analysis of data from quantitative reverse-transcription PCR (qRT-PCR) is potentially more powerful and versatile than traditional methods. Yet existing model-based approaches cannot properly deal with the higher sampling variances associated with low-abundant targets, nor do they provide a natural way to incorporate assumptions about the stability of control genes directly into the model-fitting process. In our method, raw qPCR data are represented as molecule counts, and described using generalized linear mixed models under Poisson-lognormal error. A Markov Chain Monte Carlo (MCMC) algorithm is used to sample from the joint posterior distribution over all model parameters, thereby estimating the effects of all experimental factors on the expression of every gene. The Poisson-based model allows for the correct specification of the mean-variance relationship of the PCR amplification process, and can also glean information from instances of no amplification (zero counts). Our method is very flexible with respect to control genes: any prior knowledge about the expected degree of their stability can be directly incorporated into the model. Yet the method provides sensible answers without such assumptions, or even in the complete absence of control genes. We also present a natural Bayesian analogue of the "classic" analysis, which uses standard data pre-processing steps (logarithmic transformation and multi-gene normalization) but estimates all gene expression changes jointly within a single model. The new methods are considerably more flexible and powerful than the standard delta-delta Ct analysis based on pairwise t-tests. Our methodology expands the applicability of the relative-quantification analysis protocol all the way to the lowest-abundance targets, and provides a novel opportunity to analyze qRT-PCR data without making any assumptions concerning target stability. These procedures have been implemented as the MCMC.qpcr package in R.

  14. Development of a PCR assay to detect cyprinid herpesvirus 1 in koi and common carp.

    Science.gov (United States)

    Viadanna, Pedro H O; Miller-Morgan, Tim; Peterson, Trace; Way, Keith; Stone, David M; Marty, Gary D; Pilarski, Fabiana; Hedrick, Ronald P; Waltzek, Thomas B

    2017-02-08

    Cyprinid herpesvirus 1 (CyHV1) infects all scaled and color varieties of common carp Cyprinus carpio, including koi. While it is most often associated with unsightly growths known as 'carp pox,' the underlying lesion (epidermal hyperplasia) can arise from a variety of disease processes. CyHV1-induced epidermal hyperplasia may occur transiently in response to water temperature, and thus histopathology cannot be used in isolation to assess CyHV1 infection status. To address this problem, here we describe a PCR assay targeted to the putative thymidine kinase gene of CyHV1. The PCR assay generates a 141 bp amplicon and reliably detects down to 10 copies of control plasmid DNA sequence (analytic sensitivity). The PCR does not cross-detect genomic DNA from cyprinid herpesvirus 2 and 3 (analytic specificity). The CyHV1 PCR effectively detected viral DNA in koi and common carp sampled from various locations in the UK, USA, Brazil, and Japan. Viral DNA was detected in both normal appearing and grossly affected epidermal tissues from koi experiencing natural epizootics. The new CyHV1 PCR provides an additional approach to histopathology for the rapid detection of CyHV1. Analysis of the thymidine kinase gene sequences determined for 7 PCR-positive carp originating from disparate geographical regions identified 3 sequence types, with 1 type occurring in both koi and common carp.

  15. A novel polymerase chain reaction (PCR) for rapid isolation of a new ...

    African Journals Online (AJOL)

    mediated self-formed panhandle PCR, for gene or chromosome walking. It combined the advantages of ligation-mediated PCR in its specificity and of panhandle PCR in its efficiency. Self-formed panhandle PCR was used for a new rbcS gene ...

  16. Detection of four important Eimeria species by multiplex PCR in a single assay.

    Science.gov (United States)

    You, Myung-Jo

    2014-06-01

    The oocysts of some of the recognized species of chicken coccidiosis are difficult to distinguish morphologically. Diagnostic laboratories are increasingly utilizing DNA-based technologies for the specific identification of Eimeria species. This study reports a multiplex polymerase chain reaction (PCR) assay based on internal transcribed spacer-1 (ITS-1) for the simultaneous diagnosis of the Eimeria tenella, Eimeria acervulina, Eimeria maxima, and Eimeria necatrix species, which infect domestic fowl. Primer pairs specific to each species were designed in order to generate a ladder of amplification products ranging from 20 to 25 bp, and a common optimum annealing temperature for these species was determined to be 52.5 °C. Sensitivity tests were performed for each species, showing a detection threshold of 1-5 pg. All the species were amplified homogeneously, and a homogenous band ladder was observed, indicating that the assay permitted the simultaneous detection of all the species in a single-tube reaction. In the phylogenic study, there was a clear species clustering, which was irrespective of geographical location, for all the ITS-1 sequences used. This multiplex PCR assay represents a rapid and potential cost-effective diagnostic method for the detection of some key Eimeria species that infect domestic fowl. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. The application of amplicon length heterogeneity PCR (LH-PCR) for monitoring the dynamics of soil microbial communities associated with cadaver decomposition.

    Science.gov (United States)

    Moreno, Lilliana I; Mills, DeEtta; Fetscher, Jill; John-Williams, Krista; Meadows-Jantz, Lee; McCord, Bruce

    2011-03-01

    The placement of cadavers in shallow, clandestine graves may alter the microbial and geochemical composition of the underlying and adjacent soils. Using amplicon length heterogeneity-PCR (LH-PCR) the microbial community changes in these soils can be assessed. In this investigation, nine different grave sites were examined over a period of 16weeks. The results indicated that measurable changes occurred in the soil bacterial community during the decomposition process. In this study, amplicons corresponding to anaerobic bacteria, not indigenous to the soil, were shown to produce differences between grave sites and control soils. Among the bacteria linked to these amplicons are those that are most often part of the commensal flora of the intestines, mouth and skin. In addition, over the 16week sampling interval, the level of indicator organisms (i.e., nitrogen fixing bacteria) dropped as the body decomposed and after four weeks of environmental exposure they began to increase again; thus differences in the abundance of nitrogen fixing bacteria were also found to contribute to the variation between controls and grave soils. These results were verified using primers that specifically targeted the nifH gene coding for nitrogenase reductase. LH-PCR provides a fast, robust and reproducible method to measure microbial changes in soil and could be used to determine potential cadaveric contact in a given area. The results obtained with this method could ultimately provide leads to investigators in criminal or missing person scenarios and allow for further analysis using human specific DNA assays to establish the identity of the buried body. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Genotipificación de aislamientos de Bartonella bacilliformis por amplificación de elementos repetitivos mediante el uso de REP-PCR y ERIC-PCR

    Directory of Open Access Journals (Sweden)

    Carlos Padilla R

    2003-07-01

    Full Text Available Objetivos: Genotipificar los aislamientos de Bartonella bacilliformis a través de la amplificación de elementos repetitivos mediante el uso de ERIC-PCR y REP-PCR, y determinar si existe variabilidad genética entre aislamientos de varias zonas endémicas. Materiales y Métodos: Se evaluaron mediante el uso del ERIC-PCR y REP-PCR 17 aislamientos de B. bacilliformis de Lima, Cusco y Ancash. Los aislamientos fueron realizados durante los años 1998 y 1999. Para el análisis de los patrones de bandas se usó el software GelCompar 4,0. Resultados: Fueron identificados en los 17 aislamientos 10 genotipos. Los genotipos D, E y H fueron detectados en Cusco; mientras que los genotipos B, C, G, J e I en Lima; y el genotipo F en Ancash. Conclusiones: Nuestros resultados sugieren que REP-PCR y ERIC-PCR son métodos útiles para genotipificar aislamientos de B. bacilliformis. La variabilidad genética debe ser tomada en cuenta en estudios epidemiológicos y clínicos de Bartonelosis; así como el desarrollo de nuevas técnicas diagnósticas y de vacunas.

  19. Immunomagnetic nanoparticle based quantitative PCR for rapid detection of Salmonella

    International Nuclear Information System (INIS)

    Bakthavathsalam, Padmavathy; Rajendran, Vinoth Kumar; Saran, Uttara; Chatterjee, Suvro; Ali, Baquir Mohammed Jaffar

    2013-01-01

    We have developed a rapid and sensitive method for immunomagnetic separation (IMS) of Salmonella along with their real time detection via PCR. Silica-coated magnetic nanoparticles were functionalized with carboxy groups to which anti-Salmonella antibody raised against heat-inactivated whole cells of Salmonella were covalently attached. The immuno-captured target cells were detected in beverages like milk and lemon juice by multiplex PCR and real time PCR with a detection limit of 10 4 cfu.mL −1 and 10 3 cfu.mL −1 , respectively. We demonstrate that IMS can be used for selective concentration of target bacteria from beverages for subsequent use in PCR detection. PCR also enables differentiation of Salmonella typhi and Salmonella paratyphi A using a set of four specific primers. In addition, IMS—PCR can be used as a screening tool in the food and beverage industry for the detection of Salmonella within 3–4 h which compares favorably to the time of several days that is needed in case of conventional detection based on culture and biochemical methods. (author)

  20. DETECTION AND IDENTIFICATION OF PATHOGENIC CANDIDA SPECIES IN WATER USING FLOW CYTOMETRY COUPLED WITH TAQMAN PCR

    Science.gov (United States)

    As the incidence of human fungal infection increases, the ability to detect and identify pathogenic fungi in potential environmental reservoirs becomes increasingly important for disease control. PCR based assays are widely used for diagnostic purposes, but may be inadequate for...

  1. Detection of avian metapneumovirus subtypes in turkeys using RT-PCR.

    Science.gov (United States)

    Ongor, H; Karahan, M; Kalin, R; Bulut, H; Cetinkaya, B

    2010-03-20

    This study investigated the prevalence of avian metapneumovirus (aMPV) and the detection of molecular subtypes of field strains of the virus using RT-PCR in clinically healthy turkeys and those showing signs of respiratory disease. In the RT-PCR examination of 624 tracheal tissue samples collected from a local turkey abattoir, 2.9 per cent (18/624) of samples tested positive. In the examination of tracheal swab samples collected from flocks with respiratory problems, 18 of 20 samples tested positive. When the results were assessed at flock level, aMPV infection was detected in only one of the 23 clinically healthy turkey flocks, whereas all four flocks with respiratory problems were infected. Molecular typing using primers specific to the attachment glycoprotein (G) gene showed that all 36 positive samples belonged to subtype B. Partial sequence analysis of DNA samples showed 95 per cent homology between the field types and the reference strain aMPV subtype B. Whereas clinically healthy turkeys had been vaccinated with a subtype A virus vaccine, the flocks with respiratory problems had been vaccinated with a subtype B virus vaccine. Despite four blind passages of RT-PCR-positive samples on Vero and chicken embryo fibroblast cells, no cytopathic effect was detected by microscopic examination.

  2. Simultaneous detection of Legionella species and Legionella pneumophila by duplex PCR (dPCR assay in cooling tower water samples from Jakarta, Indonesia

    Directory of Open Access Journals (Sweden)

    Andi Yasmon

    2010-11-01

    Full Text Available Aim: Since culture method is time-consuming and has low  sensitivity, we developed a duplex PCR (dPCR assay for the detection of Legionella sp. and L. pneumophila in cooling tower samples. We used culture method as a gold standard.Methods: Optimization of dPCR method was performed to obtain an assay with high sensitivity and specifi city. The optimized method was used to detect Legionella sp. dan L. pneumophila in 9 samples obtained from 9 buildings in Jakarta. For culture method, the bacteria were grown or isolated on selective growth factor supplemented-buffered charcoal yeast extract (BCYE media.Results: Of 9 samples tested by dPCR assay, 6 were positive for Legionella species,1 was positive for L. pneumophila, and 2 showed negative results. For the same samples, no Legionella sp. was detected by the culture method.Conclusion: dPCR assay was much more sensitive than the culture method and was potentially used as a rapid, specifi c and sensitive test for routine detection of Legionella sp. dan for L. pneumophila in water samples. (Med J Indones 2010; 19:223-7Keywords: BCYE media, mip gene, 16S-rRNA gene

  3. Evaluation of clinical pathology parameters in fecal PCR-positive or PCR-negative goats for Johne's disease.

    Science.gov (United States)

    Bonelli, Francesca; Fratini, F; Turchi, B; Cantile, C; Ebani, V V; Colombani, G; Galiero, A; Sgorbini, M

    2017-10-01

    Johne's disease (JD) is an economically important infectious disease of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). This study evaluated the differences in various hematological and biochemical parameters between healthy goats and goats with JD. Forty goats were chosen randomly from a herd endemic for JD. A complete physical examination was performed. Blood and fresh fecal samples were collected from each goat. A complete blood cell (CBC) count and a protein electrophoresis were performed. Polymerase chain reaction (PCR) on fecal samples was performed in order to divide goats into two groups: group A "positive PCR on feces"; and group B "control (negative)." A Student's t test was performed for each parameter to verify differences between groups A vs B. Twenty goats were included in each group. Clinical signs likely related to JD were found in the history of 4/40 (10%) goats, while 36/40 (90%) goats were reported to be asymptomatic. CBC and electrophoresis values were within reference intervals in both groups. No differences were found for CBC parameters between the two groups. Values for alpha 1, beta, gamma globulins, and total protein (TP) were statistically higher in group A vs those in group B, while those for albumin and albumin/globulin (A/G) ratio were lower. An increase in TP, hypoalbuminemia, and hypergammaglobulinemia has been reported in group A, while no abnormalities were found concerning CBC. JD-positive goats seem to show earlier clinical pathological alternations than clinical signs. Protein electrophoresis may help the diagnosis of JD in asymptomatic goat herds, acting as an economical screening method.

  4. Applicability of integrated cell culture reverse transcriptase quantitative PCR (ICC-RTqPCR) for the simultaneous detection of the four human enteric enterovirus species in disinfection studies

    Science.gov (United States)

    A newly developed integrated cell culture reverse transcriptase quantitative PCR (ICC-RTqPCR) method and its applicability in UV disinfection studies is described. This method utilizes a singular cell culture system coupled with four RTqPCR assays to detect infectious serotypes t...

  5. Real-time PCR-based method for the rapid detection of extended RAS mutations using bridged nucleic acids in colorectal cancer.

    Science.gov (United States)

    Iida, Takao; Mizuno, Yukie; Kaizaki, Yasuharu

    2017-10-27

    Mutations in RAS and BRAF are predictors of the efficacy of anti-epidermal growth factor receptor (EGFR) therapy in patients with metastatic colorectal cancer (mCRC). Therefore, simple, rapid, cost-effective methods to detect these mutations in the clinical setting are greatly needed. In the present study, we evaluated BNA Real-time PCR Mutation Detection Kit Extended RAS (BNA Real-time PCR), a real-time PCR method that uses bridged nucleic acid clamping technology to rapidly detect mutations in RAS exons 2-4 and BRAF exon 15. Genomic DNA was extracted from 54 formalin-fixed paraffin-embedded (FFPE) tissue samples obtained from mCRC patients. Among the 54 FFPE samples, BNA Real-time PCR detected 21 RAS mutations (38.9%) and 5 BRAF mutations (9.3%), and the reference assay (KRAS Mutation Detection Kit and MEBGEN™ RASKET KIT) detected 22 RAS mutations (40.7%). The concordance rate of detected RAS mutations between the BNA Real-time PCR assay and the reference assays was 98.2% (53/54). The BNA Real-time PCR assay proved to be a more simple, rapid, and cost-effective method for detecting KRAS and RAS mutations compared with existing assays. These findings suggest that BNA Real-time PCR is a valuable tool for predicting the efficacy of early anti-EGFR therapy in mCRC patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. An optimized one-tube, semi-nested PCR assay for Paracoccidioides brasiliensis detection

    Directory of Open Access Journals (Sweden)

    Amanda de Faveri Pitz

    2013-12-01

    Full Text Available Introduction Herein, we report a one-tube, semi-nested-polymerase chain reaction (OTsn-PCR assay for the detection of Paracoccidioides brasiliensis. Methods We developed the OTsn-PCR assay for the detection of P. brasiliensis in clinical specimens and compared it with other PCR methods. Results The OTsn-PCR assay was positive for all clinical samples, and the detection limit was better or equivalent to the other nested or semi-nested PCR methods for P. brasiliensis detection. Conclusions The OTsn-PCR assay described in this paper has a detection limit similar to other reactions for the molecular detection of P. brasiliensis, but this approach is faster and less prone to contamination than other conventional nested or semi-nested PCR assays.

  7. Development and applicability of a ready-to-use PCR system for GMO screening.

    Science.gov (United States)

    Rosa, Sabrina F; Gatto, Francesco; Angers-Loustau, Alexandre; Petrillo, Mauro; Kreysa, Joachim; Querci, Maddalena

    2016-06-15

    With the growing number of GMOs introduced to the market, testing laboratories have seen their workload increase significantly. Ready-to-use multi-target PCR-based detection systems, such as pre-spotted plates (PSP), reduce analysis time while increasing capacity. This paper describes the development and applicability to GMO testing of a screening strategy involving a PSP and its associated web-based Decision Support System. The screening PSP was developed to detect all GMOs authorized in the EU in one single PCR experiment, through the combination of 16 validated assays. The screening strategy was successfully challenged in a wide inter-laboratory study on real-life food/feed samples. The positive outcome of this study could result in the adoption of a PSP screening strategy across the EU; a step that would increase harmonization and quality of GMO testing in the EU. Furthermore, this system could represent a model for other official control areas where high-throughput DNA-based detection systems are needed. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen.

    Science.gov (United States)

    Denman, Stuart E; McSweeney, Christopher S

    2006-12-01

    Traditional methods for enumerating and identifying microbial populations within the rumen can be time consuming and cumbersome. Methods that involve culturing and microscopy can also be inconclusive, particularly when studying anaerobic rumen fungi. A real-time PCR SYBR Green assay, using PCR primers to target total rumen fungi and the cellulolytic bacteria Ruminococcus flavefaciens and Fibrobacter succinogenes, is described, including design and validation. The DNA and crude protein contents with respect to the fungal biomass of both polycentric and monocentric fungal isolates were investigated across the fungal growth stages to aid in standard curve generation. The primer sets used were found to be target specific with no detectable cross-reactivity. Subsequently, the real-time PCR assay was employed in a study to detect these populations within cattle rumen. The anaerobic fungal target was observed to increase 3.6-fold from 0 to 12 h after feeding. The results also indicated a 5.4-fold increase in F. succinogenes target between 0 and 12 h after feeding, whereas R. flavefaciens was observed to maintain more or less consistent levels. This is the first report of a real-time PCR assay to estimate the rumen anaerobic fungal population.

  9. Multiplexed Single Intact Cell Droplet Digital PCR (MuSIC ddPCR) Method for Specific Detection of Enterohemorrhagic E. coli (EHEC) in Food Enrichment Cultures

    OpenAIRE

    McMahon, Tanis C.; Blais, Burton W.; Wong, Alex; Carrillo, Catherine D.

    2017-01-01

    Foodborne illness attributed to enterohemorrhagic E. coli (EHEC), a highly pathogenic subset of Shiga toxin-producing E. coli (STEC), is increasingly recognized as a significant public health issue. Current microbiological methods for identification of EHEC in foods often use PCR-based approaches to screen enrichment broth cultures for characteristic gene markers [i.e., Shiga toxin (stx) and intimin (eae)]. However, false positives arise when complex food matrices, such as beef, contain mixtu...

  10. PCR IN TRAUMATOLOGY AND ORTHOPAEDICS: METHOD DESCRIPTION AND APPLICABILITY

    Directory of Open Access Journals (Sweden)

    E. M. Polyakova

    2014-01-01

    Full Text Available Review brief presents description of polymerase chain reaction method (PCR and its most common variants. Three PCR-based lines of research, carried out in the traumatology and orthopaedics, include identifying a causative agents of the implant-associated infection after orthopaedic surgery; detection of antibiotic resistance genes and biofilm forming genes. It was shown that PCR can be used as additional method for detection of genetic disorders, significant for traumatology and orthopaedics, and for investigation of cartilage and bone regeneration.

  11. Clinical Assessment of a Nocardia PCR-Based Assay for Diagnosis of Nocardiosis.

    Science.gov (United States)

    Rouzaud, Claire; Rodriguez-Nava, Véronica; Catherinot, Emilie; Méchaï, Frédéric; Bergeron, Emmanuelle; Farfour, Eric; Scemla, Anne; Poirée, Sylvain; Delavaud, Christophe; Mathieu, Daniel; Durupt, Stéphane; Larosa, Fabrice; Lengelé, Jean-Philippe; Christophe, Jean-Louis; Suarez, Felipe; Lortholary, Olivier; Lebeaux, David

    2018-06-01

    The diagnosis of nocardiosis, a severe opportunistic infection, is challenging. We assessed the specificity and sensitivity of a 16S rRNA Nocardia PCR-based assay performed on clinical samples. In this multicenter study (January 2014 to April 2015), patients who were admitted to three hospitals and had an underlying condition favoring nocardiosis, clinical and radiological signs consistent with nocardiosis, and a Nocardia PCR assay result for a clinical sample were included. Patients were classified as negative control (NC) (negative Nocardia culture results and proven alternative diagnosis or improvement at 6 months without anti- Nocardia treatment), positive control (PC) (positive Nocardia culture results), or probable nocardiosis (positive Nocardia PCR results, negative Nocardia culture results, and no alternative diagnosis). Sixty-eight patients were included; 47 were classified as NC, 8 as PC, and 13 as probable nocardiosis. PCR results were negative for 35/47 NC patients (74%). For the 12 NC patients with positive PCR results, the PCR assay had been performed with respiratory samples. These NC patients had chronic bronchopulmonary disease more frequently than did the NC patients with negative PCR results (8/12 patients [67%] versus 11/35 patients [31%]; P = 0.044). PCR results were positive for 7/8 PC patients (88%). There were 13 cases of probable nocardiosis, diagnosed solely using the PCR results; 9 of those patients (69%) had lung involvement (consolidation or nodule). Nocardia PCR testing had a specificity of 74% and a sensitivity of 88% for the diagnosis of nocardiosis. Nocardia PCR testing may be helpful for the diagnosis of nocardiosis in immunocompromised patients but interpretation of PCR results from respiratory samples is difficult, because the PCR assay may also detect colonization. Copyright © 2018 American Society for Microbiology.

  12. Research to Improve the Efficiency of Double Stereo PCR Microfluidic Chip by Passivating the Inner Surface of Steel Capillary with NOA61.

    Science.gov (United States)

    Wu, Jian; Guo, Wei; Wang, Chunyan; Yu, Kuanxin; Ma, Ying; Chen, Tao; Li, Yinghui

    2015-06-01

    In this paper, we report the improvement of PCR microfluidic chip efficiency achieved by coating the inner surface of steel capillary microchannel with a 22-µm film of the ultraviolet-solidified NOA61 using a device invented by us. Our results indicate that with this treatment, the roughness of the inside wall of steel capillary was improved from Ra = 0.921 to Ra = 0.254. The contact angle was decreased from about 95° to 56°, and the surface hydrophobicity was also increased. The flow pressure for performing the real-time PCR in the microfluidic chip with modified surface was reduced by twofold (2.11/1) and that resulted in a substantially increased efficiency of PCR. A modification of the microchannel interior surface improved the quality of the on-chip integrated PCR procedure.

  13. RT-PCR Detection of HIV in Republic of Macedonia

    Directory of Open Access Journals (Sweden)

    Golubinka Bosevska

    2008-11-01

    Full Text Available The aim of the study was to detect HIV RNA in seropositive patients using RT-PCR method and thus, to establish PCR methodology in the routine laboratory works.The total of 33 examined persons were divided in two groups: 1 13 persons seropositive for HIV; and 2 20 healthy persons - randomly selected blood donors that made the case control group. The subjects age was between 25 and 52 years (average 38,5.ELFA test for combined detection of HIV p24 antigen and anti HIV-1 + 2 IgG and ELISA test for detection of antibodies against HIV-1 and HIV-2, were performed for each examined person. RNA from the whole blood was extracted using a commercial kit based on salt precipitation. Detection of HIV RNA was performed using RT-PCR kit. Following nested PCR, the product was separated by electrophoresis in 1,5 % agarose gel. The result was scored positive if the band of 210bp was visible regardless of intensity Measures of precaution were taken during all the steps of the work and HIV infected materials were disposed of accordingly.In the group of blood donors ELFA, ELISA and RT-PCR were negative. Assuming that prevalence of HIV infection is zero, the clinical specificity of RT-PCR is 100 %. The analytical specificity of RT-PCR method was tested against Hepatitis C and B, Human Papiloma Virus, Cytomegalovirus, Herpes Simplex Virus, Rubella Virus, Mycobacterium tuberculosis, Chlamydia trachomatis. None of these templates yielded amplicon. In the group of 13 seropositive persons, 33 samples were analyzed. HIV RNA was detected in 15 samples. ELISA and ELFA test were positive in all samples. Different aliquots of the samples were tested independently and showed the same results. After different periods of storing the RNA samples at -70°C, RT-PCR reaction was identical to the one performed initially. The obtained amplicons were maintained frozen at -20°C for a week and the subsequently performed electrophoresis was identical to the previous one. The reaction is

  14. Effects of increased biofuel utilization

    International Nuclear Information System (INIS)

    Bahr, J.; Blad, B.; Hillring, B.

    1996-01-01

    This report is a compilation of present knowledge regarding the effects of an increased use of biomass fuels. Main areas treated are: Availability of raw materials; Effects on forestry and agriculture; Transportation; Areas of use; Cost and price formation; Emission to the atmosphere, and effect on the climate; and Effect on employment and regional aspects. 29 tabs

  15. Dietary whole-grain wheat increases intestinal levels of bifidobacteria in humans and bifidobacterial abundance is negatively correlated with the effect of fecal water on trans-epithelial resistance in vitro

    DEFF Research Database (Denmark)

    Christensen, Ellen Gerd; Licht, Tine Rask; Kristensen, M.

    Consumption of whole grain products are considered to have beneficial effects on human health including decreased risk of cardiovascular disease. However, effects on gut microbial composition have only been studied limitedly. We used quantitative PCR to determine changes in the gut bacterial...... composition in post-menopausal women following a 12-week energy restricted intervention with whole-grain wheat (WW, n=37) or refined wheat (RW, n=33). The WW intervention significantly increased the relative abundance of Bifidobacterium. Caco-2 cells were exposed to fecal water to determine effects...... of the bacterial community metabolites on the trans-epithelial resistance (TER). Fecal water increased TER independent of diet, indicating that commensal bacteria provide metabolites facilitating an increase in intestinal integrity. TER was unexpectedly found to be negatively correlated to the relative abundance...

  16. [A Duplex PCR Method for Detection of Babesia caballi and Theileria equi].

    Science.gov (United States)

    Zhang, Yang; Zhang, Yu-ting; Wang, Zhen-bao; Bolati; Li, Hai; Bayinchahan

    2015-04-01

    To develop a duplex PCR assay for detection of Babesia caballi and Theileria equi. Two pairs of primers were designed according to the BC48 gene of B. caballi and 18 s rRNA gene of T. equi, and a duplex PCR assay was developed by the optimization of reaction conditions. The specificity, sensitivity and reliability of the method were tested. The horse blood samples of suspected cases were collected from Yili region, and detected by the duplex PCR, microspopy, conventional PCR, and fluorescence quantitative PCR, and the results were compared. Using the duplex PCR assay, the specific fragments of 155 bp and 280 bp were amplified from DNA samples of B. caballi and T. equi, respectively. No specific fragment was amplified from DNA samples of B. bigemina, Theilerdia annulata, Theilerdia sergenti, Toxoplasma gondii, Neospora caninum, and Trypanosoma evansi. The limit of detection was 4.85 x 10(5) copies/L for B. caballi DNA and 4.85 x 10(4) copies/µl for T. equi DNA, respectively. Among the 24 blood samples, 11 were found B. caballi-positive by the duplex PCR assay, and 18 were T. equi-positive. The coincidence rate of microscopy, conventional PCR, and fluorescence quantitative PCR with duplex PCR was 91.7% (22/24), 95.8% (23/24), and 95.8% (23/24), respectively. A duplex PCR assay for simultaneous detection of B. caballi and T. equi is established.

  17. Embryonation of Ostertagia ostertagi eggs affects the outcome of real-time quantitative PCR

    DEFF Research Database (Denmark)

    Drag, Markus; Höglund, Johan; Nejsum, Peter

    prior to detection and quantification by real-time quantitative polymerase chain reaction (qPCR). Fresh O. ostertagi eggs were isolated from cattle faeces and stored at 4°C or 25°C under aerobic or anaerobic conditions. Embryonation was monitored by microscopy and the ITS2 copies were determined by q...... the outcome of qPCR analysis for the quantitative determination of O. ostertagi eggs in cattle faeces. Cold storage at 4°C for up to 3 days or anaerobicvacuum packing at 25°C for up to 336 h will entail no undesirable effects on ITS2 copies....

  18. Embryonation of Ostertagia ostertagi eggs affects the outcome of real-time quantitative PCR

    DEFF Research Database (Denmark)

    Drag, Markus; Höglund, Johan; Nejsum, Peter

    prior to detection and quantification by real-time quantitative polymerase chain reaction (qPCR) . Fresh O. ostertagi eggs were isolated from cattle faeces and stored at 4°C or 25°C under aerobic or anaerobic conditions. Embryonation was monitored by microscopy and the ITS2 copies were determined by q...... the outcome of qPCR analysis for the quantitative determination of O. ostertagi eggs in cattle faeces. Cold storage at 4°C for up to 3 days or anaerobic vacuum packing at 25°C for up to 336 h will entail no undesirable effects on ITS2 copies....

  19. Clinical and epidemiological use of nested PCR targeting the repetitive element IS1111 associated with the transposase gene from Coxiella burnetii.

    Science.gov (United States)

    Mares-Guia, Maria Angélica M M; Guterres, Alexandro; Rozental, Tatiana; Ferreira, Michelle Dos Santos; Lemos, Elba R S

    Q fever is a worldwide zoonosis caused by Coxiella burnetii-a small obligate intracellular Gram-negative bacterium found in a variety of animals. It is transmitted to humans by inhalation of contaminated aerosols from urine, feces, milk, amniotic fluid, placenta, abortion products, wool, and rarely by ingestion of raw milk from infected animals. Nested PCR can improve the sensitivity and specificity of testing while offering a suitable amplicon size for sequencing. Serial dilutions were performed tenfold to test the limit of detection, and the result was 10× detection of C. burnetti DNA with internal nested PCR primers relative to trans-PCR. Different biological samples were tested and identified only in nested PCR. This demonstrates the efficiency and effectiveness of the primers. Of the 19 samples, which amplify the partial sequence of C. burnetii, 12 were positive by conventional PCR and nested PCR. Seven samples-five spleen tissue samples from rodents and two tick samples-were only positive in nested PCR. With these new internal primers for trans-PCR, we demonstrate that our nested PCR assay for C. burnetii can achieve better results than conventional PCR. Published by Elsevier Editora Ltda.

  20. Genome-Wide Identification and Evaluation of Reference Genes for Quantitative RT-PCR Analysis during Tomato Fruit Development.

    Science.gov (United States)

    Cheng, Yuan; Bian, Wuying; Pang, Xin; Yu, Jiahong; Ahammed, Golam J; Zhou, Guozhi; Wang, Rongqing; Ruan, Meiying; Li, Zhimiao; Ye, Qingjing; Yao, Zhuping; Yang, Yuejian; Wan, Hongjian

    2017-01-01

    Gene expression analysis in tomato fruit has drawn increasing attention nowadays. Quantitative real-time PCR (qPCR) is a routine technique for gene expression analysis. In qPCR operation, reliability of results largely depends on the choice of appropriate reference genes (RGs). Although tomato is a model for fruit biology study, few RGs for qPCR analysis in tomato fruit had yet been developed. In this study, we initially identified 38 most stably expressed genes based on tomato transcriptome data set, and their expression stabilities were further determined in a set of tomato fruit samples of four different fruit developmental stages (Immature, mature green, breaker, mature red) using qPCR analysis. Two statistical algorithms, geNorm and Normfinder, concordantly determined the superiority of these identified putative RGs. Notably, SlFRG05 (Solyc01g104170), SlFRG12 (Solyc04g009770), SlFRG16 (Solyc10g081190), SlFRG27 (Solyc06g007510), and SlFRG37 (Solyc11g005330) were proved to be suitable RGs for tomato fruit development study. Further analysis using geNorm indicate that the combined use of SlFRG03 (Solyc02g063070) and SlFRG27 would provide more reliable normalization results in qPCR experiments. The identified RGs in this study will be beneficial for future qPCR analysis of tomato fruit developmental study, as well as for the potential identification of optimal normalization controls in other plant species.

  1. Genome-Wide Identification and Evaluation of Reference Genes for Quantitative RT-PCR Analysis during Tomato Fruit Development

    Directory of Open Access Journals (Sweden)

    Yuan Cheng

    2017-08-01

    Full Text Available Gene expression analysis in tomato fruit has drawn increasing attention nowadays. Quantitative real-time PCR (qPCR is a routine technique for gene expression analysis. In qPCR operation, reliability of results largely depends on the choice of appropriate reference genes (RGs. Although tomato is a model for fruit biology study, few RGs for qPCR analysis in tomato fruit had yet been developed. In this study, we initially identified 38 most stably expressed genes based on tomato transcriptome data set, and their expression stabilities were further determined in a set of tomato fruit samples of four different fruit developmental stages (Immature, mature green, breaker, mature red using qPCR analysis. Two statistical algorithms, geNorm and Normfinder, concordantly determined the superiority of these identified putative RGs. Notably, SlFRG05 (Solyc01g104170, SlFRG12 (Solyc04g009770, SlFRG16 (Solyc10g081190, SlFRG27 (Solyc06g007510, and SlFRG37 (Solyc11g005330 were proved to be suitable RGs for tomato fruit development study. Further analysis using geNorm indicate that the combined use of SlFRG03 (Solyc02g063070 and SlFRG27 would provide more reliable normalization results in qPCR experiments. The identified RGs in this study will be beneficial for future qPCR analysis of tomato fruit developmental study, as well as for the potential identification of optimal normalization controls in other plant species.

  2. Cross-platform comparison of SYBR® Green real-time PCR with TaqMan PCR, microarrays and other gene expression measurement technologies evaluated in the MicroArray Quality Control (MAQC study

    Directory of Open Access Journals (Sweden)

    Dial Stacey L

    2008-07-01

    Full Text Available Abstract Background The MicroArray Quality Control (MAQC project evaluated the inter- and intra-platform reproducibility of seven microarray platforms and three quantitative gene expression assays in profiling the expression of two commercially available Reference RNA samples (Nat Biotechnol 24:1115-22, 2006. The tested microarrays were the platforms from Affymetrix, Agilent Technologies, Applied Biosystems, GE Healthcare, Illumina, Eppendorf and the National Cancer Institute, and quantitative gene expression assays included TaqMan® Gene Expression PCR Assay, Standardized (Sta RT-PCR™ and QuantiGene®. The data showed great consistency in gene expression measurements across different microarray platforms, different technologies and test sites. However, SYBR® Green real-time PCR, another common technique utilized by half of all real-time PCR users for gene expression measurement, was not addressed in the MAQC study. In the present study, we compared the performance of SYBR Green PCR with TaqMan PCR, microarrays and other quantitative technologies using the same two Reference RNA samples as the MAQC project. We assessed SYBR Green real-time PCR using commercially available RT2 Profiler™ PCR Arrays from SuperArray, containing primer pairs that have been experimentally validated to ensure gene-specificity and high amplification efficiency. Results The SYBR Green PCR Arrays exhibit good reproducibility among different users, PCR instruments and test sites. In addition, the SYBR Green PCR Arrays have the highest concordance with TaqMan PCR, and a high level of concordance with other quantitative methods and microarrays that were evaluated in this study in terms of fold-change correlation and overlap of lists of differentially expressed genes. Conclusion These data demonstrate that SYBR Green real-time PCR delivers highly comparable results in gene expression measurement with TaqMan PCR and other high-density microarrays.

  3. An immunomagnetic separation-real-time PCR system for the detection of Alicyclobacillus acidoterrestris in fruit products.

    Science.gov (United States)

    Wang, Zhouli; Cai, Rui; Yuan, Yahong; Niu, Chen; Hu, Zhongqiu; Yue, Tianli

    2014-04-03

    Alicyclobacillus acidoterrestris is the most important spoilage species within the Alicyclobacillus genus and has become a major issue in the pasteurized fruit juice industry. The aim of this study was to develop a method combining immunomagnetic separation (IMS) with real-time PCR system (IMS-PCR) for rapid and specific detection of A. acidoterrestris in fruit products. A real-time PCR with the TaqMan system was designed to target the 16S rDNA genes with specific primer and probe set. The specificity of the assay was confirmed using 9 A. acidoterrestris strains and 21 non-A. acidoterrestris strains. The results indicated that no combination of the designed primers and probe was found in any Alicyclobacillus genus except A. acidoterrestris. The detection limit of the established IMS-PCR was less than 10CFU/mL and the testing process was accomplished in 2-3h. For the three types of samples (sterile water, apple juice and kiwi juice), the correlation coefficient of standard curves was greater than 0.991, and the calculated PCR efficiencies were from 108% to 109%. As compared with the standard culture method performed concurrently on the same set of samples, the sensitivity, specificity and accuracy of IMS-PCR for 196 naturally contaminated fruit products were 90.0%, 98.3% and 97.5%, respectively. The results exhibited that the proposed IMS-PCR method was effective for the rapid detection of A. acidoterrestris in fruit products. Copyright © 2014. Published by Elsevier B.V.

  4. A quantitative TaqMan PCR assay for the detection of Ureaplasma diversum.

    Science.gov (United States)

    Marques, Lucas M; Amorim, Aline T; Martins, Hellen Braga; Rezende, Izadora Souza; Barbosa, Maysa Santos; Lobão, Tassia Neves; Campos, Guilherme B; Timenetsky, Jorge

    2013-12-27

    Ureaplasma diversum in veterinary studies is an undesirable microbe, which may cause infection in bulls and may result in seminal vesiculitis, balanopostitis, and alterations in spermatozoids, whereas in cows, it may cause placentitis, fetal alveolitis, abortion, and birth of weak calves. U. diversum is released through organic secretions, especially semen, preputial and vaginal mucus, conjunctival secretion, and milk. The aim of the present study was to develop a TaqMan probe, highly sensitive and specific quantitative PCR (qPCR) assay for the detection and quantification of U. diversum from genital swabs of bovines. Primers and probes specific to U. diversum 16S rRNA gene were designed. The specificity, detection limit, intra- and inter-assay variability of qPCR to detect this ureaplasma was compared with the results of the conventional PCR assay (cPCR). Swabs of vaginal mucus from 169 cows were tested. The qPCR assay detected as few as 10 copies of U. diversum and was 100-fold more sensitive than the cPCR. No cross-reactivity with other Mollicutes or eubacteria was observed. U. diversum was detected in 79 swabs (46.42%) by qPCR, while using cPCR it was detected in 42 (25%) samples. The difference in cPCR and qPCR ureaplasma detection between healthy and sick animals was not statistically significant. But the U. diversum load in samples from animals with genital disorders was higher than in healthy animals. The qPCR assay developed herein is highly sensitive and specific for the detection and quantification of U. diversum in vaginal bovine samples. Copyright © 2013. Published by Elsevier B.V.

  5. Real-time PCR to supplement gold-standard culture-based detection of Legionella in environmental samples.

    Science.gov (United States)

    Collins, S; Jorgensen, F; Willis, C; Walker, J

    2015-10-01

    Culture remains the gold-standard for the enumeration of environmental Legionella. However, it has several drawbacks including long incubation and poor sensitivity, causing delays in response times to outbreaks of Legionnaires' disease. This study aimed to validate real-time PCR assays to quantify Legionella species (ssrA gene), Legionella pneumophila (mip gene) and Leg. pneumophila serogroup-1 (wzm gene) to support culture-based detection in a frontline public health laboratory. Each qPCR assay had 100% specificity, excellent sensitivity (5 GU/reaction) and reproducibility. Comparison of the assays to culture-based enumeration of Legionella from 200 environmental samples showed that they had a negative predictive value of 100%. Thirty eight samples were positive for Legionella species by culture and qPCR. One hundred samples were negative by both methods, whereas 62 samples were negative by culture but positive by qPCR. The average log10 increase between culture and qPCR for Legionella spp. and Leg. pneumophila was 0·72 (P = 0·0002) and 0·51 (P = 0·006), respectively. The qPCR assays can be conducted on the same 1 l water sample as culture thus can be used as a supplementary technique to screen out negative samples and allow more rapid indication of positive samples. The assay could prove informative in public health investigations to identify or rule out sources of Legionella as well as to specifically identify Leg. pneumophila serogroup 1 in a timely manner not possible with culture. © 2015 The Society for Applied Microbiology.

  6. One-Step PCR Sequencing. Final Technical Progress Report for February 15, 1997 - November 30, 2001

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, B. R.

    2004-04-16

    We investigated new chemistries and alternate approaches for direct gene sequencing and detection based on the properties of boron-substituted nucleotides as chain delimiters in lieu of conventional chain terminators. Chain terminators, such as the widely used Sanger dideoxynucleotide truncators, stop DNA synthesis during replication and hence are incompatible with further PCR amplification. Chain delimiters, on the other hand, are chemically-modified, ''stealth'' nucleotides that act like normal nucleotides in DNA synthesis and PCR amplification, but can be unmasked following chain extension and exponential amplification. Specifically, chain delimiters give rise to an alternative sequencing strategy based on selective degradation of DNA chains generated by PCR amplification with modified nucleotides. The method as originally devised employed template-directed enzymatic, random incorporation of small amounts of boron-modified nucleotides (e.g., 2'-deoxynucleoside 5'-alpha-[P-borano]- triphosphates) during PCR amplification. Rather than incorporation of dideoxy chain terminators, which are less efficiently incorporated in PCR-based amplification than natural deoxynucleotides, our method is based on selective incorporation and exonuclease degradation of DNA chains generated by efficient PCR amplification of chemically-modified ''stealth'' nucleotides. The stealth nucleotides have a boranophosphate group instead of a normal phosphate, yet behave like normal nucleotides during PCR-amplification. The unique feature of our method is that the position of the stealth nucleotide, and hence DNA sequencing fragments, are revealed at the desired, appropriate moment following PCR amplification. During the current grant period, a variety of new boron-modified nucleotides were synthesized, and new chemistries and enzymatic methods and combinations thereof were explored to improve the method and study the effects of borane modified

  7. Directed PCR-free engineering of highly repetitive DNA sequences

    Directory of Open Access Journals (Sweden)

    Preissler Steffen

    2011-09-01

    Full Text Available Abstract Background Highly repetitive nucleotide sequences are commonly found in nature e.g. in telomeres, microsatellite DNA, polyadenine (poly(A tails of eukaryotic messenger RNA as well as in several inherited human disorders linked to trinucleotide repeat expansions in the genome. Therefore, studying repetitive sequences is of biological, biotechnological and medical relevance. However, cloning of such repetitive DNA sequences is challenging because specific PCR-based amplification is hampered by the lack of unique primer binding sites resulting in unspecific products. Results For the PCR-free generation of repetitive DNA sequences we used antiparallel oligonucleotides flanked by restriction sites of Type IIS endonucleases. The arrangement of recognition sites allowed for stepwise and seamless elongation of repetitive sequences. This facilitated the assembly of repetitive DNA segments and open reading frames encoding polypeptides with periodic amino acid sequences of any desired length. By this strategy we cloned a series of polyglutamine encoding sequences as well as highly repetitive polyadenine tracts. Such repetitive sequences can be used for diverse biotechnological applications. As an example, the polyglutamine sequences were expressed as His6-SUMO fusion proteins in Escherichia coli cells to study their aggregation behavior in vitro. The His6-SUMO moiety enabled affinity purification of the polyglutamine proteins, increased their solubility, and allowed controlled induction of the aggregation process. We successfully purified the fusions proteins and provide an example for their applicability in filter retardation assays. Conclusion Our seamless cloning strategy is PCR-free and allows the directed and efficient generation of highly repetitive DNA sequences of defined lengths by simple standard cloning procedures.

  8. Enrichment of methylated molecules using enhanced-ice-co-amplification at lower denaturation temperature-PCR (E-ice-COLD-PCR) for the sensitive detection of disease-related hypermethylation.

    Science.gov (United States)

    Mauger, Florence; Kernaleguen, Magali; Lallemand, Céline; Kristensen, Vessela N; Deleuze, Jean-François; Tost, Jörg

    2018-05-01

    The detection of specific DNA methylation patterns bears great promise as biomarker for personalized management of cancer patients. Co-amplification at lower denaturation temperature-PCR (COLD-PCR) assays are sensitive methods, but have previously only been able to analyze loss of DNA methylation. Enhanced (E)-ice-COLD-PCR reactions starting from 2 ng of bisulfite-converted DNA were developed to analyze methylation patterns in two promoters with locked nucleic acid (LNA) probes blocking amplification of unmethylated CpGs. The enrichment of methylated molecules was compared to quantitative (q)PCR and quantified using serial dilutions. E-ice-COLD-PCR allowed the multiplexed enrichment and quantification of methylated DNA. Assays were validated in primary breast cancer specimens and circulating cell-free DNA from cancer patients. E-ice-COLD-PCR could prove a useful tool in the context of DNA methylation analysis for personalized medicine.

  9. A ready-to-use duplex qPCR to detect Leishmania infantum DNA in naturally infected dogs.

    Science.gov (United States)

    Rampazzo, Rita de Cássia Pontello; Solcà, Manuela da Silva; Santos, Liliane Celestino Sales; Pereira, Lais de Novaes; Guedes, José Carlos Oliveira; Veras, Patrícia Sampaio Tavares; Fraga, Deborah Bittencourt Mothé; Krieger, Marco Aurélio; Costa, Alexandre Dias Tavares

    2017-11-15

    has many advantages. By joining two qPCR protocols into one, more results can be obtained in the same amount of time with reduced costs and embedded quality control. Reagents are preloaded and stored on the plate, reducing the operator's hands-on time to set up a reaction, as well as decreasing manipulation steps, which reduces the risk of mistakes or contamination. Thus, the ready-to-use duplex format turns qPCR into a robust, easy-to-use tool, which could help increase the availability of qPCR for CVL diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Development and evaluation of a nested-PCR assay for Senecavirus A diagnosis.

    Science.gov (United States)

    Feronato, Cesar; Leme, Raquel A; Diniz, Jaqueline A; Agnol, Alais Maria Dall; Alfieri, Alice F; Alfieri, Amauri A

    2018-02-01

    Senecavirus A (SVA) has been associated with vesicular disease in weaned and adult pigs and with high mortality of newborn piglets. This study aimed to establish a nested-PCR assay for the routine diagnosis of SVA infection. Tissue samples (n = 177) were collected from 37 piglets of 18 pig farms located in four different Brazilian states. For the nested-PCR, a primer set was defined to amplify an internal VP1 fragment of 316 bp of SVA genome. Of the 37 piglets, 15 (40.5%) and 23 (62.2%) were positive for the SVA in the RT-PCR and nested-PCR assays, respectively. The SVA RNA was detected in 61/177 (34.5%) samples with the RT-PCR, while the nested-PCR assay showed 84/177 (47.5%) samples with the virus (p PCR and nested-PCR assays, respectively. Nucleotide sequencing analysis revealed similarities of 98.7-100% among SVA Brazilian strains and of 86.6-98% with SVA strains from other countries. The nested-PCR assay in this study was suitable to recover the SVA RNA in biological specimens, piglets, and/or herds that were considered as negative in the RT-PCR assay, and is proposed for the routine investigation of the SVA infection in piglets, especially when other techniques are not available or when a great number of samples has to be examined.

  11. [Application of rapid PCR to authenticate medicinal snakes].

    Science.gov (United States)

    Chen, Kang; Jiang, Chao; Yuan, Yuan; Huang, Lu-Qi; Li, Man

    2014-10-01

    To obtained an accurate, rapid and efficient method for authenticate medicinal snakes listed in Chinese Pharmacopoeia (Zaocysd humnades, Bungarus multicinctus, Agkistrodon acutus), a rapid PCR method for authenticate snakes and its adulterants was established based on the classic molecular authentication methods. DNA was extracted by alkaline lysis and the specific primers were amplified by two-steps PCR amplification method. The denatured and annealing temperature and cycle numbers were optimized. When 100 x SYBR Green I was added in the PCR product, strong green fluorescence was visualized under 365 nm UV whereas adulterants without. The whole process can complete in 30-45 minutes. The established method provides the technical support for authentication of the snakes on field.

  12. PCR detection of Bartonella spp. in the dog

    Directory of Open Access Journals (Sweden)

    Jarmila Konvalinová

    2014-01-01

    Full Text Available Our study aimed at using PCR to identify the incidence of Bartonella spp. in blood of dogs. Altogether 286 dogs of 92 breeds aged 3 month to 17 years were tested from October 2008 to December 2009. Healthy dogs as well as dogs with various clinical symptoms of disease were included in the group. Samples were tested by polymerase chain reaction (PCR specific for the presence of Bartonella spp. Following the DNA examination in 286 dogs by PCR and subsequent sequencing, two samples were identified as Bartonella henselae (0.7%. Other species of Bartonella were not found. It was the first time in the Czech Republic when incidence of Bartonella spp. was determined in dogs.

  13. Reduction of heteroduplex formation in PCR amplification

    Czech Academy of Sciences Publication Activity Database

    Michu, Elleni; Mráčková, Martina; Vyskot, Boris; Žlůvová, Jitka

    2010-01-01

    Roč. 54, č. 1 (2010), s. 173-176 ISSN 0006-3134 R&D Projects: GA AV ČR(CZ) KJB600040801; GA ČR(CZ) GD204/09/H002; GA AV ČR(CZ) IAA600040801; GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : polymerase chain reaction * reconditioning PCR * mixed-template PCR Subject RIV: BO - Biophysics Impact factor: 1.582, year: 2010

  14. Automated degenerate PCR primer design for high-throughput sequencing improves efficiency of viral sequencing

    Directory of Open Access Journals (Sweden)

    Li Kelvin

    2012-11-01

    Full Text Available Abstract Background In a high-throughput environment, to PCR amplify and sequence a large set of viral isolates from populations that are potentially heterogeneous and continuously evolving, the use of degenerate PCR primers is an important strategy. Degenerate primers allow for the PCR amplification of a wider range of viral isolates with only one set of pre-mixed primers, thus increasing amplification success rates and minimizing the necessity for genome finishing activities. To successfully select a large set of degenerate PCR primers necessary to tile across an entire viral genome and maximize their success, this process is best performed computationally. Results We have developed a fully automated degenerate PCR primer design system that plays a key role in the J. Craig Venter Institute’s (JCVI high-throughput viral sequencing pipeline. A consensus viral genome, or a set of consensus segment sequences in the case of a segmented virus, is specified using IUPAC ambiguity codes in the consensus template sequence to represent the allelic diversity of the target population. PCR primer pairs are then selected computationally to produce a minimal amplicon set capable of tiling across the full length of the specified target region. As part of the tiling process, primer pairs are computationally screened to meet the criteria for successful PCR with one of two described amplification protocols. The actual sequencing success rates for designed primers for measles virus, mumps virus, human parainfluenza virus 1 and 3, human respiratory syncytial virus A and B and human metapneumovirus are described, where >90% of designed primer pairs were able to consistently successfully amplify >75% of the isolates. Conclusions Augmenting our previously developed and published JCVI Primer Design Pipeline, we achieved similarly high sequencing success rates with only minor software modifications. The recommended methodology for the construction of the consensus

  15. The potential of three different PCR-related approaches for the authentication of mixtures of herbal substances and finished herbal medicinal products.

    Science.gov (United States)

    Doganay-Knapp, Kirsten; Orland, Annika; König, Gabriele M; Knöss, Werner

    2018-04-01

    Herbal substances and preparations thereof play an important role in healthcare systems worldwide. Due to the variety of these products regarding origin, composition and processing procedures, appropriate methodologies for quality assessment need to be considered. A majority of herbal substances is administered as multicomponent mixtures, especially in the field of Traditional Chinese Medicine and ayurvedic medicine, but also in finished medicinal products. Quality assessment of complex mixtures of herbal substances with conventional methods is challenging. Thus, emphasis of the present work was directed on the development of complementary methods to elucidate the composition of mixtures of herbal substances and finished herbal medicinal products. An indispensable prerequisite for the safe and effective use of herbal medicines is the unequivocal authentication of the medicinal plants used therein. In this context, we investigated the potential of three different PCR-related methods in the characterization and authentication of herbal substances. A multiplex PCR assay and a quantitative PCR (qPCR) assay were established to analyze defined mixtures of the herbal substances Quercus cortex, Juglandis folium, Aristolochiae herba, Matricariae flos and Salviae miltiorrhizae radix et rhizoma and a finished herbal medicinal product. Furthermore, a standard cloning approach using universal primers targeting the ITS region was established in order to allow the investigation of herbal mixtures with unknown content. The cloning approach had some limitations regarding the detection/recovery of the components in defined mixtures of herbal substances, but the complementary use of two sets of universal primer pairs increased the detection of components out of the mixture. While the multiplex PCR did not retrace all components in the defined mixtures of herbal substances, the established qPCR resulted in simultaneous and specific detection of the five target sequences in all defined

  16. Result Variation and Efficiency Kinetics in Real-Time PCR

    Directory of Open Access Journals (Sweden)

    Reza Shahsiah

    2010-10-01

    Full Text Available Fluorescent monitoring of DNA amplification is the basis of real-time PCR. Absolute quantification can be achieved using a standard curve method. The standard curve is constructed by amplifying known amounts of standards under identical conditions to that of the samples.The objective of the current study is to propose a mathematical model to assess the acceptability of PCR resulys.Four commercial standards for HCV-RNA (hepatitis C virus RNA along with 6 patient samples were measured by real-time PCR, using two different RT-PCR reagents. The standard deviation of regression (Sy,x was calculated for each group of standard and compared by F-Test. The efficiency kinetics was computed by logistic regression, c2 goodness of fit test was preformed to assess the appropriateness of the efficiency curves.Calculated efficiencies were not significantly different from the value predicted by logistic regression model. Reactions with more variation showed less stable efficiency curves, with wider range of amplification efficiencies.Amplification efficiency kinetics can be computed by fitting a logistic regression curve to the gathered fluorescent data of each reaction. This model can be employed to assess the acceptability of PCR results calculated by standard curve method.

  17. Development of duplex real-time PCR for the detection of WSSV and PstDV1 in cultivated shrimp.

    Science.gov (United States)

    Leal, Carlos A G; Carvalho, Alex F; Leite, Rômulo C; Figueiredo, Henrique C P

    2014-07-05

    The White spot syndrome virus (WSSV) and Penaeus stylirostris penstyldensovirus 1 (previously named Infectious hypodermal and hematopoietic necrosis virus-IHHNV) are two of the most important viral pathogens of penaeid shrimp. Different methods have been applied for diagnosis of these viruses, including Real-time PCR (qPCR) assays. A duplex qPCR method allows the simultaneous detection of two viruses in the same sample, which is more cost-effective than assaying for each virus separately. Currently, an assay for the simultaneous detection of the WSSV and the PstDV1 in shrimp is unavailable. The aim of this study was to develop and standardize a duplex qPCR assay for the simultaneous detection of the WSSV and the PstDV1 in clinical samples of diseased L. vannamei. In addition, to evaluate the performance of two qPCR master mixes with regard to the clinical sensitivity of the qPCR assay, as well as, different methods for qPCR results evaluation. The duplex qPCR assay for detecting WSSV and PstDV1 in clinical samples was successfully standardized. No difference in the amplification of the standard curves was observed between the duplex and singleplex assays. Specificities and sensitivities similar to those of the singleplex assays were obtained using the optimized duplex qPCR. The analytical sensitivities of duplex qPCR were two copies of WSSV control plasmid and 20 copies of PstDV1 control plasmid. The standardized duplex qPCR confirmed the presence of viral DNA in 28 from 43 samples tested. There was no difference for WSSV detection using the two kits and the distinct methods for qPCR results evaluation. High clinical sensitivity for PstDV1 was obtained with TaqMan Universal Master Mix associated with relative threshold evaluation. Three cases of simultaneous infection by the WSSV and the PstDV1 were identified with duplex qPCR. The standardized duplex qPCR was shown to be a robust, highly sensitive, and feasible diagnostic tool for the simultaneous detection of the

  18. A digital PCR method for identifying and quantifying adulteration of meat species in raw and processed food.

    Directory of Open Access Journals (Sweden)

    Junan Ren

    Full Text Available Meat adulteration is a worldwide concern. In this paper, a new droplet digital PCR (ddPCR method was developed for the quantitative determination of the presence of chicken in sheep and goat meat products. Meanwhile, a constant (multiplication factor was introduced to transform the ratio of copy numbers to the proportion of meats. The presented ddPCR method was also proved to be more accurate (showing bias of less than 9% in the range from 5% to 80% than real-time PCR, which has been widely used in this determination. The method exhibited good repeatability and stability in different thermal treatments and at ultra-high pressure. The relative standard deviation (RSD values of 5% chicken content was less than 5.4% for ultra-high pressure or heat treatment. Moreover, we confirmed that different parts of meat had no effect on quantification accuracy of the ddPCR method. In contrast to real-time PCR, we examined the performance of ddPCR as a more precise, sensitive and stable analytical strategy to overcome potential problems of discrepancies in amplification efficiency discrepancy and to obtain the copy numbers directly without standard curves. The method and strategy developed in this study can be applied to quantify the presence and to confirm the absence of adulterants not only to sheep but also to other kinds of meat and meat products.

  19. PCR biocompatibility of Lab-on-a-chip and MEMS materials

    DEFF Research Database (Denmark)

    Christensen, Troels Balmer; Pedersen, Christian Møller; Grøndahl, K. G.

    2007-01-01

    the possibility of interaction between the surfaces and ingredients in the PCR mixture. By proper surface treatment the PCR reaction can be facilitated and in this paper we present a systematic and quantitative study of the impact on the PCR compatibility of a chemical and a biological surface treatment....... The chemical treatments are based on the silanizing agent dichlordimethylsilane [(CH3)(2)SiCl2

  20. Relationship and variation of qPCR and culturable enterococci estimates in ambient surface waters are predictable

    Science.gov (United States)

    Whitman, Richard L.; Ge, Zhongfu; Nevers, Meredith B.; Boehm, Alexandria B.; Chern, Eunice C.; Haugland, Richard A.; Lukasik, Ashley M.; Molina, Marirosa; Przybyla-Kelly, Kasia; Shively, Dawn A.; White, Emily M.; Zepp, Richard G.; Byappanahalli, Muruleedhara N.

    2010-01-01

    The quantitative polymerase chain reaction (qPCR) method provides rapid estimates of fecal indicator bacteria densities that have been indicated to be useful in the assessment of water quality. Primarily because this method provides faster results than standard culture-based methods, the U.S. Environmental Protection Agency is currently considering its use as a basis for revised ambient water quality criteria. In anticipation of this possibility, we sought to examine the relationship between qPCR-based and culture-based estimates of enterococci in surface waters. Using data from several research groups, we compared enterococci estimates by the two methods in water samples collected from 37 sites across the United States. A consistent linear pattern in the relationship between cell equivalents (CCE), based on the qPCR method, and colony-forming units (CFU), based on the traditional culturable method, was significant (P 10CFU > 2.0/100 mL) while uncertainty increases at lower CFU values. It was further noted that the relative error in replicated qPCR estimates was generally higher than that in replicated culture counts even at relatively high target levels, suggesting a greater need for replicated analyses in the qPCR method to reduce relative error. Further studies evaluating the relationship between culture and qPCR should take into account analytical uncertainty as well as potential differences in results of these methods that may arise from sample variability, different sources of pollution, and environmental factors.

  1. Detection of fungi by conventional methods and semi-nested PCR in patients with presumed fungal keratitis.

    Science.gov (United States)

    Haghani, I; Amirinia, F; Nowroozpoor-Dailami, K; Shokohi, T

    2015-06-01

    Fungal keratitis is a suppurative, ulcerative, and sight-threatening infection of the cornea that sometimes leads to blindness. The aims of this study were: recuperating facilities for laboratory diagnosis, determining the causative microorganisms, and comparing conventional laboratory diagnostic tools and semi-nested PCR. Sampling was conducted in patients with suspected fungal keratitis. Two corneal scrapings specimens, one for direct smear and culture and the other for semi- nested PCR were obtained. Of the 40 expected cases of mycotic keratitis, calcofluor white staining showed positivity in 25%, culture in 17.5%, KOH in 10%, and semi-nested PCR in 27.5%. The sensitivities of semi-nested PCR, KOH, and CFW were 57.1%, 28.5%, and 42% while the specificities were 78.7%, 94%, and 78.7%, respectively. The time taken for PCR assay was 4 to 8 hours, whereas positive fungal cultures took at least 5 to 7 days. Due to the increasing incidence of fungal infections in people with weakened immune systems, uninformed using of topical corticosteroids and improper use of contact lens, fast diagnosis and accurate treatment of keratomycosis seems to be essential . Therefore, according to the current study, molecular methods can detect mycotic keratitis early and correctly leading to appropriate treatment.

  2. Differentiation of five enterohepatic Helicobacter species by nested PCR with high-resolution melting curve analysis.

    Science.gov (United States)

    Wu, Miaoli; Rao, Dan; Zhu, Yujun; Wang, Jing; Yuan, Wen; Zhang, Yu; Huang, Ren; Guo, Pengju

    2017-04-01

    Enterohepatic Helicobacter species (EHS) are widespread in rodent species around the world. Several studies have demonstrated that infection with EHS can interfere with the outcomes of animal experiments in cancer research and significantly influence the study results. Therefore, it is essential to establish a rapid detection and identification of EHS for biomedical research using laboratory rodents. Our study aimed to develop a rapid and sensitive method to detect and distinguish five enterohepatic Helicobacter species. Nested PCR followed by high-resolution melting curve analysis (HRM) was developed for identification of H. bilis, H. rodentium, H. muridarum, H. typhlonius, as well as H. hepaticus. To validate the accuracy of nested PCR-HRM analysis, quantitative real-time PCR methods for five different enterohepatic Helicobacter species were developed. A total of 50 cecal samples were tested using both nested PCR-HRM analysis and qPCR method. The nested PCR-HRM method could distinguish five enterohepatic Helicobacter species by different melting temperatures. The melting curve were characterized by peaks of 78.7 ± 0.12°C for H. rodentium, 80.51 ± 0.09°C for H. bilis, 81.6 ± 0.1°C for H. typhlonius, 82.11 ± 0.18°C for H. muridarum, and 82.95 ± 0.09°C for H. hepaticus. The nested PCR-HRM assay is a simple, rapid, and cost-effective assay. This assay could be a useful tool for molecular epidemiology study of enterohepatic Helicobacter infection and an attractive alternative for genotyping of enterohepatic Helicobacter species. © 2016 John Wiley & Sons Ltd.

  3. Specific PCR-based detection of Alternaria helianthi

    DEFF Research Database (Denmark)

    Udayashankar, A.C.; Nayaka, S. Chandra; Archana, B.

    2012-01-01

    Alternaria helianthi is an important seed-borne pathogenic fungus responsible for blight disease in sunflower. The current detection methods, which are based on culture and morphological identification, are time-consuming, laborious and are not always reliable. A PCR-based diagnostic method...... tested. The detection limit of the PCR method was of 10 pg from template DNA. The primers could also detect the pathogen in infected sunflower seed. This species-specific PCR method provides a quick, simple, powerful and reliable alternative to conventional methods in the detection and identification...

  4. Simultaneous detection of three lily viruses using Triplex IC-RT-PCR.

    Science.gov (United States)

    Zhang, Yubao; Wang, Yajun; Xie, Zhongkui; Yang, Guo; Guo, Zhihong; Wang, Le

    2017-11-01

    Viruses commonly infecting lily (Lilium spp.) include: Lily symptomless virus (LSV), Cucumber mosaic virus (CMV) and Lily mottle virus (LMoV). These viruses usually co-infect lilies causing severe economic losses in terms of quantity and quality of flower and bulb production around the world. Reliable and precise detection systems need to be developed for virus identification. We describe the development of a triplex immunocapture (IC) reverse transcription (RT) polymerase chain reaction (PCR) assay for the simultaneous detection of LSV, CMV and LMoV. The triplex IC-RT-PCR was compared with a quadruplex RT-PCR assay. Relative to the quadruplex RT-PCR, the specificity of the triplex IC-RT-PCR system for LSV, CMV and LMoV was 100% for field samples. The sensitivity of the triplex IC-RT-PCR system was 99.4%, 81.4% and 98.7% for LSV, CMV and LMoV, respectively. Agreement (κ) between the results obtained from the two tests was 0.968, 0.844 and 0.984 for LSV, CMV and LMoV, respectively. This is the first report of the simultaneous detection of LSV, CMV and LMoV in a triplex IC-RT-PCR assay. In particular we believe this convenient and reliable triplex IC-RT-PCR method could be used routinely for large-scale field surveys or crop health monitoring of lily. Copyright © 2017. Published by Elsevier B.V.

  5. Molecular detection of Toxoplasma gondii in water samples from Scotland and a comparison between the 529bp real-time PCR and ITS1 nested PCR.

    Science.gov (United States)

    Wells, Beth; Shaw, Hannah; Innocent, Giles; Guido, Stefano; Hotchkiss, Emily; Parigi, Maria; Opsteegh, Marieke; Green, James; Gillespie, Simon; Innes, Elisabeth A; Katzer, Frank

    2015-12-15

    Waterborne transmission of Toxoplasma gondii is a potential public health risk and there are currently no agreed optimised methods for the recovery, processing and detection of T. gondii oocysts in water samples. In this study modified methods of T. gondii oocyst recovery and DNA extraction were applied to 1427 samples collected from 147 public water supplies throughout Scotland. T. gondii DNA was detected, using real time PCR (qPCR) targeting the 529bp repeat element, in 8.79% of interpretable samples (124 out of 1411 samples). The samples which were positive for T. gondii DNA originated from a third of the sampled water sources. The samples which were positive by qPCR and some of the negative samples were reanalysed using ITS1 nested PCR (nPCR) and results compared. The 529bp qPCR was the more sensitive technique and a full analysis of assay performance, by Bayesian analysis using a Markov Chain Monte Carlo method, was completed which demonstrated the efficacy of this method for the detection of T. gondii in water samples. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. A standard curve based method for relative real time PCR data processing

    Directory of Open Access Journals (Sweden)

    Krause Andreas

    2005-03-01

    Full Text Available Abstract Background Currently real time PCR is the most precise method by which to measure gene expression. The method generates a large amount of raw numerical data and processing may notably influence final results. The data processing is based either on standard curves or on PCR efficiency assessment. At the moment, the PCR efficiency approach is preferred in relative PCR whilst the standard curve is often used for absolute PCR. However, there are no barriers to employ standard curves for relative PCR. This article provides an implementation of the standard curve method and discusses its advantages and limitations in relative real time PCR. Results We designed a procedure for data processing in relative real time PCR. The procedure completely avoids PCR efficiency assessment, minimizes operator involvement and provides a statistical assessment of intra-assay variation. The procedure includes the following steps. (I Noise is filtered from raw fluorescence readings by smoothing, baseline subtraction and amplitude normalization. (II The optimal threshold is selected automatically from regression parameters of the standard curve. (III Crossing points (CPs are derived directly from coordinates of points where the threshold line crosses fluorescence plots obtained after the noise filtering. (IV The means and their variances are calculated for CPs in PCR replicas. (V The final results are derived from the CPs' means. The CPs' variances are traced to results by the law of error propagation. A detailed description and analysis of this data processing is provided. The limitations associated with the use of parametric statistical methods and amplitude normalization are specifically analyzed and found fit to the routine laboratory practice. Different options are discussed for aggregation of data obtained from multiple reference genes. Conclusion A standard curve based procedure for PCR data processing has been compiled and validated. It illustrates that

  7. DNA Differential Diagnosis of Taeniasis and Cysticercosis by Multiplex PCR

    Science.gov (United States)

    Yamasaki, Hiroshi; Allan, James C.; Sato, Marcello Otake; Nakao, Minoru; Sako, Yasuhito; Nakaya, Kazuhiro; Qiu, Dongchuan; Mamuti, Wulamu; Craig, Philip S.; Ito, Akira

    2004-01-01

    Multiplex PCR was established for differential diagnosis of taeniasis and cysticercosis, including their causative agents. For identification of the parasites, multiplex PCR with cytochrome c oxidase subunit 1 gene yielded evident differential products unique for Taenia saginata and Taenia asiatica and for American/African and Asian genotypes of Taenia solium with molecular sizes of 827, 269, 720, and 984 bp, respectively. In the PCR-based detection of tapeworm carriers using fecal samples, the diagnostic markers were detected from 7 of 14 and 4 of 9 T. solium carriers from Guatemala and Indonesia, respectively. Test sensitivity may have been reduced by the length of time (up to 12 years) that samples were stored and/or small sample volumes (ca. 30 to 50 mg). However, the diagnostic markers were detected by nested PCR in five worm carriers from Guatemalan cases that were found to be negative by multiplex PCR. It was noteworthy that a 720 bp-diagnostic marker was detected from a T. solium carrier who was egg-free, implying that it is possible to detect worm carriers and treat before mature gravid proglottids are discharged. In contrast to T. solium carriers, 827-bp markers were detected by multiplex PCR in all T. saginata carriers. The application of the multiplex PCR would be useful not only for surveillance of taeniasis and cysticercosis control but also for the molecular epidemiological survey of these cestode infections. PMID:14766815

  8. Increased greenhouse effect substantiated through measurements

    International Nuclear Information System (INIS)

    Skartveit, Arvid

    2001-01-01

    The article presents studies on the greenhouse effect which substantiates the results from satellite measurements during the period 1970 - 1997. These show an increased effect due to increase in the concentration of the climatic gases CO 2 , methane, CFC-11 and CFC-12 in the atmosphere

  9. Human fecal source identification with real-time quantitative PCR

    Science.gov (United States)

    Waterborne diseases represent a significant public health risk worldwide, and can originate from contact with water contaminated with human fecal material. We describe a real-time quantitative PCR (qPCR) method that targets a Bacteroides dori human-associated genetic marker for...

  10. A Novel PCR Assay for Detecting Brucella abortus and Brucella melitensis.

    Science.gov (United States)

    Alamian, Saeed; Esmaelizad, Majid; Zahraei, Taghi; Etemadi, Afshar; Mohammadi, Mohsen; Afshar, Davoud; Ghaderi, Soheila

    2017-02-01

    Brucellosis is a major zoonotic disease that poses a significant public health threat worldwide. The classical bacteriological detection process used to identify Brucella spp. is difficult and time-consuming. This study aimed to develop a novel molecular assay for detecting brucellosis. All complete sequences of chromosome 1 with 2.1-Mbp lengths were compared among all available Brucella sequences. A unique repeat sequence (URS) locus on chromosome 1 could differentiate Brucella abortus from Brucella melitensis . A primer set was designed to flank the unique locus. A total of 136 lymph nodes and blood samples were evaluated and classified by the URS-polymerase chain reaction (PCR) method in 2013-2014. Biochemical tests and bacteriophage typing as the golden standard indicated that all Brucella spp. isolates were B. melitensis biovar 1 and B. abortus biovar 3. The PCR results were the same as the bacteriological method for detecting Brucella spp. The sensitivity and specificity of the URS-PCR method make it suitable for detecting B. abortus and B. melitensis . Quick detection of B. abortus and B. melitensis can provide the most effective strategies for control of these bacteria. The advantage of this method over other presented methods is that both B. abortus and B. melitensis are detectable in a single test tube. Furthermore, this method covered 100% of all B. melitensis and B. abortus biotypes. The development of this URS-PCR method is the first step toward the development of a novel kit for the molecular identification of B. abortus and B. melitensis .

  11. Detection of 22 common leukemic fusion genes using a single-step multiplex qRT-PCR-based assay.

    Science.gov (United States)

    Lyu, Xiaodong; Wang, Xianwei; Zhang, Lina; Chen, Zhenzhu; Zhao, Yu; Hu, Jieying; Fan, Ruihua; Song, Yongping

    2017-07-25

    effective alternative to lengthy conventional diagnostic procedures requiring both cytogenetic analysis followed by targeted quantitative reverse transcription (qRT-PCR) methods, thus allowing timely patient management.

  12. A novel method of multiple nucleic acid detection: Real-time RT-PCR coupled with probe-melting curve analysis.

    Science.gov (United States)

    Han, Yang; Hou, Shao-Yang; Ji, Shang-Zhi; Cheng, Juan; Zhang, Meng-Yue; He, Li-Juan; Ye, Xiang-Zhong; Li, Yi-Min; Zhang, Yi-Xuan

    2017-11-15

    A novel method, real-time reverse transcription PCR (real-time RT-PCR) coupled with probe-melting curve analysis, has been established to detect two kinds of samples within one fluorescence channel. Besides a conventional TaqMan probe, this method employs another specially designed melting-probe with a 5' terminus modification which meets the same label with the same fluorescent group. By using an asymmetric PCR method, the melting-probe is able to detect an extra sample in the melting stage effectively while it almost has little influence on the amplification detection. Thus, this method allows the availability of united employment of both amplification stage and melting stage for detecting samples in one reaction. The further demonstration by simultaneous detection of human immunodeficiency virus (HIV) and hepatitis C virus (HCV) in one channel as a model system is presented in this essay. The sensitivity of detection by real-time RT-PCR coupled with probe-melting analysis was proved to be equal to that detected by conventional real-time RT-PCR. Because real-time RT-PCR coupled with probe-melting analysis can double the detection throughputs within one fluorescence channel, it is expected to be a good solution for the problem of low-throughput in current real-time PCR. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Identification of Mycobacterium tuberculosis in Clinical Specimens of Patients Suspected of Having Extrapulmonary Tuberculosis by Application of Nested PCR on Five Different Genes.

    Science.gov (United States)

    Khosravi, Azar D; Alami, Ameneh; Meghdadi, Hossein; Hosseini, Atta A

    2017-01-01

    Definitive and rapid diagnosis of extrapulmonary tuberculosis (EPTB) is challenging since conventional techniques have limitations due to the paucibacillary nature of the disease. To increase the sensitivity of detection of Mycobacterium tuberculosis (MTB) in EPTB specimens, we performed a nested PCR assay targeting several genes of MTB on EPTB specimens. A total of 100 clinical specimens from suspected cases of EPTB were processed. Standard staining for acid fast bacilli (AFB) was performed as the preliminary screening test. Extracted DNAs from specimens were subjected to Nested PCR technique for the detection of five different MTB target genes of IS6110, IS1081, hsp65kd, mbp64 , and mtp40 . On performing AFB staining, only 13% of specimens were positive, of which ascites fluid (33.3%), followed by pleural effusion (30.8%) showed the greatest AFB positivity rate. We demonstrated slight improvement in yields in lymph node which comprised the majority of specimens in this study, by employing PCR targeted to IS6110 - and hsp65-genes in comparison to AFB staining. However, the yields in ascites fluid and pleural effusion were not substantially improved by PCR, but those from bone and wound were, as in nested PCR employing either gene, the same positivity rate were obtained for ascites fluid (33.3%), while for pleural effusion specimens only IS1081 based PCR showed identical positivity rate with AFB stain (30.8%). The results for bone and wound specimens, however, demonstrated an improved yield mainly by employing IS1081 gene. Here, we report higher detection rate of EPTB in clinical specimens using five different targeted MTB genes. This nested PCR approach facilitates the comparison and the selection of the most frequently detected genes. Of course this study demonstrated the priority of IS1081 followed by mtp40 and IS6110 , among the five tested genes and indicates the effectiveness of any of the three genes in the design of an efficient nested-PCR test that

  14. PCR, exit stage left ...

    CERN Multimedia

    2004-01-01

    The Prevessin Control Room during LEP's start up in 1989. The Prévessin Control Room (PCR) was recently engulfed in a wave of nostalgia. The PCR, scene of some of the greatest moments in CERN's history, is being dismantled to prepare for a complete overhaul. In February 2006, a new combined control centre for all the accelerators will open its doors on the same site, together with a new building currently under construction (see Bulletin issue 27/2004 of 28 June 2004). This marks the end of an important chapter in CERN's history. The Prévessin Control Room saw its first momentous event 28 years ago when the 400 GeV beam for the SPS was commissioned in the presence of Project Leader John Adams. It was also here that the first proton-antiproton collisions were observed, in 1981. Eight years later, in 1989, operators and directors alike jumped for joy at the announcement of the first electron-positron collisions at the start up of LEP, the biggest accelerator in the world. Today the 80 terminals and PCs have b...

  15. Multiplex PCR identification of Taenia spp. in rodents and carnivores.

    Science.gov (United States)

    Al-Sabi, Mohammad N S; Kapel, Christian M O

    2011-11-01

    The genus Taenia includes several species of veterinary and public health importance, but diagnosis of the etiological agent in definitive and intermediate hosts often relies on labor intensive and few specific morphometric criteria, especially in immature worms and underdeveloped metacestodes. In the present study, a multiplex PCR, based on five primers targeting the 18S rDNA and ITS2 sequences, produced a species-specific banding patterns for a range of Taenia spp. Species typing by the multiplex PCR was compared to morphological identification and sequencing of cox1 and/or 12S rDNA genes. As compared to sequencing, the multiplex PCR identified 31 of 32 Taenia metacestodes from rodents, whereas only 14 cysts were specifically identified by morphology. Likewise, the multiplex PCR identified 108 of 130 adult worms, while only 57 were identified to species by morphology. The tested multiplex PCR system may potentially be used for studies of Taenia spp. transmitted between rodents and carnivores.

  16. Comparison of the quantification of KRAS mutations by digital PCR and E-ice-COLD-PCR in circulating-cell-free DNA from metastatic colorectal cancer patients.

    Science.gov (United States)

    Sefrioui, David; Mauger, Florence; Leclere, Laurence; Beaussire, Ludivine; Di Fiore, Frédéric; Deleuze, Jean-François; Sarafan-Vasseur, Nasrin; Tost, Jörg

    2017-02-01

    Circulating cell-free DNA (ccfDNA) bears great promise as biomarker for personalized medicine, but ccfDNA is present only at low levels in the plasma or serum of cancer patients. E-ice-COLD-PCR is a recently developed enrichment method to detect and identify mutations present at low-abundance in clinical samples. However, recent studies have shown the importance to accurately quantify low-abundance mutations as clinically important decisions will depend on certain mutation thresholds. The possibility for an enrichment method to accurately quantify the mutation levels remains a point of concern and might limit its clinical applicability. In the present study, we compared the quantification of KRAS mutations in ccfDNA from metastatic colorectal cancer patients by E-ice-COLD-PCR with two digital PCR approaches. For the quantification of mutations by E-ice-COLD-PCR, cell lines with known mutations diluted into WT genomic DNA were used for calibration. E-ice-COLD-PCR and the two digital PCR approaches showed the same range of the mutation level and were concordant for mutation levels below the clinical relevant threshold. E-ice-COLD-PCR can accurately detect and quantify low-abundant mutations in ccfDNA and has a shorter time to results making it compatible with the requirements of analyses in a clinical setting without the loss of quantitative accuracy. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Detection and quantification of beef and pork materials in meat products by duplex droplet digital PCR

    OpenAIRE

    Cai, Yicun; He, Yuping; Lv, Rong; Chen, Hongchao; Wang, Qiang; Pan, Liangwen

    2017-01-01

    Meat products often consist of meat from multiple animal species, and inaccurate food product adulteration and mislabeling can negatively affect consumers. Therefore, a cost-effective and reliable method for identification and quantification of animal species in meat products is required. In this study, we developed a duplex droplet digital PCR (dddPCR) detection and quantification system to simultaneously identify and quantify the source of meat in samples containing a mixture of beef (Bos t...

  18. Comparative analysis of minimal residual disease detection using four-color flow cytometry, consensus IgH-PCR, and quantitative IgH PCR in CLL after allogeneic and autologous stem cell transplantation.

    Science.gov (United States)

    Böttcher, S; Ritgen, M; Pott, C; Brüggemann, M; Raff, T; Stilgenbauer, S; Döhner, H; Dreger, P; Kneba, M

    2004-10-01

    The clinically most suitable method for minimal residual disease (MRD) detection in chronic lymphocytic leukemia is still controversial. We prospectively compared MRD assessment in 158 blood samples of 74 patients with CLL after stem cell transplantation (SCT) using four-color flow cytometry (MRD flow) in parallel with consensus IgH-PCR and ASO IgH real-time PCR (ASO IgH RQ-PCR). In 25 out of 106 samples (23.6%) with a polyclonal consensus IgH-PCR pattern, MRD flow still detected CLL cells, proving higher sensitivity of flow cytometry over PCR-genescanning with consensus IgH-primers. Of 92 samples, 14 (15.2%) analyzed in parallel by MRD flow and by ASO IgH RQ-PCR were negative by our flow cytometric assay but positive by PCR, thus demonstrating superior sensitivity of RQ-PCR with ASO primers. Quantitative MRD levels measured by both methods correlated well (r=0.93). MRD detection by flow and ASO IgH RQ-PCR were equally suitable to monitor MRD kinetics after allogeneic SCT, but the PCR method detected impending relapses after autologous SCT earlier. An analysis of factors that influence sensitivity and specificity of flow cytometry for MRD detection allowed to devise further improvements of this technique.

  19. Culture independent PCR: an alternative enzyme discovery strategy

    DEFF Research Database (Denmark)

    Jacobsen, Jonas; Lydolph, Magnus; Lange, Lene

    2005-01-01

    Degenerate primers were designed for use in a culture-independent PCR screening of DNA from composite fungal communities, inhabiting residues of corn stovers and leaves. According to similarity searches and alignments amplified clone sequences affiliated with glycosyl hydrolase family 7 and glyco...... the value of culture-independent PCR in microbial diversity studies and could add to development of a new enzyme screening technology....

  20. Construção de iniciadores e otimização de ensaios de PCR e de nested-PCR para a detecção específica de Tritrichomonas foetus Primers design and optimization of PCR and nested-PCR assays for the specific detection of Tritrichomonas foetus

    Directory of Open Access Journals (Sweden)

    Paula Rogério Fernandes

    2008-09-01

    Full Text Available Tritrichomonas foetus é um protozoário patogênico responsável por doença venérea em bovinos conhecida por tricomonose genital bovina. A tricomonose bovina é uma doença venérea causada pelo protozoário cujo habitat natural é o trato genital. Os protocolos já desenvolvidos para o diagnóstico deste parasito por PCR, apesar de serem eficazes na identificação do DNA genômico alvo, promovem algumas amplificações inespecíficas ou são incapazes de distinguir T. foetus das outras espécies do gênero. O presente trabalho foi desenvolvido com o objetivo de estabelecer e otimizar protocolos de ensaio de PCR e nested-PCR para o diagnóstico específico de T. foetus, empregando-se novos iniciadores, selecionados do alinhamento das seqüências dos genes 18S rRNA, 5,8S rRNA, 28S rRNA e dos espaços transcritos do rDNA (ITS1 e ITS2. Um par de iniciadores foi construído para amplificação gênero-específica de um fragmento de 648 pares de base e outros dois para a obtenção de produtos espécie- específicos de 343 e 429 pb. Nenhuma reação cruzada foi observada frente ao DNA genômico de Bos taurus ou de microrganismos responsáveis por infecções genitais. A sensibilidade dos ensaios de PCR e de nested-PCR apresentados neste estudo permitiu um limiar de detecção de até dois parasitos.Tritrichomonas foetus is a pathogenic protozoan that causes a venereal disease in cattle known as bovine genital tricomonosis. In spite of the efficacy to recognize the target genomic DNA, the protocols so far developed for the diagnosis of this organism by PCR promote some inespecific amplifications or they are unable to discriminate T. foetus against other species within the genus. The objective of this study was to assess and optimize PCR and nested-PCR assays for the specific diagnosis of T. foetus, using novel primers selected from the alignment of sequences of the genes 18S rRNA, 5.8S rRNA, 28S rRNA and of the internal transcribed spacers of the