WorldWideScience

Sample records for increases iron fluxes

  1. Silencing the Menkes Copper-Transporting ATPase (Atp7a) Gene in Rat Intestinal Epithelial (IEC-6) Cells Increases Iron Flux via Transcriptional Induction of Ferroportin 1 (Fpn1)123

    Science.gov (United States)

    Gulec, Sukru; Collins, James F.

    2014-01-01

    The Menkes copper-transporting ATPase (Atp7a) gene is induced in rat duodenum during iron deficiency, consistent with copper accumulation in the intestinal mucosa and liver. To test the hypothesis that ATP7A influences intestinal iron metabolism, the Atp7a gene was silenced in rat intestinal epithelial (IEC-6) cells using short hairpin RNA (shRNA) technology. Perturbations in intracellular copper homeostasis were noted in knockdown cells, consistent with the dual roles of ATP7A in pumping copper into the trans-Golgi (for cuproenzyme synthesis) and exporting copper from cells. Intracellular iron concentrations were unaffected by Atp7a knockdown. Unexpectedly, however, vectorial iron (59Fe) transport increased (∼33%) in knockdown cells grown in bicameral inserts and increased further (∼70%) by iron deprivation (compared with negative control shRNA-transfected cells). Additional experiments were designed to elucidate the molecular mechanism of increased transepithelial iron flux. Enhanced iron uptake by knockdown cells was associated with increased expression of a ferrireductase (duodenal cytochrome b) and activity of a cell-surface ferrireductase. Increased iron efflux from knockdown cells was likely mediated via transcriptional activation of the ferroportin 1 gene (by an unknown mechanism). Moreover, Atp7a knockdown significantly attenuated expression of an iron oxidase [hephaestin (HEPH); by ∼80%] and membrane ferroxidase activity (by ∼50%). Cytosolic ferroxidase activity, however, was retained in knockdown cells (75% of control cells), perhaps compensating for diminished HEPH activity. This investigation has thus documented alterations in iron homeostasis associated with Atp7a knockdown in enterocyte-like cells. Alterations in copper transport, trafficking, or distribution may underlie the increase in transepithelial iron flux noted when ATP7A activity is diminished. PMID:24174620

  2. Silencing the Menkes copper-transporting ATPase (Atp7a) gene in rat intestinal epithelial (IEC-6) cells increases iron flux via transcriptional induction of ferroportin 1 (Fpn1).

    Science.gov (United States)

    Gulec, Sukru; Collins, James F

    2014-01-01

    The Menkes copper-transporting ATPase (Atp7a) gene is induced in rat duodenum during iron deficiency, consistent with copper accumulation in the intestinal mucosa and liver. To test the hypothesis that ATP7A influences intestinal iron metabolism, the Atp7a gene was silenced in rat intestinal epithelial (IEC-6) cells using short hairpin RNA (shRNA) technology. Perturbations in intracellular copper homeostasis were noted in knockdown cells, consistent with the dual roles of ATP7A in pumping copper into the trans-Golgi (for cuproenzyme synthesis) and exporting copper from cells. Intracellular iron concentrations were unaffected by Atp7a knockdown. Unexpectedly, however, vectorial iron ((59)Fe) transport increased (∼33%) in knockdown cells grown in bicameral inserts and increased further (∼70%) by iron deprivation (compared with negative control shRNA-transfected cells). Additional experiments were designed to elucidate the molecular mechanism of increased transepithelial iron flux. Enhanced iron uptake by knockdown cells was associated with increased expression of a ferrireductase (duodenal cytochrome b) and activity of a cell-surface ferrireductase. Increased iron efflux from knockdown cells was likely mediated via transcriptional activation of the ferroportin 1 gene (by an unknown mechanism). Moreover, Atp7a knockdown significantly attenuated expression of an iron oxidase [hephaestin (HEPH); by ∼80%] and membrane ferroxidase activity (by ∼50%). Cytosolic ferroxidase activity, however, was retained in knockdown cells (75% of control cells), perhaps compensating for diminished HEPH activity. This investigation has thus documented alterations in iron homeostasis associated with Atp7a knockdown in enterocyte-like cells. Alterations in copper transport, trafficking, or distribution may underlie the increase in transepithelial iron flux noted when ATP7A activity is diminished.

  3. Metal flux from hydrothermal vents increased by organic complexation

    Science.gov (United States)

    Sander, Sylvia G.; Koschinsky, Andrea

    2011-03-01

    Hydrothermal vents in the sea floor release large volumes of hot, metal-rich fluids into the deep ocean. Until recently, it was assumed that most of the metal released was incorporated into sulphide or oxide minerals, and that the net flux of most hydrothermally derived metals to the open ocean was negligible. However, mounting evidence suggests that organic compounds bind to and stabilize metals in hydrothermal fluids, increasing trace-metal flux to the global ocean. In situ measurements reveal that hydrothermally derived chromium, copper and iron bind to organic molecules on mixing with sea water. Geochemical model simulations based on data from two hydrothermal vent sites suggest that complexation significantly increases metal flux from hydrothermal systems. According to these simulations, hydrothermal fluids could account for 9% and 14% of the deep-ocean dissolved iron and copper budgets respectively. A similar role for organic complexation can be inferred for the hydrothermal fluxes of other metals, such as manganese and zinc.

  4. Surface ocean iron fertilization: The role of airborne volcanic ash and iron-flux into the Pacific Ocean

    Science.gov (United States)

    Olgun, N.; Duggen, S.; Croot, P.; Dietze, H.

    2009-04-01

    Iron is a limiting micro-nutrient for marine primary production (MPP) in vast areas in the surface ocean. Hence, atmospheric supply of iron to the surface ocean can affect marine biogeochemical cycles, associated ocean-atmosphere exchange of CO2 and eventually climate development. Airborne volcanic ash from volcanic eruptions can be an important atmospheric iron-source in the surface ocean by releasing bio-available iron while settling through in the surface ocean. Here we present new data from time-dependent geochemical experiments with pristine (unhydrated) volcanic ash samples and natural seawater by means of Cathodic Stripping Voltammetry. Our results demonstrate that volcanic ash mobilizes significant amounts of soluble Fe within 60 minutes of contact with natural seawater. Depending on the amount of volcanic ash deposited offshore during major volcanic eruptions and the amount of iron that ash can release on contact with seawater, the calculated increase in the surface ocean Fe levels range from several nanomolar up to several hundred nanomolar (nM). Only 2 nM increase in iron concentrations can stimulate massive diatom blooms in the oceanic regions in which MPP is limited by the availability of iron (the iron-limited oceanic areas) (Wells, 2003). Therefore volcanic ash should be able to significantly affect marine phytoplankton growth in an ash fall area, acting as an iron fertilizer. Based on our new iron-release data and marine sediment core data we provide the first estimate of the flux of Fe from volcanic ash into the Pacific Ocean that covers more than 60 percent of the iron-limited oceanic regions. Our calculations show that the flux of Fe from volcanic ash is comparable to the order of magnitude of the flux of Fe from aeolian dust. Our study shows that volcanic ash is a major and so far underestimated atmospheric iron-source for the oceans and therefore an important component in marine biogeochemical iron cycles. Wells, M.L.: The level of iron

  5. Utilization of Lime Fines as an Effective Binder as well as Fluxing Agent for Making Fluxed Iron Ore Pellets

    Science.gov (United States)

    Mandal, Arup Kumar; Sarkar, Alok; Sinha, Om Prakash

    2016-04-01

    A laboratory study was carried out to characterize the physical, chemical and mechanical properties of lime fluxed (varying basicity 0-2) hematite iron ore pellets. Lime was used as additive as well as fluxing agent for making iron ore pellets. The effect of additives on different properties of pellets was studied. The findings show that on increasing the addition of lime, more of calcium-alumino-silicate phases were produced as confirmed by SEM-EDAX analysis. These phases have low melting points, which enhances sticking behaviour of pellets, as well as imparts strength to the pellets (resulting increasing compressive strength, tumbler, abrasion and shatter index) but decreases the porosity. The low basicity pellets were found predominantly oxide-bonded, while the high basicity pellets were mostly slag-bonded. This means that the pellet should be fired at sufficiently high enough temperature to generate liquid phases to get the sufficient strength but not so high as to cause the pellets to stick to each other. The obtained properties of these fluxed pellets were compared with the properties of iron ore lump and pellets, which are being used conventionally in the blast furnace for production of iron and steel.

  6. Flocculated meltwater particles control Arctic land-sea fluxes of labile iron

    DEFF Research Database (Denmark)

    Markussen, Thor Nygaard; Elberling, Bo; Winter, Christian;

    2016-01-01

    results reveal how flocculation (particle aggregation) involving labile iron may increase horizontal transport rather than enhance deposition close to the source. This is shown by combining field observations in Disko Fjord, West Greenland, and laboratory experiments. Our data show how labile iron affects...... floc sizes, shapes and densities and consequently yields low settling velocities and extended sediment plumes. We highlight the importance of understanding the flocculation mechanisms when examining fluxes of meltwater transported iron in polar regions today and in the future, and we underline...

  7. Flocculated meltwater particles control Arctic land-sea fluxes of labile iron

    Science.gov (United States)

    Markussen, Thor Nygaard; Elberling, Bo; Winter, Christian; Andersen, Thorbjørn Joest

    2016-04-01

    Glacial meltwater systems supply the Arctic coastal ocean with large volumes of sediment and potentially bioavailable forms of iron, nitrogen and carbon. The particulate fraction of this supply is significant but estuarine losses have been thought to limit the iron supply from land. Here, our results reveal how flocculation (particle aggregation) involving labile iron may increase horizontal transport rather than enhance deposition close to the source. This is shown by combining field observations in Disko Fjord, West Greenland, and laboratory experiments. Our data show how labile iron affects floc sizes, shapes and densities and consequently yields low settling velocities and extended sediment plumes. We highlight the importance of understanding the flocculation mechanisms when examining fluxes of meltwater transported iron in polar regions today and in the future, and we underline the influence of terrestrial hotspots on the nutrient and solute cycles in Arctic coastal waters.

  8. Flocculated meltwater particles control Arctic land-sea fluxes of labile iron.

    Science.gov (United States)

    Markussen, Thor Nygaard; Elberling, Bo; Winter, Christian; Andersen, Thorbjørn Joest

    2016-04-06

    Glacial meltwater systems supply the Arctic coastal ocean with large volumes of sediment and potentially bioavailable forms of iron, nitrogen and carbon. The particulate fraction of this supply is significant but estuarine losses have been thought to limit the iron supply from land. Here, our results reveal how flocculation (particle aggregation) involving labile iron may increase horizontal transport rather than enhance deposition close to the source. This is shown by combining field observations in Disko Fjord, West Greenland, and laboratory experiments. Our data show how labile iron affects floc sizes, shapes and densities and consequently yields low settling velocities and extended sediment plumes. We highlight the importance of understanding the flocculation mechanisms when examining fluxes of meltwater transported iron in polar regions today and in the future, and we underline the influence of terrestrial hotspots on the nutrient and solute cycles in Arctic coastal waters.

  9. Flocculated meltwater particles control Arctic land-sea fluxes of labile iron

    DEFF Research Database (Denmark)

    Markussen, Thor Nygaard; Elberling, Bo; Winter, Christian

    2016-01-01

    Glacial meltwater systems supply the Arctic coastal ocean with large volumes of sediment and potentially bioavailable forms of iron, nitrogen and carbon. The particulate fraction of this supply is significant but estuarine losses have been thought to limit the iron supply from land. Here, our...... results reveal how flocculation (particle aggregation) involving labile iron may increase horizontal transport rather than enhance deposition close to the source. This is shown by combining field observations in Disko Fjord, West Greenland, and laboratory experiments. Our data show how labile iron affects...... floc sizes, shapes and densities and consequently yields low settling velocities and extended sediment plumes. We highlight the importance of understanding the flocculation mechanisms when examining fluxes of meltwater transported iron in polar regions today and in the future, and we underline...

  10. Hydrothermal iron flux variability following rapid sea level changes

    Science.gov (United States)

    Middleton, Jennifer L.; Langmuir, Charles H.; Mukhopadhyay, Sujoy; McManus, Jerry F.; Mitrovica, Jerry X.

    2016-04-01

    Sea level changes associated with Pleistocene glacial cycles have been hypothesized to modulate melt production and hydrothermal activity at ocean ridges, yet little is known about fluctuations in hydrothermal circulation on time scales longer than a few millennia. We present a high-resolution record of hydrothermal activity over the past 50 ka using elemental flux data from a new sediment core from the Mir zone of the TAG hydrothermal field at 26°N on the Mid-Atlantic Ridge. Mir sediments reveal sixfold to eightfold increases in hydrothermal iron and copper deposition during the Last Glacial Maximum, followed by a rapid decline during the sea level rise associated with deglaciation. Our results, along with previous observations from Pacific and Atlantic spreading centers, indicate that rapid sea level changes influence hydrothermal output on mid-ocean ridges. Thus, climate variability may discretize volcanic processing of the solid Earth on millennial time scales and subsequently stimulate variability in biogeochemical interactions with volcanic systems.

  11. Pelletisation Behavior of Fluxed Iron Ore Pellets of Varying Basicities Made with Waste Fines

    Directory of Open Access Journals (Sweden)

    Alok Sarkar

    2013-10-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE The present study deals with the utilization of fines generated from comminution process (crushing, grinding and screening of the Run of Mines into value added products i.e. fluxed iron ore pellets. The study comprises to understand the physical and mechanical behavior of five distinguished chemical compositions of green and dried iron ore pellets with respect to a typical Mini Blast furnace (MBF burden data and furnace operating parameter. The maximum basicity of pellets was calculated 2.37 to make slag neutral when blast furnace runs at 100% high ash coke (avg. ash content= 29%. The crushing strength and drop number of various green pellets were measured. Green Crushing Strength was decreased with increasing lime fines. The addition of lime fines as a burnt lime, which has acicular structure creates less plasticity and brittle like fracture occurred. Due to formation of hard CaCO3 layer on the surface, after increasing lime contain crushing strength was increased in the air and oven dry pellets with respect to acid pellet (0% lime fines addition. [How to cite this article: Sarkar, A., Mandal, A.K., and Sinha, O.P. (2013 Pelletisation Behavior of Fluxed Iron Ore Pellets of Varying Basicities Made with Waste Fines. International Journal of Science and Engineering, 5(2,9-14. Doi: 10.12777/ijse.5.2.9-14] 

  12. Knockdown of copper-transporting ATPase 1 (Atp7a) impairs iron flux in fully-differentiated rat (IEC-6) and human (Caco-2) intestinal epithelial cells.

    Science.gov (United States)

    Ha, Jung-Heun; Doguer, Caglar; Collins, James F

    2016-09-01

    Intestinal iron absorption is highly regulated since no mechanism for iron excretion exists. We previously demonstrated that expression of an intestinal copper transporter (Atp7a) increases in parallel with genes encoding iron transporters in the rat duodenal epithelium during iron deprivation (Am. J. Physiol.: Gastrointest. Liver Physiol., 2005, 288, G964-G971). This led us to postulate that Atp7a may influence intestinal iron flux. Therefore, to test the hypothesis that Atp7a is required for optimal iron transport, we silenced Atp7a in rat IEC-6 and human Caco-2 cells. Iron transport was subsequently quantified in fully-differentiated cells plated on collagen-coated, transwell inserts. Interestingly, (59)Fe uptake and efflux were impaired in both cell lines by Atp7a silencing. Concurrent changes in the expression of key iron transport-related genes were also noted in IEC-6 cells. Expression of Dmt1 (the iron importer), Dcytb (an apical membrane ferrireductase) and Fpn1 (the iron exporter) was decreased in Atp7a knockdown (KD) cells. Paradoxically, cell-surface ferrireductase activity increased (>5-fold) in Atp7a KD cells despite decreased Dcytb mRNA expression. Moreover, increased expression (>10-fold) of hephaestin (an iron oxidase involved in iron efflux) was associated with increased ferroxidase activity in KD cells. Increases in ferrireductase and ferroxidase activity may be compensatory responses to increase iron flux. In summary, in these reductionist models of the mammalian intestinal epithelium, Atp7a KD altered expression of iron transporters and impaired iron flux. Since Atp7a is a copper transporter, it is a logical supposition that perturbations in intracellular copper homeostasis underlie the noted biologic changes in these cell lines.

  13. The effect of induced anoxia and reoxygenation on benthic fluxes of organic carbon, phosphate, iron, and manganese.

    Science.gov (United States)

    Skoog, Annelie C; Arias-Esquivel, Victor A

    2009-11-15

    Eutrophication causes seasonally anoxic bottom waters in coastal environments, but we lack information on effects of onset of anoxia and subsequent reoxygenation on benthic fluxes of redox-sensitive minerals and associated organic carbon (OC). As the first study, we determined the effect of inducing anoxia and subsequently restoring oxic conditions in mesocosms with surface sediment and water from a coastal environment. These concentration changes were compared with those in an oxygenated control. We determined water column concentrations of dissolved organic carbon (DOC), particulate organic carbon (POC), iron, manganese, and phosphate. Benthic fluxes of DOC, POC, and iron increased at the onset of anoxia in oxygen-depleted treatments. DOC and iron concentrations increased concomitantly towards maxima, which may have indicated reductive dissolution of FeOOH and release of associated OC. The subsequent concomitant concentration decreases may have been the result of coprecipitation of OC with iron-containing minerals. In contrast, the phosphate-concentration increase occurred several days after the onset of anoxia and the manganese concentration was not affected by the onset of anoxia. Restoring oxic conditions resulted in a decrease in DOC, POC, and phosphate concentrations, which may indicate coprecipitation of OC with phosphate-containing minerals. The high DOC fluxes at the onset of anoxia indicate that redox oscillations may be important in OC degradation. Further, our results indicate a close coupling between OC cycling and dissolution/precipitation of iron-containing minerals in intermittently anoxic sediments.

  14. Oily fish increases iron bioavailability of a phytate rich meal in young iron deficient women.

    Science.gov (United States)

    Navas-Carretero, Santiago; Pérez-Granados, Ana M; Sarriá, Beatriz; Carbajal, Angeles; Pedrosa, Mercedes M; Roe, Mark A; Fairweather-Tait, Susan J; Vaquero, M Pilar

    2008-02-01

    Iron deficiency is a major health problem worldwide, and is associated with diets of low iron bioavailability. Non-heme iron absorption is modulated by dietary constituents, one of which is the so-called "meat factor", present in meat, fish (oily and lean) and poultry, which is an important enhancer of iron absorption in humans. Food processing also affects iron bioavailability. To evaluate the effect of consuming sous vide cooked salmon fish on non-heme iron bioavailability from a bean meal, rich in phytate, in iron-deficient women. Randomized crossover trial in 21 young women with low iron stores (ferritin Sous vide cooked salmon fish increases iron absorption from a high phytate bean meal in humans.

  15. Flux analysis in plant metabolic networks: increasing throughput and coverage.

    Science.gov (United States)

    Junker, Björn H

    2014-04-01

    Quantitative information about metabolic networks has been mainly obtained at the level of metabolite contents, transcript abundance, and enzyme activities. However, the active process of metabolism is represented by the flow of matter through the pathways. These metabolic fluxes can be predicted by Flux Balance Analysis or determined experimentally by (13)C-Metabolic Flux Analysis. These relatively complicated and time-consuming methods have recently seen significant improvements at the level of coverage and throughput. Metabolic models have developed from single cell models into whole-organism dynamic models. Advances in lab automation and data handling have significantly increased the throughput of flux measurements. This review summarizes advances to increase coverage and throughput of metabolic flux analysis in plants.

  16. Iron Losses in Electrical Machines Due to Non Sinusoidal Alternating Fluxes

    DEFF Research Database (Denmark)

    Ritchie, Ewen; Walker, J.A.; Dorrell, D. G.

    2007-01-01

    This paper shows how the flux waveform in the core of an electrical machine can be vary non- sinusoidally which complicates the calculation of the iron loss in a machine. A set of tests are conducted on a steel sample using an Epstein square where harmonics are injected into the flux waveform which...

  17. Iron flux induced by Haida eddies in the Gulf of Alaska

    Science.gov (United States)

    Xiu, Peng; Palacz, Artur P.; Chai, Fei; Roy, Eric G.; Wells, Mark L.

    2011-07-01

    Mesoscale anticyclonic Haida eddies are proposed to deliver a substantial amount of iron into the Gulf of Alaska (GOA) central gyre, where surface waters experience high-nitrate low-chlorophyll conditions. In this study we calculate an averaged upwelling flux of dissolved iron into the euphotic zone (100 m) of 1.17 μmol m-2 d-1 based on observed iron profiles and modeled eddy dynamics and resultant vertical velocities. This estimated eddy-derived iron supply rate is comparable with new estimates of pulsed iron fertilization rates from rare volcanic ash deposition events. Despite the relatively small area affected by Haida eddies, they are estimated to contribute about 4.6 × 106 moles of dissolved iron yearly to the GOA, which is equivalent to the annual atmospheric dust deposition. Haida eddies therefore represent a major iron source that should strongly influence the regional biological productivity and carbon budget of the GOA.

  18. INCREASE OF EFFICIENCY OF MODIFIERS FOR GRAY CAST-IRON

    Directory of Open Access Journals (Sweden)

    O. S. Komarov

    2012-01-01

    Full Text Available It is established that for the purpose of increase of modifying efficiency of the melt from gray cast iron it is possible to use mechanically alloyed aluminum powder with superdispersed particles of aluminum and graphite oxide.

  19. THE WEAR RESISTANCE INCREASE OF CHROMIUM CAST IRON

    Directory of Open Access Journals (Sweden)

    V. M. Ilyushenko

    2016-01-01

    Full Text Available The article presents the results of the tests on the wear resistance of chromium cast irons of different compositions obtained in sand forms. It has been shown that increase of the wear resistance and mechanical properties of the cast iron is possible to obtain using the casting in metal molds. A further increase in wear resistance of parts produced in metal molds is possible by changing the technological parameters of casting and alloying by titanium.

  20. Constraints on soluble aerosol iron flux to the Southern Ocean at the Last Glacial Maximum

    Science.gov (United States)

    Conway, T. M.; Wolff, E. W.; Röthlisberger, R.; Mulvaney, R.; Elderfield, H. E.

    2015-07-01

    Relief of iron (Fe) limitation in the Southern Ocean during ice ages, with potentially increased carbon storage in the ocean, has been invoked as one driver of glacial-interglacial atmospheric CO2 cycles. Ice and marine sediment records demonstrate that atmospheric dust supply to the oceans increased by up to an order of magnitude during glacial intervals. However, poor constraints on soluble atmospheric Fe fluxes to the oceans limit assessment of the role of Fe in glacial-interglacial change. Here, using novel techniques, we present estimates of water- and seawater-soluble Fe solubility in Last Glacial Maximum (LGM) atmospheric dust from the European Project for Ice Coring in Antarctica (EPICA) Dome C and Berkner Island ice cores. Fe solubility was very variable (1-42%) during the interval, and frequently higher than typically assumed by models. Soluble aerosol Fe fluxes to Dome C at the LGM (0.01-0.84 mg m-2 per year) suggest that soluble Fe deposition to the Southern Ocean would have been >=10 × modern deposition, rivalling upwelling supply.

  1. INCREASING AND DECREASING PHASES OF FERRITIN AND HEMOSIDERIN IRON DETERMINED BY SERUM FERRITIN KINETICS

    Science.gov (United States)

    SAITO, HIROSHI; HAYASHI, HISAO; TOMITA, AKIHIRO; OHASHI, HARUHIKO; MAEDA, HIDEAKI; NAOE, TOMOKI

    2013-01-01

    ABSTRACT We attempted to clarify the mechanism of the storage iron metabolism. A new program of serum ferritin kinetics was applied for studying the increasing and decreasing phases of ferritin and hemosiderin iron in iron addition and removal in patients with a normal level of iron stores or iron overload. The change of ferritin iron in response to iron addition and removal was rapid in the initial stage, but it was slow later. In contrast, the change of hemosiderin iron was slow in the initial stage, but it became rapid later. These changes of ferritin and hemosiderin iron suggest that the turnover of ferritin iron is preferential to that of hemosiderin iron, and that the initially existed ferritin iron is gradually replaced by the ferritin iron recovered by taking iron from hemosiderin in iron mobilization. The crossing of the increasing curves of ferritin and hemosiderin iron in iron addition indicates a switching of the principal storage iron from ferritin to hemosiderin. The crossing point shifted toward a higher storage iron level in the increase of iron deposition. Iron storing capacity can be increased not only by the transformation of ferritin into hemosiderin, but also by the expansion of cell space as seen by hepatomegaly in hereditary hemochromatosis. The amounts of hemosiderin iron exceeded ferritin iron in all 10 patients with chronic hepatitis C even though they had normal storage iron levels. This suggests it is difficult to store iron in the form of ferritin in chronic hepatitis C. PMID:24640177

  2. Iron ions increase the thermostability of phycocyanin of Spirulina maxima

    Science.gov (United States)

    Li, Jian-Hong; Tai, Zi-Hou; Tseng, Chao-Tsi

    1998-03-01

    A spectral method to investigate the effect of Fe3+, Fe2+ on the thermostability of phycocyanin (PC) of Spirulina maxima showed that iron ions provent decrease of visible light absorbance and fluorescence intensity of PC. Increase in denaturation temperature caused by Fe3+ was observed by the micro-differential scanning calorimetric method. All results showed iron ions maintain the aggregation stability of the PC. The absorption spectrum of phycocyanobilin (PCB, a prosthetic group of PC) with Fe3+ in chloroform was quite different from that of free PCB.

  3. Increasing CO2 flux at Pisciarelli, Campi Flegrei, Italy

    Directory of Open Access Journals (Sweden)

    M. Queißer

    2017-09-01

    Full Text Available The Campi Flegrei caldera is located in the metropolitan area of Naples (Italy and has been undergoing different stages of unrest since 1950, evidenced by episodes of significant ground uplift followed by minor subsidence, increasing and fluctuating emission strengths of water vapor and CO2 from fumaroles, and periodic seismic crises. We deployed a scanning laser remote-sensing spectrometer (LARSS that measured path-integrated CO2 concentrations in the Pisciarelli area in May 2017. The resulting mean CO2 flux is 578 ± 246 t d−1. Our data suggest a significant increase in CO2 flux at this site since 2015. Together with recent geophysical observations, this suggests a greater contribution of the magmatic source to the degassing and/or an increase in permeability at shallow levels. Thanks to the integrated path soundings, LARSS may help to give representative measurements from large regions containing different CO2 sources, including fumaroles, low-temperature vents, and degassing soils, helping to constrain the contribution of deep gases and their migration mechanisms towards the surface.

  4. Influence of flux additives on iron ore oxidized pellets

    Institute of Scientific and Technical Information of China (English)

    FAN Xiao-hui; GAN Min; JIANG Tao; YUAN Li-shun; CHEN Xu-ling

    2010-01-01

    Six additives,i.e.,limestone,lime,magnesite,magnesia,dolomite and light-burned-dolomite,were added for investigating their influences on the pellet quality.For green balls,adding lime and light-burned-dolomite makes the wet drop strength decrease firstly,and then increase with further increase of additive dosage.Ca(OH)2 affects the bentonite properties at the beginning,but the binding property of Ca(OH)2 will be main when the dosage is higher.The other four additives decrease the drop strength for their disadvantageous physical properties.For preheated pellets,no mater what kind of additive is added,the compressive strength will be decreased because of unmineralized additives.For roasted pellets,calcium additives can form binding phase of calcium-ferrite,and suitable liquid phase will improve recrystallization of hematite,but excessive liquid will destroy the structure of pellets,so the compressive strength of pellet increases firstly and then drops.When adding magnesium additives,the strength will be decreased because of the oxidation of magnetite retarded by MgO.

  5. Seasonal and regional variability in dissolved and particulate iron fluxes via glacial runoff along the West Greenland coast

    Science.gov (United States)

    Choquette, K.; Hagedorn, B.; Sletten, R. S.; Harrold, Z.; Liu, L.; Dieser, M.; Cameron, K. A.; Christner, B. C.; Junge, K.

    2012-12-01

    , indicating that FeT in the <0.22 μm fraction is mostly (95%) in form of colloidal iron. In comparison, data from Kangerlussuaq show an average FeT of 580 nM in the <0.22 μm size fraction and 150 nM in the <0.05 μm fraction. Suspended load in North River increased throughout the ablation period in concurrence with variation in discharge, from an average of 0.08 g/L in the early melt stages (June), 0.21 g/L during the high melt (July-August), and 0.15 g/L during the late melt (end of August-September). Initial estimates for the suspended load for subglacial flow in Kangerlussuaq are 0.30 g/L on average. The suspended load will be analyzed for iron by sequential extraction in order to characterize how iron partitions between oxide and (oxyhydr)oxide minerals in the sediment. This comprehensive study will allow us to identify biogeochemical processes involved in the mobilization of iron and to evaluate how increased melting of GrIS will affect Fe fluxes to coastal and marine environments.

  6. Dust fluxes and iron fertilization in Holocene and Last Glacial Maximum climates

    Science.gov (United States)

    Lambert, Fabrice; Tagliabue, Alessandro; Shaffer, Gary; Lamy, Frank; Winckler, Gisela; Farias, Laura; Gallardo, Laura; De Pol-Holz, Ricardo

    2015-07-01

    Mineral dust aerosols play a major role in present and past climates. To date, we rely on climate models for estimates of dust fluxes to calculate the impact of airborne micronutrients on biogeochemical cycles. Here we provide a new global dust flux data set for Holocene and Last Glacial Maximum (LGM) conditions based on observational data. A comparison with dust flux simulations highlights regional differences between observations and models. By forcing a biogeochemical model with our new data set and using this model's results to guide a millennial-scale Earth System Model simulation, we calculate the impact of enhanced glacial oceanic iron deposition on the LGM-Holocene carbon cycle. On centennial timescales, the higher LGM dust deposition results in a weak reduction of atmospheric CO2 due to enhanced efficiency of the biological pump. This is followed by a further ~10 ppm reduction over millennial timescales due to greater carbon burial and carbonate compensation.

  7. Iron fluxes to Talos Dome, Antarctica, over the past 200 kyr

    Directory of Open Access Journals (Sweden)

    P. Vallelonga

    2013-03-01

    Full Text Available Atmospheric fluxes of iron (Fe over the past 200 kyr are reported for the coastal Antarctic Talos Dome ice core, based on acid leachable Fe concentrations. Fluxes of Fe to Talos Dome were consistently greater than those at Dome C, with the greatest difference observed during interglacial climates. We observe different Fe flux trends at Dome C and Talos Dome during the deglaciation and early Holocene, attributed to a combination of deglacial activation of dust sources local to Talos Dome and the reorganisation of atmospheric transport pathways with the retreat of the Ross Sea ice shelf. This supports similar findings based on dust particle sizes and fluxes and Rare Earth Element fluxes. We show that Ca and Fe should not be used as quantitative proxies for mineral dust, as they all demonstrate different deglacial trends at Talos Dome and Dome C. Considering that a 20 ppmv decrease in atmospheric CO2 at the coldest part of the last glacial maximum occurs contemporaneously with the period of greatest Fe and dust flux to Antarctica, we confirm that the maximum contribution of aeolian dust deposition to Southern Ocean sequestration of atmospheric CO2 is approximately 20 ppmv.

  8. Iron fluxes to Talos Dome, Antarctica, over the past 200 kyr

    Directory of Open Access Journals (Sweden)

    P. Vallelonga

    2012-12-01

    Full Text Available Atmospheric fluxes of iron (Fe over the past 200 kyr are reported for the coastal Antarctic Talos Dome ice core, based on acid leachable Fe concentrations. Fluxes of Fe to Talos Dome were consistently greater than those at Dome C, with the greatest difference observed during interglacial climates. We observe different Fe flux trends at Dome C and Talos Dome during the deglaciation and early Holocene, attributed to a combination of deglacial activation of dust sources local to Talos Dome and reorganization of atmospheric transport pathways with the retreat of the Ross Sea ice shelf. This supports similar findings based on dust particle sizes and fluxes and Rare Earth Element fluxes. We show that Ca and Fe should not be used as quantitative proxies for mineral dust, as they all demonstrate different deglacial trends at Talos Dome and Dome C. Considering that a 20 ppmv decrease in atmospheric CO2 at the coldest part of the last glacial maximum occurs contemporaneously with the period of greatest Fe and dust flux to Antarctica, we conclude that the maximum contribution of aeolian dust deposition to Southern Ocean sequestration of atmospheric CO2 is approximately 20 ppmv.

  9. Will Dam Removal Increase Nitrogen Flux to Estuaries?

    Directory of Open Access Journals (Sweden)

    Arthur J. Gold

    2016-11-01

    Full Text Available To advance the science of dam removal, analyses of functions and benefits need to be linked to individual dam attributes and effects on downstream receiving waters. We examined 7550 dams in the New England (USA region for possible tradeoffs associated with dam removal. Dam removal often generates improvements for safety or migratory fish passage but might increase nitrogen (N flux and eutrophication in coastal watersheds. We estimated N loading and removal with algorithms using geospatial data on land use, stream flow and hydrography. We focused on dams with reservoirs that increase retention time at specific points of river reaches, creating localized hotspots of elevated N removal. Approximately 2200 dams with reservoirs had potential benefits for N removal based on N loading, retention time and depth. Across stream orders, safety concerns on these N removal dams ranged between 28% and 44%. First order streams constituted the majority of N removal dams (70%, but only 3% of those were classified as high value for fish passage. In cases where dam removal might eliminate N removal function from a particular reservoir, site-specific analyses are warranted to improve N delivery estimates and examine alternatives that retain the reservoir while enhancing fish passage and safety.

  10. On-line iron loss resistance identification by a state observer for rotor-flux-oriented control of induction motor

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, Pablo M. de la; Bossio, Guillermo R.; Garcia, Guillermo O. [Grupo de Electronica Aplicada (GEA), Facultad de Ingenieria, UNRC, Ruta Nacional 36 Km. 601, X5804BYA, Rio Cuarto (Argentina); Solsona, Jorge A. [Instituto de Investigaciones en Ingenieria Electrica ' ' Alfredo Desages' ' , Departamento de Ingenieria Electrica y de Computadoras, UNS, Av. Alem 1253 (8000) Bahia Blanca (Argentina)

    2008-10-15

    A rotor flux state observer considering iron loss, for an Induction Motor (IM), is proposed. The aim of this proposal is to avoid detuning caused by the IM iron loss on a field-oriented control (FOC). An adaptive scheme for the K{sub Fe}, a parameter that represents the IM iron loss, is also proposed. The main objective of this scheme is to improve the dynamic response of control by compensating the variations of iron losses due to possible variations in the stator core characteristics. Simulation results demonstrated that the observer and the adaptive scheme showed a good performance fulfilling then the objectives. (author)

  11. Both immanently high active iron contents and increased root ferrous uptake in response to low iron stress contribute to the iron deficiency tolerance in Malus xiaojinensis.

    Science.gov (United States)

    Zha, Qian; Wang, Yi; Zhang, Xin-Zhong; Han, Zhen-Hai

    2014-01-01

    To better understand the mechanism of low-iron stress tolerance in Malus xiaojinensis, the differences in physiological parameters and gene expression between an iron deficiency-sensitive species, Malus baccata, and an iron deficiency-tolerant species, M. xiaojinensis were investigated under low-iron (4 μM Fe) conditions. Under iron sufficient conditions, the expressions of iron uptake- and transport-related genes, i.e. FIT1, IRT1, CS1, FRD3 and NRMAP1, and the immanent leaf and root active iron contents were higher in M. xiaojinensis than those in M. baccata. However, on the first three days of low iron stress, the rhizospheric pH decreased and the root ferric chelate reductase (FCR) activity and the expression of ferrous uptake- and iron transport-related genes in the roots increased significantly only in M. xiaojinensis. Leaf chlorosis occurred on the 3rd and the 9th day after low-iron treatment in M. baccata and M. xiaojinensis, respectively. The expression of iron relocalization-related genes, such as NAS1, FRD3 and NRMAP3, increased after the 5th or 6th day of low iron stress in leaves of M. xiaojinensis, whereas the expression of NAS1, FRD3 and NRMAP3 in the leaves of M. baccata increased immediately after the onset of low iron treatment. Conclusively, the relative high active iron contents caused by the immanently active root ferrous uptake and the increased root ferrous uptake in response to low iron stress were the dominant mechanisms for the tolerance to iron deficiency in M. xiaojinensis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Iron loss in permanent-magnet brushless AC machines under maximum torque per ampere and flux weakening control \\ud

    OpenAIRE

    Zhu, Z.Q.; Chen, Y. S.; Howe, D.

    2002-01-01

    The airgap flux density distribution, flux density loci in the stator core, and the associated iron loss in two topologies of brushless AC motor, having a surface-mounted magnet rotor and an interior-mounted magnet rotor, respectively, are investigated when operated under maximum torque per ampere control in the constant torque mode and maximum power control in the flux-weakening mode. It is shown that whilst the interior magnet topology is known to be eminently suitable for flux-weakening op...

  13. Growth Promotion, Increase of Iron, Potassium and Cell Wall Components following Silicon Application in Rice under Iron Deficiency

    Directory of Open Access Journals (Sweden)

    z Kiani Chalmardi

    2014-07-01

    Full Text Available Iron deficiency is one of the most important stress reducing crop growth and yields. Silicon is also an essential element in most grasses including rice that may reduces biotic and abiotic stresses. In present study, the interactions of silicon and iron nutrition were studied in rice (Oryza sativa L. cv. Tarem. The plants cultivated in greenhouse under iron treatments of 0, 2 and 10 mg l-1 as a Fe-EDTA (first factor and silicon treatments of 0 and 1.5 mM sodium silicate (second factor. The experimental design was completely randomized blocks as a factorial experiment. The plants were harvested after 5 weeks. Iron deficiency resulted in reduction of dry mater and height of plants. In addition, cellulose content in shoots and lignin and soluble proteins in roots and shoots decreased, however, potassium content in roots increased due to iron deficiency. On the contrary, silicon application caused significant increase in dry mater and height of plants. Besides, iron and potassium contents increased in iron deficient plants following silicon application. Also, cellulose, lignin, and soluble proteins in roots and shoots and phenolic compounds in shoots enhanced in silicon fed plants. The results indicated that silicon nutrition could ameliorate harmful effects of iron deficiency by increase of iron and potassium contents and increment of cell wall components and phenolic compounds

  14. Increased particle flux to the deep ocean related to monsoons

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, R.R.; Ittekkot, V.; Manganini, S.J.; Ramaswamy, V.; Haake, B.; Degens, E.T.; Desai, B.N.; Honjo, S.

    . To assess the impact of monsoon-driven processes on the downward particle flux variations in the open ocean we deployed three moored arrays consisting of six time-series sediment traps at selected locations in the western, central and eastern parts...

  15. α-Synuclein Over-Expression Induces Increased Iron Accumulation and Redistribution in Iron-Exposed Neurons.

    Science.gov (United States)

    Ortega, Richard; Carmona, Asuncion; Roudeau, Stéphane; Perrin, Laura; Dučić, Tanja; Carboni, Eleonora; Bohic, Sylvain; Cloetens, Peter; Lingor, Paul

    2016-04-01

    Parkinson's disease is the most common α-synucleinopathy, and increased levels of iron are found in the substantia nigra of Parkinson's disease patients, but the potential interlink between both molecular changes has not been fully understood. Metal to protein binding assays have shown that α-synuclein can bind iron in vitro; therefore, we hypothesized that iron content and iron distribution could be modified in cellulo, in cells over-expressing α-synuclein. Owing to particle-induced X-ray emission and synchrotron X-ray fluorescence chemical nano-imaging, we were able to quantify and describe the iron distribution at the subcellular level. We show that, in neurons exposed to excess iron, the mere over-expression of human α-synuclein results in increased levels of intracellular iron and in iron redistribution from the cytoplasm to the perinuclear region within α-synuclein-rich inclusions. Reproducible results were obtained in two distinct recombinant expression systems, in primary rat midbrain neurons and in a rat neuroblastic cell line (PC12), both infected with viral vectors expressing human α-synuclein. Our results link two characteristic molecular features found in Parkinson's disease, the accumulation of α-synuclein and the increased levels of iron in the substantia nigra.

  16. Nifedipine Increases Iron Content in WKPT-0293 Cl.2 Cells via Up-Regulating Iron Influx Proteins

    Science.gov (United States)

    Yu, Shuang-Shuang; Jiang, Li-Rong; Ling, Yan; Qian, Zhong-Ming; Zhou, Yu-Fu; Li, Juan; Ke, Ya

    2017-01-01

    Nifedipine was reported to enhance urinary iron excretion in iron overloaded mice. However, it remains unknown how nifedipine stimulates urinary iron excretion in the kidney. We speculated that nifedipine might inhibit the TfR1/ DMT1 (transferrin receptor 1/divalent metal transporter1)-mediated iron uptake by proximal tubule cells in addition to blocking L-type Ca2+ channels, leading to an increase in iron in lumen-fluid and then urinary iron excretion. To test this hypothesis, we investigated the effects of nifedipine on iron content and expression of TfR1, DMT1 and ferroportin1 (Fpn1) in WKPT-0293 Cl.2 cells of the S1 segment of the proximal tubule in rats, using a graphite furnace atomic absorption spectrophotometer and Western blot analysis, respectively. We demonstrated for the first time that nifedipine significantly enhanced iron content as well as TfR1 and DMT1 expression and had no effect on Fpn1 levels in the cells. We also found that ferric ammonium citrate decreased TfR1 levels, increased Fpn1 expression and had no effect on DMT1 content, while co-treatment with nifedipine and FAC increase TfR1 and DMT1 expression and also had no effect on Fpn1 levels. These findings suggest that the nifedipine-induced increase in cell iron may mainly be due to the corresponding increase in TfR1 and DMT1 expression and also imply that the effects of nifedipine on iron transport in proximal tubule cells can not explain the increase in urinary iron excretion.

  17. Increased endogenous DNA oxidation correlates to increased iron levels in melanocytes relative to keratinocytes.

    Science.gov (United States)

    Pelle, Edward; Huang, Xi; Zhang, Qi; Pernodet, Nadine; Yarosh, Daniel B; Frenkel, Krystyna

    2014-01-01

    The endogenous oxidative state of normal human epidermal melanocytes was investigated and compared to normal human epidermal keratinocytes (NHEKs) in order to gain new insight into melanocyte biology. Previously, we showed that NHEKs contain higher levels of hydrogen peroxide (H2O2) than melanocytes and that it can migrate from NHEKs to melanocytes by passive permeation. Nevertheless, despite lower concentrations of H2O2, we now report higher levels of oxidative DNA in melanocytes as indicated by increased levels of 8-oxo-2'-deoxyguanosine (8-oxo-dG): 4.49 (±0.55 SEM) 8-oxo-dG/10(6) dG compared to 1.49 (±0.11 SEM) 8-oxo-dG/10(6) dG for NHEKs. An antioxidant biomarker, glutathione (GSH), was also lower in melanocytes (3.14 nmoles (±0.15 SEM)/cell) in comparison to NHEKs (5.98 nmoles (±0.33 SEM)/cell). Intriguingly, cellular bioavailable iron as measured in ferritin was found to be nearly fourfold higher in melanocytes than in NHEKs. Further, ferritin levels in melanocytes were also higher than in hepatocarcinoma cells, an iron-rich cell, and it indicates that higher relative iron levels may be characteristic of melanocytes. To account for the increased oxidative DNA and lower GSH and H2O2 levels that we observe, we propose that iron may contribute to higher levels of oxidation by reacting with H2O2 through a Fenton reaction leading to the generation of DNA-reactive hydroxyl radicals. In conclusion, our data support the concept of elevated oxidation and high iron levels as normal parameters of melanocytic activity. We present new evidence that may contribute to our understanding of the melanogenic process and lead to the development of new skin care products.

  18. Staphylococcus aureus redirects central metabolism to increase iron availability.

    Directory of Open Access Journals (Sweden)

    David B Friedman

    2006-08-01

    Full Text Available Staphylococcus aureus pathogenesis is significantly influenced by the iron status of the host. However, the regulatory impact of host iron sources on S. aureus gene expression remains unknown. In this study, we combine multivariable difference gel electrophoresis and mass spectrometry with multivariate statistical analyses to systematically cluster cellular protein response across distinct iron-exposure conditions. Quadruplicate samples were simultaneously analyzed for alterations in protein abundance and/or post-translational modification state in response to environmental (iron chelation, hemin treatment or genetic (Deltafur alterations in bacterial iron exposure. We identified 120 proteins representing several coordinated biochemical pathways that are affected by changes in iron-exposure status. Highlighted in these experiments is the identification of the heme-regulated transport system (HrtAB, a novel transport system which plays a critical role in staphylococcal heme metabolism. Further, we show that regulated overproduction of acidic end-products brought on by iron starvation decreases local pH resulting in the release of iron from the host iron-sequestering protein transferrin. These findings reveal novel strategies used by S. aureus to acquire scarce nutrients in the hostile host environment and begin to define the iron and heme-dependent regulons of S. aureus.

  19. Staphylococcus aureus redirects central metabolism to increase iron availability.

    Directory of Open Access Journals (Sweden)

    David B Friedman

    2006-08-01

    Full Text Available Staphylococcus aureus pathogenesis is significantly influenced by the iron status of the host. However, the regulatory impact of host iron sources on S. aureus gene expression remains unknown. In this study, we combine multivariable difference gel electrophoresis and mass spectrometry with multivariate statistical analyses to systematically cluster cellular protein response across distinct iron-exposure conditions. Quadruplicate samples were simultaneously analyzed for alterations in protein abundance and/or post-translational modification state in response to environmental (iron chelation, hemin treatment or genetic (Deltafur alterations in bacterial iron exposure. We identified 120 proteins representing several coordinated biochemical pathways that are affected by changes in iron-exposure status. Highlighted in these experiments is the identification of the heme-regulated transport system (HrtAB, a novel transport system which plays a critical role in staphylococcal heme metabolism. Further, we show that regulated overproduction of acidic end-products brought on by iron starvation decreases local pH resulting in the release of iron from the host iron-sequestering protein transferrin. These findings reveal novel strategies used by S. aureus to acquire scarce nutrients in the hostile host environment and begin to define the iron and heme-dependent regulons of S. aureus.

  20. Sugars increase non-heme iron bioavailability in human epithelial intestinal and liver cells.

    Directory of Open Access Journals (Sweden)

    Tatiana Christides

    Full Text Available Previous studies have suggested that sugars enhance iron bioavailability, possibly through either chelation or altering the oxidation state of the metal, however, results have been inconclusive. Sugar intake in the last 20 years has increased dramatically, and iron status disorders are significant public health problems worldwide; therefore understanding the nutritional implications of iron-sugar interactions is particularly relevant. In this study we measured the effects of sugars on non-heme iron bioavailability in human intestinal Caco-2 cells and HepG2 hepatoma cells using ferritin formation as a surrogate marker for iron uptake. The effect of sugars on iron oxidation state was examined by measuring ferrous iron formation in different sugar-iron solutions with a ferrozine-based assay. Fructose significantly increased iron-induced ferritin formation in both Caco-2 and HepG2 cells. In addition, high-fructose corn syrup (HFCS-55 increased Caco-2 cell iron-induced ferritin; these effects were negated by the addition of either tannic acid or phytic acid. Fructose combined with FeCl3 increased ferrozine-chelatable ferrous iron levels by approximately 300%. In conclusion, fructose increases iron bioavailability in human intestinal Caco-2 and HepG2 cells. Given the large amount of simple and rapidly digestible sugars in the modern diet their effects on iron bioavailability may have important patho-physiological consequences. Further studies are warranted to characterize these interactions.

  1. Glacial influence on the geochemistry of riverine iron fluxes to the Gulf of Alaska and effects of deglaciation

    Science.gov (United States)

    Schroth, A.W.; Crusius, J.; Chever, F.; Bostick, B.C.; Rouxel, O.J.

    2011-01-01

    Riverine iron (Fe) derived from glacial weathering is a critical micronutrient source to ecosystems of the Gulf of Alaska (GoA). Here we demonstrate that the source and chemical nature of riverine Fe input to the GoA could change dramatically due to the widespread watershed deglaciation that is underway. We examine Fe size partitioning, speciation, and isotopic composition in tributaries of the Copper River which exemplify a long-term GoA watershed evolution from one strongly influenced by glacial weathering to a boreal-forested watershed. Iron fluxes from glacierized tributaries bear high suspended sediment and colloidal Fe loads of mixed valence silicate species, with low concentrations of dissolved Fe and dissolved organic carbon (DOC). Iron isotopic composition is indicative of mechanical weathering as the Fe source. Conversely, Fe fluxes from boreal-forested systems have higher dissolved Fe concentrations corresponding to higher DOC concentrations. Iron colloids and suspended sediment consist of Fe (hydr)oxides and organic complexes. These watersheds have an iron isotopic composition indicative of an internal chemical processing source. We predict that as the GoA watershed evolves due to deglaciation, so will the source, flux, and chemical nature of riverine Fe loads, which could have significant ramifications for Alaskan marine and freshwater ecosystems.

  2. Parametric studies on iron-carbon composite nanoparticles synthesized by laser pyrolysis for increased passivation and high iron content

    Science.gov (United States)

    Dumitrache, F.; Morjan, I.; Fleaca, C.; Birjega, R.; Vasile, E.; Kuncser, V.; Alexandrescu, R.

    2011-04-01

    Iron/iron carbide core and carbon shell nanoparticles with improved magnetic properties were successfully synthesized by laser pyrolysis. As iron and carbon precursors, iron pentacarbonyl and pure or argon-diluted acetylene/ethylene mixtures, respectively, were used. The aim of the present optimization is the improvement of the magnetic properties of the nanomaterials by the increase of the iron percent in powders simultaneously to the maintaining of the protective character of the carbon coverage of nanoparticles. The chemical content and the crystalline structure were monitored by EDX, XRD and TEM techniques. In the first study, the content of acetylene as carbon source was diminished from 75% to 0%. Consequently the percent iron increased from 10 at.% to 28 at.% while oxygen remained relatively constant (around 5 at.%). In the second step, only diluted ethylene was used (maximum 87.5 vol.% Ar). In this case, an increase of iron to 46 at.% is observed. An optimum 50% carbon source dilution was found. Above this value, the carbon content increases and below it, superficial oxidation increases through the diminishing of the carbon shell. The magnetic properties and the Fe phase composition of the Fe-C samples were analyzed by temperature dependent Mössbauer spectroscopy.

  3. Overexpression of Arabidopsis VIT1 increases accumulation of iron in cassava roots and stems

    Science.gov (United States)

    Iron is extremely abundant in the soil, but its uptake in plants is limited due to low solubility in neutral or alkaline soils. Plants can rely on rhizosphere acidification to increase iron solubility. AtVIT1 was previously found to be involved in mediating vacuolar sequestration of iron, which indi...

  4. Atmospheric processing outside clouds increases soluble iron in mineral dust.

    Science.gov (United States)

    Shi, Zongbo; Krom, Michael D; Bonneville, Steeve; Benning, Liane G

    2015-02-03

    Iron (Fe) is a key micronutrient regulating primary productivity in many parts of the global ocean. Dust deposition is an important source of Fe to the surface ocean, but most of this Fe is biologically unavailable. Atmospheric processing and reworking of Fe in dust aerosol can increase the bioavailable Fe inputs to the ocean, yet the processes are not well understood. Here, we experimentally simulate and model the cycling of Fe-bearing dust between wet aerosol and cloud droplets. Our results show that insoluble Fe in dust particles readily dissolves under acidic conditions relevant to wet aerosols. By contrast, under the higher pH conditions generally relevant to clouds, Fe dissolution tends to stop, and dissolved Fe precipitates as poorly crystalline nanoparticles. If the dust-bearing cloud droplets evaporated again (returning to the wet aerosol stage with low pH), those neo-formed Fe nanoparticles quickly redissolve, while the refractory Fe-bearing phases continue to dissolve gradually. Overall, the duration of the acidic, wet aerosol stage ultimately increases the amount of potentially bioavailable Fe delivered to oceans, while conditions in clouds favor the formation of Fe-rich nanoparticles in the atmosphere.

  5. Iron deficiency anemia and increased urinary norepinephrine excretion.

    Science.gov (United States)

    Voorhess, M L; Stuart, M J; Stockman, J A; Oski, F A

    1975-04-01

    Chronic iron deficiency in rats resulted in decreased MAO activity both in vitro and in vivo. Since MAO is an important enzyme in inactivation of catecholamines, urinary excretion of DA, NE, E, MN-NMN, and VMA was measured in 24-hour samples from 11 iron-deficient children before and after treatment with intramuscular iron. Pretreatment NE excretion was abnormally high and returned to normal (P=0.001) within one week of therapy. VMA excretion also was higher before than after treatment (P greater than 0.05), but most values were within the normal range for healthy children of comparable size. There was no significant difference between DA, E, and MN-NMN excretion before and after iron therapy. Anemic, non-iron-deficient children had normal urinary NE, E, and VMA excretion before and after transfusion. These findings suggest that the irritability, lack of attentiveness, and low performance scores of iron-deficient children may be related to alterations in catecholamine metabolic pathways secondary to dependence of MAO on adequate iron stores.

  6. The Argentine Impact Record: Implications for Episodes of Increased Flux during the Last 10 Myr

    Science.gov (United States)

    Harris, R. S.; Schultz, P. H.

    2009-12-01

    Schultz et al. [1-6] have identified 8 impact melt breccia deposits in late Cenozoic strata of the Argentine Pampas. 40Ar/39Ar and fission track dating, combined with sequence and biostratigraphic controls, demonstrate that they represent separate events between 9.24 Ma and 6 ka. These ejecta contain shocked minerals and excavated basement clasts indicative of crater-forming events rather than air blasts. If each involved iron bolides ≤ 50 m across, 8 impacts over ~1.1 x 106 km2 in 10 Myr does not represent an anomaly. However, the melt volumes and distributions observed suggest at least half of the collisions were much larger. One event close to the Miocene-Pliocene boundary (5.28 Ma) appears to have spread microtektites as far as the South Tasman Rise. And three deposits contain meteoritic debris linked to stony and stony-iron asteroids (including HED and angrite-like material) [6,7]. Consequently, one or more increases in the impact flux since the mid-Miocene may be required to account for the Argentine record [8]. Farley et al. [9,10] propose that the disruption of a large main-belt asteroid 8.3 Ma increased the IDP flux in the inner solar system leading to a positive 3He anomaly in late Miocene (~6.8-8.3 Ma) sediments. The anomaly is comparable to the late Eocene (~34.2-36.4 Ma) 3He enhancement attributed to a comet [11] or asteroid [12] shower, which increased both the abundance of IDPs and large asteroids reaching the surface. But Farley et al. discount such a scenario in the late Miocene based on a perceived absence of coincident crater-forming impacts. Preserved ejecta and geochemical signatures, however, indicate the contrary. We suggest that the late Miocene contains at least as rich a record of terrestrial impacts as the late Eocene. The patterns of elevated 3He, main-belt breakups, and significant impact events are very similar through both intervals. Two reported asteroid breakups during the Pliocene and mid-Pleistocene [13,14] also appear to

  7. Iron deficiency or anemia of inflammation?

    OpenAIRE

    Nairz, Manfred; Theurl, Igor; Wolf, Dominik; Weiss, Günter

    2016-01-01

    Summary Iron deficiency and immune activation are the two most frequent causes of anemia, both of which are based on disturbances of iron homeostasis. Iron deficiency anemia results from a reduction of the body’s iron content due to blood loss, inadequate dietary iron intake, its malabsorption, or increased iron demand. Immune activation drives a diversion of iron fluxes from the erythropoietic bone marrow, where hemoglobinization takes place, to storage sites, particularly the mononuclear ph...

  8. Overexpression of Arabidopsis VIT1 increases accumulation of iron in cassava roots and stems.

    Science.gov (United States)

    Narayanan, Narayanan; Beyene, Getu; Chauhan, Raj Deepika; Gaitán-Solis, Eliana; Grusak, Michael A; Taylor, Nigel; Anderson, Paul

    2015-11-01

    Iron is extremely abundant in the soil, but its uptake in plants is limited due to low solubility in neutral or alkaline soils. Plants can rely on rhizosphere acidification to increase iron solubility. AtVIT1 was previously found to be involved in mediating vacuolar sequestration of iron, which indicates a potential application for iron biofortification in crop plants. Here, we have overexpressed AtVIT1 in the starchy root crop cassava using a patatin promoter. Under greenhouse conditions, iron levels in mature cassava storage roots showed 3-4 times higher values when compared with wild-type plants. Significantly, the expression of AtVIT1 showed a positive correlation with the increase in iron concentration of storage roots. Conversely, young leaves of AtVIT1 transgenic plants exhibit characteristics of iron deficiency such as interveinal chlorosis of leaves (yellowing) and lower iron concentration when compared with the wild type plants. Interestingly, the AtVIT1 transgenic plants showed 4 and 16 times higher values of iron concentration in the young stem and stem base tissues, respectively. AtVIT1 transgenic plants also showed 2-4 times higher values of iron content when compared with wild-type plants, with altered partitioning of iron between source and sink tissues. These results demonstrate vacuolar iron sequestration as a viable transgenic strategy to biofortify crops and to help eliminate micronutrient malnutrition in at-risk human populations.

  9. Increased iron sequestration in alveolar macrophages in chronic obstructive pulmonary disease.

    Directory of Open Access Journals (Sweden)

    Quentin Philippot

    Full Text Available Free iron in lung can cause the generation of reactive oxygen species, an important factor in chronic obstructive pulmonary disease (COPD pathogenesis. Iron accumulation has been implicated in oxidative stress in other diseases, such as Alzheimer's and Parkinson's diseases, but little is known about iron accumulation in COPD. We sought to determine if iron content and the expression of iron transport and/or storage genes in lung differ between controls and COPD subjects, and whether changes in these correlate with airway obstruction. Explanted lung tissue was obtained from transplant donors, GOLD 2-3 COPD subjects, and GOLD 4 lung transplant recipients, and bronchoalveolar lavage (BAL cells were obtained from non-smokers, healthy smokers, and GOLD 1-3 COPD subjects. Iron-positive cells were quantified histologically, and the expression of iron uptake (transferrin and transferrin receptor, storage (ferritin and export (ferroportin genes was examined by real-time RT-PCR assay. Percentage of iron-positive cells and expression levels of iron metabolism genes were examined for correlations with airflow limitation indices (forced expiratory volume in the first second (FEV1 and the ratio between FEV1 and forced vital capacity (FEV1/FVC. The alveolar macrophage was identified as the predominant iron-positive cell type in lung tissues. Furthermore, the quantity of iron deposit and the percentage of iron positive macrophages were increased with COPD and emphysema severity. The mRNA expression of iron uptake and storage genes transferrin and ferritin were significantly increased in GOLD 4 COPD lungs compared to donors (6.9 and 3.22 fold increase, respectively. In BAL cells, the mRNA expression of transferrin, transferrin receptor and ferritin correlated with airway obstruction. These results support activation of an iron sequestration mechanism by alveolar macrophages in COPD, which we postulate is a protective mechanism against iron induced oxidative

  10. Increased particle fluxes at the INDEX site attributable to simulated benthic disturbance

    Digital Repository Service at National Institute of Oceanography (India)

    Parthiban, G.

    Indian Basin. The predisturbance particle fluxes varied between 22.3 to 55.1 mg m sup(-2) day sup(-1). Increased and variable particle fluxes were recorded by the sediment traps during the disturbance period. The increase observed was 0.5 to 4 times more...

  11. Coastal pollution due to increasing nutrient flux in aquaculture sites

    Science.gov (United States)

    David, C. P. C.; Sta. Maria, Y. Y.; Siringan, F. P.; Reotita, J. M.; Zamora, P. B.; Villanoy, C. L.; Sombrito, E. Z.; Azanza, R. V.

    2009-07-01

    The supply of nitrogen and phosphorus in coastal zones through time is reflected in the nutrients’ concentration in the sediment record. Five aquaculture sites in the Philippines were investigated in an effort to establish how long-term changes in land and coastal water use could have led to biogeochemical modifications affecting the coastal ecosystem. Samples from study sites show a narrow concentration range for nitrogen and did not reveal any significant trend through time. In contrast, phosphorus concentrations in most sites start at less than 20 ppm in sediments 30 years and older. The phosphorus value continuously increase in younger sediments, with each site having a different magnitude change as well as timing of when the major increase happened. The uppermost 10 cm, representing the last 15 years in sites with age control, typically show a 2- to 3-fold increase in P load values. Historical increase in nutrient load also coincides with harmful algal bloom events in each area; when effective P input exceeded 130 kg/km2 per year. Lastly, the observed increase may be attributed to several factors including physical attributes of the area, urbanization of coastal zones, but most importantly in the proliferation of aquaculture activities.

  12. Metabolic flux phenotype of tobacco hairy roots engineered for increased geraniol production

    NARCIS (Netherlands)

    Masakapalli, S.K.; Ritala, A.; Dong, L.M.; Krol, van der A.R.; Oksman-Caldentey, K.M.; Ratcliffe, R.G.; Sweetlove, L.J.

    2014-01-01

    The goal of this study was to characterise the metabolic flux phenotype of transgenic tobacco (Nicotiana tabacum) hairy roots engineered for increased biosynthesis of geraniol, an intermediate of the terpenoid indole alkaloid pathway. Steady state, stable isotope labelling was used to determine flux

  13. HAWC detection of further increase in TeV gamma-ray flux from Mrk 421

    Science.gov (United States)

    Martinez, I.; Wood, J.; Lauer, R.

    2017-01-01

    During the transit ending on Jan 6 07:21:16 UTC, the HAWC gamma-ray observatory measured an increased TeV gamma-ray flux from the direction of BL Lac Markarian 421 (z=0.031) equivalent to 4 times the Crab Nebula flux.

  14. Modeling Method for Increased Precision and Scope of Directly Measurable Fluxes at a Genome-Scale

    DEFF Research Database (Denmark)

    McCloskey, Douglas; Young, Jamey D.; Xu, Sibei

    2016-01-01

    Metabolic flux analysis (MFA) is considered to be the gold standard for determining the intracellular flux distribution of biological systems. The majority of work using MFA has been limited to core models of metabolism due to challenges in implementing genome-scale MFA and the undesirable trade...... distributions (MIDs),(1) it was found that a total of 232 net fluxes of central and peripheral metabolism could be resolved in the E. coli network. The increase in scope was shown to cover the full biosynthetic route to an expanded set of bioproduction pathways, which should facilitate applications......-off between increased scope and decreased precision in flux estimations. This work presents a tunable workflow for expanding the scope of MFA to the genome-scale without trade-offs in flux precision. The genome-scale MFA model presented here, iDM2014, accounts for 537 net reactions, which includes the core...

  15. Pharmacological ascorbate and ionizing radiation (IR increase labile iron in pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Justin C. Moser

    2014-01-01

    Full Text Available Labile iron, i.e. iron that is weakly bound and is relatively unrestricted in its redox activity, has been implicated in both the pathogenesis as well as treatment of cancer. Two cancer treatments where labile iron may contribute to their mechanism of action are pharmacological ascorbate and ionizing radiation (IR. Pharmacological ascorbate has been shown to have tumor-specific toxic effects due to the formation of hydrogen peroxide. By catalyzing the oxidation of ascorbate, labile iron can enhance the rate of formation of hydrogen peroxide; labile iron can also react with hydrogen peroxide. Here we have investigated the magnitude of the labile iron pool in tumor and normal tissue. We also examined the ability of pharmacological ascorbate and IR to change the size of the labile iron pool. Although a significant amount of labile iron was seen in tumors (MIA PaCa-2 cells in athymic nude mice, higher levels were seen in murine tissues that were not susceptible to pharmacological ascorbate. Pharmacological ascorbate and irradiation were shown to increase the labile iron in tumor homogenates from this murine model of pancreatic cancer. As both IR and pharmacological ascorbate may rely on labile iron for their effects on tumor tissues, our data suggest that pharmacological ascorbate could be used as a radio-sensitizing agent for some radio-resistant tumors.

  16. Pharmacological ascorbate and ionizing radiation (IR) increase labile iron in pancreatic cancer.

    Science.gov (United States)

    Moser, Justin C; Rawal, Malvika; Wagner, Brett A; Du, Juan; Cullen, Joseph J; Buettner, Garry R

    2013-01-01

    Labile iron, i.e. iron that is weakly bound and is relatively unrestricted in its redox activity, has been implicated in both the pathogenesis as well as treatment of cancer. Two cancer treatments where labile iron may contribute to their mechanism of action are pharmacological ascorbate and ionizing radiation (IR). Pharmacological ascorbate has been shown to have tumor-specific toxic effects due to the formation of hydrogen peroxide. By catalyzing the oxidation of ascorbate, labile iron can enhance the rate of formation of hydrogen peroxide; labile iron can also react with hydrogen peroxide. Here we have investigated the magnitude of the labile iron pool in tumor and normal tissue. We also examined the ability of pharmacological ascorbate and IR to change the size of the labile iron pool. Although a significant amount of labile iron was seen in tumors (MIA PaCa-2 cells in athymic nude mice), higher levels were seen in murine tissues that were not susceptible to pharmacological ascorbate. Pharmacological ascorbate and irradiation were shown to increase the labile iron in tumor homogenates from this murine model of pancreatic cancer. As both IR and pharmacological ascorbate may rely on labile iron for their effects on tumor tissues, our data suggest that pharmacological ascorbate could be used as a radio-sensitizing agent for some radio-resistant tumors.

  17. Neutrophil cathepsin G increases calcium flux and inositol polyphosphate production in cultured endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, M.W.; Gruenhaupt, D.; Shasby, D.M. (Univ. of Iowa, Iowa City (USA))

    1989-07-15

    Exposure of endothelial cells (ENDO) to human neutrophil cathepsin G (CG) increases albumin flux across the endothelial monolayer. Since calcium influences cell shape and barrier function of ENDO monolayers, the current study was designed to determine if CG acted through alterations in Ca2+ homeostasis in ENDO. The role of Ca2+ in the increased permeability of ENDO monolayers to albumin after exposure to CG was studied by using ENDO monolayers cultured on polycarbonate filters. Exposure of ENDO monolayers to CG in the presence of the Ca2+-antagonist lanthanum partially prevented the increase in albumin flux, but exposure in the presence of agents that block voltage-regulated calcium channels did not block the increase in albumin flux. To monitor the effect of CG on Ca2+-flux, ENDO were labeled with {sup 45}Ca2+ and changes in Ca2+ flux were monitored by the release of {sup 45}Ca2+. From 1 to 15 minutes after exposure of ENDO to CG, there was increased release of {sup 45}Ca2+ compared with control cells. Calcium channel blocking agents did not inhibit the increased release of {sup 45}Ca2+, but lanthanum partially blocked the increase. The increased release of Ca2+ appeared to be due, at least in part, to activation of phospholipase C because there was an increase both in inositol polyphosphate species and in diglycerides after incubation of ENDO with CG. These studies support the hypothesis that CG increases the flux of calcium in ENDO, that this increase in Ca2+ flux may result from activation of phospholipase C, and that this system may be involved in the decreased barrier properties of the ENDO after CG exposure.

  18. Does Obesity Increase Risk for Iron Deficiency? A Review of the Literature and the Potential Mechanisms

    NARCIS (Netherlands)

    Cepeda-Lopez, A.C.; Aeberli, I.; Zimmermann, M.B.

    2010-01-01

    Increasing obesity is a major global health concern while at the same time iron-deficiency anemia remains common worldwide. Although these two conditions represent opposite ends of the spectrum of over- and under-nutrition, they appear to be linked: overweight individuals are at higher risk of iron

  19. Does Obesity Increase Risk for Iron Deficiency? A Review of the Literature and the Potential Mechanisms

    NARCIS (Netherlands)

    Cepeda-Lopez, A.C.; Aeberli, I.; Zimmermann, M.B.

    2010-01-01

    Increasing obesity is a major global health concern while at the same time iron-deficiency anemia remains common worldwide. Although these two conditions represent opposite ends of the spectrum of over- and under-nutrition, they appear to be linked: overweight individuals are at higher risk of iron

  20. Iron

    Science.gov (United States)

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  1. Iron

    Science.gov (United States)

    ... of iron stored in the body become low, iron deficiency anemia sets in. Red blood cells become smaller and ... from the lungs throughout the body. Symptoms of iron deficiency anemia include tiredness and lack of energy, GI upset, ...

  2. Iron increases HMOX1 and decreases hepatitis C viral expression in HCV-expressing cells

    Institute of Scientific and Technical Information of China (English)

    Wei-Hong Hou; Lisa Rossi; Ying Shan; Jian-Yu Zheng; Richard W Lambrecht; Herbert L Bonkovsky

    2009-01-01

    AIM: To investigate effects of iron on oxidative stress,heme oxygenase-1 (HMOX1) and hepatitis C viral (HCV) expression in human hepatoma cells stably expressing HCV proteins.METHODS: Effects of iron on oxidative stress, HMOX1,and HCV expression were assessed in CON1 cells.Measurements included mRNA by quantitative reverse transcription-polymerase chain reaction, and protein levels by Western blots.RESULTS: Iron, in the form of ferric nitrilotriacetate,increased oxidative stress and up-regulated HMOX1 gene expression. Iron did not affect mRNA or protein levels of Bach1, a repressor of HMOX1. Silencing the up-regulation of HMOX1 nuclear factor-erythroid 2-related factor 2 (Nrf2) by Nrf2-siRNA decreased FeNTA-mediated up-regulation of HMOX1 mRNA levels. These iron effects were completely blocked by deferoxamine (DFO). Iron also significantly decreased levels of HCV core mRNA and protein by 80%-90%,nonstructural 5A mRNA by 90% and protein by about 50% in the Con1 full length HCV replicon cells,whereas DFO increased them.CONCLUSION: Excess iron up-regulates HMOX1 and down-regulates HCV gene expression in hepatoma cells. This probably mitigates liver injury caused by combined iron overload and HCV infection.

  3. Increased iron and free radical generation in preclinical Alzheimer disease and mild cognitive impairment.

    Science.gov (United States)

    Smith, Mark A; Zhu, Xiongwei; Tabaton, Massimo; Liu, Gang; McKeel, Daniel W; Cohen, Mark L; Wang, Xinglong; Siedlak, Sandra L; Dwyer, Barney E; Hayashi, Takaaki; Nakamura, Masao; Nunomura, Akihiko; Perry, George

    2010-01-01

    It is now established that oxidative stress is one of the earliest, if not the earliest, change that occurs in the pathogenesis of Alzheimer's disease (AD). Consistent with this, mild cognitive impairment (MCI), the clinical precursor of AD, is also characterized by elevations in oxidative stress. Since such stress does not operate in vacuo, in this study we sought to determine whether redox-active iron, a potent source of free radicals, was elevated in MCI and preclinical AD as compared to cognitively-intact age-matched control patients. Increased iron was found at the highest levels both in the cortex and cerebellum from the pre-clinical AD/MCI cases. Interestingly, glial accumulations of redox-active iron in the cerebellum were also evident in preclinical AD patients and tended to increase as patients became progressively cognitively impaired. Our findings suggests that an imbalance in iron homeostasis is a precursor to the neurodegenerative processes leading to AD and that iron imbalance is not necessarily unique to affected regions. In fact, an understanding of iron deposition in other regions of the brain may provide insights into neuroprotective strategies. Iron deposition at the preclinical stage of AD may be useful as a diagnostic tool, using iron imaging methods, as well as a potential therapeutic target, through metal ion chelators.

  4. Increased gastric IL-1β concentration and iron deficiency parameters in H. pylori infected children.

    Science.gov (United States)

    Queiroz, Dulciene Maria Magalhaes; Rocha, Andreia Maria Camargos; Melo, Fabricio Freire; Rocha, Gifone Aguiar; Teixeira, Kádima Nayara; Carvalho, Simone Diniz; Bittencourt, Paulo Fernando Souto; Castro, Lucia Porto Fonseca; Crabtree, Jean E

    2013-01-01

    Association between H. pylori infection, iron deficiency and iron deficiency anaemia has been described, but the mechanisms involved have not been established. We hypothesized that in H. pylori infected children increased gastric concentrations of IL-1β and/or TNF-α, both potent inhibitors of gastric acid secretion that is essential for iron absorption, are predictors for low blood concentrations of ferritin and haemoglobin, markers of early depletion of iron stores and anaemia, respectively. We evaluated 125 children undergoing endoscopy to clarify the origin of gastrointestinal symptoms. Gastric specimens were obtained for H. pylori status and cytokine evaluation and blood samples for determination of iron deficiency/iron deficiency anaemia parameters and IL1 cluster and TNFA polymorphisms that are associated with increased cytokine secretions. Higher IL-1β and TNF-α gastric concentrations were observed in H. pylori-positive (n = 47) than in -negative (n = 78) children. Multiple linear regression models revealed gastric IL-1β, but not TNF-α, as a significant predictor of low ferritin and haemoglobin concentrations; results were reproduced in young children in whom IL1RN polymorphic genotypes associated with higher gastric IL-1β expression and lower blood ferritin and haemoglobin concentrations. In conclusion, high gastric levels of IL-1β can be the link between H. pylori infection and iron deficiency/iron deficiency anaemia in childhood.

  5. Modeling Method for Increased Precision and Scope of Directly Measurable Fluxes at a Genome-Scale.

    Science.gov (United States)

    McCloskey, Douglas; Young, Jamey D; Xu, Sibei; Palsson, Bernhard O; Feist, Adam M

    2016-04-05

    Metabolic flux analysis (MFA) is considered to be the gold standard for determining the intracellular flux distribution of biological systems. The majority of work using MFA has been limited to core models of metabolism due to challenges in implementing genome-scale MFA and the undesirable trade-off between increased scope and decreased precision in flux estimations. This work presents a tunable workflow for expanding the scope of MFA to the genome-scale without trade-offs in flux precision. The genome-scale MFA model presented here, iDM2014, accounts for 537 net reactions, which includes the core pathways of traditional MFA models and also covers the additional pathways of purine, pyrimidine, isoprenoid, methionine, riboflavin, coenzyme A, and folate, as well as other biosynthetic pathways. When evaluating the iDM2014 using a set of measured intracellular intermediate and cofactor mass isotopomer distributions (MIDs),1 it was found that a total of 232 net fluxes of central and peripheral metabolism could be resolved in the E. coli network. The increase in scope was shown to cover the full biosynthetic route to an expanded set of bioproduction pathways, which should facilitate applications such as the design of more complex bioprocessing strains and aid in identifying new antimicrobials. Importantly, it was found that there was no loss in precision of core fluxes when compared to a traditional core model, and additionally there was an overall increase in precision when considering all observable reactions.

  6. Chicken thigh, chicken liver, and iron-fortified wheat flour increase iron uptake in an in vitro digestion/Caco-2 cell model.

    Science.gov (United States)

    Pachón, Helena; Stoltzfus, Rebecca J; Glahn, Raymond P

    2008-12-01

    The objective of this study was to test meat and fortified-food combinations to identify those that optimize iron uptake in an in vitro digestion/Caco-2 cell model, a proxy for iron bioavailability. Four experiments tested combinations of meats such as chicken (blood, spleen, liver, thigh), beef (cube steak), and fish (whole-fish meal) with iron-fortified foods (rice cereal, maize-soy flour, wheat flour). Chicken liver, thigh, spleen, blood, or fish meal increased the Caco-2 cell iron uptake from these combined with rice cereal (Pflour (Pmeats did not increase the Caco-2 cell iron uptake (P >or= .05). Adding either meat to the 3 fortified foods increased the Caco-2 cell iron uptake of the fortified foods (Pflour were selected for an infant porridge because the combinations with the highest Caco-2 cell iron uptake were chicken thigh + wheat flour, chicken liver + wheat flour, and chicken liver + maize-soy flour, and wheat flour was the least expensive fortified food sold in the target population. Per unit of iron, the chicken thigh + wheat flour and chicken liver + wheat flour combinations resulted in the highest bioavailable iron. In the proportion of 3:1 fortified food:meat examined, meat increases the bioavailability of iron-fortified foods, but iron-fortified foods do not enhance total iron bioavailability when added to meat.

  7. Large flux of iron from the Amery Ice Shelf marine ice to Prydz Bay, East Antarctica

    Science.gov (United States)

    Herraiz-Borreguero, L.; Lannuzel, D.; van der Merwe, P.; Treverrow, A.; Pedro, J. B.

    2016-08-01

    The Antarctic continental shelf supports a high level of marine primary productivity and is a globally important carbon dioxide (CO2) sink through the photosynthetic fixation of CO2 via the biological pump. Sustaining such high productivity requires a large supply of the essential micronutrient iron (Fe); however, the pathways for Fe delivery to these zones vary spatially and temporally. Our study is the first to report a previously unquantified source of concentrated bioavailable Fe to Antarctic surface waters. We hypothesize that Fe derived from subglacial processes is delivered to euphotic waters through the accretion (Fe storage) and subsequent melting (Fe release) of a marine-accreted layer of ice at the base of the Amery Ice Shelf (AIS). Using satellite-derived Chlorophyll-a data, we show that the soluble Fe supplied by the melting of the marine ice layer is an order of magnitude larger than the required Fe necessary to sustain the large annual phytoplankton bloom in Prydz Bay. Our finding of high concentrations of Fe in AIS marine ice and recent data on increasing rates of ice shelf basal melt in many of Antarctica's ice shelves should encourage further research into glacial and marine sediment transport beneath ice shelves and their sensitivity to current changes in basal melt. Currently, the distribution, volume, and Fe concentration of Antarctic marine ice is poorly constrained. This uncertainty, combined with variable forecasts of increased rates of ice shelf basal melt, limits our ability to predict future Fe supply to Antarctic coastal waters.

  8. Risk of Oxidative Damage to Bone from Increased Iron Stores During Space Flight

    Science.gov (United States)

    Zwart, S. R.; Smith, S. M.

    2014-01-01

    Iron stores are increased secondary to neocytolysis of red blood cells and a high dietary intake of iron during space flight. This raises concerns about the risk of excess iron causing oxidative damage in many tissues, including bone. Biomarkers of iron status, oxidative damage, and bone resorption during space flight were analyzed for 23 (16 M/7 F) International Space Station crewmembers as part of the Nutrition SMO project. Up to 5 in-flight blood samples and 24-h urine pools were collected over the course of the 4-6 month missions. Serum iron increased slightly during space flight and was decreased at landing (P diet (45 mg iron (ferric citrate)/kg diet) for 3 wk and then assigned to one of four groups: adequate iron (Fe) diet/no radiation, adequate Fe diet/ radiation, moderately high Fe diet (650 mg Fe (ferric citrate)/kg diet)/no radiation, and moderately high Fe diet/radiation. Animals remained on the assigned diet for 4 wk. Starting on day 14 of experimental diet treatment, animals were exposed to a fractionated dose (0.375 Gy) of Cs-137 every other day (3 Gy total dose). On day 29 (24 h after last radiation exposure), animals were euthanized. Oxidative stress markers in the liver, bone, eyes, and serum were assessed. There was evidence that the iron diet contributed to DNA damage as well as radiation exposure in the liver, eyes, and bone. Together, the results suggest that increased iron stores do constitute a risk factor for oxidative damage and bone resorption, during space flight and on Earth. Funded by the Human Health and Countermeasures Element of the NASA Human Research Program.

  9. Plant functional diversity increases grassland productivity-related water vapor fluxes: an Ecotron and modeling approach.

    Science.gov (United States)

    Milcu, Alexandru; Eugster, Werner; Bachmann, Dörte; Guderle, Marcus; Roscher, Christiane; Gockele, Annette; Landais, Damien; Ravel, Olivier; Gessler, Arthur; Lange, Markus; Ebeling, Anne; Weisser, Wolfgang W; Roy, Jacques; Hildebrandt, Anke; Buchmann, Nina

    2016-08-01

    The impact of species richness and functional diversity of plants on ecosystem water vapor fluxes has been little investigated. To address this knowledge gap, we combined a lysimeter setup in a controlled environment facility (Ecotron) with large ecosystem samples/monoliths originating from a long-term biodiversity experiment (The Jena Experiment) and a modeling approach. Our goals were (1) quantifying the impact of plant species richness (four vs. 16 species) on day- and nighttime ecosystem water vapor fluxes; (2) partitioning ecosystem evapotranspiration into evaporation and plant transpiration using the Shuttleworth and Wallace (SW) energy partitioning model; and (3) identifying the most parsimonious predictors of water vapor fluxes using plant functional-trait-based metrics such as functional diversity and community weighted means. Daytime measured and modeled evapotranspiration were significantly higher in the higher plant diversity treatment, suggesting increased water acquisition. The SW model suggests that, at low plant species richness, a higher proportion of the available energy was diverted to evaporation (a non-productive flux), while, at higher species richness, the proportion of ecosystem transpiration (a productivity-related water flux) increased. While it is well established that LAI controls ecosystem transpiration, here we also identified that the diversity of leaf nitrogen concentration among species in a community is a consistent predictor of ecosystem water vapor fluxes during daytime. The results provide evidence that, at the peak of the growing season, higher leaf area index (LAI) and lower percentage of bare ground at high plant diversity diverts more of the available water to transpiration, a flux closely coupled with photosynthesis and productivity. Higher rates of transpiration presumably contribute to the positive effect of diversity on productivity.

  10. Evidence of increased gaseous PCB fluxes to Lake Michigan from Chicago

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.; Eisenreich, S.J.; Franz, T.R. [Rutgers-the State Univ., New Brunswick, NJ (United States). Dept. of Environmental Sciences; Baker, J.E.; Offenberg, J.H. [Univ. of Maryland, Solomons, MD (United States). Chesapeake Biological Lab.

    1999-07-01

    Urban-industrial areas exhibit atmospheric concentrations of organic contaminants that are often > 5--10x regional background. Increased emissions of PCBs into the urban-industrial atmosphere leads to enhanced depositional fluxes to proximate waters. In this study, the increased air-water exchange inputs of PCB congeners into southern Lake Michigan driven by elevated atmospheric concentrations emanating from the Chicago, IL/Gary, IN air plume was studied. Intensive experiments were conducted in May and July 1994 and January 1995. The gaseous {Sigma}PCB concentrations at the overlake site 15-km from Chicago ranged from 132 to 1,120 pg/m{sup 3} with higher concentrations occurring in warm periods and when winds were from southerly and westerly quadrants. Dissolved phase {Sigma}PCB concentrations ranged from 48 to 302 pg/L with concentrations in winter {approximately} 2.5 x higher than summer concentrations. Instantaneous net air-water exchange fluxes ranged from {minus}32 (absorption) to + 59 ng/m{sup 2}-d with absorptive flux highest in summer when winds were from the urban area and gas-phase concentrations were highest. Air and surface water temperatures and wind direction were the dominant factors influencing the magnitude and direction of air-water exchange fluxes. The modeled net air-water exchange flux of {Sigma}PCB in the southern quarter of Lake Michigan was {minus} 18 {micro}g/m{sup 2}-yr (net absorption) in 1994, corresponding to 140 kg/yr net input.

  11. Iron overload alters glucose homeostasis, causes liver steatosis, and increases serum triacylglycerols in rats.

    Science.gov (United States)

    Silva, Maísa; Silva, Marcelo E; de Paula, Heberth; Carneiro, Cláudia Martins; Pedrosa, Maria Lucia

    2008-06-01

    The objective of this study was to investigate the effect of iron overload with a hyperlipidemic diet on the histologic feature of hepatic tissue, the lipid and glycemic serum profiles, and the markers of oxidative damage and stress in a rat model. Twenty-four male Fischer rats, purchased from Experimental Nutrition Laboratory, Federal University of Ouro Preto, were assigned to 4 equal groups, 2 were fed a standard cholesterol-free diet (group C or control and CI or control with iron) containing 8.0% soybean oil and 2 were fed a hyperlipidemic diet (group H or hyperlipidemic and HI or hyperlipidemic with iron) containing 1.0% cholesterol and 25.0% soybean oil. A total of 50 mg of iron was administered to rats in groups CI and HI in 5 equal doses (1 every 3 weeks for a 16-week period) by intraperitoneal injections of 0.1 mL of iron dextran solution (100 g Fe(2+)/L; Sigma, St Louis, Mo). The other rats in groups C and H were treated in a similar manner but with sterile saline (0.1 mL). Irrespective of the diet, iron excess enhanced serum triacylglycerols (P .05) were observed in paraoxonase activities or in serum levels of free or total sulfhydryl radicals, malondialdehyde, or total antioxidants. The findings suggest that iron excess in the rat probably modifies lipid metabolism and, as a consequence, alters glucose homeostasis and increases the level of serum triacylglycerols but not of cholesterol.

  12. Oral administration of lactoferrin increases hemoglobin and total serum iron in pregnant women.

    Science.gov (United States)

    Paesano, Rosalba; Torcia, Francesco; Berlutti, Francesca; Pacifici, Enrica; Ebano, Valeria; Moscarini, Massimo; Valenti, Piera

    2006-06-01

    Iron deficiency anemia (IDA) during pregnancy continues to be of world-wide concern. IDA is a risk factor for preterm delivery and subsequent low birth weight, and possibly for poor neonatal health. Iron supplementation in pregnancy is a widely recommended practice, yet intervention programs have met with many controversies. In our study, 300 women at different trimesters of pregnancy were enrolled in a trial of oral administration of ferrous sulfate (520 mg once a day) or 30% iron-saturated bovine lactoferrin (bLf) (100 mg twice a day). Pregnant women refusing treatment represented the control group. In this group hemoglobin and total serum iron values measured after 30 d without treatment decreased significantly, especially in women at 18-31 weeks of pregnancy. In contrast, after 30 d of oral administration of bLf, hemoglobin and total serum iron values increased and to a greater extent than those observed in women treated orally for 30 d with ferrous sulfate, independently of the trimester of pregnancy. Unlike ferrous sulfate, bLf did not result in any side effects. These findings lead us to hypothesize that lactoferrin could influence iron homeostasis directly or through other proteins involved in iron transport out of the intestinal cells into the blood.

  13. Prenatal Iron Deficiency in Guinea Pigs Increases Locomotor Activity but Does Not Influence Learning and Memory.

    Directory of Open Access Journals (Sweden)

    Catherine Fiset

    Full Text Available The objective of the current study was to determine whether prenatal iron deficiency induced during gestation in guinea pigs affected locomotor activity and learning and memory processes in the progeny. Dams were fed either iron-deficient anemic or iron-sufficient diets throughout gestation and lactation. After weaning, all pups were fed an iron-sufficient diet. On postnatal day 24 and 40, the pups' locomotor activity was observed within an open-field test, and from postnatal day 25 to 40, their learning and memory processes were assessed within a Morris Water Maze. The behavioural and cognitive tests revealed that the iron deficient pup group had increased locomotor activity, but solely on postnatal day 40, and that there were no group differences in the Morris Water Maze. In the general discussion, we propose that prenatal iron deficiency induces an increase in nervousness due to anxiety in the progeny, which, in the current study, resulted in an increase of locomotor activity.

  14. Research on the Mechanism of Penetration Increase by Flux in A-TIG Welding

    Institute of Scientific and Technical Information of China (English)

    Chunli YANG; Sanbao LIN; Fengyao LIU; Lin WU; Qingtao ZHANG

    2003-01-01

    The mechanism of penetration depth increased by activating flux in activating tungsten inert gas (A-TIG) weldingwas studied by measuring the distribution of trace element Bi in the weld and monitoring the change of arc voltageduring A-TIG welding of stain

  15. Iron

    DEFF Research Database (Denmark)

    Hansen, Jakob Bondo; Moen, I W; Mandrup-Poulsen, T

    2014-01-01

    The interest in the role of ferrous iron in diabetes pathophysiology has been revived by recent evidence of iron as an important determinant of pancreatic islet inflammation and as a biomarker of diabetes risk and mortality. The iron metabolism in the β-cell is complex. Excess free iron is toxic......, but at the same time, iron is required for normal β-cell function and thereby glucose homeostasis. In the pathogenesis of diabetes, iron generates reactive oxygen species (ROS) by participating in the Fenton chemistry, which can induce oxidative damage and apoptosis. The aim of this review is to present...... and discuss recent evidence, suggesting that iron is a key pathogenic factor in both type 1 and type 2 diabetes with a focus on inflammatory pathways. Pro-inflammatory cytokine-induced β-cell death is not fully understood, but may include iron-induced ROS formation resulting in dedifferentiation by activation...

  16. Inhibition of Sirtuin 2 exerts neuroprotection in aging rats with increased neonatal iron intake

    Institute of Scientific and Technical Information of China (English)

    Xijin Wang; Meihua Wang; Liu Yang; Jie Bai; Zhiqiang Yan; Yuhong Zhang; Zhenguo Liu

    2014-01-01

    Impaired iron homeostasis may cause damage to dopaminergic neurons and is critically involved in the pathogenesis of Parkinson’s disease. At present, very little is understood about the effect of neonatal iron intake on behavior in aging animals. Therefore, we hypothesized that increased neonatal iron intake would result in signiifcant behavior abnormalities and striatal dopamine depletion during aging, and Sirtuin 2 contributes to the age-related neurotoxicity. In the present study, we observed that neonatal iron intake (120 μg/g per day) during postnatal days 10–17 resulted in significant behavior abnormalities and striatal dopamine depletion in aging rats. Furthermore, after AK-7 (a selective Sirtuin 2 inhibitor) was injected into the substantia nigra at postnatal 540 days and 570 days (5 μg/side per day), striatal dopamine depletion was signiifcant-ly diminished and behavior abnormality was improved in aging rats with neonatal iron intake. Experimental ifndings suggest that increased neonatal iron intake may result in Parkinson’s dis-ease-like neurochemical and behavioral deifcits with aging, and inhibition of Sirtuin 2 expression may be a neuroprotective measure in Parkinson’s disease.

  17. Use of ascorbic and citric acids to increase dialyzable iron from vinal (Prosopis ruscifolia) pulp.

    Science.gov (United States)

    Bernardi, C; Freyre, M; Sambucetti, M E; Pirovani, M E

    2004-01-01

    Vinal (Prosopis ruscifolia) is an ecologically important wild leguminous tree that grows spontaneously in Argentine deforested lands, the fruit of which is consumed by humans and animals. Because considerable iron content with low to intermediate availability has been previously reported in vinal pulps, its enhancement would be of interest. Iron availability was determined as iron dialyzability using an in vitro technique. Response surface methodology was used to evaluate iron availability increase after adding ascorbic and/or citric acids to vinal pulp at different mM acid/mM Fe ratios. Those ratios ranged from 0.05:1 to 9.95:1 and from 0.5:1 to 99.5:1 for ascorbic acid/Fe (AA:Fe) and citric acid/Fe (CA:Fe), respectively. The obtained second- and first-order polynomial equations showed that AA:Fe and CA:Fe molar ratios linear terms had a significant effect on iron dialyzability increase (P iron availability to a maximum of 4.6 times. Additional confirmatory experiments were made adding the same organic acids to different vinal pulps and to a traditional cake prepared with vinal pulp called "patay." There were no significant differences (p > 0.05) between predicted values obtained by the model and experimental results.

  18. Rapid increase in relativistic electron flux controlled by nonlinear phase trapping of whistler chorus elements

    Science.gov (United States)

    Saito, Shinji; Miyoshi, Yoshizumi; Seki, Kanako

    2016-07-01

    Wave-particle interactions with whistler chorus waves are believed to provide a primary acceleration for electrons in the outer radiation belt. Previous models for flux enhancement of the radiation belt have assumed the stochastic process as a diffusion manner of successive random-phase interactions, but physical mechanisms for the acceleration are not fully incorporated in these models because of the lack of a nonlinear scattering process. Here we report rapid increase in relativistic electron flux by using an innovative computer simulation model that incorporates not only diffusive process but also nonlinear scattering processes. The simulations show that three types of scattering simultaneously occur, which are diffusive, phase trapping, and phase bunching. It is found that the phase trapping is the most efficient mechanism to produce the MeV electrons rapidly in the scattering processes. The electrons are accelerated from 400 keV to over 1 MeV in time scale less than 60 s. On the other hand, as the phase trapping is suppressed by the breaking of relative phase angle between waves and gyrating electrons during the interaction, the increase of electron flux at MeV energy is clearly reduced. Our simulations conclude that the phase-trapping process causes a significant effect for the increase in relativistic electron flux and suggest that a quasi-linear diffusion model is not always valid to fully describe the relativistic electron acceleration.

  19. Cutaneous iontophoresis of treprostinil, a prostacyclin analog, increases microvascular blood flux in diabetic malleolus area.

    Science.gov (United States)

    Hellmann, Marcin; Roustit, Matthieu; Gaillard-Bigot, Florence; Cracowski, Jean-Luc

    2015-07-05

    Diabetic foot ulcers are one of the most common and serious complications of diabetes mellitus. Few drugs are effective in enhancing the healing of microvascular skin ulcers. The main objective of the present study was to determine whether iontophoresis of treprostinil, a prostacyclin analog, increases skin microvascular blood flux in the malleolus area of healthy subjects and diabetic patients. We recruited 12 healthy subjects and 12 type 2 diabetic patients. Cathodal iontophoresis (40mC/cm²) of treprostinil 250µM and NaCl 0.9% was performed in the malleolus area. Skin hyperemia was quantified using non-invasive laser speckle contrast imaging, and expressed as the area under the curve (AUC) of cutaneous vascular conductance (CVC). In healthy controls and diabetic patients, treprostinil 250µM induced a significant increase in CVC compared with NaCl (for diabetic patients, AUC0-6h was 19970±8697; versus 2893±5481%BL.min, respectively; P=0.002). In both groups, the peak flux was obtained between 30min and 1h after the end of treprostinil iontophoresis and flux remained higher than baseline up to 6h after ending of iontophoresis. No significant side-effect occurred. Cutaneous iontophoresis of 250µM treprostinil increases microvascular blood flux in the malleolus area in healthy volunteers and diabetic patients, without inducing systemic or local side-effects. Treprostinil cathodal iontophoresis should be further investigated as a new local therapy for diabetic ulcers.

  20. Impact of the natural Fe-fertilization on the magnitude, stoichiometry and efficiency of particulate biogenic silica, nitrogen and iron export fluxes

    Science.gov (United States)

    Lemaitre, N.; Planquette, H.; Dehairs, F.; van der Merwe, P.; Bowie, A. R.; Trull, T. W.; Laurenceau-Cornec, E. C.; Davies, D.; Bollinger, C.; Le Goff, M.; Grossteffan, E.; Planchon, F.

    2016-11-01

    The Kerguelen Plateau is characterized by a naturally Fe-fertilized phytoplankton bloom that extends more than 1000 km downstream in the Antarctic Circumpolar Current. During the KEOPS2 study, in austral spring, we measured particulate nitrogen (PN), biogenic silica (BSi) and particulate iron (PFe) export fluxes in order to investigate how the natural fertilization impacts the stoichiometry and the magnitude of export fluxes and therefore the efficiency of the biological carbon pump. At 9 stations, we estimated elemental export fluxes based on element concentration to 234Th activity ratios for particulate material collected with in-situ pumps and 234Th export fluxes (Planchon et al., 2015). This study revealed that the natural Fe-fertilization increased export fluxes but to variable degrees. Export fluxes for the bloom impacted area were compared with those of a high-nutrient, low-chlorophyll (HNLC), low-productive reference site located to the south-west of Kerguelen and which had the lowest BSi and PFe export fluxes (2.55 mmol BSi m-2 d-1 and 1.92 μmol PFem-2 d-1) and amongst the lowest PN export flux (0.73 mmol PN m-2 d-1). The impact of the Fe fertilization was the greatest within a meander of the polar front (PF), to the east of Kerguelen, with fluxes reaching 1.26 mmol PN m-2 d-1; 20.4 mmol BSi m-2 d-1 and 22.4 μmol PFe m-2 d-1. A highly productive site above the Kerguelen Plateau, on the contrary, was less impacted by the fertilization with export fluxes reaching 0.72 mmol PN m-2 d-1; 4.50 mmol BSi m-2 d-1 and 21.4 μmol PFe m-2 d-1. Our results suggest that ecosystem features (i.e. type of diatom community) could play an important role in setting the magnitude of export fluxes of these elements. Indeed, for the PF meander, the moderate productivity was sustained by the presence of large and strongly silicified diatom species while at the higher productivity sites, smaller and slightly silicified diatoms dominated. Interestingly, our results suggest that

  1. Acid and organic aerosol coatings on magnetic nanoparticles increase iron concentrations in human airway epithelial cells.

    Science.gov (United States)

    Ghio, Andrew J; Dailey, Lisa A; Richards, Judy H; Jang, Myoseon

    2009-07-01

    Numerous industrial applications for man-made nanoparticles have been proposed. Interactions of nanoparticles with agents in the atmosphere may impact human health. We tested the postulate that in vitro exposures of respiratory epithelial cells to airborne magnetic nanoparticles (MNP; Fe(3)O(4)) with and without a secondary organic aerosol (SOA) and an inorganic acid could affect iron homeostasis, oxidative stress, and interleukin (IL)-8 release. Cell iron concentrations were increased after exposures to MNP and values were further elevated with co-exposures to either SOA or inorganic acid. Increased expression of ferritin and elevated levels of RNA for DMT1, proteins for iron storage and transport respectively, followed MNP exposures, but values were significant for only those with co-exposures to inorganic acid and organic aerosols. Cell iron concentration corresponded to a measure of oxidative stress in the airway epithelial cells; MNP with co-exposures to SOA and inorganic acid increased both available metal and indices of oxidant generation. Finally, the release of a proinflammatory cytokine (i.e. IL-8) by the exposed cells similarly increased with cell iron concentration. We conclude that MNP can interact with a SOA and an inorganic acid to present metal in a catalytically reactive state to cultured respiratory cells. This produces an oxidative stress to affect a release of IL-8.

  2. Increased iron export by ferroportin induces restriction of HIV-1 infection in sickle cell disease

    Science.gov (United States)

    Kumari, Namita; Ammosova, Tatiana; Diaz, Sharmin; Lin, Xionghao; Niu, Xiaomei; Ivanov, Andrey; Jerebtsova, Marina; Dhawan, Subhash; Oneal, Patricia; Nekhai, Sergei

    2017-01-01

    The low incidence of HIV-1 infection in patients with sickle cell disease (SCD) and inhibition of HIV-1 replication in vitro under the conditions of low intracellular iron or heme treatment suggests a potential restriction of HIV-1 infection in SCD. We investigated HIV-1 ex vivo infection of SCD peripheral blood mononuclear cells (PBMCs) and found that HIV-1 replication was inhibited at the level of reverse transcription (RT) and transcription. We observed increased expression of heme and iron-regulated genes, previously shown to inhibit HIV-1, including ferroportin, IKBα, HO-1, p21, and SAM domain and HD domain-containing protein 1 (SAMHD1). HIV-1 inhibition was less pronounced in hepcidin-treated SCD PBMCs and more pronounced in the iron or iron chelators treated, suggesting a key role of iron metabolism. In SCD PBMCs, labile iron levels were reduced and protein levels of ferroportin, HIF-1α, IKBα, and HO-1 were increased. Hemin treatment induced ferroportin expression and inhibited HIV-1 in THP-1 cells, mimicking the HIV-1 inhibition in SCD PBMCs, especially as hepcidin similarly prevented HIV-1 inhibition. In THP-1 cells with knocked down ferroportin, IKBα, or HO-1 genes but not HIF-1α or p21, HIV-1 was not inhibited by hemin. Activity of SAMHD1-regulatory CDK2 was decreased, and SAMHD1 phosphorylation was reduced in SCD PBMCs and hemin-treated THP-1 cells, suggesting SAMHD1-mediated HIV-1 restriction in SCD. Our findings point to ferroportin as a trigger of HIV-1 restriction in SCD settings, linking reduced intracellular iron levels to the inhibition of CDK2 activity, reduction of SAMHD1 phosphorylation, increased IKBα expression, and inhibition of HIV-1 RT and transcription.

  3. Increased sediment oxygen flux in lakes and reservoirs: The impact of hypolimnetic oxygenation

    Science.gov (United States)

    Bierlein, Kevin A.; Rezvani, Maryam; Socolofsky, Scott A.; Bryant, Lee D.; Wüest, Alfred; Little, John C.

    2017-06-01

    Hypolimnetic oxygenation is an increasingly common lake management strategy for mitigating hypoxia/anoxia and associated deleterious effects on water quality. A common effect of oxygenation is increased oxygen consumption in the hypolimnion and predicting the magnitude of this increase is the crux of effective oxygenation system design. Simultaneous measurements of sediment oxygen flux (JO2) and turbulence in the bottom boundary layer of two oxygenated lakes were used to investigate the impact of oxygenation on JO2. Oxygenation increased JO2 in both lakes by increasing the bulk oxygen concentration, which in turn steepens the diffusive gradient across the diffusive boundary layer. At high flow rates, the diffusive boundary layer thickness decreased as well. A transect along one of the lakes showed JO2 to be spatially quite variable, with near-field and far-field JO2 differing by a factor of 4. Using these in situ measurements, physical models of interfacial flux were compared to microprofile-derived JO2 to determine which models adequately predict JO2 in oxygenated lakes. Models based on friction velocity, turbulence dissipation rate, and the integral scale of turbulence agreed with microprofile-derived JO2 in both lakes. These models could potentially be used to predict oxygenation-induced oxygen flux and improve oxygenation system design methods for a broad range of reservoir systems.

  4. Metabolic flux phenotype of tobacco hairy roots engineered for increased geraniol production.

    Science.gov (United States)

    Masakapalli, Shyam K; Ritala, Anneli; Dong, Lemeng; van der Krol, Alexander R; Oksman-Caldentey, Kirsi-Marja; Ratcliffe, R George; Sweetlove, Lee J

    2014-03-01

    The goal of this study was to characterise the metabolic flux phenotype of transgenic tobacco (Nicotiana tabacum) hairy roots engineered for increased biosynthesis of geraniol, an intermediate of the terpenoid indole alkaloid pathway. Steady state, stable isotope labelling was used to determine flux maps of central carbon metabolism for transgenic lines over-expressing (i) plastid-targeted geraniol synthase (pGES) from Valeriana officinalis, and (ii) pGES in combination with plastid-targeted geranyl pyrophosphate synthase from Arabidopsis thaliana (pGES+pGPPS), as well as for wild type and control-vector-transformed roots. Fluxes were constrained by the redistribution of label from [1-¹³C]-, [2-¹³C]- or [¹³C6]glucose into amino acids, sugars and organic acids at isotopic steady state, and by biomass output fluxes determined from the fractionation of [U-¹⁴C]glucose into insoluble polymers. No significant differences in growth and biomass composition were observed between the lines. The pGES line accumulated significant amounts of geraniol/geraniol glycosides (151±24 ng/mg dry weight) and the de novo synthesis of geraniol in pGES was confirmed by ¹³C labelling analysis. The pGES+pGPPS also accumulated geraniol and geraniol glycosides, but to lower levels than the pGES line. Although there was a distinct impact of the transgenes at the level of geraniol synthesis, other network fluxes were unaffected, reflecting the capacity of central metabolism to meet the relatively modest demand for increased precursors in the transgenic lines. It is concluded that re-engineering of the terpenoid indole alkaloid pathway will only require simultaneous manipulation of the steps producing the pathway precursors that originate in central metabolism in tissues engineered to produce at least an order of magnitude more geraniol than has been achieved so far.

  5. Variations of iron flux and organic carbon remineralization in a subterranean estuary caused by interannual variations in recharge

    Science.gov (United States)

    Roy, Moutusi; Martin, Jonathan B.; Cable, Jaye E.; Smith, Christopher G.

    2013-01-01

    We determine the inter-annual variations in diagenetic reaction rates of sedimentary iron (Fe ) in an east Florida subterranean estuary and evaluate the connection between metal fluxes and recharge to the coastal aquifer. Over the three-year study period (from 2004 to 2007), the amount of Fe-oxides reduced at the study site decreased from 192 g/yr to 153 g/yr and associated organic carbon (OC) remineralization decreased from 48 g/yr to 38 g/yr. These reductions occurred although the Fe-oxide reduction rates remained constant around 1 mg/cm2/yr. These results suggest that changes in flow rates of submarine groundwater discharge (SGD) related to changes in precipitation may be important to fluxes of the diagenetic reaction products. Rainfall at a weather station approximately 5 km from the field area decreased from 12.6 cm/month to 8.4 cm/month from 2004 to 2007. Monthly potential evapotranspiration (PET) calculated from Thornthwaite’s method indicated potential evapotranspiration cycled from about 3 cm/month in the winter to about 15 cm/month in the summer so that net annual recharge to the aquifer decreased from 40 cm in 2004 to -10 cm in 2007. Simultaneously, with the decrease in recharge of groundwater, freshwater SGD decreased by around 20% and caused the originally 25 m wide freshwater seepage face to decrease in width by about 5 m. The smaller seepage face reduced the area under which Fe-oxides were undergoing reductive dissolution. Consequently, the observed decrease in Fe flux is controlled by hydrology of the subterranean estuary. These results point out the need to better understand linkages between temporal variations in diagenetic reactions and changes in flow within subterranean estuaries in order to accurately constrain their contribution to oceanic fluxes of solutes from subterranean estuaries.

  6. Climate Warming Can Increase Soil Carbon Fluxes Without Decreasing Soil Carbon Stocks in Boreal Forests

    Science.gov (United States)

    Ziegler, S. E.; Benner, R. H.; Billings, S. A.; Edwards, K. A.; Philben, M. J.; Zhu, X.; Laganiere, J.

    2016-12-01

    Ecosystem C fluxes respond positively to climate warming, however, the net impact of changing C fluxes on soil organic carbon (SOC) stocks over decadal scales remains unclear. Manipulative studies and global-scale observations have informed much of the existing knowledge of SOC responses to climate, providing insights on relatively short (e.g. days to years) and long (centuries to millennia) time scales, respectively. Natural climate gradient studies capture integrated ecosystem responses to climate on decadal time scales. Here we report the soil C reservoirs, fluxes into and out of those reservoirs, and the chemical composition of inputs and soil organic matter pools along a mesic boreal forest climate transect. The sites studied consist of similar forest composition, successional stage, and soil moisture but differ by 5.2°C mean annual temperature. Carbon fluxes through these boreal forest soils were greatest in the lowest latitude regions and indicate that enhanced C inputs can offset soil C losses with warming in these forests. Respiration rates increased by 55% and the flux of dissolved organic carbon from the organic to mineral soil horizons tripled across this climate gradient. The 2-fold increase in litterfall inputs to these soils coincided with a significant increase in the organic horizon C stock with warming, however, no significant difference in the surface mineral soil C stocks was observed. The younger mean age of the mineral soil C ( 70 versus 330 YBP) provided further evidence for the greater turnover of SOC in the warmer climate soils. In spite of these differences in mean radiocarbon age, mineral SOC exhibited chemical characteristics of highly decomposed material across all regions. In contrast with depth trends in soil OM diagenetic indices, diagenetic shifts with latitude were limited to increases in C:N and alkyl to O-alkyl ratios in the overlying organic horizons in the warmer relative to the colder regions. These data indicate that the

  7. Fortification Iron as Ferrous Sulfate Plus Ascorbic Acid Is More Rapidly Absorbed Than as Sodium Iron EDTA but Neither Increases Serum Nontransferrin-Bound Iron in Women

    NARCIS (Netherlands)

    Troesch, B.; Egli, I.; Zeder, C.; Hurrell, R.F.; Zimmermann, M.B.

    2011-01-01

    The absorption profile of iron fortificants may be a determinant of their ability to generate nontransferrin-bound iron (NTBI) and, thus, their potential safety. Ferrous iron may be absorbed more rapidly than chelated ferric iron, but differences at the fortification level cannot be distinguished wi

  8. Replacing electrolytic iron in a fortification-mix with NaFeEDTA increases both iron and zinc availabilities in traditional African maize porridges.

    Science.gov (United States)

    Kruger, Johanita

    2016-08-15

    While replacing electrolytic iron with NaFeEDTA in multi-micronutrient fortification-mixes is a popular option, there is no information about the effect on the iron and zinc availabilities in African staple foods. This study evaluated the effects of adding a multi-micronutrient fortification-mix, with no iron, electrolytic iron or NaFeEDTA on the availabilities of iron and zinc from thick and fermented special-grade maize porridges using a Caco-2 cell model. Replacing electrolytic iron with NaFeEDTA significantly (p ⩽ 0.05) increased iron and, importantly zinc, availabilities in both the thick (2.16% vs. 1.45% and 2.51% vs. 2.29%, respectively) and fermented (3.35% vs. 2.66% and 3.04% vs. 2.61%, respectively) porridges. Some of the NaFeEDTA complexes perhaps partially dissociated because of pH changes during simulated digestion, binding with zinc and increasing its availability. NaFeEDTA in a multi-micronutrient fortification-mix, added to less refined, high phytate maize meal, would be more effective than electrolytic iron in addressing both iron and zinc deficiencies in low socio-economic populations of sub-Saharan Africa.

  9. Dephytinisation with intrinsic wheat phytase and iron fortification significantly increase iron absorption from fonio (Digitaria exilis) meals in West African women.

    Science.gov (United States)

    Koréissi-Dembélé, Yara; Fanou-Fogny, Nadia; Moretti, Diego; Schuth, Stephan; Dossa, Romain A M; Egli, Ines; Zimmermann, Michael B; Brouwer, Inge D

    2013-01-01

    Low iron and high phytic acid content make fonio based meals a poor source of bioavailable iron. Phytic acid degradation in fonio porridge using whole grain cereals as phytase source and effect on iron bioavailability when added to iron fortified fonio meals were investigated. Grains, nuts and seeds collected in Mali markets were screened for phytic acid and phytase activity. We performed an iron absorption study in Beninese women (n = 16), using non-dephytinised fonio porridge (FFP) and dephytinised fonio porridge (FWFP; 75% fonio-25% wheat), each fortified with (57)Fe or (58)Fe labeled FeSO4. Iron absorption was quantified by measuring the erythrocyte incorporation of stable iron isotopes. Phytic acid varied from 0.39 (bambara nut) to 4.26 g/100 g DM (pumpkin seed), with oilseeds values higher than grains and nuts. Phytase activity ranged from 0.17±1.61 (fonio) to 2.9±1.3 phytase unit (PU) per g (whole wheat). Phytic acid was almost completely degraded in FWFP after 60 min of incubation (pH≈5.0, 50°C). Phytate∶iron molar ratios decreased from 23.7∶1 in FFP to 2.7∶1 in FWFP. Iron fortification further reduced phytate∶iron molar ratio to 1.9∶1 in FFP and 0.3∶1 in FWFP, respectively. Geometric mean (95% CI) iron absorption significantly increased from 2.6% (0.8-7.8) in FFP to 8.3% (3.8-17.9) in FWFP (Pporridge with intrinsic wheat phytase increased fractional iron absorption 3.2 times, suggesting it could be a possible strategy to decrease PA in cereal-based porridges.

  10. Dephytinisation with intrinsic wheat phytase and iron fortification significantly increase iron absorption from fonio (Digitaria exilis meals in West African women.

    Directory of Open Access Journals (Sweden)

    Yara Koréissi-Dembélé

    Full Text Available Low iron and high phytic acid content make fonio based meals a poor source of bioavailable iron. Phytic acid degradation in fonio porridge using whole grain cereals as phytase source and effect on iron bioavailability when added to iron fortified fonio meals were investigated. Grains, nuts and seeds collected in Mali markets were screened for phytic acid and phytase activity. We performed an iron absorption study in Beninese women (n = 16, using non-dephytinised fonio porridge (FFP and dephytinised fonio porridge (FWFP; 75% fonio-25% wheat, each fortified with (57Fe or (58Fe labeled FeSO4. Iron absorption was quantified by measuring the erythrocyte incorporation of stable iron isotopes. Phytic acid varied from 0.39 (bambara nut to 4.26 g/100 g DM (pumpkin seed, with oilseeds values higher than grains and nuts. Phytase activity ranged from 0.17±1.61 (fonio to 2.9±1.3 phytase unit (PU per g (whole wheat. Phytic acid was almost completely degraded in FWFP after 60 min of incubation (pH≈5.0, 50°C. Phytate∶iron molar ratios decreased from 23.7∶1 in FFP to 2.7∶1 in FWFP. Iron fortification further reduced phytate∶iron molar ratio to 1.9∶1 in FFP and 0.3∶1 in FWFP, respectively. Geometric mean (95% CI iron absorption significantly increased from 2.6% (0.8-7.8 in FFP to 8.3% (3.8-17.9 in FWFP (P<0.0001. Dephytinisation of fonio porridge with intrinsic wheat phytase increased fractional iron absorption 3.2 times, suggesting it could be a possible strategy to decrease PA in cereal-based porridges.

  11. Increasing pentose phosphate pathway flux enhances recombinant protein production in Pichia pastoris.

    Science.gov (United States)

    Nocon, Justyna; Steiger, Matthias; Mairinger, Teresa; Hohlweg, Jonas; Rußmayer, Hannes; Hann, Stephan; Gasser, Brigitte; Mattanovich, Diethard

    2016-07-01

    Production of heterologous proteins in Pichia pastoris (syn. Komagataella sp.) has been shown to exert a metabolic burden on the host metabolism. This burden is associated with metabolite drain, which redirects nucleotides and amino acids from primary metabolism. On the other hand, recombinant protein production affects energy and redox homeostasis of the host cell. In a previous study, we have demonstrated that overexpression of single genes of the oxidative pentose phosphate pathway (PPP) had a positive influence on recombinant production of cytosolic human superoxide dismutase (hSOD). In this study, different combinations of these genes belonging to the oxidative PPP were generated and analyzed. Thereby, a 3.8-fold increase of hSOD production was detected when glucose-6-phosphate dehydrogenase (ZWF1) and 6-gluconolactonase (SOL3) were simultaneously overexpressed, while the combinations of other genes from PPP had no positive effect on protein production. By measuring isotopologue patterns of (13)C-labelled metabolites, we could detect an upshift in the flux ratio of PPP to glycolysis upon ZWF1 and SOL3 co-overexpression, as well as increased levels of 6-phosphogluconate. The substantial improvement of hSOD production by ZWF1 and SOL3 co-overexpression appeared to be connected to an increase in PPP flux. In conclusion, we show that overexpression of SOL3 together with ZWF1 enhanced both the PPP flux ratio and hSOD accumulation, providing evidence that in P. pastoris Sol3 limits the flux through PPP and recombinant protein production.

  12. Historical patterns of acidification and increasing CO2 flux associated with Florida springs

    Science.gov (United States)

    Barrera, Kira E.; Robbins, Lisa L.

    2017-01-01

    Florida has one of the highest concentrations of springs in the world, with many discharging into rivers and predominantly into eastern Gulf of Mexico coast, and they likely influence the hydrochemistry of these adjacent waters; however, temporal and spatial trends have not been well studied. We present over 20 yr of hydrochemical, seasonally sampled data to identify temporal and spatial trends of pH, alkalinity, partial pressure of carbon dioxide (pCO2), and CO2flux from five first-order-magnitude (springs that discharge greater than 2.83 m3 s−1) coastal spring groups fed by the Floridan Aquifer System that ultimately discharge into the Gulf of Mexico. All spring groups had pCO2 levels (averages 3174.3–6773.2 μatm) that were much higher than atmospheric levels of CO2 and demonstrated statistically significant temporal decreases in pH and increases in CO2 flux, pCO2, and alkalinity. Total carbon flux emissions increased from each of the spring groups by between 3.48 × 107 and 2.856 × 108 kg C yr−1 over the time period. By 2013 the Springs Groups in total emitted more than 1.1739 × 109 kg C yr−1. Increases in alkalinity and pCO2 varied from 90.9 to 347.6 μmol kg−1 and 1262.3 to 2666.7 μatm, respectively. Coastal data show higher CO2 evasion than the open Gulf of Mexico, which suggests spring water influences nearshore waters. The results of this study have important implications for spring water quality, dissolution of the Florida carbonate platform, and identification of the effect and partitioning of carbon fluxes to and within coastal and marine ecosystems.

  13. Iron fertilization enhanced net community production but not downward particle flux during the Southern Ocean iron fertilization experiment LOHAFEX

    Digital Repository Service at National Institute of Oceanography (India)

    Martin, P.; Loeff, M.M.R. van der.; Cassar, N.; Vandromme, P.; d'Ovidio, F.; Stemmann, L.; Rengarajan, R.; Soares, M.A.; Gonzalez, H.E.; Ebersbach, F.; Lampitt, R.S.; Sanders, R.; Barnett, B.A.; Smetacek, V.; Naqvi, S.W.A.

    into the deep ocean. Chlorophyll a and primary productivity doubled after fertilization, and photosynthetic quantum yield (FV/FM) increased from 0.33 to is greater then 0.40. Silicic acid (<2 µmol L-1) limited diatoms, which contributed <10...

  14. Iron deprivation results in a rapid but not sustained increase of the expression of genes involved in iron metabolism and sulfate uptake in tomato (Solanum lycopersicum L.) seedlings.

    Science.gov (United States)

    Paolacci, Anna Rita; Celletti, Silvia; Catarcione, Giulio; Hawkesford, Malcolm J; Astolfi, Stefania; Ciaffi, Mario

    2014-01-01

    Characterization of the relationship between sulfur and iron in both Strategy I and Strategy II plants, has proven that low sulfur availability often limits plant capability to cope with iron shortage. Here it was investigated whether the adaptation to iron deficiency in tomato (Solanum lycopersicum L.) plants was associated with an increased root sulfate uptake and translocation capacity, and modified dynamics of total sulfur and thiols accumulation between roots and shoots. Most of the tomato sulfate transporter genes belonging to Groups 1, 2, and 4 were significantly upregulated in iron-deficient roots, as it commonly occurs under S-deficient conditions. The upregulation of the two high affinity sulfate transporter genes, SlST1.1 and SlST1.2, by iron deprivation clearly suggests an increased root capability to take up sulfate. Furthermore, the upregulation of the two low affinity sulfate transporter genes SlST2.1 and SlST4.1 in iron-deficient roots, accompanied by a substantial accumulation of total sulfur and thiols in shoots of iron-starved plants, likely supports an increased root-to-shoot translocation of sulfate. Results suggest that tomato plants exposed to iron-deficiency are able to change sulfur metabolic balance mimicking sulfur starvation responses to meet the increased demand for methionine and its derivatives, allowing them to cope with this stress.

  15. Iron deprivation results in a rapid but not sustained increase of the expression of genes involved in iron metabolism and sulfate uptake in tomato (Solanum lycopersicum L.) seedlings

    Institute of Scientific and Technical Information of China (English)

    Anna Rita Paolacci; Silvia Celletti; Giulio Catarcione; Malcolm J. Hawkesford; Stefania Astolfi; Mario Ciaffi

    2014-01-01

    Characterization of the relationship between sulfur and iron in both Strategy I and Strategy II plants, has proven that low sulfur availability often limits plant capability to cope with iron shortage. Here it was investigated whether the adaptation to iron deficiency in tomato (Solanum lycopersicum L.) plants was associated with an increased root sulfate uptake and translocation capacity, and modified dynamics of total sulfur and thiols accumulation between roots and shoots. Most of the tomato sulfate transporter genes belonging to Groups 1, 2, and 4 were significantly upregulated in iron-deficient roots, as it commonly occurs under S-deficient conditions. The upregulation of the two high affinity sulfate transporter genes, SlST1.1 and SlST1.2, by iron deprivation clearly suggests an increased root capability to take up sulfate. Furthermore, the upregulation of the two low affinity sulfate transporter genes SlST2.1 and SlST4.1 in iron-deficient roots, accompanied by a substantial accumulation of total sulfur and thiols in shoots of iron-starved plants, likely supports an increased root-to-shoot translocation of sulfate. Results suggest that tomato plants exposed to iron-deficiency are able to change sulfur metabolic balance mimicking sulfur starvation responses to meet the increased demand for methionine and its derivatives, al owing them to cope with this stress.

  16. Increase of the Photocatalytic Activity of TiO by Carbon and Iron Modifications

    Directory of Open Access Journals (Sweden)

    Beata Tryba

    2008-01-01

    Full Text Available Modification of TiO2 by doping of a residue carbon and iron can give enhanced photoactivity of TiO2. Iron adsorbed on the surface of TiO2 can be an electron or hole scavenger and results in the improvement of the separation of free carriers. The presence of carbon can increase the concentration of organic pollutants on the surface of TiO2 facilitating the contact of the reactive species with the organic molecules. Carbon-doped TiO2 can extend the absorption of the light to the visible region and makes the photocatalysts active under visible-light irradiation. It was proved that TiO2 modified by carbon and iron can work in both photocatalysis and photo-Fenton processes, when H2O2 is used, enhancing markedly the rate of the organic compounds decomposition such as phenol, humic acids and dyes. The photocatalytic decomposition of organic compounds on TiO2 modified by iron and carbon is going by the complex reactions of iron with the intermediates, what significantly accelerate the process of their decomposition. The presence of carbon in such photocatalyst retards the inconvenient reaction of OH radicals scavenging by H2O2, which occurs when Fe-TiO2 photocatalyst is used.

  17. Effects of resuspension on benthic fluxes of oxygen, nutrients, dissolved inorganic carbon, iron and manganese in the Gulf of Finland, Baltic Sea

    NARCIS (Netherlands)

    Almroth, E.; Tengberg, A.; Andersson, J.H.; Pakhomova, S.; Hall, P.O.J.

    2009-01-01

    The effect of resuspension on benthic fluxes of oxygen (O2), ammonium (NH4+), nitrate (NO3-), phosphate (PO43-), silicate (Si(OH)4), dissolved inorganic carbon (DIC), total dissolved iron (Fe) and total dissolved manganese (Mn) was studied at three different stations in the Gulf of Finland (GoF),

  18. Magnetic separation of algae genetically modified for increased intracellular iron uptake

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Amy [Case Western Reserve University, Cleveland, OH (United States); Cleveland Clinic, Cleveland, OH (United States); Moore, Lee R. [Cleveland Clinic, Cleveland, OH (United States); Lane, Christopher D.; Kumar, Anil; Stroff, Clayton; White, Nicolas [Phycal Inc., Cleveland, OH (United States); Xue, Wei; Chalmers, Jeffrey J. [The Ohio State University, Columbus, OH (United States); Zborowski, Maciej, E-mail: zborowm@ccf.org [Cleveland Clinic, Cleveland, OH (United States)

    2015-04-15

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides (A. protothecoides) strains. The A. protothecoides cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP–AA). They were grown in Sueoka’s modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl{sub 3} EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1000 T/m) dubbed “magnetic deposition microscopy”, or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest. - Highlights: • Auxenochlorella protothecoides algae were genetically modified for biofuel production. • Algal iron metabolism was sufficient for their label-less magnetic separation. • High magnetic field and low flow required make the separation scale-up uneconomical.

  19. Spectroscopic Diagnostics of Solar Magnetic Flux Ropes Using Iron Forbidden Line

    OpenAIRE

    Cheng, X; Ding, M. D.

    2016-01-01

    In this Letter, we present Interface Region Imaging Spectrograph Fe XXI 1354.08 A forbidden line emission of two magnetic flux ropes (MFRs) that caused two fast coronal mass ejections with velocities of $\\ge$1000 km s$^{-1}$ and strong flares (X1.6 and M6.5) on 2014 September 10 and 2015 June 22, respectively. The EUV images at the 131 A and 94 A passbands provided by the Atmospheric Imaging Assembly on board Solar Dynamics Observatory reveal that both MFRs initially appear as suspended hot c...

  20. Flux-gate magnetic field sensor based on yttrium iron garnet films for magnetocardiography investigations

    Science.gov (United States)

    Vetoshko, P. M.; Gusev, N. A.; Chepurnova, D. A.; Samoilova, E. V.; Syvorotka, I. I.; Syvorotka, I. M.; Zvezdin, A. K.; Korotaeva, A. A.; Belotelov, V. I.

    2016-08-01

    A new type of f lux-gate vector magnetometer based on epitaxial yttrium iron garnet films has been developed and constructed for magnetocardiography (MCG) investigations. The magnetic field sensor can operate at room temperature and measure MCG signals at a distance of about 1 mm from the thoracic cage. The high sensitivity of the sensor, better than 100 fT/Hz1/2, is demonstrated by the results of MCG measurements on rats. The main MCG pattern details and R-peak on a level of 10 pT are observed without temporal averaging, which allows heart rate anomalies to be studied. The proposed magnetic sensors can be effectively used in MCG investigations.

  1. Increased terrestrial to ocean sediment and carbon fluxes in the northern Chesapeake Bay associated with twentieth century land alteration

    Science.gov (United States)

    Saenger, C.; Cronin, T. M.; Willard, D.; Halka, J.; Kerhin, R.

    2008-01-01

    We calculated Chesapeake Bay (CB) sediment and carbon fluxes before and after major anthropogenic land clearance using robust monitoring, modeling and sedimentary data. Four distinct fluxes in the estuarine system were considered including (1) the flux of eroded material from the watershed to streams, (2) the flux of suspended sediment at river fall lines, (3) the burial flux in tributary sediments, and (4) the burial flux in main CB sediments. The sedimentary maximum in Ambrosia (ragweed) pollen marked peak land clearance (~1900 a.d.). Rivers feeding CB had a total organic carbon (TOC)/total suspended solids of 0.24??0.12, and we used this observation to calculate TOC fluxes from sediment fluxes. Sediment and carbon fluxes increased by 138-269% across all four regions after land clearance. Our results demonstrate that sediment delivery to CB is subject to significant lags and that excess post-land clearance sediment loads have not reached the ocean. Post-land clearance increases in erosional flux from watersheds, and burial in estuaries are important processes that must be considered to calculate accurate global sediment and carbon budgets. ?? 2008 Coastal and Estuarine Research Federation.

  2. Spectroscopic Diagnostics of Solar Magnetic Flux Ropes Using Iron Forbidden Line

    Science.gov (United States)

    Cheng, X.; Ding, M. D.

    2016-05-01

    In this Letter, we present Interface Region Imaging Spectrograph Fe xxi 1354.08 Å forbidden line emission of two magnetic flux ropes (MFRs) that caused two fast coronal mass ejections with velocities of ≥1000 km s-1 and strong flares (X1.6 and M6.5) on 2014 September 10 and 2015 June 22, respectively. The extreme-ultraviolet images at the 131 and 94 Å passbands provided by the Atmospheric Imaging Assembly on board Solar Dynamics Observatory reveal that both MFRs initially appear as suspended hot channel-like structures. Interestingly, part of the MFRs is also visible in the Fe xxi 1354.08 forbidden line, even prior to the eruption, e.g., for the SOL2014-09-10 event. However, the line emission is very weak and that only appears at a few locations but not the whole structure of the MFRs. This implies that the MFRs could be comprised of different threads with different temperatures and densities, based on the fact that the formation of the Fe xxi forbidden line requires a critical temperature (˜11.5 MK) and density. Moreover, the line shows a non-thermal broadening and a blueshift in the early phase. It suggests that magnetic reconnection at that time has initiated; it not only heats the MFR and, at the same time, produces a non-thermal broadening of the Fe xxi line but also produces the poloidal flux, leading to the ascension of the MFRs.

  3. Multidecadal increases in the Yukon River Basin of chemical fluxes as indicators of changing flowpaths, groundwater, and permafrost

    Science.gov (United States)

    Toohey, R. C.; Herman-Mercer, N. M.; Schuster, P. F.; Mutter, E. A.; Koch, J. C.

    2016-12-01

    The Yukon River Basin, underlain by discontinuous permafrost, has experienced a warming climate over the last century that has altered air temperature, precipitation, and permafrost. We investigated a water chemistry database from 1982 to 2014 for the Yukon River and its major tributary, the Tanana River. Significant increases of Ca, Mg, and Na annual flux were found in both rivers. Additionally, SO4 and P annual flux increased in the Yukon River. No annual trends were observed for dissolved organic carbon (DOC) from 2001 to 2014. In the Yukon River, Mg and SO4 flux increased throughout the year, while some of the most positive trends for Ca, Mg, Na, SO4, and P flux occurred during the fall and winter months. Both rivers exhibited positive monthly DOC flux trends for summer (Yukon River) and winter (Tanana River). These trends suggest increased active layer expansion, weathering, and sulfide oxidation due to permafrost degradation throughout the Yukon River Basin.

  4. Inward flux of lactate⁻ through monocarboxylate transporters contributes to regulatory volume increase in mouse muscle fibres.

    Directory of Open Access Journals (Sweden)

    Michael I Lindinger

    Full Text Available Mouse and rat skeletal muscles are capable of a regulatory volume increase (RVI after they shrink (volume loss resultant from exposure to solutions of increased osmolarity and that this RVI occurs mainly by a Na-K-Cl-Cotransporter (NKCC-dependent mechanism. With high-intensity exercise, increased extracellular osmolarity is accompanied by large increases in extracellular [lactate⁻]. We hypothesized that large increases in [lactate⁻] and osmolarity augment the NKCC-dependent RVI response observed with a NaCl (or sucrose-induced increase in osmolarity alone; a response that is dependent on lactate⁻ influx through monocarboxylate transporters (MCTs. Single mouse muscle fibres were isolated and visualized under light microscopy under varying osmolar conditions. When solution osmolarity was increased by adding NaLac by 30 or 60 mM, fibres lost significantly less volume and regained volume sooner compared to when NaCl was used. Phloretin (MCT1 inhibitor accentuated the volume loss compared to both NaLac controls, supporting a role for MCT1 in the RVI response in the presence of elevated [lactate⁻]. Inhibition of MCT4 (with pCMBS resulted in a volume loss, intermediate to that seen with phloretin and NaLac controls. Bumetanide (NKCC inhibitor, in combination with pCMBS, reduced the magnitude of volume loss, but volume recovery was complete. While combined phloretin-bumetanide also reduced the magnitude of the volume loss, it also largely abolished the cell volume recovery. In conclusion, RVI in skeletal muscle exposed to raised tonicity and [lactate⁻] is facilitated by inward flux of solute by NKCC- and MCT1-dependent mechanisms. This work demonstrates evidence of a RVI response in skeletal muscle that is facilitated by inward flux of solute by MCT-dependent mechanisms. These findings further expand our understanding of the capacities for skeletal muscle to volume regulate, particularly in instances of raised tonicity and lactate

  5. Body iron stores and iron restoration rate in Japanese patients with chronic hepatitis C as measured during therapeutic iron removal revealed neither increased body iron stores nor effects of C282Y and H63D mutations on iron indices.

    Science.gov (United States)

    Shiono, Y; Hayashi, H; Wakusawa, S; Sanae, F; Takikawa, T; Yano, M; Yoshioka, K; Saito, H

    2001-05-01

    Information on the level of iron stores in chronic hepatitis C is clinically important because its reduction is technically simple and therapeutically effective. This study was performed to measure the levels of iron stores from the total amounts of hemoglobin removed during iron reduction therapy. The C282Y and H63D mutations of HFE gene were analyzed in 94 patients. All of the patients were negative for C282Y mutation. One patient was homozygous, and 4 patients were heterozygous for H63D mutation. The body iron stores and iron restoration rate were measured in 59 patients in serial courses of iron reduction therapy. Mean values of body iron stores in the two groups with and without H63D mutation were 890 and 606 mg, while those of iron restoration rate were 1.85 and 1.52 mg/day, respectively. None of the indices of iron metabolism were different from the reference values measured similarly in healthy subjects, suggesting that the iron deposition in chronic hepatitis C is limited to the liver, probably due to changes in the iron distribution in tissues.

  6. Iron fortification of whole wheat flour reduces iron deficiency and iron deficiency anemia and increases body iron stores in Indian school-aged children.

    Science.gov (United States)

    Muthayya, Sumithra; Thankachan, Prashanth; Hirve, Siddhivinayak; Amalrajan, Vani; Thomas, Tinku; Lubree, Himangi; Agarwal, Dhiraj; Srinivasan, Krishnamachari; Hurrell, Richard F; Yajnik, Chittaranjan S; Kurpad, Anura V

    2012-11-01

    Wheat is the primary staple food for nearly one-third of the world's population. NaFeEDTA is the only iron (Fe) compound suitable for fortifying high extraction flours. We tested the hypothesis that NaFeEDTA-fortified, whole wheat flour reduces Fe deficiency (ID) and improves body Fe stores (BIS) and cognitive performance in Indian children. In a randomized, double-blind, controlled, school feeding trial, 6- to 15-y-old, Fe-depleted children (n = 401) were randomly assigned to either a daily wheat-based lunch meal fortified with 6 mg of Fe as NaFeEDTA or an otherwise identical unfortified control meal. Hemoglobin (Hb) and Fe status were measured at baseline, 3.5 mo, and 7 mo. Cognitive performance was evaluated at baseline and 7 mo in children (n = 170) at one of the study sites. After 7 mo, the prevalence of ID and ID anemia in the treatment group significantly decreased from 62 to 21% and 18 to 9%, respectively. There was a time x treatment interaction for Hb, serum ferritin, transferrin receptor, zinc protoporphyrin, and BIS (all P children. It may be recommended for wider use in national school feeding programs.

  7. Breathing Assistance by the Iron Lung Increases Sympathetic Tone and Modifies Fluid Excretion

    Science.gov (United States)

    Baisch, F. J.; Gerzer, R.

    Adaptation to weightlessness is not accompanied by an increase in sodium- and urine- excretion in humans in contrast to the expectations and the bed rest model in use to simulate effects of weightlessness on earth. On earth the thorax remains compressed by gravity in the horizontal body position while its unloading in weightlessness reduces transmural pressure in the mediastinal walls and membranes. Thus, wall stretching. or the Henry-Gauer mechanism, is reduced and may even result in a reduced water and sodium excretion. We have therefore lowered the transmural mediastinal pressure by the principle of the "Iron Lung" in a terrestrial model, and have studied whether or not this principle might reduce body fluid loss seen during onset of head down tilt bed rest. Methods: Two experiment runs were performed in a cross over design: one run pure 6° head down tilt body position (HDT) and the other with iron lung assistance. Six male subjects (26.5 +/- 8.1 years old; 187+/- 5 cm tall; 84.0 +/- 6.6 kg body weight) participated. Lung pressure was modified by the iron lung where the whole body except the head is enclosed in a box. The air pressure inside the box was 5 cm H2O lower than ambient during activation of the iron lung. For inspiration negative pressure increased up to 15 cm H2O, roughly doubling resting breath tide. The counteracting lung pressure was 8.1 +/- 0.6 cm H2O for 4 hours in mean. Breathing rate was reduced under iron lung to avoid hyperventilation (10.2 +/- 0.6 bpm [iron lung] versus 14.0 +/- 1.2 Bpm [spontaneously]). The relationship between expiration and inspiration remained at 2:1 in both runs. End expiratory CO2 was measured breath by breath via a nose clip. Heart rate, peripheral oxygen saturation, and sphygmomanometric blood pressure were determined every half hour. Urine volume was measured hourly. sodium excretion and pH was determined. Ambient conditions were kept constant at thermoneutral conditions. Evaporative fluid loss was evaluated by a

  8. Iron uptake and increased intracellular enzyme activity follow host lactoferrin binding by Trichomonas vaginalis receptors

    OpenAIRE

    1984-01-01

    Lactoferrin acquisition and iron uptake by pathogenic Trichomonas vaginalis was examined. Saturation binding kinetics were obtained for trichomonads using increasing amounts of radioiodinated lactoferrin, while no significant binding by transferrin under similar conditions was achieved. Only unlabeled lactoferrin successfully and stoichiometrically competed with 125I-labeled lactoferrin binding. Time course studies showed maximal lactoferrin binding by 30 min at 37 degrees C. Data suggest no ...

  9. Magnetic separation of algae genetically modified for increased intracellular iron uptake

    Science.gov (United States)

    Buck, Amy; Moore, Lee R.; Lane, Christopher D.; Kumar, Anil; Stroff, Clayton; White, Nicolas; Xue, Wei; Chalmers, Jeffrey J.; Zborowski, Maciej

    2015-04-01

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides (A. protothecoides) strains. The A. protothecoides cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP-AA). They were grown in Sueoka's modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl3 EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1000 T/m) dubbed "magnetic deposition microscopy", or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest.

  10. Iron-regulatory protein hepcidin is increased in female athletes after a marathon.

    Science.gov (United States)

    Roecker, L; Meier-Buttermilch, R; Brechtel, L; Nemeth, E; Ganz, T

    2005-12-01

    The propose of this study was to determine the influence of marathon race on hepcidin excretion in female athletes (age 26-45 years). Urine samples were taken before, immediately after, 1 and 3 days after the race. In the average, hepcidin transiently increased at day 1 from 32 to 85 ng/mg creatinine. We propose that the frequently observed iron deficiency of females runners is caused by elevated hepcidin levels.

  11. Spectroscopic Diagnostics of Solar Magnetic Flux Ropes Using Iron Forbidden Line

    CERN Document Server

    Cheng, X

    2016-01-01

    In this Letter, we present Interface Region Imaging Spectrograph Fe XXI 1354.08 A forbidden line emission of two magnetic flux ropes (MFRs) that caused two fast coronal mass ejections with velocities of $\\ge$1000 km s$^{-1}$ and strong flares (X1.6 and M6.5) on 2014 September 10 and 2015 June 22, respectively. The EUV images at the 131 A and 94 A passbands provided by the Atmospheric Imaging Assembly on board Solar Dynamics Observatory reveal that both MFRs initially appear as suspended hot channel-like structures. Interestingly, part of the MFRs is also visible in the Fe XXI 1354.08 forbidden line, even prior to the eruption, e.g., for the SOL2014-09-10 event. However, the line emission is very weak and that only appears at a few locations but not the whole structure of the MFRs. This implies that the MFRs could be comprised of different threads with different temperatures and densities, based on the fact that the formation of the Fe XXI forbidden line requires a critical temperature ($\\sim$11.5 MK) and dens...

  12. Carbon dioxide in northern high latitude oceans: Anthropogenic increase and air-sea flux variability

    Energy Technology Data Exchange (ETDEWEB)

    Omar, Abdirahman M.

    2003-07-01

    The aim of this thesis is to further our knowledge of carbon dioxide in the northern high latitude oceans (northern North Atlantic, Barents Sea, and Arctic Ocean) by studying the anthropogenic change in the oceanic CO2, the inter-annual variability of the air-sea CO2 flux, and the relationship between this variability and changes in other oceanic processes. An introductory chapter and four papers are presented. Descriptions of the seawater carbonate system parameters, air-sea exchange of CO2, and related processes are given in the introduction chapter. The anthropogenic increase in partial pressure of CO2 (pCO2) in the surface water of the Barents Sea is evaluated in paper I. The effect of alternations of the Barents Sea climate between cold and warm modes on the annual cycles of seawater fugacity and air-sea flux of CO2 is investigated in paper II. Oceanic uptake of atmospheric CO2 associated with the seasonal formation of sea ice in Storfjorden and the implication for the entire Arctic Ocean is studied in paper III. An assessment of the variations of the air-sea flux of CO2 in the northern North Atlantic for 20 winters (1981-2001) is carried out in paper IV. PCO2 in the surface water of the Barents Sea is shown to have increased parallel with the atmospheric pCO2 between 1967 and 2000-2001 (paper I). This was determined by comparing seawater pCO2 from 1967 with that from 2000-2001. The former was estimated from surface seawater temperature (SST) while the latter was computed from data of total dissolved inorganic carbon and alkalinity. A procedure which accounts for the natural variability was applied and the difference between seawater pC02 of 1967 and that of 2000-2001 is attributed to the uptake of excess CO2. In the Atlantic sector of the Barents Sea, the surface seawater fugacity of CO2 (fCO s''w) is shown to be lower than the atmospheric fCO2 throughout the year, implying that the area is an annual sink of atmospheric CO2 (paper II). Additionally

  13. Hepcidin levels are low during pregnancy and increase around delivery in women without iron deficiency - a prospective cohort study

    DEFF Research Database (Denmark)

    Hedengran, Katrine K; Nelson, Dick; Andersen, Malene R;

    2015-01-01

    OBJECTIVE: To investigate hepcidin during pregnancy, delivery and postpartum in women with sufficient iron supplementation. METHODS: Hepcidin was measured using LC-MS spectroscopy in 37 women during pregnancy, delivery and postpartum period in this longitudinal study. RESULTS: Hepcidin was low...... during pregnancy and increased at delivery and postpartum. No correlations with inflammatory markers or iron metabolism were observed during pregnancy; at delivery a correlation with inflammatory markers was observed. CONCLUSION: During pregnancy, in women with sufficient iron supplementation, hepcidin...... is low and does not reflect iron status. During delivery and the postpartum period, hepcidin functions as a marker of inflammation....

  14. Exploring the role of hepcidin, an antimicrobial and iron regulatory peptide, in increased iron absorption in beta-thalassemia.

    Science.gov (United States)

    Breda, Laura; Gardenghi, Sara; Guy, Ella; Rachmilewitz, Eliezer A; Weizer-Stern, Orly; Adamsky, Konstantin; Amariglio, Ninette; Rechavi, Gideon; Giardina, Patricia J; Grady, Robert W; Rivella, Stefano

    2005-01-01

    To develop new treatments for beta-thalassemia, it is essential to identify the genes involved in the relevant pathophysiological processes. Iron metabolism in thalassemia mice being investigated, focusing on the expression of a gene called hepcidin (Hamp), which is expressed in the liver and whose product (Hamp) is secreted into the bloodstream. In mice, iron overload leads to overexpression of Hamp, while Hamp-knockout mice suffer from hemochromatosis. The aim of this study is to investigate Hamp in the mouse model of beta-thalassemia and to address the potential gene transfer of Hamp to prevent abnormal iron absorption.

  15. Growth Promotion, Increase of Iron, Potassium and Cell Wall Components following Silicon Application in Rice under Iron Deficiency

    OpenAIRE

    z Kiani Chalmardi; Ahmad Abdolzadeh; Hamid Reza Sadeghipour

    2014-01-01

    Iron deficiency is one of the most important stress reducing crop growth and yields. Silicon is also an essential element in most grasses including rice that may reduces biotic and abiotic stresses. In present study, the interactions of silicon and iron nutrition were studied in rice (Oryza sativa L. cv. Tarem). The plants cultivated in greenhouse under iron treatments of 0, 2 and 10 mg l-1 as a Fe-EDTA (first factor) and silicon treatments of 0 and 1.5 mM sodium silicate (second factor). The...

  16. The ironic effect of guessing: increased false memory for mediated lists in younger and older adults.

    Science.gov (United States)

    Coane, Jennifer H; Huff, Mark J; Hutchison, Keith A

    2016-01-01

    Younger and older adults studied lists of words directly (e.g., creek, water) or indirectly (e.g., beaver, faucet) related to a nonpresented critical lure (CL; e.g., river). Indirect (i.e., mediated) lists presented items that were only related to CLs through nonpresented mediators (i.e., directly related items). Following study, participants completed a condition-specific task, math, a recall test with or without a warning about the CL, or tried to guess the CL. On a final recognition test, warnings (vs. math and recall without warning) decreased false recognition for direct lists, and guessing increased mediated false recognition (an ironic effect of guessing) in both age groups. The observed age-invariance of the ironic effect of guessing suggests that processes involved in mediated false memory are preserved in aging and confirms the effect is largely due to activation in semantic networks during encoding and to the strengthening of these networks during the interpolated tasks.

  17. Cardiac‐specific Hexokinase 2 Overexpression Attenuates Hypertrophy by Increasing Pentose Phosphate Pathway Flux

    Science.gov (United States)

    McCommis, Kyle S.; Douglas, Diana L.; Krenz, Maike; Baines, Christopher P.

    2013-01-01

    Background The enzyme hexokinase‐2 (HK2) phosphorylates glucose, which is the initiating step in virtually all glucose utilization pathways. Cardiac hypertrophy is associated with a switch towards increased glucose metabolism and decreased fatty acid metabolism. Recent evidence suggests that the increased glucose utilization is compensatory to the down‐regulated fatty acid metabolism during hypertrophy and is, in fact, beneficial. Therefore, we hypothesized that increasing glucose utilization by HK2 overexpression would decrease cardiac hypertrophy. Methods and Results Mice with cardiac‐specific HK2 overexpression displayed decreased hypertrophy in response to isoproterenol. Neonatal rat ventricular myocytes (NRVMs) infected with an HK2 adenovirus similarly displayed decreased hypertrophy in response to phenylephrine. Hypertrophy increased reactive oxygen species (ROS) levels, which were attenuated by HK2 overexpression, thereby decreasing NRVM hypertrophy and death. HK2 appears to modulate ROS via the pentose phosphate pathway, as inhibition of glucose‐6‐phosphate dehydrogenase with dehydroepiandrosterone decreased the ability of HK2 to diminish ROS and hypertrophy. Conclusions These results suggest that HK2 attenuates cardiac hypertrophy by decreasing ROS accumulation via increased pentose phosphate pathway flux. PMID:24190878

  18. Increased iron-stress resilience of maize through inoculation of siderophore-producing Arthrobacter globiformis from mine.

    Science.gov (United States)

    Sharma, Meenakshi; Mishra, Vandana; Rau, Nupur; Sharma, Radhey Shyam

    2016-07-01

    Iron deficiency is common among graminaceous crops. Ecologically successful wild grasses from iron-limiting habitats are likely to harbour bacteria which secrete efficient high-affinity iron-chelating molecules (siderophores) to solubilize and mobilize iron. Such siderophore-producing rhizobacteria may increase the iron-stress resilience of graminaceous crops. Considering this, 51 rhizobacterial isolates of Dichanthium annulatum from iron-limiting abandoned mine (∼84% biologically unavailable iron) were purified and tested for siderophore production; and efficacy of Arthrobacter globiformis inoculation to increase iron-stress resilience of maize and wheat was also evaluated. 16S rRNA sequence analyses demonstrated that siderophore-producing bacteria were taxonomically diverse (seven genera, nineteen species). Among these, Gram-positive Bacillus (eleven species) was prevalent (76.92%). A. globiformis, a commonly found rhizobacterium of graminaceous crops was investigated in detail. Its siderophore has high iron-chelation capacity (ICC: 13.0 ± 2.4 μM) and effectively dissolutes diverse iron-complexes (FeCl3 : 256.13 ± 26.56 μM/ml; Fe2 O3 red: 84.3 ± 4.74 μM/ml; mine spoil: 123.84 ± 4.38 μM/ml). Siderophore production (ICC) of A. globiformis BGDa404 also varied with supplementation of different iron complexes. In plant bioassay with iron-deficiency sensitive species maize, A. globiformis inoculation triggered stress-associated traits (peroxidase and proline) in roots, enhanced plant biomass, uptake of iron and phosphate, and protein and chlorophyll contents. However, in iron deficiency tolerant species wheat, growth improvement was marginal. The present study illustrates: (i) rhizosphere of D. annulatum colonizing abandoned mine as a "hotspot" of siderophore-producing bacteria; and (ii) potential of A. globiformis BGDa404 inoculation to increase iron-stress resilience in maize. A. globiformis BGDa404 has the potential to develop as

  19. Milk peptides increase iron solubility in water but do not affect DMT-1 expression in Caco-2 cells

    Science.gov (United States)

    In vitro digestion of milk produces peptide fractions that enhance iron uptake by Caco-2 cells. Our objectives were to investigate whether these fractions a) exert their effect by increasing relative gene expression of DMT-1 in Caco-2 cells b) enhance iron dialyzability when added in meals. Peptid...

  20. Increasing the cooking temperature of meat does not affect nonheme iron absorption from a phytate-rich meal in women

    DEFF Research Database (Denmark)

    Baech, S.B.; Hansen, M.; Bukhave, Klaus

    2003-01-01

    The effect of increasing cooking temperatures of meat on nonheme iron absorption from a composite meal was investigated. Cysteine-containing peptides may have a role in the iron absorption enhancing effect of muscle proteins. Heat treatment can change the content of sulfhydryl groups produced fro...

  1. Iron availability increases the pathogenic potential of Salmonella typhimurium and other enteric pathogens at the intestinal epithelial interface.

    NARCIS (Netherlands)

    Kortman, G.A.M.; Boleij, A.; Swinkels, D.W.; Tjalsma, H.

    2012-01-01

    Recent trials have questioned the safety of untargeted oral iron supplementation in developing regions. Excess of luminal iron could select for enteric pathogens at the expense of beneficial commensals in the human gut microflora, thereby increasing the incidence of infectious diseases. The objectiv

  2. Testosterone Administration Inhibits Hepcidin Transcription and is Associated with Increased Iron Incorporation into Red Blood Cells

    Science.gov (United States)

    Guo, Wen; Bachman, Eric; Li, Michelle; Roy, Cindy N.; Blusztajn, Jerzy; Wong, Siu; Chan, Stephen Y.; Serra, Carlo; Jasuja, Ravi; Travison, Thomas G.; Muckenthaler, Martina U.; Nemeth, Elizabeta; Bhasin, Shalender

    2013-01-01

    Testosterone administration increases hemoglobin levels and has been used to treat anemia of chronic disease. Erythrocytosis is the most frequent adverse event associated with testosterone therapy of hypogonadal men, especially older men. However, the mechanisms by which testosterone increases hemoglobin remain unknown. Testosterone administration in male and female mice was associated with a greater increase in hemoglobin and hematocrit, reticulocyte count, reticulocyte hemoglobin concentration, and serum iron and transferring saturation than placebo. Testosterone downregulated hepatic hepcidin mRNA expression, upregulated renal erythropoietin mRNA expression, and increased erythropoietin levels. Testosterone-induced suppression of hepcidin expression was independent of its effects on erythropoietin or hypoxia-sensing mechanisms. Transgenic mice with liver-specific constitutive hepcidin over-expression failed to exhibit the expected increase in hemoglobin in response to testosterone administration. Testosterone upregulated splenic ferroportin expression and reduced iron retention in spleen. After intravenous administration of transferrin-bound 58Fe, the amount of 58Fe incorporated into red blood cells was significantly greater in testosterone-treated mice than in placebo-treated mice. Serum from testosterone-treated mice stimulated hemoglobin synthesis in K562 erythroleukemia cells more than that from vehicle-treated mice. Testosterone administration promoted the association of androgen receptor (AR) with Smad1 and Smad4 to reduce their binding to BMP-response elements in hepcidin promoter in the liver. Ectopic expression of AR in hepatocytes suppressed hepcidin transcription; this effect was blocked dose-dependently by AR antagonist flutamide. Testosterone did not affect hepcidin mRNA stability. Conclusion: Testosterone inhibits hepcidin transcription through its interaction with BMP-Smad signaling. Testosterone administration is associated with increased iron

  3. Increasing dissolved-oxygen disrupts iron homeostasis in production cultures of Escherichia coli.

    Science.gov (United States)

    Baez, Antonino; Shiloach, Joseph

    2017-01-01

    The damaging effect of high oxygen concentration on growth of Escherichia coli is well established. Over-oxygenation increases the intracellular concentration of reactive oxygen species (ROS), causing the destruction of the [4Fe-4S] cluster of dehydratases and limiting the biosynthesis of both branched-chain amino acids and nicotinamide adenine dinucleotide. A key enzyme that reduces the damaging effect of superoxide is superoxide dismutase (SOD). Its transcriptional regulation is controlled by global transcription regulators that respond to changes in oxygen and iron concentrations and pH. Production of biological compounds from E. coli is currently achieved using cultures grown to high cell densities which require oxygen-enriched air supply. It is, therefore, important to study the effect of over-oxygenation on E. coli metabolism and the bacterial protecting mechanism. The effect of over-oxygenation on the superoxide dismutase regulation system was evaluated in cultures grown in a bioreactor by increasing the oxygen concentration from 30 to 300 % air saturation. Following the change in the dissolved oxygen (DO), the expression of sodC, the periplasmic CuZn-containing SOD, and sodA, the cytosolic Mn-containing SOD, was higher in all the tested strains, while the expression of the sodB, the cytosolic Fe-containing SOD, was lower. The down-regulation of the sodB was found to be related to the activation of the small RNA RyhB. It was revealed that iron homeostasis, in particular ferric iron, was involved in the RyhB activation and in sodB regulation but not in sodA. Supplementation of amino acids to the culture medium reduced the intracellular ROS accumulation and reduced the activation of both SodA and SodC following the increase in the oxygen concentration. The study provides evidence that at conditions of over-oxygenation, sodA and sodC are strongly regulated by the amount of ROS, in particular superoxide; and sodB is regulated by iron availability through the

  4. Iron and Vitamin C Co-Supplementation Increased Serum Vitamin C Without Adverse Effect on Zinc Level in Iron Deficient Female Youth

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Khoshfetrat

    2014-01-01

    Full Text Available Background: Iron supplementation can decrease the absorption of zinc and influence other antioxidants levels such as vitamin C. This study aimed to investigate the effect of iron supplements alone and in combination with vitamin C on zinc and vitamin C status in iron deficient female students. Methods: In a double-blind randomized clinical trail, 60 iron deficient students were selected from 289 volunteers residing in dormitory. After matching, subjects were randomly assigned into two groups: Group I (50 mg elemental iron supplements and Group II (50 mg elemental iron + 500 mg ascorbic acid. Serum ferritin, iron, serum zinc, and plasma vitamin C concentrations were measured by using enzyme-linked immunosorbent assay, spectrophotometer, atomic absorption spectrometer, and colorimeter, respectively after 6 and 12 weeks supplementation. Student′s t-test and repeated measures analysis of variance were applied to analyze the data using SPSS software. Results: Serum zinc levels had no significant differences between 2 groups at the baseline; however, its concentration decreased from 80.9 ± 4.2-68.9 ± 2.7 μg/dl to 81.2 ± 4.5-66.1 ± 2.9 μg/dl (P < 0.001 in Groups I and II, respectively after 6 weeks of supplementation. Continuous supplementation increased serum zinc concentration to baseline levels (79.0 ± 2.9 μg/dl; P < 0.01 in Group I and 70.5 ± 3.1 μg/dl in Group II following 12 weeks of supplementation. Plasma vitamin C increased from 3 ± 0/1-3.3 ± 0.2 mg/dl to 2.7 ± 0. 1-4.2 ± 0.2 mg/dl (P < 0.01 in Groups I and II, respectively. At the end of study, plasma vitamin C significantly increased from 3.3 ± 0.3-4.7 ± 0.3 (P < 0.01 to 4.2 ± 0.2-7.1 ± 0.2 (P < 0.001 in Groups I and II, respectively. Conclusions: Iron supplementation with and without vitamin C led to reduction in serum Zn in iron-deficient female students after 6 weeks. However, the decreasing trend stops after repletion of iron stores and Zn levels returned to the

  5. Recent large increases in freshwater fluxes from Greenland into the North Atlantic

    NARCIS (Netherlands)

    Bamber, J.; van den Broeke, M.R.; Ettema, J.; Lenaerts, J.T.M.; Rignot, Eric

    2012-01-01

    [1] Freshwater (FW) fluxes from river runoff and precipitation minus evaporation for the pan Arctic seas are relatively well documented and prescribed in ocean GCMs. Fluxes from Greenland on the other hand are generally ignored altogether, despite their potential impacts on ocean circulation and mar

  6. Increase of mycorrhizal C flux in Siberian temperate forests during the extreme drought of 2012

    Science.gov (United States)

    Menyailo, Oleg; Matvienko, Anastasia; Cheng, Chih-Hsin

    2015-04-01

    Extreme climatic events have strong effect on the terrestrial carbon cycle. The soil C flux is the major uncertainty in the global C budget. Autotrophic (roots and mycorrhizae) component and heterotrophic microorganisms respond differently to altered precipitation and temperature, however their responses might vary in different ecosystems. We studied mycorrhizal, heterotrohic and total soil CO2 fluxes using in-growth mesh collars in forest soils under different tree species. The fluxes were measured between May and October of 2010-2012. The summer of 2012 was extremely hot and dry in Siberia, breaking records for the past 70 years of meteorological monitoring. The drought reduced soil surface CO2 flux for 20-30 % depending on the tree species. It is very surprising that the mycorrhizal flux in 2012 was under most species similar to the flux in a wetter years (2010-2011), under birch the mycorrhizal flux was even 1.5 times higher during the drought. Thus, decline in overall soil surface CO2 flux was mainly due to reduction of heterotrophic activities. Since the proportion of heterotrophic and autrophic activities is related to soil C sequestration, we conclude that under the most tree species in Siberia soil C will be accumulated during the drought. The most positive effect of the drought for soil carbon accrual is to be expected under birch.

  7. Blood-brain barrier flux of aluminum, manganese, iron and other metals suspected to contribute to metal-induced neurodegeneration.

    Science.gov (United States)

    Yokel, Robert A

    2006-11-01

    The etiology of many neurodegenerative diseases has been only partly attributed to acquired traits, suggesting environmental factors may also contribute. Metal dyshomeostasis causes or has been implicated in many neurodegenerative diseases. Metal flux across the blood-brain barrier (the primary route of brain metal uptake) and the choroid plexuses as well as sensory nerve metal uptake from the nasal cavity are reviewed. Transporters that have been described at the blood-brain barrier are listed to illustrate the extensive possibilities for moving substances into and out of the brain. The controversial role of aluminum in Alzheimer's disease, evidence suggesting brain aluminum uptake by transferrin-receptor mediated endocytosis and of aluminum citrate by system Xc;{-} and an organic anion transporter, and results suggesting transporter-mediated aluminum brain efflux are reviewed. The ability of manganese to produce a parkinsonism-like syndrome, evidence suggesting manganese uptake by transferrin- and non-transferrin-dependent mechanisms which may include store-operated calcium channels, and the lack of transporter-mediated manganese brain efflux, are discussed. The evidence for transferrin-dependent and independent mechanisms of brain iron uptake is presented. The copper transporters, ATP7A and ATP7B, and their roles in Menkes and Wilson's diseases, are summarized. Brain zinc uptake is facilitated by L- and D-histidine, but a transporter, if involved, has not been identified. Brain lead uptake may involve a non-energy-dependent process, store-operated calcium channels, and/or an ATP-dependent calcium pump. Methyl mercury can form a complex with L-cysteine that mimics methionine, enabling its transport by the L system. The putative roles of zinc transporters, ZnT and Zip, in regulating brain zinc are discussed. Although brain uptake mechanisms for some metals have been identified, metal efflux from the brain has received little attention, preventing integration of

  8. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes

    Science.gov (United States)

    Novick, Kimberly A.; Ficklin, Darren L.; Stoy, Paul C.; Williams, Christopher A.; Bohrer, Gil; Oishi, A. Christopher; Papuga, Shirley A.; Blanken, Peter D.; Noormets, Asko; Sulman, Benjamin N.; Scott, Russell L.; Wang, Lixin; Phillips, Richard P.

    2016-11-01

    Soil moisture supply and atmospheric demand for water independently limit--and profoundly affect--vegetation productivity and water use during periods of hydrologic stress. Disentangling the impact of these two drivers on ecosystem carbon and water cycling is difficult because they are often correlated, and experimental tools for manipulating atmospheric demand in the field are lacking. Consequently, the role of atmospheric demand is often not adequately factored into experiments or represented in models. Here we show that atmospheric demand limits surface conductance and evapotranspiration to a greater extent than soil moisture in many biomes, including mesic forests that are of particular importance to the terrestrial carbon sink. Further, using projections from ten general circulation models, we show that climate change will increase the importance of atmospheric constraints to carbon and water fluxes in all ecosystems. Consequently, atmospheric demand will become increasingly important for vegetation function, accounting for >70% of growing season limitation to surface conductance in mesic temperate forests. Our results suggest that failure to consider the limiting role of atmospheric demand in experimental designs, simulation models and land management strategies will lead to incorrect projections of ecosystem responses to future climate conditions.

  9. Increasing flux rate to shorten leaching period and ramp-up production

    Science.gov (United States)

    Ngantung, Billy; Agustin, Riska; Ravi'i

    2017-01-01

    J Resources Bolaang Mongondow (JBRM) has operated a dynamic heap leach in its Bakan Gold Mine since late 2013. After successfully surpassing its name plate capacity of 2.6 MT/annum in 2014, the clayey and transition ore become the next operational challenge. The presence of transition and clayey ore requires longer leaching period, hence reducing the leach pad capacity which then caused reduced production. Maintaining or even increasing production with such longer leaching ore types can be done by expanding the leach pad area which means an additional capital investment, and/or shortening the leaching cycle which compromise a portion of gold extraction. JBRM has been successfully increasing the leach pad production from 2.6 MT/annum to 3.8 MT/annum, whilst improving the gold extraction from around 70% to around 80%. This was achieved by managing the operation of the leach pad which is shortening the leach cycle by identifying and combining the optimal flux rate application versus the tonne processed in each cell, at no capital investment for expanding the cell capacity.

  10. Study of mechanism of activating flux increasing weld penetration of AC A-TIG welding for aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    HUANG Yong; FAN Ding; FAN Qinghua

    2007-01-01

    When multi-component flux AF305 is used as surface activating flux for an aluminum alloy, the weld penetration of activating flux-tungsten inert-gas (A-TIG)welding is over two times more than that of conventional TIG welding. Using A-TIG welding with the modes of alternating current (AC), direct current electrode negative (DCEN) and direct current electrode positive (DCEP), respectively, the flux differently affects weld penetration when the polarity is different. After studied the effect of compelled arc constriction on weld penetration of AC welding, it is believed that the constriction of the whole arc root is not the main mechanism that flux AF305 dramatically improves weld penetration. The penetration has a relationship with the separate distribution of slag on the weld surface. Then, an observation of scanning electron microscopy (SEM) and an electronic data systems (EDS) analysis of slag were performed respectively. The separate distribution of slag on the weld pool during welding and the great constriction of arc spots were confirmed by TIG welding with helium shielding gas. The relationship between slag distribution and weld penetration was studied by adding aluminum powder into flux AF305 to change the distribution of slag. During welding, the separate distribution of slag on the weld pool results in the great constriction of arc spots, an increase in arc spot force, and an increase in Lorentz force within the arc and weld pool. Finally, the weld penetration is increased.

  11. Iron uptake and increased intracellular enzyme activity follow host lactoferrin binding by Trichomonas vaginalis receptors

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, K.M.; Alderete, J.F.

    1984-08-01

    Lactoferrin acquisition and iron uptake by pathogenic Trichomonas vaginalis was examined. Saturation binding kinetics were obtained for trichomonads using increasing amounts of radioiodinated lactoferrin, while no significant binding by transferrin under similar conditions was achieved. Only unlabeled lactoferrin successfully and stoichiometrically competed with 125I-labeled lactoferrin binding. Time course studies showed maximal lactoferrin binding by 30 min at 37 degrees C. Data suggest no internalization of bound lactoferrin. The accumulation of radioactivity in supernatants after incubation of T. vaginalis with 125I-labeled lactoferrin and washing in PBS suggested the presence of low affinity sites for this host macromolecule. Scatchard analysis indicated the presence of 90,000 receptors per trichomonad with an apparent Kd of 1.0 microM. Two trichomonad lactoferrin binding proteins were identified by affinity chromatography and immunoprecipitation of receptor-ligand complexes. A 30-fold accumulation of iron was achieved using 59Fe-lactoferrin when compared to the steady state concentration of bound lactoferrin. The activity of pyruvate/ferrodoxin oxidoreductase, an enzyme involved in trichomonal energy metabolism, increased more than sixfold following exposure of the parasites to lactoferrin, demonstrating a biologic response to the receptor-mediated binding of lactoferrin. These data suggest that T. vaginalis possesses specific receptors for biologically relevant host proteins and that these receptors contribute to the metabolic processes of the parasites.

  12. Ferritin-iron increases killing of Chinese hamster ovary cells by X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, J.M.; Stevens, R.G. (Pacific Northwest Lab., Richland, WA (United States))

    1992-11-01

    Stationary-phase Chinese hamster ovary cells were cultured in medium containing ferritin ([approx]19% iron by weight) added at concentrations ranging from 0 to 128 [mu]g/ml. One set of cultures was unirradiated, another set exposed to 4.0 Gy of X-ray. Clonogenic cell survival was assessed in each set of cultures. In the absence of added ferritin, 4.0 Gy killed approximately 50% of the cells. In the absence of radiation, ferritin was not toxic at less than 48 [mu]g/ml; above 48 [mu]g/ml, toxicity increased with concentration. Apoferritin was not toxic at any concentration tested (up to 1000 [mu]g/ml). Although 32 [mu]g/ml ferritin, reflecting only a 3-6 fold increase in iron concentration over normal serum, was not toxic, it reduced survival of X-irradiated cells by an additional 75%. These results indicate that a sublethal concentration of ferritin can be a potent radiosensitizer. (Author).

  13. Formulation and sensory evaluation of Prosopis alba (Algarrobo) pulp cookies with increased iron and calcium dialyzabilities.

    Science.gov (United States)

    Bernardi, C; Drago, S; Sabbag, N; Sanchez, H; Freyre, M

    2006-03-01

    Prosopis alba (algarrobo) is an important indigenous specie, which fruits are used as food and feed since ancient times. Cookies containing algarrobo pulp (AP) with increased iron and calcium availabilities were formulated and sensory evaluated. AP is preferred as food ingredient because of its high sugar content and pleasant flavour. Formulated cookies mean proximal composition was 8.9 g/100 g protein, 7.2 g/100 g dietary fiber, 25 g/100 g total sugar, and 18.5 g/100 g crude fat with iron and calcium contents 30 ppm and 340 ppm, respectively. Ascorbic (AA) and citric (CA) acids at different mM acid: mM Fe were added in order to increase mineral availabilities being evaluated by an in vitro method. Those ratios were 5:1 and 10:1 for AA:Fe whereas for CA:Fe were 50:1 and 100:1 and combinations of them. After chosen the best AA:Fe and CA:Fe ratios (5:1 and 50:1, respectively), sensory evaluation with trained sensory panel and a consumer acceptability test with one hundred and seventy untrained judges were carried out. Acceptability test showed that 77.65% of the people ( 50 years old 15.89%) tasting final formulated cookies indicated that they "like very much" or "moderately like" and there were not consumers rejecting them.

  14. Nanoparticle coating of a microchannel surface is an effective method for increasing the critical heat flux

    Science.gov (United States)

    Shustov, M. V.; Kuzma-Kichta, Yu. A.; Lavrikov, A. V.

    2017-04-01

    Results are presented of an investigation into water boiling in a single microchannel 0.2 mm high, 3 mm wide, and 13.7 mm long with a smooth heating surface or with a coating from aluminum oxide nanoparticles. The experimental procedure and the test setup are described. The top wall of the microchannel is made of glass so that video recording in the reflected light of the process can be made. A coating of Al2O3 particles is applied onto the heating surface before the experiments using a method developed by the authors of the paper. The experiments yielded data on heat transfer and void fraction and its fluctuations for the bubble and transient boiling in the microchannel. The dependence was established of the heat flux on the temperature of the microchannel wall with a smooth surface or a surface with Al2O3 nanoparticle coating for various mass flows in the microchannel. The boiling crisis has been found to occur in the microchannel with a nanoparticle coating at a considerably higher heat flux than that in the channel without coating. The experimental data also suggest that the nanoparticle coating improves heat transfer in the transition boiling region. Processing of the data obtained using a high-speed video revealed void fraction fluctuations enabling us to describe two-phase flow regimes with the flow boiling in a microchannel. It has been found that a return flow occurs in the microchannel under certain conditions. A hypothesis for its causes is proposed. The dependence of the void fraction on the steam quality in the microchannel with or without a nanoparticle coating was determined from the video records. The experimental data on void fraction for boiling in the microchannel without coating are approximated by an empirical correlation. The experiments demonstrate that the void fraction during boiling in the microchannel with a nanoparticle coating is higher than during boiling in the channel without coating (where φ and x are the void fraction and the

  15. Iron ion irradiation increases promotes adhesion of monocytic cells to arterial vascular endothelium

    Science.gov (United States)

    Kucik, Dennis; Khaled, Saman; Gupta, Kiran; Wu, Xing; Yu, Tao; Chang, Polly; Kabarowski, Janusz

    Radiation causes inflammation, and chronic, low-level vascular inflammation is a risk factor for atherosclerosis. Consistent with this, exposure to radiation from a variety of sources is associated with increased risk of heart disease and stroke. Part of the inflammatory response to radiation is a change in the adhesiveness of the endothelial cells that line the blood vessels, triggering inappropriate accumulation of leukocytes, leading to later, damaging effects of inflammation. Although some studies have been done on the effects of gamma irradiation on vascular endothelium, the response of endothelium to heavy ion radiation likely to be encountered in prolonged space flight has not been determined. We investigated how irradiation of aortic endothelial cells with iron ions affects adhesiveness of cultured aortic endothelial cells for monocytic cells and the consequences of this for development of atherosclerosis. Aortic endothelial cells were irradiated with 600 MeV iron ions at Brookhaven National Laboratory and adhesion-related changes were measured. Cells remained viable for at least 72 hours, and were even able to repair acute damage to cell junctions. We found that iron ion irradiation altered expression levels of specific endothelial cell adhesion molecules. Further, these changes had functional consequences. Using a flow chamber adhesion assay to measure adhesion of monocytic cells to endothelial cells under physiological shear stress, we found that adhesivity of vascular endothelium was enhanced in as little as 24 hours after irradiation. Further, the radiation dose dependence was not monotonic, suggesting that it was not simply the result of endothelial cell damage. We also irradiated aortic arches and carotid arteries of Apolipoprotein-E-deficient mice. Histologic analysis of these mice will be conducted to determine whether effects of radiation on endothelial adhesiveness result in consequences for development of atherosclerosis. (Supported by NSBRI

  16. Steatohepatitis is developed by a diet high in fat, sucrose, and cholesterol without increasing iron concentration in rat liver.

    Science.gov (United States)

    Takai, Katsuko; Funaba, Masayuki; Matsui, Tohru

    2016-04-01

    Iron overload to the liver is known to be a pathogenesis of nonalcoholic steatohepatitis through oxidative stress. High-fat diets have been reported to increase iron concentration in livers that developed steatohepatitis in experimental animals. However, the effect of high-fat diets on hepatic iron concentration is controversial. We hypothesized that a diet high in lard, cholesterol, and sucrose (Western diet) leads to the development of steatohepatitis without increasing hepatic iron concentration. Rats were given either a control or the Western diet for 12 weeks. The Western diet increased triacylglycerol concentration and oxidative stress markers such as the concentration of thiobarbituric acid reactive substances and messenger RNA (mRNA) expression of heme oxygenase-1 in the liver. The Western diet also increased the mRNA expression of macrophage-1 antigen, cluster of differentiation (CD) 45, and CD68 in the liver, and nuclear factor κB level in liver nuclear fraction, suggesting the development of hepatic inflammation. Histological observation also indicated fatty liver and hepatic inflammation in the rats given the Western diet. In contrast, the Western diet decreased iron concentration in the liver. These results clearly indicated that the diet high in lard, cholesterol, and sucrose induces steatohepatitis without increasing hepatic iron concentration.

  17. Effect of increasing levels of zinc fortificant on the iron absorption of bread co-fortified with iron and zinc consumed with a black tea.

    Science.gov (United States)

    Olivares, Manuel; Castro, Carla; Pizarro, Fernando; de Romaña, Daniel López

    2013-09-01

    Iron (Fe) and zinc's (Zn) interaction at the absorptive level can have an effect on the success of co-fortification of wheat flour with both minerals on iron deficiency prevention. The aim of the study was to determine the effect of increasing levels of zinc fortificant on the iron absorption of bread co-fortified with iron and zinc consumed with a black tea. Twelve women aged 33-42 years participated in the study. They received on four different days 200 mL of black tea and 100 g of bread made with wheat flour (70% extraction) fortified with either 30 mg Fe/kg alone, as ferrous sulfate (A), or with the same Fe-fortified flour, but with graded levels of Zn, as zinc sulfate: 30 mg/kg (B), 60 mg/kg (C), or 90 mg/kg (D). Fe radioisotopes ((59)Fe and (55)Fe) of high specific activity were used as tracers, and Fe absorption iron was measured by the incorporation of radioactive Fe into erythrocytes. The geometric mean and range of ±1 SD of Fe absorption were as follows: A = 6.5% (2.2-19.3%), B = 4.6% (1.0-21.0%), C = 2.1% (0.9-4.9%), and D = 2.2% (0.7-6.6%), respectively; ANOVA for repeated measures F = 10.9, p black tea is significantly decreased at a zinc fortification level of ≥60 mg/kg flour.

  18. Ineffective erythropoiesis in beta-thalassemia is characterized by increased iron absorption mediated by down-regulation of hepcidin and up-regulation of ferroportin.

    Science.gov (United States)

    Gardenghi, Sara; Marongiu, Maria F; Ramos, Pedro; Guy, Ella; Breda, Laura; Chadburn, Amy; Liu, YiFang; Amariglio, Ninette; Rechavi, Gideon; Rachmilewitz, Eliezer A; Breuer, William; Cabantchik, Z Ioav; Wrighting, Diedra M; Andrews, Nancy C; de Sousa, Maria; Giardina, Patricia J; Grady, Robert W; Rivella, Stefano

    2007-06-01

    Progressive iron overload is the most salient and ultimately fatal complication of beta-thalassemia. However, little is known about the relationship among ineffective erythropoiesis (IE), the role of iron-regulatory genes, and tissue iron distribution in beta-thalassemia. We analyzed tissue iron content and iron-regulatory gene expression in the liver, duodenum, spleen, bone marrow, kidney, and heart of mice up to 1 year old that exhibit levels of iron overload and anemia consistent with both beta-thalassemia intermedia (th3/+) and major (th3/th3). Here we show, for the first time, that tissue and cellular iron distribution are abnormal and different in th3/+ and th3/th3 mice, and that transfusion therapy can rescue mice affected by beta-thalassemia major and modify both the absorption and distribution of iron. Our study reveals that the degree of IE dictates tissue iron distribution and that IE and iron content regulate hepcidin (Hamp1) and other iron-regulatory genes such as Hfe and Cebpa. In young th3/+ and th3/th3 mice, low Hamp1 levels are responsible for increased iron absorption. However, in 1-year-old th3/+ animals, Hamp1 levels rise and it is rather the increase of ferroportin (Fpn1) that sustains iron accumulation, thus revealing a fundamental role of this iron transporter in the iron overload of beta-thalassemia.

  19. Hydroxyiminodisuccinic acid (HIDS): A novel biodegradable chelating ligand for the increase of iron bioavailability and arsenic phytoextraction

    OpenAIRE

    Rahman, M. Azizur; Hasegawa, Hiroshi; Kadohashi, K.; Maki, Teruya; Ueda, Kazumasa

    2009-01-01

    The influence of biodegradable chelating ligands on arsenic and iron uptake by hydroponically grown rice seedlings (Oryza sativa L.) was investigated. Even though the growth solution contained sufficient Fe, the growth of rice seedlings gradually decreased up to 76% with the increase of pH of the solution from 7 to 11. Iron forms insoluble ferric hydroxide complexes at neutral or alkaline pH in oxic condition. Chelating ligands produce soluble 'Fe-ligand complex' which assist Fe uptake in pla...

  20. 高磁通密度铁粉芯的研发进展%Recent developments in iron powder cores with high magnetic flux density

    Institute of Scientific and Technical Information of China (English)

    韩志全

    2011-01-01

    综合评述了国外高磁通密度铁粉芯的性能,介绍了几种材料的制备技术,包括MgO绝缘膜及其铁粉芯的制备,耐高温树脂绝缘膜包覆铁粉芯的制备、Sr-B-P-O磷酸盐绝缘膜及其铁粉芯的制备,以及高密度成型的加热模腔润滑技术等.%The characteristics of iron powder cores with high magnetic flux density were reviewed. And their preparation technique, including the fabrication processes in the MgO insulation coating film and respective iron powder cores, in cores based on the iron powder coating by high operating temperature-resin, and in cores made by iron powder coated with phosphate glass insulator of Sr-B-P-O system, as well as high density compacting method with warm compaction-die wall lubrication, were introduced.

  1. Development of an Axial Flux MEMS BLDC Micromotor with Increased Efficiency and Power Density

    Directory of Open Access Journals (Sweden)

    Xiaofeng Ding

    2015-06-01

    Full Text Available This paper presents a rigorous design and optimization of an axial flux microelectromechanical systems (MEMS brushless dc (BLDC micromotor with dual rotor improving both efficiency and power density with an external diameter of only around 10 mm. The stator is made of two layers of windings by MEMS technology. The rotor is developed by film permanent magnets assembled over the rotor yoke. The characteristics of the MEMS micromotor are analyzed and modeled through a 3-D magnetic equivalent circuit (MEC taking the leakage flux and fringing effect into account. Such a model yields a relatively accurate prediction of the flux in the air gap, back electromotive force (EMF and electromagnetic torque, whilst being computationally efficient. Based on 3-D MEC model the multi-objective firefly algorithm (MOFA is developed for the optimal design of this special machine. Both 3-D finite element (FE simulation and experiments are employed to validate the MEC model and MOFA optimization design.

  2. Multi-decadal increases in dissolved organic carbon and alkalinity flux from the Mackenzie drainage basin to the Arctic Ocean

    Science.gov (United States)

    Tank, Suzanne E.; Striegl, Robert G.; McClelland, James W.; Kokelj, Steven V.

    2016-05-01

    Riverine exports of organic and inorganic carbon (OC, IC) to oceans are intricately linked to processes occurring on land. Across high latitudes, thawing permafrost, alteration of hydrologic flow paths, and changes in vegetation may all affect this flux, with subsequent implications for regional and global carbon (C) budgets. Using a unique, multi-decadal dataset of continuous discharge coupled with water chemistry measurements for the Mackenzie River, we show major increases in dissolved OC (DOC) and IC (as alkalinity) fluxes since the early 1970s, for a watershed that covers 1.8 M km2 of northwestern Canada, and provides substantial inputs of freshwater and biogeochemical constituents to the Arctic Ocean. Over a 39-year period of record, DOC flux at the Mackenzie mouth increased by 39.3% (44.5 ± 22.6 Gmol), while alkalinity flux increased by 12.5% (61.5 ± 60.1 Gmol). Isotopic analyses and substantial increases in sulfate flux indicate that increases in alkalinity are driven by accelerating sulfide oxidation, a process that liberates IC from rock and soils in the absence of CO2 consumption. Seasonal and sub-catchment trends suggest that permafrost thaw plays an important role in the observed increases in DOC and alkalinity: sub-catchment increases for all constituents are confined to northern, permafrost-affected regions, while observed increases in autumn to winter are consistent with documented landscape-scale changes that have resulted from changing thaw dynamics. This increase in DOC and sulfide-derived alkalinity represents a substantial intensification of land-to-ocean C mobilization, at a level that is significant within the regional C budget. The change we observe, for example, is similar to current and projected future rates of CO2 consumption by weathering in the Mackenzie basin.

  3. Multi-decadal increases in dissolved organic carbon and alkalinity flux from the Mackenzie drainage basin to the Arctic Ocean

    Science.gov (United States)

    Tank, Suzanne E.; Striegl, Robert G.; McClelland, James W.; Kokelj, Steven V.

    2016-01-01

    Riverine exports of organic and inorganic carbon (OC, IC) to oceans are intricately linked to processes occurring on land. Across high latitudes, thawing permafrost, alteration of hydrologic flow paths, and changes in vegetation may all affect this flux, with subsequent implications for regional and global carbon (C) budgets. Using a unique, multi-decadal dataset of continuous discharge coupled with water chemistry measurements for the Mackenzie River, we show major increases in dissolved OC (DOC) and IC (as alkalinity) fluxes since the early 1970s, for a watershed that covers 1.8 M km2 of northwestern Canada, and provides substantial inputs of freshwater and biogeochemical constituents to the Arctic Ocean. Over a 39-year period of record, DOC flux at the Mackenzie mouth increased by 39.3% (44.5 ± 22.6 Gmol), while alkalinity flux increased by 12.5% (61.5 ± 60.1 Gmol). Isotopic analyses and substantial increases in sulfate flux indicate that increases in alkalinity are driven by accelerating sulfide oxidation, a process that liberates IC from rock and soils in the absence of CO2 consumption. Seasonal and sub-catchment trends suggest that permafrost thaw plays an important role in the observed increases in DOC and alkalinity: sub-catchment increases for all constituents are confined to northern, permafrost-affected regions, while observed increases in autumn to winter are consistent with documented landscape-scale changes that have resulted from changing thaw dynamics. This increase in DOC and sulfide-derived alkalinity represents a substantial intensification of land-to-ocean C mobilization, at a level that is significant within the regional C budget. The change we observe, for example, is similar to current and projected future rates of CO2 consumption by weathering in the Mackenzie basin.

  4. Serum iron increases with acute induction of hepatic heme oxygenase-1 in mice.

    Science.gov (United States)

    Mostert, Volker; Nakayama, Akihiro; Austin, Lori M; Levander, Ximena A; Ferris, Christopher D; Hill, Kristina E; Burk, Raymond F

    2007-01-01

    Heme oxygenase (HO)-1 is induced by oxidative stress and protects against oxidant injury. We examined the effect of rapid induction of hepatic HO-1 on serum iron level. Serum iron was approximately doubled within 6 h when HO-1 was induced by phenobarbital treatment of selenium-deficient mice. Blocking heme synthesis with diethyl 1,4-dihydro-2,4,6-trimethyl-3,5-pyridinedicarboxylate (DDC) prevented the induction of HO-1 and the rise in serum iron. DDC did not block HO-1 induction by hemin. Inhibition of HO activity by tin protoporphyrin prevented a rise in serum iron that occurred following phorone treatment. These results indicate that heme synthesis or an exogenous source of heme is needed to allow induction of HO-1. Further, they link HO-1 induction with a rise in serum iron, suggesting that the iron resulting from catabolism of heme by HO-1 is released by the liver.

  5. Milk peptides increase iron dialyzability in water but do not affect DMT-1 expression in Caco-2 cells.

    Science.gov (United States)

    Argyri, Konstantina; Tako, Elad; Miller, Dennis D; Glahn, Raymond P; Komaitis, Michael; Kapsokefalou, Maria

    2009-02-25

    In vitro digestion of milk produces peptide fractions that enhance iron uptake by Caco-2 cells. The objectives of this study were to investigate whether these fractions (a) exert their effect by increasing relative gene expression of DMT-1 in Caco-2 cells and (b) enhance iron dialyzability when added in meals. Two milk peptide fractions that solubilize iron were isolated by Sephadex G-25 gel filtration of a milk digest. These peptide fractions did not affect relative gene expression of DMT-1 when incubated with Caco-2 cells for 2 or 48 h. Dialyzability was measured after in vitro simulated gastric and pancreatic digestion. Both peptide fractions enhanced the dialyzability of iron from ferric chloride added to PIPES buffer, but had no effect on dialyzability from milk or a vegetable or fruit meal after in vitro simulated gastric and pancreatic digestion. However, dialyzability from milk was enhanced by the addition of a more concentrated lyophilized peptide fraction.

  6. Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation

    NARCIS (Netherlands)

    Yang, Qian; Dixon, Timothy H.; Myers, Paul G.; Bonin, Jennifer; Chambers, Don; Van Den Broeke, M. R.

    2016-01-01

    The Atlantic Meridional Overturning Circulation (AMOC) is an important component of ocean thermohaline circulation. Melting of Greenland's ice sheet is freshening the North Atlantic; however, whether the augmented freshwater flux is disrupting the AMOC is unclear. Dense Labrador Sea Water (LSW), for

  7. Unusual increase in the 325 MHz flux density of PSR B0655+64

    NARCIS (Netherlands)

    Galama, TJ; deBruyn, AG; vanParadijs, J; Hanlon, L; Bennett, K

    1997-01-01

    We report on the detection of a large amplification of the flux density of PSR B0655+64 at 325 MHz (a factor of similar to 43) that lasted about one hour. To the best of our knowledge such a large amplification has not been reported before. The phenomenon is restricted to a very narrow bandwidth (50

  8. Endosperm-specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron.

    Science.gov (United States)

    Drakakaki, Georgia; Marcel, Sylvain; Glahn, Raymond P; Lund, Elizabeth K; Pariagh, Sandra; Fischer, Rainer; Christou, Paul; Stoger, Eva

    2005-12-01

    We have generated transgenic maize plants expressing Aspergillus phytase either alone or in combination with the iron-binding protein ferritin. Our aim was to produce grains with increased amounts of bioavailable iron in the endosperm. Maize seeds expressing recombinant phytase showed enzymatic activities of up to 3 IU per gram of seed. In flour paste prepared from these seeds, up to 95% of the endogenous phytic acid was degraded, with a concomitant increase in the amount of available phosphate. In seeds expressing ferritin in addition to phytase, the total iron content was significantly increased. To evaluate the impact of the recombinant proteins on iron absorption in the human gut, we used an in vitro digestion/Caco-2 cell model. We found that phytase in the maize seeds was associated with increased cellular iron uptake, and that the rate of iron uptake correlated with the level of phytase expression regardless of the total iron content of the seeds. We also investigated iron bioavailability under more complex meal conditions by adding ascorbic acid, which promotes iron uptake, to all samples. This resulted in a further increase in iron absorption, but the effects of phytase and ascorbic acid were not additive. We conclude that the expression of recombinant ferritin and phytase could help to increase iron availability and enhance the absorption of iron, particularly in cereal-based diets that lack other nutritional components.

  9. Glucagon-like Peptide-1 Protects Pancreatic Beta-cells from Death by Increasing Autophagic Flux and Restoring Lysosomal Function.

    Science.gov (United States)

    Zummo, Francesco P; Cullen, Kirsty S; Honkanen-Scott, Minna; Shaw, James Am; Lovat, Penny E; Arden, Catherine

    2017-02-23

    Studies in animal models of type 2 diabetes have shown that glucagon-like peptide-1 (GLP-1) receptor agonists prevent β-cell loss. Whether GLP-1 mediates β-cell survival via the key lysosomal-mediated process of autophagy is unknown.Here we report that treatment of INS-1E β-cells and primary islets with glucolipotoxicity (0.5mmol/l palmitate, 25mmol/l glucose) increases LC3 II, a marker of autophagy. Further analysis indicates a blockage in autophagic flux associated with lysosomal dysfunction. Accumulation of defective lysosomes leads to lysosomal membrane permeabilisation (LMP) and release of Cathepsin D, which contributes to cell death. Our data further demonstrated defects in autophagic flux and lysosomal staining in human samples of type 2 diabetes. Co-treatment with the GLP-1 receptor agonist exendin-4 reversed the lysosomal dysfunction, relieving the impairment in autophagic flux and further stimulated autophagy. siRNA knockdown showed the restoration of autophagic flux is also essential for the protective effects of exendin-4.Collectively, our data highlights lysosomal dysfunction as a critical mediator of β-cell loss and shows that exendin-4 improves cell survival via restoration of lysosomal function and autophagic flux. Modulation of autophagy / lysosomal homeostasis may thus define a novel therapeutic strategy for type 2 diabetes, with the GLP-1 signalling pathway as a potential focus.

  10. Ion fluxes of Metynnis hypsauchen, a teleost from the Rio Negro, Amazon, exposed to an increase of temperature

    Directory of Open Access Journals (Sweden)

    B. BALDISSEROTTO

    Full Text Available The aim of this study was to investigate the effect on an increase of temperature on the net ion fluxes on Metynnis hypsauchen, a teleost species from the Rio Negro. Fish were collected in the Anavilhanas archipelago, Rio Negro, Amazon. After 24 h adaptation fish were placed in individual chambers served with a steady flow of recirculated water. Na+ and Cl- fluxes were determined at 26 and 33ºC. After 18 h in the chambers, fish presented an influx of Na+ and Cl-, and the temperature raise to 33ºC led to an efflux of both ions, which remained even after 6 h in this temperature. Six hours were not enough to promote a significant reduction of net ion effluxes, but certainly the fluxes would be in net balance after a longer period of time, since this species can be exposed to this temperature in its natural environment.

  11. Iron overload increases osteoclastogenesis and aggravates the effects of ovariectomy on bone mass.

    Science.gov (United States)

    Xiao, Wang; Beibei, Fei; Guangsi, Shen; Yu, Jiang; Wen, Zhang; Xi, Huang; Youjia, Xu

    2015-09-01

    Postmenopausal osteoporosis is a metabolic disease associated with estrogen deficiency. The results of numerous studies have revealed the positive correlation between iron accumulation and postmenopausal osteoporotic status. Although the results of previous studies have indicated that estrogen or iron alone have an effect on bone metabolism, their combined effects are not well defined. Using an in vivo mouse model, we found that bone mass was minimally affected by an excess of iron in the presence of estrogen. Once the source of estrogen was removed (ovariectomy), iron accumulation significantly decreased bone mass. These effects were accompanied by fluctuations in the level of oxidative stress. To determine whether these effects were related to bone formation or bone resorption, primary osteoblasts (OBs), RAW264.7 cells, and bone-marrow-derived macrophages were used for in vitro experiments. We found that iron accumulation did inhibit the activity of OBs. However, estrogen had little effect on this inhibition. In contrast, iron promoted osteoclast differentiation through the production of reactive oxygen species. Estrogen, a powerful reactive oxygen scavenger, suppressed this effect in osteoclasts. Our data provided direct evidence that iron affected the bone mass only in the absence of estrogen. The inhibitory effect of estrogen on iron-induced osteopenia was particularly relevant to bone resorption rather than bone formation. © 2015 Society for Endocrinology.

  12. Scheme to increase the output average spectral flux of the European XFEL at 14.4 keV

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2015-08-15

    Techniques like inelastic X-ray scattering (IXS) and nuclear resonance scattering (NRS) are currently limited by the photon flux available at X-ray sources. At 14.4 keV, third generation synchrotron radiation sources produce a maximum of 10{sup 10} photons per second in a meV bandwidth. In this work we discuss about the possibility of increasing this flux a thousand-fold by exploiting high repetition rate self-seeded pulses at the European XFEL. Here we report on a feasibility study for an optimized configuration of the SASE2 beamline at the European XFEL which combines self-seeding and undulator tapering techniques in order to increase the average spectral flux at 14.4 keV. In particular, we propose to perform monochromatization at 7.2 keV with the help of self-seeding, and amplify the seed in the first part of output undulator. The amplification process can be stopped at a position well before saturation, where the electron beam gets considerable bunching at the 2nd harmonic of the coherent radiation. A second part of the output undulator follows, tuned to the 2nd harmonic frequency, i.e. at 14.4 keV and is used to obtain saturation at this energy. One can further prolong the exchange of energy between the photon and the electron beam by tapering the last part of the output undulator. We performed start-to-end simulations and demonstrate that self-seeding, combined with undulator tapering, allows one to achieve more than a hundred-fold increase in average spectral flux compared with the nominal SASE regime at saturation, resulting in a maximum flux of order 10{sup 13} photons per second in a meV bandwidth.

  13. Coral reef calcification: carbonate, bicarbonate and proton flux under conditions of increasing ocean acidification.

    Science.gov (United States)

    Jokiel, P L

    2013-08-07

    Data on calcification rate of coral and crustose coralline algae were used to test the proton flux model of calcification. There was a significant correlation between calcification (G) and the ratio of dissolved inorganic carbon (DIC) to proton concentration ([DIC] : [H(+)] ratio). The ratio is tightly correlated with [CO3(2-)] and with aragonite saturation state (Ωa). An argument is presented that correlation does not prove cause and effect, and that Ωa and [CO3(2-)] have no basic physiological meaning on coral reefs other than a correlation with [DIC] : [H(+)] ratio, which is the driver of G.

  14. A route for a strong increase of critical current in nanostrained iron-based superconductors.

    Science.gov (United States)

    Ozaki, Toshinori; Wu, Lijun; Zhang, Cheng; Jaroszynski, Jan; Si, Weidong; Zhou, Juan; Zhu, Yimei; Li, Qiang

    2016-10-06

    The critical temperature Tc and the critical current density Jc determine the limits to large-scale superconductor applications. Superconductivity emerges at Tc. The practical current-carrying capability, measured by Jc, is the ability of defects in superconductors to pin the magnetic vortices, and that may reduce Tc. Simultaneous increase of Tc and Jc in superconductors is desirable but very difficult to realize. Here we demonstrate a route to raise both Tc and Jc together in iron-based superconductors. By using low-energy proton irradiation, we create cascade defects in FeSe0.5Te0.5 films. Tc is enhanced due to the nanoscale compressive strain and proximity effect, whereas Jc is doubled under zero field at 4.2 K through strong vortex pinning by the cascade defects and surrounding nanoscale strain. At 12 K and above 15 T, one order of magnitude of Jc enhancement is achieved in both parallel and perpendicular magnetic fields to the film surface.

  15. Iron deficiency increases growth and nitrogen-fixation rates of phosphorus-deficient marine cyanobacteria.

    Science.gov (United States)

    Garcia, Nathan S; Fu, Feixue; Sedwick, Peter N; Hutchins, David A

    2015-01-01

    Marine dinitrogen (N2)-fixing cyanobacteria have large impacts on global biogeochemistry as they fix carbon dioxide (CO2) and fertilize oligotrophic ocean waters with new nitrogen. Iron (Fe) and phosphorus (P) are the two most important limiting nutrients for marine biological N2 fixation, and their availabilities vary between major ocean basins and regions. A long-standing question concerns the ability of two globally dominant N2-fixing cyanobacteria, unicellular Crocosphaera and filamentous Trichodesmium, to maintain relatively high N2-fixation rates in these regimes where both Fe and P are typically scarce. We show that under P-deficient conditions, cultures of these two cyanobacteria are able to grow and fix N2 faster when Fe deficient than when Fe replete. In addition, growth affinities relative to P increase while minimum concentrations of P that support growth decrease at low Fe concentrations. In Crocosphaera, this effect is accompanied by a reduction in cell sizes and elemental quotas. Relatively high growth rates of these two biogeochemically critical cyanobacteria in low-P, low-Fe environments such as those that characterize much of the oligotrophic ocean challenge the common assumption that low Fe levels can have only negative effects on marine primary producers. The closely interdependent influence of Fe and P on N2-fixing cyanobacteria suggests that even subtle shifts in their supply ratio in the past, present and future oceans could have large consequences for global carbon and nitrogen cycles.

  16. Increased brain iron coincides with early plaque formation in a mouse model of Alzheimer's disease.

    Science.gov (United States)

    Leskovjan, Andreana C; Kretlow, Ariane; Lanzirotti, Antonio; Barrea, Raul; Vogt, Stefan; Miller, Lisa M

    2011-03-01

    Elevated brain iron content, which has been observed in late-stage human Alzheimer's disease, is a potential target for early diagnosis. However, the time course for iron accumulation is currently unclear. Using the PSAPP mouse model of amyloid plaque formation, we conducted a time course study of metal ion content and distribution [iron (Fe), copper (Cu), and zinc (Zn)] in the cortex and hippocampus using X-ray fluorescence microscopy (XFM). We found that iron in the cortex was 34% higher than age-matched controls at an early stage, corresponding to the commencement of plaque formation. The elevated iron was not associated with the amyloid plaques. Interestingly, none of the metal ions were elevated in the amyloid plaques until the latest time point (56 weeks), where only the Zn content was significantly elevated by 38%. Since neuropathological changes in human Alzheimer's disease are presumed to occur years before the first cognitive symptoms appear, quantification of brain iron content could be a powerful marker for early diagnosis of Alzheimer's disease.

  17. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans.

    Science.gov (United States)

    Hawkings, Jon R; Wadham, Jemma L; Tranter, Martyn; Raiswell, Rob; Benning, Liane G; Statham, Peter J; Tedstone, Andrew; Nienow, Peter; Lee, Katherine; Telling, Jon

    2014-05-21

    The Greenland and Antarctic Ice Sheets cover ~ 10% of global land surface, but are rarely considered as active components of the global iron cycle. The ocean waters around both ice sheets harbour highly productive coastal ecosystems, many of which are iron limited. Measurements of iron concentrations in subglacial runoff from a large Greenland Ice Sheet catchment reveal the potential for globally significant export of labile iron fractions to the near-coastal euphotic zone. We estimate that the flux of bioavailable iron associated with glacial runoff is 0.40-2.54 Tg per year in Greenland and 0.06-0.17 Tg per year in Antarctica. Iron fluxes are dominated by a highly reactive and potentially bioavailable nanoparticulate suspended sediment fraction, similar to that identified in Antarctic icebergs. Estimates of labile iron fluxes in meltwater are comparable with aeolian dust fluxes to the oceans surrounding Greenland and Antarctica, and are similarly expected to increase in a warming climate with enhanced melting.

  18. Acidification and Increasing CO2 Flux Associated with Five, Springs Coast, Florida Springs (1991-2014)

    Science.gov (United States)

    Barrera, Kira E.; Robbins, Lisa L.

    2017-01-01

    Scientists from the South West Florida Management District (SWFWMD) acquired and analyzed over 20 years of seasonally-sampled hydrochemical data from five first-order-magnitude (springs that discharge 2.83 m3 s-1 or more) coastal springs located in west-central Florida. These data were subsequently obtained by the U.S. Geological Survey (USGS) for further analyses and interpretation. The spring study sites (Chassahowitzka, Homosassa, Kings Bay, Rainbow, and Weeki Wachee), which are fed by the Floridan Aquifer system and discharge into the Gulf of Mexico were investigated to identify temporal and spatial trends of pH, alkalinity, partial pressure of carbon dioxide (pCO2) and CO2 flux.

  19. Constitutive expression of a barley Fe phytosiderophore transporter increases alkaline soil tolerance and results in iron partitioning between vegetative and storage tissues under stress.

    Science.gov (United States)

    Gómez-Galera, Sonia; Sudhakar, Duraialagaraja; Pelacho, Ana M; Capell, Teresa; Christou, Paul

    2012-04-01

    Cereals have evolved chelation systems to mobilize insoluble iron in the soil, but in rice this process is rather inefficient, making the crop highly susceptible to alkaline soils. We therefore engineered rice to express the barley iron-phytosiderophore transporter (HvYS1), which enables barley plants to take up iron from alkaline soils. A representative transgenic rice line was grown in standard (pH 5.5) or alkaline soil (pH 8.5) to evaluate alkaline tolerance and iron mobilization. Transgenic plants developed secondary tillers and set seeds when grown in standard soil although iron concentration remained similar in leaves and seeds compared to wild type. However, when grown in alkaline soil transgenic plants exhibited enhanced growth, yield and iron concentration in leaves compared to the wild type plants which were severely stunted. Transgenic plants took up iron more efficiently from alkaline soil compared to wild type, indicating an enhanced capacity to increase iron mobility ex situ. Interestingly, all the additional iron accumulated in vegetative tissues, i.e. there was no difference in iron concentration in the seeds of wild type and transgenic plants. Our data suggest that iron uptake from the rhizosphere can be enhanced through expression of HvYS1 and confirm the operation of a partitioning mechanism that diverts iron to leaves rather than seeds, under stress.

  20. Scheme to increase the output average spectral flux of the European XFEL at $14.4$ keV

    CERN Document Server

    Geloni, Gianluca; Saldin, Evgeni

    2015-01-01

    Techniques like inelastic X-ray scattering (IXS) and nuclear resonance scattering (NRS) are currently limited by the photon flux available at X-ray sources. At $14.4$ keV, third generation synchrotron radiation sources produce a maximum of $10^{10}$ photons per second in a meV bandwidth. In this work we discuss about the possibility of increasing this flux a thousand-fold by exploiting high repetition rate self-seeded pulses at the European XFEL. Here we report on a feasibility study for an optimized configuration of the SASE2 beamline at the European XFEL which combines self-seeding and undulator tapering techniques in order to increase the average spectral flux at $14.4$ keV. In particular, we propose to perform monochromatization at $7.2$ keV with the help of self-seeding, and amplify the seed in the first part of output undulator. The amplification process can be stopped at a position well before saturation, where the electron beam gets considerable bunching at the 2nd harmonic of the coherent radiation. ...

  1. Disruption of lactate dehydrogenase and alcohol dehydrogenase for increased hydrogen production and its effect on metabolic flux in Enterobacter aerogenes.

    Science.gov (United States)

    Zhao, Hongxin; Lu, Yuan; Wang, Liyan; Zhang, Chong; Yang, Cheng; Xing, Xinhui

    2015-10-01

    Hydrogen production by Enterobacter aerogenes from glucose was enhanced by deleting the targeted ldhA and adh genes responsible for two NADH-consuming pathways which consume most NADH generated from glycolysis. Compared with the wild-type, the hydrogen yield of IAM1183-ΔldhA increased 1.5 fold. Metabolic flux analysis showed both IAM1183-ΔldhA and IAM1183-Δadh exhibited significant changes in flux, including enhanced flux towards the hydrogen generation. The lactate production of IAM1183-ΔldhA significantly decreased by 91.42%, while the alcohol yield of IAM1183-Δadh decreased to 30%. The mutant IAM1183-ΔldhA with better hydrogen-producing performance was selected for further investigation in a 5-L fermentor. The hydrogen production of IAM1183-ΔldhA was 2.3 times higher than the wild-type. Further results from the fermentation process showed that the pH decreased to 5.39 levels, then gradually increased to 5.96, indicating that some acidic metabolites might be degraded or uptaken by cells.

  2. Over-expression of the MxIRT1 gene increases iron and zinc content in rice seeds.

    Science.gov (United States)

    Tan, Song; Han, Rui; Li, Peng; Yang, Guang; Li, Shuang; Zhang, Peng; Wang, Wei-Bing; Zhao, Wei-Zhong; Yin, Li-Ping

    2015-02-01

    Iron and zinc are essential in plant and human nutrition. Iron deficiency has been one of the causes of human mortality, especially in developing countries with high rice consumption. MxIRT1 is a ferrous transporter that has been screened from an iron-efficient genotype of the apple tree, Malus xiaojinensis Cheng et Jiang. In order to produce Fe-biofortified rice with MxIRT1 to solve the Fe-deficiency problem, plant expression vectors of pCAMBIA1302-MxIRT1:GFP and pCAMBIA1302-anti MxIRT1:GFP were constructed that led to successful production of transgenic rice. The transgenic plant phenotypes showed that the expression of endogenous OsIRT1 was suppressed by anti-MxIRT1 in antisense lines that acted as an opposing control, while sense lines had a higher tolerance under Zn- and Fe-deficient conditions. The iron and zinc concentration in T3 seeds increased by three times in sense lines when compared to the wild type. To understand the MxIRT1 cadmium uptake, the MxIRT1 cadmium absorption trait was compared with AtIRT1 and OsIRT1 in transgenic rice protoplasts, and it was found that MxIRT1 had the lowest Cd uptake capacity. MxIRT1 transgenic tobacco-cultured bright yellow-2 (BY-2) cells and rice lines were subjected to different Fe conditions and the results from the non-invasive micro-test technique showed that iron was actively transported compared to cadmium as long as iron was readily available in the environment. This suggests that MxIRT1 is a good candidate gene for plant Fe and Zn biofortification.

  3. Increased sensitivity to iron deficiency in Arabidopsis thaliana over-accumulating nicotianamine

    OpenAIRE

    2009-01-01

    Nicotianamine (NA) is a non-protein amino acid derivative synthesized from S-adenosyl L-methionine able to bind several metal ions such as iron, copper, manganese, zinc, or nickel. In plants, NA appears to be involved in iron availability and is essential for the plant to complete its biological cycle. In graminaceous plants, NA is also the precursor in the biosynthesis of phytosiderophores. Arabidopsis lines accumulating 4- and 100-fold more NA than wild-type plants were used in order to eva...

  4. Export fluxes in a naturally iron-fertilized area of the Southern Ocean - Part 2: Importance of diatom resting spores and faecal pellets for export

    Science.gov (United States)

    Rembauville, M.; Blain, S.; Armand, L.; Quéguiner, B.; Salter, I.

    2015-06-01

    The biological composition of the material exported to a moored sediment trap located under the winter mixed layer of the naturally fertilized Kerguelen Plateau in the Southern Ocean was studied over an annual cycle. Despite iron availability in spring, the annual particulate organic carbon (POC) export (98.2 mmol m-2) at 289 m was low, but annual biogenic silica export was significant (114 mmol m-2). This feature was related to the abundance of empty diatom cells and the ratio of full to empty cells exerted a first-order control in BSi : POC export stoichiometry of the biological pump. Chaetoceros Hyalochaete spp. and Thalassiosira antarctica resting spores were responsible for more than 60% of the annual POC flux that occurred during two very short export events of 80%). The seasonal progression of faecal pellet types revealed a clear transition from small spherical shapes (small copepods) in spring, to larger cylindrical and ellipsoid shapes in summer (euphausiids and large copepods) and finally to large tabular shapes (salps) in autumn and winter. We propose in this high-biomass, low-export (HBLE) environment that small but highly silicified and fast-sinking resting spores are able to bypass the intense grazing pressure and efficient carbon transfer to higher trophic levels that are responsible for the low fluxes observed the during the remainder of the year. More generally our study also provides a statistical framework linking the ecological succession of diatom and zooplankton communities to the seasonality of carbon and silicon export within an iron-fertilized bloom region in the Southern Ocean.

  5. Association of cardiac injury with iron-increased oxidative and nitrative modifications of the SERCA2a isoform of sarcoplasmic reticulum Ca(2+)-ATPase in diabetic rats.

    Science.gov (United States)

    Li, Xueli; Li, Wenliang; Gao, Zhonghong; Li, Hailing

    2016-08-01

    The role of iron in the etiology of diabetes complications is not well established. Thus, this study was performed to test whether the iron-induced increase of oxidative/nitrative damage is involved in SERCA2a-related diabetic heart complication. Four randomly divided groups of rats were used: normal control group; iron overload group; diabetes group, and diabetic plus iron overload group. Iron supplementation stimulated cardiomyocyte hypertrophy and led to an increase in cardiac protein carbonyls, nitrotyrosine (3-NT) formation, and iNOS protein expression, thus resulting in abnormal myocardium calcium homeostasis of diabetic rats. The levels of SECA2a oxidation/nitration were significantly increased in the iron overload diabetic rats, along with a decrease in SECA2a expression and activity. In order to elucidate the possible role of iron in SERCA2a dysfunction, the effects of iron (Fe(3+) or hemin) on peroxynitrite (ONOO(-)) induced SERCA2a oxidation and nitration were further investigated in vitro. It was found that tyrosine nitration played more important role in SERCA2a inactivation than thiol oxidation. These results present a potential mechanism in which iron exacerbates the diabetes-induced oxidative/nitrative modification of SERCA2a, which may cause functional deficits in the myocyte associated with diabetic cardiac dysfunction. Our findings may help to further understand the role of iron in the pathogenesis of diabetic complications.

  6. Association of Increased Grain Iron and Zinc Concentrations with Agro-morphological Traits of Biofortified Rice

    Directory of Open Access Journals (Sweden)

    Laura Tatiana Moreno-Moyano

    2016-09-01

    Full Text Available Biofortification of rice (Oryza sativa L. with micronutrients is widely recognized as a sustainable strategy to alleviate human iron (Fe and zinc (Zn deficiencies in developing countries where rice is the staple food. Constitutive overexpression of the rice nicotianamine synthase (OsNAS genes has been successfully implemented to increase Fe and Zn concentrations in unpolished and polished rice grain. Intensive research is now needed to couple this high-micronutrient trait with high grain yields. We investigated associations of increased grain Fe and Zn concentrations with agro-morphological traits of backcross twice second filial (BC2F2 transgenic progeny carrying OsNAS1 or OsNAS2 overexpression constructs under indica/japonica and japonica/japonica genetic backgrounds. Thirteen agro-morphological traits were evaluated in BC2F2 transgenic progeny grown under hydroponic conditions. Concentrations of 8 mineral nutrients (Fe, Zn, copper, manganese, calcium, magnesium, potassium and phosphorus in roots, stems/sheaths, non-flag leaves, flag leaves, panicles and grain were also determined. A distance-based linear model (DistLM was utilized to extract plant tissue nutrient predictors accounting for the largest variation in agro-morphological traits differing between transgenic and non-transgenic progeny. Overall, the BC2F2 transgenic progeny contained up to 148% higher Fe and 336% higher Zn concentrations in unpolished grain compared to non-transgenic progeny. However, unpolished grain concentrations surpassing 23 µg Fe g-1 and 40 µg Zn g-1 in BC2F2 indica/japonica progeny, and 36 µg Fe g-1 and 56 µg Zn g1 in BC2F2 japonica/japonica progeny, were associated with significant reductions in grain yield. DistLM analyses identified grain-Zn and panicle-magnesium as the primary nutrient predictors associated with grain yield reductions in the indica/japonica and japonica/japonica progeny, respectively. We subsequently produced polished grain from high

  7. Association of Increased Grain Iron and Zinc Concentrations with Agro-morphological Traits of Biofortified Rice

    Science.gov (United States)

    Moreno-Moyano, Laura T.; Bonneau, Julien P.; Sánchez-Palacios, José T.; Tohme, Joseph; Johnson, Alexander A. T.

    2016-01-01

    Biofortification of rice (Oryza sativa L.) with micronutrients is widely recognized as a sustainable strategy to alleviate human iron (Fe) and zinc (Zn) deficiencies in developing countries where rice is the staple food. Constitutive overexpression of the rice nicotianamine synthase (OsNAS) genes has been successfully implemented to increase Fe and Zn concentrations in unpolished and polished rice grain. Intensive research is now needed to couple this high-micronutrient trait with high grain yields. We investigated associations of increased grain Fe and Zn concentrations with agro-morphological traits of backcross twice second filial (BC2F2) transgenic progeny carrying OsNAS1 or OsNAS2 overexpression constructs under indica/japonica and japonica/japonica genetic backgrounds. Thirteen agro-morphological traits were evaluated in BC2F2 transgenic progeny grown under hydroponic conditions. Concentrations of eight mineral nutrients (Fe, Zn, copper, manganese, calcium, magnesium, potassium, and phosphorus) in roots, stems/sheaths, non-flag leaves, flag leaves, panicles, and grain were also determined. A distance-based linear model (DistLM) was utilized to extract plant tissue nutrient predictors accounting for the largest variation in agro-morphological traits differing between transgenic and non-transgenic progeny. Overall, the BC2F2 transgenic progeny contained up to 148% higher Fe and 336% higher Zn concentrations in unpolished grain compared to non-transgenic progeny. However, unpolished grain concentrations surpassing 23 μg Fe g-1 and 40 μg Zn g-1 in BC2F2 indica/japonica progeny, and 36 μg Fe g-1 and 56 μg Zn g1 in BC2F2 japonica/japonica progeny, were associated with significant reductions in grain yield. DistLM analyses identified grain-Zn and panicle-magnesium as the primary nutrient predictors associated with grain yield reductions in the indica/japonica and japonica/japonica background, respectively. We subsequently produced polished grain from high

  8. Interactions of proteins with biogenic iron oxyhydroxides and a new culturing technique to increase biomass yields of neutrophilic, iron-oxidizing bacteria

    OpenAIRE

    Barco, Roman A.; Edwards, Katrina J

    2014-01-01

    Neutrophilic, bacterial iron-oxidation remains one of the least understood energy-generating biological reactions to date. One of the reasons it remains under-studied is because there are inherent problems with working with iron-oxidizing bacteria (FeOB), including low biomass yields and interference from the iron oxides in the samples. In an effort to circumvent the problem of low biomass, a new large batch culturing technique was developed. Protein interactions with biogenic iron oxides wer...

  9. Constant growth rate can be supported by decreasing energy flux and increasing aerobic glycolysis

    NARCIS (Netherlands)

    Slavov, Nikolai; Budnik, Bogdan A; Schwab, David; Airoldi, Edoardo M; van Oudenaarden, Alexander

    2014-01-01

    Fermenting glucose in the presence of enough oxygen to support respiration, known as aerobic glycolysis, is believed to maximize growth rate. We observed increasing aerobic glycolysis during exponential growth, suggesting additional physiological roles for aerobic glycolysis. We investigated such ro

  10. Constant growth rate can be supported by decreasing energy flux and increasing aerobic glycolysis

    NARCIS (Netherlands)

    Slavov, Nikolai; Budnik, Bogdan A; Schwab, David; Airoldi, Edoardo M; van Oudenaarden, Alexander

    2014-01-01

    Fermenting glucose in the presence of enough oxygen to support respiration, known as aerobic glycolysis, is believed to maximize growth rate. We observed increasing aerobic glycolysis during exponential growth, suggesting additional physiological roles for aerobic glycolysis. We investigated such

  11. Trapped field of 1.1 T without flux jumps in an MgB2 bulk during pulsed field magnetization using a split coil with a soft iron yoke

    Science.gov (United States)

    Fujishiro, H.; Mochizuki, H.; Ainslie, M. D.; Naito, T.

    2016-08-01

    MgB2 superconducting bulks have promising potential as trapped field magnets. We have achieved a trapped field of B z = 1.1 T on a high-J c MgB2 bulk at 13 K without flux jumps by pulsed field magnetization (PFM) using a split-type coil with a soft iron yoke, which is a record-high trapped field by PFM for bulk MgB2 to date. The flux jumps, which frequently took place using a solenoid-type coil during PFM, were avoided by using the split-type coil, and the B z value was enhanced by the insertion of soft iron yoke. The flux dynamics and heat generation/propagation were analyzed during PFM using a numerical simulation, in which the magnetic flux intruded and attenuated slowly in the bulk and tended to align along the axial direction due to the presence of soft iron yoke. The advantages of the split-type coil and the simultaneous use of a soft iron yoke are discussed.

  12. The increased susceptibility to hydrogen peroxide of the (post)-ischemic rat heart is associated with the magnitude of the low molecular weight iron pool

    NARCIS (Netherlands)

    A. Voogd (Arthur); W.J. Sluiter (Wim); J.F. Koster (Johan)

    1994-01-01

    textabstractRecently we have shown that intracellular low molecular weight (LMW) iron increases during ischemia. It is hypothesized that this increase in LMW iron during ischemia underlies the reported hydrogen peroxide toxicity toward ischemic hearts. To investigate this hypothesis, rat hearts were

  13. Continuously increasing δ98Mo values in Neoarchean black shales and iron formations from the Hamersley Basin

    Science.gov (United States)

    Kurzweil, Florian; Wille, Martin; Schoenberg, Ronny; Taubald, Heinrich; Van Kranendonk, Martin J.

    2015-09-01

    We present Mo-, C- and O-isotope data from black shales, carbonate- and oxide facies iron formations from the Hamersley Group, Western Australia, that range in age from 2.6 to 2.5 billion years. The data show a continuous increase from near crustal δ98Mo values of around 0.50‰ for the oldest Marra Mamba and Wittenoom formations towards higher values of up to 1.51‰ for the youngest sample of the Brockman Iron Formation. Thereby, the trend in increasing δ98Mo values is portrayed by both carbonate facies iron formations and black shales. Considering the positive correlation between Mo concentration and total organic carbon, we argue that this uniformity is best explained by molybdate adsorption onto organic matter in carbonate iron formations and scavenging of thiomolybdate onto sulfurized organic matter in black shales. A temporal increase in the seawater δ98Mo over the period 2.6-2.5 Ga is observed assuming an overall low Mo isotope fractionation during both Mo removal processes. Oxide facies iron formations show lowest Mo concentrations, lowest total organic carbon and slightly lower δ98Mo compared to nearly contemporaneous black shales. This may indicate that in iron formation settings with very low organic matter burial rates, the preferential adsorption of light Mo isotopes onto Fe-(oxyhydr)oxides becomes more relevant. A similar Mo-isotope pattern was previously found in contemporaneous black shales and carbonates of the Griqualand West Basin, South Africa. The consistent and concomitant increase in δ98Mo after 2.54 billion years ago suggests a more homogenous distribution of seawater molybdate with uniform isotopic composition in various depositional settings within the Hamersley Basin and the Griqualand West Basin. The modeling of the oceanic Mo inventory in relation to the Mo in- and outflux suggests that the long-term build-up of an isotopically heavy seawater Mo reservoir requires a sedimentary sink for isotopically light Mo. The search for this

  14. Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and heterotrophic bacteria through physical attachment

    KAUST Repository

    Arandia-Gorostidi, Nestor

    2016-12-06

    Quantifying the contribution of marine microorganisms to carbon and nitrogen cycles and their response to predicted ocean warming is one of the main challenges of microbial oceanography. Here we present a single-cell NanoSIMS isotope analysis to quantify C and N uptake by free-living and attached phytoplankton and heterotrophic bacteria, and their response to short-term experimental warming of 4 °C. Elevated temperature increased total C fixation by over 50%, a small but significant fraction of which was transferred to heterotrophs within 12 h. Cell-to-cell attachment doubled the secondary C uptake by heterotrophic bacteria and increased secondary N incorporation by autotrophs by 68%. Warming also increased the abundance of phytoplankton with attached heterotrophs by 80%, and promoted C transfer from phytoplankton to bacteria by 17% and N transfer from bacteria to phytoplankton by 50%. Our results indicate that phytoplankton-bacteria attachment provides an ecological advantage for nutrient incorporation, suggesting a mutualistic relationship that appears to be enhanced by temperature increases.

  15. High-fat feeding inhibits exercise-induced increase in mitochondrial respiratory flux in skeletal muscle

    DEFF Research Database (Denmark)

    Skovbro, Mette; Boushel, Robert Christopher; Hansen, Christina Neigaard

    2011-01-01

    -62%) were seen in HFD and ND, but only in HFD was an elevated (P respiratory rate seen at recovery. With HFD complex I and IV protein expression decreased (P system protein content......) and intramyocellular triacylglycerol content did not change with the intervention in either group. Indexes of mitochondrial density were similar across the groups and intervention. Mitochondrial respiratory rates, measured in permeabilized muscle fibers, showed a 31 ± 11 and 26 ± 9% exercise-induced increase (P

  16. Iron Dextran Increases Hepatic Oxidative Stress and Alters Expression of Genes Related to Lipid Metabolism Contributing to Hyperlipidaemia in Murine Model

    Directory of Open Access Journals (Sweden)

    Maísa Silva

    2015-01-01

    Full Text Available The objective of this study was to investigate the effects of iron dextran on lipid metabolism and to determine the involvement of oxidative stress. Fischer rats were divided into two groups: the standard group (S, which was fed the AIN-93M diet, and the standard plus iron group (SI, which was fed the same diet but also received iron dextran injections. Serum cholesterol and triacylglycerol levels were higher in the SI group than in the S group. Iron dextran was associated with decreased mRNA levels of pparα, and its downstream gene cpt1a, which is involved in lipid oxidation. Iron dextran also increased mRNA levels of apoB-100, MTP, and L-FABP indicating alterations in lipid secretion. Carbonyl protein and TBARS were consistently higher in the liver of the iron-treated rats. Moreover, a significant positive correlation was found between oxidative stress products, lfabp expression, and iron stores. In addition, a negative correlation was found between pparα expression, TBARS, carbonyl protein, and iron stores. In conclusion, our results suggest that the increase observed in the transport of lipids in the bloodstream and the decreased fatty acid oxidation in rats, which was promoted by iron dextran, might be attributed to increased oxidative stress.

  17. High-fat feeding inhibits exercise-induced increase in mitochondrial respiratory flux in skeletal muscle.

    Science.gov (United States)

    Skovbro, Mette; Boushel, Robert; Hansen, Christina Neigaard; Helge, Jørn Wulff; Dela, Flemming

    2011-06-01

    Twenty one healthy untrained male subjects were randomized to follow a high-fat diet (HFD; 55-60E% fat, 25-30E% carbohydrate, and 15E% protein) or a normal diet (ND; 25-35E% fat, 55-60E% carbohydrate, and 10-15E% protein) for 2(1/2) wk. Diets were isocaloric and tailored individually to match energy expenditure. At 2(1/2) wk of diet, one 60-min bout of bicycle exercise (70% of maximal oxygen uptake) was performed. Muscle biopsies were obtained before and after the diet, immediately after exercise, and after 3-h recovery. Insulin sensitivity (hyperinsulinemic-euglycemic clamp) and intramyocellular triacylglycerol content did not change with the intervention in either group. Indexes of mitochondrial density were similar across the groups and intervention. Mitochondrial respiratory rates, measured in permeabilized muscle fibers, showed a 31 ± 11 and 26 ± 9% exercise-induced increase (P increase was abolished. At recovery, no change from resting respiration was seen in either group. With a lipid substrate (octanoyl-carnitine with or without ADP), similar exercise-induced increases (31-62%) were seen in HFD and ND, but only in HFD was an elevated (P fat-rich diet induces marked changes in the mitochondrial electron transport system protein content and in exercise-induced mitochondrial substrate oxidation rates, with the effects being present hours after the exercise. The effect of HFD is present even without effects on insulin sensitivity and intramyocellular lipid accumulation. An isocaloric high-fat diet does not cause insulin resistance.

  18. Co-effect of increased humidity and meteorological conditions on greenhouse gas fluxes in a young hybrid aspen forest

    Science.gov (United States)

    Hansen, Raili; Mander, Ülo; Kupper, Priit; Soosaar, Kaido; Maddison, Martin; Sõber, Jaak; Lõhmus, Krista

    2014-05-01

    Due to the climate change, higher precipitation and an increase in air humidity is expected in northern Europe in the near future (IPCC 2007). There are some studies about irrigation, elevated CO2 and O3 etc., but still we have too little knowledge about the humidity effect on the deciduous forest ecosystem. In 2006 a free-air humidity manipulation (FAHM) facility was established in Estonia and in 2008 we started to artificially increase the air humidity in young hybrid aspen (Populus tremula L. x P. tremuloides Michx.) forest trials on an Endogleyic Planosol of former arable land. Air humidity was raised on average about 7% compared to ambient condition (Tullus et al., 2012). We measured the carbon dioxide, methane and nitrous oxide fluxes from the FAHM system using closed static chamber and gas-chromatograph techniques from July 2009 to November 2012 during snow free periods. Flux measurements were done once a month in three humidification (h) plots and in three control (c) plots. We monitored soil temperature, soil water potential (SWP), precipitation and relative humidity. The vegetation period was rainy in 2009, droughty in 2010 and 2011 (according to SWP the drought was severe in 2011) and cold in 2012. Soil respiration was the lowest in 2011 both in c and h plots; however it was significantly higher in h. Most of the time the soil was a sink for methane, but less CH4 was oxidized in the soil of h plots. Emission of N2O did not have good correlation with air humidity, although one could observe a clear tendency of bigger N2O fluxes when soil was continuously water-saturated. Expectedly, soil respiration had strong positive correlations with soil temperature and CH4 emission demonstrated strong positive correlation with SWP. Hence, interaction of humidification and precipitation affected greenhouse gas fluxes. IPCC, Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge. 2007. Tullus A, Kupper P, Sellin A, Parts L, Sõber J

  19. Increase in African dust flux at the onset of commercial agriculture in the Sahel region.

    Science.gov (United States)

    Mulitza, Stefan; Heslop, David; Pittauerova, Daniela; Fischer, Helmut W; Meyer, Inka; Stuut, Jan-Berend; Zabel, Matthias; Mollenhauer, Gesine; Collins, James A; Kuhnert, Henning; Schulz, Michael

    2010-07-01

    The Sahara Desert is the largest source of mineral dust in the world. Emissions of African dust increased sharply in the early 1970s (ref. 2), a change that has been attributed mainly to drought in the Sahara/Sahel region caused by changes in the global distribution of sea surface temperature. The human contribution to land degradation and dust mobilization in this region remains poorly understood, owing to the paucity of data that would allow the identification of long-term trends in desertification. Direct measurements of airborne African dust concentrations only became available in the mid-1960s from a station on Barbados and subsequently from satellite imagery since the late 1970s: they do not cover the onset of commercial agriculture in the Sahel region approximately 170 years ago. Here we construct a 3,200-year record of dust deposition off northwest Africa by investigating the chemistry and grain-size distribution of terrigenous sediments deposited at a marine site located directly under the West African dust plume. With the help of our dust record and a proxy record for West African precipitation we find that, on the century scale, dust deposition is related to precipitation in tropical West Africa until the seventeenth century. At the beginning of the nineteenth century, a sharp increase in dust deposition parallels the advent of commercial agriculture in the Sahel region. Our findings suggest that human-induced dust emissions from the Sahel region have contributed to the atmospheric dust load for about 200 years.

  20. Cathodal iontophoresis of treprostinil and iloprost induces a sustained increase in cutaneous flux in rats.

    Science.gov (United States)

    Blaise, S; Roustit, M; Millet, C; Ribuot, C; Boutonnat, J; Cracowski, J L

    2011-02-01

    The treatment of scleroderma-related digital ulcers is still a therapeutic challenge. The most effective drugs are prostacyclin analogues. However, their usage is limited to an intravenous route of administration and by their frequent side effects. The objective of this study was to test whether treprostinil, iloprost and epoprostenol can induce sustained vasodilatation in rats when delivered locally using cutaneous iontophoresis. Treprostinil, iloprost and epoprostenol were delivered by cathodal and anodal iontophoresis onto the hindquarters of anaesthesized rats (n= 8 for each group). Skin blood flow was quantified using laser Doppler imaging and cutaneous tolerance was assessed from day 0 to day 3. Cathodal but not anodal iontophoresis of treprostinil (6.4 mM), iloprost (0.2 mM) and epoprostenol (1.4 mM) induced a significant and sustained increase in cutaneous blood flow. The effects of treprostinil and iloprost were significantly different from those of treprostinil vehicle. Only weak effects were observed when both drugs were applied locally without current. Skin resistance was unchanged in areas treated with prostacyclin analogues. Finally, skin tolerance was good, with no evidence of epidermal damage. Cathodal iontophoresis of treprostinil and iloprost increases cutaneous blood flow with a good local tolerance. The effects of cathodal iontophoresis of these drugs should be investigated in humans, as they could have potential as new local therapies for digital ulcers in patients with scleroderma. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  1. Probiotic strain Lactobacillus plantarum 299v increases iron absorption from an iron-supplemented fruit drink: a double-isotope cross-over single-blind study in women of reproductive age.

    Science.gov (United States)

    Hoppe, Michael; Önning, Gunilla; Berggren, Anna; Hulthén, Lena

    2015-10-28

    Iron deficiency is common, especially among young women. Adding probiotics to foods could be one way to increase iron absorption. The aim of this study was to test the hypothesis that non-haem iron absorption from a fruit drink is improved by adding Lactobacillus plantarum 299v (Lp299v). Iron absorption was studied in healthy women of reproductive age using a single-blind cross-over design in two trials applying the double-isotope (55Fe and 59Fe) technique. In Trial 1, iron absorption from a fruit drink containing 109 colony-forming units (CFU) Lp299v was compared with that from a control drink without Lp299v. Trial 2 had the same design but 1010 CFU were used. The test and control drinks contained approximately 5 mg of iron as ferrous lactate and were labelled with 59Fe (B) and 55Fe (A), respectively, and consumed on 4 consecutive days in the order AABB. Retention of the isotopes was measured with whole-body counting and in blood. Mean iron absorption from the drink containing 109 CFU Lp299v (28·6(sd 12·5) %) was significantly higher than from the control drink (18·5(sd 5·8) %), n 10, P<0·028). The fruit drink with 1010 CFU Lp299v gave a mean iron absorption of 29·1(sd 17·0) %, whereas the control drink gave an absorption of (20·1(sd 6·4) %) (n 11, P<0·080). The difference in iron absorption between the 109 CFU Lp299v and the 1010 CFU Lp299v drinks was not significant (P=0·941). In conclusion, intake of probiotics can increase iron absorption by approximately 50 % from a fruit drink having an already relatively high iron bioavailability.

  2. Dissolution behaviour of ferric pyrophosphate and its mixtures with soluble pyrophosphates: Potential strategy for increasing iron bioavailability.

    Science.gov (United States)

    Tian, Tian; Blanco, Elena; Smoukov, Stoyan K; Velev, Orlin D; Velikov, Krassimir P

    2016-10-01

    Ferric pyrophosphate (FePP) is a widely used iron source in food fortification and in nutritional supplements, due to its white colour, that is very uncommon for insoluble Fe salts. Although its dissolution is an important determinant of Fe adsorption in human body, the solubility characteristics of FePP are complex and not well understood. This report is a study on the solubility of FePP as a function of pH and excess of pyrophosphate ions. FePP powder is sparingly soluble in the pH range of 3-6 but slightly soluble at pH8. In the presence of pyrophosphate ions the solubility of FePP strongly increases at pH 5-8.5 due to formation a soluble complex between Fe(III) and pyrophosphate ions, which leads to an 8-10-fold increase in the total ionic iron concentration. This finding is beneficial for enhancing iron bioavailability, which important for the design of fortified food, beverages, and nutraceutical products.

  3. Enzyme-mediated quenching of the Pseudomonas quinolone signal (PQS promotes biofilm formation of Pseudomonas aeruginosa by increasing iron availability

    Directory of Open Access Journals (Sweden)

    Beatrix Tettmann

    2016-12-01

    Full Text Available The 2-alkyl-3-hydroxy-4(1H-quinolone 2,4-dioxygenase HodC was previously described to cleave the Pseudomonas quinolone signal, PQS, which is exclusively used in the complex quorum sensing (QS system of Pseudomonas aeruginosa, an opportunistic pathogen employing QS to regulate virulence and biofilm development. Degradation of PQS by exogenous addition of HodC to planktonic cells of P. aeruginosa attenuated production of virulence factors, and reduced virulence in planta. However, proteolytic cleavage reduced the efficacy of HodC. Here, we identified the secreted protease LasB of P. aeruginosa to be responsible for HodC degradation. In static biofilms of the P. aeruginosa PA14 lasB::Tn mutant, the catalytic activity of HodC led to an increase in viable biomass in newly formed but also in established biofilms, and reduced the expression of genes involved in iron metabolism and siderophore production, such as pvdS, pvdL, pvdA and pvdQ. This is likely due to an increase in the levels of bioavailable iron by degradation of PQS, which is able to sequester iron from the surrounding environment. Thus, HodC, despite its ability to quench the production of virulence factors, is contraindicated for combating P. aeruginosa biofilms.

  4. Effect of increased manganese addition and mould type on the slurry erosion characteristics of Cr–Mn iron systems

    Indian Academy of Sciences (India)

    P Sampathkumaran; C Ranganathaiah; S Seetharamu; Kishore

    2008-12-01

    The wear resistance of high chromium iron is well recorded. However, the same is not the case as regards the use of manganese at higher percentages in high chromium irons and its influence on wear behaviour. Hence, this work highlights the slurry wear characteristics of chromium ($\\Box$ 16–19%) iron following the introduction of manganese at two levels i.e. 5 and 10%. It is known that the wear properties are dictated by the microstructural features. To alter the structure, the cooling rate of casting has been varied by adopting two different types of moulds (i.e. sand and metal) and subsequently subjecting to thermal treatment. The as-cast and heat treated samples are examined for microstructure and then evaluated for hardness and slurry erosion properties. As the manganese content is increased from 5 to 10%, the hardness showed a decrease in value both in the as-cast and heat treated conditions. The slurry erosion loss, expectedly, showed an increase irrespective of the sample condition (i.e. mould type/heat treatment adopted). The findings are corroborated with the microstructural features obtained through optical and scanning electron microscopy.

  5. Exposure of aconitase to smoking-related oxidants results in iron loss and increased iron response protein-1 activity: potential mechanisms for iron accumulation in human arterial cells

    DEFF Research Database (Denmark)

    Talib, Jihan; Davies, Michael Jonathan

    2016-01-01

    Smokers have an elevated risk of cardiovascular disease, but the origin(s) of this increased risk are incompletely defined. Evidence supports an accumulation of the oxidant-generating enzyme myeloperoxidase (MPO) in the inflamed artery wall, and smokers have high levels of SCN−, a preferred MPO...

  6. NOD promoter-controlled AtIRT1 expression functions synergistically with NAS and FERRITIN genes to increase iron in rice grains.

    Science.gov (United States)

    Boonyaves, Kulaporn; Gruissem, Wilhelm; Bhullar, Navreet K

    2016-02-01

    Rice is a staple food for over half of the world's population, but it contains only low amounts of bioavailable micronutrients for human nutrition. Consequently, micronutrient deficiency is a widespread health problem among people who depend primarily on rice as their staple food. Iron deficiency anemia is one of the most serious forms of malnutrition. Biofortification of rice grains for increased iron content is an effective strategy to reduce iron deficiency. Unlike other grass species, rice takes up iron as Fe(II) via the IRON REGULATED TRANSPORTER (IRT) in addition to Fe(III)-phytosiderophore chelates. We expressed Arabidopsis IRT1 (AtIRT1) under control of the Medicago sativa EARLY NODULIN 12B promoter in our previously developed high-iron NFP rice lines expressing NICOTIANAMINE SYNTHASE (AtNAS1) and FERRITIN. Transgenic rice lines expressing AtIRT1 alone had significant increases in iron and combined with NAS and FERRITIN increased iron to 9.6 µg/g DW in the polished grains that is 2.2-fold higher as compared to NFP lines. The grains of AtIRT1 lines also accumulated more copper and zinc but not manganese. Our results demonstrate that the concerted expression of AtIRT1, AtNAS1 and PvFERRITIN synergistically increases iron in both polished and unpolished rice grains. AtIRT1 is therefore a valuable transporter for iron biofortification programs when used in combination with other genes encoding iron transporters and/or storage proteins.

  7. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress

    Directory of Open Access Journals (Sweden)

    Saba Naqvi

    2010-11-01

    Full Text Available Saba Naqvi1, Mohammad Samim2, MZ Abdin3, Farhan Jalees Ahmed4, AN Maitra5, CK Prashant6, Amit K Dinda61Faculty of Engineering and Interdisciplinary Sciences, 2Department of Chemistry, 3Department of Biotechnology, Faculty of Science, 4Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, Hamdard University, 5Department of Chemistry, University of Delhi, 6Department of Pathology, All India Institute of Medical Sciences, New Delhi, IndiaAbstract: Iron oxide nanoparticles with unique magnetic properties have a high potential for use in several biomedical, bioengineering and in vivo applications, including tissue repair, magnetic resonance imaging, immunoassay, drug delivery, detoxification of biologic fluids, cell sorting, and hyperthermia. Although various surface modifications are being done for making these nonbiodegradable nanoparticles more biocompatible, their toxic potential is still a major concern. The current in vitro study of the interaction of superparamagnetic iron oxide nanoparticles of mean diameter 30 nm coated with Tween 80 and murine macrophage (J774 cells was undertaken to evaluate the dose- and time-dependent toxic potential, as well as investigate the role of oxidative stress in the toxicity. A 15–30 nm size range of spherical nanoparticles were characterized by transmission electron microscopy and zeta sizer. MTT assay showed >95% viability of cells in lower concentrations (25–200 µg/mL and up to three hours of exposure, whereas at higher concentrations (300–500 µg/mL and prolonged (six hours exposure viability reduced to 55%–65%. Necrosis-apoptosis assay by propidium iodide and Hoechst-33342 staining revealed loss of the majority of the cells by apoptosis. H2DCFDDA assay to quantify generation of intracellular reactive oxygen species (ROS indicated that exposure to a higher concentration of nanoparticles resulted in enhanced ROS generation, leading to cell injury and death. The cell membrane injury

  8. Probiotics lactobacillus reuteri DSM 17938 and lactobacillus casei CRL 431 modestly increase growth, but non iron and zinc status, among Indonesian children aged 1-6 years

    NARCIS (Netherlands)

    Agustina, R.; Bovee-Oudenhoven, I.M.J.; Lukito, W.; Fahmida, U.; Rest, van de O.; Zimmermann, M.B.; Firmansyah, A.; Wulanti, R.; Albers, R.; Heuvel, van den E.G.H.M.; Kok, F.J.

    2013-01-01

    Probiotics and milk calcium may increase resistance to intestinal infection, but their effect on growth and iron and zinc status of Indonesian children is uncertain. We investigated the hypotheses that cow milk with added probiotics would improve growth and iron and zinc status of Indonesian

  9. Probiotics lactobacillus reuteri DSM 17938 and lactobacillus casei CRL 431 modestly increase growth, but non iron and zinc status, among Indonesian children aged 1-6 years

    NARCIS (Netherlands)

    Agustina, R.; Bovee-Oudenhoven, I.M.J.; Lukito, W.; Fahmida, U.; Rest, van de O.; Zimmermann, M.B.; Firmansyah, A.; Wulanti, R.; Albers, R.; Heuvel, van den E.G.H.M.; Kok, F.J.

    2013-01-01

    Probiotics and milk calcium may increase resistance to intestinal infection, but their effect on growth and iron and zinc status of Indonesian children is uncertain. We investigated the hypotheses that cow milk with added probiotics would improve growth and iron and zinc status of Indonesian childre

  10. β-Amyloid peptide increases levels of iron content and oxidative stress in human cell and Caenorhabditis elegans models of Alzheimer disease.

    Science.gov (United States)

    Wan, Li; Nie, Guangjun; Zhang, Jie; Luo, Yunfeng; Zhang, Peng; Zhang, Zhiyong; Zhao, Baolu

    2011-01-01

    Recent studies indicate that the deposition of β-amyloid peptide (Aβ) is related to the pathogenesis of Alzheimer disease (AD); however, the underlying mechanism is still not clear. The abnormal interactions of Aβ with metal ions such as iron are implicated in the process of Aβ deposition and oxidative stress in AD brains. In this study, we observed that Aβ increased the levels of iron content and oxidative stress in SH-SY5Y cells overexpressing the Swedish mutant form of human β-amyloid precursor protein (APPsw) and in Caenorhabditis elegans Aβ-expressing strain CL2006. Intracellular iron and calcium levels and reactive oxygen species and nitric oxide generation significantly increased in APPsw cells compared to control cells. The activity of superoxide dismutase and the antioxidant levels of APPsw cells were significantly lower than those of control cells. Moreover, iron treatment decreased cell viability and mitochondrial membrane potential and aggravated oxidative stress damage as well as the release of Aβ1-40 from the APPsw cells. The iron homeostasis disruption in APPsw cells is very probably associated with elevated expression of the iron transporter divalent metal transporter 1, but not transferrin receptor. Furthermore, the C. elegans with Aβ-expression had increased iron accumulation. In aggregate, these results demonstrate that Aβ accumulation in neuronal cells correlated with neuronal iron homeostasis disruption and probably contributed to the pathogenesis of AD.

  11. Chironomus plumosus larvae increase fluxes of denitrification products and diversity of nitrate-reducing bacteria in freshwater sediment

    DEFF Research Database (Denmark)

    Poulsen, Morten; W. V. Kofoed, Michael; H. Larsen, Lone

    2014-01-01

    Benthic invertebrates affect microbial processes and communities in freshwater sediment by enhancing sediment-water solute fluxes and by grazing on bacteria. Using microcosms, the effects of larvae of thewidespread midge Chironomus plumosus on the efflux of denitrification products (N2O and N2+ N2O......, respectively, which was mostly due to stimulation of sedimentary denitrification; incomplete denitrification in the guts accounted for up to 20% of the N2O efflux. Phylotype richness of the nitrate reductase gene narG was significantly higher in sediment with than without larvae. In the gut, 47 narG phylotypes...... nosZ wasdifferent in sediments with and without larvae. Hence, C. plumosus increases activity and diversity, but not overall abundance of nitrate-reducing bacteria, probably by providing additional ecological niches in its burrow and gut....

  12. Interactions of proteins with biogenic iron oxyhydroxides and a new culturing technique to increase biomass yields of neutrophilic, iron-oxidizing bacteria.

    Science.gov (United States)

    Barco, Roman A; Edwards, Katrina J

    2014-01-01

    Neutrophilic, bacterial iron-oxidation remains one of the least understood energy-generating biological reactions to date. One of the reasons it remains under-studied is because there are inherent problems with working with iron-oxidizing bacteria (FeOB), including low biomass yields and interference from the iron oxides in the samples. In an effort to circumvent the problem of low biomass, a new large batch culturing technique was developed. Protein interactions with biogenic iron oxides were investigated confirming that such interactions are strong. Therefore, a protein extraction method is described to minimize binding of proteins to biogenic iron oxides. The combination of these two methods results in protein yields that are appropriate for activity assays in gels and for proteomic profiling.

  13. Lava tube shatter rings and their correlation with lava flux increases at Kīlauea Volcano, Hawai‘i

    Science.gov (United States)

    Orr, T.R.

    2011-01-01

    Shatter rings are circular to elliptical volcanic features, typically tens of meters in diameter, which form over active lava tubes. They are typified by an upraised rim of blocky rubble and a central depression. Prior to this study, shatter rings had not been observed forming, and, thus, were interpreted in many ways. This paper describes the process of formation for shatter rings observed at Kīlauea Volcano during November 2005–July 2006. During this period, tilt data, time-lapse images, and field observations showed that episodic tilt changes at the nearby Pu‘u ‘Ō‘ō cone, the shallow magmatic source reservoir, were directly related to fluctuations in the level of lava in the active lava tube, with periods of deflation at Pu‘u ‘Ō‘ō correlating with increases in the level of the lava stream surface. Increases in lava level are interpreted as increases in lava flux, and were coincident with lava breakouts from shatter rings constructed over the lava tube. The repetitive behavior of the lava flux changes, inferred from the nearly continuous tilt oscillations, suggests that shatter rings form from the repeated rise and fall of a portion of a lava tube roof. The locations of shatter rings along the active lava tube suggest that they form where there is an abrupt decrease in flow velocity through the tube, e.g., large increase in tube width, abrupt decrease in tube slope, and (or) sudden change in tube direction. To conserve volume, this necessitates an abrupt increase in lava stream depth and causes over-pressurization of the tube. More than a hundred shatter rings have been identified on volcanoes on Hawai‘i and Maui, and dozens have been reported from basaltic lava fields in Iceland, Australia, Italy, Samoa, and the mainland United States. A quick study of other basaltic lava fields worldwide, using freely available satellite imagery, suggests that they might be even more common than previously thought. If so, this confirms that episodic

  14. Lava tube shatter rings and their correlation with lava flux increases at Kīlauea Volcano, Hawai`i

    Science.gov (United States)

    Orr, Tim R.

    2011-04-01

    Shatter rings are circular to elliptical volcanic features, typically tens of meters in diameter, which form over active lava tubes. They are typified by an upraised rim of blocky rubble and a central depression. Prior to this study, shatter rings had not been observed forming, and, thus, were interpreted in many ways. This paper describes the process of formation for shatter rings observed at Kīlauea Volcano during November 2005-July 2006. During this period, tilt data, time-lapse images, and field observations showed that episodic tilt changes at the nearby Pu`u `Ō`ō cone, the shallow magmatic source reservoir, were directly related to fluctuations in the level of lava in the active lava tube, with periods of deflation at Pu`u `Ō`ō correlating with increases in the level of the lava stream surface. Increases in lava level are interpreted as increases in lava flux, and were coincident with lava breakouts from shatter rings constructed over the lava tube. The repetitive behavior of the lava flux changes, inferred from the nearly continuous tilt oscillations, suggests that shatter rings form from the repeated rise and fall of a portion of a lava tube roof. The locations of shatter rings along the active lava tube suggest that they form where there is an abrupt decrease in flow velocity through the tube, e.g., large increase in tube width, abrupt decrease in tube slope, and (or) sudden change in tube direction. To conserve volume, this necessitates an abrupt increase in lava stream depth and causes over-pressurization of the tube. More than a hundred shatter rings have been identified on volcanoes on Hawai`i and Maui, and dozens have been reported from basaltic lava fields in Iceland, Australia, Italy, Samoa, and the mainland United States. A quick study of other basaltic lava fields worldwide, using freely available satellite imagery, suggests that they might be even more common than previously thought. If so, this confirms that episodic fluctuation in lava

  15. Increasing dust fluxes on the northeastern Tibetan Plateau linked with the Little Ice Age and recent human activity since the 1950s

    Science.gov (United States)

    Wan, Dejun; Jin, Zhangdong; Zhang, Fei; Song, Lei; Yang, Jinsong

    2016-12-01

    Arid and semi-arid areas in inner Asia contribute lots of mineral dust in the northern hemisphere, but dust flux evolution in the past is poorly constrained. Based on particle sizes and elemental compositions of a sediment core from Lake Qinghai on the northeastern Tibetan Plateau, dust fluxes during ∼1518-2011 A.D. were reconstructed based on 18-100 μm fractions of the lake sediment. The dust fluxes during the past ∼500 years ranged between 100 and 300 g/m2/yr, averaging 202 g/m2/yr, experiencing four stages: Stage 1 (∼1518-1590s), the flux was averaged 165 g/m2/yr, much lower than that in the Stage 2 (1590s-1730s, 254 g/m2/yr); similarly, an average flux of 169 g/m2/yr in the Stage 3 (1730s-1950s) was followed by an increased flux of 259 g/m2/yr in the Stage 4 (1950s-2011). During the first three stages the fluxes were dominated by natural dust activities in arid inner Asia, having a positive relation with wind intensity but a poor correlation with effective moisture (or precipitation) and temperature. The high dust flux in Stage 2 was due to relatively strong wind during the maximum Little Ice Age, whereas the remarkably high flux in 1950s-2011 was resulted from recent increasing human activities in northwestern China. The dust record not only documents past dust fluxes on the northeastern Tibetan Plateau but also reflects evolutions and mechanisms of dust activity/emission in inner Asia during the past ∼500 years.

  16. An Animal-Source Food Supplement Increases Micronutrient Intakes and Iron Status among Reproductive-Age Women in Rural Vietnam.

    Science.gov (United States)

    Hall, Andrew G; Ngu, Tu; Nga, Hoang T; Quyen, Phi N; Hong Anh, Pham T; King, Janet C

    2017-06-01

    Background: Few studies have examined the impact of local animal-source foods (ASFs) on the nutritional status of reproductive-age women in developing countries.Objective: We hypothesized that a midmorning snack of local ASF for 6 mo would reduce dietary micronutrient deficiencies [usual intake less than the estimated average requirement (EAR)] and improve blood biomarkers of iron, zinc, and vitamins A and B-12 status among nonpregnant, reproductive-age women in rural Vietnam.Methods: One hundred seventeen women, 18-30 y old, were randomly assigned to receive either an ASF (mean: 144 kcal, 8.9 mg Fe, 2.7 mg Zn, 1050 μg retinoic acid equivalent vitamin A, and 5.5 μg vitamin B-12) or a control snack (mean: 150 kcal, 2.0 mg Fe, 0.9 mg Zn, 0 μg retinoic acid equivalent vitamin A, and 0 μg vitamin B-12) 5 d/wk for 6 mo. Usual nutrient intakes were estimated by repeated 24-h dietary recalls. Blood samples were collected at baseline and 3 and 6 mo. Because of the relation between nutritional status and inflammation, serum C-reactive protein, α-1-acid-glycoprotein, and urinary tract infections (UTIs) were also monitored.Results: Eighty-nine women (47 in the ASF group and 42 controls) completed the study. In the ASF group, intakes of iron and vitamins A and B-12 below the EAR were eliminated, and the prevalence of a low zinc intake was reduced to 9.6% compared with 64.7% in controls (P vitamin B-12 concentrations did not differ. UTI relative risk was 3.9 (P < 0.05) among women assigned to the ASF group who had a low whole-body iron status at baseline.Conclusions: Adding a small amount of locally produced ASF to the diets of reproductive-age Vietnamese women improved micronutrient intakes and iron status. However, the increased UTI incidence in women in the ASF group with initially lower iron stores warrants further investigation. © 2017 American Society for Nutrition.

  17. Surface modification of ultra thin PES-zeolite using thermal annealing to increase flux and rejection of produced water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kusworo, T. D., E-mail: tdkusworo@che.undip.ac.id; Widayat,; Pradini, A. W.; Armeli, Y. P. [Department of Chemical Engineering, University of Diponegoro Prof. Soedarto, Tembalang, Semarang, 50239, Phone/Fax : (024) 7460058 (Indonesia)

    2015-12-29

    Membrane technology is an alternative of water treatment based on filtration that is being developed. Surface Modification using heat treatment has been investigated to improve the performance of ultra thin PES-Zeolite nanocomposite membrane for produced water treatment from Pertamina Balongan. Two types of membranes with surface modification and without modification were prepared to study the effect of surface modification on its permeation properties. Asymmetric ultra thin PES-Zeolite nanocomposite membrane for produced water treatment was casted using the dry/wet phase inversion technique from dope solutions containing polyethersulfone, N-methyl-2-pyrrolidone (NMP) as a solvent and zeolite as a filler. Experimental results showed that the heat treatment at near glass transition temperature was increase the rejection of COD, Turbidity and ion Ca{sup 2+}. The better adherence of zeolite particles in the polymer matrix combined with formation of charge transfer complexes (CTCs) and cross-linking might be the main factors to enhance the percent of rejection. Field emission scanning electron microscopy (FESEM) micrographs showed that the selective layer and the substructure of PES-zeolite membrane became denser and more compact after the heat treatment. The FESEM micrographs also showed that the heat treatment was increased the adherence of zeolite particle and polymer. Membranes treated at 180 °C for 15 seconds indicated increase the rejection and small decrease in flux for produced water treatment.

  18. Randomized controlled trial assessing the efficacy of a reusable fish-shaped iron ingot to increase hemoglobin concentration in anemic, rural Cambodian women.

    Science.gov (United States)

    Rappaport, Aviva I; Whitfield, Kyly C; Chapman, Gwen E; Yada, Rickey Y; Kheang, Khin Meng; Louise, Jennie; Summerlee, Alastair J; Armstrong, Gavin R; Green, Timothy J

    2017-08-01

    Background: Anemia affects 45% of women of childbearing age in Cambodia. Iron supplementation is recommended in populations in which anemia prevalence is high. However, there are issues of cost, distribution, and adherence. A potential alternative is a reusable fish-shaped iron ingot, which, when added to the cooking pot, leaches iron into the fluid in which it is prepared.Objective: We sought to determine whether there was a difference in hemoglobin concentrations in rural Cambodian anemic women (aged 18-49 y) who cooked with the iron ingot or consumed a daily iron supplement compared with a control after 1 y.Design: In Preah Vihear, 340 women with mild or moderate anemia were randomly assigned to 1) an iron-ingot group, 2) an iron-supplement (18 mg/d) group, or 3) a nonplacebo control group. A venous blood sample was taken at baseline and at 6 and 12 mo. Blood was analyzed for hemoglobin, serum ferritin, and serum transferrin receptor. Hemoglobin electrophoresis was used to detect structural hemoglobin variants.Results: Anemia prevalence was 44% with the use of a portable hemoglobinometer during screening. At baseline, prevalence of iron deficiency was 9% on the basis of a low serum ferritin concentration. There was no significant difference in mean hemoglobin concentrations between the iron-ingot group (115 g/L; 95% CI: 113, 118 g/L; P = 0.850) or iron-supplement group (115 g/L; 95% CI: 113, 117 g/L; P = 0.998) compared with the control group (115 g/L; 95% CI: 113, 117 g/L) at 12 mo. Serum ferritin was significantly higher in the iron-supplement group (73 μg/L; 95% CI: 64, 82 μg/L; P = 0.002) than in the control group at 6 mo; however, this significance was not maintained at 12 mo (73 μg/L; 95% CI: 58, 91 μg/L; P = 0.176).Conclusions: Neither the iron ingot nor iron supplements increased hemoglobin concentrations in this population at 6 or 12 mo. We do not recommend the use of the fish-shaped iron ingot in Cambodia or in countries where the prevalence of

  19. Flux balance analysis of genome-scale metabolic model of rice (Oryza sativa): Aiming to increase biomass

    Indian Academy of Sciences (India)

    Rahul Shaw; Sudip Kundu

    2015-10-01

    Due to socio-economic reasons, it is essential to design efficient stress-tolerant, more nutritious, high yielding rice varieties. A systematic understanding of the rice cellular metabolism is essential for this purpose. Here, we analyse a genome-scale metabolic model of rice leaf using Flux Balance Analysis to investigate whether it has potential metabolic flexibility to increase the biosynthesis of any of the biomass components. We initially simulate the metabolic responses under an objective to maximize the biomass components. Using the estimated maximum value of biomass synthesis as a constraint, we further simulate the metabolic responses optimizing the cellular economy. Depending on the physiological conditions of a cell, the transport capacities of intracellular transporters (ICTs) can vary. To mimic this physiological state, we randomly vary the ICTs’ transport capacities and investigate their effects. The results show that the rice leaf has the potential to increase glycine and starch in a wide range depending on the ICTs’ transport capacities. The predicted biosynthesis pathways vary slightly at the two different optimization conditions. With the constraint of biomass composition, the cell also has the metabolic plasticity to fix a wide range of carbon-nitrogen ratio.

  20. ρ0 Cells Feature De-Ubiquitination of SLC Transporters and Increased Levels and Fluxes of Amino Acids

    Directory of Open Access Journals (Sweden)

    André Bordinassi Medina

    2017-04-01

    Full Text Available Solute carrier (SLC transporters are a diverse group of membrane transporter proteins that regulate the cellular flux and distribution of endogenous and xenobiotic compounds. Post-translational modifications (PTMs, such as ubiquitination, have recently emerged as one of the major regulatory mechanisms in protein function and localization. Previously, we showed that SLC amino acid transporters were on average 6-fold de-ubiquitinated and increased amino acid levels were detected in ρ0 cells (lacking mitochondrial DNA, mtDNA compared to parental cells. Here, we elucidated the altered functionality of SLC transporters and their dynamic ubiquitination status by measuring the uptake of several isotopically labeled amino acids in both human osteosarcoma 143B.TK- and ρ0 cells. Our pulse chase analysis indicated that de-ubiquitinated amino acid transporters in ρ0 cells were accompanied by an increased transport rate, which leads to higher levels of amino acids in the cell. Finding SLC transport enhancers is an aim of the pharmaceutical industry in order to compensate for loss of function mutations in these genes. Thus, the ubiquitination status of SLC transporters could be an indicator for their functionality, but evidence for a direct connection between de-ubiquitination and transporter activity has to be further elucidated.

  1. Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants

    NARCIS (Netherlands)

    Jaeggi, T.; Kortman, G.A.; Moretti, D.; Chassard, C.; Holding, P.; Dostal, A.; Boekhorst, J.; Timmerman, H.M.; Swinkels, D.W.; Tjalsma, H.; Njenga, J.; Mwangi, A.; Kvalsvig, J.; LaCroix, C.; Zimmermann, M.B.

    2015-01-01

    BACKGROUND: In-home iron fortification for infants in developing countries is recommended for control of anaemia, but low absorption typically results in >80% of the iron passing into the colon. Iron is essential for growth and virulence of many pathogenic enterobacteria. We determined the effect

  2. High Iron Stores in the Low Malaria Season Increase Malaria Risk in the High Transmission Season in a Prospective Cohort of Rural Zambian Children.

    Science.gov (United States)

    Barffour, Maxwell A; Schulze, Kerry J; Coles, Christian L; Chileshe, Justin; Kalungwana, Ng'andwe; Arguello, Margia; Siamusantu, Ward; Moss, William J; West, Keith P; Palmer, Amanda C

    2017-08-01

    Background: Higher iron stores, defined by serum ferritin (SF) concentration, may increase malaria risk.Objective: We evaluated the association between SF assessed during low malaria season and the risk of malaria during high malaria season, controlling for inflammation.Methods: Data for this prospective study were collected from children aged 4-8 y (n = 745) participating in a biofortified maize efficacy trial in rural Zambia. All malaria cases were treated at baseline (September 2012). We used baseline SF and malaria status indicated by positive microscopy at endline (March 2013) to define exposure and outcome, respectively. Iron status was defined as deficient (corrected or uncorrected SF iron status assessed in the low malaria seasons (baseline).Results: We observed an age-dependent, positive dose-response association between ferritin in the low malaria season and malaria incidence during the high malaria season in younger children. In children aged iron status [incidence rate ratio (IRR) with SF: 1.56; 95% CI: 0.64, 3.86; IRR with inflammation-corrected SF: 1.92; 95% CI: 0.75, 4.93] and high iron status (IRR with SF: 2.66; 95% CI: 1.10, 6.43; or IRR with corrected SF: 2.93; 95% CI: 1.17, 7.33) categories compared with the deficient iron status category. The relative increase in malaria risk for children with high iron status was statistically significant only among those with a concurrently normal serum soluble transferrin receptor concentration (Iron adequacy in 4- to 8-y-old children in rural Zambia was associated with increased malaria risk. Our findings underscore the need to integrate iron interventions with malaria control programs. This trial was registered at clinicaltrials.gov as NCT01695148. © 2017 American Society for Nutrition.

  3. High Dietary Iron and Radiation Exposure Increase Biomarkers of Oxidative Stress in Blood and Liver of Rats

    Science.gov (United States)

    Morgan, Jennifer L. L.; Theriot, Corey A.; Wu, Honglu; Smith, Scott M.; Zwart, Sara R.

    2012-01-01

    Radiation exposure and increased iron (Fe) status independently cause oxidative damage that can result in protein, lipid, and DNA oxidation. During space flight astronauts are exposed to both increased radiation and increased Fe stores. Increased body Fe results from a decrease in red blood cell mass and the typically high Fe content of the food system. In this study we investigated the combined effects of radiation exposure (0.375 Gy of Cs-137 every other day for 16 days for a total of 3 Gy) and high dietary Fe (650 mg Fe/kg diet compared to 45 mg Fe/kg for controls) in Sprague-Dawley rats (n=8/group). Liver and serum Fe were significantly increased in the high dietary Fe groups. Likewise, radiation treatment increased serum ferritin and Fe concentrations. These data indicate that total body Fe stores increase with both radiation exposure and excess dietary Fe. Hematocrit decreased in the group exposed to radiation, providing a possible mechanism for the shift in Fe indices after radiation exposure. Markers of oxidative stress were also affected by both radiation and high dietary Fe, evidenced by increased liver glutathione peroxidase (GPX) and serum catalase as well as decreased serum GPX. We thus found preliminary indications of synergistic effects of radiation exposure and increased dietary Fe, warranting further study. This study was funded by the NASA Human Research Project.

  4. Ceruloplasmin deficiency reduces levels of iron and BDNF in the cortex and striatum of young mice and increases their vulnerability to stroke.

    Directory of Open Access Journals (Sweden)

    Sarah J Texel

    Full Text Available Ceruloplasmin (Cp is an essential ferroxidase that plays important roles in cellular iron trafficking. Previous findings suggest that the proper regulation and subcellular localization of iron are very important in brain cell function and viability. Brain iron dyshomeostasis is observed during normal aging, as well as in several neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases, coincident with areas more susceptible to insults. Because of their high metabolic demand and electrical excitability, neurons are particularly vulnerable to ischemic injury and death. We therefore set out to look for abnormalities in the brain of young adult mice that lack Cp. We found that iron levels in the striatum and cerebral cortex of these young animals are significantly lower than wild-type (WT controls. Also mRNA levels of the neurotrophin brain derived neurotrophic factor (BDNF, known for its role in maintenance of cell viability, were decreased in these brain areas. Chelator-mediated depletion of iron in cultured neural cells resulted in reduced BDNF expression by a posttranscriptional mechanism, suggesting a causal link between low brain iron levels and reduced BDNF expression. When the mice were subjected to middle cerebral artery occlusion, a model of focal ischemic stroke, we found increased brain damage in Cp-deficient mice compared to WT controls. Our data indicate that lack of Cp increases neuronal susceptibility to ischemic injury by a mechanism that may involve reduced levels of iron and BDNF.

  5. Increased duodenal DMT-1 expression and unchanged HFE mRNA levels in HFE-associated hereditary hemochromatosis and iron deficiency.

    Science.gov (United States)

    Byrnes, V; Barrett, S; Ryan, E; Kelleher, T; O'Keane, C; Coughlan, B; Crowe, J

    2002-01-01

    HFE-associated hereditary hemochromatosis is characterized by imbalances of iron homeostasis and alterations in intestinal iron absorption. The identification of the HFE gene and the apical iron transporter divalent metal transporter-1, DMT-1, provide a direct method to address the mechanisms of iron overload in this disease. The aim of this study was to evaluate the regulation of duodenal HFE and DMT-1 gene expression in HFE-associated hereditary hemochromatosis. Small bowel biopsies and serum iron indices were obtained from a total of 33 patients. The study population comprised 13 patients with hereditary hemochromatosis (C282Y homozygous), 10 patients with iron deficiency anemia, and 10 apparently healthy controls, all of whom were genotyped for the two common mutations in the HFE gene (C282Y and H63D). Total RNA was isolated from tissue and amplified via RT-PCR for HFE, DMT-1, and the internal control GAPDH. DMT-1 protein expression was additionally assessed by immunohistochemistry. Levels of HFE mRNA did not differ significantly between patient groups (P = 0.09), specifically between C282Y homozygotes and iron deficiency anemic patients, when compared to controls (P = 0.09, P = 0.9, respectively). In contrast, DMT-1 mRNA levels were at least twofold greater in patients with hereditary hemochromatosis and iron deficiency anemia when compared to controls (P = 0.02, P = 0.01, respectively). Heightened DMT-1 protein expression correlated with mRNA levels in all patients. Loss of HFE function in hereditary hemochromatosis is not derived from inhibition of its gene expression. DMT-1 expression in C282Y homozygote subjects is consistent with the hypothesis of a "paradoxical" duodenal iron deficiency in hereditary hemochromatosis. The observed twofold upregulation of the DMT-1 is consistent with the slow but steady increase in body iron stores observed in those presenting with clinical features of hereditary hemochromatosis.

  6. Increasing Superoxide Production and the Labile Iron Pool in Tumor Cells may Sensitize Them to Extracellular Ascorbate.

    Science.gov (United States)

    McCarty, Mark Frederick; Contreras, Francisco

    2014-01-01

    acid with oxygen. An increased pool of labile iron in cancer cells may contribute to the selective susceptibility of many cancers to i.v. ascorbate; antagonism of NF-kappaB activity with salicylate, and intravenous iron administration, could be employed to further elevate free iron in cancers.

  7. Copper oxide nanoparticles stimulate glycolytic flux and increase the cellular contents of glutathione and metallothioneins in cultured astrocytes.

    Science.gov (United States)

    Bulcke, Felix; Dringen, Ralf

    2015-01-01

    Copper oxide nanoparticles (CuO-NPs) are frequently used for industrial or medical applications and are known for their high toxic potential. As little is known so far on the consequences of an exposure of brain cells to such particles, we applied CuO-NPs to cultured primary rat astrocytes and investigated whether such particles affect cell viability and alter their metabolic properties. Astrocytes efficiently accumulated CuO-NPs in a time- and concentration-dependent manner. The cells remained viable during a 24 h incubation with 100 µM copper in the form of CuO-NPs, while higher concentrations of CuO-NPs severely compromised the cell viability. Astrocytes that were exposed for 24 h to 100 µM CuO-NPs showed significantly enhanced extracellular lactate concentrations and increased cellular levels of glutathione and metallothioneins. The CuO-NP-induced increase in lactate release and metallothionein content were prevented by the presence of the membrane-permeable copper chelator tetrathiomolybdate, while this chelator increased already in the absence of CuO-NPs the cellular glutathione content. After removal of the CuO-NPs following a 24 h pre-incubation with 100 µM CuO-NPs, astrocytes maintained during a further 6 h incubation an elevated glycolytic lactate release and exported significantly more glutathione than control cells that had been pre-incubated without CuO-NPs. These data suggest that copper ions which are liberated from internalized CuO-NPs stimulate glycolytic flux as well as the synthesis of glutathione and metallothioneins in cultured viable astrocytes.

  8. Increasing the Collision Rate of Particle Impact Electroanalysis with Magnetically Guided Pt-Decorated Iron Oxide Nanoparticles.

    Science.gov (United States)

    Robinson, Donald A; Yoo, Jason J; Castañeda, Alma D; Gu, Brett; Dasari, Radhika; Crooks, Richard M; Stevenson, Keith J

    2015-07-28

    An integrated microfluidic/magnetophoretic methodology was developed for improving signal response time and detection limits for the chronoamperometric observation of discrete nanoparticle/electrode interactions by electrocatalytic amplification. The strategy relied on Pt-decorated iron oxide nanoparticles which exhibit both superparamagnetism and electrocatalytic activity for the oxidation of hydrazine. A wet chemical synthetic approach succeeded in the controlled growth of Pt on the surface of FeO/Fe3O4 core/shell nanocubes, resulting in highly uniform Pt-decorated iron oxide hybrid nanoparticles with good dispersibility in water. The unique mechanism of hybrid nanoparticle formation was investigated by electron microscopy and spectroscopic analysis of isolated nanoparticle intermediates and final products. Discrete hybrid nanoparticle collision events were detected in the presence of hydrazine, an electrochemical indicator probe, using a gold microband electrode integrated into a microfluidic channel. In contrast with related systems, the experimental nanoparticle/electrode collision rate correlates more closely with simple theoretical approximations, primarily due to the accuracy of the nanoparticle tracking analysis method used to quantify nanoparticle concentrations and diffusion coefficients. Further modification of the microfluidic device was made by applying a tightly focused magnetic field to the detection volume to attract the magnetic nanoprobes to the microband working electrode, thereby resulting in a 6-fold increase to the relative frequency of chronoamperometric signals corresponding to discrete nanoparticle impact events.

  9. Hydroxyiminodisuccinic acid (HIDS): A novel biodegradable chelating ligand for the increase of iron bioavailability and arsenic phytoextraction.

    Science.gov (United States)

    Rahman, M Azizur; Hasegawa, H; Kadohashi, K; Maki, T; Ueda, K

    2009-09-01

    The influence of biodegradable chelating ligands on arsenic and iron uptake by hydroponically grown rice seedlings (Oryza sativa L.) was investigated. Even though the growth solution contained sufficient Fe, the growth of rice seedlings gradually decreased up to 76% with the increase of pH of the solution from 7 to 11. Iron forms insoluble ferric hydroxide complexes at neutral or alkaline pH in oxic condition. Chelating ligands produce soluble 'Fe-ligand complex' which assist Fe uptake in plants. The biodegradable chelating ligand hydroxyiminodisuccinic acid (HIDS) was more efficient then those of ethylenediaminetetraacetic acid (EDTA), ethylenediaminedisuccinic acid (EDDS), and iminodisuccinic acid (IDS) in the increase of Fe uptake and growth of rice seedling. A total of 79+/-20, 87+/-6, 116+/-15, and 63+/-18mg dry biomass of rice seedlings were produced with the addition of 0.5mM of EDDS, EDTA, HIDS, and IDS in the nutrient solution, respectively. The Fe concentrations in rice tissues were 117+/-15, 82+/-8, 167+/-25, and 118+/-22micromolg(-1) dry weights when 0.25mM of EDDS, EDTA, HIDS, and IDS were added to the nutrient solution, respectively. Most of the Fe accumulated in rice tissues was stored in roots after the addition of chelating ligands in the solution. The results indicate that the HIDS would be a potential alternative to environmentally persistent EDTA for the increase of Fe uptake and plant growth. The HIDS also increased As uptake in rice root though its translocation from root to shoot was not augmented. This study reports HIDS for the first time as a promising chelating ligand for the enhancement of Fe bioavailability and As phytoextraction.

  10. Pork meat increases iron absorption from a 5-day fully controlled diet when compared to a vegetarian diet with similar vitamin C and phytic acid content.

    Science.gov (United States)

    Bach Kristensen, Mette; Hels, Ole; Morberg, Catrine; Marving, Jens; Bügel, Susanne; Tetens, Inge

    2005-07-01

    Meat increases absorption of non-haem iron in single-meal studies. The aim of the present study was to investigate, over a 5 d period, the potential increasing effect of consumption of pork meat in a whole diet on the fractional absorption of non-haem iron and the total absorption of iron, when compared to a vegetarian diet. A randomised cross-over design with 3 x 5 d whole-diet periods with diets containing Danish-produced meat, Polish-produced meat or a vegetarian diet was conducted. Nineteen healthy female subjects completed the study. All main meals in the meat diets contained 60 g of pork meat and all diets had high phytic acid content (1250 mumol/d). All main meals were extrinsically labelled with the radioactive isotope (59)Fe and absorption of iron was measured in a whole body counter. The non-haem iron absorption from the Danish meat diet was significantly higher compared to the vegetarian diet (P=0.031). The mean fractional absorption of non-haem iron was 7.9 (se1.1), 6.8 (se 1.0) and 5.3 (se 0.6) % for the Danish and Polish meat diets and vegetarian diet, respectively. Total absorption of iron was higher for both meat diets compared to the vegetarian diet (Danish meat diet: P=0.006, Polish meat diet: P=0.003). The absorption ratios of the present study were well in accordance with absorption ratios estimated using algorithms on iron bioavailability. Neither the meat diets nor the vegetarian diets fulfilled the estimated daily requirements of absorbed iron in spite of a meat intake of 180 g/d in the meat diets.

  11. Increases of ferrous iron oxidation activity and arsenic stressed cell growth by overexpression of Cyc2 in Acidithiobacillus ferrooxidans ATCC19859.

    Science.gov (United States)

    Liu, Wei; Lin, Jianqun; Pang, Xin; Mi, Shuang; Cui, Shuang; Lin, Jianqiang

    2013-01-01

    Acidithiobacillus ferrooxidans plays an important role in bioleaching in reproducing the mineral oxidant of ferric iron (Fe(3+) ) by oxidization of ferrous iron (Fe(2+) ). The high-molecular-weight c-type cytochrome Cyc2 that is located in the external membrane is postulated as the first electron carrier in the Fe(2+) oxidation respiratory pathway of A. ferrooxidans. To increase ferrous iron oxidation activity, a recombinant plasmid pTCYC2 containing cyc2 gene under the control of Ptac promoter was constructed and transferred into A. ferrooxidans ATCC19859. The transcriptional level of cyc2 gene was increased by 2.63-fold and Cyc2 protein expression was observed in the recombinant strain compared with the control. The ferrous iron oxidation activity and the arsenic stressed cell growth of the recombinant strain were also elevated.

  12. The effect of increased n deposition on nitrous oxide, methane and carbon dioxide fluxes from unmanaged forest and grassland communities in Michigan

    DEFF Research Database (Denmark)

    Ambus, P.; Robertson, G.P.

    2006-01-01

    fluxes and soil N concentrations in coniferous and grassland sites were on the whole unaffected by the increased N-inputs. It is noteworthy though that N(2)O emissions increased three-fold in the coniferous sites in the first growing season in response to the low N treatment, although the response......-tillage coniferous- and successional sites compared with the old-growth deciduous site. Our results indicate that short-term increased N availability influenced individual processes linked to trace gas turnover in the soil independently from the ecosystem N status. However, changes in whole system fluxes were...

  13. Overexpression of AtFRO6 in transgenic tobacco enhances ferric chelate reductase activity in leaves and increases tolerance to iron-deficiency chlorosis.

    Science.gov (United States)

    Li, Li-Ya; Cai, Qiu-Yi; Yu, Dian-Si; Guo, Chang-Hong

    2011-08-01

    The Arabidopsis gene FRO6(AtFRO6) encodes ferric chelate reductase and highly expressed in green tissues of plants. We have expressed the gene AtFRO6 under the control of a 35S promoter in transgenic tobacco plants. High-level expression of AtFRO6 in transgenic plants was confirmed by northern blot analysis. Ferric reductase activity in leaves of transgenic plants grown under iron-sufficient or iron-deficient conditions is 2.13 and 1.26 fold higher than in control plants respectively. The enhanced ferric reductase activity led to increased concentrations of ferrous iron and chlorophyll, and reduced the iron deficiency chlorosis in the transgenic plants, compared to the control plants. In roots, the concentration of ferrous iron and ferric reductase activity were not significantly different in the transgenic plants compared to the control plants. These results suggest that FRO6 functions as a ferric chelate reductase for iron uptake by leaf cells, and overexpression of AtFRO6 in transgenic plants can reduce iron deficiency chlorosis.

  14. Adsorption calorimetry during metal vapor deposition on single crystal surfaces: Increased flux, reduced optical radiation, and real-time flux and reflectivity measurements

    Science.gov (United States)

    Sellers, Jason R. V.; James, Trevor E.; Hemmingson, Stephanie L.; Farmer, Jason A.; Campbell, Charles T.

    2013-12-01

    Thin films of metals and other materials are often grown by physical vapor deposition. To understand such processes, it is desirable to measure the adsorption energy of the deposited species as the film grows, especially when grown on single crystal substrates where the structure of the adsorbed species, evolving interface, and thin film are more homogeneous and well-defined in structure. Our group previously described in this journal an adsorption calorimeter capable of such measurements on single-crystal surfaces under the clean conditions of ultrahigh vacuum [J. T. Stuckless, N. A. Frei, and C. T. Campbell, Rev. Sci. Instrum. 69, 2427 (1998)]. Here we describe several improvements to that original design that allow for heat measurements with ˜18-fold smaller standard deviation, greater absolute accuracy in energy calibration, and, most importantly, measurements of the adsorption of lower vapor-pressure materials which would have previously been impossible. These improvements are accomplished by: (1) using an electron beam evaporator instead of a Knudsen cell to generate the metal vapor at the source of the pulsed atomic beam, (2) changing the atomic beam design to decrease the relative amount of optical radiation that accompanies evaporation, (3) adding an off-axis quartz crystal microbalance for real-time measurement of the flux of the atomic beam during calorimetry experiments, and (4) adding capabilities for in situ relative diffuse optical reflectivity determinations (necessary for heat signal calibration). These improvements are not limited to adsorption calorimetry during metal deposition, but also could be applied to better study film growth of other elements and even molecular adsorbates.

  15. Increased brain iron coincides with early plaque formation in a mouse model of Alzheimer’s disease

    OpenAIRE

    Leskovjan, Andreana C.; Kretlow, Ariane; Lanzirotti, Antonio; Barrea, Raul; Vogt, Stefan; Miller, Lisa M.

    2010-01-01

    Elevated brain iron content, which has been observed in late stage human Alzheimer’s disease, is a potential target for early diagnosis. However, the time course for iron accumulation is currently unclear. Using the PSAPP mouse model of amyloid plaque formation, we conducted a time course study of metal ion content and distribution [iron (Fe), copper (Cu), and zinc (Zn)] in the cortex and hippocampus using X-ray fluorescence microscopy (XFM). We found that iron in the cortex was 34% higher th...

  16. Exogenous Melatonin Improves Plant Iron Deficiency Tolerance via Increased Accumulation of Polyamine-Mediated Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Cheng Zhou

    2016-10-01

    Full Text Available Melatonin has recently been demonstrated to play important roles in the regulation of plant growth, development, and abiotic and biotic stress responses. However, the possible involvement of melatonin in Fe deficiency responses and the underlying mechanisms remained elusive in Arabidopsis thaliana. In this study, Fe deficiency quickly induced melatonin synthesis in Arabidopsis plants. Exogenous melatonin significantly increased the soluble Fe content of shoots and roots, and decreased the levels of root cell wall Fe bound to pectin and hemicellulose, thus alleviating Fe deficiency-induced chlorosis. Intriguingly, melatonin treatments induced a significant increase of nitric oxide (NO accumulation in roots of Fe-deficient plants, but not in those of polyamine-deficient (adc2-1 and d-arginine-treated plants. Moreover, the melatonin-alleviated leaf chlorosis was blocked in the polyamine- and NO-deficient (nia1nia2noa1 and c-PTIO-treated plants, and the melatonin-induced Fe remobilization was largely inhibited. In addition, the expression of some Fe acquisition-related genes, including FIT1, FRO2, and IRT1 were significantly up-regulated by melatonin treatments, whereas the enhanced expression of these genes was obviously suppressed in the polyamine- and NO-deficient plants. Collectively, our results provide evidence to support the view that melatonin can increase the tolerance of plants to Fe deficiency in a process dependent on the polyamine-induced NO production under Fe-deficient conditions.

  17. A higher proportion of Iron-Rich leafy vegatables in a typical burkinabe maize meal does not increase the amount of iron absorbed in young women

    NARCIS (Netherlands)

    Cercamondi, C.I.; Icard-Verniere, C.; Egli, I.; Vernay, M.; Hama, F.; Brouwer, I.D.

    2014-01-01

    Food-to-food fortification can be a promising approach to improve the low dietary iron intake and bioavailability from monotonous diets based on a small number of staple plant foods. In Burkina Faso, the common diet consists of a thick, cereal-based paste consumed with sauces composed of mainly gree

  18. A higher proportion of Iron-Rich leafy vegatables in a typical burkinabe maize meal does not increase the amount of iron absorbed in young women

    NARCIS (Netherlands)

    Cercamondi, C.I.; Icard-Verniere, C.; Egli, I.; Vernay, M.; Hama, F.; Brouwer, I.D.

    2014-01-01

    Food-to-food fortification can be a promising approach to improve the low dietary iron intake and bioavailability from monotonous diets based on a small number of staple plant foods. In Burkina Faso, the common diet consists of a thick, cereal-based paste consumed with sauces composed of mainly gree

  19. Texture Control of Aluminum, Iron, and Magnesium Alloy Sheets to Increase Their Plastic Strain Ratios

    Science.gov (United States)

    Lee, Dong Nyung; Han, Heung Nam

    2011-08-01

    It is known that the limiting drawing ratio of sheet metals is proportional to their plastic strain ratios, and the plastic strain ratios of fcc and bcc metal sheets increase with increasing //ND component in their textures. Conventional cold rolling and subsequent annealing of fcc metals cannot give rise to the //ND component. Specifically, the cold rolling texture of polycrystalline fcc metals is characterized by the fiber connecting the {112}, {123}, and {011} orientations in the Euler space, which is often called the β-fiber. The density of each component in the fiber depends on the stacking fault energy of metals. The {112} and {123} textured Al alloy sheets evolve the {001} texture, when recrystallized. The low plastic strain ratios of the Al alloy sheets are attributed to the {001} texture. The //ND texture can be obtained in shear deformed fcc sheets. Bcc steels develop the //ND texture when cold rolled and recrystallized. However, the density of //ND depends on the content of dissolved interstitial elements such as carbon and nitrogen. The density of the //ND component decreases with increasing concentration of the dissolved interstitial elements. For a given steel, the density of the //ND component can vary with varying thermomechanical treatment. Magnesium alloy sheets are subjected to sheet forming processes at temperatures of 200 °C or higher because of their basal plane texture, or the //ND orientation. Many studies have been made to alleviate the component so that the magnesium alloy sheets can have better formability. In this article, the above issues are briefly reviewed and discussed.

  20. Zinc, iron, manganese and copper uptake requirement in response to nitrogen supply and the increased grain yield of summer maize.

    Science.gov (United States)

    Xue, Yanfang; Yue, Shanchao; Zhang, Wei; Liu, Dunyi; Cui, Zhenling; Chen, Xinping; Ye, Youliang; Zou, Chunqin

    2014-01-01

    The relationships between grain yields and whole-plant accumulation of micronutrients such as zinc (Zn), iron (Fe), manganese (Mn) and copper (Cu) in maize (Zea mays L.) were investigated by studying their reciprocal internal efficiencies (RIEs, g of micronutrient requirement in plant dry matter per Mg of grain). Field experiments were conducted from 2008 to 2011 in North China to evaluate RIEs and shoot micronutrient accumulation dynamics during different growth stages under different yield and nitrogen (N) levels. Fe, Mn and Cu RIEs (average 64.4, 18.1 and 5.3 g, respectively) were less affected by the yield and N levels. ZnRIE increased by 15% with an increased N supply but decreased from 36.3 to 18.0 g with increasing yield. The effect of cultivars on ZnRIE was similar to that of yield ranges. The substantial decrease in ZnRIE may be attributed to an increased Zn harvest index (from 41% to 60%) and decreased Zn concentrations in straw (a 56% decrease) and grain (decreased from 16.9 to 12.2 mg kg-1) rather than greater shoot Zn accumulation. Shoot Fe, Mn and Cu accumulation at maturity tended to increase but the proportions of pre-silking shoot Fe, Cu and Zn accumulation consistently decreased (from 95% to 59%, 90% to 71% and 91% to 66%, respectively). The decrease indicated the high reproductive-stage demands for Fe, Zn and Cu with the increasing yields. Optimized N supply achieved the highest yield and tended to increase grain concentrations of micronutrients compared to no or lower N supply. Excessive N supply did not result in any increases in yield or micronutrient nutrition for shoot or grain. These results indicate that optimized N management may be an economical method of improving micronutrient concentrations in maize grain with higher grain yield.

  1. Zinc, iron, manganese and copper uptake requirement in response to nitrogen supply and the increased grain yield of summer maize.

    Directory of Open Access Journals (Sweden)

    Yanfang Xue

    Full Text Available The relationships between grain yields and whole-plant accumulation of micronutrients such as zinc (Zn, iron (Fe, manganese (Mn and copper (Cu in maize (Zea mays L. were investigated by studying their reciprocal internal efficiencies (RIEs, g of micronutrient requirement in plant dry matter per Mg of grain. Field experiments were conducted from 2008 to 2011 in North China to evaluate RIEs and shoot micronutrient accumulation dynamics during different growth stages under different yield and nitrogen (N levels. Fe, Mn and Cu RIEs (average 64.4, 18.1 and 5.3 g, respectively were less affected by the yield and N levels. ZnRIE increased by 15% with an increased N supply but decreased from 36.3 to 18.0 g with increasing yield. The effect of cultivars on ZnRIE was similar to that of yield ranges. The substantial decrease in ZnRIE may be attributed to an increased Zn harvest index (from 41% to 60% and decreased Zn concentrations in straw (a 56% decrease and grain (decreased from 16.9 to 12.2 mg kg-1 rather than greater shoot Zn accumulation. Shoot Fe, Mn and Cu accumulation at maturity tended to increase but the proportions of pre-silking shoot Fe, Cu and Zn accumulation consistently decreased (from 95% to 59%, 90% to 71% and 91% to 66%, respectively. The decrease indicated the high reproductive-stage demands for Fe, Zn and Cu with the increasing yields. Optimized N supply achieved the highest yield and tended to increase grain concentrations of micronutrients compared to no or lower N supply. Excessive N supply did not result in any increases in yield or micronutrient nutrition for shoot or grain. These results indicate that optimized N management may be an economical method of improving micronutrient concentrations in maize grain with higher grain yield.

  2. 铁炉渣施加对稻田氧化亚氮通量的影响%Effect of iron slag adding on nitrous oxide fluxes in paddy fields

    Institute of Scientific and Technical Information of China (English)

    林芳; 蓝妮; 王纯; 王维奇; 林德华

    2014-01-01

    In order to clarify the effect of iron slag amendment on paddy field nitrous oxide fluxes ,daily , seasonal and porewater nitrous oxide variation of control (CK) and after 2 Mg/hm2 (Fe I) ,4 Mg/hm2 (Fe II) , and 8 Mg/hm2 (Fe III) iron slag application are determined by static chamber-gas chromatogram .The results show that the daily variations of nitrous oxide fluxes are not significantly different in tiller period ,but are significantly difference in ripe period of CK ,Fe I ,Fe II and Fe III plots .Seasonal variation of nitrous oxide fluxes are -84 .77~358 .83 , -19 .11~ 225 .23 , -59 .09~171 .17 and -89 .27~ 146 .62 μg/(m2 · h) , respectively and the averaged values are 36 .09 ,28 .54 ,26 .97 and 12 .14 μg/(m2 · h) .The nitrous oxide concentration in 0~30 cm porewater are 0 .94 ,0 .79 ,0 .68 ,0 .67 nmol/L ,respectively .Its adding amount is decreasing w ith its increasing .%为了探讨铁炉渣施加对稻田氧化亚氮通量的影响,采用静态箱-气相色谱法对对照样地(C K )和施加2 Mg/hm2(Fe I)、4 Mg/hm2(Fe II)和8 Mg/hm2(Fe III)铁炉渣后稻田氧化亚氮通量的日变化、季节变化以及孔隙水中溶解性氧化亚氮含量进行了测定与分析。研究结果表明:观测期内,氧化亚氮通量日变化在分蘖期对照样地与铁炉渣施加样地差异不显著,成熟期对照样地与Fe III铁炉渣施加样地氧化亚氮通量差异显著( P<0.05);季节变化通量分别为-84.77~358.83、-19.11~225.23、-59.09~171.17、-89.27~146.62μg/(m2· h ),平均值分别为36.09、28.54、26.97、12.14μg/(m2· h ),铁炉渣的施加降低了稻田氧化亚氮排放通量;不同处理稻田0~30 cm孔隙水氧化亚氮浓度的平均值分别为0.94、0.79、0.68、0.67 nmol/L ,表现为随着铁炉渣施加量的增加而减小。

  3. Iron load

    Directory of Open Access Journals (Sweden)

    Filippo Cassarà

    2013-03-01

    Full Text Available Recent research addressed the main role of hepcidin in the regulation of iron metabolism. However, while this mechanism could be relevant in causing iron load in Thalassemia Intermedia and Sickle-Cell Anemia, its role in Thalassemia Major (TM is marginal. This is mainly due to the high impact of transfusional requirement into the severe increase of body iron. Moreover, the damage of iron load may be worsened by infections, as HCV hepatitis, or liver and endocrinological damage. One of the most relevant associations was found between splenectomy and increase of risk for mortality due,probably, to more severe iron load. These issues suggest as morbidity and mortality of this group of patients they do not depend only by our ability in controlling heart damage but even in preventing or treating particular infections and complications. This finding is supported by the impairment of survival curves in patients with complications different from heart damage. However, because, during recent years different direct and indirect methods to detect iron overload in patients affected by secondary hemochromatosis have been implemented, our ability to maintain under control iron load is significantly improved. Anyway, the future in iron load management remains to be able to have an iron load map of our body for targeting chelation and other medical treatment according to the single organ damage.

  4. Mechanisms of increased Trichodesmium fitness under iron and phosphorus co-limitation in the present and future ocean

    Science.gov (United States)

    Walworth, Nathan G.; Fu, Fei-Xue; Webb, Eric A.; Saito, Mak A.; Moran, Dawn; Mcllvin, Matthew R.; Lee, Michael D.; Hutchins, David A.

    2016-01-01

    Nitrogen fixation by cyanobacteria supplies critical bioavailable nitrogen to marine ecosystems worldwide; however, field and lab data have demonstrated it to be limited by iron, phosphorus and/or CO2. To address unknown future interactions among these factors, we grew the nitrogen-fixing cyanobacterium Trichodesmium for 1 year under Fe/P co-limitation following 7 years of both low and high CO2 selection. Fe/P co-limited cell lines demonstrated a complex cellular response including increased growth rates, broad proteome restructuring and cell size reductions relative to steady-state growth limited by either Fe or P alone. Fe/P co-limitation increased abundance of a protein containing a conserved domain previously implicated in cell size regulation, suggesting a similar role in Trichodesmium. Increased CO2 further induced nutrient-limited proteome shifts in widespread core metabolisms. Our results thus suggest that N2-fixing microbes may be significantly impacted by interactions between elevated CO2 and nutrient limitation, with broad implications for global biogeochemical cycles in the future ocean. PMID:27346420

  5. INCREASING OF ECOLOGICAL SAFETY OF THE PROCESSES OF SILUMINS REFINING DUE TO APPLICATION OF LOW-TOXIC FLUX METALS AND PREPARATIONS

    Directory of Open Access Journals (Sweden)

    G. A. Rumjantseva

    2010-01-01

    Full Text Available It is shown that the received complex of mechanical and technological characteristics of alloy AK9 after processing of melt with investigated fluxes and preparations can be recommer ded for use in plant conditions that will enable the increase of ecological safety of color-founding production.

  6. Decoupling of Iron and Phosphate in the Global Ocean

    Science.gov (United States)

    Parekh, Payal

    2003-01-01

    Iron is an essential micronutrient for marine phytoplankton, limiting their growth in high nutrient, low chlorophyll regions of the ocean. I use a hierarchy of ocean circulation and biogeochemistry models to understand controls on global iron distribution. I formulate a mechanistic model of iron cycling which includes scavenging onto sinking particles and complexation with an organic ligand. The iron cycle is coupled to a phosphorus cycling model. Iron's aeolian source is prescribed. In the context of a highly idealized multi-box model scheme, the model can be brought into consistency with the relatively sparse ocean observations of iron in the oceans. This biogeochemical scheme is also implemented in a coarse resolution ocean general circulation model. This model also successfully reproduces the broad regional patterns of iron and phosphorus. In particular, the high macronutrient concentrations of the Southern Ocean result from iron limitation in the model. Due to the potential ability of iron to change the efficiency of the carbon pump in the remote Southern Ocean, I study Southern Ocean surface phosphate response to increased aeolian dust flux. My box model and GCM results suggest that a global ten fold increase in dust flux can support a phosphate drawdown of 0.25-0.5 micromolar.

  7. Medicago truncatula increases its iron-uptake mechanisms in response to volatile organic compounds produced by Sinorhizobium meliloti.

    Science.gov (United States)

    Orozco-Mosqueda, Maria del Carmen; Macías-Rodríguez, Lourdes I; Santoyo, Gustavo; Farías-Rodríguez, Rodolfo; Valencia-Cantero, Eduardo

    2013-11-01

    Medicago truncatula represents a model plant species for understanding legume-bacteria interactions. M. truncatula roots form a specific root-nodule symbiosis with the nitrogen-fixing bacterium Sinorhizobium meliloti. Symbiotic nitrogen fixation generates high iron (Fe) demands for bacterial nitrogenase holoenzyme and plant leghemoglobin proteins. Leguminous plants acquire Fe via "Strategy I," which includes mechanisms such as rhizosphere acidification and enhanced ferric reductase activity. In the present work, we analyzed the effect of S. meliloti volatile organic compounds (VOCs) on the Fe-uptake mechanisms of M. truncatula seedlings under Fe-deficient and Fe-rich conditions. Axenic cultures showed that both plant and bacterium modified VOC synthesis in the presence of the respective symbiotic partner. Importantly, in both Fe-rich and -deficient experiments, bacterial VOCs increased the generation of plant biomass, rhizosphere acidification, ferric reductase activity, and chlorophyll content in plants. On the basis of our results, we propose that M. truncatula perceives its symbiont through VOC emissions, and in response, increases Fe-uptake mechanisms to facilitate symbiosis.

  8. Increasing Iron and Zinc in Pre-Menopausal Women and Its Effects on Mood and Cognition: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Karla A. Lomagno

    2014-11-01

    Full Text Available Iron and zinc are essential minerals often present in similar food sources. In addition to the adverse effects of frank iron and zinc-deficient states, iron insufficiency has been associated with impairments in mood and cognition. This paper reviews current literature on iron or zinc supplementation and its impact on mood or cognition in pre-menopausal women. Searches included MEDLINE complete, Excerpta Medica Database (EMBASE, psychINFO, psychARTICLES, pubMED, ProQuest Health and Medical Complete Academic Search complete, Scopus and ScienceDirect. Ten randomized controlled trials and one non-randomized controlled trial were found to meet the inclusion criteria. Seven studies found improvements in aspects of mood and cognition after iron supplementation. Iron supplementation appeared to improve memory and intellectual ability in participants aged between 12 and 55 years in seven studies, regardless of whether the participant was initially iron insufficient or iron-deficient with anaemia. The review also found three controlled studies providing evidence to suggest a role for zinc supplementation as a treatment for depressive symptoms, as both an adjunct to traditional antidepressant therapy for individuals with a diagnosis of major depressive disorder and as a therapy in its own right in pre-menopausal women with zinc deficiency. Overall, the current literature indicates a positive effect of improving zinc status on enhanced cognitive and emotional functioning. However, further study involving well-designed randomized controlled trials is needed to identify the impact of improving iron and zinc status on mood and cognition.

  9. Increased expression and purification of soluble iron-regulatory protein 1 from Escherichia coli co-expressing chaperonins GroES and GroEL

    Directory of Open Access Journals (Sweden)

    H. Carvalho

    2008-04-01

    Full Text Available Iron is an essential metal for all living organisms. However, iron homeostasis needs to be tightly controlled since iron can mediate the production of reactive oxygen species, which can damage cell components and compromise the integrity and/or cause DNA mutations, ultimately leading to cancer. In eukaryotes, iron-regulatory protein 1 (IRP1 plays a central role in the control of intracellular iron homeostasis. This occurs by interaction of IRP1 with iron-responsive element regions at 5' of ferritin mRNA and 3' of transferrin mRNA which, respectively, represses translation and increases mRNA stability. We have expressed IRP1 using the plasmid pT7-His-hIRP1, which codifies for human IRP1 attached to an NH2-terminal 6-His tag. IRP1 was expressed in Escherichia coli using the strategy of co-expressing chaperonins GroES and GroEL, in order to circumvent inclusion body formation and increase the yield of soluble protein. The protein co-expressed with these chaperonins was obtained mostly in the soluble form, which greatly increased the efficiency of protein purification. Metal affinity and FPLC ion exchange chromatography were used in order to obtain highly purified IRP1. Purified protein was biologically active, as assessed by electrophoretic mobility shift assay, and could be converted to the cytoplasmic aconitase form. These results corroborate previous studies, which suggest the use of folding catalysts as a powerful strategy to increase protein solubility when expressing heterologous proteins in E. coli.

  10. Increased serum hepcidin and alterations in blood iron parameters associated with asymptomatic P. falciparum and P. vivax malaria.

    NARCIS (Netherlands)

    Mast, Q. de; Syafruddin, D.; Keijmel, S.; Riekerink, T.O.; Deky, O.; Asih, P.B.; Swinkels, D.W.; Ven, A.J.A.M. van der

    2010-01-01

    BACKGROUND: Asymptomatic Plasmodium spp. infections and anemia are highly prevalent conditions in tropical regions. We studied whether asymptomatic parasitemia induces hepcidin- and/or cytokine-mediated iron maldistribution and anemia. DESIGN AND METHODS: A group of 1197 Indonesian schoolchildren,

  11. Inequivalent contribution of the five tryptophan residues in the C-lobe of human serum transferrin to the fluorescence increase when iron is released.

    Science.gov (United States)

    James, Nicholas G; Byrne, Shaina L; Steere, Ashley N; Smith, Valerie C; MacGillivray, Ross T A; Mason, Anne B

    2009-04-07

    Human serum transferrin (hTF), with two Fe3+ binding lobes, transports iron into cells. Diferric hTF preferentially binds to a specific receptor (TFR) on the surface of cells, and the complex undergoes clathrin dependent receptor-mediated endocytosis. The clathrin-coated vesicle fuses with an endosome where the pH is lowered, facilitating iron release from hTF. On a biologically relevant time scale (2-3 min), the factors critical to iron release include pH, anions, a chelator, and the interaction of hTF with the TFR. Previous work, in which the increase in the intrinsic fluorescence signal was used to monitor iron release from the hTF/TFR complex, established that the TFR significantly enhances the rate of iron release from the C-lobe of hTF. In the current study, the role of the five C-lobe Trp residues in reporting the fluorescence change has been evaluated (+/-sTFR). Only four of the five recombinant Trp --> Phe mutants produced well. A single slow rate constant for iron release is found for the monoferric C-lobe (FeC hTF) and the four Trp mutants in the FeC hTF background. The three Trp residues equivalent to those in the N-lobe differed from the N-lobe and each other in their contributions to the fluorescent signal. Two rate constants are observed for the FeC hTF control and the four Trp mutants in complex with the TFR: k(obsC1) reports conformational changes in the C-lobe initiated by the TFR, and k(obsC2) is ascribed to iron release. Excitation at 295 nm (Trp only) and at 280 nm (Trp and Tyr) reveals interesting and significant differences in the rate constants for the complex.

  12. Copper increases reductive dehalogenation of haloacetamides by zero-valent iron in drinking water: Reduction efficiency and integrated toxicity risk.

    Science.gov (United States)

    Chu, Wenhai; Li, Xin; Bond, Tom; Gao, Naiyun; Bin, Xu; Wang, Qiongfang; Ding, Shunke

    2016-12-15

    The haloacetamides (HAcAms), an emerging class of nitrogen-containing disinfection byproducts (N-DBPs), are highly cytotoxic and genotoxic, and typically occur in treated drinking waters at low μg/L concentrations. Since many drinking distribution and storage systems contain unlined cast iron and copper pipes, reactions of HAcAms with zero-valent iron (ZVI) and metallic copper (Cu) may play a role in determining their fate. Moreover, ZVI and/or Cu are potentially effective HAcAm treatment technologies in drinking water supply and storage systems. This study reports that ZVI alone reduces trichloroacetamide (TCAcAm) to sequentially form dichloroacetamide (DCAcAm) and then monochloroacetamide (MCAcAm), whereas Cu alone does not impact HAcAm concentrations. The addition of Cu to ZVI significantly improved the removal of HAcAms, relative to ZVI alone. TCAcAm and their reduction products (DCAcAm and MCAcAm) were all decreased to below detection limits at a molar ratio of ZVI/Cu of 1:1 after 24 h reaction (ZVI/TCAcAm = 0.18 M/5.30 μM). TCAcAm reduction increased with the decreasing pH from 8.0 to 5.0, but values from an integrated toxic risk assessment were minimised at pH 7.0, due to limited removal MCAcAm under weak acid conditions (pH = 5.0 and 6.0). Higher temperatures (40 °C) promoted the reductive dehalogenation of HAcAms. Bromine was preferentially removed over chlorine, thus brominated HAcAms were more easily reduced than chlorinated HAcAms by ZVI/Cu. Although tribromoacetamide was more easily reduced than TCAcAm during ZVI/Cu reduction, treatment of tribromoacetamide resulted in a higher integrated toxicity risk than TCAcAm, due to the formation of monobromoacetamide (MBAcAm). Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Mechanical disruption of tumors by iron particles and magnetic field application results in increased anti-tumor immune responses.

    Directory of Open Access Journals (Sweden)

    Myriam N Bouchlaka

    Full Text Available The primary tumor represents a potential source of antigens for priming immune responses for disseminated disease. Current means of debulking tumors involves the use of cytoreductive conditioning that impairs immune cells or removal by surgery. We hypothesized that activation of the immune system could occur through the localized release of tumor antigens and induction of tumor death due to physical disruption of tumor architecture and destruction of the primary tumor in situ. This was accomplished by intratumor injection of magneto-rheological fluid (MRF consisting of iron microparticles, in Balb/c mice bearing orthotopic 4T1 breast cancer, followed by local application of a magnetic field resulting in immediate coalescence of the particles, tumor cell death, slower growth of primary tumors as well as decreased tumor progression in distant sites and metastatic spread. This treatment was associated with increased activation of DCs in the draining lymph nodes and recruitment of both DCs and CD8(+T cells to the tumor. The particles remained within the tumor and no toxicities were observed. The immune induction observed was significantly greater compared to cryoablation. Further anti-tumor effects were observed when MRF/magnet therapy was combined with systemic low dose immunotherapy. Thus, mechanical disruption of the primary tumor with MRF/magnetic field application represents a novel means to induce systemic immune activation in cancer.

  14. The possibility to increase the rated output as a result of index tests performed in Iron Gates II- Romania

    Energy Technology Data Exchange (ETDEWEB)

    Novac, D; Pantelimon, D [Hidroelectrica - SH Portile de Fier, Str. I.G. Bibicescu Nr.2, Drobeta Turnu Severin, RO - 220103 (Romania); Popescu, E, E-mail: dragos.novac@hidroelectrica.r [Hidroelectrica Bucuresti, Str. C-tin Nacu Nr.3, Bucuresti, RO - 020995 (Romania)

    2010-08-15

    The Index Tests have been used for many years to obtain the optimized cam correlation between wicket gates and runner blades for double regulated turbines (Kaplan, bulb). The cam is based on homologous model tests and is verified by site measurements, as model tests generally do not reproduce the exact intake configuration. Index Tests have also a considerable importance for checking of the relative efficiency curve of all type of turbines and can demonstrate if the prototype efficiency curve at plant condition has the shape expected from the test of the homologues model. During the Index Tests measurements the influence of all losses at multiple points of turbine operation can be proved. This publication deals with an overview on the Index Tests made after modernization of large bulb units in Iron Gates II - Romania. These field tests, together with the comparative, fully homologous tests for the new hydraulic shape of the runner blades have confirmed the smooth operational behavior and the guaranteed performance. Over the whole 'guaranteed operating range' for H = 8m, the characteristic of the Kaplan curve (enveloping curve to the propeller curves), agreed very well to the predicted efficiency curve from the hydraulic prototype hill chart. The new cam correlation have been determined for different head and realised in the governor, normally based on model tests. The guaranteed, maximum turbine output for H = 7,8m is specified with 32, 5 MW. The maximum measured turbine output during the Index Tests on cam operation was 35,704 MW at the net head of 7,836 m. This corresponds to 35,458 MW for the specified head H= 7, 8 m. All these important improvements ensure a significant increase of annual energy production without any change of the civil construction and without increasing the runner diameter. Also the possibility to increase the turbine rated output is evident.

  15. Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems

    KAUST Repository

    Bucs, Szilard

    2014-12-01

    The influence of organic nutrient load on biomass accumulation (biofouling) and pressure drop development in membrane filtration systems was investigated. Nutrient load is the product of nutrient concentration and linear flow velocity. Biofouling - excessive growth of microbial biomass in membrane systems - hampers membrane performance. The influence of biodegradable organic nutrient load on biofouling was investigated at varying (i) crossflow velocity, (ii) nutrient concentration, (iii) shear, and (iv) feed spacer thickness. Experimental studies were performed with membrane fouling simulators (MFSs) containing a reverse osmosis (RO) membrane and a 31 mil thick feed spacer, commonly applied in practice in RO and nanofiltration (NF) spiral-wound membrane modules. Numerical modeling studies were done with identical feed spacer geometry differing in thickness (28, 31 and 34 mil). Additionally, experiments were done applying a forward osmosis (FO) membrane with varying spacer thickness (28, 31 and 34 mil), addressing the permeate flux decline and biofilm development. Assessed were the development of feed channel pressure drop (MFS studies), permeate flux (FO studies) and accumulated biomass amount measured by adenosine triphosphate (ATP) and total organic carbon (TOC).Our studies showed that the organic nutrient load determined the accumulated amount of biomass. The same amount of accumulated biomass was found at constant nutrient load irrespective of linear flow velocity, shear, and/or feed spacer thickness. The impact of the same amount of accumulated biomass on feed channel pressure drop and permeate flux was influenced by membrane process design and operational conditions. Reducing the nutrient load by pretreatment slowed-down the biofilm formation. The impact of accumulated biomass on membrane performance was reduced by applying a lower crossflow velocity and/or a thicker and/or a modified geometry feed spacer. The results indicate that cleanings can be delayed

  16. Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems.

    Science.gov (United States)

    Bucs, Sz S; Valladares Linares, R; van Loosdrecht, M C M; Kruithof, J C; Vrouwenvelder, J S

    2014-12-15

    The influence of organic nutrient load on biomass accumulation (biofouling) and pressure drop development in membrane filtration systems was investigated. Nutrient load is the product of nutrient concentration and linear flow velocity. Biofouling - excessive growth of microbial biomass in membrane systems - hampers membrane performance. The influence of biodegradable organic nutrient load on biofouling was investigated at varying (i) crossflow velocity, (ii) nutrient concentration, (iii) shear, and (iv) feed spacer thickness. Experimental studies were performed with membrane fouling simulators (MFSs) containing a reverse osmosis (RO) membrane and a 31 mil thick feed spacer, commonly applied in practice in RO and nanofiltration (NF) spiral-wound membrane modules. Numerical modeling studies were done with identical feed spacer geometry differing in thickness (28, 31 and 34 mil). Additionally, experiments were done applying a forward osmosis (FO) membrane with varying spacer thickness (28, 31 and 34 mil), addressing the permeate flux decline and biofilm development. Assessed were the development of feed channel pressure drop (MFS studies), permeate flux (FO studies) and accumulated biomass amount measured by adenosine triphosphate (ATP) and total organic carbon (TOC). Our studies showed that the organic nutrient load determined the accumulated amount of biomass. The same amount of accumulated biomass was found at constant nutrient load irrespective of linear flow velocity, shear, and/or feed spacer thickness. The impact of the same amount of accumulated biomass on feed channel pressure drop and permeate flux was influenced by membrane process design and operational conditions. Reducing the nutrient load by pretreatment slowed-down the biofilm formation. The impact of accumulated biomass on membrane performance was reduced by applying a lower crossflow velocity and/or a thicker and/or a modified geometry feed spacer. The results indicate that cleanings can be delayed

  17. Human body temperature (37degrees C) increases the expression of iron, carbohydrate, and amino acid utilization genes in Escherichia coli K-12.

    Science.gov (United States)

    White-Ziegler, Christine A; Malhowski, Amy J; Young, Sarah

    2007-08-01

    Using DNA microarrays, we identified 126 genes in Escherichia coli K-12 whose expression is increased at human body temperature (37 degrees C) compared to growth at 23 degrees C. Genes involved in the uptake and utilization of amino acids, carbohydrates, and iron dominated the list, supporting a model in which temperature serves as a host cue to increase expression of bacterial genes needed for growth. Using quantitative real-time PCR, we investigated the thermoregulatory response for representative genes in each of these three categories (hisJ, cysP, srlE, garP, fes, and cirA), along with the fimbrial gene papB. Increased expression at 37 degrees C compared to 23 degrees C was retained in both exponential and stationary phases for all of the genes and in most of the various media tested, supporting the relative importance of this cue in adapting to changing environments. Because iron acquisition is important for both growth and virulence, we analyzed the regulation of the iron utilization genes cirA and fes and found that growth in iron-depleted medium abrogated the thermoregulatory effect, with high-level expression at both temperatures, contrasting with papB thermoregulation, which was not greatly altered by limiting iron levels. A positive role for the environmental regulator H-NS was found for fes, cirA, hisJ, and srlE transcription, whereas it had a primarily negative effect on cysP and garP expression. Together, these studies indicate that temperature is a broadly used cue for regulating gene expression in E. coli and that H-NS regulates iron, carbohydrate, and amino acid utilization gene expression.

  18. Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic.

    Science.gov (United States)

    Wang, Ning; Xue, Xi-Mei; Juhasz, Albert L; Chang, Zhi-Zhou; Li, Hong-Bo

    2017-01-01

    Previous studies have shown that biochar enhances microbial reduction of iron (Fe) oxyhydroxide under anaerobic incubation. However, there is a lack of data on its influence on arsenic (As) release from As-contaminated paddy soils. In this study, paddy soil slurries (120 mg As kg(-1)) were incubated under anaerobic conditions for 60 days with and without the addition of biochar (3%, w/w) prepared from rice straw at 500 °C. Arsenic release, Fe reduction, and As fractionation were determined at 1, 10, 20, 30, and 60 d, while Illumina sequencing and real-time PCR were used to characterize changes in soil microbial community structure and As transformation function genes. During the first month of incubation, As released into soil solution increased sharply from 27.9 and 55.9 to 486 and 630 μg kg(-1) in unamended and biochar amended slurries, with inorganic trivalent As (As(III)) being the dominant specie (52.7-91.0% of total As). Compared to unamended slurries, biochar addition increased As and ferrous ion (Fe(2+)) concentrations in soil solution but decreased soil As concentration in the amorphous Fe/Al oxide fraction (F3). Difference in released As between biochar and unamended treatments (ΔAs) increased with incubation time, showing strong linear relationships (R(2) = 0.23-0.33) with ΔFe(2+) and ΔF3, confirming increased As release due to enhanced Fe reduction. Biochar addition increased the abundance of Fe reducing bacteria such as Clostridum (27.3% vs. 22.7%), Bacillus (3.34% vs. 2.39%), and Caloramator (4.46% vs. 3.88%). In addition, copy numbers in biochar amended slurries of respiratory As reducing (arrA) and detoxifying reducing genes (arsC) increased 19.0 and 1.70 fold, suggesting microbial reduction of pentavalent As (As(V)) adsorbed on Fe oxides to As(III), further contributing to increased As release.

  19. Increasing energy flux to decrease the biological drive toward weight regain after weight loss - A proof-of-concept pilot study.

    Science.gov (United States)

    Paris, Hunter L; Foright, Rebecca M; Werth, Kelsey A; Larson, Lauren C; Beals, Joseph W; Cox-York, Kimberly; Bell, Christopher; Melby, Christopher L

    2016-02-01

    Weight loss induces compensatory biological adjustments that increase hunger and decrease resting metabolic rate (RMR), which increase propensity for weight regain. In non-obese adults high levels of physical activity coupled with high energy intake (high energy flux) are associated with higher RMR and reduced hunger. We tested the possibility that a high flux state attenuates the increase in hunger and the decrease in RMR characteristic of diet-induced weight loss. Six obese adults [age (mean ± SE) = 42 ± 12 y; body mass index (BMI) = 35.7 ± 3.7 kg/m(2)] underwent measures of RMR, the thermic effect of a meal (TEM), and fasting and postprandial measures of hunger and fullness as well as plasma glucose and insulin. Following weight loss, subjects completed two 5-day conditions of energy balance in random order-Low Flux (LF): sedentary with energy intake (EI) = RMR (kcal/d) × 1.35; and High Flux (HF): net exercise energy cost of ∼500 kcal/d and EI = RMR (kcal/d) × 1.7. RMR was measured daily for each flux condition. The morning following each of the respective experimentally controlled HF and LF conditions (flux day 5), they underwent the same pre-weight loss tests and also reported their perceptions of hunger and fullness during the previous four days of HF and LF, respectively. Average daily RMR was higher during HF (1926 ± 138 kcal/day) compared to LF (1847 ± 126 kcal/day; P weight loss, compared to a sedentary LF state of energy balance, a short-term HF energy balance state is associated with higher RMR, lower perceived hunger, and greater perceived fullness, all of which could help attenuate the biologic drive to regain weight. Given the pilot nature of this study and the relatively short period of time spent in the high and low flux states, future research is needed to address this research question in a larger sample over a longer time period. Copyright © 2015 European Society for Clinical Nutrition and Metabolism

  20. Nonheme-iron absorption from a phytate-rich meal is increased by the addition of small amounts of pork meat

    DEFF Research Database (Denmark)

    Boech, S.B.; Hansen, M.; Bukhave, Klaus

    2003-01-01

    roll) and (B) the basic meal with either 25, 50, or 75 g pork (longissimus muscle). Meal A contained 2.3 mg nonheme iron, 7.4 mg vitamin C, and 220 mg (358 mumol) phytate. Each meal was served twice, and the order of the meals was ABBA or BAAB. The meals were extrinsically labeled with Fe-55 or Fe-59...... (greater than or equal to 50 g) significantly increase nonheme-iron absorption from a phytate-rich meal low in vitamin C....

  1. The glycolytic shift in fumarate-hydratase-deficient kidney cancer lowers AMPK levels, increases anabolic propensities and lowers cellular iron levels

    KAUST Repository

    Tong, Winghang

    2011-09-01

    Inactivation of the TCA cycle enzyme, fumarate hydratase (FH), drives a metabolic shift to aerobic glycolysis in FH-deficient kidney tumors and cell lines from patients with hereditary leiomyomatosis renal cell cancer (HLRCC), resulting in decreased levels of AMP-activated kinase (AMPK) and p53 tumor suppressor, and activation of the anabolic factors, acetyl-CoA carboxylase and ribosomal protein S6. Reduced AMPK levels lead to diminished expression of the DMT1 iron transporter, and the resulting cytosolic iron deficiency activates the iron regulatory proteins, IRP1 and IRP2, and increases expression of the hypoxia inducible factor HIF-1α, but not HIF-2α. Silencing of HIF-1α or activation of AMPK diminishes invasive activities, indicating that alterations of HIF-1α and AMPK contribute to the oncogenic growth of FH-deficient cells. © 2011 Elsevier Inc.

  2. Increased reliability of mean travel time predictions of river-groundwater exchange fluxes using optimal design techniques

    Science.gov (United States)

    Wöhling, Thomas; Gosses, Moritz; Osenbrück, Karsten

    2014-05-01

    In this study, we follow up on previous work at the Steinlach test site (Osenbrück et al, 2013) near Tübingen, Germany, to investigate hyporheic exchange fluxes in a shallow riparian aquifer. A steady-state MODFLOW model has been developed for the site and calibrated using an existing network of 14 observation wells. Due to a relatively steep hydraulic gradient (0.012 m/m) between the upstream and downstream flow stages of the river bend, water infiltrates from the river into the shallow aquifer along the upstream section of the river and is forced to re-enter the river at the downstream end. The passage through the aquifer potentially allows for mitigation and transformation of river water-bound pollutants. One important factor to estimate attenuation potentials are travel (and exposure) times through (parts of) the aquifer. In our approach we used forward particle tracking (MODPATH) and a flux-weighting scheme to estimate travel time distributions for the river-groundwater exchange fluxes in the study domain. Travel times vary significantly within the domain, however, estimates of mean travel times derived from deconvolution of EC and δ18O-H2O data at selected wells exhibit a consistent pattern with modelled travel times. The flux-weighted mean travel time of all river water that passed the riparian aquifer was calculated to 26.1 days. The uncertainty of the flux-weighted mean travel time was calculated using the prediction error variance approach by Moore and Doherty (2005) which resulted in a post-calibration uncertainty of ±93.5 d (1σ), i.e. about 350% of the actual prediction. We further analysed the worth of potential new observations to reduce the large uncertainty of this model prediction. In our optimization framework, we extend the method by Moore and Doherty (2005) to simultaneously optimize multiple observations using a modified Genetic Algorithm (GA) that can also sample from past states for higher efficiency. The observations considered are

  3. Experimental Study on Iron Increase and Silicon Reduction of Some Hematite%某地赤铁矿提铁降硅选矿试验研究

    Institute of Scientific and Technical Information of China (English)

    赵荣艳; 范娜

    2012-01-01

    针对某地赤铁矿硅含量高的特点,进行了提铁降硅试验研究.采用抑铁浮脉石的单一反浮选工艺流程,使用调整剂氢氧化钠、铁抑制剂淀粉、脉石活化剂HJ、脉石捕收剂TZ33#组合药剂,获得的闭路试验指标为:铁精矿TFe品位65.67%,铁精矿中SiO2含量5.45%,铁回收率88.67%.对铁精矿浓缩脱泥可使铁精矿TFe品位提高2%左右、SiO2含量降低1%左右.%Systematic study on iron increase and silicon reduction was conducted for a hematite with a high silicon. A single reverse flotation process was adoped to depress iron minerals while float gangue,with sodium hydroxide as regulator,starch as iron depressant,HJ as gangue activator and TZ33 as gangue collector. An iron concentrate with a TFe grade of 65. 67% ,an iron recovery of 88. 67% and a silicon content of 5. 45% was obtained. As for the iron concentrate,the TFe grade can be increased by 2% and the SiO2 content can be reduced by 1% with a further thickening and desliming.

  4. Liver iron transport

    Institute of Scientific and Technical Information of China (English)

    Ross M Graham; Anita CG Chua; Carly E Herbison; John K Olynyk; Debbie Trinder

    2007-01-01

    The liver plays a central role in iron metabolism. It is the major storage site for iron and also expresses a complex range of molecules which are involved in iron transport and regulation of iron homeostasis. An increasing number of genes associated with hepatic iron transport or regulation have been identified. These include transferrin receptors (TFR1 and 2), a ferrireductase (STEAP3), the transporters divalent metal transporter-1 (DMT1) and ferroportin (FPN) as well as the haemochromatosis protein, HFE and haemojuvelin (HJV),which are signalling molecules. Many of these genes also participate in iron regulatory pathways which focus on the hepatic peptide hepcidin. However, we are still only beginning to understand the complex interactions between liver iron transport and iron homeostasis. This review outlines our current knowledge of molecules of iron metabolism and their roles in iron transport and regulation of iron homeostasis.

  5. Zinc-iron, but not zinc-alone supplementation, increased linear growth of stunted infants with low haemoglobin.

    Science.gov (United States)

    Fahmida, Umi; Rumawas, Johanna S P; Utomo, Budi; Patmonodewo, Soemiarti; Schultink, Werner

    2007-01-01

    Zinc supplementation has been shown to benefit linear growth. However the effect may depend on whether zinc is the most limiting nutrient. This study aims to investigate the effect of supplementation with zinc-given alone or with iron and vitamin-A in improving infantsf micronutrient status and linear growth. The study was a double-blind-community-intervention study involving 800 infants aged 3-6 months in rural East Lombok, West Nusa Tenggara. Syrup consisting of zinc-alone, Zn (10 mg/d), zinc+iron, Zn+Fe (10 mg/d of each), zinc+iron+vitamin-A, Zn+Fe+vit.A (10 mg/d of each zinc and iron plus 1,000 IU vitamin-A), or placebo were given daily for six months. Outcomes measured were length, weight, and micronutrient status (haemoglobin, se-rum zinc, ferritin and retinol). Zn+Fe and Zn+Fe+vit.A supplementations benefit zinc and iron status of the sub-jects, while Zn-alone supplementation disadvantaged haemoglobin and iron status. The highest increment in vi-tamin A and haemoglobin status was shown in Zn+Fe+vit.A group. An effect on linear growth was observed among initially-stunted subjects in Zn+Fe and Zn+Fe+vit.A groups who grew 1.1-1.5 cm longer than placebo. On the other hand, in the Zn-alone group, mean height-for-age Z-score decreased to a greater extent than placebo. The between-group difference in HAZ among initially-stunted subjects was significant after four months sup-plementation. While the difference was not significant in follow-up after 6 months, the pattern remained the same where means height-for-age Z-score in Zn+Fe+vit.A and Zn+Fe groups were higher than placebo and Zn-alone groups. Given the low haemoglobin/iron status of the subjects, zinc supplementation would have positive effect on growth if the low haemoglobin/iron status is also addressed and corrected.

  6. Can land use intensification in the Mallee, Australia increase the supply of soluble iron to the Southern Ocean?

    Science.gov (United States)

    Bhattachan, Abinash; D'Odorico, Paolo

    2014-08-01

    The supply of soluble iron through atmospheric dust deposition limits the productivity of the Southern Ocean. In comparison to the Northern Hemisphere, the Southern Hemisphere exhibits low levels of dust activity. However, given their proximity to the Southern Ocean, dust emissions from continental sources in the Southern Hemisphere could have disproportionate impact on ocean productivity. Australia is the largest source of dust in the Southern Hemisphere and aeolian transport of dust has major ecological, economic and health implications. In the Mallee, agriculture is a major driver of dust emissions and dust storms that affect Southeastern Australia. In this study, we assess the dust generating potential of the sediment from the Mallee, analyze the sediment for soluble iron content and determine the likely depositional region of the emitted dust. Our results suggest that the Mallee sediments have comparable dust generating potential to other currently active dust sources in the Southern Hemisphere and the dust-sized fraction is rich in soluble iron. Forward trajectory analyses show that this dust will impact the Tasman Sea and the Australian section of the Southern Ocean. This iron-rich dust could stimulate ocean productivity in future as more areas are reactivated as a result of land-use and droughts.

  7. Melatonin Increases the Chilling Tolerance of Chloroplast in Cucumber Seedlings by Regulating Photosynthetic Electron Flux and the Ascorbate-Glutathione Cycle

    Science.gov (United States)

    Zhao, Hailiang; Ye, Lin; Wang, Yuping; Zhou, Xiaoting; Yang, Junwei; Wang, Jiawei; Cao, Kai; Zou, Zhirong

    2016-01-01

    The aim of the study was to monitor the effects of exogenous melatonin on cucumber (Cucumis sativus L.) chloroplasts and explore the mechanisms through which it mitigates chilling stress. Under chilling stress, chloroplast structure was seriously damaged as a result of over-accumulation of reactive oxygen species (ROS), as evidenced by the high levels of superoxide anion (O2−) and hydrogen peroxide (H2O2). However, pretreatment with 200 μM melatonin effectively mitigated this by suppressing the levels of ROS in chloroplasts. On the one hand, melatonin enhanced the scavenging ability of ROS by stimulating the ascorbate–glutathione (AsA–GSH) cycle in chloroplasts. The application of melatonin led to high levels of AsA and GSH, and increased the activity of total superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), monodehydroascorbate reductase (MDHAR, EC 1.6.5.4) dehydroascorbate reductase (DHAR, EC 1.5.5.1), glutathione reductase (GR, EC1.6.4.2) in the AsA–GSH cycle. On the other hand, melatonin lessened the production of ROS in chloroplasts by balancing the distribution of photosynthetic electron flux. Melatonin helped maintain a high level of electron flux in the PCR cycle [Je(PCR)] and in the PCO cycle [Je(PCO)], and suppressed the O2-dependent alternative electron flux Ja(O2-dependent) which is one important ROS source. Results indicate that melatonin increased the chilling tolerance of chloroplast in cucumber seedlings by accelerating the AsA–GSH cycle to enhance ROS scavenging ability and by balancing the distribution of photosynthetic electron flux so as to suppress ROS production. PMID:27999581

  8. Iron nanoparticles increase 7-ketocholesterol-induced cell death, inflammation, and oxidation on murine cardiac HL1-NB cells

    Directory of Open Access Journals (Sweden)

    Edmond Kahn

    2010-03-01

    Full Text Available Edmond Kahn1, Mauhamad Baarine2, Sophie Pelloux3, Jean-Marc Riedinger4, Frédérique Frouin1, Yves Tourneur3, Gérard Lizard21INSE RM U678/UMR – S UPMC, IFR 14, CH U Pitié-Salpêtrière, 75634 Paris Cedex 13, France; 2Centre de Recherche INSE RM U866, Equipe Biochimie Métabolique et Nutritionnelle – Université de Bourgogne, Faculté des Sciences Gabriel, 6 Bd Gabriel, 21000 Dijon, France; 3Centre Commun de Quantimétrie, Université Lyon 1; Université de Lyon, Lyon, France; 4Département de Biologie et de Pathologie des Tumeurs, Centre Georges François-Leclerc, 21000 Dijon, FranceObjective: To evaluate the cytotoxicity of iron nanoparticles on cardiac cells and to determine whether they can modulate the biological activity of 7-ketocholesterol (7KC involved in the development of cardiovascular diseases. Nanoparticles of iron labeled with Texas Red are introduced in cultures of nonbeating mouse cardiac cells (HL1-NB with or without 7-ketocholesterol 7KC, and their ability to induce cell death, pro-inflammatory and oxidative effects are analyzed simultaneously.Study design: Flow cytometry (FCM, confocal laser scanning microscopy (CLSM, and subsequent factor analysis image processing (FAMIS are used to characterize the action of iron nanoparticles and to define their cytotoxicity which is evaluated by enhanced permeability to SYTOX Green, and release of lactate deshydrogenase (LDH. Pro-inflammatory effects are estimated by ELISA in order to quantify IL-8 and MCP-1 secretions. Pro-oxidative effects are measured with hydroethydine (HE.Results: Iron Texas Red nanoparticles accumulate at the cytoplasmic membrane level. They induce a slight LDH release, and have no inflammatory or oxidative effects. However, they enhance the cytotoxic, pro-inflammatory and oxidative effects of 7KC. The accumulation dynamics of SYTOX Green in cells is measured by CLSM to characterize the toxicity of nanoparticles. The emission spectra of SYTOX Green and

  9. New rat models of iron sucrose-induced iron overload.

    Science.gov (United States)

    Vu'o'ng Lê, Bá; Khorsi-Cauet, Hafida; Villegier, Anne-Sophie; Bach, Véronique; Gay-Quéheillard, Jérôme

    2011-07-01

    The majority of murine models of iron sucrose-induced iron overload were carried out in adult subjects. This cannot reflect the high risk of iron overload in children who have an increased need for iron. In this study, we developed four experimental iron overload models in young rats using iron sucrose and evaluated different markers of iron overload, tissue oxidative stress and inflammation as its consequences. Iron overload was observed in all iron-treated rats, as evidenced by significant increases in serum iron indices, expression of liver hepcidin gene and total tissue iron content compared with control rats. We also showed that total tissue iron content was mainly associated with the dose of iron whereas serum iron indices depended essentially on the duration of iron administration. However, no differences in tissue inflammatory and antioxidant parameters from controls were observed. Furthermore, only rats exposed to daily iron injection at a dose of 75 mg/kg body weight for one week revealed a significant increase in lipid peroxidation in iron-treated rats compared with their controls. The present results suggest a correlation between iron overload levels and the dose of iron, as well as the duration and frequency of iron injection and confirm that iron sucrose may not play a crucial role in inflammation and oxidative stress. This study provides important information about iron sucrose-induced iron overload in rats and may be useful for iron sucrose therapy for iron deficiency anemia as well as for the prevention and diagnosis of iron sucrose-induced iron overload in pediatric patients.

  10. Ecdysteroids Elicit a Rapid Ca2+ Flux Leading to Akt Activation and Increased Protein Synthesis in Skeletal Muscle Cells

    OpenAIRE

    Gorelick-Feldman, Jonathan; Cohick, Wendie; Raskin, Ilya

    2010-01-01

    Phytoecdysteroids, structurally similar to insect molting hormones, produce a range of effects in mammals, including increasing growth and physical performance. In skeletal muscle cells, phytoecdysteroids increase protein synthesis. In this study we show that in a mouse skeletal muscle cell line, C2C12, 20-hydroxyecdysone (20HE), a common phytoecdysteroid in both insects and plants, elicited a rapid elevation in intracellular calcium, followed by sustained Akt activation and increased protein...

  11. Proposal of C-core Type Transverse Flux Motor for Ship Propulsion – Increasing Torque Density by Dense Stator Configuration –

    Directory of Open Access Journals (Sweden)

    Y. Yamamoto

    2014-02-01

    Full Text Available Electric ship propulsion system has been drawing attention as a solution for savings in energy and maintenance costs. The system is mainly composed of motor, converter and gearbox and required for high torque at low speed. In this situation, transverse flux motors (TFMs have been proposed to fulfill the low-speed high-torque characteristic due to suitable for short pole pitch and large number of poles to increase torque output. In this trend, we have proposed C-core type motors taking advantage of TFMs’ structure. In this manuscript, a simple design method based on the magnetic-circuit theory and simple modeling of the motor is proposed to search a design parameter for maximizing torque as a pre-process of numerical study. The method takes into consideration the effects of magnetic leakage flux, magnetic saturation and pole-core combination in accordance with the systematic theory. The simple modeling is conducted based on a dense armature structure in previous axial flux motors (AFMs applied to the new motor design. The validity of the method is verified by 3-D finite element analysis (FEA and relative error is at most 20%. The minimalist design is shown to be advantageous for effective use in 3-D FEA. As a detailed design by the FEA, high torque density and low cogging to output ratio can be achieved simultaneously in the proposed machine.

  12. Rising Mean Annual Temperature Increases Carbon Flux and Alters Partitioning, but Does Not Change Ecosystem Carbon Storage in Hawaiian Tropical Montane Wet Forest

    Science.gov (United States)

    Litton, C. M.; Giardina, C. P.; Selmants, P.

    2014-12-01

    Terrestrial ecosystem carbon (C) storage exceeds that in the atmosphere by a factor of four, and represents a dynamic balance among C input, allocation, and loss. This balance is likely being altered by climate change, but the response of terrestrial C cycling to warming remains poorly quantified, particularly in tropical forests which play a disproportionately large role in the global C cycle. Over the past five years, we have quantified above- and belowground C pools and fluxes in nine permanent plots spanning a 5.2°C mean annual temperature (MAT) gradient (13-18.2°C) in Hawaiian tropical montane wet forest. This elevation gradient is unique in that substrate type and age, soil type, soil water balance, canopy vegetation, and disturbance history are constant, allowing us to isolate the impact of long-term, whole ecosystem warming on C input, allocation, loss and storage. Across the gradient, soil respiration, litterfall, litter decomposition, total belowground C flux, aboveground net primary productivity, and estimates of gross primary production (GPP) all increase linearly and positively with MAT. Carbon partitioning is dynamic, shifting from below- to aboveground with warming, likely in response to a warming-induced increase in the cycling and availability of soil nutrients. In contrast to observed patterns in C flux, live biomass C, soil C, and total ecosystem C pools remained remarkably constant with MAT. There was also no difference in soil bacterial taxon richness, phylogenetic diversity, or community composition with MAT. Taken together these results indicate that in tropical montane wet forests, increased temperatures in the absence of water limitation or disturbance will accelerate C cycling, will not alter ecosystem C storage, and will shift the products of photosynthesis from below- to aboveground. These results agree with an increasing number of studies, and collectively provide a unique insight into anticipated warming-induced changes in tropical

  13. Single dose of intra-muscular platelet rich plasma reverses the increase in plasma iron levels in exercise-induced muscle damage:A pilot study

    Institute of Scientific and Technical Information of China (English)

    Zekine Punduk; Onur Oral; Nadir Ozkayin; Khalid Rahman; Rana Varol

    2016-01-01

    Background: Platelet rich plasma (PRP) therapy is widely used in enhancing the recovery of skeletal muscle from injury. However, the impact of intramuscular delivery of PRP on hematologic and biochemical responses has not been fully elucidated in exercise-induced muscle damage. The purpose of this investigation the effects of intramuscular delivery of PRP on hematologic and biochemical responses and recovery strategy muscle damage induced by high intensity muscle exercise (exercise-induced muscle damage, EIMD). Methods: Moderately active male volunteers participated in this study and were assigned to a control group (control, n=6) and PRP administration group (PRP, n=6). The subjects performed exercise with a load of 80%one repetition maximum (1RM) maximal voluntary contraction of the elbow flexors until point of exhaustion of the non-dominant arm was reached. The arms were treated with saline or autologous PRP post-24 h EIMD. Venous blood samples were obtained in the morning to establish a baseline value and 1–4 days post-exercise and were analyzed for serum ferritin, iron, iron binding capacity (IBC), creatinine kinase (CK), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), and alanine aminotransferase (ALT). Results: The baseline levels of plasma iron, ferritin, IBC, CK, LDH, AST, and ALT were similar in both the control and PRP groups. However, 24-h following exercise a significant increase in these parameters was observed in both groups between 1 and 4 days during the recovery period. Interestingly, PRP administration decreased plasma iron levels compared to the control on the second day post-exercise. Plasma IBC increased in PRP group from Days 2 to 4 post-exercise compared to the control group whilst PRP administration had no effect on plasma ferritin, CK, AST, ALT, or LDH. Conclusion: Acute exhaustive exercise increased muscle damage markers, including plasma iron, IBC, and ferritin levels, indicating muscle damage induced by exercise. PRP

  14. Iron deposition and increased alveolar septal capillary density in nonfibrotic lung tissue are associated with pulmonary hypertension in idiopathic pulmonary fibrosis

    Directory of Open Access Journals (Sweden)

    Bartholmai Brian J

    2010-04-01

    Full Text Available Abstract Background Early diagnosis of pulmonary hypertension (PH in idiopathic pulmonary fibrosis (IPF has potential prognostic and therapeutic implications but can be difficult due to the lack of specific clinical manifestations or accurate non-invasive tests. Histopathologic parameters correlating with PH in IPF are also not known. Remodeling of postcapillary pulmonary vessels has been reported in the nonfibrotic areas of explanted lungs from IPF patients. We hypothesized that iron deposition and increased alveolar capillaries, the findings often seen in postcapillary PH, might predict the presence of clinical PH, independent of the severity of fibrosis or ventilatory dysfunction in IPF patients. To test this hypothesis, we examined the association between these histologic parameters and the degree of PH, with consideration of the severity of disease in IPF. Methods Iron deposition and alveolar septal capillary density (ASCD were evaluated on histologic sections with hematoxylin-eosin, iron, elastin and CD34 stainings. Percentage of predicted forced vital capacity (FVC% was used for grading pulmonary function status. Fibrosis score assessed on high resolution computed tomography (HRCT was used for evaluating overall degree of fibrosis in whole lungs. Right ventricular systolic pressure (RVSP by transthoracic echocardiography was used for the estimation of PH. Univariate and multivariate regression analyses were performed. Results A cohort of 154 patients was studied who had the clinicopathological diagnosis of IPF with surgical lung biopsies or explants during the period of 1997 to 2006 at Mayo Clinic Rochester. In univariate analysis, RVSP in our IPF cases was associated with both iron deposition and ASCD (p Conclusions Iron deposition and ASCD in non fibrotic lung tissue showed an association with RVSP, suggesting that these features are possible morphologic predictors of PH in IPF.

  15. Increased risk of death from iron overload among 422 treated probands with HFE hemochromatosis and serum levels of ferritin greater than 1000 μg/L at diagnosis.

    Science.gov (United States)

    Barton, James C; Barton, J Clayborn; Acton, Ronald T; So, Jeffrey; Chan, Susanne; Adams, Paul C

    2012-04-01

    We investigated the risk of death from iron overload among treated hemochromatosis probands who were homozygous for HFE C282Y and had serum levels of ferritin greater than 1000 μg/L at diagnosis. We compared serum levels of ferritin at diagnosis and other conditions with the rate of iron overload-associated death using data from 2 cohorts of probands with hemochromatosis who were homozygous for HFE C282Y (an Alabama cohort, n = 294, 63.9% men and an Ontario cohort, n = 128, 68.8% men). We defined iron overload-associated causes of death as cirrhosis (including hepatic failure and primary liver cancer) caused by iron deposition and cardiomyopathy caused by myocardial siderosis. All probands received phlebotomy and other appropriate therapy. The mean survival times after diagnosis were 13.2 ± 7.3 y and 12.5 ± 8.3 y in Alabama and Ontario probands, respectively. Serum levels of ferritin greater than 1000 μg/L at diagnosis were observed in 30.1% and 47.7% of Alabama and Ontario probands, respectively. In logistic regressions of serum ferritin greater than 1000 μg/L, there were significant positive associations with male sex and cirrhosis in Alabama probands and with age, male sex, increased levels of alanine and aspartate aminotransferases, and cirrhosis in Ontario probands. Of probands with serum levels of ferritin greater than 1000 μg/L at diagnosis, 17.9% of those from Alabama and 14.8% of those from Ontario died of iron overload. Among probands with serum levels of ferritin greater than 1000 μg/L, the relative risk of iron overload-associated death was 5.4 for the Alabama group (95% confidence interval [CI], 2.2-13.1; P = .0002) and 4.9 for the Ontario group (95% CI, 1.1-22.0; P = .0359). In hemochromatosis probands homozygous for HFE C282Y, serum levels of ferritin greater than 1000 μg/L at diagnosis were positively associated with male sex and cirrhosis. Even with treatment, the relative risk of death from iron overload was 5-fold greater in probands with

  16. Comment on "Bismuth-induced increase of the magneto-optical effects in iron garnets", 14, 6957 (2002)

    CERN Document Server

    Helseth, L E

    2003-01-01

    In a recent paper, Zenkov and Moskvin (2002 J. Phys.: Condens. Matter 14 6957) analysed the influence of bismuth on magneto-optical effects in iron garnets, questioning the validity of previous approaches (Dionne and Allen 1993 J. Appl. Phys. 73 6127; 1994 J. Appl. Phys. 75 6372, Allen and Dionne 1993 J. Appl. Phys. 73 1630, Helseth et al2001 Phys. Rev. 64 174406). In this comment I point out that these claims apparently have no foundation. (comment)

  17. Air-to-sea flux of soluble iron: is it driven more by HNO3 or SO2? – an examination in the light of dust aging

    Directory of Open Access Journals (Sweden)

    Y. Gao

    2007-07-01

    Full Text Available Aeolian dust provides the major micronutrient of soluble Fe to organisms in certain regions of the global ocean. In this study, we conduct numerical experiments using the MOZART-2 atmospheric chemistry transport model to simulate the global distribution of soluble Fe flux and Fe solubility. One of the mechanisms behind the hypothesis of acid mobilization of Fe in the atmosphere is that the coating of acidic gases changes dust from hydrophobic to hydrophilic, a prerequisite of Fe mobilization. We therefore include HNO3, SO2 and sulfate (SO42− as dust transformation agents in the model. General agreement in Fe solubility within a factor of 2 is achieved between model and observations. The total flux of soluble Fe to the world ocean is estimated to be 731–924×109 g yr−1, and the average Fe solubility is 6.4–8.0%. Wet deposition contributes over 80% to total soluble Fe flux to most of the world oceans. Special attention is paid to the relative role of HNO3 versus SO2 and sulfate. We demonstrate that coating by HNO3 produces over 36% of soluble Fe fluxes compared to that by SO2 and sulfate combined in every major oceanic basin. Given present trends in the emissions of NOx and SO2, the relative contribution of HNO3 to Fe mobilization may get even larger in the future.

  18. Large increase in dissolved inorganic carbon flux from the Mississippi River to Gulf of Mexico due to climatic and anthropogenic changes over the 21st century.

    Science.gov (United States)

    Ren, Wei; Tian, Hanqin; Tao, Bo; Yang, Jia; Pan, Shufen; Cai, Wei-Jun; Lohrenz, Steven E; He, Ruoying; Hopkinson, Charles S

    2015-04-01

    It is recognized that anthropogenic factors have had a major impact on carbon fluxes from land to the ocean during the past two centuries. However, little is known about how future changes in climate, atmospheric CO2, and land use may affect riverine carbon fluxes over the 21st century. Using a coupled hydrological-biogeochemical model, the Dynamic Land Ecosystem Model, this study examines potential changes in dissolved inorganic carbon (DIC) export from the Mississippi River basin to the Gulf of Mexico during 2010-2099 attributable to climate-related conditions (temperature and precipitation), atmospheric CO2, and land use change. Rates of annual DIC export are projected to increase by 65% under the high emission scenario (A2) and 35% under the low emission scenario (B1) between the 2000s and the 2090s. Climate-related changes along with rising atmospheric CO2 together would account for over 90% of the total increase in DIC export throughout the 21st century. The predicted increase in DIC export from the Mississippi River basin would alter chemistry of the coastal ocean unless appropriate climate mitigation actions are taken in the near future.

  19. Cellular iron transport.

    Science.gov (United States)

    Garrick, Michael D; Garrick, Laura M

    2009-05-01

    Iron has a split personality as an essential nutrient that also has the potential to generate reactive oxygen species. We discuss how different cell types within specific tissues manage this schizophrenia. The emphasis in enterocytes is on regulating the body's supply of iron by regulating transport into the blood stream. In developing red blood cells, adaptations in transport manage the body's highest flux of iron. Hepatocytes buffer the body's stock of iron. Macrophage recycle the iron from effete red cells among other iron management tasks. Pneumocytes provide a barrier to prevent illicit entry that, when at risk of breaching, leads to a need to handle the dangers in a fashion essentially shared with macrophage. We also discuss or introduce cell types including renal cells, neurons, other brain cells, and more where our ignorance, currently still vast, needs to be removed by future research.

  20. Impacts of sea ice on the marine iron cycle and phytoplankton productivity

    Directory of Open Access Journals (Sweden)

    S. Wang

    2014-02-01

    Full Text Available Iron is a key nutrient for phytoplankton growth in the surface ocean. At high latitudes, the iron cycle is closely related to sea ice. In recent decades, Arctic sea ice cover has been declining rapidly and Antarctic sea ice has exhibited large regional trends. A significant reduction of sea ice in both hemispheres is projected in future climate scenarios. To study impacts of sea ice on the iron cycle, iron sequestration in ice is incorporated to the Biogeochemical Elemental Cycling (BEC model. Sea ice acts as a reservoir of iron during winter and releases iron to the surface ocean in spring and summer. Simulated iron concentrations in sea ice generally agree with observations, in regions where iron concentrations are lower. The maximum iron concentrations simulated in the Arctic sea ice and the Antarctic sea ice are 192 nM and 134 nM, respectively. These values are much lower than observed, which is likely due to missing biological processes in sea ice. The largest iron source to sea ice is suspended sediments, contributing fluxes of iron of 2.2 × 108 mol Fe month−1 to the Arctic and 4.1 × 106 mol Fe month−1 to the Southern Ocean during summer. As a result of the iron flux from ice, iron concentrations increase significantly in the Arctic. Iron released from melting ice increases phytoplankton production in spring and summer and shifts phytoplankton community composition in the Southern Ocean. Simulation results for the period of 1998 to 2007 indicate that a reduction of sea ice in the Southern Ocean will have a negative influence on phytoplankton production. Iron transport by sea ice appears to be an important process bringing iron to the central Arctic. Impacts of iron fluxes from ice to ocean on marine ecosystems are negligible in the current Arctic Ocean, as iron is not typically the growth-limiting nutrient. However, it may become a more important factor in the future, particularly in the central Arctic, as iron concentrations will

  1. Impacts of prior land use and increased corn acreage on life cycle assessment of net greenhouse gas flux

    Science.gov (United States)

    With the increased demand for corn ethanol, farmers are expected to plant the largest corn acreage in the United States since 1944. One of the main reasons for producing corn ethanol is the reduced greenhouse gas (GHG) emissions compared with gasoline. However, quantifying the offset of GHG emission...

  2. Subalpine grassland carbon dioxide fluxes indicate substantial carbon losses under increased nitrogen deposition, but not at elevated ozone concentration

    Science.gov (United States)

    Volk, Matthias; Obrist, Daniel; Novak, Kris; Giger, Robin; Bassin, Seraina; Fuhrer, Jürg

    2010-05-01

    Ozone (O3) and nitrogen (N) deposition affect plant carbon (C) dynamics and may thus change ecosystem C-sink/-source properties. We studied effects of increased background O3 concentrations (up to ambient x 2) and increased N deposition (up to +50 kg ha-1 a-1) on mature, subalpine grassland during the third treatment year. During ten days and 13 nights, covering the vegetation period of 2006, we measured ecosystem-level CO2 exchange using a steady state cuvette. Light dependency of gross primary production (GPP) and temperature dependency of ecosystem respiration rates (Reco) were established. Soil temperature, soil water content, and solar radiation were monitored. Using Reco and GPP values, we calculated seasonal net ecosystem production (NEP), based on hourly averages of global radiation and soil temperature. Differences in NEP were compared to differences in soil organic C after five years of treatment. Under high O3 and with unchanged aboveground biomass, both mean Reco and GPP decreased throughout the season. Thus, NEP indicated an unaltered growing season CO2-C balance. Under high N treatment, with a +31% increase in aboveground productivity, mean Reco, but not GPP increased. Consequently, seasonal NEP yielded a 53.9 g C m-2 (± 22.05) C loss compared to control. Independent of treatment, we observed a negative NEP of 146.4 g C m-2 (±15.3). This C loss was likely due to a transient management effect, equivalent to a shift from pasture to hay meadow and a drought effect, specific to the 2006 summer climate. We argue that this resulted from strongly intensified soil microbial respiration, following mitigation of nutrient limitation. There was no interaction between O3 and N treatments. Thus, during the 2006 growing season, the subalpine grassland lost >2% of total topsoil organic C as respired CO2, with increased N deposition responsible for one-third of that loss.

  3. Increased brain iron deposition is a risk factor for brain atrophy in patients with haemodialysis: a combined study of quantitative susceptibility mapping and whole brain volume analysis.

    Science.gov (United States)

    Chai, Chao; Zhang, Mengjie; Long, Miaomiao; Chu, Zhiqiang; Wang, Tong; Wang, Lijun; Guo, Yu; Yan, Shuo; Haacke, E Mark; Shen, Wen; Xia, Shuang

    2015-08-01

    To explore the correlation between increased brain iron deposition and brain atrophy in patients with haemodialysis and their correlation with clinical biomarkers and neuropsychological test. Forty two patients with haemodialysis and forty one age- and gender-matched healthy controls were recruited in this prospective study. 3D whole brain high resolution T1WI and susceptibility weighted imaging were scanned on a 3 T MRI system. The brain volume was analyzed using voxel-based morphometry (VBM) in patients and to compare with that of healthy controls. Quantitative susceptibility mapping was used to measure and compare the susceptibility of different structures between patients and healthy controls. Correlation analysis was used to investigate the relationship between the brain volume, iron deposition and neuropsychological scores. Stepwise multiple regression analysis was used to explore the effect of clinical biomarkers on the brain volumes in patients. Compared with healthy controls, patients with haemodialysis showed decreased volume of bilateral putamen and left insular lobe (All P putamen, substantia nigra, red nucleus and dentate nucleus were significantly higher (All P putamen (P putamen (P < 0.05). Our study indicated increased brain iron deposition and dialysis duration was risk factors for brain atrophy in patients with haemodialysis. The decreased gray matter volume of the left insular lobe was correlated with neurocognitive impairment.

  4. Iron deficiency is associated with increased levels of blood cadmium in the Korean general population: Analysis of 2008-2009 Korean National Health and Nutrition Examination Survey data

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung-Kook [Institute of Environmental and Occupational Medicine, Soonchunhyang University, 646 Eupnae-ri, Shinchang-myun, Asan-si, Choongnam 336-745 (Korea, Republic of); Kim, Yangho, E-mail: yanghokm@nuri.net [Department of Occupational and Environmental Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, 290-3 Cheonha-Dong, Dong-Gu, Ulsan 682-060 (Korea, Republic of)

    2012-01-15

    Introduction: We present data from the Korean National Health and Nutrition Examination Survey 2008-2009 on the distribution of blood cadmium levels and their association with iron deficiency in a representative sample of the adult Korean population. Methods: Serum ferritin was categorized into three levels: low (serum ferritin <15.0 {mu}g/L), low normal (15.0-30.0 {mu}g/L for women and 15.0-50.0 for men), and normal ({>=}30.0 {mu}g/L for women and {>=}50.0 for men), and its association with blood cadmium level was assessed after adjustment for various demographic and lifestyle factors. Results: Geometric means of blood cadmium in the low serum ferritin group in women, men, and all participants were significantly higher than in the normal group. Additionally, multiple regression analysis after adjusting for various covariates showed that blood cadmium was significantly higher in the low-ferritin group in women, men, and all participants compared with the normal group. We also found an association between serum ferritin and blood cadmium among never-smoking participants. Discussion: We found, similar to other recent population-based studies, an association between iron deficiency and increased blood cadmium in men and women, independent of smoking status. The results of the present study show that iron deficiency is associated with increased levels of blood cadmium in the general population.

  5. Role of labile iron in the toxicity of pharmacological ascorbate.

    Science.gov (United States)

    Du, Juan; Wagner, Brett A; Buettner, Garry R; Cullen, Joseph J

    2015-07-01

    Pharmacological ascorbate has been shown to induce toxicity in a wide range of cancer cell lines. Pharmacological ascorbate in animal models has shown promise for use in cancer treatment. At pharmacological concentrations the oxidation of ascorbate produces a high flux of H2O2 via the formation of ascorbate radical (Asc(•-)). The rate of oxidation of ascorbate is principally a function of the level of catalytically active metals. Iron in cell culture media contributes significantly to the rate of H2O2 generation. We hypothesized that increasing intracellular iron would enhance ascorbate-induced cytotoxicity and that iron chelators could modulate the catalytic efficiency with respect to ascorbate oxidation. Treatment of cells with the iron-chelators deferoxamine (DFO) or dipyridyl (DPD) in the presence of 2mM ascorbate decreased the flux of H2O2 generated by pharmacological ascorbate and reversed ascorbate-induced toxicity. Conversely, increasing the level of intracellular iron by preincubating cells with Fe-hydroxyquinoline (HQ) increased ascorbate toxicity and decreased clonogenic survival. These findings indicate that redox metal metals, e.g., Fe(3+)/Fe(2+), have an important role in ascorbate-induced cytotoxicity. Approaches that increase catalytic iron could potentially enhance the cytotoxicity of pharmacological ascorbate in vivo.

  6. Increased birth weight associated with regular pre-pregnancy deworming and weekly iron-folic acid supplementation for Vietnamese women.

    Directory of Open Access Journals (Sweden)

    Luca Passerini

    Full Text Available BACKGROUND: Hookworm infections are significant public health issues in South-East Asia. In women of reproductive age, chronic hookworm infections cause iron deficiency anaemia, which, upon pregnancy, can lead to intrauterine growth restriction and low birth weight. Low birth weight is an important risk factor for neonatal and infant mortality and morbidity. METHODOLOGY: We investigated the association between neonatal birth weight and a 4-monthly deworming and weekly iron-folic acid supplementation program given to women of reproductive age in north-west Vietnam. The program was made available to all women of reproductive age (estimated 51,623 in two districts in Yen Bai Province for 20 months prior to commencement of birth weight data collection. Data were obtained for births at the district hospitals of the two intervention districts as well as from two control districts where women did not have access to the intervention, but had similar maternal and child health indicators and socio-economic backgrounds. The primary outcome was low birth weight. PRINCIPAL FINDINGS: The birth weights of 463 infants born in district hospitals in the intervention (168 and control districts (295 were recorded. Twenty-six months after the program was started, the prevalence of low birth weight was 3% in intervention districts compared to 7.4% in control districts (adjusted odds ratio 0.29, 95% confidence interval 0.10 to 0.81, p = 0.017. The mean birth weight was 124 g (CI 68 - 255 g, p<0.001 greater in the intervention districts compared to control districts. CONCLUSIONS/SIGNIFICANCE: The findings of this study suggest that providing women with regular deworming and weekly iron-folic acid supplements before pregnancy is associated with a reduced prevalence of low birth weight in rural Vietnam. The impact of this health system-integrated intervention on birth outcomes should be further evaluated through a more extensive randomised-controlled trial.

  7. [Iron-refractory iron deficiency anemia].

    Science.gov (United States)

    Kawabata, Hiroshi

    2016-02-01

    The major causes of iron deficiency anemia (IDA) include iron loss due to bleeding, increased iron requirements, and decreased iron absorption by the intestine. The most common cause of IDA in Japanese women is iron loss during menstruation. Autoimmune atrophic gastritis and Helicobacter pylori infection can also cause IDA by reducing intestinal iron absorption. In addition to these common etiologies, germline mutations of TMPRSS6 can cause iron-refractory IDA (IRIDA). TMPRSS6 encodes matriptase-2, a membrane-bound serine protease primarily expressed in the liver. Functional loss of matriptase-2 due to homozygous mutations results in an increase in the expression of hepcidin, which is the key regulator of systemic iron homeostasis. The serum hepcidin increase in turn leads to a decrease in iron supply from the intestine and macrophages to erythropoietic cells. IRIDA is microcytic and hypochromic, but decreased serum ferritin is not observed as in IDA. IRIDA is refractory to oral iron supplementation, but does respond to intravenous iron supplementation to some extent. Because genetic testing is required for the diagnoses of IRIDA, a considerable number of cases may go undiagnosed and may thus be overlooked.

  8. Responses of CH(4), CO(2) and N(2)O fluxes to increasing nitrogen deposition in alpine grassland of the Tianshan Mountains.

    Science.gov (United States)

    Li, Kaihui; Gong, Yanming; Song, Wei; He, Guixiang; Hu, Yukun; Tian, Changyan; Liu, Xuejun

    2012-06-01

    To assess the effects of nitrogen (N) deposition on greenhouse gas (GHG) fluxes in alpine grassland of the Tianshan Mountains in central Asia, CH(4), CO(2) and N(2)O fluxes were measured from June 2010 to May 2011. Nitrogen deposition tended to significantly increase CH(4) uptake, CO(2) and N(2)O emissions at sites receiving N addition compared with those at site without N addition during the growing season, but no significant differences were found for all sites outside the growing season. Air temperature, soil temperature and water content were the important factors that influence CO(2) and N(2)O emissions at year-round scale, indicating that increased temperature and precipitation in the future will exert greater impacts on CO(2) and N(2)O emissions in the alpine grassland. In addition, plant coverage in July was also positively correlated with CO(2) and N(2)O emissions under elevated N deposition rates. The present study will deepen our understanding of N deposition impacts on GHG balance in the alpine grassland ecosystem, and help us assess the global N effects, parameterize Earth System models and inform decision makers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Irreversibility line and flux pinning properties in iron-based high-T{sub c} superconductor SmFeAsO{sub 0.85}

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, D.; Park, I.; Kim, G.C.; Lee, J.H. [Department of Physics, Pusan National University, Busan 609-735 (Korea, Republic of); Ren, Z.-A. [National Laboratory for Superconductivity, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190 (China); Kim, Y.C., E-mail: yckim@pusan.ac.k [Department of Physics, Pusan National University, Busan 609-735 (Korea, Republic of)

    2009-10-15

    The irreversibility line and flux pinning properties of high-T{sub c} superconductor SmFeAsO{sub 0.85} were studied using DC magnetization data. Polycrystalline SmFeAsO{sub 0.85} was prepared in a high pressure synthesis apparatus under the pressure of 6 GPa. The results of DC susceptibility showed the superconducting transition at about 55 K. A critical current density J{sub c}(B) was calculated using Bean's critical state model. At low temperatures (<=20 K), J{sub c}(B) showed a relatively high value with weak dependence on an applied magnetic field. At higher temperatures, a stronger dependence of the magnetic field was observed, which resulted from decrease in a critical current density probably due to the flux creep effect. The irreversibility line (IL) agreed well with the flux creep theory of Matsushita et al. A comparison of normalized pinning force density with the theoretical models showed that the irreversible behavior in SmFeAsO{sub 0.85} is dominated mainly by normal point pinning (deltaT{sub c}) and surface pinning mechanisms.

  10. Aumento de los depósitos de hierro y su relación con la enfermedad cardiovascular Increased iron store and its relationship with cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Tomás Meroño

    2011-12-01

    Full Text Available En los últimos años, se ha avanzado considerablemente en el control de varios de los denominados factores de riesgo aterogénico tradicionales, a pesar de lo cual la incidencia de la enfermedad cardiovascular (ECV continúa siendo elevada. Entre las diversas condiciones asociadas a ECV, podría ubicarse también a la sobrecarga de hierro. Su estudio ha cobrado relevancia desde que se planteó la "hipótesis del hierro", la cual postula que bajos niveles de hierro ejercerían un efecto protector del sistema cardiovascular. No obstante, hasta el presente, los resultados de los estudios diseñados para probar esta hipótesis han sido controversiales. Por otro lado, se lograron numerosos avances en el conocimiento del metabolismo del hierro a partir del descubrimiento de la hormona reguladora hepcidina. Los estudios sobre las funciones fisiológicas de esta hormona permitieron elaborar nuevas hipótesis que explican los resultados de los estudios clínicos anteriormente concebidos como contradictorios. El objetivo de la presente actualización es exponer, a la luz de los últimos avances sobre la regulación del metabolismo del hierro y su vinculación con la inflamación, el estado actual del conocimiento sobre el posible rol del exceso de hierro como factor de riesgo de ECV.In the last years, great advance has been achieved in the control of several of the classic atherogenic risk factors; nonetheless, the incidence of cardiovascular disease (CVD still remains high. Among the disorders which are associated with CVD, increased iron stores have been described as one of them. Its study gained relevance since the "iron hypothesis", which postulates that low iron levels exert a protective effect on cardiovascular system, was elaborated. In spite of the numerous studies carried out to test this hypothesis, the results have been controversial. On the other hand, much knowledge regarding iron metabolism has been gained since the description of the

  11. Iron-refractory iron deficiency anemia.

    Science.gov (United States)

    Yılmaz Keskin, Ebru; Yenicesu, İdil

    2015-03-05

    Iron is essential for life because it is indispensable for several biological reactions, such as oxygen transport, DNA synthesis, and cell proliferation. Over the past few years, our understanding of iron metabolism and its regulation has changed dramatically. New disorders of iron metabolism have emerged, and the role of iron as a cofactor in other disorders has begun to be recognized. The study of genetic conditions such as hemochromatosis and iron-refractory iron deficiency anemia (IRIDA) has provided crucial insights into the molecular mechanisms controlling iron homeostasis. In the future, these advances may be exploited to improve treatment of both genetic and acquired iron disorders. IRIDA is caused by mutations in TMPRSS6, the gene encoding matriptase-2, which downregulates hepcidin expression under conditions of iron deficiency. The typical features of this disorder are hypochromic, microcytic anemia with a very low mean corpuscular volume of erythrocytes, low transferrin saturation, no (or inadequate) response to oral iron, and only a partial response to parenteral iron. In contrast to classic iron deficiency anemia, serum ferritin levels are usually low-normal, and serum or urinary hepcidin levels are inappropriately high for the degree of anemia. Although the number of cases reported thus far in the literature does not exceed 100, this disorder is considered the most common of the "atypical" microcytic anemias. The aim of this review is to share the current knowledge on IRIDA and increase awareness in this field.

  12. Iron-Refractory Iron Deficiency Anemia

    Science.gov (United States)

    Yılmaz Keskin, Ebru; Yenicesu, İdil

    2015-01-01

    Iron is essential for life because it is indispensable for several biological reactions, such as oxygen transport, DNA synthesis, and cell proliferation. Over the past few years, our understanding of iron metabolism and its regulation has changed dramatically. New disorders of iron metabolism have emerged, and the role of iron as a cofactor in other disorders has begun to be recognized. The study of genetic conditions such as hemochromatosis and iron-refractory iron deficiency anemia (IRIDA) has provided crucial insights into the molecular mechanisms controlling iron homeostasis. In the future, these advances may be exploited to improve treatment of both genetic and acquired iron disorders. IRIDA is caused by mutations in TMPRSS6, the gene encoding matriptase-2, which downregulates hepcidin expression under conditions of iron deficiency. The typical features of this disorder are hypochromic, microcytic anemia with a very low mean corpuscular volume of erythrocytes, low transferrin saturation, no (or inadequate) response to oral iron, and only a partial response to parenteral iron. In contrast to classic iron deficiency anemia, serum ferritin levels are usually low-normal, and serum or urinary hepcidin levels are inappropriately high for the degree of anemia. Although the number of cases reported thus far in the literature does not exceed 100, this disorder is considered the most common of the “atypical” microcytic anemias. The aim of this review is to share the current knowledge on IRIDA and increase awareness in this field. PMID:25805669

  13. Weekly supplementation with iron and vitamin A during pregnancy increases hemoglobin concentration but decreases serum ferritin concentration in Indonesian pregnant women

    NARCIS (Netherlands)

    Muslimatun, S.; Schmidt, M.K.; Schultink, W.; West, C.E.; Hautvast, J.G.A.J.; Gross, R.; Muhilal,

    2001-01-01

    We investigated whether weekly iron supplementation was as effective as the national daily iron supplementation program in Indonesia in improving iron status at near term in pregnancy. In addition, we examined whether weekly vitamin A and iron supplementation was more efficacious than weekly

  14. Weekly supplementation with iron and vitamin A during pregnancy increases hemoglobin concentration but decreases serum ferritin concentration in Indonesian pregnant women

    NARCIS (Netherlands)

    Muslimatun, S.; Schmidt, M.K.; Schultink, W.; West, C.E.; Hautvast, J.G.A.J.; Gross, R.; Muhilal,

    2001-01-01

    We investigated whether weekly iron supplementation was as effective as the national daily iron supplementation program in Indonesia in improving iron status at near term in pregnancy. In addition, we examined whether weekly vitamin A and iron supplementation was more efficacious than weekly supplem

  15. Iron and the endurance athlete.

    Science.gov (United States)

    Hinton, Pamela S

    2014-09-01

    Iron is a trace mineral that is highly significant to endurance athletes. Iron is critical to optimal athletic performance because of its role in energy metabolism, oxygen transport, and acid-base balance. Endurance athletes are at increased risk for suboptimal iron status, with potential negative consequences on performance, because of the combination of increased iron needs and inadequate dietary intake. This review paper summarizes the role of iron in maximal and submaximal exercise and describes the effects of iron deficiency on exercise performance. Mechanisms that explain the increased risk of iron deficiency in endurance athletes, including exercise-associated inflammation and hepcidin release on iron sequestration, are described. Information on screening athletes for iron deficiency is presented, and suggestions to increase iron intake through diet modification or supplemental iron are provided.

  16. Aluminum induces neurodegeneration and its toxicity arises from increased iron accumulation and reactive oxygen species (ROS) production.

    Science.gov (United States)

    Wu, Zhihao; Du, Yumei; Xue, Hua; Wu, Yongsheng; Zhou, Bing

    2012-01-01

    The neurotoxicity of aluminum (Al) - the most abundant metal element on earth - has been known for years. However, the mechanism of Al-induced neurodegeneration and its relationship to Alzheimer's disease are still controversial. In particular, in vivo functional data are lacking. In a Drosophila model with chronic dietary Al overloading, general neurodegeneration and several behavioral changes were observed. Al-induced neurodegeneration is independent of β-amyloid or tau-associated toxicity, suggesting they act in different molecular pathways. Interestingly, Drosophila frataxin (dfh), which causes Friedreich's ataxia if mutated in humans, displayed an interacting effect with Al, suggesting Friedreich's ataxia patients might be more susceptible to Al toxicity. Al-treated flies accumulated large amount of iron and reactive oxygen species (ROS), and exhibited elevated SOD2 activity. Genetic and pharmacological efforts to reduce ROS or chelate excess Fe significantly mitigated Al toxicity. Our results indicate that Al toxicity is mediated through ROS production and iron accumulation and suggest a remedial route to reduce toxicity due to Al exposure.

  17. Magnetogasdynamics shock waves in a rotational axisymmetric non-ideal gas with increasing energy and conductive and radiative heat-fluxes

    Science.gov (United States)

    Nath, Gorakh

    2016-07-01

    Self-similar solutions are obtained for one-dimensional adiabatic flow behind a magnetogasdynamics cylindrical shock wave propagating in a rotational axisymmetric non ideal gas with increasing energy and conductive and radiative heat fluxes in presence of an azimuthal magnetic field. The fluid velocities and the azimuthal magnetic field in the ambient medium are assume to be varying and obeying power laws. In order to find the similarity solutions the angular velocity of the ambient medium is taken to be decreasing as the distance from the axis increases. The heat conduction is expressed in terms of Fourier's law and the radiation is considered to be the diffusion type for an optically thick grey gas model. The thermal conductivity and the absorption coefficient are assumed to vary with temperature and density. The effects of the presence of radiation and conduction, the non-idealness of the gas and the magnetic field on the shock propagation and the flow behind the shock are investigated.

  18. Extracting iron and manganese from bacteria with ionophores - a mechanism against competitors characterized by increased potency in environments low in micronutrients.

    Science.gov (United States)

    Raatschen, Nadja; Wenzel, Michaela; Ole Leichert, Lars Ingo; Düchting, Petra; Krämer, Ute; Bandow, Julia Elisabeth

    2013-04-01

    To maintain their metal ion homeostasis, bacteria critically depend on membrane integrity and controlled ion translocation. Terrestrial Streptomyces species undermine the function of the cytoplasmic membrane as diffusion barrier for metal cations in competitors using ionophores. Although the properties of the divalent cation ionophores calcimycin and ionomycin have been characterized to some extent in vitro, their effects on bacterial ion homeostasis, the factors leading to bacterial cell death, and their ecological role are poorly understood. To gain insight into their antibacterial mechanism, we determined the metal ion composition of the soil bacterium Bacillus subtilis after treatment with calcimycin and ionomycin. Within 15 min the cells lost approximately half of their cellular iron and manganese content whereas calcium levels increased. The proteomic response of B. subtilis provided evidence that disturbance of metal cation homeostasis is accompanied by intracellular oxidative stress, which was confirmed with a ROS-specific fluorescent probe. B. subtilis showed enhanced sensitivity to the ionophores in medium lacking iron or manganese. Furthermore, in the presence of ionophores bacteria were sensitive to high calcium levels. These findings suggest that divalent cation ionophores are particularly effective against competing microorganisms in soils rich in available calcium and low in available iron and manganese.

  19. Reactive oxygen species production induced by ethanol in Saccharomyces cerevisiae increases because of a dysfunctional mitochondrial iron-sulfur cluster assembly system.

    Science.gov (United States)

    Pérez-Gallardo, Rocio V; Briones, Luis S; Díaz-Pérez, Alma L; Gutiérrez, Sergio; Rodríguez-Zavala, José S; Campos-García, Jesús

    2013-12-01

    Ethanol accumulation during fermentation contributes to the toxic effects in Saccharomyces cerevisiae, impairing its viability and fermentative capabilities. The iron-sulfur (Fe-S) cluster biogenesis is encoded by the ISC genes. Reactive oxygen species (ROS) generation is associated with iron release from Fe-S-containing enzymes. We evaluated ethanol toxicity, ROS generation, antioxidant response and mitochondrial integrity in S. cerevisiae ISC mutants. These mutants showed an impaired tolerance to ethanol. ROS generation increased substantially when ethanol accumulated at toxic concentrations under the fermentation process. At the cellular and mitochondrial levels, ROS were increased in yeast treated with ethanol and increased to a higher level in the ssq1∆, isa1∆, iba57∆ and grx5∆ mutants - hydrogen peroxide and superoxide were the main molecules detected. Additionally, ethanol treatment decreased GSH/GSSG ratio and increased catalase activity in the ISC mutants. Examination of cytochrome c integrity indicated that mitochondrial apoptosis was triggered following ethanol treatment. The findings indicate that the mechanism of ethanol toxicity occurs via ROS generation dependent on ISC assembly system functionality. In addition, mutations in the ISC genes in S. cerevisiae contribute to the increase in ROS concentration at the mitochondrial and cellular level, leading to depletion of the antioxidant responses and finally to mitochondrial apoptosis. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  20. Cylindrical shock waves in rotational axisymmetric non-ideal dusty gas with increasing energy in presence of conductive and radiative heat fluxes

    Directory of Open Access Journals (Sweden)

    G. Nath

    2015-09-01

    Full Text Available The propagation of a cylindrical shock wave in a rotational axisymmetric non-ideal dusty gas in the presence of conductive and radiative heat fluxes with increasing energy, which has variable azimuthal and axial fluid velocities, is investigated. The dusty gas is assumed to be a mixture of non-ideal (or perfect gas and small solid particles, in which solid particles are continuously distributed. Similarity solutions are obtained and the effects of the variation of the heat transfer parameters, the parameter of non-idealness of the gas, the mass concentration of solid particles in the mixture and the ratio of the density of solid particles to the initial density of the gas are investigated. It is shown that the heat transfer parameters and the parameter of non-idealness of the gas, both, decrease the compressibility of the gas and hence there is a decrease in the shock strength.

  1. Improved yield of high molecular weight DNA coincides with increased microbial diversity access from iron oxide cemented sub-surface clay environments.

    Directory of Open Access Journals (Sweden)

    Richard A Hurt

    Full Text Available Despite over three decades of progress, extraction of high molecular weight (HMW DNA from high clay soils or iron oxide cemented clay has remained challenging. HMW DNA is desirable for next generation sequencing as it yields the most comprehensive coverage. Several DNA extraction procedures were compared from samples that exhibit strong nucleic acid adsorption. pH manipulation or use of alternative ion solutions offered no improvement in nucleic acid recovery. Lysis by liquid N2 grinding in concentrated guanidine followed by concentrated sodium phosphate extraction supported HMW DNA recovery from clays high in iron oxides. DNA recovered using 1 M sodium phosphate buffer (PB as a competitive desorptive wash was 15.22±2.33 µg DNA/g clay, with most DNA consisting of >20 Kb fragments, compared to 2.46±0.25 µg DNA/g clay with the Powerlyzer system (MoBio. Increasing PB concentration in the lysis reagent coincided with increasing DNA fragment length during initial extraction. Rarefaction plots of 16S rRNA (V1-V3 region pyrosequencing from A-horizon and clay soils showed an ∼80% and ∼400% larger accessed diversity compared to the Powerlyzer soil DNA system, respectively. The observed diversity from the Firmicutes showed the strongest increase with >3-fold more operational taxonomic units (OTU recovered.

  2. Design Rules for Oxygen Evolution Catalysis at Porous Iron Oxide Electrodes: A 1000-Fold Current Density Increase.

    Science.gov (United States)

    Haschke, Sandra; Pankin, Dmitrii; Petrov, Yuri; Bochmann, Sebastian; Manshina, Alina; Bachmann, Julien

    2017-09-22

    Nanotubular iron(III) oxide electrodes are optimized for catalytic efficiency in the water oxidation reaction at neutral pH. The nanostructured electrodes are prepared from anodic alumina templates, which are coated with Fe2 O3 by atomic layer deposition. Scanning helium ion microscopy, X-ray diffraction, and Raman spectroscopy are used to characterize the morphologies and phases of samples submitted to various treatments. These methods demonstrate the contrasting effects of thermal annealing and electrochemical treatment. The electrochemical performances of the corresponding electrodes under dark conditions are quantified by steady-state electrolysis and electrochemical impedance spectroscopy. A rough and amorphous Fe2 O3 with phosphate incorporation is critical for the optimization of the water oxidation reaction. For the ideal pore length of 17 μm, the maximum catalytic turnover is reached with an effective current density of 140 μA cm(-2) at an applied overpotential of 0.49 V. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. How Population Growth and Land-Use Change Increased Fluvial Dissolved Organic Carbon Fluxes over 130 Years in the Thames Basin (UK)

    Science.gov (United States)

    Noacco, V.; Howden, N. J. K.; Wagener, T.; Worrall, F.; Burt, T. P.

    2015-12-01

    This study investigates drivers of changing dissolved organic carbon (DOC) export in the UK's River Thames basin between 1884 and 2014. Specifically, we consider how the impacts of land-use change and population growth drive increases in DOC concentrations and fluxes at the basin outlet. Such key factors for the long-term increase in riverine DOC in temperate, mineral-soil catchments are still widely debated. First, we estimate soil organic carbon (SOC) stocks in the Thames basin for the period. Second, we convert SOC losses due to land-use change into DOC loss to surface waters through runoff. Finally, we combine this input of DOC with an export coefficient model that considers catchment drivers for DOC release to the river. SOC stocks for each year are calculated from a large database of typical SOC levels for land-uses present in the Thames basin and are combined with literature values of transition times for SOC to adjust to a new level following land-use change. We also account for climate change effects on SOC stock due to temperature increases, which reduces SOC stocks as soil organic matter turnover rates increase. Our work shows that the major driver for DOC increase to the river Thames was the rise in the catchment population, where the increase in urban area was used as a proxy. This highlights the role of sewage effluent in contributing to the rise of fluvial DOC, even though wastewater treatments were in place since the early 1990s. Land-use change had significant but short-term impacts in the increase in DOC, mainly due to massive conversion of permanent grassland into arable land during World War II.

  4. Increased labile iron pool in sorghum embryonic axes after the exogenous application of nitric oxide is independent on the nature of the NO donor

    Science.gov (United States)

    Simontacchi, Marcela; Jasid, Sebastián

    2009-01-01

    The objective of this work was to explore the hypothesis that nitric oxide (NO) affects Fe bioavailability in sorghum (Sorghum bicolor (L.) Moench) embryonic axes. NO content was assessed in embryonic axes isolated from seeds control or exposed to NO-donors, employing spin trapping electron paramagnetic resonance (EPR) methodology. NO donors such as sodium nitroprusside (SNP) and diethylenetriamine NONOate (DETA NONOate), released NO that permeated inside the axes increasing NO content. Under these conditions low temperature EPR was employed to study the labile iron pool. A 2.5 fold increase was observed in NO steady state concentration after 24 h of exposure to NO donors that was correlated to a 2 fold increase in the Fe labile pool, as compared to control axes. This observation provides experimental evidence for a potential role of NO in Fe homeostasis. PMID:19649194

  5. Self-similar flow of a rotating dusty gas behind the shock wave with increasing energy, conduction and radiation heat flux

    Science.gov (United States)

    Nath, G.

    2012-01-01

    A self-similar solution is obtained for one dimensional adiabatic flow behind a cylindrical shock wave propagating in a rotating dusty gas in presence of heat conduction and radiation heat flux with increasing energy. The dusty gas is assumed to be a mixture of non-ideal (or perfect) gas and small solid particles, in which solid particles are continuously distributed. It is assumed that the equilibrium flow-condition is maintained and variable energy input is continuously supplied by the piston (or inner expanding surface). The heat conduction is expressed in terms of Fourier's law and the radiation is considered to be of the diffusion type for an optically thick grey gas model. The thermal conductivity K and the absorption coefficient αR are assumed to vary with temperature only. In order to obtain the similarity solutions the initial density of the ambient medium is assumed to be constant and the angular velocity of the ambient medium is assumed to be decreasing as the distance from the axis increases. The effects of the variation of the heat transfer parameters and non-idealness of the gas in the mixture are investigated. The effects of an increase in (i) the mass concentration of solid particles in the mixture and (ii) the ratio of the density of solid particles to the initial density of the gas on the flow variables are also investigated.

  6. [The binding of iron to normal human erythrocyte membranes and its intracellular penetration as a function of different glucides].

    Science.gov (United States)

    Bouvet, D; Boulard, M; Najean, Y

    1975-04-14

    In vivo intestinal absorption of iron in rat is greatly enhanced by Lactose and D-Xylose. Both sugars are also able to increase the amount of iron bound to the red cell membrane in the animal. Similar effects have been noted when using human normal red cells. Lactose of D-Xylose are able to convert into an active transport curve the linear diffusion curve which is noted when iron is used without any ligand. It is possible to quantify the effect of both sugars on the flux of iron towards the red cell membrane.

  7. Nutrient uplift in a cyclonic eddy increases diversity, primary productivity and iron demand of microbial communities relative to a western boundary current

    Directory of Open Access Journals (Sweden)

    Martina A. Doblin

    2016-04-01

    Full Text Available The intensification of western boundary currents in the global ocean will potentially influence meso-scale eddy generation, and redistribute microbes and their associated ecological and biogeochemical functions. To understand eddy-induced changes in microbial community composition as well as how they control growth, we targeted the East Australian Current (EAC region to sample microbes in a cyclonic (cold-core eddy (CCE and the adjacent EAC. Phototrophic and diazotrophic microbes were more diverse (2–10 times greater Shannon index in the CCE relative to the EAC, and the cell size distribution in the CCE was dominated (67% by larger micro-plankton $(\\geq 20\\lrm{\\mu }\\mathrm{m}$ ≥ 20 μ m , as opposed to pico- and nano-sized cells in the EAC. Nutrient addition experiments determined that nitrogen was the principal nutrient limiting growth in the EAC, while iron was a secondary limiting nutrient in the CCE. Among the diazotrophic community, heterotrophic NifH gene sequences dominated in the EAC and were attributable to members of the gamma-, beta-, and delta-proteobacteria, while the CCE contained both phototrophic and heterotrophic diazotrophs, including Trichodesmium, UCYN-A and gamma-proteobacteria. Daily sampling of incubation bottles following nutrient amendment captured a cascade of effects at the cellular, population and community level, indicating taxon-specific differences in the speed of response of microbes to nutrient supply. Nitrogen addition to the CCE community increased picoeukaryote chlorophyll a quotas within 24 h, suggesting that nutrient uplift by eddies causes a ‘greening’ effect as well as an increase in phytoplankton biomass. After three days in both the EAC and CCE, diatoms increased in abundance with macronutrient (N, P, Si and iron amendment, whereas haptophytes and phototrophic dinoflagellates declined. Our results indicate that cyclonic eddies increase delivery of nitrogen to the upper ocean to potentially

  8. Nutrient uplift in a cyclonic eddy increases diversity, primary productivity and iron demand of microbial communities relative to a western boundary current.

    Science.gov (United States)

    Doblin, Martina A; Petrou, Katherina; Sinutok, Sutinee; Seymour, Justin R; Messer, Lauren F; Brown, Mark V; Norman, Louiza; Everett, Jason D; McInnes, Allison S; Ralph, Peter J; Thompson, Peter A; Hassler, Christel S

    2016-01-01

    The intensification of western boundary currents in the global ocean will potentially influence meso-scale eddy generation, and redistribute microbes and their associated ecological and biogeochemical functions. To understand eddy-induced changes in microbial community composition as well as how they control growth, we targeted the East Australian Current (EAC) region to sample microbes in a cyclonic (cold-core) eddy (CCE) and the adjacent EAC. Phototrophic and diazotrophic microbes were more diverse (2-10 times greater Shannon index) in the CCE relative to the EAC, and the cell size distribution in the CCE was dominated (67%) by larger micro-plankton [Formula: see text], as opposed to pico- and nano-sized cells in the EAC. Nutrient addition experiments determined that nitrogen was the principal nutrient limiting growth in the EAC, while iron was a secondary limiting nutrient in the CCE. Among the diazotrophic community, heterotrophic NifH gene sequences dominated in the EAC and were attributable to members of the gamma-, beta-, and delta-proteobacteria, while the CCE contained both phototrophic and heterotrophic diazotrophs, including Trichodesmium, UCYN-A and gamma-proteobacteria. Daily sampling of incubation bottles following nutrient amendment captured a cascade of effects at the cellular, population and community level, indicating taxon-specific differences in the speed of response of microbes to nutrient supply. Nitrogen addition to the CCE community increased picoeukaryote chlorophyll a quotas within 24 h, suggesting that nutrient uplift by eddies causes a 'greening' effect as well as an increase in phytoplankton biomass. After three days in both the EAC and CCE, diatoms increased in abundance with macronutrient (N, P, Si) and iron amendment, whereas haptophytes and phototrophic dinoflagellates declined. Our results indicate that cyclonic eddies increase delivery of nitrogen to the upper ocean to potentially mitigate the negative consequences of increased

  9. Role of CO2, climate and land use in regulating the seasonal amplitude increase of carbon fluxes in terrestrial ecosystems: a multimodel analysis

    Science.gov (United States)

    Zhao, Fang; Zeng, Ning; Asrar, Ghassem; Friedlingstein, Pierre; Ito, Akihiko; Jain, Atul; Kalnay, Eugenia; Kato, Etsushi; Koven, Charles D.; Poulter, Ben; Rafique, Rashid; Sitch, Stephen; Shu, Shijie; Stocker, Beni; Viovy, Nicolas; Wiltshire, Andy; Zaehle, Sonke

    2016-09-01

    We examined the net terrestrial carbon flux to the atmosphere (FTA) simulated by nine models from the TRENDY dynamic global vegetation model project for its seasonal cycle and amplitude trend during 1961-2012. While some models exhibit similar phase and amplitude compared to atmospheric inversions, with spring drawdown and autumn rebound, others tend to rebound early in summer. The model ensemble mean underestimates the magnitude of the seasonal cycle by 40 % compared to atmospheric inversions. Global FTA amplitude increase (19 ± 8 %) and its decadal variability from the model ensemble are generally consistent with constraints from surface atmosphere observations. However, models disagree on attribution of this long-term amplitude increase, with factorial experiments attributing 83 ± 56 %, -3 ± 74 and 20 ± 30 % to rising CO2, climate change and land use/cover change, respectively. Seven out of the nine models suggest that CO2 fertilization is the strongest control - with the notable exception of VEGAS, which attributes approximately equally to the three factors. Generally, all models display an enhanced seasonality over the boreal region in response to high-latitude warming, but a negative climate contribution from part of the Northern Hemisphere temperate region, and the net result is a divergence over climate change effect. Six of the nine models show that land use/cover change amplifies the seasonal cycle of global FTA: some are due to forest regrowth, while others are caused by crop expansion or agricultural intensification, as revealed by their divergent spatial patterns. We also discovered a moderate cross-model correlation between FTA amplitude increase and increase in land carbon sink (R2 = 0.61). Our results suggest that models can show similar results in some benchmarks with different underlying mechanisms; therefore, the spatial traits of CO2 fertilization, climate change and land use/cover changes are crucial in determining the right mechanisms in

  10. Iron Test

    Science.gov (United States)

    ... as: Serum Iron; Serum Fe Formal name: Iron, serum Related tests: Ferritin ; TIBC, UIBC and Transferrin ; Hemoglobin ; Hematocrit ; Complete Blood Count ; Reticulocyte Count ; Zinc Protoporphyrin ; Iron Tests ; Soluble Transferrin Receptor ... I should know? How is it used? Serum iron, total iron-binding capacity (TIBC) , and/or ...

  11. Iron-Air Rechargeable Battery

    Science.gov (United States)

    Narayan, Sri R. (Inventor); Prakash, G.K. Surya (Inventor); Kindler, Andrew (Inventor)

    2014-01-01

    Embodiments include an iron-air rechargeable battery having a composite electrode including an iron electrode and a hydrogen electrode integrated therewith. An air electrode is spaced from the iron electrode and an electrolyte is provided in contact with the air electrode and the iron electrodes. Various additives and catalysts are disclosed with respect to the iron electrode, air electrode, and electrolyte for increasing battery efficiency and cycle life.

  12. [Iron function and carcinogenesis].

    Science.gov (United States)

    Akatsuka, Shinya; Toyokuni, Shinya

    2016-07-01

    Though iron is an essential micronutrient for humans, the excess state is acknowledged to be associated with oncogenesis. For example, iron overload in the liver of the patients with hereditary hemocromatosis highly increases the risk of hepatocellular carcinoma. Also, as to asbestos-related mesothelioma, such kinds of asbestos with a higher iron content are considered to be more carcinogenic. Iron is a useful element, which enables fundamental functions for life such as oxygen carrying and electron transport. However, in the situation where organisms are unable to have good control of it, iron turns into a dangerous element which catalyzes generation of reactive oxygen. In this review, I first outline the relationships between iron and cancer in general, then give an explanation about iron-related animal carcinogenesis models.

  13. Increased bismuth concentration in MBE GaAs{sub 1−x}Bi{sub x} films by oscillating III/V flux ratio during growth

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Adam W., E-mail: awood4@wisc.edu; Babcock, Susan E. [Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin 53706 (United States); Li, Jincheng; Brown, April S. [Electrical and Computer Engineering, Duke University, Durham, North Carolina 27707 (United States)

    2015-05-15

    The authors have examined bismuth concentration profiles in GaAs{sub 1−x}Bi{sub x} films grown by molecular beam epitaxy using high angle annular dark field imaging (Z-contrast imaging) in an aberration-corrected scanning transmission electron microscope in conjunction with x-ray diffraction. Samples were grown with a gradient in each of the component fluxes, and therefore, the III/V ratio across the substrate. Rotating the sample during growth exposed the growth surface to an oscillating III/V flux ratio. Sinusoidal [Bi] profiles resulted in the growth direction, the wavelength and number of which were consistent with the growth rate and the rate of substrate rotation. However, the magnitude of [Bi] in the observed fluctuations was greater than the maximum [Bi] achieved using the same Bi flux and Ga/As flux ratios in steady-state conditions on a stationary substrate, suggesting that varying the III/V flux ratio during growth promotes the incorporation of Bi in GaAs{sub 1−x}Bi{sub x} films. A proposed qualitative model for how this enhancement might occur hypothesizes a critical role for alternating growth and shrinkage of Ga-Bi predroplet clusters on the surface as the growing material is rotated through Ga-rich and As-rich flux compositions.

  14. Constitutive expression of a barley Fe phytosiderophore transporter increases alkaline soil tolerance and results in iron partitioning between vegetative and storage tissues under stress

    OpenAIRE

    Gómez-Galera, Sonia; Sudhakar, Duraialagaraja; Ana M. Pelacho; Capell, Teresa; Christou, Paul

    2012-01-01

    Cereals have evolved chelation systems to mobilize insoluble iron in the soil, but in rice this process is rather inefficient, making the crop highly susceptible to alkaline soils. We therefore engineered rice to express the barley iron-phytosiderophore transporter (HvYS1), which enables barley plants to take up iron from alkaline soils. A representative transgenic rice line was grown in standard (pH 5.5) or alkaline soil (pH 8.5) to evaluate alkaline tolerance and iron mobilizati...

  15. Iron deficiency in the young athlete.

    Science.gov (United States)

    Rowland, T W

    1990-10-01

    Although overt anemia is uncommon, depletion of body iron stores is common among adolescent female athletes. Poor dietary iron intake, menstruation, and increased iron losses associated with physical training all appear to be important factors. Whether nonanemic iron deficiency can impair exercise performance is uncertain. Nonetheless, athletes with low ferritin levels are at risk for impaired erythropoiesis and should receive therapeutic iron supplementation.

  16. Increasing Superoxide Production and the Labile Iron Pool in Tumor Cells May Sensitize Them to Extracellular Ascorbate

    Directory of Open Access Journals (Sweden)

    Mark Frederick Mccarty

    2014-09-01

    Full Text Available Low millimolar concencentrations of ascorbate are capable of inflicting lethal damage on a high proportion of cancer cells lines, yet leave non-transformed cell lines unscathed; extracellular generation of hydrogen peroxide, reflecting reduction of molecular oxygen by ascorbate, has been shown to mediate this effect. Although some cancer cell lines express low catalase activity, this cannot fully explain the selective sensitivity of cancer cells to hydrogen peroxide. Ranzato and colleagues have presented evidence for a plausible new explanation of this sensitivity - a high proportion of cancers, via NADPH oxidase complexes or dysfunctional mitochondria, produce elevated amounts of superoxide. This superoxide, via a transition metal-catalyzed transfer of an electron to the hydrogen peroxide produced by ascorbate, can generate deadly hydroxyl radical (Haber-Weiss reaction. It thus can be predicted that concurrent measures which somewhat selectively boost superoxide production in cancers will enhance their sensitivity to i.v. ascorbate therapy. One way to achieve this is to increase the provision of substrate to cancer mitochondria. Measures which inhibit the constitutive hypoxia-inducible factor-1 (HIF-1 activity in cancers (such as salsalate and mTORC1 inhibitors, or an improvement of tumor oxygenation, or that inhibit the HIF-1-inducible pyruvate dehydrogenase kinase (such as dichloroacetate, can be expected to increase pyruvate oxidation. A ketogenic diet should provide more lipid substrate for tumor mitochondria. The cancer-killing activity of 42°C hyperthermia is to some degree contingent on an increase in oxidative stress, likely of mitochondrial origin; reports that hydrogen peroxide synergizes with hyperthermia in killing cancer cells suggest that hyperthermia and i.v. ascorbate could potentiate each other’s efficacy. A concurrent enhancement of tumor oxygenation might improve results by decreasing HIF-1 activity while increasing the

  17. Epoetin alfa 40000 U once weekly and intravenous iron supply in solid tumor patients: early increase of hemoglobin level during chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lalle, M.; Antimi, M. [Ospedale S. Eugenio, Rome (Italy). Unita operativa complessa di oncologia medica; Pistillucci, G.; D' Aprile, M. [Ospedale S. Maria Goretti, Latina (Italy). Unita operativa complessa di oncologia medica

    2005-06-15

    The objective of this observational study was the early evaluation of the impact, a week after the first administration of epoetin alfa 40000 U once weekly and i.v. dose of 62.5 mg sodium ferric gluconate for seven days in improving hemoglobin levels in cancer patients affected by mild/moderate or severe anemia during chemotherapy. Twenty patients affected by solid tumors who received epoetin alfa 40000 U once weekly and daily i.v. sodium ferric gluconate for one week were evaluated: 90% of the patients showed hemoglobin increase, with a median level of hemoglobin increase of 0.73 g/L from baseline, and 50% of them showing a hemoglobin increase > 1 gr/L. The treatment was well tolerated and no adverse event was observed. The early increase of hemoglobin level from baseline is interesting and suggestive for the possibility of achieving an adequate hemoglobin level with a short-term treatment. It is still necessary to further explore the real need of iron supplementation to maintain adequate erythropoiesis prior and during epoetin therapy.

  18. Iron supplementation is positively associated with increased serum ferritin levels in 9-month-old Danish infants

    DEFF Research Database (Denmark)

    Gondolf, Ulla Holmboe; Tetens, Inge; Michaelsen, Kim Fleischer

    2013-01-01

    of fortified formula and follow-on formula (P = 0·001), and female sex (P milk intake and length of exclusive breast-feeding were negatively associated with Hb levels (P = 0·013 and P Serum ferritin levels were significantly higher (P ...·3) months of age. Blood samples were available from 278 infants. Overall, twenty infants (7·8 %) had Fe deficiency (serum ferritin serum ferritin Serum ferritin was positively associated with birth weight (P ... supplementation recommendation was significantly associated with increased serum ferritin and decreased levels of TfR indicating more favourable Fe status, compared to infants not following the recommendation....

  19. Iron Deficiency-induced Increase of Root Branching Contributes to the Enhanced Root Ferric Chelate Reductase Activity

    Institute of Scientific and Technical Information of China (English)

    Chong-Wei Jin; Wei-Wei Chen; Zhi-Bin Meng; Shao-Jian Zheng

    2008-01-01

    In various plant species, Fe deficiency increases lateral root branching. However, whether this morphological alteration contributes to the Fe deficiency-induced physiological responses still remains to be demonstrated. In the present research, we demonstrated that the lateral root development of red clover (Trifolium pretense L.) was significantly enhanced by Fe deficient treatment, and the total lateral root number correlated well with the Fe deficiency-induced ferric chelate reductase (FCR) activity. By analyzing the results from Dasgan et al. (2002), we also found that although the two tomato genotypes line227/1 (P1) and Roza (P2) and their reciprocal F1 hybrid lines ("P1 × P2" and "P2 × P1 ") were cultured under two different lower Fe conditions (10-6 and 10-7 M FeEDDHA), their FCR activities are significantly correlated with the lateral root number. More interestingly, the -Fe chlorosis tolerant ability of these four tomato lines displays similar trends with the lateral root density. Taking these results together, it was proposed that the Fe deficiency-induced increases of the lateral root should play an important role in resistance to Fe deficiency, which may act as harnesses of a useful trait for the selection and breeding of more Fe-efficiant crops among the genotypes that have evolved a Fe deficiency-induced Fe uptake system.

  20. Iron deficiency and iron deficiency anemia in women.

    Science.gov (United States)

    Coad, Jane; Pedley, Kevin

    2014-01-01

    Iron deficiency is one of the most common nutritional problems in the world and disproportionately affects women and children. Stages of iron deficiency can be characterized as mild deficiency where iron stores become depleted, marginal deficiency where the production of many iron-dependent proteins is compromised but hemoglobin levels are normal and iron deficiency anemia where synthesis of hemoglobin is decreased and oxygen transport to the tissues is reduced. Iron deficiency anemia is usually assessed by measuring hemoglobin levels but this approach lacks both specificity and sensitivity. Failure to identify and treat earlier stages of iron deficiency is concerning given the neurocognitive implications of iron deficiency without anemia. Most of the daily iron requirement is derived from recycling of senescent erythrocytes by macrophages; only 5-10 % comes from the diet. Iron absorption is affected by inhibitors and enhancers of iron absorption and by the physiological state. Inflammatory conditions, including obesity, can result in iron being retained in the enterocytes and macrophages causing hypoferremia as a strategic defense mechanism to restrict iron availability to pathogens. Premenopausal women usually have low iron status because of iron loss in menstrual blood. Conditions which further increase iron loss, compromise absorption or increase demand, such as frequent blood donation, gastrointestinal lesions, athletic activity and pregnancy, can exceed the capacity of the gastrointestinal tract to upregulate iron absorption. Women of reproductive age are at particularly high risk of iron deficiency and its consequences however there is a controversial argument that evolutionary pressures have resulted in an iron deficient phenotype which protects against infection.

  1. Organic matter production response to CO2 increase in open subarctic plankton communities: Comparison of six microcosm experiments under iron-limited and -enriched bloom conditions

    Science.gov (United States)

    Yoshimura, Takeshi; Sugie, Koji; Endo, Hisashi; Suzuki, Koji; Nishioka, Jun; Ono, Tsuneo

    2014-12-01

    Increase in seawater pCO2 and the corresponding decrease in pH caused by the increasing atmospheric CO2 concentration (i.e., ocean acidification) may affect organic matter production by phytoplankton communities. Organic matter production forms the basis of marine food webs and plays a crucial role in oceanic CO2 uptake through the biological carbon pump, and hence will potentially affect future marine ecosystem dynamics. However, responses of organic matter production in open ocean plankton ecosystems to CO2 increase have not been fully examined. We conducted on-deck microcosm experiments using high nutrient, low chlorophyll (HNLC) waters in the western subarctic Pacific and oceanic Bering Sea basin in summer 2008 and 2009, respectively, to examine the impacts of elevated CO2 on particulate and dissolved organic matter (i.e., POM and DOM, respectively) production. Iron deficient natural plankton communities were incubated for 7-14 days under multiple CO2 levels with and without iron enrichments (hereafter +Fe and -Fe treatments, respectively). By combining with our previous experiments at two sites, we created a comprehensive dataset on responses of organic matter production to CO2 increase during macronutrient replete conditions in HNLC waters. Significant differences in net particulate organic carbon production among CO2 treatments were observed only in the -Fe treatments, whereas that in net dissolved organic carbon production were mainly observed in the +Fe treatments, suggesting that CO2 may affect different processes depending on the Fe nutritional status. However, impacts of CO2 were not consistent among experiments and were much smaller than the consistent positive effects of Fe enrichment. In contrast, no significant differences among the CO2 treatments were observed for organic carbon partitioning into POM and DOM, and carbon to nitrogen ratio of net produced POM. We conclude that CO2 does not play a primary role, but could have secondary effects on

  2. Improved Yield of High Molecular Weight DNA Coincides with Increased Microbial Diversity Access from Iron Oxide Cemented Sub-Surface Clay Environments

    Energy Technology Data Exchange (ETDEWEB)

    Hurt, Jr., Richard Ashley [ORNL; Moberly, James G [ORNL; Shakya, Migun [ORNL; Vishnivetskaya, T. [University of Tennessee, Knoxville (UTK); Elias, Dwayne A [ORNL

    2014-01-01

    Despite more than three decades of progress, efficient nucleic acid extraction from microbial communities has remained difficult, particularly from clay environments. Lysis with concentrated guanidine followed by concentrated sodium phosphate extraction supported DNA and RNA recovery from high iron, low humus content clay. Alterating the extraction pH or using other ionic solutions (Na2SO4 and NH4H2PO4) yielded no detectable nucleic acid. DNA recovered using a lysis solution with 500 mM phosphate buffer (PB) followed by a 1 M PB wash was 15.22 2.33 g DNA/g clay, with most DNA consisting of >20 Kb fragments, compared to 2.46 0.25 g DNA/g clay with the Powerlyzer soil DNA system (MoBio). Increasing [PB] in the lysis reagent coincided with increasing DNA fragment length. Rarefaction plots based on16S rRNA (V1/V3 region) pyrosequencing libraries from A-horizon and clay soils showed an ~80% and ~400% larger accessed diversity compared to a previous grinding protocol or the Powerlyzer soil DNA system, respectively. The observed diversity from the Firmicutes showed the strongest increase with >3-fold more bacterial species recovered using this system. Additionally, some OTU s having more than 100 sequences in these libraries were absent in samples extracted using the PowerLyzer reagents or the previous lysis method.

  3. Reactive solute transport in an acidic stream: Experimental pH increase and simulation of controls on pH, aluminum, and iron

    Science.gov (United States)

    Broshears, R.E.; Runkel, R.L.; Kimball, B.A.; McKnight, Diane M.; Bencala, K.E.

    1996-01-01

    Solute transport simulations quantitatively constrained hydrologic and geochemical hypotheses about field observations of a pH modification in an acid mine drainage stream. Carbonate chemistry, the formation of solid phases, and buffering interactions with the stream bed were important factors in explaining the behavior of pH, aluminum, and iron. The precipitation of microcrystalline gibbsite accounted for the behavior of aluminum; precipitation of Fe(OH)3 explained the general pattern of iron solubility. The dynamic experiment revealed limitations on assumptions that reactions were controlled only by equilibrium chemistry. Temporal variation in relative rates of photoreduction and oxidation influenced iron behavior. Kinetic limitations on ferrous iron oxidation and hydrous oxide precipitation and the effects of these limitations on field filtration were evident. Kinetic restraints also characterized interaction between the water column and the stream bed, including sorption and desorption of protons from iron oxides at the sediment-water interface and post-injection dissolution of the precipitated aluminum solid phase.

  4. Intravenous Iron Sucrose for Children With Iron Deficiency Anemia.

    Science.gov (United States)

    Kaneva, Kristiyana; Chow, Erika; Rosenfield, Cathy G; Kelly, Michael J

    2017-07-01

    Iron deficiency anemia (IDA) is the most common nutritional deficiency in children. Most children with IDA are treated with oral iron preparations. However, intravenous (IV) iron is an alternative for children with severe IDA who have difficulty in adhering to or absorbing oral iron. We sought to describe the safety and effectiveness of IV iron sucrose for treatment of IDA in children. Pharmacy records of children who received IV iron sucrose at a children's hospital between 2004 and 2014 were reviewed. Laboratory markers of anemia and iron studies were obtained and preinfusion and postinfusion values were compared. Records were also reviewed for adverse reactions. A total of 142 patients received IV iron sucrose over 10 years. The mean age was 11 years, 9 months. One patient of 142 developed cough and wheezing during the infusion. No other adverse events were found. IV iron sucrose resulted in a statistically significant and clinically meaningful increase in hemoglobin, mean corpuscular volume, serum iron, ferritin, and % iron saturation, with a corresponding decrease in total iron binding capacity. The use of IV iron sucrose in pediatric patients with IDA is safe and leads to a moderate increase in hemoglobin and substantial improvement in iron studies.

  5. Iron age: novel targets for iron overload.

    Science.gov (United States)

    Casu, Carla; Rivella, Stefano

    2014-12-05

    Excess iron deposition in vital organs is the main cause of morbidity and mortality in patients affected by β-thalassemia and hereditary hemochromatosis. In both disorders, inappropriately low levels of the liver hormone hepcidin are responsible for the increased iron absorption, leading to toxic iron accumulation in many organs. Several studies have shown that targeting iron absorption could be beneficial in reducing or preventing iron overload in these 2 disorders, with promising preclinical data. New approaches target Tmprss6, the main suppressor of hepcidin expression, or use minihepcidins, small peptide hepcidin agonists. Additional strategies in β-thalassemia are showing beneficial effects in ameliorating ineffective erythropoiesis and anemia. Due to the suppressive nature of the erythropoiesis on hepcidin expression, these approaches are also showing beneficial effects on iron metabolism. The goal of this review is to discuss the major factors controlling iron metabolism and erythropoiesis and to discuss potential novel therapeutic approaches to reduce or prevent iron overload in these 2 disorders and ameliorate anemia in β-thalassemia.

  6. Intestinal Iron Homeostasis and Colon Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Yatrik M. Shah

    2013-06-01

    Full Text Available Colorectal cancer (CRC is the third most common cause of cancer-related deaths in industrialized countries. Understanding the mechanisms of growth and progression of CRC is essential to improve treatment. Iron is an essential nutrient for cell growth. Iron overload caused by hereditary mutations or excess dietary iron uptake has been identified as a risk factor for CRC. Intestinal iron is tightly controlled by iron transporters that are responsible for iron uptake, distribution, and export. Dysregulation of intestinal iron transporters are observed in CRC and lead to iron accumulation in tumors. Intratumoral iron results in oxidative stress, lipid peroxidation, protein modification and DNA damage with consequent promotion of oncogene activation. In addition, excess iron in intestinal tumors may lead to increase in tumor-elicited inflammation and tumor growth. Limiting intratumoral iron through specifically chelating excess intestinal iron or modulating activities of iron transporter may be an attractive therapeutic target for CRC.

  7. INCREASE OF FIRMNESS OF FETTLING OF DSP-2 AT USING THE BURNED MAGNESIA CALCIC FLUX IN CONDITIONS OF JSC «BMZ» – MANAGEMENT COMPANY OF HOLDING «BMK»

    Directory of Open Access Journals (Sweden)

    I. A. Bondarenko

    2013-01-01

    Full Text Available It is shown that the burned magnesia calcic flux of JSC “Complex “Magnesite” production is recommended for industrial use on all steel-smelting units of JSC “BMZ —management company BMK holding” on the basis of positive results on increase in firmness of fettling DSP-2.

  8. Iron deficiency.

    Science.gov (United States)

    Scrimshaw, N S

    1991-10-01

    The world's leading nutritional problem is iron deficiency. 66% of children and women aged 15-44 years in developing countries have it. Further, 10-20% of women of childbearing age in developed countries are anemic. Iron deficiency is identified with often irreversible impairment of a child's learning ability. It is also associated with low capacity for adults to work which reduces productivity. In addition, it impairs the immune system which reduces the body's ability to fight infection. Iron deficiency also lowers the metabolic rate and the body temperature when exposed to cold. Hemoglobin contains nearly 73% of the body's iron. This iron is always being recycled as more red blood cells are made. The rest of the needed iron does important tasks for the body, such as binds to molecules that are reservoirs of oxygen for muscle cells. This iron comes from our diet, especially meat. Even though some plants, such as spinach, are high in iron, the body can only absorb 1.4-7% of the iron in plants whereas it can absorb 20% of the iron in red meat. In many developing countries, the common vegetarian diets contribute to high rates of iron deficiency. Parasitic diseases and abnormal uterine bleeding also promote iron deficiency. Iron therapy in anemic children can often, but not always, improve behavior and cognitive performance. Iron deficiency during pregnancy often contributes to maternal and perinatal mortality. Yet treatment, if given to a child in time, can lead to normal growth and hinder infections. However, excess iron can be damaging. Too much supplemental iron in a malnourished child promotes fatal infections since the excess iron is available for the pathogens use. Many countries do not have an effective system for diagnosing, treating, and preventing iron deficiency. Therefore a concerted international effort is needed to eliminate iron deficiency in the world.

  9. Video Meteor Fluxes

    Science.gov (United States)

    Campbell-Brown, M. D.; Braid, D.

    2011-01-01

    The flux of meteoroids, or number of meteoroids per unit area per unit time, is critical for calibrating models of meteoroid stream formation and for estimating the hazard to spacecraft from shower and sporadic meteors. Although observations of meteors in the millimetre to centimetre size range are common, flux measurements (particularly for sporadic meteors, which make up the majority of meteoroid flux) are less so. It is necessary to know the collecting area and collection time for a given set of observations, and to correct for observing biases and the sensitivity of the system. Previous measurements of sporadic fluxes are summarized in Figure 1; the values are given as a total number of meteoroids striking the earth in one year to a given limiting mass. The Gr n et al. (1985) flux model is included in the figure for reference. Fluxes for sporadic meteoroids impacting the Earth have been calculated for objects in the centimeter size range using Super-Schmidt observations (Hawkins & Upton, 1958); this study used about 300 meteors, and used only the physical area of overlap of the cameras at 90 km to calculate the flux, corrected for angular speed of meteors, since a large angular speed reduces the maximum brightness of the meteor on the film, and radiant elevation, which takes into account the geometric reduction in flux when the meteors are not perpendicular to the horizontal. They bring up corrections for both partial trails (which tends to increase the collecting area) and incomplete overlap at heights other than 90 km (which tends to decrease it) as effects that will affect the flux, but estimated that the two effects cancelled one another. Halliday et al. (1984) calculated the flux of meteorite-dropping fireballs with fragment masses greater than 50 g, over the physical area of sky accessible to the MORP fireball cameras, counting only observations in clear weather. In the micron size range, LDEF measurements of small craters on spacecraft have been used to

  10. Climatically sensitive transfer of iron to maritime Antarctic ecosystems by surface runoff

    Science.gov (United States)

    Hodson, Andy; Nowak, Aga; Sabacka, Marie; Jungblut, Anne; Navarro, Francisco; Pearce, David; Ávila-Jiménez, María Luisa; Convey, Peter; Vieira, Gonçalo

    2017-01-01

    Iron supplied by glacial weathering results in pronounced hotspots of biological production in an otherwise iron-limited Southern Ocean Ecosystem. However, glacial iron inputs are thought to be dominated by icebergs. Here we show that surface runoff from three island groups of the maritime Antarctic exports more filterable (iron (6–81 kg km−2 a−1) than icebergs (0.0–1.2 kg km−2 a−1). Glacier-fed streams also export more acid-soluble iron (27.0–18,500 kg km−2 a−1) associated with suspended sediment than icebergs (0–241 kg km−2 a−1). Significant fluxes of filterable and sediment-derived iron (1–10 Gg a−1 and 100–1,000 Gg a−1, respectively) are therefore likely to be delivered by runoff from the Antarctic continent. Although estuarine removal processes will greatly reduce their availability to coastal ecosystems, our results clearly indicate that riverine iron fluxes need to be accounted for as the volume of Antarctic melt increases in response to 21st century climate change. PMID:28198359

  11. Methane Flux

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Methane (CH4) flux is the net rate of methane exchange between an ecosystem and the atmosphere. Data of this variable were generated by the USGS LandCarbon project...

  12. Reply to the comment by L Helseth on "Bismuth-induced increase of the magneto-optical effects in iron garnets"

    CERN Document Server

    Zenkov, A V

    2003-01-01

    The discussion concerns the origin of the giant Faraday rotation in bismuth- and lead-doped iron garnets. It is convincingly shown that this effect is due to the covalent admixture of Bi(Pb)6p-wavefunctions to oxygen 2p-orbitals in octahedral and tetrahedral Fe-O clusters of iron garnets. The crucial role of the quantum-chemical computation of electronic structure of such clusters is emphasized. (reply)

  13. Overendocytosis of superparamagnetic iron oxide particles increases apoptosis and triggers autophagic cell death in human osteosarcoma cell under a spinning magnetic field.

    Science.gov (United States)

    Du, Shaohua; Li, Jingxiong; Du, Chonghua; Huang, Zhongming; Chen, Guangnan; Yan, Weiqi

    2017-02-07

    The toxicity of superparamagnetic iron oxide nanoparticles (SPIONs) is still a vital topic of debate and the mechanisms remain unclear. In the present study, overdose SPIONs could induce osteosarcoma cell death and the effects were exaggerated when combined with spinning magnetic field (SMF). In the combination group, mitochondrial transmembrane potential decrease more obviously and reactive oxygen species (ROS) was found to generate much higher in line with that of the apoptosis ratio. Meantime, amount of autophagy was induced. Inhibiting the autophagy generation by 3-methyladenine (3-MA) increase cell viability but decrease the caspase 3/7 and caspase 8 activities in combination groups, and inhibiting apoptosis took the same effect. In the end, the SPIONs effects on xenograft mice was examed by intratumoral injection. The result showed that the combination group could greatly decrease the tumor volume and prolong the lifespan of mice. In sum, the result indicated that overdose SPIONs induced ROS generation, and excessive ROS induced by combination of SPIONs and SMF contribute to autophagy formation, which play a apoptosis-promoting role that formed as a platform to recruits initiate the caspase activities.

  14. Extruded rice grains fortified with zinc, iron, and vitamin A increase zinc status of Thai school children when incorporated into a school lunch program.

    Science.gov (United States)

    Pinkaew, Siwaporn; Winichagoon, Pattanee; Hurrell, Richard F; Wegmuller, Rita

    2013-03-01

    Iron (Fe), zinc (Zn), and vitamin A (VA) deficiencies are common among children in developing countries and often occur in the same individual. Rice is widely consumed in the developing countries of Asia and the low phytate in polished rice makes it ideal for Zn and Fe fortification. Triple-fortified rice grains with Zn, Fe, and VA were produced using hot extrusion technology. The main objective of the present study was to determine the impact of triple-fortified extruded rice on Zn status in school children in Southern Thailand. Although serum zinc was the main outcome indicator, Fe and VA status were also assessed. School children with low serum zinc (n = 203) were randomized to receive either triple-fortified rice (n = 101) or natural control rice (n = 102) as a component of school lunch meals for 5 mo. Serum Zn, hemoglobin, serum ferritin, serum retinol, and C-reactive protein were measured at baseline and at the end of the study. After the intervention, serum Zn increased (P fortified rice (P extruded rice grains is efficacious and can be used to improve Zn status in school children.

  15. Iron deficiency anemia at admission for labor and delivery is associated with an increased risk for Cesarean section and adverse maternal and neonatal outcomes.

    Science.gov (United States)

    Drukker, Lior; Hants, Yael; Farkash, Rivka; Ruchlemer, Rosa; Samueloff, Arnon; Grisaru-Granovsky, Sorina

    2015-12-01

    Maternal iron deficiency anemia (IDA) impacts placenta and fetus. We evaluated effects of IDA at admission for delivery on cesarean rates, and adverse maternal and neonatal outcomes. Medical records from Jerusalem (2005-2012) identified women with a live-birth singleton fetus in cephalic presentation of any gestational age and excluded planned cesarean, chronic/gestational diseases identified with anemia. Study population was divided into anemic and non-anemic women using WHO criteria. cesarean rate, and adverse outcomes (maternal: packed cells transfusion, early post-partum hemorrhage, preterm delivery; and neonatal: 5' Apgar Neonatal Intensive Care Unit [NICU] admission, extreme birthweights). Continuous variable analysis and multivariate backward step-wise logistic regression models were prepared with Odds Ratios (OR) and 95% confidence intervals (CI). In all, 96,066 deliveries were registered, of which 75,660 (78.8%) were included. IDA was present in 7,977 women (10.5%). Anemia at birth was significantly associated with cesarean section (OR 1.30; 95%CI, 1.13-1.49, p anemia at delivery is associated with an increased risk for cesarean section and adverse maternal and neonatal outcomes in otherwise healthy women. Monitoring/correction of hemoglobin concentrations even in late pregnancy may prevent these adverse events. © 2015 AABB.

  16. The irony of iron -- biogenic iron oxides as an iron source to the ocean

    Directory of Open Access Journals (Sweden)

    David eEmerson

    2016-01-01

    Full Text Available Primary productivity in at least a third of the sunlit open ocean is thought to be iron-limited. Primary sources of dissolved iron (dFe to the ocean are hydrothermal venting, flux from the sediments along continental margins, and airborne dust. This article provides a general review of sources of hydrothermal and sedimentary iron to the ocean, and speculates upon the role that iron-cycling microbes play in controlling iron dynamics from these sources. Special attention is paid to iron-oxidizing bacteria (FeOB that live by oxidizing iron and producing biogenic iron oxides as waste products. The presence and ubiquity of FeOB both at hydrothermal systems and in sediments is only beginning to be appreciated. The biogenic oxides they produce have unique properties that could contribute significantly to the dynamics of dFe in the ocean. Changes in the physical and chemical characteristics of the ocean due to climate change and ocean acidification will undoubtedly impact the microbial iron cycle. A better understanding of the contemporary role of microbes in the iron cycle will help in predicting how these changes could ultimately influence marine primary productivity.

  17. A randomized trial of iron isomaltoside versus iron sucrose in patients with iron deficiency anemia.

    Science.gov (United States)

    Derman, Richard; Roman, Eloy; Modiano, Manuel R; Achebe, Maureen M; Thomsen, Lars L; Auerbach, Michael

    2017-03-01

    Iron deficiency anemia (IDA) is common in many chronic diseases, and intravenous (IV) iron offers a rapid and efficient iron correction. This trial compared the efficacy and safety of iron isomaltoside and iron sucrose in patients with IDA who were intolerant of, or unresponsive to, oral iron. The trial was an open-label, comparative, multi-center trial. Five hundred and eleven patients with IDA from different causes were randomized 2:1 to iron isomaltoside or iron sucrose and followed for 5 weeks. The cumulative dose of iron isomaltoside was based on body weight and hemoglobin (Hb), administered as either a 1000 mg infusion over more than 15 minutes or 500 mg injection over 2 minutes. The cumulative dose of iron sucrose was calculated according to Ganzoni and administered as repeated 200 mg infusions over 30 minutes. The mean cumulative dose of iron isomaltoside was 1640.2 (standard deviation (SD): 357.6) mg and of iron sucrose 1127.9 (SD: 343.3) mg. The primary endpoint was the proportion of patients with a Hb increase ≥2 g/dL from baseline at any time between weeks 1-5. Both non-inferiority and superiority were confirmed for the primary endpoint, and a shorter time to Hb increase ≥2 g/dL was observed with iron isomaltoside. For all biochemical efficacy parameters, faster and/or greater improvements were found with iron isomaltoside. Both treatments were well tolerated; 0.6% experienced a serious adverse drug reaction. Iron isomaltoside was more effective than iron sucrose in achieving a rapid improvement in Hb. Furthermore, iron isomaltoside has an advantage over iron sucrose in allowing higher cumulative dosing in fewer administrations. Both treatments were well tolerated in a broad population with IDA.

  18. Physics of iron

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, O.

    1993-10-01

    This volume comprises papers presented at the AIRAPT Conference, June 28 to July 1993. The iron sessions at the meeting were identified as the Second Ironworkers Convention. The renewal of interest stems from advances in technologies in both diamond-anvil cell (DAC) and shock wave studies as well as from controversies arising from a lack of consensus among both experimentalists and theoreticians. These advances have produced new data on iron in the pressure-temperature regime of interest for phase diagrams and for temperatures of the core/mantle and inner-core/outer-core boundaries. Particularly interesting is the iron phase diagram inferred from DAC studies. A new phase, {beta}, with a {gamma}-{beta}-{epsilon} triple point at about 30 GPa and 1190 K, and possible sixth phase, {omega}, with an {epsilon}-{Theta}-melt triple point at about 190 GPa and 4000 K are deemed possible. The importance of the equation of state of iron in consideration of Earth`s heat budget and the origin of its magnetic field invoke the interest of theoreticians who argue on the basis of molecular dynamics and other first principles methods. While the major thrust of both meetings was on the physics of pure iron, there was notable contributions on iron alloys. Hydrogen-iron alloys, iron-sulfur liquids, and the comparability to rhenium in phase diagram studies are discussed. The knowledge of the physical properties of iron were increased by several contributions.

  19. The chelation of colonic luminal iron by a unique sodium alginate for the improvement of gastrointestinal health.

    Science.gov (United States)

    Horniblow, Richard D; Latunde-Dada, Gladys O; Harding, Stephen E; Schneider, Melanie; Almutairi, Fahad M; Sahni, Manroy; Bhatti, Ahsan; Ludwig, Christian; Norton, Ian T; Iqbal, Tariq H; Tselepis, Chris

    2016-09-01

    Iron is an essential nutrient. However, in animal models, excess unabsorbed dietary iron residing within the colonic lumen has been shown to exacerbate inflammatory bowel disease and intestinal cancer. Therefore, the aims of this study were to screen a panel of alginates to identify a therapeutic that can chelate this pool of iron and thus be beneficial for intestinal health. Using several in vitro intestinal models, it is evident that only one alginate (Manucol LD) of the panel tested was able to inhibit intracellular iron accumulation as assessed by iron-mediated ferritin induction, transferrin receptor expression, intracellular (59) Fe concentrations, and iron flux across a Caco-2 monolayer. Additionally, Manucol LD suppressed iron absorption in mice, which was associated with increased fecal iron levels indicating iron chelation within the gastrointestinal tract. Furthermore, the bioactivity of Manucol LD was found to be highly dependent on both its molecular weight and its unique compositional sequence. Manucol LD could be useful for the chelation of this detrimental pool of unabsorbed iron and it could be fortified in foods to enhance intestinal health. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A quantitative method for silica flux evaluation

    Science.gov (United States)

    Schonewille, R. H.; O'Connell, G. J.; Toguri, J. M.

    1993-02-01

    In the smelting of copper and copper/nickel concentrates, the role of silica flux is to aid in the removal of iron by forming a slag phase. Alternatively, the role of flux may be regarded as a means of controlling the formation of magnetite, which can severely hinder the operation of a furnace. To adequately control the magnetite level, the flux must react rapidly with all of the FeO within the bath. In the present study, a rapid method for silica flux evaluation that can be used directly in the smelter has been developed. Samples of flux are mixed with iron sulfide and magnetite and then smelted at a temperature of 1250 °C. Argon was swept over the reaction mixture and analyzed continuously for sulfur dioxide. The sulfur dioxide concentration with time was found to contain two peaks, the first one being independent of the flux content of the sample. A flux quality parameter has been defined as the height-to-time ratio of the second peak. The value of this parameter for pure silica is 5100 ppm/min. The effects of silica content, silica particle size, and silicate mineralogy were investigated. It was found that a limiting flux quality is achieved for particle sizes less than 0.1 mm in diameter and that fluxes containing feldspar are generally of a poorer quality. The relative importance of free silica and melting point was also studied using synthetic flux mixtures, with free silica displaying the strongest effect.

  1. Brain iron homeostasis.

    Science.gov (United States)

    Moos, Torben

    2002-11-01

    deficiency altered the cellular content of these proteins so that transferrin receptors were higher and ferritin lower. The transport of iron from brain to blood was addressed in the last part of the thesis. It was found that in the case of iron and transferrin, there is no evidence showing other significant routes of transport from the brain extracellular fluid into the blood than drainage to the ventricular system followed by export to the blood via the arachnoid villi. The turnover of transferrin in the CSF was found to be very high. For reasons mentioned above, transferrin of the CSF is of little significance for transport and cellular delivery of iron to transferrin receptor-expressing neurons. Instead, transferrin of the CSF probably plays a significant role for neutralization and export to the blood of metals, including iron. Once appearing in blood, transferrin of the CSF was degraded at the same rate as intravenously injected transferrin, which indicates that the transferrin of CSF is not altered to an extent that changes its catabolism during the passage from CSF to blood plasma. The metabolism of iron in the developing brain was found to differ markedly when compared to that of the adult brain. A developing regulated transfer of iron to the brain was reflected morphologically by a higher content of transferrin receptors and non-heme iron in endothelial cells of the developing rat brain than in the adult. Neurons had a very low level of transferrin receptors. After about 20 days of age, iron transport into the brain decreased rapidly, and transferrin receptors appeared on neurons. Iron and transferrin injected into the ventricular system of the developing brain were much more widely distributed in the brain parenchyma than in the adult brain. This high accumulation of substances injected into the ventricles in young animals is probably due to the lower rate of production and turnover of CSF, which will increase the time available for diffusion of proteins into the

  2. Native iron

    DEFF Research Database (Denmark)

    Brooks, Charles Kent

    2015-01-01

    , a situation unique in the Solar System. In such a world, iron metal is unstable and, as we all know, oxidizes to the ferric iron compounds we call 'rust'. If we require iron metal it must be produced at high temperatures by reacting iron ore, usually a mixture of ferrous (Fe2+) and ferric (Fe3+) oxides (Fe2O3......, hematite, or FeO.Fe2O3, magnetite), with carbon in the form of coke. This is carried out in a blast furnace. Although the Earth's core consists of metallic iron, which may also be present in parts of the mantle, this is inaccessible to us, so we must make our own. In West Greenland, however, some almost...... unique examples of iron metal, otherwise called 'native iron' or 'telluric iron', occur naturally....

  3. Adiposity in women and children from transition countries predicts decreased iron absorption, iron deficiency and a reduced response to iron fortification

    NARCIS (Netherlands)

    Zimmermann, M.B.; Zeder, C.; Muthayya, S.; Winichagoon, P.; Chaouki, N.; Aeberli, I.; Hurrell, R.F.

    2008-01-01

    Background: Overweight is increasing in transition countries, while iron deficiency remains common. In industrialized countries, greater adiposity increases risk of iron deficiency. Higher hepcidin levels in obesity may reduce dietary iron absorption. Therefore, we investigated the association betwe

  4. Adiposity in women and children from transition countries predicts decreased iron absorption, iron deficiency and a reduced response to iron fortification

    NARCIS (Netherlands)

    Zimmermann, M.B.; Zeder, C.; Muthayya, S.; Winichagoon, P.; Chaouki, N.; Aeberli, I.; Hurrell, R.F.

    2008-01-01

    Background: Overweight is increasing in transition countries, while iron deficiency remains common. In industrialized countries, greater adiposity increases risk of iron deficiency. Higher hepcidin levels in obesity may reduce dietary iron absorption. Therefore, we investigated the association

  5. [Iron deficiency and iron deficiency anemia are global health problems].

    Science.gov (United States)

    Dahlerup, Jens; Lindgren, Stefan; Moum, Björn

    2015-03-10

    Iron deficiency and iron deficiency anemia are global health problems leading to deterioration in patients' quality of life and more serious prognosis in patients with chronic diseases. The cause of iron deficiency and anemia is usually a combination of increased loss and decreased intestinal absorption and delivery from iron stores due to inflammation. Oral iron is first line treatment, but often hampered by intolerance. Intravenous iron is safe, and the preferred treatment in patients with chronic inflammation and bowel diseases. The goal of treatment is normalisation of hemoglobin concentration and recovery of iron stores. It is important to follow up treatment to ensure that these objectives are met and also long-term in patients with chronic iron loss and/or inflammation to avoid recurrence of anemia.

  6. Sedimentary and mineral dust sources of dissolved iron to the World Ocean

    Directory of Open Access Journals (Sweden)

    J. K. Moore

    2007-04-01

    Full Text Available A worldwide database of dissolved iron observations is used to improve simulations of the marine iron cycle within a global-scale, Biogeochemical Elemental Cycling (BEC ocean model. Modifications to the model include: 1 an improved particle scavenging parameterization based on the sinking mass flux of particulate organic material, biogenic silica, calcium carbonate, and mineral dust particles; 2 desorption of dissolved iron from sinking particles; and 3 an improved sedimentary source for dissolved iron. Most scavenged iron (90% is put on sinking particles to remineralize deeper in the water column. The model-observation mismatches are greatly reduced both in surface waters and in the deeper ocean. Inclusion of desorption has little effect on surface water iron concentrations where adsorption/scavenging is strongly dominant, but significantly increases simulated iron concentrations in the deep ocean. Our results suggest that there must be substantial removal of dissolved iron from subsurface waters (where iron concentrations are <0.6 nM in most regions to match observed distributions. Aggregation and removal on sinking particles of Fe bound to organic colloids is a likely mechanism.

    The improved BEC model is used to address the relative contributions of mineral dust and marine sediments in driving ocean productivity and observed dissolved iron distributions. The sedimentary iron source from the continental margins has a strong impact on open ocean iron concentrations, particularly in the North Pacific. Plumes of elevated dissolved iron concentrations develop at depth in the Southern Ocean, extending from source regions in the SW Atlantic and around New Zealand. The lower particle flux and weaker scavenging in this region allows the continental iron source to be advected far from source areas. Both the margin sediment and mineral dust Fe sources significantly impact global scale primary production, export production, and nitrogen fixation

  7. sAPP modulates iron efflux from brain microvascular endothelial cells by stabilizing the ferrous iron exporter ferroportin.

    Science.gov (United States)

    McCarthy, Ryan C; Park, Yun-Hee; Kosman, Daniel J

    2014-07-01

    A sequence within the E2 domain of soluble amyloid precursor protein (sAPP) stimulates iron efflux. This activity has been attributed to a ferroxidase activity suggested for this motif. We demonstrate that the stimulation of efflux supported by this peptide and by sAPPα is due to their stabilization of the ferrous iron exporter, ferroportin (Fpn), in the plasma membrane of human brain microvascular endothelial cells (hBMVEC). The peptide does not bind ferric iron explaining why it does not and thermodynamically cannot promote ferrous iron autoxidation. This peptide specifically pulls Fpn down from the plasma membrane of hBMVEC; based on these results, FTP, for ferroportin-targeting peptide, correctly identifies the function of this peptide. The data suggest that in stabilizing Fpn via the targeting due to the FTP sequence, sAPP will increase the flux of iron into the cerebral interstitium. This inference correlates with the observation of significant iron deposition in the amyloid plaques characteristic of Alzheimer's disease. © 2014 The Authors.

  8. sAPP modulates iron efflux from brain microvascular endothelial cells by stabilizing the ferrous iron exporter ferroportin

    Science.gov (United States)

    McCarthy, Ryan C; Park, Yun-Hee; Kosman, Daniel J

    2014-01-01

    A sequence within the E2 domain of soluble amyloid precursor protein (sAPP) stimulates iron efflux. This activity has been attributed to a ferroxidase activity suggested for this motif. We demonstrate that the stimulation of efflux supported by this peptide and by sAPPα is due to their stabilization of the ferrous iron exporter, ferroportin (Fpn), in the plasma membrane of human brain microvascular endothelial cells (hBMVEC). The peptide does not bind ferric iron explaining why it does not and thermodynamically cannot promote ferrous iron autoxidation. This peptide specifically pulls Fpn down from the plasma membrane of hBMVEC; based on these results, FTP, for ferroportin-targeting peptide, correctly identifies the function of this peptide. The data suggest that in stabilizing Fpn via the targeting due to the FTP sequence, sAPP will increase the flux of iron into the cerebral interstitium. This inference correlates with the observation of significant iron deposition in the amyloid plaques characteristic of Alzheimer’s disease. PMID:24867889

  9. Iron Homeostasis and Nutritional Iron Deficiency123

    OpenAIRE

    2011-01-01

    Nonheme food ferritin (FTN) iron minerals, nonheme iron complexes, and heme iron contribute to the balance between food iron absorption and body iron homeostasis. Iron absorption depends on membrane transporter proteins DMT1, PCP/HCP1, ferroportin (FPN), TRF2, and matriptase 2. Mutations in DMT1 and matriptase-2 cause iron deficiency; mutations in FPN, HFE, and TRF2 cause iron excess. Intracellular iron homeostasis depends on coordinated regulation of iron trafficking and storage proteins enc...

  10. Investigation on positive correlation of increased brain iron deposition with cognitive impairment in Alzheimer disease by using quantitative MR R2' mapping.

    Science.gov (United States)

    Qin, Yuanyuan; Zhu, Wenzhen; Zhan, Chuanjia; Zhao, Lingyun; Wang, Jianzhi; Tian, Qing; Wang, Wei

    2011-08-01

    Brain iron deposition has been proposed to play an important role in the pathophysiology of Alzheimer disease (AD). The aim of this study was to investigate the correlation of brain iron accumulation with the severity of cognitive impairment in patients with AD by using quantitative MR relaxation rate R2' measurements. Fifteen patients with AD, 15 age- and sex-matched healthy controls, and 30 healthy volunteers underwent 1.5T MR multi-echo T2 mapping and T2* mapping for the measurement of transverse relaxation rate R2' (R2'=R2*-R2). We statistically analyzed the R2' and iron concentrations of bilateral hippocampus (HP), parietal cortex (PC), frontal white matter (FWM), putamen (PU), caudate nucleus (CN), thalamus (TH), red nucleus (RN), substantia nigra (SN), and dentate nucleus (DN) of the cerebellum for the correlation with the severity of dementia. Two-tailed t-test, Student-Newman-Keuls test (ANOVA) and linear correlation test were used for statistical analysis. In 30 healthy volunteers, the R2' values of bilateral SN, RN, PU, CN, globus pallidus (GP), TH, and FWM were measured. The correlation with the postmortem iron concentration in normal adults was analyzed in order to establish a formula on the relationship between regional R2' and brain iron concentration. The iron concentration of regions of interest (ROI) in AD patients and controls was calculated by this formula and its correlation with the severity of AD was analyzed. Regional R2' was positively correlated with regional brain iron concentration in normal adults (r=0.977, PIron concentrations in bilateral HP, PC, PU, CN, and DN of patients with AD were significantly higher than those of the controls (Piron concentrations, especially in parietal cortex and hippocampus at the early stage of AD, were positively correlated with the severity of patients' cognitive impairment (Piron concentrations were, the more severe the cognitive impairment was. Regional R2' and iron concentration in parietal cortex and

  11. The Regulation of Iron Absorption and Homeostasis

    Science.gov (United States)

    Wallace, Daniel F

    2016-01-01

    Iron is an essential element in biology, required for numerous cellular processes. Either too much or too little iron can be detrimental, and organisms have developed mechanisms for balancing iron within safe limits. In mammals there are no controlled mechanisms for the excretion of excess iron, hence body iron homeostasis is regulated at the sites of absorption, utilisation and recycling. This review will discuss the discoveries that have been made in the past 20 years into advancing our understanding of iron homeostasis and its regulation. The study of iron-associated disorders, such as the iron overload condition hereditary haemochromatosis and various forms of anaemia have been instrumental in increasing our knowledge in this area, as have cellular and animal model studies. The liver has emerged as the major site of systemic iron regulation, being the location where the iron regulatory hormone hepcidin is produced. Hepcidin is a negative regulator of iron absorption and recycling, achieving this by binding to the only known cellular iron exporter ferroportin and causing its internalisation and degradation, thereby reducing iron efflux from target cells and reducing serum iron levels. Much of the research in the iron metabolism field has focussed on the regulation of hepcidin and its interaction with ferroportin. The advances in this area have greatly increased our knowledge of iron metabolism and its regulation and have led to the development of novel diagnostics and therapeutics for iron-associated disorders.

  12. Iron biofortification and homeostasis in transgenic cassava roots expressing an algal iron assimilatory protein, FEA1

    OpenAIRE

    2012-01-01

    We have engineered the starchy root crop cassava (Manihot esculenta) to express the Chlamydomonas reinhardtii iron assimilatory protein, FEA1, in roots to enhance its nutritional qualities. Iron levels in mature cassava storage roots were increased from 10 to 36 ppm in the highest iron accumulating transgenic lines. These iron levels are sufficient to meet the minimum daily requirement for iron in a 500 gm meal. Significantly, the expression of the FEA1 protein did not alter iron levels in l...

  13. Genetic reduction of antinutrients in common bean (Phaseolus vulgaris L.) seed, increases nutrients and in vitro iron bioavailability without depressing main agronomical traits

    Science.gov (United States)

    In common bean, lectins, phytic acid, polyphenols and tannins exert major antinutritional effects when grains are consumed as a staple food. Reduced iron and zinc absorption, low protein digestibility and high toxicity at the intestinal level are the causes of their antinutritional effect. To improv...

  14. Surviving a High Nutrient-Low Chlorophyll (HNLC) region: insights to the internal cycling of nitrogen and iron in the eastern equatorial Pacific

    Science.gov (United States)

    Rafter, P. A.; Mackey, K. R.; Rykaczewski, R. R.; Sigman, D. M.

    2016-02-01

    The marine nutrient nitrate is completely utilized in much of the global surface ocean, but persists in so-called High-Nutrient, Low chlorophyll (HNLC) regions where primary production is limited by iron. Accordingly, the addition of iron to equatorial Pacific HNLC waters increases nitrate utilization and therefore decreases nitrate concentrations [NO3-]. However, seasonal variability in HNLC surface [NO3-] occurs alongside changes in upper ocean upwelling and stratification despite little seasonality in the flux of iron. Here we use nitrate isotopes (δ15N and δ18O) to show that seasonal variability of eastern equatorial Pacific HNLC surface [NO3-] is caused by changes in the degree of nitrate utilization that cannot be explained by the available iron flux. The available iron can account for less than 3 μmol/kg of nitrate utilization (19% of source water [NO3-]) even though the observed nitrate drawdown ranges from 7 μmol/kg (during boreal fall when upwelling is strongest) to >11 μmol/kg (during boreal spring when upwelling is weakest). Based on these observations, we propose that the photosynthetic picoplankton (e.g., Prochlorococcus and Synechococcus) with a low iron / carbon requirement preferentially consume recycled N compounds and that much of the recycled iron fuels nitrate assimilation by larger phytoplankton (e.g., diatoms). Slower upwelling rates during boreal spring and El Niño events therefore allow for more internal cycling of iron and increased nitrate utilization, explaining the seasonal variability in surface nitrate concentrations.

  15. [Iron deficiency, thrombocytosis and thromboembolism].

    Science.gov (United States)

    Evstatiev, Rayko

    2016-10-01

    Iron deficiency, the most common nutritional deficiency worldwide, is often associated with reactive thrombocytosis. Although secondary thrombocytosis is commonly considered to be harmless, there is accumulating evidence that elevated platelet counts, especially in the setting of iron deficiency, can lead to an increased thromboembolic risk in both arterial and venous systems. Here we present the mechanisms of iron deficiency-induced thrombocytosis and summarize its clinical consequences especially in patients with inflammatory bowel diseases, chronic kidney disease or cancer. We hypothesize that iron deficiency is an underestimated thromboembolic risk factor, and that iron replacement therapy can become an effective preventive strategy in a variety of clinical settings.

  16. Atmospheric Processing of Iron-Containing Mineral Dust Aerosol: A Major Source of Bioavailable Iron to Ocean Life

    Science.gov (United States)

    Rubasinghege, G. R. S.; Hurub, O. A.

    2015-12-01

    In the present day, it has become more apparent that redox reactions involving mineral dust are of great interest, especially for Fe-containing mineral dust, as they transported and deposited into certain regions of the ocean that dissolved iron is often a limiting nutrient for ocean life. Given that heterogeneous reactions of Fe-containing mineral dust with acidic gases and their precursors, i.e. HNO3, dimethyl sulfide( DMS), lead to lower pH environments, the amount of bioavailable iron can increase as they are transported through the atmosphere. The current work focuses on chemical and photochemical processing of Fe-containing mineral dust particles in the presence of HNO3, SO2 and DMS under atmospherically relevant conditions. Here, various spectroscopic methods are combined with dissolution measurements to investigate atmospheric processing of iron containing aerosol dust, with a specific focus on mineralogy and environmental conditions, i.e. pH, relative humidity, temperature and solar flux. Ilmenite (FeTiO3) is used as one of the proxies for Fe-containing minerals that have enough complexity to mimic the mineral dust, yet simple enough to know the details of the reaction pathways. During these studies, above factors are found to play significant roles in the dissolution of iron from mineral dust aerosol. More importantly, data suggest that presence of titanium in the lattice structure of ilmenite enhances iron dissolution, at least by 3-fold in a comparison with hematite. Further, growth and activity of ocean diatoms (Cyclotella meneghiniana) are monitored in the presence of Fe-containing mineral dust under the same conditions. Here, diatoms are added to the reactors containing pre-dissolved iron from a prior 48hr reaction. Results show a high correlation between the growth of diatoms and the amount of bioavailable from iron containing minerals. The current study thus highlights these important, yet unconsidered, factors in the atmospheric processing of iron

  17. Host iron status and iron supplementation mediate susceptibility to erythrocytic stage Plasmodium falciparum.

    Science.gov (United States)

    Clark, Martha A; Goheen, Morgan M; Fulford, Anthony; Prentice, Andrew M; Elnagheeb, Marwa A; Patel, Jaymin; Fisher, Nancy; Taylor, Steve M; Kasthuri, Raj S; Cerami, Carla

    2014-07-25

    Iron deficiency and malaria have similar global distributions, and frequently co-exist in pregnant women and young children. Where both conditions are prevalent, iron supplementation is complicated by observations that iron deficiency anaemia protects against falciparum malaria, and that iron supplements increase susceptibility to clinically significant malaria, but the mechanisms remain obscure. Here, using an in vitro parasite culture system with erythrocytes from iron-deficient and replete human donors, we demonstrate that Plasmodium falciparum infects iron-deficient erythrocytes less efficiently. In addition, owing to merozoite preference for young erythrocytes, iron supplementation of iron-deficient individuals reverses the protective effects of iron deficiency. Our results provide experimental validation of field observations reporting protective effects of iron deficiency and harmful effects of iron administration on human malaria susceptibility. Because recovery from anaemia requires transient reticulocytosis, our findings imply that in malarious regions iron supplementation should be accompanied by effective measures to prevent falciparum malaria.

  18. Simulated changes in dissolved Iron deposition to the global ocean driven by human activity

    Science.gov (United States)

    Myriokefalitakis, Stelios; Daskalakis, Nikos; Mihalopoulos, Nikos; Baker, Alex R.; Nenes, Athanassios; Kanakidou, Maria

    2015-04-01

    The global 3-d chemistry transport atmospheric model TM4-ECPL is used to simulate the atmospheric cycle of iron (Fe) and evaluate its atmospheric deposition to the ocean by accounting for both Fe natural and anthropogenic sources as well as of the proton and ligand promoted iron mobilisation from dust aerosol. Model evaluation is performed by comparison to available observations. Present day dissolved Fe deposition presents strong spatial and temporal variability with an annual deposition flux about 0.489 Tg(Fe)/yr from which about 25% are deposited over the ocean. The model simulates past, present and future iron deposition accounting for changes in anthropogenic emissions. We show that dissolved iron deposition has significantly increased since 1850 while it is expected to decrease in the future due to air pollution regulations. These changes affect the atmospheric dissolved Fe supply to High-Nutrient-Low-Chlorophyll oceanic areas characterized by Fe scarcity.

  19. Side effects and accounting aspects of hypothetical large-scale Southern Ocean iron fertilization

    Directory of Open Access Journals (Sweden)

    A. Oschlies

    2010-12-01

    Full Text Available Recent suggestions to slow down the increase in atmospheric carbon dioxide have included ocean fertilization by addition of the micronutrient iron to Southern Ocean surface waters, where a number of natural and artificial iron fertilization experiments have shown that low ambient iron concentrations limit phytoplankton growth. Using a coupled carbon-climate model with the marine biology's response to iron addition calibrated against data from natural iron fertilization experiments, we examine biogeochemical side effects of a hypothetical large-scale Southern Ocean Iron Fertilization (OIF that need to be considered when attempting to account for possible OIF-induced carbon offsets. In agreement with earlier studies our model simulates an OIF-induced increase in local air-sea CO2 fluxes by about 73 GtC over a 100-year period, which amounts to about 48% of the OIF-induced increase in organic carbon export out of the fertilized area. Offsetting CO2 return fluxes outside the region and after stopping the fertilization at 1, 7, 10, 50, and 100 years are quantified for a typical accounting period of 100 years. For continuous Southern Ocean iron fertilization, the CO2 return flux outside the fertilized area cancels about 20% of the fertilization-induced CO2 air-sea flux within the fertilized area on a 100-yr timescale. This "leakage" effect has a radiative impact more than twice as large as the simulated enhancement of marine N2O emissions. Other side effects not yet discussed in terms of accounting schemes include a decrease in Southern Ocean oxygen levels and a simultaneous shrinking of tropical suboxic areas, and accelerated ocean acidification in the entire water column in the Southern Ocean at the expense of reduced globally-averaged surface-water acidification. A prudent approach to account for the OIF-induced carbon sequestration would account for global air-sea CO2 fluxes rather

  20. The Compton hump and variable blue wing in the extreme low-flux NuSTAR observations of 1H0707-495

    Science.gov (United States)

    Kara, E.; Fabian, A. C.; Lohfink, A. M.; Parker, M. L.; Walton, D. J.; Boggs, S. E.; Christensen, F. E.; Hailey, C. J.; Harrison, F. A.; Matt, G.; Reynolds, C. S.; Stern, D.; Zhang, W. W.

    2015-05-01

    The narrow-line Seyfert I galaxy, 1H0707-495, has been well observed in the 0.3-10 keV band, revealing a dramatic drop in flux in the iron Kα band, a strong soft excess, and short time-scale reverberation lags associated with these spectral features. In this paper, we present the first results of a deep 250-ks NuSTAR (Nuclear Spectroscopic Telescope Array) observation of 1H0707-495, which includes the first sensitive observations above 10 keV. Even though the NuSTAR observations caught the source in an extreme low-flux state, the Compton hump is still significantly detected. NuSTAR, with its high effective area above 7 keV, clearly detects the drop in flux in the iron Kα band, and by comparing these observations with archival XMM-Newton observations, we find that the energy of this drop increases with increasing flux. We discuss possible explanations for this, the most likely of which is that the drop in flux is the blue wing of the relativistically broadened iron Kα emission line. When the flux is low, the coronal source height is low, thus enhancing the most gravitationally redshifted emission.

  1. New insights into iron deficiency and iron deficiency anemia.

    Science.gov (United States)

    Camaschella, Clara

    2017-02-13

    Recent advances in iron metabolism have stimulated new interest in iron deficiency (ID) and its anemia (IDA), common conditions worldwide. Absolute ID/IDA, i.e. the decrease of total body iron, is easily diagnosed based on decreased levels of serum ferritin and transferrin saturation. Relative lack of iron in specific organs/tissues, and IDA in the context of inflammatory disorders, are diagnosed based on arbitrary cut offs of ferritin and transferrin saturation and/or marker combination (as the soluble transferrin receptor/ferritin index) in an appropriate clinical context. Most ID patients are candidate to traditional treatment with oral iron salts, while high hepcidin levels block their absorption in inflammatory disorders. New iron preparations and new treatment modalities are available: high-dose intravenous iron compounds are becoming popular and indications to their use are increasing, although long-term side effects remain to be evaluated.

  2. Iron deficiency and iron excess damage mitochondria and mitochondrial DNA in rats.

    Science.gov (United States)

    Walter, Patrick B; Knutson, Mitchell D; Paler-Martinez, Andres; Lee, Sonia; Xu, Yu; Viteri, Fernando E; Ames, Bruce N

    2002-02-19

    Approximately two billion people, mainly women and children, are iron deficient. Two studies examined the effects of iron deficiency and supplementation on rats. In study 1, mitochondrial functional parameters and mitochondrial DNA (mtDNA) damage were assayed in iron-deficient (mitochondrial respiratory control ratios and increased levels of oxidants in polymorphonuclear-leukocytes, as assayed by dichlorofluorescein (P mitochondrial malfunction. Although excess iron has been known to cause oxidative damage, the observation of oxidant-induced damage to mitochondria from iron deficiency has been unrecognized previously. Untreated iron deficiency, as well as excessive-iron supplementation, are deleterious and emphasize the importance of maintaining optimal iron intake.

  3. Iron deficiency in sports - definition, influence on performance and therapy

    OpenAIRE

    Clénin, German; Cordes, Mareike; Huber, Andreas; Schumacher, Yorck Olaf; Noack, Patrick; Scales, John; Kriemler, Susi

    2015-01-01

    Iron deficiency is frequent among athletes. All types of iron deficiency may affect physical performance and should be treated. The main mechanisms by which sport leads to iron deficiency are increased iron demand, elevated iron loss and blockage of iron absorption due to hepcidin bursts. As a baseline set of blood tests, haemoglobin, haematocrit, mean cellular volume, mean cellular haemoglobin and serum ferritin levels help monitor iron deficiency. In healthy male and female athletes >15 yea...

  4. Targeting Iron Deficiency Anemia in Heart Failure.

    Science.gov (United States)

    Saraon, Tajinderpal; Katz, Stuart D

    2016-01-01

    Iron deficiency is common in heart failure (HF) patients, and is associated with increased risk of adverse clinical outcomes. Clinical trials of intravenous iron supplementation in iron-deficient HF patients have demonstrated short-term improvement in functional capacity and quality of life. In some trials, the benefits of iron supplementation were independent of the hemoglobin levels. Additional investigations of iron supplementation are needed to characterize the mechanisms contributing to clinical benefit and long-term safety in HF.

  5. Southern Ocean Iron Experiment (SOFex)

    Energy Technology Data Exchange (ETDEWEB)

    Coale, Kenneth H.

    2005-07-28

    The Southern Ocean Iron Experiment (SOFeX) was an experiment decades in the planning. It's implementation was among the most complex ship operations that SIO has been involved in. The SOFeX field expedition was successful in creating and tracking two experimentally enriched areas of the Southern Ocean, one characterized by low silicic acid, one characterized by high silicic acid. Both experimental sites were replete with abundant nitrate. About 100 scientists were involved overall. The major findings of this study were significant in several ways: (1) The productivity of the southern ocean is limited by iron availability. (2) Carbon uptake and flux is therefore controlled by iron availability (3) In spite of low silicic acid, iron promotes non-silicious phytoplankton growth and the uptake of carbon dioxide. (4) The transport of fixed carbon from the surface layers proceeds with a C:N ratio that would indicate differential remineralization of nitrogen at shallow depths. (5) These finding have major implications for modeling of carbon export based on nitrate utilization. (6) The general results of the experiment indicate that, beyond other southern ocean enrichment experiments, iron inputs have a much wider impact of productivity and carbon cycling than previously demonstrated. Scientific presentations: Coale, K., Johnson, K, Buesseler, K., 2002. The SOFeX Group. Eos. Trans. AGU 83(47) OS11A-0199. Coale, K., Johnson, K. Buesseler, K., 2002. SOFeX: Southern Ocean Iron Experiments. Overview and Experimental Design. Eos. Trans. AGU 83 (47) OS22D-01. Buesseler, K.,et al. 2002. Does Iron Fertilization Enhance Carbon Sequestration? Particle flux results from the Southern Ocean Iron Experiment. Eos. Trans. AGU 83 (47), OS22D-09. Johnson, K. et al. 2002. Open Ocean Iron Fertilization Experiments From IronEx-I through SOFeX: What We Know and What We Still Need to Understand. Eos. Trans. AGU 83 (47), OS22D-12. Coale, K. H., 2003. Carbon and Nutrient Cycling During the

  6. Tn5 insertion in the tonB gene promoter affects iron-related phenotypes and increases extracellular siderophore levels in Gluconacetobacter diazotrophicus.

    Science.gov (United States)

    de Paula Soares, Cleiton; Rodrigues, Elisete Pains; de Paula Ferreira, Jéssica; Simões Araújo, Jean Luiz; Rouws, Luc Felicianus Marie; Baldani, José Ivo; Vidal, Marcia Soares

    2015-03-01

    TonB-dependent receptors in concert with the TonB-ExbB-ExbD protein complex are responsible for the uptake of iron and substances such as vitamin B12 in several bacterial species. In this study, Tn5 mutagenesis of the sugarcane endophytic bacterium Gluconacetobacter diazotrophicus led to the isolation of a mutant with a single Tn5-insertion in the promoter region of a tonB gene ortholog. This mutant, named Gdiaa31, displayed a reduced growth rate and a lack of response to iron availability when compared to the wild-type strain PAL5(T). Several efforts to generate null-mutants for the tonB gene by insertional mutagenesis were without success. RT-qPCR analysis demonstrated reduced transcription of tonB in Gdiaa31 when compared to PAL5(T). tonB transcription was inhibited in the presence of Fe(3+) ions both in PAL5(T) and in Gdiaa31. In comparison with PAL5(T), Gdiaa31 also demonstrated decreased nitrogenase activity and biofilm formation capability, two iron-requiring physiological characteristics of G. diazotrophicus. Additionally, Gdiaa31 accumulated higher siderophore levels in culture supernatant. The genetic complementation of the Gdiaa31 strain with a plasmid that carried the tonB gene including its putative promoter region (pP(tonB)) restored nitrogenase activity and siderophore accumulation phenotypes. These results indicate that the TonB complex has a role in iron/siderophore transport and may be essential in the physiology of G. diazotrophicus.

  7. Effects of cyanobacterial-driven pH increases on sediment nutrient fluxes and coupled nitrification-denitrification in a shallow fresh water estuary

    Directory of Open Access Journals (Sweden)

    Y. Gao

    2012-07-01

    Full Text Available Summer cyanobacterial blooms caused an elevation in pH (9 to ~10.5 that lasted for weeks in the shallow and tidal-fresh region of the Sassafras River, a tributary of Chesapeake Bay (USA. Elevated pH promoted desorption of sedimentary inorganic phosphorus and facilitated conversion of ammonium (NH4+ to ammonia (NH3. In this study, we investigated pH effects on exchangeable NH4+ desorption, pore water diffusion and the flux rates of NH4+, soluble reactive phosphorus (SRP and nitrate (NO3, nitrification, denitrification, and oxygen consumption. Elevated pH enhanced desorption of exchangeable NH4+ through NH3 formation from both pore water and adsorbed NH4+ pools. Progressive penetration of high pH from the overlying water into sediment promoted the mobility of SRP and the release of total ammonium (NH4+ and NH3 into the pore water. At elevated pH levels, high sediment-water effluxes of SRP and total ammonium were associated with reduction of nitrification, denitrification and oxygen consumption rates. Alkaline pH and the toxicity of NH3 may inhibit nitrification in the thin aerobic zone, simultaneously constraining coupled nitrification–denitrification with limited NO3 supply and high pH penetration into the anaerobic zone. Geochemical feedbacks to pH elevation, such as enhancement of dissolved nutrient effluxes and reduction in N2 loss via denitrification, may enhance the persistence of cyanobacterial blooms in shallow water ecosystems.

  8. Influence of Vector Magnetic Property with Rotational Magnetic Flux, Magnetic Hysteresis and Angle Difference on Stator Core Loss(The 20th MAGDA Conference in Pacific Asia (MAGDA2011))

    OpenAIRE

    Keisuke, FUJISAKI; Shouji, SATOH; Masato, ENOKIZONO; Nippon Steel Corporation:Toyota Technological Institute; N-Tec Oita; Oita University

    2012-01-01

    The influence of rotating magnetic flux and magnetic anisotropic characteristics on the iron loss in the electrical motor is observed by means of the numerical calculation as the φ-anisotropy method and the two-dimensional vector magnetic property method. High grade non-oriented steel (35A210) is used and is applied to the electrical motor with permanent magnet buried and 4 poles, 24 slots. The calculation data show that the magnetic anisotropic characteristics make the iron loss 8 % increase...

  9. Iron refractory iron deficiency anemia

    OpenAIRE

    De Falco, Luigia; Sanchez, Mayka; Silvestri, Laura; Kannengiesser, Caroline; Muckenthaler, Martina U; Iolascon, Achille; Gouya, Laurent; Camaschella, Clara; Beaumont, Carole

    2013-01-01

    Iron refractory iron deficiency anemia is a hereditary recessive anemia due to a defect in the TMPRSS6 gene encoding Matriptase-2. This protein is a transmembrane serine protease that plays an essential role in down-regulating hepcidin, the key regulator of iron homeostasis. Hallmarks of this disease are microcytic hypochromic anemia, low transferrin saturation and normal/high serum hepcidin values. The anemia appears in the post-natal period, although in some cases it is only diagnosed in ad...

  10. Critical flux determination by flux-stepping

    DEFF Research Database (Denmark)

    Beier, Søren; Jonsson, Gunnar Eigil

    2010-01-01

    In membrane filtration related scientific literature, often step-by-step determined critical fluxes are reported. Using a dynamic microfiltration device, it is shown that critical fluxes determined from two different flux-stepping methods are dependent upon operational parameters such as step......, such values are more or less useless in itself as critical flux predictors, and constant flux verification experiments have to be conducted to check if the determined critical fluxes call predict sustainable flux regimes. However, it is shown that using the step-by-step predicted critical fluxes as start...

  11. Transient Response of Arc Temperature and Iron Vapor Concentration Affected by Current Frequency with Iron Vapor in Pulsed Arc

    Science.gov (United States)

    Tanaka, Tatsuro; Maeda, Yoshifumi; Yamamoto, Shinji; Iwao, Toru

    2016-10-01

    TIG arc welding is chemically a joining technology with melting the metallic material and it can be high quality. However, this welding should not be used in high current to prevent cathode melting. Thus, the heat transfer is poor. Therefore, the deep penetration cannot be obtained and the weld defect sometimes occurs. The pulsed arc welding has been used for the improvement of this defect. The pulsed arc welding can control the heat flux to anode. The convention and driving force in the weld pool are caused by the arc. Therefore, it is important to grasp the distribution of arc temperature. The metal vapor generate from the anode in welding. In addition, the pulsed current increased or decreased periodically. Therefore, the arc is affected by such as a current value and current frequency, the current rate of increment and the metal vapor. In this paper, the transient response of arc temperature and the iron vapor concentration affected by the current frequency with iron vapor in pulsed arc was elucidated by the EMTF (ElectroMagnetic Thermal Fluid) simulation. As a result, the arc temperature and the iron vapor were transient response as the current frequency increase. Thus, the temperature and the electrical conductivity decreased. Therefore, the electrical field increased in order to maintain the current continuity. The current density and electromagnetic force increased at the axial center. In addition, the electronic flow component of the heat flux increased at the axial center because the current density increased. However, the heat conduction component of the heat flux decreased.

  12. Cast irons

    CERN Document Server

    1996-01-01

    Cast iron offers the design engineer a low-cost, high-strength material that can be easily melted and poured into a wide variety of useful, and sometimes complex, shapes. This latest handbook from ASM covers the entire spectrum of one of the most widely used and versatile of all engineered materials. The reader will find the basic, but vital, information on metallurgy, solidification characteristics, and properties. Extensive reviews are presented on the low-alloy gray, ductile, compacted graphite, and malleable irons. New and expanded material has been added covering high-alloy white irons used for abrasion resistance and high-alloy graphitic irons for heat and corrosion resistance. Also discussed are melting furnaces and foundry practices such as melting, inoculation, alloying, pouring, gating and rising, and molding. Heat treating practices including stress relieving, annealing, normalizing, hardening and tempering, autempering (of ductile irons), and surface-hardening treatments are covered, too. ASM Spec...

  13. The iron regulatory capability of the major protein participants in prevalent neurodegenerative disorders

    Directory of Open Access Journals (Sweden)

    Bruce Xue Wen Wong

    2014-04-01

    Full Text Available As with most bioavailable transition metals, iron is essential for many metabolic processes required by the cell but when left unregulated is implicated as a potent source of reactive oxygen species. It is uncertain whether the brain’s evident vulnerability to reactive species-induced oxidative stress is caused by a reduced capability in cellular response or an increased metabolic activity. Either way, dys-regulated iron levels appear to be involved in oxidative stress provoked neurodegeneration. As in peripheral iron management, cells within the central nervous system tightly regulate iron homeostasis via responsive expression of select proteins required for iron flux, transport and storage. Recently proteins directly implicated in the most prevalent neurodegenerative diseases, such as amyloid-β precursor protein, tau, α-synuclein, prion protein and huntingtin, have been connected to neuronal iron homeostatic control. This suggests that disrupted expression, processing or location of these proteins may result in a failure of their cellular iron homeostatic roles and augment the common underlying susceptibility to neuronal oxidative damage that is triggered in neurodegenerative disease.

  14. Effect of atmospheric organic complexation on iron-bearing dust solubility

    Directory of Open Access Journals (Sweden)

    R. Paris

    2013-05-01

    Full Text Available Recent studies reported that the effect of organic complexation may be a potentially important process to be considered by models estimating atmospheric iron flux to the ocean. In this study, we investigated this process effect by a series of dissolution experiments on iron-bearing dust in the presence or the absence of various organic compounds (acetate, formate, oxalate, malonate, succinate, glutarate, glycolate, lactate, tartrate and humic acid as an analogue of humic like substances, HULIS typically found in atmospheric waters. Only 4 of tested organic ligands (oxalate, malonate, tartrate and humic acid caused an enhancement of iron solubility which was associated with an increase of dissolved Fe(II concentrations. For all of these organic ligands, a positive linear dependence of iron solubility to organic concentrations was observed and showed that the extent of organic complexation on iron solubility decreased in the following order: oxalate >malonate = tartrate > humic acid. This was attributed to the ability of electron donors of organic ligands and implies a reductive ligand-promoted dissolution. This study confirms that among the known atmospheric organic binding ligands of Fe, oxalate is the most effective ligand promoting dust iron solubility and showed, for the first time, the potential effect of HULIS on iron dissolution under atmospheric conditions.

  15. Effects of elevated atmospheric CO2, prolonged summer drought and temperature increase on N2O and CH4 fluxes in a temperate heathland

    DEFF Research Database (Denmark)

    Carter, Mette Sustmann; Ambus, Per; Albert, Kristian Rost

    2011-01-01

    In temperate regions, climate change is predicted to increase annual mean temperature and intensify the duration and frequency of summer droughts, which together with elevated atmospheric carbon dioxide (CO2) concentrations, may affect the exchange of nitrous oxide (N2O) and methane (CH4) between...... change manipulations were initiated. The soil was generally a net sink for atmospheric CH4. Elevated temperature (T) increased the CH4 uptake by on average 10 μg C m−2 h−1, corresponding to a rise in the uptake rate of about 20%. However, during winter elevated CO2 (CO2) reduced the CH4 uptake, which...

  16. Use of barium-strontium carbonatite for flux welding and surfacing of mining machines

    Science.gov (United States)

    Kryukov, R. E.; Kozyrev, N. A.; Usoltsev, A. A.

    2017-09-01

    The results of application of barium-strontium carbonatite for modifying and refining iron-carbon alloys, used for welding and surfacing in ore mining and smelting industry, are generalized. The technology of manufacturing a flux additive containing 70 % of barium-strontium carbonatite and 30 % of liquid glass is proposed. Several compositions of welding fluxes based on silicomanganese slag were tested. The flux additive was introduced in an amount of 1, 3, 5 %. Technological features of welding with the application of the examined fluxes are determined. X-ray spectral analysis of the chemical composition of examined fluxes, slag crusts and weld metal was carried out, as well as metallographic investigations of welded joints. The principal possibility of applying barium-strontium carbonatite as a refining and gas-protective additive for welding fluxes is shown. The use of barium-strontium carbonatite reduces the contamination of the weld seam with nonmetallic inclusions: non-deforming silicates, spot oxides and brittle silicates, and increases the desulfurizing capacity of welding fluxes.

  17. DOC-dynamics in a small headwater catchment as driven by redox fluctuations and hydrological flow paths - are DOC exports mediated by iron reduction/oxidation cycles?

    Science.gov (United States)

    Knorr, K.-H.

    2013-02-01

    Dissolved organic carbon (DOC) exports from many catchments in Europe and North-America are steadily increasing. Several studies have sought to explain this observation. As possible causes, a decrease in acid rain or sulfate deposition, concomitant reductions in ionic strength and increasing temperatures were identified. DOC often originates from riparian wetlands; but here, despite higher DOC concentrations, ionic strength in pore waters usually exceeds that in surface waters. In the catchment under study, DOC concentrations were synchronous with dissolved iron concentrations in pore and stream water. This study aims at testing the hypothesis that DOC exports are mediated by iron reduction/oxidation cycles. Following the observed hydrographs, δ18O of water and DOC fluorescence, the wetlands were identified as the main source of DOC. Antecedent biogeochemical conditions, i.e., water table levels in the wetlands, influenced the discharge patterns of nitrate, iron and DOC during an event. The correlation of DOC with pH was positive in pore waters, but negative in surface waters; it was negative for DOC with sulfate in pore waters, but only weak in surface waters. Though, the positive correlation of DOC with iron was universal for pore and surface water. The decline of DOC and iron concentrations in transition from anoxic wetland pore water to oxic stream water suggests a flocculation of DOC with oxidising iron, leading to a drop in pH in the stream during high DOC fluxes. The pore water did not per se differ in pH. There is, thus, a need to consider processes more thoroughly of DOC mobilisation in wetlands when interpreting DOC exports from catchments. The coupling of DOC with iron fluxes suggested that increased DOC exports could at least, in part, be caused by increasing activities in iron reduction, possibly due to increases in temperature, increasing wetness of riparian wetlands, or by a shift from sulfate dominated to iron reduction dominated biogeochemical

  18. DOC-dynamics in a small headwater catchment as driven by redox fluctuations and hydrological flow paths – are DOC exports mediated by iron reduction/oxidation cycles?

    Directory of Open Access Journals (Sweden)

    K.-H. Knorr

    2013-02-01

    Full Text Available Dissolved organic carbon (DOC exports from many catchments in Europe and North-America are steadily increasing. Several studies have sought to explain this observation. As possible causes, a decrease in acid rain or sulfate deposition, concomitant reductions in ionic strength and increasing temperatures were identified. DOC often originates from riparian wetlands; but here, despite higher DOC concentrations, ionic strength in pore waters usually exceeds that in surface waters. In the catchment under study, DOC concentrations were synchronous with dissolved iron concentrations in pore and stream water. This study aims at testing the hypothesis that DOC exports are mediated by iron reduction/oxidation cycles. Following the observed hydrographs, δ18O of water and DOC fluorescence, the wetlands were identified as the main source of DOC. Antecedent biogeochemical conditions, i.e., water table levels in the wetlands, influenced the discharge patterns of nitrate, iron and DOC during an event. The correlation of DOC with pH was positive in pore waters, but negative in surface waters; it was negative for DOC with sulfate in pore waters, but only weak in surface waters. Though, the positive correlation of DOC with iron was universal for pore and surface water. The decline of DOC and iron concentrations in transition from anoxic wetland pore water to oxic stream water suggests a flocculation of DOC with oxidising iron, leading to a drop in pH in the stream during high DOC fluxes. The pore water did not per se differ in pH. There is, thus, a need to consider processes more thoroughly of DOC mobilisation in wetlands when interpreting DOC exports from catchments. The coupling of DOC with iron fluxes suggested that increased DOC exports could at least, in part, be caused by increasing activities in iron reduction, possibly due to increases in temperature, increasing wetness of riparian wetlands, or by a shift from sulfate dominated to iron

  19. Spartina alterniflora Salt Marsh Elevation Change and Greenhouse Gas Fluxes in Response to Climate Change: Effects of Altered Hydrology and Increased Atmospheric CO2

    Science.gov (United States)

    Hester, M. W.; Jones, S. F.; Stagg, C. L.; Krauss, K. W.

    2016-12-01

    Global climate change, such as sea-level rise and altered atmospheric composition of gases, influence the provision of ecosystem services by coastal salt marshes by changing dynamic above- and belowground processes. Plant responses to atmospheric composition and hydrologic alterations are often not studied simultaneously nor in a controlled greenhouse environment. These types of experiments are crucial to more precisely understand how coastal wetlands may respond to multiple, interacting facets of climate change. To address these knowledge gaps, we experimentally manipulated atmospheric CO2 concentration and hydrologic regimes in mesocosms of Spartina alterniflora sods grown in climate-controlled greenhouses for over a year, and quantified salient plant and soil responses. Preliminary results indicate that hydrologic regimes that simulated high rates of sea-level rise enhanced aboveground production, resulting in more and larger stems and leaves than control mesocosms. High sea-level rise mesocosms also had high rates of surface elevation change, which was correlated with high rates of new stem production. Methane emissions were higher in August than in other seasons in the control and high sea-level rise mesocosms. Interestingly, although Spartina alterniflora marsh responded strongly to sea-level rise, we did not detect significant effects of increased atmospheric CO2 concentration (720 ppm). Our results indicate that Spartina alterniflora marsh may be able to increase elevation on pace with sea-level rise through an increase in production induced by greater flooding. Sea-level rise may also alter the carbon balance of these marshes by increasing methane emissions seasonally. Although more research remains to be completed, this controlled greenhouse experiment indicates that sea-level rise and hydrologic regime will likely remain dominant drivers in structuring Spartina alterniflora coastal wetlands, even under greatly elevated concentrations of atmospheric CO2.

  20. Ts1Cje Down syndrome model mice exhibit environmental stimuli-triggered locomotor hyperactivity and sociability concurrent with increased flux through central dopamine and serotonin metabolism.

    Science.gov (United States)

    Shimohata, Atsushi; Ishihara, Keiichi; Hattori, Satoko; Miyamoto, Hiroyuki; Morishita, Hiromasa; Ornthanalai, Guy; Raveau, Matthieu; Ebrahim, Abdul Shukkur; Amano, Kenji; Yamada, Kazuyuki; Sago, Haruhiko; Akiba, Satoshi; Mataga, Nobuko; Murphy, Niall P; Miyakawa, Tsuyoshi; Yamakawa, Kazuhiro

    2017-07-01

    Ts1Cje mice have a segmental trisomy of chromosome 16 that is orthologous to human chromosome 21 and display Down syndrome-like cognitive impairments. Despite the occurrence of affective and emotional impairments in patients with Down syndrome, these parameters are poorly documented in Down syndrome mouse models, including Ts1Cje mice. Here, we conducted comprehensive behavioral analyses, including anxiety-, sociability-, and depression-related tasks, and biochemical analyses of monoamines and their metabolites in Ts1Cje mice. Ts1Cje mice showed enhanced locomotor activity in novel environments and increased social contact with unfamiliar partners when compared with wild-type littermates, but a significantly lower activity in familiar environments. Ts1Cje mice also exhibited some signs of decreased depression like-behavior. Furthermore, Ts1Cje mice showed monoamine abnormalities, including increased extracellular dopamine and serotonin, and enhanced catabolism in the striatum and ventral forebrain. This study constitutes the first report of deviated monoamine metabolism that may help explain the basis for abnormal behaviors, including the environmental stimuli-triggered hyperactivity, increased sociability and decreased depression-like behavior in Ts1Cje mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Molecular mechanisms involved in intestinal iron absorption

    Institute of Scientific and Technical Information of China (English)

    Paul Sharp; Surjit Kaila Srai

    2007-01-01

    Iron is an essential trace metal in the human diet due to its obligate role in a number of metabolic processes.In the diet, iron is present in a number of different forms, generally described as haem (from haemoglobin and myoglobin in animal tissue) and non-haem iron (including ferric oxides and salts, ferritin and lactoferrin).This review describes the molecular mechanisms that co-ordinate the absorption of iron from the diet and its release into the circulation. While many components of the iron transport pathway have been elucidated, a number of key issues still remain to be resolved. Future work in this area will provide a clearer picture regarding the transcellular flux of iron and its regulation by dietary and humoral factors.

  2. Too Much Iron Linked to Gestational Diabetes

    Science.gov (United States)

    ... fullstory_161946.html Too Much Iron Linked to Gestational Diabetes Supplements should only be given to pregnant women ... an increased risk of developing diabetes during pregnancy (gestational diabetes), begging the question whether routine recommendations of iron ...

  3. Effects of digoxin on cardiac iron content in rat model of iron overload

    OpenAIRE

    Nasri, Hamid Reza; Shahouzehi, Beydolah; Masoumi-Ardakani, Yaser; Iranpour, Maryam

    2016-01-01

    BACKGROUND Plasma iron excess can lead to iron accumulation in heart, kidney and liver. Heart failure is a clinical widespread syndrome. In thalassemia, iron overload cardiomyopathy is caused by iron accumulation in the heart that leads to cardiac damage and heart failure. Digoxin increases the intracellular sodium concentration by inhibition of Na+/K+-ATPase that affects Na+/Ca2+ exchanger (NCX), which raises intracellular calcium and thus attenuates heart failure. The mechanism of iron upta...

  4. Retinal iron homeostasis in health and disease

    Directory of Open Access Journals (Sweden)

    Delu eSong

    2013-06-01

    Full Text Available Iron is essential for life, but excess iron can be toxic. As a potent free radical creator, iron generates hydroxyl radicals leading to significant oxidative stress. Since iron is not excreted from the body, it accumulates with age in tissues, including the retina, predisposing to age-related oxidative insult. Both hereditary and acquired retinal diseases are associated with increased iron levels. For example, retinal degenerations have been found in hereditary iron overload disorders, like aceruloplasminemia, Friedreich’s ataxia, and pantothenate kinase-associated neurodegeneration. Similarly, mice with targeted mutation of the iron exporter ceruloplasmin and its homolog hephaestin showed age-related retinal iron accumulation and retinal degeneration with features resembling human age-related macular degeneration (AMD. Post mortem AMD eyes have increased levels of iron in retina compared to age-matched healthy donors. Iron accumulation in AMD is likely to result, in part, from inflammation, hypoxia, and oxidative stress, all of which can cause iron dysregulation. Fortunately, it has been demonstrated by in vitro and in vivo studies that iron in the retinal pigment epithelium and retina is chelatable. Iron chelation protects photoreceptors and retinal pigment epithelial cells (RPE in a variety of mouse models. This has therapeutic potential for diminishing iron-induced oxidative damage to prevent or treat AMD.

  5. Investigation of the amount of dissolved iron in food cooked in Chinese iron pots and estimation of daily iron intake.

    Science.gov (United States)

    Liu, D Y; Chen, Z G; Lei, H Q; Lu, M Q; Li, R; Li, L X

    1990-09-01

    The amount of dissolved iron in food cooked in Chinese iron pots and that in food cooked in aluminum, stainless steel, and clay pots were determined. It was found that the amount of dissolved iron in food cooked in Chinese iron pots was two to five times higher than that in food cooked in the other types of pots. According to the test results, the estimated increase in daily iron intake was about 14.5 mg for adults and 7.4 mg for children when Chinese iron pots were used.

  6. Specification of ROP flux shape

    Energy Technology Data Exchange (ETDEWEB)

    Min, Byung Joo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Gray, A. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1997-06-01

    The CANDU 9 480/SEU core uses 0.9% SEU (Slightly Enriched Uranium) fuel. The use f SEU fuel enables the reactor to increase the radial power form factor from 0.865, which is typical in current natural uranium CANDU reactors, to 0.97 in the nominal CANDU 9 480/SEU core. The difference is a 12% increase in reactor power. An additional 5% increase can be achieved due to a reduced refuelling ripple. The channel power limits were also increased by 3% for a total reactor power increase of 20%. This report describes the calculation of neutron flux distributions in the CANDU 9 480/SEU core under conditions specified by the C and I engineers. The RFSP code was used to calculate of neutron flux shapes for ROP analysis. Detailed flux values at numerous potential detector sites were calculated for each flux shape. (author). 6 tabs., 70 figs., 4 refs.

  7. METABOLISM OF IRON STORES

    OpenAIRE

    Saito, Hiroshi

    2014-01-01

    ABSTRACT Remarkable progress was recently achieved in the studies on molecular regulators of iron metabolism. Among the main regulators, storage iron, iron absorption, erythropoiesis and hepcidin interact in keeping iron homeostasis. Diseases with gene-mutations resulting in iron overload, iron deficiency, and local iron deposition have been introduced in relation to the regulators of storage iron metabolism. On the other hand, the research on storage iron metabolism has not advanced since th...

  8. Carriers of the Complex Allele HFE c.[187C>G;340+4T>C] Have Increased Risk of Iron Overload in Sao Miguel Island Population (Azores, Portugal.

    Directory of Open Access Journals (Sweden)

    Claudia C Branco

    Full Text Available Iron overload is associated with acquired and genetic conditions, the most common being hereditary hemochromatosis (HH type-I, caused by HFE mutations. Here, we conducted a hospital-based case-control study of 41 patients from the São Miguel Island (Azores, Portugal, six belonging to a family with HH type-I pseudodominant inheritance, and 35 unrelated individuals fulfilling the biochemical criteria of iron overload compatible with HH type-I. For this purpose, we analyzed the most common HFE mutations- c.845G>A [p.Cys282Tyr], c.187C>G [p.His63Asp], and c.193A>T [p.Ser65Cys]. Results revealed that the family's HH pseudodominant pattern is due to consanguineous marriage of HFE-c.845G>A carriers, and to marriage with a genetically unrelated spouse that is a -c.187G carrier. Regarding unrelated patients, six were homozygous for c.845A, and three were c.845A/c.187G compound heterozygous. We then performed sequencing of HFE exons 2, 4, 5 and their intron-flanking regions. No other mutations were observed, but we identified the -c.340+4C [IVS2+4C] splice variant in 26 (74.3% patients. Functionally, the c.340+4C may generate alternative splicing by HFE exon 2 skipping and consequently, a protein missing the α1-domain essential for HFE/ transferrin receptor-1 interactions. Finally, we investigated HFE mutations configuration with iron overload by determining haplotypes and genotypic profiles. Results evidenced that carriers of HFE-c.187G allele also carry -c.340+4C, suggesting in-cis configuration. This data is corroborated by the association analysis where carriers of the complex allele HFE-c.[187C>G;340+4T>C] have an increased iron overload risk (RR = 2.08, 95% CI = 1.40-2.94, pG;340+4T>C] has a role, as genetic predisposition factor, on iron overload in the São Miguel population. Independent replication studies in other populations are needed to confirm this association.

  9. Iron Dextran Injection

    Science.gov (United States)

    ... allergic to iron dextran injection; any other iron injections such as ferric carboxymaltose (Injectafer), ferumoxytol (Feraheme), iron sucrose (Venofer), or sodium ferric gluconate (Ferrlecit);any other ...

  10. Non-heme iron as ferrous sulfate does not interact with heme iron absorption in humans.

    Science.gov (United States)

    Gaitán, Diego; Olivares, Manuel; Lönnerdal, Bo; Brito, Alex; Pizarro, Fernando

    2012-12-01

    The absorption of heme iron has been described as distinctly different from that of non-heme iron. Moreover, whether heme and non-heme iron compete for absorption has not been well established. Our objective was to investigate the potential competition between heme and non-heme iron as ferrous sulfate for absorption, when both iron forms are ingested on an empty stomach. Twenty-six healthy nonpregnant women were selected to participate in two iron absorption studies using iron radioactive tracers. We obtained the dose-response curve for absorption of 0.5, 10, 20, and 50 mg heme iron doses, as concentrated red blood cells. Then, we evaluated the absorption of the same doses, but additionally we added non-heme iron, as ferrous sulfate, at constant heme/non-heme iron molar ratio (1:1). Finally, we compare the two curves by a two-way ANOVA. Iron sources were administered on an empty stomach. One factor analysis showed that heme iron absorption was diminished just by increasing total heme iron (P ferrous sulfate did not have any effect on heme iron absorption (P = NS). We reported evidence that heme and non-heme iron as ferrous sulfate does not compete for absorption. The mechanism behind the absorption of these iron sources is not clear.

  11. Flux-flow and vortex-glass phase in iron pnictide {{BaFe}}_{2-x}{{Ni}}_{x}{{As}}_{2} single crystals with {T}_{c}\\,\\sim \\,20 K

    Science.gov (United States)

    Salem-Sugui, S., Jr.; Alvarenga, A. D.; Luo, H.-Q.; Zhang, R.; Gong, D.-L.

    2017-01-01

    We analysed the flux-flow region of isofield magnetoresistivity data obtained on three crystals of {{BaFe}}2-x Ni x As2 with T c ˜ 20 K for three different geometries relative to the angle formed between the applied magnetic field and the c-axis of the crystals. The field dependent activation energy, U 0, was obtained from the thermal assisted flux-flow (TAFF) and modified vortex-glass models, which were compared with the values of U 0 obtained from flux-creep available in the literature. We observed that the U 0 obtained from the TAFF model show deviations among the different crystals, while the correspondent glass lines obtained from the vortex-glass model are virtually coincident. It is shown that the data is well explained by the modified vortex-glass model, allowing extract of values of T g, the glass transition temperature, and {T}* , a temperature which scales with the mean field critical temperature {T}{{c}}(H). The resulting glass lines obey the anisotropic Ginzburg-Landau theory and are well fitted by a theory developed in the literature by considering the effect of disorder.

  12. Responsiveness to parenteral iron therapy in children with oral iron-refractory iron-deficiency anemia.

    Science.gov (United States)

    Akin, Mehmet; Atay, Enver; Oztekin, Osman; Karadeniz, Cem; Karakus, Yasin Tugrul; Yilmaz, Bilal; Erdogan, Firat

    2014-02-01

    Intravenous (IV) ferric iron (Fe)-carbohydrate complexes are used for treating Fe deficiency in children with iron-refractory iron-deficiency anemia (IRIDA). An optimal treatment has yet to be determined. There are relatively little publications on the responsiveness to IV iron therapy in children with IRIDA. This study analyzed responses to IV iron sucrose therapy given to 11 children, ranging in age from 2 to 13 years (mean 4.8 years), with iron-deficiency anemia who were unresponsive to oral iron therapy. The hemoglobin and ferritin values (mean) of the 11 children with IRIDA were 7.7 g/dL and 4.8 ng/mL at diagnosis. Both hemoglobin and ferritin levels increased to 9.5 g/dL, and 24 ng/mL, respectively, at 6 weeks after the first therapy. Although the level of hemoglobin was steady at 6 months after the first, and 6 weeks after the second therapy, the ferritin levels continued to increase up to 30 ng/mL and 47 ng/mL at 6 months after the first and 6 weeks after the second therapy, respectively. We recommend that IRIDA should be considered in patients presenting with iron-deficiency anemia of unknown cause that is unresponsive to oral iron therapy. Our results suggest that IV iron therapy should be administered only once in cases of IRIDA. Continued administration of IV iron would be of no benefit to increase hemoglobin levels. On the contrary, ferritin levels may continue to increase resulting in untoward effects of hyperferritinemia.

  13. Flux-P: Automating Metabolic Flux Analysis

    OpenAIRE

    Ebert, Birgitta E.; Anna-Lena Lamprecht; Bernhard Steffen; Blank, Lars M.

    2012-01-01

    Quantitative knowledge of intracellular fluxes in metabolic networks is invaluable for inferring metabolic system behavior and the design principles of biological systems. However, intracellular reaction rates can not often be calculated directly but have to be estimated; for instance, via 13C-based metabolic flux analysis, a model-based interpretation of stable carbon isotope patterns in intermediates of metabolism. Existing software such as FiatFlux, OpenFLUX or 13CFLUX supports experts in ...

  14. Antibody-mediated targeting of iron oxide nanoparticles to the folate receptor alpha increases tumor cell association in vitro and in vivo.

    Science.gov (United States)

    Ndong, Christian; Toraya-Brown, Seiko; Kekalo, Katsiaryna; Baker, Ian; Gerngross, Tillman U; Fiering, Steven N; Griswold, Karl E

    2015-01-01

    Active molecular targeting has become an important aspect of nanoparticle development for oncology indications. Here, we describe molecular targeting of iron oxide nanoparticles (IONPs) to the folate receptor alpha (FOLRα) using an engineered antibody fragment (Ffab). Compared to control nanoparticles targeting the non-relevant botulinum toxin, the Ffab-IONP constructs selectively accumulated on FOLRα-overexpressing cancer cells in vitro, where they exhibited the capacity to internalize into intracellular vesicles. Similarly, Ffab-IONPs homed to FOLRα-positive tumors upon intraperitoneal administration in an orthotopic murine xenograft model of ovarian cancer, whereas negative control particles showed no detectable tumor accumulation. Interestingly, Ffab-IONPs built with custom 120 nm nanoparticles exhibited lower in vitro targeting efficiency when compared to those built with commercially sourced 180 nm nanoparticles. In vivo, however, the two Ffab-IONP platforms achieved equivalent tumor homing, although the smaller 120 nm IONPs were more prone to liver sequestration. Overall, the results show that Ffab-mediated targeting of IONPs yields specific, high-level accumulation within cancer cells, and this fact suggests that Ffab-IONPs could have future utility in ovarian cancer diagnostics and therapy.

  15. Iron deficiency in blood donors

    Directory of Open Access Journals (Sweden)

    Armando Cortés

    2005-03-01

    Full Text Available Context: Blood donation results in a substantial loss of iron (200 to 250 mg at each bleeding procedure (425 to 475 ml and subsequent mobilization of iron from body stores. Recent reports have shown that body iron reserves generally are small and iron depletion is more frequent in blood donors than in non-donors. Objective: The aim of this study was to evaluate the frequency of iron deficiency in blood donors and to establish the frequency of iron deficiency in blood donors according to sex, whether they were first-time or multi-time donors. Design: From march 20 to April 5, 2004, three hundred potential blood donors from Hemocentro del Café y Tolima Grande were studied. Diagnostic tests: Using a combination of biochemical measurements of iron status: serum ferritin (RIA, ANNAR and the hemoglobin pre and post-donation (HEMOCUE Vital technology medical . Results: The frequency of iron deficiency in potential blood donors was 5%, and blood donors accepted was 5.1%; in blood donors rejected for low hemoglobin the frequency of iron deficiency was 3.7% and accepted blood donors was 1.7% in male and 12.6% in female. The frequency of iron deficiency was higher in multi-time blood donors than in first-time blood donors, but not stadistic significative. Increase nivel accepted hemoglobina in 1 g/dl no incidence in male; in female increase of 0.5 g/dl low in 25% blood donors accepted with iron deficiency, but increased rejected innecesary in 16.6% and increased is 1 g/dl low blood donors female accepted in 58% (7/12, but increased the rejected innecesary in 35.6%. Conclusions: We conclude that blood donation not is a important factor for iron deficiency in blood donors. The high frequency of blood donors with iron deficiency found in this study suggests a need for a more accurate laboratory trial, as hemoglobin or hematocrit measurement alone is not sufficient for detecting and excluding blood donors with iron deficiency without anemia, and ajustes hacia

  16. Iron mobilization using chelation and phlebotomy

    DEFF Research Database (Denmark)

    Flaten, T. P.; Aaseth, J.; Andersen, Ole;

    2012-01-01

    Knowledge of the basic mechanisms involved in iron metabolism has increased greatly in recent years, improving our ability to deal with the huge global public health problems of iron deficiency and overload. Several million people worldwide suffer iron overload with serious clinical implications....

  17. The Janus face of iron on anoxic worlds: iron oxides are both protective and destructive to life on the early Earth and present-day Mars.

    Science.gov (United States)

    Wadsworth, Jennifer; Cockell, Charles S

    2017-05-01

    The surface of the early Earth was probably subjected to a higher flux of ultraviolet (UV) radiation than today. UV radiation is known to severely damage DNA and other key molecules of life. Using a liquid culture and a rock analogue system, we investigated the interplay of protective and deleterious effects of iron oxides under UV radiation on the viability of the model organism, Bacillus subtilis. In the presence of hydrogen peroxide, there exists a fine balance between iron oxide's protective effects against this radiation and its deleterious effects caused by Photo-Fenton reactions. The maximum damage was caused by a concentration of hematite of ∼1 mg/mL. Concentrations above this confer increasing protection by physical blockage of the UV radiation, concentrations below this cause less effective UV radiation blockage, but also a correspondingly less effective Photo-Fenton reaction, providing an overall advantage. These results show that on anoxic worlds, surface habitability under a high UV flux leaves life precariously poised between the beneficial and deleterious effects of iron oxides. These results have relevance to the Archean Earth, but also the habitability of the Martian surface, where high levels of UV radiation in combination with iron oxides and hydrogen peroxide can be found. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Iron Sucrose Injection

    Science.gov (United States)

    Iron sucrose injection is used treat iron-deficiency anemia (a lower than normal number of red blood cells due ... and may cause the kidneys to stop working). Iron sucrose injection is in a class of medications called iron ...

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... enough iron, your body starts using the iron it has stored. Soon, the stored iron gets used ... fewer red blood cells. The red blood cells it does make have less hemoglobin than normal. Iron- ...

  20. Pumping iron in the '90s.

    Science.gov (United States)

    Jefferies, W A; Gabathuler, R; Rothenberger, S; Food, M; Kennard, M L

    1996-06-01

    The role o f iron in cell division, cell death and human disease has recently gained increased attention. The best studied process for iron uptake into mammalian cells involves traps ferrin and its receptor. This review discusses evidence supporting the existence of other routes by which iron can enter mammalian cells. Specifically, iron uptake by the cell-surface GPI-linked traps ferrin homologue, melanotransferrin or p97, is described and possible functions of this traps ferrin-independent pathway are proposed.

  1. Iron, phytoplankton growth, and the carbon cycle.

    Science.gov (United States)

    Street, Joseph H; Paytan, Adina

    2005-01-01

    Iron is an essential nutrient for all living organisms. Iron is required for the synthesis of chlorophyll and of several photosynthetic electron transport proteins and for the reduction of CO2, SO4(2-), and NO3(-) during the photosynthetic production of organic compounds. Iron concentrations in vast areas of the ocean are very low (iron in oxic seawater. Low iron concentrations have been shown to limit primary production rates, biomass accumulation, and ecosystem structure in a variety of open-ocean environments, including the equatorial Pacific, the subarctic Pacific and the Southern Ocean and even in some coastal areas. Oceanic primary production, the transfer of carbon dioxide into organic carbon by photosynthetic plankton (phytoplankton), is one process by which atmospheric CO2 can be transferred to the deep ocean and sequestered for long periods of time. Accordingly, iron limitation of primary producers likely plays a major role in the global carbon cycle. It has been suggested that variations in oceanic primary productivity, spurred by changes in the deposition of iron in atmospheric dust, control atmospheric CO2 concentrations, and hence global climate, over glacial-interglacial timescales. A contemporary application of this "iron hypothesis" promotes the large-scale iron fertilization of ocean regions as a means of enhancing the ability of the ocean to store anthropogenic CO2 and mitigate 21st century climate change. Recent in situ iron enrichment experiments in the HNLC regions, however, cast doubt on the efficacy and advisability of iron fertilization schemes. The experiments have confirmed the role of iron in regulating primary productivity, but resulted in only small carbon export fluxes to the depths necessary for long-term sequestration. Above all, these experiments and other studies of iron biogeochemistry over the last two decades have begun to illustrate the great complexity of the ocean system. Attempts to engineer this system are likely to

  2. Direct Biohydrometallurgical Extraction of Iron from Ore

    Energy Technology Data Exchange (ETDEWEB)

    T.C. Eisele

    2005-10-01

    A completely novel approach to iron extraction was investigated, based on reductive leaching of iron by anaerobic bacteria. Microorganisms were collected from an anaerobic bog where natural seepage of dissolved iron was observed. This mixed culture was used to reduce insoluble iron in a magnetite ore to the soluble ferrous (Fe{sup +2}) state. While dissolution rates were slow, concentrations of dissolved iron as high as 3487 mg/l could be reached if sufficient time was allowed. A factorial study of the effects of trace nutrients and different forms of organic matter indicated that the best dissolution rates and highest dissolved iron concentrations were achieved using soluble carbohydrate (sucrose) as the bacterial food source, and that nutrients other than nitrogen, phosphorus, potassium, sodium, and acetate were not necessary. A key factor in reaching high levels of dissolved iron was maintaining a high level of carbon dioxide in solution, since the solubility of iron carbonates increases markedly as the quantity of dissolved carbon dioxide increases. Once the iron is dissolved, it has been demonstrated that the ferrous iron can then be electroplated from solution, provided that the concentration of iron is sufficiently high and the hydrogen ion concentration is sufficiently low. However, if the leaching solution is electrolyzed directly, organic matter precipitates at the cathode along with the metallic iron. To prevent this problem, the ferrous iron should be separated from the bulk solution in a more concentrated, purified form. One route to accomplishing this is to take advantage of the change in solubility of ferrous iron as a function of carbon dioxide concentration. By cycling the concentration of carbon dioxide in solution, it is possible to produce an iron-rich concentrate that should be suitable for electrolysis. This represents the first viable hydrometallurgical method for leaching iron directly from ore and producing metallic iron.

  3. Iron fertilization of the Subantarctic Ocean during the last ice age

    Science.gov (United States)

    Martinez-Garcia, A.

    2015-12-01

    Dust has the potential to modify global climate by influencing the radiative balance of the atmosphere and by supplying iron and other essential limiting micronutrients to the ocean. The scarcity of iron limits marine productivity and carbon uptake in one-quarter of the world ocean where the concentration of major nutrients (phosphorus and nitrogen) is perennially high. The Southern Ocean is the region where variations in iron availability can have the largest effect on Earth's carbon cycle through its fertilizing effect on marine ecosystems. Paleoceanographic records from the Subantarctic Atlantic have revealed a remarkable correlation between phytoplankton productivity and aeolian iron flux during glacial periods supporting the iron fertilization hypothesis. In addition, a recent study has shown that peak glacial times and millennial cold events were nearly universally associated not only with increases in dust flux and export production, but also with an increase in nutrient consumption (the last indicated by higher foraminifera-bound δ15N) (Martinez-Garcia et al. 2014). This combination of changes is uniquely consistent with ice age iron fertilization of the Subantarctic Atlantic. The strengthening of the biological pump associated with the observed increase in Subantarctic nutrient consumption during the high-dust intervals of the last two ice ages can explain up to ~40 ppm of the CO2 decrease that characterizes the transitions from mid-climate states to full ice age conditions. However, the impact of iron fertilization in other sectors of the Southern Ocean characterized by lower ice age dust fluxes than the Atlantic remains unclear. A series of recently published records from the Subantarctic Pacific indicate that dust deposition and marine export production were three times higher during glacial periods than during interglacials (Lamy et al. 2014). Here we present new measurements of foraminifera-bound nitrogen isotopes in a sediment core located in the

  4. Process to Produce Iron Nanoparticle Lunar Dust Simulant Composite

    Science.gov (United States)

    Hung, Ching-cheh; McNatt, Jeremiah

    2010-01-01

    A document discusses a method for producing nanophase iron lunar dust composite simulant by heating a mixture of carbon black and current lunar simulant types (mixed oxide including iron oxide) at a high temperature to reduce ionic iron into elemental iron. The product is a chemically modified lunar simulant that can be attracted by a magnet, and has a surface layer with an iron concentration that is increased during the reaction. The iron was found to be -iron and Fe3O4 nanoparticles. The simulant produced with this method contains iron nanoparticles not available previously, and they are stable in ambient air. These nanoparticles can be mass-produced simply.

  5. Iron deficiency

    DEFF Research Database (Denmark)

    Schou, Morten; Bosselmann, Helle; Gaborit, Freja

    2015-01-01

    BACKGROUND: Both iron deficiency (ID) and cardiovascular biomarkers are associated with a poor outcome in heart failure (HF). The relationship between different cardiovascular biomarkers and ID is unknown, and the true prevalence of ID in an outpatient HF clinic is probably overlooked. OBJECTIVES.......043). CONCLUSION: ID is frequent in an outpatient HF clinic. ID is not associated with cardiovascular biomarkers after adjustment for traditional confounders. Inflammation, but not neurohormonal activation is associated with ID in systolic HF. Further studies are needed to understand iron metabolism in elderly HF...

  6. The concentration of iron in real-world geogenic PM₁₀ is associated with increased inflammation and deficits in lung function in mice.

    Directory of Open Access Journals (Sweden)

    Graeme R Zosky

    Full Text Available BACKGROUND: There are many communities around the world that are exposed to high levels of particulate matter <10 µm (PM₁₀ of geogenic (earth derived origin. Mineral dusts in the occupational setting are associated with poor lung health, however very little is known about the impact of heterogeneous community derived particles. We have preliminary evidence to suggest that the concentration of iron (Fe may be associated with the lung inflammatory response to geogenic PM₁₀. We aimed to determine which physico-chemical characteristics of community sampled geogenic PM₁₀ are associated with adverse lung responses. METHODS: We collected geogenic PM₁₀ from four towns in the arid regions of Western Australia. Adult female BALB/c mice were exposed to 100 µg of particles and assessed for inflammatory and lung function responses 6 hours, 24 hours and 7 days post-exposure. We assessed the physico-chemical characteristics of the particles and correlated these with lung outcomes in the mice using principal components analysis and multivariate linear regression. RESULTS: Geogenic particles induced an acute inflammatory response that peaked 6 hours post-exposure and a deficit in lung mechanics 7 days post-exposure. This deficit in lung mechanics was positively associated with the concentration of Fe and particle size variability and inversely associated with the concentration of Si. CONCLUSIONS: The lung response to geogenic PM₁₀ is complex and highly dependent on the physico-chemical characteristics of the particles. In particular, the concentration of Fe in the particles may be a key indicator of the potential population health consequences for inhaling geogenic PM₁₀.

  7. Antibody-mediated targeting of iron oxide nanoparticles to the folate receptor alpha increases tumor cell association in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Ndong C

    2015-04-01

    Full Text Available Christian Ndong,1 Seiko Toraya-Brown,2 Katsiaryna Kekalo,1 Ian Baker,1 Tillman U Gerngross,1,3,4 Steven N Fiering,2,5,6 Karl E Griswold1,3,6 1Thayer School of Engineering, Dartmouth, Hanover, NH, USA; 2Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; 3Department of Biological Sciences, Dartmouth, Hanover, NH, USA; 4Department of Chemistry, Dartmouth, Hanover, NH, USA; 5Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; 6Norris Cotton Cancer Center, Lebanon, NH, USA Abstract: Active molecular targeting has become an important aspect of nanoparticle development for oncology indications. Here, we describe molecular targeting of iron oxide nanoparticles (IONPs to the folate receptor alpha (FOLRα using an engineered antibody fragment (Ffab. Compared to control nanoparticles targeting the non-relevant botulinum toxin, the Ffab-IONP constructs selectively accumulated on FOLRα-overexpressing cancer cells in vitro, where they exhibited the capacity to internalize into intracellular vesicles. Similarly, Ffab-IONPs homed to FOLRα-positive tumors upon intraperitoneal administration in an orthotopic murine xenograft model of ovarian cancer, whereas negative control particles showed no detectable tumor accumulation. Interestingly, Ffab-IONPs built with custom 120 nm nanoparticles exhibited lower in vitro targeting efficiency when compared to those built with commercially sourced 180 nm nanoparticles. In vivo, however, the two Ffab-IONP platforms achieved equivalent tumor homing, although the smaller 120 nm IONPs were more prone to liver sequestration. Overall, the results show that Ffab-mediated targeting of IONPs yields specific, high-level accumulation within cancer cells, and this fact suggests that Ffab-IONPs could have future utility in ovarian cancer diagnostics and therapy. Keywords: nanoparticle targeting, antibody fragment, biodistribution, ovarian cancer

  8. Micromilling enhances iron bioaccessibility from wholegrain wheat.

    Science.gov (United States)

    Latunde-Dada, G O; Li, X; Parodi, A; Edwards, C H; Ellis, P R; Sharp, P A

    2014-11-19

    Cereals constitute important sources of iron in human diet; however, much of the iron in wheat is lost during processing for the production of white flour. This study employed novel food processing techniques to increase the bioaccessibility of naturally occurring iron in wheat. Iron was localized in wheat by Perl's Prussian blue staining. Soluble iron from digested wheat flour was measured by a ferrozine spectrophotometric assay. Iron bioaccessibility was determined using an in vitro simulated peptic-pancreatic digestion, followed by measurement of ferritin (a surrogate marker for iron absorption) in Caco-2 cells. Light microscopy revealed that iron in wheat was encapsulated in cells of the aleurone layer and remained intact after in vivo digestion and passage through the gastrointestinal tract. The solubility of iron in wholegrain wheat and in purified wheat aleurone increased significantly after enzymatic digestion with Driselase, and following mechanical disruption using micromilling. Furthermore, following in vitro simulated peptic-pancreatic digestion, iron bioaccessibility, measured as ferritin formation in Caco-2 cells, from micromilled aleurone flour was significantly higher (52%) than from whole aleurone flour. Taken together our data show that disruption of aleurone cell walls could increase iron bioaccessibility. Micromilled aleurone could provide an alternative strategy for iron fortification of cereal products.

  9. Advantages of iron core in a tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Bettis, E.S.; Ballou, J.K.; Becraft, W.R.; Peng, Y.K.M.; Watts, H.L.

    1977-01-01

    A quantitative comparison of the iron core vs air core concepts was carried out on a preliminary basis by using a representative tokamak reactor design with the following self-consistent reference parameters. In the area of plasma engineering, poloidal field and MHD equilibrium considerations with an unsaturated iron core is discussed. The question of proper poloidal field coils to maintain D-shaped plasmas of relatively high anti ..beta.. (7%) with a saturated iron core is also discussed. Estimates of the required iron core size, volt seconds, magnetic flux and its influence on force loading on the superconducting toroidal field coils are shown. Conceptual designs of the mechanical structure of an iron core device are presented. Favorable impacts on the OH power supply cost and complexity are indicated.

  10. The role of ceruloplasmin in iron metabolism.

    Science.gov (United States)

    Roeser, H P; Lee, G R; Nacht, S; Cartwright, G E

    1970-12-01

    The importance of ceruloplasmin in iron metabolism was studied in swine made hypoceruloplasminemic by copper deprivation. When the plasma ceruloplasmin level fell below 1% of normal, cell-to-plasma iron flow became sufficiently impaired to cause hypoferremia, even though total body iron stores were normal. When ceruloplasmin was administered to such animals, plasma iron increased immediately and continued to rise at a rate proportional to the logarithm of the ceruloplasmin dose. The administration of inorganic copper induced increases in plasma iron only after ceruloplasmin appeared in the circulation. Thus, ceruloplasmin appeared to be essential to the normal movement of iron from cells to plasma. Studies designed to define the mechanism of action of ceruloplasmin were based on the in vitro observation that ceruloplasmin behaves as an enzyme (ferroxidase) that catalyzes oxidation of ferrous iron. Retention of injected ferrous iron in the plasma of ceruloplasmin-deficient swine was significantly less than that of ferric iron, reflecting impaired transferrin iron binding. Rat ceruloplasmin, which has little ferroxidase activity, was much less effective than porcine or human ceruloplasmin in inducing increases in plasma iron. These observations suggest that ceruloplasmin acts by virtue of its ferroxidase activity. Eight patients with Wilson's disease were evaluated in order to investigate iron metabolism in a disorder characterized by reduced ceruloplasmin levels. Evidence of iron deficiency was found in six of these, and in five of the six, plasma ceruloplasmin was less than 5% of normal. In comparison, the two patients without evidence of iron deficiency had ceruloplasmin levels of 11 and 18% of normal. It is suggested that iron deficiency tends to occur in those patients with Wilson's disease who have the severest degrees of hypoceruloplasminemia, possibly because of defective transfer of iron from intestinal mucosal cells to plasma.

  11. Deferasirox and deferiprone remove cardiac iron in the iron-overloaded gerbil

    Science.gov (United States)

    WOOD, JOHN C.; OTTO-DUESSEL, MAYA; GONZALEZ, IGNACIO; AGUILAR, MICHELLE I.; SHIMADA, HIRO; NICK, HANSPETER; NELSON, MARVIN; MOATS, REX

    2010-01-01

    Introduction Deferasirox effectively controls liver iron concentration; however, little is known regarding its ability to remove stored cardiac iron. Deferiprone seems to have increased cardiac efficacy compared with traditional deferoxamine therapy. Therefore, the relative efficacy of deferasirox and deferiprone were compared in removing cardiac iron from iron-loaded gerbils. Methods Twenty-nine 8- to 10-week-old female gerbils underwent 10 weekly iron dextran injections of 200 mg/kg/week. Prechelation iron levels were assessed in 5 animals, and the remainder received deferasirox 100 mg/kg/D po QD (n = 8), deferiprone 375 mg/kg/D po divided TID (n = 8), or sham chelation (n = 8), 5 days/week for 12 weeks. Results Deferasirox reduced cardiac iron content 20.5%. No changes occurred in cardiac weight, myocyte hypertrophy, fibrosis, or weight-to-dry weight ratio. Deferasirox treatment reduced liver iron content 51%. Deferiprone produced comparable reductions in cardiac iron content (18.6% reduction). Deferiprone-treated hearts had greater mass (16.5% increase) and increased myocyte hypertrophy. Deferiprone decreased liver iron content 24.9% but was associated with an increase in liver weight and water content. Conclusion Deferasirox and deferiprone were equally effective in removing stored cardiac iron in a gerbil animal model, but deferasirox removed more hepatic iron for a given cardiac iron burden. PMID:17145573

  12. Thermodynamics and Charging of Interstellar Iron Nanoparticles

    Science.gov (United States)

    Hensley, Brandon S.; Draine, B. T.

    2017-01-01

    Interstellar iron in the form of metallic iron nanoparticles may constitute a component of the interstellar dust. We compute the stability of iron nanoparticles to sublimation in the interstellar radiation field, finding that iron clusters can persist down to a radius of ≃4.5 Å, and perhaps smaller. We employ laboratory data on small iron clusters to compute the photoelectric yields as a function of grain size and the resulting grain charge distribution in various interstellar environments, finding that iron nanoparticles can acquire negative charges, particularly in regions with high gas temperatures and ionization fractions. If ≳10% of the interstellar iron is in the form of ultrasmall iron clusters, the photoelectric heating rate from dust may be increased by up to tens of percent relative to dust models with only carbonaceous and silicate grains.

  13. Thermodynamics and Charging of Interstellar Iron Nanoparticles

    CERN Document Server

    Hensley, Brandon S

    2016-01-01

    Interstellar iron in the form of metallic iron nanoparticles may constitute a component of the interstellar dust. We compute the stability of iron nanoparticles to sublimation in the interstellar radiation field, finding that iron clusters can persist down to a radius of $\\simeq 4.5\\,$\\AA, and perhaps smaller. We employ laboratory data on small iron clusters to compute the photoelectric yields as a function of grain size and the resulting grain charge distribution in various interstellar environments, finding that iron nanoparticles can acquire negative charges particularly in regions with high gas temperatures and ionization fractions. If $\\gtrsim 10\\%$ of the interstellar iron is in the form of ultrasmall iron clusters, the photoelectric heating rate from dust may be increased by up to tens of percent relative to dust models with only carbonaceous and silicate grains.

  14. Nanosized Iron Oxide Colloids Strongly Enhance Microbial Iron Reduction▿ †

    Science.gov (United States)

    Bosch, Julian; Heister, Katja; Hofmann, Thilo; Meckenstock, Rainer U.

    2010-01-01

    Microbial iron reduction is considered to be a significant subsurface process. The rate-limiting bioavailability of the insoluble iron oxyhydroxides, however, is a topic for debate. Surface area and mineral structure are recognized as crucial parameters for microbial reduction rates of bulk, macroaggregate iron minerals. However, a significant fraction of iron oxide minerals in the subsurface is supposed to be present as nanosized colloids. We therefore studied the role of colloidal iron oxides in microbial iron reduction. In batch growth experiments with Geobacter sulfurreducens, colloids of ferrihydrite (hydrodynamic diameter, 336 nm), hematite (123 nm), goethite (157 nm), and akaganeite (64 nm) were added as electron acceptors. The colloidal iron oxides were reduced up to 2 orders of magnitude more rapidly (up to 1,255 pmol h−1 cell−1) than bulk macroaggregates of the same iron phases (6 to 70 pmol h−1 cell−1). The increased reactivity was not only due to the large surface areas of the colloidal aggregates but also was due to a higher reactivity per unit surface. We hypothesize that this can be attributed to the high bioavailability of the nanosized aggregates and their colloidal suspension. Furthermore, a strong enhancement of reduction rates of bulk ferrihydrite was observed when nanosized ferrihydrite aggregates were added. PMID:19915036

  15. Iron and Mechanisms of Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Gabriela A. Salvador

    2011-01-01

    Full Text Available The accumulation of transition metals (e.g., copper, zinc, and iron and the dysregulation of their metabolism are a hallmark in the pathogenesis of several neurodegenerative diseases. This paper will be focused on the mechanism of neurotoxicity mediated by iron. This metal progressively accumulates in the brain both during normal aging and neurodegenerative processes. High iron concentrations in the brain have been consistently observed in Alzheimer's (AD and Parkinson's (PD diseases. In this connection, metalloneurobiology has become extremely important in establishing the role of iron in the onset and progression of neurodegenerative diseases. Neurons have developed several protective mechanisms against oxidative stress, among them, the activation of cellular signaling pathways. The final response will depend on the identity, intensity, and persistence of the oxidative insult. The characterization of the mechanisms mediating the effects of iron-induced increase in neuronal dysfunction and death is central to understanding the pathology of a number of neurodegenerative disorders.

  16. Acetaminophen protects against iron-induced cardiac damage in gerbils.

    Science.gov (United States)

    Walker, Ernest M; Epling, Christopher P; Parris, Cordel; Cansino, Silvestre; Ghosh, Protip; Desai, Devashish H; Morrison, Ryan G; Wright, Gary L; Wehner, Paulette; Mangiarua, Elsa I; Walker, Sandra M; Blough, Eric R

    2007-01-01

    There are few effective agents that safely remove excess iron from iron-overloaded individuals. Our goal was to evaluate the iron-removing effectiveness of acetaminophen given ip or orally in the gerbil iron-overload model. Male gerbils were divided into 5 groups: saline controls, iron-overloaded controls, iron-overloaded treated with ip acetaminophen, iron-overloaded treated with oral acetaminophen, and iron-overloaded treated with ipdeferoxamine. Iron dextran was injected iptwice/wk for 8 wk. Acetaminophen and deferoxamine treatments were given on Mondays, Wednesdays, and Fridays during the same 8 wk and continued for 4 wk after completion of iron-overloading. Echocardiograms were performed after completion of the iron-overloading and drug treatments. Liver and cardiac iron contents were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). Iron-overloaded controls had 232-fold and 16-fold increases in liver and cardiac iron content, respectively, compared to saline controls. In iron-overloaded controls, echocardiography showed cardiac hypertrophy, right and left ventricular distension, significant reduction in left ventricular ejection fraction (-22%), and fractional shortening (-31%) during systole. Treatments with acetaminophen (ip or oral) or deferoxamine (ip) were equally effective in reducing cardiac iron content and in preventing cardiac structural and functional changes. Both agents also significantly reduced excess hepatic iron content, although acetaminophen was less effective than deferoxamine. The results suggest that acetaminophen may be useful for treatment of iron-induced pathology.

  17. Effect of intravenous iron supplementation on iron stores in non-anemic iron-deficient patients with hereditary hemorrhagic telangiectasia

    Directory of Open Access Journals (Sweden)

    Torbjörn Karlsson

    2016-03-01

    Full Text Available In hereditary hemorrhagic telangiectasia (HHT, frequent episodes of nasal and gastrointestinal bleeding commonly lead to irondeficiency with or without anemia. In the retrospective study presented here we assessed the iron stores, as determined by analysis of plasma ferritin, during oral and intravenous iron supplementation, respectively, in a population of iron-deficient non-anemic HHT patients who were inadequately iron-repleted by oral supplementation. A switch from oral to intravenous iron supplementation was associated with a significant increase in ferritin in this patient population.

  18. In-plane flux distribution in 45 t-joint of 3phase transformer core with staggered yoke and limb 10mm

    Energy Technology Data Exchange (ETDEWEB)

    Daut, I.; Ahmad, D.M.M. [Malaysia Perlis Univ., Kangar Perlis (Malaysia). School of Electrical System Engineering

    2009-07-01

    Transformer iron loss can be reduced by either using better building and design techniques or by improving the quality of the steel. The design of the joints at the junctions of the yoke and limbs contributes to the efficiency of a transformer core. The flux may deviate in these areas from the rolling direction of the steel or become distorted so that local areas of high loss are produced. The primary beneficial factor in increasing transformer efficiency has been the use of grain-oriented silicon iron. This paper described the result of measurement of inplane flux distribution on 100kVA 3phase distribution transformer assembled with 45 t-joint and mitred lap corner joint with stagger yoke and limb with overlap length of 10mm. The measurement involved the fundamental and third harmonic of the easy and hard direction of flux density at each location measurement. The paper described the flux distributions that were measured using no load test by arrays of search coil in M5 (CGO) grades material of transformer core laminations. The paper described the experiment apparatus and measuring techniques. It was concluded that a small amount of flux deviation from the rolling direction occurred at the overlap, but no rotational flux was present in the joint. 1 refs., 10 figs.

  19. A lactic acid-fermented oat gruel increases non-haem iron absorption from a phytate-rich meal in healthy women of childbearing age

    DEFF Research Database (Denmark)

    Bering, S.; Suchdev, S.; Sjoltov, L.

    2006-01-01

    Lactic acid-fermented foods have been shown to increase Fe absorption in human subjects, possibly by lowering pH, activation of phytases, and formation of soluble complexes of Fe and organic acids. We tested the effect of an oat gruel fermented with Lactobacillus plantarum 299v on non-haem Fe....... The fermented gruel with live L. plantarum 299v increased Fe absorption significantly (P lactic acid concentration in the fermented gruel was 19 % higher than in the pasteurised gruel, but the Fe absorption was increased by 50...... %. In the gruel with organic acids, the lactic acid concentration was 52 % lower than in the pasteurised gruel, with no difference in Fe absorption. The fermented gruel increased non-haem Fe absorption from a phytate-rich meal in young women, indicating a specific effect of live L. plantarum 299v and not only...

  20. Flux Sampling Errors for Aircraft and Towers

    Science.gov (United States)

    Mahrt, Larry

    1998-01-01

    Various errors and influences leading to differences between tower- and aircraft-measured fluxes are surveyed. This survey is motivated by reports in the literature that aircraft fluxes are sometimes smaller than tower-measured fluxes. Both tower and aircraft flux errors are larger with surface heterogeneity due to several independent effects. Surface heterogeneity may cause tower flux errors to increase with decreasing wind speed. Techniques to assess flux sampling error are reviewed. Such error estimates suffer various degrees of inapplicability in real geophysical time series due to nonstationarity of tower time series (or inhomogeneity of aircraft data). A new measure for nonstationarity is developed that eliminates assumptions on the form of the nonstationarity inherent in previous methods. When this nonstationarity measure becomes large, the surface energy imbalance increases sharply. Finally, strategies for obtaining adequate flux sampling using repeated aircraft passes and grid patterns are outlined.

  1. IRON CONTENT OF FOOD COOKED IN IRON UTENSILS: A TRADITIONAL INDIAN WAY

    Directory of Open Access Journals (Sweden)

    Bibifatima Bawakhan

    2016-08-01

    Full Text Available BACKGROUND Since most of the Indian population depends on vegetarian diet, prevalence of iron deficiency status is higher in India compared to other developing countries. In spite of many national programs and treatment options available in correcting this, the incidence is increasing due to poor patient compliance and intolerance to treatment. This study was an effort to show how iron content of Indian food can be increased just by following the traditional way of cooking. OBJECTIVE To compare the iron levels in the Jowar roti cooked in iron and non-iron utensils. METHODOLOGY A cross-sectional study was conducted at KIMS, Hubli. Jowar rotis were prepared from equal quantity of jowar flour in iron and non-iron tawa. Another sample of roti was prepared in iron tawa after treating with lemon juice. Six samples were homogenised and filtered. The filtrates were replicated and analysed for iron levels by FerroZine method. RESULTS In the present study, we found no change in iron levels in the roti prepared in non-iron utensil, 1.45 and 1.94 fold increase in the roti prepared in new iron tawa without water boiled in it and with water boiled in it for dough preparation respectively when compared with iron levels of plain jowar flour. There was 5.77 fold rise in iron levels in lemon juice treated roti which signifies the bioavailability of iron in food. The study showed statistical significance at ‘p’- value < 0.05. CONCLUSION Several studies have shown the similar results and this was done to strengthen the findings in our staple food. Hence, the daily iron requirement can be met easily and effectively by taking the food cooked with lemon juice in iron utensils.

  2. Iron bioavailability from commercially available iron supplements

    OpenAIRE

    2015-01-01

    Purpose Iron deficiency anaemia (IDA) is a global public health problem. Treatment with the standard of care ferrous iron salts may be poorly tolerated, leading to non-compliance and ineffective correction of IDA. Employing supplements with higher bioavailability might permit lower doses of iron to be used with fewer side effects, thus improving treatment efficacy. Here, we compared the iron bioavailability of ferrous sulphate tablets with alternative commercial iron products, including th...

  3. Ingestion of polydextrose increase the iron absorption in rats submitted to partial gastrectomy A ingestão de polidextrose aumenta a absorção de ferro em ratos submetidos à gastrectomia parcial

    Directory of Open Access Journals (Sweden)

    Elisvânia Freitas dos Santos

    2010-12-01

    Full Text Available PURPOSE: To investigate whether polydextrose stimulates iron absorption in rats submitted to partial gastrectomy and sham operated. METHODS: The rats were submitted to partial gastrectomy (Billroth II or laparotomy (sham-operated control, in groups of 20 and 20 each respectively. The animals were fed with a control diet (AIN-93M without polydextrose or a diet containing polydextrose (50g/Kg of diet for eight weeks. They were divided into four subgroups: sham-operated and Billroth II gastrectomy and with or without polydextrose. Two animals died during the experiment. All rats submitted to gastrectomy received B-12 vitamin (intramuscular each two weeks. The hematocrit and hemoglobin concentration were measured at the start and on day 30 and 56 after the beginning of the experimental period. At the end of the study, the blood was collected for determination of serum iron concentration. RESULTS: The diet with polydextrose reduced the excretion of iron. Apparent iron absorption was higher in the polydextrose fed groups than in the control group. The haematocrit and haemoglobin concentration were lower after Billroth II gastrectomy rats fed the control diet as compared to the polydextrose diet groups. CONCLUSION: Polydextrose increase iron absorption and prevents postgastrectomy anemia.OBJETIVO: Investigar se a polidextrose estimula a absorção de ferro em ratos submetidos à gastrectomia parcial e sham operados. MÉTODOS: Os ratos foram submetidos à gastrectomia parcial (Billroth II e à laparotomia (controle sham-operados em grupos de 20 e 20 cada, respectivamente. Os animais foram alimentados com uma dieta controle (AIN-93M, sem polidextrose ou uma dieta contendo polidextrose (50g/kg de dieta durante oito semanas. Foram divididos em quatro grupos: sham-operados e com gastrectomia BII e com ou sem polidextrose. Dois animais morreram durante o experimento. Todos os ratos com gastrectomia receberam vitamina B-12 (intramuscular a cada duas semanas

  4. Getting the iron out: Phlebotomy for Alzheimer’s disease?

    OpenAIRE

    Dwyer, Barney E.; Zacharski, Leo R.; Balestra, Dominic J.; Lerner, Alan J.; Perry, George; Zhu, Xiongwei; Smith, Mark A.

    2009-01-01

    This communication explores the temporal link between the age-associated increase in body iron stores and the age-related incidence of Alzheimer’s disease (AD), the most prevalent cause of senile dementia. Body iron stores that increase with age could be pivotal to AD pathogenesis and progression. Increased stored iron is associated with common medical conditions such as diabetes and vascular disease that increase risk for development of AD. Increased stored iron could also promote oxidative ...

  5. Iron bioaccumulation in mycelium of Pleurotus ostreatus

    Directory of Open Access Journals (Sweden)

    Sandra M. Almeida

    2015-03-01

    Full Text Available Pleurotus ostreatus is able to bioaccumulate several metals in its cell structures; however, there are no reports on its capacity to bioaccumulate iron. The objective of this study was to evaluate cultivation variables to increase iron bioaccumulation in P. ostreatusmycelium. A full factorial design and a central composite design were utilized to evaluate the effect of the following variables: nitrogen and carbon sources, pH and iron concentration in the solid culture medium to produce iron bioaccumulated in mycelial biomass. The maximum production of P. ostreatus mycelial biomass was obtained with yeast extract at 2.96 g of nitrogen L−1 and glucose at 28.45 g L−1. The most important variable to bioaccumulation was the iron concentration in the cultivation medium. Iron concentration at 175 mg L−1 or higher in the culture medium strongly inhibits the mycelial growth. The highest iron concentration in the mycelium was 3500 mg kg−1 produced with iron addition of 300 mg L−1. The highest iron bioaccumulation in the mycelium was obtained in culture medium with 150 mg L−1 of iron. Iron bioaccumulation in P. ostreatus mycelium is a potential alternative to produce non-animal food sources of iron.

  6. Iron bioaccumulation in mycelium of Pleurotus ostreatus.

    Science.gov (United States)

    Almeida, Sandra M; Umeo, Suzana H; Marcante, Rafael C; Yokota, Meire E; Valle, Juliana S; Dragunski, Douglas C; Colauto, Nelson B; Linde, Giani A

    2015-03-01

    Pleurotus ostreatus is able to bioaccumulate several metals in its cell structures; however, there are no reports on its capacity to bioaccumulate iron. The objective of this study was to evaluate cultivation variables to increase iron bioaccumulation in P. ostreatus mycelium. A full factorial design and a central composite design were utilized to evaluate the effect of the following variables: nitrogen and carbon sources, pH and iron concentration in the solid culture medium to produce iron bioaccumulated in mycelial biomass. The maximum production of P. ostreatus mycelial biomass was obtained with yeast extract at 2.96 g of nitrogen L (-1) and glucose at 28.45 g L (-1) . The most important variable to bioaccumulation was the iron concentration in the cultivation medium. Iron concentration at 175 mg L (-1) or higher in the culture medium strongly inhibits the mycelial growth. The highest iron concentration in the mycelium was 3500 mg kg (-1) produced with iron addition of 300 mg L (-1) . The highest iron bioaccumulation in the mycelium was obtained in culture medium with 150 mg L (-1) of iron. Iron bioaccumulation in P. ostreatus mycelium is a potential alternative to produce non-animal food sources of iron.

  7. Iron in haemoglobinopathies and rare anaemias

    Directory of Open Access Journals (Sweden)

    John Porter

    2014-12-01

    Full Text Available Iron overload in haemoglobinopathies and rare anaemias may develop from increased iron absorption secondary to hepcidin suppression, and/or from repeated blood transfusions. While the accumulation of body iron load from blood transfusion is inevitable and predictable from the variable rates of transfusion in the different conditions, there are some important differences in the distribution of iron overload and its consequences between these. Transfusion-dependent thalassaemia (TDT is the best described condition in which transfusional overload occurs. Initially iron loads into macrophages, subsquently hepatocytes, and then the endocrine system including the anterior pituiatry and finally the myocardium. The propensity to extrahepatic iron spread increases with rapid transfusion and with inadequate chelation therapy but there is considerable interpatient and interpopulation variability in this tendency. The conduits though which iron is delivered to tissues is through non transferrin iron species (NTBI which are taken into liver, endocrine tissues and myocardium through L-type calcium channells and possibly through other channells. Recent work by the MSCIO group1 suggests that levels of NTBI are determined by three mechanisms: i increasing with iron overload; ii increasing with ineffective erythropoieis; iii and decreasing when level of transferrin iron utilisation is high. In TDT all three mechanisms increase NTBI levels because transferrin iron utilisation is suppressed by hypertransfusion. It is hypothesized that the transfusion regimen and target mean Hb may have a key impact on NTBI levels because high transfusion regimes may suppress the ‘sink’ effect of the erythron though decreased clearance of transferrin iron. In sickle cell disease (SCD without blood transfusion the anaemia results mainly from haemolysis rather than from ineffective erythropoiesis.2 Thus there is a tendency to iron depletion because of urinary iron loss from

  8. Iron deficiency in the tropics.

    Science.gov (United States)

    Fleming, A F

    1982-06-01

    Iron in food is classified as belonging to the haem pool, the nonhaem pool, and extraneous sources. Haem iron is derived from vegetable and animal sources with varying bioavailability. Hookworm infestation of the intestinal tract affects 450 million people in the tropics. Schistosoma mansoni caused blood loss in 7 Egyptian patients of 7.5- 25.9 ml/day which is equivalent to a daily loss of iron of .6-7.3 mg daily urinary loss of iron in 9 Egyptian patients. Trichuris trichiura infestation by whipworm is widespread in children with blood loss of 5 ml/day/worm. The etiology of anemia in children besides iron deficiency includes malaria, bacterial or viral infections, folate deficiency and sickle-cell disease. Severe infections cause profound iron-deficiency anemia in children in central American and Malaysia. Plasmodium falciparum malaria-induced anaemia in tropical Africa lowers the mean haemoglobin concentration in the population by 2 g/dI, causing profound anaemia in some. The increased risk of premature delivery, low birthweight, fetal abnormalities, and fetal death is directly related to the degree of maternal anemia. Perinatal mortality was reduced from 38 to 4% in treated anemic mothers. Mental performance was significantly lower in anemic school children and improved after they received iron. Supplements of iron, soy-protein, calcium, and vitamins given to villagers with widespread malnutrition, iron deficiency, and hookworm infestation in Colombia reduced enteric infections in children. Severe iron-deficiency anemia was treated in adults in northern Nigeria by daily in Ferastral 10 ml, which is equivalent to 500 mg of iron per day. Choloroquine, folic acid, rephenium hydroxynaphthoate, and tetrachlorethylene treat adults with severe iron deficiency from hookworm infestation in rural tropical Africa. Blood transfusion is indicated if the patient is dying of anaemia or is pregnant with a haemoglobin concentration 6 gm/dl. In South East Asia, mg per day

  9. Iron isotope biogeochemistry of Neoproterozoic marine shales

    Science.gov (United States)

    Kunzmann, Marcus; Gibson, Timothy M.; Halverson, Galen P.; Hodgskiss, Malcolm S. W.; Bui, Thi Hao; Carozza, David A.; Sperling, Erik A.; Poirier, André; Cox, Grant M.; Wing, Boswell A.

    2017-07-01

    Iron isotopes have been widely applied to investigate the redox evolution of Earth's surface environments. However, it is still unclear whether iron cycling in the water column or during diagenesis represents the major control on the iron isotope composition of sediments and sedimentary rocks. Interpretation of isotopic data in terms of oceanic redox conditions is only possible if water column processes dominate the isotopic composition, whereas redox interpretations are less straightforward if diagenetic iron cycling controls the isotopic composition. In the latter scenario, iron isotope data is more directly related to microbial processes such as dissimilatory iron reduction. Here we present bulk rock iron isotope data from late Proterozoic marine shales from Svalbard, northwestern Canada, and Siberia, to better understand the controls on iron isotope fractionation in late Proterozoic marine environments. Bulk shales span a δ 56Fe range from -0.45 ‰ to +1.04 ‰ . Although δ 56Fe values show significant variation within individual stratigraphic units, their mean value is closer to that of bulk crust and hydrothermal iron in samples post-dating the ca. 717-660 Ma Sturtian glaciation compared to older samples. After correcting for the highly reactive iron content in our samples based on iron speciation data, more than 90% of the calculated δ 56Fe compositions of highly reactive iron falls in the range from ca. -0.8 ‰ to +3 ‰ . An isotope mass-balance model indicates that diagenetic iron cycling can only change the isotopic composition of highly reactive iron by oxygen levels. Alternatively, increasing oxygen levels would have led to a higher proportion of Fe(II) being oxidized, without decreasing the initial size of the ferrous seawater iron pool. We consider the latter explanation as the most likely. According to this hypothesis, the δ 56Fe record reflects the redox evolution of Earth's surface environments. δ 56Fe values in pre-Sturtian samples

  10. Iron, anemia and hepcidin in malaria

    Directory of Open Access Journals (Sweden)

    Natasha eSpottiswoode

    2014-05-01

    Full Text Available Malaria and iron have a complex but important relationship. Plasmodium proliferation requires iron, both during the clinically silent liver stage of growth and in the disease-associated phase of erythrocyte infection. Precisely how the protozoan acquires its iron from its mammalian host remains unclear, but iron chelators can inhibit pathogen growth in vitro and in animal models. In humans, iron deficiency appears to protect against severe malaria, while iron supplementation increases risks of infection and disease. Malaria itself causes profound disturbances in physiological iron distribution and utilization, through mechanisms that include hemolysis, release of heme, dyserythropoiesis, anemia, deposition of iron in macrophages, and inhibition of dietary iron absorption. These effects have significant consequences. Malarial anemia is a major global health problem, especially in children, that remains incompletely understood and is not straightforward to treat. Furthermore, the changes in iron metabolism during a malaria infection may modulate susceptibility to coinfections. The release of heme and accumulation of iron in granulocytes may explain increased vulnerability to non-typhoidal Salmonella during malaria. The redistribution of iron away from hepatocytes and into macrophages may confer host resistance to superinfection, whereby blood-stage parasitemia prevents the development of a second liver-stage Plasmodium infection in the same organism. Key to understanding the pathophysiology of iron metabolism in malaria is the activity of the iron regulatory hormone hepcidin. Hepcidin is upregulated during blood-stage parasitemia and likely mediates much of the iron redistribution that accompanies disease. Understanding the regulation and role of hepcidin may offer new opportunities to combat malaria and formulate better approaches to treat anemia in the developing world.

  11. Institutional Care and Iron Deficiency Increase ADHD Symptomology and Lower IQ 2.5-5 Years Post-Adoption

    Science.gov (United States)

    Doom, Jenalee R.; Georgieff, Michael K.; Gunnar, Megan R.

    2015-01-01

    Increased ADHD symptomology and lower IQ have been reported in internationally adopted (IA) children compared to non-adopted peers (Hostinar, Stellern, Schaefer, Carlson & Gunnar, 2012; Kreppner, O'Connor & Rutter, 2001). However, it is unclear whether these outcomes are due to institutional deprivation specifically or to co-occurring…

  12. A lactic acid-fermented oat gruel increases non-haem iron absorption from a phytate-rich meal in healthy women of childbearing age

    DEFF Research Database (Denmark)

    Bering, S.; Suchdev, S.; Sjoltov, L.;

    2006-01-01

    Lactic acid-fermented foods have been shown to increase Fe absorption in human subjects, possibly by lowering pH, activation of phytases, and formation of soluble complexes of Fe and organic acids. We tested the effect of an oat gruel fermented with Lactobacillus plantarum 299v on non-haem Fe abs...

  13. Nanoscale zero-valent iron (nZVI) synthesis in a Mg-aminoclay solution exhibits increased stability and reactivity for reductive decontamination

    DEFF Research Database (Denmark)

    Hwang, Yuhoon; Lee, Young-Chul; Mines, Paul D.

    2014-01-01

    .g. for chlorinated solvents hotspots. In this study, water-solubilized magnesium-aminoclay (MgAC) was applied for the first time as a stabilizing agent in the synthesis of nZVI. With increased doses of Mg-aminoclay applied in the synthesis mixture, nZVI particle growth was inhibited and thin sheathed grape-like n...

  14. Voronoi analysis of the short-range atomic structure in iron and iron-carbon melts

    Science.gov (United States)

    Sobolev, Andrey; Mirzoev, Alexander

    2015-08-01

    In this work, we simulated the atomic structure of liquid iron and iron-carbon alloys by means of ab initio molecular dynamics. Voronoi analysis was used to highlight changes in the close environments of Fe atoms as carbon concentration in the melt increases. We have found, that even high concentrations of carbon do not affect short-range atomic order of iron atoms — it remains effectively the same as in pure iron melts.

  15. Transdermal iron replenishment therapy.

    Science.gov (United States)

    Modepalli, Naresh; Shivakumar, H N; Kanni, K L Paranjothy; Murthy, S Narasimha

    2015-01-01

    Iron deficiency anemia is one of the major nutritional deficiency disorders. Iron deficiency anemia occurs due to decreased absorption of iron from diet, chronic blood loss and other associated diseases. The importance of iron and deleterious effects of iron deficiency anemia are discussed briefly in this review followed by the transdermal approaches to deliver iron. Transdermal delivery of iron would be able to overcome the side effects associated with conventional oral and parenteral iron therapy and improves the patient compliance. During preliminary investigations, ferric pyrophosphate and iron dextran were selected as iron sources for transdermal delivery. Different biophysical techniques were explored to assess their efficiency in delivering iron across the skin, and in vivo studies were carried out using anemic rat model. Transdermal iron delivery is a promising approach that could make a huge positive impact on patients suffering with iron deficiency.

  16. Flux-P: Automating Metabolic Flux Analysis

    Directory of Open Access Journals (Sweden)

    Birgitta E. Ebert

    2012-11-01

    Full Text Available Quantitative knowledge of intracellular fluxes in metabolic networks is invaluable for inferring metabolic system behavior and the design principles of biological systems. However, intracellular reaction rates can not often be calculated directly but have to be estimated; for instance, via 13C-based metabolic flux analysis, a model-based interpretation of stable carbon isotope patterns in intermediates of metabolism. Existing software such as FiatFlux, OpenFLUX or 13CFLUX supports experts in this complex analysis, but requires several steps that have to be carried out manually, hence restricting the use of this software for data interpretation to a rather small number of experiments. In this paper, we present Flux-P as an approach to automate and standardize 13C-based metabolic flux analysis, using the Bio-jETI workflow framework. Exemplarily based on the FiatFlux software, it demonstrates how services can be created that carry out the different analysis steps autonomously and how these can subsequently be assembled into software workflows that perform automated, high-throughput intracellular flux analysis of high quality and reproducibility. Besides significant acceleration and standardization of the data analysis, the agile workflow-based realization supports flexible changes of the analysis workflows on the user level, making it easy to perform custom analyses.

  17. Iron deficiency: new insights into diagnosis and treatment.

    Science.gov (United States)

    Camaschella, Clara

    2015-01-01

    Iron deficiency and iron deficiency anemia are common conditions worldwide affecting especially children and young women. In developing countries, iron deficiency is caused by poor iron intake and/or parasitic infection, whereas vegetarian dietary choices, poor iron absorption, and chronic blood loss are common causes in high-income countries. Erythropoiesis stimulating agents can result in functional iron deficiency for erythropoiesis even when stores are iron-replete. Diagnosis of iron deficiency is straightforward, except when it occurs in the context of inflammatory disorders. Oral iron salts correct absolute iron deficiency in most patients, because low hepcidin levels facilitate iron absorption. Unfortunately frequent side effects limit oral iron efficacy. Intravenous iron is increasingly utilized, because currently available preparations allow rapid normalization of total body iron even with a single infusion and are effective also in functional iron deficiency and in iron deficiency associated with inflammatory disorders. The evidence is accumulating that these preparations are safe and effective. However, long-term safety issues of high doses of iron need to be further explored.

  18. Variations in dietary iron alter behavior in developing rats.

    Science.gov (United States)

    Piñero, D; Jones, B; Beard, J

    2001-02-01

    Iron deficiency in children is associated with retardation in growth and cognitive development, and the effects on cognition may be irreversible, even with treatment. Excessive iron has also been associated with neurological disease, especially in reference to the increased iron content in the brains of Alzheimer's disease and Parkinson's disease patients. This study evaluated the effects of dietary iron deficiency and excess iron on physical activity in rats. The animal model used is developmentally sensitive and permits control of the timing as well as the duration of the nutritional insult. Hence, to study the effects of early, late and long-term iron deficiency or excess iron (supplementation), rats were either made iron deficient or supplemented on postnatal day (PND) 10-21, PND 21-35 and PND 10-35. Some iron-deficient rats were iron repleted between PND 21-35. Different measures of motor activity were taken at PND 14, 17, 20, 27 and 34. Iron-deficient and iron-supplemented rats showed decreased activity and stereotypic behavior; this was apparent for any onset and duration of the nutritional insult. Recovery from iron deficiency did not normalize these functional variables, showing that the deleterious effects of early iron deficiency persist despite subsequent adequate treatment. This study demonstrates that iron deficiency in early life leads to irreversible behavioral changes. The biological bases for these behavioral alterations are not readily apparent, because iron therapy rapidly reverses the iron losses in all brain regions.

  19. Parkinson's Disease: The Mitochondria-Iron Link.

    Science.gov (United States)

    Muñoz, Yorka; Carrasco, Carlos M; Campos, Joaquín D; Aguirre, Pabla; Núñez, Marco T

    2016-01-01

    Mitochondrial dysfunction, iron accumulation, and oxidative damage are conditions often found in damaged brain areas of Parkinson's disease. We propose that a causal link exists between these three events. Mitochondrial dysfunction results not only in increased reactive oxygen species production but also in decreased iron-sulfur cluster synthesis and unorthodox activation of Iron Regulatory Protein 1 (IRP1), a key regulator of cell iron homeostasis. In turn, IRP1 activation results in iron accumulation and hydroxyl radical-mediated damage. These three occurrences-mitochondrial dysfunction, iron accumulation, and oxidative damage-generate a positive feedback loop of increased iron accumulation and oxidative stress. Here, we review the evidence that points to a link between mitochondrial dysfunction and iron accumulation as early events in the development of sporadic and genetic cases of Parkinson's disease. Finally, an attempt is done to contextualize the possible relationship between mitochondria dysfunction and iron dyshomeostasis. Based on published evidence, we propose that iron chelation-by decreasing iron-associated oxidative damage and by inducing cell survival and cell-rescue pathways-is a viable therapy for retarding this cycle.

  20. Development of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, S.; Sikka, V.K.; Andleigh, V.K. [and others

    1995-06-01

    The primary reason for the poor room-temperature ductility of Fe{sub 3}Al-based alloys is generally accepted to be environmental embrittlement due to hydrogen produced by the reaction of aluminum with water vapor present in the test atmosphere. In the as-cast condition, another possible reason for the low room-temperature ductility is the large grain size (0.5 to 3 mm) of the cast material. While recent studies on iron aluminides in the wrought condition have led to higher room-temperature ductility and increased high-temperature strength, limited studies have been conducted on iron aluminides in the as-cast condition. The purpose of this study was to induce grain refinement of the as-cast alloy through alloying additions to the melt and study the effect on room-temperature ductility as measured by the strain corresponding to the maximum stress obtained in a three-point bend test. A base charge of Fe-28% Al-5% Cr alloy was used; as in previous studies this ternary alloy exhibited the highest tensile ductility of several alloys tested. Iron aluminide alloys are being considered for many structural uses, especially for applications where their excellent corrosion resistance is needed. Several alloy compositions developed at ORNL have been licensed to commercial vendors for development of scale-up procedures. With the licensees and other vendors, several applications for iron aluminides are being pursued.

  1. The Last State Monopoly Iron Works in Imperial China: The Zunhua Iron Works of the Ming Dynasty

    Science.gov (United States)

    Chen, Hongli; Liu, Haifeng; Qian, Wei

    2016-10-01

    The Zunhua iron works was the last state monopoly iron industry in Imperial China. Its history could be a clue to explain why such a well-developed iron industry in ancient China faded after the works collapse. From the available historical record, the study found that the iron works had a complex history with several openings, closings and relocations. In order to prove this, field investigations were carried out and three locations were finally confirmed, and a well-preserved furnace and many iron- and steel-making relics were found. Lastly, these relics, including the fuel, iron ores, and flux, were analyzed in order to infer the relevant iron- and steel-making technology in use at that time.

  2. Iron and iron derived radicals

    Energy Technology Data Exchange (ETDEWEB)

    Borg, D.C.; Schaich, K.M.

    1987-04-01

    We have discussed some reactions of iron and iron-derived oxygen radicals that may be important in the production or treatment of tissue injury. Our conclusions challenge, to some extent, the usual lines of thought in this field of research. Insofar as they are born out by subsequent developments, the lessons they teach are two: Think fastexclamation Think smallexclamation In other words, think of the many fast reactions that can rapidly alter the production and fate of highly reactive intermediates, and when considering the impact of competitive reactions on such species, think how they affect the microenvironment (on the molecular scale) ''seen'' by each reactive molecule. 21 refs., 3 figs., 1 tab.

  3. Role of alcohol in the regulation of iron metabolism

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Patients with alcoholic liver disease frequently exhibit increased body iron stores, as reflected by elevated serum iron indices (transferrin saturation, ferritin) and hepatic iron concentration. Even mild to moderate alcohol consumption has been shown to increase the prevalence of iron overload. Moreover, increased hepatic iron content is associated with greater mortality from alcoholic cirrhosis, suggesting a pathogenic role for iron in alcoholic liver disease. Alcohol increases the severity of disease in patients with genetic hemochromatosis,an iron overload disorder common in the Caucasian population. Both iron and alcohol individually cause oxidative stress and lipid peroxidation, which culminates in liver injury. Despite these observations, the underlying mechanisms of iron accumulation and the source of the excess iron observed in alcoholic liver disease remain unclear. Over the last decade, several novel iron-regulatory proteins have been identified and these have greatly enhanced our understanding of iron metabolism. For example, hepcidin, a circulatory antimicrobial peptide synthesized by the hepatocytes of the liver is now known to play a central role in the regulation of iron homeostasis. This review attempts to describe the interaction of alcohol and iron-regulatory molecules. Understanding these molecular mechanisms is of considerable clinical importance because both alcoholic liver disease and genetic hemochromatosis are common diseases, in which alcohol and iron appear to act synergistically to cause liver injury.

  4. Iron Deficiency in Heart Failure: A Practical Guide

    OpenAIRE

    Nicole Ebner; Stephan von Haehling

    2013-01-01

    Iron is an element necessary for cells due to its capacity of transporting oxygen and electrons. One of the important co-morbidities in heart failure is iron deficiency. Iron has relevant biological functions, for example, the formation of haemoglobin, myoglobin and numerous enzymatic groups. The prevalence of iron deficiency increases with the severity of heart failure. For a long time, the influence of iron deficiency was underestimated especially in terms of worsening of cardiovascular dis...

  5. Fluxo difusivo de ferro em solos sob influência de doses de fósforo e de níveis de acidez e umidade Diffusive flux of iron in soils influenced by phosphorus rates and levels of acidity and moisture

    Directory of Open Access Journals (Sweden)

    F. N. Nunes

    2004-06-01

    Full Text Available A deficiência de Fe em plantas de café cultivadas em Latossolos ricos em Fe pode ser causada por condições que afetam o transporte deste nutriente no solo, como teores de P, valores de pH elevados e déficit hídrico no solo. O fluxo difusivo do Fe (FFe em solos foi avaliado como variável de doses de P e de níveis de acidez e umidade. Para isso, amostras superficiais de dois solos, um Latossolo Vermelho distroférrico típico A moderado textura muito argilosa e um Latossolo Vermelho-Amarelo distroférrico A moderado textura média, receberam 20 mg dm-3 de Fe na forma de FeSO4 e, posteriormente, foram submetidas aos tratamentos: sem ou com calagem (para V = 60 %, sem ou com P (500 mg dm-3, na forma de NH4H2PO4 e três níveis de umidade correspondentes aos potenciais: -0,01, -0,04 e -0,1 MPa, constituindo um fatorial 2 × 2 × 2 × 3, com três repetições distribuídas em blocos inteiramente casualizados. Para a determinação do FFe foram montadas câmaras de difusão que receberam uma lâmina de resina de troca catiônica como dreno de Fe. O Fe total adsorvido às lâminas foi extraído após 10 dias de contato com os solos, estimando-se o FFe. Os resultados mostraram que, em ambos os solos, o FFe mostrou-se altamente dependente da umidade e da acidez do solo (calagem e que, no Latossolo Vermelho distroférrico, foi muito influenciado pela adição de P. O FFe aumentou com a umidade e com a acidez do solo, mas diminuiu com a adição de P no solo mais argiloso, possivelmente pela formação de compostos Fe-P insolúveis neste solo.Iron deficiency in coffee plants cultivated in ferric Latosols may be induced by conditions that affect the transport of this nutrient in soils, such as P concentration, high pH values and low soil moisture content. The iron diffusive flux (FeF in soils was evaluated as a function of P rates and levels of acidity and moisture. Surface soil samples of a clayey dystroferric Red Latosol and a loamy

  6. Colorimetry and constant-potential coulometry determinations of transferrin-bound iron, total iron-binding capacity, and total iron in serum containing iron-dextran, with use of sodium dithionite and alumina columns.

    Science.gov (United States)

    Jacobs, J C; Alexander, N M

    1990-10-01

    After the parenteral administration of iron-dextran (imferon), the increased total iron concentrations in serum can be determined by atomic absorption spectroscopy and by colorimetric methods involving sodium dithionite, which reductively dissociates iron from the dextran complex. We report that constant-potential coulometry detects only about 55-70% of dextran-bound iron before dithionite reduction and variable amounts after reaction with the reducing agent. In addition, we have developed a procedure for determining transferrin-bound iron, total iron-binding capacity (TIBC), total iron, and dextran-bound iron with the Kodak Ektachem colorimetric system. In determining total serum iron, the sample is first mixed with sodium dithionite, which rapidly dissociates all dextran-bound iron, but does not remove iron from either transferrin or hemoglobin. After the mixture is applied to an Ektachem slide, transferrin-bound iron is released at pH 4 and is detected together with the iron previously bound to dextran. TIBC is determined by mixing serum with ferric citrate in moderate excess and filtering through a small alumina (Al2O3) column, which binds excess free iron and iron-dextran; the iron in the column eluate represents the TIBC. Transferrin-bound iron is determined by applying diluted serum without added ferric citrate to an alumina column and measuring the iron in the column eluate. Dextran-bound iron is equivalent to the difference between total and transferrin-bound iron. Using this method, we found that transferrin iron-binding sites are saturated in vitro by excess iron-dextran less efficiently than by ferric citrate.

  7. The liver in regulation of iron homeostasis.

    Science.gov (United States)

    Rishi, Gautam; Subramaniam, V Nathan

    2017-09-01

    The liver is one of the largest and most functionally diverse organs in the human body. In addition to roles in detoxification of xenobiotics, digestion, synthesis of important plasma proteins, gluconeogenesis, lipid metabolism, and storage, the liver also plays a significant role in iron homeostasis. Apart from being the storage site for excess body iron, it also plays a vital role in regulating the amount of iron released into the blood by enterocytes and macrophages. Since iron is essential for many important physiological and molecular processes, it increases the importance of liver in the proper functioning of the body's metabolism. This hepatic iron-regulatory function can be attributed to the expression of many liver-specific or liver-enriched proteins, all of which play an important role in the regulation of iron homeostasis. This review focuses on these proteins and their known roles in the regulation of body iron metabolism. Copyright © 2017 the American Physiological Society.

  8. Measurement of flux distribution on 100 kVA 3 phase distribution transformer assembled with 45 T-joint and mitred lap corner joint with stagger yoke by using search coil

    Energy Technology Data Exchange (ETDEWEB)

    Daut, I.; Ahmad, D.M.M.; Taib, S. [Univ. of Malaysia at Perlis, Kangar Perlis (Malaysia). School of Electrical System Engineering

    2008-07-01

    Iron loss in electrical transformers can be reduced by improving the quality of the steel or by using better building and design techniques. Also, the efficiency of a transformer core depends greatly on the design of the joints at the junctions of the yoke and limbs. The objective of this study was to know the flux distribution of the transformer core built from M5 electrical steel with 3 per cent silicon iron assembled with a 45 degree T- joint and mitred lap corner joint with stagger yoke. The study measured the flux distribution on a 100 kVA 3phase distribution transformer using no load tests. The study showed that the flux distribution in cores assembled with M5 materials varied with the stagger length. The localized flux density increased from the outer to the inner core of the 45 degree T-joint. A small amount of flux deviation from the rolling direction occurred at the overlap, but no rotational flux was present in the joint. The reason for the higher loss in the 45 degree T-joint and the mitred lap joint was due to the presence of rotational flux. 6 refs., 11 figs.

  9. Cogging Torque Minimization in Transverse Flux Machines

    Energy Technology Data Exchange (ETDEWEB)

    Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz; Husain, Iqbal; Muljadi, Eduard

    2017-02-16

    This paper presents the design considerations in cogging torque minimization in two types of transverse flux machines. The machines have a double stator-single rotor configuration with flux concentrating ferrite magnets. One of the machines has pole windings across each leg of an E-Core stator. Another machine has quasi-U-shaped stator cores and a ring winding. The flux in the stator back iron is transverse in both machines. Different methods of cogging torque minimization are investigated. Key methods of cogging torque minimization are identified and used as design variables for optimization using a design of experiments (DOE) based on the Taguchi method. A three-level DOE is performed to reach an optimum solution with minimum simulations. Finite element analysis is used to study the different effects. Two prototypes are being fabricated for experimental verification.

  10. Iron and stony-iron meteorites

    DEFF Research Database (Denmark)

    Benedix, Gretchen K.; Haack, Henning; McCoy, T. J.

    2014-01-01

    Without iron and stony-iron meteorites, our chances of ever sampling the deep interior of a differentiated planetary object would be next to nil. Although we live on a planet with a very substantial core, we will never be able to sample it. Fortunately, asteroid collisions provide us with a rich...... sampling of the deep interiors of differentiated asteroids. Iron and stony-iron meteorites are fragments of a large number of asteroids that underwent significant geological processing in the early solar system. Parent bodies of iron and some stony-iron meteorites completed a geological evolution similar...

  11. Trapped field properties of a Y–Ba–Cu–O bulk by pulsed field magnetization using a split coil inserted by iron yokes with various geometries and electromagnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, K., E-mail: t2216017@iwate-u.ac.jp [Department of Physical Science and Materials Engineering, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Ainslie, M.D. [Bulk Superconductivity Group, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); Fujishiro, H.; Naito, T. [Department of Physical Science and Materials Engineering, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Shi, Y-H.; Cardwell, D.A. [Bulk Superconductivity Group, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2017-05-15

    Highlights: • The trapped field characteristics of a standard Y–Ba–Cu–O bulk magnetized by PFM was investigated using a split coil with three kinds of iron yokes inserted in the bores of coil,both experimentally and numerically. • Numerical results encourage better understanding of the role of yoke, including the typical behavior of the magnetic flux, such as a flux jump during PFM. • A higher saturation magnetic flux density of the yoke material was effective to reduce flux flow in the descending stage of the pulsed field. • A conductivity of the yoke material also acts to reduce the velocity of the flux intruding the bulk because of eddy currents that flow in the yoke that oppose the magnetization, which reduces the temperature rise in the bulk. - Abstract: We have investigated, both experimentally and numerically, the trapped field characteristics of a standard Y–Ba–Cu–O bulk of 30 mm in diameter and 14 mm in thickness magnetized by pulsed field magnetization (PFM) using a split coil, in which three kinds of iron yoke are inserted in the bore of the coil: soft iron with a flat surface, soft iron with a taper, and permendur (50Fe + 50Co alloy) with a flat surface. The highest trapped field, B{sub Tmax}, of 2.93 T was achieved at 40 K in the case of the permendur yoke, which was slightly higher than that obtained for the flat soft iron or the tapered soft iron yokes, and was much higher than 2.20 T in the case without the yoke. The insertion effect of the yoke on the trapped field characteristics was also investigated using numerical simulations. The results suggest that the saturation magnetic flux density, B{sub sat}, of the yoke acts to reduce the flux flow due to its hysteretic magnetization curve and the higher electrical conductivity, σ, of the yoke material also acts to suppress the flux increase rate. A flux jump (or flux leap) can be reproduced in the ascending stage of PFM using numerical simulation, using an assumption of relatively

  12. Ferrous versus Ferric Oral Iron Formulations for the Treatment of Iron Deficiency: A Clinical Overview

    Directory of Open Access Journals (Sweden)

    Palacios Santiago

    2012-01-01

    Full Text Available Iron deficiency anaemia represents a major public health problem, particularly in infants, young children, pregnant women, and females with heavy menses. Oral iron supplementation is a cheap, safe, and effective means of increasing haemoglobin levels and restoring iron stores to prevent and correct iron deficiency. Many preparations are available, varying widely in dosage, formulation (quick or prolonged release, and chemical state (ferrous or ferric form. The debate over the advantages of ferrous versus ferric formulations is ongoing. In this literature review, the tolerability and efficacy of ferrous versus ferric iron formulations are evaluated. We focused on studies comparing ferrous sulphate preparations with ferric iron polymaltose complex preparations, the two predominant forms of iron used. Current data show that slow-release ferrous sulphate preparations remain the established and standard treatment of iron deficiency, irrespective of the indication, given their good bioavailability, efficacy, and acceptable tolerability demonstrated in several large clinical studies.

  13. Ferrous versus ferric oral iron formulations for the treatment of iron deficiency: a clinical overview.

    Science.gov (United States)

    Santiago, Palacios

    2012-01-01

    Iron deficiency anaemia represents a major public health problem, particularly in infants, young children, pregnant women, and females with heavy menses. Oral iron supplementation is a cheap, safe, and effective means of increasing haemoglobin levels and restoring iron stores to prevent and correct iron deficiency. Many preparations are available, varying widely in dosage, formulation (quick or prolonged release), and chemical state (ferrous or ferric form). The debate over the advantages of ferrous versus ferric formulations is ongoing. In this literature review, the tolerability and efficacy of ferrous versus ferric iron formulations are evaluated. We focused on studies comparing ferrous sulphate preparations with ferric iron polymaltose complex preparations, the two predominant forms of iron used. Current data show that slow-release ferrous sulphate preparations remain the established and standard treatment of iron deficiency, irrespective of the indication, given their good bioavailability, efficacy, and acceptable tolerability demonstrated in several large clinical studies.

  14. Iron metabolism in burned children.

    Science.gov (United States)

    Belmonte, J A; Ibáñez, L; Ras, M R; Aulesa, C; Vinzo, J; Iglesias, J; Carol, J

    1999-07-01

    The administration of iron supplementation in children with burns has been a subject of controversy. Recent studies argue against its use in the acute phase of stress. To assess whether iron metabolism parameters show significant differences in the acute phase and the recovery phase of burn, 21 patients (age range: 17 months to 13 years) with burns of more than 10% of body surface who had not received blood transfusions or iron supplementation were studied. Sideraemia, ferritin, transferrin, transferrin saturation index (TSI) and C-reactive protein (CRP) were assessed both in the acute and the recovery phase after burn. Sideraemia, transferrin, and TSI were significantly lower in the acute than in the recovery phase (17.3 +/- 3 vs 53.8 +/- 6.6 microg/dL, 190.5 +/- 15 vs 287.9 +/- 14.3 mg/dL and 7.7 +/- 1.3 vs 15.4 +/- 1.6%, P 1.5 vs 0.7 +/- 0.2 mg/dL, P = 0.016 and P 2 years), the observed differences persisted. Hyposideraemia is a frequent finding in the acute phase of paediatric burns and is accompanied by increased ferritin levels and decreased transferrin concentrations. The low iron values tend to recover without the use of iron supplementation suggesting an endogenous block of iron release in the acute phase and indicates that iron therapy should be not recommended in the initial period of stress of the burned patient.

  15. Increased de novo riboflavin synthesis and hydrolysis of FMN are involved in riboflavin secretion from Hyoscyamus albus hairy roots under iron deficiency.

    Science.gov (United States)

    Higa, Ataru; Khandakar, Jebunnahar; Mori, Yuko; Kitamura, Yoshie

    2012-09-01

    Riboflavin secretion by Hyoscyamus albus hairy roots under Fe deficiency was examined to determine where riboflavin is produced and whether production occurs via an enhancement of riboflavin biosynthesis or a stimulation of flavin mononucleotide (FMN) hydrolysis. Confocal fluorescent microscopy showed that riboflavin was mainly localized in the epidermis and cortex of the root tip and, at the cellular level, in the apoplast. The expressions of three genes involved in the de novo biosynthesis of riboflavin (GTP cyclohydrolase II/3,4-dihydroxy-2-butanone 4-phosphate synthase; 6,7-dimethyl-8-ribityllumazine synthase; riboflavin synthase) were compared between Fe-starved and Fe-replete roots over a time-course of 7 days, using RT-PCR. All three genes were found to be highly expressed over the period 1-7 days in the roots cultured under Fe deficiency. Since riboflavin secretion began to be detected only from 3 days, there was a lag phase observed between the increased transcript accumulations and riboflavin secretion. To determine whether FMN hydrolysis might contribute to the riboflavin secretion in Fe-deficient root cultures, FMN hydrolase activity was determined and was found to be substantially increased after 3 days, when riboflavin secretion became detectable. These results suggested that not only de novo riboflavin synthesis but also the hydrolysis of FMN contributes to riboflavin secretion under conditions of Fe deficiency. Respiration activity was assayed during the time-course, and was also found to be enhanced after 3 days under Fe deficiency, suggesting a possible link with riboflavin secretion. On the other hand, several respiratory inhibitors were found not to affect riboflavin synthase transcript accumulation.

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... or an inability to absorb enough iron from food. Overview Iron-deficiency anemia is a common type ... of the condition. Treatments may include dietary changes, medicines, and surgery. Severe iron-deficiency anemia may require ...

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... or an inability to absorb enough iron from food. Overview Iron-deficiency anemia is a common type ... condition. Treatments may include dietary changes, medicines, and surgery. Severe iron-deficiency anemia may require treatment in ...

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... at highest risk for iron-deficiency anemia. Outlook Doctors usually can successfully treat iron-deficiency anemia. Treatment ... poor skin tone, dizziness, and depression. After her doctor diagnosed her with iron-deficiency anemia, Susan got ...

  19. Iron and Your Child

    Science.gov (United States)

    ... extra iron in their diets. People following a vegetarian diet might also need additional iron. What's Iron ... as Whole Milk? About Anemia Minerals What's a Vegetarian? Word! Anemia Anemia Food Labels Vitamins and Minerals ...

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Intramural Research Research Resources Research Meeting Summaries Technology Transfer Clinical Trials What Are Clinical Trials? Children & Clinical ... iron-deficiency anemia may require treatment in a hospital, blood transfusions , iron injections, or intravenous iron therapy. ...

  1. Clustering of Emerging Flux

    Science.gov (United States)

    Ruzmaikin, A.

    1997-01-01

    Observations show that newly emerging flux tends to appear on the Solar surface at sites where there is flux already. This results in clustering of solar activity. Standard dynamo theories do not predict this effect.

  2. New Options for Iron Supplementation in Maintenance Hemodialysis Patients.

    Science.gov (United States)

    Vaziri, Nosratola D; Kalantar-Zadeh, Kamyar; Wish, Jay B

    2016-03-01

    End-stage renal disease results in anemia caused by shortened erythrocyte survival, erythropoietin deficiency, hepcidin-mediated impairment of intestinal absorption and iron release, recurrent blood loss, and impaired responsiveness to erythropoiesis-stimulating agents (ESAs). Iron malabsorption renders oral iron products generally ineffective, and intravenous (IV) iron supplementation is required in most patients receiving maintenance hemodialysis (HD). IV iron is administered at doses far exceeding normal intestinal iron absorption. Moreover, by bypassing physiologic safeguards, indiscriminate use of IV iron overwhelms transferrin, imposing stress on the reticuloendothelial system that can have long-term adverse consequences. Unlike conventional oral iron preparations, ferric citrate has recently been shown to be effective in increasing serum ferritin, hemoglobin, and transferrin saturation values while significantly reducing IV iron and ESA requirements in patients treated with HD. Ferric pyrophosphate citrate is a novel iron salt delivered by dialysate; by directly reaching transferrin, its obviates the need for storing administered iron and increases transferrin saturation without increasing serum ferritin levels. Ferric pyrophosphate citrate trials have demonstrated effective iron delivery and stable hemoglobin levels with significant reductions in ESA and IV iron requirements. To date, the long-term safety of using these routes of iron administration in patients receiving HD has not been compared to IV iron and therefore awaits future investigations.

  3. Dissolved iron and iron isotopes in the southeastern Pacific Ocean

    Science.gov (United States)

    Fitzsimmons, Jessica N.; Conway, Tim M.; Lee, Jong-Mi; Kayser, Richard; Thyng, Kristen M.; John, Seth G.; Boyle, Edward A.

    2016-10-01

    The Southeast Pacific Ocean is a severely understudied yet dynamic region for trace metals such as iron, since it experiences steep redox and productivity gradients in upper waters and strong hydrothermal iron inputs to deep waters. In this study, we report the dissolved iron (dFe) distribution from seven stations and Fe isotope ratios (δ56Fe) from three of these stations across a near-zonal transect from 20 to 27°S. We found elevated dFe concentrations associated with the oxygen-deficient zone (ODZ), with light δ56Fe implicating porewater fluxes of reduced Fe. However, temporal dFe variability and rapid δ56Fe shifts with depth suggest gradients in ODZ Fe source and/or redox processes vary over short-depth/spatial scales. The dFe concentrations decreased rapidly offshore, and in the upper ocean dFe was controlled by biological processes, resulting in an Fe:C ratio of 4.2 µmol/mol. Calculated vertical diffusive Fe fluxes were greater than published dust inputs to surface waters, but both were orders of magnitude lower than horizontal diffusive fluxes, which dominate dFe delivery to the gyre. The δ56Fe data in the deep sea showed evidence for a -0.2‰ Antarctic Intermediate Water end-member and a heavy δ56Fe of +0.55‰ for distally transported hydrothermal dissolved Fe from the East Pacific Rise. These heavy δ56Fe values were contrasted with the near-crustal δ56Fe recorded in the hydrothermal plume reaching Station ALOHA in the North Pacific. The heavy hydrothermal δ56Fe precludes a nanopyrite composition of hydrothermal dFe and instead suggests the presence of oxides or, more likely, binding of hydrothermal dFe by organic ligands in the distal plume.

  4. Genetics Home Reference: iron-refractory iron deficiency anemia

    Science.gov (United States)

    ... refractory iron deficiency anemia iron-refractory iron deficiency anemia Enable Javascript to view the expand/collapse boxes. ... All Close All Description Iron-refractory iron deficiency anemia is one of many types of anemia , which ...

  5. Cancer cells with irons in the fire.

    Science.gov (United States)

    Bystrom, Laura M; Rivella, Stefano

    2015-02-01

    Iron is essential for the growth and proliferation of cells, as well as for many biological processes that are important for the maintenance and survival of the human body. However, excess iron is associated with the development of cancer and other pathological conditions, due in part to the pro-oxidative nature of iron and its damaging effects on DNA. Current studies suggest that iron depletion may be beneficial for patients that have diseases associated with iron overload or other iron metabolism disorders that may increase the risk for cancer. On the other hand, studies suggest that cancer cells are more vulnerable to the effects of iron depletion and oxidative stress in comparison to normal cells. Therefore, cancer patients might benefit from treatments that alter both iron metabolism and oxidative stress. This review highlights the pro-oxidant effects of iron, the relationship between iron and cancer development, the vulnerabilities of the iron-dependent cancer phenotype, and how these characteristics may be exploited to prevent or treat cancer.

  6. Intestinal HIF2α promotes tissue-iron accumulation in disorders of iron overload with anemia.

    Science.gov (United States)

    Anderson, Erik R; Taylor, Matthew; Xue, Xiang; Ramakrishnan, Sadeesh K; Martin, Angelical; Xie, Liwei; Bredell, Bryce X; Gardenghi, Sara; Rivella, Stefano; Shah, Yatrik M

    2013-12-10

    Several distinct congenital disorders can lead to tissue-iron overload with anemia. Repeated blood transfusions are one of the major causes of iron overload in several of these disorders, including β-thalassemia major, which is characterized by a defective β-globin gene. In this state, hyperabsorption of iron is also observed and can significantly contribute to iron overload. In β-thalassemia intermedia, which does not require blood transfusion for survival, hyperabsorption of iron is the leading cause of iron overload. The mechanism of increased iron absorption in β-thalassemia is unclear. We definitively demonstrate, using genetic mouse models, that intestinal hypoxia-inducible factor-2α (HIF2α) and divalent metal transporter-1 (DMT1) are activated early in the pathogenesis of β-thalassemia and are essential for excess iron accumulation in mouse models of β-thalassemia. Moreover, thalassemic mice with established iron overload had significant improvement in tissue-iron levels and anemia following disruption of intestinal HIF2α. In addition to repeated blood transfusions and increased iron absorption, chronic hemolysis is the major cause of tissue-iron accumulation in anemic iron-overload disorders caused by hemolytic anemia. Mechanistic studies in a hemolytic anemia mouse model demonstrated that loss of intestinal HIF2α/DMT1 signaling led to decreased tissue-iron accumulation in the liver without worsening the anemia. These data demonstrate that dysregulation of intestinal hypoxia and HIF2α signaling is critical for progressive iron overload in β-thalassemia and may be a novel therapeutic target in several anemic iron-overload disorders.

  7. Efficacy and safety of intravenous iron sucrose in treating adults with iron deficiency anemia

    Directory of Open Access Journals (Sweden)

    Rodolfo Delfini Cançado

    2011-12-01

    Full Text Available BACKGROUND: Iron deficiency is the most common disorder in the world, affecting approximately 25% of the world`s population and the most common cause of anemia. OBJECTIVE: To evaluate the efficacy and safety of intravenous iron sucrose (IS in the treatment of adults with iron deficiency anemia METHODS: Eighty-six adult patients with iron deficiency anemia, who had intolerance or showed no effect with oral iron therapy, received a weekly dose of 200 mg of intravenous iron sucrose until the hemoglobin level was corrected or until receiving the total dose of intravenous iron calculated for each patient RESULTS: The mean hemoglobin and serum ferritin levels were 8.54 g/dL and 7.63 ng/mL (pre-treatment and 12.1 g/dL and 99.0 ng/mL (post-treatment (p-value < 0.0001, respectively. The average increases in hemoglobin levels were 3.29 g/dL for women and 4.58 g/dL for men; 94% of male and 84% of female patients responded (hemoglobin increased by at least 2 g/dL to intravenous iron therapy. Correction of anemia was obtained in 47 of 69 (68.1% female patients and in 12 of 17 male (70.6% patients. A total of 515 intravenous infusions of iron sucrose were administered and iron sucrose was generally well tolerated with no moderate or serious adverse drug reactions recorded by the investigators. CONCLUSIONS: Our data confirm that the use of intravenous iron sucrose is a safe and effective option in the treatment of adult patients with iron deficiency anemia who lack satisfactory response to oral iron therapy. Intravenous iron sucrose is well tolerated and with a clinically manageable safety profile when using appropriate dosing and monitoring. The availability of intravenous iron sucrose would potentially improve compliance and thereby reduce morbidities from iron deficiency.

  8. Efficacy and safety of intravenous iron sucrose in treating adults with iron deficiency anemia

    Science.gov (United States)

    Cançado, Rodolfo Delfini; de Figueiredo, Pedro Otavio Novis; Olivato, Maria Cristina Albe; Chiattone, Carlos Sérgio

    2011-01-01

    Background Iron deficiency is the most common disorder in the world, affecting approximately 25% of the world`s population and the most common cause of anemia. Objective To evaluate the efficacy and safety of intravenous iron sucrose (IS) in the treatment of adults with iron deficiency anemia Methods Eighty-six adult patients with iron deficiency anemia, who had intolerance or showed no effect with oral iron therapy, received a weekly dose of 200 mg of intravenous iron sucrose until the hemoglobin level was corrected or until receiving the total dose of intravenous iron calculated for each patient Results The mean hemoglobin and serum ferritin levels were 8.54 g/dL and 7.63 ng/mL (pre-treatment) and 12.1 g/dL and 99.0 ng/mL (post-treatment) (p-value < 0.0001), respectively. The average increases in hemoglobin levels were 3.29 g/dL for women and 4.58 g/dL for men; 94% of male and 84% of female patients responded (hemoglobin increased by at least 2 g/dL) to intravenous iron therapy. Correction of anemia was obtained in 47 of 69 (68.1%) female patients and in 12 of 17 male (70.6%) patients. A total of 515 intravenous infusions of iron sucrose were administered and iron sucrose was generally well tolerated with no moderate or serious adverse drug reactions recorded by the investigators. Conclusions Our data confirm that the use of intravenous iron sucrose is a safe and effective option in the treatment of adult patients with iron deficiency anemia who lack satisfactory response to oral iron therapy. Intravenous iron sucrose is well tolerated and with a clinically manageable safety profile when using appropriate dosing and monitoring. The availability of intravenous iron sucrose would potentially improve compliance and thereby reduce morbidities from iron deficiency. PMID:23049360

  9. Second international round robin for the quantification of serum non-transferrin-bound iron and labile plasma iron in patients with iron-overload disorders.

    Science.gov (United States)

    de Swart, Louise; Hendriks, Jan C M; van der Vorm, Lisa N; Cabantchik, Z Ioav; Evans, Patricia J; Hod, Eldad A; Brittenham, Gary M; Furman, Yael; Wojczyk, Boguslaw; Janssen, Mirian C H; Porter, John B; Mattijssen, Vera E J M; Biemond, Bart J; MacKenzie, Marius A; Origa, Raffaella; Galanello, Renzo; Hider, Robert C; Swinkels, Dorine W

    2016-01-01

    Non-transferrin-bound iron and its labile (redox active) plasma iron component are thought to be potentially toxic forms of iron originally identified in the serum of patients with iron overload. We compared ten worldwide leading assays (6 for non-transferrin-bound iron and 4 for labile plasma iron) as part of an international inter-laboratory study. Serum samples from 60 patients with four different iron-overload disorders in various treatment phases were coded and sent in duplicate for analysis to five different laboratories worldwide. Some laboratories provided multiple assays. Overall, highest assay levels were observed for patients with untreated hereditary hemochromatosis and β-thalassemia intermedia, patients with transfusion-dependent myelodysplastic syndromes and patients with transfusion-dependent and chelated β-thalassemia major. Absolute levels differed considerably between assays and were lower for labile plasma iron than for non-transferrin-bound iron. Four assays also reported negative values. Assays were reproducible with high between-sample and low within-sample variation. Assays correlated and correlations were highest within the group of non-transferrin-bound iron assays and within that of labile plasma iron assays. Increased transferrin saturation, but not ferritin, was a good indicator of the presence of forms of circulating non-transferrin-bound iron. The possibility of using non-transferrin-bound iron and labile plasma iron measures as clinical indicators of overt iron overload and/or of treatment efficacy would largely depend on the rigorous validation and standardization of assays.

  10. Iron Regulatory Proteins Mediate Host Resistance to Salmonella Infection.

    Science.gov (United States)

    Nairz, Manfred; Ferring-Appel, Dunja; Casarrubea, Daniela; Sonnweber, Thomas; Viatte, Lydie; Schroll, Andrea; Haschka, David; Fang, Ferric C; Hentze, Matthias W; Weiss, Guenter; Galy, Bruno

    2015-08-12

    Macrophages are essential for systemic iron recycling, and also control iron availability to pathogens. Iron metabolism in mammalian cells is orchestrated posttranscriptionally by iron-regulatory proteins (IRP)-1 and -2. Here, we generated mice with selective and combined ablation of both IRPs in macrophages to investigate the role of IRPs in controlling iron availability. These animals are hyperferritinemic but otherwise display normal clinical iron parameters. However, mutant mice rapidly succumb to systemic infection with Salmonella Typhimurium, a pathogenic bacterium that multiplies within macrophages, with increased bacterial burdens in liver and spleen. Ex vivo infection experiments indicate that IRP function restricts bacterial access to iron via the EntC and Feo bacterial iron-acquisition systems. Further, IRPs contain Salmonella by promoting the induction of lipocalin 2, a host antimicrobial factor that inhibits bacterial uptake of iron-laden siderophores, and by suppressing the ferritin iron pool. This work reveals the importance of the IRPs in innate immunity.

  11. Stellar Coronal Response to Differential Rotation and Flux Emergence

    CERN Document Server

    Gibb, G P S; Jardine, M M; Yeates, A R

    2016-01-01

    We perform a numerical parameter study to determine what effect varying differential rotation and flux emergence has on a star's non-potential coronal magnetic field. In particular we consider the effects on the star's surface magnetic flux, open magnetic flux, mean azimuthal field strength, coronal free magnetic energy, coronal heating and flux rope eruptions. To do this, we apply a magnetic flux transport model to describe the photospheric evolution, and couple this to the non-potential coronal evolution using a magnetofrictional technique. A flux emergence model is applied to add new magnetic flux onto the photosphere and into the corona. The parameters of this flux emergence model are derived from the solar flux emergence profile, however the rate of emergence can be increased to represent higher flux emergence rates than the Sun's. Overall we find that flux emergence has a greater effect on the non-potential coronal properties compared to differential rotation, with all the aforementioned properties incr...

  12. Compliance to Iron Supplementation Among Pregnant Women: a Cross Sectional Study in Urban Slum.

    Directory of Open Access Journals (Sweden)

    Alpanarani J Dutta, Prakash Patel, R K Bansal

    2014-01-01

    Conclusion: Every six out of ten pregnant women were found taking iron supplement pills. As number of antenatal visits and knowledge of dose and duration of iron supplementation pills are independently affecting compliance to iron pills, increasing number of antenatal visits and imparting knowledge about dose and duration of iron supplementation pills will improve compliance to iron pills."

  13. Absorption and loss of iron in toddlers are highly correlated.

    Science.gov (United States)

    Fomon, Samuel J; Nelson, Steven E; Serfass, Robert E; Ziegler, Ekhard E

    2005-04-01

    For estimating the requirements for dietary iron, it is important to know the amount of iron that is lost from the body. Inevitable losses of iron have been determined in adult humans but not in infants or children. We administered (58)Fe, the least abundant stable isotope of iron, to free-living infants at 168 d of age (5.6 mo) and followed them to age 26 mo. There was no dietary restriction after isotope administration. Blood was obtained at regular intervals for determination of isotopic enrichment and indices of iron status. We estimated the quantity of circulating iron, noncirculating active iron, and storage iron at each age. The administered isotope equilibrated with total body iron by 13 mo of age. From 13 to 26 mo of age, we estimated inevitable loss and absorption of iron from the change in tracer abundance in circulating iron. The rate of decrease of tracer abundance was proportional to addition of tracee, i.e., absorption of iron. Conversely, the rate of decrease in quantity of tracer was proportional to removal of tracee, i.e., loss of iron. From 13 to 26 mo of age, iron absorption was (mean +/- SD) 0.49 +/- 0.13 mg/d and inevitable iron loss was 0.25 +/- 0.12 mg/d. Intersubject variability of iron loss and iron absorption was high, and iron loss and absorption were highly correlated (r = 0.789, P absorption from the diet was inadequate to maintain or increase iron nutritional status. The data suggest that, in this cohort, which may be representative, the intake of bioavailable iron from 13 to 26 mo of age was insufficient to maintain iron nutritional status.

  14. Annual cycles of deep-ocean biogeochemical export fluxes in subtropical and subantarctic waters, southwest Pacific Ocean

    Science.gov (United States)

    Nodder, Scott D.; Chiswell, Stephen M.; Northcote, Lisa C.

    2016-04-01

    The annual cycles of particle fluxes derived from moored sediment trap data collected during 2000-2012 in subtropical (STW) and subantarctic waters (SAW) east of New Zealand are presented. These observations are the most comprehensive export flux time series from temperate Southern Hemisphere latitudes to date. With high levels of variability, fluxes in SAW were markedly lower than in STW, reflecting the picophytoplankton-dominated communities in the iron-limited, high nutrient-low chlorophyll SAW. Austral spring chlorophyll blooms in surface STW were near synchronous with elevated fluxes of bio-siliceous, carbonate, and organic carbon-rich materials to the deep ocean, probably facilitated by diatom and/or coccolithophorid sedimentation. Lithogenic fluxes were also high in STW, compared to SAW, reflecting proximity to the New Zealand landmass. In contrast, the highest biogenic fluxes in SAW occurred in spring when surface chlorophyll concentrations were low, while highest annual chlorophyll concentrations were in summer with no associated flux increase. We hypothesize that the high spring export in SAW results from subsurface chlorophyll accumulation that is not evident from remote-sensing satellites. This material was also rich in biogenic silica, perhaps related to the preferential export of diatoms and other silica-producing organisms, such as silicoflagellates and radiolarians. Organic carbon fluxes in STW are similar to that of other mesotrophic to oligotrophic waters (˜6-7 mg C m-2 d-1), whereas export from SAW is below the global average (˜3 mg C m-2 d-1). Regional differences in flux across the SW Pacific and Tasman region reflect variations in physical processes and ecosystem structure and function.

  15. FLUXES FOR MECHANIZED ELECTRIC WELDING,

    Science.gov (United States)

    WELDING FLUXES, WELDING ), (* WELDING , WELDING FLUXES), ARC WELDING , WELDS, STABILITY, POROSITY, WELDING RODS, STEEL, CERAMIC MATERIALS, FLUXES(FUSION), TITANIUM ALLOYS, ALUMINUM ALLOYS, COPPER ALLOYS, ELECTRODEPOSITION

  16. Effects of Pregnancy and Lactation on Iron Metabolism in Rats

    Directory of Open Access Journals (Sweden)

    Guofen Gao

    2015-01-01

    Full Text Available In female, inadequate iron supply is a highly prevalent problem that often leads to iron-deficiency anemia. This study aimed to understand the effects of pregnancy and lactation on iron metabolism. Rats with different days of gestation and lactation were used to determine the variations in iron stores and serum iron level and the changes in expression of iron metabolism-related proteins, including ferritin, ferroportin 1 (FPN1, ceruloplasmin (Cp, divalent metal transporter 1 (DMT1, transferrin receptor 1 (TfR1, and the major iron-regulatory molecule—hepcidin. We found that iron stores decline dramatically at late-pregnancy period, and the low iron store status persists throughout the lactation period. The significantly increased FPN1 level in small intestine facilitates digestive iron absorption, which maintains the serum iron concentration at a near-normal level to meet the increase of iron requirements. Moreover, a significant decrease of hepcidin expression is observed during late-pregnancy and early-lactation stages, suggesting the important regulatory role that hepcidin plays in iron metabolism during pregnancy and lactation. These results are fundamental to the understanding of iron homeostasis during pregnancy and lactation and may provide experimental bases for future studies to identify key molecules expressed during these special periods that regulate the expression of hepcidin, to eventually improve the iron-deficiency status.

  17. Iron Toxicity: New Conditions Continue to Emerge

    Directory of Open Access Journals (Sweden)

    Eugene D. Weinberg

    2009-01-01

    Full Text Available During the past half century, excessive/misplaced iron has been observed to be a risk factor for an increasing number and diversity of disease conditions. An extensive list of conditions and of the types of iron association were published in early 2008. Within the subsequent year, four additional disorders have been recognized to be enhanced by iron: aging muscle atrophy, viral replication, rosacea and pulmonary alveolar proteinosis. This paper adds new data and emphasis on these disorders as entities associated with increased iron load and toxicity.

  18. Iron decreases biological effects of ozone exposure

    Science.gov (United States)

    CONTEXT: Ozone (0(3)) exposure is associated with a disruption of iron homeostasis and increased availability of this metal which potentially contributes to an oxidative stress and biologicaleffects. OBJECTIVE: We tested the postulate that increased concentrations of iron in c...

  19. Iron from Zealandic bog iron ore -

    DEFF Research Database (Denmark)

    Lyngstrøm, Henriette Syrach

    2011-01-01

    og geologiske materiale, metallurgiske analyser og eksperimentel arkæologiske forsøg - konturerne af en jernproduktion med udgangspunkt i den sjællandske myremalm. The frequent application by archaeologists of Werner Christensen’s distribution map for the occurrence of bog iron ore in Denmark (1966...... are sketched of iron production based on bog iron ore from Zealand....

  20. Patterns of Flux Emergence

    Science.gov (United States)

    Title, A.; Cheung, M.

    2008-05-01

    The high spatial resolution and high cadence of the Solar Optical Telescope on the JAXA Hinode spacecraft have allowed capturing many examples of magnetic flux emergence from the scale of granulation to active regions. The observed patterns of emergence are quite similar. Flux emerges as a array of small bipoles on scales from 1 to 5 arc seconds throughout the region that the flux eventually condenses. Because the fields emerging from the underlying flux rope my appear many in small segments and the total flux (absolute sum) is not a conserved quantity the amount of total flux on the surface may vary significantly during the emergence process. Numerical simulations of flux emergence exhibit patterns similar to observations. Movies of both observations and numerical simulations will be presented.

  1. Iron Biofortification and Homeostasis in Transgenic Cassava Roots Expressing the Algal Iron Assimilatory Gene, FEA1

    OpenAIRE

    2012-01-01

    We have engineered the tropical root crop cassava (Manihot esculenta) to express the Chlamydomonas reinhardtii iron assimilatory gene, FEA1, in its storage roots with the objective of enhancing the root nutritional qualities. Iron levels in mature cassava storage roots were increased from 10 to 36 ppm in the highest iron accumulating transgenic lines. These iron levels are sufficient to meet the minimum daily requirement for iron in a 500 g meal. Significantly, the expression of the FEA1 gene...

  2. Iron biofortification and homeostasis in transgenic cassava roots expressing an algal iron assimilatory protein, FEA1

    Directory of Open Access Journals (Sweden)

    Uzoma eIhemere

    2012-09-01

    Full Text Available We have engineered the starchy root crop cassava (Manihot esculenta to express the Chlamydomonas reinhardtii iron assimilatory protein, FEA1, in roots to enhance its nutritional qualities. Iron levels in mature cassava storage roots were increased from 10 to 36 ppm in the highest iron accumulating transgenic lines. These iron levels are sufficient to meet the minimum daily requirement for iron in a 500 gm meal. Significantly, the expression of the FEA1 protein did not alter iron levels in leaves. Transgenic plants also had normal levels of zinc in leaves and roots consistent with the specific uptake of iron mediated by the FEA1 protein. Relative to wild-type plants, FEA1 expressing plants had reduced Fe(III chelate reductase activity and gene expression levels consistent with the more efficient uptake of iron in FEA1 transgenic plants. We also show that genes involved in iron homeostasis in cassava have altered tissue-specific patterns of expression in transgenic plants. Steady state transcript levels of the metal-chelate transporter MeYSL1, and the iron storage proteins, MeFER2 and MeFER6, were elevated in various tissues of FEA1 transgenic plants compared to wild-type plants. These results suggest that these gene products play a role in iron translocation and homeostasis in FEA1 transgenic cassava plants. These results are discussed in terms of enhanced strategies for the iron biofortification of plants.

  3. Serum bleomycin-detectable iron in patients with thalassemia major with normal range of serum iron.

    Directory of Open Access Journals (Sweden)

    Han,Khin Ei

    1995-06-01

    Full Text Available "Free" iron, a potentially radical-generating low mass iron, and not found in normal human blood, was increased in the serum of blood-transfused thalassemia major patients seen in the Yangon General Hospital, Yangon, Myanmar (Burma. The low mass iron was detected by the bleomycin assay. Fifty-one blood samples were analyzed (from 28 males and 23 females. High "free" iron was detected in 47 sera samples from thalassemia patients. Serum ferritin, which reflects the body store iron, was higher than the normal range (10-200 ng/ml in 49 patients. On the other hand, serum iron of 39 sera samples fell within the normal range (50-150 micrograms/dl. Four were less than 50 micrograms/dl and eight were more than 150 micrograms/dl. Almost all the patients' sera of normal or higher serum iron level contained "free" iron. Thus, almost all the sera from thalassemic patients from Myanmar contain bleomycin-detectable iron, even when serum iron is within the normal range. In developing countries where undernutrition is prevalent (serum albumin in these patients was 3.6 +/- 0.4 g/dl, P < 0.0001 vs. control value of 4.0 - 4.8 g/dl, normal serum iron does not preclude the presence of free iron in the serum.

  4. New developments and controversies in iron metabolism and iron chelation therapy.

    Science.gov (United States)

    Kontoghiorghe, Christina N; Kontoghiorghes, George J

    2016-03-26

    Iron is essential for all organisms including microbial, cancer and human cells. More than a quarter of the human population is affected by abnormalities of iron metabolism, mainly from iron deficiency and iron overload. Iron also plays an important role in free radical pathology and oxidative damage which is observed in almost all major diseases, cancer and ageing. New developments include the complete treatment of iron overload and reduction of morbidity and mortality in thalassaemia using deferiprone and selected deferiprone/deferoxamine combinations and also the use of the maltol iron complex in the treatment of iron deficiency anaemia. There is also a prospect of using deferiprone as a universal antioxidant in non iron overloaded diseases such as neurodegenerative, cardiovascular, renal, infectious diseases and cancer. New regulatory molecules of iron metabolism such as endogenous and dietary chelating molecules, hepcidin, mitochondrial ferritin and their role in health and disease is under evaluation. Similarly, new mechanisms of iron deposition, removal, distribution and toxicity have been identified using new techniques such as magnetic resonance imaging increasing our understanding of iron metabolic processes and the targeted treatment of related diseases. The uniform distribution of iron in iron overload between organs and within each organ is no longer valid. Several other controversies such as the toxicity impact of non transferrin bound iron vs injected iron, the excess levels of iron in tissues causing toxicity and the role of chelation on iron absorption need further investigation. Commercial interests of pharmaceutical companies and connections to leading journals are playing a crucial role in shaping worldwide medical opinion on drug sales and use but also patients' therapeutic outcome and safety. Major controversies include the selection criteria and risk/benefit assessment in the use of deferasirox in thalassaemia and more so in idiopathic

  5. Iron-Tolerant Cyanobacteria: Ecophysiology and Fingerprinting

    Science.gov (United States)

    Brown, I. I.; Mummey, D.; Lindsey, J.; McKay, D. S.

    2006-01-01

    Although the iron-dependent physiology of marine and freshwater cyanobacterial strains has been the focus of extensive study, very few studies dedicated to the physiology and diversity of cyanobacteria inhabiting iron-depositing hot springs have been conducted. One of the few studies that have been conducted [B. Pierson, 1999] found that cyanobacterial members of iron depositing bacterial mat communities might increase the rate of iron oxidation in situ and that ferrous iron concentrations up to 1 mM significantly stimulated light dependent consumption of bicarbonate, suggesting a specific role for elevated iron in photosynthesis of cyanobacteria inhabiting iron-depositing hot springs. Our recent studies pertaining to the diversity and physiology of cyanobacteria populating iron-depositing hot springs in Great Yellowstone area (Western USA) indicated a number of different isolates exhibiting elevated tolerance to Fe(3+) (up to 1 mM). Moreover, stimulation of growth was observed with increased Fe(3+) (0.02-0.4 mM). Molecular fingerprinting of unialgal isolates revealed a new cyanobacterial genus and species Chroogloeocystis siderophila, an unicellular cyanobacterium with significant EPS sheath harboring colloidal Fe(3+) from iron enriched media. Our preliminary data suggest that some filamentous species of iron-tolerant cyanobacteria are capable of exocytosis of iron precipitated in cytoplasm. Prior to 2.4 Ga global oceans were likely significantly enriched in soluble iron [Lindsay et al, 2003], conditions which are not conducive to growth of most contemporary oxygenic cyanobacteria. Thus, iron-tolerant CB may have played important physiological and evolutionary roles in Earths history.

  6. Outstanding Lobelia dortmanna in iron armor

    DEFF Research Database (Denmark)

    Jensen, Kaj Sand; Møller, Claus Lindskov; Raun, Ane-Marie Løvendahl

    2008-01-01

    .4%) of degradable organic matter. Coatings of oxidized iron on roots in organically enriched sediments reduce radial oxygen loss and, thereby, increase internal concentrations and supply of oxygen to root tips. Oxidized iron is also a redox buffers which may prevent the ingress of sulfides and other reduced toxic...... solutes during nights. Controlled experiments are under way to test if iron enrichment can help survival of rosette species threatened by lake pollution or whether removal of organic surface sediments is required....

  7. Directly observed iron supplementation for control of iron deficiency anemia

    Directory of Open Access Journals (Sweden)

    Mohan Bairwa

    2017-01-01

    Full Text Available Anemia is major public health problem affecting 1.6 billion people worldwide. The poor compliance of iron supplementation remains main contributor for high prevalence of anemia. The current paper reviewed the effectiveness of direct observation of oral iron supplementation on anemia. A systematic search was performed through electronic databases and local libraries. Search strategies used subject headings and key words “directly observed” and “iron supplementation.” Searches were sought through April 2014. A total of 14 articles were included in the study. Findings were presented in three categories. First, all of those reported an improvement in compliance of iron supplementation. Second, reduction in the prevalence of anemia was reported by all and third, all except one reported increased blood hemoglobin level. Directly observed an iron supplementation is an effective approach for prevention and management of anemia in vulnerable groups. However, larger trials are needed before concluding that scaling up directly observed iron supplementation through community health volunteers would be beneficial.

  8. WEAR-RESISTANCE OF CHROMIC CAST IRONS OF EUTECTIC COMPOSITION

    Directory of Open Access Journals (Sweden)

    K. E. Baranovskij

    2009-01-01

    Full Text Available Casting of wear-resistant chrome cast irons in combined molds and iron chills is studied. Application of these ways of casting results in blending of carbides and increasing of hardness of castings.

  9. Nutritional iron deficiency

    NARCIS (Netherlands)

    Zimmermann, M.B.; Hurrell, R.F.

    2007-01-01

    Iron deficiency is one of the leading risk factors for disability and death worldwide, affecting an estimated 2 billion people. Nutritional iron deficiency arises when physiological requirements cannot be met by iron absorption from diet. Dietary iron bioavailability is low in populations consuming

  10. Iron deficiency anemia

    Science.gov (United States)

    Anemia - iron deficiency ... iron from old red blood cells. Iron deficiency anemia develops when your body's iron stores run low. ... You may have no symptoms if the anemia is mild. Most of the time, ... slowly. Symptoms may include: Feeling weak or tired more often ...

  11. Nutritional iron deficiency

    NARCIS (Netherlands)

    Zimmermann, M.B.; Hurrell, R.F.

    2007-01-01

    Iron deficiency is one of the leading risk factors for disability and death worldwide, affecting an estimated 2 billion people. Nutritional iron deficiency arises when physiological requirements cannot be met by iron absorption from diet. Dietary iron bioavailability is low in populations consuming

  12. Serum iron test

    Science.gov (United States)

    Fe+2; Ferric ion; Fe++; Ferrous ion; Iron - serum; Anemia - serum iron; Hemochromatosis - serum iron ... A blood sample is needed. Iron levels are highest in the morning. Your health care provider will likely have you do this test in the morning.

  13. Iron stress in plants.

    Science.gov (United States)

    Connolly, Erin L; Guerinot, Mary

    2002-07-30

    Although iron is an essential nutrient for plants, its accumulation within cells can be toxic. Plants, therefore, respond to both iron deficiency and iron excess by inducing expression of different gene sets. Here, we review recent advances in the understanding of iron homeostasis in plants gained through functional genomic approaches

  14. Iron stress in plants

    OpenAIRE

    Connolly, Erin L.; Guerinot, Mary Lou

    2002-01-01

    Although iron is an essential nutrient for plants, its accumulation within cells can be toxic. Plants, therefore, respond to both iron deficiency and iron excess by inducing expression of different gene sets. Here, we review recent advances in the understanding of iron homeostasis in plants gained through functional genomic approaches.

  15. Impact of oral iron challenges on circulating non-transferrin-bound iron in healthy Guatemalan males.

    Science.gov (United States)

    Schümann, Klaus; Kroll, Sylvia; Romero-Abal, Maria-Eugenia; Georgiou, Niki A; Marx, Jo J M; Weiss, Günter; Solomons, Noel W

    2012-01-01

    Oral iron as a supplement has been associated with adverse health consequences, especially in the context of young children with active malaria. A potential aggravating role of non-transferrin-bound iron (NTBI) has been proposed. NTBI responses in both a fasting and post-oral iron dosing situation were related to serum iron concentration and ferritin status. Fasting and 1, 2, and 3 h postdose serum samples were obtained in conjunction with oral ferrous sulfate supplementation in aqueous solution of 0, 15, 30, 60, 120 and 240 mg Fe in a cohort of 8 healthy Guatemalan men over a 9-week metabolic protocol. Hemoglobin, serum ferritin, percent transferrin saturation, serum iron and NTBI were all measured. Circulating levels of serum iron and NTBI increased in a graded fashion in response to oral iron, with the relative increment for NTBI slightly greater than that of iron. Detectable NTBI was occasionally measured in fasting specimens, more frequently in subjects with high ferritin status. Post-iron NTBI responses, by contrast, were higher in normal-ferritin subjects in absolute terms, and rose with increasing postabsorptive serum iron responses. The appearance and response of circulating NTBI were consistent with recognized principles of iron regulation. Copyright © 2012 S. Karger AG, Basel.

  16. Urinary iron excretion test in iron deficiency anemia.

    Directory of Open Access Journals (Sweden)

    Kimura,Ikuro

    1980-02-01

    Full Text Available A urinary iron excretion test was carried out in 22 patients with iron deficiency anemia. The iron excretion index was significantly higher in patients with intractable iron deficiency anemia compared with normal subjects and anemic patients who were responsive to iron therapy. The findings suggest that iron excretion may be a factor that modulates the response of patients to iron therapy.

  17. Iron supplementation of breastfed infants from an early age.

    Science.gov (United States)

    Ziegler, Ekhard E; Nelson, Steven E; Jeter, Janice M

    2009-02-01

    In breastfed infants, iron deficiency at deficiency. The study assessed the effect of early iron supplementation of breastfed infants and tested the hypothesis that iron supplementation enhances iron status. Potential adverse effects (tolerance and growth) were monitored. The prospective, placebo-controlled study involved exclusively breastfed infants who were randomly assigned at 1 mo of age to iron (n = 37) or placebo (n = 38). Iron (7 mg/d as multivitamin preparation with ferrous sulfate) or placebo (multivitamin preparation without iron) was given from 1 to 5.5 mo of age. Complementary foods were allowed at >4 mo. Infants were followed to 18 mo. Blood concentrations of ferritin, transferrin receptor, hemoglobin, and red cell indexes were determined at bimonthly intervals. Stool consistency and color and feeding behavior were recorded. Iron supplementation caused modest augmentation of iron status during the intervention at 4 and 5.5 mo but not thereafter. Iron supplements were well tolerated and had no measurable effect on growth. One infant developed iron deficiency anemia by 5.5 mo of age. Plasma ferritin and hemoglobin tracked over time. Early iron supplementation of breastfed infants is feasible and transiently increases iron status but not hematologic status. Iron is tolerated by most infants. The prevalence of iron deficiency anemia is low (3%) among unsupplemented breastfed infants in the first 6 mo of life.

  18. Controls on radium transport by adsorption to iron minerals

    Science.gov (United States)

    Chen, M.; Wang, T.; Kocar, B. D.

    2015-12-01

    Radium is a naturally occurring radioactive metal found in many subsurface environments. Radium isotopes are generated by uranium and thorium decay, and are particularly abundant within groundwaters where minimal porewater flux leads to accumulation. These isotopes are used as natural tracers for estimating submarine groundwater discharge (SGD) [1], allowing for large scale estimation of GW fluxes into and out of the ocean [2]. They also represent a substantial hazard in wastewater produced after hydraulic fracturing for natural gas extraction [3], resulting in a significant risk of environmental release to surface and near-surface wa