WorldWideScience

Sample records for increases ozone pollution

  1. China's air pollution reduction efforts may result in an increase in surface ozone levels in highly polluted areas.

    Science.gov (United States)

    Anger, Annela; Dessens, Olivier; Xi, Fengming; Barker, Terry; Wu, Rui

    2016-03-01

    China, as a fast growing fossil-fuel-based economy, experiences increasing levels of air pollution. To tackle air pollution, China has taken the first steps by setting emission-reduction targets for nitrogen oxides (NO x ) and sulphur dioxide (SO2) in the 11th and 12th Five Year Plans. This paper uses two models-the Energy-Environment-Economy Model at the Global level (E3MG) and the global Chemistry Transport Model pTOMCAT-to test the effects of these policies. If the policy targets are met, then the maximum values of 32 % and 45 % reductions below 'business as usual' in the monthly mean NO x and SO2 concentrations, respectively, will be achieved in 2015. However, a decrease in NO x concentrations in some highly polluted areas of East, North-East and South-East China can lead to up to a 10% increase in the monthly mean concentrations in surface ozone in 2015. Our study demonstrates an urgent need for the more detailed analysis of the impacts and designs of air pollution reduction guidelines for China.

  2. Ozone as an air pollutant

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    1996-01-01

    A Danish new book on ozone as an air pollutant has been reviewed. The Book is "Ozon som luftforurening" by Jes Fenger, Published by "Danmarks Miljøundersøgelser, 1995.......A Danish new book on ozone as an air pollutant has been reviewed. The Book is "Ozon som luftforurening" by Jes Fenger, Published by "Danmarks Miljøundersøgelser, 1995....

  3. Ozone as an air pollutant

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    1996-01-01

    A Danish new book on ozone as an air pollutant has been reviewed. The Book is "Ozon som luftforurening" by Jes Fenger, Published by "Danmarks Miljøundersøgelser, 1995.......A Danish new book on ozone as an air pollutant has been reviewed. The Book is "Ozon som luftforurening" by Jes Fenger, Published by "Danmarks Miljøundersøgelser, 1995....

  4. Has the sensitivity of soybean cultivars to ozone pollution increased with time? An analysis of published dose-response data

    Science.gov (United States)

    The rising trend in concentrations of ground-level ozone (O3) – a common air pollutant and phytotoxin – currently being experienced in some world regions represents a threat to agricultural yield. Soybean (Glycine max (L.) Merr.) is an O3-sensitive crop species, and is experiencing increasing globa...

  5. The pollution by ozone; La pollution par l'ozone

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Air pollution by ozone is increasing in spite of several points to reduce it. If the process of ozone formation are complex, the sources of this pollution are well known: first, mobile sources with automobiles (49%), boats , trains and planes (13%), then are following paints and solvents(18%), thermal power plants(11%), and finally industry processing with 5%. (N.C.)

  6. Health Effects of Ozone and Particle Pollution

    Science.gov (United States)

    ... monitors show unhealthy levels of one or both—meaning the air a family breathes could shorten life or cause lung cancer. So what are ozone and particle pollution? Ozone Pollution It may be hard to ...

  7. Reactions of cloned poplars to air pollution. Ozone-induced increase of stress ethylene and possible antisenescence strategies

    Energy Technology Data Exchange (ETDEWEB)

    Ballach, H.J. [Johann Wolfgang Goethe-Univ., Frankfurt (Germany). Botanisches Inst.; Niederee, C. [Johann Wolfgang Goethe-Univ., Frankfurt (Germany). Botanisches Inst.; Wittig, R. [Johann Wolfgang Goethe-Univ., Frankfurt (Germany). Botanisches Inst.; Woltering, E.J. [Agrotechnological Research Inst., Wageningen (Netherlands)

    1995-12-01

    Ozone-induced changes in ethylene production, ACC oxidase activity and the contents of ACC, MACC and free PAs were studied in Populus nigra L. cv. Loenen with high ozone sensitivity as judged by the degree of chlorophyll degradation and premature leaf abscission. Ethylene production, ACC oxidase activity, ACC content and MACC levels were induced by the one-, two-, and three-week ozone exposure (36{+-}9 ppb O{sub 3} for 11 hours a day). In addition, increases in PA levels, especially in spermidine, were measured in ozone treated plants. The role of free PAs and MACC synthesis as possible antisenescence reactions is discussed. (orig.)

  8. Transpacific transport of ozone pollution and the effect of recent Asian emission increases on air quality in North America: an integrated analysis using satellite, aircraft, ozonesonde, and surface observations

    Directory of Open Access Journals (Sweden)

    L. Zhang

    2008-10-01

    Full Text Available We use an ensemble of aircraft, satellite, sonde, and surface observations for April–May 2006 (NASA/INTEX-B aircraft campaign to better understand the mechanisms for transpacific ozone pollution and its implications for North American air quality. The observations are interpreted with a global 3-D chemical transport model (GEOS-Chem. OMI NO2 satellite observations constrain Asian anthropogenic NOx emissions and indicate a factor of 2 increase from 2000 to 2006 in China. Satellite observations of CO from AIRS and TES indicate two major events of Asian transpacific pollution during INTEX-B. Correlation between TES CO and ozone observations shows evidence for transpacific ozone pollution. The semi-permanent Pacific High and Aleutian Low cause splitting of transpacific pollution plumes over the Northeast Pacific. The northern branch circulates around the Aleutian Low and has little impact on North America. The southern branch circulates around the Pacific High and some of that air impacts western North America. Both aircraft measurements and model results show sustained ozone production driven by peroxyacetylnitrate (PAN decomposition in the southern branch, roughly doubling the transpacific influence from ozone produced in the Asian boundary layer. Model simulation of ozone observations at Mt. Bachelor Observatory in Oregon (2.7 km altitude indicates a mean Asian ozone pollution contribution of 9±3 ppbv to the mean observed concentration of 54 ppbv, reflecting mostly an enhancement in background ozone rather than episodic Asian plumes. Asian pollution enhanced surface ozone concentrations by 5–7 ppbv over western North America in spring 2006. The 2000–2006 rise in Asian anthropogenic emissions increased this influence by 1–2 ppbv.

  9. Increasing external effects negate local efforts to control ozone air pollution: a case study of Hong Kong and implications for other Chinese cities.

    Science.gov (United States)

    Xue, Likun; Wang, Tao; Louie, Peter K K; Luk, Connie W Y; Blake, Donald R; Xu, Zheng

    2014-09-16

    It is challenging to reduce ground-level ozone (O3) pollution at a given locale, due in part to the contributions of both local and distant sources. We present direct evidence that the increasing regional effects have negated local control efforts for O3 pollution in Hong Kong over the past decade, by analyzing the daily maximum 8 h average O3 and Ox (=O3+NO2) concentrations observed during the high O3 season (September-November) at Air Quality Monitoring Stations. The locally produced Ox showed a statistically significant decreasing trend over 2002-2013 in Hong Kong. Analysis by an observation-based model confirms this decline in in situ Ox production, which is attributable to a reduction in aromatic hydrocarbons. However, the regional background Ox transported into Hong Kong has increased more significantly during the same period, reflecting contributions from southern/eastern China. The combined result is a rise in O3 and a nondecrease in Ox. This study highlights the urgent need for close cross-boundary cooperation to mitigate the O3 problem in Hong Kong. China's air pollution control policy applies primarily to its large cities, with little attention to developing areas elsewhere. The experience of Hong Kong suggests that this control policy does not effectively address secondary pollution, and that a coordinated multiregional program is required.

  10. The impacts of surface ozone pollution on winter wheat productivity in China--An econometric approach.

    Science.gov (United States)

    Yi, Fujin; Jiang, Fei; Zhong, Funing; Zhou, Xun; Ding, Aijun

    2016-01-01

    The impact of surface ozone pollution on winter wheat yield is empirically estimated by considering socio-economic and weather determinants. This research is the first to use an economic framework to estimate the ozone impact, and a unique county-level panel is employed to examine the impact of the increasing surface ozone concentration on the productivity of winter wheat in China. In general, the increment of surface ozone concentration during the ozone-sensitive period of winter wheat is determined to be harmful to its yield, and a conservative reduction of ozone pollution could significantly increase China's wheat supply.

  11. Tropospheric Ozone Pollution from Space: New Views from the TOMS (Total Ozone Mapping Spectrometer) Instrument

    Science.gov (United States)

    Thompson, Anne M.; Hudson, Robert D.; Frolov, Alexander D.; Witte, Jacquelyn C.; Kucsera, Tom L.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    New products from the TOMS (Total Ozone Mapping Spectrometer) >satellite instrument can resolve pollution events in tropical and mid-latitudes, Over the past several years, we have developed tropospheric ozone data sets by two methods. The modified-residual technique [Hudson and Thompson, 1998; Thompson and Hudson, 1999] uses v. 7 TOMS total ozone and is applicable to tropical regimes in which the wave-one pattern in total ozone is observed. The TOMSdirect method [Hudson et at., 2000] represents a new algorithm that uses TOMS radiances to extract tropospheric ozone in regions of constant stratospheric ozone and tropospheric ozone displaying high mixing ratios and variability characteristic of pollution, Absorbing aerosols (dust and smoke; Herman et at., 1997 Hsu et al., 1999), a standard TOMS product, provide transport and/or source marker information to interpret tropospheric ozone. For the Nimbus 7/TOMS observing period (1979-1992), modified-residual TTO (tropical tropospheric ozone) appears as two maps/month at I-degree latitude 2-degree longitude resolution at a homepage and digital data are available (20S to 20N) by ftp at http://metosrv2. umd.edu/tropo/ 14y_data.d. Preliminary modified-residual TTO data from the operational Earth-Probe/TOMS (1996- present) are posted in near-real-time at the same website. Analyses with the new tropospheric ozone and aerosol data are illustrated by the following (I)Signals in tropical tropospheric ozone column and smoke amount during ENSO (El Nino-Southern Oscillation) events, e.g. 1982-1983 and the intense ENSO induced biomass fires of 1997-1998 over the Indonesian region [Thompson et a[, 2000a, Thompson and Hudson, 1999]. (2) Trends in tropospheric ozone and smoke aerosols in various tropical regions (Atlantic, Pacific, Africa, Brazil). No significant trends were found for ozone from1980-1990 [Thompson and Hudson, 19991 although smoke aerosols increased during the period [Hsu et al.,1999]. (3) Temporal and spatial offsets

  12. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects.

    Science.gov (United States)

    Wang, Tao; Xue, Likun; Brimblecombe, Peter; Lam, Yun Fat; Li, Li; Zhang, Li

    2017-01-01

    High concentrations of ozone in urban and industrial regions worldwide have long been a major air quality issue. With the rapid increase in fossil fuel consumption in China over the past three decades, the emission of chemical precursors to ozone-nitrogen oxides and volatile organic compounds-has increased sharply, surpassing that of North America and Europe and raising concerns about worsening ozone pollution in China. Historically, research and control have prioritized acid rain, particulate matter, and more recently fine particulate matter (PM2.5). In contrast, less is known about ozone pollution, partly due to a lack of monitoring of atmospheric ozone and its precursors until recently. This review summarizes the main findings from published papers on the characteristics and sources and processes of ozone and ozone precursors in the boundary layer of urban and rural areas of China, including concentration levels, seasonal variation, meteorology conducive to photochemistry and pollution transport, key production and loss processes, ozone dependence on nitrogen oxides and volatile organic compounds, and the effects of ozone on crops and human health. Ozone concentrations exceeding the ambient air quality standard by 100-200% have been observed in China's major urban centers such as Jing-Jin-Ji, the Yangtze River delta, and the Pearl River delta, and limited studies suggest harmful effect of ozone on human health and agricultural corps; key chemical precursors and meteorological conditions conductive to ozone pollution have been investigated, and inter-city/region transport of ozone is significant. Several recommendations are given for future research and policy development on ground-level ozone.

  13. Comparison of temporal and Spatial Characteristics of Ozone Pollution at Ground Level in the Eastern China

    Institute of Scientific and Technical Information of China (English)

    Liu Houfeng

    2006-01-01

    Monitoring data from ozone(O3) automatic stations in three typical cities with different climatic areas in the southern and northern parts of eastern China are used to analyze temporal and spatial characteristics of ozone pollution at ground level. The results show that ozone pollution level has distinct regional differences and the concentration in the suburbs is higher than that in the urban areas. The seasonal variation of ozone concentration in different climatic areas is greatly affected by the variation of precipitation. Ozone concentration in Shenyang and Beijing , in the temperate zone, has one perennial peak concentration, occurring in early summer,May or June. Ozone concentration in Guangzhou, in sub-tropical zone, has two peak values year round. The highest values occur in October and the secondary high value in June. The ozone season in the south is longer than that in the north. The annual average daily peak value of ozone concentrations in different climates usually occur around 3 pm. The diurnal variation range of ozone concentration declines with the increase of latitude. Ozone concentration does not elevate with the increase of traffic flow. Ozone concentration in Guangzhou has a distinct reverse relation to CO and NOx. This complicated non-linearity indicates that the equilibrium of ozone photochemical reaction has regional differences.Exceeding the rate of Beijing's 1h ozone concentration is higher than that of Guangzhou, whereas the average 8h ozone level is lower than that of Guangzhou, indicating that areas in low latitude are more easily affected by moderate ozone concentrations and longer exposure. Thus,China should work out standards for 8h ozone concentration.

  14. Exacerbations of childhood asthma and ozone pollution in Atlanta

    Energy Technology Data Exchange (ETDEWEB)

    White, M.C.; Etzel, R.A.; Lloyd, C. (Centers for Disease Control and Prevention, Atlanta, GA (United States)); Wilcox, W.D. (Emory Univ. School of Medicine, Atlanta, GA (United States))

    1994-04-01

    Asthma prevalence and mortality due to asthma have been increasing during the last decade, and both the rates and the increases in rates have been higher for blacks than whites and higher for children than adults. Whether environmental factors such as air pollution contribute to these increases is unknown. The purpose of this study was to examine the relationship between emergency visits to a hospital for childhood asthma and exposure to ozone in an indigent, predominantly black population. Data were collected by abstracting clinical records for all children with asthma or reactive airway disease in one public hospital during the summer of 1990. From June 1, 1990, to August 31, 1990, 609 visits were made by children aged 1 to 16 years to an emergency clinic for treatment of asthma or reactive airway disease. Monitoring data indicated that maximum ozone levels equalled or exceeded 0.11 ppm on 6 days during the study period. The average number of visits for asthma or reactive airway disease was 37% higher on the days after those 6 days (from 6:00 PM to 6:00 PM the next day) than on other days (95% Cl, RR = 1.02-1.73). The results of the study suggest that among black children from low-income families, asthma may be exacerbated following periods of high ozone pollution. 45 refs., 1 fig., 4 tabs.

  15. Solar photo-ozonation: A novel treatment method for the degradation of water pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Chávez, Ana M.; Rey, Ana; Beltrán, Fernando J.; Álvarez, Pedro M., E-mail: pmalvare@unex.es

    2016-11-05

    Highlights: • Aqueous ozone decomposition is accelerated by solar radiation. • Hydrogen peroxide is identifies as a main intermediate of decomposition of aqueous ozone under solar irradiation. • Solar photo-ozonation leads to higher Rct ratios than single ozonation. • Solar photo-ozonation is a promising AOP for the degradation of water pollutants. - Abstract: The decomposition of aqueous ozone by UV–vis radiation has been investigated with focus on the impact of ozone photolysis on the degradation of water pollutants during solar ozonation processes. The apparent first-order rate constants of the decomposition of ozone (k{sub obs}) have been determined at various pHs in the 4–9 range using radiation of different wavelengths in the UV–vis range. It was found that UVA–visible radiation (λ > 320 nm) highly enhanced ozone decomposition, especially at pH 4, for which k{sub obs} was three-folded with respect to the process in the absence of radiation. Hydrogen peroxide was identified as a main intermediate of ozone photo-decomposition at pH 4. Experiments of degradation of oxalic acid by ozone showed that solar irradiation brings about an increase in the hydroxyl radical to ozone exposures ratio (R{sub ct}). Finally, photo-ozonation (λ > 300 nm) was shown advantageous over single ozonation in the mineralization of a selection of emerging contaminants (metoprolol, ibuprofen, N,N-diethyl-meta-toluamide and clofibric acid) in both ultrapure water and a synthetic secondary effluent. Thus, TOC removal in 2-h treatments increased from 10 to 25% in the absence of radiation to about 50% in the presence of radiation.

  16. Ozone pollution and ozone biomonitoring in European cities. Part I: Ozone concentrations and cumulative exposure indices at urban and suburban sites

    DEFF Research Database (Denmark)

    Klumpp, A.; Ansel, W.; Klumpp, G.

    2006-01-01

    based on hourly mean values, and cumulative ozone exposure indices (Accumulated exposure Over a Threshold of 40 ppb (AOT40), AOT20) were calculated. The diurnal profiles showed a characteristic pattern in most city centres, with minimum values in the early morning hours, a strong rise during the morning......, by contrast, maximum values were lower and diurnal variation was much smaller. Based on ozone concentrations as well as on cumulative exposure indices, a clear north-south gradient in ozone pollution, with increasing levels from northern and northwestern sites to central and southern European sites......, was observed. Only the Spanish cities did not fit this pattern; there, ozone levels were again lower than in central European cities, probably due to the direct influence of strong car traffic emissions. In general, ozone concentrations and cumulative exposure were significantly higher at suburban sites than...

  17. Understanding and improving global crop response to ozone pollution

    Science.gov (United States)

    Concentrations of ground-level ozone ([O3]) over much of the Earth’s land surface have more than doubled since pre-industrial times. The air pollutant is highly variable over time and space, which makes it difficult to assess the average agronomic and economic impacts of the pollutant as well as to ...

  18. Solar photo-ozonation: A novel treatment method for the degradation of water pollutants.

    Science.gov (United States)

    Chávez, Ana M; Rey, Ana; Beltrán, Fernando J; Álvarez, Pedro M

    2016-11-01

    The decomposition of aqueous ozone by UV-vis radiation has been investigated with focus on the impact of ozone photolysis on the degradation of water pollutants during solar ozonation processes. The apparent first-order rate constants of the decomposition of ozone (kobs) have been determined at various pHs in the 4-9 range using radiation of different wavelengths in the UV-vis range. It was found that UVA-visible radiation (λ>320nm) highly enhanced ozone decomposition, especially at pH 4, for which kobs was three-folded with respect to the process in the absence of radiation. Hydrogen peroxide was identified as a main intermediate of ozone photo-decomposition at pH 4. Experiments of degradation of oxalic acid by ozone showed that solar irradiation brings about an increase in the hydroxyl radical to ozone exposures ratio (Rct). Finally, photo-ozonation (λ>300nm) was shown advantageous over single ozonation in the mineralization of a selection of emerging contaminants (metoprolol, ibuprofen, N,N-diethyl-meta-toluamide and clofibric acid) in both ultrapure water and a synthetic secondary effluent. Thus, TOC removal in 2-h treatments increased from 10 to 25% in the absence of radiation to about 50% in the presence of radiation.

  19. Impacts of increasing ozone on Indian plants.

    Science.gov (United States)

    Oksanen, E; Pandey, V; Pandey, A K; Keski-Saari, S; Kontunen-Soppela, S; Sharma, C

    2013-06-01

    Increasing anthropogenic and biogenic emissions of precursor compounds have led to high tropospheric ozone concentrations in India particularly in Indo-Gangetic Plains, which is the most fertile and cultivated area of this rapidly developing country. Current ozone risk models, based on European and North American data, provide inaccurate estimations for crop losses in India. During the past decade, several ozone experiments have been conducted with the most important Indian crop species (e.g. wheat, rice, mustard, mung bean). Experimental work started in natural field conditions around Varanasi area in early 2000's, and the use of open top chambers and EDU (ethylene diurea) applications has now facilitated more advanced studies e.g. for intra-species sensitivity screening and mechanisms of tolerance. In this review, we identify and discuss the most important gaps of knowledge and future needs of action, e.g. more systematic nationwide monitoring for precursor and ozone formation over Indian region.

  20. Mixed deterministic statistical modelling of regional ozone air pollution

    KAUST Repository

    Kalenderski, Stoitchko Dimitrov

    2011-03-17

    We develop a physically motivated statistical model for regional ozone air pollution by separating the ground-level pollutant concentration field into three components, namely: transport, local production and large-scale mean trend mostly dominated by emission rates. The model is novel in the field of environmental spatial statistics in that it is a combined deterministic-statistical model, which gives a new perspective to the modelling of air pollution. The model is presented in a Bayesian hierarchical formalism, and explicitly accounts for advection of pollutants, using the advection equation. We apply the model to a specific case of regional ozone pollution-the Lower Fraser valley of British Columbia, Canada. As a predictive tool, we demonstrate that the model vastly outperforms existing, simpler modelling approaches. Our study highlights the importance of simultaneously considering different aspects of an air pollution problem as well as taking into account the physical bases that govern the processes of interest. © 2011 John Wiley & Sons, Ltd..

  1. Effect of Naturally Occurring Ozone Air Pollution Episodes on Pulmonary Oxidative Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Cheryl Pirozzi

    2015-05-01

    Full Text Available This study aimed to determine if naturally occurring episodes of ozone air pollution in the Salt Lake Valley in Utah, USA, during the summer are associated with increased pulmonary inflammation and oxidative stress, increased respiratory symptoms, and decreased lung function in individuals with chronic obstructive pulmonary disease (COPD compared to controls. We measured biomarkers (nitrite/nitrate (NOx, 8-isoprostane in exhaled breath condensate (EBC, spirometry, and respiratory symptoms in 11 former smokers with moderate-to-severe COPD and nine former smokers without airflow obstruction during periods of low and high ozone air pollution. High ozone levels were associated with increased NOx in EBC in both COPD (8.7 (±8.5 vs. 28.6 (±17.6 μmol/L on clean air vs. pollution days, respectively, p < 0.01 and control participants (7.6 (±16.5 vs. 28.5 (±15.6 μmol/L on clean air vs. pollution days, respectively, p = 0.02. There was no difference in pollution effect between COPD and control groups, and no difference in EBC 8-isoprostane, pulmonary function, or respiratory symptoms between clean air and pollution days in either group. Former smokers both with and without airflow obstruction developed airway oxidative stress and inflammation in association with ozone air pollution episodes.

  2. Global health and economic impacts of future ozone pollution

    Science.gov (United States)

    Selin, N. E.; Wu, S.; Nam, K. M.; Reilly, J. M.; Paltsev, S.; Prinn, R. G.; Webster, M. D.

    2009-10-01

    We assess the human health and economic impacts of projected 2000-2050 changes in ozone pollution using the MIT Emissions Prediction and Policy Analysis - Health Effects (EPPA-HE) model, in combination with results from the GEOS-Chem global tropospheric chemistry model of climate and chemistry effects of projected future emissions. We use EPPA-HE to assess the human health damages (including mortality and morbidity) caused by ozone pollution, and quantify their economic impacts in sixteen world regions. We compare the costs of ozone pollution under scenarios with 2000 and 2050 ozone precursor and greenhouse gas emissions (using the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario). We estimate that health costs due to global ozone pollution above pre-industrial levels by 2050 will be 580 billion (year 2000) and that mortalities from acute exposure will exceed 2 million. We find that previous methodologies underestimate costs of air pollution by more than a third because they do not take into account the long-term, compounding effects of health costs. The economic effects of emissions changes far exceed the influence of climate alone.

  3. Survey the Efficiency of Catalytic Ozonation Process with Carbosieve in the Removal of Benzene from Polluted Air Stream

    Directory of Open Access Journals (Sweden)

    M. Samarghandi

    2014-01-01

    Full Text Available Introduction & Objective: Benzene is one of the most common volatile organic compounds in the indoor and outdoor environments that has always been considered as one of the causes of air pollution. Thus before being discharged to the environment, it must be treated from pol-luted air stream. The aim of this study was to determine the efficiency of catalytic ozonation process with carbosieve in the removal of benzene from polluted air stream. Materials & Methods: The study was experimental in which catalytic ozonation process with carbosieve was used in the removal of benzene from polluted air stream. The experiments were carried out in a reactor with continuous system and the results of catalytic ozonation were compared with the results of single ozonation and carbosieve adsorbent .The sampling, benzene analyzing and determining of ozone concentration in samples were done with 1501 NMAM method by GC equipped with FID detector and iodometry , respectively. Results: The results of this study showed that the removal effectiveness of single ozonation process is averagely less than 19%. Also the efficiency of absorbent decreased with the con-centration increase of benzene.The increase ratio of efficiency in catalytic ozonation process to efficiency of carbosieve adsorbent was averagely 45%. Conclusion: With regard to high efficiency of catalytic ozonation process and increasing the benzene removal , the catalytic ozonation process is suggested as a promising and alternative technology for elimination of VOCs from the polluted air stream. (Sci J Hamadan Univ Med Sci 2014; 20 (4:303-311

  4. Ozone Exposure Increases Circulating Stress Hormones and Lipid Metabolites in Humans

    Science.gov (United States)

    RATIONALE: Air pollution has been associated with increased prevalence of type 2 diabetes; however, the mechanisms remain unknown. We have shown that acute ozone exposure in rats induces release of stress hormones, hyperglycemia, leptinemia, and gluoose intolerance that are assoc...

  5. High winter ozone pollution from carbonyl photolysis in an oil and gas basin

    Science.gov (United States)

    Edwards, Peter M.; Brown, Steven S.; Roberts, James M.; Ahmadov, Ravan; Banta, Robert M.; Degouw, Joost A.; Dubé, William P.; Field, Robert A.; Flynn, James H.; Gilman, Jessica B.; Graus, Martin; Helmig, Detlev; Koss, Abigail; Langford, Andrew O.; Lefer, Barry L.; Lerner, Brian M.; Li, Rui; Li, Shao-Meng; McKeen, Stuart A.; Murphy, Shane M.; Parrish, David D.; Senff, Christoph J.; Soltis, Jeffrey; Stutz, Jochen; Sweeney, Colm; Thompson, Chelsea R.; Trainer, Michael K.; Tsai, Catalina; Veres, Patrick R.; Washenfelder, Rebecca A.; Warneke, Carsten; Wild, Robert J.; Young, Cora J.; Yuan, Bin; Zamora, Robert

    2014-10-01

    The United States is now experiencing the most rapid expansion in oil and gas production in four decades, owing in large part to implementation of new extraction technologies such as horizontal drilling combined with hydraulic fracturing. The environmental impacts of this development, from its effect on water quality to the influence of increased methane leakage on climate, have been a matter of intense debate. Air quality impacts are associated with emissions of nitrogen oxides (NOx = NO + NO2) and volatile organic compounds (VOCs), whose photochemistry leads to production of ozone, a secondary pollutant with negative health effects. Recent observations in oil- and gas-producing basins in the western United States have identified ozone mixing ratios well in excess of present air quality standards, but only during winter. Understanding winter ozone production in these regions is scientifically challenging. It occurs during cold periods of snow cover when meteorological inversions concentrate air pollutants from oil and gas activities, but when solar irradiance and absolute humidity, which are both required to initiate conventional photochemistry essential for ozone production, are at a minimum. Here, using data from a remote location in the oil and gas basin of northeastern Utah and a box model, we provide a quantitative assessment of the photochemistry that leads to these extreme winter ozone pollution events, and identify key factors that control ozone production in this unique environment. We find that ozone production occurs at lower NOx and much larger VOC concentrations than does its summertime urban counterpart, leading to carbonyl (oxygenated VOCs with a C = O moiety) photolysis as a dominant oxidant source. Extreme VOC concentrations optimize the ozone production efficiency of NOx. There is considerable potential for global growth in oil and gas extraction from shale. This analysis could help inform strategies to monitor and mitigate air quality impacts

  6. High winter ozone pollution from carbonyl photolysis in an oil and gas basin.

    Science.gov (United States)

    Edwards, Peter M; Brown, Steven S; Roberts, James M; Ahmadov, Ravan; Banta, Robert M; deGouw, Joost A; Dubé, William P; Field, Robert A; Flynn, James H; Gilman, Jessica B; Graus, Martin; Helmig, Detlev; Koss, Abigail; Langford, Andrew O; Lefer, Barry L; Lerner, Brian M; Li, Rui; Li, Shao-Meng; McKeen, Stuart A; Murphy, Shane M; Parrish, David D; Senff, Christoph J; Soltis, Jeffrey; Stutz, Jochen; Sweeney, Colm; Thompson, Chelsea R; Trainer, Michael K; Tsai, Catalina; Veres, Patrick R; Washenfelder, Rebecca A; Warneke, Carsten; Wild, Robert J; Young, Cora J; Yuan, Bin; Zamora, Robert

    2014-10-16

    The United States is now experiencing the most rapid expansion in oil and gas production in four decades, owing in large part to implementation of new extraction technologies such as horizontal drilling combined with hydraulic fracturing. The environmental impacts of this development, from its effect on water quality to the influence of increased methane leakage on climate, have been a matter of intense debate. Air quality impacts are associated with emissions of nitrogen oxides (NOx = NO + NO2) and volatile organic compounds (VOCs), whose photochemistry leads to production of ozone, a secondary pollutant with negative health effects. Recent observations in oil- and gas-producing basins in the western United States have identified ozone mixing ratios well in excess of present air quality standards, but only during winter. Understanding winter ozone production in these regions is scientifically challenging. It occurs during cold periods of snow cover when meteorological inversions concentrate air pollutants from oil and gas activities, but when solar irradiance and absolute humidity, which are both required to initiate conventional photochemistry essential for ozone production, are at a minimum. Here, using data from a remote location in the oil and gas basin of northeastern Utah and a box model, we provide a quantitative assessment of the photochemistry that leads to these extreme winter ozone pollution events, and identify key factors that control ozone production in this unique environment. We find that ozone production occurs at lower NOx and much larger VOC concentrations than does its summertime urban counterpart, leading to carbonyl (oxygenated VOCs with a C = O moiety) photolysis as a dominant oxidant source. Extreme VOC concentrations optimize the ozone production efficiency of NOx. There is considerable potential for global growth in oil and gas extraction from shale. This analysis could help inform strategies to monitor and mitigate air quality impacts

  7. A Negative Feedback Between Anthropogenic Ozone Pollution and Enhanced Ocean Emissions of Iodine

    Science.gov (United States)

    Saiz-Lopez, A.; Prados-Roman, C.; Cuevas, C.; Fernandez, R.; Lamarque, J. F.; Kinnison, D. E.

    2014-12-01

    Naturally emitted from the oceans, iodine compounds efficiently destroy atmospheric ozone and reduce its positive radiative forcing effects in the troposphere. Emissions of inorganic iodine have been experimentally shown to depend on the deposition to the oceans of tropospheric ozone, whose concentrations have significantly increased since 1850 as a result of human activities. A chemistry-climate model is used to quantify the current ocean emissions of inorganic iodine and assess the impact that the anthropogenic increase of tropospheric ozone has had on the natural cycle of iodine in the marine environment since pre-industrial times. Results included in this communication indicate that the human-driven enhancement of tropospheric ozone has doubled the oceanic inorganic iodine emissions following the reaction of ozone with iodide at the sea surface. The consequent build-up of atmospheric iodine, with maximum enhancements of up to 70% with respect to preindustrial times in continental pollution outflow regions, has in turn accelerated the ozone chemical loss over the oceans with strong spatial patterns. We suggest that this ocean-atmosphere interaction represents a negative geochemical feedback loop by which current ocean emissions of iodine act as a natural buffer for ozone pollution and its radiative forcing in the global marine environment.

  8. N-fixation in legumes--An assessment of the potential threat posed by ozone pollution.

    Science.gov (United States)

    Hewitt, D K L; Mills, G; Hayes, F; Norris, D; Coyle, M; Wilkinson, S; Davies, W

    2016-01-01

    The growth, development and functioning of legumes are often significantly affected by exposure to tropospheric ozone (O3) pollution. However, surprisingly little is known about how leguminous Nitrogen (N) fixation responds to ozone, with a scarcity of studies addressing this question in detail. In the last decade, ozone impacts on N-fixation in soybean, cowpea, mung bean, peanut and clover have been shown for concentrations which are now commonly recorded in ambient air or are likely to occur in the near future. We provide a synthesis of the existing literature addressing this issue, and also explore the effects that may occur on an agroecosystem scale by predicting reductions in Trifolium (clovers) root nodule biomass in United Kingdom (UK) pasture based on ozone concentration data for a "high" (2006) and "average" ozone year (2008). Median 8% and 5% reductions in clover root nodule biomass in pasture across the UK were predicted for 2006 and 2008 respectively. Seasonal exposure to elevated ozone, or short-term acute concentrations >100 ppb, are sufficient to reduce N-fixation and/or impact nodulation, in a range of globally-important legumes. However, an increasing global burden of CO2, the use of artificial fertiliser, and reactive N-pollution may partially mitigate impacts of ozone on N-fixation.

  9. Unequivocal detection of ozone recovery in the Antarctic Ozone Hole through significant increases in atmospheric layers with minimum ozone

    Science.gov (United States)

    de Laat, Jos; van Weele, Michiel; van der A, Ronald

    2015-04-01

    An important new landmark in present day ozone research is presented through MLS satellite observations of significant ozone increases during the ozone hole season that are attributed unequivocally to declining ozone depleting substances. For many decades the Antarctic ozone hole has been the prime example of both the detrimental effects of human activities on our environment as well as how to construct effective and successful environmental policies. Nowadays atmospheric concentrations of ozone depleting substances are on the decline and first signs of recovery of stratospheric ozone and ozone in the Antarctic ozone hole have been observed. The claimed detection of significant recovery, however, is still subject of debate. In this talk we will discuss first current uncertainties in the assessment of ozone recovery in the Antarctic ozone hole by using multi-variate regression methods, and, secondly present an alternative approach to identify ozone hole recovery unequivocally. Even though multi-variate regression methods help to reduce uncertainties in estimates of ozone recovery, great care has to be taken in their application due to the existence of uncertainties and degrees of freedom in the choice of independent variables. We show that taking all uncertainties into account in the regressions the formal recovery of ozone in the Antarctic ozone hole cannot be established yet, though is likely before the end of the decade (before 2020). Rather than focusing on time and area averages of total ozone columns or ozone profiles, we argue that the time evolution of the probability distribution of vertically resolved ozone in the Antarctic ozone hole contains a better fingerprint for the detection of ozone recovery in the Antarctic ozone hole. The advantages of this method over more tradition methods of trend analyses based on spatio-temporal average ozone are discussed. The 10-year record of MLS satellite measurements of ozone in the Antarctic ozone hole shows a

  10. Increase in ozone due to the use of biodiesel fuel rather than diesel fuel.

    Science.gov (United States)

    Thang, Phan Quang; Muto, Yusuke; Maeda, Yasuaki; Trung, Nguyen Quang; Itano, Yasuyuki; Takenaka, Norimichi

    2016-09-01

    The consumption of fuel by vehicles emits nitrogen oxides (NOx) and non-methane hydrocarbons (NMHCs) into the atmosphere, which are important ozone precursors. Ozone is formed as a secondary pollutant via photochemical processes and is not emitted directly into the atmosphere. In this paper, the ozone increase resulting from the use of biodiesel and diesel fuels was investigated, and the different ozone formation trends were experimentally evaluated. Known amounts of exhaust gas from a power generator operated using biodiesel and diesel fuels were added to ambient air. The quality of the ambient air, such as the initial NMHC and NOx concentrations, and the irradiation intensity have an effect on the ozone levels. When 30 cm(3) of biodiesel fuel exhaust gas (BFEG) or diesel fuel exhausted gas (DFEG) was added to 18 dm(3) of ambient air, the highest ratios of ozone increase from BFEG compared with DFEG in Japan and Vietnam were 31.2 and 42.8%, respectively, and the maximum ozone increases resulting from DFEG and BFEG compared with the ambient air in Japan were 17.4 and 26.4 ppb, respectively. The ozone increase resulting from the use of BFEG was large and significant compared to that from DFEG under all experimental conditions. The ozone concentration increased as the amount of added exhaust gas increased. The ozone increase from the Jatropha-BFEG was slightly higher than that from waste cooking oil-BFEG.

  11. Ozone and haze pollution weakens net primary productivity in China

    Science.gov (United States)

    Yue, Xu; Unger, Nadine; Harper, Kandice; Xia, Xiangao; Liao, Hong; Zhu, Tong; Xiao, Jingfeng; Feng, Zhaozhong; Li, Jing

    2017-05-01

    Atmospheric pollutants have both beneficial and detrimental effects on carbon uptake by land ecosystems. Surface ozone (O3) damages leaf photosynthesis by oxidizing plant cells, while aerosols promote carbon uptake by increasing diffuse radiation and exert additional influences through concomitant perturbations to meteorology and hydrology. China is currently the world's largest emitter of both carbon dioxide and short-lived air pollutants. The land ecosystems of China are estimated to provide a carbon sink, but it remains unclear whether air pollution acts to inhibit or promote carbon uptake. Here, we employ Earth system modeling and multiple measurement datasets to assess the separate and combined effects of anthropogenic O3 and aerosol pollution on net primary productivity (NPP) in China. In the present day, O3 reduces annual NPP by 0.6 Pg C (14 %) with a range from 0.4 Pg C (low O3 sensitivity) to 0.8 Pg C (high O3 sensitivity). In contrast, aerosol direct effects increase NPP by 0.2 Pg C (5 %) through the combination of diffuse radiation fertilization, reduced canopy temperatures, and reduced evaporation leading to higher soil moisture. Consequently, the net effects of O3 and aerosols decrease NPP by 0.4 Pg C (9 %) with a range from 0.2 Pg C (low O3 sensitivity) to 0.6 Pg C (high O3 sensitivity). However, precipitation inhibition from combined aerosol direct and indirect effects reduces annual NPP by 0.2 Pg C (4 %), leading to a net air pollution suppression of 0.8 Pg C (16 %) with a range from 0.6 Pg C (low O3 sensitivity) to 1.0 Pg C (high O3 sensitivity). Our results reveal strong dampening effects of air pollution on the land carbon uptake in China today. Following the current legislation emission scenario, this suppression will be further increased by the year 2030, mainly due to a continuing increase in surface O3. However, the maximum technically feasible reduction scenario could drastically relieve the current level of NPP damage by 70 % in 2030

  12. High Concentrations of Ozone Air Pollution on Mount Everest: Health Implications for Sherpa Communities and Mountaineers.

    Science.gov (United States)

    Semple, John L; Moore, G W Kent; Koutrakis, Petros; Wolfson, Jack M; Cristofanelli, Paolo; Bonasoni, Paolo

    2016-12-01

    Semple, John L., G.W. Kent Moore, Petros Koutrakis, Jack M. Wolfson, Paolo Cristofanelli, and Paolo Bonasoni. High concentrations of ozone air pollution on Mount Everest: health implications for Sherpa communities and mountaineers. High Alt Med Biol. 17:365-369, 2016.-Introduction: Populations in remote mountain regions are increasingly vulnerable to multiple climate mechanisms that influence levels of air pollution. Few studies have reported on climate-sensitive health outcomes unique to high altitude ecosystems. In this study, we report on the discovery of high-surface ozone concentrations and the potential impact on health outcomes on Mount Everest and the high Himalaya. Surface ozone measurements were collected during ascending transects in the Mount Everest region of Nepal with passive nitrite-coated Ogawa filter samplers to obtain 8-hour personal exposures (2860-5364 m asl). In addition, the Nepal Climate Observatory-Pyramid, a GAW-WMO Global Station sited in the Khumbu Valley (5079 m asl), collected ozone mixing ratios with photometric gas analyzer. Surface ozone measurements increased with altitude with concentrations that exceed 100 ppb (8-hour exposure). Highest values were during the spring season and the result of diverse contributions: hemispheric background values, the descent of ozone-rich stratospheric air, and the transport of tropospheric pollutants occurring at different spatial scales. Multiple climate factors, including descending stratospheric ozone and imported anthropogenic air masses from the Indo-Gangetic Plain, contribute to ambient ozone exposure levels in the vicinity of Mount Everest that are similar to if not higher than those reported in industrialized cities.

  13. Degradation of Organic Pollutants in Water by Catalytic Ozonation

    Institute of Scientific and Technical Information of China (English)

    LI Xin; YAO Jun-hai; QI Jing-yao

    2007-01-01

    Different series of transition metal catalysts supported on Al2O3 were prepared by the impregnation method. The catalytic activity was measured in a batch reactor with ozone as the oxidizing reagent. The experimental results indicate that Cu/Al2O3 has a very effective catalytic activity during the ozonation of organic pollutants in water. The optimum conditions for preparing Cu/Al2O3 were systematically investigated with the orthogonal testing method. Furthermore, the results also show that the surface properties of catalyst are not compulsory for effective oxidation.

  14. Relationship between ozone and the air pollutants in Peninsular Malaysia for 2003 retrieved from SCIAMACHY

    Science.gov (United States)

    Tan, K. C.; Lim, H. S.; Mat Jafri, M. Z.

    2013-05-01

    Since few decades ago, air pollution has become a hot topic of environmental and atmospheric research due to the impact of air pollution on human health. Ozone is one of the important chemical constituent of the atmosphere, which plays a key role in atmospheric energy budget and chemistry, air quality and global change. Results from the analysis of the retrieved monthly data from Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY (SCIAMACHY) were utilized, in order to analyze the impact of air pollutants (CO2, CH4, H2O, and NO2) on the ozone in Peninsular Malaysia for 2003 using multiple regression analysis. SCIAMACHY onboard ENVISAT as part of the atmospheric chemistry payload of the third European Space Agency (ESA) Earth observation, is the first satellite instrument whose measurements is enough precise and sensitive for all the greenhouse gases to make observation at all atmospheric altitude levels down to the Earth's surface. Among the four pollutants, ozone was most affected by water vapor (H2O vapor), indicated by a strong beta coefficient (-0.769 - 0.997), depends on the seasonal variety. In addition, CO2 also shows a strong Beta coefficient (-0.654 - 0.717) and also affected by the seasonal variation. The variation of pollutants on the average explains change 50.1% of the ozone. This means that about 50.1% of the ozone is attributed to these pollutant gases. The SCIAMACHY data and the satellite measurements successfully identify the increase of the atmospheric air pollutants over the study area.

  15. Plant injury by air pollutants: influence of humidity on stomatal apertures and plant response to ozone.

    Science.gov (United States)

    Otto, H W; Daines, R H

    1969-03-14

    Ozone injury to Bel W3 tobacco and pinto bean plants increases with increasing humidity. The degree of plant injury sustained correlates well with porometer measurements; this indicates that the size of stomatal apertures increases with increasing humidity. Humidity may therefore influence plant response to all pollutants and may account in part for the greater sensitivity of plants to ozone-type injury in the eastern United States compared with the same species of plants grown in the Southwest. with those grown in the Southwest.

  16. Exposure to ozone modulates human airway protease/antiprotease balance contributing to increased influenza A infection

    Science.gov (United States)

    Exposure to oxidant air pollution is associated with Increased respiratory morbiditses and susceptibility to Infections Ozone is a commonly encountered oxidant air pollutant, yet Its effects on influenza infections in humans are not known ‘the greater Mexico City area was the pri...

  17. Impacts of ozonation on the competition between organic micro-pollutants and effluent organic matter in powdered activated carbon adsorption.

    Science.gov (United States)

    Zietzschmann, F; Mitchell, R-L; Jekel, M

    2015-11-01

    This study investigates if ozonation of wastewater treatment plant (WWTP) effluent can reduce the negative impacts of effluent organic matter (EfOM) on the adsorption of organic micro-pollutants (OMP) onto powdered activated carbon (PAC). Pre-treatment of the water included membrane filtration for the removal of suspended/colloidal organics, ozonation with various specific ozone consumptions, and subsequent OMP spiking to comparable initial concentrations in all of the ozonated waters. This approach allowed for comparative PAC adsorption tests. Adsorption analyses show that the adsorbability of EfOM decreases with increasing specific ozone consumptions. This is also reflected by liquid chromatography with online carbon and UV254 detection (LC-OCD) which shows the ozone-induced disintegration of large EfOM into smaller fragments. Also, small organic neutrals are decreased while the small organic acids peak continuously increases with rising specific ozone consumptions. UV254 demonstrates that the aromaticity of all LC-OCD fractions continuously declines together with increasing specific O3 consumptions. This explains the varying EfOM adsorbabilities that occur due to ozonation. The ozone-induced decrease of EfOM adsorbability directly translates into reduced adsorption competition against the adsorption of OMP. With higher specific ozone consumptions, OMP removal and OMP loadings increase. The reduced adsorption competition is reflected in the outputs from equivalent background compound (EBC) modeling. In each of the ozonated waters, correlations between the OMP removals and the UV254 removal were found.

  18. Ozone increases airway hyperreactivity and mucus hyperproduction in mice previously exposed to allergen

    DEFF Research Database (Denmark)

    Larsen, Søren T; Matsubara, Shigeki; McConville, Glen

    2010-01-01

    Acute exacerbations of asthma represent a common clinical problem with major economic impact. Air pollutants including ozone have been shown to contribute to asthma exacerbation, but the mechanisms underlying ozone-induced asthma exacerbation are only partially understood. The present study aimed...... exposure to clean air or 100, 250, or 500 ppb ozone. Ozone induced AHR in mice previously exposed to OVA when compared to non-exposed (saline) control mice. After a 10-d exposure to OVA, a single exposure to a low (100 ppb) ozone concentration was sufficient to induce AHR. The AHR response was associated...... with goblet-cell metaplasia. Even the lowest concentration of ozone tested, 100 ppb, which may be exceeded in urban environments and in the workplace, resulted in a significant increase in AHR, most prominent 24 h after exposure in the OVA-exposed mice....

  19. The effects of global changes upon regional ozone pollution in the United States

    Science.gov (United States)

    Chen, J.; Avise, J.; Lamb, B.; Salathé, E.; Mass, C.; Guenther, A.; Wiedinmyer, C.; Lamarque, J.-F.; O'Neill, S.; McKenzie, D.; Larkin, N.

    2009-02-01

    A comprehensive numerical modeling framework was developed to estimate the effects of collective global changes upon ozone pollution in the US in 2050. The framework consists of the global climate and chemistry models, PCM (Parallel Climate Model) and MOZART-2 (Model for Ozone and Related Chemical Tracers v.2), coupled with regional meteorology and chemistry models, MM5 (Mesoscale Meteorological model) and CMAQ (Community Multi-scale Air Quality model). The modeling system was applied for two 10-year simulations: 1990-1999 as a present-day base case and 2045-2054 as a future case. For the current decade, the daily maximum 8-h moving average (DM8H) ozone mixing ratio distributions for spring, summer and fall showed good agreement with observations. The future case simulation followed the Intergovernmental Panel on Climate Change (IPCC) A2 scenario together with business-as-usual US emission projections and projected alterations in land use, land cover (LULC) due to urban expansion and changes in vegetation. For these projections, US anthropogenic NOx (NO+NO2) and VOC (volatile organic carbon) emissions increased by approximately 6% and 50%, respectively, while biogenic VOC emissions decreased, in spite of warmer temperatures, due to decreases in forested lands and expansion of croplands, grasslands and urban areas. A stochastic model for wildfire emissions was applied that projected 25% higher VOC emissions in the future. For the global and US emission projection used here, regional ozone pollution becomes worse in the 2045-2054 period for all months. Annually, the mean DM8H ozone was projected to increase by 9.6 ppbv (22%). The changes were higher in the spring and winter (25%) and smaller in the summer (17%). The area affected by elevated ozone within the US continent was projected to increase; areas with levels exceeding the 75 ppbv ozone standard at least once a year increased by 38%. In addition, the length of the ozone season was projected to increase with

  20. The effects of global changes upon regional ozone pollution in the United States

    Directory of Open Access Journals (Sweden)

    J. Chen

    2008-08-01

    Full Text Available A comprehensive numerical modeling framework was developed to estimate the effects of collective global changes upon ozone pollution in the US in 2050. The framework consists of the global climate and chemistry models, PCM (Parallel Climate Model and MOZART-2 (Model for Ozone and Related Chemical Tracers v.2, coupled with regional meteorology and chemistry models, MM5 (Mesoscale Meteorological model and CMAQ (Community Multi-scale Air Quality model. The modeling system was applied for two 10-year simulations: 1990–1999 as a present-day base case and 2045–2054 as a future case. The regional simulations employed 36-km grid cells covering the continental US with boundary conditions taken from the global models. For the current decade, the distributions of summer daily maxima 8-h (DM8H ozone showed good agreement with observed distributions throughout the US. The future case simulation followed the Intergovernmental Panel on Climate Change (IPCC A2 scenario together with business-as-usual US emission projections and projected alterations in land use, land cover (LULC due to urban expansion and changes in vegetation. For these projections, US anthropogenic NOx (NO + NO2 and VOC (volatile organic carbon emissions increased by approximately 8% and 50%, respectively, while biogenic VOC emissions decreased, in spite of warmer temperatures, due to decreases in forested lands and expansion of croplands, grasslands and urban areas. A stochastic model for wildfire emissions was applied that projected 25% higher VOC emissions in the future. For the global and US emission projection used here, regional ozone pollution becomes worse in the 2045–2054 period for all months. Annually, the mean DM8H ozone was projected to increase by 9.6 ppbv (22%. The changes were higher in the spring and winter (25% and smaller in the summer (17%. The area affected by elevated ozone within the US continent was projected to increase; areas with levels

  1. The effects of global changes upon regional ozone pollution in the United States

    Directory of Open Access Journals (Sweden)

    J. Chen

    2009-02-01

    Full Text Available A comprehensive numerical modeling framework was developed to estimate the effects of collective global changes upon ozone pollution in the US in 2050. The framework consists of the global climate and chemistry models, PCM (Parallel Climate Model and MOZART-2 (Model for Ozone and Related Chemical Tracers v.2, coupled with regional meteorology and chemistry models, MM5 (Mesoscale Meteorological model and CMAQ (Community Multi-scale Air Quality model. The modeling system was applied for two 10-year simulations: 1990–1999 as a present-day base case and 2045–2054 as a future case. For the current decade, the daily maximum 8-h moving average (DM8H ozone mixing ratio distributions for spring, summer and fall showed good agreement with observations. The future case simulation followed the Intergovernmental Panel on Climate Change (IPCC A2 scenario together with business-as-usual US emission projections and projected alterations in land use, land cover (LULC due to urban expansion and changes in vegetation. For these projections, US anthropogenic NOx (NO+NO2 and VOC (volatile organic carbon emissions increased by approximately 6% and 50%, respectively, while biogenic VOC emissions decreased, in spite of warmer temperatures, due to decreases in forested lands and expansion of croplands, grasslands and urban areas. A stochastic model for wildfire emissions was applied that projected 25% higher VOC emissions in the future. For the global and US emission projection used here, regional ozone pollution becomes worse in the 2045–2054 period for all months. Annually, the mean DM8H ozone was projected to increase by 9.6 ppbv (22%. The changes were higher in the spring and winter (25% and smaller in the summer (17%. The area affected by elevated ozone within the US continent was projected to increase; areas with levels exceeding the 75 ppbv ozone standard at least once a year increased by 38%. In addition, the length of the ozone

  2. The increasing threat to stratospheric ozone from dichloromethane.

    Science.gov (United States)

    Hossaini, Ryan; Chipperfield, Martyn P; Montzka, Stephen A; Leeson, Amber A; Dhomse, Sandip S; Pyle, John A

    2017-06-27

    It is well established that anthropogenic chlorine-containing chemicals contribute to ozone layer depletion. The successful implementation of the Montreal Protocol has led to reductions in the atmospheric concentration of many ozone-depleting gases, such as chlorofluorocarbons. As a consequence, stratospheric chlorine levels are declining and ozone is projected to return to levels observed pre-1980 later this century. However, recent observations show the atmospheric concentration of dichloromethane-an ozone-depleting gas not controlled by the Montreal Protocol-is increasing rapidly. Using atmospheric model simulations, we show that although currently modest, the impact of dichloromethane on ozone has increased markedly in recent years and if these increases continue into the future, the return of Antarctic ozone to pre-1980 levels could be substantially delayed. Sustained growth in dichloromethane would therefore offset some of the gains achieved by the Montreal Protocol, further delaying recovery of Earth's ozone layer.

  3. Geospatial Interpolation and Mapping of Tropospheric Ozone Pollution Using Geostatistics

    Directory of Open Access Journals (Sweden)

    Swatantra R. Kethireddy

    2014-01-01

    Full Text Available Tropospheric ozone (O3 pollution is a major problem worldwide, including in the United States of America (USA, particularly during the summer months. Ozone oxidative capacity and its impact on human health have attracted the attention of the scientific community. In the USA, sparse spatial observations for O3 may not provide a reliable source of data over a geo-environmental region. Geostatistical Analyst in ArcGIS has the capability to interpolate values in unmonitored geo-spaces of interest. In this study of eastern Texas O3 pollution, hourly episodes for spring and summer 2012 were selectively identified. To visualize the O3 distribution, geostatistical techniques were employed in ArcMap. Using ordinary Kriging, geostatistical layers of O3 for all the studied hours were predicted and mapped at a spatial resolution of 1 kilometer. A decent level of prediction accuracy was achieved and was confirmed from cross-validation results. The mean prediction error was close to 0, the root mean-standardized-prediction error was close to 1, and the root mean square and average standard errors were small. O3 pollution map data can be further used in analysis and modeling studies. Kriging results and O3 decadal trends indicate that the populace in Houston-Sugar Land-Baytown, Dallas-Fort Worth-Arlington, Beaumont-Port Arthur, San Antonio, and Longview are repeatedly exposed to high levels of O3-related pollution, and are prone to the corresponding respiratory and cardiovascular health effects. Optimization of the monitoring network proves to be an added advantage for the accurate prediction of exposure levels.

  4. Geospatial interpolation and mapping of tropospheric ozone pollution using geostatistics.

    Science.gov (United States)

    Kethireddy, Swatantra R; Tchounwou, Paul B; Ahmad, Hafiz A; Yerramilli, Anjaneyulu; Young, John H

    2014-01-10

    Tropospheric ozone (O3) pollution is a major problem worldwide, including in the United States of America (USA), particularly during the summer months. Ozone oxidative capacity and its impact on human health have attracted the attention of the scientific community. In the USA, sparse spatial observations for O3 may not provide a reliable source of data over a geo-environmental region. Geostatistical Analyst in ArcGIS has the capability to interpolate values in unmonitored geo-spaces of interest. In this study of eastern Texas O3 pollution, hourly episodes for spring and summer 2012 were selectively identified. To visualize the O3 distribution, geostatistical techniques were employed in ArcMap. Using ordinary Kriging, geostatistical layers of O3 for all the studied hours were predicted and mapped at a spatial resolution of 1 kilometer. A decent level of prediction accuracy was achieved and was confirmed from cross-validation results. The mean prediction error was close to 0, the root mean-standardized-prediction error was close to 1, and the root mean square and average standard errors were small. O3 pollution map data can be further used in analysis and modeling studies. Kriging results and O3 decadal trends indicate that the populace in Houston-Sugar Land-Baytown, Dallas-Fort Worth-Arlington, Beaumont-Port Arthur, San Antonio, and Longview are repeatedly exposed to high levels of O3-related pollution, and are prone to the corresponding respiratory and cardiovascular health effects. Optimization of the monitoring network proves to be an added advantage for the accurate prediction of exposure levels.

  5. The impact of large scale biomass production on ozone air pollution in Europe

    NARCIS (Netherlands)

    Beltman, J.B.; Hendriks, C.; Tum, M.; Schaap, M.

    2013-01-01

    Tropospheric ozone contributes to the removal of air pollutants from the atmosphere but is itself a pollutant that is harmful to human health and vegetation. Biogenic isoprene emissions are important ozone precursors, and therefore future changes in land use that change isoprene emissions are likely

  6. The impact of large scale biomass production on ozone air pollution in Europe

    NARCIS (Netherlands)

    Beltman, J.B.; Hendriks, C.; Tum, M.; Schaap, M.

    2013-01-01

    Tropospheric ozone contributes to the removal of air pollutants from the atmosphere but is itself a pollutant that is harmful to human health and vegetation. Biogenic isoprene emissions are important ozone precursors, and therefore future changes in land use that change isoprene emissions are likely

  7. The impact of large scale biomass production on ozone air pollution in Europe

    OpenAIRE

    Beltman, Joost B.; Hendriks, Carlijn; Tum, Markus; Schaap, Martijn

    2013-01-01

    Tropospheric ozone contributes to the removal of air pollutants from the atmosphere but is itself a pollutant that is harmful to human health and vegetation. Biogenic isoprene emissions are important ozone precursors, and therefore future changes in land use that change isoprene emissions are likely to affect atmospheric ozone concentrations. Here, we use the chemical transport model LOTOS-EUROS (dedicated to the regional modeling of trace gases in Europe) to study a scenario in which 5% of t...

  8. The impact of large scale biomass production on ozone air pollution in Europe

    OpenAIRE

    Joost B. Beltman; Hendriks, Carlijn; Tum, Markus; Schaap, Martijn

    2013-01-01

    Tropospheric ozone contributes to the removal of air pollutants from the atmosphere but is itself a pollutant that is harmful to human health and vegetation. Biogenic isoprene emissions are important ozone precursors, and therefore future changes in land use that change isoprene emissions are likely to affect atmospheric ozone concentrations. Here, we use the chemical transport model LOTOS-EUROS (dedicated to the regional modeling of trace gases in Europe) to study a scenario in which 5% of t...

  9. Ozone pollution and ozone biomonitoring in European cities Part II. Ozone-induced plant injury and its relationship with descriptors of ozone pollution

    DEFF Research Database (Denmark)

    Klumpp, A.; Ansel, W.; Klumpp, G.

    2006-01-01

    Within the scope of a biomonitoring study conducted in twelve urban agglomerations in eight European countries, the ozone-sensitive bioindicator plant Nicotiana tabacum cv. Bel-W3 was employed in order to assess the occurrence of phytotoxic ozone effects at urban, suburban, rural and traffic....... This is because the actual ozone flux into the leaf, which is modified by various environmental factors, rather than ambient ozone concentration determines the effects on plants. The advantage of sensitive bioindicators like tobacco Bel-W3 is that the impact of the effectively absorbed ozone dose can directly...

  10. Exposure to ozone modulates human airway protease/antiprotease balance contributing to increased influenza A infection.

    Directory of Open Access Journals (Sweden)

    Matthew J Kesic

    Full Text Available Exposure to oxidant air pollution is associated with increased respiratory morbidities and susceptibility to infections. Ozone is a commonly encountered oxidant air pollutant, yet its effects on influenza infections in humans are not known. The greater Mexico City area was the primary site for the spring 2009 influenza A H1N1 pandemic, which also coincided with high levels of environmental ozone. Proteolytic cleavage of the viral membrane protein hemagglutinin (HA is essential for influenza virus infectivity. Recent studies suggest that HA cleavage might be cell-associated and facilitated by the type II transmembrane serine proteases (TTSPs human airway trypsin-like protease (HAT and transmembrane protease, serine 2 (TMPRSS2, whose activities are regulated by antiproteases, such as secretory leukocyte protease inhibitor (SLPI. Based on these observations, we sought to determine how acute exposure to ozone may modulate cellular protease/antiprotease expression and function, and to define their roles in a viral infection. We utilized our in vitro model of differentiated human nasal epithelial cells (NECs to determine the effects of ozone on influenza cleavage, entry, and replication. We show that ozone exposure disrupts the protease/antiprotease balance within the airway liquid. We also determined that functional forms of HAT, TMPRSS2, and SLPI are secreted from human airway epithelium, and acute exposure to ozone inversely alters their expression levels. We also show that addition of antioxidants significantly reduces virus replication through the induction of SLPI. In addition, we determined that ozone-induced cleavage of the viral HA protein is not cell-associated and that secreted endogenous proteases are sufficient to activate HA leading to a significant increase in viral replication. Our data indicate that pre-exposure to ozone disrupts the protease/antiprotease balance found in the human airway, leading to increased influenza susceptibility.

  11. Ozone Inhalation Leads to a Dose-Dependent Increase of Cytogenetic Damage in Human Lymphocytes

    Science.gov (United States)

    Holland, Nina; Davé, Veronica; Venkat, Subha; Wong, Hofer; Donde, Aneesh; Balmes, John R; Arjomandi, Mehrdad

    2014-01-01

    Ozone is an important constituent of ambient air pollution and represents a major public health concern. Oxidative injury due to ozone inhalation causes the generation of reactive oxygen species and can be genotoxic. To determine whether ozone exposure causes genetic damage in peripheral blood lymphocytes, we employed a well-validated cytokinesis-block micronucleus Cytome assay. Frequencies of micronuclei (MN) and nucleoplasmic bridges (NB) were used as indicators of cytogenetic damage. Samples were obtained from 22 non-smoking healthy subjects immediately before and 24-hr after controlled 4-hr exposures to filtered air, 100 ppb, and 200 ppb ozone while exercising in a repeated-measure study design. Inhalation of ozone at different exposure levels was associated with a significant dose-dependent increase in MN frequency (P < 0.0001) and in the number of cells with more than 1 MN per cell (P < 0.0005). Inhalation of ozone also caused an increase in the number of apoptotic cells (P = 0.002). Airway neutrophilia was associated with an increase in MN frequency (P = 0.033) independent of the direct effects of ozone exposure (P < 0.0001). We also observed significant increases in both MN and NB frequencies after exercise in filtered air, suggesting that physical activity is also an important inducer of oxidative stress. These results corroborate our previous findings that cytogenetic damage is associated with ozone exposure, and show that damage is dose-dependent. Further study of ozone-induced cytogenetic damage in airway epithelial cells could provide evidence for the role of oxidative injury in lung carcinogenesis, and help to address the potential public health implications of exposures to oxidant environments. PMID:25451016

  12. The Bihar Pollution Pool as observed from MOPITT (version 4, CALIPSO (version 3 and tropospheric ozone residual data

    Directory of Open Access Journals (Sweden)

    J. Kar

    2010-09-01

    Full Text Available The Bihar pollution pool is a large wintertime increase in pollutants over the eastern parts of the Indo Gangetic basin. We use improved carbon monoxide (CO retrievals from the recent Measurements of Pollution in the Troposphere (MOPITT version 4 data along with the aerosol data from the latest version 3 of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO lidar instrument and the tropospheric ozone residual products from the Total Ozone Mapping Spectrometer (TOMS/Solar Backscattered Ultraviolet (SBUV and Ozone Monitoring Instrument (OMI/Microwave Limb Sounder (MLS database to characterize this pollution pool. The feature is seen primarily in the lower troposphere from about November to February with strong concomitant increase in CO, aerosol optical depth and tropospheric ozone columns. The height resolved aerosol data from CALIPSO confirm the trapping of the pollution pool at the lowest altitudes. The observations indicate that MOPITT can capture this low altitude phenomenon even in winter conditions as indicated by the averaging kernels.

  13. Nutritional traits of bean ( Phaseolus vulgaris ) seeds from plants chronically exposed to ozone pollution.

    Science.gov (United States)

    Iriti, Marcello; Di Maro, Antimo; Bernasconi, Silvana; Burlini, Nedda; Simonetti, Paolo; Picchi, Valentina; Panigada, Cinzia; Gerosa, Giacomo; Parente, Augusto; Faoro, Franco

    2009-01-14

    The effect of chronic exposure to ozone pollution on nutritional traits of bean ( Phaseolus vulgaris L. cv. Borlotto Nano Lingua di Fuoco) seeds from plants grown in filtered and nonfiltered open-top chambers (OTCs) has been investigated. Results showed that, among seed macronutrients, ozone significantly raised total lipids, crude proteins, and dietary fiber and slightly decreased total free amino acid content, although with a significant reduction of asparagine, lysine, valine, methionine, and glycine, compensated by a conspicuous augmentation of ornithine and tryptophan. Phytosterol analysis showed a marked increase of beta-sitosterol, stigmasterol, and campesterol in seeds collected from nonfiltered OTCs. With regard to secondary metabolites, ozone exposure induced a slight increase of total polyphenol content, although causing a significant reduction of some flavonols (aglycone kaempferol and its 3-glucoside derivative) and hydroxycinnamates (caffeic, p-coumaric, and sinapic acids). Total anthocyanins decreased significantly, too. Nevertheless, ozone-exposed seeds showed higher antioxidant activity, with higher Trolox equivalent antioxidant capacity (TEAC) values than those measured in seeds collected from filtered air.

  14. Air pollutants degrade floral scents and increase insect foraging times

    Science.gov (United States)

    Fuentes, Jose D.; Chamecki, Marcelo; Roulston, T.'ai; Chen, Bicheng; Pratt, Kenneth R.

    2016-09-01

    Flowers emit mixtures of scents that mediate plant-insect interactions such as attracting insect pollinators. Because of their volatile nature, however, floral scents readily react with ozone, nitrate radical, and hydroxyl radical. The result of such reactions is the degradation and the chemical modification of scent plumes downwind of floral sources. Large Eddy Simulations (LES) are developed to investigate dispersion and chemical degradation and modification of floral scents due to reactions with ozone, hydroxyl radical, and nitrate radical within the atmospheric surface layer. Impacts on foraging insects are investigated by utilizing a random walk model to simulate insect search behavior. Results indicate that even moderate air pollutant levels (e.g., ozone mixing ratios greater than 60 parts per billion on a per volume basis, ppbv) substantially degrade floral volatiles and alter the chemical composition of released floral scents. As a result, insect success rates of locating plumes of floral scents were reduced and foraging times increased in polluted air masses due to considerable degradation and changes in the composition of floral scents. Results also indicate that plant-pollinator interactions could be sensitive to changes in floral scent composition, especially if insects are unable to adapt to the modified scentscape. The increase in foraging time could have severe cascading and pernicious impacts on the fitness of foraging insects by reducing the time devoted to other necessary tasks.

  15. The Effect of Air Pollution on Ozone Layer Thickness in Troposphere over the State of Kuwait

    Directory of Open Access Journals (Sweden)

    H. O. Al Jeran

    2009-01-01

    Full Text Available Troposphere ozone layer acts as a shield against all ultraviolet radiation approaching the planet Earth through absorption. It was noticed in mid 80s that ozone layer has thinned on the poles of the planet due to release of man-made substances commonly known as Ozone Depleting Substances, (ODS into its atmosphere. The consequences of this change are adverse as the harmful radiations reach to the surface of the earth, strongly influencing the crops yield and vegetation. These radiations are major cause of skin cancer that has long exposure to Ultra Violet (UV radiation. United States environmental protection agency and European community have imposed strict regulations to curb the emission of ODS and phase out schedules for the manufacture and use of ODS that was specified by Montreal protocol in 1987. Problem statement: This research deled with data analysis of ozone layer thickness obtained from Abu-Dhabi station and detailed measurement of air pollution levels in Kuwait. Approach: The ozone layer thickness in stratosphere had been correlated with the measured pollution levels in the State of Kuwait. The influence of import of ozone depletion substances for the last decade had been evaluated. Other factor that strongly affects the ozone layer thickness in stratosphere is local pollution levels of primary pollutants such as total hydrocarbon compounds and nitrogen oxides. Results: The dependency of ozone layer thickness on ambient pollutant levels presented in detail reflecting negative relation of both non-methane hydrocarbon and nitrogen oxide concentrations in ambient air. Conclusion: Ozone layer thickness in stratosphere had been measured for five years (1999-2004 reflecting minimum thickness in the month of December and maximum in the month of June. The ozone thickness related to the ground level concentration of non-methane hydrocarbon and can be used as an indicator of the health of ozone layer thickness in the stratosphere.

  16. Springtime daily variations in lower-tropospheric ozone over east Asia: the role of cyclonic activity and pollution as observed from space with IASI

    Science.gov (United States)

    Dufour, G.; Eremenko, M.; Cuesta, J.; Doche, C.; Foret, G.; Beekmann, M.; Cheiney, A.; Wang, Y.; Cai, Z.; Liu, Y.; Takigawa, M.; Kanaya, Y.; Flaud, J.-M.

    2015-09-01

    large polluted regions significantly contributes to the ozone enhancements observed in the lower troposphere via IASI. When low-pressure systems circulate over the NCP, stratospheric and pollution sources play a concomitant role in the ozone enhancement. IASI's 3-D observational capability allows the areas in which each source dominates to be determined. Moreover, the studied cut-off low system has enough potential convective capacity to uplift pollutants (ozone and CO) and to transport them to Japan. The increase in the enhancement ratio of ozone to CO from 0.16 on 12 May over the North China Plain to 0.28 over the Sea of Japan on 14 May indicates photochemical processing during the plume transport.

  17. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Wai Kit, E-mail: kekyeung@ust.hk [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Joueet, Justine; Heng, Samuel; Yeung, King Lun [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Schrotter, Jean-Christophe [Water Research Center of Veolia, Anjou Recherche, Chemin de la Digue, BP 76. 78603, Maisons Laffitte, Cedex (France)

    2012-05-15

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: Black-Right-Pointing-Pointer Novel reactor using membranes for ozone distributor, reaction contactor and water separator. Black-Right-Pointing-Pointer Designed to achieve an order of magnitude enhancement over traditional reactor. Black-Right-Pointing-Pointer Al{sub 2}O{sub 3} and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. Black-Right-Pointing-Pointer High surface area coating prevents polarization and improves membrane separation and life.

  18. Acute effects of ozone on mortality from the "Air pollution and health : A European approach" project

    NARCIS (Netherlands)

    Gryparis, A; Forsberg, B; Katsouyanni, K; Analitis, A; Touloumi, G; Schwartz, J; Samoli, E; Medina, S; Anderson, HR; Niciu, EM; Wichmann, HE; Kriz, B; Kosnik, M; Skorkovsky, J; Vonk, JM; Dortbudak, Z

    2004-01-01

    In the Air Pollution and Health: A European Approach (APHEA2) project, the effects of ambient ozone concentrations on mortality were investigated. Data were collected on daily ozone concentrations, the daily number of deaths, confounders, and potential effect modifiers from 23 cities/areas for at le

  19. Effects of trans-Eurasian transport of air pollutants on surface ozone concentrations over Western China

    Science.gov (United States)

    Li, Xiaoyuan; Liu, Junfeng; Mauzerall, Denise L.; Emmons, Louisa K.; Walters, Stacy; Horowitz, Larry W.; Tao, Shu

    2014-11-01

    Due to a lack of industrialization in Western China, surface air there was, until recently, believed to be relatively unpolluted. However, recent measurements and modeling studies have found high levels of ozone (O3) there. Based on the state-of-the-science global chemical transport model MOZART-4, we identify the origin, pathway, and mechanism of trans-Eurasian transport of air pollutants to Western China in 2000. MOZART-4 generally simulates well the observed surface O3 over inland areas of China. Simulations find surface ozone concentrations over Western China on average to be about 10 ppbv higher than Eastern China. Using sensitivity studies, we find that anthropogenic emissions from all Eurasian regions except China contribute 10-15 ppbv surface O3 over Western China, superimposed upon a 35-40 ppbv natural background. Transport from European anthropogenic sources to Northwestern China results in 2-6 ppbv O3 enhancements in spring and summer. Indian anthropogenic sources strongly influence O3 over the Tibetan Plateau during the summer monsoon. Transport of O3 originating from emissions in the Middle East occasionally reach Western China and increase surface ozone there by about 1-4 ppbv. These influences are of similar magnitude as trans-Pacific and transatlantic transport of O3 and its precursors, indicating the significance of trans-Eurasian ozone transport in hemispheric transport of air pollution. Our study further indicates that mitigation of anthropogenic emissions from Europe, the Indian subcontinent, and the Middle East could benefit public health and agricultural productivity in Western China.

  20. Effects of trans-Eurasian transport of anthropogenic pollutants on surface ozone concentrations over China

    Science.gov (United States)

    Liu, J.; Li, X.; Mauzerall, D. L.; Emmons, L. K.; Horowitz, L. W.; Guo, Y.; Tao, S.

    2015-12-01

    Due to a lack of industrialization in Western China, surface air there was, until recently, believed to be relatively unpolluted. However, recent measurements and modeling studies have found high levels of ozone (O3) there. Based on the state-of-the-science global chemical transport model MOZART-4, we identify the origin, pathway, and mechanism of trans-Eurasian transport of air pollutants to Western China in 2000. MOZART-4 generally simulates well the observed surface O3 over inland areas of China. Simulations find surface ozone concentrations over Western China on average to be about 10 ppbv higher than Eastern China. Using sensitivity studies as well as a fully-tagged approach, we find that anthropogenic emissions from all Eurasian regions except China contribute 10-15 ppbv surface O3 over Western China, superimposed upon a 35-40 ppbv natural background. Transport from European anthropogenic sources to Northwestern China results in 2-6 ppbv O3 enhancements in spring and summer. Indian anthropogenic sources strongly influence O3 over the Tibetan Plateau during the summer monsoon. Transport of O3 originating from emissions in the Middle East occasionally reach Western China and increase surface ozone there by about 1-4 ppbv. These influences are of similar magnitude as trans-Pacific and transatlantic transport of O3 and its precursors, indicating the significance of trans-Eurasian ozone transport in hemispheric transport of air pollution. Our study further indicates that mitigation of anthropogenic emissions from Europe, the Indian subcontinent, and the Middle East could benefit public health and agricultural productivity in Western China.

  1. Ozone and Pollution Measuring Ultraviolet Spectrometer (OPUS): an overview

    Science.gov (United States)

    Kuze, A.; Suzuki, M.; Sano, T.; Watanabe, M.; Yoshida, S.; Yui, Y.; Okumura, S.; Shibasaki, K.; Ogawa, T.

    Atmospheric composition measurements from space are essential for monitoring earth's environment. Ozone and Pollution Measuring Ultraviolet Spectrometer (OPUS) is a nadir-looking, cross-track scanning ultraviolet spectrometer, which will be onboard Global Change Observation Mission-A1 (GCOM-A1). It will be placed in a 650 km non-sun-synchronous orbit in 2007, with an inclination angle of 69 deg. OPUS consists of a mechanical scanner, a Fastie-Ebert type polychromator with a one-dimensional UV Si-CMOS array detector, and a radiometer for cloud detection using O2 A band. It will provide information about cloud height and tropospheric O3 , SO2 , NO2 , BrO, OClO, HCHO, as well as the global distribution of total O3 , surface albedo, and aerosol in one day. This paper describes scientific objectives, instrument design, and retrieval algorithm. Pre-launch calibration, onboard calibration, and validation plan will be also presented. In addition, the ground test results using laboratory models will be discussed.

  2. Subsidies to Increase Remote Pollution?

    Science.gov (United States)

    Kliestikova, Jana; Krizanova, Anna; Corejova, Tatiana; Kral, Pavol; Spuchlakova, Erika

    2017-04-12

    During the last decade, Central Europe became a cynosure for the world for its unparalleled public support for renewable energy. For instance, the production of electricity from purpose-grown biomass received approximately twice the amount in subsidies as that produced from biowaste. Moreover, the guaranteed purchase price of electricity from solar panels was set approximately five times higher than that from conventional sources. This controversial environmental donation policy led to the devastation of large areas of arable land, a worsening of food availability, unprecedented market distortions, and serious threats to national budgets, among other things. Now, the first proposals to donate the purchase price of electric vehicles (and related infrastructure) from national budgets have appeared for public debate. Advocates of these ideas argue that they can solve the issue of electricity overproduction, and that electric vehicles will reduce emissions in cities. However, our analysis reveals that, as a result of previous scandals, environmental issues have become less significant to local citizens. Given that electric cars are not yet affordable for most people, in terms of local purchasing power, this action would further undermine national budgets. Furthermore, while today's electromobiles produce zero pollution when operated, their sum of emissions (i.e. global warming potential) remains much higher than that of conventional combustion engines. Therefore, we conclude that the mass usage of electromobiles could result in the unethical improvement of a city environment at the expense of marginal regions.

  3. Ozone depletion, related UVB changes and increased skin cancer incidence

    Science.gov (United States)

    Kane, R. P.

    1998-03-01

    Stratospheric ozone at middle latitudes shows a seasonal variation of about +/-20%, a quasi-biennial oscillation of 1-10% range and a long-term variation in which the level was almost steady up to about 1979 and declined thereafter to the present day by about 10%. These variations are expected to be reflected in solar UVB observed at the ground, but in an opposite direction. Thus UVB should have had a long-term increase of about 10-20%, which should cause an increase in skin cancer incidence of about 20-40%. Skin cancer incidence has increased all over the world, e.g. about 90% in USA during 1974-1990. It is popularly believed that this increase in skin cancer incidence is related to the recent ozone depletion. This seems to be incorrect, for two reasons. Firstly, the observed skin cancer increase is too large (90%) compared with the expected value (40%) from ozone depletion. Secondly, cancer does not develop immediately after exposure to solar UVB. The sunburns may occur within hours; but cancer development and detection may take years, even decades. Hence the observed skin cancer increase since 1974 (no data available for earlier periods) must have occurred due to exposure to solar UVB in the 1950s and 1960s, when there was no ozone depletion. Thus, the skin cancer increase must be attributed to harmful solar UVB levels existing even in the 1960s, accentuated later not by ozone depletion (which started only much later, by 1979) but by other causes, such as a longer human life span, better screening, increasing tendencies of sunbathing at beaches, etc., in affluent societies. On the other hand, the recent ozone depletion and the associated UVB increases will certainly take their toll; only that the effects will not be noticed now but years or decades from now. The concern for the future expressed in the Montreal Protocol for reducing ozone depletion by controlling CFC production is certainly justified, especially because increased UVB is harmful to animal and

  4. Maternal Diesel Inhalation Increases Airway Hyperreactivity in Ozone Exposed Offspring

    Science.gov (United States)

    Air pollutant exposure is linked with childhood asthma incidence and exacerbations, and maternal exposure to airborne pollutants during pregnancy increases airway hyperreactivity (ARR) in offspring. To determine if exposure to diesel exhaust during pregnancy worsened postnatal oz...

  5. Air pollution affects food security in China: taking ozone as an example

    Directory of Open Access Journals (Sweden)

    Zhaozhong FENG,Xuejun LIU,Fusuo ZHANG

    2015-06-01

    Full Text Available Air pollution is becoming an increasingly important environmental concern due to its visible negative impact on human health. However, air pollution also affects agricultural crops or food security directly or indirectly, which has not so far received sufficient attention. In this overview, we take ozone (O3 as an example to analyze the principles and extent of the impact of air pollution on food security in China based on a review of the literature. Current O3 pollution shows a clear negative impact on food security, causing around a 10% yield decrease for major cereal crops according to a large number of field studies around the world. The mean yield decrease of winter wheat is predicted to be up to 20% in China, based on the projection of future ground-level O3 concentration in 2020, if no pollution control measures are implemented. Strict mitigation of NOx and VOCs (two major precursors of O3 emissions is crucial for reducing the negative impacts of ground-level O3 on food security. Breeding new crop cultivars with tolerance to high ground-level O3 should receive serious consideration in future research programs. In addition, integrated soil-crop system management will be an important option to mitigate the negative effects of elevated ground-level O3 on cereal crop production and food quality.

  6. Relationship Between Outdoor and Indoor Ozone Pollution Concentration

    Institute of Scientific and Technical Information of China (English)

    DU Xiaogang; LIU Junjie

    2009-01-01

    This paper analyses the changing rule of indoor ozone concentration and its influencing factors. A for-mula of indoor-outdoor concentration ratio(I/O ratio)was deduced based on the indoor ozone mass-balance equa-tion. The ozone I/O ratio in different kinds of buildings was studied. Results show that I/O ratio is much related to air-exchange rate, which is well compatible with the theoretical calculation results.

  7. Stratospheric ozone depletion from future nitrous oxide increases

    Directory of Open Access Journals (Sweden)

    W. Wang

    2014-12-01

    Full Text Available We have investigated the impact of the assumed nitrous oxide (N2O increases on stratospheric chemistry and dynamics using a series of idealized simulations with a coupled chemistry-climate model (CCM. In a future cooler stratosphere the net yield of NOy from N2O is shown to decrease in a reference run following the IPCC A1B scenario, but NOy can still be significantly increased by extra increases of N2O over 2001–2050. Over the last decade of simulations, 50% increases in N2O result in a maximal 6% reduction in ozone mixing ratios in the middle stratosphere at around 10 hPa and an average 2% decrease in the total ozone column (TCO compared with the control run. This enhanced destruction could cause an ozone decline in the first half of this century in the middle stratosphere around 10 hPa, while global TCO still shows an increase at the same time. The results from a multiple linear regression analysis and sensitivity simulations with different forcings show that the chemical effect of N2O increases dominates the N2O-induced ozone depletion in the stratosphere, while the dynamical and radiative effects of N2O increases are overall insignificant. The analysis of the results reveals that the ozone depleting potential of N2O varies with the time period and is influenced by the environmental conditions. For example, carbon dioxide (CO2 increases can strongly offset the ozone depletion effect of N2O.

  8. Increasing surface ozone concentrations in the background atmosphere of southern China, 1994–2007

    Directory of Open Access Journals (Sweden)

    L. Y. Chan

    2009-04-01

    Full Text Available Tropospheric ozone is of great importance with regard to air quality, atmospheric chemistry, and climate change. In this paper we report the first continuous record of surface ozone in the background atmosphere of South China. The data were obtained from 1994 to 2007 at a coastal site in Hong Kong, which is strongly influenced by the outflow of Asian continental air during the winter and the inflow of maritime air from the subtropics in the summer. Overall, the ozone concentration increased by an averaged rate of 0.55 ppbv/yr, with a larger increase in autumn (0.68 ppbv/yr. We also examine the trend in air masses from various source regions in Asia. Using local wind and concurrently measured carbon monoxide (CO data to filter out local emissions, the mean ozone in air masses from eastern China, using the pooled averaging method, increased by 0.64 ppbv/yr, while ozone levels in other air-mass groups showed a positive trend (0.29–0.67 ppbv/yr but with lower levels of statistical significance. An examination of the nitrogen dioxide (NO2 column concentration data obtained from GOME and SCIAMACHY reveals an increase in atmospheric NO2 in the three fastest developing coastal regions of China, whereas NO2 in other parts of Asia decreased during the same period. It is believed that the observed increase in background ozone in Hong Kong is primarily due to the increased emissions of NO2 (and possibly volatile organic compounds (VOCs as well in the upwind coastal regions of mainland China, which is supported by the observed positive CO trend (5.23 ppbv/yr at the site. The increase in background ozone contributed two thirds of the annual increase in ''total ozone'' in the downwind urban areas of Hong Kong, suggesting the need to consider distant sources when developing long-term strategies to mitigate local ozone pollution, although short-term strategies should be aimed at sources in Hong Kong and the adjacent Pearl River Delta.

  9. Cost-Effective Control of Ground-Level Ozone Pollution in and around Beijing

    Institute of Scientific and Technical Information of China (English)

    Xie Xuxuan; Zhang Shiqiu; Xu Jianhua; Wu Dan; Zhu Tong

    2012-01-01

    Ground level ozone pollution has become a significant air pollution problem in Beijing. Because of the complex way in which ozone is formed, it is difficult for policy makers to identify optimal control options on a cost-effective basis. This paper identi- fies and assesses a range of options for addressing this problem. We apply the Ambient Least Cost Model and compare the eco- nomic costs of control options, then recommend the most effective sequence to realize pollution control at the lowest cost. The study finds that installing of Stage II gasoline vapor recovery system at Beijing's 1446 gasoline stations would be the most cost-effective option. Overall, options to reduce ozone pollution by cutting ve- hicular emissions are much more cost-effective than options to "clean up" coal-fired power plants.

  10. The influence of European pollution on ozone in the Near East and northern Africa

    Directory of Open Access Journals (Sweden)

    B. N. Duncan

    2008-02-01

    Full Text Available We present a modeling study of the long-range transport of pollution from Europe, showing that European emissions regularly elevate surface ozone by as much as 20 ppbv in summer in northern Africa and the Near East. European emissions cause 50–150 additional violations per year (i.e., above those that would occur without European pollution of the European health standard for ozone (8-h average >120 μg/m3 or ~60 ppbv in northern Africa and the Near East. We estimate that 19 000 additional mortalities occur annually in these regions from exposure to European ozone pollution and 50 000 additional deaths globally; the majority of the additional deaths occurs outside of Europe. Much of the pollution from Europe is exported southward at low altitudes in summer to the Mediterranean Sea, northern Africa and the Near East, regions with favorable photochemical environments for ozone production. Our results suggest that assessments of the human health benefits of reducing ozone precursor emissions in Europe should include effects outside of Europe, and that comprehensive planning to improve air quality in northern Africa and the Near East likely needs to address European emissions. We also show that the tropospheric ozone column data product derived from the OMI and MLS instruments is currently of limited value for air quality applications as the portion of the column above the boundary layer and below the tropopause is large and variable, effectively obscuring the boundary layer signal.

  11. Plant volatile organic compounds (VOCs) in ozone (O3) polluted atmospheres: the ecological effects.

    Science.gov (United States)

    Pinto, Delia M; Blande, James D; Souza, Silvia R; Nerg, Anne-Marja; Holopainen, Jarmo K

    2010-01-01

    Tropospheric ozone (O3) is an important secondary air pollutant formed as a result of photochemical reactions between primary pollutants, such as nitrogen oxides (NOx), and volatile organic compounds (VOCs). O3 concentrations in the lower atmosphere (troposphere) are predicted to continue increasing as a result of anthropogenic activity, which will impact strongly on wild and cultivated plants. O3 affects photosynthesis and induces the development of visible foliar injuries, which are the result of genetically controlled programmed cell death. It also activates many plant defense responses, including the emission of phytogenic VOCs. Plant emitted VOCs play a role in many eco-physiological functions. Besides protecting the plant from abiotic stresses (high temperatures and oxidative stress) and biotic stressors (competing plants, micro- and macroorganisms), they drive multitrophic interactions between plants, herbivores and their natural enemies e.g., predators and parasitoids as well as interactions between plants (plant-to-plant communication). In addition, VOCs have an important role in atmospheric chemistry. They are O3 precursors, but at the same time are readily oxidized by O3, thus resulting in a series of new compounds that include secondary organic aerosols (SOAs). Here, we review the effects of O3 on plants and their VOC emissions. We also review the state of current knowledge on the effects of ozone on ecological interactions based on VOC signaling, and propose further research directions.

  12. Air Pollution and Watershed Research in the Central Sierra Nevada of California: Nitrogen and Ozone

    OpenAIRE

    2007-01-01

    Maintaining healthy forests is the major objective for the Forest Service scientists and managers working for the U.S. Department of Agriculture. Air pollution, specifically ozone (O3) and nitrogenous (N) air pollutants, may severely affect the health of forest ecosystems in the western U.S. Thus, the monitoring of air pollution concentration and deposition levels, as well as studies focused on understanding effects mechanisms, are essential for evaluation of risks associated with their prese...

  13. Ozone pollution affects flower numbers and timing in a simulated BAP priority calcareous grassland community.

    Science.gov (United States)

    Hayes, Felicity; Williamson, Jennifer; Mills, Gina

    2012-04-01

    Mesocosms representing the BAP Priority habitat 'Calcareous Grassland' were exposed to eight ozone profiles for twelve-weeks in two consecutive years. Half of the mesocosms received a reduced watering regime during the exposure periods. Numbers and timing of flowering in the second exposure period were related to ozone concentration and phytotoxic ozone dose (accumulated stomatal flux). For Lotus corniculatus, ozone accelerated the timing of the maximum number of flowers. An increase in mean ozone concentration from 30ppb to 70ppb corresponded with an advance in the timing of maximum flowering by six days. A significant reduction in flower numbers with increasing ozone was found for Campanula rotundifolia and Scabiosa columbaria and the relationship with ozone was stronger for those that were well-watered than for those with reduced watering. These changes in flowering timing and numbers could have large ecological impacts, affecting plant pollination and the food supply of nectar feeding insects.

  14. Regional ozone pollution and key controlling factors of photochemical ozone production in Pearl River Delta during summer time

    Institute of Scientific and Technical Information of China (English)

    CHANG; ChihChung; CHOU; C.K.Charles; Andreas; Wahner

    2010-01-01

    An intensive field campaign including measurements from the environmental monitoring network and from two super sites took place in the Pearl River Delta region in summer 2006.Using routinely measured O3 and NOx concentrations,the spatial and temporal variation of O3 and of the total oxidant concentrations was characterized.According to the spatial variability of NO2/NO,the two super sites were found to be representative of polluted urban and downwind suburban conditions.In addition,both sites were located in high O3 regions.In-depth diagnostic of photochemical ozone production processes and their key controlling factors are achieved with an observation-based model(OBM) to gain regional perspectives.Budget analysis and sensitivity model runs show that aldehyde and HONO chemistry had significant impacts on local photochemical ozone production rates.The analysis of calculated Relative Incremental Reactivities shows that photochemical ozone production rates are mainly sensitive to anthropogenic hydrocarbons(HCs) in the polluted urban areas.In the suburban areas,sensitivity to nitrogen oxide(NO) concentrations dominated.Key anthropogenic HCs in both areas are alkenes and aromatics.Significant differences of ozone production efficiencies are identified between the urban and suburban regions,consistent with the OBM diagnosed results.

  15. Modeling of organic pollutant destruction in a stirred-tank reactor by ozonation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Destruction of organic contaminants in water by ozonation is a gas-liquid process which involves ozone mass transfer and fast irreversible chemical reactions. Ozonation reactor design and process optimizing require the modeling of the gas-liquid interactions within the reactor. In this paper a theoretical model combining the fluid dynamic and reaction kineticparameters is proposed for predicting the destruction rates of organic pollutants in a semi-batch stirred-tank reactor by ozonation. A simple expression for the enhancement factor as ourprevious work (Cheng, 2000) has been applied to evaluate the chemical mass transfer coefficient in ozone absorption.2,4-dichlorophenol (2,4-DCP) and 2,6-DCP or their mixture are chosen as the model compounds for simulating, and the predicted DCP oundation item: The National Natural Science Foundation of China (No. 20006006) ncentrations are compared with some measured data.

  16. The effects of global changes upon regional ozone pollution in the United States

    OpenAIRE

    Chen, NE

    2009-01-01

    A comprehensive numerical modeling framework was developed to estimate the effects of collective global changes upon ozone pollution in the US in 2050. The framework consists of the global climate and chemistry models, PCM (Parallel Climate Model) and MOZART-2 (Model for Ozone and Related Chemical Tracers v.2), coupled with regional meteorology and chemistry models, MM5 (Mesoscale Meteorological model) and CMAQ (Community Multi-scale Air Quality model). The modeling system was applied for two...

  17. Carbon materials as catalysts for the ozonation of organic pollutants in water

    OpenAIRE

    Pereira, M. F. R.; Gonçalves,A.G.; Órfão, J. J. M.

    2014-01-01

    [EN] A brief overview about the use of carbon materials as metal free ozonation catalysts is presented. Carbon materials (activated carbons, carbon xerogels, carbon nanofibers and carbon nanotubes) have been shown to be active catalysts in the ozonation of a wide range of organic pollutants. Carbon materials with surface basic properties (i.e. high electron density) and with large pores are the most promising for this process.

  18. Cadmium pollution enhanced ozone damage to winter wheat: biochemical and physiological evidences

    Institute of Scientific and Technical Information of China (English)

    Yong Li; Caihong Li; Yanhai Zheng; Guanglei Wu; Tana Wuyun; Hong Xu; Xinhua He; Gaoming Jiang

    2011-01-01

    Combined effects of ozone (O3) and cadmium (Cd) on growth and physiology of winter wheat (Triticum aestivum L. cv. JM22)were determined. Wheat plants were grown without or with Cd and exposed to charcoal-filtered air (< 10 ppb O3) or elevated O3 (80 ± 5 ppb, 7 hr/day) for 20 days. Results showed that O3 considerably depressed light saturated net photosynthetic rate (-20%),stomatal conductance (-33%), chlorophyll content (-33%), and total biomass (-29%) without Cd. The corresponding decreases were further enhanced by 45%, 56%, 60% and 59%, respectively with Cd, indicating a synergistic effect of O3 and Cd on wheat. Ozone significantly increased the activity of superoxide dismutase (46%), catalase (48%) and peroxidase (56%). However, great increases in malondialdehyde (MDA) content (2.55 folds) and intercellular CO2 concentration (1.13 folds) were noted in O3+Cd treatment compared to control. Our findings demonstrated that the increased anti-oxidative activities in wheat plants exposed to O3+Cd might not be enough to overcome the adverse effects of the combination of both pollutants as evidenced by further increase in MDA content,which is an important indicator of lipid peroxidation. Precise prediction model on O3 damages to crop should be conducted to ensure agricultural production security by considering environmental constraints in an agricultural system in peri-urban regions.

  19. Threat to future global food security from climate change and ozone air pollution

    Science.gov (United States)

    Tai, Amos P. K.; Martin, Maria Val; Heald, Colette L.

    2014-09-01

    Future food production is highly vulnerable to both climate change and air pollution with implications for global food security. Climate change adaptation and ozone regulation have been identified as important strategies to safeguard food production, but little is known about how climate and ozone pollution interact to affect agriculture, nor the relative effectiveness of these two strategies for different crops and regions. Here we present an integrated analysis of the individual and combined effects of 2000-2050 climate change and ozone trends on the production of four major crops (wheat, rice, maize and soybean) worldwide based on historical observations and model projections, specifically accounting for ozone-temperature co-variation. The projections exclude the effect of rising CO2, which has complex and potentially offsetting impacts on global food supply. We show that warming reduces global crop production by >10% by 2050 with a potential to substantially worsen global malnutrition in all scenarios considered. Ozone trends either exacerbate or offset a substantial fraction of climate impacts depending on the scenario, suggesting the importance of air quality management in agricultural planning. Furthermore, we find that depending on region some crops are primarily sensitive to either ozone (for example, wheat) or heat (for example, maize) alone, providing a measure of relative benefits of climate adaptation versus ozone regulation for food security in different regions.

  20. Indoor secondary pollutants from cleaning product and air freshener use in the presence of ozone

    DEFF Research Database (Denmark)

    Singer, B.C.; Coleman, B.K.; Destaillats, H.

    2006-01-01

    This study investigated the formation of secondary pollutants resulting from household product use in the presence of ozone. Experiments were conducted in a 50-m(3) chamber simulating a residential room. The chamber was operated at conditions relevant to US residences in polluted areas during warm......-oil air freshener (AFR) was operated for several days. Cleaning products were applied realistically with quantities scaled to simulate residential use rates. Concentrations of organic gases and secondary organic aerosol from the terpene-containing consumer products were measured with and without ozone...... than 100 mu g m(-3)) in some experiments. Ozone consumption and elevated hydroxyl radical concentrations persisted for 10-12 h following brief cleaning events, indicating that secondary pollutant production can persist for extended periods. (c) 2006 Elsevier Ltd. All rights reserved....

  1. Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation.

    Science.gov (United States)

    Xiao, Jiadong; Xie, Yongbing; Cao, Hongbin

    2015-02-01

    Heterogeneous photocatalysis and ozonation are robust advanced oxidation processes for eliminating organic contaminants in wastewater. The combination of these two methods is carried out in order to enhance the overall mineralization of refractory organics. An apparent synergism between heterogeneous photocatalysis and ozonation has been demonstrated in many literatures, which gives rise to an improvement of total organic carbon removal. The present overview dissects the heterogeneous catalysts and the influences of different operational parameters, followed by the discussion on the kinetics, mechanism, economic feasibility and future trends of this integrated technology. The enhanced oxidation rate mainly results from a large amount of hydroxyl radicals generated from a synergistically induced decomposition of dissolved ozone, besides superoxide ion radicals and the photo-induced holes. Six reaction pathways possibly exist for the generation of hydroxyl radicals in the reaction mechanism of heterogeneous photocatalytic ozonation.

  2. The Influence of European Pollution on Ozone in the Near East and Northern Africa

    Science.gov (United States)

    Duncan, B. N.; West, J. J.; Yoshida, Y.; Fiore, A. M.; Ziemke, J. R.

    2008-01-01

    We present a modeling study of the long-range transport of pollution from Europe, showing that European emissions regularly elevate surface ozone by as much as 20 ppbv in summer in northern Africa and the Near East. European emissions cause 50-150 additional violations per year (i.e. above those that would occur without European pollution) of the European health standard for ozone (8-h average greater than 120 micrograms per cubic meters or approximately 60 ppbv) in northern Africa and the Near East. We estimate that European ozone pollution is responsible for 50 000 premature mortalities globally each year, of which the majority occurs outside of Europe itself, including 37% (19 000) in northern Africa and the Near East. Much of the pollution from Europe is exported southward at low altitudes in summer to the Mediterranean Sea, northern Africa and the Near East, regions with favorable photochemical environments for ozone production. Our results suggest that assessments of the human health benefits of reducing ozone precursor emissions in Europe should include effects outside of Europe, and that comprehensive planning to improve air quality in northern Africa and the Near East likely needs to address European emissions.

  3. The influence of European pollution on ozone in the Near East and northern Africa

    Directory of Open Access Journals (Sweden)

    B. N. Duncan

    2008-04-01

    Full Text Available We present a modeling study of the long-range transport of pollution from Europe, showing that European emissions regularly elevate surface ozone by as much as 20 ppbv in summer in northern Africa and the Near East. European emissions cause 50–150 additional violations per year (i.e. above those that would occur without European pollution of the European health standard for ozone (8-h average >120 μg/m3 or ~60 ppbv in northern Africa and the Near East. We estimate that European ozone pollution is responsible for 50 000 premature mortalities globally each year, of which the majority occurs outside of Europe itself, including 37% (19 000 in northern Africa and the Near East. Much of the pollution from Europe is exported southward at low altitudes in summer to the Mediterranean Sea, northern Africa and the Near East, regions with favorable photochemical environments for ozone production. Our results suggest that assessments of the human health benefits of reducing ozone precursor emissions in Europe should include effects outside of Europe, and that comprehensive planning to improve air quality in northern Africa and the Near East likely needs to address European emissions.

  4. Surface ozone background in the United States: Canadian and Mexican pollution influences

    Science.gov (United States)

    Wang, Huiqun; Jacob, Daniel J.; Le Sager, Philippe; Streets, David G.; Park, Rokjin J.; Gilliland, Alice B.; van Donkelaar, A.

    We use a global chemical transport model (GEOS-Chem) with 1° × 1° horizontal resolution to quantify the effects of anthropogenic emissions from Canada, Mexico, and outside North America on daily maximum 8-hour average ozone concentrations in US surface air. Simulations for summer 2001 indicate mean North American and US background concentrations of 26 ± 8 ppb and 30 ± 8 ppb, as obtained by eliminating anthropogenic emissions in North America vs. in the US only. The US background never exceeds 60 ppb in the model. The Canadian and Mexican pollution enhancement averages 3 ± 4 ppb in the US in summer but can be occasionally much higher in downwind regions of the northeast and southwest, peaking at 33 ppb in upstate New York (on a day with 75 ppb total ozone) and 18 ppb in southern California (on a day with 68 ppb total ozone). The model is successful in reproducing the observed variability of ozone in these regions, including the occurrence and magnitude of high-ozone episodes influenced by transboundary pollution. We find that exceedances of the 75 ppb US air quality standard in eastern Michigan, western New York, New Jersey, and southern California are often associated with Canadian and Mexican pollution enhancements in excess of 10 ppb. Sensitivity simulations with 2020 emission projections suggest that Canadian pollution influence in the Northeast US will become comparable in magnitude to that from domestic power plants.

  5. Environmental Pollutant Ozone Causes Damage to Lung Surfactant Protein B (SP-B)

    Science.gov (United States)

    2015-01-01

    Lung surfactant protein B (SP-B) is an essential protein found in the surfactant fluid at the air–water interface of the lung. Exposure to the air pollutant ozone could potentially damage SP-B and lead to respiratory distress. We have studied two peptides, one consisting of the N-terminus of SP-B [SP-B(1–25)] and the other a construct of the N- and C-termini of SP-B [SP-B(1–25,63–78)], called SMB. Exposure to dilute levels of ozone (∼2 ppm) of monolayers of each peptide at the air–water interface leads to a rapid reaction, which is evident from an increase in the surface tension. Fluorescence experiments revealed that this increase in surface tension is accompanied by a loss of fluorescence from the tryptophan residue at the interface. Neutron and X-ray reflectivity experiments show that, in contrast to suggestions in the literature, the peptides are not solubilized upon oxidation but rather remain at the interface with little change in their hydration. Analysis of the product material reveals that no cleavage of the peptides occurs, but a more hydrophobic product is slowly formed together with an increased level of oligomerization. We attributed this to partial unfolding of the peptides. Experiments conducted in the presence of phospholipids reveal that the presence of the lipids does not prevent oxidation of the peptides. Our results strongly suggest that exposure to low levels of ozone gas will damage SP-B, leading to a change in its structure. The implication is that the oxidized protein will be impaired in its ability to interact at the air–water interface with negatively charged phosphoglycerol lipids, thus compromising what is thought to be its main biological function. PMID:26270023

  6. Transboundary Influences on Ozone Pollution in the United States: Present Conditions and Future Projections

    Science.gov (United States)

    Le Sager, P.; Wang, H.; Jacob, D. J.; Park, R. J.

    2007-12-01

    The GEOS-Chem global chemical transport model (v7-02-01) with 1° x1° horizontal resolution over North America is used to investigate the influence of transboundary pollution from Canada and Mexico on surface ozone in the United States. We conduct a series of 4 simulations for present day conditions: (1) a standard simulation with 2001 anthropogenic emissions worldwide, (2) with zero U.S. anthropogenic emissions, (3) with zero anthropogenic emission in North America (Canada, U.S. and Mexico), and (4) with 2006 East Asian emissions and no emission in North America. For future projections, we repeat (1)-(3) with a 2020 worldwide emissions inventory, in addition to a run with U.S. Power plant emissions switched off. The standard simulation is evaluated with observations for U.S. regions most sensitive to transboundary pollution (northeast for Canada, southwest for Mexico). Monthly mean ozone enhancements from transboundary pollution are in the 5-10 ppb range for these regions in June-August, but can exceed 30 ppbv under conditions when ozone is above the U.S. air quality standard (84 ppbv). Unlike intercontinental pollution influence which mainly contributes to the ozone background and is depleted during regional smog episodes, transboundary pollution influence from Canada and Mexico is highly variable and can contribute significantly to these episodes.

  7. Global health benefits of mitigating ozone pollution with methane emission controls

    Science.gov (United States)

    West, J. Jason; Fiore, Arlene M.; Horowitz, Larry W.; Mauzerall, Denise L.

    2006-03-01

    Methane (CH4) contributes to the growing global background concentration of tropospheric ozone (O3), an air pollutant associated with premature mortality. Methane and ozone are also important greenhouse gases. Reducing methane emissions therefore decreases surface ozone everywhere while slowing climate warming, but although methane mitigation has been considered to address climate change, it has not for air quality. Here we show that global decreases in surface ozone concentrations, due to methane mitigation, result in substantial and widespread decreases in premature human mortality. Reducing global anthropogenic methane emissions by 20% beginning in 2010 would decrease the average daily maximum 8-h surface ozone by 1 part per billion by volume globally. By using epidemiologic ozone-mortality relationships, this ozone reduction is estimated to prevent 30,000 premature all-cause mortalities globally in 2030, and 370,000 between 2010 and 2030. If only cardiovascular and respiratory mortalities are considered, 17,000 global mortalities can be avoided in 2030. The marginal cost-effectiveness of this 20% methane reduction is estimated to be 420,000 per avoided mortality. If avoided mortalities are valued at 1 million each, the benefit is 240 per tonne of CH4 (12 per tonne of CO2 equivalent), which exceeds the marginal cost of the methane reduction. These estimated air pollution ancillary benefits of climate-motivated methane emission reductions are comparable with those estimated previously for CO2. Methane mitigation offers a unique opportunity to improve air quality globally and can be a cost-effective component of international ozone management, bringing multiple benefits for air quality, public health, agriculture, climate, and energy. human health | mortality | tropospheric ozone | air quality

  8. Air pollution by ozone across Europe during summer 2008. Overview of exceedances of EC ozone threshold values for April-September 2008

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    This report provides an evaluation of ground-level ozone pollution in Europe for April-September 2008, based on information submitted to the European Commission under Directive 2002/3/EC on ozone in ambient air. Since Members States have not yet finally validated the submitted data, the conclusions drawn in this report should be considered as preliminary. (au)

  9. Ozone air pollution effects on tree-ring growth,{delta}{sup 13}C, visible foliar injury and leaf gas exchange in three ozone-sensitive woody plant species

    Energy Technology Data Exchange (ETDEWEB)

    Novak, K. [Swiss Federal Inst. for Forest, Snow and Landscape Research, Birmensdorf (Switzerland); Agroscope FAL Reckenholz, Swiss Federal Research Station for Agroecology and Agriculture, Zurich (Switzerland); Saurer, M. [Paul Scherrer Inst. Villigen (Switzerland); Fuhrer, J. [Agroscope FAL Reckenholz, Swiss Federal Research Station for Agroecology and Agriculture, Zurich (Switzerland); Skelly, J.M. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Plant Pathology; Krauchi, N.; Schaub, M. [Swiss Federal Inst. for Forest, Snow and Landscape Research, Birmensdorf (Switzerland)

    2007-07-15

    Species specific plant responses to tropospheric ozone pollution depend on a range of morphological, biochemical and physiological characteristics as well as environmental factors. The effects of ambient tropospheric ozone on annual tree-ring growth, {delta}{sup 13} C in the rings, leaf gas exchange and ozone-induced visible foliar injury in three ozone-sensitive woody plant species in southern Switzerland were assessed during the 2001 and 2002 growing seasons. Seedlings of Populus nigra L., Viburnum lantana L. and Fraxinus excelsior L. were exposed to charcoal-filtered air and non-filtered air in open-top chambers, and to ambient air (AA) in open plots. The objective was to determine if a relationship exists between measurable ozone-induced effects at the leaf level and subsequent changes in annual tree-ring growth and {delta} {sup 13} C signatures. The visible foliar injury, early leaf senescence and premature leaf loss in all species was attributed to the ambient ozone exposures in the region. Ozone had pronounced negative effects on net photosynthesis and stomatal conductance in all species in 2002 and in V. lantana and F. excelsior in 2001. Water-use efficiency decreased and intercellular carbon dioxide concentrations increased in all species in response to ozone in 2002 only. The width and {delta}{sup 13} C of the 2001 and 2002 growth rings were measured for all species at the end of the 2002 growing season. Significant ozone-induced effects at the leaf level did not correspond to reduced tree-ring growth or increased {delta}{sup 13} C in all species, suggesting that the timing of ozone exposure and extent of leaf-level responses may be relevant in determining the sensitivity of tree productivity to ozone exposure. 48 refs., 4 tabs., 2 figs.

  10. Laboratory measurement of secondary pollutant yields from ozone reaction with HVAC filters.

    Energy Technology Data Exchange (ETDEWEB)

    Destaillats, Hugo; Chen, Wenhao; Apte, Michael; Li, Nuan; Spears, Michael; Almosni, J& #233; r& #233; mie; Zhang, Jianshun (Jensen); Fisk, William J.

    2009-09-09

    We used Proton Transfer Reaction - Mass Spectrometry (PTR-MS) and conventional sampling methods to monitor and identify trace level organic pollutants formed in heterogeneous reactions between ozone and HVAC filters in real time. Experiments were carried out using a bench-scale flow tube reactor operating with dry air and humidified air (50% RH), at realistically high ozone concentrations (150 ppbv). We explored different filter media (i.e., fiberglass and cotton/polyester blends) and different particle loadings (i.e., clean filter and filters loaded with particles for 3 months at the Lawrence Berkeley National Laboratory and the Port of Oakland, CA). Detailed emission dynamics of very low levels of certain organic pollutants from filter media upon ozone exposure in the presence of moisture have been obtained and analyzed.

  11. Influence of air pollution by ozone on the degree of stomatal opening of Pelargonium X hortorum

    Energy Technology Data Exchange (ETDEWEB)

    Domergue, F.; de Cormis, L.; Louguet, P.

    1979-05-28

    If ozone concentration in the atmosphere is higher than a threshold value, it induces the closing of Pelargonium X hortorum stomata in light as in darkness. The variable closing rate can explain the different extent of the necroses by changing the diffusion absorption capacity of the pollutant in the leaf.

  12. Ozone pollution effects on the land carbon sink in the future greenhouse world

    Science.gov (United States)

    Unger, N.; Yue, X.

    2015-12-01

    Ozone pollution has huge impacts on the carbon balance in the United States, Europe and China. While terrestrial ecosystems provide an important sink for surface ozone through stomatal uptake, this process damages photosynthesis, reduces plant growth and biomass accumulation, and affects stomatal control over plant transpiration of water vapor. Effective mitigation of climate change by stabilizing atmospheric carbon dioxide concentrations requires improved understanding of ozone effects on the land carbon sink. Future effects of ozone pollution on the land carbon sink are largely unknown. We apply multiple observational datasets in combination with the Yale Interactive Terrestrial Biosphere (YIBs) model to quantify ozone vegetation damage in the present climatic state and for a broad range of possible futures. YIBs includes a mechanistic ozone damage model that affects both photosynthetic rate and stomatal conductance for low or high ozone plant sensitivity. YIBs is embedded in the NASA GISS ModelE2 global chemistry-climate model to allow a uniquely informed integration of plant physiology, atmospheric chemistry, and climate. The YIBs model has been extensively evaluated using land carbon flux measurements from 145 flux tower sites and multiple satellite products. Chronic ozone exposure in the present day reduces GPP by 11-23%, NPP by 8-16%, stomatal conductance by 8-17% and leaf area index by 2-5% in the summer time eastern United States. Similar response magnitudes are found in Europe but almost doubled damage effects occur in hotspots in eastern China. We investigate future ozone vegetation damage within the context of multiple global change drivers (physical climate change, carbon dioxide fertilization, human energy and agricultural emissions, human land use) at 2050 following the IPCC RCP2.6 and RCP8.5 scenarios. In the RCP8.5 world at 2050, growing season average GPP and NPP are reduced by 20-40% in China and 5-20% in the United States due to the global rise

  13. Sensitivity of global greenhouse gas budgets to tropospheric ozone pollution mediated by the biosphere

    Science.gov (United States)

    Wang, Bin; Shugart, Herman H.; Lerdau, Manuel T.

    2017-08-01

    Tropospheric ozone (O3), a harmful secondary air pollutant, can affect the climate via direct radiative forcing and by modifying the radiative forcing of aerosols through its role as an atmospheric oxidant. Moreover, O3 exerts a strong oxidative pressure on the biosphere and indirectly influences the climate by altering the materials and energy exchange between terrestrial ecosystems and the atmosphere. However, the magnitude by which O3 affects the global budgets of greenhouse gases (GHGs: CO2, CH4, and N2O) through altering the land-atmosphere exchange is largely unknown. Here we assess the sensitivity of these budgets to tropospheric O3 pollution based on a meta-analysis of experimental studies on the effects of elevated O3 on GHG exchange between terrestrial ecosystems and the atmosphere. We show that across ecosystems, elevated O3 suppresses N2O emissions and both CH4 emissions and uptake, and has little impact on stimulation of soil CO2 emissions except at relatively high concentrations. Therefore, the soil system would be transformed from a sink into a source of GHGs with O3 levels increasing. The global atmospheric budget of GHGs is sensitive to O3 pollution largely because of the carbon dioxide accumulation resulting from suppressed vegetation carbon uptake; the negative contributions from suppressed CH4 and N2O emissions can offset only ˜10% of CO2 emissions from the soil-vegetation system. Based on empirical data, this work, though with uncertainties, provides the first assessment of sensitivity of global budgets of GHGs to O3 pollution, representing a necessary step towards fully understanding and evaluating O3-climate feedbacks mediated by the biosphere.

  14. Statistical evaluation of the impact of shale gas activities on ozone pollution in North Texas.

    Science.gov (United States)

    Ahmadi, Mahdi; John, Kuruvilla

    2015-12-01

    Over the past decade, substantial growth in shale gas exploration and production across the US has changed the country's energy outlook. Beyond its economic benefits, the negative impacts of shale gas development on air and water are less well known. In this study the relationship between shale gas activities and ground-level ozone pollution was statistically evaluated. The Dallas-Fort Worth (DFW) area in north-central Texas was selected as the study region. The Barnett Shale, which is one the most productive and fastest growing shale gas fields in the US, is located in the western half of DFW. Hourly meteorological and ozone data were acquired for fourteen years from monitoring stations established and operated by the Texas Commission on Environmental Quality (TCEQ). The area was divided into two regions, the shale gas region (SGR) and the non-shale gas (NSGR) region, according to the number of gas wells in close proximity to each monitoring site. The study period was also divided into 2000-2006 and 2007-2013 because the western half of DFW has experienced significant growth in shale gas activities since 2007. An evaluation of the raw ozone data showed that, while the overall trend in the ozone concentration was down over the entire region, the monitoring sites in the NSGR showed an additional reduction of 4% in the annual number of ozone exceedance days than those in the SGR. Directional analysis of ozone showed that the winds blowing from areas with high shale gas activities contributed to higher ozone downwind. KZ-filtering method and linear regression techniques were used to remove the effects of meteorological variations on ozone and to construct long-term and short-term meteorologically adjusted (M.A.) ozone time series. The mean value of all M.A. ozone components was 8% higher in the sites located within the SGR than in the NSGR. These findings may be useful for understanding the overall impact of shale gas activities on the local and regional ozone

  15. Evaluation of emission control strategies to reduce ozone pollution in the Paso del Norte region using a photochemical air quality modeling system

    Science.gov (United States)

    Valenzuela, Victor Hugo

    Air pollution emissions control strategies to reduce ozone precursor pollutants are analyzed by applying a photochemical modeling system. Simulations of air quality conditions during an ozone episode which occurred in June, 2006 are undertaken by increasing or reducing area source emissions in Ciudad Juarez, Chihuahua, Mexico. Two air pollutants are primary drivers in the formation of tropospheric ozone. Oxides of nitrogen (NOx) and volatile organic compounds (VOC) undergo multiple chemical reactions under favorable meteorological conditions to form ozone, which is a secondary pollutant that irritates respiratory systems in sensitive individuals especially the elderly and young children. The U.S. Environmental Protection Agency established National Ambient Air Quality Standards (NAAQS) to limit ambient air pollutants such as ozone by establishing an 8-hour average concentration of 0.075 ppm as the threshold at which a violation of the standard occurs. Ozone forms primarily due reactions in the troposphere of NOx and VOC emissions generated primarily by anthropogenic sources in urban regions. Data from emissions inventories indicate area sources account for ˜15 of NOx and ˜45% of regional VOC emissions. Area sources include gasoline stations, automotive paint bodyshops and nonroad mobile sources. Multiplicity of air pollution emissions sources provides an opportunity to investigate and potentially implement air quality improvement strategies to reduce emissions which contribute to elevated ozone concentrations. A baseline modeling scenario was established using the CAMx photochemical air quality model from which a series of sensitivity analyses for evaluating air quality control strategies were conducted. Modifications to area source emissions were made by varying NOx and / or VOC emissions in the areas of particular interest. Model performance was assessed for each sensitivity analysis. Normalized bias (NB) and normalized error (NE) were used to identify

  16. Increased CCL24/eotaxin-2 with postnatal ozone exposure in allergen-sensitized infant monkeys is not associated with recruitment of eosinophils to airway mucosa

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Debbie L.; Gerriets, Joan E. [California National Primate Research Center, UC Davis, Davis, CA 95616 (United States); Schelegle, Edward S.; Hyde, Dallas M. [California National Primate Research Center, UC Davis, Davis, CA 95616 (United States); Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, Davis, CA 95616 (United States); Miller, Lisa A., E-mail: lmiller@ucdavis.edu [California National Primate Research Center, UC Davis, Davis, CA 95616 (United States); Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, Davis, CA 95616 (United States)

    2011-12-15

    Epidemiology supports a causal link between air pollutant exposure and childhood asthma, but the mechanisms are unknown. We have previously reported that ozone exposure can alter the anatomic distribution of CD25+ lymphocytes in airways of allergen-sensitized infant rhesus monkeys. Here, we hypothesized that ozone may also affect eosinophil trafficking to allergen-sensitized infant airways. To test this hypothesis, we measured blood, lavage, and airway mucosa eosinophils in 3-month old monkeys following cyclical ozone and house dust mite (HDM) aerosol exposures. We also determined if eotaxin family members (CCL11, CCL24, CCL26) are associated with eosinophil location in response to exposures. In lavage, eosinophil numbers increased in animals exposed to ozone and/or HDM. Ozone + HDM animals showed significantly increased CCL24 and CCL26 protein in lavage, but the concentration of CCL11, CCL24, and CCL26 was independent of eosinophil number for all exposure groups. In airway mucosa, eosinophils increased with exposure to HDM alone; comparatively, ozone and ozone + HDM resulted in reduced eosinophils. CCL26 mRNA and immunofluorescence staining increased in airway mucosa of HDM alone animals and correlated with eosinophil volume. In ozone + HDM animal groups, CCL24 mRNA and immunofluorescence increased along with CCR3 mRNA, but did not correlate with airway mucosa eosinophils. Cumulatively, our data indicate that ozone exposure results in a profile of airway eosinophil migration that is distinct from HDM mediated pathways. CCL24 was found to be induced only by combined ozone and HDM exposure, however expression was not associated with the presence of eosinophils within the airway mucosa. -- Highlights: Black-Right-Pointing-Pointer Ozone can modulate the localization of eosinophils in infant allergic airways. Black-Right-Pointing-Pointer Expression of eotaxins within the lung is affected by ozone and allergen exposure. Black-Right-Pointing-Pointer CCL24 induction by

  17. Combined biodegradation and ozonation for removal of tannins and dyes for the reduction of pollution loads.

    Science.gov (United States)

    Kanagaraj, James; Mandal, Asit Baran

    2012-01-01

    Tannins and dyes pose major threat to the environment by generating huge pollution problem. Biodegradation of wattle extract, chrome tannin and dye compounds using suitable fungal culture namely Aspergillus niger, Penicillium sp. were carried out. In addition to these, ozone treatment was carried out to get higher degradation rate. The results were monitored by carrying out chemical oxygen demand (COD), total organic carbon (TOC), and UV-Vis analysis. The results showed that wattle extract (vegetable tannin) gave better biodegradation rate than dye and chromium compounds. Biodegradation plus ozone showed degradation rates of 92-95%, 94-95%, and 85-87% for the wattle extract, dyes, chromium compounds, respectively. UV-Vis showed that there were no peaks observed for biodegraded samples indicating better degradation rates as compared to the control samples. FT-IR spectra analysis suggested that the formation of flavanoid derivatives, chromic oxide and NH(2) compounds during degradation of wattle extract, chromium and dye compounds, respectively, at the peaks of 1,601-1,629 cm(-1), 1,647 cm(-1), and 1,610-1,680 cm(-1). The present investigation shows that combination of biodegradation with ozone is the effective method for the removal of dyes and tannins. The biodegradation of the said compounds in combination with ozonation showed better rate of degradation than by chemical methods. The combination of biodegradation with ozone helps to reduce pollution problems in terms of COD, TOC, total dissolved solids and total suspended solids.

  18. Tropospheric ozone pollution in India: effects on crop yield and product quality.

    Science.gov (United States)

    Singh, Aditya Abha; Agrawal, S B

    2017-02-01

    Ozone (O3) in troposphere is the most critical secondary air pollutant, and being phytotoxic causes substantial losses to agricultural productivity. Its increasing concentration in India particularly in Indo-Gangetic plains is an issue of major concern as it is posing a threat to agriculture. In view of the issue of rising surface level of O3 in India, the aim of this compilation is to present the past and the prevailing concentrations of O3 and its important precursor (oxides of nitrogen) over the Indian region. The resulting magnitude of reductions in crop productivity as well as alteration in the quality of the product attributable to tropospheric O3 has also been taken up. Studies in relation to yield measurements have been conducted predominantly in open top chambers (OTCs) and also assessed by using antiozonant ethylene diurea (EDU). There is a substantial spatial difference in O3 distribution at different places displaying variable O3 concentrations due to seasonal and geographical variations. This review further recognizes the major information lacuna and also highlights future perspectives to get the grips with rising trend of ground level O3 pollution and also to formulate the policies to check the emissions of O3 precursors in India.

  19. Urban and Rural Ozone Pollution Over Lusaka (Zambia, 15.5S, 25E) During SAFARI-2000 (September 2000)

    Science.gov (United States)

    Thompson, Anne M.; Herman, J. R.; Witte, J. C.; Phahlane, A.; Coetzee, G. J. R.; Mukula, C.; Hudson, R. D.; Frolov, A. D.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    In early September, throughout south central Africa, seasonal clearing of dry vegetation and the production of charcoal for cooking leads to intense smoke haze and ozone formation. Ozone soundings made over Lusaka during a six-day period in early September 2000 recorded layers of high ozone (greater than 125 ppbv at 5 km) during two stagnant periods, interspersed by a frontal passage that reduced boundary layer ozone by 30 percent. Smoke aerosol column variations aloft and total ozone were monitored by a sun photometer. During the 6-day measurement period, surface ozone concentrations ranged from 50-95 ppbv and integrated tropospheric ozone from the soundings was 39- 54 Dobson Units (note 1.3 km elevation at the launch site). High ozone concentrations above the mixed and inversion layers were advected from rural burning regions in western Zambia where SAFARI aircraft and ground-based instruments observed intense biomass fires and elevated aerosol and trace gas amounts. TOMS tropospheric ozone and smoke aerosols products show the distribution of biomass burning and associated pollution throughout southern Africa in September 2000. Animations of satellite images and trajectories confirm pollutant recirculation over south central African fires, exit of ozone from Mozambique and Tanzania to the Indian Ocean and the characteristic buildup of tropospheric ozone over the Atlantic from western African outflow.

  20. The impact of air pollutant and methane emission controls on tropospheric ozone and radiative forcing: CTM calculations for the period 1990–2030

    Directory of Open Access Journals (Sweden)

    F. Raes

    2004-12-01

    Full Text Available To explore the relationship between tropospheric ozone and radiative forcing with changing emissions, we compiled two sets of global scenarios for the emissions of the ozone precursors methane (CH4, carbon monoxide (CO, non-methane volatile organic compounds (NMVOC and nitrogen oxides (NOx up to the year 2030 and implemented them in two global Chemistry Transport Models. The "Current Legislation" (CLE scenario reflects the current perspectives of individual countries on future economic development and takes the anticipated effects of presently decided emission control legislation in the individual countries into account. In addition, we developed a "Maximum technically Feasible Reduction" (MFR scenario that outlines the scope for emission reductions offered by full implementation of the presently available emission control technologies, while maintaining the projected levels of anthropogenic activities. Whereas the resulting projections of methane emissions lie within the range suggested by other greenhouse gas projections, the recent pollution control legislation of many Asian countries, requiring introduction of catalytic converters for vehicles, leads to significantly lower growth in emissions of the air pollutants NOx, NMVOC and CO than was suggested by the widely used IPCC (Intergovernmental Panel on Climate Change SRES (Special Report on Emission Scenarios scenarios (Nakicenovic et al., 2000. With the TM3 and STOCHEM models we performed several long-term integrations (1990–2030 to assess global, hemispheric and regional changes in CH4, CO, hydroxyl radicals, ozone and the radiative climate forcings resulting from these two emission scenarios. Both models reproduce realistically the observed trends in background ozone, CO, and CH4 concentrations from 1990 to 2002. For the "current legislation" case, both models indicate an increase of the annual average ozone levels in the Northern hemisphere by 5 ppbv, and up to 15 ppbv over the Indian

  1. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    Science.gov (United States)

    Kit Chan, Wai; Jouët, Justine; Heng, Samuel; Lun Yeung, King; Schrotter, Jean-Christophe

    2012-05-01

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation.

  2. Stress ethylene evolution of bean plants—a parameter indicating ozone pollution

    Science.gov (United States)

    Stan, Hans-Jürgen; Schicker, Sieglinde; Kassner, Helmut

    Bean plants treated with varying ozone concentrations for varying exposure times showed increased rates of ethylene production compared with controls. A standard method was worked out in which primary leaves of bean plants were encapsulated in 250 ml Erlenmeyer flasks after exposure. The amount of ethylene produced was determined by gas chromatography after about 24 h. The 'no effect level' of the bean plant was found to be 100 ppb ozone because there was no significant stress ethylene production even after 12 h fumigation. A treatment with 150 ppb ozone induced the beginning of stress ethylene production after about 8 h. With higher ozone concentrations shorter exposure times are necessary to induce a first response. Stress ethylene production correlates better with ozone concentration than with exposure time comparing the same products of concentration and time.

  3. [Ozone source apportionment at urban area during a typical photochemical pollution episode in the summer of 2013 in the Yangtze River Delta].

    Science.gov (United States)

    Li, Hao; Li, Li; Huang, Cheng; An, Jing-yu; Yan, Ru-sha; Huang, Hai-ying; Wang, Yang-jun; Lu, Qing; Wang, Qian; Lou, Sheng-rong; Wang, Hong-li; Zhou, Min; Tao, Shi-kang; Qiao, Li-ping; Chen, Ming-hua

    2015-01-01

    With the fast development of urbanization, industrialization and mobilization, the air pollutant emissions with photochemical reactivity become more obvious, causing a severe photochemical pollution with the characteristics of high ozone concentration. However, the ozone source identification is very complicated due to the high non linearity between ozone and its precursors. Thus, ways to reduce ozone is still not clear. A high ozone pollution episode occurred during July, 2013, which lasted for a long period, with large influence area and high intensity. In this paper, we selected this episode to do a case study with the application of ozone source apportionment technology(OSAT) coupled within the CAMx air quality model. In this study, 4 source regions(including Shanghai, north Zhejiang, South Jiangsu and long range transport), 7 source categories (including power plants, industrial process, industrial boilers and kilns, residential, mobile source, volatile source and biogenic emissions) are analyzed to study their contributions to surface O3 in Shanghai, Suzhou and Zhejiang. Results indicate that long range transport contribution to the surface ozone in the YRD is around 20 x 10(-9) - 40 x 10(-9) (volume fraction). The O3 concentrations can increased to 40 x 10(-9) - 100 x 10(-9) (volume fraction) due to precursors emissions in Shanghai, Jiangsu and Zhejiang. As for the regional contribution to 8 hour ozone, long range transport constitutes 42.79% +/- 10.17%, 48.57% +/- 9.97% and 60.13% +/- 7.11% of the surface ozone in Shanghai, Suzhou and Hangzhou, respectively. Regarding the high O3 in Shanghai, local contribution is 28.94% +/- 8.49%, north Zhejiang constitutes 19.83% +/- 10.55%. As for surface O3 in Suzhou, the contribution from south Jiangsu is 26.41% +/- 6.80%. Regarding the surface O3 in Hangzhou, the major regional contributor is north Zhejiang (29.56% +/- 8.33%). Contributions from the long range transport to the daily maximum O3 concentrations are

  4. Pulsed corona discharge: the role of ozone and hydroxyl radical in aqueous pollutants oxidation.

    Science.gov (United States)

    Preis, S; Panorel, I C; Kornev, I; Hatakka, H; Kallas, J

    2013-01-01

    Ozone and hydroxyl radical are the most active oxidizing species in water treated with gas-phase pulsed corona discharge (PCD). The ratio of the species dependent on the gas phase composition and treated water contact surface was the objective for the experimental research undertaken for aqueous phenol (fast reaction) and oxalic acid (slow reaction) solutions. The experiments were carried out in the reactor, where aqueous solutions showered between electrodes were treated with 100-ns pulses of 20 kV voltage and 400 A current amplitude. The role of ozone increased with increasing oxygen concentration and the oxidation reaction rate. The PCD treatment showed energy efficiency surpassing that of conventional ozonation.

  5. Ozone Bioindicator Gardens: an Educational Tool to Raise Awareness about Environmental Pollution and its Effects on Living Systems

    Science.gov (United States)

    Lapina, K.; Lombardozzi, D.

    2014-12-01

    High concentrations of ground-level ozone cause health problems in humans and a number of negative effects on plants, from reduced yield for major agricultural crops to reduced amounts of carbon stored in trees. The Denver Metro/Colorado Front Range is exceeding the National Ambient Air Quality Standard for ozone on a regular basis in summer and the efforts to reduce the ozone levels are hampered by the presence of diverse pollution sources and complex meteorology in the region. To raise public awareness of air quality in the Colorado Front Range and to educate all age groups about ground-level ozone, two ozone bioindicator gardens were planted in Boulder in Spring 2014. The gardens contain ozone-sensitive plants that develop a characteristic ozone injury when exposed to high levels of ozone. The ozone gardens are providing the general public with a real-life demonstration of the negative effects of ozone pollution through observable plant damage. Additionally, the gardens are useful in teaching students how to collect and analyze real-world scientific data.

  6. Impact of mineral dust on nitrate, sulfate, and ozone in transpacific Asian pollution plumes

    Directory of Open Access Journals (Sweden)

    L. Zhang

    2009-11-01

    Full Text Available We use a 3-d global chemical transport model (GEOS-Chem to interpret aircraft observations of nitrate and sulfate partitioning in transpacific dust plumes during the INTEX-B campaign of April–May 2006. The model includes explicit transport of size-resolved mineral dust and its alkalinity, nitrate, and sulfate content. The observations show that particulate nitrate is primarily associated with dust, sulfate is primarily associated with ammonium, and Asian dust remains alkaline across the Pacific. This can be reproduced in the model by using a reactive uptake coefficient for HNO3 on dust (γ(HNO3~10−3 much lower than commonly assumed in models and likely reflecting limitation of uptake by dust dissolution. The model overestimates gas-phase HNO3 by a factor of 2–3, typical of previous model studies; we show that this cannot be corrected by uptake on dust. We find that the fraction of aerosol nitrate on dust in the model increases from ~30% in fresh Asian outflow to 80–90% over the Northeast Pacific, reflecting in part the volatilization of ammonium nitrate and the resulting transfer of nitrate to the dust. Consumption of dust alkalinity by uptake of acid gases in the model is slow relative to the lifetime of dust against deposition, so that dust in general does not acidify. This argues against the hypothesis that dust iron released by acidification could become bio-available upon dust deposition. Observations in INTEX-B show no detectable ozone depletion in Asian dust plumes, consistent with the model. Uptake of HNO3 by dust, suppressing its recycling to NOx, reduces Asian pollution influence on US surface ozone in the model by 10–15% or up to 1 ppb.

  7. Impact of mineral dust on nitrate, sulfate, and ozone in transpacific Asian pollution plumes

    Directory of Open Access Journals (Sweden)

    T. D. Fairlie

    2010-04-01

    Full Text Available We use a 3-D global chemical transport model (GEOS-Chem to interpret aircraft observations of nitrate and sulfate partitioning in transpacific dust plumes during the INTEX-B campaign of April–May 2006. The model includes explicit transport of size-resolved mineral dust and its alkalinity, nitrate, and sulfate content. The observations show that particulate nitrate is primarily associated with dust, sulfate is primarily associated with ammonium, and Asian dust remains alkaline across the Pacific. This can be reproduced in the model by using a reactive uptake coefficient for HNO3 on dust (γ(HNO3 ~10−3 much lower than commonly assumed in models and possibly reflecting limitation of uptake by dust dissolution. The model overestimates gas-phase HNO3 by a factor of 2–3, typical of previous model studies; we show that this cannot be corrected by uptake on dust. We find that the fraction of aerosol nitrate on dust in the model increases from ~30% in fresh Asian outflow to 80–90% over the Northeast Pacific, reflecting in part the volatilization of ammonium nitrate and the resulting transfer of nitrate to the dust. Consumption of dust alkalinity by uptake of acid gases in the model is slow relative to the lifetime of dust against deposition, so that dust does not acidify (at least not in the bulk. This limits the potential for dust iron released by acidification to become bio-available upon dust deposition. Observations in INTEX-B show no detectable ozone depletion in Asian dust plumes, consistent with the model. Uptake of HNO3 by dust, suppressing its recycling to NOx, reduces Asian pollution influence on US surface ozone in the model by 10–15% or up to 1 ppb.

  8. The Role of Lipid Hydroperoxides in Ozone-Induced Increases in Glutathione Redox Potential in Human Airway Epithelial Cells

    Science.gov (United States)

    Human exposure to tropospheric ozone pollution is of global public health concern. Exposure to ozone induces functional decrements and inflammatory responses in the respiratory tract that are thought to occur through oxidative mechanisms. While it is known that ozone oxidizes p...

  9. A negative feedback between anthropogenic ozone pollution and enhanced ocean emissions of iodine

    OpenAIRE

    Prados-Roman, C; Cuevas, C.A.; R. P. Fernandez; Kinnison, D. E.; Lamarque, J-F.; A. Saiz-Lopez

    2015-01-01

    © 2015 Author(s). CC Attribution 3.0 License. Naturally emitted from the oceans, iodine compounds efficiently destroy atmospheric ozone and reduce its positive radiative forcing effects in the troposphere. Emissions of inorganic iodine have been experimentally shown to depend on the deposition to the oceans of tropospheric ozone, whose concentrations have significantly increased since 1850 as a result of human activities. A chemistry-climate model is used herein to quantify the current ocean ...

  10. Ozone injury increases infection of geranium leaves by Botrytis cinerea

    Energy Technology Data Exchange (ETDEWEB)

    Manning, W.J.; Feder, W.A.; Perkins, I.

    1970-04-01

    Detached and attached, inoculated and noninoculated, ozone-injured and noninjured leaves from the lower, middle, and terminal regions of plants of geranium cultivars Enchantress and White Mountain were observed for infection by Botrytis cinerea. Previous exposure to ozone did not appreciably influence the susceptibility of leaves of either geranium cultivar to infection by B. cinerea, unless there was visible ozone injury. Ozone-injured, necrotic tissues on older attached and detached geranium leaves of both cultivars served as infection courts for B. cinerea. 14 references, 1 table.

  11. Ozone and increased nitrogen supply effects on the yield and nutritive quality of Trifolium subterraneum

    Science.gov (United States)

    Sanz, J.; Muntifering, R. B.; Bermejo, V.; Gimeno, B. S.; Elvira, S.

    The influence of ambient ozone (O 3) concentrations and nitrogen (N) fertilization, singly and in combination, on the growth and nutritive quality of Trifolium subterraneum was assessed. This is an important O 3-sensitive species of great pastoral value in Mediterranean areas. Plant material was enclosed in open-top chambers (OTCs). Three O 3 levels were established: Filtered air with O 3 concentrations below 15 ppb (CFA), non-filtered air with O 3 concentrations in the range of ambient levels (NFA), and non-filtered air supplemented with 40 ppb O 3 over ambient levels (NFA+). Similarly, three N levels were defined: 5, 15 and 30 kg ha -1. The increase in O 3 exposure induced a reduction of the clover aerial green biomass and an increase of senescent biomass. Ozone effects were more adverse in the root system, inducing an impairment of the aerial/subterranean biomass ratio. Compared with the CFA treatment, nutritive quality of aerial biomass was 10 and 20% lower for NFA and NFA+ treatments, respectively, due to increased concentrations of acid detergent fiber, neutral detergent fiber and lignin. The latter effect appears to be related to senescence acceleration. The increment in N supplementation enhanced the increase of ADF concentrations in those plants simultaneously exposed to ambient and above-ambient O 3 concentrations, and reduced the incremental rate of foliar senescence induced by the pollutant.

  12. The influence of African air pollution on regional and global tropospheric ozone

    Directory of Open Access Journals (Sweden)

    A. M. Aghedo

    2007-01-01

    Full Text Available We investigate the influence of African biomass burning, biogenic, lightning and anthropogenic emissions on the tropospheric ozone over Africa and globally using a coupled global chemistry climate model. Our model studies indicate that surface ozone concentration may rise by up to 50 ppbv in the burning region during the biomass burning seasons. Biogenic emissions yield between 5–30 ppbv increase in the near surface ozone concentration over tropical Africa. The impact of lightning on surface ozone is negligible, while anthropogenic emissions yield a maximum of 7 ppbv increase in the annual-mean surface ozone concentration over Nigeria, South Africa and Egypt. Our results show that biogenic emissions are the most important African emission source affecting total tropospheric ozone. The influence of each of the African emissions on the global tropospheric ozone burden (TOB of 384 Tg yields about 9.5 Tg, 19.6 Tg, 9.0 Tg and 4.7 Tg for biomass burning, biogenic, lightning and anthropogenic emissions emitted in Africa respectively. The impact of each of these emission categories on African TOB of 33 Tg is 2.5 Tg, 4.1 Tg, 1.75 Tg and 0.89 Tg respectively, which together represents about 28% of the total TOB calculated over Africa. Our model calculations also suggest that more than 70% of the tropospheric ozone produced by each of the African emissions is found outside the continent, thus exerting a noticeable influence on a large part of the tropical troposphere. Apart from the Atlantic and Indian Ocean, Latin America experiences the largest impact of African emissions, followed by Oceania, the Middle East, Southeast and south-central Asia, northern North America (i.e. the United States and Canada, Europe and north-central Asia, for all the emission categories.

  13. Metabolic responses of tropical trees to ozone pollution.

    Science.gov (United States)

    Chapla, J; Kamalakar, J A

    2004-07-01

    Plants fumigated with 40ppbv, 80ppbv and 120ppbv concentrations of O3 exhibited significant reduction in total chlorophyll content, RuBP carboxylase activity and net photosynthesis. The reduction in total chlorophyll activity ranged from 12 to 36% in Bauhinia variegata, 11 to 35% in Ficus infectoria and 3 to 26% in Pongamia pinnata on fumigation with O3, while the RuBP carboxylase activity was reduced by 10 to 32% in Bauhinia variegata, 10 to 23% in Ficus infectoria and 9 to 15% in Pongamia pinnata. The net photosynthesis was also reduced by 6 to 26% in B. variegata, 16 to 39% in F. infectoria and 7 to 31% in P. pinnata on fumigation with 03. The relative higher sensitivity of tropical trees to O3 suggests that the ambient air quality standards in tropical tree areas need to be stringent to prevent vegetation from air pollution.

  14. Alteration of extracellular enzymes in pinto bean leaves upon exposure to air pollutants, ozone and sulfur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Peters, J.L.; Castillo, F.J.; Heath, R.L. (Univ. of California, Riverside (USA))

    1989-01-01

    Diamine oxidase and peroxidase, associated with the wall in pinto bean (Phaseolus vulgaris L. var Pinto) leaves, can be washed out by vacuum infiltration and assayed without grinding the leaf. The diamine oxidase activity is inhibited in vivo by exposure of the plants to ozone (dose of 0.6 microliters per liter {times} hour), whereas the peroxidase activity associated with the wall space is stimulated. This dose does not cause obvious necrosis or chlorosis of the leaf. These alterations are greater when the dose of ozone exposure is given as a triangular pulse (a slow rise to a peak of 0.24 microliters per liter followed by a slow fall) compared to that given as a constant square wave pulse of 0.15 microliters per liter for the same 4 hour period. Exposure of the plants to sulfur dioxide (at a concentration of 0.4 microliters per liter for 4 hours) does not result in any change in the diamine oxidase or peroxidase activities, yet the total sulfhydryl content of the leaf is increased, demonstrating the entry of sulfur dioxide. These two pollutants, with different chemical reactivities, affect the activities of the extracellular enzymes in different manners. In the case of ozone exposure, the inhibition of extracellular diamine oxidase could profoundly alter the movements of polyamines from cell to cell.

  15. A New Satellite Measurement Capability for Assessing Damage to Crops from Regional Scale Ozone Pollution

    Science.gov (United States)

    Fishman, J. J.; Creilson, J. K.; Parker, P. A.; Ainsworth, E. A.; Vining, G. G.; Szarka, J. L.

    2009-05-01

    High concentrations of ground-level ozone are frequently measured over farmland regions in many parts of the world. Since laboratory data show that ozone can significantly impact crop productivity if levels above a threshold concentration are reached, there is a consensus that crop yield should be impacted now and that the effects will become even more detrimental as global background concentrations continue to rise, as suggested by the latest IPCC report. Using the long-term record of tropospheric ozone derived from satellite measurements (http://asd-www.larc.nasa.gov/TOR/data.html), we present a methodology that can be used to assess the impact of regional ozone pollution on crop productivity. In this study, we use soybean crop yield data during a 5-year period over the Midwest of the United States and analyze the results using multiple linear regression statistical models. The results are consistent with findings using conventional ground-based measurements and with results obtained from an open-air experimental facility SoyFACE (Soybean Free Air Concentration Enrichment) in central Illinois. Our analysis suggests that the cost to the farmers globally is substantial, and supports other studies that calculate an economic loss to the farming community of more than 10 billion dollars annually.

  16. Indoor Secondary Pollutants from Household Product Emissions inthe Presence of Ozone: A Bench-Scale Chamber Study

    Energy Technology Data Exchange (ETDEWEB)

    Destaillats, Hugo; Lunden, Melissa M.; Singer, Brett C.; Coleman,Beverly K.; Hodgson, Alfred T.; Weschler, Charles J.; Nazaroff, William W.

    2005-10-01

    Ozone-driven chemistry is a major source of indoor secondary pollutants of health concern. This study investigates secondary air pollutants formed from reactions between constituents of household products and ozone. Gas-phase product emissions were introduced along with ozone at constant rates into a 198-L Teflon-lined reaction chamber. Gas-phase concentrations of reactive terpenoids and oxidation products were measured. Formaldehyde was a predominant oxidation byproduct for the three studied products, with yields under most conditions of 20-30% with respect to ozone consumed. Acetaldehyde, acetone, glycolaldehyde, formic acid and acetic acid were each also detected for two or three of the products. Immediately upon mixing of reactants, a scanning mobility particle sizer detected particle nucleation events that were followed by a significant degree of ultrafine particle growth. The production of secondary gaseous pollutants and particles depended primarily on the ozone level and was influenced by other parameters such as the air-exchange rate. Hydroxyl radical concentrations in the range 0.04-200 x 10{sup 5} molecules cm{sup -3} were measured. OH concentrations were observed to vary strongly with residual ozone level in the chamber, which was in the range 1-25 ppb, as is consistent with expectations from a simplified kinetic model. In a separate test, we exposed the dry residue of two products to ozone in the chamber and observed the formation of gas-phase and particle-phase secondary oxidation products.

  17. Convective lofting links Indian Ocean air pollution to paradoxical South Atlantic ozone maxima

    Science.gov (United States)

    Chatfield, R. B.; Guan, H.; Thompson, A. M.; Witte, J. C.

    2005-01-01

    We describe a broad resolution of the Atlantic Parado concerning the seasonal and geographic distribution, of tropical tropospheric ozone. We highlight periods of significant maximum tropospheric O3 for Jan.- April, 1999, exploiting satellite estimates and SHADOZ (Southern Hemisphere Additional Ozonesondes). Trajectory analyses connecting sondes and Total Tropospheric Ozone (TTO) maps suggest a complex influence from the Indian Ocean: beginning with mixed combustion sources, then low level transport, cumulonimbus venting, possible stratospheric input, and finally high-level transport to the west, with possible mixing over Africa. For the Jan.-March highest column-O3 periods in the Atlantic, distinct sounding peaks trace to specific NO sources, especially lightning, while in the same episodes, recurring every 20-50 days, more diffuse buildups of Indian-to-Atlantic pollution make important contributions.

  18. Ozone pollution during heat wave periods over last 15 years in Central Europe

    Science.gov (United States)

    Struzewska, J.; Kaminski, J. W.; Jefimow, M.

    2012-04-01

    Periods characterized with the high ozone concentrations are usually associated with very high air temperature and antycyclonic conditions or meridional circulation. A 15-year (1997 - 2011) maximum daily temperature records from GSOD NOAA archive was analyzed for 20 stations in Central Europe. For each year the number of days with the maximum temperature exceeding 25oC and 30oC was calculated. For years with a positive anomaly of the number of the hot days the data were analyzed to identify exact dates and the duration of such events. This allows classification of the high temperature period as "heat waves" (periods with maximum temperature exceeding 30oC lasting at least 3 consecutive days) and hot weather periods (periods with maximum temperature exceeding 25oC and high daily average temperature). These two types of high temperature are usually associated with different air masses inflow - subtropical from the south or transformed polar from westerly directions. This indicates also the differences in contribution of transboundary transport of ozone and its precursors. For selected high temperature episodes the ozone pollution was assessed based on AirBase (1997-2009) and national database (2010-2011). The analysis covered the 8-hour running average and daily maximum concentration of ozone near the surface. Also, the contribution to the SOMO35 index during selected episodes will be calculated as a diagnostic for adverse health effects. Since the two analyzed types of hot weather periods have different origin in terms of synoptic scale situation, an attempt will be made to answer whether there are differences in the intensity of ozone episodes during selected hot weather periods. The outcome from the study will be useful for the interpretation of modelling results for air quality in future climate.

  19. Plants, Pollution and Public Engagement with Atmospheric Chemistry: Sharing the TEMPO Story Through Ozone Garden Activities

    Science.gov (United States)

    Reilly, L. G.; Pippin, M. R.; Malick, E.; Summers, D.; Dussault, M. E.; Wright, E. A.; Skelly, J.

    2016-12-01

    What do a snap-bean plant and a future NASA satellite instrument named TEMPO have in common? They are both indicators of the quality of the air we breathe. Scientists, educators, and museum and student collaborators of the Tropospheric Emissions: Monitoring Pollution (TEMPO) instrument team are developing a program model to engage learners of all ages via public ozone garden exhibits and associated activities. TEMPO, an ultraviolet and visible spectroscopy instrument due for launch on a geostationary host satellite between 2019 and 2021, will scan North America hourly to measure the major elements in the tropospheric ozone chemistry cycle, providing near real-time data with high temporal and spatial resolution. The TEMPO mission provides a unique opportunity to share the story of the effects of air quality on living organisms. A public ozone garden exhibit affords an accessible way to understand atmospheric science through a connection with nature, while providing a visual representation of the impact of ozone pollution on living organisms. A prototype ozone garden exhibit was established at the Virginia Living Museum in partnership with NASA Langley, and has served as a site to formatively evaluate garden planting and exhibit display protocols, hands-on interpretive activities, and citizen science data collection protocols for learners as young as 3 to 10 as well as older adults. The fun and engaging activities, optimized for adult-child interaction in informal or free-choice learning environments, are aimed at developing foundational science skills such as observing, comparing, classifying, and collecting and making sense of data in the context of thinking about air quality - all NGSS-emphasized scientific practices, as well as key capabilities for future contributing members of the citizen science community. As the launch of TEMPO approaches, a major public engagement effort will include disseminating this ozone garden exhibit and program model to a network of

  20. [Modeling Study of A Typical Summer Ozone Pollution Event over Yangtze River Delta].

    Science.gov (United States)

    Zhang, Liang; Zhu, Bin; Gao, Jin-hui; Kang, Han-qing; Yang, Peng; Wang, Hong-lei; Li, Yue-e; Shao, Ping

    2015-11-01

    WRF/Chem model was used to analyze the temporal and spatial distribution characteristics and physical and chemical mechanism of a typical summer ozone pollution event over Yangtze River Delta (YRD). The result showed that the model was capable of reproducing the temporal and spatial distribution and evolution characteristics of the typical summer ozone pollution event over YRD. The YRD region was mainly affected by the subtropical high-pressure control, and the weather conditions of sunshine, high temperature and small wind were favorable for the formation of photochemical pollution on August 10-18, 2013. The results of simulation showed that the spatial and temporal distribution of O3 was obviously affected by the meteorological fields, geographic location, regional transport and chemical formation over YRD. The sensitivity experiment showed that the O3 concentration affected by maritime airstream was low in Shanghai, but the impact of Shanghai emissions on the spatial and temporal distribution of O3 concentration over YRD was significant; The main contribution of the high concentration of O3 in Nanjing surface was chemical generation ( alkene and aromatic) and the vertical transport from high-altitude O3, whereas the main contribution of the high concentration of O3 in Hangzhou and Suzhou was physics process. The influence of the 15:00 peak concentration of O3 over YRD was very obvious when O3 precursor was reduced at the maximum O3 formation rate (11-13 h).

  1. Three-dimensional investigation of ozone pollution in the lower troposphere using an unmanned aerial vehicle platform.

    Science.gov (United States)

    Li, Xiao-Bing; Wang, Dong-Sheng; Lu, Qing-Chang; Peng, Zhong-Ren; Lu, Si-Jia; Li, Bai; Li, Chao

    2017-05-01

    Potential utilities of instrumented lightweight unmanned aerial vehicles (UAVs) to quickly characterize tropospheric ozone pollution and meteorological factors including air temperature and relative humidity at three-dimensional scales are highlighted in this study. Both vertical and horizontal variations of ozone within the 1000 m lower troposphere at a local area of 4 × 4 km(2) are investigated during summer and autumn times. Results from field measurements show that the UAV platform has a sufficient reliability and precision in capturing spatiotemporal variations of ozone and meteorological factors. The results also reveal that ozone vertical variation is mainly linked to the vertical distribution patterns of air temperature and the horizontal transport of air masses from other regions. In addition, significant horizontal variations of ozone are also observed at different levels. Without major exhaust sources, ozone horizontal variation has a strong correlation with the vertical convection intensity of air masses within the lower troposphere. Higher air temperatures are usually related to lower ozone horizontal variations at the localized area, whereas underlying surface diversity has a week influence. Three-dimensional ozone maps are obtained using an interpolation method based on UAV collected samples, which are capable of clearly demonstrating the diurnal evolution processes of ozone within the 1000 m lower troposphere.

  2. Effects of Local Circulations, Turbulent Internal Boundary Layers, and Elevated Industrial Plumes on Coastal Ozone Pollution in the Downwind Kaohsiung Urban-Industrial Complex

    Directory of Open Access Journals (Sweden)

    Yee-Lin Wu

    2010-01-01

    Full Text Available Linyuan (LY is a coastal station located down wind of the industrial city of Kaohsiung in southern Taiwan. This station is often affected by severe ozone pollution during sea breeze events. Intensive tethered ozone soundings were per formed at this station during a 4-day ozone episode in November, 2005. Back air trajectories were also calculated to track the origins of air masses arriving at the station during the experiment. The investigation revealed complicated ozone pro files in the lower at mo sphere (be low 1300 m both day and night. At night, industrial plumes forming no-ozone air layers were frequently distributed at 400 - 800 m. Mixing layers rapidly decreased from 800 - 1100 m down to 200 - 350 m in the late morning hours when sea breezes and thermal internal boundary layers (TIBLs developed. Recirculation of polluted in land air masses over the sea, the development of TIBLs, and the late development of sea-breeze events all are likely responsible for severe ozone pollution at the LY station. Elevated industrial plumes or ozone aloft above TIBLs revealed only aminor contribution to ozone pollution via a downward mixing process. Elevated ozone levels (140 - 170 ppb were of ten trapped within transitional layers of sea-breeze circulations at 600 - 800 m and were accompanied by ambient northerly flows parallel to the coast line, suggesting that an ozone pollution core likely formed over the west coast of Taiwan on ozone-episodic days when sea-breeze circulations developed.

  3. Polyphenols, phytosterols, and reducing sugars in air-cured tobacco leaves injured by ozone air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Menser, H.A.; Chaplin, J.F.; Cheng, A.L.S.; Sorokin, T.

    1977-03-13

    Air-cured tobacco (Nicotiana tabacum L.) leaves of several production types were analyzed chemically to determine the effects of ozone-induced weather fleck on polyphenols, phytosterols, and reducing sugars. Seven domestic cultivars provided leaf samples for analysis of polyphenols and phytosterols. Quantities of chlorogenic acid, rutin, scopoletin, free quinic acid, and phytosterols were higher in severely flecked leaves than in leaves flecked only minimally. Greenhouse studies disclosed that leaves grown in carbon-filtered air analyzed as greenpunch samples contained significantly higher levels of reducing sugars than leaves grown in polluted air, regardless of plant injury.

  4. Combined effects of ozone and other air pollutants, especially allergens; Kombinationswirkung von Ozon mit anderen Luftschadstoffen, insbesondere mit Allergenen

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, D. [Muenchen Univ. (Germany). Inst. fuer Arbeits- und Umweltmedizin; Joerres, R.; Magnussen, H. [Krankenhaus Grosshansdorf (Germany). Zentrum fuer Pneumologie und Thoraxchirurgie

    2000-07-01

    Ozone effects in humans may either be examined in epidemiological or in clinical exposure studies. In the natural environment ozone does not occur alone but only in combination with other noxious agents. The present summary gives an overview of the literature on combined effects of ozone and allergens. [German] Ozoneffekte auf den Menschen koennen zum einen in epidemiologischen, zum anderen in klinischen Expositionsstudien untersucht werden. In der natuerlichen Umwelt des Menschen tritt Ozon nicht allein auf, sondern mit anderen Noxen kombiniert. Die vorliegende Zusammenfassung ist eine Literaturuebersicht ueber die Kombinationswirkung von Ozon mit Allergenen. (orig.)

  5. Anthropogenic emissions in Nigeria and implications for atmospheric ozone pollution: A view from space

    Science.gov (United States)

    Marais, E. A.; Jacob, D. J.; Wecht, K.; Lerot, C.; Zhang, L.; Yu, K.; Kurosu, T. P.; Chance, K.; Sauvage, B.

    2014-12-01

    Nigeria has a high population density and large fossil fuel resources but very poorly managed energy infrastructure. Satellite observations of formaldehyde (HCHO) and glyoxal (CHOCHO) reveal very large sources of anthropogenic nonmethane volatile organic compounds (NMVOCs) from the Lagos megacity and oil/gas operations in the Niger Delta. This is supported by aircraft observations over Lagos and satellite observations of methane in the Niger Delta. Satellite observations of carbon monoxide (CO) and nitrogen dioxide (NO2) show large seasonal emissions from open fires in December-February (DJF). Ventilation of central Nigeria is severely restricted at that time of year, leading to very poor ozone air quality as observed from aircraft (MOZAIC) and satellite (TES). Simulations with the GEOS-Chem chemical transport model (CTM) suggest that maximum daily 8-h average (MDA8) ozone exceeds 70 ppbv over the region on a seasonal mean basis, with significant contributions from both open fires (15-20 ppbv) and fuel/industrial emissions (7-9 ppbv). The already severe ozone pollution in Nigeria could worsen in the future as a result of demographic and economic growth, although this would be offset by a decrease in open fires.

  6. Medical ozone increases methotrexate clinical response and improves cellular redox balance in patients with rheumatoid arthritis.

    Science.gov (United States)

    León Fernández, Olga Sonia; Viebahn-Haensler, Renate; Cabreja, Gilberto López; Espinosa, Irainis Serrano; Matos, Yanet Hernández; Roche, Liván Delgado; Santos, Beatriz Tamargo; Oru, Gabriel Takon; Polo Vega, Juan Carlos

    2016-10-15

    Medical ozone reduced inflammation, IL-1β, TNF-α mRNA levels and oxidative stress in PG/PS-induced arthritis in rats. The aim of this study was to investigate the medical ozone effects in patients with rheumatoid arthritis treated with methotrexate and methotrexate+ozone, and to compare between them. A randomized clinical study with 60 patients was performed, who were divided into two groups: one (n=30) treated with methotrexate (MTX), folic acid and Ibuprophen (MTX group) and the second group (n=30) received the same as the MTX group+medical ozone by rectal insufflation of the gas (MTX+ozone group). The clinical response of the patients was evaluated by comparing Disease Activity Score 28 (DAS28), Health Assessment Questionnaire Disability Index (HAQ-DI), Anti-Cyclic Citrullinated (Anti-CCP) levels, reactants of acute phase and biochemical markers of oxidative stress before and after 20 days of treatment. MTX+ozone reduced the activity of the disease while MTX merely showed a tendency to decrease the variables. Reactants of acute phase displayed a similar picture. MTX+ozone reduced Anti-CCP levels as well as increased antioxidant system, and decreased oxidative damage whereas MTX did not change. Glutathione correlated with all clinical variables just after MTX+ozone. MTX+ozone increased the MTX clinical response in patients with rheumatoid arthritis. No side effects were observed. These results suggest that ozone can increase the efficacy of MTX probably because both share common therapeutic targets. Medical ozone treatment is capable of being a complementary therapy in the treatment of rheumatoid arthritis.

  7. Generation of sub-micron particles and secondary pollutants from building materials by ozone reaction

    Science.gov (United States)

    Aoki, Taisuke; Tanabe, Shin-ichi

    This study reports results from two different experiments examining reactions between ozone and common building materials that can lead to the formation of secondary products and particulate-phase materials. Monitored species include sub-micron particles and volatile organic compounds (VOCs). In the first set of experiments, various building materials were placed in a 20 L stainless-steel chamber and exposed to ozone. The materials included expanded polystyrene, a natural rubber adhesive, cedar board, Japanese Cyprus board and silver fir board, as well as d-limonene, which is a known constituent of certain woods and cleaning products. The combination of ozone and either d-limonene, cedar board or cypress board produced sub-micron particles, with most of the increase occurring in the size range of 0.01- 0.5μm diameter. This was not observed for the other materials. In the case of cedar board, the consequence of ozone exposure over an extended time interval was monitored. As the exposure time elapsed, the concentration of sub-micron particles moderately decreased. In the second set of experiments, unwaxed or waxed plastic tiles were placed in the 20 L chamber and exposed to ozone. Sub-micron particles and organic compounds were measured during the course of the experiments. In the case of the waxed tile, the number of 0.01- 1.0μm size particles grew about 50×108particlesm-3; particle growth was significantly less for the un-waxed tile. For both the waxed and un-waxed tiles, the emission rates of heptane, nonane, nonanal, and decanal increased after ozone was added to the supply air. (However, it is not clear if some or all of this production was due to ozone reacting with the sorbent used for sampling or with compounds captured by the sorbent.) This study provides further evidence that ozone-initiated reactions with building materials can be a significant source of both sub-micron particles and secondary organic compounds in indoor environments.

  8. Atmospheric protein chemistry influenced by anthropogenic air pollutants: nitration and oligomerization upon exposure to ozone and nitrogen dioxide.

    Science.gov (United States)

    Liu, Fobang; Lakey, Pascale S J; Berkemeier, Thomas; Tong, Haijie; Kunert, Anna Theresa; Meusel, Hannah; Cheng, Yafang; Su, Hang; Fröhlich-Nowoisky, Janine; Lai, Senchao; Weller, Michael G; Shiraiwa, Manabu; Pöschl, Ulrich; Kampf, Christopher J

    2017-08-24

    The allergenic potential of airborne proteins may be enhanced via post-translational modification induced by air pollutants like ozone (O3) and nitrogen dioxide (NO2). The molecular mechanisms and kinetics of the chemical modifications that enhance the allergenicity of proteins, however, are still not fully understood. Here, protein tyrosine nitration and oligomerization upon simultaneous exposure of O3 and NO2 were studied in coated-wall flow-tube and bulk solution experiments under varying atmospherically relevant conditions (5-200 ppb O3, 5-200 ppb NO2, 45-96% RH), using bovine serum albumin as a model protein. Generally, more tyrosine residues were found to react via the nitration pathway than via the oligomerization pathway. Depending on reaction conditions, oligomer mass fractions and nitration degrees were in the ranges of 2.5-25% and 0.5-7%, respectively. The experimental results were well reproduced by the kinetic multilayer model of aerosol surface and bulk chemistry (KM-SUB). The extent of nitration and oligomerization strongly depends on relative humidity (RH) due to moisture-induced phase transition of proteins, highlighting the importance of cloud processing conditions for accelerated protein chemistry. Dimeric and nitrated species were major products in the liquid phase, while protein oligomerization was observed to a greater extent for the solid and semi-solid phase states of proteins. Our results show that the rate of both processes was sensitive towards ambient ozone concentration, but rather insensitive towards different NO2 levels. An increase of tropospheric ozone concentrations in the Anthropocene may thus promote pro-allergic protein modifications and contribute to the observed increase of allergies over the past decades.

  9. Air Pollution and Watershed Research in the Central Sierra Nevada of California: Nitrogen and Ozone

    Directory of Open Access Journals (Sweden)

    Carolyn Hunsaker

    2007-01-01

    Full Text Available Maintaining healthy forests is the major objective for the Forest Service scientists and managers working for the U.S. Department of Agriculture. Air pollution, specifically ozone (O3 and nitrogenous (N air pollutants, may severely affect the health of forest ecosystems in the western U.S. Thus, the monitoring of air pollution concentration and deposition levels, as well as studies focused on understanding effects mechanisms, are essential for evaluation of risks associated with their presence. Such information is essential for development of proper management strategies for maintaining clean air, clean water, and healthy ecosystems on land managed by the Forest Service. We report on two years of research in the central Sierra Nevada of California, a semi-arid forest at elevations of 1100–2700 m. Information on O3 and N air pollutants is obtained from a network of 18 passive samplers. We relate the atmospheric N concentration to N concentrations in streams, shallow soil water, and bulk deposition collectors within the Kings River Experimental Watershed. This watershed also contains an intensive site that is part of a recent Forest Service effort to calculate critical loads for N, sulfur, and acidity to forest ecosystems. The passive sampler design allows for extensive spatial measurements while the watershed experiment provides intensive spatial data for future analysis of ecosystem processes.

  10. The impact of biogenic VOC emissions on photochemical ozone formation during a high ozone pollution episode in the Iberian Peninsula in the 2003 summer season

    Directory of Open Access Journals (Sweden)

    N. Castell

    2008-04-01

    Full Text Available Throughout Europe the summer of 2003 was exceptionally warm, especially July and August. The European Environment Agency (EEA reported several ozone episodes, mainly in the first half of August. These episodes were exceptionally long-lasting, spatially extensive, and associated to high temperatures. In this paper, the 10$ndash;15 August 2003 ozone pollution event has been analyzed using meteorological and regional air quality modelling. During this period the threshold values of the European Directive 2002/3/EC were exceeded in various areas of the Iberian Peninsula.

    The aim of this paper is to computationally understand and quantify the influence of biogenic volatile organic compound (BVOC emissions in the formation of tropospheric ozone during this high ozone episode. Being able to differentiate how much ozone comes from biogenic emissions alone and how much comes from the interaction between anthropogenic and biogenic emissions would be helpful to develop a feasible and effective ozone control strategy. The impact on ozone formation was also studied in combination with various anthropogenic emission reduction strategies, i.e., when anthropogenic VOC emissions and/or NOx emissions are reduced. The results show a great dependency of the BVOC contribution to ozone formation on the antropoghenic reduction scenario. In rural areas, the impact due to a NOx and/or VOC reduction does not change the BVOC impact. Nevertheless, within big cities or industrial zones, a NOx reduction results in a decrease of the biogenic impact in ozone levels that can reach 85 μg/m3, whereas an Anthropogenic Volatile Organic Compound (AVOC reduction results in a decrease of the BVOC contribution on ozone formation that varies from 0 to 30 μg/m3 with respect to the contribution at the same points in the 2003 base scenario. On the other hand, downwind of the big cities, a decrease in NOx produces

  11. Secondary pollutants from ozone reactions with ventilation filters and degradation of filter media additives

    Science.gov (United States)

    Destaillats, Hugo; Chen, Wenhao; Apte, Michael G.; Li, Nuan; Spears, Michael; Almosni, Jérémie; Brunner, Gregory; Zhang, Jianshun (Jensen); Fisk, William J.

    2011-07-01

    than ozonolysis, is the main formaldehyde source in those filters. Emission rates of formaldehyde and acetaldehyde were not found to be large enough to substantially increase indoor concentrations in typical building scenarios. Nevertheless, ozone reactions on HVAC filters cannot be ignored as a source of low levels of indoor irritants.

  12. Secondary Pollutants from Ozone Reaction with Ventilation Filters and Degradation of Filter Media Additives

    Energy Technology Data Exchange (ETDEWEB)

    Destaillats, Hugo; Chen, Wenhao; Apte, Michael; Li, Nuan; Spears, Michael; Almosni, Jérémie; Brunner, Gregory; Zhang, Jianshun (Jensen); Fisk, William J.

    2011-05-01

    , rather than ozonolysis, is the main formaldehyde source in those filters. Emission rates of formaldehyde and acetaldehyde were not found to be large enough to substantially increase indoor concentrations in typical building scenarios. Nevertheless, ozone reactions on HVAC filters cannot be ignored as a source of low levels of indoor irritants.

  13. Measurements of ozone and its precursors in Beijing during summertime: impact of urban plumes on ozone pollution in downwind rural areas

    Directory of Open Access Journals (Sweden)

    J. Xu

    2011-06-01

    Full Text Available Sea-land and mount-valley circulations are the dominant mesoscale synoptic systems affecting the Beijing area during summertime. Under the influence of these two circulations, the prevailing wind is southwesterly from afternoon to midnight, and then changes to northeasterly till forenoon. In this study, surface ozone (O3, carbon monoxide (CO, nitric oxide (NO, nitrogen dioxide (NO2, nitrogen oxide (NOx and non-methane hydrocarbons (NMHCs were measured at four sites located along the route of prevailing wind, including two upwind urban sites (Fengtai (FT and Baolian (BL, an upwind suburban site (Shunyi (SY and a downwind rural site (Shangdianzi (SDZ during 20 June–16 September 2007. The purpose is to improve our understanding of ozone photochemistry in urban and rural areas of Beijing and the influence of urban plumes on ozone pollution in downwind rural areas. It is found that ozone pollution was synchronism in the urban and rural areas of Beijing, coinciding with the regional-scale synoptic processes. Due to the high traffic density and local emissions, the average levels of reactive gases NOx and NMHCs at the non-rural sites were much higher than those at SDZ. The level of long-lived gas CO at SDZ was comparable to and slightly lower than it was at other sites. The daily-averaged ozone concentration at SDZ was much higher than at other sites due to weak titration. Ranking by OH loss rate coefficient (LOH, alkenes played a dominant role in total NMHCs reactivity at both urban and rural sites during the experiment, accounting for 48.6 % and 52.1 % of total LOH, respectively. The NMHCs data were also used to estimate the ozone potential formation (OFP in Beijing. The leading contributors to ozone formation were aromatics at both urban and rural sites during the experiment, which accounts for 55.5 % and 49.4 % of total OFP, respectively. The ozone peak values are

  14. Measurements of ozone and its precursors in Beijing during summertime: impact of urban plumes on ozone pollution in downwind rural areas

    Science.gov (United States)

    Xu, J.; Ma, J. Z.; Zhang, X. L.; Xu, X. B.; Xu, X. F.; Lin, W. L.; Wang, Y.; Meng, W.; Ma, Z. Q.

    2011-12-01

    Sea-land and mount-valley circulations are the dominant mesoscale synoptic systems affecting the Beijing area during summertime. Under the influence of these two circulations, the prevailing wind is southwesterly from afternoon to midnight, and then changes to northeasterly till forenoon. In this study, surface ozone (O3), carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2), nitrogen oxide (NOx) and non-methane hydrocarbons (NMHCs) were measured at four sites located along the route of prevailing wind, including two upwind urban sites (Fengtai "FT" and Baolian "BL"), an upwind suburban site (Shunyi "SY") and a downwind rural site (Shangdianzi "SDZ") during 20 June-16 September 2007. The purpose is to improve our understanding of ozone photochemistry in urban and rural areas of Beijing and the influence of urban plumes on ozone pollution in downwind rural areas. It is found that ozone pollution was synchronism in the urban and rural areas of Beijing, coinciding with the regional-scale synoptic processes. Due to the high traffic density and local emissions, the average levels of reactive gases NOx and NMHCs at the non-rural sites were much higher than those at SDZ. The level of long-lived gas CO at SDZ was comparable to, though slightly lower than, at the urban sites. We estimate the photochemical reactivity (LOH and the ozone formation potential (OFP) in the urban (BL) and rural (SDZ) areas using measured CO and NMHCs. The OH loss rate coefficient (LOH by total NMHCs at the BL and SDZ sites are estimated to be 50.7 s-1 and 15.8 s-1, respectively. While alkenes make a major contribution to the LOH, aromatics dominate OFP at both urban and rural sites. With respect to the individual species, CO has the largest ozone formation potential at the rural site, and at the urban site aromatic species are the leading contributors. While the O3 diurnal variations at the four sites are typical for polluted areas, the ozone peak values are found to lag behind one site

  15. Air Pollution

    Science.gov (United States)

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  16. Chronic exposure to ozone and nitric acid vapor results in increased levels of rat pulmonary putrescine

    Energy Technology Data Exchange (ETDEWEB)

    Sindhu, R.K.; Kikkawa, Yutaka [Department of Pathology, College of Medicine, University of California at Irvine, Irvine (United States); Mautz, W.J. [Department of Community and Environmental Medicine, University of California at Irvine, Irvine, CA (United States)

    1998-06-01

    In the past decade, there has been growing public concern for the human health effects of exposure to environmental pollutants. Ozone (O{sub 3}) is one of the most reactive components of photochemical air pollution. Despite extensive investigations by many laboratories on the functional, biochemical, and cellular effects of O{sub 3} exposure in humans, animals, and in vitro systems, questions remain concerning the potential adverse effects to human health represented by chronic near-ambient exposure to this environmental pollutant. In the present investigation, the influence of inhalation of O{sub 3} and nitric acid (HNO{sub 3}) vapor on polyamine levels was examined in rat lungs. Male F344/N rats were exposed nose-only to 0.15 ppm O{sub 3} and 50 {mu}g/m{sup 3} HNO{sub 3} vapor alone and in combination for 4 hours/day, 3 days/week for a total of 40 weeks. At this time the animals were sacrificed and their lungs were examined for polyamine contents. Exposure to O{sub 3} and O{sub 3} plus HNO{sub 3} vapor caused a significant increase in the putrescine content of the lung compared to the air-exposed controls (P < 0.05). The concentrations of pulmonary spermidine and spermine were not significantly increased by exposure to either O{sub 3} or HNO{sub 3} vapor alone or in combination compared to the air-exposed controls. The role of polyamines in repair and anti-inflammatory processes has been discussed. (orig.) (orig.) With 1 fig., 1 tab., 30 refs.

  17. Catalytic ozonation of organic pollutants from bio-treated dyeing and finishing wastewater using recycled waste iron shavings as a catalyst: Removal and pathways.

    Science.gov (United States)

    Wu, Jin; Ma, Luming; Chen, Yunlu; Cheng, Yunqin; Liu, Yan; Zha, Xiaosong

    2016-04-01

    Catalytic ozonation of organic pollutants from actual bio-treated dyeing and finishing wastewater (BDFW) with iron shavings was investigated. Catalytic ozonation effectively removed organic pollutants at initial pH values of 7.18-7.52, and the chemical oxygen demand (COD) level decreased from 142 to 70 mg·L(-1) with a discharge limitation of 80 mg·L(-1). A total of 100% and 42% of the proteins and polysaccharides, respectively, were removed with a decrease in their contribution to the soluble COD from 76% to 41%. Among the 218 organic species detected by liquid chromatography-mass spectrometry, 58, 77, 79 and 4 species were completely removed, partially removed, increased and newly generated, respectively. Species including textile auxiliaries and dye intermediates were detected by gas chromatography-mass spectrometry. The inhibitory effect decreased from 51% to 33%, suggesting a reduction in the acute toxicity. The enhanced effect was due to hydroxyl radical (OH) oxidation, co-precipitation and oxidation by other oxidants. The proteins were removed by OH oxidation (6%), by direct ozonation, co-precipitation and oxidation by other oxidants (94%). The corresponding values for polysaccharides were 21% and 21%, respectively. In addition, the iron shavings behaved well in successive runs. These results indicated that the process was favorable for engineering applications for removal of organic pollutants from BDFW.

  18. Increase of ozone concentrations, its temperature sensitivity and the precursor factor in South China

    Directory of Open Access Journals (Sweden)

    Y. C. Lee

    2014-08-01

    Full Text Available Concerns have been raised about the possible connections between the local and regional photochemical problem and global warming. The current study assesses the trend of ozone in Hong Kong and the Pearl River Delta (PRD in South China and investigates the interannual changes of sensitivity of ozone to air temperature, as well as the trends in regional precursors. Results reveal, at the three monitoring sites from the mid-1990s to 2010, an increase in the mean ozone concentrations from 1.0 to 1.6 µg m−3 per year. The increase occurred in all seasons, with the highest rate in autumn. This is consistent with trends and temperature anomalies in the region. The increase in the sensitivity of ozone to temperature is clearly evident from the correlation between ozone (OMI [Ozone Monitoring Instrument] column amount and surface air temperature (from the Atmospheric Infrared Sounder displayed in the correlation maps for the PRD during the prominently high ozone period of July–September. It is observed to have increased from 2005 to 2010, the latter being the hottest year on record globally. To verify this temporal change in sensitivity, the ground-level trends of correlation coefficients/regression slopes are analysed. As expected, results reveal a statistically significant upward trend over a 14-year period (1997–2010. While the correlation revealed in the correlation maps is in agreement with the corresponding OMI ozone maps when juxtaposed, temperature sensitivity of surface ozone also shows an association with ozone concentration, with R=0.5. These characteristics of ozone sensitivity are believed to have adverse implications for the region. As shown by ground measurements and/or satellite analyses, the decrease in nitrogen oxides (NO2 and NOx in Hong Kong is not statistically significant while NO2 of the PRD has only very slightly changed. However, carbon dioxide has remarkably declined in the whole region. While these observations concerning

  19. The impact of air pollutant and methane emission controls on tropospheric ozone and radiative forcing: CTM calculations for the period 1990-2030

    Directory of Open Access Journals (Sweden)

    F. Dentener

    2005-01-01

    Full Text Available To explore the relationship between tropospheric ozone and radiative forcing with changing emissions, we compiled two sets of global scenarios for the emissions of the ozone precursors methane (CH4, carbon monoxide (CO, non-methane volatile organic compounds (NMVOC and nitrogen oxides (NOx up to the year 2030 and implemented them in two global Chemistry Transport Models. The 'Current Legislation' (CLE scenario reflects the current perspectives of individual countries on future economic development and takes the anticipated effects of presently decided emission control legislation in the individual countries into account. In addition, we developed a 'Maximum technically Feasible Reduction' (MFR scenario that outlines the scope for emission reductions offered by full implementation of the presently available emission control technologies, while maintaining the projected levels of anthropogenic activities. Whereas the resulting projections of methane emissions lie within the range suggested by other greenhouse gas projections, the recent pollution control legislation of many Asian countries, requiring introduction of catalytic converters for vehicles, leads to significantly lower growth in emissions of the air pollutants NOx, NMVOC and CO than was suggested by the widely used and more pessimistic IPCC (Intergovernmental Panel on Climate Change SRES (Special Report on Emission Scenarios scenarios (Nakicenovic et al., 2000, which made Business-as-Usual assumptions regarding emission control technology. With the TM3 and STOCHEM models we performed several long-term integrations (1990-2030 to assess global, hemispheric and regional changes in CH4, CO, hydroxyl radicals, ozone and the radiative climate forcings resulting from these two emission scenarios. Both models reproduce broadly the observed trends in CO, and CH4 concentrations from 1990 to 2002. For the 'current legislation' case, both models indicate an increase of the annual average ozone

  20. Characterizing ozone pollution in a petrochemical industrial area in Beijing, China: a case study using a chemical reaction model.

    Science.gov (United States)

    Wei, Wei; Lv, Zhaofeng; Cheng, Shuiyuan; Wang, Lili; Ji, Dongsheng; Zhou, Ying; Han, Lihui; Wang, Litao

    2015-06-01

    This study selected a petrochemical industrial complex in Beijing, China, to understand the characteristics of surface ozone (O3) in this industrial area through the on-site measurement campaign during the July-August of 2010 and 2011, and to reveal the response of local O3 to its precursors' emissions through the NCAR-Master Mechanism model (NCAR-MM) simulation. Measurement results showed that the O3 concentration in this industrial area was significantly higher, with the mean daily average of 124.6 μg/m(3) and mean daily maximum of 236.8 μg/m(3), which are, respectively, 90.9 and 50.6 % higher than those in Beijing urban area. Moreover, the diurnal O3 peak generally started up early in 11:00-12:00 and usually remained for 5-6 h, greatly different with the normal diurnal pattern of urban O3. Then, we used NCAR-MM to simulate the average diurnal variation of photochemical O3 in sunny days of August 2010 in both industrial and urban areas. A good agreement in O3 diurnal variation pattern and in O3 relative level was obtained for both areas. For example of O3 daily maximum, the calculated value in the industrial area was about 51 % higher than in the urban area, while measured value in the industrial area was approximately 60 % higher than in the urban area. Finally, the sensitivity analysis of photochemical O3 to its precursors was conducted based on a set of VOCs/NOx emissions cases. Simulation results implied that in the industrial area, the response of O3 to VOCs was negative and to NOx was positive under the current conditions, with the sensitivity coefficients of -0.16~-0.43 and +0.04~+0.06, respectively. By contrast, the urban area was within the VOCs-limitation regime, where ozone enhancement in response to increasing VOCs emissions and to decreasing NOx emission. So, we think that the VOCs emissions control for this petrochemical industrial complex will increase the potential risk of local ozone pollution aggravation, but will be helpful to inhibit the

  1. Impact of Increasing Stratospheric Water Vapor on Ozone Depletion and Temperature Change

    Institute of Scientific and Technical Information of China (English)

    TIAN Wenshou; Martyn P. CHIPPERFIELD; L(U) Daren

    2009-01-01

    Using a detailed, fully coupled chemistry climate model (CCM), the effect of increasing stratospheric H2O on ozone and temperature is investigated. Different CCM time-slice runs have been performed to investigate the chemical and radiative impacts of an assumed 2 ppmv increase in H2O. The chemical effects of this H2O increase lead to an overall decrease of the total column ozone (TCO) by ~1% in the tropics and by a maximum of 12% at southern high latitudes. At northern high latitudes, the TCO is increased by only up to 5% due to stronger transport in the Arctic. A 2-ppmv H2O increase in the model's radiation scheme causes a cooling of the tropical stratosphere of no more than 2 K, but a cooling of more than 4 K at high latitudes. Consequently, the TCO is increased by about 2%-6%. Increasing stratospheric H2O, therefore, cools the stratosphere both directly and indirectly, except in the polar regions where the temperature responds differcntly due to feedbacks between ozone and H2O changes. The combined chemical and radiative effects of increasing H2O may give rise to more cooling in the tropics and middle latitudes but less cooling in the polar stratosphere. The combined effects of H2O increases on ozone tend to offset each other, except in the Arctic stratosphere where both the radiative and chemical impacts give rise to increased ozone. The chemical and radiative effects of increasing H2O cause dynamical responses in the stratosphere with an evident hemispheric asymmetry. In terms of ozone recovery, increasing the stratospheric H2O is likely to accelerate the recovery in the northern high latitudcs and delay it in the southern high latitudes. The modeled ozone recovery is more significant between 2000-2050 than between 2050-2100, driven mainly by the larger relative change in chlorine in the earlier period.

  2. Foliar response of an Ailanthus altissima clone in two sites with different levels of ozone-pollution

    Energy Technology Data Exchange (ETDEWEB)

    Gravano, Elisabetta; Giulietti, Valentina; Desotgiu, Rosanna; Bussotti, Filippo; Grossoni, Paolo; Gerosa, Giacomo; Tani, Corrado

    2003-01-01

    Ozone sensitivity of Ailanthus altissima leaves is due to low leaf density and large intercellular spaces. - Potted plants of Ailanthus altissima, produced by root suckers coming from a single symptomatic mother tree, were placed in two sites in the vicinity of Florence (central Italy), with different levels of ozone pollution. These plants were kept in well watered conditions during the period May-September 1999. In the high pollution site (Settignano-SET) the level of ozone exposure (AOT40) reached at the end of the season a value of 31 ppm h, whereas in the 'low pollution' site (Cascine-CAS) the exposure to ozone was 11 ppm h. A. altissima showed foliar symptoms in early July at SET and in the second half of July at CAS when exposure values reached 5 ppm h at both sites. However, at the end of August the conditions of the plantlets were rather similar in both sites. Microscopic and ultrastructural analysis were performed at the first onset of symptoms at SET (the CAS leaflets were asymptomatic). Observing the upper leaf surface where the brown stipples were visible, it was found that the cells of the palisade mesophyll displayed loss of chlorophyll and the organelles in the cytoplasm were damaged. Swelling of thylacoids was observed in the CAS leaflets, thus indicating the possible onset of a pre-visual damage. The injured cells were separated from the healthy ones by a layer of callose. We conclude that the sensitivity to ozone of A. altissima leaves is related to its leaf structure, with low leaf density and large intercellular spaces. Cell walls, as well as acting as mechanical barriers against the spread of ozone within the cell, also provide important detoxifying processes.

  3. Reduction of soil carbon formation by tropospheric ozone under increased carbon dioxide levels.

    Science.gov (United States)

    Loya, Wendy M; Pregitzer, Kurt S; Karberg, Noah J; King, John S; Giardina, Christian P

    2003-10-16

    In the Northern Hemisphere, ozone levels in the troposphere have increased by 35 per cent over the past century, with detrimental impacts on forest and agricultural productivity, even when forest productivity has been stimulated by increased carbon dioxide levels. In addition to reducing productivity, increased tropospheric ozone levels could alter terrestrial carbon cycling by lowering the quantity and quality of carbon inputs to soils. However, the influence of elevated ozone levels on soil carbon formation and decomposition are unknown. Here we examine the effects of elevated ozone levels on the formation rates of total and decay-resistant acid-insoluble soil carbon under conditions of elevated carbon dioxide levels in experimental aspen (Populus tremuloides) stands and mixed aspen-birch (Betula papyrifera) stands. With ambient concentrations of ozone and carbon dioxide both raised by 50 per cent, we find that the formation rates of total and acid-insoluble soil carbon are reduced by 50 per cent relative to the amounts entering the soil when the forests were exposed to increased carbon dioxide alone. Our results suggest that, in a world with elevated atmospheric carbon dioxide concentrations, global-scale reductions in plant productivity due to elevated ozone levels will also lower soil carbon formation rates significantly.

  4. Future Vegetation Damages from Ozone Pollution: Implication for the Carbon Cycle

    Science.gov (United States)

    Szopa, S.; Viovy, N.; Friedlingstein, P.; Hauglustaine, D.; Lathière, J.; Ciais, P.

    2006-12-01

    In the carbon cycle, the present-day sinks due to continental biosphere and oceans are of the same magnitude, however the future response of the continental biosphere to modifications such as climatic change is, nowadays, highly uncertain. Many atmospheric parameters are able to significantly affect the terrestrial carbon sink and several of them are subject to modifications due to human activities. In particular, higher atmospheric CO2 is known to have a fertilizer effect on photosynthesis. Anthropogenic emitted NOx can have a fertilizer effect however it could also have adverse effect on productivity through acid rain. Future climate change can reduce the global efficiency of the vegetation to absorb CO2. Ozone, formed by photochemical reactions involving NOx and VOCs, is responsible of physiological alteration and leaf injury on many plants and thus reduce the carbon sequestration. Future levels of surface O3 in emerging regions (eg. Tropical Africa, Latin America, South East Asia) are expected to increase, and can hence have a significant negative impact on crops and forests. Here we examine the potential impact of O3 on the global terrestrial biosphere for recently developed future scenarios of atmospheric composition and compare with the effects of future climate and CO2 on plant productivity. Ozone levels are computed using the multiscale tropospheric chemistry-transport modelling platform LMDz-INCA/CHIMERE. These ozone exposure distributions are then used by a global dynamic vegetation model ORCHIDEE in order to quantify the changes in net primary production of vegetation under several present and future conditions. Results are discussed in detail for regions of interest having both high O3 precursor emissions and large vegetation cover. The effect of ozone changes at the 2030 horizon on the terrestrial biosphere is shown to be moderate compared with that of climate and CO2.

  5. Impact of intercontinental pollution transport on North American ozone air pollution: an HTAP phase 2 multi-model study

    Science.gov (United States)

    Huang, Min; Carmichael, Gregory R.; Pierce, R. Bradley; Jo, Duseong S.; Park, Rokjin J.; Flemming, Johannes; Emmons, Louisa K.; Bowman, Kevin W.; Henze, Daven K.; Davila, Yanko; Sudo, Kengo; Eiof Jonson, Jan; Tronstad Lund, Marianne; Janssens-Maenhout, Greet; Dentener, Frank J.; Keating, Terry J.; Oetjen, Hilke; Payne, Vivienne H.

    2017-05-01

    The recent update on the US National Ambient Air Quality Standards (NAAQS) of the ground-level ozone (O3) can benefit from a better understanding of its source contributions in different US regions during recent years. In the Hemispheric Transport of Air Pollution experiment phase 1 (HTAP1), various global models were used to determine the O3 source-receptor (SR) relationships among three continents in the Northern Hemisphere in 2001. In support of the HTAP phase 2 (HTAP2) experiment that studies more recent years and involves higher-resolution global models and regional models' participation, we conduct a number of regional-scale Sulfur Transport and dEposition Model (STEM) air quality base and sensitivity simulations over North America during May-June 2010. STEM's top and lateral chemical boundary conditions were downscaled from three global chemical transport models' (i.e., GEOS-Chem, RAQMS, and ECMWF C-IFS) base and sensitivity simulations in which the East Asian (EAS) anthropogenic emissions were reduced by 20 %. The mean differences between STEM surface O3 sensitivities to the emission changes and its corresponding boundary condition model's are smaller than those among its boundary condition models, in terms of the regional/period-mean (Modeling System) simulation without EAS anthropogenic emissions. The scalability of O3 sensitivities to the size of the emission perturbation is spatially varying, and the full (i.e., based on a 100 % emission reduction) source contribution obtained from linearly scaling the North American mean O3 sensitivities to a 20 % reduction in the EAS anthropogenic emissions may be underestimated by at least 10 %. The three boundary condition models' mean O3 sensitivities to the 20 % EAS emission perturbations are ˜ 8 % (May-June 2010)/˜ 11 % (2010 annual) lower than those estimated by eight global models, and the multi-model ensemble estimates are higher than the HTAP1 reported 2001 conditions. GEOS-Chem sensitivities indicate that

  6. Springtime variability of lower tropospheric ozone over Eastern Asia: contributions of cyclonic activity and pollution as observed from space with IASI

    Science.gov (United States)

    Dufour, G.; Eremenko, M.; Cuesta, J.; Doche, C.; Foret, G.; Beekmann, M.; Cheiney, A.; Wang, Y.; Cai, Z.; Liu, Y.; Takigawa, M.; Kanaya, Y.; Flaud, J.-M.

    2015-03-01

    We use satellite observations from IASI (Infrared Atmospheric Sounding Interferometer) on board the MetOp-A satellite to evaluate the springtime daily variability of lower tropospheric ozone at the scale of Eastern Asia. Lower tropospheric partial columns from surface to 6 km are retrieved from IASI with a maximum of sensitivity between 3 and 4 km. We focus our analysis on the month of May 2008 for which tropospheric ozone presents typically amongst the largest concentrations along the year. We combine IASI observations with meteorological reanalyses from ERA-Interim in order to investigate the processes that control the spatial and temporal distribution of lower tropospheric ozone, especially in case of ozone enhancement. The succession of low- and high-pressure systems drives the day-to-day variability of lower tropospheric ozone over North East Asia. The analysis of two episodes with ozone enhancement at the synoptic scale of East Asia shows that the reversible subsiding and ascending ozone transfers in the UTLS region occurring in the vicinity of low-pressure systems and related to tropopause height affect the upper and lower tropospheric ozone over large regions, especially north to 40° N and largely explain the ozone enhancement observed with IASI for these latitudes. Irreversible downward transport of ozone-rich air masses from the UTLS to the lower troposphere occurs more locally. Its contribution to the lower tropospheric ozone column is difficult to dissociate from the tropopause perturbations induced by the weather systems. For regions south to 40° N, a significant correlation between lower tropospheric ozone and carbon monoxide (CO) observations from IASI has been found, especially over North China Plain (NCP). Considering carbon monoxide observations as pollutant tracer, the O3-CO correlation indicates that the photochemical production of ozone from primary pollutants emitted over such large polluted regions significantly contributes to the ozone

  7. Environmental externalities caused by SO{sub 2} and ozone pollution in the metropolitan area of Madrid

    Energy Technology Data Exchange (ETDEWEB)

    Y. Lechon; H. Cabal; M. Gomez; E. Sanchez; R. Saez [CIEMAT, Energy Studies Institute, Madrid (Spain)

    2002-10-01

    The work performs an assessment of the environmental externalities of SO{sub 2} and ozone pollution in an area 270 km 200 km surrounding the city of Madrid. The study analyses two situations corresponding to different and extreme cases of atmospheric pollution in the area produced in years 1992 and 1995, respectively. Concentrations fields in these years for these pollutants were estimated in the framework of a project financed by the R and D National Programme and reported elsewhere. Aggregated environmental externalities produced in the area were estimated using these concentration fields and applying the ExternE methodology. Environmental effects analysed were those produced in the health of the people living in the area, effects on agricultural crops, and effects on construction materials. Results obtained for SO{sub 2} show that environmental externalities produced are very high, especially, those related to the effects on health and materials. Results for ozone show also that important damages are produced, specially those related to public health. Total environmental externalities due to SO{sub 2} and ozone amount to 9675 million euro in year 1992 and 7664 million euro in year 1995 representing 7% of the GDP of the area in 1995. These results are very useful for policy-making since they could be used to assess the cost-effectiveness of policies intended to reduce environmental pollution in the area.

  8. Widespread and persistent ozone pollution in eastern China during the non-winter season of 2015: observations and source attributions

    Science.gov (United States)

    Li, Guohui; Bei, Naifang; Cao, Junji; Wu, Jiarui; Long, Xin; Feng, Tian; Dai, Wenting; Liu, Suixin; Zhang, Qiang; Tie, Xuexi

    2017-02-01

    Rapid growth of industrialization, transportation, and urbanization has caused increasing emissions of ozone (O3) precursors recently, enhancing the O3 formation in eastern China. We show here that eastern China has experienced widespread and persistent O3 pollution from April to September 2015 based on the O3 observations in 223 cities. The observed maximum 1 h O3 concentrations exceed 200 µg m-3 in almost all the cities, 400 µg m-3 in more than 25 % of the cities, and even 800 µg m-3 in six cities in eastern China. The average daily maximum 1 h O3 concentrations are more than 160 µg m-3 in 45 % of the cities, and the 1 h O3 concentrations of 200 µg m-3 have been exceeded on over 10 % of days from April to September in 129 cities. Analyses of pollutant observations from 2013 to 2015 have shown that the concentrations of CO, SO2, NO2, and PM2.5 from April to September in eastern China have considerably decreased, but the O3 concentrations have increased by 9.9 %. A widespread and severe O3 pollution episode from 22 to 28 May 2015 in eastern China has been simulated using the Weather Research and Forecasting model coupled to chemistry (WRF-CHEM) to evaluate the O3 contribution of biogenic and various anthropogenic sources. The model generally performs reasonably well in simulating the temporal variations and spatial distributions of near-surface O3 concentrations. Using the factor separation approach, sensitivity studies have indicated that the industry source plays the most important role in the O3 formation and constitutes the culprit of the severe O3 pollution in eastern China. The transportation source contributes considerably to the O3 formation, and the O3 contribution of the residential source is not significant generally. The biogenic source provides a background O3 source, and also plays an important role in the south of eastern China. Further model studies are needed to comprehensively investigate O3 formation for supporting the design and

  9. Comparing removal efficiency and reaction rates of organic micro-pollutants during ozonation from different municipal waste water treatment plants effluents in Sweden

    DEFF Research Database (Denmark)

    El-taliawy, Haitham; Ekblad, Maja; Nilsson, Filip

    2015-01-01

    The Removal of about 50 micro-pollutants from 7 waste water treatment plant effluents –in Sweden- was tested on pilot scale. Different ozone doses and two different pilots with different reactor sizes and retention times were tested. Ozone reaction rates depended on DOC concentration in the water...

  10. Ozone

    Science.gov (United States)

    ... Home Page Brochures & Fact Sheets Environmental Health Topics Science Education Kids Environment | Kids Health Research Home Page At NIEHS ... Agents Water Pollution Environmental Science Basics Population Research Science Education Kids Environment | Kids Health Research Home Research At NIEHS ...

  11. Land use regression modeling of ultrafine particles, ozone, nitrogen oxides and markers of particulate matter pollution in Augsburg, Germany.

    Science.gov (United States)

    Wolf, Kathrin; Cyrys, Josef; Harciníková, Tatiana; Gu, Jianwei; Kusch, Thomas; Hampel, Regina; Schneider, Alexandra; Peters, Annette

    2017-02-01

    Important health relevance has been suggested for ultrafine particles (UFP) and ozone, but studies on long-term effects are scarce, mainly due to the lack of appropriate spatial exposure models. We designed a measurement campaign to develop land use regression (LUR) models to predict the spatial variability focusing on particle number concentration (PNC) as indicator for UFP, ozone and several other air pollutants in the Augsburg region, Southern Germany. Three bi-weekly measurements of PNC, ozone, particulate matter (PM10, PM2.5), soot (PM2.5abs) and nitrogen oxides (NOx, NO2) were performed at 20 sites in 2014/15. Annual average concentration were calculated and temporally adjusted by measurements from a continuous background station. As geographic predictors we offered several traffic and land use variables, altitude, population and building density. Models were validated using leave-one-out cross-validation. Adjusted model explained variance (R(2)) was high for PNC and ozone (0.89 and 0.88). Cross-validation adjusted R(2) was slightly lower (0.82 and 0.81) but still indicated a very good fit. LUR models for other pollutants performed well with adjusted R(2) between 0.68 (PMcoarse) and 0.94 (NO2). Contrary to previous studies, ozone showed a moderate correlation with NO2 (Pearson's r=-0.26). PNC was moderately correlated with ozone and PM2.5, but highly correlated with NOx (r=0.91). For PNC and NOx, LUR models comprised similar predictors and future epidemiological analyses evaluating health effects need to consider these similarities. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Will climate change increase ozone depletion from low-energy-electron precipitation?

    Directory of Open Access Journals (Sweden)

    A. J. G. Baumgaertner

    2010-04-01

    Full Text Available We investigate the effects of a strengthened Brewer-Dobson circulation on the transport of nitric oxide (NO produced by energetic particle precipitation. During periods of high geomagnetic activity, low-energy-electron precipitation is responsible for winter time ozone loss in the polar middle atmosphere between 1 and 6 hPa. However, as climate change is expected to increase the strength of the Brewer-Dobson circulation, the enhancements of NOx concentrations are expected to be transported to lower altitudes in extra-tropical regions, becoming even more significant in the ozone budget. We use simulations with the chemistry climate model system ECHAM5/MESSy to compare present day effects of low-energy-electron precipitation with expected effects in a climate change scenario for the year 2100. In years of strong geomagnetic activity, similar to that observed in 2003, an additional polar ozone loss of up to 0.5 μmol/mol at 5 hPa is found. However, this would be approximately compensated by an ozone enhancement originating from a stronger poleward transport of ozone from lower latitudes caused by a strengthened Brewer-Dobson circulation, as well as by slower photochemical ozone loss reactions in a stratosphere cooled by risen greenhouse gas concentrations.

  13. Foliar response of an Ailanthus altissima clone in two sites with different levels of ozone-pollution.

    Science.gov (United States)

    Gravano, Elisabetta; Giulietti, Valentina; Desotgiu, Rosanna; Bussotti, Filippo; Grossoni, Paolo; Gerosa, Giacomo; Tani, Corrado

    2003-01-01

    Potted plants of Ailanthus altissima, produced by root suckers coming from a single symptomatic mother tree, were placed in two sites in the vicinity of Florence (central Italy), with different levels of ozone pollution. These plants were kept in well watered conditions during the period May-September 1999. In the high pollution site (Settignano-SET) the level of ozone exposure (AOT40) reached at the end of the season a value of 31 ppm h, whereas in the "low pollution" site (Cascine-CAS) the exposure to ozone was 11 ppm h. A. altissima showed foliar symptoms in early July at SET and in the second half of July at CAS when exposure values reached 5 ppm h at both sites. However, at the end of August the conditions of the plantlets were rather similar in both sites. Microscopic and ultrastructural analysis were performed at the first onset of symptoms at SET (the CAS leaflets were asymptomatic). Observing the upper leaf surface where the brown stipples were visible, it was found that the cells of the palisade mesophyll displayed loss of chlorophyll and the organelles in the cytoplasm were damaged. Swelling of thylacoids was observed in the CAS leaflets, thus indicating the possible onset of a pre-visual damage. The injured cells were separated from the healthy ones by a layer of callose. We conclude that the sensitivity to ozone of A. altissima leaves is related to its leaf structure, with low leaf density and large intercellular spaces. Cell walls, as well as acting as mechanical barriers against the spread of ozone within the cell, also provide important detoxifying processes.

  14. Nitryl chloride as a 'new' radical source and its role in production of ozone in polluted troposphere: an overview of the results from four field campaigns in China

    Science.gov (United States)

    Wang, Tao; Tham, Yee Jun; Xue, Likun; Wang, Zhe; Wang, Xinfeng; Wang, Weihao; Wang, Hao; Yun, Hui; Lu, Keding; Shao, Min; Louie, Peter K. K.; Blake, Donald R.; Brown, Steven S.; Zhang, Yuanhang

    2016-04-01

    Nitryl chloride (ClNO2) - a trace gas produced from heterogeneous reactions of dinitrogen pentoxide (N2O5) on aerosols containing chorine - can significantly affect radical budget and concentrations of ozone and other secondary pollutants. However, the abundance, formation kinetics, and impact of ClNO2are not fully understood under different environmental conditions. This presentation gives an overview of recent field campaigns of ClNO2 and related chemical constituents in China, including one at a mountain top (957 m a.s.l) in Hong Kong of South China in winter 2013 and three in North China (urban Ji'nan, semi-rural Wangdu, and Mt Tai (1534 m a.s.l)) in summer 2014. ClNO2 and N2O5 were measured with a chemical ionization mass spectrometry (CIMS) system with iodide as the primary ions. Ambient concentrations of several hundreds ppts and up to 4.7 ppbv of ClNO2were observed in these locations, suggesting existence of elevated ClNO2 in both coastal and inland atmospheres of China. Measurements in North China exhibited generally low concentrations of N2O5, indicative of its fast uptake of on aerosols under aerosol and humid conditions. Indications of anthropogenic sources of chloride were observed at all these sites. The impact of photolysis of ClNO2 on radical budget and ozone enhancement was assessed with a MCM model which was updated with detailed chlorine chemistry and constrained by measurement data for the southern and a northern site. The results show that the ClNO2 could increase ozone production by 2-16% in the following day. Overall, our study re-affirms the need to include ClNO2 related reactions in photochemical models for prediction of ground-level ozone in polluted environments.

  15. Arctic stratospheric ozone depletion and increased UVB radiation: potential impacts to human health.

    Science.gov (United States)

    De Fabo, Edward C

    2005-12-01

    Contrary to popular belief, stratospheric ozone depletion, and the resultant increase in solar UV-B (280-320 nm), are unlikely to fully recover soon. Notwithstanding the success of the Montreal Protocol in reducing the amount of ozone destroying chemicals into the stratosphere, the life-times of these compounds are such that even with full compliance with the Protocol by all countries, it will be decades before stratospheric ozone could return to pre-1980 levels. This raises the question, therefore, of what will happen to biological processes essential to the maintenance of life on earth which are sensitive to damage by increased UV-B radiation, particularly those involved with human health? The polar regions, because of the vagaries of climate and weather, are the bellwether for stratospheric ozone depletion and will, therefore, be the first to experience impacts due to increases in solar UV-B radiation. The impacts of these are incompletely understood and cannot be predicted with certainty. While some UV-B impacts on human health are recognized, much is unknown, unclear and uncertain. Thus, this paper attempts, as a first approximation, to point out potential impacts to the health and welfare of human inhabitants of the Arctic due to increased solar UV-B radiation associated with stratospheric ozone depletion. As will be seen, much more data is critically needed before adequate risk assessment can occur.

  16. Multi-model Estimates of Intercontinental Source-Receptor Relationships for Ozone Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Fiore, A M; Dentener, F J; Wild, O; Cuvelier, C; Schultz, M G; Hess, P; Textor, C; Schulz, M; Doherty, R; Horowitz, L W; MacKenzie, I A; Sanderson, M G; Shindell, D T; Stevenson, D S; Szopa, S; Van Dingenen, R; Zeng, G; Atherton, C; Bergmann, D; Bey, I; Carmichael, G; Collins, W J; Duncan, B N; Faluvegi, G; Folberth, G; Gauss, M; Gong, S; Hauglustaine, D; Holloway, T; Isaksen, I A; Jacob, D J; Jonson, J E; Kaminski, J W; Keating, T J; Lupu, A; Marmer, E; Montanaro, V; Park, R; Pitari, G; Pringle, K J; Pyle, J A; Schroeder, S; Vivanco, M G; Wind, P; Wojcik, G; Wu, S; Zuber, A

    2008-10-16

    Understanding the surface O{sub 3} response over a 'receptor' region to emission changes over a foreign 'source' region is key to evaluating the potential gains from an international approach to abate ozone (O{sub 3}) pollution. We apply an ensemble of 21 global and hemispheric chemical transport models to estimate the spatial average surface O{sub 3} response over East Asia (EA), Europe (EU), North America (NA) and South Asia (SA) to 20% decreases in anthropogenic emissions of the O{sub 3} precursors, NO{sub x}, NMVOC, and CO (individually and combined), from each of these regions. We find that the ensemble mean surface O{sub 3} concentrations in the base case (year 2001) simulation matches available observations throughout the year over EU but overestimates them by >10 ppb during summer and early fall over the eastern U.S. and Japan. The sum of the O{sub 3} responses to NO{sub x}, CO, and NMVOC decreases separately is approximately equal to that from a simultaneous reduction of all precursors. We define a continental-scale 'import sensitivity' as the ratio of the O{sub 3} response to the 20% reductions in foreign versus 'domestic' (i.e., over the source region itself) emissions. For example, the combined reduction of emissions from the 3 foreign regions produces an ensemble spatial mean decrease of 0.6 ppb over EU (0.4 ppb from NA), less than the 0.8 ppb from the reduction of EU emissions, leading to an import sensitivity ratio of 0.7. The ensemble mean surface O{sub 3} response to foreign emissions is largest in spring and late fall (0.7-0.9 ppb decrease in all regions from the combined precursor reductions in the 3 foreign regions), with import sensitivities ranging from 0.5 to 1.1 (responses to domestic emission reductions are 0.8-1.6 ppb). High O{sub 3} values are much more sensitive to domestic emissions than to foreign emissions, as indicated by lower import sensitivities of 0.2 to 0.3 during July in EA, EU, and NA

  17. Effect of Soil Filtration and Ozonation in the Change of Baseline Toxicity in Wastewater Spiked with Organic Micro-pollutants

    KAUST Repository

    Gan, Alexander

    2012-07-01

    Bioassays for baseline toxicity, which measure toxicants’ non-specific effects, have been shown in previous studies to effectively correlate with the increased presence of pharmaceuticals, personal care products, endocrine-disrupting compounds, and other synthetic organics in treated sewage effluent. This study investigated how the baseline toxicity of anthropogenic compounds-spiked wastewater changed during the treatment of biofiltration and ozone oxidation, as measured by the bioluminescence inhibition of the Vibrio fischeri bacterium. The water quality parameters of dissolved organic carbon, seven common anions, and fluorescence spectroscopy were used to corroborate and collate with the toxicity results. Water quality was evaluated on two bench-scale soil filtration columns, which were configured for pre-ozonation and post-ozonation. Both systems’ soil aerobically removed similar amounts of dissolved organic carbon, and the reduction ranged between 57.7% and 62.1% for the post-ozonation and pre-ozonation systems, respectively. Biological removal of DOC, protein-like, humic-like, and soluble microbial product-like material was highest in the first 28.5 cm of each 114 cm-long system. While bioluminescence inhibition showed that ozonation was effective at lowering baseline toxicity, this study’s bioassay procedure was a very poor indicator of soil filtration treatment; both system’s effluents were significantly more toxic than their non-ozonated influents.

  18. Ozone Pollution in Summer in Shenzhen City%深圳市夏季臭氧污染研究

    Institute of Scientific and Technical Information of China (English)

    颜敏; 尹魁浩; 梁永贤; 庄毅璇; 刘宝章; 李金龙; 刘长法

    2012-01-01

    以2009年8月为例分析了深圳市夏季臭氧污染情况及污染气象特征,基于二维空气质量模式对臭氧污染控制进行数值模拟.结果表明:深圳市8月各监测点均存在臭氧超标现象,污染形势严峻;副热带高压控制和热带气旋外围下沉气流是造成夏季出现高浓度臭氧的主要天气过程,此时大气边界层混合层高度在500~800 m,且近地面风速约在5 m/s以内,不利于污染物扩散;臭氧的生成受前体物挥发性有机物(VOC)和氮氧化物(NOx)排放的共同影响,其中VOC排放的影响较大,深圳市臭氧控制应以降低VOC排放量为重点,模拟得出对VOC和NOx按2.5∶1 ~4.0∶1的比例协同减排可有效降低臭氧污染.%To investigate summer ozone pollution and meteorological characteristics in Shenzhen City, China, a case study was conducted in August 2009, and a two-dimensional air quality model was applied to simulate the effects of ozone control. The results indicated that the maximum hourly ozone concentrations in summer at all the monitoring stations in Shenzhen City exceeded the national standard. The major weather processes causing high ozone concentration were the subtropical high pressure and before the landfall of tropical cyclones, during which the mixing layer was about 500-800 meters high and the wind speed below 1000 meters was around 5 m/s. These conditions significantly prevented the local pollutants from spreading. According to the results of the modeling study, ozone concentration was affected by emissions of both volatile organic compounds ( VOC) and nitrogen oxides ( NO, ) , and the effect of VOC emissions was greater than that of NO,. Therefore, to control ozone pollution in Shenzhen, the reduction of VOC emissions should be emphasized. The results of the simulation also suggested that the ozone concentration will be decreased effectively by reducing the emissions of VOC and NO, by a ratio of 2.5:1 to 4. 0:1.

  19. Meteorology-induced variations in the spatial behavior of summer ozone pollution in Central California

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Ling; Harley, Robert A.; Brown, Nancy J.

    2010-06-23

    Cluster analysis was applied to daily 8 h ozone maxima modeled for a summer season to characterize meteorology-induced variations in the spatial distribution of ozone. Principal component analysis is employed to form a reduced dimension set to describe and interpret ozone spatial patterns. The first three principal components (PCs) capture {approx}85% of total variance, with PC1 describing a general spatial trend, and PC2 and PC3 each describing a spatial contrast. Six clusters were identified for California's San Joaquin Valley (SJV) with two low, three moderate, and one high-ozone cluster. The moderate ozone clusters are distinguished by elevated ozone levels in different parts of the valley: northern, western, and eastern, respectively. The SJV ozone clusters have stronger coupling with the San Francisco Bay area (SFB) than with the Sacramento Valley (SV). Variations in ozone spatial distributions induced by anthropogenic emission changes are small relative to the overall variations in ozone amomalies observed for the whole summer. Ozone regimes identified here are mostly determined by the direct and indirect meteorological effects. Existing measurement sites are sufficiently representative to capture ozone spatial patterns in the SFB and SV, but the western side of the SJV is under-sampled.

  20. Measurement of survace ozone over New Dehli

    Science.gov (United States)

    Arya, B.; Jain, S.; Kumar, A.

    The measurement of surface ozone concentration is important for understanding and predicting photo chemical air pollution in u ban areas. In the troposphere ozone is ar green house gas trapping the long wave length radiation in 9.6 μm band. Surface ozone is a secondary pollutant its concentration in lower troposphere depends upon its precursors (CO, CH4, Non methane hydrocarbons, NO ) as well as weather and transport phenomenon. Ozone is a oxidizing agent increasing concentration of which can modulate the oxidizing efficiency of troposphere and may have significant consequences for the chemistry of atmosphere and climate. The regular information of its ground level concentrations is needed for setting ambient air quality objectives and understanding air pollution effects on human and vegetation health also. The measurements of surface ozone is being carried out in National Physical laboratory since 1997. The measurements showed that on a number of days the surface ozone values exceeds WHO ambient ozone air quality standards in summer season as well as in the months of October and November. In the annual variation of surface ozone two maxima (April and October) and two minima ( December and monsoon months) were observed . The increase of night time ozone concentrations has been observed predominantly in winter season. This may be correlated due to mixing of the remnant day time boundary layer ozone by mechanical turbulence produced by wind shear. The high nocturnal ozone has also been observed during thunderstorms. In the present paper observations and results obtained will be described.

  1. Increase in markers of airway inflammation after ozone exposure can be observed also in stable treated asthmatics with minimal functional response to ozone

    Directory of Open Access Journals (Sweden)

    Dente Federico L

    2010-01-01

    Full Text Available Abstract Background The discrepancy between functional and inflammatory airway response to ozone has been reported in normal subjects, but few data are available for stable asthmatics regularly treated with inhaled corticosteroids. Methods Twenty-three well controlled, regularly treated, mild-to-moderate asthmatic patients underwent two sequential randomised exposures to either filtered air or ozone (0.3 ppm for 2 hours in a challenge chamber. Pulmonary function (PF was monitored, and patients with FEV1 decrease greater than 10% from pre-challenge value were considered as responders. Immediately after each exposure, exhaled breath condensate (EBC was collected to measure malondialdehyde (MDA. Six hours after each exposure, PF and EBC collection were repeated, and sputum was induced to measure inflammatory cell counts and soluble mediators (IL-8 and neutrophil elastase. The response to ozone was also evaluated according to the presence of polymorphism in oxidative stress related NQO1 and GSTM1 genes. Results After ozone exposure, sputum neutrophils significantly increased in responders (n = 8, but not in nonresponders (n = 15. Other markers of neutrophil activation in sputum supernatant and MDA in EBC significantly increased in all patients, but only in nonresponders the increase was significant. In nonresponders, sputum eosinophils also significantly increased after ozone. There was a positive correlation between ozone-induced FEV1 fall and increase in sputum neutrophils. No difference in functional or inflammatory response to ozone was observed between subjects with or without the combination of NQO1wt- GSTM1null genotypes. Conclusions Markers of neutrophilic inflammation and oxidative stress increase also in asthmatic subjects not responding to ozone. A greater functional response to ozone is associated with greater neutrophil airway recruitment in asthmatic subjects.

  2. Evidence of a 50-year increase in tropospheric ozone in Upper Bavaria

    Directory of Open Access Journals (Sweden)

    M. Schmidt

    Full Text Available In a series of ozone-sonde soundings at the Hohenpeißenberg observatory, starting in 1967, the most striking features are increases of sim2.2% per year in all tropospheric heights up to 8 km during the past 24 years. These facts have recently been published and discussed by several authors. In this paper, we present some evidence for the increase of tropospheric ozone concentrations during the past 50 years 1940-1990 in the territory of the northern edge of the Bavarian Alps, including the Hohenpeißenberg data. In December 1940 and August 1942, probably the first exact wet-chemical vertical soundings of ozone up to 9 km height were made by an aircraft in the region mentioned. These results were published in the earlier literature. We have converted the results of the flights on 4 days in December 1940 and on 6 days in August 1942 to modern units and have compared them with the Hohenpeißenberg ozone-sonde data of the December and August months. We also compared the data at the ground with the August results of Paris-Montsouris 1886-1898. Our results show an increase of ozone concentration at all tropospheric heights in Upper Bavaria during the past 50 years, compared with the Montsouris data in August during the past 105 years. In the recently published papers, the increases since 1967 were approximated linearly.Our results, extended to the past, show non-linear trends, with steeper increases since 1975-1979. Possible reasons for these findings are discussed. Quite recently (in case of the December months since 1986/87, the August months since 1990, the ozone mixing ratios at and above Hohenpeißenberg seem to have decreased.

  3. Measurements of Selected Air Pollutants in Danish Homes and Ozone Interaction with Floor Dust

    DEFF Research Database (Denmark)

    Vibenholt, Anni

    and a FLEC on a stainless steel plate without dust (kFLEC). The composition of organic compounds in the dust was analyzed by pressurized liquid extraction and thermal desorption GC-MS before and after ozone exposure. KFLEC was independent of the ozone concentration and the reaction was treated as first order...... in the Field and Laboratory Emission Cell (FLEC) at different ozone concentrations and relative humidities (0, 25, and 50 % RH). One gram of dust was spread on a clean stainless steel plate which was placed in the FLEC. Steady state reaction rate (kDust) at 2.2 ppm ozone was determined for four different floor......Section I: Laboratory studies: Chemical and sorption properties of indoor floor dust in FLEC: Ozone reacts with C-C double bonds in common indoor VOCs and SVOCs contained in indoor dust and may be catalytically degraded on dust surfaces. The reaction between floor dust and ozone was investigated...

  4. Cross-hemispheric transport of central African biomass burning pollutants: implications for downwind ozone production

    Directory of Open Access Journals (Sweden)

    E. Real

    2010-03-01

    Full Text Available Pollutant plumes with enhanced concentrations of trace gases and aerosols were observed over the southern coast of West Africa during August 2006 as part of the AMMA wet season field campaign. Plumes were observed both in the mid and upper troposphere. In this study we examined the origin of these pollutant plumes, and their potential to photochemically produce ozone (O3 downwind over the Atlantic Ocean. Their possible contribution to the Atlantic O3 maximum is also discussed. Runs using the BOLAM mesoscale model including biomass burning carbon monoxide (CO tracers were used to confirm an origin from central African biomass burning fires. The plumes measured in the mid troposphere (MT had significantly higher pollutant concentrations over West Africa compared to the upper tropospheric (UT plume. The mesoscale model reproduces these differences and the two different pathways for the plumes at different altitudes: transport to the north-east of the fire region, moist convective uplift and transport to West Africa for the upper tropospheric plume versus north-west transport over the Gulf of Guinea for the mid-tropospheric plume. Lower concentrations in the upper troposphere are mainly due to enhanced mixing during upward transport. Model simulations suggest that MT and UT plumes are 16 and 14 days old respectively when measured over West Africa. The ratio of tracer concentrations at 600 hPa and 250 hPa was estimated for 14–15 August in the region of the observed plumes and compares well with the same ratio derived from observed carbon dioxide (CO2 enhancements in both plumes. It is estimated that, for the period 1–15 August, the ratio of Biomass Burning (BB tracer concentration transported in the UT to the ones transported in the MT is 0.6 over West Africa and the equatorial South Atlantic.

    Runs using a photochemical trajectory model, CiTTyCAT, initialized with the observations, were used to estimate

  5. Cross-hemispheric transport of central African biomass burning pollutants: implications for downwind ozone production

    Science.gov (United States)

    Real, E.; Orlandi, E.; Law, K. S.; Fierli, F.; Josset, D.; Cairo, F.; Schlager, H.; Borrmann, S.; Kunkel, D.; Volk, C. M.; McQuaid, J. B.; Stewart, D. J.; Lee, J.; Lewis, A. C.; Hopkins, J. R.; Ravegnani, F.; Ulanovski, A.; Liousse, C.

    2010-03-01

    Pollutant plumes with enhanced concentrations of trace gases and aerosols were observed over the southern coast of West Africa during August 2006 as part of the AMMA wet season field campaign. Plumes were observed both in the mid and upper troposphere. In this study we examined the origin of these pollutant plumes, and their potential to photochemically produce ozone (O3) downwind over the Atlantic Ocean. Their possible contribution to the Atlantic O3 maximum is also discussed. Runs using the BOLAM mesoscale model including biomass burning carbon monoxide (CO) tracers were used to confirm an origin from central African biomass burning fires. The plumes measured in the mid troposphere (MT) had significantly higher pollutant concentrations over West Africa compared to the upper tropospheric (UT) plume. The mesoscale model reproduces these differences and the two different pathways for the plumes at different altitudes: transport to the north-east of the fire region, moist convective uplift and transport to West Africa for the upper tropospheric plume versus north-west transport over the Gulf of Guinea for the mid-tropospheric plume. Lower concentrations in the upper troposphere are mainly due to enhanced mixing during upward transport. Model simulations suggest that MT and UT plumes are 16 and 14 days old respectively when measured over West Africa. The ratio of tracer concentrations at 600 hPa and 250 hPa was estimated for 14-15 August in the region of the observed plumes and compares well with the same ratio derived from observed carbon dioxide (CO2) enhancements in both plumes. It is estimated that, for the period 1-15 August, the ratio of Biomass Burning (BB) tracer concentration transported in the UT to the ones transported in the MT is 0.6 over West Africa and the equatorial South Atlantic. Runs using a photochemical trajectory model, CiTTyCAT, initialized with the observations, were used to estimate in-situ net photochemical O3 production rates in these plumes

  6. Elevated atmospheric ozone increases concentration of insecticidal Bacillus thuringiensis (Bt) Cry1Ac protein in Bt Brassica napus and reduces feeding of a Bt target herbivore on the non-transgenic parent

    Energy Technology Data Exchange (ETDEWEB)

    Himanen, Sari J. [University of Kuopio, Department of Environmental Science, P.O. Box 1627, FIN-70211 Kuopio (Finland)], E-mail: sari.himanen@uku.fi; Nerg, Anne-Marja [University of Kuopio, Department of Environmental Science, P.O. Box 1627, FIN-70211 Kuopio (Finland); Nissinen, Anne [University of Kuopio, Department of Environmental Science, P.O. Box 1627, FIN-70211 Kuopio (Finland); MTT Agrifood Research Finland, Plant Protection, FIN-31600 Jokioinen (Finland); Stewart, C. Neal [University of Tennessee, Department of Plant Sciences, Knoxville, TN 37996-4561 (United States); Poppy, Guy M. [University of Southampton, School of Biological Sciences, Southampton SO16 7PX (United Kingdom); Holopainen, Jarmo K. [University of Kuopio, Department of Environmental Science, P.O. Box 1627, FIN-70211 Kuopio (Finland)

    2009-01-15

    Sustained cultivation of Bacillus thuringiensis (Bt) transgenic crops requires stable transgene expression under variable abiotic conditions. We studied the interactions of Bt toxin production and chronic ozone exposure in Bt cry1Ac-transgenic oilseed rape and found that the insect resistance trait is robust under ozone elevations. Bt Cry1Ac concentrations were higher in the leaves of Bt oilseed rape grown under elevated ozone compared to control treatment, measured either per leaf fresh weight or per total soluble protein of leaves. The mean relative growth rate of a Bt target herbivore, Plutella xylostella L. larvae was negative on Bt plants in all ozone treatments. On the non-transgenic plants, larval feeding damage was reduced under elevated ozone. Our results indicate the need for monitoring fluctuations in Bt toxin concentrations to reveal the potential of ozone exposure for altering dosing of Bt proteins to target and non-target herbivores in field environments experiencing increasing ozone pollution. - Elevated atmospheric ozone can induce fluctuations in insecticidal protein concentrations in transgenic plants.

  7. Increased anion channel activity is an unavoidable event in ozone-induced programmed cell death.

    Directory of Open Access Journals (Sweden)

    Takashi Kadono

    Full Text Available BACKGROUND: Ozone is a major secondary air pollutant often reaching high concentrations in urban areas under strong daylight, high temperature and stagnant high-pressure systems. Ozone in the troposphere is a pollutant that is harmful to the plant. PRINCIPAL FINDINGS: By exposing cells to a strong pulse of ozonized air, an acute cell death was observed in suspension cells of Arabidopsis thaliana used as a model. We demonstrated that O(3 treatment induced the activation of a plasma membrane anion channel that is an early prerequisite of O(3-induced cell death in A. thaliana. Our data further suggest interplay of anion channel activation with well known plant responses to O(3, Ca(2+ influx and NADPH-oxidase generated reactive oxygen species (ROS in mediating the oxidative cell death. This interplay might be fuelled by several mechanisms in addition to the direct ROS generation by O(3; namely, H(2O(2 generation by salicylic and abscisic acids. Anion channel activation was also shown to promote the accumulation of transcripts encoding vacuolar processing enzymes, a family of proteases previously reported to contribute to the disruption of vacuole integrity observed during programmed cell death. SIGNIFICANCE: Collectively, our data indicate that anion efflux is an early key component of morphological and biochemical events leading to O(3-induced programmed cell death. Because ion channels and more specifically anion channels assume a crucial position in cells, an understanding about the underlying role(s for ion channels in the signalling pathway leading to programmed cell death is a subject that warrants future investigation.

  8. Increasing alpine transit traffic through Switzerland will considerably enhance high altitude alpine pollutant levels

    Energy Technology Data Exchange (ETDEWEB)

    Prevot, A.S.H.; Dommen, J.; Furger, M.; Graber, W.K. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Within the EU-Project VOTALP (Vertical Ozone Transports in the Alps), we have shown that deep alpine valleys like the Mesolcina Valley very efficiently transport air out of the polluted valley up to altitudes between 2000 and near 4000 m asl (above sea level). Pollutants emitted in these valleys are very efficiently transported up to high altitudes. (author) 2 figs., 1 tab., 2 refs.

  9. High black carbon and ozone concentrations during pollution transport in the Himalayas: Five years of continuous observations at NCO-P global GAW station

    Institute of Scientific and Technical Information of China (English)

    A.Marinoni; P.Cristofanelli; P.Laj; R.Duchi; D.Putero; F.Calzolari; T.C.Landi

    2013-01-01

    To study the influence of polluted air-mass transport carrying ozone (O3) and black carbon (BC) in the high H-hmalayas,since March 2006 the Nepal Climate Observatory at Pyramid (NCO-P) GAW-WMO global station (Nepal,5079 m a.s.l.) is operative.During the first 5-year measurements,the O3 and BC concentrations have shown a mean value of 48 ± 12 ppb (± standard deviation) and 208 ± 374 ng/m3,respectively.Both O3 and BC showed well defined seasonal cycles with maxima during pre-monsoon (O3:61.3 ± 7.7 ppbV; BC:444 ± 433 ng/m3) and minima during the summer monsoon (O3:40.1 ± 12.4 ppbV; BC∶ 64 ± 101 ng/m3).The analysis of the days characterised by the presence of a significant BC increase with respect to the typical seasonal cycle identified 156 days affected by "acute" pollution events,corresponding to 9.1% of the entire data-set.Such events mostly occur in the pre-monsoon period,when the O3 diurnal variability is strongly related to the transport of polluted air-mass rich on BC.On average,these "acute" pollution events were characterised by dramatic increases of BC (352%) and O3 (29%) levels compared with the remaining days.

  10. High black carbon and ozone concentrations during pollution transport in the Himalayas: five years of continuous observations at NCO-P global GAW station.

    Science.gov (United States)

    Marinoni, A; Cristofanelli, P; Laj, P; Duchi, R; Putero, D; Calzolari, F; Landi, T C; Vuillermoz, E; Maione, M; Bonasoni, P

    2013-08-01

    To study the influence of polluted air-mass transport carrying ozone (O3) and black carbon (BC) in the high Himalayas, since March 2006 the Nepal Climate Observatory at Pyramid (NCO-P) GAW-WMO global station (Nepal, 5079 m a.s.l.) is operative. During the first 5-year measurements, the O3 and BC concentrations have shown a mean value of 48 +/- 12 ppb (+/- standard deviation) and 208 +/- 374 ng/m3, respectively. Both O3 and BC showed well defined seasonal cycles with maxima during pre-monsoon (O3: 61.3 +/- 7.7 ppbV; BC: 444 +/- 433 ng/m3) and minima during the summer monsoon (O3: 40.1 +/- 12.4 ppbV; BC: 64 +/- 101 ng/m3). The analysis of the days characterised by the presence of a significant BC increase with respect to the typical seasonal cycle identified 156 days affected by "acute" pollution events, corresponding to 9.1% of the entire data-set. Such events mostly occur in the pre-monsoon period, when the O3 diurnal variability is strongly related to the transport of polluted air-mass rich on BC. On average, these "acute" pollution events were characterised by dramatic increases of BC (352%) and O3 (29%) levels compared with the remaining days.

  11. Will climate change increase ozone depletion from low-energy-electron precipitation?

    Directory of Open Access Journals (Sweden)

    A. J. G. Baumgaertner

    2010-10-01

    Full Text Available We investigate the effects of a strengthened stratospheric/mesospheric residual circulation on the transport of nitric oxide (NO produced by energetic particle precipitation. During periods of high geomagnetic activity, energetic electron precipitation (EEP is responsible for winter time ozone loss in the polar middle atmosphere between 1 and 6 hPa. However, as climate change is expected to increase the strength of the Brewer-Dobson circulation including extratropical downwelling, the enhancements of EEP NOx concentrations are expected to be transported to lower altitudes in extratropical regions, becoming more significant in the ozone budget. Changes in the mesospheric residual circulation are also considered. We use simulations with the chemistry climate model system EMAC to compare present day effects of EEP NOx with expected effects in a climate change scenario for the year 2100. In years of strong geomagnetic activity, similar to that observed in 2003, an additional polar ozone loss of up to 0.4 μmol/mol at 5 hPa is found in the Southern Hemisphere. However, this would be approximately compensated by an ozone enhancement originating from a stronger poleward transport of ozone from lower latitudes caused by a strengthened Brewer-Dobson circulation, as well as by slower photochemical ozone loss reactions in a stratosphere cooled by risen greenhouse gas concentrations. In the Northern Hemisphere the EEP NOx effect appears to lose importance due to the different nature of the climate-change induced circulation changes.

  12. Application of photochemical indicators to evaluate ozone nonlinear chemistry and pollution control countermeasure in China

    Science.gov (United States)

    Xie, Min; Zhu, Kuanguang; Wang, Tijian; Yang, Haoming; Zhuang, Bingliang; Li, Shu; Li, Minggao; Zhu, Xinsheng; Ouyang, Yan

    2014-12-01

    Ozone sensitivity in China was investigated by using a comprehensive three-dimensional air quality model system WRF-CALGRID. A real case and two cases with 35% emission reduction for either NOx or VOC were conducted for the period of March in 2010. The simulation results of O3 agreed fairly well with the observation data. Based on the meaning of O3 sensitivity, the ratio Ra was defined, with the transition value of 1 to distinguish NOx-sensitive region from VOC-sensitive region. With the aid of Ra, VOC- and NOx-sensitive regions in China were preliminary located. The transition ranges for some photochemical indicators were quantified. Only those of H2O2/NOz and H2O2/HNO3 met the requirement that the 95th percentile VOC-sensitive value should be equal to or lower than the 5th percentile NOx-sensitive value. 0.16-0.40 for H2O2/HNO3 and 0.14-0.28 for H2O2/NOz were adopted to distinguish different O3 sensitivity in China. The results showed that the VOC-sensitive regions are primarily distributed over the urban centers and the developed industrial areas in eastern and southern China, while the NOx-sensitive regions are mainly located in the remote areas of northern and western China. High correlation between Ra and indicators was found, and a new approach to quantify the transition values of indicators was proposed. These indicators can play an important role in the air complex pollution control of urban clusters over East Asia.

  13. Distribution of ozone and other air pollutants in forests of the Carpathian Mountains in central Europe.

    Science.gov (United States)

    Bytnerowicz, A; Godzik, B; Fraczek, W; Grodzińska, K; Krywult, M; Badea, O; Barancok, P; Blum, O; Cerny, M; Godzik, S; Mankovska, B; Manning, W; Moravcik, P; Musselman, R; Oszlanyi, J; Postelnicu, D; Szdźuj, J; Varsavova, M; Zota, M

    2002-01-01

    Ozone (O3) concentrations were monitored during the 1997-1999 growing seasons in 32 forest sites of the Carpathian Mountains. At all sites (elevation between 450 and 1320 m) concentrations of O3, nitrogen dioxide (NO2), and sulfur dioxide (SO2) were measured with passive samplers. In addition, in two western Carpathian locations, Vychodna and Gubalówka, ozone was continuously monitored with ultraviolet (UV) absorption monitors. Highest average hourly O3 concentrations in the Vychodna and Gubałówka sites reached 160 and 200 microg/m3 (82 and 102 ppb), respectively (except for the AOT40 values, ozone concentrations are presented as microg/m3; and at 25 degrees C and 760 mm Hg, 1 microg O3/m3 = 0.51 ppb O3). These sites showed drastically different patterns of diurnal 03 distribution, one with clearly defined peaks in the afternoon and lowest values in the morning, the other with flat patterns during the entire 24-h period. On two elevational transects, no effect of elevation on O3 levels was seen on the first one, while on the other a significant increase of O3 levels with elevation occurred. Concentrations of O3 determined with passive samplers were significantly different between individual monitoring years, monitoring periods, and geographic location of the monitoring sites. Results of passive sampler monitoring showed that high O3 concentrations could be expected in many parts of the Carpathian range, especially in its western part, but also in the eastern and southern ranges. More than four-fold denser network of monitoring sites is required for reliable estimates of O3 distribution in forests over the entire Carpathian range (140 points). Potential phytotoxic effects of O3 on forest trees and understory vegetation are expected on almost the entire territory of the Carpathian Mountains. This assumption is based on estimates of the AOT40 indices for forest trees and natural vegetation. Concentrations of NO2 and SO2 in the entire Carpathian range were typical

  14. Distribution of ozone and other air pollutants in forests of the Carpathian Mountains in central Europe

    Energy Technology Data Exchange (ETDEWEB)

    Bytnerowicz, A. [Pacific Southwest Research Station, Riverside, CA (United States); Godzik, B. [Polish Academy of Sciences, Krakow (Poland). Institute of Botany; Frczek, W. [Environmental Systems Research Institute, Redlands (US)] [and others

    2002-07-01

    Ozone (O{sub 3}) concentrations were monitored during the 1997-1999 growing seasons in 32 forest sites of the Carpathian Mountains. At all sites (elevation between 450 and 1320 m) concentrations f O{sub 3}, nitrogen dioxide (NO{sub 2}), and sulfur dioxide (SO{sub 2}) were measured with passive samplers. In addition, in two western Carpathian locations, Vychodna and Guba Iowka, ozone was continuously monitored with ultraviolet (UV) absorption monitors. Highest average hourly O{sub 3} concentrations in the Vychodna and Guba Iowka sites reached 160 and 200 {mu}g/m{sup 3} (82 and 102 ppb), respectively (except for the AOT40 values, ozone concentrations are presented as {mu}g/m{sup 3}; and at 25{sup o}C and 760 mm Hg, 1 {mu}g O{sub 3} = 0.51 ppb O{sub 3}), These sites showed drastically different patterns of diurnal O{sub 3} distribution, one with clearly defined peaks in the afternoon with lowest values in the morning, the other with flat patterns during the entire 24-hr period. On two elevational transects, no effect of elevation on O{sub 3} levels was seen on the first one, while on the other a significant increase of O{sub 3} levels with elevation occurred, Concentrations of O{sub 3} determined with passive samplers were significantly different between individual monitoring years, monitoring periods, and geographic location of the monitoring sites. Results of passive sampler monitoring showed that high O{sub 3} concentrations could be expected in many parts of the Carpathian range, especially in its western part, but also in the eastern and southern ranges. More than four-fold denser network of monitoring sites is required for reliable estimates of O{sub 3} distribution in forests over the entire Carpathian range (140 points). Potential phytotoxic effects of O{sub 3} on forest trees and understory vegetation are expected on almost the entire territory of the Carpathian Mountains. This assumption is based on estimates of the A0T40 indices for forest trees and natural

  15. Combination of ozonation and photocatalysis for purification of aqueous effluents containing formic acid as probe pollutant and bromide ion.

    Science.gov (United States)

    Parrino, F; Camera-Roda, G; Loddo, V; Palmisano, G; Augugliaro, V

    2014-03-01

    The treatment by advanced oxidation processes (AOPs) of waters contaminated by organic pollutants and containing also innocuous bromide ions may generate bromate ions as a co-product. In the present work heterogeneous photocatalysis and ozonation have individually been applied and in combination (integrated process) to degrade the organic compounds in water containing also bromide anions. The results show that: i) the sole photocatalysis does not produce bromate ions and in the case of its presence, it is able to reduce bromate to innocuous bromide ions; ii) the integration of photocatalysis and ozonation synergistically enhances the oxidation capabilities; and iii) in the integrated process bromate ions are not produced as long as some oxidizable organics are present.

  16. Ozone and cardiovascular injury

    Directory of Open Access Journals (Sweden)

    Rainaldi Giuseppe

    2009-06-01

    Full Text Available Abstract Air pollution is increasingly recognized as an important and modifiable determinant of cardiovascular diseases in urban communities. The potential detrimental effects are both acute and chronic having a strong impact on morbidity and mortality. The acute exposure to pollutants has been linked to adverse cardiovascular events such as myocardial infarction, heart failure and life-threatening arrhythmias. The long-terms effects are related to the lifetime risk of death from cardiac causes. The WHO estimates that air pollution is responsible for 3 million premature deaths each year. The evidence supporting these data is very strong nonetheless, epidemiologic and observational data have the main limitation of imprecise measurements. Moreover, the lack of clinical experimental models makes it difficult to demonstrate the individual risk. The other limitation is related to the lack of a clear mechanism explaining the effects of pollution on cardiovascular mortality. In the present review we will explore the epidemiological, clinical and experimental evidence of the effects of ozone on cardiovascular diseases. The pathophysiologic consequences of air pollutant exposures have been extensively investigated in pulmonary systems, and it is clear that some of the major components of air pollution (e.g. ozone and particulate matter can initiate and exacerbate lung disease in humans 1. It is possible that pulmonary oxidant stress mediated by particulate matter and/or ozone (O3 exposure can result in downstream perturbations in the cardiovasculature, as the pulmonary and cardiovascular systems are intricately associated, and it is well documented that specific environmental toxins (such as tobacco smoke 2 introduced through the lungs can initiate and/or accelerate cardiovascular disease development. Indeed, several epidemiologic studies have proved that there is an association between PM and O3 and the increased incidence of cardiovascular morbidity

  17. Measurements of Selected Air Pollutants in Danish Homes and Ozone Interaction with Floor Dust

    DEFF Research Database (Denmark)

    Vibenholt, Anni

    and a FLEC on a stainless steel plate without dust (kFLEC). The composition of organic compounds in the dust was analyzed by pressurized liquid extraction and thermal desorption GC-MS before and after ozone exposure. KFLEC was independent of the ozone concentration and the reaction was treated as first order...... in the Field and Laboratory Emission Cell (FLEC) at different ozone concentrations and relative humidities (0, 25, and 50 % RH). One gram of dust was spread on a clean stainless steel plate which was placed in the FLEC. Steady state reaction rate (kDust) at 2.2 ppm ozone was determined for four different floor...... rate; indoor aldehydes and outdoor ozone; and, indoor aldehyde and air exchange rate. A total of 85 VOCs was identified from sampling on Tenax TA in the five homes during the fall season. Section IIb: Direct Low Temperature Plasma ionization-MS analysis of air sampling filters The quantitative...

  18. Ozone Levels in the North and South of Jordan: Effects of Transboundary Air Pollution

    Science.gov (United States)

    Alsawair, Jihad Khalaf

    The first phase of this work sought to assess the causes of air quality deterioration in the south of the region over the Red Sea near the resort areas of Eilat and Aqaba. Accordingly, a coordinated Jordanian-Israeli study was performed during the month of November 2007 along the boarder of the two countries. The Jordanian measurements were made at a fixed monitoring location in the city of Aqaba, while the Israeli measurements were made using a mobile laboratory at kibbutz Eilot some 3 km north of the coastal city of Eilat. The results indicated that pollution episodes are highly dependent on wind direction, where southerly winds carry local transportation (i.e., ship, trucks) and possibly some industrial emissions towards the north end of the Red Sea, while northerly winds are associated with the transport of regional O 3. The results revealed that under the prevailing (˜90% of the time) northerly wind flows, the quality of the air is relatively good for all primary pollutants but O3 was elevated, indicative of the downwind regional transport of this secondary species from the Mediterranean coast. However, during days with southerly air flow the air quality was significantly deteriorated with elevated levels of sulfur dioxide (SO2) and nitrogen oxides (NOx). The second phase of this work, which also involved Jordanian and Israeli scientists, was undertaken in the northern part of the region for a two-week period in May/June 2009. This part of the research was aimed at examining previous modeling results that indicated that elevated O3 levels should occur in Northern Jordan from emissions in Northern Israel that are transported a distance of more than 100 km. Ozone and other pollutants were monitored at five sites in Israel (Haifa, Neve Shanan, Kiryat Tivon, Afula, and Maoz Haim) and two in Jordan (Taiba and Irbid). The sites were located along the prevailing wind direction that presumably moves air-masses eastward from the Mediterranean coast, over the Israel

  19. Acute ozone exposure increases plasma prostaglandin F2 alpha in ozone-sensitive human subjects

    Energy Technology Data Exchange (ETDEWEB)

    Schelegle, E.S.; Adams, W.C.; Giri, S.N.; Siefkin, A.D.

    1989-07-01

    Twenty O/sub 3/-sensitive and /sup 2/O O/sub 3/-nonsensitive subjects participated in a study to investigate the effects of disparate O/sub 3/ sensitivity on plasma prostaglandin F2 alpha responses consequent to exposure to ambient O3 concentrations. Subjects were selected from a pool of 75 normal healthy college-aged males who had been previously exposed to 0.35 ppm O3 for 1 h at an exercising VE of 60 L/min. The selection criterion used was the observed decrement in FEV1 after the O/sub 3/ exposure: O/sub 3/-sensitive, FEV1 decrement greater than 24%; O/sub 3/-nonsensitive, FEV1 decrement less than 11%. Each subject was exposed to filtered air and to 0.20 and 0.35 ppm O/sub 3/ for 80 min while exercising at a VE of 50 L/min. These experimental protocols were divided into two 40-min sessions separated by a period of 4 to 10 min. PGF2 alpha, FVC, FEV1, and FEF25-75 were evaluated before, during, and after each protocol. SGaw and Vtg were measured before and after each protocol. Plasma PGF2 alpha was significantly increased in the O/sub 3/-sensitive group during and after the 0.35-ppm O/sub 3/ exposure.

  20. Plants as indicators of urban air pollution (ozone and trace elements) in Pisa, Italy.

    Science.gov (United States)

    Nali, Cristina; Crocicchi, Lara; Lorenzini, Giacomo

    2004-07-01

    A biennial integrated survey, based on the use of vascular plants for the bioindication of the effects of tropospheric ozone, was performed in the area of Pisa (Tuscany, Central Italy). It also investigated the distribution of selected trace elements in plants and the data were compared with those obtained from the use of passive samplers, automatic analysers of ozone and lichen biodiversity. Photochemically produced ozone proved to be present during the warm season, with maximum hourly means surpassing 100 ppb: the use of supersensitive tobacco Bel-W3 confirmed the value of detailed, cost-effective, monitoring surveys. Trials with clover clones demonstrate that sensitive plants undergo severe biomass reduction in the current ozone regime. The mean NC-S (clover clone sensitive to ozone):NC-R (resistant) biomass ratio ranged from 0.7 (in 1999) to 0.5 (in 2000). The economic impact of these reductions deserves attention. The data obtained using passive ozone samplers exceeded those obtained using an automatic analyser. The mapping of epiphytic lichen biodiversity was not related to the geographical ozone distribution as can be seen from the tobacco's response. Lettuce plants grown under standardized conditions were used positively as bioaccumulators of trace elements: Pb was abundantly recovered, but a large portion of this element was removed by washing.

  1. Partial degradation of five pesticides and an industrial pollutant by ozonation in a pilot-plant scale reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado, M.I. [PSA - Plataforma Solar de Almeria, CIEMAT, Crta Senes km 4, Tabernas, Almeria 04200 (Spain); Malato, S. [PSA - Plataforma Solar de Almeria, CIEMAT, Crta Senes km 4, Tabernas, Almeria 04200 (Spain); Perez-Estrada, L.A. [PSA - Plataforma Solar de Almeria, CIEMAT, Crta Senes km 4, Tabernas, Almeria 04200 (Spain); Gernjak, W. [PSA -Plataforma Solar de Almeria, CIEMAT, Crta Senes km 4, Tabernas, Almeria 04200 (Spain); Oller, I. [PSA - Plataforma Solar de Almeria, CIEMAT, Crta Senes km 4, Tabernas, Almeria 04200 (Spain); Domenech, Xavier [Departament de Quimica, Edifici Cn, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain); Peral, Jose [Departament de Quimica, Edifici Cn, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain)]. E-mail: jose.peral@uab.es

    2006-11-16

    Aqueous solutions of a mixture of several pesticides (alachlor, atrazine, chlorfenvinphos, diuron and isoproturon), considered PS (priority substances) by the European Commission, and an intermediate product of the pharmaceutical industry ({alpha}-methylphenylglycine, MPG) chosen as a model industrial pollutant, have been degraded at pilot-plant scale using ozonation. This study is part of a large research project [CADOX Project, A Coupled Advanced Oxidation-Biological Process for Recycling of Industrial Wastewater Containing Persistent Organic Contaminants, Contract No.: EVK1-CT-2002-00122, European Commission, http://www.psa.es/webeng/projects/cadox/index.html[1

  2. Neural network and noise injection for the modeling of ozone pollution; Reseau de neurones et injection de bruit pour la modelisation de la pollution par l'ozone

    Energy Technology Data Exchange (ETDEWEB)

    Pigeon, E.; Massieu, J.F. [Laboratoire d' Automatique de Procede, 14 - Caen (France)

    2001-07-01

    This study has been carried out in the framework of a collaboration between the laboratory of processes automation (LAP, Caen (France)), and Air Com, a monitoring network for the prevention of atmospheric pollution in Basse-Normandie. It aims at obtaining a medium and long term forecast of the ozone level above the Caen city. The expected goal is to foresee the pollution peaks exceeding the warning thresholds, but the rareness of such events make them more difficult to predict. In order to solve this kind of problem, a neural modeling method combined with a noise injection technique has been implemented in order to obtain a sufficiently performing model over the whole domain of operation. (J.S.)

  3. Photochemical Pollution Modeling of Ozone at Metropolitan Area of Porto Alegre - RS/Brazil using WRF/Chem

    Science.gov (United States)

    Cuchiara, G. C.; Carvalho, J.

    2013-05-01

    One of the main problems related to air pollution in urban areas is caused by photochemical oxidants, particularly troposphere ozone (O3), which is considered a harmful substance. The O3 precursors (carbon monoxide CO, nitrogen oxides NOx and hydrocarbons HCs) are predominantly of anthropogenic origin in these areas, and vehicles are the main emission sources. Due to the increased urbanization and industrial development in recent decades, air pollutant emissions have increased likewise, mainly by mobile sources in the highly urbanized and developed areas, such as the Metropolitan Area of Porto Alegre-RS (MAPA). According to legal regulations implemented in Brazil in 2005, which aimed at increasing the fraction of biofuels in the national energy matrix, 2% biodiesel were supposed to be added to the fuel mixture within three years, and up to 5% after eight years of implementation of these regulations. Our work performs an analysis of surface concentrations for O3, NOx, CO, and HCs through numerical simulations with WRF/Chem (Weather Research and Forecasting model with Chemistry). The model is validated against observational data obtained from the local urban air quality network for the period from January 5 to 9, 2009 (96 hours). One part of the study focused on the comparison of simulated meteorological variables, to observational data from two stations in MAPA. The results showed that the model simulates well the diurnal evolution of pressure and temperature at the surface, but is much less accurate for wind speed. Another part included the evaluation of model results of WRF/Chem for O3 versus observed data at air quality stations Esteio and Porto Alegre. Comparisons between simulated and observed O3 revealed that the model simulates well the evolution of the observed values, but on many occasions the model did not reproduce well the maximum and minimum concentrations. Finally, a preliminary quantitative sensitivity study on the impact of biofuel on the

  4. Exposure information in environmental health research: Current opportunities and future directions for particulate matter, ozone, and toxic air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    McKone, Thomas E.; Ryan, P. Barry; Ozkaynak, Haluk

    2007-02-01

    Understanding and quantifying outdoor and indoor sources of human exposure are essential but often not adequately addressed in health-effects studies for air pollution. Air pollution epidemiology, risk assessment, health tracking and accountability assessments are examples of health-effects studies that require but often lack adequate exposure information. Recent advances in exposure modeling along with better information on time-activity and exposure factors data provide us with unique opportunities to improve the assignment of exposures for both future and ongoing studies linking air pollution to health impacts. In September 2006, scientists from the US Environmental Protection Agency (EPA) and the Centers for Disease Control and Prevention (CDC) along with scientists from the academic community and state health departments convened a symposium on air pollution exposure and health in order to identify, evaluate, and improve current approaches for linking air pollution exposures to disease. This manuscript presents the key issues, challenges and recommendations identified by the exposure working group, who used cases studies of particulate matter, ozone, and toxic air pollutant exposure to evaluate health-effects for air pollution. One of the over-arching lessons of this workshop is that obtaining better exposure information for these different health-effects studies requires both goal-setting for what is needed and mapping out the transition pathway from current capabilities to meeting these goals. Meeting our long-term goals requires definition of incremental steps that provide useful information for the interim and move us toward our long-term goals. Another over-arching theme among the three different pollutants and the different health study approaches is the need for integration among alternate exposure assessment approaches. For example, different groups may advocate exposure indicators, biomonitoring, mapping methods (GIS), modeling, environmental media

  5. Effect of a chronic and moderate ozone pollution on the phenolic pattern of bean leaves (Phaseolus vulgaris L. cv Nerina): relations with visible injury and biomass production.

    Science.gov (United States)

    Kanoun, M; Goulas, M J.P.; Biolley, J -P.

    2001-05-01

    From sowing, bean (Phaseolus vulgaris L. cv Nerina) plants were exposed to three chronic doses of ozone for 7h.day(-1): non-filtered air (NF), non-filtered air supplied with 40nl.l(-1) ozone (NF+40) and non-filtered air supplied with 60nll(-1) ozone (NF+60). Four harvests were carried out 6, 13, 20 and 27 days after emergence. Either primary leaves, or first trifoliate leaves, or both were sampled as far as possible. For each sampled leaf, visible ozone injuries were registered, the free polyphenolic pool was analysed using HPLC and the dry matter was weighed. Visible damage on leaves was related to both exposure time and ozone concentration added. There were no adverse effects of added ozone on the biomass of primary leaves while a significant reduction of first trifoliates dry matter could be observed (NF+60 atmosphere, third and fourth harvest). Among the normally occurring phenolics, we detected a significant decrease in the accumulation of a hydroxycinnamic acid derivative as the ozone concentration increased. Nevertheless, we demonstrated that this ozone-induced modification could be sometimes distinguishable with difficulties from changes expected to be of development relevance. Beside this phenolic disbalance, we detected a de novo biosynthesis of compounds that closely depended on the level of visible ozone injury. Since their accumulation increased with leaf damage, these ozone-induced phenolics could be used to detect phytotoxic ambient levels of tropospheric ozone.

  6. Reducing Nitrogen Pollution while Decreasing Farmers' Costs and Increasing Fertilizer Industry Profits.

    Science.gov (United States)

    Kanter, David R; Zhang, Xin; Mauzerall, Denise L

    2015-03-01

    Nitrogen (N) pollution is emerging as one of the most important environmental issues of the 21st Century, contributing to air and water pollution, climate change, and stratospheric ozone depletion. With agriculture being the dominant source, we tested whether it is possible to reduce agricultural N pollution in a way that benefits the environment, reduces farmers' costs, and increases fertilizer industry profitability, thereby creating a "sweet spot" for decision-makers that could significantly increase the viability of improved N management initiatives. Although studies of the economic impacts of improved N management have begun to take into account farmers and the environment, this is the first study to consider the fertilizer industry. Our "sweet spot" hypothesis is evaluated via a cost-benefit analysis of moderate and ambitious N use efficiency targets in U.S. and China corn sectors over the period 2015-2035. We use a blend of publicly available crop and energy price projections, original time-series modeling, and expert elicitation. The results present a mixed picture: although the potential for a "sweet spot" exists in both countries, it is more likely that one occurs in China due to the currently extensive overapplication of fertilizer, which creates a greater potential for farmers and the fertilizer industry to gain economically from improved N management. Nevertheless, the environmental benefits of improving N management consistently dwarf the economic impacts on farmers and the fertilizer industry in both countries, suggesting that viable policy options could include incentives to farmers and the fertilizer industry to increase their support for N management policies.

  7. Ozone air pollution and foliar injury development on native plants of Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Novak, Kristopher; Skelly, John M.; Schaub, Marcus; Kraeuchi, Norbert; Hug, Christian; Landolt, Werner; Bleuler, Peter

    2003-09-01

    Visible ozone-induced foliar injury on native forest species of Switzerland was identified and confirmed under ambient OTC-conditions and related to the current European AOT40 standard. - The objectives of this study were to examine the foliar sensitivity to ozone exposure of 12 tree, shrub, and herbaceous species native to southern Switzerland and determine the seasonal cumulative ozone exposures required to induce visible foliar injury. The study was conducted from the beginning of May through the end of August during 2000 and 2001 using an open-top chamber research facility located within the Lattecaldo Cantonal Forest Nursery in Canton Ticino, southern Switzerland (600 m asl). Plants were examined daily and dates of initial foliar injury were recorded in order to determine the cumulative AOT40 ppb h ozone exposure required to cause visible foliar injury. Plant responses to ozone varied significantly among species; 11 species exhibited visible symptoms typical of exposures to ambient ozone. The symptomatic species (from most to least sensitive) were Populus nigra, Viburnum lantana, Salix alba, Crataegus monogyna, Viburnum opulus, Tilia platyphyllos, Cornus alba, Prunus avium, Fraxinus excelsior, Ribes alpinum, and Tilia cordata; Clematis spp. did not show foliar symptoms. Of the 11 symptomatic species, five showed initial injury below the critical level AOT40 10 ppmh O{sub 3} in the 2001 season.

  8. Nitrogen management is essential to prevent tropical oil palm plantations from causing ground-level ozone pollution.

    Science.gov (United States)

    Hewitt, C N; MacKenzie, A R; Di Carlo, P; Di Marco, C F; Dorsey, J R; Evans, M; Fowler, D; Gallagher, M W; Hopkins, J R; Jones, C E; Langford, B; Lee, J D; Lewis, A C; Lim, S F; McQuaid, J; Misztal, P; Moller, S J; Monks, P S; Nemitz, E; Oram, D E; Owen, S M; Phillips, G J; Pugh, T A M; Pyle, J A; Reeves, C E; Ryder, J; Siong, J; Skiba, U; Stewart, D J

    2009-11-01

    More than half the world's rainforest has been lost to agriculture since the Industrial Revolution. Among the most widespread tropical crops is oil palm (Elaeis guineensis): global production now exceeds 35 million tonnes per year. In Malaysia, for example, 13% of land area is now oil palm plantation, compared with 1% in 1974. There are enormous pressures to increase palm oil production for food, domestic products, and, especially, biofuels. Greater use of palm oil for biofuel production is predicated on the assumption that palm oil is an "environmentally friendly" fuel feedstock. Here we show, using measurements and models, that oil palm plantations in Malaysia directly emit more oxides of nitrogen and volatile organic compounds than rainforest. These compounds lead to the production of ground-level ozone (O(3)), an air pollutant that damages human health, plants, and materials, reduces crop productivity, and has effects on the Earth's climate. Our measurements show that, at present, O(3) concentrations do not differ significantly over rainforest and adjacent oil palm plantation landscapes. However, our model calculations predict that if concentrations of oxides of nitrogen in Borneo are allowed to reach those currently seen over rural North America and Europe, ground-level O(3) concentrations will reach 100 parts per billion (10(9)) volume (ppbv) and exceed levels known to be harmful to human health. Our study provides an early warning of the urgent need to develop policies that manage nitrogen emissions if the detrimental effects of palm oil production on air quality and climate are to be avoided.

  9. Nitrogen management is essential to prevent tropical oil palm plantations from causing ground-level ozone pollution

    Science.gov (United States)

    Hewitt, Nick; Lee, James

    2010-05-01

    More than half the world's rainforest has been lost to agriculture since the Industrial Revolution. Among the most widespread tropical crops is oil palm (Elaeis guineensis): global production now exceeds 35 million tonnes per year. In Malaysia, for example, 13% of land area is now oil palm plantation, compared with 1% in 1974. There are enormous pressures to increase palm oil production for food, domestic products, and, especially, biofuels. Greater use of palm oil for biofuel production is predicated on the assumption that palm oil is an ‘‘environmentally friendly'' fuel feedstock. Here we show, using measurements and models, that oil palm plantations in Malaysia directly emit more oxides of nitrogen and volatile organic compounds than rainforest. These compounds lead to the production of ground-level ozone (O3), an air pollutant that damages human health, plants, and materials, reduces crop productivity, and has effects on the Earth's climate. Our measurements show that, at present, O3 concentrations do not differ significantly over rainforest and adjacent oil palm plantation landscapes. However, our model calculations predict that if concentrations of oxides of nitrogen in Borneo are allowed to reach those currently seen over rural North America and Europe, ground-level O3 concentrations will reach 100 parts per billion (109) volume (ppbv) and exceed levels known to be harmful to human health. Our study provides an early warning of the urgent need to develop policies that manage nitrogen emissions if the detrimental effects of palm oil production on air quality and climate are to be avoided.

  10. Increase in Ozone hole and hence UV-B Preceding Earthquakes

    Science.gov (United States)

    Mukherjee, A.; Mukherjee, S.

    2007-05-01

    Before the occurrence of earthquake, the change has been observed in ozone hole as well as UV-B flux in the atmosphere of the earth. After earthquake the UV-B flux reduces, which is correlated with the fluctuation in atmospheric temperature as well as Electron flux in Sun-Earth environment. Actual measurement show a linear relationship in between Coronal Mass Ejection and increase in Solar UV- B before the earthquakes in various parts of India.

  11. Potential of multispectral synergism for observing ozone pollution by combining IASI-NG and UVNS measurements from the EPS-SG satellite

    Science.gov (United States)

    Costantino, Lorenzo; Cuesta, Juan; Emili, Emanuele; Coman, Adriana; Foret, Gilles; Dufour, Gaëlle; Eremenko, Maxim; Chailleux, Yohann; Beekmann, Matthias; Flaud, Jean-Marie

    2017-04-01

    Present and future satellite observations offer great potential for monitoring air quality on a daily and global basis. However, measurements from currently orbiting satellites do not allow a single sensor to accurately probe surface concentrations of gaseous pollutants such as tropospheric ozone. Combining information from IASI (Infrared Atmospheric Sounding Interferometer) and GOME-2 (Global Ozone Monitoring Experiment-2) respectively in the TIR and UV spectra, a recent multispectral method (referred to as IASI+GOME-2) has shown enhanced sensitivity for probing ozone in the lowermost troposphere (LMT, below 3 km altitude) with maximum sensitivity down to 2.20 km a.s.l. over land, while sensitivity for IASI or GOME-2 alone only peaks at 3 to 4 km at the lowest.In this work we develop a pseudo-observation simulator and evaluate the potential of future EPS-SG (EUMETSAT Polar System - Second Generation) satellite observations, from new-generation sensors IASI-NG (Infrared Atmospheric Sounding Interferometer - New Generation) and UVNS (Ultraviolet Visible Near-infrared Shortwave-infrared), to observe near-surface O3 through the IASI-NG+UVNS multispectral method. The pseudo-real state of the atmosphere is provided by the MOCAGE (MOdèle de Chimie Atmosphérique à Grande Échelle) chemical transport model. We perform full and accurate forward and inverse radiative transfer calculations for a period of 4 days (8-11 July 2010) over Europe.In the LMT, there is a remarkable agreement in the geographical distribution of O3 partial columns between IASI-NG+UVNS pseudo-observations and the corresponding MOCAGE pseudo-reality. With respect to synthetic IASI+GOME-2 products, IASI-NG+UVNS shows a higher correlation between pseudo-observations and pseudo-reality, which is enhanced by about 12 %. The bias on high ozone retrieval is reduced and the average accuracy increases by 22 %. The sensitivity to LMT ozone is also enhanced. On average, the degree of freedom for signal is

  12. Regional-scale transport of air pollutants: impacts of southern California emissions on Phoenix ground-level ozone concentrations

    Directory of Open Access Journals (Sweden)

    J. Li

    2015-03-01

    Full Text Available In this study, WRF-Chem is utilized at high-resolution (1.333 km grid spacing for the innermost domain to investigate impacts of southern California anthropogenic emissions (SoCal on Phoenix ground-level ozone concentrations ([O3] for a pair of recent exceedance episodes. First, WRF-Chem Control simulations are conducted to evaluate model performance. Compared with surface observations of hourly ozone, CO, NOx, and wind fields, the Control simulations reproduce observed variability well. Simulated [O3] are within acceptance ranges recommended by the Environmental Protection Agency (EPA that characterize skillful experiments. Next, the relative contribution of SoCal and Arizona local anthropogenic emissions (AZ to ozone exceedance within the Phoenix metropolitan area is investigated via a trio of sensitivity simulations: (1 SoCal emissions are excluded, with all other emissions as in Control; (2 AZ emissions are excluded with all other emissions as in Control; and (3 SoCal and AZ emissions are excluded (i.e., all anthropogenic emissions are eliminated to account only for biogenic emissions [BEO]. Results for the selected events indicate the impacts of AZ emissions are dominant on daily maximum 8 h average (DMA8 [O3] in Phoenix. SoCal contributions to DMA8 [O3] for the Phoenix metropolitan area range from a few ppbv to over 30 ppbv (10–30% relative to Control experiments. [O3] from SoCal and AZ emissions exhibit the expected diurnal characteristics that are determined by physical and photochemical processes, while BEO contributions to DMA8 [O3] in Phoenix also play a key role. Finally, ozone transport processes and pathways within the lower troposphere are investigated. During daytime, pollutants (mainly ozone near the southern California coasts are pumped into the planetary boundary-layer over the southern California desert through the mountain chimney and pass channel effects, aiding eastward transport along the desert air basins in southern

  13. Plant resistance mechanisms to air pollutants: rhythms in ascorbic acid production during growth under ozone stress

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E.H. (Climate Stress Laboratory, USDA, ARS, Beltsville, MD (United States))

    1991-01-01

    Relationships between ozone (O3) tolerance and leaf ascorbic acid concentrations in O3-susceptible (O3-S) 'Hark' and O3-resistant (O3-R) 'Hood' soybean, Glycine max (L.) Merr., cultivars were examined with high-performance liquid chromatography (HPLC). Leaf samples were analyzed at 4 intervals during a 24 h period. Soybean cultivars grown in the greenhouse with charcoal filtered (CF) and nonfiltered (NF) air showed daily oscillations in ascorbic acid production. Highest ascorbic acid levels in leaves during light coincided with highest concentrations of photochemical oxidants in the atmosphere at 2:00 p.m. The resistant genotype produced more ascorbic acid in its trifoliate leaves than did the corresponding susceptible genotype. Under CF air (an O3-reduced environment) O3-S and O3-R cultivars showed rhythms in ascorbic acid production. In NF air (an O3 stress environment) the O3-R cultivar alone showed rhythms in ascorbic acid production. Results indicated that superior O3 tolerance in the Hood soybean cultivar (compared with Hark) was associated with a greater increase in endogenous levels of ascorbic acid. Ascorbic acid may scavenge free radicals and thereby protect cells from injury by O3 or other oxyradical products. Plants defend themselves against photochemical oxidant stress, such as O3, by several mechanisms. Experimental evidence indicates that antioxidant defense systems existing in plant tissues may function to protect cellular components from deleterious effects of photochemical oxidants through endogenous and exogenous controls.

  14. Projected changes in high ozone pollution events over the Eastern United States over the 21st century

    Science.gov (United States)

    Rieder, Harald E.; Fiore, Arlene M.; Horrowitz, Larry W.; Naik, Vaishali

    2014-05-01

    Over the past few decades, thresholds for the United States (US) National Ambient Air Quality Standard (NAAQS) for ozone (O3), established to protect public health and welfare, have been lowered repeatedly. We recently applied methods from extreme value theory (EVT) to maximum daily 8-hour average ozone (MDA8 O3) observed by the Clean Air Status and Trends Network (CASTNet) to quantify the significant decline in both frequency and magnitude of high O3 pollution events over the Eastern US from 1988 to 2009. These improvements to Eastern US air quality have been reported in prior studies and result from changes in air quality regulations and subsequent control measures (e.g., the "NOx SIP Call") as demonstrated by our analysis of 1-year and 5-year return levels. Here we extend this analysis to future projections of high O3 pollution events spanning the course of the 21st century. To this aim, we analyze simulations from the GFDL CM3 chemistry-climate model under selected Representative Concentration Pathway (RCP) scenarios: RCP4.5 and RCP8.5 (representing a moderate and strong climate warming with a global mean temperature change by 2100 compared to present day of +2.3K and +4.5K, respectively). Under both scenarios, NOx emissions decrease by ~80% over North America by 2100 under the assumption of aggressive ozone pollution controls. A third scenario, termed RCP4.5_WMGG, in which well-mixed greenhouse gases follow the RCP4.5 scenario but O3 and aerosol precursor emissions are held at 2005 levels, enables us to isolate the role of climate change from that of emission reductions. As we find a positive bias in GFDL CM3 MDA8 O3 compared to the Eastern US CASTNet O3 measurements during summer (a common feature in the current generation of models), we develop a correction method based on quantile-mapping. This bias correction effectively removes the model bias while preserving the temporal changes in MDA8 O3 as simulated under different RCPs over the course of the 21st

  15. Ozone-induced acute pulmonary fibrosis in rats. Prevention of increased rates of collagen synthesis by methylprednisolone

    Energy Technology Data Exchange (ETDEWEB)

    Hesterberg, T.W.; Last, J.A.

    1981-01-01

    The net rate of collagen synthesis by lung minces prepared from rats exposed for 7 days to ozone was increased in a dose-dependent manner severalfold above the net rate obtained with lung minces prepared from rats that had breathed only filtered air. Concurrent administration of methylprednisolone during the exposure to ozone prevented the increase in rate of collagen synthesis in a dose-dependent manner for each level of ozone tested. These results could be correlted with lower levels of inflammatory edema measured in the same steroid-treated rats as decreased wet weights of their right apical lung lobes.

  16. Urban Climate, Ozone Formation, and Public Health: Should Heat be Regulated as a Traditional Air Pollutant?

    Science.gov (United States)

    Stone, B.

    2003-12-01

    The return of record breaking heat waves to North American and European cities in 2003 highlights the growing need for urban planners to develop heat mitigation strategies for large metropolitan regions. Long associated with public health through its effects on human heat stress and heat related mortality, rising urban temperatures also hold important implications for regional air quality. This presentation will outline the results of a study focused on the relationship between regional temperatures and annual tropospheric ozone exceedances in the fifty largest (by population) metropolitan regions in the United States. With the aid of data from the EPA's National Emissions Inventory and NASA's Earth Observing System Data and Information System, this study examines trends in metropolitan emissions of nitrogen oxides, volatile organic compounds, mean regional temperatures, and annual ozone exceedances in U.S. metropolitan regions for the years 1990 through 1999. The intent of this work is to better establish connections between recent trends urban climate and ozone formation and to explore policy approaches to mitigating urban temperatures through physical planning. The results of this research indicate that annual violations of the national ozone standard during the decade of the 1990s were more closely associated with regional temperatures than with the emissions of regulated ozone precursors from mobile and stationary sources. Based on the results of this analysis, I argue that the air quality management strategies outlined in the Clean Air Act may be proving insufficient to control ozone formation due to ongoing and unanticipated changes in global and regional climate. I further argue that the emergence of urban heat as a significant threat to human health demands a strategic response from the fields of urban planning and public health. The presentation will conclude with a discussion of the linkages between urban form and ambient heat and will outline a set of

  17. The predicted impact of increased formaldehyde emissions from industrial flares on ozone concentrations in Houston, TX.

    Science.gov (United States)

    Wang, C. T.; Vizuete, W.

    2015-12-01

    Houston features one of the largest concentrations of the petrochemical industry in all of North America and flares are widely used there as the final treatment process for unwanted volatile organic compounds. These flares have the potential to produce formaldehyde as the result of incomplete combustion. Formaldehyde emissions are an important precursor to producing hydroxyl radicals and thus can impact atmospheric chemistry and the formation of ozone. Formaldehyde emissions from flares, however, are difficult to measure in situ. Recently, alternative measurement techniques have been developed, like open path optical methods, that allow the direct measurement of flare emissions from the facility's fence line (Johansson et al., 2014; Pikelnaya, Flynn, Tsai, & Stutz, 2013). This observational data indicates that the emission rate of formaldehyde from flares is about 10-20 times greater than those found in the regulatory models developed by the Texas Commission on Environmental Quality's (TCEQ). This research will use air quality models to quantify the impact that increased formaldehyde emission from flares will have on Houston ozone concentrations. This study relies on the CAMx model (version 6.1) and emission data developed by Alpine Geophysics LLC (AG) and Climate & Atmospheric Research Associates (CARA) based on the combined databases from TCEQ, U.S. Environmental Protection Agency (EPA), and National Emission Inventory (NEI2008). This model also used meteorology data from the results of WRF-ARW dynamics. The CAMx generated process analysis data will also be used to quantify changes in radical budgets and NOx budgets critical to ozone production.

  18. Chemical and toxicological evaluation of an emerging pollutant (enrofloxacin) by catalytic wet air oxidation and ozonation in aqueous solution.

    Science.gov (United States)

    Li, Yan; Zhang, Feifang; Liang, Xinmiao; Yediler, Ayfer

    2013-01-01

    This study evaluates the degradation efficiency of enrofloxacin (ENR) by catalytic wet air oxidation (CWAO) and ozonation. Results obtained by CWAO experiments show that 99.5% degradation, 37.0% chemical oxidation demand (COD) removal and 51.0% total organic carbon (TOC) conversion were obtained when 100 mol% FeCl(3) and 25 mol% NaNO(2) at 150 °C under 0.5 MPa oxygen pressure after 120 min are used. The degradation products are identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), gas chromatography-mass spectrometry (GC-MS) and ion chromatography (IC). The oxidation end products, F(-), NO(3)(-) and NH(4)(+) were determined by IC. The BOD(5)/COD ratio as a measure of the biodegradability of the parent compound increased from 0.01 to 0.12 after 120 min of reaction time, indicating an improved biodegradability of the parent compound. The inhibition of bioluminescence of the marine bacteria V. fischeri decreased from 43% to 12% demonstrating a loss in toxicity of ENR during CWAO. Ozonation of 0.2 mM ENR was carried out with an ozone concentration of 7.3 g m(-3) at pH 7. ENR decomposition with a degradation rate of 87% was obtained corresponding to the reaction time. Moderate changes in COD (18%) and TOC (17%) removal has been observed. The bioluminescence inhibition increased from 8% to 50%, due to the generation of toxic degradation products during ozonation. In comparison to the widely use of well developed method of ozonation CWAO exhibits better performance in terms of COD, TOC removals and generates less toxic products.

  19. Surface Ozone Background in the United States: Canadian and Mexican Pollution Influences

    Science.gov (United States)

    We use a global chemical transport model (GEOS-Chem) with 1° x 1° horizontal resolution to quantify the effects of anthropogenic emissions from Canada, Mexico, and outside North America on daily maximum 8-h average ozone concentrations in U.S.surface air.

  20. Development of pollution reduction strategies for Mexico City: Estimating cost and ozone reduction effectiveness

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, G.R.; Hardie, R.W. [Los Alamos National Lab., NM (United States); Barrera-Roldan, A. [Instituto Mexicano de Petroleo, Mexico City (Mexico)

    1993-12-31

    This reports on the collection and preparation of data (costs and air quality improvement) for the strategic evaluation portion of the Mexico City Air Quality Research Initiative (MARI). Reports written for the Mexico City government by various international organizations were used to identify proposed options along with estimates of cost and emission reductions. Information from appropriate options identified by SCAQMD for Southem California were also used in the analysis. A linear optimization method was used to select a group of options or a strategy to be evaluated by decision analysis. However, the reduction of ozone levels is not a linear function of the reduction of hydrocarbon and NO{sub x} emissions. Therefore, a more detailed analysis was required for ozone. An equation for a plane on an isopleth calculated with a trajectory model was obtained using two endpoints that bracket the expected total ozone precursor reductions plus the starting concentrations for hydrocarbons and NO{sub x}. The relationship between ozone levels and the hydrocarbon and NO{sub x} concentrations was assumed to lie on this plane. This relationship was used in the linear optimization program to select the options comprising a strategy.

  1. Innovative reactor technology for selective oxidation of toxic organic pollutants in wastewater by ozone

    NARCIS (Netherlands)

    Boncz, M.A.; Bruning, H.; Rulkens, W.H.

    2003-01-01

    Ozonation can be a suitable technique for the pre-treatment of wastewater containing low concentrations of toxic or non-biodegradable compounds that cannot be treated with satisfactory results when only the traditional, less expensive biological techniques are applied. In this case, the oxidation pr

  2. Effect of noise in principal component analysis with an application to ozone pollution

    Science.gov (United States)

    Tsakiri, Katerina G.

    This thesis analyzes the effect of independent noise in principal components of k normally distributed random variables defined by a covariance matrix. We prove that the principal components as well as the canonical variate pairs determined from joint distribution of original sample affected by noise can be essentially different in comparison with those determined from the original sample. However when the differences between the eigenvalues of the original covariance matrix are sufficiently large compared to the level of the noise, the effect of noise in principal components and canonical variate pairs proved to be negligible. The theoretical results are supported by simulation study and examples. Moreover, we compare our results about the eigenvalues and eigenvectors in the two dimensional case with other models examined before. This theory can be applied in any field for the decomposition of the components in multivariate analysis. One application is the detection and prediction of the main atmospheric factor of ozone concentrations on the example of Albany, New York. Using daily ozone, solar radiation, temperature, wind speed and precipitation data, we determine the main atmospheric factor for the explanation and prediction of ozone concentrations. A methodology is described for the decomposition of the time series of ozone and other atmospheric variables into the global term component which describes the long term trend and the seasonal variations, and the synoptic scale component which describes the short term variations. By using the Canonical Correlation Analysis, we show that solar radiation is the only main factor between the atmospheric variables considered here for the explanation and prediction of the global and synoptic scale component of ozone. The global term components are modeled by a linear regression model, while the synoptic scale components by a vector autoregressive model and the Kalman filter. The coefficient of determination, R2, for the

  3. The effect of ozone on photosynthesis and respiration of Scenedesmus obtusiusculus Chod., with a general discussion of effects of air pollutants in plants

    NARCIS (Netherlands)

    Verkroost, M.

    1974-01-01

    In the present study the mode of action of the air pollutant ozone was investigated by studying its effects on photosynthesis, respiration and some biochemical and structural properties of the unicellular alga, Scenedesmus obtusiusculus CHOD.In chapter 1, an effort was made to review the extensive l

  4. Significant increase of summertime ozone at Mount Tai in Central Eastern China

    Science.gov (United States)

    Sun, Lei; Xue, Likun; Wang, Tao; Gao, Jian; Ding, Aijun; Cooper, Owen R.; Lin, Meiyun; Xu, Pengju; Wang, Zhe; Wang, Xinfeng; Wen, Liang; Zhu, Yanhong; Chen, Tianshu; Yang, Lingxiao; Wang, Yan; Chen, Jianmin; Wang, Wenxing

    2016-08-01

    Tropospheric ozone (O3) is a trace gas playing important roles in atmospheric chemistry, air quality and climate change. In contrast to North America and Europe, long-term measurements of surface O3 are very limited in China. We compile available O3 observations at Mt. Tai - the highest mountain over the North China Plain - during 2003-2015 and analyze the decadal change of O3 and its sources. A linear regression analysis shows that summertime O3 measured at Mt. Tai has increased significantly by 1.7 ppbv yr-1 for June and 2.1 ppbv yr-1 for the July-August average. The observed increase is supported by a global chemistry-climate model hindcast (GFDL-AM3) with O3 precursor emissions varying from year to year over 1980-2014. Analysis of satellite data indicates that the O3 increase was mainly due to the increased emissions of O3 precursors, in particular volatile organic compounds (VOCs). An important finding is that the emissions of nitrogen oxides (NOx) have diminished since 2011, but the increase of VOCs appears to have enhanced the ozone production efficiency and contributed to the observed O3 increase in central eastern China. We present evidence that controlling NOx alone, in the absence of VOC controls, is not sufficient to reduce regional O3 levels in North China in a short period.

  5. Changes in the frequency and return level of high ozone pollution events over the eastern United States following emission controls

    Science.gov (United States)

    Rieder, H. E.; Fiore, A. M.; Polvani, L. M.; Lamarque, J.-F.; Fang, Y.

    2013-03-01

    In order to quantify the impact of recent efforts to abate surface ozone (O3) pollution, we analyze changes in the frequency and return level of summertime (JJA) high surface O3 events over the eastern United States (US) from 1988-1998 to 1999-2009. We apply methods from extreme value theory (EVT) to maximum daily 8-hour average ozone (MDA8 O3) observed by the Clean Air Status and Trends Network (CASTNet) and define O3 extremes as days on which MDA8 O3 exceeds a threshold of 75 ppb (MDA8 O3>75). Over the eastern US, we find that the number of summer days with MDA8 O3>75 declined on average by about a factor of two from 1988-1998 to 1999-2009. The applied generalized Pareto distribution (GPD) fits the high tail of MDA8 O3 much better than a Gaussian distribution and enables the derivation of probabilistic return levels (describing the probability of exceeding a value x within a time window T) for high O3 pollution events. This new approach confirms the significant decline in both frequency and magnitude of high O3 pollution events over the eastern US during recent years reported in prior studies. Our analysis of 1-yr and 5-yr return levels at each station demonstrates the strong impact of changes in air quality regulations and subsequent control measures (e.g., the ‘NOx SIP Call’), as the 5-yr return levels of the period 1999-2009 correspond roughly to the 1-yr return levels of the earlier time period (1988-1998). Regionally, the return levels dropped between 1988-1998 and 1999-2009 by about 8 ppb in the Mid-Atlantic (MA) and Great Lakes (GL) regions, while the strongest decline, about 13 ppb, is observed in the Northeast (NE) region. Nearly all stations (21 out of 23) have 1-yr return levels well below 100 ppb and 5-yr return levels well below 110 ppb in 1999-2009. Decreases in eastern US O3 pollution are largest after full implementation of the nitrogen oxide (NOx) reductions under the ‘NOx SIP Call’. We conclude that the application of EVT methods

  6. Effect of climate change on surface ozone over North America, Europe, and East Asia

    Science.gov (United States)

    Schnell, Jordan L.; Prather, Michael J.; Josse, Beatrice; Naik, Vaishali; Horowitz, Larry W.; Zeng, Guang; Shindell, Drew T.; Faluvegi, Greg

    2016-04-01

    The effect of future climate change on surface ozone over North America, Europe, and East Asia is evaluated using present-day (2000s) and future (2100s) hourly surface ozone simulated by four global models. Future climate follows RCP8.5, while methane and anthropogenic ozone precursors are fixed at year 2000 levels. Climate change shifts the seasonal surface ozone peak to earlier in the year and increases the amplitude of the annual cycle. Increases in mean summertime and high-percentile ozone are generally found in polluted environments, while decreases are found in clean environments. We propose that climate change augments the efficiency of precursor emissions to generate surface ozone in polluted regions, thus reducing precursor export to neighboring downwind locations. Even with constant biogenic emissions, climate change causes the largest ozone increases at high percentiles. In most cases, air quality extreme episodes become larger and contain higher ozone levels relative to the rest of the distribution.

  7. Understanding high wintertime ozone pollution events in an oil and natural gas producing region of the western US

    Directory of Open Access Journals (Sweden)

    R. Ahmadov

    2014-08-01

    Full Text Available Recent increases in oil and natural gas (NG production throughout the western US have come with scientific and public interest in emission rates, air quality and climate impacts related to this industry. This study uses a regional scale air quality model WRF-Chem to simulate high ozone (O3 episodes during the winter of 2013 over the Uinta Basin (UB in northeastern Utah, which is densely populated by thousands of oil and NG wells. The high resolution meteorological simulations are able to qualitatively reproduce the wintertime cold pool conditions that occurred in 2013, allowing the model to reproduce the observed multi-day buildup of atmospheric pollutants and accompanying rapid photochemical ozone formation in the UB. Two different emission scenarios for the oil and NG sector were employed in this study. The first emission scenario (bottom-up was based on the US EPA National Emission Inventory (NEI (2011, version 1 for the oil and NG sector for the UB. The second emission scenario (top-down was based on the previously derived estimates of methane (CH4 emissions and a regression analysis for multiple species relative to CH4 concentration measurements in the UB. WRF-Chem simulations using the two emission data sets resulted in significant differences for concentrations of most gas-phase species. Evaluation of the model results shows greater underestimates of CH4 and other volatile organic compounds (VOCs in the simulation with the NEI-2011 inventory than the case when the top-down emission scenario was used. Unlike VOCs, the NEI-2011 inventory significantly overestimates the emissions of nitrogen oxides (NOx, while the top-down emission scenario results in a moderate negative bias. Comparison of simulations using the two emission data sets reveals that the top-down case captures the high O3 episodes. In contrast, the simulation case using the bottom-up inventory is not able to reproduce any of the observed high O3 concentrations in the UB. A

  8. Evaluating a Priori Ozone Profile Information Used in TEMPO (Tropospheric Emissions: Monitoring of Pollution) Tropospheric Ozone Retrievals

    Science.gov (United States)

    Johnson, Matthew Stephen

    2017-01-01

    A primary objective for TOLNet is the evaluation and validation of space-based tropospheric O3 retrievals from future systems such as the Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite. This study is designed to evaluate the tropopause-based O3 climatology (TB-Clim) dataset which will be used as the a priori profile information in TEMPO O3 retrievals. This study also evaluates model simulated O3 profiles, which could potentially serve as a priori O3 profile information in TEMPO retrievals, from near-real-time (NRT) data assimilation model products (NASA Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS-5) Forward Processing (FP) and Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA2)) and full chemical transport model (CTM), GEOS-Chem, simulations. The TB-Clim dataset and model products are evaluated with surface (0-2 km) and tropospheric (0-10 km) TOLNet observations to demonstrate the accuracy of the suggested a priori dataset and information which could potentially be used in TEMPO O3 algorithms. This study also presents the impact of individual a priori profile sources on the accuracy of theoretical TEMPO O3 retrievals in the troposphere and at the surface. Preliminary results indicate that while the TB-Clim climatological dataset can replicate seasonally-averaged tropospheric O3 profiles observed by TOLNet, model-simulated profiles from a full CTM (GEOS-Chem is used as a proxy for CTM O3 predictions) resulted in more accurate tropospheric and surface-level O3 retrievals from TEMPO when compared to hourly (diurnal cycle evaluation) and daily-averaged (daily variability evaluation) TOLNet observations. Furthermore, it was determined that when large daily-averaged surface O3 mixing ratios are observed (65 ppb), which are important for air quality purposes, TEMPO retrieval values at the surface display higher correlations and less bias when applying CTM a priori profile information

  9. Fluorine-doped carbon nanotubes as an efficient metal-free catalyst for destruction of organic pollutants in catalytic ozonation.

    Science.gov (United States)

    Wang, Jing; Chen, Shuo; Quan, Xie; Yu, Hongtao

    2017-09-27

    Metal-free carbon materials have been presented to be potential alternatives to metal-based catalysts for heterogeneous catalytic ozonation, yet the catalytic performance still needs to be enhanced. Doping carbon with non-metallic heteroatoms (e.g., N, B, and F) could alter the electronic structure and electrochemical properties of original carbon materials, has been considered to be an effective method for improving the catalytic activity of carbon materials. Herein, fluorine-doped carbon nanotubes (F-CNTs) were synthesized via a facile method and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The as-synthesized F-CNTs exhibited notably enhanced catalytic activity towards catalytic ozonation for the degradation of organic pollutants. The oxalic acid removal efficiency of optimized F-CNTs was approximately two times as much as that of pristine CNTs, and even exceeded those of four conventional metal-based catalysts (ZnO, Al2O3, Fe2O3, and MnO2). The XPS and Raman studies confirmed that the covalent CF bonds were formed at the sp(3) C sites instead of sp(2) C sites on CNTs, not only resulting in high positive charge density of C atoms adjacent to F atoms, but remaining the delocalized π-system with intact carbon structure of F-CNTs, which then favored the conversion of ozone molecules (O3) into reactive oxygen species (ROS) and contributed to the high oxalic acid removal efficiency. Furthermore, electron spin resonance (ESR) studies revealed that superoxide radicals (O2(-)) and singlet oxygen ((1)O2) might be the dominant ROS that responsible for the degradation of oxalic acid in these catalytic systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. NO3 radical measurements in a polluted marine environment: links to ozone formation

    Directory of Open Access Journals (Sweden)

    J. D. Halla

    2010-05-01

    Full Text Available Nighttime chemistry in polluted regions is dominated by the nitrate radical (NO3 including its direct reaction with natural and anthropogenic hydrocarbons, its reaction with NO2 to form N2O5, and subsequent reactions of N2O5 to form HNO3 and chlorine containing photolabile species. We report nighttime measurements of NO3, NO2, and O3, in the polluted marine boundary layer southwest of Vancouver, BC during a three week study in the summer of 2005. The concentration of N2O5 was calculated using the well known equilibrium, NO3+NO2↔N2O5. Median overnight mixing ratios of NO3, N2O5 and NO2 were 10.3 ppt, 122 ppt and 8.3 ppb with median N2O5/NO3 molar ratios of 13.1 and median nocturnal partitioning of 4.9%. Due to the high levels of NO2 that can inhibit approach to steady-state, we use a method for calculating NO3 lifetimes that does not assume the steady-state approximation. Median and average lifetimes of NO3 in the NO3-N2O5 nighttime reservoir were 1.1–2.3 min. We have determined nocturnal profiles of the pseudo first order loss coefficient of NO3 and the first order loss coefficients of N2O5 by regression of the NO3 inverse lifetimes with the [N2O5]/[NO3] ratio. Direct losses of NO3 are highest early in the night, tapering off as the night proceeds. The magnitude of the first order loss coefficient of N2O5 is consistent with, but not verification of, recommended homogeneous rate coefficients for reaction of N2O5 with water vapor early in the night, but increases significantly in the latter part of the night when relative humidity increases beyond 75%, consistent with heterogeneous reactions of N2O5 with aerosols with a rate constant khet=(1.2±0.4×10−3 s−1−(1.6±0.4×10−3 s−1. Analysis indicates that a correlation exists between overnight integrated N2O5 concentrations in the marine boundary layer, a surrogate for the accumulation of chlorine containing photolabile species, and maximum 1-h average O3 at stations in the Lower Fraser

  11. Ozone, nitric acid, and ammonia air pollution is unhealthy for people and ecosystems in southern Sierra Nevada, California

    Energy Technology Data Exchange (ETDEWEB)

    Cisneros, Ricardo, E-mail: rcisneros@fs.fed.u [USDA Forest Service, Pacific Southwest Region, 1600 Tollhouse Road, Clovis, CA 93611 (United States); Bytnerowicz, Andrzej, E-mail: abytnerowicz@fs.fed.u [USDA Forest Service, Pacific Southwest Research Station, 4955 Canyon Crest Dr., Riverside, CA 92507 (United States); Schweizer, Donald, E-mail: dschweizer@fs.fed.u [USDA Forest Service, Pacific Southwest Region, 1600 Tollhouse Road, Clovis, CA 93611 (United States); Zhong, Sharon, E-mail: zhongs@msu.ed [Department of Geography, Michigan State University, 116 Geography Building East, Lansing, MI 48824-1117 (United States); Traina, Samuel, E-mail: straina@ucmerced.ed [Environmental Systems Graduate Group, University of California Merced, 5200 North Lake Road, Merced, CA 95343 (United States); Bennett, Deborah H., E-mail: dhbennett@ucdavis.ed [Department of Public Health Sciences, University of California Davis, One Shields Avenue, TB 169 Davis, CA 95616 (United States)

    2010-10-15

    Two-week average concentrations of ozone (O{sub 3}), nitric acid vapor (HNO{sub 3}) and ammonia (NH{sub 3}) were measured with passive samplers during the 2002 summer season across the central Sierra Nevada Mountains, California, along the San Joaquin River drainage. Elevated concentrations of the pollutants were determined with seasonal means for individual sites ranging between 62 and 88 ppb for O{sub 3}, 1.0-3.8 {mu}g m{sup -3} for HNO{sub 3}, and 2.6-5.2 {mu}g m{sup -3} for NH{sub 3}. Calculated O{sub 3} exposure indices were very high, reaching SUM00-191 ppm h, SUM60-151 ppm h, and W126-124 ppm h. Calculated nitrogen (N) dry deposition ranged from 1.4 to 15 kg N ha{sup -1} for maximum values, and 0.4-8 kg N ha{sup -1} for minimum values; potentially exceeding Critical Loads (CL) for nutritional N. The U.S., California, and European 8 h O{sub 3} human health standards were exceeded during 104, 108, and 114 days respectively, indicating high risk to humans from ambient O{sub 3}. - Ozone concentrations remained unchanged while those of nitric acid vapor and ammonia decreased along the river drainage crossing the Sierra Nevada Mountains.

  12. Tropospheric Ozone and Photochemical Smog

    Science.gov (United States)

    Sillman, S.

    2003-12-01

    The question of air quality in polluted regions represents one of the issues of geochemistry with direct implications for human well-being. Human health and well-being, along with the well-being of plants, animals, and agricultural crops, are dependent on the quality of air we breathe. Since the start of the industrial era, air quality has become a matter of major importance, especially in large cities or urbanized regions with heavy automobile traffic and industrial activity.Concern over air quality existed as far back as the 1600s. Originally, polluted air in cities resulted from the burning of wood or coal, largely as a source of heat. The industrial revolution in England saw a great increase in the use of coal in rapidly growing cities, both for industrial use and domestic heating. London suffered from devastating pollution events during the late 1800s and early 1900s, with thousands of excess deaths attributed to air pollution (Brimblecombe, 1987). With increasing use of coal, other instances also occurred in continental Europe and the USA. These events were caused by directly emitted pollutants (primary pollutants), including sulfur dioxide (SO2), carbon monoxide (CO), and particulates. They were especially acute in cities with northerly locations during fall and winter when sunlight is at a minimum. These original pollution events gave rise to the term "smog" (a combination of smoke and fog). Events of this type have become much less severe since the 1950s in Western Europe and the US, as natural gas replaced coal as the primary source of home heating, industrial smokestacks were designed to emit at higher altitudes (where dispersion is more rapid), and industries were required to install pollution control equipment.Beginning in the 1950s, a new type of pollution, photochemical smog, became a major concern. Photochemical smog consists of ozone (O3) and other closely related species ("secondary pollutants") that are produced photochemically from directly

  13. Increased serum concentrations of persistent organic pollutants among prediabetic individuals

    DEFF Research Database (Denmark)

    Færch, Kristine Villum; Højlund, Kurt; Vind, Birgitte Falbe

    2012-01-01

    There is a need for a better understanding of the potential role of persistent organic pollutants (POPs) in the pathogenesis of type 2 diabetes.......There is a need for a better understanding of the potential role of persistent organic pollutants (POPs) in the pathogenesis of type 2 diabetes....

  14. Impacts of ozone on trees and crops; Impacts de l'ozone sur les arbres et les recoltes

    Energy Technology Data Exchange (ETDEWEB)

    Felzer, B.S.; Cronina, T.; Melillo, J.M. [The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA (United States); Reilly, J.M.; Xiaodong, Wang [Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA (United States)

    2007-10-15

    In this review article, we explore how surface-level ozone affects trees and crops with special emphasis on consequences for productivity and carbon sequestration. Vegetation exposure to ozone reduces photosynthesis, growth, and other plant functions. Ozone formation in the atmosphere is a product of NO{sub x}, which are also a source of nitrogen deposition. Reduced carbon sequestration of temperate forests resulting from ozone is likely offset by increased carbon sequestration from nitrogen fertilization. However, since fertilized crop-lands are generally not nitrogen-limited, capping ozone-polluting substances in the USA, Europe, and China can reduce future crop yield loss substantially. (authors)

  15. Association between long-term air pollution and increased blood pressure and hypertension in China.

    Science.gov (United States)

    Dong, Guang-Hui; Qian, Zhengmin Min; Xaverius, Pamela K; Trevathan, Edwin; Maalouf, Salwa; Parker, Jamaal; Yang, Laiji; Liu, Miao-Miao; Wang, Da; Ren, Wan-Hui; Ma, Wenjun; Wang, Jing; Zelicoff, Alan; Fu, Qiang; Simckes, Maayan

    2013-03-01

    Several studies have investigated the short-term effects of ambient air pollutants in the development of high blood pressure and hypertension. However, little information exists regarding the health effects of long-term exposure. To investigate the association between residential long-term exposure to air pollution and blood pressure and hypertension, we studied 24 845 Chinese adults in 11 districts of 3 northeastern cities from 2009 to 2010. Three-year average concentration of particles with an aerodynamic diameter ≤10 µm (PM(10)), sulfur dioxide (SO(2)), nitrogen dioxides (NO(2)), and ozone (O(3)) were calculated from monitoring stations in the 11 districts. We used generalized additive models and 2-level logistic regressions models to examine the health effects. The results showed that the odds ratio for hypertension increased by 1.12 (95% confidence interval [CI], 1.08-1.16) per 19 μg/m(3) increase in PM(10), 1.11 (95% CI, 1.04-1.18) per 20 μg/m(3) increase in SO(2), and 1.13 (95% CI, 1.06-1.20) per 22 μg/m(3) increase in O(3). The estimated increases in mean systolic and diastolic blood pressure were 0.87 mm Hg (95% CI, 0.48-1.27) and 0.32 mm Hg (95% CI, 0.08-0.56) per 19 μg/m(3) interquartile increase in PM(10), 0.80 mm Hg (95% CI, 0.46-1.14) and 0.31 mm Hg (95% CI, 0.10-0.51) per 20 μg/m(3) interquartile increase in SO(2), and 0.73 mm Hg (95% CI, 0.35-1.11) and 0.37 mm Hg (95% CI, 0.14-0.61) per 22 μg/m(3) interquartile increase in O(3). These associations were only statistically significant in men. In conclusion, long-term exposure to PM(10), SO(2), and O(3) was associated with increased arterial blood pressure and hypertension in the study population.

  16. OZONE CONCENTRATION ATTRIBUTABLE PREMATURE DEATH IN POLAND

    Directory of Open Access Journals (Sweden)

    Krzysztof Skotak

    2010-03-01

    Full Text Available Ozone in the lower part of the atmosphere (troposphere, strong photochemical oxidant, is not directly emitted to the atmosphere but formed through a series of complex reactions. Ozone concentrations depends on ozone precursors air contamination (mainly nitrogen dioxide and non-methane volatile organic compounds and meteorological conditions (temperature and solar radiation. The main sectors emitted ozone precursors are road transport, power and heat generation plants, household (heating, industry, and petrol storage and distribution. Ozone and some of its precursors are also transported long distances in the atmosphere and are therefore considered a transboundary problem. As a result, the ozone concentrations are often low in busy urban areas and higher in suburban and rural areas. Nowadays, instead of particulate matter, ozone is one of the most widespread global air pollution problems. In and around urban areas, relatively large gradients of ozone can be observed. Because of its high reactivity in elevated concentrations ozone causes serious health problems and damage to ecosystems, agricultural crops and materials. Main ill-health endpoints as a results of ozone concentrations can be characterised as an effect of pulmonary and cardiovascular system, time morbidity and mortality series, development of atherosclerosis and asthma and finally reduction in life expectancy. The associations with increased daily mortality due to ozone concentrations are confirmed by many researches and epidemiological studies. Estimation of the level selected ill-health endpoints (mortality in total and due to cardiovascular and respiratory causes as a result of the short-term ozone exposure in Poland was the main aim of the project. Final results have been done based on estimation method elaborated by WHO, ozone measurements from National Air Quality Monitoring System and statistical information such as mortality rate and populations. All analysis have been done in

  17. OZONE ABSORPTION IN RAW WATERS

    Directory of Open Access Journals (Sweden)

    LJILJANA TAKIĆ

    2008-03-01

    Full Text Available The ozone absorption in raw water entering the main ozonization step at the Belgrade drinking water supply plant was investigated in a continuous stirred tank reactor (CSTR. A slow chemical reaction rate of dissolved ozone and pollutants present in raw water have been experimentally determined. The modified Hatta number was defined and calculated as a criterion which determines whether and to which extent the reactions of ozone and pollutants influence the rate of the pure physical ozone absorption.

  18. Co-exposure to ultrafine particulate matter and ozone causes electrocardiogram changes indicative of increased arrhythmia risk in mice

    Science.gov (United States)

    Numerous studies have shown a relationship between acute air pollution exposure and increased risk for cardiovascular morbidity and mortality. Due to the inherent complexity of air pollution, recent studies have focused on co-exposures to better understand potential interactions....

  19. Modelled surface ozone over southern africa during the cross border air pollution impact assessment project

    CSIR Research Space (South Africa)

    Zunckel, M

    2006-07-01

    Full Text Available .M.N., Pereira, J.M.C., Cabral, A.I., Sa, A.C.L., Vasconcelos, M.J.P., Mota, B., Gregoire, J.M., 2003. An estimate of area burned in southern Africa during the 2000 dry season using SPOT-VETETATION satellite data. Journal of Geophysical Re- search 108 (D13), 8498..., doi: 10.1029/202JD002325. Sokhi, R.S., San Jose, R., Kitwiroon, N., Fragkou, E., Peres, J.L., Middleton, D.R., Prediction of ozone levels in London using MM5eCMAQ modelling system. Environmental Modelling and Software, in press. doi: 10.1016/j...

  20. Do environmental pollutants increase obesity risk in humans?

    Science.gov (United States)

    Wang, Y; Hollis-Hansen, K; Ren, X; Qiu, Y; Qu, W

    2016-12-01

    Obesity has become a global epidemic and threat to public health. A good understanding of the causes can help attenuate the risk and spread. Environmental pollutants may have contributed to the rising global obesity rates. Some research reported associations between chemical pollutants and obesity, but findings are mixed. This study systematically examined associations between chemical pollutants and obesity in human subjects. Systematic review of relevant studies published between 1 January 1995 and 1 June 2016 by searching PubMed and MEDLINE®. Thirty-five cross-sectional (n = 17) and cohort studies (n = 18) were identified that reported on associations between pollutants and obesity measures. Of them, 16 studies (45.71%) reported a positive association; none reported a sole inverse association; three (8.57%) reported a null association only; six (17.14%) reported both a positive and null association; seven (20.00%) reported a positive and inverse association; and three studies (8.57%) reported all associations (positive, inverse and null). Most studies examined the association between multiple different pollutants, different levels of concentration and in subsamples, which results in mixed results. Thirty-three studies reported at least one positive association between obesity and chemicals, such as polychlorinated biphenyls, biphenyl A, dichlorodiphenyltrichloroethane, dichlorodiphenyldichloroethylene and more. Certain chemicals, such as biphenyl A, were more likely to have high ORs ranging from 1.0 to 3.0, whereas highly chlorinated polychlorinated biphenyls were more likely to have negative ORs. Effects of chemicals on the endocrine system and obesity might vary by substance, exposure level, measure of adiposity and subject characteristics (e.g. sex and age). Accumulated evidences show positive associations between pollutants and obesity in humans. Future large, long-term, follow-up studies are needed to assess impact of chemical pollutants on obesity

  1. Ozone sensitivity to its precursor emissions in northeastern Mexico for a summer air pollution episode.

    Science.gov (United States)

    Sierra, A; Vanoye, A Y; Mendoza, A

    2013-10-01

    A summer episode was modeled to address the expected response of ambient air O3 to hypothetical emission control scenarios in northeastern Mexico, and in particular in the Monterrey Metropolitan Area (MMA). This region is of interest because the MMA holds one of the worst air quality problems in the country and levels of air pollutants in the rest of northeastern Mexico are starting to be a concern. The MM5-SMOKE-CMAQ platform was used to conduct the numerical experiments. Twenty-four control scenarios were evaluated, combining the level of emission controls of O3 precursors (NO(x) and volatile organic compounds [VOCs]) from 0% to 50%. For the MMA, VOC-only controls result in the best option to reduce O3 concentrations, though the benefit is limited to the urban core. This same strategy results in negligible benefits for the rest of northeastern Mexico. NO(x) controls result in an increase in O3 concentration within the MMA of up to 20 ppbv and a decrease at downwind locations of up to 11 ppbv, with respect to the base-case scenario. Indicator ratios were also used to probe for NO(x)-sensitive and VOC-sensitive areas. Locations with an important influence of NO(x) point sources (i.e., Monclova and Nava/Acuña) are quite sensitive to changes in NO(x) emissions. Border cities in the Rio Bravo/Grande Valley tend to be marginally NO(x)-sensitive. Overall, the MMA seems to be dominated by a VOC-sensitive regime, while the rest of the region would tend to have a NO(x)-sensitive response. The results obtained serve to expand the current knowledge on the chemical regimes that dominate this region (VOC- or NO(x)-sensitive), and thus could help guide public policies related to emission regional control strategies.

  2. Ozone measurements 2010. [EMEP Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Hjellbrekke, Anne-Gunn; Solberg, Sverre; Fjaeraa, Ann Mari

    2012-07-01

    From the Introduction: Ozone is a natural constituent of the atmosphere and plays a vital role in many atmospheric processes. However, man-made emissions of volatile organic compounds and nitrogen oxides have increased the photochemical formation of ozone in the troposphere. Until the end of the 1960s the problem was basically believed to be one of the big cities and their immediate surroundings. In the 1970s, however, it was found that the problem of photochemical oxidant formation is much more widespread. The ongoing monitoring of ozone at rural sites throughout Europe shows that episodes of high concentrations of ground-level ozone occur over most parts of the continent every summer. During these episodes the ozone concentrations can reach values above ambient air quality standards over large regions and lead to adverse effects for human health and vegetation. Historical records of ozone measurements in Europe and North America indicate that in the last part of the nineteenth century the values were only about half of the average surface ozone concentrations measured in the same regions during the last 10-15 years (Bojkov, 1986; Volz and Kley, 1988).The formation of ozone is due to a large number of photochemical reactions taking place in the atmosphere and depends on the temperature, humidity and solar radiation as well as the primary emissions of nitrogen oxides and volatile organic compounds. Together with the non-linear relationships between the primary emissions and the ozone formation, these effects complicates the abatement strategies for ground-level ozone and makes photochemical models crucial in addition to the monitoring data. The 1999 Gothenburg Protocol is designed for a joint abatement of acidification, eutrophication and ground-level ozone. It has been estimated that once the Protocol is implemented, the number of days with excessive ozone levels will be halved and that the exposure of vegetation to excessive ozone levels will be 44% down on 1990

  3. Effect of NOx emission controls from world regions on the long-range transport of ozone air pollution and human mortality

    Science.gov (United States)

    West, J.; Naik, V.; Horowitz, L. W.

    2007-12-01

    We model the influences of 10% reductions in anthropogenic nitrogen oxide (NOx) emissions from each of nine world regions on surface ozone air quality in that region and all other regions, using the MOZART-2 model of tropospheric chemistry and transport. In doing so, we quantify the relative importance of long-range transport between different world regions for ozone. We find that the strongest inter-regional influences are for Europe to the Former Soviet Union (FSU), East Asia to Southeast Asia, and Europe to Africa. The largest influences per unit of NOx reduced, however, are seen for tropical source regions, due to greater sensitivity of ozone production to NOx emissions. Results show, for example, that NOx reductions in North America are about 20% as effective per ton at reducing ozone in Europe, as NOx reductions from Europe itself. In estimating the changes in cases of premature mortality associated with ozone, we find that NOx reductions in North America, Europe, and FSU reduce more mortalities outside of the source regions than within. Among world regions, an average ton of NOx reduced in India causes the greatest number of avoided mortalities (mainly in India itself). We also assess the long-term increases in global ozone resulting from methane increases due to the regional NOx reductions. For many of the more distant source-receptor pairs, the long-term increase in ozone roughly negates the direct short-term ozone decrease. The increase in methane and long-term ozone per unit of NOx reduced is greatest in tropical source regions and varies among different regions by a factor of ten.

  4. Potential of the multispectral synergism for observing ozone pollution combining measurements of IASI-NG and UVNS onboard EPS-SG

    Science.gov (United States)

    Costantino, Lorenzo; Cuesta, Juan; Emili, Emanuele; Foret, Gilles; Dufour, Gaëlle; Eremenko, Maxim; Chailleux, Yohann; Beekmann, Matthias; Flaud, Jean-Marie

    2016-04-01

    Current and future satellite observations offer a great potential for monitoring air quality on daily and global basis. However, measurements from currently in orbit sensors offer a limited capacity to probe surface concentrations of gaseous pollutants such as tropospheric ozone. Using single-band approaches based on IASI spaceborne thermal infrared measurements, only ozone down to the lower troposphere (3-4 km of altitude at lowest) may be observed (Eremenko et al., 2008). A recent multispectral method combining IASI and GOME-2 (both onboard MetOp satellites) spectra, respectively from the IR and UV, has shown enhanced sensitivity for probing ozone at the lowermost troposphere, but with maximum sensitivity around 2 km at lowest (Cuesta et al., 2013). Future spatial missions will be launched in the upcoming years, such as EPS-SG, carrying new generation sensors like IASI-NG and UVNS that will enhance the capacity to observe ozone pollution, and particularly when combining them through a multispectral synergism. This work presents an analysis of the potential of the multispectral synergism of IASI-NG and UVNS future spaceborne measurements for observing ozone pollution, performed in the framework of SURVEYOZON project (funded by the French Space Agency, CNES). For this, we develop a simulator of synthetic multispectral retrievals or pseudo-observations (referred as OSSE, Observing System Simulation Experiment) derived from IASI-NG+UVNS that will be compared to those from IASI+GOME2. In the first step of the OSSE, we create a pseudo-reality with simulations from the chemical-transport model MOCAGE (provided by CERFACS laboratory), where real O3 data from IASI and surface network stations have been assimilated for a realistic representation of ozone variability at the surface and the free troposphere. We focus on the high pollution event occurred in Europe on 10 July 2010. We use the coupled algorithms KOPRA+VLIDORT to simulate the spectra emitted, scattered and

  5. Does Pollution Increase School Absences? NBER Working Paper No. 13252

    Science.gov (United States)

    Currie, Janet; Hanushek, Eric; Kahn, E. Megan; Neidell, Matthew; Rivkin, Steven

    2007-01-01

    We examine the effect of air pollution on school absences using unique administrative data for elementary and middle school children in the 39 largest school districts in Texas. These data are merged with information from monitors maintained by the Environmental Protection Agency. To control for potentially confounding factors, we adopt a…

  6. Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone

    DEFF Research Database (Denmark)

    Sanmartin, Maite; Drogoudi, Pavlina D.; Lyons, Tom

    2003-01-01

    Transgenic tobacco (Nicotiana tabacum L. cv. Xanthi) plants expressing cucumber ascorbate oxidase (EC.1.10.3.3) were used to examine the role of extracellular ascorbic acid in mediating tolerance to the ubiquitous air pollutant, ozone (O3). Three homozygous transgenic lines, chosen on the basis...... of a preliminary screen of AO activity in the leaves of 29 lines, revealed up to a 380-fold increase in AO activity, with expression predominantly associated with leaf cell walls. Overexpression of AO resulted in no change in the total ascorbate content recovered in apoplast washing fluid, but the redox state...... of ascorbate was reduced from 30% in wild-type leaves to below the threshold for detection in transgenic plants. Levels of ascorbic acid and glutathione in the symplast were not affected by AO overexpression, but the redox state of ascorbate was reduced, while that of glutathione was increased. AO...

  7. Air pollution and associated human mortality: The role of air pollutant emissions, climate change and methane concentration increases during the industrial period

    Science.gov (United States)

    Fang, Y.; Naik, V.; Horowitz, L. W.; Mauzerall, D. L.

    2012-12-01

    Increases in surface ozone (O3) and fine particulate matter (≤ 2.5μm aerodynamic diameter, PM2.5) are associated with excess premature human mortalities. Here we estimate changes in surface O3 and PM2.5 since preindustrial (1860) times and the global present-day (2000) premature human mortalities associated with these changes. We go beyond previous work to analyze and differentiate the contribution of three factors: changes in emissions of short-lived air pollutants, climate change, and increased methane (CH4) concentrations, to air pollution levels and the associated premature mortalities. We use a coupled chemistry-climate model in conjunction with global population distributions in 2000 to estimate exposure attributable to concentration changes since 1860 from each factor. Attributable mortalities are estimated using health impact functions of long-term relative risk estimates for O3 and PM2.5 from the epidemiology literature. We find global mean surface PM2.5 and health-relevant O3 (defined as the maximum 6-month mean of 1-hour daily maximum O3 in a year) have increased by 8±0.16 μg/m3 and 30±0.16 ppbv, respectively, over this industrial period as a result of combined changes in emissions of air pollutants (EMIS), climate (CLIM) and CH4 concentrations (TCH4). EMIS, CLIM and TCH4 cause global average PM2.5 (O3) to change by +7.5±0.19 μg/m3 (+25±0.30 ppbv), +0.4±0.17 μg/m3 (+0.5±0.28 ppbv), and -0.02±0.01 μg/m3 (+4.3±0.33 ppbv), respectively. Total changes in PM2.5 are associated with 1.5 (95% confidence interval, CI, 1.0-2.5) million all-cause mortalities annually and in O3 are associated with 375 (95% CI, 129-592) thousand respiratory mortalities annually. Most air pollution mortality is driven by changes in emissions of short-lived air pollutants and their precursors (95% and 85% of mortalities from PM2.5 and O3 respectively). However, changing climate and increasing CH4 concentrations also increased premature mortality associated with air

  8. Air pollution and associated human mortality: the role of air pollutant emissions, climate change and methane concentration increases during the industrial period

    Directory of Open Access Journals (Sweden)

    Y. Fang

    2012-09-01

    Full Text Available Increases in surface ozone (O3 and fine particulate matter (≤2.5 μm} aerodynamic diameter, PM2.5 are associated with excess premature human mortalities. Here we estimate changes in surface O3 and PM2.5 since preindustrial (1860 times and the global present-day (2000 premature human mortalities associated with these changes. We go beyond previous work to analyze and differentiate the contribution of three factors: changes in emissions of short-lived air pollutants, climate change, and increased methane (CH4 concentrations, to air pollution levels and the associated premature mortalities. We use a coupled chemistry-climate model in conjunction with global population distributions in 2000 to estimate exposure attributable to concentration changes since 1860 from each factor. Attributable mortalities are estimated using health impact functions of long-term relative risk estimates for O3 and PM2.5 from the epidemiology literature. We find global mean surface PM2.5 and health-relevant O3 (defined as the maximum 6-month mean of 1-h daily maximum O3 in a year have increased by 8 ± 0.16 μg m−3 and 30 ± 0.16 ppbv, respectively, over this industrial period as a result of combined changes in emissions of air pollutants (EMIS, climate (CLIM and CH4 concentrations (TCH4. EMIS, CLIM and TCH4 cause global average PM2.5(O3 to change by +7.5 ± 0.19 μg m−3 (+25 ± 0.30 ppbv, +0.4 ± 0.17 μg m−3 (+0.5 ± 0.28 ppbv, and −0.02 ± 0.01 μg m−3 (+4.3 ± 0.33 ppbv, respectively. Total changes in PM2.5 are associated with 1.5 (95% confidence interval, CI, 1.0–2.5 million all-cause mortalities annually and in O3 are associated with 375 (95% CI, 129–592 thousand respiratory mortalities annually. Most air pollution mortality is driven

  9. Air pollution and associated human mortality: the role of air pollutant emissions, climate change and methane concentration increases from the preindustrial period to present

    Science.gov (United States)

    Fang, Y.; Naik, V.; Horowitz, L. W.; Mauzerall, D. L.

    2013-02-01

    Increases in surface ozone (O3) and fine particulate matter (≤2.5 μm aerodynamic diameter, PM2.5) are associated with excess premature human mortalities. We estimate changes in surface O3 and PM2.5 from pre-industrial (1860) to present (2000) and the global present-day (2000) premature human mortalities associated with these changes. We extend previous work to differentiate the contribution of changes in three factors: emissions of short-lived air pollutants, climate change, and increased methane (CH4) concentrations, to air pollution levels and associated premature mortalities. We use a coupled chemistry-climate model in conjunction with global population distributions in 2000 to estimate exposure attributable to concentration changes since 1860 from each factor. Attributable mortalities are estimated using health impact functions of long-term relative risk estimates for O3 and PM2.5 from the epidemiology literature. We find global mean surface PM2.5 and health-relevant O3 (defined as the maximum 6-month mean of 1-h daily maximum O3 in a year) have increased by 8 ± 0.16 μg m-3 and 30 ± 0.16 ppbv (results reported as annual average ±standard deviation of 10-yr model simulations), respectively, over this industrial period as a result of combined changes in emissions of air pollutants (EMIS), climate (CLIM) and CH4 concentrations (TCH4). EMIS, CLIM and TCH4 cause global population-weighted average PM2.5 (O35) to change by +7.5 ± 0.19 μg m-3 (+25 ± 0.30 ppbv), +0.4 ± 0.17 μg m-3 (+0.5 ± 0.28 ppbv), and 0.04 ± 0.24 μg m-3 (+4.3 ± 0.33 ppbv), respectively. Total global changes in PM2.5 are associated with 1.5 (95% confidence interval, CI, 1.2-1.8) million cardiopulmonary mortalities and 95 (95% CI, 44-144) thousand lung cancer mortalities annually and changes in O3 are associated with 375 (95% CI, 129-592) thousand respiratory mortalities annually. Most air pollution mortality is driven by changes in emissions of short-lived air pollutants and their

  10. Air pollution and associated human mortality: the role of air pollutant emissions, climate change and methane concentration increases from the preindustrial period to present

    Directory of Open Access Journals (Sweden)

    Y. Fang

    2013-02-01

    Full Text Available Increases in surface ozone (O3 and fine particulate matter (≤2.5 μm aerodynamic diameter, PM2.5 are associated with excess premature human mortalities. We estimate changes in surface O3 and PM2.5 from pre-industrial (1860 to present (2000 and the global present-day (2000 premature human mortalities associated with these changes. We extend previous work to differentiate the contribution of changes in three factors: emissions of short-lived air pollutants, climate change, and increased methane (CH4 concentrations, to air pollution levels and associated premature mortalities. We use a coupled chemistry-climate model in conjunction with global population distributions in 2000 to estimate exposure attributable to concentration changes since 1860 from each factor. Attributable mortalities are estimated using health impact functions of long-term relative risk estimates for O3 and PM2.5 from the epidemiology literature. We find global mean surface PM2.5 and health-relevant O3 (defined as the maximum 6-month mean of 1-h daily maximum O3 in a year have increased by 8 ± 0.16 μg m−3 and 30 ± 0.16 ppbv (results reported as annual average ±standard deviation of 10-yr model simulations, respectively, over this industrial period as a result of combined changes in emissions of air pollutants (EMIS, climate (CLIM and CH4 concentrations (TCH4. EMIS, CLIM and TCH4 cause global population-weighted average PM2.5 (O3 to change by +7.5 ± 0.19 μg m−3 (+25 ± 0.30 ppbv, +0.4 ± 0.17 μg m−3 (+0.5 ± 0.28 ppbv, and 0.04 ± 0.24 μg m−3 (+4.3 ± 0.33 ppbv, respectively. Total global changes in PM2.5 are associated with 1.5 (95% confidence interval, CI, 1.2–1.8 million cardiopulmonary mortalities and 95 (95% CI, 44–144 thousand lung cancer

  11. Colorado Front Range Surface Ozone Analysis

    Science.gov (United States)

    McClure-Begley, A.; Petropavlovskikh, I. V.; Oltmans, S. J.; Kofler, J.; Petron, G.; Cothrel, H.

    2014-12-01

    The Colorado Front Range is a unique geographical region for air quality studies, including research of surface level ozone. Not only does surface ozone play a critical role in regulating the oxidation capacity of the atmosphere, but is a primary contributor to local smog and leads to public health complications and altered ecosystem functioning. The high frequency of sunny days, increasing population and pollution, and Mountain/Valley air dynamics of this region provide atmospheric conditions suitable for production and accumulation of ozone at the surface. This region of Colorado is currently in an ozone non-attainment status due to an assortment of contributing factors. Precursor emissions from pollution, wild-fires, and gas and oil production; along with stratosphere-troposphere exchange, can all result in high ozone episodes over the Colorado Front Range. To understand the dynamics of ozone accumulation in this region, Thermo-Scientific ozone monitors have been continuously sampling ozone from 4 different altitudes since the early 2000s. Analysis of ozone data in relation to Nitrogen Oxides (NOx), Methane (CH4), Carbon Monoxide (CO), wind-conditions and back-trajectory air mass origins help to address local ozone precursor emissions and resulting high ozone episodes. Increased ozone episodes are scrutinized with regards to dominant wind direction to determine main precursor emission sources. Analysis of this data reveals a strong influence of precursor emissions from the North-East wind sector, with roughly 50% of ozone exceedances originating from winds prevailing from this direction. Further, correlation with methane is enhanced when prevailing winds are from the North-East; indicative of influence from natural gas processes and feedlot activity. Similar analysis is completed for the North-West wind sector exceedances, with strong correlation to carbon monoxide; likely related to emissions from biomass burning events and forest fires. In depth analysis of

  12. Cross-hemispheric transport of central African biomass burning pollutants: implications for downwind ozone production

    Directory of Open Access Journals (Sweden)

    E. Real

    2009-08-01

    Full Text Available Pollutant plumes with enhanced levels of trace gases and aerosols were observed over the southern coast of West Africa during August 2006 as part of the AMMA wet season field campaign. Plumes were observed both in the mid and upper troposphere. In this study we examined both the origin of these pollutant plumes and their potential to produce O3 downwind over the Atlantic Ocean. Runs using the BOLAM mesoscale model including biomass burning CO tracers were used to confirm an origin from central African fires. The plumes in the mid troposphere had significantly higher pollutant concentrations due to the fact that transport occurred from a region nearer or even over the fire region. In contrast, plumes transported into the upper troposphere over West Africa had been transported to the north-east of the fire region before being uplifted. Modelled tracer results showed that pollutants resided for between 9 and 12 days over Central Africa before being transported for 4 days, in the case of the mid-troposphere plume and 2 days in the case of the upper tropospheric plume to the measurement location over the southern part of West Africa. Around 35% of the biomass burning tracer was transported into the upper troposphere compared to that remaining in the mid troposphere. Runs using a photochemical trajectory model, CiTTyCAT, were used to estimate the net photochemical O3 production potential of these plumes. The mid tropospheric plume was still very photochemically active (up to 7 ppbv/day especially during the first few days of transport westward over the Atlantic Ocean. The upper tropospheric plume was also still photochemically active, although at a slower rate (1–2 ppbv/day. Trajectories show this plume being recirculated around an upper tropospheric anticyclone back towards the African continent (around 20° S. The potential of theses plumes to produce O3 supports the hypothesis that biomass burning pollutants are

  13. Effects of ozone-vegetation coupling on surface ozone air quality via biogeochemical and meteorological feedbacks

    Science.gov (United States)

    Sadiq, Mehliyar; Tai, Amos P. K.; Lombardozzi, Danica; Martin, Maria Val

    2017-02-01

    Tropospheric ozone is one of the most hazardous air pollutants as it harms both human health and plant productivity. Foliage uptake of ozone via dry deposition damages photosynthesis and causes stomatal closure. These foliage changes could lead to a cascade of biogeochemical and biogeophysical effects that not only modulate the carbon cycle, regional hydrometeorology and climate, but also cause feedbacks onto surface ozone concentration itself. In this study, we implement a semi-empirical parameterization of ozone damage on vegetation in the Community Earth System Model to enable online ozone-vegetation coupling, so that for the first time ecosystem structure and ozone concentration can coevolve in fully coupled land-atmosphere simulations. With ozone-vegetation coupling, present-day surface ozone is simulated to be higher by up to 4-6 ppbv over Europe, North America and China. Reduced dry deposition velocity following ozone damage contributes to ˜ 40-100 % of those increases, constituting a significant positive biogeochemical feedback on ozone air quality. Enhanced biogenic isoprene emission is found to contribute to most of the remaining increases, and is driven mainly by higher vegetation temperature that results from lower transpiration rate. This isoprene-driven pathway represents an indirect, positive meteorological feedback. The reduction in both dry deposition and transpiration is mostly associated with reduced stomatal conductance following ozone damage, whereas the modification of photosynthesis and further changes in ecosystem productivity are found to play a smaller role in contributing to the ozone-vegetation feedbacks. Our results highlight the need to consider two-way ozone-vegetation coupling in Earth system models to derive a more complete understanding and yield more reliable future predictions of ozone air quality.

  14. Significant concentrations of nitryl chloride sustained in the morning: investigations of the causes and impacts on ozone production in a polluted region of northern China

    Science.gov (United States)

    Tham, Yee Jun; Wang, Zhe; Li, Qinyi; Yun, Hui; Wang, Weihao; Wang, Xinfeng; Xue, Likun; Lu, Keding; Ma, Nan; Bohn, Birger; Li, Xin; Kecorius, Simonas; Größ, Johannes; Shao, Min; Wiedensohler, Alfred; Zhang, Yuanhang; Wang, Tao

    2016-12-01

    Nitryl chloride (ClNO2) is a dominant source of chlorine radical in polluted environment, and can significantly affect the atmospheric oxidative chemistry. However, the abundance of ClNO2 and its exact role are not fully understood under different environmental conditions. During the summer of 2014, we deployed a chemical ionization mass spectrometer to measure ClNO2 and dinitrogen pentoxide (N2O5) at a rural site in the polluted North China Plain. Elevated mixing ratios of ClNO2 (> 350 pptv) were observed at most of the nights with low levels of N2O5 (layer at night followed by downward mixing after breakup of the nocturnal inversion layer in the morning. We estimated that ˜ 1.7-4.0 ppbv of ClNO2 would exist in the residual layer in order to maintain the observed morning ClNO2 peaks at the surface site. Observation-based box model analysis show that photolysis of ClNO2 produced chlorine radical with a rate up to 1.12 ppbv h-1, accounting for 10-30 % of primary ROx production in the morning hours. The perturbation in total radical production leads to an increase of integrated daytime net ozone production by 3 % (4.3 ppbv) on average, and with a larger increase of 13 % (11 ppbv) in megacity outflow that was characterized with higher ClNO2 and a relatively lower oxygenated hydrocarbon (OVOC) to non-methane hydrocarbon (NMHC) ratio.

  15. Potential sources of nitrous acid (HONO) and their impacts on ozone: A WRF-Chem study in a polluted subtropical region

    Science.gov (United States)

    Zhang, Li; Wang, Tao; Zhang, Qiang; Zheng, Junyu; Xu, Zheng; Lv, Mengyao

    2016-04-01

    Current chemical transport models commonly undersimulate the atmospheric concentration of nitrous acid (HONO), which plays an important role in atmospheric chemistry, due to the lack or inappropriate representations of some sources in the models. In the present study, we parameterized up-to-date HONO sources into a state-of-the-art three-dimensional chemical transport model (Weather Research and Forecasting model coupled with Chemistry: WRF-Chem). These sources included (1) heterogeneous reactions on ground surfaces with the photoenhanced effect on HONO production, (2) photoenhanced reactions on aerosol surfaces, (3) direct vehicle and vessel emissions, (4) potential conversion of NO2 at the ocean surface, and (5) emissions from soil bacteria. The revised WRF-Chem was applied to explore the sources of the high HONO concentrations (0.45-2.71 ppb) observed at a suburban site located within complex land types (with artificial land covers, ocean, and forests) in Hong Kong. With the addition of these sources, the revised model substantially reproduced the observed HONO levels. The heterogeneous conversions of NO2 on ground surfaces dominated HONO sources contributing about 42% to the observed HONO mixing ratios, with emissions from soil bacterial contributing around 29%, followed by the oceanic source (~9%), photochemical formation via NO and OH (~6%), conversion on aerosol surfaces (~3%), and traffic emissions (~2%). The results suggest that HONO sources in suburban areas could be more complex and diverse than those in urban or rural areas and that the bacterial and/or ocean processes need to be considered in HONO production in forested and/or coastal areas. Sensitivity tests showed that the simulated HONO was sensitive to the uptake coefficient of NO2 on the surfaces. Incorporation of the aforementioned HONO sources significantly improved the simulations of ozone, resulting in increases of ground-level ozone concentrations by 6-12% over urban areas in Hong Kong and

  16. Influence of high carbohydrate versus high fat diet in ozone induced pulmonary injury and systemic metabolic impairment in a Brown Norway (BN) rat model of healthy aging

    Science.gov (United States)

    Rationale: Air pollution has been recently linked to the increased prevalence of metabolic syndrome. It has been postulated that dietary risk factors might exacerbate air pollution-induced metabolic impairment. We have recently reported that ozone exposure induces acute systemic ...

  17. Global Crop Yield Reductions due to Surface Ozone Exposure: Crop Production Losses and Economic Damage in 2000 and 2030 under Two Future Scenarios of O3 Pollution

    Science.gov (United States)

    Avnery, S.; Mauzerall, D. L.; Liu, J.; Horowitz, L. W.

    2011-12-01

    Field studies demonstrate that exposure to elevated concentrations of surface ozone (O3) may cause substantial reductions in the agricultural yields of many crops. As emissions of O3 precursors rise in many parts of the world over the next few decades, yield reductions from O3 exposure may increase the challenges of feeding a global population projected to grow from approximately 6 to 8 billion people between 2000 and 2030. This study estimates global yield reductions of three key staple crops (soybean, maize, and wheat) due to surface ozone exposure in 2000 and 2030 according to two trajectories of O3 pollution: the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) A2 and B1 storylines, which represent upper- and lower-boundary projections, respectively, of most O3 precursor emissions in 2030. Our results indicate that year 2000 O3-induced global yield reductions ranged, depending on the O3 exposure metric used, from 3.9-15% for wheat, 8.5-14% for soybean, and 2.2-5.5% for maize. Global crop production losses totaled 79-121 million metric tons, worth 11-18 billion annually (USD2000). In the 2030-A2 scenario we find global O3-induced yield loss of wheat to be 5.4-26% (a further reduction in yield of +1.5-10% from year 2000 values), 15-19% for soybean (reduction of +0.9-11%), and 4.4-8.7% for maize (reduction of +2.1-3.2%) depending on the metric used, with total global agricultural losses worth 17-35 billion USD2000 annually (an increase of +6-17 billion in losses from 2000). Under the 2030-B1 scenario, we project less severe but still substantial reductions in yields: 4.0-17% for wheat (a further decrease in yield of +0.1-1.8% from 2000), 9.5-15% for soybean (decrease of +0.7-1.0%), and 2.5-6.0% for maize (decrease of+ 0.3-0.5%), with total losses worth 12-21 billion annually (an increase of +$1-3 billion in losses from 2000). Because our analysis uses crop data from the year 2000, which likely underestimates agricultural

  18. IONS-06 Ozone Profiles in the Rural-Urban Transition at Mexico City in March 2006: Mixture of Pollution and UT/LS Waves

    Science.gov (United States)

    Thompson, A. M.; Long, R. B.; Miller, S. K.; Yorks, J. E.; Madigan, M. J.; Witte, J. C.; Kucsera, T. L.; Lefer, B.; Morris, G. A.

    2006-12-01

    We have used ozone profile data from soundings for better interpretation of atmospheric chemistry and dynamics at the urban-non-urban interface. Notably soundings have been taken during regional field campaigns like INTEX-NA (Intercontinental Transport Experiment - North America, 2004) and the 2006 Milagro/MIRAGE-Mex (Megacity Impacts of Regional and Global Environments)/ INTEX-B. IONS (INTEX Ozonesonde Network Study) is a network for studying the vertical structure and long-range transport of ozone and tropospheric water vapor during the INTEX experiments. In IONS-04, the urban-non-urban transition, was targeted at Beltsville, Maryland, a wooded suburban Washington DC site, and Narragansett, a coastal region downwind of New York City. From 5 to 20 March 2006, during IONS-06, ozone soundings were made over the Milagro T1 site (Tecamac, 19N, 99W), at the urban-rural interface, about 80 km NE of Mexico City. Simultaneous soundings were made over Houston, TX, 30N, 95W, approximately 1000 km to the northeast. Day-to-day variations in tropospheric ozone at T1 are explained by regional meteorology and emissions. Pollution accumulation at T1 was most noticeable during a stagnation period early in March, with winds from Mexico City. Downwind of T1, Houston was affected on 10 March 2006. In addition to pollution impacts, ozone variations throughout the troposphere and lower stratosphere over T1 were associated with equatorial Gravity waves. IONS-06 images for Mexico City/Tecamac, Houston, and those for other March 2006 data are viewable at: http://croc.gsfc.nasa.gov/intexb/ions06.

  19. Integrated studies of a regional ozone pollution synthetically affected by subtropical high and typhoon system in the Yangtze River Delta region, China

    Science.gov (United States)

    Shu, Lei; Xie, Min; Wang, Tijian; Gao, Da; Chen, Pulong; Han, Yong; Li, Shu; Zhuang, Bingliang; Li, Mengmeng

    2016-12-01

    Severe high ozone (O3) episodes usually have close relations to synoptic systems. A regional continuous O3 pollution episode was detected over the Yangtze River Delta (YRD) region in China during 7-12 August 2013, in which the O3 concentrations in more than half of the cities exceeded the national air quality standard. The maximum hourly concentration of O3 reached 167.1 ppb. By means of the observational analysis and the numerical simulation, the characteristics and the essential impact factors of the typical regional O3 pollution are comprehensively investigated. The observational analysis shows that the atmospheric subsidence dominated by the western Pacific subtropical high plays a crucial role in the formation of high-level O3. The favorable weather conditions, such as extremely high temperature, low relative humidity and weak wind speed, caused by the abnormally strong subtropical high are responsible for the trapping and the chemical production of O3 in the boundary layer. In addition, when the YRD cities are at the front of Typhoon Utor, the periphery circulation of typhoon system can enhance the downward airflows and cause worse air quality. However, when the typhoon system weakens the subtropical high, the prevailing southeasterly surface wind leads to the mitigation of the O3 pollution. The integrated process rate (IPR) analysis incorporated in the Community Multi-scale Air Quality (CMAQ) model is applied to further illustrate the combined influence of subtropical high and typhoon system in this O3 episode. The results show that the vertical diffusion (VDIF) and the gas-phase chemistry (CHEM) are two major contributors to O3 formation. During the episode, the contributions of VDIF and CHEM to O3 maintain the high values over the YRD region. On 10-12 August, the cities close to the sea are apparently affected by the typhoon system, with the contribution of VDIF increasing to 28.45 ppb h-1 in Shanghai and 19.76 ppb h-1 in Hangzhou. In contrast, the cities

  20. Response surface modeling-based source contribution analysis and VOC emission control policy assessment in a typical ozone-polluted urban Shunde, China.

    Science.gov (United States)

    You, Zhiqiang; Zhu, Yun; Jang, Carey; Wang, Shuxiao; Gao, Jian; Lin, Che-Jen; Li, Minhui; Zhu, Zhenghua; Wei, Hao; Yang, Wenwei

    2017-01-01

    To develop a sound ozone (O3) pollution control strategy, it is important to well understand and characterize the source contribution due to the complex chemical and physical formation processes of O3. Using the "Shunde" city as a pilot summer case study, we apply an innovative response surface modeling (RSM) methodology based on the Community Multi-Scale Air Quality (CMAQ) modeling simulations to identify the O3 regime and provide dynamic analysis of the precursor contributions to effectively assess the O3 impacts of volatile organic compound (VOC) control strategy. Our results show that Shunde is a typical VOC-limited urban O3 polluted city. The "Jiangmen" city, as the main upper wind area during July 2014, its VOCs and nitrogen oxides (NOx) emissions make up the largest contribution (9.06%). On the contrary, the contribution from local (Shunde) emission is lowest (6.35%) among the seven neighbor regions. The local VOCs industrial source emission has the largest contribution comparing to other precursor emission sectors in Shunde. The results of dynamic source contribution analysis further show that the local NOx control could slightly increase the ground O3 under low (10.00%) and medium (40.00%) reduction ratios, while it could start to turn positive to decrease ground O3 under the high NOx abatement ratio (75.00%). The real-time assessment of O3 impacts from VOCs control strategies in Pearl River Delta (PRD) shows that the joint regional VOCs emission control policy will effectively reduce the ground O3 concentration in Shunde. Copyright © 2016. Published by Elsevier B.V.

  1. Validation of the stomatal flux approach for the assessment of ozone visible injury in young forest trees. Results from the TOP (transboundary ozone pollution) experiment at Curno, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Gerosa, G., E-mail: giacomo.gerosa@unicatt.i [Department of Mathematics and Physics, Catholic University, via dei Musei 41, 25125 Brescia (Italy); Marzuoli, R. [Department of Mathematics and Physics, Catholic University, via dei Musei 41, 25125 Brescia (Italy); Desotgiu, R.; Bussotti, F. [Department of Plant Biology, University of Florence, Piazzale delle Cascine 28, 50144 Florence (Italy); Ballarin-Denti, A. [Department of Mathematics and Physics, Catholic University, via dei Musei 41, 25125 Brescia (Italy)

    2009-05-15

    This paper summarises some of the main results of a two-year experiment carried out in an Open-Top Chambers facility in Northern Italy. Seedlings of Populus nigra, Fagus sylvatica, Quercus robur and Fraxinus excelsior have been subjected to different ozone treatments (charcoal-filtered and non-filtered air) and soil moisture regimes (irrigated and non-irrigated plots). Stomatal conductance models were applied and parameterised under South Alpine environmental conditions and stomatal ozone fluxes have been calculated. The flux-based approach provided a better performance than AOT40 in predicting the onset of foliar visible injuries. Critical flux levels, related to visible leaf injury, are proposed for P. nigra and F. sylvatica (ranging between 30 and 33 mmol O{sub 3} m{sup -2}). Soil water stress delayed visible injury appearance and development by limiting ozone uptake. Data from charcoal-filtered treatments suggest the existence of an hourly flux threshold, below which may occur a complete ozone detoxification. - The stomatal uptake of ozone is an important factor to evaluate visible injury appearance and evolution in plants.

  2. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    Science.gov (United States)

    Lopaev, D. V.; Malykhin, E. M.; Zyryanov, S. M.

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature TV was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O(3P), O2, O2(1Δg) and O3 molecules in different vibrational states. The agreement of O3 and O(3P) density profiles and TV calculated in the model with observed ones was reached by varying the single model parameter—ozone production probability (\\gamma_{O_{3}}) on the quartz tube surface on the assumption that O3 production occurs mainly in the surface recombination of physisorbed O(3P) and O2. The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse \\gamma_{O_{3}} data obtained in the kinetic model. A good agreement between the experimental data and the data of both models—the kinetic 1D model and the phenomenological surface model—was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up the

  3. Assessment of rice yield loss due to exposure to ozone pollution in Southern Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Danh, Ngo Thanh; Huy, Lai Nguyen; Oanh, Nguyen Thi Kim, E-mail: kimoanh@ait.ac.th

    2016-10-01

    The study domain covered the Eastern region of Southern of Vietnam that includes Ho Chi Minh City (HCMC) and five other provinces. Rice production in the domain accounted for 13% of the national total with three crop cycles per year. We assessed ozone (O{sub 3}) induced rice production loss in the domain for 2010 using simulated hourly surface O{sub 3} concentrations (WRF/CAMx; 4 km resolution). Simulated O{sub 3} was higher in January–February (largely overlaps the first crop) and September–December (third crop), and lower in March–June (second crop). Spatially, O{sub 3} was higher in downwind locations of HCMC and were comparable with observed data. Relative yield loss (RYL) was assessed for each crop over the respective growing period (105 days) using three metrics: AOT40, M7 and flux-based O{sub 3} dose of POD{sub 10}. Higher RYL was estimated for the downwind of HCMC. Overall, the rice production loss due to O{sub 3} exposure in the study domain in 2010 was the highest for the first crop (up to 25,800 metric tons), the second highest for the third crop (up to 21,500 tons) and the least for the second crop (up to 6800 tons). The low RYL obtained for the second crop by POD{sub 10} may be due to the use of a high threshold value (Y = 10 nmol m{sup −2} s{sup −1}). Linear regression between non-null radiation POD{sub 0} and POD{sub 10} had similar slopes for the first and third crop when POD{sub 0} was higher and very low slope for the second crop when POD{sub 0} was low. The results of this study can be used for the rice crop planning to avoid the period of potential high RYL due to O{sub 3} exposure. - Highlights: • Simulated O{sub 3} was used to assess rice yield loss in a domain of Southern Vietnam. • Exposure metrics of AOT40, M7, POD{sub 0} and POD{sub 10} were considered. • POD{sub 10} gave the highest rice production loss. • Higher production loss was found downwind of Ho Chi Minh City.

  4. 中国东部地区的O3污染形成机制及趋势的初步探讨%Ozone (O3) pollution in eastern China:It’s formation and a potential air quality problem in the region

    Institute of Scientific and Technical Information of China (English)

    铁学熙; 戴文婷

    2016-01-01

    Background, aim, and scopeCurrently, China is under going a rapid economic development, which results in a higher demand for energy, greater use of fossil fuels, and inevitably lead to more emission of pollutants into the atmosphere. As a result, China is experiencing heavy air pollution in the past two decades, with particle matter (PM) being one of the top pollutants. Measurements show that PM concentrations often exceed the new national ambient air quality standards of China (75 μg∙m−3 for 24 h average) in large cities in China. Aerosol particles have important impacts on photochemistry by scattering and absorbing solar and infrared radiation. In addition to aerosol particles, ozone is also a critical trace gas in the troposphere because it plays important roles in atmospheric chemistry, air quality, and climate change. Unlike other atmospheric pollutants, such as PM2.5, SO2, NOx, etc., tropospheric ozone is not directly emitted from the earth’s surface. The tropospheric ozone is photo-chemically formed through a very complicated chemical process in atmosphere. The tropospheric ozone formation is inlfuenced by its precursors (NOx, VOCs, CO), and solar radiation. The effects of ozone precursors on ozone formation in eastern China have been intensive discussed. However, the photon effect on ozone formation has not been intensively discussed, especially under the heavy PM pollution conditions in eastern China. The aim of the paper is to discuss the limitation for ozone formation under heavy PM pollution in eastern China. Materials and methodsThis study used long-term measurement of ozone, and found that there was an increase trend of ozone in Shanghai. Based on the serous haze conditions in eastern China in the recent studies, the ozone formation under the high aerosol conditions was discussed. ResultsAlthough the aerosol pollution is a major concern for the air pollution control in China at present, the O3 concentrations increase in eastern China, showing

  5. Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone

    DEFF Research Database (Denmark)

    Sanmartin, Maite; Drogoudi, Pavlina D.; Lyons, Tom

    2003-01-01

    Transgenic tobacco (Nicotiana tabacum L. cv. Xanthi) plants expressing cucumber ascorbate oxidase (EC.1.10.3.3) were used to examine the role of extracellular ascorbic acid in mediating tolerance to the ubiquitous air pollutant, ozone (O3). Three homozygous transgenic lines, chosen on the basis...

  6. Projected carbon dioxide to increase grass pollen and allergen exposure despite higher ozone levels.

    Science.gov (United States)

    Albertine, Jennifer M; Manning, William J; DaCosta, Michelle; Stinson, Kristina A; Muilenberg, Michael L; Rogers, Christine A

    2014-01-01

    One expected effect of climate change on human health is increasing allergic and asthmatic symptoms through changes in pollen biology. Allergic diseases have a large impact on human health globally, with 10-30% of the population affected by allergic rhinitis and more than 300 million affected by asthma. Pollen from grass species, which are highly allergenic and occur worldwide, elicits allergic responses in 20% of the general population and 40% of atopic individuals. Here we examine the effects of elevated levels of two greenhouse gases, carbon dioxide (CO2), a growth and reproductive stimulator of plants, and ozone (O3), a repressor, on pollen and allergen production in Timothy grass (Phleum pratense L.). We conducted a fully factorial experiment in which plants were grown at ambient and/or elevated levels of O3 and CO2, to simulate present and projected levels of both gases and their potential interactive effects. We captured and counted pollen from flowers in each treatment and assayed for concentrations of the allergen protein, Phl p 5. We found that elevated levels of CO2 increased the amount of grass pollen produced by ∼50% per flower, regardless of O3 levels. Elevated O3 significantly reduced the Phl p 5 content of the pollen but the net effect of rising pollen numbers with elevated CO2 indicate increased allergen exposure under elevated levels of both greenhouse gases. Using quantitative estimates of increased pollen production and number of flowering plants per treatment, we estimated that airborne grass pollen concentrations will increase in the future up to ∼200%. Due to the widespread existence of grasses and the particular importance of P. pratense in eliciting allergic responses, our findings provide evidence for significant impacts on human health worldwide as a result of future climate change.

  7. Energy efficiency for the removal of non-polar pollutants during ultraviolet irradiation, visible light photocatalysis and ozonation of a wastewater effluent.

    Science.gov (United States)

    Santiago-Morales, Javier; Gómez, María José; Herrera-López, Sonia; Fernández-Alba, Amadeo R; García-Calvo, Eloy; Rosal, Roberto

    2013-10-01

    This study aims to assess the removal of a set of non-polar pollutants in biologically treated wastewater using ozonation, ultraviolet (UV 254 nm low pressure mercury lamp) and visible light (Xe-arc lamp) irradiation as well as visible light photocatalysis using Ce-doped TiO2. The compounds tracked include UV filters, synthetic musks, herbicides, insecticides, antiseptics and polyaromatic hydrocarbons. Raw wastewater and treated samples were analyzed using stir-bar sorptive extraction coupled with comprehensive two-dimensional gas chromatography (SBSE-CG × GC-TOF-MS). Ozone treatment could remove most pollutants with a global efficiency of over 95% for 209 μM ozone dosage. UV irradiation reduced the total concentration of the sixteen pollutants tested by an average of 63% with high removal of the sunscreen 2-ethylhexyl trans-4-methoxycinnamate (EHMC), the synthetic musk 7-acetyl-1,1,3,4,4,6-hexamethyltetrahydronaphthalene (tonalide, AHTN) and several herbicides. Visible light Ce-TiO2 photocatalysis reached ~70% overall removal with particularly high efficiency for synthetic musks. In terms of power usage efficiency expressed as nmol kJ(-1), the results showed that ozonation was by far the most efficient process, ten-fold over Xe/Ce-TiO2 visible light photocatalysis, the latter being in turn considerably more efficient than UV irradiation. In all cases the efficiency decreased along the treatments due to the lower reaction rate at lower pollutant concentration. The use of photocatalysis greatly improved the efficiency of visible light irradiation. The collector area per order decreased from 9.14 ± 5.11 m(2) m(-3) order(-1) for visible light irradiation to 0.16 ± 0.03 m(2) m(-3) order(-1) for Ce-TiO2 photocatalysis. The toxicity of treated wastewater was assessed using the green alga Pseudokirchneriella subcapitata. Ozonation reduced the toxicity of treated wastewater, while UV irradiation and visible light photocatalysis limited by 20-25% the algal growth due to

  8. Fast increasing of surface ozone concentrations in Pearl River Delta characterized by a regional air quality monitoring network during 2006-2011.

    Science.gov (United States)

    Li, Jinfeng; Lu, Keding; Lv, Wei; Li, Jun; Zhong, Liuju; Ou, Yubo; Chen, Duohong; Huang, Xin; Zhang, Yuanhang

    2014-01-01

    Based on the observation by a Regional Air Quality Monitoring Network including 16 monitoring stations, temporal and spatial variations of ozone (O3), NO2 and total oxidant (O(x)) were analyzed by both linear regression and cluster analysis. A fast increase of regional O3 concentrations of 0.86 ppbV/yr was found for the annual averaged values from 2006 to 2011 in Guangdong, China. Such fast O3 increase is accompanied by a correspondingly fast NO(x) reduction as indicated by a fast NO2 reduction rate of 0.61 ppbV/yr. Based on a cluster analysis, the monitoring stations were classified into two major categories--rural stations (non-urban) and suburban/urban stations. The O3 concentrations at rural stations were relatively conserved while those at suburban/urban stations showed a fast increase rate of 2.0 ppbV/yr accompanied by a NO2 reduction rate of 1.2 ppbV/yr. Moreover, a rapid increase of the averaged O3 concentrations in springtime (13%/yr referred to 2006 level) was observed, which may result from the increase of solar duration, reduction of precipitation in Guangdong and transport from Eastern Central China. Application of smog production algorithm showed that the photochemical O3 production is mainly volatile organic compounds (VOC)-controlled. However, the photochemical O3 production is sensitive to both NO(x) and VOC for O3 pollution episode. Accordingly, it is expected that a combined NO(x) and VOC reduction will be helpful for the reduction of the O3 pollution episodes in Pearl River Delta while stringent VOC emission control is in general required for the regional O3 pollution control.

  9. An ozone episode over the Pearl River Delta in October 2008

    Science.gov (United States)

    Shen, Jin; Zhang, Yuanhang; Wang, Xuesong; Li, Jinfeng; Chen, Hao; Liu, Run; Zhong, Liuju; Jiang, Ming; Yue, Dingli; Chen, Duohong; Lv, Wei

    2015-12-01

    The north and east Pearl River Delta (PRD) is usually a clean, upwind area in autumn. Serious ozone pollution there in mid-late October 2008 was first discovered and then analyzed. Trajectory analysis, process analysis, ozone source apportionment technology, and sensitivity analysis were used to study this episode. Under the influence of a weak south wind, the precursors emitted in Guangzhou and Foshan were transported to the north and northeast PRD and formed ozone there, which resulted in high ozone concentration (>100 ppb). As the wind direction later transited to northerly, the precursors in the northeast PRD that originated from the central and west PRD were transported to the south, and caused severe ozone pollution in the southeast PRD. The ozone contributed by chemical processes reached >20 ppb/h in Jinguowan. More than 40 ppb ozone was contributed by the precursor emission in the central and west PRD during the episode. The ozone concentration was highly sensitive to the precursor emission in the PRD region in the high-ozone situations. This episode showed the complexity of regional pollution in the PRD. When the PRD is controlled by a low air pressure system and then cold air moves from northern China to the south, the risk of ozone pollution in the north and southeast PRD increases.

  10. The grey areas in soil pollution risk mapping : The distinction between cases of soil pollution and increased background levels

    NARCIS (Netherlands)

    Gaast, N. van der; Leenaers, H.; Zegwaard, J.

    1998-01-01

    The progress of soil clean up in the Netherlands is severely hindered by the lack of common agreement on how to describe the grey areas of increased background levels of pollutants. In this study practical methods are proposed in which background levels are described as distribution functions within

  11. Corticosteroid administration modifies ozone-induced increases in sheep airway blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Gunther, R.A.; Yousef, M.A.; Schelegle, E.S.; Cross, C.E. (Department of Surgery, School of Medicine, University of California, Davis (United States))

    1992-09-01

    Recently, we have shown that exposure of intubated conscious sheep to 3 to 4 ppm ozone (O3) for 3 h increases bronchial blood flow (Qbr). The purpose of the present study was to assess the potential role of corticosteroids in modulating this increase. Six nasally intubated sheep were exposed to filtered room air, 3.5 ppm O3 on two separate occasions, and 3.5 ppm O3 plus methyl-prednisone, for 3 h. Qbr was measured using a chronically implanted 20 MHz pulsed Doppler flow probe. Qbr, mean aortic pressure, cardiac output, pulmonary artery pressure, arterial blood gases, and core temperature were monitored. After 3 h of 3.5 ppm O3, Qbr increased from 3.2 +/- 0.5 (mean +/- SEM) to 8.5 +/- 1.6 KHz, whereas bronchial vascular resistance (BVR) decreased from the baseline value of 43.6 +/- 8.0 to 15.0 +/- 3 mm Hg/KHz. With corticosteroids, baseline Qbr was 3.2 +/- 0.6 and BVR was 44.2 +/- 9.7; after 3 h of 3.5 ppm O3, Qbr was 3.3 +/- 0.5 KHz and BVR was 39.0 +/- 8.0 mm Hg/KHz. The two 3.5-ppm O3 exposures without corticosteroids were impressively reproducible. Except for Qbr and BVR, no other measured cardiovascular parameters were affected by O3. The results indicate that corticosteroids are capable of interfering with mediator, neurohumoral, or inflammatory cell mechanisms responsible for vasodilation of the airway microcirculation after O3 exposure, but do not specifically address the specific processes whereby this attenuation occurs.

  12. Summertime cyclones over the Great Lakes Storm Track from 1860–2100: variability, trends, and association with ozone pollution

    Directory of Open Access Journals (Sweden)

    L. W. Horowitz

    2013-01-01

    Full Text Available Prior work indicates that the frequency of summertime mid-latitude cyclones tracking across the Great Lakes Storm Track (GLST, bounded by: 70° W, 90° W, 40° N, and 50° N are strongly anticorrelated with ozone (O3 pollution episodes over the Northeastern United States (US. We apply the MAP Climatology of Mid-latitude Storminess (MCMS algorithm to 6-hourly sea level pressure fields from over 2500 yr of simulations with the GFDL CM3 global coupled chemistry-climate model. These simulations include (1 875 yr with constant 1860 emissions and forcings (Pre-industrial Control, (2 five ensemble members for 1860–2005 emissions and forcings (Historical, and (3 future (2006–2100 scenarios following the Representative Concentration Pathways (RCP 4.5 and RCP 8.5 and a sensitivity simulation to isolate the role of climate warming from changes in O3 precursor emissions (RCP 4.5*. The GFDL CM3 Historical simulations capture the mean and variability of summertime cyclones traversing the GLST within the range determined from four reanalysis datasets. Over the 21st century (2006–2100, the frequency of summertime mid-latitude cyclones in the GLST decreases under the RCP 8.5 scenario and in the RCP 4.5 ensemble mean. These trends are significant when assessed relative to the variability in the Pre-industrial Control simulation. In addition, the RCP 4.5* scenario enables us to determine the relationship between summertime GLST cyclones and high-O3 events (> 95th percentile in the absence of emission changes. The summertime GLST cyclone frequency explains less than 10% of the variability in high-O3 events over the Northeastern US in the model, implying that other factors play an equally important role in determining high-O3 events.

  13. Increasing risk of Amazonian drought due to decreasing aerosol pollution.

    Science.gov (United States)

    Cox, Peter M; Harris, Phil P; Huntingford, Chris; Betts, Richard A; Collins, Matthew; Jones, Chris D; Jupp, Tim E; Marengo, José A; Nobre, Carlos A

    2008-05-08

    The Amazon rainforest plays a crucial role in the climate system, helping to drive atmospheric circulations in the tropics by absorbing energy and recycling about half of the rainfall that falls on it. This region (Amazonia) is also estimated to contain about one-tenth of the total carbon stored in land ecosystems, and to account for one-tenth of global, net primary productivity. The resilience of the forest to the combined pressures of deforestation and global warming is therefore of great concern, especially as some general circulation models (GCMs) predict a severe drying of Amazonia in the twenty-first century. Here we analyse these climate projections with reference to the 2005 drought in western Amazonia, which was associated with unusually warm North Atlantic sea surface temperatures (SSTs). We show that reduction of dry-season (July-October) rainfall in western Amazonia correlates well with an index of the north-south SST gradient across the equatorial Atlantic (the 'Atlantic N-S gradient'). Our climate model is unusual among current GCMs in that it is able to reproduce this relationship and also the observed twentieth-century multidecadal variability in the Atlantic N-S gradient, provided that the effects of aerosols are included in the model. Simulations for the twenty-first century using the same model show a strong tendency for the SST conditions associated with the 2005 drought to become much more common, owing to continuing reductions in reflective aerosol pollution in the Northern Hemisphere.

  14. The Use of Ozone Gas for Medical Purposes

    Directory of Open Access Journals (Sweden)

    Mehmet Ozler

    2009-02-01

    Full Text Available Ozone (O3 is a colorless and sharp odorous natural gas that is composed of three oxygen atoms. Ozone, that is toxic and pollutant near earth’s surface, it is vital in stratosphere by absorbing harmful ultraviolet radiation. Although initial years after being discovered it was used for disinfection, studies conducted have come into question for medical usage of ozone. Ozone therapy may be summarized as administering a particular amount of ozone/oxygen mixture into body cavities or circulation. Ozone/oxygen gas mixture can be applied via intravenous, intramuscular, intraarticular, intrapleural, intrarectal and intradiscal as well as topically. Most frequent ozone administration is major autohemotherapy. In this method, 50-270 ml blood of patient is taken into a special bottle and after contacting with ozone/oxygen mixture for a particular duration, it is re-infused. During this period, hydrogen peroxide produced by oxidative stress and lipid oxidations mediates the biological effects of ozone therapy by acting as a second messenger. Repetition of ozone administration creates resistance against oxidative stress via inducing antioxidative system. Moreover, levels of several cytokine are increased depending on the fatty acid oxidation in cell membranes. Ozone therapy is used as an adjuvant therapeutic modality in the pathophysiological conditions where severe inflammatory processes and immune activation are involved. Some of the examples are wound healing, age-dependent macular degeneration, ischemic and infectious disorders. [TAF Prev Med Bull 2009; 8(1.000: 69-74

  15. The impact of synoptic weather on UK surface ozone and implications for premature mortality

    Science.gov (United States)

    Pope, R. J.; Butt, E. W.; Chipperfield, M. P.; Doherty, R. M.; Fenech, S.; Schmidt, A.; Arnold, S. R.; Savage, N. H.

    2016-12-01

    Air pollutants, such as ozone, have adverse impacts on human health and cause, for example, respiratory and cardiovascular problems. In the United Kingdom (UK), peak surface ozone concentrations typically occur in the spring and summer and are controlled by emission of precursor gases, tropospheric chemistry and local meteorology which can be influenced by large-scale synoptic weather regimes. In this study we composite surface and satellite observations of summer-time (April to September) ozone under different UK atmospheric circulation patterns, as defined by the Lamb weather types. Anticyclonic conditions and easterly flows are shown to significantly enhance ozone concentrations over the UK relative to summer-time average values. Anticyclonic stability and light winds aid the trapping of ozone and its precursor gases near the surface. Easterly flows (NE, E, SE) transport ozone and precursor gases from polluted regions in continental Europe (e.g. the Benelux region) to the UK. Cyclonic conditions and westerly flows, associated with unstable weather, transport ozone from the UK mainland, replacing it with clean maritime (North Atlantic) air masses. Increased cloud cover also likely decrease ozone production rates. We show that the UK Met Office regional air quality model successfully reproduces UK summer-time ozone concentrations and ozone enhancements under anticyclonic and south-easterly conditions for the summer of 2006. By using established ozone exposure-health burden metrics, anticyclonic and easterly condition enhanced surface ozone concentrations pose the greatest public health risk.

  16. Pollution prevention: increasing environmental capabilities of SMEs through collaboration

    NARCIS (Netherlands)

    Bruijn, de Theo; Hofman, Peter S.; Bruijn, de Theo J.N.M.; Tukker, Arnold

    2002-01-01

    The concept of sustainability increasingly impacts the nature of industry’s operations. Whereas in the past sound economic performance was expected to guarantee success by companies and its shareholders, now increasingly business is led by the so-called triple bottom line. Achieving good economic re

  17. Study of air pollution: Effects of ozone on neuropeptide-mediated responses in human subjects. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Boushey, H.A.

    1991-11-01

    The study examined the hypothesis that ozone inactivates the enzyme, neutral endopeptidase, responsible for limiting the effects of neuropeptides released from afferent nerve endings. Cough response of capsaicin solution delivered from a nebulizer at 2 min. intervals until two or more coughs were produced. Other endpoints measured included irritative symptoms as rated by the subjects on a nonparametric scale, spirometry, of each concentration of ozone were compared to those of filtered air in a single-blind randomized sequence. The results indicate that a 2 h. exposure to 0.4 ppm of ozone with intermittent light exercise alters the sensitivity of airway nerves that mediate the cough response to inhaled materials. This dose of ozone also caused a change in FEV1. A lower level of ozone, 0.02 ppm, caused a change in neither cough threshold nor FEV1, even when the duration of exposure was extended to three hours. The findings are consistent with the author's hypothesis that ozone may sensitize nerve endings in the airways by inactivating neutral endopeptidase, an enzyme that regulates their activity, but they do not demonstrate that directly examining an effect directly mediated by airway nerves allows detection of effects of ozone at doses below those causing effects detected by standard tests of pulmonary function.

  18. USE OF BARLEY OZONIZED GRAIN AND PROBIOTICS FOR INCREASING BIOLOGICAL VALUE OF POULTRY

    OpenAIRE

    Temiraev R. B.; Baeva A. A.; Bazaeva L. M.; Vityuk L. A.

    2014-01-01

    The article presents experimental data indicating that for the optimization of biological and food processing meat value at risk of aflatoxicosis in feeding chicken-broilers with barley-wheat and sunflower type one should include hullless barley grain at exposure of ozone of 3.0 hour complex with Bifidumbacterinum probiotics

  19. Peri-implantation Ozone Exposure Alters Uterine Artery Flow and Induces Fetal Growth Restriction in Rats

    Science.gov (United States)

    Epidemiological studies suggest a relationship between air pollutant exposures to various adverse pregnancy outcomes. Elevated ambient ozone levels during the first and second trimesters have demonstrated an increased correlation to preeclampsia, gestational diabetes, and intraut...

  20. Comparative scenario study of tropospheric ozone climate interactions using a global model. A 1% global increase rate, the IS92a IPCC scenario and a simplified aircraft traffic increase scenario

    Energy Technology Data Exchange (ETDEWEB)

    Chalita, S. [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France). Service d`Aeronomie; Le Treut, H. [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France). Lab. de Meteorologie Dynamique

    1997-12-31

    Sensitivity studies have been made to establish the relationship between different scenarios of tropospheric ozone increase and radiative forcing. Some aspects of the ozone-climate interactions for past and future scenarios are investigated. These calculations employ IMAGES tropospheric ozone concentrations for a pre-industrial, present and future atmospheres. The averaged last 10 years of the 25-year seasonal integrations were analyzed. The results of this study are preliminary. Ozone forcing is basically different from the CO{sub 2} forcing, for its regional and temporal structured nature and for its rather weak intensity. (R.P.) 14 refs.

  1. Coastal pollution due to increasing nutrient flux in aquaculture sites

    Science.gov (United States)

    David, C. P. C.; Sta. Maria, Y. Y.; Siringan, F. P.; Reotita, J. M.; Zamora, P. B.; Villanoy, C. L.; Sombrito, E. Z.; Azanza, R. V.

    2009-07-01

    The supply of nitrogen and phosphorus in coastal zones through time is reflected in the nutrients’ concentration in the sediment record. Five aquaculture sites in the Philippines were investigated in an effort to establish how long-term changes in land and coastal water use could have led to biogeochemical modifications affecting the coastal ecosystem. Samples from study sites show a narrow concentration range for nitrogen and did not reveal any significant trend through time. In contrast, phosphorus concentrations in most sites start at less than 20 ppm in sediments 30 years and older. The phosphorus value continuously increase in younger sediments, with each site having a different magnitude change as well as timing of when the major increase happened. The uppermost 10 cm, representing the last 15 years in sites with age control, typically show a 2- to 3-fold increase in P load values. Historical increase in nutrient load also coincides with harmful algal bloom events in each area; when effective P input exceeded 130 kg/km2 per year. Lastly, the observed increase may be attributed to several factors including physical attributes of the area, urbanization of coastal zones, but most importantly in the proliferation of aquaculture activities.

  2. Non-linear increase of respiratory diseases and their costs under severe air pollution.

    Science.gov (United States)

    Shen, Ying; Wu, Yiyun; Chen, Guangdi; Van Grinsven, Hans J M; Wang, Xiaofeng; Gu, Baojing; Lou, Xiaoming

    2017-05-01

    China is experiencing severe and persistent air pollution, with concentrations of fine particulate matters (PM2.5) reaching unprecedentedly high levels in many cities. Quantifying the detrimental effects on health and their costs derived from high PM2.5 levels is crucial because of the unsolved challenges to mitigate air pollution in the following decades. Using the daily monitoring data on PM2.5 concentrations and clinic visits, we found a non-linear increase of respiratory diseases, but not for other diseases (e.g., digestive diseases) under severe air pollution. We found an increase of respiratory diseases by 1% for each 10 μg m(-3) increase in PM2.5 when the annual average daily PM2.5 concentration was less than 50 μg m(-3); while this ratio was doubled (around 2%) with the daily PM2.5 concentration larger than 50 μg m(-3). Under severe air pollution (PM2.5 concentration >150 μg m(-3)), the respiratory diseases increased by over 50% compared to that in clean days. Children are more sensitive to the severe air pollution. The increase of clinic visits, especially for adults, was observed mainly in bigger (>500 beds) hospitals. Re-allocating medical resources (e.g., doctors) from big hospitals to community hospitals can benefit the respiratory patients due to air pollution. The total medical cost of clinic visits of respiratory diseases derived from PM2.5 pollution was estimated at 17.2-57.0 billion Yuan in 2014 in China, accounting for 0.5-1.6% of national total health expenditure. Because these medical costs only represent a small part of total health cost derived from air pollution, the reduction of associated health costs would be an important co-benefit of implementation of air pollution preventive strategies.

  3. Increasing concentrations of CO and O{sub 3} - rising deforestation rates and increasing tropospheric carbon monoxide and ozone in Amazonia

    Energy Technology Data Exchange (ETDEWEB)

    Kirchhoff, W.J.H. [Inst. Nacional de Pesquisas Espaciais, San Jose dos Campos, SP (Brazil)

    1996-12-31

    Increasing carbon monoxide and ozone concentrations have been observed in the lower troposphere of the Brazilian Amazon region in recent years (1989-1995). Carbon monoxide and ozone have been measured in the region continuously; from observations at a single site and many sporadic field missions, there is a clear indication that the chemical activity in the troposphere is growing, with increasing concentrations especially during the dry season. On the other hand, the most recent deforestation assessment by the Brazilian Government, performed by the Instituto Nacional de Pesquisas Espaciais (INPE) using Landsat data, shows yearly rates rising from the 11,130 km{sup 2} year{sup -1} minimum of the 1990/91 survey, to 13,786 km{sup 2} year{sup -1} for the 1991/92 period, and 14,896 km{sup 2} year{sup -1} for the period 1992/94. It is argued that the increase in deforestation/biomass burning activities in `Amazonia` have produced larger carbon monoxide and ozone concentrations in the lower atmosphere. (orig.)

  4. Climate change, air pollution and extreme events leading to increasing prevalence of allergic respiratory diseases.

    Science.gov (United States)

    D'Amato, Gennaro; Baena-Cagnani, Carlos E; Cecchi, Lorenzo; Annesi-Maesano, Isabella; Nunes, Carlos; Ansotegui, Ignacio; D'Amato, Maria; Liccardi, Gennaro; Sofia, Matteo; Canonica, Walter G

    2013-02-11

    The prevalence of asthma and allergic diseases has increased dramatically during the past few decades not only in industrialized countries. Urban air pollution from motor vehicles has been indicated as one of the major risk factors responsible for this increase.Although genetic factors are important in the development of asthma and allergic diseases, the rising trend can be explained only in changes occurred in the environment. Despite some differences in the air pollution profile and decreasing trends of some key air pollutants, air quality is an important concern for public health in the cities throughout the world.Due to climate change, air pollution patterns are changing in several urbanized areas of the world, with a significant effect on respiratory health.The observational evidence indicates that recent regional changes in climate, particularly temperature increases, have already affected a diverse set of physical and biological systems in many parts of the world. Associations between thunderstorms and asthma morbidity in pollinosis subjects have been also identified in multiple locations around the world.Allergens patterns are also changing in response to climate change and air pollution can modify the allergenic potential of pollens especially in presence of specific weather conditions.The underlying mechanisms of all these interactions are not well known yet. The consequences on health vary from decreases in lung function to allergic diseases, new onset of diseases, and exacerbation of chronic respiratory diseases.Factor clouding the issue is that laboratory evaluations do not reflect what happens during natural exposition, when atmospheric pollution mixtures in polluted cities are inhaled. In addition, it is important to recall that an individual's response to pollution exposure depends on the source and components of air pollution, as well as meteorological conditions. Indeed, some air pollution-related incidents with asthma aggravation do not depend

  5. Impact of diatomite on the slightly polluted algae-containing raw water treatment process using ozone oxidation coupled with polyaluminum chloride coagulation.

    Science.gov (United States)

    Hu, Wenchao; Wu, Chunde; Jia, Aiyin; Zhang, Zhilin; Chen, Fang

    2014-01-01

    The impact of adding diatomite on the treatment performance of slightly polluted algae-containing raw water using ozone pre-oxidation and polyaluminum chloride (PAC) coagulation was investigated. Results demonstrated that the addition of diatomite is advantageous due to reduction of the PAC dose (58.33%) and improvement of the removal efficiency of algae, turbidity, and dissolved organic matter (DOM) in raw water. When the ozone concentration was 1.0 mg L⁻¹ and the PAC dosage was 2.5 mg L⁻¹, the removal rates of algae, turbidity, UV254, and TOC were improved by 6.39%, 7.06%, 6.76%, and 4.03%, respectively, with the addition of 0.4 g L⁻¹ diatomite. It has been found that the DOM presented in the Pearl River raw water mainly consisted of small molecules ( 50 kDa). After adding diatomite (0.4 g L⁻¹), the additional removal of 5.77% TOC and 14.82% UV254 for small molecules (50 kDa) could be achieved, respectively, at an ozone concentration of 1.0 mg L⁻¹ and a PAC dose of 2.5 mg L⁻¹. The growth of anabaena flos-aquae (A.F.) was observed by an atomic force microscope (AFM) before and after adding diatomite. AFM images demonstrate that diatomite may have a certain adsorption on A.F.

  6. A 15-year Analysis of Surface Ozone Pollution in the Context of Hot Spells Episodes over Poland

    Directory of Open Access Journals (Sweden)

    Struzewska Joanna

    2016-10-01

    Full Text Available Analysis of summertime temperature characteristics and ozone exposure indexes were carried out for eight locations in Poland for a 15-year period (1997-2011. The number of days with the maximum temperature exceeding 25°C and 30°C was calculated for each year. The analysis covered the 8-hour running average and daily maximum of near surface ozone concentrations. Also, the accumulated exposure when ozone concentrations were above 120 μg/m3 (AOT60 was calculated as a diagnostic indicator of adverse health effects for each year. Although high ozone concentrations are associated with hot temperatures, the exposure to values higher than 120 μg /m3 is correlated with the length of the hot weather period rather than with the occurrence of days with extremely high temperatures. In most cases the elevated ozone concentrations occurred during days when the maximum temperature was higher than 24°C. Episodes of very high ozone concentrations, exceeding 180 μg /m3, were not associated with heat wave periods at analysed locations.

  7. A 15-Year Analysis of Surface Ozone Pollution in the Context of Hot Spells Episodes over Poland

    Science.gov (United States)

    Struzewska, Joanna; Jefimow, Maciej

    2016-10-01

    Analysis of summertime temperature characteristics and ozone exposure indexes were carried out for eight locations in Poland for a 15-year period (1997-2011). The number of days with the maximum temperature exceeding 25°C and 30°C was calculated for each year. The analysis covered the 8-hour running average and daily maximum of near surface ozone concentrations. Also, the accumulated exposure when ozone concentrations were above 120 μg/m3 (AOT60) was calculated as a diagnostic indicator of adverse health effects for each year. Although high ozone concentrations are associated with hot temperatures, the exposure to values higher than 120 μg /m3 is correlated with the length of the hot weather period rather than with the occurrence of days with extremely high temperatures. In most cases the elevated ozone concentrations occurred during days when the maximum temperature was higher than 24°C. Episodes of very high ozone concentrations, exceeding 180 μg /m3, were not associated with heat wave periods at analysed locations.

  8. Summertime cyclones over the Great Lakes Storm Track from 1860–2100: variability, trends, and association with ozone pollution

    Directory of Open Access Journals (Sweden)

    L. W. Horowitz

    2012-08-01

    Full Text Available Prior work indicates that the frequency of summertime mid-latitude cyclones tracking across the Great Lakes Storm Track (GLST, bounded by: 70° W, 90° W, 40° N, and 50° N are strongly anticorrelated with ozone (O3 pollution episodes over the Northeastern United States (US. We apply the MAP Climatology of Mid-latitude Storminess (MCMS algorithm to 6-hourly sea level pressure fields from over 2500 yr of simulations with the GFDL CM3 global coupled chemistry-climate model. These simulations include (1 875 yr with constant 1860 emissions and forcings (Pre-industrial Control, (2 five ensemble members for 1860–2005 emissions and forcings (Historical, and (3 future (2006–2100 scenarios following the Representative Concentration Pathways (RCP 8.5 (one member; extreme warming; RCP 4.5 (three members; moderate warming; RCP 4.5* (one member; a variation on RCP 4.5 in which only well-mixed greenhouse gases evolve along the RCP 4.5 trajectory. The GFDL CM3 Historical simulations capture the mean and variability of summertime cyclones traversing the GLST within the range determined from four reanalysis datasets. Over the 21st century (2006–2100, the frequency of summertime mid-latitude cyclones in the GLST decreases under the RCP 8.5 scenario (m = −0.06 a−1, p m = −0.03 a−1, p p > 0.06 for 100-yr sampling intervals; −0.01 a−1 m −1. In addition, the RCP 4.5* scenario enables us to determine the relationship between summertime GLST cyclones and high-O3 events (>95th percentile in the absence of emission changes. The summertime GLST cyclone frequency explains less than 10% of the variability in high-O3 events over the Northeastern US in the model. Our findings imply that careful study is required prior to applying the strong relationship noted in earlier work to changes in storm counts.

  9. Pollution

    NARCIS (Netherlands)

    Dürr, E.; Jaffe, R.; Nonini, D.M.

    2014-01-01

    This essay points to the role of pollution in understanding the social construction of hierarchies and urban space. Conceptualizations of pollution and approaches to waste management always reflect the Zeitgeist and tend to be politically charged. We argue that an ethnographic approach to pollution

  10. Pollution

    NARCIS (Netherlands)

    Dürr, E.; Jaffe, R.; Nonini, D.M.

    2014-01-01

    This essay points to the role of pollution in understanding the social construction of hierarchies and urban space. Conceptualizations of pollution and approaches to waste management always reflect the Zeitgeist and tend to be politically charged. We argue that an ethnographic approach to pollution

  11. Ozone production in summer in the megacities of Tianjin and Shanghai, China: a comparative study

    Science.gov (United States)

    Ran, Liang; Zhao, Chunsheng

    2013-04-01

    Rapid economic growth has given rise to a significant increase in ozone precursor emissions in many regions of China, especially in the densely populated North China Plain (NCP) and Yangtze River Delta (YRD). Improved understanding of ozone formation in response to different precursor emissions is imperative to address the highly nonlinear ozone problem and to provide a solid scientific basis for efficient ozone abatement in these regions. A comparative study on ozone photochemical production in summer has thus been carried out in the megacities of Tianjin (NCP) and Shanghai (YRD). Two intensive field campaigns were carried out respectively at an urban and a suburban site of Tianjin, in addition to routine monitoring of trace gases in Shanghai, providing data sets of surface ozone and its precursors including nitrogen oxides (NOx) and various non-methane hydrocarbons (NMHCs). Ozone pollution in summer was found to be more severe in the Tianjin region than in the Shanghai region, based on either the frequency or the duration of high ozone events. High ozone concentrations (>80 ppbv) of long duration (>6h) were frequently encountered in both urban and suburban Tianjin, while the occurrence of high ozone concentrations lasted for a shorter period (usually <4h) and had a much lower frequency in Shanghai. Such differences might be attributed to the large amount of highly reactive NMHCs in Tianjin. Model simulations based on measurements also reveal similar dependence of ozone production rates upon NMHC reactivity. Industry related species like light alkenes were of particular importance in both urban and suburban Tianjin, while in Shanghai aromatics dominated. In general, the ozone problem in Shanghai is on an urban scale. Stringent control policies on local emissions would help reduce the occurrence of high ozone concentrations. By contrast, ozone pollution in Tianjin is probably a regional problem. Combined efforts to reduce ozone precursor emissions on a regional

  12. Does obesity increase susceptibility to ozone? Respiratory, behavioral, and metabolic assessments in Brown Norway rats

    Science.gov (United States)

    There may be a link between obesity and susceptibility to the respiratory, cardiovascular, and other health effects of air pollutants. Furthermore, it has been proposed that some air pollutants are obesogenic and may contribute to obesity. In view of the epidemic growth of obesit...

  13. Importance of NOx control for peak ozone reduction in the Pearl River Delta region

    Science.gov (United States)

    Li, Ying; Lau, Alexis K. H.; Fung, Jimmy C. H.; Zheng, Junyu; Liu, Shawchen

    2013-08-01

    As major air pollutants and key precursors of several secondary air pollutants, nitrogen oxide (NOx) emissions are regulated in many countries. However, NOx control increases ozone concentrations when the ozone formation regime is volatile organic compound (VOC) limited. Although many studies have shown that NOx regulation reduces ozone levels over the long term, it is still of concern that NOx regulation increases short-term ozone levels in metropolitan regions, where ozone formation is found to be predominantly VOC-limited. The Pearl River Delta (PRD) in China is such a region. Our modeling sensitivity study shows that while NOx reduction in the PRD region may raise the mean ozone concentration, it can also decrease peak ozone levels. Similar changes are observed in the NOx and ozone data of the PRD regional air quality monitoring network (2006-2012), lending further credence to our results. In the model, this NOx control effect is a result of the complicated spatial and diurnal variations of the ozone formation regime. In most of the PRD region, the formation regime is VOC-limited in the morning and becomes NOx-limited during peak ozone hours. Although some areas are always VOC-limited, their ozone concentrations are relatively low, and the ozone increases caused by NOx reduction generally do not cause higher ozone levels than the region's original ozone maxima. Several control scenarios are simulated to evaluate the effects of various possible control regulations. Our results show that in addition to VOC control, NOx control can be effective for reducing peak ozone concentrations in the PRD region.

  14. GSTM1 modulation of IL-8 expression in human epithelial cells exposed to ozone

    Science.gov (United States)

    Exposure to the major air pollutant ozone can aggravate asthma and other lung diseases. Our recent study in humanvolunteers hasshown that the glutathione S-transferase Mu 1(GSTMI)-null genotype is associated with increased airway neutrophilic inflammation induced by inhaled ozone...

  15. Effects of ozone pollution on phosphorus absorption and distribution in different varieties of wheat%臭氧污染对不同品种小麦磷素吸收与分配的影响

    Institute of Scientific and Technical Information of China (English)

    刘德鸿; 寇太记; 徐晓峰; 朱建国; 朱新开

    2012-01-01

    With the aid of the Free-Air Ozone Concentration Enrichment ( 03 - FACE) system, effects of elevated atmospheric ozone on the biomass of five varieties of wheat ( Tritcium aestivum L. ) and phosphorus (P) uptake and distribution in wheat plant were investigated in Yangtze River delta. The results showed that the 50% increasing ozone concentration differently influenced the biomass of root and shoot of all wheat. Ozone elevation significantly decreased the yield of yangmai 16, yannong 19 and jiaxing 002 by 13.2%-35.7%, but had no significantly effect on yield of yangmai 15 and yangfumai 2. Elevated ozone decreased P content of root and shoot of all wheat, however no significant difference in the grain was found. Ozone elevation decreased P accumulation in the root and grain, and promoted P turnover from root to shoot, which increased the proportion of P in the grain to all biomass. Elevated ozone decreased partial productivity of phosphorus of yangmai 16, yannong 19 and jiaxing 002 by 9.0- 23.8 kg/kg P2O5, and significantly decreased utilization efficiency of phosphorus of yangmai 16, yannong 19 and jiaxing 002 hy 8.2%-20.2% ; however, there was no significant effect on yangmai 15 and yangfumai 2. It is quite obvious that elevated ozone pollution has a potential risks to change the matter distribution of wheat and influencephosphorus turnover in soil-plant system.%摘要:利用中国稻一麦轮作O3-FACE(Free-air O3concentration enrichment)试验平台,研究了小麦(Tritcium aestivumL)品种的物质积累、磷素的吸收与分配对大气臭氧浓度增加的响应。结果显示,大气臭氧浓度增加50%对供试小麦根和地上部的生物量积累影响差异较大,显著降低了扬麦16、烟农19和嘉兴002的产量,降幅为13.2%-35.7%,但对扬麦15和扬幅麦2号的产量无显著影响。臭氧增加导致5种小麦根系和地上部植株中磷含量呈下降趋势,而籽粒中磷含量却无显著变化。

  16. A Comparative Study on Ozone Photochemical Formation in the Megacities of Tianjin and Shanghai, China

    Science.gov (United States)

    Ran, L.; Zhao, C.; Xu, W.; Geng, F.; Lu, X.; Han, M.; Lin, W.; Xu, X.

    2011-12-01

    As one of the most widespread and stubborn environmental issues, the ozone problem has been of particular concern for many years, given the potential adverse effects of high ozone concentrations on public health and agricultural productivity. In the past decades, rapid urbanization and industrialization have given rise to a significant increase in ozone precursor emissions in many regions of China, especially in the densely populated megacities. Due to the highly nonlinear impacts of ozone precursors including nitrogen oxides (NOx) and various volatile organic compounds (VOCs) on ozone photochemistry, formation of ozone affected by different precursor emission patterns in those megacities has exhibited different characteristics. A comparative analysis of ozone photochemical production in the megacities of Tianjin and Shanghai has thus been carried out, using the data sets of surface ozone and its precursors measured respectively at an urban and a suburban site of the two megacities during the summertime. Observation-based analysis indicated an elevated ozone daily peak under photochemistry dominant conditions from the urban center to the suburb in both regions, nevertheless bearing different reasons. Ozone production was generally sensitive to VOCs in the Tianjin region, leading to a relatively higher level of ozone in the suburb where reactive VOCs were abundantly released from a number of industrial facilities, whereas a sensitivity of ozone production to NOx was found in Shanghai. The high level of NOx emitted mainly by motor vehicles in urban Shanghai largely inhibited ozone formation and resulted in a much more rapid decrease in ozone concentrations after reaching the daily maximum around midday compared with the other three areas. Ozone pollution in the megacity of Tianjin was more representative of the regional condition, implying that combined efforts would be needed to bring the ozone problem under control within this region. Improved understanding of

  17. 2001 Ozone Design Value

    Data.gov (United States)

    U.S. Environmental Protection Agency — Ozone is generated by a complex atmoshperic chemical process. Industrial and automobile pollutants in the form of oxides of nitrogen and hydrocarbons react in the...

  18. DEVELOPMENTS IN OZONATION OF WATERS

    Directory of Open Access Journals (Sweden)

    Ensar OĞUZ

    2001-03-01

    Full Text Available Ozone, has been used in both industrial and synthetic chemistry. From this point of view, ozone-organic chemistry related papaers have been published by many researcher. Forthermore; its role in air and water pollution problems is more important today. As a result of ozone researches, it is clear that ozone is to be the brightest expection for future in industrial, domestic, and driking water treatment. Ozone, a high grade oxidation matter, has been used for removing the pollutants and toxic materials from waste waters.

  19. Ozone oil promotes wound healing by increasing the migration of fibroblasts via PI3K/Akt/mTOR signaling pathway.

    Science.gov (United States)

    Xiao, Weirong; Tang, Hua; Wu, Meng; Liao, Yangying; Li, Ke; Li, Lan; Xu, Xiaopeng

    2017-09-01

    Background: Skin injury affects millions of people via the uncontrolled inflammation and infection. Many cellular components including fibroblasts and signaling pathways such as TGF-β were activated to facilitate the wound healing to repair injured tissues. Methods and Results: C57BL/6 female mice were divided into control and ozone oil treated groups. Excisional wounds were created on the dorsal skin and the fibroblasts were isolated from granulation tissues. The skin injured mouse model revealed that ozone oil could significantly decrease the wound area and accelerate wound healing compared with control group. QPCR and western blotting assays showed that ozone oil upregulated collagen I, α-SMA and TGF-β1 mRNA and protein levels in fibroblasts. Wound healing assay demonstrated that ozone oil could increase the migration of fibroblasts. Western blotting assay demonstrated that ozone oil increased the EMT process of fibroblasts via upregulating fibronectin, vimentin, N-cadherin, MMP-2, MMP-9, IGFBP-3, IGFBP5 and IGFBP6 and decreasing epithelial protein E-cadherin and cellular senescence marker p16 expression. Mechanistically, western blotting assay revealed that ozone oil increased the phosphorylation of PI3K, Akt and mTOR to regulate the EMT process, while inhibition of PI3K reversed this effect of ozone oil. At last, the results from Cytometric Bead Array demonstrated ozone oil significantly decreased the inflammation in fibroblasts. Conclusion: Our results demonstrated ozone oil facilitated the wound healing via increasing fibroblast migration and EMT process via PI3K/Akt/mTOR signaling pathway in vivo and vitro. The cellular and molecular mechanisms we found here may provide new therapeutic targets for the treatment of skin injury. ©2017 The Author(s).

  20. Influence of Climate Change and Meteorological Factors on Houston’s Air Pollution: Ozone a Case Study

    Directory of Open Access Journals (Sweden)

    Lei Liu

    2015-05-01

    Full Text Available We examined the past 23 years of ground-level O3 data and selected meteorological parameters in Houston, Texas, which historically has been one of the most polluted cities in the United States. Both 1-h and 8-h O3 exceedances have been reduced significantly down to single digit yearly occurrences. We also found that the frequency of southerly flow has increased by a factor of ~2.5 over the period 1990–2013, likely suppressing O3 photochemistry and leading to a “cleaner” Houston environment. The sea breeze was enhanced greatly from 1990 to 2013 due to increasing land surface temperatures, increased pressure gradients, and slightly stronger on-shore winds. These patterns driven by climate change produce a strengthening of the sea breeze, which should be a general result at locations worldwide.

  1. Threat of plastic pollution to seabirds is global, pervasive, and increasing

    OpenAIRE

    Wilcox, Chris; van Sebille, Erik; Hardesty, Britta Denise

    2015-01-01

    Plastic pollution in the ocean is a rapidly emerging global environmental concern, with high concentrations (up to 580,000 pieces per km2) and a global distribution, driven by exponentially increasing production. Seabirds are particularly vulnerable to this type of pollution and are widely observed to ingest floating plastic. We used a mixture of literature surveys, oceanographic modeling, and ecological models to predict the risk of plastic ingestion to 186 seabird species globally. Impacts ...

  2. Tropical Tropospheric Ozone and Smoke Interactions: Satellite Observations During the 1997 Indonesian Fires

    Science.gov (United States)

    Thompson, A. M.; Witte, J. C.; Herman, J. R.; Hudson, R. D.; Frolov, A. D.; Kochhar, A. K.; Fujiwara, M.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Biomass burning generates hydrocarbons, nitrogen oxides and carbon monoxide that lead to tropospheric ozone pollution. Other combustion products form soot and various aerosol particles that make up smoke. Since early 1997 smoke and tropospheric ozone have been monitored in real-time from TOMS (Total Ozone Mapping Spectrometer) at toms.gsfc.nasa.gov (smoke aerosol) and metosrv2.umd.edu/-tropo (tropospheric ozone). The striking increase in smoke and tropospheric ozone observed during the 1997 Indonesian fires was the first extreme episode observed. During the August-November period, plumes of excess ozone and smoke coincided at times but were decoupled at other times, a phenomenon followed with trajectories. Thus, trans-boundary evolution of smoke and ozone differed greatly. The second discovery of the 1997 TOMS record was a dynamical interaction of ozone with the strong El Nino Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) that led to a jump in tropospheric ozone in March 1997 over the entire Indian Ocean, well ahead of the intense burning period. A climatology of smoke and tropospheric ozone from a 1980's TOMS instrument shows offsets in the timing of these pollutants - further evidence that factors other than biomass burning exert a strong influence on tropical tropospheric ozone.

  3. Surface ozone measurements using differential absorption lidar

    Science.gov (United States)

    Jain, Sohan L.; Arya, B. C.; Ghude, Sachin D.; Arora, Arun K.; Sinha, Randhir K.

    2005-01-01

    Human activities have been influencing the global atmosphere since the beginning of the industrial era, causing shifts from its natural state. The measurements have shown that tropospheric ozone is increasing gradually due to anthropogenic activities. Surface ozone is a secondary pollutant, its concentration in lower troposphere depends upon its precursors (CO, CH4, non methane hydrocarbons, NOx) as well as weather and transport phenomenon. The surface ozone exceeding the ambient air quality standard is health hazard to human being, animal and vegetation. The regular information of its concentrations on ground levels is needed for setting ambient air quality objectives and understanding photo chemical air pollution in urban areas. A Differential Absorption Lidar (DIAL) using a tunable CO2 laser has been designed and developed at National Physical Laboratory, New Delhi, to monitor water vapour, surface ozone, ammonia, ethylene etc. Some times ethylene and surface ozone was found to be more than 40 ppb and 140 ppb respectively which is a health hazard. Seasonal variation in ozone concentrations shows maximum in the months of summer and autumn and minimum in monsoon and winter months. In present communication salient features of experimental set up and results obtained will be presented in detail.

  4. Impact of increasing heat waves on U.S. ozone episodes in the 2050s: Results from a multimodel analysis using extreme value theory

    Science.gov (United States)

    Shen, L.; Mickley, L. J.; Gilleland, E.

    2016-04-01

    We develop a statistical model using extreme value theory to estimate the 2000-2050 changes in ozone episodes across the United States. We model the relationships between daily maximum temperature (Tmax) and maximum daily 8 h average (MDA8) ozone in May-September over 2003-2012 using a Point Process (PP) model. At ~20% of the sites, a marked decrease in the ozone-temperature slope occurs at high temperatures, defined as ozone suppression. The PP model sometimes fails to capture ozone-Tmax relationships, so we refit the ozone-Tmax slope using logistic regression and a generalized Pareto distribution model. We then apply the resulting hybrid-extreme value theory model to projections of Tmax from an ensemble of downscaled climate models. Assuming constant anthropogenic emissions at the present level, we find an average increase of 2.3 d a-1 in ozone episodes (>75 ppbv) across the United States by the 2050s, with a change of +3-9 d a-1 at many sites.

  5. Analysis of the Impact of Wildfire on Surface Ozone Record in the Colorado Front Range

    Science.gov (United States)

    McClure-Begley, A.; Petropavlovskikh, I. V.; Oltmans, S. J.; Pierce, R. B.; Sullivan, J. T.; Reddy, P. J.

    2015-12-01

    Ozone plays an important role on the oxidation capacity of the atmosphere, and at ground-level has negative impacts on human health and ecosystem processes. In order to understand the dynamics and variability of surface ozone, it is imperative to analyze individual sources, interactions between sources, transport, and chemical processes of ozone production and accumulation. Biomass burning and wildfires have been known to emit a suite of particulate matter and gaseous compounds into the atmosphere. These compounds, such as, volatile organic compounds, carbon monoxide, and nitrogen oxides are precursor species which aid in the photochemical production and destruction of ozone. The Colorado Front Range (CFR) is a region of complex interactions between pollutant sources and meteorological conditions which result in the accumulation of ozone. High ozone events in the CFR associated with fires are analyzed for 2003-2014 to develop understanding of the large scale influence and variability of ozone and wildfire relationships. This study provides analysis of the frequency of enhanced ozone episodes that can be confirmed to be transported within and affected by the fires and smoke plumes. Long-term records of surface ozone data from the CFR provide information on the impact of wildfire pollutants on seasonal and diurnal ozone behavior. Years with increased local fire activity, as well as years with increased long-range transport of smoke plumes, are evaluated for the effect on the long-term record and high ozone frequency of each location. Meteorological data, MODIS Fire detection images, NOAA HYSPLIT Back Trajectory analysis, NOAA Smoke verification model, Fire Tracer Data (K+), RAQMS Model, Carbon Monoxide data, and Aerosol optical depth retrievals are used with NOAA Global Monitoring Division surface ozone data from three sites in Colorado. This allows for investigation of the interactions between pollutants and meteorology which result in high surface ozone levels.

  6. The impact of past and future climate change on global human mortality due to ozone and PM2.5 outdoor air pollution

    Science.gov (United States)

    Silva, R.; West, J.; Anenberg, S.; Lamarque, J.; Shindell, D. T.; Bergmann, D. J.; Berntsen, T.; Cameron-Smith, P. J.; Collins, B.; Ghan, S. J.; Josse, B.; Nagashima, T.; Naik, V.; Plummer, D.; Rodriguez, J. M.; Szopa, S.; Zeng, G.

    2012-12-01

    Climate change can adversely affect air quality, through changes in meteorology, atmospheric chemistry, and emissions. Future changes in air pollutant emissions will also profoundly influence air quality. These changes in air quality can affect human health, as exposure to ground-level ozone and fine particulate matter (PM2.5) has been associated with premature human mortality. Here we will quantify the global mortality impacts of past and future climate change, considering the effects of climate change on air quality isolated from emission changes. The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) has simulated the past and future surface concentrations of ozone and PM2.5 from each of several GCMs, for emissions from 1850 ("preindustrial") to 2000 ("present-day"), and for the IPCC AR5 Representative Concentration Pathways (RCPs) scenarios to 2100. We will use ozone and PM2.5 concentrations from simulations from five or more global models of atmospheric dynamics and chemistry, for a base year (present-day), pre-industrial conditions, and future scenarios, considering changes in climate and emissions. We will assess the mortality impacts of past climate change by using one simulation ensemble with present emissions and climate and one with present emissions but 1850 climate. We will similarly quantify the potential impacts of future climate change under the four RCP scenarios in 2030, 2050 and 2100. All model outputs will be regridded to the same resolution to estimate multi-model medians and range in each grid cell. Resulting premature deaths will be calculated using these medians along with epidemiologically-derived concentration-response functions, and present-day or future projections of population and baseline mortality rates, considering aging and transitioning disease rates over time. The spatial distributions of current and future global premature mortalities due to ozone and PM2.5 outdoor air pollution will be presented separately

  7. Chloroplastic and stomatal aspects of ozone-induced reduction of net photosynthesis in plants

    Energy Technology Data Exchange (ETDEWEB)

    Torsethaugen, Gro

    1998-09-01

    The present thesis relates to ozone-induced reduction of photosynthesis in plants. As a photochemical oxidant O{sub 3} is formed by the interaction of hydrocarbons, nitrogen oxides and oxygen in sunlight. Ozone (O{sub 3}) is the most phytotoxic of all the air pollutants and is known to reduce plant growth and net photosynthesis, cause stomatal closure, induce visible injury, accelerate senescence and induce or inhibit transcription of a variety of genes with a corresponding increase/decrease in protein products. The underlying cellular mechanisms for many of these changes are unknown. Following fields are investigated: Ozone-induced reduction of net photosynthesis; ozone and the photosynthetic apparatus in the chloroplasts; ozone and stomata; ozone effects on plant membranes; protection against ozone injury in plants. 249 refs., 22 figs., 4 tabs.

  8. Vitamin C Compound Mixtures Prevent Ozone-Induced Oxidative Damage in Human Keratinocytes as Initial Assessment of Pollution Protection.

    Directory of Open Access Journals (Sweden)

    Giuseppe Valacchi

    Full Text Available One of the main functions of cutaneous tissues is to protect our body from the outdoor insults. Ozone (O3 is among the most toxic stressors to which we are continuously exposed and because of its critical location, the skin is one of the most susceptible tissues to the oxidative damaging effect of O3. O3 is not able to penetrate the skin, and although it is not a radical per se, the damage is mainly a consequence of its ability to induce oxidative stress via the formation of lipid peroxidation products.In this study we investigated the protective effect of defined "antioxidant" mixtures against O3 induced oxidative stress damage in human keratinocytes and understand their underlying mechanism of action.Results showed that the mixtures tested were able to protect human keratinocytes from O3-induced cytotoxicity, inhibition of cellular proliferation, decrease the formation of HNE protein adducts, ROS, and carbonyls levels. Furthermore, we have observed the decreased activation of the redox sensitive transcription factor NF-kB, which is involved in transcribing pro-inflammatory cytokines and therefore constitutes one of the main players associated with O3 induced skin inflammation. Cells exposed to O3 demonstrated a dose dependent increase in p65 subunit nuclear expression as a marker of NF-kB activation, while pre-treatment with the mixtures abolished NF-kB nuclear translocation. In addition, a significant activation of Nrf2 in keratinocytes treated with the mixtures was also observed.Overall this study was able to demonstrate a protective effect of the tested compounds versus O3-induced cell damage in human keratinocytes. Pre-treatment with the tested compounds significantly reduced the oxidative damage induced by O3 exposure and this protective effect was correlated to the abolishment of NF-kB nuclear translocation, as well as activation of Nrf2 nuclear translocation activating the downstream defence enzymes involved in cellular detoxification

  9. Study on Ozone Oxidation Technique for the Treatment of Oil-Polluted Ground Water%受石油污染地下水的臭氧处理技术研究

    Institute of Scientific and Technical Information of China (English)

    于勇; 谢天强; 蔺延项; 鲍万民

    2001-01-01

    Ozone oxidation technique can be used for ground water with high oil content. Tests show that ozone hasan obviouse effect on the removal of pollutants, such as benzene substances, fused ring compounds, etc, the optimumamount of addition for ozone oxidation should be 7 mg/L and the contacting time of ozone oxidation should be 2 days.%对含石油量高的地下水,可采用臭氧氧化技术。试验表明,臭氧对于苯系物及稠环化合物等污染物的去除效果明显,臭氧氧化最佳投加量以7 mg/L为宜,臭氧化接触时间以2d为宜。

  10. The effects of increasing atmospheric ozone on biogenic monoterpene profiles and the formation of secondary aerosols

    Science.gov (United States)

    Pinto, Delia M.; Tiiva, Päivi; Miettinen, Pasi; Joutsensaari, Jorma; Kokkola, Harri; Nerg, Anne-Marja; Laaksonen, Ari; Holopainen, Jarmo K.

    Monoterpenes are biogenic volatile organic compounds (BVOCs) which play an important role in plant adaptation to stresses, atmospheric chemistry, plant-plant and plant-insect interactions. In this study, we determined whether ozonolysis can influence the monoterpenes in the headspace of cabbage. The monoterpenes were mixed with an air-flow enriched with 100, 200 or 400 ppbv of ozone (O 3) in a Teflon chamber. The changes in the monoterpene and O 3 concentrations, and the formation of secondary organic aerosols (SOA) were determined during ozonolysis. Furthermore, the monoterpene reactions with O 3 and OH were modelled using reaction kinetics equations. The results showed that all of the monoterpenes were unequally affected: α-thujene, sabinene and D-limonene were affected to the greatest extend, whereas the 1,8-cineole concentration did not change. In addition, plant monoterpene emissions reduced the O 3 concentration by 12-24%. The SOA formation was dependent on O 3 concentration. At 100 ppbv of O 3, virtually no new particles were formed but clear SOA formation was observed at the higher ozone concentrations. The modelled results showed rather good agreements for α-pinene and 1,8-cineole, whereas the measured concentrations were clearly lower compared to modelled values for sabinene and limonene. In summary, O 3-quenching by monoterpenes occurs beyond the boundary layer of leaves and results in a decreased O 3 concentration, altered monoterpene profiles and SOA formation.

  11. 华北平原夜间对流天气对地面 O3混合比抬升效应%Increased Mixing Ratio of Surface Ozone by Nighttime Convection Process over the North China Plain

    Institute of Scientific and Technical Information of China (English)

    贾诗卉; 徐晓斌; 林伟立; 王瑛; 何心河; 张华龙

    2015-01-01

    Surface ozone and other reactive gases are observed at Gucheng (39°08′57″N ,115°44′02″E)in Hebei Province of China from June to September in 2013.There are 10 cases with rapid increases of the mixing ratio of surface ozone,and sharp decreases of the mixing ratios of nitric oxides and carbon monoxide when convection processes occurs at night.The mixing ratio of surface ozone mostly increases from less than 30×10 -9 to 60×10 -9 -80×10 -9 within less than 1 hour and stays at a higher level during the night and the next morning than that on undisturbed days.Such phenomenon cannot be explained by photochemical production.The increase rate of surface ozone level is not correlated with wind speed.Therefore,the change in ozone cannot be attributed to horizontal transport of polluted airmass. To understand the phenomenon,meteorological data from Gucheng and from ECMWF reanalysis are analyzed.Surface pseudo-equivalent potential temperature (θse )for each case is calculated from the simul-taneously measured meteorological data.In all nighttime cases of convection process,the surfaceθse values decrease dramatically within a short time,coinciding with the steep increases of the ozone level and the wind speed.This suggests that the mixing ratio of surface ozone is enhanced by descending air from aloft. The convective process occurs in the warm area ahead of the front in most cases except for once near the cold front.These clearly indicate that convective downdrafts transport air with higher ozone and lowerθse from upper atmosphere to the surface layer.With the vertical profiles ofθse values calculated from ECMWF reanalysis data,levels of origins of downdrafts are estimated as from around 500-800 hPa.Vertical pro-files of ozone observed using an unmanned aircraft near the station show that ozone mixing ratio over the boundary layer at dusk is higher than 60×10 -9 ,supporting the view that the increased mixing ratio of sur-face ozone during and after the

  12. Surface ozone pollution in Poland - observations and modelling support for a two-year assessment 2012-2013

    Science.gov (United States)

    Struzewska, Joanna; Kaminski, Jacek W.; Durka, Pawel

    2015-04-01

    The concentrations of near-surface ozone in terms of long term objectives and target values are exceeded at many monitoring sites in Poland. At the request of the Chief Inspectorate of Environmental Protection, an assessment of ozone impact on human health and ecosystems in Poland was undertaken, based on the GEM-AQ model calculations for the period 2012-2013. GEM-AQ (Kaminski et al., 2008) is a comprehensive chemical weather model where air quality processes (chemistry and aerosols) are implemented on-line in the operational weather prediction model developed at Environment Canada (Cote et al., 1998). For this project the model was run in a self-nesting mode with the target grid centered over Poland with the resolution of 5 km. The EMEP emission inventory was refined based on GIS information. Modelling results were evaluated against ozone and NO2 measurements from available monitoring stations in Poland using the DeltaTool developed in the scope of FAIRMODE. We will present exposure levels to high ozone concentrations in terms of number of days with exceeded target values as well as indices AOT40 and SOMO35. Differences between exposure diagnostics in 2012 and 2013 will be discussed.

  13. Effect of ozone on respiratory responses in subjects with asthma

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, J.Q. [Univ. of Washington, Seattle, WA (United States)

    1995-03-01

    In the process of understanding the respiratory effects of individual air pollutants, it is useful to consider which populations seem to be most susceptible to the exposures. Ozone is the most ubiquitous air pollutant in the United States, and there is great interest in the extent of susceptibility to this air pollutant. This review presents evidence that individuals with asthma are more susceptible to adverse respiratory effects from ozone exposure than are nonasthmatic individuals under similar circumstances. In studies comparing patients with asthma to nonasthmatic subjects, research has shown increased pulmonary-function decrements, an increased frequency of bronchial hyperresponsiveness in ozone responders, increased signs of upper airway inflammation after ozone exposure, and an increased response to inhaled sulfur dioxide or allergen in the subjects with asthma. Subjects with asthma are indeed a population susceptible to the inhaled effects of ozone. These data need to be considered by regulators who are charged with setting air quality standards to protect even the most susceptible members of the population. They also underline the importance of strategies to reduce human exposure to ambient ozone. 16 refs., 1 fig.

  14. The impact of tropospheric ozone pollution on trial plot winter wheat yields in Great Britain - an econometric approach.

    Science.gov (United States)

    Kaliakatsou, Evridiki; Bell, J Nigel B; Thirtle, Colin; Rose, Daniel; Power, Sally A

    2010-05-01

    Numerous experiments have demonstrated reductions in the yields of cereal crops due to tropospheric O(3), with losses of up to 25%. However, the only British econometric study on O(3) impacts on winter wheat yields, found that a 10% increase in AOT40 would decrease yields by only 0.23%. An attempt is made here to reconcile these observations by developing AOT40 maps for Great Britain and matching levels with a large number of standardised trial plot wheat yields from many sites over a 13-year period. Panel estimates (repeated measures on the same plots with time) show a 0.54% decrease in yields and it is hypothesised that plant breeders may have inadvertently selected for O(3) tolerance in wheat. Some support for this is provided by fumigations of cultivars of differing introduction dates. A case is made for the use of econometric as well as experimental studies in prediction of air pollution induced crop loss.

  15. Air pollution problem in the Mexico City metropolitan zone: Photochemical pollution

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, H.B.; Alvarez, P.S.; Echeverria, R.S.; Jardon, R.T. [Centro de Ciencias de la Atmosfera (Mexico). Seccion de Contaminacion Ambiental

    1997-12-31

    Mexico City Metropolitan Zone (MCMZ) represents an example of a megacity where the air pollution problem has reached an important evolution in a very short time, causing a risk in the health of a population of more than 20 million inhabitants. The atmospheric pollution problem in the MCMZ, began several decades ago, but it increased drastically in the middle of the 80`s. It is important to recognize that in the 60`s, 70`s and the first half of the 80`s the main pollutants were sulfur dioxide and total suspended particles. However since the second half of the 80`s until now, ozone is the most important air pollutant besides of the suspended particles (PM{sub 10}) and other toxic pollutants (1--8). The purpose of this paper is to discuss the evolution of the ozone atmospheric pollution problem in the MCMZ, as well as to analyze the results of several implemented air pollution control strategies.

  16. Products of Ozone-Initiated Chemistry in a Simulated Aircraft Environment

    DEFF Research Database (Denmark)

    Wisthaler, Armin; Tamás, Gyöngyi; Wyon, David P.

    2005-01-01

    ), cabin plus ozone, cabin plus soiled T-shirts (surrogates for human occupants), and cabin plus soiled T-shirts plus ozone. The addition of ozone to the cabin without T-shirts, at concentrations typically encountered during commercial air travel, increased the mixing ratio (v:v concentration) of detected......We used proton-transfer-reaction mass spectrometry (PTR-MS) to examine the products formed when ozone reacted with the materials in a simulated aircraft cabin, including a loaded high-efficiency particulate air (HEPA) filter in the return air system. Four conditions were examined: cabin (baseline...... pollutants from 35 ppb to 80 ppb. Most of this increase was due to the production of saturated and unsaturated aldehydes and tentatively identified low-molecular-weight carboxylic acids. The addition of soiled T-shirts, with no ozone present, increased the mixing ratio of pollutants in the cabin air only...

  17. Ozone risk for crops and pastures in present and future climates

    Science.gov (United States)

    Fuhrer, Jürg

    2009-02-01

    Ozone is the most important regional-scale air pollutant causing risks for vegetation and human health in many parts of the world. Ozone impacts on yield and quality of crops and pastures depend on precursor emissions, atmospheric transport and leaf uptake and on the plant’s biochemical defence capacity, all of which are influenced by changing climatic conditions, increasing atmospheric CO2 and altered emission patterns. In this article, recent findings about ozone effects under current conditions and trends in regional ozone levels and in climatic factors affecting the plant’s sensitivity to ozone are reviewed in order to assess implications of these developments for future regional ozone risks. Based on pessimistic IPCC emission scenarios for many cropland regions elevated mean ozone levels in surface air are projected for 2050 and beyond as a result of both increasing emissions and positive effects of climate change on ozone formation and higher cumulative ozone exposure during an extended growing season resulting from increasing length and frequency of ozone episodes. At the same time, crop sensitivity may decline in areas where warming is accompanied by drying, such as southern and central Europe, in contrast to areas at higher latitudes where rapid warming is projected to occur in the absence of declining air and soil moisture. In regions with rapid industrialisation and population growth and with little regulatory action, ozone risks are projected to increase most dramatically, thus causing negative impacts major staple crops such as rice and wheat and, consequently, on food security. Crop improvement may be a way to increase crop cross-tolerance to co-occurring stresses from heat, drought and ozone. However, the review reveals that besides uncertainties in climate projections, parameters in models for ozone risk assessment are also uncertain and model improvements are necessary to better define specific targets for crop improvements, to identify regions

  18. Association of ozone and particulate air pollution with out-of-hospital cardiac arrest in Helsinki, Finland: evidence for two different etiologies.

    Science.gov (United States)

    Rosenthal, Frank S; Kuisma, Markku; Lanki, Timo; Hussein, Tareq; Boyd, James; Halonen, Jaana I; Pekkanen, Juha

    2013-01-01

    Out-of-hospital cardiac arrest (OHCA) has been previously associated with exposure to particulate air pollution. However, there is uncertainty about the agents and mechanisms that are involved. We aimed to determine the association of gases and particulates with OHCA, and differences in pollutant effects on OHCAs due to acute myocardial infarction (AMI) vs those due to other causes. Helsinki Emergency Medical Services provided data on OHCAs of cardiac origin (OHCA_Cardiac). Hospital and autopsy reports determined whether OHCAs were due to AMI (OHCA_MI) or other cardiac causes (OHCA_Other). Pollutant data was obtained from central ambient monitors. A case-crossover analysis determined odds ratios (ORs) for hourly lagged exposures (Lag 0-3) and daily lagged exposures (Lag 0d-3d), expressed per interquartile range of pollutant level. For OHCA_Cardiac, elevated ORs were found for PM(2.5) (Lag 0, 1.07; 95% confidence interval (CI): 1.01-1.13) and ozone (O(3)) (Lag 2d, 1.18; CI: 1.03-1.35). For OHCA_MI, elevated ORs were found for PM(2.5) (Lag 0, 1.14; CI: 1.03-1.27; Lag 0d, 1.17; CI: 1.03-1.33), accumulation mode particulate (Acc) (Lag 0d, 1.19; CI: 1.04-1.35), NO (Lag 0d, 1.07; CI: 1.01-1.13), and ultrafine particulate (Lag 0d, 1.27; CI: 1.05-1.54). For OHCA_Other, elevated ORs were found only for O(3) (Lag 1d, 1.26; CI: 1.07-1.48; Lag 2d, 1.30; CI: 1.11-1.53). Results from two-pollutant models, with one of the pollutants either PM(2.5) or O(3), suggested that associations were primarily due to effects of PM(2.5) and O(3), rather than other pollutants. The results suggest that air pollution triggers OHCA via two distinct modes: one associated with particulates leading to AMI and one associated with O(3) involving etiologies other than AMI, for example, arrhythmias or respiratory insufficiency.

  19. Removal of dimethyl phthalate from water by ozone microbubbles.

    Science.gov (United States)

    Jabesa, Abdisa; Ghosh, Pallab

    2016-10-27

    This work investigates the removal of dimethyl phthalate (DMP) from water using ozone microbubbles in a pilot plant of 20 dm(3) capacity. Experiments were performed under various reaction conditions to examine the effects of the initial concentration of DMP, pH of the medium, ozone generation rate, and the role of H2O2 on the removal of DMP. The DMP present in water was effectively removed by the ozone microbubbles. The removal was effective in neutral and alkaline media. Increase in the initial concentration of the target pollutant negatively affected its removal efficiency. The removal efficiency dramatically increased from 1% to 99% when the ozone generation rate was increased from 0.28 to 1.94 mg s(-1) at pH 7. The total organic carbon measurements revealed that a complete mineralization of DMP was achieved within 1.8 ks at the high ozone feed rate. The use of t-butyl alcohol as the hydroxyl radical scavenger confirmed that the reaction between the target organic compound and ·OH radical dominated over its direct reaction with ozone. The reaction between DMP and ozone followed an overall second-order kinetics. The volumetric mass transfer coefficient of ozone in the reacting system and the enhancement factor increased with increasing initial concentration of DMP. Very low values of Hatta number were obtained at all initial concentrations of DMP and pH, which show that the mass transfer resistance was small.

  20. Impacts of stratospheric sulfate geoengineering on tropospheric ozone

    Directory of Open Access Journals (Sweden)

    L. Xia

    2017-10-01

    Full Text Available A range of solar radiation management (SRM techniques has been proposed to counter anthropogenic climate change. Here, we examine the potential effects of stratospheric sulfate aerosols and solar insolation reduction on tropospheric ozone and ozone at Earth's surface. Ozone is a key air pollutant, which can produce respiratory diseases and crop damage. Using a version of the Community Earth System Model from the National Center for Atmospheric Research that includes comprehensive tropospheric and stratospheric chemistry, we model both stratospheric sulfur injection and solar irradiance reduction schemes, with the aim of achieving equal levels of surface cooling relative to the Representative Concentration Pathway 6.0 scenario. This allows us to compare the impacts of sulfate aerosols and solar dimming on atmospheric ozone concentrations. Despite nearly identical global mean surface temperatures for the two SRM approaches, solar insolation reduction increases global average surface ozone concentrations, while sulfate injection decreases it. A fundamental difference between the two geoengineering schemes is the importance of heterogeneous reactions in the photochemical ozone balance with larger stratospheric sulfate abundance, resulting in increased ozone depletion in mid- and high latitudes. This reduces the net transport of stratospheric ozone into the troposphere and thus is a key driver of the overall decrease in surface ozone. At the same time, the change in stratospheric ozone alters the tropospheric photochemical environment due to enhanced ultraviolet radiation. A shared factor among both SRM scenarios is decreased chemical ozone loss due to reduced tropospheric humidity. Under insolation reduction, this is the dominant factor giving rise to the global surface ozone increase. Regionally, both surface ozone increases and decreases are found for both scenarios; that is, SRM would affect regions of the world differently in terms of air

  1. Ozonation for degradation of pharmaceutical in hospital wastewater

    DEFF Research Database (Denmark)

    Bester, Kai; Hansen, Kamilla S; Spiliotopoulou, Aikaterini

    There is an increasing concern about hospital wastewater as a point source of chemical pollution to municipal wastewater. Thus in Denmark a project with focus ion cleaning point source at hospitals was established. Pilot scale Moving-Bed-Biofilm-Reactors (MBBR) in stages were used to treat...... wastewater from a hospital followed by ozonation. As the treatment was close to the source, a high variety in the quality of the wastewater was observed (e.g. change in pH and dissolved organic carbon). High DOC results in relative high ozone doses needed to remove non-biodegradable micro......-pollutants (Antoniou et al., 2013). In the present work, ozonation of biological treated hospital wastewater spiked with pharmaceuticals were performed to determine the required ozone dose for 90 % removal of the investigated pharmaceuticals. Effluents with different DOC level were used to investigate the effect...

  2. Human Health and Economic Impacts of Ozone Reductions by Income Group.

    Science.gov (United States)

    Saari, Rebecca K; Thompson, Tammy M; Selin, Noelle E

    2017-02-21

    Low-income households may be disproportionately affected by ozone pollution and ozone policy. We quantify how three factors affect the relative benefits of ozone policies with household income: (1) unequal ozone reductions; (2) policy delay; and (3) economic valuation methods. We model ozone concentrations under baseline and policy conditions across the full continental United States to estimate the distribution of ozone-related health impacts across nine income groups. We enhance an economic model to include these impacts across household income categories, and present its first application to evaluate the benefits of ozone reductions for low-income households. We find that mortality incidence rates decrease with increasing income. Modeled ozone levels yield a median of 11 deaths per 100 000 people in 2005. Proposed policy reduces these rates by 13%. Ozone reductions are highest among low-income households, which increases their relative welfare gains by up to 4% and decreases them for the rich by up to 8%. The median value of reductions in 2015 is either $30 billion (in 2006 U.S. dollars) or $1 billion if reduced mortality risks are valued with willingness-to-pay or as income from increased life expectancy. Ozone reductions were relatively twice as beneficial for the lowest- compared to the highest-income households. The valuation approach affected benefits more than a policy delay or differential ozone reductions with income.

  3. Decomposition of 2-mercaptothiazoline in aqueous solution by ozonation.

    Science.gov (United States)

    Chen, Y H; Chang, C Y; Chen, C C; Chiu, C Y; Yu, Y H; Chiang, P C; Ku, Y; Chen, J N; Chang, C F

    2004-07-01

    This study investigates the ozonation of 2-mercaptothiazoline (2-MT). The 2-MT is one of the important organic additives for the electroplating solution of the printed wiring board industry and has been widely used as a corrosion inhibitor in many industrial processes. It is of concern for the aquatic pollution control especially in the wastewaters. Semibatch ozonation experiments in the completely stirred tank reactor are performed under various concentrations of input ozone. The concentrations of 2-MT, sulfate, and ammonium are analyzed at specified time intervals to elucidate the decomposition of 2-MT during the ozonation. In addition, the time variation of the dissolved ozone concentration (C(ALb)) is continuously monitored in the course of experiments. Total organic carbon (TOC) is chosen and measured as a mineralization index of the ozonation of 2-MT. The results indicate that the decomposition of 2-MT is efficient, while the mineralization of TOC is limited via the ozonation only. Simultaneously, the yield of sulfate with the maximum value of about 47% is characterized by the increases of TOC removal and ozone consumption. These results can provide some useful information for assessing the feasibility of the treatment of 2-MT in the aqueous solution by the ozonation.

  4. Progress in Assessing Air Pollutant Risks from In Vitro Exposures: Matching Ozone Dose and Effect in Human Air Way Cells

    Science.gov (United States)

    In vitro exposures to air pollutants could, in theory, facilitate a rapid and detailed assessment of molecular mechanisms of toxicity. However, it is difficult to ensure that the dose of a gaseous pollutant to cells in tissue culture is similar to that of the same cells during in...

  5. Evaluation of ozone profile and tropospheric ozone retrievals from GEMS and OMI spectra

    Directory of Open Access Journals (Sweden)

    J. Bak

    2012-09-01

    Full Text Available Korea is planning to launch the GEMS (Geostationary Environment Monitoring Spectrometer instrument into a Geostationary (GEO platform in 2018 to monitor tropospheric air pollutants on an hourly basis over East Asia. GEMS will measure backscattered UV radiances covering the 300–500 nm wavelength range with a spectral resolution of 0.6 nm. The main objective of this study is to evaluate ozone profiles and stratospheric column ozone amounts retrieved from simulated GEMS measurements. Ozone Monitoring Instrument (OMI Level 1B radiances, which have the spectral range 270–500 nm at spectral resolution of 0.42–0.63 nm, are used to simulate the GEMS radiances. An optimal estimation-based ozone profile algorithm is used to retrieve ozone profiles from simulated GEMS radiances. Firstly, we compare the retrieval characteristics (including averaging kernels, degrees of freedom for signal, and retrieval error derived from the 270–330 nm (OMI and 300–330 nm (GEMS wavelength ranges. This comparison shows that the effect of not using measurements below 300 nm on tropospheric ozone retrievals is insignificant. However, the stratospheric ozone information decreases greatly from OMI to GEMS, by a factor of ∼2. The number of the independent pieces of information available from GEMS measurements is estimated to 3 on average in the stratosphere, with associated retrieval errors of ∼1% in stratospheric column ozone. The difference between OMI and GEMS retrieval characteristics is apparent for retrieving ozone layers above ∼20 km, with a reduction in the sensitivity and an increase in the retrieval errors for GEMS. We further investigate whether GEMS can resolve the stratospheric ozone variation observed from high vertical resolution EOS Microwave Limb Sounder (MLS. The differences in stratospheric ozone profiles between GEMS and MLS are comparable to those between OMI and MLS above ∼3 hPa (∼40 km except with slightly larger biases and larger

  6. Four years of ozone measurements in the Central Amazon - Effects of increasing deforestation rates and different meteorological conditions on near surface concentrations

    Science.gov (United States)

    Wolff, Stefan; Tsokankunku, Anywhere; Pöhlker, Christopher; Saturno, Jorge; Walter, David; Ditas, Florian; Könemann, Tobias; Ganzeveld, Laurens; Yañez-Serrano, Ana Maria; Souza, Rodrigo; Trebs, Ivonne; Sörgel, Matthias

    2017-04-01

    The ATTO (Amazon Tall Tower Observatory) site (02°08'38.8''S, 58°59'59.5''W) is located in the remote Amazon rainforest, allowing atmospheric and forest studies away from nearby anthropogenic emission sources. Starting with continuous measurements of vertical mixing ratio profiles of H2O, CO2 and O3 in April 2012 at 8 heights between 0.05 m and 80 m above ground, the longest continuous record of near surface O3 in the Amazon rainforest was established. Black carbon (BC), CO and micrometeorological measurements are available for the same period. During intensive campaigns, NOx was measured as well using the same profile system, and, therefore several month of simultaneous NOx measurements are available. During a period of about four months also direct flux measurements of O3 are available. Here, we analyze the long term and seasonal variability of near surface O3 mixing ratios with respect to air pollution, deposition and transport. The Central Amazon is characterized by a clear seasonal precipitation pattern (ca. 350 mm around March and ca. 80 mm around September), correlating strongly with ozone mixing ratios. Since 2012 deforestation rates have increased again in the Amazon, leading to higher air pollution especially during the drier season in the last years. For several strong pollution events we compared the effects of long and short distance biomass burning on O3 and NOx mixing ratios using back trajectories and satellite data. By comparing O3 mixing ratios with solar radiation, Bowen ratio, several trace gases and aerosol loads (Volatile Organic Compounds, CO and BC), different correlation patterns throughout the year that are linked to the sources (transport of O3 and precursors) and sinks (stomatal uptake and chemical reactions) are investigated. For example, the last months of 2015 were strongly influenced by an extraordinary El Niño phenomenon, leading to much drier conditions and enhanced biomass burning in the Amazon, which prolonged the period of

  7. Chemical control of ozone damage on watermelon

    Energy Technology Data Exchange (ETDEWEB)

    Fieldhouse, D.J.

    1978-01-01

    Foliar air pollution damage resulting from ambient ozone was essentially eliminated on watermelon, Citrullus lanatus, with the use of N-(2-(2-oxo-1-imidazolidinyl)ethyl)-N'-phenylurea applied as a combination of soil and foliar applications. Use of this experimental plant protectant resulted in higher yields with Sugar Baby watermelon due to increased melon size and an increase in the number of marketable melons. Sugar content was also significantly increased.

  8. Review of Photochemical Smog Pollution in Jakarta Metropolitan, Indonesia

    Directory of Open Access Journals (Sweden)

    Dollaris R. Suhadi

    2005-01-01

    Full Text Available An analysis of photochemical smog pollution in Jakarta was attempted using data from the existing air quality monitoring stations. Ground-level ozone potential is high in Jakarta due to the high traffic emissions of ozone precursors and the favorable surface meteorological conditions. Despite the frequent missing data during the 1996-1999 monitoring, which resulted in lower ozone values, ozone episodes were significantly recorded in 1997-1998. The number of hours on which ozone concentrations exceed the 1-hour standard (100 ppb at an ambient station located in Kelapa Gading (10 km northeast of city center was 186 hrs in 1997 and 571 hrs in 1998. El Ni±o phenomenon in 1997-1998 had affected the local meteorology leading to more favorable conditions for photochemical production of ozone. The annual ozone averages in ambient stations located off the city center have exceeded the 1-year standard limit (15 ppb. Although the annual average and 95-percentile values indicated an increasing trend from 1996 to 1998, the trend remains to be seen in the future as more complete data could be expected from the new monitoring system. The number of hours on which ozone exceed the 1-hour standard and the annual average tend to be increasing since 2001 to 2002 in all 3 newly operated stations. The seasonal variations of ozone indicate that ozone level is highest in the dry season (September-November and is lowest in the wet season (December-March. Correlation between ozone level and meteorological attributes (solar radiation, relative humidity and temperature was significant at 0.01 confidence level. The diurnal cycle of ozone and its precursors is clearly shown and is typical for polluted urban areas. Improvement of the database of air quality monitoring is very critical for Jakarta. Through better database management, the development and monitoring of cost-effective air pollution control strategy can be made.

  9. The BIOZO process--a biofilm system combined with ozonation: occurrence of xenobiotic organic micro-pollutants in and removal of polycyclic aromatic hydrocarbons and nitrogen from landfill leachate.

    Science.gov (United States)

    Plósz, Benedek G Y; Vogelsang, Christian; Macrae, Kenneth; Heiaas, Harald H; Lopez, Antonio; Liltved, Helge; Langford, Katherine H

    2010-01-01

    We present an assessment of xenobiotic organic micro-pollutants (XOM) occurrence and removal of polycyclic aromatic hydrocarbons (PAHs) in a novel biofilm system combined with ozonation, the BIOZO concept, treating partly stabilised landfill leachate. A novel, staged moving-bed biofilm reactor (SMBBR) design was implemented in laboratory- and pilot-scale, and the PAHs removal efficiency of controlled ozonation was assessed installing the ozonation step in the nitrate recirculation line (Position 1) or between the pre-anoxic and aerobic zones (Position 2). COD removal in a laboratory- and in a pilot-scale SMBBR system with and without ozonation is additionally addressed. Results obtained in a screening study (GC-ToF-MS) were used to compile a priority list of XOMs in leachate based on relative occurrence, showing PAHs as the predominant fraction. Biological treatment is shown to be an effective means to remove PAHs detected in the aqueous phase. PAH removal takes in most part place in the pre-anoxic zone, thereby decreasing toxicity exhibited by PAH on autotrophic nitrifier bacteria in the aerobic zone. Ozonation installed in Position 2 is shown to be superior over Position I in terms of COD, PAH and nitrogen removal efficiencies. We additionally demonstrate the potential of intermittent sludge ozonation as a means to decrease PAH concentrations in sludge wasted and to improve nitrogen removal in the BIOZO system.

  10. Ozone-induced increases in substance P and 8-epi-prostaglandin F2 alpha in the airways of human subjects

    Energy Technology Data Exchange (ETDEWEB)

    Hazbun, M.E.; Hamilton, R.; Holian, A.; Eschenbacher, W.L. (Baylor College of Medicine, Houston, TX (United States))

    1993-11-01

    We are interested in the mechanisms of ozone-induced lung effects after short-term exposure and the relationship with subsequent pulmonary inflammation and disease. Our hypothesis is that ozone, as a powerful oxidant, will diminish the activity of neutral endopeptidase (NEP) in the airways of humans with resulting increased concentrations of neuropeptides such as substance P (SP). We have exposed seven (two women, five men) healthy, nonsmoking individuals (22 to 30 yr of age) to filtered air and ozone (0.25 ppm) for 1 h in an environmental chamber during heavy exercise. Bronchoscopy with airway lavage (AL) and bronchoalveolar lavage (BAL) was performed immediately after ozone exposure. The lavage samples were analyzed by enzyme immunoassay for SP and 8-epi-prostaglandin F2 alpha (8-epi-PGF2 alpha) (a marker for oxidative free radical reaction) and by radioimmunoassay for complement fragments. FEV1 had declined 12.4 +/- 1.9% (mean +/- SEM) as a result of ozone exposure. The AL concentration for SP and 8-epi-PGF2 alpha and BAL concentration of C3a after ozone exposure were significantly higher than after the filtered air exposure (P < 0.05). There was a significant correlation between SP and 8-epi-PGF2 alpha concentrations in the AL fluid (r2 = 0.89 and P < 0.05). There were no changes in C5a in either compartment or any of the mediators in the plasma samples. These results extend previous results from animal studies suggesting that ozone's mechanism of action is through an oxidative reaction resulting in a decreased activity of NEP in the airways with a subsequent increase in the concentration and activity of SP.

  11. Biomonitoring of ozone: a tool to initiate the young people into the scientific method and air pollution impacts

    Energy Technology Data Exchange (ETDEWEB)

    Castell, J.F. [INA PG /INRA - Unite Environnement et Grandes Cultures, Thiverval Grignon (France); Maronnier, D. [ALOISE, Les Mureaux (France). Site de l' Oseraie

    2002-07-01

    An operation of air quality biomonitoring is proposed collectively by an agricultural research centre (INRA) and an association of scientific leisure activities (ALOISE) in the region of Paris. The operation consists in realizing a map of ozone impacts on tobacco Bel-W3 plants using observations made by school pupils. The main objectives are to introduce the young people to the scientific method by an experimental approach, to incite them to work on the air quality problems, and to allow them to meet researchers. The first educational results are encouraging. However, the standardization of the observations should be improved to allow the realization of reliable maps. (orig.)

  12. Ozone concentrations and damage for realistic future European climate and air quality scenarios

    Science.gov (United States)

    Hendriks, Carlijn; Forsell, Nicklas; Kiesewetter, Gregor; Schaap, Martijn; Schöpp, Wolfgang

    2016-11-01

    Ground level ozone poses a significant threat to human health from air pollution in the European Union. While anthropogenic emissions of precursor substances (NOx, NMVOC, CH4) are regulated by EU air quality legislation and will decrease further in the future, the emissions of biogenic NMVOC (mainly isoprene) may increase significantly in the coming decades if short-rotation coppice plantations are expanded strongly to meet the increased biofuel demand resulting from the EU decarbonisation targets. This study investigates the competing effects of anticipated trends in land use change, anthropogenic ozone precursor emissions and climate change on European ground level ozone concentrations and related health and environmental impacts until 2050. The work is based on a consistent set of energy consumption scenarios that underlie current EU climate and air quality policy proposals: a current legislation case, and an ambitious decarbonisation case. The Greenhouse Gas-Air Pollution Interactions and Synergies (GAINS) integrated assessment model was used to calculate air pollutant emissions for these scenarios, while land use change because of bioenergy demand was calculated by the Global Biosphere Model (GLOBIOM). These datasets were fed into the chemistry transport model LOTOS-EUROS to calculate the impact on ground level ozone concentrations. Health damage because of high ground level ozone concentrations is projected to decline significantly towards 2030 and 2050 under current climate conditions for both energy scenarios. Damage to plants is also expected to decrease but to a smaller extent. The projected change in anthropogenic ozone precursor emissions is found to have a larger impact on ozone damage than land use change. The increasing effect of a warming climate (+2-5 °C across Europe in summer) on ozone concentrations and associated health damage, however, might be higher than the reduction achieved by cutting back European ozone precursor emissions. Global

  13. Air Pollution: Current and Future Challenges

    Science.gov (United States)

    Despite the dramatic progress to date, air pollution continues to threaten Americans’ health and welfare. The main obstacles are climate change, conventional air pollution, and ozone layer depletion.

  14. Analysis of ozone and nitric acid in spring and summer Arctic pollution using aircraft, ground-based, satellite observations and MOZART-4 model: source attribution and partitioning

    Directory of Open Access Journals (Sweden)

    C. Wespes

    2012-01-01

    Full Text Available In this paper, we analyze tropospheric O3 together with HNO3 during the POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport program, combining observations and model results. Aircraft observations from the NASA ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites and NOAA ARCPAC (Aerosol, Radiation and Cloud Processes affecting Arctic Climate campaigns during spring and summer of 2008 are used together with the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4 to assist in the interpretation of the observations in terms of the source attribution and transport of O3 and HNO3 into the Arctic (north of 60° N. The MOZART-4 simulations reproduce the aircraft observations generally well (within 15%, but some discrepancies in the model are identified and discussed. The observed correlation of O3 with HNO3 is exploited to evaluate the MOZART-4 model performance for different air mass types (fresh plumes, free troposphere and stratospheric-contaminated air masses.

    Based on model simulations of O3 and HNO3 tagged by source type and region, we find that the anthropogenic pollution from the Northern Hemisphere is the dominant source of O3 and HNO3 in the Arctic at pressures greater than 400 hPa, and that the stratospheric influence is the principal contribution at pressures less 400 hPa. During the summer, intense Russian fire emissions contribute some amount to the tropospheric columns of both gases over the American sector of the Arctic. North American fire emissions (California and Canada also show an important impact on tropospheric ozone in the Arctic boundary layer.

    Additional analysis of tropospheric O3 measurements from ground-based FTIR and from the IASI satellite sounder made

  15. Transportation, Air Pollution, and Climate Change

    Science.gov (United States)

    ... Share Facebook Twitter Google+ Pinterest Contact Us Transportation, Air Pollution, and Climate Change Accomplishments & Successes View successes from ... reduce carbon pollution. Carbon pollution from transportation Other Air Pollution Learn about smog, soot, ozone, and other air ...

  16. Increased chromatin fragmentation and reduced acrosome integrity in spermatozoa of red deer from lead polluted sites.

    Science.gov (United States)

    Castellanos, Pilar; del Olmo, Enrique; Fernández-Santos, M Rocío; Rodríguez-Estival, Jaime; Garde, J Julián; Mateo, Rafael

    2015-02-01

    Vertebrates are constantly exposed to a diffuse pollution of heavy metals existing in the environment, but in some cases, the proximity to emission sources like mining activity increases the risk of developing adverse effects of these pollutants. Here we have studied lead (Pb) levels in spermatozoa and testis, and chromatin damage and levels of endogenous antioxidant activity in spermatozoa of red deer (Cervus elaphus) from a Pb mining area (n=37) and a control area (n=26). Deer from the Pb-polluted area showed higher Pb levels in testis parenchyma, epididymal cauda and spermatozoa, lower values of acrosome integrity, higher activity of glutathione peroxidase (GPx) and higher values of DNA fragmentation (X-DFI) and stainability (HDS) in sperm than in the control area. These results indicate that mining pollution can produce damage on chromatin and membrane spermatozoa in wildlife. The study of chromatin fragmentation has not been studied before in spermatozoa of wildlife species, and the sperm chromatin structure assay (SCSA) has been revealed as a successful tool for this purpose in species in which the amount of sperm that can be collected is very limited.

  17. Pollution and Climate Change

    Science.gov (United States)

    Larr, Allison S.; Neidell, Matthew

    2016-01-01

    Childhood is a particularly sensitive time when it comes to pollution exposure. Allison Larr and Matthew Neidell focus on two atmospheric pollutants--ozone and particulate matter--that can harm children's health in many ways. Ozone irritates the lungs, causing various respiratory symptoms; it can also damage the lung lining or aggravate lung…

  18. Ozone production in the megacities of Tianjin and Shanghai, China: a comparative study

    Directory of Open Access Journals (Sweden)

    W. L. Lin

    2012-04-01

    Full Text Available Rapid economic growth has given rise to a significant increase in ozone precursor emissions in many regions of China, especially in the densely populated North China Plain (NCP and Yangtze River Delta (YRD. Improved understanding of ozone formation in response to different precursor emissions is imperative to address the highly nonlinear ozone problem and to provide a solid scientific basis for efficient ozone abatement in these regions. A comparative study on ozone photochemical production in summer has thus been carried out in the megacities of Tianjin (NCP and Shanghai (YRD. Two intensive field campaigns were carried out respectively at an urban and a suburban site of Tianjin, in addition to routine monitoring of trace gases in Shanghai, providing data sets of surface ozone and its precursors including nitrogen oxides (NOx and various volatile organic compounds (VOCs. Ozone pollution was found to be more severe in Tianjin than in Shanghai during the summer, either based on the frequency or the duration of high ozone events. Such differences might be attributed to the large amount of highly reactive VOC mixture in the Tianjin region. It is found that industry related species like light alkenes were of particular importance in both urban and suburban Tianjin, while in Shanghai aromatics dominate. In general, the ozone problem in Shanghai is on an urban scale. Stringent control policies on local emissions would help reduce the occurrence of high ozone concentrations. By contrast, ozone pollution in Tianjin is a regional problem. Combined efforts to reduce ozone precursor emissions on a regional scale must be undertaken to bring the ozone problem under control.

  19. Ozone production in the megacities of Tianjin and Shanghai, China: a comparative study

    Science.gov (United States)

    Ran, L.; Zhao, C. S.; Xu, W. Y.; Han, M.; Lu, X. Q.; Han, S. Q.; Lin, W. L.; Xu, X. B.; Gao, W.; Yu, Q.; Geng, F. H.; Ma, N.; Deng, Z. Z.; Chen, J.

    2012-04-01

    Rapid economic growth has given rise to a significant increase in ozone precursor emissions in many regions of China, especially in the densely populated North China Plain (NCP) and Yangtze River Delta (YRD). Improved understanding of ozone formation in response to different precursor emissions is imperative to address the highly nonlinear ozone problem and to provide a solid scientific basis for efficient ozone abatement in these regions. A comparative study on ozone photochemical production in summer has thus been carried out in the megacities of Tianjin (NCP) and Shanghai (YRD). Two intensive field campaigns were carried out respectively at an urban and a suburban site of Tianjin, in addition to routine monitoring of trace gases in Shanghai, providing data sets of surface ozone and its precursors including nitrogen oxides (NOx) and various volatile organic compounds (VOCs). Ozone pollution was found to be more severe in Tianjin than in Shanghai during the summer, either based on the frequency or the duration of high ozone events. Such differences might be attributed to the large amount of highly reactive VOC mixture in the Tianjin region. It is found that industry related species like light alkenes were of particular importance in both urban and suburban Tianjin, while in Shanghai aromatics dominate. In general, the ozone problem in Shanghai is on an urban scale. Stringent control policies on local emissions would help reduce the occurrence of high ozone concentrations. By contrast, ozone pollution in Tianjin is a regional problem. Combined efforts to reduce ozone precursor emissions on a regional scale must be undertaken to bring the ozone problem under control.

  20. Ozone production in summer in the megacities of Tianjin and Shanghai, China: a comparative study

    Directory of Open Access Journals (Sweden)

    L. Ran

    2012-08-01

    Full Text Available Rapid economic growth has given rise to a significant increase in ozone precursor emissions in many regions of China, especially in the densely populated North China Plain (NCP and Yangtze River Delta (YRD. Improved understanding of ozone formation in response to different precursor emissions is imperative to address the highly nonlinear ozone problem and to provide a solid scientific basis for efficient ozone abatement in these regions. A comparative study on ozone photochemical production in summer has thus been carried out in the megacities of Tianjin (NCP and Shanghai (YRD. Two intensive field campaigns were carried out respectively at an urban and a suburban site of Tianjin, in addition to routine monitoring of trace gases in Shanghai, providing data sets of surface ozone and its precursors including nitrogen oxides (NOx and various non-methane hydrocarbons (NMHCs. Ozone pollution in summer was found to be more severe in the Tianjin region than in the Shanghai region, based on either the frequency or the duration of high ozone events. Such differences might be attributed to the large amount of highly reactive NMHCs in Tianjin. Industry related species like light alkenes were of particular importance in both urban and suburban Tianjin, while in Shanghai aromatics dominated. In general, the ozone problem in Shanghai is on an urban scale. Stringent control policies on local emissions would help reduce the occurrence of high ozone concentrations. By contrast, ozone pollution in Tianjin is probably a regional problem. Combined efforts to reduce ozone precursor emissions on a regional scale must be undertaken to bring the ozone problem under control.

  1. Aquatic pollution increases use of terrestrial prey subsidies by stream fish

    Science.gov (United States)

    Kraus, Johanna M.; Pomeranz, Justin F.; Todd, Andrew S.; Walters, David M.; Schmidt, Travis S.; Wanty, Richard B.

    2016-01-01

    Stream food webs are connected with their riparian zones through cross-ecosystem movements of energy and nutrients. The use and impact of terrestrial subsidies on aquatic consumers is determined in part by in situ biomass of aquatic prey. Thus, stressors such as aquatic pollutants that greatly reduce aquatic secondary production could increase the need for and reliance of stream consumers on terrestrial resource subsidies.

  2. Ozone, greenhouse effect. Ozone, effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Aviam, A.M.; Arthaut, R.

    1992-12-01

    This file is made of eight general papers on environment (climates under observation, research on photo-oxidizing pollution, scientific aspects of stratospheric ozone layer, urban engineering and environment, glory of public gardens, earths not very natural, darwinism and society, economical data on environment). (A.B.). refs., 3 tabs.

  3. Natural zeolite reactivity towards ozone: the role of compensating cations.

    Science.gov (United States)

    Valdés, Héctor; Alejandro, Serguei; Zaror, Claudio A

    2012-08-15

    Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L(-1)). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH(3)-TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal.

  4. An MCM modeling study of nitryl chloride (ClNO2) impacts on oxidation, ozone production and nitrogen oxide partitioning in polluted continental outflow

    Science.gov (United States)

    Riedel, T. P.; Wolfe, G. M.; Danas, K. T.; Gilman, J. B.; Kuster, W. C.; Bon, D. M.; Vlasenko, A.; Li, S.-M.; Williams, E. J.; Lerner, B. M.; Veres, P. R.; Roberts, J. M.; Holloway, J. S.; Lefer, B.; Brown, S. S.; Thornton, J. A.

    2014-04-01

    Nitryl chloride (ClNO2) is produced at night by reactions of dinitrogen pentoxide (N2O5) on chloride containing surfaces. ClNO2 is photolyzed during the morning hours after sunrise to liberate highly reactive chlorine atoms (Cl·). This chemistry takes place primarily in polluted environments where the concentrations of N2O5 precursors (nitrogen oxide radicals and ozone) are high, though it likely occurs in remote regions at lower intensities. Recent field measurements have illustrated the potential importance of ClNO2 as a daytime Cl· source and a nighttime NOx reservoir. However, the fate of the Cl· and the overall impact of ClNO2 on regional photochemistry remain poorly constrained by measurements and models. To this end, we have incorporated ClNO2 production, photolysis, and subsequent Cl· reactions into an existing master chemical mechanism (MCM version 3.2) box model framework using observational constraints from the CalNex 2010 field study. Cl· reactions with a set of alkenes and alcohols, and the simplified multiphase chemistry of N2O5, ClNO2, HOCl, ClONO2, and Cl2, none of which are currently part of the MCM, have been added to the mechanism. The presence of ClNO2 produces significant changes to oxidants, ozone, and nitrogen oxide partitioning, relative to model runs excluding ClNO2 formation. From a nighttime maximum of 1.5 ppbv ClNO2, the daytime maximum Cl· concentration reaches 1 × 105 atoms cm-3 at 07:00 model time, reacting mostly with a large suite of volatile organic compounds (VOC) to produce 2.2 times more organic peroxy radicals in the morning than in the absence of ClNO2. In the presence of several ppbv of nitrogen oxide radicals (NOx = NO + NO2), these perturbations lead to similar enhancements in hydrogen oxide radicals (HOx = OH + HO2). Neglecting contributions from HONO, the total integrated daytime radical source is 17% larger when including ClNO2, which leads to a similar enhancement in integrated ozone production of 15%. Detectable

  5. Late Holocene evolution and increasing pollution in Guanabara Bay, Rio de Janeiro, SE Brazil.

    Science.gov (United States)

    Vilela, Claudia Gutterres; Figueira, Brígida Orioli; Macedo, Mariana Cardoso; Baptista Neto, José Antonio

    2014-02-15

    To detect changes during the Late Holocene and historical periods in Guanabara Bay, the paleoecological and ecological parameters from nine cores were analysed using foraminiferal assemblages and bioindicators. Using radiocarbon dates and sedimentation rates in the cores, it was possible to detect the first Europeans' arrival in the 16th century. Foraminiferal bioindicators of organic matter and human pollution were correlated with radiocarbon dates from the bottom and middle of the cores in each region and revealed an increase in pollution along the cores. The foraminiferal results were compared with total organic carbon (TOC) values before, during and after European settlement and showed a historical increase in organic matter. Pristine mangrove ecosystems are characterised by agglutinated species such as Ammotium salsum, and the presence of this organism also confirmed the extent of historical mangrove forests. Ammonia tepida, Buliminella elegantissima and Elphidium excavatum were the dominant species, but they presented distinct patterns over time. B. elegantissima was dominant before the European influence in older sediments with high organic matter content that were found at deeper intervals. A. tepida is dominant in younger sediments at upper intervals, as a bioindicator of human pollution.

  6. Characteristics of Typical Ozone Pollution Distribution and Impact Factors in Beijing in Summer%北京夏季典型臭氧污染分布特征及影响因子

    Institute of Scientific and Technical Information of China (English)

    严茹莎; 陈敏东; 高庆先; 刘婷; 胡顺星; 高文康

    2013-01-01

    The mobile AML-3 lidar system was used to monitor the ozone distribution and impact factors in Beijing from 7th May to 9th June, 2011. The data from the Differential Absorption Lidar were analyzed and pollutant monitoring systems were created in this study. The vertical distributions of the ground ozone were observed at different periods in the daytime, and the correlations between ozone concentrations and meteorological elements ( e. g. , temperature, wind speed and wind direction) were analyzed. The results showed a significant difference of the near surface ozone concentrations between different monitored periods. The peak value appeared at 14:00 while the valley value occurred at 06:00. The ozone concentration distribution in the upper layer is non-uniform, since the airflow in the upper layer can easily transport pollutants to the lower layer and cause ozone enrichment in the atmospheric boundary layer. The negative effect on the atmosphere diffusion caused by the stabile boundary layer is the main reason for ozone pollutions. The ozone diurnal trends and the diurnal temperature trend have a very significant positive relationship with the correlation coefficient about 0. 74. Turbulence caused a positive effect on wind speed and ozone concentration while horizontal diffusion caused a negative effect on wind speed and ozone concentration. The research on wind direction effects showed that the wind came from northeast side has more significant impact on Beijing's ozone pollution.%为研究北京地区O3分布特征及其影响因子,利用AML-3车载式大气环境污染激光雷达系统(下称AML-3)对北京地区2011年5月7日-6月9日的ψ(O3)进行观测.通过AML-3自带的污染物地面观测系统和差分吸收激光雷达,分析近地面、高空ψ(O3)时空分布特征,并将ψ(O3)与温度、风速及风向3个气象要素进行相关分析.结果表明:近地面ψ(O3)日变化明显,06:00左右为低谷,下午14:00左右达到峰值.高空ψ(O3)

  7. [Degradation of nitrobenzene in aqueous solution by modified ceramic honeycomb-catalyzed ozonation].

    Science.gov (United States)

    Sun, Zhi-Zhong; Zhao, Lei; Ma, Jun

    2005-11-01

    Comparative experiments of modified ceramic honeycomb, ceramic honeycomb-catalyzed ozonation and ozonation alone were conducted with nitrobenzene as the model organic pollutant. It was found that the processes of modified ceramic honeycomb and ceramic honeycomb-catalyzed ozonation could increase the removal efficiency of nitrobenzene by 38.35% and 15.46%, respectively, compared with that achieved by ozonation alone. Under the conditions of this experiment, the degradation rate of modified ceramic honeycomb-catalyzed ozonation increased by 30.55% with the increase of amount of catalyst to 5 blocks. The degradation rate of three process all increased greatly with the increase of temperature and value of pH in the solution. But when raising the pH value of the solution to 10.00, the advantage of modified ceramic honeycomb-catalyzed ozonation processes lost. The experimental results indicate that in modified ceramic honeycomb-catalyzed ozonation, nitrobenzene is primarily oxidized by *OH free radical in aqueous solution. The adsorption of nitrobenzene is too limited to have any influence on the degradation efficiency of nitrobenzene. With the same total dosage of applied ozone, the multiple steps addition of ozone showed a much higher removal efficiency than that obtained by one step in three processes. Modified ceramic honeycomb had a relative longer lifetime.

  8. Plant responses to tropospheric ozone

    Science.gov (United States)

    Tropospheric ozone is the second most abundant air pollutant and an important component of the global climate change. Over five decades of research on the phytotoxicity of ozone in model plants systems, crop plants and forest trees have provided some insight into the physiological, biochemical and m...

  9. Association of air pollution with increased incidence of ventricular tachyarrhythmias recorded by implantable cardioverter defibrillators: Vulnerable patients to air pollution.

    Science.gov (United States)

    Kim, In-Soo; Sohn, Jungwoo; Lee, Seung-Jun; Park, Jin-Kyu; Uhm, Jae-Sun; Pak, Hui-Nam; Lee, Moon-Hyoung; Kim, Changsoo; Joung, Boyoung

    2017-08-01

    This study investigated the acute effects of exposure to air pollution on ventricular tachyarrhythmias (VTAs) in an East Asian population. The association between air pollution and VTA has not yet been studied in an East Asian country affected by the Asian dust phenomenon, which worsens air quality. The study cohort consisted of 160patients with implantable cardioverter defibrillator (ICD) devices in the Seoul metropolitan area who were followed for 5.5±3.8years. We used ICD records of VTAs and matched these with hourly measurements of air pollutant concentrations and meteorological data. Fine particle mass and gaseous air pollution plus temperature and relative humidity were measured hourly during the study period. During the study period, 1064 VTA events including 204 instances of ventricular fibrillation (VF) were observed. We found a statistically significant association between overall VTA events and SO2 (lag 24h; OR 1.49, 95%CI 1.16-1.92, p=0.002), PM10 (lag 2h; OR 2.56, 95%CI 2.03-3.23, pair pollution and VTA were observed in a metropolitan area of an East Asian country. Exposures to SO2, PM10, NO2, and CO were significantly associated with VTAs in ICD patients with SHD. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Ozone - Current Air Quality Index

    Science.gov (United States)

    GO! Local Air Quality Conditions Zip Code: State : My Current Location Current AQI Forecast AQI Loop More Maps AQI: Good (0 - 50) ... credits available from CDC. Learn more more announcements Air Quality Basics Air Quality Index | Ozone | Particle Pollution | Smoke ...

  11. Ozone Nonattainment Areas - 1 Hour

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data layer identifies areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for Ozone - 1hour (Legacy...

  12. Selective treatment of VOC-polluted industrial air using an hybrid adsorption-ozonization process; Traitement selectif de l'air industriel pollue en COV par un procede hybride adsorption-ozonation

    Energy Technology Data Exchange (ETDEWEB)

    Manero, M.H. [Toulouse-3 Univ., Lab. d' Ingenierie des Procedes de L' Environnement, INSA de Toulouse, 31 (France); Monneyron, P. [Bordeaux-1 Univ., Lab. Transfert, Ecoulement, Fluides, Energetiques (TREFLE), UMR 8508, 33 - Talence (France)

    2005-09-01

    This article describes an hybrid process combining the adsorption on zeolites and the oxidation by ozone at ambient temperature and pressure in a single reactor for the selective treatment of volatile organic compounds (VOCs). After several cycles of operation, the zeolite capacity is maintained and not altered by the ozonization. The analysis of the output gases shows the absence of ozone and only traces of oxidation products meaning that the oxidation of the organic molecules is complete. The oxygen statuses show that the ozone introduced in the system is totally used to oxide VOCs. The industrial scale feasibility of the method requires further studies. (J.S.)

  13. Stratospheric Ozone and Temperature Changes in the Past: The Impact of Increased Concentrations of CFCs in Simulations with a Chemistry-Climate Model

    Science.gov (United States)

    Meul, S.; Oberländer, S.; Abalichin, J.; Kubin, A.; Langematz, U.

    2012-04-01

    Changes in stratospheric ozone between 1960 and the end of the 20th century are investigated analysing simulations with the Chemistry-Climate-Model (CCM) EMAC in FUB configuration (i.e. 39 layers with FUBRad parameterisation). In order to analyse the impact of increasing emissions of chlorofluorocarbons (CFCs) from 1960 to 2000 two sensitivity studies have been performed: a reference simulation with boundary conditions for the year 2000 and one analogue simulation but with CFC emissions reduced to 1960 levels. By comparing to a transient simulation (1960 to 2100) using the CCMVal SCN-B2d scenario it is possible to isolate the ozone changes that are caused by the CFC-increase only and separate the CFC-effect from other processes affecting ozone, e.g. climate change. By applying the method of Garny et al. (2011) the relative ozone changes arising from the CFC-modification can be attributed to changes in transport, chemical production and loss. Furthermore, it is analysed how the processes related to the CFC-increase contribute to the stratospheric cooling of up to 4K that is simulated by the SCN-B2d run between the 1960s and the 2000s in the upper stratosphere. The temperature change due to increased CFCs is caused by a reduced absorption of solar radiation by decreased ozone concentrations combined with the greenhouse gas (GHG) effect of the CFCs. In the upper stratosphere a cooling of up to 2.5K can be explained by the CFC-increase.

  14. Changes in springtime tropospheric ozone observed at Mt. Happo, Japan: New insights for the roles of Asian emissions and long-range transport

    Science.gov (United States)

    Okamoto, Sachiko; Ikeda, Kohei; Tanimoto, Hiroshi

    2017-04-01

    We revisited and updated the long-term trend of tropospheric ozone at Mt. Happo, Japan, based on continuous measurements for the period from 1998 to 2016. We focused on the springtime ozone concentration and possible influences by the continental outflow from East Asia. Since 1998 the springtime ozone concentration has shown a large increase until 2007, very likely caused by the increase in the emissions of ozone precursors associated with economic growth in eastern China, as evidenced from satellite observations of nitrogen dioxides. In 2008 and 2012, two large decreases in ozone were observed, followed by a stabilization until now. The residence time of air masses passed over central eastern China, which is the most polluted region in China, showed high levels during 2004-2007, and then decreased in 2008. Meteorological variability as well as emissions of ozone precursors are important factors controlling the ozone concentration at Mt. Happo.

  15. Surface ozone and carbon monoxide levels observed at Oki, Japan: regional air pollution trends in East Asia.

    Science.gov (United States)

    Sikder, Helena Akhter; Suthawaree, Jeeranut; Kato, Shungo; Kajii, Yoshizumi

    2011-03-01

    Simultaneous ground-based measurements of ozone and carbon monoxide were performed at Oki, Japan, from January 2001 to September 2002 in order to investigate the O(3) and CO characteristics and their distributions. The observations revealed that O(3) and CO concentrations were maximum in springtime and minimum in the summer. The monthly averaged concentrations of O(3) and CO were 60 and 234 ppb in spring and 23 and 106 ppb in summer, respectively. Based on direction, 5-day isentropic backward trajectory analysis was carried out to determine the transport path of air masses, preceding their arrival at Oki. Comparison between classified results from present work and results from the year 1994-1996 was carried out. The O(3) and CO concentration results of classified air masses in our analysis show similar concentration trends to previous findings; highest in the WNW/W, lowest in N/NE and medium levels in NW. Moreover, O(3) levels are higher and CO levels are lower in the present study in all categories. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Natural zeolite reactivity towards ozone: The role of compensating cations

    Energy Technology Data Exchange (ETDEWEB)

    Valdes, Hector, E-mail: hvaldes@ucsc.cl [Laboratorio de Tecnologias Limpias (F. Ingenieria), Universidad Catolica de la Santisima Concepcion, Alonso de Ribera 2850, Concepcion (Chile); Alejandro, Serguei; Zaror, Claudio A. [Departamento de Ingenieria Quimica (F. Ingenieria), Universidad de Concepcion, Concepcion (Chile)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Chemical and thermal treatment enhances catalytic activity of natural zeolite. Black-Right-Pointing-Pointer Modified natural zeolite exhibits high stability after thermal treatment. Black-Right-Pointing-Pointer Reducing the compensating cation content leads to an increase on ozone abatement. Black-Right-Pointing-Pointer Surface active atomic oxygen was detected using the DRIFT technique. Black-Right-Pointing-Pointer The highest reactivity toward ozone was performed by NH4Z3 zeolite sample. - Abstract: Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L{sup -1}). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77 K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH{sub 3}-TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal.

  17. ADVANCED TREATMENT OF SAHEBGHARANIEH SECONDARY EFFLUENT BY OZONATION

    Directory of Open Access Journals (Sweden)

    F. Vaezi

    2000-08-01

    Full Text Available Chemical oxidation is one of the most suitable treatment methods for reducing organic pollutants and the number of pathogens remaining in secondary effluents. Ozone is the most powerful oxidizing agent commonly used because of it's many advantages over chlorination. In this study the efficiency of ozonation in advanced wastewater treatment of Sahebgharanieh Plant has been determined. Ozone generation has been performed by irradiation of compressed air with 4 special UV lamps. The total output of these lamps was determined to be 0.74 mg ozone per minute at established conditions. Considering 3 periods of ozonation of effluent samples (30, 60 and 120 min and ozone transfer coefficient of 95%, the concentrations of applied ozone for wastewater treatment were specified to be 10.5, 21 and 42 mg/l, respectively. Ozonation of secondary effluents at these periods has resulted in 17, 24 and 30 percent reduction in average COD and about 20, 18 and 32 percent decrease in BOD5. It is believed that the 2 percent increase observed in BOD after 30 minutes is caused by changing some amount of COD to BOD5 by applied ozone. According to the prescribed reduction values it could be concluded that the final effluent of a typical treatment plant would become better qualified for water reuse in irrigation. But it should be declared that the effluent might not be completely disinfected irrespective of about 99.0% decrease determined in MPN of total coliforms. Also it must be noted that this degree of disinfection was accomplished only for 62.5% of samples. Ozonation of effluent samples has caused an increase in pH value which was at least 0.4 of a pH unit.

  18. Relationships between mild PM10 and ozone urban air levels and spontaneous abortion: clues for primary prevention.

    Science.gov (United States)

    Di Ciaula, Agostino; Bilancia, Massimo

    2015-01-01

    The effects of environmental pollution on spontaneous abortion (SAB) are still unclear. Records of SAB were collected from five cities (514,996 residents) and correlated with PM10, NO(2) and ozone levels. Median pollutant concentrations were below legal limits. Monthly SABs positively correlated with PM10 and ozone levels but not with NO(2) levels. The mean monthly SAB rate increase was estimated equal to 19.7 and 33.6 % per 10 μg/m(3) increase in PM10 or ozone concentration, respectively. Higher values of PM10 and SABs were evident in cities with- than in those without pollutant industries, with a number of SABs twofolds higher in the former group. In conclusion, SAB occurrence is affected by PM10 (particularly if industrial areas are present) and ozone concentrations, also at levels below the legal limits. Thus, SAB might be considered, at least in part, a preventable condition.

  19. Relationship between acceleration of hydroxyl radical initiation and increase of multiple-ultrasonic field amount in the process of ultrasound catalytic ozonation for degradation of nitrobenzene in aqueous solution.

    Science.gov (United States)

    Zhao, Lei; Ma, Weichao; Ma, Jun; Wen, Gang; Liu, Qianliang

    2015-01-01

    The synergetic effect between ozone and ultrasound can enhance the degradation of nitrobenzene and removal efficiency of TOC in aqueous solution, and the degradation of nitrobenzene follows the mechanism of hydroxyl radical (OH) oxidation. Under the same total ultrasonic power input condition, the degradation rate of nitrobenzene (kNB), the volumetric mass transfer coefficient of ozone (kLa), and the initiation rate of OH (kOH) increases with introduction of additional ultrasonic field (1-4) in the process of ozone/ultrasound. The increasing amount of ultrasonic fields accelerates the decomposition of ozone, leading to the rapid appearance of the maximum equilibrium value and the decrease in the accumulation concentration of ozone in aqueous solution with the increasing reaction time. The increase in mass transfer of gaseous ozone dissolved into aqueous solution and the acceleration in the decomposition of ozone in aqueous solution synchronously contribute to the increase of kLa. The investigation of mechanism confirms that the increasing amount of ultrasonic fields yields the increase in cavitation activity that improves the mass transfer and decomposition of ozone, resulting in acceleration of OH initiation, which determines the degradation of nitrobenzene in aqueous solution.

  20. Subalpine grassland carbon dioxide fluxes indicate substantial carbon losses under increased nitrogen deposition, but not at elevated ozone concentration

    Science.gov (United States)

    Volk, Matthias; Obrist, Daniel; Novak, Kris; Giger, Robin; Bassin, Seraina; Fuhrer, Jürg

    2010-05-01

    Ozone (O3) and nitrogen (N) deposition affect plant carbon (C) dynamics and may thus change ecosystem C-sink/-source properties. We studied effects of increased background O3 concentrations (up to ambient x 2) and increased N deposition (up to +50 kg ha-1 a-1) on mature, subalpine grassland during the third treatment year. During ten days and 13 nights, covering the vegetation period of 2006, we measured ecosystem-level CO2 exchange using a steady state cuvette. Light dependency of gross primary production (GPP) and temperature dependency of ecosystem respiration rates (Reco) were established. Soil temperature, soil water content, and solar radiation were monitored. Using Reco and GPP values, we calculated seasonal net ecosystem production (NEP), based on hourly averages of global radiation and soil temperature. Differences in NEP were compared to differences in soil organic C after five years of treatment. Under high O3 and with unchanged aboveground biomass, both mean Reco and GPP decreased throughout the season. Thus, NEP indicated an unaltered growing season CO2-C balance. Under high N treatment, with a +31% increase in aboveground productivity, mean Reco, but not GPP increased. Consequently, seasonal NEP yielded a 53.9 g C m-2 (± 22.05) C loss compared to control. Independent of treatment, we observed a negative NEP of 146.4 g C m-2 (±15.3). This C loss was likely due to a transient management effect, equivalent to a shift from pasture to hay meadow and a drought effect, specific to the 2006 summer climate. We argue that this resulted from strongly intensified soil microbial respiration, following mitigation of nutrient limitation. There was no interaction between O3 and N treatments. Thus, during the 2006 growing season, the subalpine grassland lost >2% of total topsoil organic C as respired CO2, with increased N deposition responsible for one-third of that loss.

  1. Ozone studies in the Paso del Norte region

    Science.gov (United States)

    Becerra-Davila, Fernando

    obtained from this photolysis study demonstrate that the local ground level ozone formation is not only influenced by the strong solar radiation and changing aerosol makeup, but also by other heterogeneous factors and reactions. In addition, this research provided good evidence that the ground level ozone precursor regime in El Paso during the ozone episode of June 2006 was mostly VOC-limited. Much of this estimation was derived from measurements of local ambient VOC/NOx ratios. This finding shows that at least during June 2006, the non-linear surface ozone production increased during weekends compared to workdays in a habitually VOC-limited regime. The seasonal variations of columnar ozone as measured by a Multi-filter Rotating Shadowband instrument installed at the UTEP campus are analyzed for the first time for this region and results are presented. This investigation has addressed the problem of ground-level ozone formation in the Paso del Norte region. Urban ozone is a complex problem with many aspects that are not fully understood. In this investigation, a range of techniques has been used to address the study of local surface ozone episodes with the purpose of acquiring new insights and knowledge that will help understand and remediate the diverse atmospheric pollution events that affect this bi-national region recurrently. Innovative techniques were developed and used, ranging from the use of local ambient atmospheric pollution data to the utilization of complex modeling techniques to achieve the best possible computer results. Finally, the influence of ground level ozone concentrations in admissions to hospitals for this region due to respiratory diseases is analyzed. The comprehensive results obtained in this work will help to better understand ozone formation in the Paso del Norte Region for future policy regulation implementations.

  2. Distribution ozone concentration in Klang Valley using GIS approaches

    Science.gov (United States)

    Sulaiman, A.; Rahman, A. A. Ab; Maulud, K. N. Abdul; Latif, M. T.; Ahmad, F.; Wahid, M. A. Abdul; Ibrahim, M. A.; Halim, N. D. Abdul

    2017-05-01

    Today, ozone has become one of the main air pollutants in Malaysia. The high ozone precursor concentrations have been encouraging the ozone production. The development of the Klang Valley, Malaysia has many types of physical activities such as urban commercial, industrial area, settlement area and others, which has increased the risk of atmospheric pollution. The purpose of this paper is to determine the spatial distribution between types of land use and ozone concentration that are occurred in the year 2014. The study areas for this paper include Shah Alam, Kajang, Petaling Jaya and Port Klang. Distribution of ozone concentration will be showed via spatial analysis tools in Geographic Information Systems (GIS) approached and the types of land use will be extracted using Remote Sensing technique. The result showed 97 ppb (parts-per-billion, 10-9) and 161 ppb recorded at Port Klang and Shah Alam respectively that are mainly represented by the settlement area. Therefore, the physical land use need to be monitor and controlled by the government in order to make sure the ozone production for daily per hour will not exceed the regulation allowed.

  3. Ozone in the atmosphere. Basic principles, natural and human impacts

    Energy Technology Data Exchange (ETDEWEB)

    Fabian, Peter [Technical Univ. Munich (Germany). Immission Research; Dameris, Martin [German Aerospace Center (DLR), Oberpfaffenhofen-Wessling (Germany). Inst. of Atmospheric Physics

    2014-09-01

    Comprehensive coverage of ozone both in the upper and the lower atmosphere. Essential overview of atmospheric ozone research written by two experienced and acknowledged experts. Numerous qualified references to the scientific literature. Peter Fabian and Martin Dameris provide a concise yet comprehensive overview of established scientific knowledge about ozone in the atmosphere. They present both ozone changes and trends in the stratosphere, as well as the effects of overabundance in the troposphere including the phenomenon of photosmog. Aspects such as photochemistry, atmospheric dynamics and global ozone distribution as well as various techniques for ozone measurement are treated. The authors outline the various causes for ozone depletion, the effects of ozone pollution and the relation to climate change. The book provides a handy reference guide for researchers active in atmospheric ozone research and a useful introduction for advanced students specializing in this field. Non-specialists interested in this field will also profit from reading the book. Peter Fabian can look back on a life-long active career in ozone research, having first gained international recognition for his measurements of the global distribution of halogenated hydrocarbons. He also pioneered photosmog investigations in the metropolitan areas of Munich, Berlin, Athens and Santiago de Chile, and his KROFEX facility provided controlled ozone fumigation of adult tree canopies for biologists to investigate the effects of ozone increases on forests. Besides having published a broad range of scientific articles, he has also been the author or editor of numerous books. From 2002 to 2005 he served the European Geosciences Union (EGU) as their first and Founding President. Martin Dameris is a prominent atmospheric modeler whose interests include the impacts of all kinds of natural and man-made disturbances on the atmospheric system. His scientific work focuses on the connections between ozone and

  4. Air Pollution and the skin

    Directory of Open Access Journals (Sweden)

    Eleni eDrakaki

    2014-05-01

    Full Text Available The increase of air pollution over the years has major effects on the human skin. The skin is exposed to ultraviolet radiation (UVR and environmental air pollutants such as polycyclic aromatic hydrocarbons (PAHs, volatile organic compounds (VOCs, oxides, particulate matter (PM, ozone (O3 and cigarette smoke. Although human skin acts as a biological shield against pro-oxidative chemical and physical air pollutants, the prolonged or repetitive exposure to high levels of these pollutants may have profound negative effects on the skin. Exposure of the skin to air pollutants has been associated with skin aging and inflammatory or allergic skin conditions such as atopic dermatitis, eczema, psoriasis or acne, while skin cancer is among the most serious effects. On the other hand, some air pollutants (ie, ozone, nitrogen dioxide, and sulfur dioxide and scattering particulates (clouds and soot in the troposphere reduce the effects of shorter wavelength UVR and significant reductions in UV irradiance have been observed in polluted urban areas.

  5. Understanding Tropospheric Ozone Variability in the Arctic

    Science.gov (United States)

    McClure-Begley, A.; Petropavlovskikh, I. V.; Crepinsek, S.; Uttal, T.; Skov, H.

    2016-12-01

    The Arctic is a region that has been subject to drastic changes in the climate partially due to transported pollutants which strongly impact the composition of the atmosphere and associated feedbacks. Tropospheric ozone is an atmospheric species formed by the reaction of precursor species (NOx, CO, VOC's) in the presence of UV radiation and drives complex interactions which can result in impacts on atmospheric conditions in the Arctic. As an important greenhouse gas, ozone has a significant influence on the photochemical characteristics, oxidation capacity, and radiative forcing of the atmosphere and at high levels has negative impacts on public health and overall ecosystem functioning. In the Arctic, tropospheric ozone has variable characteristics in time and space. Seasonal variation of ozone is controlled by many factors influencing the production and destruction of ozone. The arctic ozone conditions are strongly influenced by seasonal destruction events, arctic haze, transport of pollution from Asia and influence from precursor compounds released from wildfires. This study investigates long-term ozone variation, seasonal surface ozone conditions, and characterizes deviations from expected ozone levels at four arctic ozone measurement locations (Barrow Alaska, Tiksi Russia, Summit Greenland, and Villum Station Greenland). Frequency of ozone depletion events and high ozone episodes for each station over time provides a context for the changing conditions of ozone in the arctic. NOAA Hysplit back-trajectory analysis, satellite imagery, NOAA Smoke verification model, co-located carbon monoxide, carbon dioxide, and aerosol optical depth measurements are used to understand the dominant source of pollution, pollutant composition, and the interactions due to meteorological conditions that result in anomalies in the ozone mixing ratio records. Characterization of ozone behavior and influences on the measurement locations is essential for understanding the spatial and

  6. Ozone Impacts on forest Growth: A Sensitivity Analysis for Norway spruce

    Science.gov (United States)

    Pietsch, S. A.; Hasenauer, H.

    2009-04-01

    Ozone is one of the most important damaging air pollutants for forests in Austria. The mean atmospheric ozone concentration varies between 22.5 and 51.5 ppb (parts per billion) depending on altitude. Based on the emissions of the precursor substances (nitrous oxides and volatile hydrocarbons), the concentrations increase around 0.2 ppb per year and exceed the threshold for effects on plants. The light saturated rate of photosynthesis is sensible to ozone load. This corresponds to a reduction of the potentially possible CO2 fixation and can be regarded as a proof of the damage potential of ozone. The defence capacity vis-à-vis increased ozone increases with increasing elevation. At higher elevations the higher natural stress potential is accompanied by a higher defence potential against ozone damage. Based on these findings the following working hypotheses were formulated: (i) Under the acceptance that ozone uptake leads to a reduction of volume increment, model calculations on volume increment should exhibit a systematic bias versus the ozone dose. (ii) For locations unencumbered by ozone, the model should underestimate, for strongly burdened locations it should overestimate volume increment. (iii) Error patterns should change with increasing elevation, due to the increasing defence potential. Results demonstrated that at elevations above 800 m a.s.l. no ozone effect was detectable via trends in errors versus ozone dose. At elevations below 800 m, a significant trend in errors from plots with low ozone doses to plots with high ozone doses was evident. Although the model used in this study includes no explicit ozone reactions, we can be confident at the 95 % level that Norway spruce trees growing below 800 m a.s.l. react to an increase in ozone dose with a reduction in volume increment. It is, however, important to emphasize that the evidence for increment reduction is qualitative evidence but does not allow the quantification of the ozone induced reduction in

  7. A MCM modeling study of the effects of nitryl chloride on oxidant budgets, ozone production, VOC lifetimes, and halogen recycling in polluted regions

    Science.gov (United States)

    Riedel, T. P.; Thornton, J. A.; Wolfe, G. M.; Gilman, J. B.; Kuster, W. C.; De Gouw, J. A.; Bon, D.; Vlasenko, A. L.; Li, S.; Williams, E. J.; Lerner, B. M.; Veres, P. R.; Roberts, J. M.

    2012-12-01

    Nitryl chloride (ClNO2) is produced at night by reactions of dinitrogen pentoxide (N2O5) on chloride containing particles. Nitryl chloride is photolyzed during the day to liberate highly reactive chlorine atoms. This chemistry takes place primarily in urban environments where the concentrations of N2O5 precursors (NOx and ozone) are high, though it can likely occur in remote regions at lower intensity. Recent field measurements have illustrated the potential importance of ClNO2 as a chlorine atom source and a NOx reservoir. However, the fate of these chlorine atoms and the overall impact of ClNO2 remain unclear. To this end we have incorporated ClNO2 production, photolysis, and subsequent Cl-atom reactions into an existing Master Chemical Mechanism (MCM version 3.2) based model framework. Cl-atom reactions with alkenes and alcohols not presently part of the MCM have also been added. Using observational constraints from the CalNex 2010 field study, we assess the dominant reactive sinks and sources of chlorine atoms over the course of a model day. Relative to model runs excluding ClNO2 formation, the presence of ClNO2 produces marked changes on a variety of species important to tropospheric chemistry and air quality (e.g. O3, RO2, OH, HO2, ClOx). For example a 50% yield of ClNO2 (max ClNO2 of 1.5 ppb) from nighttime N2O5 reactions leads to a ~10% enhancement in integrated ozone production. VOC and NOx lifetimes are shorter due primarily to enhanced OH from propagation of RO2 produced by Cl-atom chemistry under high NOx. The impact of ClNO2 on daytime halogen atom recycling is substantial, with order of magnitude higher daytime Cl2 production predicted with ClNO2 chemistry than without. In fact, incorporation of ClNO2 could help explain daytime levels of Cl2 observed in polluted coastal regions. Additionally, we highlight a set of chlorinated VOC oxidation products that are predicted to form at small, but potentially detectable levels in regions with similar VOC

  8. Low level of stratospheric ozone near the Jharia coal field in India

    Indian Academy of Sciences (India)

    Nandita D Ganguly

    2008-02-01

    The Indian reserve of coking coal is mainly located in the Jharia coal field in Jharkhand. Although air pollution due to oxides and dioxides of carbon, nitrogen and sulphur is reported to have increased in this area due to large-scale opencast mining and coal fires, no significant study on the possible impact of coal fires on the stratospheric ozone concentration has been reported so far. The possible impact of coal fires, which have been burning for more than 90 years on the current stratospheric ozone concentration has been investigated using satellite based data obtained from Upper Atmospheric Research Satellite (UARS MLS), Earth Observing System Microwave Limb Sounder (EOS MLS) and Ozone Monitoring Instrument (OMI) in this paper. The stratospheric ozone values for the years 1992–2007, in the 28–36 km altitude range near Jharia and places to its north are found to be consistently lower than those of places lying to its south (up to a radius of 1000 km around Jharia) by 4.0–20%. This low stratospheric ozone level around Jharia is being observed and reported for the first time. However, due to lack of systematic ground-based measurements of tropospheric ozone and vertical ozone profiles at Jharia and other far off places in different directions, it is difficult to conclude strongly on the existence of a relationship between pollution from coal fires and stratospheric ozone depletion.

  9. In vitro ozone exposure increases release of arachidonic acid products from a human bronchial epithelial cell line

    Energy Technology Data Exchange (ETDEWEB)

    McKinnon, K.P.; Madden, M.C.; Noah, T.L.; Devlin, R.B. (TRC Environmental Corporation, Chapel Hill, NC (United States))

    1993-02-01

    Eicosanoids released after ozone exposure of a human bronchial epithelial cell line, BEAS-S6, were analyzed by high-pressure liquid chromatography (HPLC) of supernatants from exposed cells prelabeled with [3H]arachidonic acid. BEAS cells released thromboxane B2 (TxB2), prostaglandin E2 (PGE2), leukotriene C4 (LTC4), LTD4, LTE4, and 12-hydroxyheptadecatrienoic acid (HHT) after exposure to ozone at concentrations of 0.1, 0.25, 0.5, and 1.0 ppm. The eicosanoids were identified by coelution with authentic standards. The largest product from ozone-exposed BEAS cells was the most polar peak, designated Peak 1. Release of cyclooxygenase products such as TxB2, PGE2, and HHT was inhibited by acetylsalicylic acid. Peaks that migrated with authentic standards for LTB4, LTC4, and LTD4 were inhibited by the lipoxygenase inhibitor nordihydroguaiaretic acid. The leukotrienes LTB4 and LTC4/D4 could also be detected by immunoassay of concentrated peak fractions. Thus BEAS cells released eicosanoids from cyclooxygenase and lipoxygenase pathways of arachidonic acid metabolism following exposure to ozone. Airway epithelial cells may be an important source of eicosanoids following ozone stimulation in humans.

  10. 77 FR 66729 - National Oil and Hazardous Substances Pollution Contingency Plan; Revision To Increase Public...

    Science.gov (United States)

    2012-11-07

    ... decision. See 55 FR 8666, 8804-5 (March 6, 1990) (National Oil and Hazardous Substances Pollution... AGENCY 40 CFR Part 300 RIN 2050-AG73 National Oil and Hazardous Substances Pollution Contingency Plan... Oil and Hazardous Substances Pollution Contingency Plan (NCP), to acknowledge advancements...

  11. Ozone induces glucose intolerance and systemic metabolic effects in young and aged brown Norway rats

    Energy Technology Data Exchange (ETDEWEB)

    Bass, V. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Gordon, C.J.; Jarema, K.A.; MacPhail, R.C. [Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Cascio, W.E. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Phillips, P.M. [Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Ledbetter, A.D.; Schladweiler, M.C. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Andrews, D. [Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Miller, D. [Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC (United States); Doerfler, D.L. [Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Kodavanti, U.P., E-mail: kodavanti.urmila@epa.gov [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States)

    2013-12-15

    Air pollutants have been associated with increased diabetes in humans. We hypothesized that ozone would impair glucose homeostasis by altering insulin signaling and/or endoplasmic reticular (ER) stress in young and aged rats. One, 4, 12, and 24 month old Brown Norway (BN) rats were exposed to air or ozone, 0.25 or 1.0 ppm, 6 h/day for 2 days (acute) or 2 d/week for 13 weeks (subchronic). Additionally, 4 month old rats were exposed to air or 1.0 ppm ozone, 6 h/day for 1 or 2 days (time-course). Glucose tolerance tests (GTT) were performed immediately after exposure. Serum and tissue biomarkers were analyzed 18 h after final ozone for acute and subchronic studies, and immediately after each day of exposure in the time-course study. Age-related glucose intolerance and increases in metabolic biomarkers were apparent at baseline. Acute ozone caused hyperglycemia and glucose intolerance in rats of all ages. Ozone-induced glucose intolerance was reduced in rats exposed for 13 weeks. Acute, but not subchronic ozone increased α{sub 2}-macroglobulin, adiponectin and osteopontin. Time-course analysis indicated glucose intolerance at days 1 and 2 (2 > 1), and a recovery 18 h post ozone. Leptin increased day 1 and epinephrine at all times after ozone. Ozone tended to decrease phosphorylated insulin receptor substrate-1 in liver and adipose tissues. ER stress appeared to be the consequence of ozone induced acute metabolic impairment since transcriptional markers of ER stress increased only after 2 days of ozone. In conclusion, acute ozone exposure induces marked systemic metabolic impairments in BN rats of all ages, likely through sympathetic stimulation. - Highlights: • Air pollutants have been associated with increased diabetes in humans. • Acute ozone exposure produces profound metabolic alterations in rats. • Age influences metabolic risk factors in aging BN rats. • Acute metabolic effects are reversible and repeated exposure reduces these effects. • Ozone

  12. Tackling pollution by organic farming is capable of increasing fortified foods.

    Science.gov (United States)

    Navarro-Aviñó, J P; Navarro, J J Fernández; Castro, V Vargas; Ripoll, I Ilzarbe; Sahuquillo, M J Márquez

    2016-01-01

    The global pollution stage is poisoning the biosphere and causing global temperatures to rise, necessitating a drastic change in the way man is dealing with nature. One change that may produce many beneficial effects on the biosphere and human health is the use of specific organic farming to produce food in a more integrated way in nature and to increase the capacity of man's own response. Despite many experts' opinion another way to deal with environmental contamination is possible: organic farming, which can increase man's ability to fortify foods. After more than 20 years working under this discipline, Bodegas Dagon is able to achieve the highest stilbenes concentrations (as resveratrol). Versus 14.3 mg/l, "Bodegas Dagón" wines contain resveratrol (HPLC and UV-spectroscopy) up to 1611.73 ± 72.66 mg/l, standing as world's potentially healthiest wine reported to date.

  13. Ozone depletion and climate change: impacts on UV radiation.

    Science.gov (United States)

    McKenzie, R L; Aucamp, P J; Bais, A F; Björn, L O; Ilyas, M; Madronich, S

    2011-02-01

    stratospheric ozone can also be affected by the increases in the concentration of GHGs, which lead to decreased temperatures in the stratosphere and accelerated circulation patterns. These changes tend to decrease total ozone in the tropics and increase total ozone at mid and high latitudes. Changes in circulation induced by changes in ozone can also affect patterns of surface wind and rainfall. The projected changes in ozone and clouds may lead to large decreases in UV at high latitudes, where UV is already low; and to small increases at low latitudes, where it is already high. This could have important implications for health and ecosystems. Compared to 1980, UV-B irradiance towards the end of the 21st century is projected to be lower at mid to high latitudes by between 5 and 20% respectively, and higher by 2-3% in the low latitudes. However, these projections must be treated with caution because they also depend strongly on changes in cloud cover, air pollutants, and aerosols, all of which are influenced by climate change, and their future is uncertain. Strong interactions between ozone depletion and climate change and uncertainties in the measurements and models limit our confidence in predicting the future UV radiation. It is therefore important to improve our understanding of the processes involved, and to continue monitoring ozone and surface UV spectral irradiances both from the surface and from satellites so we can respond to unexpected changes in the future.

  14. Aconitine Challenge Test Reveals a Single Exposure to Air Pollution Causes Increased Cardiac Arrhythmia Risk in Hypertensive Rats - Abstract

    Science.gov (United States)

    Epidemiological studies demonstrate a significant association between arrhythmias and air pollution exposure. Sensitivity to aconitine-induced arrhythmia has been used repeatedly to examine the factors that increase the risk of such cardiac electrical dysfunction. In this study, ...

  15. A multi-model analysis of vertical ozone profiles

    Directory of Open Access Journals (Sweden)

    D. W. Tarasick

    2009-12-01

    Full Text Available A multi-model study of the long-range transport of ozone and its precursors from major anthropogenic source regions was coordinated by the Task Force on Hemispheric Transport of Air Pollution (TF HTAP under the Convention on Long-range Transboundary Air Pollution (LRTAP. Vertical profiles of ozone at 12-h intervals in year 2001 are available from twelve of the models contributing to this study and are compared here with observed profiles from ozonesondes. The contributions from each major source region are analysed for selected sondes, and this analysis is supplemented by retroplume calculations using the FLEXPART Lagrangian particle dispersion model to provide insight into the origin of ozone transport events and the cause of differences between the models and observations.

    In the boundary layer ozone levels are in general strongly affected by regional sources and sinks. With a considerably longer lifetime in the free troposphere, ozone here is to a much larger extent affected by processes on a larger scale such as intercontinental transport and exchange with the stratosphere. Such individual events are difficult to trace over several days or weeks of transport. As a result statistical relationships between models and ozone sonde measurements are far less satisfactory than for surface measurements at all seasons. The lowest bias between model calculated ozone profiles and the ozone sonde measurements is seen in the winter and autumn months. Following the increase in photochemical activity in the spring and summer months the spread in model results increases and the agreement between ozone sonde measurements and the individual models deteriorates further.

    At selected sites calculated contributions to ozone levels in the free troposphere from intercontinental transport are presented. Intercontinental transport is identified based on differences in model calculations with unperturbed emissions and emissions reduced by 20% by

  16. Air pollution by ozone in Europe in summer 2003 - Overview of exceedances of EC ozone threshold values during the summer season April-August 2003 and comparisons with previous years

    Energy Technology Data Exchange (ETDEWEB)

    Fiala, J.; Cernikovsky, L.; Leeuw, F. de; Kurfuerst, P.; Aalst, R. van (eds.)

    2003-07-01

    In the period 1995-2003 of reporting tinder the old ozone directive, there has been little or no change in the reported exceedances of ozone threshold values. This is not unexpected as reductions in the EU emissions of nitrogen oxides and nonmethane volatile organic compounds, the main ozone precursors, have so far been limited - about 30 % between 1990 and 2000. 2010 under the national emission teilings directive. While peak ozone concentrations seem to go down, ozone concentration statistics relevant to the target values set in the new ozone directive show little or no reduction in the period 1996-2000. Very few stations actually show a significant downward trend for these stabstics. The threshold for warning the population continues to be exceeded on a few occasions Bach year, while the threshold for informing the population is exceeded at riost stations in most countries (outside northern Europe and Ireland) each year, generally more so in warm summers. These exceedances are likely to retur in years with temperatures above the long-term average until there is a substantially larger decrease in precursor emissions. A further reduction of about 30 % is foreseen towards Under current legislation and with the rate of turnover of the vehicle fleet, furtber reductions will gradually occur towards 2010, and further reductions may be necessary to achieve the target values of the new ozone directive. Note that, due to the uncertainties caused by year-to-year meteorological variations and the changes in the monitoring station configuration, these conclusions are tentative. (au)

  17. Tropospheric ozone reduces carbon assimilation in trees: estimates from analysis of continuous flux measurements.

    Science.gov (United States)

    Fares, Silvano; Vargas, Rodrigo; Detto, Matteo; Goldstein, Allen H; Karlik, John; Paoletti, Elena; Vitale, Marcello

    2013-08-01

    High ground-level ozone concentrations are typical of Mediterranean climates. Plant exposure to this oxidant is known to reduce carbon assimilation. Ozone damage has been traditionally measured through manipulative experiments that do not consider long-term exposure and propagate large uncertainty by up-scaling leaf-level observations to ecosystem-level interpretations. We analyzed long-term continuous measurements (>9 site-years at 30 min resolution) of environmental and eco-physiological parameters at three Mediterranean ecosystems: (i) forest site dominated by Pinus ponderosa in the Sierra Mountains in California, USA; (ii) forest site composed of a mixture of Quercus spp. and P. pinea in the Tyrrhenian sea coast near Rome, Italy; and (iii) orchard site of Citrus sinensis cultivated in the California Central Valley, USA. We hypothesized that higher levels of ozone concentration in the atmosphere result in a decrease in carbon assimilation by trees under field conditions. This hypothesis was tested using time series analysis such as wavelet coherence and spectral Granger causality, and complemented with multivariate linear and nonlinear statistical analyses. We found that reduction in carbon assimilation was more related to stomatal ozone deposition than to ozone concentration. The negative effects of ozone occurred within a day of exposure/uptake. Decoupling between carbon assimilation and stomatal aperture increased with the amount of ozone pollution. Up to 12-19% of the carbon assimilation reduction in P. ponderosa and in the Citrus plantation was explained by higher stomatal ozone deposition. In contrast, the Italian site did not show reductions in gross primary productivity either by ozone concentration or stomatal ozone deposition, mainly due to the lower ozone concentrations in the periurban site over the shorter period of investigation. These results highlight the importance of plant adaptation/sensitivity under field conditions, and the importance of

  18. Aeration remediation of a polluted waterway increases near-surface coarse and culturable microbial aerosols.

    Science.gov (United States)

    Dueker, M Elias; O'Mullan, Gregory D

    2014-04-15

    Aeration remediation is currently used in polluted urban waterways to increase oxygen levels in the water column. Recent studies have provided increasing evidence that the bursting of bubbles at water surfaces introduced by aeration, or other surface disturbances, can transfer viable bacteria to the air. In heavily sewage-polluted waterways these water-originated bacterial aerosols may pose as a health risk to recreators in small boats or residents inhabiting the shoreline. Nonetheless, few studies have explored aerosols above active aeration remediation projects in waterways or investigated how bacterial aerosols change with vertical distance from aeration activities. This study, conducted at the Newtown Creek superfund site in Brooklyn, NY, USA, measured coarse aerosol particles and culturable bacteria in near-surface air above waters undergoing aeration remediation. Regardless of aeration operation culturable bacterial fallout was greater near-surface (0.6m above water) than previously-reported measurements made at 2.5m. Molecular analysis of the 16S rRNA gene sequences from isolated bacteria demonstrates that water and air shared a large number of bacterial genera and that the genera present in the near-surface aerosols (0.6m) contained water-associated Vibrio and Caulobacter, which were not present at 2.5m, despite the smaller sequence library size from the near-surface. Also, the near-surface microbial assemblage had significantly greater association with sequences detected previously in aquatic environments compared to the 2.5m library. We found compelling evidence that aeration activity contributed to this vertical gradient in bacterial aerosol concentrations and identity. Similar to results from 2.5m, concentrations of near-surface respirable coarse aerosols (aeration was occurring. Culturable bacterial aerosol fallout was also greater near-surface when the aerator was on compared to simultaneous measurements made at 2.5m. Furthermore, when the aerator was

  19. Midweek Increase in U.S. Summer Rain and Storm Heights, Suggests Air Pollution Invigorates Rainstorms

    Science.gov (United States)

    Bell, Thomas L.; Rosenfeld, Daniel; Kim, Kyu-Myong; Yoo, Jung-Moon; Hahnenberger, Maura

    2007-01-01

    Tropical Rainfall Measuring Mission (TRMM) satellite data show a significant midweek increase in summertime rainfall over the southeast U.S., due to afternoon intensification. TRMM radar data show a significant midweek increase in rain area and in the heights reached by afternoon storms. Weekly variations in model-reanalysis wind patterns over the region and in rain-gauge data are consistent with the satellite data. A midweek decrease of rainfall over the nearby Atlantic is also seen. EPA measurements of particulate concentrations show a midweek peak over much of the U.S. These observations are consistent with the theory that anthropogenic air pollution suppresses cloud-drop coalescence and early rainout during the growth of thunderstorms over land, allowing more water to be carried above the 0 C isotherm, where freezing yields additional latent heat, invigorating the storms--most dramatically evidenced by the shift in the midweek distribution of afternoon-storm heights--and producing large ice hydrometeors. The enhanced convection induces regional convergence, uplifting and an overall increase of rainfall. Compensating downward air motion suppresses convection over the adjacent ocean areas. Pre-TRMM-era data suggest that the weekly cycle only became strong enough to be detectable beginning in the 1980's. Rain-gauge data also suggest that a weekly cycle may have been detectable in the 1940's, but with peak rainfall on Sunday or Monday, possibly explained by the difference in composition of aerosol pollution at that time. This "weekend effect" may thus offer climate researchers an opportunity to study the regional climate-scale impact of aerosols on storm development and monsoon-like circulation.

  20. Stage-specific, Nonlinear Surface Ozone Damage to Rice Production in China

    Science.gov (United States)

    Carter, Colin A.; Cui, Xiaomeng; Ding, Aijun; Ghanem, Dalia; Jiang, Fei; Yi, Fujin; Zhong, Funing

    2017-03-01

    China is one of the most heavily polluted nations and is also the largest agricultural producer. There are relatively few studies measuring the effects of pollution on crop yields in China, and most are based on experiments or simulation methods. We use observational data to study the impact of increased air pollution (surface ozone) on rice yields in Southeast China. We examine nonlinearities in the relationship between rice yields and ozone concentrations and find that an additional day with a maximum ozone concentration greater than 120 ppb is associated with a yield loss of 1.12% ± 0.83% relative to a day with maximum ozone concentration less than 60 ppb. We find that increases in mean ozone concentrations, SUM60, and AOT40 during panicle formation are associated with statistically significant yield losses, whereas such increases before and after panicle formation are not. We conclude that heightened surface ozone levels will potentially lead to reductions in rice yields that are large enough to have implications for the global rice market.

  1. Growth response to a changing environment-Impacts of tropospheric ozone dose on photosynthesis of Norway spruce forests in Austria

    Science.gov (United States)

    Liu, Xiaozhen; Pietsch, Stephan; Hasenauer, Hubert

    2010-05-01

    Tropospheric ozone is an important air pollutant, although plants have active defense strategies (e.g. antioxidants), the cumulative ozone dose may lead to chronic damages to plant tissues. Ozone enters into plants through stomata and reacts with other chemicals to create toxic compounds. This affects plant photosynthesis and may reduce CO2 fixation, and consequently growth. Open top cambers (OTC) are usually used to study the effects of elevated ozone levels on photosynthesis; whereas field studies with on site occurring ozone levels are rare. A recent modelling study on Norway spruce stands in Austria exhibited trends in model errors indicating that an increase in ozone dose leads to a reduction in volume increment. This study aims to explore how different ozone doses affect photosynthesis under field conditions and may translate into growth response for 12 stands of Norway spruce, distributed along an ozone concentration gradient across Austria. A LI-6400xt photosynthesis system was utilized to collect physiological parameters including net photosynthesis, stomata conductance, internal CO2 concentration, transpiration, etc. Chlorophyll fluorescence data was collected by using a PEA chlorophyll fluorescence meter, and chlorophyll content was measured. Morphological characteristics and soil samples were also analyzed. Ozone dose to leaf tissue was calculated from external ozone concentration, the conductance of the stomata to ozone, the leaf area index and the time span of the day when ozone uptake takes place. Our results confirm that increasing cumulative ozone dose reduces maximum assimilation rate and carboxylation efficiency under field conditions. Our final goal is to quantify how far this ozone induced reduction in assimilation power ultimately translates into a growth reduction of Norway spruce in Austria.

  2. Asymmetric correlations in the ozone concentration dynamics of the Mexico City Metropolitan Area

    Science.gov (United States)

    Meraz, M.; Alvarez-Ramirez, J.; Echeverria, J. C.

    2017-04-01

    Mexico City is a megalopolis with severe pollution problems caused by vehicles and industrial activity. This condition imposes important risks to human health and economic activity. Based on hourly-sampled data during the last decade, in a recent work (Meraz et al., 2015) we showed that the pollutant dynamics in Mexico City exhibits long-term and scale-dependent persistence effects resulting from the combination of pollutants generation by vehicles and removal by advection mechanisms. In this work, we analyzed the dynamics of ozone, a key component reflecting the degree of atmospheric contamination, to determine if its long-term correlations are asymmetric in relation to the actual concentration trend (increasing or decreasing). The analysis is conducted with detrended fluctuation analysis. The results showed that the average ozone dynamics is uncorrelated when the concentration is increasing. In contrast, the ozone dynamics shows long-term anti-persistence effects when the concentration is decreasing.

  3. Climate change: potential effects of increased atmospheric carbon dioxide (CO2), ozone (O3), and ultraviolet-B (UV-B) radiation on plant diseases.

    Science.gov (United States)

    Manning, W J; V Tiedemann, A

    1995-01-01

    Continued world population growth results in increased emission of gases from agriculture, combustion of fossil fuels, and industrial processes. This causes changes in the chemical composition of the atmosphere. Evidence is emerging that increased solar ultraviolet-B (UV-B) radiation is reaching the earth's atmosphere, due to stratospheric ozone depletion. Carbon dioxide (CO(2)), ozone (O(3)) and UV-B are individual climate change factors that have direct biological effects on plants. Such effects may directly or indirectly affect the incidence and severity of plant diseases, caused by biotic agents. Carbon dioxide may increase plant canopy size and density, resulting in a greater biomass of high nutritional quality, combined with a much higher microclimate relative humidity. This would be likely to promote plant diseases such as rusts, powdery mildews, leaf spots and blights. Inoculum potential from greater overwintering crop debris would also be increased. Ozone is likely to have adverse effects on plant growth. Necrotrophic pathogens may colonize plants weakened by O(3) at an accelerated rate, while obligate biotroph infections may be lessened. Ozone is unlikely to have direct adverse effects on fungal pathogens. Ozone effects on plant diseases are host plant mediated. The principal effects of increased UV-B on plant diseases would be via alterations in host plants. Increased flavonoids could lead to increased diseased resistance. Reduced net photosynthesis and premature ripening and senescence could result in a decrease in diseases caused by biotrophs and an increase in those caused by necrotrophs. Microbial plant pathogens are less likely to be adversely affected by CO(2), O(3) and UV-B than are their corresponding host plants. Changes in host plants may result in expectable alterations of disease incidence, depending on host plant growth stages and type of pathogen. Given the importance of plant diseases in world food and fiber production, it is essential to

  4. The role of ozone exposure in the epidemiology of asthma

    Energy Technology Data Exchange (ETDEWEB)

    Balmes, J.R. [Univ. of California, San Francisco, CA (United States)

    1993-12-01

    Asthma is a clinical condition characterized by intermittent respiratory symptoms, nonspecific airway hyperresponsiveness, and reversible airway obstruction. Although the pathogenesis of asthma is incompletely understood, it is clear that airway inflammation is a paramount feature of the condition. Because inhalation of ozone by normal, healthy subjects causes increased airway responsiveness and inflammation, it is somewhat surprising that most controlled human exposure studies that have involved asthmatic subjects have not shown them to be especially sensitive to ozone. The acute decrement in lung function that is the end point traditionally used to define sensitivity to ozone in these studies may be due more to neuromuscular mechanisms limiting deep inspiration than to bronchoconstriction. The frequency of asthma attacks following ozone exposures may be a more relevant end point. Epidemiologic studies, rather than controlled human exposure studies, are required to determine whether ozone pollution increases the risk of asthma exacerbations. Asthma affects approximately 10 million people in the United States and, thus, the answer to this question is of considerable public health importance. Both the prevalence and severity of asthma appear to be increasing in many countries. Although increased asthma morbidity and mortality are probably of multifactorial etiology, a contributory role of urban air pollution is plausible. The epidemiologic database to support an association between asthma and ozone exposure is limited, but the results of several studies suggest such an association. Some potential approaches to further investigation of the relationship between asthma and ozone, including those that would link controlled human exposures to population-based studies, are considered. 57 refs.

  5. Climate change, tropospheric ozone and particulate matter, and health impacts.

    Science.gov (United States)

    Ebi, Kristie L; McGregor, Glenn

    2008-11-01

    Because the state of the atmosphere determines the development, transport, dispersion, and deposition of air pollutants, there is concern that climate change could affect morbidity and mortality associated with elevated concentrations of these gases and fine particles. We review how climate change could affect future concentrations of tropospheric ozone and particulate matter (PM), and what changing concentrations could mean for population health. We review studies projecting the impacts of climate change on air quality and studies projecting the impacts of these changes on morbidity and mortality. Climate change could affect local to regional air quality through changes in chemical reaction rates, boundary layer heights that affect vertical mixing of pollutants, and changes in synoptic airflow patterns that govern pollutant transport. Sources of uncertainty include the degree of future climate change, future emissions of air pollutants and their precursors, and how population vulnerability may change in the future. Given these uncertainties, projections suggest that climate change will increase concentrations of tropospheric ozone, at least in high-income countries when precursor emissions are held constant, which would increase morbidity and mortality. Few projections are available for low- and middle-income countries. The evidence is less robust for PM, primarily because few studies have been conducted. Additional research is needed to better understand the possible impacts of climate change on air pollution-related health impacts. If improved models continue to project higher ozone concentrations with climate change, then reducing greenhouse gas emissions would enhance the health of current and future generations.

  6. Model of risk of cortical cataract in the US population with exposure to increased ultraviolet radiation due to stratospheric ozone depletion.

    Science.gov (United States)

    West, Sheila K; Longstreth, Janice D; Munoz, Beatriz E; Pitcher, Hugh M; Duncan, Donald D

    2005-12-01

    The authors modeled the possible consequences for US cataract incidence of increases in ultraviolet B radiation due to ozone depletion. Data on the dose-response relation between ocular exposure to ultraviolet B radiation and cortical cataract were derived from a population-based study (the Salisbury Eye Evaluation Project, Salisbury, Maryland) in which extensive data on cataract and ultraviolet radiation were collected in persons aged 65-84 years. Exposure estimates for the US population were derived using estimated ultraviolet radiation fluxes as a function of wavelength. US Census data were used to obtain the age, ethnicity, and sex distribution of the population. Predicted probabilities of cataract were derived from the age-, sex-, and ethnicity-specific ocular ultraviolet exposure data and were modeled under conditions of 5-20% ozone depletion. The analysis indicated that by 2050, the prevalence of cortical cataract will increase above expected levels by 1.3-6.9%. The authors estimate that with 5-20% ozone depletion, there will be 167,000-830,000 additional cases of cortical cataract by 2050. Because of the high prevalence of cataract in older persons, at a 2003 cost of 3,370 dollars per cataract operation, this increase could represent an excess cost of 563 million dollars to 2.8 billion dollars.

  7. Ozone exposure of a weed community produces adaptive changes in seed populations of Spergula arvensis.

    Directory of Open Access Journals (Sweden)

    Jennifer B Landesmann

    Full Text Available Tropospheric ozone is one of the major drivers of global change. This stress factor alters plant growth and development. Ozone could act as a selection pressure on species communities composition, but also on population genetic background, thus affecting life history traits. Our objective was to evaluate the consequences of prolonged ozone exposure of a weed community on phenotypic traits of Spergulaarvensis linked to persistence. Specifically, we predicted that the selection pressure exerted by high ozone concentrations as well as the concomitant changes in the weed community would drive population adaptive changes which will be reflected on seed germination, dormancy and longevity. In order to test seed viability and dormancy level, we conducted germination experiments for which we used seeds produced by S. arvensis plants grown within a weed community exposed to three ozone treatments during four years (0, 90 and 120 ppb. We also performed a soil seed bank experiment to test seed longevity with seeds coming from both the four-year ozone exposure experiment and from a short-term treatment conducted at ambient and added ozone concentrations. We found that prolonged ozone exposure produced changes in seed germination, dormancy and longevity, resulting in three S. arvensis populations. Seeds from the 90 ppb ozone selection treatment had the highest level of germination when stored at 75% RH and 25 °C and then scarified. These seeds showed the lowest dormancy level when being subjected to 5 ºC/5% RH and 25 ºC/75% followed by 5% RH storage conditions. Furthermore, ozone exposure increased seed persistence in the soil through a maternal effect. Given that tropospheric ozone is an important pollutant in rural areas, changes in seed traits due to ozone exposure could increase weed persistence in fields, thus affecting weed-crop interactions, which could ultimately reduce crop production.

  8. Regulations Concerning Agriculture and Air Pollution

    Directory of Open Access Journals (Sweden)

    Chiara Bertora

    2010-03-01

    Full Text Available The main issues related to the atmospheric pollution are the stratospheric ozone depletion, the transboundary air pollution, the troposphere air quality and the climate change. The three last decades have seen the birth of several measures for the atmosphere safeguard. Agricultural activities play a key role in determining, preventing and mitigating atmospheric pollution. The emission to atmosphere of different ozone-depleting substances is regulated by the Montreal Protocol. The role of agriculture activity in ozone depletion is linked to the utilization of methyl bromide as soil sterilant and to the emission of nitrogen oxides and nitrous oxide, from agricultural soils. The Convention on long-range transboundary air pollution regulates the emission of several pollutants, i.e. sulphur dioxide, nitrogen oxides, ammonia, non methane volatile organic compounds, carbon monoxide, heavy metals, persistent organic pollutants, and tropospheric ozone. The agriculture sector is responsible for a large part of the emissions of ammonia and nitrogen oxides, mainly through manure management and nitrogen fertilization, and of most persistent organic pollutants, largely used in the past as insecticides and fungicides. The increase of the greenhouse gases (GHGs concentration in the atmosphere is under the control of the Kyoto Protocol. Agriculture accounts for 59-63% of global non-CO2 GHGs emissions but at the same time it contributes to the atmospheric CO2 concentration stabilisation through the substitution of fossil fuels by biofuels and the sequestration of C in soil and vegetal biomass. In this paper we provide an outline of the numerous scientific and legislative initiatives aimed at protecting the atmosphere, and we analyse in detail the agriculture sector in order to highlight both its contribution to atmospheric pollution and the actions aimed at preventing and mitigating it.

  9. Increased micronuclei and bulky DNA adducts in cord blood after maternal exposures to traffic-related air pollution

    DEFF Research Database (Denmark)

    Pedersen, M.; Wichmann, J.; Autrup, H.

    2009-01-01

    Exposure to traffic-related air pollution in urban environment is common and has been associated with adverse human health effects. In utero exposures that result in DNA damage may affect health later in life. Early effects of maternal and in utero exposures to traffic-related air pollution were...... for potential confounders and effect modifiers. For the first time increased bulky DNA adducts and MN in cord blood after maternal exposures to traffic-related air pollution are found, demonstrating that these transplacental environmental exposures induce DNA damage in newborns. Given that increased DNA damage...... umbilical cords, concurrently collected at the time of planned Caesarean section. Modeled residential traffic density, a proxy measure of traffic-related air pollution exposures, was validated by indoor levels of nitrogen dioxide and polycyclic aromatic hydrocarbons in 42 non-smoking homes. DNA adduct...

  10. Pollution, Health, and Avoidance Behavior: Evidence from the Ports of Los Angeles

    Science.gov (United States)

    Moretti, Enrico; Neidell, Matthew

    2011-01-01

    A pervasive problem in estimating the costs of pollution is that optimizing individuals may compensate for increases in pollution by reducing their exposure, resulting in estimates that understate the full welfare costs. To account for this issue, measurement error, and environmental confounding, we estimate the health effects of ozone using daily…

  11. Pollution, Health, and Avoidance Behavior: Evidence from the Ports of Los Angeles

    Science.gov (United States)

    Moretti, Enrico; Neidell, Matthew

    2011-01-01

    A pervasive problem in estimating the costs of pollution is that optimizing individuals may compensate for increases in pollution by reducing their exposure, resulting in estimates that understate the full welfare costs. To account for this issue, measurement error, and environmental confounding, we estimate the health effects of ozone using daily…

  12. Impact of high ozone on isoprene emission, photosynthesis and histology of developing Populus alba leaves directly or indirectly exposed to the pollutant

    Energy Technology Data Exchange (ETDEWEB)

    Fares, S.; Barta, C.; Brilli, F. [Istituto di Biologia Agroambientale e Forestale, Consiglio Nazionale delle Richerce, Rome (IT)] (and others)

    2006-11-15

    The direct and indirect impact of ozone on Populus alba was studied by exposing leaves enclosed in specially designed cuvettes for 30 days to high ozone (150 ppb, 11 h per day), while leaves developing above the cuvettes were exposed to ambient ozone. Gas exchanges and histo-anatomical parameters were measured to specifically understand whether ozone indirectly affects the anatomy and physiology of leaves. Three leaf classes were investigated: (1) those expanding above the cuvettes (A leaves); (2) those already developed inside the cuvettes (B leaves) and (3) those developing inside the cuvettes, since the beginning of the ozone treatment (C leaves). The anatomy and morphology of the first leaf developing outside the cuvette (A1) were strongly affected by ozone, whereas photosynthesis was not perturbed. However, in leaves of ozone-treated plants developing after A1, a large reduction of starch accumulation was observed, which suggests a delayed biosynthesis, or a very rapid export of starch toward other sinks. Isoprene emission was higher and isoprene synthase messenger RNA was more expressed in ozone-treated A1 leaves than in control leaves with similar ontogeny. This indicates that isoprene synthesis is stimulated by ozone, and reveals that isoprene emission is controlled at a transcriptional level. Leaves already developed inside the cuvette (B leaves) rapidly sensed ozone stress, which inhibited photosynthesis, stomatal conductance and isoprene emission. The observation that new leaves were developing inside the cuvettes during the treatment (C leaves) suggests that resistance to ozone may be acquired by plants. Leaves C showed a more packed and thinner mesophyll than controls, of similar development, which may help reduce ozone penetration inside cells. They also showed a lower photosynthesis in comparison to controls and to other leaf classes, probably because of ribulose 1,5-bisphosphate carboxylase/oxygenase activity limitation, as inferred from

  13. Episodic air pollution is associated with increased DNA fragmentation in human sperm without other changes in semen quality

    Energy Technology Data Exchange (ETDEWEB)

    Rubes, J.; Selevan, S.G.; Evenson, D.P.; Zudova, D.; Vozdova, M.; Zudova, Z.; Robbins, W.A.; Perreault, S.D. [US EPA, Research Triangle Park, NC (United States)

    2005-10-01

    This study examined potential associations between exposure to episodes of air pollution and alterations in semen quality. The air pollution, resulting from combustion of coal for industry and home heating in the Teplice district of the Czech Republic, was much higher during the winter than at other times of year with peaks exceeding US air quality standards. Young men from Teplice were sampled up to seven times over 2 years allowing evaluation of semen quality after periods of exposure to both low and high air pollution. Routine semen analysis (sperm concentration, motility and morphology) and tests for sperm aneuploidy and chromatin integrity were performed, comparing measurements within each subject. Exposure was classified as high or low based on data from ambient air pollution monitoring. Using repeated measures analysis, a significant association was found between exposure to periods of high air pollution (at or above the upper limit of US air quality standards) and the percentage of sperm with DNA fragmentation according to sperm chromatin structure assay (SCSA). Other semen measures were not associated with air pollution. It is concluded that exposure to intermittent air pollution may result in sperm DNA damage and thereby increase the rates of male-mediated infertility, miscarriage, and other adverse reproductive outcomes.

  14. Can a global model reproduce observed trends in summertime surface ozone levels?

    Directory of Open Access Journals (Sweden)

    S. Koumoutsaris

    2012-01-01

    Full Text Available Quantifying trends in surface ozone concentrations are critical for assessing pollution control strategies. Here we use observations and results from a global chemical transport model to examine the trends (1991–2005 in daily maximum 8-hour average concentrations in summertime surface ozone at rural sites in Europe and the United States. We find a decrease in observed ozone concentrations at the high end of the probability distribution at many of the sites in both regions. The model attributes these trends to a decrease in local anthropogenic ozone precursors, although simulated decreasing trends are overestimated in comparison with observed ones. The low end of observed distribution show small upward trends over Europe and the western US and downward trends in Eastern US. The model cannot reproduce these observed trends, especially over Europe and the western US. In particular, simulated changes between the low and high end of the distributions in these two regions are not significant. Sensitivity simulations indicate that emissions from far away source regions do not affect significantly ozone trends at both ends of the distribution. This is in contrast with previously available results, which indicated that increasing ozone trends at the low percentiles may reflect an increase in ozone background associated with increasing remote sources of ozone precursors. Possible reasons for discrepancies between observed and simulated trends are discussed.

  15. 77 FR 66783 - National Oil and Hazardous Substances Pollution Contingency Plan; Revision To Increase Public...

    Science.gov (United States)

    2012-11-07

    ... AGENCY 40 CFR Part 300 RIN 2050-AG73] National Oil and Hazardous Substances Pollution Contingency Plan... Oil and Hazardous Substances Pollution Contingency Plan, to acknowledge advancements in technologies... Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to amend the National Oil and...

  16. 78 FR 4333 - National Oil and Hazardous Substances Pollution Contingency Plan; Revision To Increase Public...

    Science.gov (United States)

    2013-01-22

    ... AGENCY 40 CFR Part 300 RIN 2050-AG73 National Oil and Hazardous Substances Pollution Contingency Plan... are withdrawing the direct final rule for National Oil and Hazardous Substances Pollution Contingency... 7, 2012. DATES: Effective January 22, 2013, EPA withdraws the direct final rule published at 77...

  17. 臭氧 BAF一体化装置处理含氨氮有机污染废水%Integrated Unit of Ozone-BAF System for Treatment of Organic Polluted Wastewater with Ammonia Nitrogen

    Institute of Scientific and Technical Information of China (English)

    刘剑玉; 林庆坤; 汪晓军

    2015-01-01

    Integrated unit of ozone and biological aerated filter (BAF)was used to treat organic polluted wastewater containing ammonia nitrogen. The results indicate that removal rate of ammonia nitrogen decreases with the increase of ammonia nitrogen concentration in influent,the ideal ammonia nitrogen loading is 0. 17 ~ 0. 25 kg / m3 ·d,and then removal rate of ammonia nitrogen can be above 60% stably. Ammonia nitrogen in influent has some negative influence on COD removal. When concentration of ammonia nitrogen is more than 60 mg / L,effect of COD removal turns worse obviously. Lipid-phosphorous method was applied in biomass measurement of the integrated ozone-BAF unit to treat biomass distribution in the system. It is shown that in the area near inlet,when sampling height isn’t more than 1. 2 m,biomass is extremely rare as a result of the high ozone disinfection. Biomass reaches maximum when the vertical distance is 1. 5 m,and then biomass declines with the increase of sampling height.%该文采用臭氧曝气生物滤池(BAF)一体化装置处理含氨氮有机污染废水。随着氨氮浓度增大,系统对氨氮的去除率呈现下降趋势,较理想的进水氨氮负荷范围为0.17~0.25 kg / m3·d,此时的氨氮去除率可稳定在60%以上。进水中含有的氨氮对COD去除效果的影响较大,当氨氮浓度超过60 mg / L时,系统对 COD的去除效果明显变差。用脂磷法测定一体化装置内的微生物量,结果显示在距离进水口较近的区域(取样高度≤1.2 m)由于高浓度臭氧的杀菌作用,微生物量极少;在距离进水口垂直距离1.5 m处生物量达到最大值,形成了臭氧氧化和生化的协同作用区域;在此之后,随着取样高度的继续增加,系统内生物量出现下降的现象。

  18. Extreme soil acidity from biodegradable trap and skeet targets increases severity of pollution at shooting ranges.

    Science.gov (United States)

    McTee, Michael R; Mummey, Daniel L; Ramsey, Philip W; Hinman, Nancy W

    2016-01-01

    Lead pollution at shooting ranges overshadows the potential for contamination issues from trap and skeet targets. We studied the environmental influence of targets sold as biodegradable by determining the components of the targets and sampling soils at a former sporting clay range. Targets comprised approximately 53% CaCO3, 41% S(0), and 6% modifiers, and on a molar basis, there was 2.3 times more S(0) than CaCO3. We observed a positive correlation between target cover and SO4(2-) (ρ=0.82, Psoil pH (ρ=0.62, P=0.006). For sites that had pH values below 3, 24tons of lime per 1000tons of soil would be required to raise soil pH to 6.5. Lime-facilitated pH increases would be transitory because S(0) would continue to oxidize to H2SO4 until the S(0) is depleted. This study demonstrates that biodegradable trap and skeet targets can acidify soil, which has implications for increasing the mobility of Pb from shotgun pellets. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Threat of plastic pollution to seabirds is global, pervasive, and increasing.

    Science.gov (United States)

    Wilcox, Chris; Van Sebille, Erik; Hardesty, Britta Denise

    2015-09-22

    Plastic pollution in the ocean is a global concern; concentrations reach 580,000 pieces per km(2) and production is increasing exponentially. Although a large number of empirical studies provide emerging evidence of impacts to wildlife, there has been little systematic assessment of risk. We performed a spatial risk analysis using predicted debris distributions and ranges for 186 seabird species to model debris exposure. We adjusted the model using published data on plastic ingestion by seabirds. Eighty of 135 (59%) species with studies reported in the literature between 1962 and 2012 had ingested plastic, and, within those studies, on average 29% of individuals had plastic in their gut. Standardizing the data for time and species, we estimate the ingestion rate would reach 90% of individuals if these studies were conducted today. Using these results from the literature, we tuned our risk model and were able to capture 71% of the variation in plastic ingestion based on a model including exposure, time, study method, and body size. We used this tuned model to predict risk across seabird species at the global scale. The highest area of expected impact occurs at the Southern Ocean boundary in the Tasman Sea between Australia and New Zealand, which contrasts with previous work identifying this area as having low anthropogenic pressures and concentrations of marine debris. We predict that plastics ingestion is increasing in seabirds, that it will reach 99% of all species by 2050, and that effective waste management can reduce this threat.

  20. Inhaled Ozone (O3)-Induces Changes in Serum Metabolomic and Liver Transcriptomic Profiles in Rats

    Science.gov (United States)

    Air pollution has been linked to increased incidence of diabetes. Recently, we showed that ozone (03) induces glucose intolerance, and increases serum leptin and epinephrine in Brown Norway rats. In this study, we hypothesized that 03 exposure will cause systemic changes in metab...

  1. Inhaled Ozone (O3)-Induces Changes in Serum Metabolomic and Liver Transcriptomic Profiles in Rats

    Science.gov (United States)

    Air pollution has been linked to increased incidence of diabetes. Recently, we showed that ozone (03) induces glucose intolerance, and increases serum leptin and epinephrine in Brown Norway rats. In this study, we hypothesized that 03 exposure will cause systemic changes in metab...

  2. Changes in tropospheric composition and air quality due to stratospheric ozone depletion.

    Science.gov (United States)

    Solomon, Keith R; Tang, Xiaoyan; Wilson, Stephen R; Zanis, Prodromos; Bais, Alkiviadis F

    2003-01-01

    Increased UV-B through stratospheric ozone depletion leads to an increased chemical activity in the lower atmosphere (the troposphere). The effect of stratospheric ozone depletion on tropospheric ozone is small (though significant) compared to the ozone generated anthropogenically in areas already experiencing air pollution. Modeling and experimental studies suggest that the impacts of stratospheric ozone depletion on tropospheric ozone are different at different altitudes and for different chemical regimes. As a result the increase in ozone due to stratospheric ozone depletion may be greater in polluted regions. Attributable effects on concentrations are expected only in regions where local emissions make minor contributions. The vertical distribution of NOx (NO + NO2), the emission of volatile organic compounds and the abundance of water vapor, are important influencing factors. The long-term nature of stratospheric ozone depletion means that even a small increase in tropospheric ozone concentration can have a significant impact on human health and the environment. Trifluoroacetic acid (TFA) and chlorodifluoroacetic acid (CDFA) are produced by the atmospheric degradation of hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs). TFA has been measured in rain, rivers, lakes, and oceans, the ultimate sink for these and related compounds. Significant anthropogenic sources of TFA other than degradation HCFCs and HFCs have been identified. Toxicity tests under field conditions indicate that the concentrations of TFA and CDFA currently produced by the atmospheric degradation of HFCs and HCFCs do not present a risk to human health and the environment. The impact of the interaction between ozone depletion and future climate change is complex and a significant area of current research. For air quality and tropospheric composition, a range of physical parameters such as temperature, cloudiness and atmospheric transport will modify the impact of UV-B. Changes in the

  3. Nitrogen management is essential to prevent tropical oil palm plantations from causing ground-level ozone pollution

    OpenAIRE

    C. N. Hewitt; MacKenzie, A. R.; Di Carlo, P.; C. F. Di Marco; J. R. Dorsey; Evans, M,; Fowler, D; M. W. Gallagher; J. R. Hopkins; Jones, C. E.; Langford, B.; Lee, J. D.; A. C. Lewis; S. F. Lim; McQuaid, J.

    2009-01-01

    More than half the world's rainforest has been lost to agriculture since the Industrial Revolution. Among the most widespread tropical crops is oil palm (Elaeis guineensis): global production now exceeds 35 million tonnes per year. In Malaysia, for example, 13% of land area is now oil palm plantation, compared with 1% in 1974. There are enormous pressures to increase palm oil production for food, domestic products, and, especially, biofuels. Greater use of palm oil for biofuel production is p...

  4. Recovery of the Ozone Layer: The Ozone Depleting Gas Index

    Science.gov (United States)

    Hofmann, David J.; Montzka, Stephen A.

    2009-01-01

    The stratospheric ozone layer, through absorption of solar ultraviolet radiation, protects all biological systems on Earth. In response to concerns over the depletion of the global ozone layer, the U.S. Clean Air Act as amended in 1990 mandates that NASA and NOAA monitor stratospheric ozone and ozone-depleting substances. This information is critical for assessing whether the Montreal Protocol on Substances That Deplete the Ozone Layer, an international treaty that entered into force in 1989 to protect the ozone layer, is having its intended effect of mitigating increases in harmful ultraviolet radiation. To provide the information necessary to satisfy this congressional mandate, both NASA and NOAA have instituted and maintained global monitoring programs to keep track of ozone-depleting gases as well as ozone itself. While data collected for the past 30 years have been used extensively in international assessments of ozone layer depletion science, the language of scientists often eludes the average citizen who has a considerable interest in the health of Earth's protective ultraviolet radiation shield. Are the ozone-destroying chemicals declining in the atmosphere? When will these chemicals decline to pre-ozone hole levels so that the Antarctic ozone hole might disappear? Will this timing be different in the stratosphere above midlatitudes?

  5. Photochemical Process Modeling and Analysis of Ozone Generation

    Institute of Scientific and Technical Information of China (English)

    王冰; 邱彤; 陈丙珍

    2014-01-01

    Air pollution in modern city and industrial zones has become a serious public concern in recent years in China. Significance of air quality assessment and emission control strategy design is increasing. Most studies in China focus on particulate matter (PM), especially PM2.5, while few account for photochemical secondary air pol-lutions represented by ozone (O3). In this paper, a procedure for air quality simulation with comprehensive air quality model with extensions (CAMx) is demonstrated for studying the photochemical process and ozone generation in the troposphere. As a case study, the CAMx photochemical grid model is used to model ozone over southern part of Beijing city in winter, 2011. The input parameters to CAMx include emission sources, meteorology field data, terrain definition, photolysis status, initial and boundary conditions. The simulation results are verified by theoretical analysis of the ozone generation tendency. The simulated variation tendency of domain-wide average value of hourly ozone concentration coincides reasonably well with the theoretical analysis on the atmospheric photochemical process, demonstrating the effectiveness of the procedure. An integrated model system that cooperates with CAMx will be established in our future work.

  6. Sampling Ozone Exposure of Canadian Forests at Different Scales: Some Case Studies

    Directory of Open Access Journals (Sweden)

    R.M. Cox

    2001-01-01

    Full Text Available The use of passive samplers in extensive monitoring, such as that used in national forest health monitoring plots, indicates that these devices are able to determine both spatial and temporal differences in ozone exposure of the plots. This allows for categorisation of the plots and the potential for cause-effect analysis of certain forest health responses. Forest exposure along a gradient of air pollution deposition demonstrates large variation in accumulated exposures. The efficacy of using passive samplers for in situ monitoring of forest canopy exposure was also demonstrated. The sampler data produced weak relationships with ozone values from the nearest �continuous� monitor, even though data from colocated samplers showed strong relationships. This spatial variation and the apparent effect of elevation on ozone exposure demonstrate the importance of topography and tree canopy characteristics in plant exposure on a regional scale. In addition, passive sampling may identify the effects of local pollutant gases, such as NO, which may scavenge ozone locally only to increase the production of this secondary pollutant downwind, as atmospheric reactions redress the equilibrium between concentrations of this precursor and those of the generated ozone. The use of passive samplers at the stand level is able to resolve vertical profiles within the stand and edge effects that are important in exposure of understorey and ground flora. Recent case studies using passive samplers to determine forest exposure to ozone indicate a great potential for the development of spatial models on a regional, landscape, and stand level scale.

  7. The influence of temperature on ozone production under varying NOx conditions - a modelling study

    Science.gov (United States)

    Coates, Jane; Mar, Kathleen A.; Ojha, Narendra; Butler, Tim M.

    2016-09-01

    Surface ozone is a secondary air pollutant produced during the atmospheric photochemical degradation of emitted volatile organic compounds (VOCs) in the presence of sunlight and nitrogen oxides (NOx). Temperature directly influences ozone production through speeding up the rates of chemical reactions and increasing the emissions of VOCs, such as isoprene, from vegetation. In this study, we used an idealised box model with different chemical mechanisms (Master Chemical Mechanism, MCMv3.2; Common Representative Intermediates, CRIv2; Model for OZone and Related Chemical Tracers, MOZART-4; Regional Acid Deposition Model, RADM2; Carbon Bond Mechanism, CB05) to examine the non-linear relationship between ozone, NOx and temperature, and we compared this to previous observational studies. Under high-NOx conditions, an increase in ozone from 20 to 40 °C of up to 20 ppbv was due to faster reaction rates, while increased isoprene emissions added up to a further 11 ppbv of ozone. The largest inter-mechanism differences were obtained at high temperatures and high-NOx emissions. CB05 and RADM2 simulated more NOx-sensitive chemistry than MCMv3.2, CRIv2 and MOZART-4, which could lead to different mitigation strategies being proposed depending on the chemical mechanism. The increased oxidation rate of emitted VOC with temperature controlled the rate of Ox production; the net influence of peroxy nitrates increased net Ox production per molecule of emitted VOC oxidised. The rate of increase in ozone mixing ratios with temperature from our box model simulations was about half the rate of increase in ozone with temperature observed over central Europe or simulated by a regional chemistry transport model. Modifying the box model set-up to approximate stagnant meteorological conditions increased the rate of increase of ozone with temperature as the accumulation of oxidants enhanced ozone production through the increased production of peroxy radicals from the secondary degradation of

  8. Combination of ozonation with conventional aerobic oxidation for distillery wastewater treatment.

    Science.gov (United States)

    Sangave, Preeti C; Gogate, Parag R; Pandit, Aniruddha B

    2007-05-01

    Laboratory-scale experiments were conducted in order to investigate the effect of ozone as pre-aerobic treatment and post-aerobic treatment for the treatment of the distillery wastewater. The degradation of the pollutants present in distillery spent wash was carried out by ozonation, aerobic biological degradation processes alone and by using the combinations of these two processes to investigate the synergism between the two modes of wastewater treatment and with the aim of reducing the overall treatment costs. Pollutant removal efficiency was followed by means of global parameters directly related to the concentration of organic compounds in those effluents: chemical oxygen demand (COD) and the color removal efficiency in terms of absorbance of the sample at 254 nm. Ozone was found to be effective in bringing down the COD (up to 27%) during the pretreatment step itself. In the combined process, pretreatment of the effluent led to enhanced rates of subsequent biological oxidation step, almost 2.5 times increase in the initial oxidation rate has been observed. Post-aerobic treatment with ozone led to further removal of COD along with the complete discoloration of the effluent. The integrated process (ozone-aerobic oxidation-ozone) achieved approximately 79% COD reduction along with discoloration of the effluent sample as compared to 34.9% COD reduction for non-ozonated sample, over a similar treatment period.

  9. Cough and environmental air pollution in China.

    Science.gov (United States)

    Zhang, Qingling; Qiu, Minzhi; Lai, Kefang; Zhong, Nanshan

    2015-12-01

    With fast-paced urbanization and increased energy consumption in rapidly industrialized modern China, the level of outdoor and indoor air pollution resulting from industrial and motor vehicle emissions has been increasing at an accelerated rate. Thus, there is a significant increase in the prevalence of respiratory symptoms such as coughing, wheezing, and decreased pulmonary function. Experimental exposure research and epidemiological studies have indicated that exposure to particulate matter, ozone, nitrogen dioxide, and environmental tobacco smoke have a harmful influence on development of respiratory diseases and are significantly associated with cough and wheeze. This review mainly discusses the effect of air pollutants on respiratory health, particularly with respect to cough, the links between air pollutants and microorganisms, and air pollutant sources. Particular attention is paid to studies in urban areas of China where the levels of ambient and indoor air pollution are significantly higher than World Health Organization recommendations.

  10. Assessment and Applications of NASA Ozone Data Products Derived from Aura OMI-MLS Satellite Measurements in Context of the GMI Chemical Transport Model

    Science.gov (United States)

    Ziemke, J. R.; Olsen, M. A.; Witte, J. C.; Douglass, A. R.; Strahan, S. E.; Wargan, K.; Liu, X.; Schoeberl, M. R.; Yang, K.; Kaplan, T. B.; Pawson, S.; Duncan, B. N.; Newman, P. A.; Bhartia, K.; Heney, M. K.

    2013-01-01

    Measurements from the Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS), both onboard the Aura spacecraft, have been used to produce daily global maps of column and profile ozone since August 2004. Here we compare and evaluate three strategies to obtain daily maps of tropospheric and stratospheric ozone from OMI and MLS measurements: trajectory mapping, direct profile retrieval, and data assimilation. Evaluation is based upon an assessment that includes validation using ozonesondes and comparisons with the Global Modeling Initiative (GMI) chemical transport model (CTM). We investigate applications of the three ozone data products from near-decadal and inter-annual timescales to day-to-day case studies. Zonally averaged inter-annual changes in tropospheric ozone from all of the products in any latitude range are of the order 1-2 Dobson Units while changes (increases) over the 8-year Aura record investigated http://eospso.gsfc.nasa.gov/atbd-category/49 vary approximately 2-4 Dobson Units. It is demonstrated that all of the ozone products can measure and monitor exceptional tropospheric ozone events including major forest fire and pollution transport events. Stratospheric ozone during the Aura record has several anomalous inter-annual events including stratospheric warming split events in the Northern Hemisphere extra-tropics that are well captured using the data assimilation ozone profile product. Data assimilation with continuous daily global coverage and vertical ozone profile information is the best of the three strategies at generating a global tropospheric and stratospheric ozone product for science applications.

  11. Cardiovascular effects of air pollution.

    Science.gov (United States)

    Bourdrel, Thomas; Bind, Marie-Abèle; Béjot, Yannick; Morel, Olivier; Argacha, Jean-François

    2017-07-20

    Air pollution is composed of particulate matter (PM) and gaseous pollutants, such as nitrogen dioxide and ozone. PM is classified according to size into coarse particles (PM10), fine particles (PM2.5) and ultrafine particles. We aim to provide an original review of the scientific evidence from epidemiological and experimental studies examining the cardiovascular effects of outdoor air pollution. Pooled epidemiological studies reported that a 10μg/m(3) increase in long-term exposure to PM2.5 was associated with an 11% increase in cardiovascular mortality. Increased cardiovascular mortality was also related to long-term and short-term exposure to nitrogen dioxide. Exposure to air pollution and road traffic was associated with an increased risk of arteriosclerosis, as shown by premature aortic and coronary calcification. Short-term increases in air pollution were associated with an increased risk of myocardial infarction, stroke and acute heart failure. The risk was increased even when pollutant concentrations were below European standards. Reinforcing the evidence from epidemiological studies, numerous experimental studies demonstrated that air pollution promotes a systemic vascular oxidative stress reaction. Radical oxygen species induce endothelial dysfunction, monocyte activation and some proatherogenic changes in lipoproteins, which initiate plaque formation. Furthermore, air pollution favours thrombus formation, because of an increase in coagulation factors and platelet activation. Experimental studies also indicate that some pollutants have more harmful cardiovascular effects, such as combustion-derived PM2.5 and ultrafine particles. Air pollution is a major contributor to cardiovascular diseases. Promotion of safer air quality appears to be a new challenge in cardiovascular disease prevention. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Role of neutrophilic inflammation in ozone-induced epithelial alterations in the nasal airways of rats

    Science.gov (United States)

    Cho, Hye Youn

    Ozone is a principal oxidant air pollutant in photochemical smog. Epithelial cells lining the centriacinar region of lung and the proximal aspects of nasal passage are primary target sites for ozone-induced injury in laboratory animals. Acute exposure of rats to high ambient concentrations of ozone (e.g., 0.5 ppm) results in neutrophilic inflammation, epithelial hyperplasia and mucous cell metaplasia (MCM) in the nasal transitional epithelium (NTE) lining the proximal nasal airways. The principal purpose of the present study was to investigate the role of pre-metaplastic cellular responses, especially neutrophilic inflammation, in the pathogenesis of ozone-induced MCM in rat NTE. For this purpose, three specific hypotheses-based whole-animal inhalation studies were conducted. Male F344/N rats were exposed in whole-body inhalation chambers to 0 (filtered air) or 0.5 ppm ozone for 1-3 days (8 h/day). Histochemical, immunochemical, molecular and morphometric techniques were used to investigate the ozone-induced cellular and molecular events in the NTE. Two in vitro studies were also conducted to examine the effects of ozone-inducible cytokines (i.e., tumor necrosis factor-alpha; TNF- a, and interleukin-6; IL-6) on mucin gene (rMuc-5AC) expression. Ozone induced a rapid increase of rMuc-5AC mRNA in nasal tissues within hours after the start of exposure. It preceded the appearance of MCM, and persisted with MCM. Ozone-induced neutrophilic inflammation accompanied the mucin gene upregulation, but was resolved when MCM first appeared in the NTE. Antibody-mediated depletion of circulating neutrophils attenuated ozone-induced MCM, although it did not affect the ozone-induced epithelial hyperplasia and mucin mRNA upregulation. In another study, it was found that preexisting neutrophilic rhinitis induced by endotoxin augmented the ozone-induced MCM. However, pre-existing rhinitis did not alter the severity of ozone-induced epithelial hyperplasia and mucin gene upregulation

  13. Aging and episodic ozone exposure in Brown Norway rats: Effects on heart rate, core temperature, pulmonary function, and expression of serum biomarkers.

    Science.gov (United States)

    Ozone (03) is an air pollutant that is associated with cardiovascular and respiratory diseases. The aged population is considered to be more sensitive to pollutants such as 03;however, relatively few studies have demonstrated increased susceptibility in aged or senescent animal m...

  14. Ozonated Olive Oils and Troubles

    Directory of Open Access Journals (Sweden)

    Bulent Uysal

    2014-04-01

    Full Text Available One of the commonly used methods for ozone therapy is ozonated oils. Most prominent type of used oils is extra virgin olive oil. But still, each type of unsaturated oils may be used for ozonation. There are a lot of wrong knowledge on the internet about ozonated oils and its use as well. Just like other ozone therapy studies, also the studies about ozone oils are inadequate to avoid incorrect knowledge. Current data about ozone oil and its benefits are produced by supplier who oversees financial interests and make misinformation. Despite the rapidly increasing ozone oil sales through the internet, its quality and efficacy is still controversial. Dozens of companies and web sites may be easily found to buy ozonated oil. But, very few of these products are reliable, and contain sufficiently ozonated oil. This article aimed to introduce the troubles about ozonated oils and so to inform ozonated oil users. [J Intercult Ethnopharmacol 2014; 3(2.000: 49-50

  15. Ozone pollution effects on gas exchange, growth and biomass yield of salinity-treated winter wheat cultivars.

    Science.gov (United States)

    Zheng, Yanhai; Cheng, Da; Simmons, Matthew

    2014-11-15

    A sand-culture experiment was conducted in four Open-Top-Chambers to assess the effects of O3 on salinity-treated winter wheat. Two winter wheat cultivars, salt-tolerant Dekang961 and salt-sensitive Lumai15, were grown under saline (100 mM NaCl) and/or O3 (80±5 nmol mol(-1)) conditions for 35 days. Significant (Pgrowth and biomass yield in the no-salinity treatment. Significant (Psalinity treatment. Soluble sugar and proline contents significantly increased in both cultivars in combined salinity and O3 exposure. O3-induced down-regulation in the gradients of A-C(i) and A-PPFD response curves were much larger in Dekang961 than in Lumai15 under saline conditions. Significant (Psalinity×cultivars and salinity×O3 stresses. The results clearly demonstrated that O3 injuries were closely correlated with plant stomatal conductance (g(s)); the salt-tolerant wheat cultivar might be damaged more severely than the salt-sensitive cultivar by O3 due to its higher g(s) in saline conditions.

  16. Drivers of the tropospheric ozone budget throughout the 21st century under the medium-high climate scenario RCP 6.0

    Directory of Open Access Journals (Sweden)

    L. E. Revell

    2015-01-01

    Full Text Available Because tropospheric ozone is both a~greenhouse gas and harmful air pollutant, it is important to understand how anthropogenic activities may influence its abundance and distribution through the 21st century. Here, we present model simulations performed with the chemistry-climate model SOCOL, in which spatially disaggregated chemistry and transport tracers have been implemented in order to better understand the distribution and projected changes in tropospheric ozone. We examine the influences of ozone precursor emissions (nitrogen oxides (NOx, carbon monoxide (CO and volatile organic compounds (VOCs, climate change and stratospheric ozone recovery on the tropospheric ozone budget, in a~simulation following the climate scenario Representative Concentration Pathway (RCP 6.0. Changes in ozone precursor emissions have the largest effect, leading to a global-mean increase in tropospheric ozone which maximises in the early 21st century at 23%. The increase is most pronounced at northern midlatitudes, due to regional emission patterns: between 1990 and 2060, northern midlatitude tropospheric ozone remains at constantly large abundances: 31% larger than in 1960. Over this 70 year period, attempts to reduce emissions in Europe and North America do not have an effect on zonally-averaged northern midlatitude ozone because of increasing emissions from Asia, together with the longevity of ozone in the troposphere. A~simulation with fixed anthropogenic ozone precursor emissions of NOx, CO and non-methane VOCs at 1960 conditions shows a 6 % increase in global-mean tropospheric ozone, and an 11% increase at northern midlatitudes. This increase maximises in the 2080s, and is mostly caused by methane, which maximises in the 2080s following RCP 6.0, and plays an important role in controlling ozone directly, and indirectly through its influence on other VOCs and CO. Enhanced flux of ozone from the stratosphere to the troposphere as well as climate change

  17. Impact of greenhouse gases on the Earth's ozone layer

    Science.gov (United States)

    Zadorozhny, Alexander

    A numerical 2-D zonally averaged interactive dynamical radiative-photochemical model of the ozonosphere including aerosol physics is used to examine the role of the greenhouse gases CO2 , CH4 , and N2 O in the future long-term changes of the Earth's ozone layer, in particular in its recovery after reduction of anthropogenic discharges of chlorine and bromine compounds into the atmosphere. The model allows calculating self-consistently diabatic circulation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the South to North Poles, as well as distribution of sulphate aerosol particles and polar stratospheric clouds (PSCs) of types I and II. The scenarios of expected changes of the anthropogenic pollutants for the period from 1980 through 2050 are taken from Climate Change 2001. The processes, which determine the influence of anthropogenic growth of atmospheric abundance of the greenhouse gases on the dynamics of recovery of the Earth's ozone layer, have been studied in details. Expected cooling of the stratosphere caused by increases of greenhouse gases, most importantly CO2 , essentially influences the ozone layer by two ways: through temperature dependencies of the gas phase reaction rates and through enhancement of polar ozone depletion via increased PSC formation. The model calculations show that a weakness in efficiencies of all gas phase catalytic cycles of the ozone destruction due to cooling of the stratosphere is a dominant mechanism of the impact of the greenhouse gases on the ozone layer in Antarctic as well as at the lower latitudes. This mechanism leads to a significant acceleration of the ozone layer recovery here because of the greenhouse gases growth. On the contrary, the mechanism of the impact of the greenhouse gases on the ozone through PSC modification begins to be more effective in Arctic in comparison with the gas phase mechanism in springs after about 2020, which leads to retard the expected recovery of the

  18. Ozone Observations using Ozonesonde over the Himalaya from Pokhara, Nepal.

    Science.gov (United States)

    Dhungel, S.; Cullis, P.; Johnson, B.; Thompson, A. M.; Witte, J. C.; Panday, A. K.

    2016-12-01

    In recent years, transport of emissions from the Indo-Gangetic Plains (IGP), which covers parts of Pakistan, Nepal, India, Bangladesh has increased. Ozone pre-cursors like methane, nitrogen oxides, volatile organic carbons, and carbon monoxide from diesel based vehicular emission, biofuel and biomass burning, agricultural activities dominate the total emissions from the IGP. Synoptic circulation patterns along with local weather systems transport pollutants from the IGP up the Himalayan valleys to the Tibetan plateau. After being emitted, these pollutants are photochemically converted into tropospheric ozone - a short-lived climate pollutant that can increase atmospheric warming, alter processes of cloud formation, and in turn, influence precipitation levels and reduce carbon absorptivity in plants leading to decline in crop yields. However, little is known about vertical profiles of ozone concentration on the southern slopes of the Himalaya. Vertical ozone profiles were sampled from December 18th, 2015 to January 8th, 2016 from Pokhara (28.23°N, 83.99°E, 827m asl), Nepal using ozonesondes. Pokhara is located about 30km south of the Annapurna Himalaya, thus providing an ideal location to profile vertical ozone concentration south of the Himalaya. We launched one, two or four ozonesondes per day to examine the vertical resolution of ozone south of the Himalaya for the first time, and to understand the contribution of tropospheric and stratospheric sources. Here we present results from the 37 ozonesonde launches from Pokhara to examine: (i) how emissions from the IGP contribute to the vertical resolution of ozone, and (ii) if Himalayan orography provides an efficient path for stratosphere-troposphere air mass exchange under dry conditions. Our results show no signals of stratospheric air mass exchange. The results indicate higher levels of ozone within the boundary layer and lower troposphere. These higher values in the lower troposphere during winter seasons may

  19. An exploration of ozone changes and their radiative forcing prior to the chlorofluorocarbon era

    Directory of Open Access Journals (Sweden)

    D. T. Shindell

    2002-01-01

    Full Text Available Using historical observations and model simulations, we investigate ozone trends prior to the mid-1970s onset of halogen-induced ozone depletion. Though measurements are quite limited, an analysis based on multiple, independent data sets (direct and indirect provides better constraints than any individual set of observations. We find that three data sets support an apparent long-term stratospheric ozone trend of -7.2 ± 2.3 DU during 1957-1975, which modeling attributes primarily to water vapor increases. The results suggest that 20th century stratospheric ozone depletion may have been roughly 50% more than is generally supposed. Similarly, three data sets support tropospheric ozone increases over polluted Northern Hemisphere continental regions of 8.2 ± 2.1 DU during this period, which are mutually consistent with the stratospheric trends. As with paleoclimate data, which is also based on indirect proxies and/or limited spatial coverage, these results must be interpreted with caution. However, they provide the most thorough estimates presently available of ozone changes prior to the coincident onset of satellite data and halogen dominated ozone changes. If these apparent trends were real, the radiative forcing by stratospheric ozone since the 1950s would then have been -0.15 ± 0.05 W/m2, and -0.2 W/m2 since the preindustrial. For tropospheric ozone, it would have been 0.38 ± 0.10 W/m2 since the late 1950s. Combined with even a very conservative estimate of tropospheric ozone forcing prior to that time, this would be larger than current estimates since 1850 which are derived from models that are even less well constrained. These calculations demonstrate the importance of gaining a better understanding of historical ozone changes.

  20. Foliar symptoms triggered by ozone stress in irrigated holm oaks from the city of Madrid, Spain.

    Directory of Open Access Journals (Sweden)

    Carlos Calderón Guerrero

    Full Text Available BACKGROUND: Despite abatement programs of precursors implemented in many industrialized countries, ozone remains the principal air pollutant throughout the northern hemisphere with background concentrations increasing as a consequence of economic development in former or still emerging countries and present climate change. Some of the highest ozone concentrations are measured in regions with a Mediterranean climate but the effect on the natural vegetation is alleviated by low stomatal uptake and frequent leaf xeromorphy in response to summer drought episodes characteristic of this climate. However, there is a lack of understanding of the respective role of the foliage physiology and leaf xeromorphy on the mechanistic effects of ozone in Mediterranean species. Particularly, evidence about morphological and structural changes in evergreens in response to ozone stress is missing. RESULTS: Our study was started after observing ozone -like injury in foliage of holm oak during the assessment of air pollution mitigation by urban trees throughout the Madrid conurbation. Our objectives were to confirm the diagnosis, investigate the extent of symptoms and analyze the ecological factors contributing to ozone injury, particularly, the site water supply. Symptoms consisted of adaxial and intercostal stippling increasing with leaf age. Underlying stippling, cells in the upper mesophyll showed HR-like reactions typical of ozone stress. The surrounding cells showed further oxidative stress markers. These morphological and micromorphological markers of ozone stress were similar to those recorded in deciduous broadleaved species. However, stippling became obvious already at an AOT40 of 21 ppm•h and was primarily found at irrigated sites. Subsequent analyses showed that irrigated trees had their stomatal conductance increased and leaf life -span reduced whereas the leaf xeromorphy remained unchanged. These findings suggest a central role of water availability

  1. Estimating contribution of wildland fires to ambient ozone levels in National Parks in the Sierra Nevada, California

    Energy Technology Data Exchange (ETDEWEB)

    Preisler, Haiganoush K., E-mail: hpreisler@fs.fed.u [USDA Forest Service, Pacific Southwest Research Station, 800 Buchanan St, Albany, CA 94710 (United States); Zhong Shiyuan, E-mail: zhongs@msu.ed [Department of Geography, Michigan State University, 116 Geography Building, East Lansing, MI 48824-1117 (United States); Esperanza, Annie, E-mail: annie_esperanza@nps.go [Sequoia and Kings Canyon National Parks, 47050 Generals Highway Three Rivers, CA 93271 (United States); Brown, Timothy J., E-mail: tim.brown@dri.ed [Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89521-10095 (United States); Bytnerowicz, Andrzej, E-mail: abytnerowicz@fs.fed.u [USDA Forest Service, Pacific Southwest Research Station, 4955 Canyon Crest Drive, Riverside, CA 92507 (United States); Tarnay, Leland, E-mail: Leland_Tarnay@nps.go [Yosemite National Park, El Portal, CA 95318 (United States)

    2010-03-15

    Data from four continuous ozone and weather monitoring sites operated by the National Park Service in Sierra Nevada, California, are used to develop an ozone forecasting model and to estimate the contribution of wildland fires on ambient ozone levels. The analyses of weather and ozone data pointed to the transport of ozone precursors from the Central Valley as an important source of pollution in these National Parks. Comparisons of forecasted and observed values demonstrated that accurate forecasts of next-day hourly ozone levels may be achieved by using a time series model with historic averages, expected local weather and modeled PM values as explanatory variables. Results on fire smoke influence indicated occurrence of significant increases in average ozone levels with increasing fire activity. The overall effect on diurnal ozone values, however, was small when compared with the amount of variability attributed to sources other than fire. - We have demonstrated that it is possible to produce accurate forecasts of next-day hourly ozone levels in the Sierra Nevada, CA, during fire season.

  2. Comparison of NASA OMI and MLS Ozone Products with US Forest Service Ground-based Ozone Monitoring Data for US Forest Service Air Quality / Forest Management Decision Support

    Science.gov (United States)

    Barrett, S.; Brooks, A.; Moussa, Y.; Spencer, T.; Thompson, J.

    2013-12-01

    Tropospheric ozone, formed when nitrogen oxides (NOx) and volatile organic compounds (VOCs) react with sunlight, is a significant threat to the health of US National Forests. Approximately one third of ozone is absorbed by plants during the uptake of carbon dioxide. This increases the vegetation's susceptibility to drought, beetle infestation, and wildfire. Currently the US Forest Service has ground monitoring stations sparsely located across the country. This project looks specifically at the area surrounding several Class I Wilderness Areas in the Appalachian region. These areas are the highest priority for protection from air pollutants. The Forest Service must interpolate ozone concentrations for areas between these monitoring stations. Class I Wilderness Areas are designated by the Forest Service and are defined as a total 5000 acres or greater when the Clean Air Act was passed in 1977. This Act mandated that the EPA create national ambient air quality standards (NAAQS) for six major air pollutants including ground-level ozone. This project assessed the feasibility of incorporating NASA ozone data into Forest Service ozone monitoring in an effort to enhance the accuracy and precision of ozone exposure measurements in Class I Wilderness Areas and other federally managed lands in order to aid in complying with the Clean Air Act of 1977. This was accomplished by establishing a method of comparison between a preliminary data product produced at the Goddard Space Flight Center that uses OMI/MLS data to derive global tropospheric ozone measurements and Forest Service ozone monitoring station measurements. Once a methodology for comparison was established, statistical comparisons of these data were performed to assess the quantitative differences.

  3. Ozone as an ecotoxicological problem

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, L. [National Environmental Research Inst., Dept. of Atmospheric Environment, Roskilde (Denmark)

    1996-11-01

    Ozone is quantitatively the dominating oxidant in photochemical air pollution. Other compounds like hydrogen peroxide, aldehydes, formate, peroxyacetyl nitrate (PAN) and nitrogen dioxide are present too, and several of these are known to be phytotoxic, but under Danish conditions the concentration of these gases are without significance for direct effects on vegetation. Therefore, it is the effects of ozone on plant growth that will be described below. (EG) 65 refs.

  4. Ozone Treatment For Cooling Towers

    Science.gov (United States)

    Blackwelder, Rick; Baldwin, Leroy V.; Feeney, Ellen S.

    1990-01-01

    Report presents results of study of cooling tower in which water treated with ozone instead of usual chemical agents. Bacteria and scale reduced without pollution and at low cost. Operating and maintenance costs with treatment about 30 percent of those of treatment by other chemicals. Corrosion rates no greater than with other chemicals. Advantage of ozone, even though poisonous, quickly detected by smell in very low concentrations.

  5. The response of a simulated Mesoscale Convective System to increased aerosol pollution

    Science.gov (United States)

    Clavner, Michal

    simulations aerosol concentrations were derived from the output of GEOS-Chem, a 3D chemical transport model. In the simulated MCS, the formation and propagation of the storm was not fundamentally modified by changes in the aerosol concentration, and the total MCS-produced precipitation was not significantly affected. However, the precipitation distribution (convective vs stratiform) and derecho-strength surface wind characteristics did vary among the simulations. The more polluted simulations exhibited higher precipitation rates, higher bulk precipitation efficiency, a larger area with heavier convective precipitation and a smaller area with lighter stratiform precipitation. These differences arose because aerosol pollution enhanced precipitation in the convective region while suppressing precipitation from the stratiform-anvil. Higher aerosol concentrations led to the invigoration of convective updrafts which supported the formation of larger rain drops, and lofted more liquid cloud mass to higher levels, thereby increasing both collision-coalescence and riming processes. The presence of greater aerosol concentrations in the free troposphere, as well as in the boundary layer, reduced both collision-coalescence and riming within the stratiform-anvil region. As a consequence, the more polluted simulations produced the smallest precipitation from the MCS stratiform-anvil region. In order to understand the impact of changes in aerosol concentrations on the derecho characteristics, the dynamical processes which produced the strong surface wind were determined by performing back-trajectory analysis during different periods of the simulated storm. The analysis showed that two main air flows contributed to the formation of the derecho winds at the surface; a rear-inflow jet and an up-down downdraft associated with a mesovortex at the gust font. The changes in aerosol concentrations impacted the simulated derecho event by altering the main flow contributing to the formation of the

  6. Air quality simulation over South Asia using Hemispheric Transport of Air Pollution version-2 (HTAP-v2) emission inventory and Model for Ozone and Related chemical Tracers (MOZART-4)

    Science.gov (United States)

    Surendran, Divya E.; Ghude, Sachin D.; Beig, G.; Emmons, L. K.; Jena, Chinmay; Kumar, Rajesh; Pfister, G. G.; Chate, D. M.

    2015-12-01

    This study presents the distribution of tropospheric ozone and related species for South Asia using the Model for Ozone and Related chemical Tracers (MOZART-4) and Hemispheric Transport of Air Pollution version-2 (HTAP-v2) emission inventory. The model present-day simulated ozone (O3), carbon monoxide (CO) and nitrogen dioxide (NO2) are evaluated against surface-based, balloon-borne and satellite-based (MOPITT and OMI) observations. The model systematically overestimates surface O3 mixing ratios (range of mean bias about: 1-30 ppbv) at different ground-based measurement sites in India. Comparison between simulated and observed vertical profiles of ozone shows a positive bias from the surface up to 600 hPa and a negative bias above 600 hPa. The simulated seasonal variation in surface CO mixing ratio is consistent with the surface observations, but has a negative bias of about 50-200 ppb which can be attributed to a large part to the coarse model resolution. In contrast to the surface evaluation, the model shows a positive bias of about 15-20 × 1017 molecules/cm2 over South Asia when compared to satellite derived CO columns from the MOPITT instrument. The model also overestimates OMI retrieved tropospheric column NO2 abundance by about 100-250 × 1013 molecules/cm2. A response to 20% reduction in all anthropogenic emissions over South Asia shows a decrease in the anuual mean O3 mixing ratios by about 3-12 ppb, CO by about 10-80 ppb and NOX by about 3-6 ppb at the surface level. During summer monsoon, O3 mixing ratios at 200 hPa show a decrease of about 6-12 ppb over South Asia and about 1-4 ppb over the remote northern hemispheric western Pacific region.

  7. A multi-model analysis of vertical ozone profiles

    Directory of Open Access Journals (Sweden)

    J. E. Jonson

    2010-06-01

    Full Text Available A multi-model study of the long-range transport of ozone and its precursors from major anthropogenic source regions was coordinated by the Task Force on Hemispheric Transport of Air Pollution (TF HTAP under the Convention on Long-range Transboundary Air Pollution (LRTAP. Vertical profiles of ozone at 12-h intervals from 2001 are available from twelve of the models contributing to this study and are compared here with observed profiles from ozonesondes. The contributions from each major source region are analysed for selected sondes, and this analysis is supplemented by retroplume calculations using the FLEXPART Lagrangian particle dispersion model to provide insight into the origin of ozone transport events and the cause of differences between the models and observations.

    In the boundary layer ozone levels are in general strongly affected by regional sources and sinks. With a considerably longer lifetime in the free troposphere, ozone here is to a much larger extent affected by processes on a larger scale such as intercontinental transport and exchange with the stratosphere. Such individual events are difficult to trace over several days or weeks of transport. This may explain why statistical relationships between models and ozonesonde measurements are far less satisfactory than shown in previous studies for surface measurements at all seasons. The lowest bias between model-calculated ozone profiles and the ozonesonde measurements is seen in the winter and autumn months. Following the increase in photochemical activity in the spring and summer months, the spread in model results increases, and the agreement between ozonesonde measurements and the individual models deteriorates further.

    At selected sites calculated contributions to ozone levels in the free troposphere from intercontinental transport are shown. Intercontinental transport is identified based on differences in model calculations with unperturbed emissions and

  8. Solutions Network Formulation Report. NASA's Potential Contributions for Using Solar Ultraviolet Radiation in Conjunction with Photocatalysis for Urban Air Pollution Mitigation and Increasing Air Quality

    Science.gov (United States)

    Underwood, Lauren; Ryan, Robert E.

    2007-01-01

    This Candidate Solution is based on using NASA Earth science research on atmospheric ozone and aerosols data as a means to predict and evaluate the effectiveness of photocatalytically created surfaces (building materials like glass, tile and cement) for air pollution mitigation purposes. When these surfaces are exposed to near UV light, organic molecules, like air pollutants and smog precursors, will degrade into environmentally friendly compounds. U.S. EPA (Environmental Protection Agency) is responsible for forecasting daily air quality by using the Air Quality Index (AQI) that is provided by AIRNow. EPA is partnered with AIRNow and is responsible for calculating the AQI for five major air pollutants that are regulated by the Clean Air Act. In this Solution, UV irradiance data acquired from the satellite mission Aura and the OMI Surface UV algorithm will be used to help understand both the efficacy and efficiency of the photocatalytic decomposition process these surfaces facilitate, and their ability to reduce air pollutants. Prediction models that estimate photocatalytic function do not exist. NASA UV irradiance data will enable this capability, so that air quality agencies that are run by state and local officials can develop and implement programs that utilize photocatalysis for urban air pollution control and, enable them to make effective decisions about air pollution protection programs.

  9. [Mechanism of catalytic ozonation for the degradation of paracetamol by activated carbon].

    Science.gov (United States)

    Wang, Jia-Yu; Dai, Qi-Zhou; Yu, Jie; Yan, Yi-Zhou; Chen, Jian-Meng

    2013-04-01

    The degradation of paracetamol (APAP) in aqueous solution was studied with ozonation integrated with activated carbon (AC). The synergistic effect of ozonation/AC process was explored by comparing the degradation efficiency of APAP in three processes (ozonation alone, activated carbon alone and ozonation integrated with activated carbon). The operational parameters that affected the reaction rate were carefully optimized. Based on the intermediates detected, the possible pathway for catalytic degradation was discussed and the reaction mechanism was also investigated. The results showed that the TOC removal reached 55.11% at 60 min in the AC/O3 system, and was significantly better than the sum of ozonation alone (20.22%) and activated carbon alone (27.39%), showing the great synergistic effect. And the BOD5/COD ratio increased from 0.086 (before reaction) to 0.543 (after reaction), indicating that the biodegradability was also greatly improved. The effects of the initial concentration of APAP, pH value, ozone dosage and AC dosage on the variation of reaction rate were carefully discussed. The catalytic reaction mechanism was different at different pH values: the organic pollutions were removed by adsorption and direct ozone oxidation at acidic pH, and mainly by catalytic ozonation at alkaline pH.

  10. Ozonation of benzothiazole saturated-activated carbons: Influence of carbon chemical surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Valdes, H. [Facultad de Ingenieria, Universidad Catolica de la Santisima Concepcion, Caupolican 491, Concepcion (Chile)]. E-mail: hvaldes@ucsc.cl; Zaror, C.A. [Departamento de Ingenieria Quimica (F. Ingenieria), Universidad de Concepcion, Correo 3, Casilla 160-C, Concepcion (Chile)

    2006-09-21

    The combined or sequential use of ozone and activated carbon to treat toxic effluents has increased in recent years. However, little is known about the influence of carbon surface active sites on ozonation of organic adsorbed pollutants. This paper presents experimental results on the effect of metal oxides and oxygenated surface groups on gaseous ozonation of spent activated carbons. Benzothiazole (BT) was selected as a target organic compound in this study due to its environmental concern. Activated carbons with different chemical surface composition were prepared from a Filtrasorb-400 activated carbon. Pre-treatment included: ozonation, demineralisation, and deoxygenation of activated carbon. Ozonation experiments of BT saturated-activated carbons were conducted in a fixed bed reactor loaded with 2 g of carbon samples. The reactor was fed with an O{sub 2}/O{sub 3} gas mixture (2 dm{sup 3}/min, 5 g O{sub 3}/h), for a given exposure time, in the range 10-120 min, at 298 K and 1 atm. Results show that extended gaseous ozonation of activated carbon saturated with BT led to the effective destruction of the adsorbate by oxidation reactions. Oxidation of BT adsorbed on activated carbon seemed to occur via both direct reaction with ozone molecules, and by oxygen radical species generated by catalytic ozone decomposition on metallic surface sites.

  11. Pollutants increase song complexity and the volume of the brain area HVC in a songbird.

    Directory of Open Access Journals (Sweden)

    Shai Markman

    Full Text Available Environmental pollutants which alter endocrine function are now known to decrease vertebrate reproductive success. There is considerable evidence for endocrine disruption from aquatic ecosystems, but knowledge is lacking with regard to the interface between terrestrial and aquatic ecosystems. Here, we show for the first time that birds foraging on invertebrates contaminated with environmental pollutants, show marked changes in both brain and behaviour. We found that male European starlings (Sturnus vulgaris exposed to environmentally relevant levels of synthetic and natural estrogen mimics developed longer and more complex songs compared to control males, a sexually selected trait important in attracting females for reproduction. Moreover, females preferred the song of males which had higher pollutant exposure, despite the fact that experimentally dosed males showed reduced immune function. We also show that the key brain area controlling male song complexity (HVC is significantly enlarged in the contaminated birds. This is the first evidence that environmental pollutants not only affect, but paradoxically enhance a signal of male quality such as song. Our data suggest that female starlings would bias their choice towards exposed males, with possible consequences at the population level. As the starling is a migratory species, our results suggest that transglobal effects of pollutants on terrestrial vertebrate physiology and reproduction could occur in birds.

  12. Investigating ambient ozone formation regimes in neighboring cities of shale plays in the Northeast United States using photochemical modeling and satellite retrievals

    Science.gov (United States)

    Chang, Chih-Yuan; Faust, Eric; Hou, Xiangting; Lee, Pius; Kim, Hyun Cheol; Hedquist, Brent C.; Liao, Kuo-Jen

    2016-10-01

    This study investigates long-term (i.e., 2007-2014) fluctuations in ambient ozone formation regimes for cities adjacent to shale plays in the Northeast United States (U.S.). Ozone air quality in many cities of the Northeast U.S. does not meet the U.S. National Ambient Air Quality Standards (NAAQS), and understanding ambient ozone formation regimes is essential to develop effective air pollution mitigation strategies for cities violating the air quality standards. Since 2013, the U.S. has become the world's largest producer of tight oil and natural gas from shale rock, and previous studies show that emissions of air pollutant precursors from shale oil and gas-related activities would have the potential to affect ambient ozone air quality in adjacent cities of shale plays. This work leveraged (1) satellite-retrieved column densities of formaldehyde (HCHO) and nitrogen dioxide (NO2) from multiple instruments (i.e., Ozone Monitoring Instrument (OMI) and Global Ozone Monitoring Experiment-2 (GOME-2)); (2) photochemical air quality modeling and sensitivity analysis; and (3) ratios of satellite-retrieved air pollutant column densities to investigate ambient ozone formation regimes in neighboring cities of shale plays (i.e., Marcellus Shale) in the Northeast U.S. from 2007 to 2014. Our results show that ambient ozone formation in Boston, Pittsburgh, Philadelphia and Washington, D.C. (which are close to Marcellus Shale) was in the NOx -limited or transition regime during the period of study. Ambient ozone formation in New York City was in the transition regime during 2010-2013 and VOC -limited regime during 2007-2009 and in 2014. Based on the result of this study, we conclude that controls NOx emissions would mitigate ozone air pollution from 2007 to 2014 in most of the cities examined in this study. Controls of local VOC emissions would ease ozone air pollution in New York City during the study period. With projected increases in oil and gas production from shale plays in

  13. [Catalytic ozonation of nitrobenzene in water by acidification-activated red mud].

    Science.gov (United States)

    Kang, Ya-ning; Li, Hua-nan; Xu, Bing-bing; Qi, Fei; Zhao, Lun

    2013-05-01

    Red mud as one kind of aluminum industrial wastes was used as raw material for catalyst preparation. It was activated by acidification in order to enhance its catalytic activity in the system of catalytic ozonation. Furthermore, removal performance and reaction mechanism in degradation of organic pollutants were discussed. Results showed that acid modified red mud had more significant catalytic activity than the raw red mud. The removal efficiency of nitrobenzene by catalytic ozonation with acidified red mud (RM6.0) increased with the increasing ozone concentration. When the ozone concentration was increased from 0.4 mg x L(-1) to 1.7 mg x L(-1), the removal efficiency of nitrobenzene increased from 45% to 92%. There was a consistent effect of water pH on the removal efficiency and the ozone concentration variation. The variation of the removal efficiency depended on the initial water pH. This was because the concentration of OH(-) led to ozone decomposition to generate hydroxyl radicals. The higher water pH value led to the quenching of hydroxyl radicals, resulting in the reduction of catalytic activity of RM6.0. The experimental results of aqueous ozone concentration variation in the presence of RM6.0 and inhibition by hydroxyl radicals indicated that the main reaction mechanism was catalytic ozonation of NB. Firstly, aqueous ozone was absorbed onto the surface of RM6.0, and then the concentrated ozone oxidized NB in water which was with a combination of direct and indirect oxidation. In catalytic reaction, hydroxyl radicals were present, which were generated during the oxidation of NB on the surface of RM6.0.

  14. Modifications of Phleum pratense grass pollen allergens following artificial exposure to gaseous air pollutants (O-3, NO2, SO2)

    NARCIS (Netherlands)

    Rogerieux, F.; Godfrin, D.; Senechal, H.; Motta, A. C.; Marliere, M.; Peltre, G.; Lacroix, G.

    2007-01-01

    Background: Air pollution is frequently proposed as a potential cause of the increased incidence of allergy in industrialised countries. Our objective was to investigate the impact of the major gaseous air pollutants on grass pollen allergens. Methods: Timothy grass pollen was exposed to ozone (O-3)

  15. Did the widespread haze pollution over China increase during the last decade? A satellite view from space

    Science.gov (United States)

    Tao, Minghui; Chen, Liangfu; Wang, Zifeng; Wang, Jun; Tao, Jinhua; Wang, Xinhui

    2016-05-01

    Widespread haze layers usually cover China like low clouds, exerting marked influence on air quality and regional climate. With recent Collection 6 MODIS Deep Blue aerosol data in 2000-2015, we analyzed the trends of regional haze pollution and the corresponding influence of atmospheric circulation in China. Satellite observations show that regional haze pollution is mainly concentrated in northern and central China. The annual frequency of regional haze in northern China nearly doubles between 2000 and 2006, increasing from 30-50 to 80-90 days. Though there is a marked decrease in annual frequency during 2007-2009 due to both reduction of anthropogenic emissions and changes of meteorological conditions, regional pollution increases slowly but steadily after 2009, and maintains at a high level of 70-90 days except for the sudden decrease in 2015. Generally, there is a large increase in the number of regional-scale haze events during the last decade. Seasonal frequency of regional haze exhibits distinct spatial and temporal variations. The increasing winter haze events reach a peak in 2014, but decrease strongly in 2015 due partly to synoptic conditions that are favorable for dispersion. Trends of summer regional haze pollution are more sensitive to changes of atmospheric circulation. Our results indicate that the frequency of regional haze events is associated not only with the strength of atmospheric circulation, but also with its direction and position, as well as variations in anthropogenic emissions.

  16. Total ozone column distribution over peninsular Malaysia from scanning imaging absorption spectrometer for atmospheric cartography (SCIAMACHY)

    Science.gov (United States)

    Tan, K. C.; Lim, H. S.; MatJafri, M. Z.

    2012-10-01

    Increasing of atmospheric ozone concentrations have received great attention around the whole because of its characteristic, in order to degrade air quality and brings hazard to human health and ecosystems. Ozone, one of the most pollutants source and brings a variety of adverse effects on plant life and human being. Continuous monitoring on ozone concentrations at atmosphere provide information and precautions for the high ozone level, which we need to be established. Satellite observation of ozone has been identified that it can provide the precise and accurate data globally, which sensitive to the small regional biases. We present measurements from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) included on the European environmental satellite ENVISAT, launched on 1st of March 2002. Main objective of this study is to examine the ozone distribution over Peninsular Malaysia using SCIAMACHY level-2 of total ozone column WFMD version 1.0 with spatial resolution 1° x 1.25°. Maps of time averaged (yearly, tri-monthly) ozone was generated and analyzed over Peninsular Malaysia for the year 2003 using PCI Geomatica 10.3 image processing software. It was retrieved using the interpolation technique. The concentration changes within boundary layer at all altitude levels are equally sensitive through the SCIAMACHY nearinfrared nadir observations. Hence, we can make observation of ozone at surface source region. The results successfully identify the area with highest and lowest concentration of ozone at Peninsular Malaysia using SCIAMACHY data. Therefore, the study is suitable to examine the distribution of ozone at tropical region.

  17. Treatment of Wastewater by Ozone Produced in Dielectric Barrier Discharge

    Directory of Open Access Journals (Sweden)

    Rita Bhatta

    2015-01-01

    Full Text Available There is rapid diminishing of water resources in many countries due to, for example, population growth and constant reduction in fresh water supply. The sewage wastewater, industrial effluents, and municipal wastewater are directly and indiscriminately discharged into rivers and lakes and thus primarily cause water pollution in Nepal. This has increased the water crisis and also causes environmental deterioration. Therefore, the need for the development of an effective, cheap, and environmentally friendly process for the treatment of wastewater before discharging into aquatic environment has emerged. Treatment by ozone produced from dielectric barrier discharge is one of the emerging technologies for such application. The ozonation process is more effective for disinfection and degradation of organic pollutants from water. The current study describes the treatment of wastewater of selected site within Kathmandu. Results on various physicochemical and microbial parameters of the inlet and outlet samples are discussed. Our results showed slight increase in pH, decrease in chemical oxygen demand, and significant increase in dissolved oxygen after ozonation. Importantly, ozonation caused total reduction of fecal coliform.

  18. Degradation of Acenaphthene by Ozone

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To investigate the oxidation of acenaphthene (Ace), a polycyclic aromatic hydrocarbon (PAH) with a saturated C-C bond by ozone and to characterize the intermediate products of ozonation. Methods Ozone was generated from filtered dry oxygen by an ozone generator and continually bubbled into a reactor containing 1g/L Ace dissolved in an acetonitrile/water solvent mixture (90/10, v/v) at a rate of 0.5 mg/s. HPLC was used to analyze the Ace concentration. Total organic carbon (TOC) was used to measure the amount of water soluble organic compounds. GC-MS was used to identify the ozonized products. Oxygen uptake rate (OUR) of activated sludge was used to characterize the biodegradability of ozonized products. Results During the ozonation process, Ace was degraded, new organic compounds were produced and these intermediate products were difficult mineralize by ozone, with increasing TOC of soluble organics. The ozonized products were degraded by activated sludge more easily than Ace. Conclusion Ozonation decomposes the Ace and improves its biodegradability. The ozonation combined with biological treatment is probably an efficient and economical way to mineralize acenaphthene in wastewater.

  19. Ozone Induces Glucose Intolerance and Systemic Metabolic Effects in Young and Aged Brown Norway Rats

    Science.gov (United States)

    Air pollutants have been associated with increased diabetes in humans. We hypothesized that ozone could impair glucose homeostasis by altering insulin signaling and/or endoplasmic reticular (ER) stress in very young and aged rats. Brown Norway (BN) rats, 1,4, 12, and 24 months ol...

  20. Sensitivity analysis of surface ozone to emission controls in Beijing and its neighboring area during the 2008 Olympic Games.

    Science.gov (United States)

    Gao, Yi; Zhang, Meigen

    2012-01-01

    The regional air quality modeling system RAMS (regional atmospheric modeling system)-CMAQ (community multi-scale air quality modeling system) is applied to analyze temporal and spatial variations in surface ozone concentration over Beijing and its surrounding region from July to October 2008. Comparison of simulated and observed meteorological elements and concentration of nitrogen oxides (NOx) and ozone at one urban site and three rural sites during Olympic Games show that model can generally reproduce the main observed feature of wind, temperature and ozone, but NOx concentration is overestimated. Although ozone concentration decreased during Olympics, high ozone episodes occurred on 24 July and 24 August with concentration of 360 and 245 microg/m3 at Aoyuncun site, respectively. The analysis of sensitive test, with and without emission controls, shows that emission controls could reduce ozone concentration in the afternoon when ozone concentration was highest but increase it at night and in the morning. The evolution of the weather system during the ozone episodes (24 July and 24 August) indicates that hot and dry air and a stable weak pressure field intensified the production of ozone and allowed it to accumulate. Process analysis at the urban site and rural site shows that under favorable weather condition on 24 August, horizontal transport was the main contributor of the rural place and the pollution from the higher layer would be transported to the surface layer. On 24 July, as the wind velocity was smaller, the impact of transport on the rural place was not obvious.

  1. Southern Hemisphere Additional Ozonesondes (SHADOZ) Ozone Climatology (2005-2009): Tropospheric and Tropical Tropopause Layer (TTL) Profiles with Comparisons to Omi-based Ozone Products

    Science.gov (United States)

    Thompson, Anne M.; Miller, Sonya K.; Tilmes, Simone; Kollonige, Debra W.; Witte, Jacquelyn C.; Oltmans, Samuel J.; Johnson, Brian J.; Fujiwara, Masatomo; Schmidlin, F. J.; Coetzee, G. J. R.; Komala, Ninong; Maata, Matakite; bt Mohammad, Maznorizan; Nguyo, J.; Mutai, C.; Ogino, S-Y; Da Silva, F. Raimundo; Paes Leme, N. M.; Posny, Francoise; Scheele, Rinus; Selkirk, Henry B.; Shiotani, Masato; Stubi, Rene; Levrat, Gilbert; Calpini, Bertrand; Thouret, Valerie; Tsuruta, Haruo; Canossa, Jessica Valverde; Voemel, Holger; Yonemura, S.; Andres Diaz, Jorge; Tan Thanh, Nguyen T.; Thuy Ha, Hoang T.

    2012-01-01

    We present a regional and seasonal climatology of SHADOZ ozone profiles in the troposphere and tropical tropopause layer (TTL) based on measurements taken during the first five years of Aura, 2005-2009, when new stations joined the network at Hanoi, Vietnam; Hilo, Hawaii; Alajuela Heredia, Costa Rica; Cotonou, Benin. In all, 15 stations operated during that period. A west-to-east progression of decreasing convective influence and increasing pollution leads to distinct tropospheric ozone profiles in three regions: (1) western Pacific eastern Indian Ocean; (2) equatorial Americas (San Cristobal, Alajuela, Paramaribo); (3) Atlantic and Africa. Comparisons in total ozone column from soundings, the Ozone Monitoring Instrument (OMI, on Aura, 2004-) satellite and ground-based instrumentation are presented. Most stations show better agreement with OMI than they did for EPTOMS comparisons (1998-2004; Earth-ProbeTotal Ozone Mapping Spectrometer), partly due to a revised above-burst ozone climatology. Possible station biases in the stratospheric segment of the ozone measurement noted in the first 7 years of SHADOZ ozone profiles are re-examined. High stratospheric bias observed during the TOMS period appears to persist at one station. Comparisons of SHADOZ tropospheric ozone and the daily Trajectory-enhanced Tropospheric Ozone Residual (TTOR) product (based on OMIMLS) show that the satellite-derived column amount averages 25 low. Correlations between TTOR and the SHADOZ sondes are quite good (typical r2 0.5-0.8), however, which may account for why some published residual-based OMI products capture tropospheric interannual variability fairly realistically. On the other hand, no clear explanations emerge for why TTOR-sonde discrepancies vary over a wide range at most SHADOZ sites.

  2. Ozone Nonattainment Areas - 8 Hour (1997 Standard)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data layer identifies areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for ozone over 8 hours and...

  3. Ozone: Good Up High, Bad Nearby

    Science.gov (United States)

    ... Reduce driving, carpool, use public transportation, walk, or bicycle to reduce ozone pollution, especially on hot summer ... presence of sunlight. Emissions from industrial facilities and electric utilities, motor vehicle exhaust, gasoline vapors, and chemical ...

  4. Modelling the impacts of climate change on tropospheric ozone over three centuries

    Directory of Open Access Journals (Sweden)

    G. B. Hedegaard

    2011-02-01

    Full Text Available The ozone chemistry over three centuries has been simulated based on climate prediction from a global climate model and constant anthropogenic emissions in order to separate out the effects on air pollution from climate change. Four decades in different centuries has been simulated using the chemistry version of the atmospheric long-range transport model; the Danish Eulerian Hemispheric Model (DEHM forced with meteorology predicted by the ECHAM5/MPI-OM coupled Atmosphere-Ocean General Circulation Model. The largest changes in both meteorology, ozone and its precursors is found in the 21st century, however, also significant changes are found in the 22nd century. At surface level the ozone concentration is predicted to increase due to climate change in the areas where substantial amounts of ozone precursors are emitted. Elsewhere a significant decrease is predicted at the surface. In the free troposphere a general increase is found in the entire Northern Hemisphere except in the tropics, where the ozone concentration is decreasing. In the Arctic the ozone concentration will increase in the entire air column, which most likely is due to changes in transport. The change in temperature, humidity and the naturally emitted Volatile Organic Compounds (VOCs are governing with respect to changes in ozone both in the past, present and future century.

  5. Impact of Climate Change on Ambient Ozone Level and Mortality in Southeastern United States

    Directory of Open Access Journals (Sweden)

    Montserrat Fuentes

    2010-07-01

    Full Text Available There is a growing interest in quantifying the health impacts of climate change. This paper examines the risks of future ozone levels on non-accidental mortality across 19 urban communities in Southeastern United States. We present a modeling framework that integrates data from climate model outputs, historical meteorology and ozone observations, and a health surveillance database. We first modeled present-day relationships between observed maximum daily 8-hour average ozone concentrations and meteorology measured during the year 2000. Future ozone concentrations for the period 2041 to 2050 were then projected using calibrated climate model output data from the North American Regional Climate Change Assessment Program. Daily community-level mortality counts for the period 1987 to 2000 were obtained from the National Mortality, Morbidity and Air Pollution Study. Controlling for temperature, dew-point temperature, and seasonality, relative risks associated with short-term exposure to ambient ozone during the summer months were estimated using a multi-site time series design. We estimated an increase of 0.43 ppb (95% PI: 0.14–0.75 in average ozone concentration during the 2040’s compared to 2000 due to climate change alone. This corresponds to a 0.01% increase in mortality rate and 45.2 (95% PI: 3.26–87.1 premature deaths in the study communities attributable to the increase in future ozone level.

  6. Impact of climate change on ambient ozone level and mortality in southeastern United States.

    Science.gov (United States)

    Chang, Howard H; Zhou, Jingwen; Fuentes, Montserrat

    2010-07-01

    There is a growing interest in quantifying the health impacts of climate change. This paper examines the risks of future ozone levels on non-accidental mortality across 19 urban communities in Southeastern United States. We present a modeling framework that integrates data from climate model outputs, historical meteorology and ozone observations, and a health surveillance database. We first modeled present-day relationships between observed maximum daily 8-hour average ozone concentrations and meteorology measured during the year 2000. Future ozone concentrations for the period 2041 to 2050 were then projected using calibrated climate model output data from the North American Regional Climate Change Assessment Program. Daily community-level mortality counts for the period 1987 to 2000 were obtained from the National Mortality, Morbidity and Air Pollution Study. Controlling for temperature, dew-point temperature, and seasonality, relative risks associated with short-term exposure to ambient ozone during the summer months were estimated using a multi-site time series design. We estimated an increase of 0.43 ppb (95% PI: 0.14-0.75) in average ozone concentration during the 2040's compared to 2000 due to climate change alone. This corresponds to a 0.01% increase in mortality rate and 45.2 (95% PI: 3.26-87.1) premature deaths in the study communities attributable to the increase in future ozone level.

  7. Association of weather and air pollution interactions on daily mortality in 12 Canadian cities.

    Science.gov (United States)

    Vanos, J K; Cakmak, S; Kalkstein, L S; Yagouti, Abderrahmane

    It has been well established that both meteorological attributes and air pollution concentrations affect human health outcomes. We examined all cause nonaccident mortality relationships for 28 years (1981-2008) in relation to air pollution and synoptic weather type (encompassing air mass) data in 12 Canadian cities. This study first determines the likelihood of summertime extreme air pollution events within weather types using spatial synoptic classification. Second, it examines the modifying effect of weather types on the relative risk of mortality (RR) due to daily concentrations of air pollution (nitrogen dioxide, ozone, sulfur dioxide, and particulate matter pollutant interactions to determine dependent and independent pollutant effects using the relatively new time series technique of distributed lag nonlinear modeling (DLNM). Results display dry tropical (DT) and moist tropical plus (MT+) weathers to result in a fourfold and twofold increased likelihood, respectively, of an extreme pollution event (top 5 % of pollution concentrations throughout the 28 years) occurring. We also demonstrate statistically significant effects of single-pollutant exposure on mortality (p effect RR increases due to pollutant exposure within DT and MT+ weather types are 14.9 and 11.9 %, respectively. Adjusted exposures (two-way pollutant effect estimates) generally results in decreased RR estimates, indicating that the pollutants are not independent. Adjusting for ozone significantly lowers 67 % of the single-pollutant RR estimates and reduces model variability, which demonstrates that ozone significantly controls a portion of the mortality signal from the model. Our findings demonstrate the mortality risks of air pollution exposure to differ by weather type, with increased accuracy obtained when accounting for interactive effects through adjustment for dependent pollutants using a DLNM.

  8. [Air pollution and the lung: epidemiological approach].

    Science.gov (United States)

    Annesi-Maesano, Isabella; Dab, William

    2006-01-01

    Epidemiological evidence has concurred with clinical and experimental evidence to correlate current levels of ambient air pollution, both indoors and outdoors, with respiratory effects. In this respect, the use of specific epidemiological methods has been crucial. Common outdoor pollutants are particulate matter, nitrogen dioxide, carbon monoxide, volatile organic compounds and ozone. Short-term effects of outdoor air pollution include changes in lung function, respiratory symptoms and mortality due to respiratory causes. Increase in the use of health care resources has also been associated with short-term effects of air pollution. Long-term effects of cumulated exposure to urban air pollution include lung growth impairment, chronic obstructive pulmonary disease (COPD), lung cancer, and probably the development of asthma and allergies. Lung cancer and COPD have been related to a shorter life expectancy. Common indoor pollutants are environmental tobacco smoke, particulate matter, nitrogen dioxide, carbon monoxide, volatile organic compounds and biological allergens. Concentrations of these pollutants can be many times higher indoors than outdoors. Indoor air pollution may increase the risk of irritation phenomena, allergic sensitisation, acute and chronic respiratory disorders and lung function impairment. Recent conservative estimates have shown that 1.5-2 million deaths per year worldwide could be attributed to indoor air pollution. Further epidemiological research is necessary to better evaluate the respiratory health effects of air pollution and to implement protective programmes for public health.

  9. Representing ozone extremes in European megacities: the importance of resolution in a global chemistry climate model

    Directory of Open Access Journals (Sweden)

    Z. S. Stock

    2013-10-01

    Full Text Available The continuing growth of the world's urban population has led to an increasing number of cities with more than 10 million inhabitants. The higher emissions of pollutants, coupled to higher population density, makes predictions of air quality in these megacities of particular importance from both a science and a policy perspective. Global climate models are typically run at coarse resolution to enable both the efficient running of long time integrations, and the ability to run multiple future climate scenarios. However, when considering surface ozone concentrations at the local scale, coarse resolution can lead to inaccuracies arising from the highly non-linear ozone chemistry and the sensitivity of ozone to the distribution of its precursors on smaller scales. In this study, we use UM-UKCA, a global atmospheric chemistry model, coupled to the UK Met Office Unified Model, to investigate the impact of model resolution on tropospheric ozone, ranging from global to local scales. We focus on the model's ability to represent the probability of high ozone concentrations in the summer and low ozone concentrations, associated with polluted megacity environments, in the winter, and how this varies with horizontal resolution. We perform time-slice integrations with two model configurations at typical climate resolution (CR, ~150 km and at a higher resolution (HR, ~40 km. The CR configuration leads to overestimation of ozone concentrations on both regional and local scales, while it gives broadly similar results to the HR configuration on the global scale. The HR configuration is found to produce a more realistic diurnal cycle of ozone concentrations and to give a better representation of the probability density function of ozone values in urban areas such as the megacities of London and Paris. We discuss the possible causes for the observed difference in model behaviour between CR and HR configurations and estimate the relative contribution of chemical and

  10. MODELLING OF SURFACE OZONE USING ARTIFICIAL NEURAL NETWORK IN AN URBAN AREA

    Directory of Open Access Journals (Sweden)

    S.Stephen Rajkumar Inbanathan,

    2011-02-01

    Full Text Available In this paper a novel approach, based on a neural network structure, is introduced in order to face with the problem of pollutant estimation in an urban area. A neural architecture, based essentiallyon suitable number of layers devoted to predict alarm situations and to estimate the value of the pollutant, has been implemented. A new method for short term prediction is presented using the neural network technique. Due to increase in industrial and anthropogenic activity, air pollution is a serious subject of concern today. Surface ozone prediction using the technique of adaptive pattern recognition is developed. The model can predict the mean surface ozone based on the parameters like Nitrogen-dioxide, temperature and % Relative Humidity, wind direction, wind speed. The model can perform well both in training and independent periods. The classical methods of short term modeling are not reliable enough. The method can also be used for short term prediction of other air pollutants.

  11. Effects of Elevated Ozone on Stoichiometry and Nutrient Pools of Phoebe Bournei (Hemsl. Yang and Phoebe Zhennan S. Lee et F. N. Wei Seedlings in Subtropical China

    Directory of Open Access Journals (Sweden)

    Jixin Cao

    2016-03-01

    Full Text Available Tropospheric ozone (O3 is considered one of the most critical air pollutants in many parts of the world due to its detrimental effects on plants growth. However, the stoichiometric response of tree species to elevated ozone (O3 is poorly documented. In order to understand the effects of elevated ozone on the stoichiometry and nutrient pools of Phoebe bournei (Hemsl. Yang (P. bourneiand Phoebe zhennan S. Lee et F. N. Wei (P. zhennan, the present study examined the carbon (C, nitrogen (N, and phosphorous (P concentrations, stoichiometric ratios, and stocks in foliar, stem, and root for P. bournei and P. zhennan with three ozone fumigation treatments (Ambient air, 100 ppb and 150 ppb. The results suggest that elevated ozone significantly increased the N concentrations in individual tissues for both of P. bournei and P. zhennan. On the contrary, elevated ozone decreased the C:N ratios in individual tissues for both of P. bournei and P. zhennan because the C concentration remained stable under the ozone stress. The P concentration, and C:P and N:P ratios in individual tissues for both P. bournei and P. zhennan did not exhibit consistent variation tendency with elevated ozone. Elevated ozone sharply reduced the total C, N, and P stocks and altered the pattern of C, N, and P allocation for both P. bournei and P. zhennan. The present study suggests that tropospheric ozone enrichment should be considered an important environmental factor on stoichiometry of tree species.

  12. Evaluation of ozone profile and tropospheric ozone retrievals from GEMS and OMI spectra

    Directory of Open Access Journals (Sweden)

    J. Bak

    2013-02-01

    Full Text Available South Korea is planning to launch the GEMS (Geostationary Environment Monitoring Spectrometer instrument into the GeoKOMPSAT (Geostationary Korea Multi-Purpose SATellite platform in 2018 to monitor tropospheric air pollutants on an hourly basis over East Asia. GEMS will measure backscattered UV radiances covering the 300–500 nm wavelength range with a spectral resolution of 0.6 nm. The main objective of this study is to evaluate ozone profiles and stratospheric column ozone amounts retrieved from simulated GEMS measurements. Ozone Monitoring Instrument (OMI Level 1B radiances, which have the spectral range 270–500 nm at spectral resolution of 0.42–0.63 nm, are used to simulate the GEMS radiances. An optimal estimation-based ozone profile algorithm is used to retrieve ozone profiles from simulated GEMS radiances. Firstly, we compare the retrieval characteristics (including averaging kernels, degrees of freedom for signal, and retrieval error derived from the 270–330 nm (OMI and 300–330 nm (GEMS wavelength ranges. This comparison shows that the effect of not using measurements below 300 nm on retrieval characteristics in the troposphere is insignificant. However, the stratospheric ozone information in terms of DFS decreases greatly from OMI to GEMS, by a factor of ∼2. The number of the independent pieces of information available from GEMS measurements is estimated to 3 on average in the stratosphere, with associated retrieval errors of ~1% in stratospheric column ozone. The difference between OMI and GEMS retrieval characteristics is apparent for retrieving ozone layers above ~20 km, with a reduction in the sensitivity and an increase in the retrieval errors for GEMS. We further investigate whether GEMS can resolve the stratospheric ozone variation observed from high vertical resolution Earth Observing System (EOS Microwave Limb Sounder (MLS. The differences in stratospheric ozone profiles between GEMS and MLS are comparable to those

  13. Continuation of long-term global SO2 pollution monitoring from OMI to OMPS

    OpenAIRE

    Zhang, Yan; Li, Can; Nickolay A. Krotkov; Joiner, Joanna

    2016-01-01

    Over the past 20 years, advances in satellite remote sensing of pollution-relevant species have made space-borne observations an increasingly important part of atmospheric chemistry research and air quality management. This progress has been facilitated by advanced UV-Vis spectrometers, such as the Ozone Monitoring Instrument (OMI) on board the NASA EOS Aura satellite, and continues with new instruments, such as the Ozone Mapping and Profiler Suite (OMPS) on board the NASA-NOAA Suomi National...

  14. Ozone dose-response relationships for spring oilseed rape and broccoli

    Science.gov (United States)

    De Bock, Maarten; Op de Beeck, Maarten; De Temmerman, Ludwig; Guisez, Yves; Ceulemans, Reinhart; Vandermeiren, Karine

    2011-03-01

    Tropospheric ozone is an important air pollutant with known detrimental effects for several crops. Ozone effects on seed yield, oil percentage, oil yield and 1000 seed weight were examined for spring oilseed rape ( Brassica napus cv. Ability). For broccoli ( Brassica oleracea L. cv. Italica cv. Monaco) the effects on fresh marketable weight and total dry weight were studied. Current ozone levels were compared with an <