WorldWideScience

Sample records for increased water contact

  1. Use of Atomic Oxygen for Increased Water Contact Angles of Various Polymers for Biomedical Applications

    Science.gov (United States)

    Beger, Lauren; Roberts, Lily; deGroh, Kim; Banks, Bruce

    2007-01-01

    In the low Earth orbit (LEO) space environment, spacecraft surfaces can be altered during atomic oxygen exposure through oxidation and erosion. There can be terrestrial benefits of such interactions, such as the modification of hydrophobic or hydrophilic properties of polymers due to chemical modification and texturing. Such modification of the surface may be useful for biomedical applications. For example, atomic oxygen texturing may increase the hydrophilicity of polymers, such as chlorotrifluoroethylene (Aclar), thus allowing increased adhesion and spreading of cells on textured Petri dishes. The purpose of this study was to determine the effect of atomic oxygen exposure on the hydrophilicity of nine different polymers. To determine whether hydrophilicity remains static after atomic oxygen exposure or changes with exposure, the contact angles between the polymer and a water droplet placed on the polymer s surface were measured. The polymers were exposed to atomic oxygen in a radio frequency (RF) plasma asher. Atomic oxygen plasma treatment was found to significantly alter the hydrophilicity of non-fluorinated polymers. Significant decreases in the water contact angle occurred with atomic oxygen exposure. Fluorinated polymers were found to be less sensitive to changes in hydrophilicity for equivalent atomic oxygen exposures, and two of the fluorinated polymers became more hydrophobic. The majority of change in water contact angle of the non-fluorinated polymers was found to occur with very low fluence exposures, indicating potential cell culturing benefit with short treatment time.

  2. Use of Atomic Oxygen for Increased Water Contact Angles of Various Polymers for Biomedical Applications

    Science.gov (United States)

    deGroh, Kim; Berger, Lauren; Roberts, Lily

    2009-01-01

    The purpose of this study was to determine the effect of atomic oxygen (AO) exposure on the hydrophilicity of nine different polymers for biomedical applications. Atomic oxygen treatment can alter the chemistry and morphology of polymer surfaces, which may increase the adhesion and spreading of cells on Petri dishes and enhance implant growth. Therefore, nine different polymers were exposed to atomic oxygen and water-contact angle, or hydrophilicity, was measured after exposure. To determine whether hydrophilicity remains static after initial atomic oxygen exposure, or changes with higher fluence exposures, the contact angles between the polymer and water droplet placed on the polymer s surface were measured versus AO fluence. The polymers were exposed to atomic oxygen in a 100-W, 13.56-MHz radio frequency (RF) plasma asher, and the treatment was found to significantly alter the hydrophilicity of non-fluorinated polymers. Pristine samples were compared with samples that had been exposed to AO at various fluence levels. Minimum and maximum fluences for the ashing trials were set based on the effective AO erosion of a Kapton witness coupon in the asher. The time intervals for ashing were determined by finding the logarithmic values of the minimum and maximum fluences. The difference of these two values was divided by the desired number of intervals (ideally 10). The initial desired fluence was then multiplied by this result (2.37), as was each subsequent desired fluence. The flux in the asher was determined to be approximately 3.0 x 10(exp 15) atoms/sq cm/sec, and each polymer was exposed to a maximum fluence of 5.16 x 10(exp 20) atoms/sq cm.

  3. Increase in the water contact angle of composite film surfaces caused by the assembly of hydrophilic nanocellulose fibrils and nanoclay platelets.

    Science.gov (United States)

    Wu, Chun-Nan; Saito, Tsuguyuki; Yang, Quanling; Fukuzumi, Hayaka; Isogai, Akira

    2014-08-13

    Controlling the assembly modes of different crystalline nanoparticles in composites is important for the expression of specific characteristics of the assembled structures. We report a unique procedure for increasing water contact angles (CAs) of composite film surfaces via the assembly of two different hydrophilic components, nanocellulose fibrils and nanoclay platelets. The nanocellulose fibrils and nanoclay platelets used have ionic groups on their surfaces in high densities (∼1 mmol g(-1)) and have no hydrophobic surface. The increase in the CA of the nanocellulose/nanoclay composite films was thus analyzed on the basis of the air area fractions of their nanostructured surfaces following Cassie's law. The air area fractions were geographically estimated from the atomic force microscopy height profiles of the composite film surfaces. The CAs of the composite film surfaces were found to be well described by Cassie's law. Interestingly, the composite films consisting of two hydrophilic nanoelements with different shapes exhibited CAs larger than those of the individual neat films.

  4. Picoliter water contact angle measurement on polymers.

    Science.gov (United States)

    Taylor, Michael; Urquhart, Andrew J; Zelzer, Mischa; Davies, Martyn C; Alexander, Morgan R

    2007-06-19

    Water contact angle measurement is the most common method for determining a material's wettability, and the sessile drop approach is the most frequently used. However, the method is generally limited to macroscopic measurements because the base diameter of the droplet is usually greater than 1 mm. Here we report for the first time on a dosing system to dispense smaller individual droplets with control of the position and investigate whether water contact angles determined from picoliter volume water droplets are comparable with those obtained from the conventional microliter volume water droplets. This investigation was conducted on a group of commonly used polymers. To demonstrate the higher spatial resolution of wettability that can be achieved using picoliter volume water droplets, the wettability of a radial plasma polymer gradient was mapped using a 250 microm interval grid.

  5. SAGD processes with fresh water contact

    Energy Technology Data Exchange (ETDEWEB)

    Thimm, H.F. [Thimm Petroleum Technologies Inc. (Canada)

    2011-07-01

    In the Athabasca region, several bitumen reservoirs are shallow, located less than 400 meters below grade. These deposits are suitable for SAGD exploitation but the steam could come into contact with fresh water, which carries the risk of contaminating this resource. Operators are thus required by regulators to address this issue at the project application stage. The aim of this paper is to examine the potential effect of contact between fresh water and a bitumen bearing zone in a field in Northern Alberta. Investigations were conducted with a steam zone temperature of 200 degree Celsius and measurements were conducted at a plant close to the proposed project. Results showed that the accumulation of hydrogen sulphide would protect the water column and PAH, benzene and toluene were found to be potential concerns but they were not detected during implementation of a similar project. This paper demonstrated that the proposed project does not constitute a threat to fresh water.

  6. Perspective-taking increases willingness to engage in intergroup contact.

    Directory of Open Access Journals (Sweden)

    Cynthia S Wang

    Full Text Available The current research explored whether perspective-taking increases willingness to engage in contact with stereotyped outgroup members. Across three studies, we find that perspective-taking increases willingness to engage in contact with negatively-stereotyped targets. In Study 1, perspective-takers sat closer to, whereas stereotype suppressors sat further from, a hooligan compared to control participants. In Study 2, individual differences in perspective-taking tendencies predicted individuals' willingness to engage in contact with a hooligan, having effects above and beyond those of empathic concern. Finally, Study 3 demonstrated that perspective-taking's effects on intergroup contact extend to the target's group (i.e., another homeless man, but not to other outgroups (i.e., a man of African descent. Consistent with other perspective-taking research, our findings show that perspective-taking facilitates the creation of social bonds by increasing contact with stereotyped outgroup members.

  7. Water contact angles and hysteresis of polyamide surfaces.

    Science.gov (United States)

    Extrand, C W

    2002-04-01

    The wetting behavior of a series of aliphatic polyamides (PAs) has been examined. PAs with varying amide content and polyethylene (PE) were molded against glass to produce surfaces with similar roughness. After cleaning, chemical composition of the surfaces was verified with X-ray photoelectron spectroscopy. Advancing and receding contact angles were measured from small sessile water drops. Contact angles decreased with amide content while hysteresis increased. Hysteresis arose primarily from molecular interactions between the contact liquid and the solid substrates, rather than moisture absorption, variations in crystallinity, surface deformation, roughness, reorientation of amide groups, or surface contamination. Free energies of hysteresis were calculated from contact angles. For PE, which is composed entirely of nonpolar methylene groups, free energies were equivalent to the strength of dispersive van der Waals bonds. For PAs, free energies corresponded to fractional contributions from the dispersive methylene groups and polar amide groups.

  8. Investigating Whether Contacting Absent Students Increases Course Success

    Science.gov (United States)

    Stucky, Thomas D.

    2008-01-01

    Studies suggest that student attendance in college classes increases course success. Yet, surprisingly few studies have examined strategies to increase student attendance. The goal of the current study is to consider whether contacting consistently absent students increases success in an undergraduate research methods course. Results of this…

  9. Static and dynamic contact angles of water droplet on a solid surface using molecular dynamics simulation.

    Science.gov (United States)

    Hong, Seung Do; Ha, Man Yeong; Balachandar, S

    2009-11-01

    The present study investigates the variation of static contact angle of a water droplet in equilibrium with a solid surface in the absence of a body force and the dynamic contact angles of water droplet moving on a solid surface for different characteristic energies using the molecular dynamics simulation. With increasing characteristic energy, the static contact angle in equilibrium with a solid surface in the absence of a body force decreases because the hydrophobic surface changes its characteristics to the hydrophilic surface. In order to consider the effect of moving water droplet on the dynamic contact angles, we apply the constant acceleration to an individual oxygen and hydrogen atom. In the presence of a body force, the water droplet changes its shape with larger advancing contact angle than the receding angle. The dynamic contact angles are compared with the static contact angle in order to see the effect of the presence of a body force.

  10. Renewable Water: Direct Contact Membrane Distillation Coupled With Solar Ponds

    Science.gov (United States)

    Suarez, F. I.; Tyler, S. W.; Childress, A. E.

    2010-12-01

    The exponential population growth and the accelerated increase in the standard of living have increased significantly the global consumption of two precious resources: water and energy. These resources are intrinsically linked and are required to allow a high quality of human life. With sufficient energy, water may be harvested from aquifers, treated for potable reuse, or desalinated from brackish and seawater supplies. Even though the costs of desalination have declined significantly, traditional desalination systems still require large quantities of energy, typically from fossil fuels that will not allow these systems to produce water in a sustainable way. Recent advances in direct contact membrane distillation can take advantage of low-quality or renewable heat to desalinate brackish water, seawater or wastewater. Direct contact membrane distillation operates at low pressures and can use small temperature differences between the feed and permeate water to achieve a significant freshwater production. Therefore, a much broader selection of energy sources can be considered to drive thermal desalination. A promising method for providing renewable source of heat for direct contact membrane distillation is a solar pond, which is an artificially stratified water body that captures solar radiation and stores it as thermal energy at the bottom of the pond. In this work, a direct contact membrane distillation/solar pond coupled system is modeled and tested using a laboratory-scale system. Freshwater production rates on the order of 2 L day-1 per m2 of solar pond (1 L hr-1 per m2 of membrane area) can easily be achieved with minimal operating costs and under low pressures. While these rates are modest, they are six times larger than those produced by other solar pond-powered desalination systems - and they are likely to be increased if heat losses in the laboratory-scale system are reduced. Even more, this system operates at much lower costs than traditional desalination

  11. Maternal allergic contact dermatitis causes increased asthma risk in offspring

    Directory of Open Access Journals (Sweden)

    Kobzik Lester

    2007-07-01

    Full Text Available Abstract Background Offspring of asthmatic mothers have increased risk of developing asthma, based on human epidemiologic data and experimental animal models. The objective of this study was to determine whether maternal allergy at non-pulmonary sites can increase asthma risk in offspring. Methods BALB/c female mice received 2 topical applications of vehicle, dinitrochlorobenzene, or toluene diisocyanate before mating with untreated males. Dinitrochlorobenzene is a skin-sensitizer only and known to induce a Th1 response, while toluene diisocyanate is both a skin and respiratory sensitizer that causes a Th2 response. Both cause allergic contact dermatitis. Offspring underwent an intentionally suboptimal protocol of allergen sensitization and aerosol challenge, followed by evaluation of airway hyperresponsiveness, allergic airway inflammation, and cytokine production. Mothers were tested for allergic airway disease, evidence of dermatitis, cellularity of the draining lymph nodes, and systemic cytokine levels. The role of interleukin-4 was also explored using interleukin-4 deficient mice. Results Offspring of toluene diisocyanate but not dinitrochlorobenzene-treated mothers developed an asthmatic phenotype following allergen sensitization and challenge, seen as increased Penh values, airway inflammation, bronchoalveolar lavage total cell counts and eosinophilia, and Th2 cytokine imbalance in the lung. Toluene diisocyanate treated interleukin-4 deficient mothers were able to transfer asthma risk to offspring. Mothers in both experimental groups developed allergic contact dermatitis, but not allergic airway disease. Conclusion Maternal non-respiratory allergy (Th2-skewed dermatitis caused by toluene diisocyanate can result in the maternal transmission of asthma risk in mice.

  12. The Danger of Using Tap Water with Contact Lenses

    Science.gov (United States)

    Acanthamoeba is a microbe that is very common in tap water. It has two forms: the trophozoite and the cyst. These trophozoites and cysts can stick to the surface of your contact lenses and then infect your eye.

  13. VHA chaplaincy contact with veterans at increased risk of suicide.

    Science.gov (United States)

    Kopacz, Marek S; McCarten, Janet M; Pollitt, Michael J

    2014-10-01

    To examine the extent to which chaplains interact with military veterans at increased risk of suicide and select characteristics related to those at-risk veterans who present for chaplaincy services. The nationwide network of chaplains affiliated with the Veterans Health Administration (n = 990) was e-mailed a letter inviting those who have contact with at-risk veterans to complete a survey. This letter included an Internet link, connecting respondents to an online survey collection service. One hundred eighteen chaplains (11.91%) responded to the survey. More than half of the respondents reported that veterans at increased risk of suicide constitute either 1 chaplain, and present at a moderate-to-high level of risk. The present study finds that some at-risk veterans look to chaplains for supportive services. The findings also allow for opportunities for future research.

  14. Dynamic contact angle of water-based titanium oxide nanofluid.

    Science.gov (United States)

    Radiom, Milad; Yang, Chun; Chan, Weng Kong

    2013-06-11

    This paper presents an investigation into spreading dynamics and dynamic contact angle of TiO2-deionized water nanofluids. Two mechanisms of energy dissipation, (1) contact line friction and (2) wedge film viscosity, govern the dynamics of contact line motion. The primary stage of spreading has the contact line friction as the dominant dissipative mechanism. At the secondary stage of spreading, the wedge film viscosity is the dominant dissipative mechanism. A theoretical model based on combination of molecular kinetic theory and hydrodynamic theory which incorporates non-Newtonian viscosity of solutions is used. The model agreement with experimental data is reasonable. Complex interparticle interactions, local pinning of the contact line, and variations in solid-liquid interfacial tension are attributed to errors.

  15. What is the contact angle of water on graphene?

    Science.gov (United States)

    Taherian, Fereshte; Marcon, Valentina; van der Vegt, Nico F A; Leroy, Frédéric

    2013-02-05

    Although experimental and theoretical studies have addressed the question of the wetting properties of graphene, the actual value of the contact angle of water on an isolated graphene monolayer remains unknown. While recent experimental literature indicates that the contact angle of water on graphite is in the range 90-95°, it has been suggested that the contact angle on graphene may either be as high as 127° or moderately enhanced in comparison with graphite. With the support of classical molecular dynamics simulations using empirical force-fields, we develop an argumentation to show that the value of 127° is an unrealistic estimate and that a value of the order of 95-100° should be expected. Our study establishes a connection between the variation of the work of adhesion of water on graphene-based surfaces and the interaction potential between individual water molecules and these surfaces. We show that a variation of the contact angle from 90° on graphite to 127° on graphene would imply that both of the first two carbon layers of graphite contribute approximately the same interaction energy with water. Such a situation is incompatible with the short-range nature of the interaction between water and this substrate. We also show that the interaction potential energy between water and the graphene-based substrates is the main contribution to the work of adhesion of water with a relative magnitude that is independent of the number of graphene layers. We introduce the idea that the remaining contribution is entropic in nature and is connected to the fluctuations in the water-substrate interaction energy.

  16. Contact angles of wetting and water stability of soil structure

    Science.gov (United States)

    Kholodov, V. A.; Yaroslavtseva, N. V.; Yashin, M. A.; Frid, A. S.; Lazarev, V. I.; Tyugai, Z. N.; Milanovskiy, E. Yu.

    2015-06-01

    From the soddy-podzolic soils and typical chernozems of different texture and land use, dry 3-1 mm aggregates were isolated and sieved in water. As a result, water-stable aggregates and water-unstable particles composing dry 3-1 mm aggregates were obtained. These preparations were ground, and contact angles of wetting were determined by the static sessile drop method. The angles varied from 11° to 85°. In most cases, the values of the angles for the water-stable aggregates significantly exceeded those for the water-unstable components. In terms of carbon content in structural units, there was no correlation between these parameters. When analyzing the soil varieties separately, the significant positive correlation between the carbon content and contact angle of aggregates was revealed only for the loamy-clayey typical chernozem. Based on the multivariate analysis of variance, the value of contact wetting angle was shown to be determined by the structural units belonging to water-stable or water-unstable components of macroaggregates and by the land use type. In addition, along with these parameters, the texture has an indirect effect.

  17. Influence of temperature and pressure on quartz-water-CO₂ contact angle and CO₂-water interfacial tension.

    Science.gov (United States)

    Sarmadivaleh, Mohammad; Al-Yaseri, Ahmed Z; Iglauer, Stefan

    2015-03-01

    We measured water-CO2 contact angles on a smooth quartz surface (RMS surface roughness ∼40 nm) as a function of pressure and temperature. The advancing water contact angle θ was 0° at 0.1 MPa CO2 pressure and all temperatures tested (296-343 K); θ increased significantly with increasing pressure and temperature (θ=35° at 296 K and θ=56° at 343 K at 20 MPa). A larger θ implies less structural and residual trapping and thus lower CO2 storage capacities at higher pressures and temperatures. Furthermore we did not identify any significant influence of CO2-water equilibration on θ. Moreover, we measured the CO2-water interfacial tension γ and found that γ strongly decreased with increasing pressure up to ∼10 MPa, and then decreased with a smaller slope with further increasing pressure. γ also increased with increasing temperature.

  18. Exposure to Schistosoma mansoni infection in a rural area of Brazil. I: water contact.

    Science.gov (United States)

    Gazzinelli, A; Bethony, J; Fraga, L A; LoVerde, P T; Correa-Oliveira, R; Kloos, H

    2001-02-01

    The study of water contact patterns in rural Brazil presents unique challenges due to widely dispersed settlement patterns, the ubiquity of water contact sites, and the privatization of water resources. This study addresses these challenges by comparing the two most widely used methods of assessing water contact behaviour: direct observation and survey. The results of a 7-day direct observation of water contact were compared with water contact surveys administered 1 week after and then 1 year after the direct observation study. The direct observation study recorded a water contact rate higher than reported by other investigators (3.2 contacts per person per day); however, 75% of these contacts were for females and consisted mainly of domestic activities occurring around the household. A comparison of the frequency of water contact activities between the direct observation and the two surveys revealed several important points. First, no significant differences were found between methods for routine water contact activities (e.g. bathing), indicating that participants were able to accurately self-report some types of water contact activities. Second, significant differences were found in the recording of water contact activities that took place outside the observation area, indicating that direct observation may under-report water contact activities in areas where contact sites are dispersed widely. Third, significant differences between the direct observation and the survey method were more common for males than for females, indicating that the combination of widespread water contact sites and gender-specific division of labour may result in under-reporting of male contacts by direct observation methods. In short, despite the limitations in the recording of duration and body exposure, the survey method may more accurately record the frequency of water contact activities than direct observation methods in areas of widely dispersed water contact sites. Hence, surveys

  19. Contact dermatitis after temporary henna tattoos--an increasing phenomenon.

    Science.gov (United States)

    Läuchli, S; Lautenschlager, S; Läuchl, S

    2001-04-07

    Four patients developed contact dermatitis to black henna tattoos on holiday in the Middle East and Asia. Two to ten days after skin painting an itchy, reddish swelling developed at the site of the tattoo exactly following its sharply demarcated borders. Histological investigation of the lesions revealed spongiotic dermatitis with dense lymphohistiocytic infiltrates. Patch testing in all patients showed a strong reaction to p-phenylenediamine (PPD). The other tests, including standard series and henna powder, were all negative. Healing time after application of topical class III and IV steroids was prolonged. These reports show an impressive side effect of temporary tattoos with possible long-term damage. Rather than henna, the causative agent in the pastes used for temporary tattoos appears to be PPD, a widely used dye that is added to the pastes in high concentrations to produce a darker shade. The growing incidence of this complication requires close observation, while practitioners should be aware of this sensitisation and of possible subsequent allergic reactions, especially after hair colouring with dyes based on PPD.

  20. Contact sponge water absorption test implemented for in situ measures

    Science.gov (United States)

    Gaggero, Laura; Scrivano, Simona

    2016-04-01

    The contact sponge method is a non-destructive in-situ methodology used to estimate a water uptake coefficient. The procedure, unlike other in-situ measurement was proven to be directly comparable to the water uptake laboratory measurements, and was registered as UNI 11432:2011. The UNI Normal procedure requires to use a sponge with known density, soaked in water, weighed, placed on the material for 1 minute (UNI 11432, 2011; Pardini & Tiano, 2004), then weighed again. Difficulties arise in operating on test samples or on materials with porosity varied for decay. While carrying on the test, fluctuations in the bearing of the environmental parameters were negligible, but not the pressure applied to the surface, that induced the release of different water amounts towards the material. For this reason we designed a metal piece of the same diameter of the plate carrying the sponge, to be screwed at the tip of a pocket penetrometer. With this instrument the sponge was kept in contact with the surface for 1 minute applying two different loads, at first pushed with 0.3 kg/cm2 in order to press the sponge, but not its holder, against the surface. Then, a load of 1.1 kg/ cm2 was applied, still avoiding deviating the load to the sponge holder. We applied both the current and our implemented method to determine the water absorption by contact sponge on 5 fresh rock types (4 limestones: Fine - and Coarse grained Pietra di Vicenza, Rosso Verona, Breccia Aurora, and the silicoclastic Macigno sandstone). The results show that 1) the current methodology imply manual skill and experience to produce a coherent set of data; the variable involved are in fact not only the imposed pressure but also the compression mechanics. 2) The control on the applied pressure allowed reproducible measurements. Moreover, 3) the use of a thicker sponge enabled to apply the method even on rougher surfaces, as the device holding the sponge is not in contact with the tested object. Finally, 4) the

  1. Water Contact Angle Dependence with Hydroxyl Functional Groups on Silica Surfaces under CO2 Sequestration Conditions.

    Science.gov (United States)

    Chen, Cong; Zhang, Ning; Li, Weizhong; Song, Yongchen

    2015-12-15

    Functional groups on silica surfaces under CO2 sequestration conditions are complex due to reactions among supercritical CO2, brine and silica. Molecular dynamics simulations have been performed to investigate the effects of hydroxyl functional groups on wettability. It has been found that wettability shows a strong dependence on functional groups on silica surfaces: silanol number density, space distribution, and deprotonation/protonation degree. For neutral silica surfaces with crystalline structure (Q(3), Q(3)/Q(4), Q(4)), as silanol number density decreases, contact angle increases from 33.5° to 146.7° at 10.5 MPa and 318 K. When Q(3) surface changes to an amorphous structure, water contact angle increases 20°. Water contact angle decreases about 12° when 9% of silanol groups on Q(3) surface are deprotonated. When the deprotonation degree increases to 50%, water contact angle decreases to 0. The dependence of wettability on silica surface functional groups was used to analyze contact angle measurement ambiguity in literature. The composition of silica surfaces is complicated under CO2 sequestration conditions, the results found in this study may help to better understand wettability of CO2/brine/silica system.

  2. Water slippage versus contact angle: a quasiuniversal relationship.

    Science.gov (United States)

    Huang, David M; Sendner, Christian; Horinek, Dominik; Netz, Roland R; Bocquet, Lydéric

    2008-11-28

    Using molecular dynamics simulations of an atomistic water model, we study the interfacial hydrodynamic slippage of water at various hydrophobic surfaces, both organic (silane monolayers) and inorganic (diamondlike and Lennard-Jones models). The measured slip lengths range from nanometers to tens of nanometers. Slip lengths on different surfaces are found to collapse nearly onto a single curve as a function of the static contact angle characterizing the surface wettability, thereby suggesting a quasiuniversal relationship. This dependence is rationalized on the basis of a simple scaling description of the fluid-solid friction at the microscopic level. The link between slippage and water depletion at hydrophobic surfaces is clarified. These results shed light on the controversy over experimental measurements of the slip length at smooth hydrophobic surfaces.

  3. Contact Angles of Water-repellent Porous Media Inferred by Tensiometer- TDR Probe Measurement Under Controlled Wetting and Drying Cycles

    DEFF Research Database (Denmark)

    Subedi, Shaphal; Komatsu, Ken; Komatsu, Toshiko;

    2013-01-01

    The time dependency of water repellency (WR) in hydrophobic porous media plays a crucial role for water infiltration processes after rainfall and for the long-term performance of capillary barrier systems. The contact angle (CA) of hydrophobic media normally decreases with continuous contact...... equipped with a mini-time domain reflectometry (TDR) coil probe under controlled wetting and drying in a water-repellent volcanic ash soil (VAS) and in sands coated with different hydrophobic agents. The contact angle (CA–SWRC) under imbibition was evaluated based on the inflection points on the water...... retention curves. For both water-repellent VAS and hydrophobized sand samples, the calculated CA–SWRC increased with increasing WR. This was determined from both the water drop penetration time and the initial contact angle (CAi) by the sessile drop method. Calculated CA–SWRC values ranged from 20° to 48...

  4. Steady-State Diffusion of Water through Soft-Contact LensMaterials

    Energy Technology Data Exchange (ETDEWEB)

    Fornasiero, Francesco; Krull, Florian; Radke, Clayton J.; Prausnitz, JohnM.

    2005-01-31

    Water transport through soft contact lenses (SCL) is important for acceptable performance on the human eye. Chemical-potential gradient-driven diffusion rates of water through soft-contact-lens materials are measured with an evaporation-cell technique. Water is evaporated from the bottom surface of a lens membrane by impinging air at controlled flow rate and humidity. The resulting weight loss of a water reservoir covering the top surface of the contact-lens material is recorded as a function of time. New results are reported for a conventional hydrogel material (SofLens{trademark} One Day, hilafilcon A, water content at saturation W{sub 10} = 70 weight %) and a silicone hydrogel material (PureVision{trademark}, balafilcon A, W{sub 10} = 36 %), with and without surface oxygen plasma treatment. Also, previously reported data for a conventional HEMA-SCL (W{sub 10} = 38 %) hydrogel are reexamined and compared with those for SofLens{trademark} One Day and PureVision{trademark} hydrogels. Measured steady-state water fluxes are largest for SofLens{trademark} One Day, followed by PureVision{trademark} and HEMA. In some cases, the measured steady-state water fluxes increase with rising relative air humidity. This increase, due to an apparent mass-transfer resistance at the surface (trapping skinning), is associated with formation of a glassy skin at the air/membrane interface when the relative humidity is below 55-75%. Steady-state water-fluxes are interpreted through an extended Maxwell-Stefan diffusion model for a mixture of species starkly different in size. Thermodynamic nonideality is considered through Flory-Rehner polymer-solution theory. Shrinking/swelling is self-consistently modeled by conservation of the total polymer mass. Fitted Maxwell-Stefan diffusivities increase significantly with water concentration in the contact lens.

  5. Contacts Between Alcohols in Water Are Random Rather than Hydrophobic.

    Science.gov (United States)

    Rankin, Blake M; Ben-Amotz, Dor; van der Post, Sietse T; Bakker, Huib J

    2015-02-19

    Given the importance of water-mediated hydrophobic interactions in a wide range of biological and synthetic self-assembly processes, it is remarkable that both the sign and the magnitude of the hydrophobic interactions between simple amphiphiles, such as alcohols, remain unresolved. To address this question, we have performed Raman hydration-shell vibrational spectroscopy and polarization-resolved femtosecond infrared experiments, as well as random mixing and molecular dynamics simulations. Our results indicate that there are no more hydrophobic contacts in aqueous solutions of alcohols ranging from methanol to tertiary butyl alcohol than in random mixtures of the same concentration. This implies that the interaction between small hydrophobic groups is weaker than thermal energy fluctuations. Thus, the corresponding water-mediated hydrophobic interaction must be repulsive, with a magnitude sufficient to negate the attractive direct van der Waals interaction between the hydrophobic groups.

  6. Evaluating a Tablet Application and Differential Reinforcement to Increase Eye Contact in Children with Autism

    Science.gov (United States)

    Jeffries, Tricia; Crosland, Kimberly; Miltenberger, Raymond

    2016-01-01

    We tested the effectiveness of a tablet application and differential reinforcement to increase eye contact in 3 children with autism. The application required the child to look at a picture of a person's face and identify the number displayed in the person's eyes. Eye contact was assessed immediately after training, 1 hr after training, and in a…

  7. Characterization of the Intrinsic Water Wettability of Graphite Using Contact Angle Measurements: Effect of Defects on Static and Dynamic Contact Angles.

    Science.gov (United States)

    Kozbial, Andrew; Trouba, Charlie; Liu, Haitao; Li, Lei

    2017-01-31

    Elucidating the intrinsic water wettability of the graphitic surface has increasingly attracted research interests, triggered by the recent finding that the well-established hydrophobicity of graphitic surfaces actually results from airborne hydrocarbon contamination. Currently, static water contact angle (WCA) is often used to characterize the intrinsic water wettability of graphitic surfaces. In the current paper, we show that because of the existence of defects, static WCA does not necessarily characterize the intrinsic water wettability. Freshly exfoliated graphite of varying qualities, characterized using atomic force microscopy and Raman spectroscopy, was studied using static, advancing, and receding WCA measurements. The results showed that graphite of different qualities (i.e., defect density) always has a similar advancing WCA, but it could have very different static and receding WCAs. This finding indicates that defects play an important role in contact angle measurements, and the static contact angle does not always represent the intrinsic water wettability of pristine graphite. On the basis of the experimental results, a qualitative model is proposed to explain the effect of defects on static, advancing, and receding contact angles. The model suggests that the advancing WCA reflects the intrinsic water wettability of pristine (defect-free) graphite. Our results showed that the advancing WCA for pristine graphite is 68.6°, which indicates that graphitic carbon is intrinsically mildly hydrophilic.

  8. Superhydrophobic polyethylcyanoacrylate coatings. Contact area with water measured by Raman spectral images, contact angle and Cassie-Baxter model.

    Science.gov (United States)

    Bonugli, L O; dos Santos, M V Puydinger; de Souza, E F; Teschke, O

    2012-12-15

    Apolar fibers wired into a mesh-like microstructure forming a coating with a contact angle larger than 160° and fabricated by polycyanoacrylate polymerization are described. Interconnected fibers with diameters measuring approximately 5 μm are formed by texturized linear or folded nanowires. The structure forming the deposited film occupies ~1.5% of the coating's top geometric area. This value agrees with the water/coating contact area given by the Cassie-Baxter contact-angle model (~1.5%). The spatial distribution of the surface in contact with water was determined by Raman spectral imaging (~1.5%) using the polycyanoacrylate lines and by scanning electron microscopy (~2.0%).

  9. Effects of water-vapor on friction and deformation of polymeric magnetic media in contact with a ceramic oxide

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    The effects of humidity (water-vapor) in nitrogen on the friction and deformation behavior of magnetic tape in contact with a Ni-Zn ferrite spherical pin were studied. The coefficient of friction is markedly dependent on the ambient relative humidity. In elastic contacts the coefficient of friction increased linearly with increasing humidity; it decreased linearly when humidity was lowered. This effect is the result of changes in the chemistry and interaction of tape materials such as degradation of the lubricant. In plastic contacts there was no effect of humidity on friction below 40 percent relative humidity. There is no effect on friction associated with the breakthrough of the adsorbed water-vapor film at the interface of the tape and Ni-Zn ferrite. The coefficient of friction, however, increased rapidly with increasing relative humidity above 40 percent in plastic contacts.

  10. In the eye of the beholder: eye contact increases resistance to persuasion.

    Science.gov (United States)

    Chen, Frances S; Minson, Julia A; Schöne, Maren; Heinrichs, Markus

    2013-11-01

    Popular belief holds that eye contact increases the success of persuasive communication, and prior research suggests that speakers who direct their gaze more toward their listeners are perceived as more persuasive. In contrast, we demonstrate that more eye contact between the listener and speaker during persuasive communication predicts less attitude change in the direction advocated. In Study 1, participants freely watched videos of speakers expressing various views on controversial sociopolitical issues. Greater direct gaze at the speaker's eyes was associated with less attitude change in the direction advocated by the speaker. In Study 2, we instructed participants to look at either the eyes or the mouths of speakers presenting arguments counter to participants' own attitudes. Intentionally maintaining direct eye contact led to less persuasion than did gazing at the mouth. These findings suggest that efforts at increasing eye contact may be counterproductive across a variety of persuasion contexts.

  11. Water-vapor effects on friction of magnetic tape in contact with nickel-zinc ferrite

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    The effects of humidity of moist nitrogen on the friction and deformation behavior of magnetic tape in contact with a nickel-zinc ferrite spherical pin were studied. The results indicate that the coefficient of friction is markedly dependent on the ambient relative humidity. Although the coefficient of friction remains low below 40-percent relative humidity, it increases rapidly with increasing relative humidity above 40 percent. The general ambient environment of the tape does not have any effect on the friction behavior if the area where the tape is in sliding contact with the ferrite pin is flooded with controlled nitrogen. The response time for the friction of the tape to humidity changes is about 10 sec. The effect of friction as a function of relative humidity on dehumidifying is very similar to that on humidifying. A surface softening of the tape due to water vapor increases the friction of the tape.

  12. Contact angles at the water-air interface of hydrocarbon-contaminated soils and clay minerals

    Science.gov (United States)

    Sofinskaya, O. A.; Kosterin, A. V.; Kosterina, E. A.

    2016-12-01

    Contact angles at the water-air interface have been measured for triturated preparations of clays and soils in order to assess changes in their hydrophobic properties under the effect of oil hydrocarbons. Tasks have been to determine the dynamics of contact angle under soil wetting conditions and to reveal the effect of chemical removal of organic matter from soils on the hydrophilicity of preparations. The potentialities of static and dynamic drop tests for assessing the hydrophilic-hydrophobic properties of soils have been estimated. Clays (kaolinite, gumbrine, and argillite) have been investigated, as well as plow horizons of soils from the Republic of Tatarstan: heavy loamy leached chernozem, medium loamy dark gray forest soil, and light loamy soddy-calcareous soil. The soils have been contaminated with raw oil and kerosene at rates of 0.1-3 wt %. In the uncontaminated and contaminated chernozem, capillary water capacity has been maintained for 250 days. The contact angles have been found to depend on the degree of dispersion of powdered preparation, the main type of clay minerals in the soil, the presence and amount of oxidation-resistant soil organic matter, and the soil-water contact time. Characteristic parameters of mathematical models for drop behavior on triturated preparations have been calculated. Contamination with hydrocarbons has resulted in a reliable increase in the contact angles of soil preparations. The hydrophobization of soil surface in chernozem is more active than in soils poorer in organic matter. The complete restoration of the hydrophilic properties of soils after hydrocarbon contamination is due to the oxidation of easily oxidizable organic matter at the low content of humus, or to wetting during several months in the absence of the mazut fraction.

  13. Time dependent FTIR spectra of mineral waters after contact with air

    CERN Document Server

    Kondyurin, Alexey

    2010-01-01

    FTIR spectra of mineral waters of Slavyanovskaya, Aqua Montana, Bad Harzburger and Christinen with time from first contact of water with open air were analysed. The kinetic of spectral changes of Slavyanovskaya mineral water in the regions of stretch, deformation and intermolecular vibrations was measured. The spectral changes do not correlate with chemical contamination of mineral water and degassing process. The observed spectral changes could be due to different structure of mineral water in liquid state, which is destroyed after air contact. The observed spectral behaviour of Slavyanovskaya is correlated with the catalytic activity of mineral water, which was saved without contact with air. The characteristic time of spectral dependence (669 seconds) is close to the characteristic time of catalytic activity loss (600 seconds) of mineral water at air contact. The spectra results support the medical studies that show the activity of mineral water near spring, and the loosing activity of water after long tim...

  14. Increased cerebral water content in hemodialysis patients.

    Directory of Open Access Journals (Sweden)

    Kathrin Reetz

    Full Text Available Little information is available on the impact of hemodialysis on cerebral water homeostasis and its distribution in chronic kidney disease. We used a neuropsychological test battery, structural magnetic resonance imaging (MRI and a novel technique for quantitative measurement of localized water content using 3T MRI to investigate ten hemodialysis patients (HD on a dialysis-free day and after hemodialysis (2.4±2.2 hours, and a matched healthy control group with the same time interval. Neuropsychological testing revealed mainly attentional and executive cognitive dysfunction in HD. Voxel-based-morphometry showed only marginal alterations in the right inferior medial temporal lobe white matter in HD compared to controls. Marked increases in global brain water content were found in the white matter, specifically in parietal areas, in HD patients compared to controls. Although the global water content in the gray matter did not differ between the two groups, regional increases of brain water content in particular in parieto-temporal gray matter areas were observed in HD patients. No relevant brain hydration changes were revealed before and after hemodialysis. Whereas longer duration of dialysis vintage was associated with increased water content in parieto-temporal-occipital regions, lower intradialytic weight changes were negatively correlated with brain water content in these areas in HD patients. Worse cognitive performance on an attention task correlated with increased hydration in frontal white matter. In conclusion, long-term HD is associated with altered brain tissue water homeostasis mainly in parietal white matter regions, whereas the attentional domain in the cognitive dysfunction profile in HD could be linked to increased frontal white matter water content.

  15. Mitofusin-2 knockdown increases ER-mitochondria contact and decreases amyloid β-peptide production.

    Science.gov (United States)

    Leal, Nuno Santos; Schreiner, Bernadette; Pinho, Catarina Moreira; Filadi, Riccardo; Wiehager, Birgitta; Karlström, Helena; Pizzo, Paola; Ankarcrona, Maria

    2016-09-01

    Mitochondria are physically and biochemically in contact with other organelles including the endoplasmic reticulum (ER). Such contacts are formed between mitochondria-associated ER membranes (MAM), specialized subregions of ER, and the outer mitochondrial membrane (OMM). We have previously shown increased expression of MAM-associated proteins and enhanced ER to mitochondria Ca(2+) transfer from ER to mitochondria in Alzheimer's disease (AD) and amyloid β-peptide (Aβ)-related neuronal models. Here, we report that siRNA knockdown of mitofusin-2 (Mfn2), a protein that is involved in the tethering of ER and mitochondria, leads to increased contact between the two organelles. Cells depleted in Mfn2 showed increased Ca(2+) transfer from ER to mitchondria and longer stretches of ER forming contacts with OMM. Interestingly, increased contact resulted in decreased concentrations of intra- and extracellular Aβ40 and Aβ42 . Analysis of γ-secretase protein expression, maturation and activity revealed that the low Aβ concentrations were a result of impaired γ-secretase complex function. Amyloid-β precursor protein (APP), β-site APP-cleaving enzyme 1 and neprilysin expression as well as neprilysin activity were not affected by Mfn2 siRNA treatment. In summary, our data shows that modulation of ER-mitochondria contact affects γ-secretase activity and Aβ generation. Increased ER-mitochondria contact results in lower γ-secretase activity suggesting a new mechanism by which Aβ generation can be controlled. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  16. Water soluble drug releasing soft contact lens in response to pH of tears

    Science.gov (United States)

    Kim, G.; Noh, H.

    2016-06-01

    Human tear characteristics including pH and compositions can vary significantly depending on physical and environmental factors. Contact lenses directly contact with human tears can be swelled or de-swelled depending on the pH of the solution due to the nature of the hydrogel. For examples, anionic hydrogels, when the solution's pH is low, is shrunken due to the electric attraction force within the hydrogel network; the opposite phenomenon appears when the solution is basic. The purpose of this study was to evaluate the extent of water soluble drug, hydroxyl propyl methyl cellulose, released from contact lens according to the pH of the artificial tears. Artificial tears are prepared by mixing lysozyme, albumin, sodium chloride, potassium chloride, and calcium chloride following physiological concentrations. Hydrogel contact lens was thermally polymerized using HEMA, EGDMA, and AIBN. The prepared hydrogel lens was immersed in drug for 3 hours and the eluted drug mass was measured as a function of the time. As a result, the drug was released from the lens for 12 hours in all the pH of artificial tears. At the lower pH of artificial tears (pH 5.8), the total amount of dye emitted from the lens was increased than the total amount of dye emitted at the basic tear (pH 8.4). Also, initial burst at acidic tears was increased within 1 hour. Release pattern of water-soluble drug from hydrogel lens turned out to be different depending on the pH of the artificial tears. When designing drug releasing contact lens, physiological pH of tears should be considered.

  17. Wind increases leaf water use efficiency.

    Science.gov (United States)

    Schymanski, Stanislaus J; Or, Dani

    2016-07-01

    A widespread perception is that, with increasing wind speed, transpiration from plant leaves increases. However, evidence suggests that increasing wind speed enhances carbon dioxide (CO2 ) uptake while reducing transpiration because of more efficient convective cooling (under high solar radiation loads). We provide theoretical and experimental evidence that leaf water use efficiency (WUE, carbon uptake per water transpired) commonly increases with increasing wind speed, thus improving plants' ability to conserve water during photosynthesis. Our leaf-scale analysis suggests that the observed global decrease in near-surface wind speeds could have reduced WUE at a magnitude similar to the increase in WUE attributed to global rise in atmospheric CO2 concentrations. However, there is indication that the effect of long-term trends in wind speed on leaf gas exchange may be compensated for by the concurrent reduction in mean leaf sizes. These unintuitive feedbacks between wind, leaf size and water use efficiency call for re-evaluation of the role of wind in plant water relations and potential re-interpretation of temporal and geographic trends in leaf sizes.

  18. Improved efficiency of photoconductive THz emitters by increasing the effective contact length of electrodes

    Directory of Open Access Journals (Sweden)

    Abhishek Singh

    2013-12-01

    Full Text Available We study the effect of a surface modification at the interface between metallic electrodes and semiconducting substrate in Semi-Insulating GaAs (SI-GaAs based photoconductive emitters (PCE on the emission of Tera-Hertz (THz radiation. We partially etch out a 500 nm thick layer of SI-GaAs in grating like pattern with various periods before the contact deposition. By depositing the electrodes on the patterned surface, the electrodes follow the contour of the grating period. This increases the effective contact length of the electrodes per unit area of the active regions on the PCE. The maxima of the electric field amplitude of the THz pulses emitted from the patterned surface are enhanced by up to more than a factor 2 as compared to an un-patterned surface. We attribute this increase to the increase of the effective contact length of the electrode due to surface patterning.

  19. Movement and evaporation of water droplets under conditions typical for heat-exchange chambers of contact water heaters

    Science.gov (United States)

    Volkov, R. S.; Kuznetsov, G. V.; Strizhak, P. A.

    2016-09-01

    The macroscopic regularities and integrated characteristics of the motion and evaporation of sprayed water droplets in the field of high-temperature (1100 K) combustion products under the conditions typical for water heaters of contact type (economizers) were studied using a cross-correlation complex working on the basis of panoramic optical methods (particle image velocimetry, particle tracking velocimetry, shadow photography) and high-speed (105 fps) Phantom video cameras. High-speed video recording devices with specialized software were used for continuously monitoring the motion and evaporation of droplets. Titanium dioxide nanopowder tracer particles were introduced to determine the rate of high-temperature gases. The characteristic distances covered by water droplets before their full retardation in the counter-flow of high-temperature combustion products were determined. The integrated dependences were obtained, and the main characteristics of evaporation were determined, which allow one to predict the intensity of the phase transformations of droplets (with sizes of 0.05-0.5 mm) and the distances covered by them before they completely turn in the opposite direction under the conditions corresponding to the heat-exchange chambers of contact water heaters: the vapor-droplet rate 1-5 m/s, gas flow rate 0.5-2 m/s, and gas temperature ~1100 K. Approximating expressions were derived to predict the characteristics of the processes. The performance of the economizers under study can be significantly increased by using the obtained experimental dependences, the corresponding approximating expressions, and the resulting conclusions. Conditions were determined under which the influence of phase transformations on retardation exceeds the contribution of the counter-motion and active retardation and evaporation of water droplets occur in the heat-exchange chambers of contact water heaters of typical sizes.

  20. Fabrication of a silica aerogel and examination of its hydrophobic properties via contact angle and 3M water repellency tests

    Science.gov (United States)

    Mazrouei-Sebdani, Z.; Javazmi, L.; Khoddami, A.; Shams-Ghahfarokhi, F.; Low, T.

    2017-05-01

    Aerogels are dry gels with a very high specific pore volume. Aerogels with increased hydrophobicity have significant potential to expand their use as lightweight materials. Considering its special nanostructure and exceptional properties, this paper focuses on the synthesis and hydrophobic evaluation of a silica aerogel. The structural properties were investigated by measuring density, SEM micrographs, and BET analyses. Also, the hydrophobic evaluation was carried out by measuring 3M water repellency and water/alcohol contact angle. The BET analysis showed successful synthesis of the nanoporous silica aerogel with a pore size of 24 nm and porosity of 89%. The synthesized aerogel showed 3M water repellency of 3 and water contact angle of 129.6°. Also, it is worth-mentioning that as the alcohol content of the drops in 3M water repellency test is increased, the drop contact angle is decreased due to its lower surface tension. Thus, the contact angle reaches the zero at 3M water repellency test number of 4 (water/alcohol 60/40).

  1. Increased risk of Mycobacterium tuberculosis infection in household child contacts exposed to passive tobacco smoke.

    Science.gov (United States)

    Sridhar, Saranya; Karnani, Nisha; Connell, David W; Millington, Kerry A; Dosanjh, Davinder; Bakir, Mustafa; Soysal, Ahmet; Deeks, Jonathan; Lalvani, Ajit

    2014-12-01

    Risk factors associated with Mycobacterium tuberculosis infection were investigated in a prospective cohort of household child tuberculosis contacts. A significantly increased risk of acquiring infection was associated with exposure to passive cigarette smoke, higher number of index cases, younger age and reduced household monthly income.

  2. Increased microbe-receptor contact in early life – approaching immune regulation

    DEFF Research Database (Denmark)

    Bendtsen, Katja Maria Bangsgaard; Hansen, Camilla H. F.; Krych, Lukasz

    Sulphate Sodium interrupts the barrier function of the gut wall by shaving the mucus layer. In low doses it may have the desired contact-increasing effect without inducing colitis-related disease. Following low-dose DSS treatment in early life of BALB/c mice, we did a gene expression screening in ileum...

  3. The apparent contact angle of water droplet on the micro-structured hydrophobic surface

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The apparent contact angle of Cassie-Baxter state water droplets can be calculated by the existing theoretical formula, but due to the defects of the micro-structured hydrophobic surface and some inevitable tiny disturbances in the experiment, Cassie-Baxter state water droplets will appear partly in Wenzel state, that is, the mixed state water droplets. In this paper, apparent contact angles of Cassie-Baxter state and mixed state water droplets on micro-structured hydrophobic surfaces are compared. The research shows that if the projected area fraction of water-solid F in the Cassie-Baxter formula is replaced by the local projected area fraction of water-solid F′, the apparent contact angles of water droplets in both Cassie-Baxter state and the mixed state can be calculated. Further experimental results indicate that the contact state of water droplets nearby the outermost three-phase contact line plays a more important role in determining the apparent contact angle. This conclusion is significant to the understanding of the apparent contact angle and wetting property.

  4. Ethosome formulations of known contact allergens can increase their sensitizing capacity.

    Science.gov (United States)

    Madsen, Jacob Torp; Vogel, Stefan; Karlberg, Ann-Therese; Simonsson, Carl; Johansen, Jeanne D; Andersen, Klaus E

    2010-07-01

    Vesicular systems, such as liposomes and ethosomes, are used in cosmetic and pharmaceutical products to encapsulate ingredients, to protect ingredients from degradation, to increase bioavailability, and to improve cosmetic performance. Some reports have suggested that formulation of cosmetic ingredients in vesicular carrier systems may increase their contact allergy elicitation potential in humans. However, no sensitization studies have been published. We formulated two model contact allergens (isoeugenol and dinitrochlorobenzene) in ethosomes and investigated the sensitization response using a modified local lymph node assay (LLNA). The results were compared with those for the same allergens in similar concentrations and vehicles without ethosomes. Both allergens encapsulated in 200-300 nm ethosomes showed increased sensitizing potency in the murine assay compared with the allergens in solution without ethosomes. Empty ethosomes were non-sensitizing according to LLNA. The clinical implications are so far uncertain, but increased allergenicity from ethosome-encapsulated topical product ingredients cannot be excluded.

  5. Molecular structure of an alkyl-side-chain polymer-water interface: origins of contact angle hysteresis.

    Science.gov (United States)

    Rangwalla, Hasnain; Schwab, Alexander D; Yurdumakan, Betül; Yablon, Dalia G; Yeganeh, Mohsen S; Dhinojwala, Ali

    2004-09-28

    A new and direct approach to verify surface heterogeneity as the microscopic origin of contact-angle hysteresis is demonstrated. IR-visible sum-frequency-generation spectroscopy (SFG) was used to selectively probe the molecules at the interface of an alkyl-side-chain polymer [poly(vinyl n-octadecyl carbamate-co-vinyl acetate)] with water. The spectra indicate that in contact with water, the polymer surface is heterogeneous (having areas of differing surface energies). This evidence of surface heterogeneity supports the hysteresis observed in the advancing and receding contact angles of the polymer surface with water. The same measurements made for the chemically and structurally similar surface of an octadecyltrichlorosilane self-assembled monolayer indicates a homogeneous surface at the water interface. In this case, contact-angle hysteresis measurements implicate surface roughness as the cause of hysteresis. Atomic force microscopy measurements of roughness for these surfaces further support our conclusions. The polymer-water interface was probed using SFG at above-ambient temperatures, and an order-to-disorder transition (ODT) of alkyl side chains at the interface was observed, which closely follows the melting of crystalline side chains in the bulk. This transition explains the increased wettability of the polymer, by water, when the temperature is raised above the bulk melting temperature. Furthermore, the irreversibility of this ODT suggests that the disordered polymer-water interface is the thermodynamic equilibrium state, whereas the before-heating structure of this interface is a kinetically hindered metastable state.

  6. Ethosome formulations of known contact allergens can increase their sensitizing capacity

    DEFF Research Database (Denmark)

    Madsen, Jakob Torp; Vogel, Stefan; Karlberg, Ann-Therese;

    2010-01-01

    Vesicular systems, such as liposomes and ethosomes, are used in cosmetic and pharmaceutical products to encapsulate ingredients, to protect ingredients from degradation, to increase bioavailability, and to improve cosmetic performance. Some reports have suggested that formulation of cosmetic...... ingredients in vesicular carrier systems may increase their contact allergy elicitation potential in humans. However, no sensitization studies have been published. We formulated two model contact allergens (isoeugenol and dinitrochlorobenzene) in ethosomes and investigated the sensitization response using...... a modified local lymph node assay (LLNA). The results were compared with those for the same allergens in similar concentrations and vehicles without ethosomes. Both allergens encapsulated in 200-300 nm ethosomes showed increased sensitizing potency in the murine assay compared with the allergens in solution...

  7. Numerical Analysis of Lead-Bismuth-Water Direct Contact Boiling Heat Transfer

    Science.gov (United States)

    Yamada, Yumi; Takahashi, Minoru

    Direct contact boiling heat transfer of sub-cooled water with lead-bismuth eutectic (Pb-Bi) was investigated for the evaluation of the performance of steam generation in direct contact of feed water with primary Pb-Bi coolant in upper plenum above the core in Pb-Bi-cooled direct contact boiling water fast reactor. An analytical two-fluid model was developed to estimate the heat transfer numerically. Numerical results were compared with experimental ones for verification of the model. The overall volumetric heat transfer coefficient was calculated from heat exchange rate in the chimney. It was confirmed that the calculated results agreed well with the experimental result.

  8. Increasing the molecular contacts between maurotoxin and Kv1.2 channel augments ligand affinity.

    Science.gov (United States)

    M'Barek, Sarrah; Chagot, Benjamin; Andreotti, Nicolas; Visan, Violeta; Mansuelle, Pascal; Grissmer, Stephan; Marrakchi, Mohamed; El Ayeb, Mohamed; Sampieri, François; Darbon, Hervé; Fajloun, Ziad; De Waard, Michel; Sabatier, Jean-Marc

    2005-08-15

    Scorpion toxins interact with their target ion channels through multiple molecular contacts. Because a "gain of function" approach has never been described to evaluate the importance of the molecular contacts in defining toxin affinity, we experimentally examined whether increasing the molecular contacts between a toxin and an ion channel directly impacts toxin affinity. For this purpose, we focused on two scorpion peptides, the well-characterized maurotoxin with its variant Pi1-like disulfide bridging (MTX(Pi1)), used as a molecular template, and butantoxin (BuTX), used as an N-terminal domain provider. BuTX is found to be 60-fold less potent than MTX(Pi1) in blocking Kv1.2 (IC(50) values of 165 nM for BuTX versus 2.8 nM for MTX(Pi1)). Removal of its N-terminal domain (nine residues) further decreases BuTX affinity for Kv1.2 by 5.6-fold, which is in agreement with docking simulation data showing the importance of this domain in BuTX-Kv1.2 interaction. Transfer of the BuTX N-terminal domain to MTX(Pi1) results in a chimera with five disulfide bridges (BuTX-MTX(Pi1)) that exhibits 22-fold greater affinity for Kv1.2 than MTX(Pi1) itself, in spite of the lower affinity of BuTX as compared to MTX(Pi1). Docking experiments performed with the 3-D structure of BuTX-MTX(Pi1) in solution, as solved by (1)H-NMR, reveal that the N-terminal domain of BuTX participates in the increased affinity for Kv1.2 through additional molecular contacts. Altogether, the data indicate that acting on molecular contacts between a toxin and a channel is an efficient strategy to modulate toxin affinity. (c) 2005 Wiley-Liss, Inc.

  9. Static contact angle versus volume of distilled water drop on micro patterned surfaces

    OpenAIRE

    Batichsheva Kseniya; Feoktistov Dmitriy; Ovchinikov Vladimir; Misyura Sergey

    2017-01-01

    Static contact angle was determined experimentally in the condition of wetting of polished and laser patterned surfaces of stainless steel substrates by distilled water drops with different volumes. In contrast with polished surface, the contact angle was found to depend on drop volume on micro patterned surfaces. In addition, the enhancement of both hydrophilic and hydrophobic properties was observed on laser patterned surfaces.

  10. The rose petal effect and the role of advancing water contact angles for drop confinement

    DEFF Research Database (Denmark)

    Mandsberg, Nikolaj Kofoed; Taboryski, Rafael J.

    2017-01-01

    We studied the role of advancing water contact angles on superhydrophobic surfaces that exhibited strong pinning effects as known in nature from rose petals. Textured surfaces were engineered in silicon by lithographical techniques. The textures were comprised of hexagonal microstructures...

  11. Analysis of water film thickness on contact lens by reflectometry technique

    Science.gov (United States)

    Wang, Michael R.; Lu, Hui; Wang, Jianhua; Shen, Meixiao

    2011-03-01

    We report the use of optical reflectometry technique for evaluation of water film on contact lens. The water film can be measured through the spectral dependent reflectance evaluation, which is carried out by illuminating the contact lens with a white light and collecting the returning light with an optical fiber coupled to a spectrometer. Water film thinning process has been observed on different soft contact lenses and minimum measurable thickness is about 0.85 μm. The measurement is fast and accurate. The water film measurement can be valuable for contact lens design to improve its hydrophilic properties. The technique can be extended for the study of tear film dynamics in an eye.

  12. Microbiological Water Quality in Relation to Water-Contact Recreation, Cuyahoga River, Cuyahoga Valley National Park, Ohio, 2000 and 2002

    Science.gov (United States)

    Bushon, Rebecca N.; Koltun, G.F.

    2004-01-01

    Salmonella, indicating that there are still risks even when the E. coli standard is not exceeded. River samples in which the secondary-contact recreational standard for E. coli was exceeded showed a higher percentage of the co-occurrence of pathogenic organisms than samples that met the standard. This indicates that in this study area, E. coli is a useful indicator of human health risk. Detections of hepatitis A virus tended to be associated with higher median concentrations of somatic coliphage, F-specific coliphage, and infectious enterovirus. In addition, geometric mean C. perfringens concentrations tended to be higher in samples where hepatitis A virus was present than in samples where hepatitis A virus was absent. Hepatitis A virus was not detected in samples collected upstream from the Akron WPCS; all downstream detections had coincident detections in the Akron WPCS effluent, suggesting that Akron WPCS was a principal source of hepatitis A virus at the downstream sites. Geometric mean concentrations of E. coli were calculated on the basis of analytical results from at least five samples collected at each river site during May, July, and September of 2000. In each case, the Ohio geometric-mean primary-contact recreational standard of 126 col/100 mL was exceeded. E. coli concentrations were significantly correlated with streamflow and increased with streamflow at sites upstream and downstream from the Akron WPCS. This indicates that E. coli loads from sources upstream from the Akron WPCS have the potential to appreciably influence the frequency of attainment of recreational water-quality standards at downstream locations.

  13. [Hygienic requirements on materials in contact with drinking water].

    Science.gov (United States)

    Schlosser, F-U; Schuster, R; Rapp, T

    2007-03-01

    In Germany the hygienic requirements on materials used to supply drinking water are a part of the technical standards. These regulations have to ensure that legal requirements on drinking water are met at the tap. The hygienic harmlessness is assured by requirements on the composition of materials and by test procedures including parametric limits. Historically, the requirements on different types of materials are a part of different technical standards.

  14. [Water contacts in dracunculiasis-infected patients in Mali: transmission risk activities].

    Science.gov (United States)

    Etard, J F; Kodio, B; Traoré, S; Audibert, M

    2002-11-01

    The aim of this study lies in the identification of human activities responsible for the transmission of the Guinea worm in an endemic village in Diema Region in Mali. Human water contacts observations started after a census followed by the implementation of a bi-monthly notification system, carried out from May to November 1993. Water contacts were noticed and observed from the mid-July to the end of November of the same year. The first case of dracunculiasis observed was randomly drawn out of a list of the families with obvious cases. The patent case activities involving either surface water, traditional wells or bore-hole water were recorded for 10 consecutive days. During this observation period, contacts made by other patients with the same water sources were also recorded. After 14 days, the case list was updated and a new case selected out of families previously selected. This cycle was repeated until the end of the study period. A "contact at risk for transmission" was defined by a close correspondence between the location of the worm's emergence and the surface of the skin exposed to water, within two weeks following emergence. Contacts were described according to water sources, activities in relation to water, date, gender and age. Observations were made on 103 patients who had 2506 activities in relation with a water body: 1132 of these activities implied a skin contact with the water. Only 133 (9%) of these water contacts were at risk for transmission, 75% took place during the months of August and September, 80% were related to surface waters and 20% to traditional wells. Woman household activities and boys games were the major activities at risk, in contrast to economic activities (watering cattle). The low proportion of "at risk activities" evaluated in this study suggests that a small number of water contacts is sufficient to maintain the transmission. The case implications of the current eradication strategy might not be sufficient alone to break

  15. Increasing life expectancy of water resources literature

    Science.gov (United States)

    Heistermann, M.; Francke, T.; Georgi, C.; Bronstert, A.

    2014-06-01

    In a study from 2008, Larivière and colleagues showed, for the field of natural sciences and engineering, that the median age of cited references is increasing over time. This result was considered counterintuitive: with the advent of electronic search engines, online journal issues and open access publications, one could have expected that cited literature is becoming younger. That study has motivated us to take a closer look at the changes in the age distribution of references that have been cited in water resources journals since 1965. Not only could we confirm the findings of Larivière and colleagues. We were also able to show that the aging is mainly happening in the oldest 10-25% of an average reference list. This is consistent with our analysis of top-cited papers in the field of water resources. Rankings based on total citations since 1965 consistently show the dominance of old literature, including text books and research papers in equal shares. For most top-cited old-timers, citations are still growing exponentially. There is strong evidence that most citations are attracted by publications that introduced methods which meanwhile belong to the standard toolset of researchers and practitioners in the field of water resources. Although we think that this trend should not be overinterpreted as a sign of stagnancy, there might be cause for concern regarding how authors select their references. We question the increasing citation of textbook knowledge as it holds the risk that reference lists become overcrowded, and that the readability of papers deteriorates.

  16. Water in contact with extended hydrophobic surfaces: Direct evidence of weak dewetting

    DEFF Research Database (Denmark)

    Jensen, Torben René; Jensen, Morten Østergaard; Reitzel, Niels;

    2003-01-01

    X-ray reflectivity measurements reveal a significant dewetting of a large hydrophobic paraffin surface floating on water. The dewetting phenomenon extends less than 15 Angstrom into the bulk water phase and results in an integrated density deficit of about one water molecule per 25-30 Angstrom(2......) of water in contact with the paraffin surface. The results are supported by molecular dynamics simulations and related to the hydrophobic effect....

  17. Contact with domestic dogs increases pathogen exposure in endangered African wild dogs (Lycaon pictus.

    Directory of Open Access Journals (Sweden)

    Rosie Woodroffe

    Full Text Available BACKGROUND: Infectious diseases have contributed to the decline and local extinction of several wildlife species, including African wild dogs (Lycaon pictus. Mitigating such disease threats is challenging, partly because uncertainty about disease dynamics makes it difficult to identify the best management approaches. Serious impacts on susceptible populations most frequently occur when generalist pathogens are maintained within populations of abundant (often domestic "reservoir" hosts, and spill over into less abundant host species. If this is the case, disease control directed at the reservoir host might be most appropriate. However, pathogen transmission within threatened host populations may also be important, and may not be controllable by managing another host species. METHODOLOGY/PRINCIPAL FINDINGS: We investigated interspecific and intraspecific transmission routes, by comparing African wild dogs' exposure to six canine pathogens with behavioural measures of their opportunities for contact with domestic dogs and with other wild dogs. Domestic dog contact was associated with exposure to canine parvovirus, Ehrlichia canis, Neospora caninum and perhaps rabies virus, but not with exposure to canine distemper virus or canine coronavirus. Contact with other wild dogs appeared not to increase the risk of exposure to any of the pathogens. CONCLUSIONS/SIGNIFICANCE: These findings, combined with other data, suggest that management directed at domestic dogs might help to protect wild dog populations from rabies virus, but not from canine distemper virus. However, further analyses are needed to determine the management approaches--including no intervention--which are most appropriate for each pathogen.

  18. Toll-like receptor 3 increases allergic and irritant contact dermatitis.

    Science.gov (United States)

    Nakamura, Naomi; Tamagawa-Mineoka, Risa; Ueta, Mayumi; Kinoshita, Shigeru; Katoh, Norito

    2015-02-01

    There is increasing recognition of the role of Toll-like receptor 3 (TLR3) in noninfectious inflammatory diseases, but the function of TLR3 in inflammatory skin diseases is unclear. We investigated the functions of TLR3 in allergic and irritant contact dermatitis (ICD). The contact hypersensitivity (CHS) response was lower in Toll-like receptor 3 knockout (Tlr3 KO) mice, and was greater in TLR3 transgenic (Tg) mice than in wild-type (WT) mice after challenge with 2,4,6-trinitro-1-chlorobenzene. Adoptive transfer of immunized lymph node cells from Tlr3 KO mice induced CHS in WT recipients. In contrast, adoptive transfer of those from WT mice did not fully induce CHS in Tlr3 KO recipients. The ICD reaction following croton oil application was lower in Tlr3 KO mice, and was greater in TLR3 Tg mice than in WT mice. Maturation, migration, and antigen presentation of dendritic cells and proliferation of lymphocytes between WT mice and Tlr3 KO mice were comparable. These results show that TLR3 enhances antigen-independent skin inflammation in the elicitation phase of allergic contact dermatitis and in ICD.

  19. Contact-line dynamics for water waves and high-Re flows

    Science.gov (United States)

    Jiang, Lei; Liu, Ziyuan; Perlin, Marc; Schultz, William W.

    1997-11-01

    An appropriate contact-line model at the gas/liquid/solid trijunction is critical to the prediction of both low-Re flows and high-Re flows such as occur with water waves. Contact-line condition for water waves was proposed by Hocking (1987) and later by Miles (1991) based on Navier's slip relation. However, Cocciaro et al. (1993) and Ting & Perlin (1995) showed that strongly nonlinear contact-line dynamics are present experimentally, and that these dynamics are more complex than Hocking and Miles' models. We present results on the frequency and damping of Faraday water waves in various wave tanks and under different wetting conditions. The surface-elevation decay is analyzed with a complex demodulation technique. Frequency detuning and contact-line damping are found to obey power laws in the wave amplitude. The power-law exponent depends on the wetting condition and the material of which the tank is constructed. A preliminary analysis suggests that an averaged contact-line condition similar to the Tanner's law gives the correct amplitude dependence in frequency and damping. This condition also agrees qualitatively with contact-line data from Ting & Perlin. Preliminary analysis of the boundary layer structure near a moving contact line is carried out in the large-Re limit. Influence of corner flow and some implications from the self-similar Falkner-Skan equation are presented. This research is supported by ONR and NASA Microgravity Fluid Physics Program.

  20. A simple apparatus for the determining contact angle of water repellent fabrics

    Directory of Open Access Journals (Sweden)

    B. M. Banerji

    1955-04-01

    Full Text Available A simple apparatus for the determination of fabric-water contact angle of water repellent fabrics is described. It is based on the tilting plate principle and the additional advantage that the end point can be sharply ascertained by optical means.

  1. The role of domestic tap water on Acanthamoeba keratitis in non-contact lens wearers and validation of laboratory methods.

    Science.gov (United States)

    Koltas, Ismail Soner; Eroglu, Fadime; Erdem, Elif; Yagmur, Meltem; Tanır, Ferdi

    2015-09-01

    Acanthamoeba is increasingly recognized as an important cause of keratitis in non-contact lens wearers while contact lens wear is the leading risk factor for Acanthamoeba keratitis (AK). It is unlikely that the Acanthamoeba colonization is a feature which is effective only in patient's homes with infectious keratitis since the organism has been isolated from domestic tap water. Two hundred and thirty-one (231) corneal scrapings were taken from infectious keratitis cases, and four contact lens solutions and domestic tap waters were taken from 22 out of 44 AK-diagnosed patient's homes. Microscopic examination, culture, PCR, real-time PCR and DNA sequencing analyses were used for AK-diagnosed samples. The real-time PCR was the most sensitive (100 %) one among the methods used in diagnosis of AK. The 44 (19.0 %) out of 231 corneal scrapings, 4/4 (100 %) contact lens solution and 11/22 (50 %) of domestic tap water samples were found to be positive by real-time PCR for Acanthamoeba. A. griffini (T3), A. castellanii (T4) and A. jacobsi (T15) genotypes were obtained from corneal scrapings, contact lens solutions and domestic tap water samples taken from the patient's homes diagnosed with AK. The isolation of Acanthamoeba containing 6/22 (27.3 %) A. griffini (T3), 14/22 (63.6 %) A. castellanii (T4) and 2/22 (9.1 %) A. jacobsi (T15) from the domestic tap water outlets of 22 of 44 (50 %) of patient's homes revealed that is a significant source of these organisms. A. griffini (T3) and A. jacobsi (T15) genotypes have not been determined from AK cases in Turkey previously. Thus, we conclude that Acanthamoeba keratitis is associated with exposition of patients who has ocular trauma or ocular surface disease to domestic tap water in endemic or potentially endemic countries.

  2. Spontaneous changes in contact angle of water and oil on novel flip-flop-type hydrophobic multilayer coatings

    Science.gov (United States)

    Kawamura, Go; Ema, Tomoyuki; Sakamoto, Hisatoshi; Wei, Xing; Muto, Hiroyuki; Matsuda, Atsunori

    2014-04-01

    Multilayer structures composed of poly(allylamine hydrochloride) (PAH) and Nafion were fabricated on glass substrates by layer-by-layer assembly. Some of the multilayers demonstrated spontaneous changes in contact angle of water and oil due to flip-flop movements of free sulfo groups in the Nafion layer, and the multilayers eventually possessed water repellency in air and oil repellency in water. The repellencies were enhanced by applying primer layers that were formed using SiO2 fine particles to increase surface roughness. Compared to typical hydrophobic and oleophobic surfaces, the multilayers showed practical levels for a use as soil release coatings.

  3. Wettability Control of Gold Surfaces Modified with Benzenethiol Derivatives: Water Contact Angle and Thermal Stability.

    Science.gov (United States)

    Tatara, Shingo; Kuzumoto, Yasutaka; Kitamura, Masatoshi

    2016-04-01

    The water wettability of Au surfaces has been controlled using various benzenethiol derivatives including 4-methylbenzenethiol, pentafluorobenzenethiol, 4-flubrobenzenethiol, 4-methoxy-benzenethiol, 4-nitrobenzenethiol, and 4-hydroxybenzenethiol. The water contact angle of the Au surface modified with the benzenethiol derivative was found to vary in the wide range of 30.9° to 88.3°. The contact angle of the modified Au films annealed was also measured in order to investigate their thermal stability. The change in the contact angle indicated that the modified surface is stable at temperatures below about 400 K. Meanwhile, the activation energy of desorption from the modified surface was estimated from the change in the contact angle. The modified Au surface was also examined using X-ray photoelectron spectroscopy.

  4. Contact sensitizers specifically increase MHC class II expression on murine immature dendritic cells.

    Science.gov (United States)

    Herouet, C; Cottin, M; LeClaire, J; Enk, A; Rousset, F

    2000-01-01

    Contact sensitivity is a T-cell-mediated immune disease that can occur when low-molecular-weight chemicals penetrate the skin. In vivo topical application of chemical sensitizers results in morphological modification of Langerhans cells (LC). Moreover, within 18 h, LC increase their major histocompatibility complex (MHC) class II antigens expression and migrate to lymph nodes where they present the sensitizer to T lymphocytes. We wanted to determine if such an effect could also be observed in vitro. However, because of the high genetic diversity encountered in humans, assays were performed with dendritic cells (DC) obtained from a Balb/c mouse strain. The capacity of a strong sensitizer, DNBS (2,4-dinitrobenzene sulfonic acid), to modulate the phenotype of bone marrow-derived DC in vitro, was investigated. A specific and marked increase of MHC class II molecules expression was observed within 18 h. To eliminate the use of animals in sensitization studies, the XS52 DC line was tested at an immature stage. A 30-min contact with the strong sensitizers DNBS and oxazolone, or the moderate mercaptobenzothiazole, resulted in upregulation of MHC class II molecules expression, analyzed after 18-h incubation. This effect was not observed with irritants (dimethyl sulfoxide and sodium lauryl sulfate) nor with a neutral molecule (sodium chloride). These data suggested the possibility of developing an in vitro model for the identification of the sensitizing potential of chemicals, using a constant and non animal-consuming material.

  5. Microgeographical patterns of schistosomiasis and water contact behavior; examples from Africa and Brazil

    Directory of Open Access Journals (Sweden)

    Helmut Kloos

    1998-01-01

    Full Text Available This paper examines the results of spatial (microgeographical water contact/schistosomiasis studies in two African (Egyptian and Kenyan and one Brazilian communities. All three studies used traditional cartographic and statistical methods but one of them emploeyd also GIS (geographical information systems tools. The advantage of GIS and their potential role in schistosomiasis control are briefly described. The three cases revealed considerable variation in the spatial distribution of water contact, transmission parameters and infection levels at the household and individual levels. All studies showed considerable variation in the prevalence and intensity of infection between households. They also show a variable influence of distance on water contact behavior associated with type of activity, age, sex, socioeconomic level, perception of water quality, season and availability of water in the home. Water contact behavior and schistosomiasis were evaluated in the Brazilian village of Nova União within the context of water sharing between household and age/sex groups. Recommendations are made for further spatial studies on the transmission and control of schistosomiasis.

  6. Static contact angle versus volume of distilled water drop on micro patterned surfaces

    Directory of Open Access Journals (Sweden)

    Batichsheva Kseniya

    2017-01-01

    Full Text Available Static contact angle was determined experimentally in the condition of wetting of polished and laser patterned surfaces of stainless steel substrates by distilled water drops with different volumes. In contrast with polished surface, the contact angle was found to depend on drop volume on micro patterned surfaces. In addition, the enhancement of both hydrophilic and hydrophobic properties was observed on laser patterned surfaces.

  7. Mechanisms of Contact Electrification at Aluminum-Polytetrafluoroethylene and Polypropylene-Water

    KAUST Repository

    Nauruzbayeva, Jamilya

    2017-04-01

    Contact electrification refers to the transfer of electrical charges between two surfaces, similar and dissimilar, as they are brought into contact and separated; this phenomenon is also known as static electrification or triboelectrification. For example, everyone has experienced weak electrical shocks from metal doorknobs, wool and synthetic clothing on dry days. While contact electrification might appear insignificant, it plays a key role in numerous natural and industrial processes, including atmospheric lightning, accumulation of dust on solar panels, charging of liquids during pipetting and flow in the tubes, and fire hazards in granular media. Contact electrification at metal-metal interfaces is well understood in terms of transfer of electrons, but a comprehensive understanding of contact electrification at interfaces of electrical insulators, such as air, water, polytetrafluoroethylene (PTFE), polypropylene remains incomplete. In fact, a variety of mechanisms responsible for transfer of electrical charges during mechanical rubbing, slipping, sliding, or flow at interfaces have been proposed via: electrons, ions, protons, hydroxide ions from water, specific orientation of dipoles, mechanoradicals, cryptoelectrons, and transfer of material. We have noticed that the extent of contact electrification of solids in water is influenced by surface free energies, mobile ions, surface roughness, duration of contact, sliding speeds, and relative humidity. Herein, we present results of our experimental investigation of contact electrification at the following interfaces: (i) PTFE-aluminum in air and (ii) polypropylene-water interfaces. To identify the underlying mechanism, we started with various hypotheses and exploited a variety of experimental techniques to falsify most of them until we got an answer; our techniques included high-voltage power supply (0-10,000 V), Faraday cages, Kelvin probe force microscopy, electrodeposition, X-ray photoelectron spectroscopy

  8. Increasing hospital-community contact through a theater program in a psychiatric hospital.

    Science.gov (United States)

    Johnson, D; Munich, R L

    1975-07-01

    In 1973 the activities therapy department at the Yale Psychiatric Institute began to organize and present plays before public audiences to help increase contact between patients and community members. Both patients and staff were anxious about opening the performances to the public; however, the first two plays were quite successful, and no serious disruptions occurred. When a third play was in rehearsal, the cast decided that it should be performed outside the hospital. the primary purpose of rehearsals, as well as separate weekly meetings with the director, was to provide a group identity that help the cast deal with their fears and anxieties. The outside performance, at a state hospital a hundred miles away, was well received and gave the cast a sense of achievement and increased self-esteem.

  9. Analysis of ice slurry production by direct contact heat transfer of air and water solution

    Institute of Scientific and Technical Information of China (English)

    Xue-jun ZHANG; Ke-qing ZHENG; Ling-shi WANG; Wei WANG; Min JIANG; Sheng-ying ZHAO

    2013-01-01

    In this paper,a novel system using direct contact heat transfer between air and water solution was proposed to generate ice slurry.The heat transfer process and the system performance were studied;energy efficiency coefficients of 0.038,0.053,and 0.064 were obtained using different solutions.An empirical relationship between the volumetric heat transfer coefficient Uv and the main parameters was obtained by fitting the experimental data.The Uv calculated from the empirical formula agreed with the experimental Uv quite well with a relative error of less than 15%.Based on the empirical formula,a laboratory-scale direct contact ice slurry generator was then constructed,with practical application in mind.If the air flow rate is fixed at 200 m3/h,the ice production rate will be 0.091 kg/min.The experimental results also showed that the cold energy consumption of the air compressor accounted for more than half of the total amount.To improve the system energy efficiency coefficient,it is necessary to increase the air pipes insulation and the solution's thermal capacity,and also it is appropriate to utilize the free cold energy of liquefied natural gas(LNG).

  10. The association of drinking water treatment and distribution network disturbances with Health Call Centre contacts for gastrointestinal illness symptoms.

    Science.gov (United States)

    Malm, Annika; Axelsson, Gösta; Barregard, Lars; Ljungqvist, Jakob; Forsberg, Bertil; Bergstedt, Olof; Pettersson, Thomas J R

    2013-09-01

    There are relatively few studies on the association between disturbances in drinking water services and symptoms of gastrointestinal (GI) illness. Health Call Centres data concerning GI illness may be a useful source of information. This study investigates if there is an increased frequency of contacts with the Health Call Centre (HCC) concerning gastrointestinal symptoms at times when there is a risk of impaired water quality due to disturbances at water works or the distribution network. The study was conducted in Gothenburg, a Swedish city with 0.5 million inhabitants with a surface water source of drinking water and two water works. All HCC contacts due to GI symptoms (diarrhoea, vomiting or abdominal pain) were recorded for a three-year period, including also sex, age, and geocoded location of residence. The number of contacts with the HCC in the affected geographical areas were recorded during eight periods of disturbances in the water works (e.g. short stops of chlorine dosing), six periods of large disturbances in the distribution network (e.g. pumping station failure or pipe breaks with major consequences), and 818 pipe break and leak repairs over a three-year period. For each period of disturbance the observed number of calls was compared with the number of calls during a control period without disturbances in the same geographical area. In total about 55, 000 calls to the HCC due to GI symptoms were recorded over the three-year period, 35 per 1000 inhabitants and year, but much higher (>200) for children water works or in the distribution network. Our results indicate that GI symptoms due to disturbances in water works or the distribution network are rare. The number of serious failures was, however limited, and further studies are needed to be able to assess the risk of GI illness in such cases. The technique of using geocoded HCC data together with geocoded records of disturbances in the drinking water network was feasible.

  11. Wettability of supercritical carbon dioxide/water/quartz systems: simultaneous measurement of contact angle and interfacial tension at reservoir conditions.

    Science.gov (United States)

    Saraji, Soheil; Goual, Lamia; Piri, Mohammad; Plancher, Henry

    2013-06-11

    Injection of carbon dioxide in deep saline aquifers is considered as a method of carbon sequestration. The efficiency of this process is dependent on the fluid-fluid and rock-fluid interactions inside the porous media. For instance, the final storage capacity and total amount of capillary-trapped CO2 inside an aquifer are affected by the interfacial tension between the fluids and the contact angle between the fluids and the rock mineral surface. A thorough study of these parameters and their variations with temperature and pressure will provide a better understanding of the carbon sequestration process and thus improve predictions of the sequestration efficiency. In this study, the controversial concept of wettability alteration of quartz surfaces in the presence of supercritical carbon dioxide (sc-CO2) was investigated. A novel apparatus for measuring interfacial tension and contact angle at high temperatures and pressures based on Axisymmetric Drop Shape Analysis with no-Apex (ADSA-NA) method was developed and validated with a simple system. Densities, interfacial tensions, and dynamic contact angles of CO2/water/quartz systems were determined for a wide range of pressures and temperatures relevant to geological sequestration of CO2 in the subcritical and supercritical states. Image analysis was performed with ADSA-NA method that allows the determination of both interfacial tensions and contact angles with high accuracy. The results show that supercritical CO2 alters the wettability of quartz surface toward less water-wet conditions compared to subcritical CO2. Also we observed an increase in the water advancing contact angles with increasing temperature indicating less water-wet quartz surfaces at higher temperatures.

  12. Effect of capillary-condensed water on the dynamic friction force at nanoasperity contacts

    Science.gov (United States)

    Sirghi, L.

    2003-05-01

    A single nanoasperity contact in ambient air is usually wetted by capillary condensation of water vapor and is surrounded by a water meniscus. This phenomenon strongly affects the contact friction, not only by the effect of meniscus loading force (superficial tension and capillary forces), but also by a friction force that accounts for the energy loss in the meniscus movement along with the sliding contact. Occurrence of the water-meniscus-generated friction is experimentally proved by atomic force microscopy measurements of the tip-sample friction force at minimum possible external load (before pull-off). A qualitative explanation for the observed dependence of the friction force on air humidity and solid surface wettability is proposed.

  13. Aluminum strand coating for increasing the interstrand contact resistance in Rutherford type superconducting cables

    CERN Document Server

    Scheuerlein, C; Verweij, A; Bonasia, A; Oberli, L; Taborelli, M; Richter, R

    2009-01-01

    The interstrand contact resistance (Rc) in Rutherford type cables for fast cycling superconducting magnets must be sufficiently high in order to limit eddy current losses. The required value for Rc depends on the cable and magnet geometries and on the foreseen cycling rate, but is typically of the order of one mW. Such values can be reached with a dedicated strand coating or with a resistive internal cable barrier. As a possible candidate Al strand coatings have been tested. For a Rutherford type inner conductor cable of the Large Hadron Collider (LHC) made of Al coated strands Rc values higher than 500 Omega are achieved. The native Al2O3 oxide layer formed at ambient temperature in air is sufficient to reach this high contact resistance. A 6 h-200 °C oxidation heat treatment in air with 100% relative humidity further increases Rc to values above 600 μOmega . Due to the high thermal and mechanical stability of Al2O3 only a relatively moderate Rc drop of about 40 % is obtained during a 190 °C heat treatmen...

  14. Treatment of Simulated Coalbed Methane Produced Water Using Direct Contact Membrane Distillation

    Directory of Open Access Journals (Sweden)

    Dong-Wan Cho

    2016-05-01

    Full Text Available Expolitation of coalbed methane (CBM involves production of a massive amount saline water that needs to be properly managed for environmental protection. In this study, direct contact membrane distillation (DCMD was utilized for treatment of CBM-produced water to remove saline components in the water. Simulated CBM waters containing varying concentrations of NaCl (1, 20, and 500 mM and NaHCO3 (1 and 25 mM were used as feed solutions under two transmembrane temperatures (Δ40 and 60 °C. In short-term distillation (~360 min, DCMD systems showed good performance with nearly 100% removal of salts for all solutes concentrations at both temperatures. The permeate flux increased with the feed temperature, but at a given temperature, it remained fairly stable throughout the whole operation. A gradual decline in permeate flux was observed at Δ60 °C at high NaHCO3 concentration (25 mM. In long-term distillation (5400 min, the presence of 25 mM NaHCO3 further decreased the flux to 25%–35% of the initial value toward the end of the operation, likely due to membrane fouling by deposition of Ca-carbonate minerals on the pore openings. Furthermore, pore wetting by the scalants occurred at the end of the experiment, and it increased the distillate conducitivity to 110 µS·cm−1. The precipitates formed on the surface were dominantly CaCO3 crystals, identified as aragonite.

  15. Increase in contact allergy to fragrances: patch-test results 1989-1998.

    Science.gov (United States)

    Lunder, T; Kansky, A

    2000-08-01

    We report the results of patch tests with fragrance-mix as a part of the standard series carried out over the last 10 years (1989-1998) during routine testing of 6129 patients in our department. 5.9% of the total number of patients who were patch tested were positive to fragrance mix. The sex ratio was 2.3:1 with a female predominance. In 1989-1993, the frequency of contact sensitivity to fragrance mix was 3.9% (4.9% for females and 2.1% for males). This rate rose both in female and male patients during the observed period of time and attained 8.9% (females) and 4.1% (males) in 1994-1998; the overall frequency in 1994-98 was 7.5%. This rising trend, which was statistically significant, might be the consequence of an increased use of cosmetics and toiletries containing fragrances in our population.

  16. Human contact imagined during the production process increases food naturalness perceptions.

    Science.gov (United States)

    Abouab, Nathalie; Gomez, Pierrick

    2015-08-01

    It is well established that food processing and naturalness are not good friends, but is food processing always detrimental to naturalness? Building on the contagion principle, this research examines how production mode (handmade vs. machine-made) influences naturalness perceptions. In a pilot study (n = 69) and an experiment (n = 133), we found that compared with both a baseline condition and a condition in which the mode of production process was portrayed as machine-made, a handmade production mode increases naturalness ratings of a grape juice. A mediation analysis demonstrates that these effects result from higher perceived human contact suggesting that the production process may preserve food naturalness when humanized.

  17. Increased concentration of hyaluronan in tears after soaking contact lenses in Biotrue multipurpose solution

    Directory of Open Access Journals (Sweden)

    Scheuer CA

    2016-10-01

    Full Text Available Catherine A Scheuer, Marjorie J Rah, William T Reindel Vision Care, Bausch & Lomb Incorporated, Rochester, NY, USA Purpose: This study was conducted to determine 1 the concentration of hyaluronan (HA in the tear films of contact lens (CL wearers versus non-CL wearers and 2 whether HA sorbed from Biotrue, an HA-containing multipurpose solution (MPS, onto senofilcon A lenses affects the concentration of HA in tears after 2 hours of wear.Patients and methods: Tears of habitual CL wearers and non-CL wearers were collected on Schirmer strips at baseline and after 2 hours of wear of senofilcon A CLs that had first been either rinsed with Sensitive Eyes Saline or soaked in Biotrue MPS for 14 hours. HA concentrations were measured by enzyme-linked immunosorbent assay (ELISA and adjusted for sample volumes.Results: No difference in baseline concentrations of HA in tears was found between CL wearers and non-CL wearers (P=0.07, nor between males and females (P=0.06. However, age was significantly negatively associated with HA concentration (P<0.01, and mostly, CL wear contributed to a significant association (P<0.01. Among saline-rinsed CL wearers, no change in HA concentration in tears was observed after 2 hours of wear (P=0.38. By contrast, a significant increase in HA concentration was observed in the tears from eyes that had worn CLs soaked in Biotrue MPS when compared to baseline (P=0.01 or to saline-rinsed control (P=0.03.Conclusion: 1 In this study population, no difference in baseline concentration of HA was observed between CL wearers and non-CL wearers, and 2 after 2 hours of wear of senofilcon A lenses that were soaked in Biotrue MPS, HA concentrations in the tear films of CL wearers increased. Keywords: contact lens, dry eye, hyaluronan, MPS

  18. Characterization of a dielectric barrier discharge in contact with liquid and producing a plasma activated water

    Science.gov (United States)

    Neretti, G.; Taglioli, M.; Colonna, G.; Borghi, C. A.

    2017-01-01

    In this work a low-temperature plasma source for the generation of plasma activated water (PAW) is developed and characterized. The plasma reactor was operated by means of an atmospheric-pressure air dielectric barrier discharge (DBD). The plasma generated is in contact with the water surface and is able to chemically activate the liquid medium. Electrodes were supplied by both sinusoidal and nanosecond-pulsed voltage waveforms. Treatment times were varied from 2 to 12 min to increase the energy dose released to the water by the DBD plasma. The physics of the discharge was studied by means of electrical, spectroscopic and imaging diagnostics. The interaction between the plasma and the liquid was investigated as well. Temperature and composition of the treated water were detected. Images of the discharges showed a filamentary behaviour in the sinusoidal case and a more homogeneous behaviour in the nanosecond-pulsed one. The images and the electrical measurements allowed to evaluate an average electron number density of about 4  ×  1019 and 6  ×  1017 m-3 for the sinusoidal and nanosecond-pulsed discharges respectively. Electron temperatures in the range of 2.1÷2.6 eV were measured by using spectroscopic diagnostics. Rotational temperatures in the range of 318-475 K were estimated by fitting synthetic spectra with the measured ones. Water temperature and pH level did not change significantly after the exposure to the DBD plasma. The production of ozone and hydrogen peroxide within the water was enhanced by increasing the plasma treatment time and the energy dose. Numerical simulations of the nanosecond-pulsed discharge were performed by using a self-consistent coupling of state-to-state kinetics of the air mixture with the Boltzmann equation of free electron kinetics. Temporal evolution of the electron energy distribution function shows departure from the Maxwellian distribution especially during the afterglow phase of the discharge. When

  19. Apparent Contact Angle Calculated from a Water Repellent Model with Pinning Effect.

    Science.gov (United States)

    Suzuki, Shojiro; Ueno, Kazuyuki

    2017-01-10

    A set of new theoretical equations for apparent contact angles is proposed. The equations are derived from an equilibrium of interfacial tensions of a three-phase contact line pinned at the edges of a fine structure. These equations are validated by comparison with contact-angle measurement results for 2 μL water droplets on poly(methyl methacrylate) microstructured samples with square pillars or holes. The equilibrium contact angles predicted by the new equations reasonably agree with the experimental results. In contrast, the values predicted by the Cassie-Baxter equation or the Wenzel equation do not qualitatively agree with the experimental results in pillar pattern cases because the Cassie-Baxter equation and the Wenzel equation do not account for the pinning effect.

  20. Non-Contact to Contact Transition: Direct Measurements of Interaction Forces between a Solid Probe and a Planar Air-Water Interface

    Institute of Scientific and Technical Information of China (English)

    WU Di; WANG Yi-Zhen; ZHANG Jin-Xiu

    2007-01-01

    The interaction force between a solid probe and a planar air-water interface is measured by using an atomic force microscope. It is demonstrated that during the approach of the probe to the air-water interface, the force curves decline all the time due to the van der Waals attraction and induces a stable profile of water surface raised. When the tip approaches very close to the water surface, force curves jump suddenly, reflecting the complex behaviour of the unstable water surface. With a theoretical analysis we conclude that before the tip touches water surface,two water profiles appear, one stable and the other unstable. Then, with further approaching, the tip touches water surface and the non-contact to contact transition occurs.

  1. "Phantom ion effect" and the contact potential of the water-vapor interface.

    Science.gov (United States)

    Levin, Yan

    2008-09-28

    The contact (junction) potential between water-vapor and water-oil interfaces is studied theoretically. Unlike the previous studies, we show that ionic contribution to the contact potential vanishes when the concentration of aqueous electrolyte goes to zero. The incorrect prediction of a large ionic contribution to the junction potential in the infinite dilution limit, obtained in the earlier studies, is traced back to the inappropriate use of the grand-canonical ensemble for strongly inhomogeneous Coulomb systems. It is shown that for these systems, the thermodynamic limit is not reached even when the number of particles is astronomically large, on the order of 10(24). There is, therefore, no equivalence between statistical ensembles. For realistic, finite size systems, canonical calculation predicts a vanishing ionic contribution to the junction potentials of water-vapor and water-oil interfaces even for very concentrated electrolyte solutions.

  2. DEVELOPMENT OF THE CONTACT PRECIPITATION METHOD FOR APPROPRIATE DEFLUORIDATION OF WATER

    DEFF Research Database (Denmark)

    Dahi, Elian

    1997-01-01

    This paper describes the development of defluoridation of water by contact precipitation, where fluoride water is mixed with calcium and phosphate and brought in contact with bone char which is already saturated with fluoride. The process is studied in jar test, in manually stirred buckets.......5/10.8/1. It is discussed that the main processes behind may be a crystal growth or a catalysed precipitation of fluorapatite and/or calcium fluoride, as the components are brought in close contact with fluoride saturated bone char....... in the batch systems were relatively low especially when manually stirred. The fill, mix and filter technique demonstrated surprisingly high removal efficiencies, 95-98 %, without any sign of break through or saturation, at dosage levels corresponding to calcium/phosphate/fluoride weigh ratio of 8...

  3. Destruction of 4-phenolsulfonic acid in water by anodic contact glow discharge electrolysis

    Institute of Scientific and Technical Information of China (English)

    Haiming Yang; Baigang An; Shaoyan Wang; Lixiang Li; Wenjie Jin; Lihua Li

    2013-01-01

    Destruction of 4-phenolsulfonic acid (4-PSA) in water was carried out using anodic contact glow discharge electrolysis.Accompanying the decay of 4-PSA,the amount of total organic carbon (TOC) in water correspondingly decreased,while the sulfonate group of 4-PSA was released as sulfate ion.Oxalate and formate were obtained as minor by-products.Additionally,phenol,1,4-hydroquinone,hydroxyquinol and 1,4-benzoquinone were detected as primary intermediates in the initial stages of decomposition of 4-PSA.A reaction pathway involving successive attacks of hydroxyl and hydrogen radicals was assumed on the basis of the observed products and kinetics.It was revealed that the decay of both 4-PSA and TOC obeyed a first-order rate law.The effects of different Fe ions and initial concentrations of 4-PSA on the degradation rate were investigated.It was found that the presence of Fe ions could increase the degradation rate of 4-PSA,while initial concentrations lower than 80 mmol/L had no significant effect on kinetic behaviour.The disappearance rate of 4-PSA was significantly affected by pH.

  4. Paleo-oil-Water Contact and Present-Day Gas-Water Contact:Implication for Evolution History of Puguang Gas Field,Sichuan Basin,China

    Institute of Scientific and Technical Information of China (English)

    Li Pingping; Zou Huayao; Zhang Yuanchun; Wang Cunwu; Zhang Xuefeng

    2008-01-01

    The Puguang (普光) gas field is the largest gas field found in marine carbonate in China.The Puguang gas field experienced complicated evolution history from paleo-oil pool to gas pool.The purpose of this article is to reveal the evolution history of Puguang gas field through systematic study on the relationship between paleo-oil-water contact (POWC) and present-day gas-water contact (PGWC).POWC was recognized by observing the change of relative content of residual solid bitumen in the cores,and PGWC was observed using log and drilling stem test data.Two types of relationship between POWC and PGWC were observed in the Puguang gas field:POWC is above PGWC,and POWC is below PGWC.The former is normal as oil cracking may cause gas-water contact to move downward.The latter can be interpreted by lateral gas re-migration and re-accumulation caused by changes in structural configuration.The relationship between POWC and PGWC suggests that during oil charge,the southwestern and northwestern parts of the Puguang gas field were structurally lower than the northeastern and southeastern parts.Thrusting from Xuefengshan (雪峰山) since Yanshanian movement and from Dabashan (大巴山) since Himalayan movement resulted in the relative uplift of the southwestern and northwestern parts of the Puguang structure,which significantly changed the structural configuration.Based on the paleo-structure discussed in this article,the most probable migration directions of paleo-oil were from the northwest to the southeast and from the southwest to the northeast.Consequently,the evolution history of the Puguang gas field can be divided into three stages,namely,oil charging (200-170 Ma),cracking oil to gas (155-120 Ma),and gas pool adjustment (1200-0Ma).

  5. Non-contact measurements of water jet spreading width with a laser instrument

    Science.gov (United States)

    Funami, Yuki; Hasuya, Ryo; Tanabe, Kotaro; Nakanishi, Yuji

    2016-08-01

    Jet spreading width is one of the important characteristics of water jets discharging into the air. Many researchers have dealt with measuring this width, and contact measuring methods on the water jet surface were employed in a lot of the cases. In order to avoid undesirable effects caused by the contact on the jet surface, we introduce non-contact measuring methods with a laser instrument to the measurements of jet spreading width. In measurements, a transmitter emits sheet-like laser beam to a receiver. The water jet between the transmitter and the receiver interrupts the laser beam and makes a shadow. The minimum and maximum values of the shadow width are measured. In addition, pictures of the water jet are taken with a scale, and the shadow width is measured from the pictures. The experiments on various needle strokes were performed. Three kinds of width consistent with the jet structure were obtained. In the results, it can be concluded that our non-contact measuring methods are feasible. The data of jet spreading widths and jet taper were obtained and are useful for future applications.

  6. Contact angle assessment of hydrophobic silica nanoparticles related to the mechanisms of dry water formation.

    Science.gov (United States)

    Forny, Laurent; Saleh, Khashayar; Denoyel, Renaud; Pezron, Isabelle

    2010-02-16

    Dry water is a very convenient way of encapsulating a high amount of aqueous solutions in a powder form made of hydrophobic silica nanoparticles. It was demonstrated in previous studies that both solid and liquid interfacial properties influence the quality of the final product resulting occasionally in mousse formation. To explain this behavior, contact angles of silica nanoparticles have been measured for water and water/ethanol solution by means of liquid intrusion experiments. It was found that the quality of the final product correlates with the contact angle, i.e., contact angle close to 105 degrees leads to mousse formation whereas a slightly higher value of approximately 118 degrees allows dry water formation. The proposed explanation was based on the energy of immersion and adhesion defined as the energy needed for a spherical particle to respectively penetrate into the liquid or attach at the liquid/air interface. Significantly lower energy of immersion calculated for lower contact angle might account for particle penetration into the liquid phase during processing, leading to continuous network aggregation, air entrapment, and finally mousse formation.

  7. A Long Term Study of the Water Content Changes in Three Types of Hydrogel Contact Lenses.

    Science.gov (United States)

    1987-05-01

    Linder 4 0 described the procedures of wet end dry state weight measurement method. In 1983 Snyder nd Koers discussed that same method and included...arid. Koers , D.M. Water Content Measurement of Hydroel Lenses--Does Technique Make a Difference? Intern Contact Lens Clin ,’ 1963;10(6):344-346

  8. The contribution of water contact behavior to the high Schistosoma mansoni Infection rates observed in the Senegal River Basin

    Directory of Open Access Journals (Sweden)

    Stelma Foekje

    2011-07-01

    Full Text Available Abstract Background Schistosomiasis is one of the major parasitic diseases in the world in terms of people infected and those at risk. Infection occurs through contact with water contaminated with larval forms of the parasite, which are released by freshwater snails and then penetrate the skin of people. Schistosomiasis infection and human water contact are thus essentially linked, and more knowledge about their relationship will help us to develop appropriate control measures. So far, only few studies have related water contact patterns to infection levels. Methods We have conducted detailed direct water contact observations in a village in Northern Senegal during the first years of a massive Schistosoma mansoni outbreak to determine the role of human water contact in the extent of the epidemic. We quantified water contact activities in terms of frequency and duration, and described how these vary with age and sex. Moreover, we assessed the relationship between water contact- and infection intensity patterns to further elucidate the contribution of exposure to the transmission of schistosomiasis. Results This resulted in over 120,000 recorded water contacts for 1651 subjects over 175 observation days. Bathing was the main activity, followed by household activities. Frequency and duration of water contact depended on age and sex rather than season. Water contacts peaked in adolescents, women spent almost twice as much time in the water as men, and water contacts were more intense in the afternoon than in the morning, with sex-specific intensity peaks. The average number of water contacts per person per day in this population was 0.42; the average time spent in the water per person per day was 4.3 minutes. Conclusions The observed patterns of water contact behavior are not unusual and have been described before in various other settings in sub-Saharan Africa. Moreover, water contact levels were not exceptionally high and thus cannot explain the

  9. Adsorption of natural surfactants present in sea waters at surfaces of minerals: contact angle measurements

    Directory of Open Access Journals (Sweden)

    Katarzyna Boniewicz-Szmyt

    2009-09-01

    Full Text Available The wetting properties of solid mineral samples (by contact angles in original surfactant-containing sea water (Gulf of Gdańsk, Baltic were characterised under laboratory conditions on a large set (31 samples of well-classified stones of diverse hydrophobicity using the sessile drop (ADSA-P approach, captive bubble and inclined plate methods. An experimental relation between the static contact angle θeq and stone density ρ was obtained in the form θeq = Bρ + C, where B = 12.23 ± 0.92, C = - (19.17 ± 0.77, and r2 = 0.92. The histogram of θeq distribution for polished stone plates exhibited a multimodal feature indicating that the most abundant solid materials (hydrophilic in nature have contact angles θeq = 7.2, 10.7, 15.7 and 19.2º, which appear to be applicable to unspecified field stones as well. The contact angle, a pH-dependent quantity, appears to be a sensitive measure of stone grain size, e.g. granite. The captive bubble method gives reproducible results in studies of porous and highly hydrophilic surfaces such as stones and wood. The authors consider the adsorption of natural sea water surfactants on stone surfaces to be the process responsible for contact angle hysteresis. In the model, an equation was derived for determining the solid surface free energy from the liquid's surface tension γLV it also enabled the advancing θA and receding θR contact angles of this liquid to be calculated. Measurements of contact angle hysteresis Δθ (=θA - θR with surfactant-containing sea water and distilled water (reference on the same stone surfaces allowed the film pressure ΔΠ (1.22 to 8.80 mJ m-2, solid surface free energy ΔγS (-17.03 to -23.61 mJ m-2 and work done by spreading ΔWS (-1.23 to -11.52 mJ m-2 to be determined. The variability in these parameters is attributed to autophobing, an effect operative on a solid surface covered with an adsorptive layer of surfactants. The wetting behaviour of solid particles is of great

  10. Application of RANS Simulations for Contact Time Predictions in Turbulent Reactor Tanks for Water Purification Process

    Science.gov (United States)

    Nickles, Cassandra; Goodman, Matthew; Saez, Jose; Issakhanian, Emin

    2016-11-01

    California's current drought has renewed public interest in recycled water from Water Reclamation Plants (WRPs). It is critical that the recycled water meets public health standards. This project consists of simulating the transport of an instantaneous conservative tracer through the WRP chlorine contact tanks. Local recycled water regulations stipulate a minimum 90-minute modal contact time during disinfection at peak dry weather design flow. In-situ testing is extremely difficult given flowrate dependence on real world sewage line supply and recycled water demand. Given as-built drawings and operation parameters, the chlorine contact tanks are modeled to simulate extreme situations, which may not meet regulatory standards. The turbulent flow solutions are used as the basis to model the transport of a turbulently diffusing conservative tracer added instantaneously to the inlet of the reactors. This tracer simulates the transport through advection and dispersion of chlorine in the WRPs. Previous work validated the models against experimental data. The current work shows the predictive value of the simulations.

  11. Acanthamoeba Species Keratitis in a Soft Contact Lens Wearer Molecularly Linked to Well Water

    Directory of Open Access Journals (Sweden)

    Samira Mubareka

    2006-01-01

    Full Text Available Acanthamoeba species keratitis has been associated with soft contact lens wear. In the present report, an epidemiological link was established between the patient's isolate and well water from the home using molecular methods. To the authors' knowledge, this is the first case in Canada where such a link has been established. Primary care practitioners and specialists, including ophthalmologists and infectious diseases specialists, must maintain a high degree of clinical suspicion in soft contact lens wearers with keratitis unresponsive to conventional topical and systemic treatment.

  12. Increased concentration of hyaluronan in tears after soaking contact lenses in Biotrue multipurpose solution

    Science.gov (United States)

    Scheuer, Catherine A; Rah, Marjorie J; Reindel, William T

    2016-01-01

    Purpose This study was conducted to determine 1) the concentration of hyaluronan (HA) in the tear films of contact lens (CL) wearers versus non-CL wearers and 2) whether HA sorbed from Biotrue, an HA-containing multipurpose solution (MPS), onto senofilcon A lenses affects the concentration of HA in tears after 2 hours of wear. Patients and methods Tears of habitual CL wearers and non-CL wearers were collected on Schirmer strips at baseline and after 2 hours of wear of senofilcon A CLs that had first been either rinsed with Sensitive Eyes Saline or soaked in Biotrue MPS for 14 hours. HA concentrations were measured by enzyme-linked immunosorbent assay (ELISA) and adjusted for sample volumes. Results No difference in baseline concentrations of HA in tears was found between CL wearers and non-CL wearers (P=0.07), nor between males and females (P=0.06). However, age was significantly negatively associated with HA concentration (Peyes that had worn CLs soaked in Biotrue MPS when compared to baseline (P=0.01) or to saline-rinsed control (P=0.03). Conclusion 1) In this study population, no difference in baseline concentration of HA was observed between CL wearers and non-CL wearers, and 2) after 2 hours of wear of senofilcon A lenses that were soaked in Biotrue MPS, HA concentrations in the tear films of CL wearers increased. PMID:27784983

  13. Competitive adsorption of surfactants and hydrophilic silica particles at the oil-water interface: interfacial tension and contact angle studies.

    Science.gov (United States)

    Pichot, R; Spyropoulos, F; Norton, I T

    2012-07-01

    The effect of surfactants' type and concentration on the interfacial tension and contact angle in the presence of hydrophilic silica particles was investigated. Silica particles have been shown to have an antagonistic effect on interfacial tension and contact angle in the presence of both W/O and O/W surfactants. Silica particles, combined with W/O surfactant, have no effect on interfacial tension, which is only dictated by the surfactant concentration, while they strongly affect interfacial tension when combined with O/W surfactants. At low O/W surfactant, both particles and surfactant are adsorbed at the interface, modifying the interface structure. At higher concentration, interfacial tension is only dictated by the surfactant. By increasing the surfactant concentration, the contact angle that a drop of aqueous phase assumes on a glass substrate placed in oil media decreases or increases depending on whether the surfactant is of W/O or O/W type, respectively. This is due to the modification of the wettability of the glass by the oil or water induced by the surfactants. Regardless of the surfactant's type, the contact angle profile was dictated by both particles and surfactant at low surfactant concentration, whereas it is dictated by the surfactant only at high concentration.

  14. Experimental study on fragmentation behaviors of molten LBE and water contact interface

    Institute of Scientific and Technical Information of China (English)

    黄望哩; 洒荣园; 周丹娜; 姜华磊; 黄群英

    2015-01-01

    Based on the design of CLEAR (China LEAd-based Reactor), it is important to study the molten LBE (Lead-Bismuth Eutectic)/water interaction following an incidental steam generator tube rupture (SGTR) accident. Experiments were carried out to investigate the fragmentation behavior of the molten LBE/water contacting interface, with a high-speed video camera to record the fragmentation behavior of 300–600◦C LBE at 20◦C and 80◦C of water temperature. Violent explosion phenomenon occurred at water temperature of 20◦C, while no explosion occurred at 80◦C. Shapes of the LBE debris became round at 80◦C of water temperature, whereas the debris was of the needle-like shape at 20◦C. For all the molten LBE and water temperatures in the present study, the debris sized at 2.8–5.0 mm had the largest mass fraction. The results indicate that the dominant physical mechanism of the molten LBE fragmentation was the Kelvin-Helmholtz instability between LBE/water direct contact interface.

  15. Hysteretic memory in pH-response of water contact angle on poly(acrylic acid) brushes.

    Science.gov (United States)

    Yadav, Vivek; Harkin, Adrienne V; Robertson, Megan L; Conrad, Jacinta C

    2016-04-21

    We investigated the pH-dependent response of flat polyacid brushes of varying length and dispersity in the extended brush regime. Our model system consisted of poly(acrylic acid) brushes, which change from hydrophobic and neutral at low pH to hydrophilic and negatively charged at high pH, synthesized on silicon substrates using a grafting-from approach at constant grafting density. We observed three trends in the pH-response: first, the dry brush thickness increased as the pH was increased for brushes above a critical length, and this effect was magnified as the dispersity increased; second, the water contact angle measured at low pH was larger for brushes of greater dispersity; and third, brushes of sufficient dispersity exhibited hysteretic memory behavior in the pH-dependence of the contact angle, in which the contact angle upon increasing and decreasing pH differed. As a consequence, the pKa of the brushes measured upon increasing pH was consistently higher than that measured upon decreasing pH. The observed pH response is consistent with proposed changes in the conformation and charge distribution of the polyelectrolyte brushes that depend on the direction of pH change and the dispersity of the brushes.

  16. Changes in water contact angles during the first phase of setting of dental impression materials.

    Science.gov (United States)

    Mondon, Matthias; Ziegler, Christiane

    2003-01-01

    The purpose of this investigation was to examine the changes in wettability of dental impression materials during setting. This study compared the properties of the initial water contact of two different dental impression materials and their subsequent development during polymerization. Two dental impression materials (Impregum Penta Soft and Aquasil) with different chemical compositions (polyether and polyvinyl siloxane, respectively) were investigated with respect to their changing wetting properties by time-resolved static contact angle measurements. Ten sets of measurements each were taken over a period of 400 seconds with 150 points of data each; the first pictures were used for further characterization of the initial interaction. With 73 degrees, Impregum Penta Soft exhibited a significantly lower contact angle, which stayed lower during the process of setting, compared to the silicone-based material. The initial interaction of the droplet showed a repulsive interaction of Aquasil with the water droplet. Impregum Penta Soft showed a more hydrophilic behavior during the process of setting compared to Aquasil and can therefore be expected to exhibit better flow properties. The method of time-resolved static contact angle measurements is a well-suited analytic instrument to monitor temporally changing wetting phenomena.

  17. Increased Eye Contact during Conversation Compared to Play in Children with Autism

    Science.gov (United States)

    Jones, Rebecca M.; Southerland, Audrey; Hamo, Amarelle; Carberry, Caroline; Bridges, Chanel; Nay, Sarah; Stubbs, Elizabeth; Komarow, Emily; Washington, Clay; Rehg, James M.; Lord, Catherine; Rozga, Agata

    2017-01-01

    Children with autism have atypical gaze behavior but it is unknown whether gaze differs during distinct types of reciprocal interactions. Typically developing children (N = 20) and children with autism (N = 20) (4-13 years) made similar amounts of eye contact with an examiner during a conversation. Surprisingly, there was minimal eye contact…

  18. Thickness dependence of surface energy and contact angle of water droplets on ultrathin MoS2 films.

    Science.gov (United States)

    Guo, Yanhua; Wang, Zhengfei; Zhang, Lizhi; Shen, Xiaodong; Liu, Feng

    2016-06-01

    We have performed a systematic density functional study of surface energy of MoS2 films as a function of thickness from one to twelve layers with the consideration of van der Waals (vdW) interactions using the vdW-DF and DFT-D2 methods. Both vdW schemes show that the surface energy will increase with the increase of the number of atomic layers and converge to a constant value at about six layers. Based on the calculated surface energies, we further analyze the surface contact angle of water droplets on the MoS2 film surface using Young's equation as a function of thickness in comparison with experiments, from which the water-MoS2 interfacial energy is derived to be independent of MoS2 thickness. Our calculations indicate that the vdW interactions between the MoS2 layers play an important role in determining surface energy, and results in the thickness dependence of the contact angle of water droplets on the MoS2 film surface. Our results explain well the recent wetting experiment [Nano Lett., 2014, 14(8), 4314], and will be useful for future studies of physical and chemical properties of ultrathin MoS2 films.

  19. Investigation of Indirect Contact Freezing Process in Desalination of Boshehr Beach's Saline Water

    Directory of Open Access Journals (Sweden)

    M Alimohaadi

    2011-10-01

    Full Text Available Background and Objectives: Nowadays, most countries of the world have shortage of water due to many reasons such as population growth, rising of living standards, indiscriminate water use, and so on. Besides, in absence of adequate water resources, desalination of brackish and saline waters have been used to supply potable water. Freezing process is one of the methods which can be used to desalinate saline waters.The aim of this study was to survey freezing process to produce potable water from saline water of Persian Gulf shores."nMaterials and Methods: This study was conducted in lab-scale by using indirect contact freezing. Three samples of 50 liter were provided from Bushehr shores. The implemented process steps were freezing (crystallization, separation of crystals, surface washing, and thawing. Freezing of the samples (each in 0.5 liter containers were performed by a refrigerator at -20°C and 0.1KW/h energy consumption.Results: The removal efficiencies of TDS in the first, second, and third samples by first freezing process were 56, 56, and 51 percent, respectively. Moreover, the removal efficiencies by EC were 42, 44, and 40 percent, respectively. Meanwhile, the removal efficiencies of TDS in first, second, and third samples by second freezing process observed 69, 69, and 68 percent, respectively. Moreover, the removal efficiencies by EC were 61, 60, and 63 percent, respectively. Also, the removal efficiencies of TDS in first, second, and third samples by third freezing process were 72, 73, and 72 percent, respectively. Moreover, the removal efficiencies by EC were 77, 78, and 77 percent, respectively. The production of the potable water by this method was 15-20 percent of the entry water.Conclusions: According to the obtained results, potable water was obtained after third freezing of the saline water. Meanwhile, TDS of the produced water was less than maximum allowed concentration of Iranian standards.

  20. Increasing urban water self-sufficiency: New era, new challenges

    DEFF Research Database (Denmark)

    Rygaard, Martin; Binning, Philip John; Albrechtsen, Hans-Jørgen

    2011-01-01

    pressures. Case studies demonstrate increases in self-sufficiency ratios to as much as 80% with contributions from recycled water, seawater desalination and rainwater collection. The introduction of alternative water resources raises several challenges: energy requirements vary by more than a factor of ten......Urban water supplies are traditionally based on limited freshwater resources located outside the cities. However, a range of concepts and techniques to exploit alternative water resources has gained ground as water demands begin to exceed the freshwater available to cities. Based on 113 cases...... and 15 in-depth case studies, solutions used to increase water self-sufficiency in urban areas are analyzed. The main drivers for increased self-sufficiency were identified to be direct and indirect lack of water, constrained infrastructure, high quality water demands and commercial and institutional...

  1. Water Reallocation - Increasing Opportunities for Cooperation, Administration and Market

    Science.gov (United States)

    Cai, X.; Marston, L.

    2016-12-01

    Nowadays utilizable water in many regions around the world has been allocated among the various users. Increasing demands and limited water supplies necessitates water reallocation given that the existing allocation is economically inefficient, socially unfair, and environmentally unsustainable. Water reallocation, a dynamic adaptation strategy to changing socioeconomic and environmental conditions, offers a flexible water management approach to mitigate water scarcity under changing socioeconomic, climatic, and environmental conditions. Water reallocation can be implemented via collective cooperation, administration, and/or market-based approaches. In spite of the numerous benefits of reallocating water between users, examples of successful water transfers are relatively sparse and the expected benefits are rarely met in full due to several complex impediments. This study discusses the key barriers to wider implementation of water reallocation based on overview of the current body of water reallocation literature. Many examples of water transfers from around the world illustrate both the benefits and challenges associated with reallocation. To overcome the obstacles for more effective reallocation, we propose an interdisciplinary approach to water reallocation that couples developments in the natural sciences and engineering disciplines with current water reallocation scholarship, which is predominately rooted in the social sciences. We conclude by calling for an integrated research platform that focuses on supporting both voluntary and nonvoluntary forms of water reallocation; however, a greater emphasis should be on nonmarket means of water transfer since it is more feasible for many regions where water rights are not well defined and institutional capacity is insufficient.

  2. Effect of Annealing Temperature on the Water Contact Angle of PVD Hard Coatings

    Directory of Open Access Journals (Sweden)

    Yu-Sen Yang

    2013-08-01

    Full Text Available Various PVD (physical vapor deposition hard coatings including nitrides and metal-doped diamond-like carbons (Me-DLC were applied in plastic injection and die-casting molds to improve wear resistance and reduce sticking. In this study, nitrides hcp-AlN (hexagonal close-packed AlN, Cr2N, (CrAl2N and Me-DLC (Si-DLC and Cr-DLC coatings were prepared using a closed field unbalanced magnetron reactive sputtering system. The coatings were annealed in air for 2 h at various temperatures, after which the anti-sticking properties were assessed using water contact angle (WCA measurements. The as-deposited hcp-AlN, Cr2N and (CrAl2N coatings exhibit hydrophobic behavior and exhibit respective WCAs of 119°, 106° and 101°. The as-deposited Si-DLC and Cr-DLC coatings exhibit hydrophilic behavior and exhibit respective WCAs of 74° and 88°. The annealed Cr2N and (CrAl2N coatings exhibit hydrophobic behavior with higher WCAs, while the annealed hcp-AlN, Si-DLC and Cr-DLC coatings are hydrophilic. The increased WCA of the annealed Cr2N and (CrAl2N coatings is related to their crystal structure and increased roughness. The decreased WCA of the annealed hcp-AlN, Si-DLC and Cr-DLC coatings is related to their crystal structures and has little correlation with roughness.

  3. Experimental determination of thermal contact conductance between pressure and calandria tubes of Indian pressurised heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dureja, A.K., E-mail: akdureja@barc.gov.in [Reactor Design & Development Group, Bhabha Atomic Research Centre, Mumbai (India); Pawaskar, D.N.; Seshu, P. [Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai (India); Sinha, S.K. [Reactor Design & Development Group, Bhabha Atomic Research Centre, Mumbai (India); Sinha, R.K. [Department of Atomic Energy, OYC, Near Gateway of India, Mumbai (India)

    2015-04-01

    Highlights: • We established an experimental facility to measure thermal contact conductance between disc shaped specimens. • We measured thermal contact conductance between Zr-2.5Nb alloy pressure tube (PT) material and Zr-4 calandria tube (CT) material. • We concluded that thermal contact conductance is a linear function of contact pressure for interface of PT and CT up to 10 MPa contact pressure. • We concluded that thermal contact conductance is a weak function of interface temperature. - Abstract: Thermal contact conductance (TCC) is one of the most important parameters in determining the temperature distribution in contacting structures. Thermal contact conductance between the contacting structures depends on the mechanical properties of underlying materials, thermo-physical properties of the interstitial fluid and surface condition of the structures coming in contact. During a postulated accident scenario of loss of coolant with coincident loss of emergency core cooling system in a tube type heavy water nuclear reactor, the pressure tube is expected to sag/balloon and come in contact with outer cooler calandria tube to dissipate away the heat generated to the moderator. The amount of heat thus transferred is a function of thermal contact conductance and the nature of contact between the two tubes. An experimental facility was designed, fabricated and commissioned to measure thermal contact conductance between pressure tube and calandria tube specimens. Experiments were conducted on disc shaped specimens under axial contact pressure in between mandrels. Experimental results of TCC and a linear correlation as a function of contact pressure have been reported in this paper.

  4. Carrier-selective p- and n-contacts for efficient and stable photocatalytic water reduction

    DEFF Research Database (Denmark)

    Bae, Dowon; Pedersen, Thomas; Seger, Brian;

    2016-01-01

    The successful realization of carrier-selective contacts for crystalline silicon (c-Si) based device for pho-tocatalytic hydrogen production has been demonstrated. The proposed TiO2protected carrier-selectivecontacts resemble a metal-oxide-semiconductor configuration, including a highly-doped...... nanocrystallinesilicon (nc-Si) and a tunnel oxide, thereby form a heterostructure with the c-Si substrate. By substitutingconventional pn+-junction Si by c-Si/SiOX/nc-Si structure for both front and back contacts we demon-strate a 16% increase in photovoltage (an open circuit voltage of 584 mV under AM 1.5G conditions).TiO......2protected carrier-selective photoelectrodes showed excellent long-term durability in acidic aqueoussolution having stable photocurrent output for more than 40 days, implying that the proposed carrier-selective contact is a promising configuration to substitute for the conventional pn-junction based...

  5. Prolonged increase in tear meniscus height by 3% diquafosol ophthalmic solution in eyes with contact lenses

    Directory of Open Access Journals (Sweden)

    Nagahara Y

    2015-06-01

    Full Text Available Yukiko Nagahara,1 Shizuka Koh,1 Kohji Nishida,1 Hitoshi Watanabe1,2 1Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, 2Kansai Rosai Hospital, Amagasaki, Hyogo, Japan Purpose: This study aimed to evaluate the increase in tear meniscus height (TMH induced by 3% diquafosol ophthalmic solution in eyes with contact lens (CL.Methods: Ten healthy subjects wearing high-water-content CLs received topical instillation of two ophthalmic solutions – 3% diquafosol ophthalmic solution in one eye and artificial tears in the other eye. Lower TMH was measured at 5 minutes, 10 minutes, 15 minutes, 30 minutes, and 60 minutes after instillation by anterior segment optical coherence tomography.Results: TMH increased significantly (P<0.001 at 5 minutes and 15 minutes after instillation of saline compared with the baseline values. After instillation of 3% diquafosol ophthalmic solution, TMH significantly increased (P<0.05 at 5 minutes, 15 minutes, 30 minutes, and 60 minutes compared with the baseline values. Increases in TMH after diquafosol instillation were significantly greater (P<0.05 at 15 minutes, 30 minutes, and 60 minutes than increases in TMH after saline instillation.Conclusion: Topical instillation of 3% diquafosol ophthalmic solution increases TMH for up to 60 minutes in eyes with high-water-content CLs. Keywords: diquafosol ophthalmic solution, tear meniscus height, dry eye, contact lenses, tear film

  6. Contact resonance atomic force microscopy imaging in air and water using photothermal excitation

    Energy Technology Data Exchange (ETDEWEB)

    Kocun, Marta; Labuda, Aleksander; Gannepalli, Anil; Proksch, Roger, E-mail: Roger.Proksch@oxinst.com [Asylum Research, an Oxford Instruments Company, Santa Barbara, California 93117 (United States)

    2015-08-15

    Contact Resonance Force Microscopy (CR-FM) is a leading atomic force microscopy technique for measuring viscoelastic nano-mechanical properties. Conventional piezo-excited CR-FM measurements have been limited to imaging in air, since the “forest of peaks” frequency response associated with acoustic excitation methods effectively masks the true cantilever resonance. Using photothermal excitation results in clean contact, resonance spectra that closely match the ideal frequency response of the cantilever, allowing unambiguous and simple resonance frequency and quality factor measurements in air and liquids alike. This extends the capabilities of CR-FM to biologically relevant and other soft samples in liquid environments. We demonstrate CR-FM in air and water on both stiff silicon/titanium samples and softer polystyrene-polyethylene-polypropylene polymer samples with the quantitative moduli having very good agreement between expected and measured values.

  7. Molecular dynamics simulations of the contact angle between water droplets and graphite surfaces

    CERN Document Server

    Sergi, Danilo; Ortona, Alberto

    2012-01-01

    Wetting is a widespread phenomenon, most prominent in a number of cases, both in nature and technology. Droplets of pure water with initial radius ranging from 20 to 80 [\\AA] spreading on graphitic surfaces are studied by molecular dynamics simulations. The equilibrium contact angle is determined and the transition to the macroscopic limit is discussed using Young equation in its modified form. While the largest droplets are almost perfectly spherical, the profiles of the smallest ones are no more properly described by a circle. For the sake of accuracy, we employ a more general fitting procedure based on local linear regressions. Furthermore, our results reveal that there is a possible transition to the macroscopic limit. The modified Young equation is particularly precise for characteristic lengths (radii and contact-line curvatures) around 40 [\\AA].

  8. Inverse analysis of water profile in starch by non-contact photopyroelectric method

    Science.gov (United States)

    Frandas, A.; Duvaut, T.; Paris, D.

    2000-07-01

    The photopyroelectric (PPE) method in a non-contact configuration was proposed to study water migration in starch sheets used for biodegradable packaging. A 1-D theoretical model was developed, allowing the study of samples having a water profile characterized by an arbitrary continuous function. An experimental setup was designed or this purpose which included the choice of excitation source, detection of signals, signal and data processing, and cells for conditioning the samples. We report here the development of an inversion procedure allowing for the determination of the parameters that influence the PPE signal. This procedure led to the optimization of experimental conditions in order to identify the parameters related to the water profile in the sample, and to monitor the dynamics of the process.

  9. Increasing urban water self-sufficiency: new era, new challenges.

    Science.gov (United States)

    Rygaard, Martin; Binning, Philip J; Albrechtsen, Hans-Jørgen

    2011-01-01

    Urban water supplies are traditionally based on limited freshwater resources located outside the cities. However, a range of concepts and techniques to exploit alternative water resources has gained ground as water demands begin to exceed the freshwater available to cities. Based on 113 cases and 15 in-depth case studies, solutions used to increase water self-sufficiency in urban areas are analyzed. The main drivers for increased self-sufficiency were identified to be direct and indirect lack of water, constrained infrastructure, high quality water demands and commercial and institutional pressures. Case studies demonstrate increases in self-sufficiency ratios to as much as 80% with contributions from recycled water, seawater desalination and rainwater collection. The introduction of alternative water resources raises several challenges: energy requirements vary by more than a factor of ten amongst the alternative techniques, wastewater reclamation can lead to the appearance of trace contaminants in drinking water, and changes to the drinking water system can meet tough resistance from the public. Public water-supply managers aim to achieve a high level of reliability and stability. We conclude that despite the challenges, self-sufficiency concepts in combination with conventional water resources are already helping to reach this goal.

  10. Drivers And Uncertainties Of Increasing Global Water Scarcity

    Science.gov (United States)

    Scherer, L.; Pfister, S.

    2015-12-01

    Water scarcity threatens ecosystems and human health and hampers economic development. It generally depends on the ratio of water consumption to availability. We calculated global, spatially explicit water stress indices (WSIs) which describe the vulnerability to additional water consumption on a scale from 0 (low) to 1 (high) and compare them for the decades 1981-1990 and 2001-2010. Input data are obtained from a multi-model ensemble at a resolution of 0.5 degrees. The variability among the models was used to run 1000 Monte Carlo simulations (latin hypercube sampling) and to subsequently estimate uncertainties of the WSIs. Globally, a trend of increasing water scarcity can be observed, however, uncertainties are large. The probability that this trend is actually occurring is as low as 53%. The increase in WSIs is rather driven by higher water use than lower water availability. Water availability is only 40% likely to decrease whereas water consumption is 67% likely to increase. Independent from the trend, we are already living under water scarce conditions, which is reflected in a consumption-weighted average of monthly WSIs of 0.51 in the recent decade. Its coefficient of variation points with 0.8 to the high uncertainties entailed, which might still hide poor model performance where all models consistently over- or underestimate water availability or use. Especially in arid areas, models generally overestimate availability. Although we do not traverse the planetary boundary of freshwater use as global water availability is sufficient, local water scarcity might be high. Therefore the regionalized assessment of WSIs under uncertainty helps to focus on specific regions to optimise water consumption. These global results can also help to raise awareness of water scarcity, and to suggest relevant measures such as more water efficient technologies to international companies, which have to deal with complex and distributed supply chains (e.g. in food production).

  11. Longer Contact Times Increase Cross-Contamination of Enterobacter aerogenes from Surfaces to Food.

    Science.gov (United States)

    Miranda, Robyn C; Schaffner, Donald W

    2016-11-01

    Bacterial cross-contamination from surfaces to food can contribute to foodborne disease. The cross-contamination rate of Enterobacter aerogenes on household surfaces was evaluated by using scenarios that differed by surface type, food type, contact time (<1, 5, 30, and 300 s), and inoculum matrix (tryptic soy broth or peptone buffer). The surfaces used were stainless steel, tile, wood, and carpet. The food types were watermelon, bread, bread with butter, and gummy candy. Surfaces (25 cm(2)) were spot inoculated with 1 ml of inoculum and allowed to dry for 5 h, yielding an approximate concentration of 10(7) CFU/surface. Foods (with a 16-cm(2) contact area) were dropped onto the surfaces from a height of 12.5 cm and left to rest as appropriate. Posttransfer, surfaces and foods were placed in sterile filter bags and homogenized or massaged, diluted, and plated on tryptic soy agar. The transfer rate was quantified as the log percent transfer from the surface to the food. Contact time, food, and surface type all had highly significant effects (P < 0.000001) on the log percent transfer of bacteria. The inoculum matrix (tryptic soy broth or peptone buffer) also had a significant effect on transfer (P = 0.013), and most interaction terms were significant. More bacteria transferred to watermelon (∼0.2 to 97%) than to any other food, while the least bacteria transferred to gummy candy (∼0.1 to 62%). Transfer of bacteria to bread (∼0.02 to 94%) was similar to transfer of bacteria to bread with butter (∼0.02 to 82%), and these transfer rates under a given set of conditions were more variable than with watermelon and gummy candy.

  12. Salmonella species on meat contact surfaces and processing water in Sokoto main market and abattoir, Nigeria

    Directory of Open Access Journals (Sweden)

    Olufemi Oludayo Faleke

    2017-03-01

    Full Text Available This study was carried out to determine Salmonella contamination of food contact surfaces and processing water in meat, fish and poultry processing units in Sokoto State, Nigeria. A total of 200 swab (100 from abattoir and 100 from poultry and fish markets and 60 processing water samples (30 from abattoir and 30 from poultry and fish markets were collected between May to August 2015. Cultural isolation, bio-typing and sero-grouping using Salmonella Sero-Quick Group Kit was conducted to analyse the samples. Seventy-five (75/260, 28.8 % of the total samples were positive to Salmonella by cultural isolation and bio-typing. Thirty (30/130; 23.1 % of samples collected in abattoir and 45 (45/130; 34.6 % of those collected from poultry and fish markets were positive for Salmonella respectively. Sero-groups D+Vi (Salmonella Typhi, B (Salmonella Paratyphi B, Salmonella Typhimurium and C (Salmonella Paratyphi C, Salmonella Cholerae suis were identified as the prevailing sero-groups in this study. Sero-group D+Vi has the highest prevalence (73.3 %; 55/75 from the positive bio-typing isolates. This study revealed the presence of contaminating and pathogenic Salmonella on food contact surfaces and processing water in the meat retail markets, indicating there is an urgent need to improve on the hygienic status of retail meat, poultry and fish markets.

  13. Improving Water Sustainability and Food Security through Increased Crop Water Productivity in Malawi

    OpenAIRE

    Luxon Nhamo; Tafadzwanashe Mabhaudhi; Manuel Magombeyi

    2016-01-01

    Agriculture accounts for most of the renewable freshwater resource withdrawals in Malawi, yet food insecurity and water scarcity remain as major challenges. Despite Malawi’s vast water resources, climate change, coupled with increasing population and urbanisation are contributing to increasing water scarcity. Improving crop water productivity has been identified as a possible solution to water and food insecurity, by producing more food with less water, that is, to produce “more crop per drop...

  14. Tilting oil-water contact in the chalk of Tyra Field as interpreted from capillary pressure data

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke; Rana, M.A.

    2010-01-01

    -trends from logs were compared with normalized water saturation depth-trends predicted from capillary pressure core data. The ten wells lie close to a SW–NE cross section of the field. For the gas–oil contact, a free contact measured in one well corresponds to a practically horizontal contact interpreted from......The Tyra Field in the central North Sea is located in Palaeogene and Upper Cretaceous chalk. It contains a natural gas zone underlain by an oil leg. Based on analysis of logs and core data from ten wells drilled prior to the field being put into production, normalized water saturation depth...... logging data in the remaining wells. A westerly dipping oil–water contact was found from logging data. Comparison of the depth-wise trends in normalized water saturation among the different wells indicates a regional pattern: in the western side of the field, the trends correspond to a situation...

  15. Linking fractional wettability and contact angle dynamics in water repellent soils

    Science.gov (United States)

    Beatty, Sarah; Smith, James

    2016-04-01

    Dynamic soil water repellency has become a highly documented soil phenomenon across a range of environmental conditions and investigated within a range of disciplines. With global climate change at the environmental science fore, there is growing concern and need for accurate quantification of fundamental soil hydraulic properties and model parameterization. In the presence of soil water repellency, however, substantial unknowns remain in terms of characterizing repellency and drawing linkages to fundamental hydraulic parameters. This is often related to the complexity of investigating soil water repellency, which is often a challenging environment because of its spatially and temporally variable nature. To help bridge this gap, this work reports on different approaches using various technologies to explore opportunities that yield greater quantification and parametrization of soil water repellency in natural hydrologic systems at different scales. These approaches include X-ray microtomography (μXCT), Axisymmetric Drop Shape Analysis (ADSA), Drop Penetration tests (MED/WDPT), and Tension Infiltrometry. This work has shown the strength of conceptually linking contact angle dynamics and fractional wettability as a means to understand the nature of infiltration in water repellent soils and provide a mechanistic foundation upon which repellency can be quantified and related to fundamental hydraulic properties. Contact angle dynamics and fractional wettability are complimentary terminology that appear in the multiphase flow and soil physics literature, but have largely/essentially only been applied in synthetic systems. Their utility in natural environments is potentially significant and conceptually useful since they can readily incorporate existing characterizations while providing greater opportunity for articulating and defining specific behaviours in systems with high spatial and temporal heterogeneity.

  16. Soil-water contact angle of some soils of the Russian Plane

    Science.gov (United States)

    Bykova, Galina; Tyugai, Zemfira; Milanovskiy, Evgeny; Shein, Evgeny

    2016-04-01

    INTRODUCTION Soil wettability affects the aggregate water resistance, the movement of moisture and dissolved substances, preferential flows, etc. There are many factors affecting the soil's wettability (the content of organic matter (OM), soil's mineralogical composition, particle size distribution), so it can reflect changes in the soil, including results of human impact. The quantitative characteristic of soil wettability is a contact angle (CA), its measurement is a new and difficult problem because of the complexity, heterogeneity and polydispersity of the object of investigation. The aim of this work is to study soil-water CA of some soils of the Russian Plane. MATERIALS AND METHODS The objects of study were sod-podzolic (Umbric Albeluvisols Abruptic, Eutric Podzoluvisols), grey forest non-podzolised (Greyic Phaeozems Albic, Haplic Greyzems), typical Chernozems (Voronic Chernozems pachic, Haplic Chernozems) - profiles under the forest and the arable land, and the chestnut (Haplic Kastanozems Chromic, Haplic Kastanozems) soils. The CA's determination was performed by a Drop Shape Analyzer DSA100 by the static sessile drop method. For all samples was determined the content of total and organic carbon (OC and TC) by dry combustion in oxygen flow. RESULTS AND DISCUSSION There is CA increasing from 85,1° (5 cm) to 40-45° (deeper, than 45 cm) in the sod-podzolic soil; OC content is changed at the same depths from 1,44 to 0.22%. We can see the similar picture in profiles of chernozems. In the forest profile the highest OC content and CA value are achieved on the surface of profile (6,41% and 78,1°), and by 90 cm these values are 1.9% and 50.2°. In the chernozem under the arable land the OC content is almost two times less and the profile is more wettable (from 50° to 19° at 5 and 100 cm). Corresponding with the OC content, the curve describing changes of CA in the profile of grey forest soil is S-shaped with peaks at 20 and 150 cm (81,3° and 70° respectively

  17. Water graphene contact surface investigated by pairwise potentials from force-matching PAW-PBE with dispersion correction

    Science.gov (United States)

    Li, Jicun; Wang, Feng

    2017-02-01

    A pairwise additive atomistic potential was developed for modeling liquid water on graphene. The graphene-water interaction terms were fit to map the PAW-PBE-D3 potential energy surface using the adaptive force matching method. Through condensed phase force matching, the potential developed implicitly considers the many-body effects of water. With this potential, the graphene-water contact angle was determined to be 86° in good agreement with a recent experimental measurement of 85° ± 5° on fully suspended graphene. Furthermore, the PAW-PBE-D3 based model was used to study contact line hysteresis. It was found that the advancing and receding contact angles of water do agree on pristine graphene, however a long simulation time was required to reach the equilibrium contact angle. For water on suspended graphene, sharp peaks in the water density profile disappear when the flexibility of graphene was explicitly considered. The water droplet induces graphene to wrap around it leading to a slightly concave contact interface.

  18. Increase of water resistance of ammonium nitrate explosives

    Directory of Open Access Journals (Sweden)

    Zulkhair Mansurov

    2012-03-01

    Full Text Available Developed a method of kapsulating of ammonium nitrate with liquid paraffin increase finding explosives in water for 60 minutes. Placing explosives in the plastic shell, the explosive was, as in standing or running water during the day. When conducting field tests failures were absent.

  19. Endogenous technological and population change under increasing water scarcity

    Science.gov (United States)

    Pande, S.; Ertsen, M.; Sivapalan, M.

    2014-08-01

    Ancient civilizations may have dispersed or collapsed under extreme dry conditions. There are indications that the same may hold for modern societies. However, hydroclimatic change cannot be the sole predictor of the fate of contemporary societies in water-scarce regions. This paper focuses on technological change as a factor that may ameliorate the effects of increasing water scarcity and as such counter the effects of hydroclimatic changes. We study the role of technological change on the dynamics of coupled human-water systems, and model technological change as an endogenous process that depends on many factors intrinsic to coupled human-water dynamics. We do not treat technology as an exogenous random sequence of events, but assume that it results from societal actions. While the proposed model is a rather simple model of a coupled human-water system, it is shown to be capable of replicating patterns of technological, population, production and consumption per capita changes. The model demonstrates that technological change may indeed ameliorate the effects of increasing water scarcity, but typically it does so only to a certain extent. In general we find that endogenous technology change under increasing water scarcity helps to delay the peak of population size before it inevitably starts to decline. We also analyze the case when water remains constant over time and find that co-evolutionary trajectories can never grow at a constant rate; rather the rate itself grows with time. Thus our model does not predict a co-evolutionary trajectory of a socio-hydrological system where technological innovation harmoniously provides for a growing population. It allows either for an explosion or an eventual dispersal of population. The latter occurs only under increasing water scarcity. As a result, we draw the conclusion that declining consumption per capita despite technological advancement and increase in aggregate production may serve as a useful predictor of upcoming

  20. Origin of the contact angle hysteresis of water on chemisorbed and physisorbed self-assembled monolayers.

    Science.gov (United States)

    Belman, Nataly; Jin, Kejia; Golan, Yuval; Israelachvili, Jacob N; Pesika, Noshir S

    2012-10-16

    Self-assembled monolayers (SAMs) are known to form on a variety of substrates either via chemisorption (i.e., through chemical interactions such as a covalent bond) or physisorption (i.e., through physical interactions such as van der Waals forces or "ionic" bonds). We have studied the behavior and effects of water on the structures and surface energies of both chemisorbed octadecanethiol and physisorbed octadecylamine SAMs on GaAs using a number of complementary techniques including "dynamic" contact angle measurements (with important time and rate-dependent effects), AFM, and electron microscopy. We conclude that both molecular overturning and submolecular structural changes occur over different time scales when such SAMs are exposed to water. These results provide new insights into the time-dependent interactions between surfaces and colloids functionalized with SAMs when synthesized in or exposed to high humidity or bulk water or wetted by water. The study has implications for a wide array of phenomena and applications such as adhesion, friction/lubrication and wear (tribology), surfactant-solid surface interactions, the organization of surfactant-coated nanoparticles, etc.

  1. Tertiary Treated Waste water as a Promising Alternative for Potable Water for Non-Contact Domestic Use. CaseStudy:RiqqaWastewaterTreatmentPlant

    Directory of Open Access Journals (Sweden)

    Munther I. Almatouq,

    2015-06-01

    Full Text Available WatersecurityisavitalissueinaridcountrieslikeKuwait,wheredesalinatedwateristhe solesupplyoffresh water.Thispaper isacontributiontotheongoingefforts towardsrationalizationin potablewater consumption.In addition,itdiscusses therole of high-quality effluent water, from wastewater treatment plants in Kuwait, as a potential replacementfor potable water for non-contact domesticapplications as a oneway in savingin thisvaluablecommodity.

  2. Total water production capacity inversion phenomenon in multi-stage direct contact membrane distillation: A theoretical study

    KAUST Repository

    Lee, Jung Gil

    2017-09-09

    The low thermal efficiency and low water production are among the major challenges that prevent membrane distillation (MD) process from being commercialized. In an effort to design an efficient multi-stage direct contact MD (DCMD) unit through mathematical simulation, a new phenomenon that we refer to as total water production capacity inversion (WPI) has been detected. It is represented by a decrease in the total water production beyond a number of stages or a certain module length. WPI phenomenon, which was confirmed by using two different mathematical models validated experimentally, was found to take place due to the decrease in water vapor flux across the membrane as well as the increase in heat loss by conduction as the membrane length increases. Therefore, WPI should be considered as a critical MD design-criterion, especially for large scale units. Investigations conducted for a simulated multi-stage DCMD process showed that inlet feed and permeate temperatures difference, feed and permeate flow rates, and feed salinity have different effects on WPI. The number of stages (or module length at constant width) that leads to a maximum water production has been determined for different operating parameters. Decreasing inlet feed and permeate temperatures difference, or inlet feed and permeate flow rates and increasing inlet feed temperature at constant temperature difference or inlet feed salinity cause the WPI to take place at lower number of stages. Even though the feed salinity affects negligibly the mean permeate flux, it was clearly shown that it can affect WPI. The results presented herein unveil a hidden phenomenon that is likely to occur during process scale-up procedures and should be considered by process engineers for a proper choice of system design and operating conditions.

  3. Wind increases "evaporative demand" but reduces plant water requirements

    Science.gov (United States)

    Schymanski, S. J.; Or, D.

    2015-12-01

    Transpiration is commonly conceptualised as a fraction of some potential rate, determined by stomatal or canopy resistance. Therefore, so-called "atmospheric evaporative demand" or "potential evaporation" is generally used alongside with precipitation and soil moisture to characterise the environmental conditions that affect plant water use. An increase in potential evaporation (e.g. due to climate change) is generally believed to cause increased transpiration and/or vegetation water stress, aggravating drought effects. In the present study, we investigated the question whether potential evaporation constitutes a meaningful reference for transpiration and compared sensitivity of potential evaporation and leaf transpiration to atmospheric forcing. Based on modelling results and supporting experimental evidence, we conclude that stomatal resistance cannot be parameterised as a factor relating transpiration to potential evaporation, as the ratio between transpiration and potential evaporation not only varies with stomatal resistance, but also with wind speed, air temperature, irradiance and relative humidity. Furthermore, the effect of wind speed in particular implies increase in potential evaporation, which is commonly interpreted as increased "water stress", but at the same time can reduce leaf transpiration, implying a decrease in water demand at the leaf scale. In fact, in a range of field measurements, we found that water use efficiency (WUE, carbon uptake per water transpired) commonly increases with increasing wind speed, enabling plants to conserve water during photosynthesis. We estimate that the observed global decrease in terrestrial near-surface wind speeds could have reduced WUE at a magnitude similar to the increase in WUE attributed to global rise in atmospheric carbon dioxide concentrations. We conclude that trends in wind speed and atmospheric carbon dioxide concentrations have to be considered explicitly for the estimation of drought effects on

  4. Increasing photovoltaic panel power through water cooling technique

    Directory of Open Access Journals (Sweden)

    Calebe Abrenhosa Matias

    2017-02-01

    Full Text Available This paper presents the development of a cooling apparatus using water in a commercial photovoltaic panel in order to analyze the increased efficiency through decreased operating temperature. The system enables the application of reuse water flow, at ambient temperature, on the front surface of PV panel and is composed of an inclined plane support, a perforated aluminum profile and a water gutter. A luminaire was specially developed to simulate the solar radiation over the module under test in a closed room, free from the influence of external climatic conditions, to carry out the repetition of the experiment in controlled situations. The panel was submitted to different rates of water flow. The best water flow rate was of 0.6 L/min and net energy of 77.41Wh. Gain of 22.69% compared to the panel without the cooling system.

  5. Ethosome formulations of known contact allergens can increase their sensitizing capacity

    DEFF Research Database (Denmark)

    Madsen, Jacob Torp; Vogel, Stefan; Karlberg, Ann-Therese;

    2010-01-01

    a modified local lymph node assay (LLNA). The results were compared with those for the same allergens in similar concentrations and vehicles without ethosomes. Both allergens encapsulated in 200-300 nm ethosomes showed increased sensitizing potency in the murine assay compared with the allergens in solution...

  6. Increasing water productivity on Vertisols: implications for environmental sustainability.

    Science.gov (United States)

    Jiru, Mintesinot; Van Ranst, Eric

    2010-10-01

    The availability and quality of irrigation water have become a serious concern because of global climate change and an increased competition for water by industry, domestic users and the environment. Therefore, exploring environmentally friendly water-saving irrigation strategies is essential for achieving food and environmental security. In northern Ethiopia, where traditional furrow irrigation is widely practiced, water mismanagement and its undesirable environmental impact are rampant. A 2-year field study was undertaken to compare the traditional irrigation management with surge and deficit irrigation practices on a Vertisol plot. Results have shown that surge and deficit irrigation practices increase water productivity by 62% and 58%, respectively, when compared to traditional management. The study also found out that these practices reduce the adverse environmental impacts (waterlogging and salinity) of traditional management by minimizing deep percolation and tail water losses. Total irrigation depth was reduced by 12% (for surge) and 27% (for deficit) when compared to traditional management. Based on the results, the study concluded that surge and deficit irrigation technologies not only improve water productivity but also enhance environmental sustainability. Copyright © 2010 Society of Chemical Industry.

  7. In vitro water wettability of silicone hydrogel contact lenses determined using the sessile drop and captive bubble techniques.

    Science.gov (United States)

    Maldonado-Codina, Carole; Morgan, Philip B

    2007-11-01

    This study investigated the water contact angles of five commercially available silicone hydrogel contact lenses (Acuvue Advance, Acuvue Oasys, Focus Night & Day, O2 Optix, and PureVision) using sessile drop and captive bubble techniques. The only lens type that showed a significant difference in water contact angle when measured by sessile drop direct from the blister compared with after 48 h of soaking/washing in saline was the Acuvue Advance lens (from 66 degrees to 96 degrees, respectively) (p=0.0002), presumably because of surface active agents within the blister solution. The water contact angle data split the lenses into two distinct groups (psessile drop measures and relatively low captive bubble values (thereby displaying significant hysteresis) whereas the Focus Night & Day and O2 Optix lenses showed relatively low sessile drop measures and relatively high captive bubble values (with little hysteresis). Contact angle analysis of hydrogel lens surfaces is highly methodologically dependent and may be able to predict the clinical performance of contact lenses in vivo.

  8. Rapamycin increases RSV RNA levels and survival of RSV-infected dendritic cell depending on T cell contact.

    Science.gov (United States)

    do Nascimento de Freitas, Deise; Gassen, Rodrigo Benedetti; Fazolo, Tiago; Souza, Ana Paula Duarte de

    2016-10-01

    The macrolide rapamycin inhibits mTOR (mechanist target of rapamycin) function and has been broadly used to unveil the role of mTOR in immune responses. Inhibition of mTOR on dendritic cells (DC) can influence cellular immune response and the survival of DC. RSV is the most common cause of hospitalization in infants and is a high priority candidate to vaccine development. In this study we showed that rapamycin treatment on RSV-infected murine bone marrow-derived DC (BMDC) decreases the frequency of CD8(+)CD44(high) T cells. However, inhibition of mTOR on RSV-infected BMDC did not modify the activation phenotype of these cells. RSV-RNA levels increase when infected BMDC were treated with rapamycin. Moreover, we observed that rapamycin diminishes apoptosis cell death of RSV-infected BMDC co-culture with T cells and this effect was abolished when the cells were co-cultured in a transwell system that prevents cell-to-cell contact or migration. Taken together, these data indicate that rapamycin treatment present a toxic effect on RSV-infected BMDC increasing RSV-RNA levels, affecting partially CD8 T cell differentiation and also increasing BMDC survival in a mechanism dependent on T cell contact.

  9. Transmission of Infectious Vibrio cholerae Through Drinking Water among the Household Contacts of Cholera Patients (CHoBI7 Trial

    Directory of Open Access Journals (Sweden)

    Raisa Rafique

    2016-10-01

    Full Text Available Recurrent cholera causes significant morbidity and mortality among the growing population of Dhaka, the capital city of Bangladesh. Previous studies have demonstrated that household contacts of cholera patients are at >100 times higher risk of cholera during the week after the presentation of the index patient. Our prospective study investigated the mode of transmission of Vibrio cholerae, the cause of cholera, in the households of cholera patients in Dhaka city. Of total 420 rectal swab samples analyzed from 84 household contacts and 330 water samples collected from 33 households, V. cholerae was isolated from 20%(17/84 of household contacts, 18%(6/33 of stored drinking water, and 27%(9/33 of source water samples. Phenotypic and molecular analyses results confirmed the V. cholerae isolates to be toxigenic and belonging to serogroup O1 biotype El Tor (ET possessing cholera toxin of classical biotype (altered ET. Phylogenetic analysis by pulsed-field gel electrophoresis (PFGE showed the V. cholerae isolates to be clonally linked, as >95% similarity was confirmed by sub-clustering patterns in the PFGE (NotI-based dendrogram. Mapping results showed cholera patients to be widely distributed across 25 police stations with the highest incidence in households near the major rivers and polluted water bodies. The data presented on the transmission of infectious V. cholerae within the household contacts of cholera patients through drinking water underscores the need for safe water to prevent spread of cholera and related deaths in Dhaka city.

  10. Tests to characterize the behaviour of natural stone in contact with water

    Directory of Open Access Journals (Sweden)

    Vielba Cuerpo, C.

    2002-09-01

    Full Text Available This paper presents an experimental analysis of the stone behaviour in contact with water in the different construction uses. In any of these cases is analyse how the water penetrates into the material. As a result of the study the need of modification of the UNE test standards is concluded. It is proposed a procedure to determinate the material's properties and a method to compare and analyse the result obtained that keep into consideration the climate factors. The method have been applied to sandstone of Villamayor (Spain showing its utility in the analysis of the stone properties.

    Se expone la necesidad de revisión de las normas UNE de ensayo para la determinación del comportamiento frente al agua de las rocas porosas teniendo en cuenta las formas de exposición que suponen las distintas aplicaciones constructivas y los mecanismos de penetración del agua que en cada caso operan. Se propone para ello una sistemática de ensayos y un método comparado de análisis de resultados basado en la consideración de los factores climatológicos. La utilidad del método se ilustra con un ejemplo de aplicación al estudio de la Arenisca de Villamayor

  11. Computational prediction of octanol-water partition coefficient based on the extended solvent-contact model.

    Science.gov (United States)

    Kim, Taeho; Park, Hwangseo

    2015-07-01

    The logarithm of 1-octanol/water partition coefficient (LogP) is one of the most important molecular design parameters in drug discovery. Assuming that LogP can be calculated from the difference between the solvation free energy of a molecule in water and that in 1-octanol, we propose a method for predicting the molecular LogP values based on the extended solvent-contact model. To obtain the molecular solvation free energy data for the two solvents, a proper potential energy function was defined for each solvent with respect to atomic distributions and three kinds of atomic parameters. Total 205 atomic parameters were optimized with the standard genetic algorithm using the training set consisting of 139 organic molecules with varying shapes and functional groups. The LogP values estimated with the two optimized solvation free energy functions compared reasonably well with the experimental results with the associated squared correlation coefficient and root mean square error of 0.824 and 0.697, respectively. Besides the prediction accuracy, the present method has the merit in practical applications because molecular LogP values can be computed straightforwardly from the simple potential energy functions without the need to calculate various molecular descriptors. The methods for enhancing the accuracy of the present prediction model are also discussed.

  12. Contribution of Contact Sampling in Increasing Sensitivity of Poliovirus Detection During A Polio Outbreak-Somalia, 2013.

    Science.gov (United States)

    Moturi, Edna; Mahmud, Abdirahman; Kamadjeu, Raoul; Mbaeyi, Chukwuma; Farag, Noha; Mulugeta, Abraham; Gary, Howard; Ehrhardt, Derek

    2016-04-01

    Background.  In May 2013, a wild poliovirus type 1 (WPV1) outbreak reported in Somalia provided an opportunity to examine the contribution of testing contacts to WPV detection. Methods.  We reviewed acute flaccid paralysis (AFP) case-patients and linked contacts reported in the Somalia Surveillance Database from May 9 to December 31, 2013. We restricted our analysis to AFP case-patients that had ≥3 contacts and calculated the contribution of each contact to case detection. Results.  Among 546 AFP cases identified, 328 AFP cases had ≥3 contacts. Among the 328 AFP cases with ≥3 contacts, 93 WPV1 cases were detected: 58 cases (62%; 95% confidence interval [CI], 52%-72%) were detected through testing stool specimens from AFP case-patients; and 35 cases (38%; 95% CI, 28%-48%) were detected through testing stool specimens from contacts, including 19 cases (20%; 95% CI, 14%-30%) from the first contact, 11 cases (12%; 95% CI, 7%-20%) from the second contact, and 5 cases (5%; 95% CI, 2%-12%) from the third contact. Among the 103 AFP cases with ≥4 contacts, 3 (6%; 95% CI, 2%-16%) of 52 WPV1 cases were detected by testing the fourth contact. No additional WPV1 cases were detected by testing >4 contacts. Conclusions.  Stool specimens from 3 to 4 contacts of persons with AFP during polio outbreaks are needed to maximize detection of WPV cases.

  13. Wettability determination by contact angle measurements: hvbB coal-water system with injection of synthetic flue gas and CO2.

    Science.gov (United States)

    Shojai Kaveh, Narjes; Rudolph, E Susanne J; Wolf, Karl-Heinz A A; Ashrafizadeh, Seyed Nezameddin

    2011-12-01

    Geological sequestration of pure carbon dioxide (CO(2)) in coal is one of the methods to sequester CO(2). In addition, injection of CO(2) or flue gas into coal enhances coal bed methane production (ECBM). The success of this combined process depends strongly on the wetting behavior of the coal, which is function of coal rank, ash content, heterogeneity of the coal surface, pressure, temperature and composition of the gas. The wetting behavior can be evaluated from the contact angle of a gas bubble, CO(2) or flue gas, on a coal surface. In this study, contact angles of a synthetic flue gas, i.e. a 80/20 (mol%) N(2)/CO(2) mixture, and pure CO(2) on a Warndt Luisenthal (WL) coal have been determined using a modified pendant drop cell in a pressure range from atmospheric to 16 MPa and a constant temperature of 318 K. It was found that the contact angles of flue gas on WL coal were generally smaller than those of CO(2). The contact angle of CO(2) changes from water-wet to gas-wet by increasing pressure above 8.5 MPa while the one for the flue gas changes from water-wet to intermediate-wet by increasing pressure above 10 MPa.

  14. Correlation of Oil-Water and Air-Water Contact Angles of Diverse Silanized Surfaces and Relationship to Fluid Interfacial Tensions

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Dehoff, Karl J.; Warner, Marvin G.; Pittman, Jonathan W.; Wietsma, Thomas W.; Zhang, Changyong; Oostrom, Martinus

    2012-02-24

    The use of air-water, {Theta}{sub wa}, or air-liquid contact angles is customary in surface science, while oil-water contact angles {Theta}{sub ow}, are of paramount importance in subsurface multiphase flow phenomena including petroleum reocovery, nonaqueous phase liquid fate and transport, and geological carbon sequestration. In this paper we determine both the air-water and oil-water contact angles of silica surfaces modified with a diverse selection of silanes, using hexadecane as the oil. The silanes included alkylsilanes, alkylarylsilanes, and silanes with alkyl or aryl groups that are functionalized with heteroatoms such as N, O, and S. These silanes yielded surfaces with wettabilities from water-wet to oil wet, including specific silanized surfaces functionalized with heteroatoms that yield intermediate wet surfaces. The oil-water contact angles for clean and silanized surfaces, excluding one partially fluorinated surface, correlate linearly with air-water contact angles with a slope of 1.41 (R = 0.981, n = 13). These data were used to examine a previously untested theoretical treatment relating air-water and oil-water contact angles in terms of fluid interfacial energies. Plotting the cosines of these contact angles against one another, we obtain a linear relationship in excellent agreement with the theoretical treatment; the data fit cos {Theta}{sub ow} = 0.667 cos {Theta}{sub ow} + 0.384 (R = 0.981, n = 13), intercepting cos {Theta}{sub ow} = -1 at -0.284. The theoretical slope, based on the fluid interfacial tensions {Theta}{sub wa}, {Theta}{sub ow}, and {Theta}{sub oa}, is 0.67. We also demonstrate how silanes can be used to alter the wettability of the interior of a pore network micromodel device constructed in silicon/silica with a glass cover plate. Such micromodels are used to study multiphase flow phenomena. The contact angle of the resulting interior was determined in situ. An intermediate wet micromodel gave a contact angle in excellent agreement

  15. Transmission of Infectious Vibrio cholerae through Drinking Water among the Household Contacts of Cholera Patients (CHoBI7 Trial)

    Science.gov (United States)

    Rafique, Raisa; Rashid, Mahamud-ur; Monira, Shirajum; Rahman, Zillur; Mahmud, Md. Toslim; Mustafiz, Munshi; Saif-Ur-Rahman, K. M.; Johura, Fatema-Tuz; Islam, Saiful; Parvin, Tahmina; Bhuyian, Md. Sazzadul I.; Sharif, Mohsena B.; Rahman, Sabita R.; Sack, David A.; Sack, R. Bradley; George, Christine M.; Alam, Munirul

    2016-01-01

    Recurrent cholera causes significant morbidity and mortality among the growing population of Dhaka, the capital city of Bangladesh. Previous studies have demonstrated that household contacts of cholera patients are at >100 times higher risk of cholera during the week after the presentation of the index patient. Our prospective study investigated the mode of transmission of Vibrio cholerae, the cause of cholera, in the households of cholera patients in Dhaka city. Out of the total 420 rectal swab samples analyzed from 84 household contacts and 330 water samples collected from 33 households, V. cholerae was isolated from 20%(17/84) of household contacts, 18%(6/33) of stored drinking water, and 27%(9/33) of source water samples. Phenotypic and molecular analyses results confirmed the V. cholerae isolates to be toxigenic and belonging to serogroup O1 biotype El Tor (ET) possessing cholera toxin of classical biotype (altered ET). Phylogenetic analysis by pulsed-field gel electrophoresis (PFGE) showed the V. cholerae isolates to be clonally linked, as >95% similarity was confirmed by sub-clustering patterns in the PFGE (NotI)-based dendrogram. Mapping results showed cholera patients to be widely distributed across 25 police stations. The data suggesting the transmission of infectious V. cholerae within the household contacts of cholera patients through drinking water underscores the need for safe water to prevent spread of cholera and related deaths in Dhaka city. PMID:27803695

  16. Improving Water Sustainability and Food Security through Increased Crop Water Productivity in Malawi

    Directory of Open Access Journals (Sweden)

    Luxon Nhamo

    2016-09-01

    Full Text Available Agriculture accounts for most of the renewable freshwater resource withdrawals in Malawi, yet food insecurity and water scarcity remain as major challenges. Despite Malawi’s vast water resources, climate change, coupled with increasing population and urbanisation are contributing to increasing water scarcity. Improving crop water productivity has been identified as a possible solution to water and food insecurity, by producing more food with less water, that is, to produce “more crop per drop”. This study evaluated crop water productivity from 2000 to 2013 by assessing crop evapotranspiration, crop production and agricultural gross domestic product (Ag GDP contribution for Malawi. Improvements in crop water productivity were evidenced through improved crop production and productivity. These improvements were supported by increased irrigated area, along with improved agronomic practices. Crop water productivity increased by 33% overall from 2000 to 2013, resulting in an increase in maize production from 1.2 million metric tons to 3.6 million metric tons, translating to an average food surplus of 1.1 million metric tons. These developments have contributed to sustainable improved food and nutrition security in Malawi, which also avails more water for ecosystem functions and other competing economic sectors.

  17. Manipulating tillage to increase stored soil water and manipulating plant geometry to increase water-use efficiency in dryland areas

    Science.gov (United States)

    This paper briefly summarizes some of the practices being used in the semiarid U.S. Great Plains to grow crops without irrigation. Fallow periods are commonly used to increase the amount of plant-available water in the soil profile at the time of seeding a crop because growing-season precipitation i...

  18. The contribution of water contact behavior to the high Schistosoma mansoni Infection rates observed in the Senegal River Basin.

    NARCIS (Netherlands)

    Sow, S.; Vlas, S.J. de; Stelma, F.F.; Vereecken, K.; Gryseels, B.; Polman, K.

    2011-01-01

    BACKGROUND: Schistosomiasis is one of the major parasitic diseases in the world in terms of people infected and those at risk. Infection occurs through contact with water contaminated with larval forms of the parasite, which are released by freshwater snails and then penetrate the skin of people. Sc

  19. The contribution of water contact behavior to the high Schistosoma mansoni Infection rates observed in the Senegal River Basin

    NARCIS (Netherlands)

    S. Sow (Seydou); S.J. de Vlas (Sake); F.F. Stelma (Foekje); K. Vereecken (Kim); B. Gryseels (Bruno); K. Polman (Katja)

    2011-01-01

    textabstractBackground: Schistosomiasis is one of the major parasitic diseases in the world in terms of people infected and those at risk. Infection occurs through contact with water contaminated with larval forms of the parasite, which are released by freshwater snails and then penetrate the skin o

  20. Non-contact assessment of COD and turbidity concentrations in water using diffuse reflectance UV-Vis spectroscopy.

    Science.gov (United States)

    Agustsson, Jon; Akermann, Oliver; Barry, D Andrew; Rossi, Luca

    2014-08-01

    Water contamination is an important environmental concern underlining the need for reliable real-time information on contaminant concentrations in natural waters. Here, a new non-contact UV-Vis spectroscopic approach for monitoring contaminants in water, and especially wastewater, is proposed. Diffuse reflectance UV-Vis spectroscopy was applied to measure simultaneously the chemical oxygen demand (COD) and turbidity (TUR) concentrations in water. The measurements were carried out in the wavelength range from 200-1100 nm. The measured spectra were analysed using partial-least-squares (PLS) regression. The correlation coefficient between the measured and the reference concentrations of COD and TUR in the water samples were R(2) = 0.85 and 0.96, respectively. These results highlight the potential of non-contact UV-Vis spectroscopy for the assessment of water contamination. A system built on the concept would be able to monitor wastewater pollution continuously, without the need for laborious sample collection and subsequent laboratory analysis. Furthermore, since no parts of the system are in contact with the wastewater stream the need for maintenance is minimised.

  1. Irrigation with desalinated water: A step toward increasing water saving and crop yields

    Science.gov (United States)

    Silber, Avner; Israeli, Yair; Elingold, Idan; Levi, Menashe; Levkovitch, Irit; Russo, David; Assouline, Shmuel

    2015-01-01

    We examined the impact of two different approaches to managing irrigation water salinity: salt leaching from the field ("conventional" management) and water desalination before field application ("alternative" management). Freshwater commonly used for irrigation (FW) and desalinated water (DS) were applied to the high-water-demanding crop banana at four different rates. Both irrigation rate and water salinity significantly affected yield. DS application consistently produced higher yields than FW, independently of irrigation rate. The highest yield for FW-irrigation was achieved with the highest irrigation rate, whereas the same yield was obtained in the case of DS-irrigation with practically half the amount of water. Yield decreased with FW-irrigation, even when the water salinity, ECi, was lower than the limit considered safe for soil and crops. Irrigating with FW provided a massive amount of salt which accumulated in the rhizosphere, inducing increased osmotic potential of the soil solution and impairing plant water uptake. Furthermore, applying the "conventional" management, a significant amount of salt is leached from the rhizosphere, accumulating in deeper soil layers, and eventually reaching groundwater reservoirs, thus contributing to the deterioration of both soil and water quality. Removal of salt excess from the water before it reaches the field by means of DS-irrigation may save significant amounts of irrigation water by reducing the salt leaching requirements while increasing yield and improving fruit quality, and decreasing salt load in the groundwater.

  2. Contact angle measurement - a reliable supportive method for screening water-resistance of ultraviolet-protecting products in vivo.

    Science.gov (United States)

    Hagens, R; Mann, T; Schreiner, V; Barlag, H G; Wenck, H; Wittern, K-P; Mei, W

    2007-08-01

    Substantivity of sunscreen formulations is affected by the wash-out rate of ultraviolet-absorber and -reflector compounds in water. Water-resistance of sunscreen formulations is currently determined according to a standardized European Cosmetic Toiletry and Perfumery Association (COLIPA) protocol, encompassing the determination of a minimal erythemal dose before and after a defined immersion step in water. It can be supposed that the higher the wettability of a treated skin area, the higher is the wash-out rate of sunscreen compounds. This present report addresses the validity of determining the wettability of treated skin alone as a measure for the water-resistance of sunscreen products. The report addresses the robustness, accuracy and congruence of a recently developed wettability test, based on the measurement of the contact angle (CA) of a sessile water drop on treated skin areas. Contact angle data of 66 sunscreen formulations are compared with the corresponding results of 81 water-resistance tests, using the sun protection factor (SPF)/immersion/SPF method. Sunscreen products tested by the CA method were applied to the skin of the volar forearm of test subjects at a defined dose and drying-time, using a standardized application and recording device. Contact angles between a sessile water drop and skin were recorded by a Charge-Coupled Device (CCD) camera and subjected to automatic contour analysis. Taking the SPF/immersion/SPF method as gold standard, accuracy parameters of the CA method were determined. By using an appropriate cut-off level of CAs, the CA method has a specificity and positive-predictive value of 100%, and turns out to be a reliable screening method to identify water-resistant formulations. Based on our findings, those formulations that give CAs above 30 degrees may be categorized water-proof without further testing by the COLIPA water-resistance method.

  3. Climate and ET: Does Plant Water Requirements Increase during Droughts?

    Science.gov (United States)

    Fipps, G.

    2015-12-01

    Municipalities, engineering consultants and State agencies use reference evapotranspiration (ETo) data (directly and indirectly) for long-term water planning, for designing hydraulic structures, and for establishing regulatory guidance and conservation programs intended to reduce water waste. The use ETo data for agricultural and landscape irrigation scheduling is becoming more common in Texas as ETo-based controllers and automation technologies become more affordable. Until recently, most ETo data has been available as monthly values averaged over many years. Today, automated weather stations and irrigation controllers equipped with specialized instrumentation allow for real-time ETo measurements. With the expected rise in global warming and increased frequency of extreme climate variability in the coming decades, conservation and efficient use of water resources is essential and must make use of the most accurate and representative data available. 2011 marked the driest year on record in the State of Texas. Compounding the lack of rainfall was record heat during the Summer of 2011. An analysis of real time ETo (reference evapotranspiration) data in Texas found that ET was 30 to 50% higher than historic averages during the 2011 Summer. The implications are quite serious, as most current water planning and drought contingency plans do not take into consideration increases in ET during such periods, and irrigation planning and capacity sizing are based on historic averages of consumptive use. This paper examines the relationship between ET and climate during this extreme climatic event. While the solar radiation was near normal levels, temperature and wind was much higher and dew points much lower than norms. The variability and statistical difference between average monthly ETo data and daily, monthly and seasonal ETo measurements (from 2006 to 2014) for selected weather stations of the Texas ET Network. This study will also examine the suitability of using average

  4. Increased water resistance of CTMP fibers by oat (Avena sativa L.) husk lignin.

    Science.gov (United States)

    Sipponen, Mika H; Pastinen, Ossi A; Strengell, Reetta; Hyötyläinen, Juha M I; Heiskanen, Isto T; Laakso, Simo

    2010-12-13

    The insertion of oat husk lignin onto chemithermomechanical pulp (CTMP) fibers was studied to increase fiber hydrophobicity. The pretreated pulp samples were subsequently used for preparation of handsheets for characterization. Treatment of CTMP with laccase in the presence of oat husk lignin resulted in a significant increase in hydrophobicity of the handsheet surface, as indicated by dynamic contact angle analysis. Water absorption time of 8 s was obtained with initial contact angle of 118°. Although the handsheet's brightness was reduced by 33%, tensile index was only subtly decreased. Neither laccase nor oat husk lignin alone gave much improved water absorption times. Therefore, handsheets made of laccase-treated pulp with and without oat husk lignin were further examined by XPS, which suggested that both laccase and oat husk lignin were inserted onto CTMP fibers. The oat husk lignin was distributed as heterogeneous aggregates on the handsheet surface whereas laccase was uniformly distributed. Evidence was obtained that the adsorbed laccase layer formed a noncovalent base for the insertion of oat husk lignin onto fiber surfaces.

  5. Leaching of 90-year old concrete mortar in contact with stagnant water

    Energy Technology Data Exchange (ETDEWEB)

    Traegaardh, J.; Lagerblad, B. [Swedish Cement and Concrete Research Inst., Stockholm (Sweden)

    1998-07-01

    Concrete and other cementitious materials will be used for different purposes in the underground repositories for radioactive waste in the form of spent fuel according to the Swedish concept. Cementitious materials are fundamentally unstable in water and will change properties with time. Thus it is important to know the long-term interaction between the cement-based materials, groundwater and the other materials in the repository that are important for the safety. This report concerns a study of diffusion controlled dissolution of mortar in a case study. In 1906 a water tank was installed in one of the towers in the castle of Uppsala, Sweden. A 20 mm thick layer of concrete mortar was placed on the inner walls of a steel canister which comprised the water tank. It was demolished in 1991 and pieces of the mortar were taken for analysis. The water tank has been refilled periodically with fresh water, which means that the mortar has been leached by drinking water for nearly 85 years. As the steel hinders the penetration of water, diffusion processes must have controlled the leaching. The concrete has been investigated by several methods including thin sections in a polarising microscope, SEM, SEM-EDS, image analysis and chemical analysis. The result shows that the mortar is covered by a thin shell of carbonates presumably reaction products between the cement paste and bicarbonates from the water. Behind the carbonated surface to a depth of around 5-8 mm the mortar shows a distinct porous zone decreasing calcium contents. At the same time there is a relative increase in the sulphate, aluminium and iron concentrations. This indicates that the leaching is fairly complicated and linked to a recrystallisation and redistribution of element. Behind this depth the paste is dense and has a fairly normal composition except for a slight calcium depletion. The SEM analysis shows that there is no distinct portlandite (calcium hydroxide crystals) depletion front. Portlandite is

  6. Contact angle of water on iron ore fines: Measurement and analysis

    Directory of Open Access Journals (Sweden)

    Huang X.B.

    2015-01-01

    Full Text Available The relative contact angle (θRCA for seven iron ore fines was measured by using Washburn Osmotic Pressure method under laboratory conditions. By choosing cyclohexane as the reference that can perfectly wet iron ore particles, the relative contact angles were measured and varied from 57° to 73°. With the volume % of goethite (φG as the variable, a new model for relative contact angle was developed. The expected relative contact angle for pure goethite is about 56°, while that for goethite free samples is about 77°. Physical properties, such as surface morphology (SMI and pore volume (Vpore can influence the relative contact angle. The φG can be expressed as a function of SMI and VPore. Thus, we inferred that the relative contact angle is a function of φG for the iron ores used. The measured relative contact angles were found to be in good agreement (Radj 2 >0.97 with the calculated ones based on the research from Iveson, et al. (2004. Comparing with the model developed by Iveson et al.(2004, the new model for contact angle proposed in this paper is similar, but more detailed with two meaningful physical parameters. The modification of physicochemical properties on iron ores would be another topic in the further study on granulation.

  7. Wettability-Water/brine Film Thickness Relationship and the Effect of Supercritical CO2 Pre-contact for CO2/brine/mineral Systems under Geologic CO2 Sequestration Conditions: Insights from Molecular Dynamics Simulations

    Science.gov (United States)

    Chen, C.; Song, Y.; Li, W.

    2016-12-01

    Injection CO2 into deep saline aquifers is one of the main options for geologic carbon sequestration (GCS). A successful GCS in saline aquifers requires full knowledge about CO2/brine/mineral systems under sequestration conditions to reduce uncertainties during subsurface storage of CO2. Adsorbed water film thickness and wettability on mineral surfaces are two key characteristics for CO2/brine/mineral systems. Wettability and water/brine film thickness have been measured experimentally and predicted by molecular simulation (MD) studies. However, these studies only consider the films apart from contact angles. Investigations on wettability for CO2/brine/mineral systems only consider contact angles without measurements on film thickness. The relationship between film thicknesses with water contact angles is open to questions. In this paper, MD simulations have been performed to investigate the interrelationship between water film thicknesses and water contact angles. Three silica surfaces with different silanol group number densities (Q3, Q3-50%, Q3/Q4) were selected to represent silica surfaces with different wettabilities. We found that as water contact angle increases, the film thickness decreases. We also studied the effect of CO2-mineral pre-contact and found that: on Q3 surface, if a CO2 bubble was pre-contacted with the surface, it can remain on the surface without forming a water film; however, if a CO2 bubble was placed certain distances away from the surface, it formed a water film. Wettability analysis revealed that on the same surface, water contact angle was larger when there was no water film. These findings show that on some silica surfaces, water film may be destroyed by supercritical CO2 even the silica surfaces are hydrophilic. A water film rupture mechanism was propsed for CO2 adhesion on mineral surfaces [Wang (2013) Environ. Sci. Technol. 47, 11858; Zhang (2016) Environ. Sci. Technol. Lett. 10.1021/acs.estlett.5b00359]. The rupture of water film

  8. The role of water in the molecular structure and properties of soft contact lenses and surface interactions

    Science.gov (United States)

    Monti, Patrizia; Simoni, Rosa

    1992-06-01

    The role played by water in the molecular structure and properties of commercial soft contact lenses (hydrogels) based on poly 2-hydroxyethyl methacrylate (PHEMA) or poly vinylpyrrolidone (PVP) was investigated by means of vibrational spectroscopy and thermal analyses. The results of this study show that the materials having the greatest water percentage have elastic properties closer to those of the ocular tissues with which they come into contact. Water interacts by hydrogen bonding with the hydrophilic groups present in the polymers, and the strength of this interaction depends on the type of hydrophilic group involved. Moreover, in the case of PVP materials, water also modifies the conformation of the hydrophobic groups. The arrangement of surface water molecules can explain the different adhesion capability of Staphilococcus aureus on this type of lens depending on the water content. In connection with this, a simple model is presented. The water molecules present in the hydrogel structures completely exchange with those of the biological environment. A quantitative analytical method for evaluating the amount of water in commercial lenses by means of Raman spectroscopy is reported.

  9. 78 FR 57373 - Appalachian Power Company; Notice of Application To Increase Water Withdraw and Construct Water...

    Science.gov (United States)

    2013-09-18

    ... Energy Regulatory Commission Appalachian Power Company; Notice of Application To Increase Water Withdraw and Construct Water Withdraw Facilty Pursuant to License Article 202 and Soliciting Comments, Motions... Filed: July 31, 2013. d. Applicant: Appalachian Power Company (licensee). e. Name of Project:...

  10. Chromatographic analysis of water and wine samples for phenolic compounds released from food-contact epoxy resins.

    Science.gov (United States)

    Lambert, C; Larroque, M

    1997-02-01

    Food-contact epoxy resins can release phenolic compounds such as phenol, m-cresol, bisphenol F, bisphenol A, 4-tert-butylphenol, bisphenol F diglycidyl ether (BFDGE), and bisphenol A diglycidyl ether (BADGE) into foodstuffs. A validated high-performance liquid chromatographic method with fluorometric detection is described for the simultaneous analysis of these compounds in wine and mineral water. Sample preparation by solid-liquid extraction enables detection limits of 2.5 micrograms/L in wine and 0.25 microgram/L in mineral water to be achieved. Recovery rates are close to 100%, except for BFDGE and BADGE (around 60% in wine and 75% in mineral water).

  11. GABAergic anxiolytic drug in water increases migration behaviour in salmon

    Science.gov (United States)

    Hellström, Gustav; Klaminder, Jonatan; Finn, Fia; Persson, Lo; Alanärä, Anders; Jonsson, Micael; Fick, Jerker; Brodin, Tomas

    2016-12-01

    Migration is an important life-history event in a wide range of taxa, yet many migrations are influenced by anthropogenic change. Although migration dynamics are extensively studied, the potential effects of environmental contaminants on migratory physiology are poorly understood. In this study we show that an anxiolytic drug in water can promote downward migratory behaviour of Atlantic salmon (Salmo salar) in both laboratory setting and in a natural river tributary. Exposing salmon smolt to a dilute concentration of a GABAA receptor agonist (oxazepam) increased migration intensity compared with untreated smolt. These results implicate that salmon migration may be affected by human-induced changes in water chemical properties, such as acidification and pharmaceutical residues in wastewater effluent, via alterations in the GABAA receptor function.

  12. Increasing light capture in silicon solar cells with encapsulants incorporating air prisms to reduce metallic contact losses.

    Science.gov (United States)

    Chen, Fu-Hao; Pathreeker, Shreyas; Kaur, Jaspreet; Hosein, Ian D

    2016-10-31

    Silicon solar cells are the most widely deployed modules owing to their low-cost manufacture, large market, and suitable efficiencies for residential and commercial use. Methods to increase their solar energy collection must be easily integrated into module fabrication. We perform a theoretical and experimental study on the light collection properties of an encapsulant that incorporates a periodic array of air prisms, which overlay the metallic front contacts of silicon solar cells. We show that the light collection efficiency induced by the encapsulant depends on both the shape of the prisms and angle of incidence of incoming light. We elucidate the changes in collection efficiency in terms of the ray paths and reflection mechanisms in the encapsulant. We fabricated the encapsulant from a commercial silicone and studied the change in the external quantum efficiency (EQE) on an encapsulated, standard silicon solar cell. We observe efficiency enhancements, as compared to a uniform encapsulant, over the visible to near infrared region for a range of incident angles. This work demonstrates exactly how a periodic air prism architecture increases light collection, and how it may be designed to maximize light collection over the widest range of incident angles.

  13. Bowel health to better health: a minimal contact lifestyle intervention for people at increased risk of colorectal cancer.

    Science.gov (United States)

    Caswell, Stephen; Anderson, Annie S; Steele, Robert J C

    2009-12-01

    Colorectal cancer screening forms part of Scotland's cancer reduction strategy. Screened participants, who had undergone colonoscopy and had adenoma(s) removed, were invited to participate in the bowel health to better health (BHBH) programme. BHBH tested the hypothesis that a minimal contact lifestyle intervention could prove effective in promoting changes in diet and activity. Baseline and follow-up questionnaires on lifestyle and psycho-social measures were undertaken in adults randomised to BHBH or a comparison group (CG). The 3-month intervention comprised personalised lifestyle advice, goal-setting and social support to promote increases in physical activity, fibre, fruit and vegetables. Response rate to BHBH was 51 %. BHBH participants (n 32) increased their intake of fibre (DINE FFQ scores 30 (sd 11)-41 (sd 13)) significantly (P lifestyle recommendations (chi2 (1, n 62) = 8.196, P = 0.006). If sustained, the positive behaviour change achieved through this intervention has the potential to impact on the progression of chronic disease risk including CVD.

  14. Frequency of allergic contact dermatitis to isoeugenol is increasing: a review of 3636 patients tested from 2001 to 2005.

    Science.gov (United States)

    White, J M L; White, I R; Glendinning, A; Fleming, J; Jefferies, D; Basketter, D A; McFadden, J P; Buckley, D A

    2007-09-01

    Isoeugenol is an important fragrance allergen. The cosmetic industry was recommended voluntarily to reduce concentrations of isoeugenol in finished cosmetic products from 0.2% to 0.02% in 1998. It was suspected that this would reduce the incidence of patch test positivity in individuals undergoing routine patch testing after approximately 2-3 years (the Dillarstone effect). To review our patch test data since the change in practice by industry, to see if there has been an observable decrease in isoeugenol contact sensitivity. We retrospectively analysed all subjects patch tested to isoeugenol 1% pet. in the St John's Department of Cutaneous Allergy over a period of 5 years, commencing 3 years after the changes. We identified 3636 subjects, 97 of whom were positive for isoeugenol. Year-on-year incidence shows an increasing trend, with an overall incidence of 2.67%. Using the exact Cochran-Armitage test, this ascending trend is statistically significant (P = 0.0182). Seventy-two of 97 isoeugenol-positive subjects were also positive to fragrance mix I. Other fragrances positive in these 97 patients included Myroxylon pereirae (30%), Evernia prunastri (22%) and eugenol (15%). We suspect that the increasing trend may be due to allergen substitution with compounds chemically related to isoeugenol, or which hydrolyse to isoeugenol itself.

  15. Water-contact patterns and risk factors for Schistosoma mansoni infection in a rural village of Northeast Brazil

    Directory of Open Access Journals (Sweden)

    SILVA Antônio Augusto Moura da

    1997-01-01

    Full Text Available Schistosomiasis mansoni in the Serrano village, municipality of Cururupu, state of Maranhão, Brazil, is a widely spread disease. The PECE (Program for the Control of Schistosomiasis, undertaken since 1979 has reduced the prevalence of S. mansoni infection and the hepatosplenic form of the disease. Nevertheless piped water is available in 84% of the households, prevalence remains above 20%. In order to identify other risk factors responsible for the persistence of high prevalence levels, a cross-sectional survey was carried out in a systematic sample of 294 people of varying ages. Socioeconomic, environmental and demographic variables, and water contact patterns were investigated. Fecal samples were collected and analyzed by the Kato-Katz technique. Prevalence of S. mansoni infection was 24.1%, higher among males (35.5% and between 10-19 years of age (36.6%. The risk factors identified in the univariable analysis were water contacts for vegetable extraction (Risk Ratio - RR = 2.92, crossing streams (RR = 2.55, bathing (RR = 2.35, fishing (RR = 2.19, hunting (RR = 2.17, cattle breeding (RR = 2.04, manioc culture (RR = 1.90 and leisure (RR = 1.56. After controlling for confounding variables by proportional hazards model the risks remained higher for males, vegetable extraction, bathing in rivers and water contact in rivers or in periodically inundated parts of riverine woodland (swamplands

  16. Effects of hysteresis of static contact angle (HSCA) and boundary slip on the hydrodynamics of water striders

    Science.gov (United States)

    Zheng, J.; Wang, B. S.; Chen, W. Q.; Han, X. Y.; Li, C. F.; Zhang, J. Z.; Yu, K. P.

    2017-02-01

    It is known that contact lines keep relatively still on solids until static contact angles exceed an interval of hysteresis of static contact angle (HSCA), and contact angles keep changing as contact lines relatively slide on the solid. Here, the effects of HSCA and boundary slip were first distinguished on the micro-curvature force (MCF) on the seta. Hence, the total MCF is partitioned into static and dynamic MCFs correspondingly. The static MCF was found proportional to the HSCA and related with the asymmetry of the micro-meniscus near the seta. The dynamic MCF, exerting on the relatively sliding contact line, is aroused by the boundary slip. Based on the Blake-Haynes mechanism, the dynamic MCF was proved important for water walking insects with legs slower than the minimum wave speed 23 cm\\cdot s^{-1}. As insects brush the water by laterally swinging legs backwards, setae on the front side of the leg are pulled and the ones on the back side are pushed to cooperatively propel bodies forward. If they pierce the water surface by vertically swinging legs downwards, setae on the upside of the legs are pulled, and the ones on the downside are pushed to cooperatively obtain a jumping force. Based on the dependency between the slip length and shear rate, the dynamic MCF was found correlated with the leg speed U, as F˜ C1U+C2 U^{2+ɛ}, where C1 and C2 are determined by the dimple depth. Discrete points on this curve could give fitted relations as F˜ Ub (Suter et al., J. Exp. Biol. 200, 2523-2538, 1997). Finally, the axial torque on the inclined and partially submerged seta was found determined by the surface tension, contact angle, HSCA, seta width, and tilt angle. The torque direction coincides with the orientation of the spiral grooves of the seta, which encourages us to surmise it is a mechanical incentive for the formation of the spiral morphology of the setae of water striders.

  17. On the uniqueness of the receding contact angle: effects of substrate roughness and humidity on evaporation of water drops.

    Science.gov (United States)

    Pittoni, Paola G; Lin, Chia-Hui; Yu, Teng-Shiang; Lin, Shi-Yow

    2014-08-12

    Could a unique receding contact angle be indicated for describing the wetting properties of a real gas-liquid-solid system? Could a receding contact angle be defined if the triple line of a sessile drop is not moving at all during the whole measurement process? To what extent is the receding contact angle influenced by the intrinsic properties of the system or the measurement procedures? In order to answer these questions, a systematic investigation was conducted in this study on the effects of substrate roughness and relative humidity on the behavior of pure water drops spreading and evaporating on polycarbonate (PC) surfaces characterized by different morphologies. Dynamic, advancing, and receding contact angles were found to be strongly affected by substrate roughness. Specifically, a receding contact angle could not be measured at all for drops evaporating on the more rugged PC surfaces, since the drops were observed strongly pinning to the substrate almost until their complete disappearance. Substrate roughness and system relative humidity were also found responsible for drastic changes in the depinning time (from ∼10 to ∼60 min). Thus, for measurement observations not sufficiently long, no movement of the triple line could be noted, with, again, the failure to find a receding contact angle. Therefore, to keep using concepts such as the receding contact angle as meaningful specifications of a given gas-liquid-solid system, the imperative to carefully investigate and report the inner characteristics of the system (substrate roughness, topography, impurities, defects, chemical properties, etc.) is pointed out in this study. The necessity of establishing methodological standards (drop size, measurement method, system history, observation interval, relative humidity, etc.) is also suggested.

  18. Layered Double Hydroxide Nanoplatelets with Excellent Tribological Properties under High Contact Pressure as Water-Based Lubricant Additives

    Science.gov (United States)

    Wang, Hongdong; Liu, Yuhong; Chen, Zhe; Wu, Bibo; Xu, Sailong; Luo, Jianbin

    2016-03-01

    High efficient and sustainable utilization of water-based lubricant is essential for saving energy. In this paper, a kind of layered double hydroxide (LDH) nanoplatelets is synthesized and well dispersed in water due to the surface modification with oleylamine. The excellent tribological properties of the oleylamine-modified Ni-Al LDH (NiAl-LDH/OAm) nanoplatelets as water-based lubricant additives are evaluated by the tribological tests in an aqueous environment. The modified LDH nanoplatelets are found to not only reduce the friction but also enhance the wear resistance, compared with the water-based cutting fluid and lubricants containing other particle additives. By adding 0.5 wt% LDH nanoplatelets, under 1.5 GPa initial contact pressure, the friction coefficient, scar diameter, depth and width of the wear track dramatically decrease by 83.1%, 43.2%, 88.5% and 59.5%, respectively. It is considered that the sufficiently small size and the excellent dispersion of NiAl-LDH/OAm nanoplatelets in water are the key factors, so as to make them enter the contact area, form a lubricating film and prevent direct collision of asperity peaks. Our investigations demonstrate that the LDH nanoplatelet as a water-based lubricant additive has a great potential value in industrial application.

  19. Influence of periodic water level increase on flow in Poznań Water Ways System

    Directory of Open Access Journals (Sweden)

    Tomasz Kałuża

    2013-06-01

    Full Text Available In the period 1968-1972, a project named “Rebuilding of the Poznań Water Ways System” was carried out. Within the scope of the project the Chwaliszewo Meander of the Warta river was cut off and covered. A discussion about reconstruction of Chwaliszewo Meander has been run for many years. The results of hydraulic computations of the influence of a weir on water table distribution in Poznań Water Ways System have been presented in the paper. Two different localizations of the weir were considered. Initial maximum water level of upper side of the weir was calculated. The influence of damming up on water level distribution in the Poznań Water Ways System was analysed. One-dimensional unsteady open channel flow computer systems HEC-RAS and SPRuNeR were used to carry out calculations. Building the weir, regardless of its localization, allows to raise water level in the main channel of the Warta river, increase minimum water depth and point to the architecture and recreation values of the Warta river. It is assumed that damming up is necessary only for flow rate below 100 m3/s in both localizations of the weir. The weir in focus should not create obstacles to the inland navigation and fish migration. To meet these requirements two additional hydraulic constructions must be projected: sluice and fish migration water gate.

  20. Effect of visible light on the water contact angles on illuminated oxide semiconductors other than TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Rico, V.; Lopez, C.; Borras, A.; Espinos, J.P.; Gonzalez-Elipe, A.R. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla), Avda. Americo Vespucio s/n, 41092 Sevilla (Spain)

    2006-11-06

    Wide band gap semiconductor oxides such as TiO{sub 2}, Ta{sub 2}O{sub 5}, ZnO, indium-tin oxide, InTaO{sub 4} or In{sub 2}O{sub 3} are materials with water contact angles in dark between 60{sup o} and 130{sup o}. The present investigation shows that thin films of these oxides become hydrophilic when they are irradiated with ultraviolet light. This finding indicates that the transformation of the wetting properties of illuminated wide band gap oxides is a common phenomenon not restricted to TiO{sub 2}. An additional evidence found for ZnO and InTaO{sub 4} is that the water contact angle decreases by 30{sup o}/40{sup o} when they are irradiated with visible light. (author)

  1. Parametric Limits of Efficient Use of a Centrifugal Water Atomizer in Contact Waste-Gas Heat-Utilization Units

    Science.gov (United States)

    Bezrodnyi, M. K.; Rachinskii, A. Yu.; Barabash, P. A.; Goliyad, N. N.

    2016-07-01

    The relation for the limiting temperature of water heating in a contact gas-droplet-type apparatus with a centrifugal atomizer has been determined experimentally in relation to the conditions of utilization of heat of power plant waste-gases. Investigations were carried out in the range of excess water pressures in front of the atomizer 0.2-0.6 MPa and of the volume fraction of steam in the vapor-gas mixture at the inlet of the apparatus from 0.02 to 0.45. The possibility of using the obtained dependence for calculating the limiting values of the vapor-gas flow parameters that limit the range of efficient operation of the contact apparatus with steam condensation and in the absence of heated liquid droplet evaporation is shown.

  2. Schistosomiasis: Water Contact Pattern and Snail Infection Rates in Opa Reservoir and Research Farm Ponds in Obafemi Awolowo University, Ile-Ife, Nigeria

    Directory of Open Access Journals (Sweden)

    I.E. Ofoezie

    2006-01-01

    Full Text Available Human water contact pattern and Schistosoma infection rates in snails were studied in Opa Reservoir and Research Farm Ponds in Obafemi Awolowo University campus for a 12 month period covering both seasons of the annual cycle. This is with a view to know the water contact pattern and relate this to the potential for schistosomiasis transmission in the water bodies. Generally, water contact activities were more diverse and longer in the reservoir than in the ponds. Seasonal and daily variations were pronounced with water contact being most intense in the rainy season and in the early hours of the day till about noon. The water contact behavior in this area were quite age and sex related. The frequency and duration of contacts made by males were significantly higher than those of females (pSchistosoma showed that no infected snail was found in the ponds but infected snails were found in the reservoir in a site, S3, in November and December, 2002. Water contact pattern in this study was site specific with 76.1% of the total contacts made at the site where human Schistosoma type cercariae were also found. The implications are discussed.

  3. The use of a vest equipped with a global positioning system to assess water-contact patterns associated with schistosomiasis

    Directory of Open Access Journals (Sweden)

    Edmund Y.W. Seto

    2007-05-01

    Full Text Available The real exposure to many of the tropical diseases is difficult to assess at the individual-level due to problems of recall, self-reported diaries, personnel requirements, and altered behaviour related to observation. We present a study in an area endemic for Schistosoma japonicum in which global positioning system (GPS receivers were used for personal time-activity monitoring to assess water-contact associated with schistosomiasis transmission. The study subjects were equipped with a vest with an embedded GPS receiver for 8-hour periods. The resulting data were used to create hourly time-activity maps, which were subsequently used in interviews to ascertain the timing and location of the water-contacts. Based on a sample of twenty-four 8-hour person-days we found that individuals averaged 1.4 ± 1.2 water-contacts per day, and were surprisingly mobile, with 39% of the participants having spent time out of the village (0.8 ± 1.4 hours outside of village. Such mobility suggests the need for further research into social patterns that may facilitate the spread of parasites, and contribute to sustained transmission. We present an assessment of the accuracy of cheaper commercially- available GPS units that have shown promise in such applications. We feel that a speed-filtering method is effective in managing measurement errors commonly encountered during personal activity monitoring with GPS. We conclude that personal GPS units can help reduce recall problems associated with other methods of assessing water-contact, and that they offer valuable insights into time-activity patterns that influence schistosomiasis transmission.

  4. Decrease in water activity due to fluid absent partial melting monitored with water content in biotite in the Western Adamello contact aureole (Italy)

    Science.gov (United States)

    Siron, Guillaume; Baumgartner, Lukas; Bouvier, Anne-Sophie; Vennemann, Torsten

    2016-04-01

    The fluorine and chlorine exchange on the hydroxyl site in micas is used to monitor changes in fluid composition (Munoz 1984). Most studies assume that the OH-site does not contain vaccancies, since the vast majority of studies use analytical techniques that does not allow to directly measure the OH- content of the mica. Nevertheless, studies have shown that significant amounts of O2- are present, and its concentration increases with temperature and titanium content. This feature was intrepreted as the consequence of a Ti-oxygen exchange in amphibolite and granulite facies rocks (Dyar et al. 1993, Cesare et al. 2008). Here, we present OH, F, Cl data for biotite from contact aureoles from biotite-schist to partially molten sillimanite-cordierite schists. OH-F-Cl content of biotites were analyzed using Secondary Ion Mass Spectrometry (SIMS), and major elements were analyzed by EMP. Samples were collected in the mid-crustal Western Adamello contact aureole (Italian Alps, Floess and Baumgartner, 2013). For that purpose we used biotite standards with water content constrained by Thermal Conversion Elemental Analyzer (TC/EA) see Bauer and Vennemann 2014, at a level of precision of 0.1-0.2 wt% (2SD). SIMS measurements typically have a precision of 0.1wt% (2SD), corresponding to the homogeneity of the internal standard at the SwissSIMS laboratory. OH- content decreases in samples with increasing peak temperature and Ti content (Ti range for biotites of 0.15-0.42 p.f.u for all samples). Nevertheless, within each individual sample, OH- is not a function of Ti. Ti variations are about 0.4 p.f.u., which is ten times the analytical uncertainty of the EMP analysis (0.004 p.f.u., 1SD). Water content is constant within analytical precision for each sample. The mean of OH- measurements is 3.41 p.f.u. in biotite and garnet grade samples, whereas those of samples in the partially molten zone have values of 3.27 p.f.u. We do not see any correlation with XMg or F and Cl. Hence, we

  5. A Study on Water Treatment Induced by Plasma with Contact Glow Discharge Electrolysis

    Institute of Scientific and Technical Information of China (English)

    胡中爱; 王晓艳; 高锦章; 邓华陵; 侯经国; 卢小泉; 康敬万

    2001-01-01

    Oxidative degradation of eight kinds of dyes induced by plasma in aqueous solution was investigated with contact glow discharge electrolysis (CGDE). It has been demonstrated that these eight dyes underwent degradation in CGDE, where Fe2+ could be utilised to raise the efficiency of degradation of dyes.

  6. Carrier-selective p- and n-contacts for efficient and stable photocatalytic water reduction

    DEFF Research Database (Denmark)

    Bae, Dowon; Pedersen, Thomas; Seger, Brian

    2016-01-01

    The successful realization of carrier-selective contacts for crystalline silicon (c-Si) based device for pho-tocatalytic hydrogen production has been demonstrated. The proposed TiO2protected carrier-selectivecontacts resemble a metal-oxide-semiconductor configuration, including a highly-doped nan...

  7. Piercing the water surface with a blade: Singularities of the contact line

    Energy Technology Data Exchange (ETDEWEB)

    Alimov, Mars M. [Kazan Federal University, Kazan 420008 (Russian Federation); Kornev, Konstantin G. [Department of Materials Science & Engineering, Clemson University, Clemson, South Carolina 29634 (United States)

    2016-01-15

    An external meniscus on a narrow blade with a slit-like cross section is studied using the hodograph formulation of the Laplace nonlinear equation of capillarity. On narrow blades, the menisci are mostly shaped by the wetting and capillary forces; gravity plays a secondary role. To describe a meniscus in this asymptotic case, the model of Alimov and Kornev [“Meniscus on a shaped fibre: Singularities and hodograph formulation,” Proc. R. Soc. A 470, 20140113 (2014)] has been employed. It is shown that at the sharp edges of the blade, the contact line makes a jump. In the wetting case, the contact line sitting at each side of the blade is lifted above the points where the meniscus first meets the blade edges. In the non-wetting case, the contact line is lowered below these points. The contours of the constant height emanating from the blade edges generate unusual singularities with infinite curvatures at some points at the blade edges. The meniscus forms a unique surface made of two mirror-symmetric sheets fused together. Each sheet is supported by the contact line sitting at each side of the blade.

  8. Association of Urogenital Symptoms with History of Water Contact in Young Women in Areas Endemic for S. haematobium. A Cross-Sectional Study in Rural South Africa

    Directory of Open Access Journals (Sweden)

    Hashini Nilushika Galappaththi-Arachchige

    2016-11-01

    Full Text Available Female genital schistosomiasis is a neglected tropical disease caused by Schistosoma haematobium. Infected females may suffer from symptoms mimicking sexually transmitted infections. We explored if self-reported history of unsafe water contact could be used as a simple predictor of genital schistosomiasis. In a cross-sectional study in rural South Africa, 883 sexually active women aged 16–22 years were included. Questions were asked about urogenital symptoms and water contact history. Urine samples were tested for S. haematobium ova. A score based on self-reported water contact was calculated and the association with symptoms was explored while adjusting for other genital infections using multivariable logistic regression analyses. S. haematobium ova were detected in the urine of 30.5% of subjects. Having ova in the urine was associated with the water contact score (p < 0.001. Symptoms that were associated with water contact included burning sensation in the genitals (p = 0.005, spot bleeding (p = 0.012, abnormal discharge smell (p = 0.018, bloody discharge (p = 0.020, genital ulcer (p = 0.038, red urine (p < 0.001, stress incontinence (p = 0.001 and lower abdominal pain (p = 0.028. In S. haematobium endemic areas, self-reported water contact was strongly associated with urogenital symptoms. In low-resource settings, a simple history including risk of water contact behaviour can serve as an indicator of urogenital schistosomiasis.

  9. Imaging of oil layers, curvature and contact angle in a mixed-wet and a water-wet carbonate rock

    Science.gov (United States)

    Singh, Kamaljit; Bijeljic, Branko; Blunt, Martin J.

    2016-03-01

    We have investigated the effect of wettability of carbonate rocks on the morphologies of remaining oil after sequential oil and brine injection in a capillary-dominated flow regime at elevated pressure. The wettability of Ketton limestone was altered in situ using an oil phase doped with fatty acid which produced mixed-wet conditions (the contact angle where oil contacted the solid surface, measured directly from the images, θ=180°, while brine-filled regions remained water-wet), whereas the untreated rock (without doped oil) was weakly water-wet (θ=47 ± 9°). Using X-ray micro-tomography, we show that the brine displaces oil in larger pores during brine injection in the mixed-wet system, leaving oil layers in the pore corners or sandwiched between two brine interfaces. These oil layers, with an average thickness of 47 ± 17 µm, may provide a conductive flow path for slow oil drainage. In contrast, the oil fragments into isolated oil clusters/ganglia during brine injection under water-wet conditions. Although the remaining oil saturation in a water-wet system is about a factor of two larger than that obtained in the mixed-wet rock, the measured brine-oil interfacial area of the disconnected ganglia is a factor of three smaller than that of oil layers.

  10. A theoretical model of virtual water trade under increasing water scarcity conditions

    Science.gov (United States)

    de Vos, Lotte; Pande, Saket

    2016-04-01

    This paper proposes a virtual water trade model to obtain a better understanding of how hydro-climatic change affects societies through changes in virtual water trade. In previous studies it has been shown that global trade patterns can be influenced by water scarcity and vice-versa. The extent to which this relationship holds is still a topic under discussion. With the model introduced in this paper, the dynamics behind these trade patterns are further explored. First, a model is constructed of a society suffering from an increase in water scarcity. This model is shown to be capable of replicating patterns of technological, population, production and consumption per capita changes. In order to incorporate the effects of globalization and trade, the model has been extended to a toy model of virtual water trade between two societies. The two societies are represented by overlapping generations models. The individuals of each generation provide the labour needed for the production of the composite goods. In addition to this labour, water and technology are also incorporated as factors of production. There are two goods being produced; one is labour intensive and the other water intensive. Trade emerges from the principle of comparative advantage, with differences in labour-abundance and water resources availability between the two societies. Using this model of two societies interconnected by trade, it is examined how trade of water-intensive commodities alters under changing scarcity conditions. In particular we explore the conditions under which trade emerges, and to what extent. Furthermore, we present the conditions for the sustainable development within these two societies.

  11. Organisms in rock bed contact-purification channel for improvement of eutrophic coastal water; Kaisui joka no rekikan sesshoku suironai no fuchaku teisei seibutsuso

    Energy Technology Data Exchange (ETDEWEB)

    Mori, M. [Shimizu Corp., Tokyo (Japan); Kadokura, N. [Kumagai Gumi Co. Ltd., Tokyo (Japan); Suda, Y. [Shimonoseki University of Fisheries, Yamaguchi (Japan); Tanaka, Y. [Toyo Construction Co. Ltd., Tokyo (Japan); Hosokawa, Y. [Port and Harbor Research Institute, Kanagawa (Japan)

    1996-08-10

    In order to identify living organism phases in a water purification channel for eutrophic coastal water, investigations were carried out on fouling and benthic organisms by using an experimental channel installed along a canal in the innermost part of Tokyo Bay. Phytoplanktons in influent are such algae as Skeletonema costatum, Navicula and Nitzschia which are often observed in coastal areas. Rock bed benthic organisms were Carchesium, Vorticella and Zoothamnium predominant in that order. The most predominant species in periphytons was Skeletonema costatum, an alga. In nine months after the water was first flown into the channel, seventeen kinds of large-size fouling and benthic animals were found living in the channel. Mollusca and Annelida contribute to purifying water and reducing water bottom mud, but reduce inter-rock spaces as individuals grow in size and number of individuals increases, causing clogging in the channel. When a rock bed contact-purification facility is operated in a water area, both of fouling and benthic animals living in that area appear in the channel. Species appeared in the present experimental channel were found similar to combination species appeared in the pier No. 13 and the artificial tideland off the Kasai coast. 41 refs., 3 figs., 3 tabs.

  12. Alginate increases water stability whilst maintaining diet digestibility in farmed saltwater crocodiles ().

    Science.gov (United States)

    Francis, Magdalene; Morel, Patrick C H; Wilkinson, Brian H P; Wester, Timothy J

    2017-02-01

    Saltwater crocodile () farming in Papua New Guinea is an emerging industry that supplies high-quality skins to the fashion industry. Crocodiles are semiaquatic and fed high-quality feed made from extrudated animal byproducts (i.e., forced through a die at low pressure but not heat treated); however, it disintegrates on contact with water, and this leads to low utilization. Alginate is used extensively in food and pharmaceutical processes because it quickly forms a gel at room temperature; however, its effects on nutrient availability are equivocal, and its utility in crocodile diets is unknown. Extrudated chicken byproduct-based crocodile diets were formulated (as-fed) with and without 1.7 and 3.3% Na alginate with either CaCl or CaCO to cross-link. After immersion in water at 30°C for 24 h, feed retained on a 0.5-mm screen was measured to determine DM retention (DMR). Regardless of inclusion level, alginate addition resulted in a 13-fold increase in DMR ( wastage, which ultimately will benefit Papua New Guinea by simultaneously increasing economic returns and decreasing environmental impacts.

  13. Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor applications.

    Science.gov (United States)

    Byon, Hye Ryung; Choi, Hee Cheul

    2006-02-22

    Highly sensitive single-walled carbon nanotube-field effect transistor (SWNT-FET) devices, which detect protein adsorptions and specific protein-protein interactions at 1 pM concentrations, have been achieved. The detection limit has been improved 104-fold compared to the devices fabricated by photolithography. The substantially increased sensitivity is mainly due to the increased Schottky contact area which accommodates relatively more numbers of proteins even at very low concentration. The augmented number of proteins adsorbed on a device induces instant modulation of the work function of metal contact electrodes, which eventually changes the conductance of the device. Such devices have been attained by addressing metal electrodes on network-type SWNTs using a shadow mask on a tilted angle sample stage. The shadow mask allows metals to penetrate underneath the mask efficiently, therefore forming a thin and wide Schottky contact area on SWNT channels.

  14. Efficacy of Detergent and Water Versus Bleach for the Disinfection of Direct Contact Ophthalmic Lenses

    Science.gov (United States)

    Abbey, Ashkan M.; Gregori, Ninel Z.; Surapaneni, Krishna; Miller, Darlene

    2014-01-01

    Purpose While manufacturers recommend cleaning ophthalmic lenses with detergent and water and then a specific disinfectant, disinfectants are rarely used in ophthalmic practices. The aim of this pilot study was to evaluate the efficacy of detergent and water versus bleach, a recommended disinfectant, to eliminate common ocular bacteria and viruses from ophthalmic lenses. Methods Three bacterial strains (Staphylococcus epidermidis, Corynebacterium straitum, and methicillin-resistant Staphylococcus aureus (MRSA) and two viral strains (adenovirus and herpes simplex virus (HSV) type-1) were individually inoculated to 20 gonioscopy and laser lenses. Lenses were washed with detergent and water and then disinfected with 10% bleach. All lenses were cultured after inoculation, after detergent and water, and after the bleach. Bacterial cultures in thioglycollate broth were observed for 3 weeks and viral cultures for 2 weeks. The presence of viruses was also detected by multiplex polymerase chain reaction (PCR). Results All 20 lenses inoculated with Staphylococcus epidermidis, Corynebacterium straitum, adenovirus, and HSV-1 showed growth after inoculation, but no growth after detergent/water and after the bleach. All lenses showed positive HSV and adenovirus PCR after inoculation and negative PCR after detergent/water and after bleach. All MRSA contaminated lenses showed growth after inoculation and no growth after detergent and water. However, one lens showed positive growth after bleach. Conclusions Cleaning with detergent and water appeared to effectively eliminate bacteria and viruses from the surface of contaminated ophthalmic lenses. Further studies are warranted to design practical disinfection protocols that minimize lens damage. PMID:24747806

  15. Octagon to Square Wetting Area Transition of Water-Ethanol Droplets on a Micropyramid Substrate by Increasing Ethanol Concentration.

    Science.gov (United States)

    Feng, Huicheng; Chong, Karen Siew-Ling; Ong, Kian-Soo; Duan, Fei

    2017-02-07

    The wettability and evaporation of water-ethanol binary droplets on the substrate with micropyramid cavities are studied by controlling the initial ethanol concentrations. The droplets form octagonal initial wetting areas on the substrate. As the ethanol concentration increases, the side ratio of the initial wetting octagon increases from 1.5 at 0% ethanol concentration to 3.5 at 30% ethanol concentration. The increasing side ratio indicates that the wetting area transforms from an octagon to a square if we consider the octagon to be a square with its four corners cut. The droplets experience a pinning-depinning transition during evaporation. The pure water sessile droplet evaporation demonstrates three stages from the constant contact line (CCL) stage, and then the constant contact angle (CCA) stage, to the mixed stage. An additional mixed stage is found between the CCL and CCA stages in the evaporation of water-ethanol binary droplets due to the anisotropic depinning along the two different axes of symmetry of the octagonal wetting area. Droplet depinning occurs earlier on the patterned surface as the ethanol concentration increases.

  16. Measurements of tire contact condition and water flow during hydroplaning; Hydroplaning hasseiji no tire no secchi jotai to suiryu no sokutei

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, T.; Fujikawa, T.; Kagami, K. [Japan Automobile Research Institute Inc., Tsukuba (Japan)

    1999-11-01

    To improve hydroplaning performance, it is important to understand the contact condition and the state of flow around the tire while it is running on a water film. In this paper, two kinds of visualization methods were applied using a high-speed video camera. Firstly, the contact condition of the tire was visualized by colored water. Next, the state of flow around the tire contact area was visualized by particle tracing. From these results, the outline of flow around the tire became evident. (author)

  17. Monovalent Ions and Water Dipoles in Contact with Dipolar Zwitterionic Lipid Headgroups-Theory and MD Simulations

    Directory of Open Access Journals (Sweden)

    Aljaž Velikonja

    2013-01-01

    Full Text Available The lipid bilayer is a basic building block of biological membranes and can be pictured as a barrier separating two compartments filled with electrolyte solution. Artificial planar lipid bilayers are therefore commonly used as model systems to study the physical and electrical properties of the cell membranes in contact with electrolyte solution. Among them the glycerol-based polar phospholipids which have dipolar, but electrically neutral head groups, are most frequently used in formation of artificial lipid bilayers. In this work the electrical properties of the lipid layer composed of zwitterionic lipids with non-zero dipole moments are studied theoretically. In the model, the zwitterionic lipid bilayer is assumed to be in contact with aqueous solution of monovalent salt ions. The orientational ordering of water, resulting in spatial variation of permittivity, is explicitly taken into account. It is shown that due to saturation effect in orientational ordering of water dipoles the relative permittivity in the zwitterionic headgroup region is decreased, while the corresponding electric potential becomes strongly negative. Some of the predictions of the presented mean-field theoretical consideration are critically evaluated using the results of molecular dynamics (MD simulation.

  18. Oxytocin increases eye contact during a real-time, naturalistic social interaction in males with and without autism.

    Science.gov (United States)

    Auyeung, B; Lombardo, M V; Heinrichs, M; Chakrabarti, B; Sule, A; Deakin, J B; Bethlehem, R A I; Dickens, L; Mooney, N; Sipple, J A N; Thiemann, P; Baron-Cohen, S

    2015-02-10

    Autism spectrum conditions (autism) affect ~1% of the population and are characterized by deficits in social communication. Oxytocin has been widely reported to affect social-communicative function and its neural underpinnings. Here we report the first evidence that intranasal oxytocin administration improves a core problem that individuals with autism have in using eye contact appropriately in real-world social settings. A randomized double-blind, placebo-controlled, within-subjects design is used to examine how intranasal administration of 24 IU of oxytocin affects gaze behavior for 32 adult males with autism and 34 controls in a real-time interaction with a researcher. This interactive paradigm bypasses many of the limitations encountered with conventional static or computer-based stimuli. Eye movements are recorded using eye tracking, providing an objective measurement of looking patterns. The measure is shown to be sensitive to the reduced eye contact commonly reported in autism, with the autism group spending less time looking to the eye region of the face than controls. Oxytocin administration selectively enhanced gaze to the eyes in both the autism and control groups (transformed mean eye-fixation difference per second=0.082; 95% CI:0.025-0.14, P=0.006). Within the autism group, oxytocin has the most effect on fixation duration in individuals with impaired levels of eye contact at baseline (Cohen's d=0.86). These findings demonstrate that the potential benefits of oxytocin in autism extend to a real-time interaction, providing evidence of a therapeutic effect in a key aspect of social communication.

  19. Degradation of Methyl Orange in Water by Contact Glow Discharge Electrolysis

    Institute of Scientific and Technical Information of China (English)

    GONG Jianying; CAI Weimin

    2007-01-01

    The degradation of methyl orange in a neutral phosphate buffer solution was investigated by means of contact glow discharge electrolysis (CGDE).The methyl oranges were degraded and eventually decomposed into inorganic carbon when CGDE was conducted under the applied DC voltage of 480 V and current of ca.80 mA.As the intermediate products,some phenolic compounds were detected as well as carboxylic acids.Experimental results showed that the oxidation process followed the first-order reaction law.Based on the analysis of the ultraviolet (UV) spectra of the solution and the intermediate products from High Pressure Liquid Chromatography-Mass Spectrum (HPLC-MS),the reaction pathway was proposed.The attack of hydroxyl radicals was considered to be a key step to start the whole oxidation process.

  20. Increase in acidifying water in the western Arctic Ocean

    Science.gov (United States)

    Qi, Di; Chen, Liqi; Chen, Baoshan; Gao, Zhongyong; Zhong, Wenli; Feely, Richard A.; Anderson, Leif G.; Sun, Heng; Chen, Jianfang; Chen, Min; Zhan, Liyang; Zhang, Yuanhui; Cai, Wei-Jun

    2017-02-01

    The uptake of anthropogenic CO2 by the ocean decreases seawater pH and carbonate mineral aragonite saturation state (Ωarag), a process known as Ocean Acidification (OA). This can be detrimental to marine organisms and ecosystems. The Arctic Ocean is particularly sensitive to climate change and aragonite is expected to become undersaturated (Ωarag oceans. However, the extent and expansion rate of OA in this region are still unknown. Here we show that, between the 1990s and 2010, low Ωarag waters have expanded northwards at least 5°, to 85° N, and deepened 100 m, to 250 m depth. Data from trans-western Arctic Ocean cruises show that Ωarag Arctic Ocean than the Pacific and Atlantic oceans, with the western Arctic Ocean the first open-ocean region with large-scale expansion of `acidified’ water directly observed in the upper water column.

  1. Implementing the 40 Gallon Challenge to Increase Water Conservation

    Science.gov (United States)

    Sheffield, Mary Carol; Bauske, Ellen; Pugliese, Paul; Kolich, Heather; Boellstorff, Diane

    2016-01-01

    The 40 Gallon Challenge is an easy-to-use, comprehensive indoor and outdoor water conservation educational tool. It can be used nationwide and easily incorporated into existing educational programs. Promotional materials and pledge cards are available on the 40 Gallon Challenge website and can be modified by educators. The website displays data…

  2. Exponential increase of publications related to soil water repellency

    NARCIS (Netherlands)

    Dekker, L.W.; Oostindie, K.; Ritsema, C.J.

    2005-01-01

    Soil water repellency is much more wide-spread than formerly thought. During the last decades, it has been a topic of study for soil scientists and hydrologists in at least 21 States of the USA, in Canada, Australia, New Zealand, Mexico, Colombia, Chile, Congo, Nepal, India, Hong Kong, Taiwan, China

  3. Exponential increase of publications related to soil water repellency

    NARCIS (Netherlands)

    Dekker, L.W.; Oostindie, K.; Ritsema, C.J.

    2005-01-01

    Soil water repellency is much more wide-spread than formerly thought. During the last decades, it has been a topic of study for soil scientists and hydrologists in at least 21 States of the USA, in Canada, Australia, New Zealand, Mexico, Colombia, Chile, Congo, Nepal, India, Hong Kong, Taiwan,

  4. Polymer Electrolyte Fuel Cells Membrane Hydration by Direct Liquid Water Contact

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M.S.; Zawodzinski, C.; Gottesfeld, S.

    1998-11-01

    An effective means of providing direct liquid hydration of the membrane tends to improve performance particularly of cells with thicker membranes or at elevated temperatures. Supplying the water to the membrane from the anode flow-field through the anode backing via wicks would appear to have advantages over delivering the water through the thickness of the membrane with regards to the uniformity and stability of the supply and the use of off-the-shelf membranes or MEAs. In addition to improving cell performance, an important contribution of direct liquid hydration approaches may be that the overall fuel cell system becomes simpler and more effective. The next steps in the evolution of this approach are a demonstration of the effectiveness of this technique with larger active area cells as well as the implementation of an internal flow-field water reservoir (to eliminate the injection method). Scale-up to larger cell sizes and the use of separate water channels within the anode flow-field is described.

  5. Contact micromechanics in granular media with clay

    Energy Technology Data Exchange (ETDEWEB)

    Ita, Stacey Leigh [Univ. of California, Berkeley, CA (United States)

    1994-08-01

    Many granular materials, including sedimentary rocks and soils, contain clay particles in the pores, grain contacts, or matrix. The amount and location of the clays and fluids can influence the mechanical and hydraulic properties of the granular material. This research investigated the mechanical effects of clay at grain-to-grain contacts in the presence of different fluids. Laboratory seismic wave propagation tests were conducted at ultrasonic frequencies using spherical glass beads coated with Montmorillonite clay (SWy-1) onto which different fluids were adsorbed. For all bead samples, seismic velocity increased and attenuation decreased as the contact stiffnesses increased with increasing stress demonstrating that grain contacts control seismic transmission in poorly consolidated and unconsolidated granular material. Coating the beads with clay added stiffness and introduced viscosity to the mechanical contact properties that increased the velocity and attenuation of the propagating seismic wave. Clay-fluid interactions were studied by allowing the clay coating to absorb water, ethyl alcohol, and hexadecane. Increasing water amounts initially increased seismic attenuation due to clay swelling at the contacts. Attenuation decreased for higher water amounts where the clay exceeded the plastic limit and was forced from the contact areas into the surrounding open pore space during sample consolidation. This work investigates how clay located at grain contacts affects the micromechanical, particularly seismic, behavior of granular materials. The need for this work is shown by a review of the effects of clays on seismic wave propagation, laboratory measurements of attenuation in granular media, and proposed mechanisms for attenuation in granular media.

  6. Corrosion studies with high burnup light water reactor fuel. Release of nuclides into simulated groundwater during accumulated contact time of up to two years

    Energy Technology Data Exchange (ETDEWEB)

    Zwicky, Hans-Urs (Zwicky Consulting GmbH, Remigen (Switzerland)); Low, Jeanett; Ekeroth, Ella (Studsvik Nuclear AB, Nykoeping (Sweden))

    2011-03-15

    pellet surface than the bulk of the pellet in leaching experiments. Thus, formation of oxidising species and radicals by radiolysis is expected to be disproportionately high as well. Therefore, when discussing high burnup fuel dissolution, the effect of the increased radiation field with burnup, as well as of the influence of the smaller grain size and increased porosity at the rim are mentioned as factors which contribute to increased dissolution rates. A third factor, increased fission product and actinide doping with burnup, has been discussed extensively in connection with increased resistance to air oxidation of the fuel. Samples from four different fuel rods, all operated in Pressurised Water Reactors (PWR), are used in the new series of corrosion experiments. They cover a burnup range from 58 to 75 MWd/kgU. The nuclide inventory of all four samples was determined by means of a combination of experimental nuclide analysis and sample specific modelling calculations. More than 40 different nuclides were analysed by isotope dilution analysis using Inductively Coupled Plasma Mass Spectrometry (ICP-MS), as well as other ICP-MS and gamma spectrometric methods. The content of roughly all fission products and actinides was also calculated separately for each sample. The experiments are performed under oxidising conditions in synthetic groundwater at ambient temperature. In order to make results as comparable as possible to those of the Series 11 experiments, the same procedure and the same leachant is used. At least nine consecutive contact periods of one and three weeks and two, three, six and twelve months are planned. The present report covers the first five contact periods up to a cumulative contact time of one year for all four samples and in addition the sixth period up to a cumulative contact time of two years for two of the samples. The samples, kept in position by a platinum wire spiral, are exposed to synthetic groundwater in a Pyrex flask. After the contact

  7. Unsealed Tubewells Lead to Increased Fecal Contamination of Drinking Water

    Science.gov (United States)

    Knappett, Peter S. K.; McKay, Larry D.; Layton, Alice; Williams, Daniel E.; Alam, Md. J.; Mailloux, Brian J.; Ferguson, Andrew S.; Culligan, Patricia J.; Serre, Marc L.; Emch, Michael; Ahmed, Kazi M.; Sayler, Gary S.; van Geen, Alexander

    2013-01-01

    Bangladesh is underlain by shallow aquifers in which millions of drinking water wells are emplaced without annular seals. Fecal contamination has been widely detected in private tubewells. To evaluate the impact of well construction on microbial water quality 35 private tubewells (11 with intact cement platforms, 19 without) and 17 monitoring wells (11 with the annulus sealed with cement, 6 unsealed) were monitored for cultured E. coli over 18 months. Additionally, two “snap shot” sampling events were performed on a subset of wells during late-dry and early-wet seasons, wherein the fecal indicator bacteria (FIB) E. coli, Bacteroidales and the pathogenicity genes eltA (ETEC E. coli), ipaH (Shigella) and 40/41 hexon (adenovirus) were detected using qPCR. No difference in E. coli detection frequency was found between tubewells with and without platforms. Unsealed private wells, however, contained cultured E. coli more frequently and higher concentrations of FIB than sealed monitoring wells (p<0.05), suggestive of rapid downward flow along unsealed annuli. As a group the pathogens ETEC, Shigella and adenovirus were detected more frequently (10/22) during the wet season than the dry season (2/20). This suggests proper sealing of private tubewell annuli may lead to substantial improvements in microbial drinking water quality. PMID:23165714

  8. Evaluation of susceptibility of polymer and rubber materials intended into contact with drinking water on biofilm formation

    Science.gov (United States)

    Szczotko, Maciej; Stankiewicz, Agnieszka; Jamsheer-Bratkowska, Małgorzata

    Plumbing materials in water distribution networks and indoor installations are constantly evolving. The application of new, more economical solutions with plastic materials eliminates the corrosion problems, however, do not fully protect the consumer against secondary microbial contamination of water intended for human consumption caused by the presence of a biofilm on the inner surface of materials applied. National Institute of Public Health - National Institute of Hygiene conducts research aimed at a comprehensive assessment of this type of materials, resulting their further marketing authorization in Poland. Evaluation and comparison of polymer and rubber materials intended to contact with water for the susceptibility to biofilm formation. Plastic materials (polyethylene, polypropylene, polyvinyl chloride) and rubber compounds (EPDM, NBR), from different manufacturers were evaluated. The study was carried out on 37 samples, which were divided into groups according to the material of which they were made. The testing was conducted according to the method based on conditions of dynamic flow of tap water. The level of bioluminescence in swabs taken from the surface of the tested materials was investigated with a luminometer. Evaluation of plastic materials does not show major objections in terms of hygienic assessment. All materials met the evaluation criteria established for methodology used. In case of rubber compounds, a substantial part clearly exceeded the limit values, which resulted in their negative assessment and elimination of these materials from domestic market. High susceptibility to the formation of biofilm in the group of products made of rubber compounds has been demonstrated. Examined plastic materials, except for several cases, do not revealed susceptibility to biofilm formation, but application of plastics for distribution of water intended for human consumption does not fully protect water from secondary, microbiological contamination. Complete

  9. Drag Moderation by the Melting of an Ice Surface in Contact with Water

    Science.gov (United States)

    Vakarelski, Ivan U.; Chan, Derek Y. C.; Thoroddsen, Sigurdur T.

    2015-07-01

    We report measurements of the effects of a melting ice surface on the hydrodynamic drag of ice-shell-metal-core spheres free falling in water at a Reynolds of number Re ˜2 ×104- 3 ×105 and demonstrate that the melting surface induces the early onset of the drag crisis, thus reducing the hydrodynamic drag by more than 50%. Direct visualization of the flow pattern demonstrates the key role of surface melting. Our observations support the hypothesis that the drag reduction is due to the disturbance of the viscous boundary layer by the mass transfer from the melting ice surface.

  10. Drag Moderation by the Melting of an Ice Surface in Contact with Water

    KAUST Repository

    Vakarelski, Ivan Uriev

    2015-07-24

    We report measurements of the effects of a melting ice surface on the hydrodynamic drag of ice-shell-metal-core spheres free falling in water at a Reynolds of number Re∼2×104–3×105 and demonstrate that the melting surface induces the early onset of the drag crisis, thus reducing the hydrodynamic drag by more than 50%. Direct visualization of the flow pattern demonstrates the key role of surface melting. Our observations support the hypothesis that the drag reduction is due to the disturbance of the viscous boundary layer by the mass transfer from the melting ice surface.

  11. Contact dermatitis

    Science.gov (United States)

    Dermatitis - contact; Allergic dermatitis; Dermatitis - allergic; Irritant contact dermatitis; Skin rash - contact dermatitis ... There are 2 types of contact dermatitis. Irritant dermatitis: This ... with acids, alkaline materials such as soaps and detergents , ...

  12. Increased self-diffusion of brain water in normal aging

    DEFF Research Database (Denmark)

    Gideon, P; Thomsen, C; Henriksen, O

    1994-01-01

    correlation was found between the ADC in white matter and age (r = .7069, P age. The increased ADC in white matter may be caused...... by an increase in the extracellular volume due to age-dependent neuronal degeneration or to changes in myelination. These findings have implications for future clinical investigations with diffusion MR imaging techniques in patients with neurologic diseases, and stress the importance of having an age...

  13. Direct-contact condensers for open-cycle OTEC applications: Model validation with fresh water experiments for structured packings

    Science.gov (United States)

    Bharathan, D.; Parsons, B. K.; Althof, J. A.

    1988-10-01

    The objective of the reported work was to develop analytical methods for evaluating the design and performance of advanced high-performance heat exchangers for use in open-cycle thermal energy conversion (OC-OTEC) systems. This report describes the progress made on validating a one-dimensional, steady-state analytical computer of fresh water experiments. The condenser model represents the state of the art in direct-contact heat exchange for condensation for OC-OTEC applications. This is expected to provide a basis for optimizing OC-OTEC plant configurations. Using the model, we examined two condenser geometries, a cocurrent and a countercurrent configuration. This report provides detailed validation results for important condenser parameters for cocurrent and countercurrent flows. Based on the comparisons and uncertainty overlap between the experimental data and predictions, the model is shown to predict critical condenser performance parameters with an uncertainty acceptable for general engineering design and performance evaluations.

  14. Direct-contact condensers for open-cycle OTEC applications: Model validation with fresh water experiments for structured packings

    Energy Technology Data Exchange (ETDEWEB)

    Bharathan, D.; Parsons, B.K.; Althof, J.A.

    1988-10-01

    The objective of the reported work was to develop analytical methods for evaluating the design and performance of advanced high-performance heat exchangers for use in open-cycle thermal energy conversion (OC-OTEC) systems. This report describes the progress made on validating a one-dimensional, steady-state analytical computer of fresh water experiments. The condenser model represents the state of the art in direct-contact heat exchange for condensation for OC-OTEC applications. This is expected to provide a basis for optimizing OC-OTEC plant configurations. Using the model, we examined two condenser geometries, a cocurrent and a countercurrent configuration. This report provides detailed validation results for important condenser parameters for cocurrent and countercurrent flows. Based on the comparisons and uncertainty overlap between the experimental data and predictions, the model is shown to predict critical condenser performance parameters with an uncertainty acceptable for general engineering design and performance evaluations. 33 refs., 69 figs., 38 tabs.

  15. The Process and Reason of the Change of Oil-Water Contact of Shahejie Formation in BZ25-1 Oilfield

    Science.gov (United States)

    Cong, F.; Liu, J.

    2015-12-01

    Due to the influence of Neo-tectonic movement, the Shahejie reservoirs in Bohai Bay Basin has undergone late-stage transformation and adjustment, causing the oil-water contact to change. Through studying the changing history of oil-water contact, we can better restore petroleum accumulation process and analyze oil distribution pattern. Based on reservoir geochemistry theory and drilling and logging data, grains with oil inclusion was analyzed, and oil-bearing property, organic extracts and biomarkers was used to determine the present and paleo-oil water contact of Shahejie formation in BZ25-1 oilfield. It suggested that the paleo and present oil-water contact in Shahejie formation locates in different depth, and that Shahejie formation has gone through three petroleum charging stages and has also undergone reservoir adjustment. The POWC(paleo-oil-water contact) of E2S2 reservoirs in BZ25-1-5 well and E2S2 reservoirs in BZ25-1-3 well is lower than OWC(present oil-water contact) at least for 9m and at most for 400m, but the POWC of E2S3 reservoirs in BZ25-1-5 well is higher than OWC at least for 20m and at most for 27.5m. The petroleum accumulation process and the reason for oil-water contact adjustment were studied based on burial history, petroleum generation history, fault re-activation rate and petroleum charging history. It suggested that the three petroleum charging stages are Mid-Miocene(11.5Ma), Late Miocene-Pliocene(6.5-3.5Ma) and Quaternary(2.5Ma-present), among which the second~third charging episode is seen as the major petroleum accumulation stage. The re-activeted faults in several different periods not only served as preferential path for petroleum vertical migration, but also caused petroleum leakage through faults. The petroleum leakage mainly occurred in Neo-tectonic movement period(after 3.5Ma), during which petroleum vertically leaked through re-activated faults and migrated to shallow reservoirs or spilled over surface, meanwhile due to constant

  16. AFM Study of Surface Nanobubbles on Binary Self-Assembled Monolayers on Ultraflat Gold with Identical Macroscopic Static Water Contact Angles and Different Terminal Functional Groups.

    Science.gov (United States)

    Song, Bo; Chen, Kun; Schmittel, Michael; Schönherr, Holger

    2016-11-01

    All experimental findings related to surface nanobubbles, such as their pronounced stability and the striking differences of macroscopic and apparent nanoscopic contact angles, need to be addressed in any theory or model of surface nanobubbles. In this work we critically test a recent explanation of surface nanobubble stability and their consequences and contrast this with previously proposed models. In particular, we elucidated the effect of surface chemical composition of well-controlled solid-aqueous interfaces of identical roughness and defect density on the apparent nanoscopic contact angles. Expanding on a previous atomic force microscopy (AFM) study on the systematic variation of the macroscopic wettability using binary self-assembled monolayers (SAMs) on ultraflat template stripped gold (TSG), we assessed here the effect of different surface chemical composition for macroscopically identical static water contact angles. SAMs on TSG with a constant macroscopic water contact angle of 81 ± 2° were obtained by coadsorption of a methyl-terminated thiol and a second thiol with different terminal functional groups, including hydroxy, amino, and carboxylic acid groups. In addition, surface nanobubbles formed by entrainment of air on SAMs of a bromoisobutyrate-terminated thiol were analyzed by AFM. Despite the widely differing surface potentials and different functionality, such as hydrogen bond acceptor or donor, and different dipole moments and polarizability, the nanoscopic contact angles (measured through the condensed phase and corrected for AFM tip broadening effects) were found to be 145 ± 10° for all surfaces. Hence, different chemical functionalities at identical macroscopic static water contact angle do not noticeably influence the apparent nanoscopic contact angle of surface nanobubbles. This universal contact angle is in agreement with recent models that rely on contact line pinning and the equilibrium of gas outflux due to the Laplace pressure and

  17. Influence of frame inelasticity on poroviscoelastic reflections from a gas-water contact

    Science.gov (United States)

    Zhou, Rui; Chesnokov, Evgeny; Brown, Raymon

    2016-01-01

    As a natural extension of Biot theory, poroviscoelasticity is more comprehensive. The only difference between them is frame inelasticity, which influences wave dispersion, attenuation, reflection, and transmission. Hence we compute the influence, which uses the data of typical sand with gas and water saturation in the Gulf of Mexico with four values of frame inelasticity. The graphically illustrated results show that frame inelasticity has a small influence on the dispersion of P1- and S-waves and almost no influence on the dispersion of P2-wave. The frame inelasticity's influence on the P1- and S-wave attenuation is substantial with only a relatively small impact on the P2-wave attenuation. In some frequency and incident-angle ranges, frame inelasticity's influence on the reflection and transmission coefficients is considerable.

  18. Evaluating the reliability of equilibrium dissolution assumption from residual gasoline in contact with water saturated sands

    Science.gov (United States)

    Lekmine, Greg; Sookhak Lari, Kaveh; Johnston, Colin D.; Bastow, Trevor P.; Rayner, John L.; Davis, Greg B.

    2017-01-01

    Understanding dissolution dynamics of hazardous compounds from complex gasoline mixtures is a key to long-term predictions of groundwater risks. The aim of this study was to investigate if the local equilibrium assumption for BTEX and TMBs (trimethylbenzenes) dissolution was valid under variable saturation in two dimensional flow conditions and evaluate the impact of local heterogeneities when equilibrium is verified at the scale of investigation. An initial residual gasoline saturation was established over the upper two-thirds of a water saturated sand pack. A constant horizontal pore velocity was maintained and water samples were recovered across 38 sampling ports over 141 days. Inside the residual NAPL zone, BTEX and TMBs dissolution curves were in agreement with the TMVOC model based on the local equilibrium assumption. Results compared to previous numerical studies suggest the presence of small scale dissolution fingering created perpendicular to the horizontal dissolution front, mainly triggered by heterogeneities in the medium structure and the local NAPL residual saturation. In the transition zone, TMVOC was able to represent a range of behaviours exhibited by the data, confirming equilibrium or near-equilibrium dissolution at the scale of investigation. The model locally showed discrepancies with the most soluble compounds, i.e. benzene and toluene, due to local heterogeneities exhibiting that at lower scale flow bypassing and channelling may have occurred. In these conditions mass transfer rates were still high enough to fall under the equilibrium assumption in TMVOC at the scale of investigation. Comparisons with other models involving upscaled mass transfer rates demonstrated that such approximations with TMVOC could lead to overestimate BTEX dissolution rates and underestimate the total remediation time.

  19. Assessing options to increase water productivity in irrigated river basins using remote sensing and modelling tools

    NARCIS (Netherlands)

    Dam, van J.C.; Singh, R.; Bessembinder, J.J.E.; Leffelaar, P.A.; Bastiaanssen, W.G.M.; Jhorar, R.K.; Kroes, J.G.; Droogers, P.

    2006-01-01

    In regions where water is more scarce than land, the water productivity concept (e.g. crop yield per unit of water utilized) provides a useful framework to analyse crop production increase or water savings in irrigated agriculture. Generic crop and soil models were applied at field and regional

  20. Assessing options to increase water productivity in irrigated river basins using remote sensing and modelling tools

    NARCIS (Netherlands)

    Dam, van J.C.; Singh, R.; Bessembinder, J.J.E.; Leffelaar, P.A.; Bastiaanssen, W.G.M.; Jhorar, R.K.; Kroes, J.G.; Droogers, P.

    2006-01-01

    In regions where water is more scarce than land, the water productivity concept (e.g. crop yield per unit of water utilized) provides a useful framework to analyse crop production increase or water savings in irrigated agriculture. Generic crop and soil models were applied at field and regional scal

  1. Dynamics of the contact salty water candy-water in water-bearing slabs submissive intensive salt water operation; Dinamica del contacto agua dulce-agua salada en acuiferos costeros sometidos a explotacion intensiva de agua salada

    Energy Technology Data Exchange (ETDEWEB)

    Joreto, S.; Pulido-Bosch, A.; Sanchez-Martos, F.; Frances, I.; Gisbert, J.

    2008-07-01

    The behaviour of coastal aquifers that are subject to abstraction is well-studied. what is not yet assessed is the behaviour of coastal aquifers subject to seawater abstractions. The proliferation in recent years of desalination plants along the southeastern Spanish coast, in addition to the plants yet to be planned and/or constructed, has led us to focus on the processes associated with this unusual disturbance of the coastal systems. the pseudo-natural equilibrium in the aquifer between the fresh and the saltwater was established by means of periodic measurements of water temperature and conductivity in observation wells that are slotted over the whole water column, and continuous monitoring of water level, temperature and conductivity over a network of boreholes that are slotted over the lengths corresponding to each of the water levels (fresh, interface and slat). The recent partial-commissioning of the desalination plant serving the city of Almeria has also enabled assessment of the immediate response of the aquifer to intensive abstraction of seawater, as well as observation of the response of the fresh water-salt water contact, which is becoming deeper and very well-defined. The spatio-temporal evolution of these parameters will be crucial in formulating a hypothesis to understand the behaviour of the interface under these unprecedented conditions. (Author)

  2. Field experiment on biological contact oxidation process to treat polluted river water in the Dianchi Lake watershed

    Institute of Scientific and Technical Information of China (English)

    Lu LI; Shuguang XIE; Hui ZHANG; Donghui WEN

    2009-01-01

    In this study two types of biological contact oxidation processes (BCOP), a step-feed (SBCOP) unit and an inter-recycle (IBCOP) unit, were designed to investigate the treatment of heavily polluted river water.The Daqing River, which is the largest pollutant contributor to the Dianchi Lake, one of the most eutrophic freshwater lakes in China, was taken for the case study. It was found that the SBCOP had higher adaptability and better performance in the reduction of COD, TN, and TP,which made it applicable for the treatment of polluted river water entering the Dianchi Lake. Nitrification rate was observed to be greatly affected by the influent temperature.During each season, the nitrification in the SBCOP was higher than that in the IBCOP. TN removal efficiency in the SBCOP was higher than that in the IBCOP during the winter and spring but poorer during the summer, possibly due to the inhibition of denitrification by higher dissolved oxygen level in the summer. Moreover, symbiotic algae-bacteria growth may be conducive to the removal of pollutants.

  3. Wetting dynamics at high values of contact line speed

    OpenAIRE

    Пономарев, К. О.; Феоктистов, Дмитрий Владимирович; Орлова, Евгения Георгиевна

    2015-01-01

    Experimental results analyses of dynamic contact angle change under the conditions of substrate wetting by distilled water at high values of the contact line speed was conducted. Three spreading modes for copper substrates with different roughness were selected: drop formation, spreading and equilibrium contact angle formation. Peculiarity of droplet spreading on superhydrophobic surface is found. It consists in a monotonic increase of the advancing dynamic contact angle. The effect of the dr...

  4. Increasing water productivity of irrigated crops under limited water supply at field scale

    NARCIS (Netherlands)

    Vazifedoust, M.; Dam, van J.C.; Feddes, R.A.; Feizi, M.

    2008-01-01

    Borkhar district is located in an and to semi-arid region in Iran and regularly faces widespread drought. Given current water scarcity, the limited available water should be used as efficient and productive as possible. To explore on-farm strategies which result in higher economic gains and water pr

  5. College Cafeteria Signage Increases Water Intake but Water Position on the Soda Dispenser Encourages More Soda Consumption.

    Science.gov (United States)

    Montuclard, Astrid Linn; Park-Mroch, Jennifer; O'Shea, Amy M J; Wansink, Brian; Irvin, Jill; Laroche, Helena H

    2017-07-22

    To evaluate the effects of improved water location visibility and water dispenser position on the soda dispenser on undergraduate students' beverage choices. Two focus groups with pilot intervention surveys before and after, adding a small sign above the soda dispensers' water button for 6 weeks in a large US university's all-you-can-eat, prepaid dining hall (measured with chi-square tests and logistic and ordinal logistic regression). Focus groups included 15 students. Survey participants included 357 students before and 301 after the intervention. After the intervention, more students reported ever having drunk water with the meal (66.4% to 77.0%; P = .003) and water consumption frequency increased (P = .005). Postintervention, the odds of drinking water increased by 1.57. Preference for other drinks was the main reason for not drinking water. A total of 59% of students had ever changed their preference from water to soda. The clear indication of the water's location increased students' reported water consumption. Further investigation is needed into how a non-independent water dispenser influences students' beverage choice. Clearly labeled, independent water dispensers are recommended. Copyright © 2017 Society for Nutrition Education and Behavior. All rights reserved.

  6. Investigation of drop dynamic contact angle on copper surface

    Science.gov (United States)

    Orlova, Evgenija; Feoktistov, Dmitriy; Kuznetsov, Geniy

    2015-01-01

    This paper presents experimental results of the studying the effect of surface roughness, microstructure and flow rate on the dynamic contact angle at spreading of distilled non deaerate water drop on a solid horizontal substrates. Copper substrates with different roughness have been investigated. For each substrate static contact angles depending on volume flow rate have been obtained using shadow system. Increasing the volume flow rate resulted in an increase of the static contact angle. It was found that with increasing surface roughness dynamic contact angle arises. Also difference in formation of the equilibrium contact angle at low and high rates of drop growth has been detected.

  7. Investigation of drop dynamic contact angle on copper surface

    Directory of Open Access Journals (Sweden)

    Orlova Evgenija

    2015-01-01

    Full Text Available This paper presents experimental results of the studying the effect of surface roughness, microstructure and flow rate on the dynamic contact angle at spreading of distilled non deaerate water drop on a solid horizontal substrates. Copper substrates with different roughness have been investigated. For each substrate static contact angles depending on volume flow rate have been obtained using shadow system. Increasing the volume flow rate resulted in an increase of the static contact angle. It was found that with increasing surface roughness dynamic contact angle arises. Also difference in formation of the equilibrium contact angle at low and high rates of drop growth has been detected.

  8. Increase of COP for heat transformer in water purification systems. Part II - Without increasing heat source temperature

    Energy Technology Data Exchange (ETDEWEB)

    Romero, R.J. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Morelos (Mexico)]. E-mail: rosenberg@uaem.mx; Siqueiros, J. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Morelos (Mexico); Huicochea, A. [Posgrado en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Morelos (Mexico)

    2007-04-15

    The integration of a water purification system allows a heat transformer to increase the actual coefficient of performance, by the reduction of the amount of heat supplied by unit of heat. A new defined COP called COP{sub WP} is proposed for the present system, which considers the fraction of heat recycled. Simulation with proven software compares the performance of the modeling of an absorption heat transformer for water purification (AHTWP) operating with water/lithium bromide, as working fluid-absorbent pair. Plots of enthalpy-based coefficients of performance (COP{sub ET}) and water purification coefficient of performance (COP{sub WP}) are shown against absorber temperature for several thermodynamic operating conditions. The results showed that the proposed (AHTWP) system is capable of increasing the original value of COP{sub ET} up to 1.6 times its original value by recycling energy from a water purification system. The proposed COP{sub WP} allows increments for COP values from any experimental data for water purification or for any other distillation system integrated to a heat transformer, regardless of actual COP{sub A} value or working fluid-absorbent pair.

  9. Increase of COP for heat transformer in water purification systems. Pt. 2 - Without increasing heat source temperature

    Energy Technology Data Exchange (ETDEWEB)

    Romero, R.J.; Siqueiros, J. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Morelos (Mexico); Huicochea, A. [Posgrado en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Morelos (Mexico)

    2007-04-15

    The integration of a water purification system allows a heat transformer to increase the actual coefficient of performance, by the reduction of the amount of heat supplied by unit of heat. A new defined COP called COP{sub WP} is proposed for the present system, which considers the fraction of heat recycled. Simulation with proven software compares the performance of the modeling of an absorption heat transformer for water purification (AHTWP) operating with water/lithium bromide, as working fluid-absorbent pair. Plots of enthalpy-based coefficients of performance (COP{sub ET}) and water purification coefficient of performance (COP{sub WP}) are shown against absorber temperature for several thermodynamic operating conditions. The results showed that the proposed (AHTWP) system is capable of increasing the original value of COP{sub ET} up to 1.6 times its original value by recycling energy from a water purification system. The proposed COP{sub WP} allows increments for COP values from any experimental data for water purification or for any other distillation system integrated to a heat transformer, regardless of actual COP{sub A} value or working fluid-absorbent pair. (author)

  10. Contact Angle Hysteresis for Sessile Water Nanodroplets Using Molecular Dynamics Simulation%固着纳米水滴接触角滞后的分子动力学模拟

    Institute of Scientific and Technical Information of China (English)

    王宝和; 王甜; 夏良志

    2015-01-01

    Using molecular dynamics simulation ,contact angle hysteresis for sessile water nanodroplets is studied.Simulation results show whether the surfaces are smooth or nanotextured rough , contact angle hysteresis increases with the solid surface potential energy increasing .Under the same solid surface po-tential energy , contact angle hysteresis of sessile water nanodroplets on nanotextured rough surfaces is bigger than on smooth , and the square column matrix form surface has a stronger contact angel hysteresis than the fencing form surface .%采用分子动力学模拟技术,研究了固着纳米水滴的接触角滞后。模拟结果表明,无论是光滑壁面还是纳米粗糙壁面,随着壁面作用势能的增大,纳米水滴的接触角滞后增大。在壁面作用势能相同的条件下,纳米水滴在纳米粗糙壁面上的接触角滞后要大于光滑壁面,方柱矩阵形比栏栅形纳米粗糙壁面的接触角滞后更大。

  11. Preparation of a durable superhydrophobic membrane by electrospinning poly (vinylidene fluoride) (PVDF) mixed with epoxy-siloxane modified SiO2 nanoparticles: a possible route to superhydrophobic surfaces with low water sliding angle and high water contact angle.

    Science.gov (United States)

    Wang, Shuai; Li, Yapeng; Fei, Xiaoliang; Sun, Mingda; Zhang, Chaoqun; Li, Yaoxian; Yang, Qingbiao; Hong, Xia

    2011-07-15

    A durable superhydrophobic surface with low water sliding angle (SA) and high water contact angle (CA) was obtained by electrospinning poly (vinylidene fluoride) (PVDF) which was mixed with epoxy-siloxane modified SiO(2) nanoparticles. To increase the roughness, modified SiO(2) nanoparticles were introduced into PVDF precursor solution. Then in the electrospinning process, nano-sized SiO(2) particles irregularly inlayed (it could also be regard as self-assembly) in the surface of the micro-sized PVDF mini-islands so as to form a dual-scale structure. This structure was responsible for the superhydrophobicity and self-cleaning property. In addition, epoxy-siloxane copolymer was used to modify the surface of SiO(2) nanoparticles so that the SiO(2) nanoparticles could stick to the surface of the micro-sized PVDF mini-islands. Through the underwater immersion test, the SiO(2) nanoparticles cannot be separated from PVDF easily so as to achieve the effect of durability. We chiefly explore the surface wettability and the relationship between the mass ratio of modified SiO(2) nanoparticles/PVDF and the CA, SA of electrospun mat. As the content of modified SiO(2) nanoparticles increased, the value of CA increased, ranging from 145.6° to 161.2°, and the water SA decreased to 2.17°, apparently indicating that the membrane we fabricated has a perfect effect of superhydrophobicity.

  12. Language Contact.

    Science.gov (United States)

    Nelde, Peter Hans

    1995-01-01

    Examines the phenomenon of language contact and recent trends in linguistic contact research, which focuses on language use, language users, and language spheres. Also discusses the role of linguistic and cultural conflicts in language contact situations. (13 references) (MDM)

  13. BioMig--A Method to Evaluate the Potential Release of Compounds from and the Formation of Biofilms on Polymeric Materials in Contact with Drinking Water.

    Science.gov (United States)

    Wen, Gang; Kötzsch, Stefan; Vital, Marius; Egli, Thomas; Ma, Jun

    2015-10-06

    In contact with water, polymeric materials (plastics) release compounds that can support suspended microbial growth and/or biofilm formation. The different methods presently used in the European Union to test plastics take 7-16 weeks to obtain a result. In industry, this delays material and product development as well as quality testing. Therefore, we developed a method package (BioMig) that allows testing of plastic materials with high reproducibility in 2 weeks for their potential biofilm (or biomass) formation and release of carbonaceous migration products when in contact with water. BioMig consists of (i) an extended migration potential test (seven times for 24 h at 60 °C), based on the European norm EN 12873-1 and the German UBA (Umweltbundesamt) guideline, and (ii) a biomass formation potential (BFP) test (14 days at 30 °C), which is a modified version of the Dutch biofilm production potential test. In the migration potential test, the amount of carbon released into water by the specimen is quantified by monitoring total and assimilable organic carbon over time; furthermore, the modular design of the test also allows one to assess additional parameters such as pathogen growth potential on the migration water or toxic effects on microbial growth. Flow cytometry (FCM)-based total cell counting (TCC) is used to quantify microbial growth in suspension and on surfaces after removal with mild sonication without affecting cell integrity. The BFP test allows one to determine both the planktonic (pBFP) and the sessile (sBFP) cell fractions. The sBFP consists of surface-attached cells after removal (>90% efficiency). Results for four standard test materials (PE-Xa, PE-Xc, EPDM 2%, and EPDM 20%), plus positive (PVC-P) and negative (glass) controls are presented. FCM-based TCC demonstrates that the release of growth-supporting carbon and proliferation of surface-attached cells stops increasing and stabilizes after 14 days of incubation; this allows for faster

  14. Water immersion is associated with an increase in aquaporin-2 excretion in healthy volunteers.

    NARCIS (Netherlands)

    Valenti, G.; Fraszl, W.; Addabbo, F.; Tamma, G.; Procino, G.; Satta, E.; Cirillo, M.; Santo, N.G. De; Drummer, C.; Bellini, L.; Kowoll, R.; Schlemmer, M.; Vogler, S.; Kirsch, K.A.; Svelto, M.; Gunga, H.C.

    2006-01-01

    Here, we report the alterations in renal water handling in healthy volunteers during a 6 h thermoneutral water immersion at 34 to 36 degrees C. We found that water immersion is associated with a reversible increase in total urinary AQP2 excretion.

  15. Effect of plant growth promoting micro organisms on increasing water use efficiency of alfalfa in water-stress conditions

    Directory of Open Access Journals (Sweden)

    M. Zafari

    2015-11-01

    Full Text Available In order to study the effect of bacterial growth on water use efficiency of alfalfa, a greenhouse experiment, as factorial based on completely randomized blocks design with three replications, was conducted at Faculty of Agriculture, University of Mohaghegh Ardabili, Ardabil, Iran, in 2012. Treatments consisted of 3 levels of water stress (75, 55 and 35% of field capacity and seed inoculation at 4 levels (no inoculation (control, inoculation with mycorhhiza G. mosseae, inoculation with rhyzobium S. meliloti, and inoculation with combination of mycorhhiza and rhyzobium. Results showed that water stress and seed inoculation have significant effect (P&le0.01 on leaf nutrients content. Water stress reduced absorption of phosphorus (23%, potassium (8%, iron (4% and increased sodium absorption (14% in non-inoculated seeds. Inoculation of seeds reduced stress effects and combined inoculation had the highest effect. Stomatal conductance and water use efficiency were affected (P&le0.01 by inoculation and water stress. Stomatal conductance was decreased during the stress period and seed inoculation with mycorhhiza G. mosseae was most effective on increasing stomatal conductance (47% at the highest level of stress. Water use efficiency increased as a result of water stress and inoculation. The highest value of water use efficiency (0.166 mg/kg was obtained in the combined inoculation with 35% field capacity treatment. Results of regression equations showed that during the inoculation, contribution of phosphorus and potassium in regulation of stomatal conductance was increased and contribution of sodium was decreased.  However, during the stress period, the share of potassium and sodium was increased in stomatal conductance and the share of phosphorus was reduced. Also, stress increased the role of stomatal conductance in water use efficiency. However, inoculation reduced the role of stomatal conductance in water use efficiency.

  16. Modifying landing mat material properties may decrease peak contact forces but increase forefoot forces in gymnastics landings.

    Science.gov (United States)

    Mills, Chris; Yeadon, Maurice R; Pain, Matthew T G

    2010-09-01

    This study investigated how changes in the material properties of a landing mat could minimise ground reaction forces (GRF) and internal loading on a gymnast during landing. A multi-layer model of a gymnastics competition landing mat and a subject-specific seven-link wobbling mass model of a gymnast were developed to address this aim. Landing mat properties (stiffness and damping) were optimised using a Simplex algorithm to minimise GRF and internal loading. The optimisation of the landing mat parameters was characterised by minimal changes to the mat's stiffness (<0.5%) but increased damping (272%) compared to the competition landing mat. Changes to the landing mat resulted in reduced peak vertical and horizontal GRF and reduced bone bending moments in the shank and thigh compared to a matching simulation. Peak bone bending moments within the thigh and shank were reduced by 6% from 321.5 Nm to 302.5Nm and GRF by 12% from 8626 N to 7552 N when compared to a matching simulation. The reduction in these forces may help to reduce the risk of bone fracture injury associated with a single landing and reduce the risk of a chronic injury such as a stress fracture.

  17. Lundep, a sand fly salivary endonuclease increases Leishmania parasite survival in neutrophils and inhibits XIIa contact activation in human plasma.

    Directory of Open Access Journals (Sweden)

    Andrezza C Chagas

    2014-02-01

    Full Text Available Neutrophils are the host's first line of defense against infections, and their extracellular traps (NET were recently shown to kill Leishmania parasites. Here we report a NET-destroying molecule (Lundep from the salivary glands of Lutzomyia longipalpis. Previous analysis of the sialotranscriptome of Lu. longipalpis showed the potential presence of an endonuclease. Indeed, not only was the cloned cDNA (Lundep shown to encode a highly active ss- and dsDNAse, but also the same activity was demonstrated to be secreted by salivary glands of female Lu. longipalpis. Lundep hydrolyzes both ss- and dsDNA with little sequence specificity with a calculated DNase activity of 300000 Kunitz units per mg of protein. Disruption of PMA (phorbol 12 myristate 13 acetate- or parasite-induced NETs by treatment with recombinant Lundep or salivary gland homogenates increases parasite survival in neutrophils. Furthermore, co-injection of recombinant Lundep with metacyclic promastigotes significantly exacerbates Leishmania infection in mice when compared with PBS alone or inactive (mutagenized Lundep. We hypothesize that Lundep helps the parasite to establish an infection by allowing it to escape from the leishmanicidal activity of NETs early after inoculation. Lundep may also assist blood meal intake by lowering the local viscosity caused by the release of host DNA and as an anticoagulant by inhibiting the intrinsic pathway of coagulation.

  18. Entropy Assessment on Direct Contact Condensation of Subsonic Steam Jets in a Water Tank through Numerical Investigation

    Directory of Open Access Journals (Sweden)

    Yu Ji

    2016-01-01

    Full Text Available The present article analyzes the dissipation characteristics of the direct contact condensation (DCC phenomenon that occurs when steam is injected into a water tank at a subsonic speed using a new modeling approach for the entropy generation over the calculation domain. The developed entropy assessment model is based on the local equilibrium hypothesis of non-equilibrium thermodynamics. The fluid flow and heat transfer processes are investigated numerically. To describe the condensation and evaporation process at the vapor-liquid interface, a phase change model originated from the kinetic theory of gas is implemented with the mixture model for multiphase flow in the computational fluid dynamics (CFD code ANSYS-FLUENT. The CFD predictions agree well with the published works, which indicates the phase change model combined with the mixture model is a promising way to simulate the DCC phenomenon. In addition, three clear stages as initial stage, developing stage and oscillatory stage are discriminated from both the thermal-hydraulic results and the entropy generation information. During different stages, different proportion of the entropy generation rate owing to heat transfer, viscous direct dissipation, turbulent dissipation and inner phase change in total entropy generation rate is estimated, which is favorable to deeper understanding the irreversibility of DCC phenomenon, designing and optimizing the equipment involved in the process.

  19. Association of urogenital symptoms with history of water contact in young women in areas endemic for S. haematobium

    DEFF Research Database (Denmark)

    Galappaththi-Arachchige, Hashini Nilushika; Hegertun, Ingrid Elise Amlie; Holmen, Sigve

    2016-01-01

    associated with water contact included burning sensation in the genitals (p = 0.005), spot bleeding (p = 0.012), abnormal discharge smell (p = 0.018), bloody discharge (p = 0.020), genital ulcer (p = 0.038), red urine (p

  20. Thermo-responsive stick-slip behavior of advancing water contact angle on the surfaces of poly(N-isopropylacrylamide)-grafted polypropylene membranes

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Wettability of a solid surface is highly important to its practical application,especially for the surface that shows thermoresponsive properties.In this paper,we describe a thermo-responsive stick-slip behavior of water droplets on the surfaces of poly(N-isopropylacrylamide)(PNIPAM)-grafted polypropylene membranes.Field emission scanning electron microscope(FESEM) images elucidate that the morphology of PNIPAM-grafted membrane surface is thermo-responsive,i.e.,the surface becomes rougher above the lower critical solution temperature(LCST) of PNIPAM.On the surface of nascent polypropylene membranes,the water droplet shows a smooth motion resulting in advancing and receding water contact angles of 111° and ~65°,respectively.On the PNIPAM-grafted membrane surfaces,the water droplet shows a stick-slip pattern above the LCST,whereas it advances smoothly below the LCST.This phenomenon is reproducible and can be ascribed to the energy barriers enhanced by the shrink of PNIPAM chains above the LCST.We also find that the slip contact angle decreases from 102° to 92° after several stick-slip cycles.This decrease is attributed to the water adsorption on the grafted PNIPAM layer,which is confirmed by the continuous decrease of the receding water contact angle.

  1. Balancing supply and demand of fresh water under increasing drought and salinisation in the Netherlands

    OpenAIRE

    Jeuken, A.; Beek, E. van; Duinen, R.; Veen, van der, M.Q.; Bocalon, A.; Delsman, J.; Pauw, P.S.; Oude Essink, G.; Zee, van der, KG Kristoffer; Stofberg, S.F.; Zuurbier, K.; Stuyfzand, P.; Appelman, W.; Creusen, R.; Paalman, M.

    2012-01-01

    The latest climate impact assessments show that climate change will cause an increasing mismatch between demand and supply of fresh water in many densely populated deltas around the world. Recent studies for the Netherlands show that the current water supply strategy is not climate proof in the long-run. Therefore, a future ‘climate proof’ fresh water supply is national priority on the Dutch water policy agenda

  2. Effect of increasing bromide concentration on toxicity in treated drinking water.

    Science.gov (United States)

    Sawade, Emma; Fabris, Rolando; Humpage, Andrew; Drikas, Mary

    2016-04-01

    Research is increasingly indicating the potential chronic health effects of brominated disinfection by-products (DBPs). This is likely to increase with elevated bromide concentrations resulting from the impacts of climate change, projected to include extended periods of drought and the sudden onset of water quality changes. This will demand more rigorous monitoring throughout distribution systems and improved water quality management at water treatment plants (WTPs). In this work the impact of increased bromide concentration on formation of DBPs following conventional treatment and chlorination was assessed for two water sources. Bioanalytical tests were utilised to determine cytotoxicity of the water post disinfection. Coagulation was shown to significantly reduce the cytotoxicity of the water, indicating that removal of natural organic matter DBP precursors continues to be an important factor in drinking water treatment. Most toxic species appear to form within the first half hour following disinfectant addition. Increasing bromide concentration across the two waters was shown to increase the formation of trihalomethanes and shifted the haloacetic acid species distribution from chlorinated to those with greater bromine substitution. This correlated with increasing cytotoxicity. This work demonstrates the challenges faced by WTPs and the possible effects increasing levels of bromide in source waters could have on public health.

  3. Increasing water temperature and disease risks in aquatic systems: climate change increases the risk of some, but not all, diseases.

    Science.gov (United States)

    Karvonen, Anssi; Rintamäki, Päivi; Jokela, Jukka; Valtonen, E Tellervo

    2010-11-01

    Global warming may impose severe risks for aquatic animal health if increasing water temperature leads to an increase in the incidence of parasitic diseases. Essentially, this could take place through a temperature-driven effect on the epidemiology of the disease. For example, higher temperature may boost the rate of disease spread through positive effects on parasite fitness in a weakened host. Increased temperature may also lengthen the transmission season leading to higher total prevalence of infection and more widespread epidemics. However, to date, general understanding of these relationships is limited due to scarcity of long-term empirical data. Here, we present one of the first long-term multi-pathogen data sets on the occurrence of pathogenic bacterial and parasitic infections in relation to increasing temperatures in aquatic systems. We analyse a time-series of disease dynamics on two fish farms in northern Finland from 1986 to 2006. We first demonstrate that the annual mean water temperature increased significantly on both farms over the study period and that the increase was most pronounced in the late summer (July-September). Second, we show that the prevalence of infection (i.e. proportion of fish tanks infected each year) increased with temperature. Interestingly, this pattern was observed in some of the diseases (Ichthyophthirius multifiliis, Flavobacterium columnare), whereas in the other diseases, the pattern was the opposite (Ichthyobodo necator) or absent (Chilodonella spp.). These results demonstrate the effect of increasing water temperature on aquatic disease dynamics, but also emphasise the importance of the biology of each disease, as well as the role of local conditions, in determining the direction and magnitude of these effects.

  4. Biosurfactant as an Enhancer of Geologic Carbon Storage: Microbial Modification of Interfacial Tension and Contact Angle in Carbon dioxide/Water/Quartz Systems

    Directory of Open Access Journals (Sweden)

    Taehyung Park

    2017-07-01

    Full Text Available Injecting and storing of carbon dioxide (CO2 in deep geologic formations is considered as one of the promising approaches for geologic carbon storage. Microbial wettability alteration of injected CO2 is expected to occur naturally by microorganisms indigenous to the geologic formation or microorganisms intentionally introduced to increase CO2 storage capacity in the target reservoirs. The question as to the extent of microbial CO2 wettability alteration under reservoir conditions still warrants further investigation. This study investigated the effect of a lipopeptide biosurfactant—surfactin, on interfacial tension (IFT reduction and contact angle alteration in CO2/water/quartz systems under a laboratory setup simulating in situ reservoir conditions. The temporal shifts in the IFT and the contact angle among CO2, brine, and quartz were monitored for different CO2 phases (3 MPa, 30°C for gaseous CO2; 10 MPa, 28°C for liquid CO2; 10 MPa, 37°C for supercritical CO2 upon cultivation of Bacillus subtilis strain ATCC6633 with induced surfactin secretion activity. Due to the secreted surfactin, the IFT between CO2 and brine decreased: from 49.5 to 30 mN/m, by ∼39% for gaseous CO2; from 28.5 to 13 mN/m, by 54% for liquid CO2; and from 32.5 to 18.5 mN/m, by ∼43% for supercritical CO2, respectively. The contact angle of a CO2 droplet on a quartz disk in brine increased: from 20.5° to 23.2°, by 1.16 times for gaseous CO2; from 18.4° to 61.8°, by 3.36 times for liquid CO2; and from 35.5° to 47.7°, by 1.34 times for supercritical CO2, respectively. With the microbially altered CO2 wettability, improvement in sweep efficiency of injected and displaced CO2 was evaluated using 2-D pore network model simulations; again the increment in sweep efficiency was the greatest in liquid CO2 phase due to the largest reduction in capillary factor. This result provides novel insights as to the role of naturally occurring biosurfactants in CO2 storage and

  5. Patterns of intestinal schistosomiasis among mothers and young children from Lake Albert, Uganda: water contact and social networks inferred from wearable global positioning system dataloggers

    Directory of Open Access Journals (Sweden)

    Edmund Y. W. Seto

    2012-11-01

    Full Text Available The establishment of a national control programme (NCP in Uganda has led to routine treatment of intestinal schistosomiasis with praziquantel in the communities along Lake Albert. However, because regular water contact remains a way of life for these populations, re-infection continues to mitigate the sustainability of the chemotherapy-based programme. A six-month longitudinal study was conducted in one Lake Albert community with the aim of characterizing water contact exposure and infection among mothers and their young preschool-aged children as the latter are not yet formally included within the NCP. At baseline the cohort of 37 mothers, 36 preschool-aged children had infection prevalences of 62% and 67%, respectively, which diminished to 20% and 29%, respectively, at the 6-month post-treatment follow-up. The subjects wore global positioning system (GPS datalogging devices over a 3-day period shortly after baseline, allowing for the estimation of time spent at the lakeshore as an exposure metric, which was found to be associated with prevalence at follow-up (OR = 2.1, P = 0.01 for both mothers and young children and odds ratio (OR = 4.4, P = 0.01 for young children alone. A social network of interpersonal interactions was also derived from the GPS data, and the exposures were positively associated both with the number and duration of peer interaction, suggesting the importance of socio-cultural factors associated with water contact behaviour. The findings illustrate reduction in both prevalence and intensity of infection in this community after treatment as well as remarkably high rates of water contact exposure and re-infection, particularly among younger children. We believe that this should now be formally considered within NCP, which may benefit from more in-depth ethnographic exploration of factors related to water contact as this should provide new opportunities for sustaining control.

  6. Increased fat catabolism sustains water balance during fasting in zebra finches.

    Science.gov (United States)

    Rutkowska, Joanna; Sadowska, Edyta T; Cichoń, Mariusz; Bauchinger, Ulf

    2016-09-01

    Patterns of physiological flexibility in response to fasting are well established, but much less is known about the contribution of water deprivation to the observed effects. We investigated body composition and energy and water budget in three groups of zebra finches: birds with access to food and water, food-deprived birds having access to drinking water and food-and-water-deprived birds. Animals were not stimulated by elevated energy expenditure and they were in thermoneutral conditions; thus, based on previous studies, water balance of fasting birds was expected to be maintained by increased catabolism of proteins. In contrast to this expectation, we found that access to water did not prevent reduction of proteinaceous tissue, but it saved fat reserves of the fasting birds. Thus, water balance of birds fasting without access to water seemed to be maintained by elevated fat catabolism, which generated 6 times more metabolic water compared with that in birds that had access to water. Therefore, we revise currently established views and propose fat to serve as the primary source for metabolic water production. Previously assumed increased protein breakdown for maintenance of water budget would occur if fat stores were depleted or if fat catabolism reached its upper limits due to high energy demands. © 2016. Published by The Company of Biologists Ltd.

  7. Equivalences between refractive index and equilibrium water content of conventional and silicone hydrogel soft contact lenses from automated and manual refractometry.

    Science.gov (United States)

    González-Méijome, José M; López-Alemany, Antonio; Lira, Madalena; Almeida, José B; Oliveira, M Elisabete C D Real; Parafita, Manuel A

    2007-01-01

    The purpose of the present study was to develop mathematical relationships that allow obtaining equilibrium water content and refractive index of conventional and silicone hydrogel soft contact lenses from refractive index measures obtained with automated refractometry or equilibrium water content measures derived from manual refractometry, respectively. Twelve HEMA-based hydrogels of different hydration and four siloxane-based polymers were assayed. A manual refractometer and a digital refractometer were used. Polynomial models obtained from the sucrose curves of equilibrium water content against refractive index and vice-versa were used either considering the whole range of sucrose concentrations (16-100% equilibrium water content) or a range confined to the equilibrium water content of current soft contact lenses (approximately 20-80% equilibrium water content). Values of equilibrium water content measured with the Atago N-2E and those derived from the refractive index measurement with CLR 12-70 by the applications of sucrose-based models displayed a strong linear correlation (r2 = 0.978). The same correlations were obtained when the models are applied to obtain refractive index values from the Atago N-2E and compared with those (values) given by the CLR 12-70 (r2 = 0.978). No significantly different results are obtained between models derived from the whole range of the sucrose solution or the model limited to the normal range of soft contact lens hydration. Present results will have implications for future experimental and clinical research regarding normal hydration and dehydration experiments with hydrogel polymers, and particularly in the field of contact lenses. 2006 Wiley Periodicals, Inc.

  8. Design of the Brine Evaporation Bag for Increased Water Recovery in Microgravity

    Science.gov (United States)

    Hayden, Anna L.; Delzeit, Lance D.

    2015-01-01

    The existing water recovery system on the International Space Station (ISS) is limited to 75% reclamation; consequently, long duration space missions are currently unfeasible due to the large quantity of water necessary to sustain the crew. The Brine Evaporation Bag (BEB) is a proposed system to supplement the existing water recovery system aboard the ISS that can to increase water recovery to 99%. The largest barrier to high water recovery is mineral scaling inside the water recovery equipment, which leads to equipment failure; therefore, some water must remain to keep the minerals dissolved. This waste stream is liquid brine containing salts, acids, organics, and water. The BEB is designed to recover this remaining water while protecting the equipment from scale. The BEB consists of a sealed bag containing a hydrophobic membrane that allows water vapor and gas to pass through. It is operated under vacuum, heated, and continuously filled with brine to boil away the water. The water vapor is recovered and the solids are contained inside the bag for disposal. The BEB can dry the brine to a solid block. Ongoing work includes improving the design of the BEB and the evaporator to prevent leaks, maximize the rate of water removal, and minimize energy use and weight. Additional testing will determine whether designs are heat- or mass-transfer limited and the optimal water recovery rate.

  9. Increasing Polychaete diversity as a consequence of increasing research effort in Greek waters: new records and exotic species

    Directory of Open Access Journals (Sweden)

    N. SIMBOURA

    2005-06-01

    Full Text Available The increasing diversity of the Greek Polychaete fauna over the last seven decades, as illustrated graphically, shows an increasing trend which is proportionately related to the research effort exerted. Ongoing research activities mainly in the depths of the N. Aegean Sea, as a result of which 13 new records have been added to the Greek Polychaete fauna, confirming the above statement. The new species records are presented along with their geographical distribution and habitat. According to the latest checklist of the Greek Polychaeta, 753 species of Polychaetes have been recorded in Greek waters. Finally, it should be noted that 6 Lessepsian migrants and 16 species have been recorded in the Mediterranean for the first time. Their distribution within Greece and worldwide is given and their presence in Greek waters is discussed.

  10. Increasing Polychaete diversity as a consequence of increasing research effort in Greek waters: new records and exotic species

    Directory of Open Access Journals (Sweden)

    N. SIMBOURA

    2012-12-01

    Full Text Available The increasing diversity of the Greek Polychaete fauna over the last seven decades, as illustrated graphically, shows an increasing trend which is proportionately related to the research effort exerted. Ongoing research activities mainly in the depths of the N. Aegean Sea, as a result of which 13 new records have been added to the Greek Polychaete fauna, confirming the above statement. The new species records are presented along with their geographical distribution and habitat. According to the latest checklist of the Greek Polychaeta, 753 species of Polychaetes have been recorded in Greek waters. Finally, it should be noted that 6 Lessepsian migrants and 16 species have been recorded in the Mediterranean for the first time. Their distribution within Greece and worldwide is given and their presence in Greek waters is discussed.

  11. Radiolytic mapping of solvent-contact surfaces in Photosystem II of higher plants: experimental identification of putative water channels within the photosystem.

    Science.gov (United States)

    Frankel, Laurie K; Sallans, Larry; Bellamy, Henry; Goettert, Jost S; Limbach, Patrick A; Bricker, Terry M

    2013-08-09

    Photosystem II uses water as an enzymatic substrate. It has been hypothesized that this water is vectored to the active site for water oxidation via water channels that lead from the surface of the protein complex to the Mn4O5Ca metal cluster. The radiolysis of water by synchrotron radiation produces amino acid residue-modifying OH(•) and is a powerful technique to identify regions of proteins that are in contact with water. In this study, we have used this technique to oxidatively modify buried amino acid residues in higher plant Photosystem II membranes. Fourier transform ion cyclotron resonance mass spectrometry was then used to identify these oxidized amino acid residues that were located in several core Photosystem II subunits (D1, D2, CP43, and CP47). While, as expected, the majority of the identified oxidized residues (≈75%) are located on the solvent-exposed surface of the complex, a number of buried residues on these proteins were also modified. These residues form groups which appear to lead from the surface of the complex to the Mn4O5Ca cluster. These residues may be in contact with putative water channels in the photosystem. These results are discussed within the context of a number of largely computational studies that have identified putative water channels in Photosystem II.

  12. Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize

    Science.gov (United States)

    Cai, Qian; Zhang, Yulong; Sun, Zhanxiang; Zheng, Jiaming; Bai, Wei; Zhang, Yue; Liu, Yang; Feng, Liangshan; Feng, Chen; Zhang, Zhe; Yang, Ning; Evers, Jochem B.; Zhang, Lizhen

    2017-08-01

    A large yield gap exists in rain-fed maize (Zea mays L.) production in semi-arid regions, mainly caused by frequent droughts halfway through the crop-growing period due to uneven distribution of rainfall. It is questionable whether irrigation systems are economically required in such a region since the total amount of rainfall does generally meet crop requirements. This study aimed to quantitatively determine the effects of water stress from jointing to grain filling on root and shoot growth and the consequences for maize grain yield, above- and below-ground dry matter, water uptake (WU) and water use efficiency (WUE). Pot experiments were conducted in 2014 and 2015 with a mobile rain shelter to achieve conditions of no, mild or severe water stress. Maize yield was not affected by mild water stress over 2 years, while severe stress reduced yield by 56 %. Both water stress levels decreased root biomass slightly but shoot biomass substantially. Mild water stress decreased root length but increased root diameter, resulting in no effect on root surface area. Due to the morphological plasticity in root growth and the increase in root / shoot ratio, WU under water stress was decreased, and overall WUE for both above-ground dry matter and grain yield increased. Our results demonstrate that an irrigation system might be not economically and ecologically necessary because the frequently occurring mild water stress did not reduce crop yield much. The study helps us to understand crop responses to water stress during a critical water-sensitive period (middle of the crop-growing season) and to mitigate drought risk in dry-land agriculture.

  13. Investigation of drop dynamic contact angle on copper surface

    OpenAIRE

    Orlova Evgenija; Feoktistov Dmitriy; Kuznetsov Geniy

    2015-01-01

    This paper presents experimental results of the studying the effect of surface roughness, microstructure and flow rate on the dynamic contact angle at spreading of distilled non deaerate water drop on a solid horizontal substrates. Copper substrates with different roughness have been investigated. For each substrate static contact angles depending on volume flow rate have been obtained using shadow system. Increasing the volume flow rate resulted in an increase of the static contact angle. It...

  14. Simulation of the Effect of Water-vapor Increase on Temperature in the Stratosphere

    Institute of Scientific and Technical Information of China (English)

    BI Yun; CHEN Yuejuan; ZHOU Renjun; YI Mingjian; DENG Shumei

    2011-01-01

    To analyze the mechanism by which water vapor increase leads to cooling in the stratosphere, the effects of water-vapor increases on temperature in the stratosphere were simulated using the two-dimensional,interactive chemical dynamical radiative model (SOCRATES) of NCAR. The results indicate that increases in stratospheric water vapor lead to stratospheric cooling, with the extent of cooling increasing with height,and that cooling in the middle stratosphere is stronger in Arctic regions. Analysis of the radiation process showed that infiared radiative cooling by water vapor is a pivotal factor in niddle-lower stratospheric cooling. However. in the npper stratosphere (above 45 kn), infrared radiation is not a factor in cooling;there, cooling is caused by the decreased solar radiative heating rate resulting from ozone decrease due to increased stratospheric water vapor. Dynamical cooling is important in the middle-upper stratosphere,and dynamical feedback to temperature change is more distinct in the Northern Hemisphere middle-high latitudes than in other regions and significantly affects temperature and ozone in winter over Arctic regions.Increasing stratospheric water vapor will strengthen ozone depletion through the chemical process. However,ozone will increase in the middle stratosphere. The change in ozone due to increasing water vapor has an important effect on the stratospheric teinperature change.

  15. Increased salt consumption induces body water conservation and decreases fluid intake.

    Science.gov (United States)

    Rakova, Natalia; Kitada, Kento; Lerchl, Kathrin; Dahlmann, Anke; Birukov, Anna; Daub, Steffen; Kopp, Christoph; Pedchenko, Tetyana; Zhang, Yahua; Beck, Luis; Johannes, Bernd; Marton, Adriana; Müller, Dominik N; Rauh, Manfred; Luft, Friedrich C; Titze, Jens

    2017-05-01

    The idea that increasing salt intake increases drinking and urine volume is widely accepted. We tested the hypothesis that an increase in salt intake of 6 g/d would change fluid balance in men living under ultra-long-term controlled conditions. Over the course of 2 separate space flight simulation studies of 105 and 205 days' duration, we exposed 10 healthy men to 3 salt intake levels (12, 9, or 6 g/d). All other nutrients were maintained constant. We studied the effect of salt-driven changes in mineralocorticoid and glucocorticoid urinary excretion on day-to-day osmolyte and water balance. A 6-g/d increase in salt intake increased urine osmolyte excretion, but reduced free-water clearance, indicating endogenous free water accrual by urine concentration. The resulting endogenous water surplus reduced fluid intake at the 12-g/d salt intake level. Across all 3 levels of salt intake, half-weekly and weekly rhythmical mineralocorticoid release promoted free water reabsorption via the renal concentration mechanism. Mineralocorticoid-coupled increases in free water reabsorption were counterbalanced by rhythmical glucocorticoid release, with excretion of endogenous osmolyte and water surplus by relative urine dilution. A 6-g/d increase in salt intake decreased the level of rhythmical mineralocorticoid release and elevated rhythmical glucocorticoid release. The projected effect of salt-driven hormone rhythm modulation corresponded well with the measured decrease in water intake and an increase in urine volume with surplus osmolyte excretion. Humans regulate osmolyte and water balance by rhythmical mineralocorticoid and glucocorticoid release, endogenous accrual of surplus body water, and precise surplus excretion. Federal Ministry for Economics and Technology/DLR; the Interdisciplinary Centre for Clinical Research; the NIH; the American Heart Association (AHA); the Renal Research Institute; and the TOYOBO Biotechnology Foundation. Food products were donated by APETITO

  16. A tool to increase information-processing capacity for consumer water meter data

    Directory of Open Access Journals (Sweden)

    Heinz E. Jacobs

    2012-02-01

    Full Text Available Background: Water service providers invoice most South African urban consumers for the water they use every month. A secure treasury system generates water invoices at municipalities’ financial departments. Information about the water usage of customers initially comes from reading the water meters, usually located in gardens near the front boundaries of properties. Until as recently as 1990, the main purpose of the water meter readings was to generate invoices for water usage. There are various treasury systems for this purpose.Objective: The objective of this research article was to describe the development of Swift, a locally developed software tool for analysing water meter data from an information management perspective, which engineers in the water field generally use, and to assess critically the influence of Swift on published research and industry. This article focuses on water usage and the challenge of data interchange and extraction as issues that various industries face.Method: This article presents the first detailed report on Swift. It uses a detailed knowledge review and presents and summarises the findings chronologically.Results: The water meter data flow path used to be quite simple. The risk of breaches in confidentiality was limited. Technological advances over the years have led to additional knowledge coming from the same water meter readings with subsequent research outputs. However, there are also complicated data flow paths and increased risks. Users have used Swift to analyse more than two million consumers’ water meter readings to date. Studies have culminated in 10 peer-reviewed journal articles using the data. Seven of them were in the last five years.Conclusion: Swift-based data was the basis of various research studies in the past decade. Practical guidelines in the civil engineering fraternity for estimating water use in South Africa have incorporated knowledge from these studies. Developments after 1995 have

  17. Using aerated gravel-packed contact bed and constructed wetland system for polluted river water purification: A case study in Taiwan

    Science.gov (United States)

    Lin, J. L.; Tu, Y. T.; Chiang, P. C.; Chen, S. H.; Kao, C. M.

    2015-06-01

    The Ju-Liao Stream is one of the most contaminated streams in Kaohsiung City, Taiwan. A constructed wetland (CW) system was built in 2010 for polluted stream water purification and ecosystem improvement. An aerated gravel-packed contact bed (CB) system was built in 2011 and part of the stream water was treated by the CB before discharging to the CW. The influent rates of the CW and CB were approximately 5570 and 900 m3/d, respectively. The CW contained one free-water surface basin planted with emergent wetland plants, followed by the plug-flow channel-shaped free-water surface basin planted with emergent and floating wetland plants. The mean measured hydraulic loading rate (HLR), hydraulic retention time (HRT), water depth, and total volume of wetland system were 1.7 m/d, 0.68 d, 0.7 m, and 4400 m3, respectively. The aeration zone of the CB system had a dimension of 24 m (L) × 8 m (W) × 3 m (H), which was filled with gravels (average diameter = 5 cm) with a porosity of 0.4, and the aeration rate was 7.8 m3/min. Results show that the CB system was able to remove 69% of suspended solid (SS), 86% of biochemical oxygen demand (BOD), and 58% of total nitrogen (TN). Up to 82% of BOD and 27% of TN could be removed in the CW system. Removal efficiency of SS was affected by the growth of chlorophyll a in the CW system due to the growth of algae. The observed first-order decay rates (k) for BOD and TN in CB were 9.3 and 4.2 1/d, and the k values for BOD and TN removal in CW were 2.5 and 0.45 1/d. The high pollutant removal efficiencies in the CB system indicate that the system could enhance the organic and nutrient removal through the biological processes effectively. Sediments contained high total organic matter (1.9-4.5%), sediment total nitrogen (6.4-10.1 g/kg), sediment total phosphorus (0.59-0.94 g/kg), and sediment oxygen demand (0.9-4.1 g O2/m2 d). The organic and nutrient-abundant sediments resulted in reduced conditions (oxidation-reduction potential measurements

  18. Expected increase in staple crop imports in water-scarce countries in 2050

    Science.gov (United States)

    Chouchane, Hatem; Krol, Maarten; Hoekstra, Arjen

    2017-04-01

    Water scarcity is a major challenge in the coming decades. The increasing population and the changing pattern of water availability that results from global warming reduce the potential of sufficient food production in many countries over the world. Today, two thirds of the global population are already living under conditions of severe water scarcity at least one month of the year. This rises the importance of addressing the present and future relationship between water availability and food import in water-scarce countries. The net import of staple crops (barley, cassava, maize, millet and products, oats, potatoes, rice, rye, sorghum, soybeans, sweet potatoes, wheat and yams) is analysed in relation to water availability per capita for the period 1961-2010, considering five decadal averages. The relation found is used together with the low, medium and high population growth scenarios from the United Nations to project the staple crops import in water-scarce countries for the year 2050. Additionally, we investigate the uncertainties related to the three population scenarios. Results will help countries to better understand the impact of population growth and limited water resources on their future food trade. This study will provide a valuable supporting tool for policy makers towards more sustainable and water-efficient food production as targeted with the Sustainable Development Goals. Keywords: Water Availability, Food Import, Staple Crops, Water Scarcity, Water-Use Efficiency, Sustainable Development Goals.

  19. Contact Lens Risks

    Science.gov (United States)

    ... Tap and distilled water have been associated with Acanthamoeba keratitis, a corneal infection that is resistant to ... to: Advice for Patients With Soft Contact Lenses: Acanthamoeba Keratitis Infections Related to Complete® MoisturePlus Multi Purpose ...

  20. Topography of the Deuteronilus contact on Mars: Evidence for an ancient water/mud ocean and long-wavelength topographic readjustments

    Science.gov (United States)

    Ivanov, M. A.; Erkeling, G.; Hiesinger, H.; Bernhardt, H.; Reiss, D.

    2017-09-01

    VBF emplacement. The surface of the VBF-like Isidis Planitia unit is distinctly younger, ∼3.50 ± 0.01 Ga, which suggests that this unit formed independently. Neither volcanic nor glacial modes of emplacement are consistent with the topographic configuration and the shape of the Deuteronilus contact within both the northern plains and in Isidis Planitia. The broad flooding and formation of extensive water/mud reservoirs remains to be the most plausible mode of formation of the VBF in the northern plains and the VBF-like unit on the floor of the Isidis basin.

  1. Balancing supply and demand of fresh water under increasing drought and salinisation in the Netherlands

    NARCIS (Netherlands)

    Jeuken, A.; Beek, E.; Duinen, R.; Veen, van der A.; Bocalon, A.; Delsman, J.; Pauw, P.S.; Oude Essink, G.; Zee, van der S.E.A.T.M.; Stofberg, S.F.; Zuurbier, K.; Stuyfzand, P.; Appelman, W.; Creusen, R.; Paalman, M.; Katschnig, D.; Rozema, J.; Mens, M.; Kwakkel, J.; Thissen, W.; Veraart, J.A.; Tolk, L.; Vries, de A.

    2012-01-01

    The latest climate impact assessments show that climate change will cause an increasing mismatch between demand and supply of fresh water in many densely populated deltas around the world. Recent studies for the Netherlands show that the current water supply strategy is not climate proof in the long

  2. RNA-Based Methods Increase the Detection of Fecal Bacteria and Fecal Identifiers in Environmental Waters

    Science.gov (United States)

    We evaluated the use of qPCR RNA-based methods in the detection of fecal bacteria in environmental waters. We showed that RNA methods can increase the detection of fecal bacteria in multiple water matrices. The data suggest that this is a viable alternative for the detection of a...

  3. Optimal dike investments under uncertainty and learning about increasing water levels

    NARCIS (Netherlands)

    Pol, van der T.D.; Ierland, van E.C.; Weikard, H.P.

    2014-01-01

    Water level extremes for seas and rivers are crucial to determine optimal dike heights. Future development in extremes under climate change is, however, uncertain. In this paper, we explore impacts of uncertainty and learning about increasing water levels on dike investment. We extend previous work

  4. Land and water use practices intended to increase water productivity in arid and semi-arid zones. Application to Uzbekistan.

    Science.gov (United States)

    Mirshadiev, Mirzokhid; Fleskens, Luuk; van Dam, Jos; Pulatov, Alim

    2017-04-01

    Water demand increases as more food is required to meet population growth and higher living standards. In addition, climate change is expected to further exacerbate water scarcity in already dry areas where irrigation is most needed. In the water scarce areas, the key strategy to meet demand of growing food production and water use is increase of water productivity (WP) based on best land and water use practices. A literature review will be conducted to study promising land and water use practices that increase water productivity in arid and semi-arid zones, with a special focus on Uzbekistan. In addition to literature review we will conduct interviews with local farmers and land and water management experts. However, due to time constraints and difficult to access grey literature, the review paper cannot cover all promising land and water use practices that have been used in Uzbekistan. We selected the following promising practices: a) conventional furrow irrigation; b) deficit irrigation; c) drip/sprinkle irrigation, and d) rain-fed with supplemental irrigation. The preliminary findings of the literature review show that in Uzbekistan in case of conventional furrow irrigation the WP range of cotton was 0.32-0.89, and of wheat 0.44-1.77 (kg m3). By applying deficit irrigation practices, WP values of cotton can be 0-25% higher (0.32-1.11 kg m3), and of wheat 114-400% higher (2.20-3.78 kg m3). However, deficit irrigation practices for potato's need to be managed carefully to reach higher WP, and might even negatively effect WP, showing a range of 0.85-7.04 compared to conventional furrow irrigation 4.02-4.81 (kg m3). Important to mention that drip irrigation practice can highly contribute to increase WP of cotton by 156-91 % (0.82-1.70 kg m3) compared to furrow irrigation. Also, rain-fed cultivation with supplemental irrigation result is anticipated and will be included in the presentation and full version of paper. In summary, the review of current land and water

  5. Do the interfacial fluidities of cationic reverse micelles enhance with an increase in the water content?

    Science.gov (United States)

    Mali, K. S.; Dutt, G. B.

    2009-11-01

    The role of cosurfactant and water on the interfacial fluidities of reverse micelles formed with the cationic surfactant, cetyltrimethylammonium bromide (CTAB) has been examined by measuring the fluorescence anisotropies of two structurally similar ionic solutes, rhodamine 110 and fluorescein. For this purpose, reverse micellar systems with (CTAB/1-pentanol/cyclohexane/water) and without a cosurfactant (CTAB/chloroform-isooctane/water) have been chosen. In this study, the mole ratio of water to surfactant W has been varied in the region of 4-25. Experimental results indicate that the average reorientation time of the probe, which is a measure of the fluidity near the interfacial region, decreases by a factor of 1.5 and 1.4 for rhodamine 110 and fluorescein, respectively, as W goes up from 5 to 25 in CTAB/1-pentanol/cyclohexane/water reverse micellar system. In contrast, the average reorientation time, remains invariant for both the probe molecules in CTAB/chloroform-isooctane/water reverse micellar system despite an increase in W from 4 to 24. In case of CTAB/1-pentanol/cyclohexane/water reverse micellar system, the added water binds to bromide counter ions and also the hydroxyl groups of the cosurfactant, 1-pentanol, which results in an increase in the effective head group area. Such an increase in the effective head group area leads to a decrease in the packing parameter, and hence an increase in the interfacial fluidity. On the other hand, in CTAB/chloroform-isooctane/water system, the added water merely hydrates the bromide ions, thereby leaving the effective head group area unchanged. Thus, the interfacial fluidities remain invariant upon the addition of water in the absence of a cosurfactant.

  6. Changes in composition and pore space of sand rocks in the oil water contact zone (section YU1 3-4, Klyuchevskaya area, Tomsk region)

    Science.gov (United States)

    Nedolivko, N.; Perevertailo, T.; Pavlovec, T.

    2016-09-01

    The article provides an analysis of specific features in changes of rocks in the oil water contact zone. The object of study is the formation YU1 3-4 (J3o1) of Klyuchevskaya oil deposit (West Siberian oil-gas province, Tomsk region). The research data allow the authors to determine vertical zoning of the surface structure and identify the following zones: oil saturation (weak alteration), bitumen-content dissolution, non-bitumen-content dissolution, cementation, including rocks not affected by hydrocarbon deposit. The rocks under investigation are characterized by different changes in composition, pore space, as well as reservoir filtration and volumetric parameters. Detection of irregularity in distribution of void- pore space in oil-water contact zones is of great practical importance. It helps to avoid the errors in differential pressure drawdown and explain the origin of low-resistivity collectors.

  7. Analytical application of solid contact ion-selective electrodes for determination of copper and nitrate in various food products and drinking water.

    Science.gov (United States)

    Wardak, Cecylia; Grabarczyk, Malgorzata

    2016-08-02

    A simple, fast and cheap method for monitoring copper and nitrate in drinking water and food products using newly developed solid contact ion-selective electrodes is proposed. Determination of copper and nitrate was performed by application of multiple standard additions technique. The reliability of the obtained results was assessed by comparing them using the anodic stripping voltammetry or spectrophotometry for the same samples. In each case, satisfactory agreement of the results was obtained, which confirms the analytical usefulness of the constructed electrodes.

  8. House sparrows (Passer domesticus) increase protein catabolism in response to water restriction.

    Science.gov (United States)

    Gerson, Alexander R; Guglielmo, Christopher G

    2011-04-01

    Birds primarily rely on fat for energy during fasting and to fuel energetically demanding activities. Proteins are catabolized supplemental to fat, the function of which in birds remains poorly understood. It has been proposed that birds may increase the catabolism of body protein under dehydrating conditions as a means to maintain water balance, because catabolism of wet protein yields more total metabolic and bound water (0.155·H(2)O(-1)·kJ(-1)) than wet lipids (0.029 g·H(2)O(-1)·kJ(-1)). On the other hand, protein sparing should be important to maintain function of muscles and organs. We used quantitative magnetic resonance body composition analysis and hygrometry to investigate the effect of water restriction on fat and lean mass catabolism during short-term fasting at rest and in response to a metabolic challenge (4-h shivering) in house sparrows (Passer domesticus). Water loss at rest and during shivering was compared with water gains from the catabolism of tissue. At rest, water-restricted birds had significantly greater lean mass loss, higher plasma uric acid concentration, and plasma osmolality than control birds. Endogenous water gains from lean mass catabolism offset losses over the resting period. Water restriction had no effect on lean mass catabolism during shivering, as water gains from fat oxidation appeared sufficient to maintain water balance. These data provide direct evidence supporting the hypothesis that water stress can increase protein catabolism at rest, possibly as a metabolic strategy to offset high rates of evaporative water loss.

  9. Nanosecond laser micro- and nanotexturing for the design of a superhydrophobic coating robust against long-term contact with water, cavitation, and abrasion

    Science.gov (United States)

    Emelyanenko, Alexandre M.; Shagieva, Farida M.; Domantovsky, Alexandr G.; Boinovich, Ludmila B.

    2015-03-01

    Existing and emerging applications of laser-driven methods make an important contribution to advancement in nanotechnological approaches for the design of superhydrophobic surfaces. In this study, we describe a superhydrophobic coating on stainless steel, designed by nanosecond IR laser treatment with subsequent chemisorption of fluorooxysilane for use in heavily loaded hydraulic systems. Coating characterization reveals extreme water repellency, chemical stability on long-term contact with water, and excellent durability of functional properties under prolonged abrasive wear and cavitation loads. The coating also demonstrates self-healing properties after mechanical damage.

  10. OPTIMIZING SYSTEM OF RICE INTENSIFICATION PARAMETERS USING AQUACROP MODEL FOR INCREASING WATER PRODUCTIVITY AND WATER USE EFFICIENCY IN RICE PRODUCTION

    Directory of Open Access Journals (Sweden)

    Z. Katambara

    2014-01-01

    Full Text Available Producing more rice while using less water is among the calls in water scarce regions so as to feed the growing population and cope with the changing climate. Among the suitable techniques towards this achievement is the use of system of rice intensification (SRI, which has been reported as an approach that uses less water and has high water productivity and water use efficiency. Despite its promising results, the use of SRI practice in Tanzania is limited due to less knowledge with regard to the transplanting age, plant spacing, and minimum soil moisture to be allowed for irrigation, and alternate wetting and drying interval for various geographical locations. The AquaCrop crop water productivity model, which is capable of simulating crop water requirements and yield for a given parameter set, was used to identify suitable SRI parameters for Mkindo area in Morogoro region, Tanzania. Using no stress in soil fertility, plant spacings ranging from 5 cm to 50 cm were evaluated. Results suggest that the yield and biomass produced per ha increase with decreasing spacing from 50 cm to 20 cm. Preliminary field results suggest that the optimum spacing is round 25 cm. However, the model structure does not take into consideration number of tillers produced. As such, the study calls for incorporation of the tillering processes into AquaCrop model.

  11. Diffuse radiation increases global ecosystem-level water-use efficiency

    Science.gov (United States)

    Moffat, A. M.; Reichstein, M.; Cescatti, A.; Knohl, A.; Zaehle, S.

    2012-12-01

    Current environmental changes lead not only to rising atmospheric CO2 levels and air temperature but also to changes in air pollution and thus the light quality of the solar radiation reaching the land-surface. While rising CO2 levels are thought to enhance photosynthesis and closure of stomata, thus leading to relative water savings, the effect of diffuse radiation on transpiration by plants is less clear. It has been speculated that the stimulation of photosynthesis by increased levels of diffuse light may be counteracted by higher transpiration and consequently water depletion and drought stress. Ultimately, in water co-limited systems, the overall effect of diffuse radiation will depend on the sensitivity of canopy transpiration versus photosynthesis to diffuse light, i.e. whether water-use efficiency changes with relative levels of diffuse light. Our study shows that water-use efficiency increases significantly with higher fractions of diffuse light. It uses the ecosystem-atmosphere gas-exchange observations obtained with the eddy covariance method at 29 flux tower sites. In contrast to previous global studies, the analysis is based directly on measurements of diffuse radiation. Its effect on water-use efficiency was derived by analyzing the multivariate response of carbon and water fluxes to radiation and air humidity using a purely empirical approach based on artificial neural networks. We infer that per unit change of diffuse fraction the water-use efficiency increases up to 40% depending on diffuse fraction levels and ecosystem type. Hence, in regions with increasing diffuse radiation positive effects on primary production are expected even under conditions where water is co-limiting productivity.

  12. How to meet the increasing demands of water, food and energy in the future?

    Science.gov (United States)

    Shi, Haiyun; Chen, Ji; Sivakumar, Bellie; Peart, Mervyn

    2017-04-01

    Regarded as a driving force in water, food and energy demands, the world's population has been increasing rapidly since the beginning of the 20th century. According to the medium-growth projection scenario of the United Nations, the world's population will reach 9.5 billion by 2050. In response to the continuously growing population during this century, water, food and energy demands have also been increasing rapidly, and social problems (e.g., water, food, and energy shortages) will be most likely to occur, especially if no proper management strategies are adopted. Then, how to meet the increasing demands of water, food and energy in the future? This study focuses on the sustainable developments of population, water, food, energy and dams, and the significances of this study can be concluded as follows: First, we reveal the close association between dams and social development through analysing the related data for the period 1960-2010, and argue that construction of additional large dams will have to be considered as one of the best available options to meet the increasing water, food and energy demands in the future. We conduct the projections of global water, food and energy consumptions and dam development for the period 2010-2050, and the results show that, compared to 2010, the total water, food and energy consumptions in 2050 will increase by 20%, 34% and 37%, respectively. Moreover, it is projected that additional 4,340 dams will be constructed by 2050 all over the world. Second, we analyse the current situation of global water scarcity based on the related data representing water resources availability (per capita available water resources), dam development (the number of dams), and the level of economic development (per capita gross domestic product). At the global scale, water scarcity exists in more than 70% of the countries around the world, including 43 countries suffering from economic water scarcity and 129 countries suffering from physical water

  13. Direct determination of three-phase contact line properties on nearly molecular scale

    Science.gov (United States)

    Winkler, P. M.; McGraw, R. L.; Bauer, P. S.; Rentenberger, C.; Wagner, P. E.

    2016-05-01

    Wetting phenomena in multi-phase systems govern the shape of the contact line which separates the different phases. For liquids in contact with solid surfaces wetting is typically described in terms of contact angle. While in macroscopic systems the contact angle can be determined experimentally, on the molecular scale contact angles are hardly accessible. Here we report the first direct experimental determination of contact angles as well as contact line curvature on a scale of the order of 1nm. For water nucleating heterogeneously on Ag nanoparticles we find contact angles around 15 degrees compared to 90 degrees for the corresponding macroscopically measured equilibrium angle. The obtained microscopic contact angles can be attributed to negative line tension in the order of ‑10‑10 J/m that becomes increasingly dominant with increasing curvature of the contact line. These results enable a consistent theoretical description of heterogeneous nucleation and provide firm insight to the wetting of nanosized objects.

  14. Water plant modifications for increased production at B, C, D, DR, F, and H Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, L.B.; Corley, J.P.

    1960-04-15

    The purpose of this report is to define the extent of modifications necessary to increase capacities of the 100-B, C, D, DR, F, and H water plants for reactor flows of 90,000 95,000 105,000 and 115,000 GPM, and to provide supporting data for budget studies for increased production.

  15. Regenerating degraded soils and increasing water use efficiency on vegetable farms in Uruguay through ecological intensification

    NARCIS (Netherlands)

    Alliaume, F.

    2016-01-01

    This thesis investigated alternative soil management strategies for vegetable crop systems and their hypothesized effects on increasing systems resilience by sequestering soil carbon, increasing the efficiency of water use, and reducing erosion. The goal was to contribute knowledge on and tools for

  16. Regenerating degraded soils and increasing water use efficiency on vegetable farms in Uruguay through ecological intensification

    NARCIS (Netherlands)

    Alliaume, F.

    2016-01-01

    This thesis investigated alternative soil management strategies for vegetable crop systems and their hypothesized effects on increasing systems resilience by sequestering soil carbon, increasing the efficiency of water use, and reducing erosion. The goal was to contribute knowledge on and tools for

  17. Increased water charges improve efficiency and equity in an irrigation system

    Directory of Open Access Journals (Sweden)

    Andrew Reid. Bell

    2016-09-01

    Full Text Available Conventional wisdom in many agricultural systems across the world is that farmers cannot, will not, or should not pay the full costs associated with surface water delivery. Across Organisation for Economic Co-operation and Development (OECD countries, only a handful can claim complete recovery of operation, maintenance, and capital costs; across Central and South Asia, fees are lower still, with farmers in Nepal, India, and Kazakhstan paying fractions of a U.S. penny for a cubic meter of water. In Pakistan, fees amount to roughly USD 1-2 per acre per season. However, farmers in Pakistan spend orders of magnitude more for diesel fuel to pump groundwater each season, suggesting a latent willingness to spend for water that, under the right conditions, could potentially be directed toward water-use fees for surface water supply. Although overall performance could be expected to improve with greater cost recovery, asymmetric access to water in canal irrigation systems leaves the question open as to whether those benefits would be equitably shared among all farmers in the system. We develop an agent-based model (ABM of a small irrigation command to examine efficiency and equity outcomes across a range of different cost structures for the maintenance of the system, levels of market development, and assessed water charges. We find that, robust to a range of different cost and structural conditions, increased water charges lead to gains in both efficiency and concomitant improvements in equity as investments in canal infrastructure and system maintenance improve the conveyance of water resources further down watercourses. This suggests that, under conditions in which (1 farmers are currently spending money to pump groundwater to compensate for a failing surface water system, and (2 there is the possibility that through initial investment to provide perceptibly better water supply, genuine win-win solutions can be attained through higher water-use fees to

  18. Time/space pattern contacting contaminated water in specific rural areas%乡村居民疫水接触时空规律研究

    Institute of Scientific and Technical Information of China (English)

    袁宜; 赵安

    2014-01-01

    基于农村居民疫水接触的空间行为及作息时间的地理调查,了解乡村居民的血吸虫病疫水接触时空规律,对43个行政村的疫水接触人数、方式、天数、接触季节和时间段进行调查。农村居民疫水接触方式有种田、捕鱼、游泳、抗洪、挖沙、打藜蒿、放牛、养鸭和洗衣服洗菜一共9种方式,接触方式多、时间长,感染血吸虫病危险性较大。%Survey of spatial behavior and routine schedule in some rural residences is carried to obtain the time and space patter how the rural people contact the contaminated water .A questionnaire is conducted in 43 administrative villages ,which includes the number of people ,contacting way ,days , seasons and daytime section .The result show that there are 9 contacting ways including farming , fishing ,swimming ,fighting flood ,dredging ,picking quinoa artemisia ,cattling ,duck breeding and washing .The more the contacting way and time are ,the more the risk to get the schistosomiasis .

  19. Increasing the technical and economic performance of wind diesel systems by including fresh water production

    DEFF Research Database (Denmark)

    Bindner, H.; Lundsager, P.

    1996-01-01

    In many remote regions of the world there is a lack of both electricity and potable water. In order to increase the standard of living and thus maintain the population both power and water have to be supplied at reasonable prices. A good option at many of these places are wind diesel systems...... of the Simple, Robust & Reliable (SR&R) type, [1], combined with a desalination system....

  20. Increased water yield due to the hemlock woolly adelgid infestation in New England

    Science.gov (United States)

    Kim, Jihyun; Hwang, Taehee; Schaaf, Crystal L.; Orwig, David A.; Boose, Emery; Munger, J. William

    2017-03-01

    Over the past few decades, a hemlock woolly adelgid (HWA) infestation has significantly affected eastern hemlock (Tsuga canadensis) in the eastern U.S., and warmer winters are expected to promote a continued northward expansion in the future. Here we report a water yield increase due to the HWA infestation in New England, U.S. Since the first observation in 2002, peak growing season evapotranspiration over a hemlock-dominated area has decreased by 24-37% in 2012 and 2013. Over the same time period, the water yield from the study catchment significantly increased as compared to an adjacent catchment with less hemlock cover. The net increase was estimated to be as much as 15.6% of annual water yield in 2014 based on an ecohydrological modeling analysis. This study indicates that the ongoing hemlock decline is also largely altering hydrological regimes in the northeastern U.S.

  1. Comparing source of agricultural contact water and the presence of fecal indicator organisms on the surface of 'juliet' grape tomatoes.

    Science.gov (United States)

    Pahl, Donna M; Telias, Adriana; Newell, Michael; Ottesen, Andrea R; Walsh, Christopher S

    2013-06-01

    Consumption of fresh tomatoes (Solanum lycopersicum) has been implicated as the cause of several foodborne illness outbreaks in the United States, most notably in cases of salmonellosis. How the levels of fecal indicator organisms (FIOs) in water relate to the counts of these microorganisms on the tomato fruit surface is unknown, although microbial water quality standards exist for agricultural use. This study utilized four types of FIOs currently and historically used in microbial water quality standards (Enterobacteriaceae, total coliforms, fecal coliforms, and Escherichia coli) to monitor the water quality of two surface ponds and a groundwater source. The groundwater tested contained significantly lower counts of all FIOs than the two surface water sources (P tomatoes treated with overhead applications of the different water sources over the 2009 and 2010 growing seasons. The type of water source and time of year significantly affected the populations of FIOs in irrigation water (P E. coli between the water sources, there was little difference in the populations measured in washes taken from tomato fruits. This lack of association between the aforementioned FIOs present in the water samples and on the tomato fruit surface demonstrates the difficulty in developing reliable metrics needed for testing of agricultural water to ensure the effectiveness of food safety programs.

  2. An in-situ Observation on Initial Aggregation Process of Colloidal Particles near Three-Phase Contact Line of Air, Water and Vertical Substrate

    Institute of Scientific and Technical Information of China (English)

    YAO Can; WANG Yu-Ren; LAN Ding; DUAN Li; KANG Qi

    2008-01-01

    The self-assembling process near the three-phase contact line of air, water and vertical substrate is widely used to produce various kinds of nanostructured materials and devices. We perform an in-situ observation on the selfassembling process in the vicinity of the three phase contact line. Three kinds of aggregations, i.e. particle-particle aggregation, particle-chain aggregation and chain-chain aggregation, in the initial stage of vertical deposition process are revealed by our experiments. It is found that the particle-particle aggregation and the particle-chain aggregation can be qualitatively explained by the theory of the capillary immersion force and mirror image force,while the chain-chain aggregation leaves an opening question for the further studies. The present study may provide more deep insight into the self-assembling process of colloidal particles.

  3. Modeling Caspian Sea water level oscillations under different scenarios of increasing atmospheric carbon dioxide concentrations

    Directory of Open Access Journals (Sweden)

    Roshan GholamReza

    2012-12-01

    Full Text Available Abstract The rapid rise of Caspian Sea water level (about 2.25 meters since 1978 has caused much concern to all five surrounding countries, primarily because flooding has destroyed or damaged buildings and other engineering structures, roads, beaches and farm lands in the coastal zone. Given that climate, and more specifically climate change, is a primary factor influencing oscillations in Caspian Sea water levels, the effect of different climate change scenarios on future Caspian Sea levels was simulated. Variations in environmental parameters such as temperature, precipitation, evaporation, atmospheric carbon dioxide and water level oscillations of the Caspian sea and surrounding regions, are considered for both past (1951-2006 and future (2025-2100 time frames. The output of the UKHADGEM general circulation model and five alternative scenarios including A1CAI, BIASF, BIMES WRE450 and WRE750 were extracted using the MAGICC SCENGEN Model software (version 5.3. The results suggest that the mean temperature of the Caspian Sea region (Bandar-E-Anzali monitoring site has increased by ca. 0.17°C per decade under the impacts of atmospheric carbon dioxide changes (r=0.21. The Caspian Sea water level has increased by ca. +36cm per decade (r=0.82 between the years 1951-2006. Mean results from all modeled scenarios indicate that the temperature will increase by ca. 3.64°C and precipitation will decrease by ca. 10% (182 mm over the Caspian Sea, whilst in the Volga river basin, temperatures are projected to increase by ca. 4.78°C and precipitation increase by ca. 12% (58 mm by the year 2100. Finally, statistical modeling of the Caspian Sea water levels project future water level increases of between 86 cm and 163 cm by the years 2075 and 2100, respectively.

  4. Modeling Caspian Sea water level oscillations under different scenarios of increasing atmospheric carbon dioxide concentrations.

    Science.gov (United States)

    Roshan, Gholamreza; Moghbel, Masumeh; Grab, Stefan

    2012-12-12

    The rapid rise of Caspian Sea water level (about 2.25 meters since 1978) has caused much concern to all five surrounding countries, primarily because flooding has destroyed or damaged buildings and other engineering structures, roads, beaches and farm lands in the coastal zone. Given that climate, and more specifically climate change, is a primary factor influencing oscillations in Caspian Sea water levels, the effect of different climate change scenarios on future Caspian Sea levels was simulated. Variations in environmental parameters such as temperature, precipitation, evaporation, atmospheric carbon dioxide and water level oscillations of the Caspian sea and surrounding regions, are considered for both past (1951-2006) and future (2025-2100) time frames. The output of the UKHADGEM general circulation model and five alternative scenarios including A1CAI, BIASF, BIMES WRE450 and WRE750 were extracted using the MAGICC SCENGEN Model software (version 5.3). The results suggest that the mean temperature of the Caspian Sea region (Bandar-E-Anzali monitoring site) has increased by ca. 0.17°C per decade under the impacts of atmospheric carbon dioxide changes (r=0.21). The Caspian Sea water level has increased by ca. +36cm per decade (r=0.82) between the years 1951-2006. Mean results from all modeled scenarios indicate that the temperature will increase by ca. 3.64°C and precipitation will decrease by ca. 10% (182 mm) over the Caspian Sea, whilst in the Volga river basin, temperatures are projected to increase by ca. 4.78°C and precipitation increase by ca. 12% (58 mm) by the year 2100. Finally, statistical modeling of the Caspian Sea water levels project future water level increases of between 86 cm and 163 cm by the years 2075 and 2100, respectively.

  5. Stochastic relaxation of the contact line of a water drop on a solid substrate subjected to white noise vibration: roles of hysteresis.

    Science.gov (United States)

    Mettu, Srinivas; Chaudhury, Manoj K

    2010-06-01

    Relaxation of the three phase contact line of a sessile drop of water on a low energy surface is studied by subjecting it to a white noise vibration. While a spring force acts on the contact line whenever the contact angle deviates from its equilibrium value, it is opposed by hysteresis. The drop, therefore, remains pinned at a metastable state. With an appropriate amount of vibration, the drop can reach a global equilibrium state irrespective of its initial state, be it advanced or retreated. While the end state is free of hysteresis, the current study sheds light on the dynamics of relaxation that is analyzed in conjunction with a modified Langevin equation. Instead of exhibiting a smooth relaxation as predicted by the Langevin equation with a smooth background potential, stepwise relaxation is observed in most cases. These stepwise relaxations can be explained if the background potential is made slightly corrugated that signifies the existence of metastable states of a drop on a surface. The fluctuation of the displacement of the contact line is highly non-Gaussian. It is shown that an exponential distribution of the displacement fluctuation arises due to the nonlinear hysteresis term in the Langevin equation. The observations of stick-slip motion, the large time of relaxation, and the anomalous displacement fluctuation suggest that hysteresis is present during the relaxation process of the drop even though the final state reached by the drop is free of hysteresis. Finally, we compare the displacement fluctuations of the contact line on two different surfaces: a silicone rubber and a fluorocarbon monolayer. Although the displacement fluctuation is exponential in both cases, the later surface exhibits a greater variance of the distribution than the former plausibly due to differences in hysteresis. This result indicates that the fluctuation of displacement may be used as a tool to study the surface property of a low energy substrate.

  6. Characteristic of the Nanoparticles Formed on the Carbon Steel Surface Contacting with 3d-Metal Water Salt Solutions in the Open-Air System

    Science.gov (United States)

    Lavrynenko, O. M.; Pavlenko, O. Yu; Shchukin, Yu S.

    2016-02-01

    The contact of a steel electrode with water dispersion medium in an open-air system leads to the development of various polymorphic iron oxides and oxyhydroxides on the steel surface. Whereas the usage of distilled water causes the obtaining of Fe(II)-Fe(III) layered double hydroxides (green rust) as a primary mineral phase, but in the presence of inorganic 3d-metal water salt solutions, mixed layered double hydroxides (LDHs) together with non-stoichiometric spinel ferrite nanoparticles are formed on the steel surface. Mixed LDHs keep stability against further oxidation and complicate the obtaining of spinel ferrite nanoparticles. Thermal treatment of mixed LDHs among other mineral phases formed via the rotation-corrosion dispergation process at certain temperatures permits to obtain homogenous nanoparticles of spinel ferrites as well as maghemite or hematite doped by 3d-metal cations.

  7. [CHANGING OF PHYSICO-CHEMICAL PARAMETERS OF NON-CONTACT (ELECTROCHEMICAL) ACTIVATED DRINKING WATER IS ASSOCIATED WITH INDUCTION OF GENOMIC INSTABILITY OF CULTIVATED HUMAN BLOOD LYMPHOCYTES].

    Science.gov (United States)

    Zatsepina, O V; Ingel, F I

    2016-01-01

    In the article there are presented data which are the fragment of large multidisciplinary study of genetic safety of non-contact electrochemically activated water (NAW). The aim of this study was the analysis of the relation of impacts of genomic instability (micronucleus test with cytochalasin B) detected in human blood cells, cultured in medias prepared on the base of these NAWs, with physical and chemical properties of these NaWs. In experiments there were used catholytes and anolytes obtained by activation of osmotic, tap and dining bottled water As a result of such activation, all waters were shown to acquire the ability to induce genomic instability in cellular cultures. Notably in cell cultures on catholytes and anolytes these effects differed between themselves and have been associated with different physical and chemical properties of the NAWs.

  8. Transmission of Infectious Vibrio cholerae through Drinking Water among the Household Contacts of Cholera Patients (CHoBI7 Trial)

    OpenAIRE

    Raisa Rafique; Mahamud-ur Rashid; Shirajum Monira; Zillur Rahman; Md. Toslim Mahmud; Munshi Mustafiz; Saif-Ur-Rahman, K. M.; Fatema-Tuz Johura; Saiful Islam; Tahmina Parvin; Md. Sazzadul Islam Bhuyian; Mohsena Bint-e Sharif; Sabita Rezwana Rahman; Sack, David A.; Bradley Sack, R.

    2016-01-01

    Recurrent cholera causes significant morbidity and mortality among the growing population of Dhaka, the capital city of Bangladesh. Previous studies have demonstrated that household contacts of cholera patients are at >100 times higher risk of cholera during the week after the presentation of the index patient. Our prospective study investigated the mode of transmission of Vibrio cholerae, the cause of cholera, in the households of cholera patients in Dhaka city. Of total 420 rectal swab samp...

  9. Climate control of decadal-scale increases in apparent ages of eogenetic karst spring water

    Science.gov (United States)

    Martin, Jonathan B.; Kurz, Marie J.; Khadka, Mitra B.

    2016-09-01

    Water quantity and quality in karst aquifers may depend on decadal-scale variations in recharge or withdrawal, which we hypothesize could be assessed through time-series measurements of apparent ages of spring water. We tested this hypothesis with analyses of various age tracers (3H/3He, SF6, CFC-11, CFC-12, CFC-113) and selected solute concentrations [dissolved oxygen (DO), NO3, Mg, and SO4] from 6 springs in a single spring complex (Ichetucknee springs) in northern Florida over a 16-yr period. These springs fall into two groups that reflect shallow short (Group 1) and deep long (Group 2) flow paths. Some tracer concentrations are altered, with CFC-12 and CFC-113 concentrations yielding the most robust apparent ages. These tracers show a 10-20-yr monotonic increase in apparent age from 1997 to 2013, including the flood recession that followed Tropical Storm Debby in mid-2012. This increase in age indicates most water discharged during the study period recharged the aquifer within a few years of 1973 for Group 2 springs and 1980 for Group 1 springs. Inverse correlations between apparent age and DO and NO3 concentrations reflect reduced redox state in older water. Positive correlations between apparent age and Mg and SO4 concentrations reflect increased water-rock reactions. Concentrated recharge in the decade around 1975 resulted from nearly 2 m of rain in excess of the monthly average that fell between 1960 and 2014, followed by a nearly 4 m deficit to 2014. This excess rain coincided with two major El Niño events during the maximum cool phase in the Atlantic Multidecadal Oscillation. Although regional water withdrawal increased nearly 5-fold between 1980 and 2005, withdrawals represent only 2-5% of Ichetucknee River flow and are less important than decadal-long variations in precipitation. These results suggest that groundwater management should consider climate cycles as predictive tools for future water resources.

  10. Elevated atmospheric CO2 increases water use efficiency in Florida scrub oak

    Science.gov (United States)

    Drake, B. G.; Hayek, L. C.; Johnson, D. P.; Li, J.; Powell, T. L.

    2009-12-01

    Plants are expected to have higher rates of photosynthesis and reduced transpiration as atmospheric CO2 (Ca) continues to rise. But will higher Ca reduce water loss, and increase water use efficiency and soil water in native ecosystems? We tested this question using large (3.0m by 2.8m) open top chambers to expose Florida scrub oak on Merritt Island Wildlife Refuge, Kennedy Space Center, FL, from May 1996 to June 2007 to elevated levels of atmospheric CO2, (Ce = Ca + 350ppm) compared to ambient Ca. Although Ce stimulated total shoot biomass 68% by the end of the study, the effect of Ce on annual growth declined each year (Seiler et al. 2009, Global Change Biology15, 356-367). Compared with the effects of Ca, Ce increased net ecosystem CO2 exchange approximately 70% on average for the entire study, increased leaf area index (LAI) seasonally, reduced evapotranspiration except during mid-summer of some years, and, depending on the relative effect of Ce on LAI, increased volumetric soil water content.. These results are consistent with the observation that continental river discharge has increased as Ca has risen throughout the past 50 years (Gedney et al., Nature, Vol. 439, 16 February 2006).

  11. Electrical guidance efficiency of downstream-migrating juvenile Sea Lamprey decreases with increasing water velocity

    Science.gov (United States)

    Miehls, Scott M.; Johnson, Nicholas; Haro, Alexander

    2017-01-01

    We tested the efficacy of a vertically oriented field of pulsed direct current (VEPDC) created by an array of vertical electrodes for guiding downstream-moving juvenile Sea Lampreys Petromyzon marinus to a bypass channel in an artificial flume at water velocities of 10–50 cm/s. Sea Lampreys were more likely to be captured in the bypass channel than in other sections of the flume regardless of electric field status (on or off) or water velocity. Additionally, Sea Lampreys were more likely to be captured in the bypass channel when the VEPDC was active; however, an interaction between the effects of VEPDC and water velocity was observed, as the likelihood of capture decreased with increases in water velocity. The distribution of Sea Lampreys shifted from right to left across the width of the flume toward the bypass channel when the VEPDC was active at water velocities less than 25 cm/s. The VEPDC appeared to have no effect on Sea Lamprey distribution in the flume at water velocities greater than 25 cm/s. We also conducted separate tests to determine the threshold at which Sea Lampreys would become paralyzed. Individuals were paralyzed at a mean power density of 37.0 µW/cm3. Future research should investigate the ability of juvenile Sea Lampreys to detect electric fields and their specific behavioral responses to electric field characteristics so as to optimize the use of this technology as a nonphysical guidance tool across variable water velocities.

  12. Unintended consequences of increasing block tariffs pricing policy in urban water

    Science.gov (United States)

    Dahan, Momi; Nisan, Udi

    2007-03-01

    We exploit a unique data set to estimate the degree of economies of scale in water consumption, controlling for the standard demand factors. We found a linear Engel curve in water consumption: each additional household member consumes the same water quantity regardless of household size, except for a single-person household. Our evidence suggests that the increasing block tariffs (IBT) structure, which is indifferent to household size, has unintended consequences. Large households, which are also likely to be poor given the negative correlation between income and household size, are charged a higher price for water. The degree of economies of scale found here erodes the effectiveness of IBT price structure as a way to introduce an equity consideration. This implication is important in view of the global trend toward the use of IBT.

  13. Does Improved Water Access Increase Child School Attendance? A Quasi-Experimental Approach From Rural Ethiopia

    Science.gov (United States)

    Masuda, Y.; Cook, J.

    2012-12-01

    This paper analyzes the impact of improved water access on child school attendance using two years of primary panel data from a quasi-experimental study in Oromiya, Ethiopia. A predominant form of child labor in rural poor households in least developed countries is water collection. Girls are often the primary water collectors for households, and because of the time intensive nature of water collection improved water access may allow for time to be reallocated to schooling (Rosen and Vincent 1999; Nankhuni and Findeis 2004). Understanding how improved water access may increase schooling for girls has important development policy implications. Indeed, abundant research on returns to education suggests increased schooling for girls is tied to improved future child and maternal health, economic opportunities, and lower fertility rates (Handa 1996; Schultz 1998; Michaelowa 2000). The literature to date finds that improved water access leads to increased schooling; however, there still exists a clear gap in the literature for understanding this relationship for two reasons. First, only four studies have directly examined the relationship between improved water access and schooling in sub-Saharan Africa, and analyses have been limited due to the use of cross-sectional data and research designs (Nankhuni and Findeis 2004; Koolwal and Van de Walle 2010; Ndiritu and Nyangan 2011; Nauges and Strand 2011). Indeed, only two studies have attempted to control for the endogenous nature of water access. Second, all studies use a binary school enrollment indicator from household surveys, which may suffer from response bias and may be an imperfect measure for actual schooling. Respondents may feel pressured to report that their children are enrolled in school if, like in Ethiopia, there are compulsory education laws. This may result in an overestimation of school enrollment. In addition, most children from rural poor households combine work and school, and a binary indicator does

  14. Mediterranean agriculture: More efficient irrigation needed to compensate increases in future irrigation water requirements

    Science.gov (United States)

    Fader, Marianela; Shi, Sinan; von Bloh, Werner; Bondeau, Alberte; Cramer, Wolfgang

    2016-04-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. Our research shows that, at present, Mediterranean region could save 35% of water by implementing more efficient irrigation and conveyance systems. Some countries like Syria, Egypt and Turkey have higher saving potentials than others. Currently some crops, especially sugar cane and agricultural trees, consume in average more irrigation water per hectare than annual crops (1). Also under climate change, more efficient irrigation is of vital importance for counteracting increases in irrigation water requirements. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4% and 18% from climate change alone by the end of the century if irrigation systems and conveyance are not improved. Population growth increases these numbers to 22% and 74%, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean, and may be able to compensate to some degree the increases due to climate change and population growth. Both subregions would need around 35% more water than today if they could afford some degree of modernization of irrigation and conveyance systems and benefit from the CO2-fertilization effect (1). However, in some scenarios (in this case as combinations of climate change, irrigation technology, influence of population growth and CO2-fertilization effect) water scarcity may constrain the supply of the irrigation water needed in future in Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain (1). In this study, vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL ("Lund-Potsdam-Jena managed Land") after a

  15. Adelmidrol increases the endogenous concentrations of palmitoylethanolamide in canine keratinocytes and down-regulates an inflammatory reaction in an in vitro model of contact allergic dermatitis.

    Science.gov (United States)

    Petrosino, S; Puigdemont, A; Della Valle, M F; Fusco, M; Verde, R; Allarà, M; Aveta, T; Orlando, P; Di Marzo, V

    2016-01-01

    This study aimed to investigate potential new target(s)/mechanism(s) for the palmitoylethanolamide (PEA) analogue, adelmidrol, and its role in an in vitro model of contact allergic dermatitis. Freshly isolated canine keratinocytes, human keratinocyte (HaCaT) cells and human embryonic kidney (HEK)-293 cells, wild-type or transfected with cDNA encoding for N-acylethanolamine-hydrolysing acid amidase (NAAA), were treated with adelmidrol or azelaic acid, and the concentrations of endocannabinoids (anandamide and 2-arachidonoylglycerol) and related mediators (PEA and oleoylethanolamide) were measured. The mRNA expression of PEA catabolic enzymes (NAAA and fatty acid amide hydrolase, FAAH), and biosynthetic enzymes (N-acyl phosphatidylethanolamine-specific phospholipase D, NAPE-PLD) and glycerophosphodiester phosphodiesterase 1, was also measured. Brain or HEK-293 cell membrane fractions were used to assess the ability of adelmidrol to inhibit FAAH and NAAA activity, respectively. HaCaT cells were stimulated with polyinosinic-polycytidylic acid and the release of the pro-inflammatory chemokine, monocyte chemotactic protein-2 (MCP-2), was measured in the presence of adelmidrol. Adelmidrol increased PEA concentrations in canine keratinocytes and in the other cellular systems studied. It did not inhibit the activity of PEA catabolic enzymes, although it reduced their mRNA expression in some cell types. Adelmidrol modulated the expression of PEA biosynthetic enzyme, NAPE-PLD, in HaCaT cells, and inhibited the release of the pro-inflammatory chemokine MCP-2 from stimulated HaCaT cells. This study demonstrates for the first time an 'entourage effect' of adelmidrol on PEA concentrations in keratinocytes and suggests that this effect might mediate, at least in part, the anti-inflammatory effects of this compound in veterinary practice.

  16. Characterizing hydrophobicity of amino acid side chains in a protein environment via measuring contact angle of a water nanodroplet on planar peptide network.

    Science.gov (United States)

    Zhu, Chongqin; Gao, Yurui; Li, Hui; Meng, Sheng; Li, Lei; Francisco, Joseph S; Zeng, Xiao Cheng

    2016-11-15

    Hydrophobicity of macroscopic planar surface is conventionally characterized by the contact angle of water droplets. However, this engineering measurement cannot be directly extended to surfaces of proteins, due to the nanometer scale of amino acids and inherent nonplanar structures. To measure the hydrophobicity of side chains of proteins quantitatively, numerous parameters were developed to characterize behavior of hydrophobic solvation. However, consistency among these parameters is not always apparent. Herein, we demonstrate an alternative way of characterizing hydrophobicity of amino acid side chains in a protein environment by constructing a monolayer of amino acids (i.e., artificial planar peptide network) according to the primary and the β-sheet secondary structures of protein so that the conventional engineering measurement of the contact angle of a water droplet can be brought to bear. Using molecular dynamics simulations, contact angles θ of a water nanodroplet on the planar peptide network, together with excess chemical potentials of purely repulsive methane-sized Weeks-Chandler-Andersen solute, are computed. All of the 20 types of amino acids and the corresponding planar peptide networks are studied. Expectedly, all of the planar peptide networks with nonpolar amino acids are hydrophobic due to θ [Formula: see text] 90°, whereas all of the planar peptide networks of the polar and charged amino acids are hydrophilic due to θ [Formula: see text] 90°. Planar peptide networks of the charged amino acids exhibit complete-wetting behavior due to θ [Formula: see text] 0°. This computational approach for characterization of hydrophobicity can be extended to artificial planar networks of other soft matter.

  17. Implications of Increasing Forest Density and Vegetation Water Demand on Drought Impacts in California Montane Forest

    Science.gov (United States)

    Saksa, P. C.; Safeeq, M.; Dymond, S.

    2016-12-01

    Vegetation density has been increasing over the past 30 years at mid-elevation southern Sierra mixed-conifer catchments and northern California coastal conifer catchments, as shown from Landsat mean annual values of the Normalized Difference Vegetation Index (NDVI). Forest vegetation in these regions is being maintained or even increased during the recent drought, despite record low precipitation levels statewide and heavy tree mortality at lower elevation Sierra pine-dominated forests. The increase in vegetation density suggests an increase in forest water use, exacerbating the effects of the drought on runoff and water supply. Between 1984 and 2015, mean annual NDVI increased in the southern Sierra from 0.47 to 0.56 (+19%) in the Providence Creek basin (1730-2115m elevation) and from 0.53 to 0.62 (+17%) in Bull Creek basin (2145-2490m), while NDVI increased along the northern California coast from 0.75 to 0.88 (+17%) in the Caspar Creek basin (40-300m). Previous research has shown an exponential relationship exists between NDVI and measured annual evapotranspiration (ET), indicating even greater increases in ET than NDVI over the three decades. This increase in vegetation has also led to more competition for plant available water, and can be used to explain the large tree mortality occurring in the pine forests at lower elevations, which did not occur during previous drought periods. Preliminary results of a hydro-ecological model, RHESSys, suggest intensive vegetation treatments in these regions can reduce evapotranspiration and modify the catchment-scale water balance. Forest management strategies for implementation of thinning and fuels treatments to reduce forest density may be effective in limiting vegetation mortality during future drought events.

  18. Low-water activity foods: increased concern as vehicles of foodborne pathogens

    NARCIS (Netherlands)

    Beuchat, L.R.; Komitopoulou, E.; Beckers, H.; Betts, R.P.; Bourdichon, F.; Fanning, S.; Joosten, H.M.; ter Kuile, B.H.

    2013-01-01

    Foods and food ingredients with low water activity (a(w)) have been implicated with increased frequency in recent years as vehicles for pathogens that have caused outbreaks of illnesses. Some of these foodborne pathogens can survive for several months, even years, in low-a(w) foods and in dry food p

  19. Low-water activity foods: increased concern as vehicles of foodborne pathogens

    NARCIS (Netherlands)

    Beuchat, L.R.; Komitopoulou, E.; Beckers, H.; Betts, R.P.; Bourdichon, F.; Fanning, S.; Joosten, H.M.L.J.; Kuile, ter B.H.

    2013-01-01

    Foods and food ingredients with low water activity (aw) have been implicated with increased frequency in recent years as vehicles for pathogens that have caused outbreaks of illnesses. Some of these foodborne pathogens can survive for several months, even years, in low-aw foods and in dry food proce

  20. Low-water activity foods: increased concern as vehicles of foodborne pathogens

    NARCIS (Netherlands)

    Beuchat, L.R.; Komitopoulou, E.; Beckers, H.; Betts, R.P.; Bourdichon, F.; Fanning, S.; Joosten, H.M.L.J.; Kuile, ter B.H.

    2013-01-01

    Foods and food ingredients with low water activity (aw) have been implicated with increased frequency in recent years as vehicles for pathogens that have caused outbreaks of illnesses. Some of these foodborne pathogens can survive for several months, even years, in low-aw foods and in dry food proce

  1. Low-water activity foods: increased concern as vehicles of foodborne pathogens

    NARCIS (Netherlands)

    Beuchat, L.R.; Komitopoulou, E.; Beckers, H.; Betts, R.P.; Bourdichon, F.; Fanning, S.; Joosten, H.M.; ter Kuile, B.H.

    2013-01-01

    Foods and food ingredients with low water activity (a(w)) have been implicated with increased frequency in recent years as vehicles for pathogens that have caused outbreaks of illnesses. Some of these foodborne pathogens can survive for several months, even years, in low-a(w) foods and in dry food p

  2. Oxygenated drinking water enhances immune activity in pigs and increases immune responses of pigs during Salmonella typhimurium infection.

    Science.gov (United States)

    Jung, Bock-Gie; Lee, Jin-A; Lee, Bong-Joo

    2012-12-01

    It has been considered that drinking oxygenated water improves oxygen availability, which may increase vitality and improve immune functions. The present study evaluated the effects of oxygenated drinking water on immune function in pigs. Continuous drinking of oxygenated water markedly increased peripheral blood mononuclear cell proliferation, interleukin-1β expression level and the CD4(+):CD8(+) cell ratio in pigs. During Salmonella Typhimurium infection, total leukocytes and relative cytokines expression levels were significantly increased in pigs consuming oxygenated water compared with pigs consuming tap water. These findings suggest that oxygenated drinking water enhances immune activity in pigs and increases immune responses of pigs during S. Typhimurium Infection.

  3. Chemical analysis and potential endocrine activities of aluminium coatings intended to be in contact with cosmetic water.

    Science.gov (United States)

    Bou-Maroun, Elias; Dahbi, Laurence; Gomez-Berrada, Marie-Pierre; Pierre, Philippine; Rakotomalala, Sandrine; Ferret, Pierre-Jacques; Chagnon, Marie-Christine

    2017-10-25

    The objective of the work was to check the presence of Non-Intended Added Substances (NIAS) with hormonal activities in aluminium coatings extracts coded: AA, BBF, MC and RR, furnished by four different suppliers. Water samples were prepared at room temperature or at 40°C for three months to verify the storage effect on the coatings. Solid phase extraction was used to concentrate and to extract coating substances. Hormonal activities were checked in vitro using reporter gene bioassays. Except BBF, all extracts induced a weak but significant estrogenic agonist activity in the human cell line. Using an estrogenic antagonist (ICI-182, 780), the answer was demonstrated specific in the bioassay. RR was the only extract to induce a concentration dependent anti-androgenic response in the MDA-KB2 cell line. Analysis performed using GC-MS and HPLC-MS detected 12 substances in most of the extracts. 8 NIAS were present. Among them, 4 were identified with certainty: HMBT, BGA, DCU and BPA. Estrogenic potency was BPA>DCU>BGA>HMBT. HMBT was also anti-androgenic at high concentration. Combining chemical analysis and bioassays data, we demonstrated that in the RR and the RR40 extracts, the observed estrogenic response was mainly due to BPA, the anti-androgenic activity of RR could be due to a synergism between HMBT and BPA. For MC and AA, estrogenic responses appear to be due to the presence of DCU. Except BBF, storage conditions tended to increase estrogenic activities in all extracts. However, in term of risk assessment, activities observed were negligible. This work demonstrated that sensitive bioassays are pertinent tools in complement to chemical analysis to monitor and check the presence of NIAS with hormonal activity in coating extracts. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Silicon application increases drought tolerance of kentucky bluegrass by improving plant water relations and morphophysiological functions.

    Science.gov (United States)

    Saud, Shah; Li, Xin; Chen, Yang; Zhang, Lu; Fahad, Shah; Hussain, Saddam; Sadiq, Arooj; Chen, Yajun

    2014-01-01

    Drought stress encumbers the growth of turfgrass principally by disrupting the plant-water relations and physiological functions. The present study was carried out to appraise the role of silicon (Si) in improving the drought tolerance in Kentucky bluegrass (Poa pratensis L.). Drought stress and four levels (0, 200, 400, and 800 mg L(-1)) of Si (Na2SiO3·9H2O) were imposed after 2 months old plants cultured under glasshouse conditions. Drought stress was found to decrease the photosynthesis, transpiration rate, stomatal conductance, leaf water content, relative growth rate, water use efficiency, and turf quality, but to increase in the root/shoot and leaf carbon/nitrogen ratio. Such physiological interferences, disturbances in plant water relations, and visually noticeable growth reductions in Kentucky bluegrass were significantly alleviated by the addition of Si after drought stress. For example, Si application at 400 mg L(-1) significantly increased the net photosynthesis by 44%, leaf water contents by 33%, leaf green color by 42%, and turf quality by 44% after 20 days of drought stress. Si application proved beneficial in improving the performance of Kentucky bluegrass in the present study suggesting that manipulation of endogenous Si through genetic or biotechnological means may result in the development of drought resistance in grasses.

  5. First-aid with warm water delays burn progression and increases skin survival.

    Science.gov (United States)

    Tobalem, M; Harder, Y; Tschanz, E; Speidel, V; Pittet-Cuénod, B; Wettstein, R

    2013-02-01

    First aid treatment for thermal injuries with cold water removes heat and decreases inflammation. However, perfusion in the ischemic zone surrounding the coagulated core can be compromised by cold-induced vasoconstriction and favor burn progression. The aim of this study is to evaluate the effect of local warming on burn progression in the rat comb burn model. 24 male Wistar rats were randomly assigned to either no treatment (control) or application of cold (17 °C) or warm (37 °C) water applied for 20 min. Evolution of burn depth, interspace necrosis, and microcirculatory perfusion were assessed with histology, planimetry, respectively with Laser Doppler flowmetry after 1 h, as well as 1, 4, and 7 days. Consistent conversion from a superficial to a deep dermal burn within 24 h was obtained in control animals. Warm and cold water significantly delayed burn depth progression, however after 4 days the burn depth was similar in all groups. Interspace necrosis was significantly reduced by warm water treatment (62±4% vs. 69±5% (cold water) and 82±3% (control); pcold water and 80±2% for control, pwater provided an additional benefit by improving the microcirculatory perfusion, which translated into increased tissue survival. Copyright © 2012 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  6. Water Treatment by Magnetic Field Increases Bone Mineral Density of Rats.

    Science.gov (United States)

    Balieiro Neto, Geraldo; Engracia Filho, Jair Rodini; de Oliveira, Bruna Rezende Silva Martins; Coelho, Cássia Maria Molinaro; de Souza, Lilian Francisco Arantes; Louzada, Mario Jefferson Quirino

    2017-08-11

    Water treatment using a magnetic field is an attractive but controversial issue with regard to its effects on human health. This study aimed to investigate the effects of water treatment using a magnetic field on the bone mineral density (BMD), bone mineral content (BMC), bone area (BA), bone resistance (BR), blood gas analysis, blood viscosity, and blood biochemical profile of rats. Forty-eight Wistar rats were divided into 2 groups: control (n = 24) and magnetic water-treated (n = 24). Each of these groups was subdivided into 3 groups to evaluate 3 consumption periods (15, 30, and 45 d). The animals were kept in metabolic cages throughout the experiment. A completely randomized design distributed to a 2 × 3 factorial arrangement was used. No significant difference was found in the water intake, dry matter intake, BA, or femoral head resistance between the groups. However, higher anion gap and lower CHCO3 were found in the arterial blood of the magnetic water-treated group. There was significant interaction between the water consumption period and the BR, BMD, and BMC. With 15 d of consumption, there was no difference in the BMC and BR. With 30 d of consumption, the BR (midshaft), BMD, and BMC showed increases; the increases were greater with 45 d of consumption. In adulthood, every month of the animal is approximately equivalent to 2.5 human years. The consumption of water treated by magnetic field for 45 d provided an effective way to improve BMD, BMC and BR in rats. Copyright © 2017 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  7. Plant functional diversity increases grassland productivity-related water vapor fluxes: an Ecotron and modeling approach.

    Science.gov (United States)

    Milcu, Alexandru; Eugster, Werner; Bachmann, Dörte; Guderle, Marcus; Roscher, Christiane; Gockele, Annette; Landais, Damien; Ravel, Olivier; Gessler, Arthur; Lange, Markus; Ebeling, Anne; Weisser, Wolfgang W; Roy, Jacques; Hildebrandt, Anke; Buchmann, Nina

    2016-08-01

    The impact of species richness and functional diversity of plants on ecosystem water vapor fluxes has been little investigated. To address this knowledge gap, we combined a lysimeter setup in a controlled environment facility (Ecotron) with large ecosystem samples/monoliths originating from a long-term biodiversity experiment (The Jena Experiment) and a modeling approach. Our goals were (1) quantifying the impact of plant species richness (four vs. 16 species) on day- and nighttime ecosystem water vapor fluxes; (2) partitioning ecosystem evapotranspiration into evaporation and plant transpiration using the Shuttleworth and Wallace (SW) energy partitioning model; and (3) identifying the most parsimonious predictors of water vapor fluxes using plant functional-trait-based metrics such as functional diversity and community weighted means. Daytime measured and modeled evapotranspiration were significantly higher in the higher plant diversity treatment, suggesting increased water acquisition. The SW model suggests that, at low plant species richness, a higher proportion of the available energy was diverted to evaporation (a non-productive flux), while, at higher species richness, the proportion of ecosystem transpiration (a productivity-related water flux) increased. While it is well established that LAI controls ecosystem transpiration, here we also identified that the diversity of leaf nitrogen concentration among species in a community is a consistent predictor of ecosystem water vapor fluxes during daytime. The results provide evidence that, at the peak of the growing season, higher leaf area index (LAI) and lower percentage of bare ground at high plant diversity diverts more of the available water to transpiration, a flux closely coupled with photosynthesis and productivity. Higher rates of transpiration presumably contribute to the positive effect of diversity on productivity.

  8. Increasing water cycle extremes in California and in relation to ENSO cycle under global warming.

    Science.gov (United States)

    Yoon, Jin-Ho; Wang, S-Y Simon; Gillies, Robert R; Kravitz, Ben; Hipps, Lawrence; Rasch, Philip J

    2015-10-21

    Since the winter of 2013-2014, California has experienced its most severe drought in recorded history, causing statewide water stress, severe economic loss and an extraordinary increase in wildfires. Identifying the effects of global warming on regional water cycle extremes, such as the ongoing drought in California, remains a challenge. Here we analyse large-ensemble and multi-model simulations that project the future of water cycle extremes in California as well as to understand those associations that pertain to changing climate oscillations under global warming. Both intense drought and excessive flooding are projected to increase by at least 50% towards the end of the twenty-first century; this projected increase in water cycle extremes is associated with a strengthened relation to El Niño and the Southern Oscillation (ENSO)--in particular, extreme El Niño and La Niña events that modulate California's climate not only through its warm and cold phases but also its precursor patterns.

  9. Increasing Hydrogen Ion Activity of Water in Two Reservoirs Supplying the San Francisco Bay Area, California

    Science.gov (United States)

    McColl, J. G.

    1981-10-01

    The hydrogen ion activity (H+) of water in two Sierra Nevada reservoirs (Pardee and Hetch Hetchy) that supply the San Francisco Bay area has been increasing with time over the period 1954-1979. This conclusion is based on weekly measurements ofpH at the two reservoirs and is supported by measurements of alkalinity which decreased at Pardee over the period 1944-1979. Based on linear models, the rate of the increasing (H+) was the same at both reservoirs, and (H+) varied concomitantly from year to year, suggesting a common, general cause. Mean monthly variation in (H+) corresponded to mean monthly variation in atmospheric pollution from a nine-county area around San Francisco Bay. The most likely cause of the increasing (H+) of reservoir waters is NOx from automobile exhausts primarily from the San Francisco Bay area.

  10. [Determination of contact angle of pharmaceutical excipients and regulating effect of surfactants on their wettability].

    Science.gov (United States)

    Hua, Dong-dong; Li, He-ran; Yang, Bai-xue; Song, Li-na; Liu, Tiao-tiao; Cong, Yu-tang; Li, San-ming

    2015-10-01

    To study the effects of surfactants on wettability of excipients, the contact angles of six types of surfactants on the surface of two common excipients and mixture of three surfactants with excipients were measured using hypsometry method. The results demonstrated that contact angle of water on the surface of excipients was associated with hydrophilcity of excipients. Contact angle was lowered with increase in hydrophilic groups of excipient molecules. The sequence of contact angle from small to large was starch contact angle of excipients, and their abilities to lower contact angle varied. The results of the present study offer a guideline in the formulation design of tablets.

  11. Flow visualization and void fraction measurement in liquid-metal/water direct contact heat exchange by X-ray attenuation technique

    Science.gov (United States)

    Liu, Xin

    One concept being considered for steam generation in particular next generation nuclear reactor designs, involves water coming into direct contact with a circulating molten metal. To optimize the design of such direct contact heat exchange and vaporization systems, detailed knowledge is necessary of the various flow regimes, interfacial transport phenomena, heat transfer and operational stability. With the development of high performance digital detectors, radiography using X-rays or neutrons maybe a suitable technique to obtain information about that direct-contact interaction; i.e., void volume fractions, length scales and dynamic behavior. Under the basis of previous investigations, a complete methodology of the X-ray radiography for two-phase flow measurement has been developed from the facility and imaging analysis aspects. Through this developed methodology, a high energy X-ray imaging system is optimized for the direct-contact heat exchange experiment. Beside an on-line calibration procedure which practically quantifies the imaging system's performance, the extended linear system theory and Rose's model have also been used to evaluate the imaging system's performance, respectively. The bottleneck of the current imaging system and the future of system improvement direction have been pointed out. With our real-time, large-area high energy X-ray imaging system, the two-phase flow was visualized and stored digitally. An efficient image processing strategy has also been established by combining several optimal digital image processing algorithms. The approach has been implemented into a software computational tool written in MATLAB called T-XIP. Time-dependent heat transfer related variables, such as void fraction (void volume), local heat transfer coefficient, etc., were calculated using this software tool. Finally, an error analysis associated with the void fraction measurement has been given based on two procedures.

  12. Trailing edge devices to improve performance and increase lifetime of wind-electric water pumping systems

    Energy Technology Data Exchange (ETDEWEB)

    Vick, B.D.; Clark, R.N. [USDA-Agricultural Research Service, Bushland, TX (United States)

    1996-12-31

    Trailing edge flaps were applied to the blades of a 10 kW wind turbine used for water pumping to try to improve the performance and decrease the structural fatigue on the wind turbine. Most small wind turbines (10 kW and below) use furling (rotor turns out of wind similar to a mechanical windmill) to protect the wind turbine from overspeed during high winds. Some small wind turbines, however, do not furl soon enough to keep the wind turbine from being off line part of the time in moderately high wind speeds (10 - 16 m/s). As a result, the load is disconnected and no water is pumped at moderately high wind speeds. When the turbine is offline, the frequency increases rapidly often causing excessive vibration of the wind turbine and tower components. The furling wind speed could possibly be decreased by increasing the offset between the tower centerline and the rotor centerline, but would be a major and potentially expensive retrofit. Trailing edge flaps (TEF) were used as a quick inexpensive method to try to reduce the furling wind speed and increase the on time by reducing the rotor RPM. One TEF configuration improved the water pumping performance at moderately high wind speeds, but degraded the pumping performance at low wind speeds which resulted in little change in daily water volume. The other TEF configuration differed very little from the no flap configuration. Both TEF configurations however, reduced the rotor RPM in high wind conditions. The TEF, did not reduce the rotor RPM by lowering the furling wind speed as hoped, but apparently did so by increasing the drag which also reduced the volume of water pumped at the lower wind speeds. 6 refs., 9 figs.

  13. Increased sugarcane water productivity in Brazil avoids land use change and related environmental impacts

    Science.gov (United States)

    Scarpare, F. V.; Galdos, M. V.; Kolln, O.; Gava, G.; Franco, H.; Trivelin, P.

    2012-12-01

    Fábio V. Scarparea, Marcelo V. Galdosa, Oriel T. Kollna, Glauber J.C. Gavab, Henrique J. Francoa, Paulo C.O. Trivelinc a Laboratório Nacional de Ciência e Tecnologia do Bioetanol - CTBE/CNPEM, C.P. 6170, Campinas, SP, 13083-970, Brazil. E-mail: fabio.scarpare@bioetanol.org.br b APTA - Polo Centro Oeste. Rod. SP 304, km 304, CP 66, Jaú, SP, 17201-970, Brazil. c Laboratório de Isótopos Estáveis, Centro de Energia Nuclear na Agricultura, CENA/USP, C.P. 9, Piracicaba, SP, 13418-900, Brazil. Increasing crop water productivity is a key factor where water is scarce compared with land and other resources. A widespread method for water use assessment is the water productivity (WP) approach which is the ratio between biomass production per unit of water utilized. WP is useful to evaluate water utilization and to identify where and when water can be saved in an irrigation system. Traditionally, field experiments are conducted to quantify and evaluate water management practices in irrigation systems. This field trial was conducted in Jaú - São Paulo State (Lat 22.17° S, Long 48.32° W) during first and second ratoon cycles. Four treatments were appraised; rainfed only (R0); rainfed + 150 kg ha-1 of N (RN); irrigation only (I0) and irrigation + 150 kg ha-1 of N (IN). The subsurface drip irrigation was carried out considering the crop evapotranspiration (ETc) to restore 100% of evapotranspired water. The irrigation frequency was considered the water supply to the soil by precipitation and the atmospheric demand for sugarcane ETc, with a maximum soil storage capacity of 70 mm. Our results point that the WP in irrigated condition was 13% higher than rainfed field whereas for N application, WP reached even higher values, 40%. WP among all treatments showed better results for IN (~28 kg mm-1) followed by RN (~23 kg mm-1); I0 (~16 kg mm-1) and R0 (~15 kg mm-1). Those results are in agreement with some studies which suggest high synergy between water and nitrogen for the

  14. Increased water hardness and magnesium levels may increase occurrence of urolithiasis in cows from the Burdur region (Turkey).

    Science.gov (United States)

    Sahinduran, S; Buyukoglu, T; Gulay, M S; Tasci, F

    2007-08-01

    Objectives of the study were to measure water hardness in Burdur, and to establish its possible association with urolithiasis in cattle. Water samples were obtained from different stables (n = 15). Water hardness and the concentrations of potassium, calcium, magnesium, sodium, iron, zinc, manganese and copper ions were calculated from these water samples. Total hardness of the samples (mean 285 ppm) exceeded the standards and the water was characterized by high content of magnesium ions. Kidneys (n = 500) were collected randomly from slaughterhouses and examined for urolithiasis. Urolithiasis was observed in 102 kidneys (20.4%). The weights of the stones were between 0.02 and 237.44 g and the colour varied from white to brown. The calculi collected had various shapes and composed of calcium apatite (42.45%), struvite (20.15%), magnesium carbonate (15.15%), calcium carbonate (12.12%), and calcium phosphate cystine (10.13%). It was concluded that high water hardness with high magnesium ion concentrations in water may contribute to urolithiasis and needs to be investigated further in future studies.

  15. Degradation of Remazol Red in batik dye waste water by contact glow discharge electrolysis method using NaOH and NaCl electrolytes

    Science.gov (United States)

    Saksono, Nelson; Putri, Dita Amelia; Suminar, Dian Ratna

    2017-03-01

    Contact Glow Discharge Electrolysis (CGDE) method is one of Plasma Electrolysis technology which has been approved to degrade organic waste water because it is very productive in producing hydroxyl radical. This study aims to degrade Remazol Red by CGDE method and evaluate important parameters that have influent in degradation process of Remazol Red in Batik dye waste water in batch system. The kind of electrolyte (acid and base) and the addition of metal ion such as Fe2+ have affected Remazol Red degradation percentage. Ultraviolet-Visible (UV-Vis) absorption spectra were used to monitor the degradation process. The result of study showed that percentage degradation was 99.97% which obtained by using NaCl 0.02 M with addition Fe2+ 20 ppm, applied voltage 700 volt, anode depth 0.5 cm, initial concentration of Remazol Red 250 ppm and the temperature of solutions was maintained 50-60 ˚C.

  16. In-situ surface wettability parameters of submerged in brackish water surfaces derived from captive bubble contact angle studies as indicators of surface condition level

    Science.gov (United States)

    Pogorzelski, S. J.; Mazurek, A. Z.; Szczepanska, A.

    2013-06-01

    The characterization of wetting properties (by contact angles) of several undersea artificial (glass plates,) and natural (stones, sand layers, soft-bottom structures, aquatic macrophytes, sediments, and seafloor communities) solid substrata in the Baltic Sea brackish water (Gulf of Gdansk). The studies were performed under laboratory and field conditions using a novel captive bubble air-pipette computer microscope system. A set of the surface wettability parameters: the apparent surface free energy γSV, adhesive layer film pressure Π, work of adhesion WA, and work of spreading WS were determined to quantify the wetting properties of model substrata using the contact angle hysteresis (CAH) approach. The useful technique to measure in situ the contact angle giving reproducible and accurate values of CA turned out to be a captive bubble method, for fully hydrated interfacial layers of highly hydrophilic and porous nature met at seabed (Rodrigues-Valverde et al., 2002). CA measurements revealed mostly hydrophilic nature of the studied solid material (CA oil film covering lead to surface hydrophobization (CA↑, γSV ↓,WA↓, WS more negative). The adhesion of biofouling was correlated both with CAH and the dispersive interaction term γSVd of the total γSV. Monitoring of the artificial substrata of the hydrophilic nature with a CA technique can be used to observe the development of the organisms community i.e., microfouling, and to carry out a comprehensive study of surfaces of the submerged macrophytes (Potamogeton lucens in particular). Since aquatic macrophytes can act as bio-indicators of water chemistry their surface wettability may reflect plant surface erosion and organic matter accumulation state being of particular value in biological assessment of ecosystems status.

  17. [Effects of intermittent aeration on nitrogen-removal capability of biological contact oxidation remediation system for micro-polluted source water].

    Science.gov (United States)

    Xu, Jing; Zhu, Liang; Ding, Wei; Feng, Li-juan; Xu, Xiang-yang

    2011-04-01

    Aiming at the carbon source limitation of denitrification in oligotrophic habitat, this paper studied the effects of intermittent aeration on the nitrogen-removal capability of biological contact oxidation remediation system for micro-polluted source water, and approached the feasibility and process mechanism of shortcut nitrification and denitrification in the system. Under the condition of 8 h-16 h anoxic-aerobic phase (I), the remediation system performed stably, and its average removal efficiency of ammonium (NH4+ -N), permanganate index (COD(Mn)), and total nitrogen (TN) was 93.0%, 78.1%, and 19.4%, respectively. Under the condition of 16 h-8 h anoxic-aerobic phase (II), the NH4+ -N and COD(Mn) removal efficiency still maintained at 81.2% and 76.4%, respectively, the accumulation of nitrite (NO2- -N) was significant, and the removal efficiency of TN reached more than 50%. The nitrogen transformation characteristics in the system during a cycle under condition II demonstrated that at the prerequisite of effluent NH4+ -N and DO concentrations reaching the standards, shortening aerobic phase length could maintain the DO concentration at 0. 5 -1.5 mg L(-1) in a long term, inhibit the growth and activity of nitrite-oxidizing bacteria, and thereby, NO2- -N had an obvious accumulation, and the nitrogen removal via shortcut nitrification-denitrification in the biological contact oxidation remediation system for micro-polluted source water was finally achieved.

  18. Deep South Atlantic carbonate chemistry and increased interocean deep water exchange during last deglaciation

    Science.gov (United States)

    Yu, Jimin; Anderson, Robert F.; Jin, Zhangdong; Menviel, Laurie; Zhang, Fei; Ryerson, Fredrick J.; Rohling, Eelco J.

    2014-04-01

    Carbon release from the deep ocean at glacial terminations is a critical component of past climate change, but the underlying mechanisms remain poorly understood. We present a 28,000-year high-resolution record of carbonate ion concentration, a key parameter of the global carbon cycle, at 5-km water depth in the South Atlantic. We observe similar carbonate ion concentrations between the Last Glacial Maximum and the late Holocene, despite elevated concentrations in the glacial surface ocean. This strongly supports the importance of respiratory carbon accumulation in a stratified deep ocean for atmospheric CO2 reduction during the last ice age. After ˜9 μmol/kg decline during Heinrich Stadial 1, deep South Atlantic carbonate ion concentration rose by ˜24 μmol/kg from the onset of Bølling to Pre-boreal, likely caused by strengthening North Atlantic Deep Water formation (Bølling) or increased ventilation in the Southern Ocean (Younger Drays) or both (Pre-boreal). The ˜15 μmol/kg decline in deep water carbonate ion since ˜10 ka is consistent with extraction of alkalinity from seawater by deep-sea CaCO3 compensation and coral reef growth on continental shelves during the Holocene. Between 16,600 and 15,000 years ago, deep South Atlantic carbonate ion values converged with those at 3.4-km water depth in the western equatorial Pacific, as did carbon isotope and radiocarbon values. These observations suggest a period of enhanced lateral exchange of carbon between the deep South Atlantic and Pacific Oceans, probably due to an increased transfer of momentum from southern westerlies to the Southern Ocean. By spreading carbon-rich deep Pacific waters around Antarctica for upwelling, invigorated interocean deep water exchange would lead to more efficient CO2 degassing from the Southern Ocean, and thus to an atmospheric CO2 rise, during the early deglaciation.

  19. Effect of SiO2 addition on photocatalytic activity, water contact angle and mechanical stability of visible light activated TiO2 thin films applied on stainless steel by a sol gel method

    Science.gov (United States)

    Momeni, Mansour; Saghafian, Hasan; Golestani-Fard, Farhad; Barati, Nastaran; Khanahmadi, Amirhossein

    2017-01-01

    Nanostructured N doped TiO2/20%SiO2 thin films were developed on steel surface via sol gel method using a painting airbrush. Thin films then were calcined at various temperatures in a range of 400-600 °C. The effect of SiO2 addition on phase composition and microstructural evolution of N doped TiO2 films were studied using XRD and FESEM. Optical properties, visible light photocatalytic activity, hydrophilic behavior, and mechanical behavior of the films were also investigated by DRS, methylene blue degradation, water contact angle measurements, and nanoscratch testing. Results indicated that the band gap energy of N doped TiO2/SiO2 was increased from 2.93 to 3.09 eV. Crack formation during calcination was also significantly promoted in the composite films. All composite films demonstrated weaker visible light photocatalytic activities and lower mechanical stability in comparison with N doped TiO2 films. Moreover, the N doped TiO2/SiO2 film calcined at 600 °C showed undesirable hydrophilic behavior with a water contact angle of 57° after 31 h of visible light irradiation. Outcomes of the present study reveal some different results to previous reports on TiO2/SiO2 films. In general, we believe the differences in substrate material as well as application in visible light are the main reasons for the above mentioned contradiction.

  20. Application of energy and exergy analysis to increase efficiency of a hot water gas fired boiler

    Directory of Open Access Journals (Sweden)

    Todorović Milena N.

    2014-01-01

    Full Text Available In engineering practice exergy can be used for technical and economic optimization of energy conversion processes. The problem of increasing energy consumption suggests that heating plants, i.e. hot water boilers, as energy suppliers for household heating should be subjected to exergy and energy analysis. Heating plants are typically designed to meet energy demands, without the distinguished difference between quality and quantity of the produced heat. In this paper, the energy and exergy analysis of a gas fired hot water boiler is conducted. Energy analysis gives only quantitative results, while exergy analysis provides an insight into the actually available useful energy with respect to the system environment. In this paper, a hot water boiler was decomposed into control volumes with respect to its functional components. Energy and exergy of the created physical model of the hot water boiler is performed and destruction of exergy and energy loss in each of the components is calculated. The paper describes the current state of energy and exergy efficiency of the hot water boiler. The obtained results are analyzed and used to investigate possibilities for improvement of availability and reliability of the boiler. A comparison between the actual and the proposed more reliable solution is made.

  1. Increase in outbreaks of gastroenteritis linked to bathing water in Finland in summer 2014

    Science.gov (United States)

    Kauppinen, Ari; Al-Hello, Haider; Zacheus, Outi; Kilponen, Jaana; Maunula, Leena; Huusko, Sari; Lappalainen, Maija; Miettinen, Ilkka; Blomqvist, Soile; Rimhanen-Finne, Ruska

    2017-01-01

    An increased number of suspected outbreaks of gastroenteritis linked to bathing water were reported to the Finnish food- and waterborne outbreak (FWO) registry in July and August 2014. The investigation reports were assessed by a national outbreak investigation panel. Eight confirmed outbreaks were identified among the 15 suspected outbreaks linked to bathing water that had been reported to the FWO registry. According to the outbreak investigation reports, 1,453 persons fell ill during these outbreaks. Epidemiological and microbiological data revealed noroviruses as the main causative agents. During the outbreaks, exceptionally warm weather had boosted the use of beaches. Six of eight outbreaks occurred at small lakes; for those, the investigation strongly suggested that the beach users were the source of contamination. In one of those eight outbreaks, an external source of contamination was identified and elevated levels of faecal indicator bacteria (FIB) were noted in water. In the remaining outbreaks, FIB analyses were insufficient to describe the hygienic quality of the water. Restrictions against bathing proved effective in controlling the outbreaks. In spring 2015, the National Institute for Health and Welfare (THL) and the National Supervisory Authority for Welfare and Health (Valvira) published guidelines for outbreak control to prevent bathing water outbreaks. PMID:28251888

  2. Water quality under increased biofuel production and future climate change and uncertainty

    Science.gov (United States)

    Demissie, Y. K.; Yan, E.

    2015-12-01

    Over the past decade, biofuel has emerged as an important renewable energy source to supplement gasoline and reduce the associated greenhouse gas emission. Many countries, for instant, have adopted biofuel production goals to blend 10% or more of gasoline with biofuels within 10 to 20 years. However, meeting these goals requires sustainable production of biofuel feedstock which can be challenging under future change in climate and extreme weather conditions, as well as the likely impacts of biofuel feedstock production on water quality and availability. To understand this interrelationship and the combined effects of increased biofuel production and climate change on regional and local water resources, we have performed watershed hydrology and water quality analyses for the Ohio River Basin. The basin is one of the major biofuel feedstock producing region in the United States, which also currently contributes about half of the flow and one third of phosphorus and nitrogen loadings to the Mississippi River that eventually flows to the Gulf of Mexico. The analyses integrate future scenarios and climate change and biofuel development through various mixes of landuse and agricultural management changes and examine their potential impacts on regional and local hydrology, water quality, soil erosion, and agriculture productivity. The results of the study are expected to provide much needed insight about the sustainability of large-scale biofuel feedstock production under the future climate change and uncertainty, and helps to further optimize the feedstock production taking into consideration the water-use efficiency.

  3. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes

    Science.gov (United States)

    Novick, Kimberly A.; Ficklin, Darren L.; Stoy, Paul C.; Williams, Christopher A.; Bohrer, Gil; Oishi, A. Christopher; Papuga, Shirley A.; Blanken, Peter D.; Noormets, Asko; Sulman, Benjamin N.; Scott, Russell L.; Wang, Lixin; Phillips, Richard P.

    2016-11-01

    Soil moisture supply and atmospheric demand for water independently limit--and profoundly affect--vegetation productivity and water use during periods of hydrologic stress. Disentangling the impact of these two drivers on ecosystem carbon and water cycling is difficult because they are often correlated, and experimental tools for manipulating atmospheric demand in the field are lacking. Consequently, the role of atmospheric demand is often not adequately factored into experiments or represented in models. Here we show that atmospheric demand limits surface conductance and evapotranspiration to a greater extent than soil moisture in many biomes, including mesic forests that are of particular importance to the terrestrial carbon sink. Further, using projections from ten general circulation models, we show that climate change will increase the importance of atmospheric constraints to carbon and water fluxes in all ecosystems. Consequently, atmospheric demand will become increasingly important for vegetation function, accounting for >70% of growing season limitation to surface conductance in mesic temperate forests. Our results suggest that failure to consider the limiting role of atmospheric demand in experimental designs, simulation models and land management strategies will lead to incorrect projections of ecosystem responses to future climate conditions.

  4. Global potential to increase crop production through water management in rainfed agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Rost, Stefanie; Gerten, Dieter; Hoff, Holger; Lucht, Wolfgang [Potsdam Institute for Climate Impact Research, Research Domain of Climate Impacts and Vulnerabilities, Telegraphenberg A62, 14473 Potsdam (Germany); Falkenmark, Malin [Stockholm Resilience Centre, Stockholm University, 106 91 Stockholm (Sweden); Rockstroem, Johan, E-mail: gerten@pik-potsdam.d [Stockholm Environment Institute (SEI), Kraeftriket 2B, 106 91 Stockholm (Sweden)

    2009-12-15

    This modeling study explores-spatially explicitly, for current and projected future climate, and for different management intensity levels-the potential for increasing global crop production through on-farm water management strategies: (a) reducing soil evaporation ('vapor shift') and (b) collecting runoff on cropland and using it during dry spells ('runoff harvesting'). A moderate scenario, implying both a 25% reduction in evaporation and a 25% collection of runoff, suggests that global crop production can be increased by 19%, which is comparable with the effect of current irrigation (17%). Climate change alone (three climate models, SRES A2r emissions and population, constant land use) will reduce global crop production by 9% by 2050, which could be buffered by a vapor shift level of 50% or a water harvesting level of 25%. Even if realization of the beneficial effects of rising atmospheric CO{sub 2} concentration upon plants was ensured (by fertilizer use) in tandem with the above moderate water management scenario, the water available on current cropland will not meet the requirements of a world population of 9-10 billion.

  5. Application of energy and exergy analysis to increase efficiency of a hot water gas fired boiler

    OpenAIRE

    Todorović Milena N.; Živković Dragoljub S.; Mančić Marko V.; Ilić Gradimir S.

    2014-01-01

    In engineering practice exergy can be used for technical and economic optimization of energy conversion processes. The problem of increasing energy consumption suggests that heating plants, i.e. hot water boilers, as energy suppliers for household heating should be subjected to exergy and energy analysis. Heating plants are typically designed to meet energy demands, without the distinguished difference between quality and quantity of the produced heat. In t...

  6. Low water conductivity increases the effects of copper on the serum parameters in fish (Oreochromis niloticus).

    Science.gov (United States)

    Canli, Esin G; Canli, Mustafa

    2015-03-01

    The conductivity is largely determined by ion levels in water, predominant ion being Ca(2+) in the freshwaters. For this reason, the effects of copper were evaluated as a matter of conductivity of exposure media in the present study. Thus, freshwater fish Oreochromis niloticus were exposed to copper in differing conductivities (77, 163 and 330 μS/cm), using acute (0.3 μM, 3 d) and chronic (0.03 μM, 30 d) exposure protocols. Following the exposure serum parameters of fish were measured. Data showed that there was no significant alteration (P>0.05) in serum parameters of control fish. However, activities of ALP, ALT and AST decreased significantly at the lower conductivities in chronic copper exposure, but not in acute ones. Protein levels did not differ significantly in any of the exposure conditions. However, Cu exposure at the lowest conductivity sharply increased the levels of glucose in the acute exposure, while there was no significant difference in the chronic exposure. Cholesterol levels decreased only at the lower conductivities in chronic exposure, but increased in acute exposure. Similarly, triglyceride levels increased in acute exposures and decreased in chronic exposures at the lowest conductivity. There was no change in Na(+) levels, while there was an increase in K(+) levels and a decrease in Ca(2+) level at the lowest conductivity of acute exposures. However, Cl(-) levels generally decreased at the higher conductivities of chronic exposures. There was a strong negative relationship between significant altered serum parameters and water conductivity. In conclusion, this study showed that copper exposure of fish at lower conductivities caused more toxicities, indicating the protective effect of calcium ions against copper toxicity. Data suggest that conductivity of water may be used in the evaluation of metal data from different waters with different chemical characteristics.

  7. Transient pool boiling heat transfer due to increasing heat inputs in subcooled water at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, K. [Kobe Univ. of Mercantile Marine (Japan); Shiotsu, M.; Sakurai, A. [Kyoto Univ. (Japan)

    1995-09-01

    Understanding of transient boiling phenomenon caused by increasing heat inputs in subcooled water at high pressures is necessary to predict correctly a severe accident due to a power burst in a water-cooled nuclear reactor. Transient maximum heat fluxes, q{sub max}, on a 1.2 mm diameter horizontal cylinder in a pool of saturated and subcooled water for exponential heat inputs, q{sub o}e{sup t/T}, with periods, {tau}, ranging from about 2 ms to 20 s at pressures from atmospheric up to 2063 kPa for water subcoolings from 0 to about 80 K were measured to obtain the extended data base to investigate the effect of high subcoolings on steady-state and transient maximum heat fluxes, q{sub max}. Two main mechanisms of q{sub max} exist depending on the exponential periods at low subcoolings. One is due to the time lag of the hydrodynamic instability which starts at steady-state maximum heat flux on fully developed nucleate boiling (FDNB), and the other is due to the heterogenous spontaneous nucleations (HSN) in flooded cavities which coexist with vapor bubbles growing up from active cavities. The shortest period corresponding to the maximum q{sub max} for long period range belonging to the former mechanism becomes longer and the q{sub max}mechanism for long period range shifts to that due the HSN on FDNB with the increase of subcooling and pressure. The longest period corresponding to the minimum q{sub max} for the short period range belonging to the latter mechanism becomes shorter with the increase in saturated pressure. On the contrary, the longest period becomes longer with the increase in subcooling at high pressures. Correlations for steady-state and transient maximum heat fluxes were presented for a wide range of pressure and subcooling.

  8. Hydrologic effects of large southwestern USA wildfires significantly increase regional water supply: fact or fiction?

    Science.gov (United States)

    Wine, M. L.; Cadol, D.

    2016-08-01

    In recent years climate change and historic fire suppression have increased the frequency of large wildfires in the southwestern USA, motivating study of the hydrological consequences of these wildfires at point and watershed scales, typically over short periods of time. These studies have revealed that reduced soil infiltration capacity and reduced transpiration due to tree canopy combustion increase streamflow at the watershed scale. However, the degree to which these local increases in runoff propagate to larger scales—relevant to urban and agricultural water supply—remains largely unknown, particularly in semi-arid mountainous watersheds co-dominated by winter snowmelt and the North American monsoon. To address this question, we selected three New Mexico watersheds—the Jemez (1223 km2), Mogollon (191 km2), and Gila (4807 km2)—that together have been affected by over 100 wildfires since 1982. We then applied climate-driven linear models to test for effects of fire on streamflow metrics after controlling for climatic variability. Here we show that, after controlling for climatic and snowpack variability, significantly more streamflow discharged from the Gila watershed for three to five years following wildfires, consistent with increased regional water yield due to enhanced infiltration-excess overland flow and groundwater recharge at the large watershed scale. In contrast, we observed no such increase in discharge from the Jemez watershed following wildfires. Fire regimes represent a key difference between the contrasting responses of the Jemez and Gila watersheds with the latter experiencing more frequent wildfires, many caused by lightning strikes. While hydrologic dynamics at the scale of large watersheds were previously thought to be climatically dominated, these results suggest that if one fifth or more of a large watershed has been burned in the previous three to five years, significant increases in water yield can be expected.

  9. Spectroscopic Observation of Water-Mediated Deformation of the CARBOXYLATE-M2+ (M= Mg, Ca) Contact Ion Pair

    Science.gov (United States)

    Kelleher, Patrick J.; DePalma, Joseph W.; Johnson, Mark

    2016-06-01

    The binding of alkaline earth dications to the biologically relevant carboxylate ligand has previously been studied using vibrational sum frequency generation (VSFG) spectroscopy of the air-water interface, infrared multiple photon dissociation (IRMPD) spectroscopy of clusters, and DFT methods. These results suggest the presence of both monodentate and bidentate binding motifs of the M2+ ions to the cayboxyl head groups depending on the extent of solvation. We revisit these systems using vibrational predissociation spectroscopy to measure the gas-phase vibrational spectra of the D2-tagged microhydrated [MgOAc(H2O)n=1-5]+ and [CaOAc(H2O)n=1-6]+ clusters. The spectra show that [MgOAc(H2O)n]+ switches from bidentate to monodentate binding promptly at n = 5, while [CaOAc(H2O)n]+ retains its bidentate attachment such that the sixth water molecule initiates the second solvation shell. The difference in binding behavior between these two divalent metal ions is analyzed in the context of the local acidity of the solvent water molecules and the strength of the metal-carboxylate and metal-water interactions. This cluster study provides insight into the chemical physics underlying the unique and surprising impacts of Mg2+ and Ca2+ on the chemistry mediated by sea spray aerosols. Funding for this work was provided by the NSF's Center for Aerosol Impacts on Climate and the Environment.

  10. Measurement of reactive species generated by dielectric barrier discharge in direct contact with water in different atmospheres

    Science.gov (United States)

    Kovačević, Vesna V.; Dojčinović, Biljana P.; Jović, Milica; Roglić, Goran M.; Obradović, Bratislav M.; Kuraica, Milorad M.

    2017-04-01

    The formation of hydroxyl radical and long-living chemical species (H2O2, O3, \\text{NO}3- and \\text{NO}2- ) generated in the liquid phase of a water falling film dielectric barrier discharge in dependence on the gas atmosphere (air, nitrogen, oxygen, argon and helium) was studied. The chemical molecular probe dimethyl sulfoxide was employed for quantification of ˙OH, and the influence of hydroxyl radical scavenging on formation of reactive oxygen and nitrogen species was investigated. In addition to liquid analysis, plasma diagnostics was applied to indicate possible reaction pathways of plasma–liquid interaction. The highest ˙OH production rate of 1.19  ×  10‑5 mol l‑1 s‑1 was found when water was treated in oxygen, with a yield of 2.75  ×  10‑2 molecules of ˙OH per 100 eV. Formation of hydrogen peroxide in air, nitrogen and argon discharges is determined by recombination reaction of hydroxyl radicals, reaching the highest yield of about 0.7 g kWh‑1 when distilled water was treated in argon discharge. Ozone formation was dominant in oxygen and air discharges. Strong acidification along with formation of reactive nitrogen species was detected in water treated in air and nitrogen discharges.

  11. A history of late and very late stent thrombosis is not associated with increased activation of the contact system, a case control study

    Directory of Open Access Journals (Sweden)

    Brügger-Andersen Trygve

    2010-04-01

    Full Text Available Abstract Background The pathophysiological pathways resulting in Late Stent Thrombosis (LST remain uncertain. Findings from animal studies indicate a role of the intrinsic coagulation pathway in arterial thrombus formation, while clinical studies support an association with ischemic cardiovascular disease. It is currently unknown whether differences in the state of the contact system might contribute to the risk of LST or Very Late Stent Thrombosis (VLST. We assessed the relation between levels of several components involved in the contact system and a history of LST and VLST, termed (VLST in a cohort of 20 patients as compared to a matched control group treated with PCI. Methods and Results Activated factor XII (FXIIa, FXII zymogen (FXII, FXIIa-C1-esterase inhibitor (C1-inhibitor, Kallikrein-C1-inhibitor, FXIa-C1-inhibitor and FXIa-α1-antitrypsin (AT-inhibitor complexes were measured by Enzyme-linked immunosorbent assy (ELISA methodology. Cases and controls showed similar distributions in sex, age, baseline medications and stent type. Patients with a history of (VLST had a significantly greater stent burden and a higher number of previous myocardial infarctions than the control patients. There were no significant between-group differences in the plasma levels of the components of the contact system. Conclusion In a cohort of patients with a history of (VLST, we did not observe differences in the activation state of the intrinsic coagulation system as compared to patients with a history of percutaneous coronary intervention without stent thrombosis.

  12. Stream Flooding Response and Water Quality as a Function of Increasing Impervious Surface Area

    Science.gov (United States)

    Hasenmueller, E. A.; Criss, R. E.; Winston, W. E.; Shaughnessy, A. R.

    2016-12-01

    Urban and suburban streams often exhibit frequent flash floods and low water quality, but surprisingly few studies of these systems attempt to resolve the relative contributions of different runoff fractions and their associated geochemistry. This study deliberately examined concurrent responses in three watersheds and two subbasins along a gradient of increasing impervious surface area in and around highly urbanized Saint Louis, Missouri, USA, to quantify changes in the relative contributions of pre-event (baseflow) and event (runoff) water to streamflow during flooding using hydrograph separations. Our high frequency monitoring of stable isotopes ratios (δ2H and δ18O) and water quality (temperature, dissolved O2, pH, turbidity, specific conductivity, concentrations of Cl- and nutrients, and bacterial loads) quantify large hydrologic and geochemical differences across the land use gradient. Following precipitation events, floods on a rural stream feature slow flow responses, hydrographs with low peak discharges and long lag times, high baseflow contributions, and small geochemical variations. In contrast, the flows of an urban stream and its tributary respond in a flashier manner, with peak flows that are nearly 10 times higher, average lag times that decrease by 85%, and event water contributions that are 2 times higher compared to the rural stream. The urban streams also exhibit large fluctuations in geochemistry, often with 5 times the variability of the rural end-member. These large geochemical changes in urban streams following storms are paralleled by more chaotic diurnal and seasonal variations. Importantly, we find that reduced baseflow as a function of increasing impervious surface area is not linear; thus, the hydrology of suburban streams is less impacted than would be predicted by impervious surface alone. This non-linear relationship with impervious surface area is also observed in some of the geochemical responses to flooding, and therefore

  13. Response of fish to different simulated rates of water temperature increase

    Energy Technology Data Exchange (ETDEWEB)

    Wike, L.D.; Tuckfield, R.C.

    1992-08-01

    We initiated this study to define the limits of effluent-temperature rate increases during reactor restart, which will help minimize fish kills. We constructed an apparatus for exposing fish to various temperature-increase regimens and conducted two experiments based on information from system tests and scoping runs. In the rate experiment, we acclimated the fish to 20{degree}C, and then raised the temperature to 40{degree}C at varying rates. Because scoping runs and literature suggested that acclimation temperature may affect temperature-related mortality, we conducted an acclimation experiment. We acclimated the fish to various temperatures, then raised the temperatures to 39--40{degree}C at a rate of 2{degree}C every 12 hours. Based on the analysis of the data, we recommend temperature-increase rates during reactor restart of 2.5{degree}C every nine hours if ambient water temperatures are over 20{degree}C. If water temperatures are at or below 20{degree}C, we recommend temperature-increase rates of 2.5{degree}C every 12 hours. No regulation of temperature is required after effluent temperatures reach 40{degree}C. We recommend further studies, including expanded testing with the simulation system and behavioral and bioenergetic investigations that may further refine acceptable rates of effluent-temperature increases.

  14. Assessment of microbial infection risks posed by ingestion of water during domestic water use and full-contact recreation in a mid-southern African region

    CSIR Research Space (South Africa)

    Steyn, M

    2004-01-01

    Full Text Available A customised Water-related Quantitative Microbial Risk Assessment (WROMRA) process was used to determine risk of infection to water ingested by users in the south-eastern Free State, South Africa. The WRQMRA consisted of an observed...

  15. Correlation of foodstuffs with ethanol-water mixtures with regard to the solubility of migrants from food contact materials.

    Science.gov (United States)

    Seiler, Annika; Bach, Aurélie; Driffield, Malcolm; Paseiro Losada, Perfecto; Mercea, Peter; Tosa, Valer; Franz, Roland

    2014-01-01

    Today most foods are available in a packed form. During storage, the migration of chemical substances from food packaging materials into food may occur and may therefore be a potential source of consumer exposure. To protect the consumer, standard migration tests are laid down in Regulation (EU) No. 10/2011. When using those migration tests and applying additional conservative conventions, estimated exposure is linked with large uncertainties including a certain margin of safety. Thus the research project FACET was initiated within the 7th Framework Programme of the European Commission with the aim of developing a probabilistic migration modelling framework which allows one (1) to calculate migration into foods under real conditions of use; and (2) to deliver realistic concentration estimates for consumer exposure modelling for complex packaging materials (including multi-material multilayer structures). The aim was to carry out within the framework of the FACET project a comprehensive systematic study on the solubility behaviour of foodstuffs for potentially migrating organic chemicals. Therefore a rapid and convenient method was established to obtain partition coefficients between polymer and food, KP/F. With this method approximately 700 time-dependent kinetic experiments from spiked polyethylene films were performed using model migrants, foods and ethanol-water mixtures. The partition coefficients of migrants between polymer and food (KP/F) were compared with those obtained using ethanol-water mixtures (KP/F's) to investigate whether an allocation of food groups with common migration behaviour to certain ethanol-water mixtures could be made. These studies have confirmed that the solubility of a migrant is mainly dependent on the fat content in the food and on the ethanol concentration of ethanol-water mixtures. Therefore dissolution properties of generic food groups for migrants can be assigned to those of ethanol-water mixtures. All foodstuffs (including dry

  16. EDITORIAL: Close contact Close contact

    Science.gov (United States)

    Demming, Anna

    2010-07-01

    The development of scanning probe techniques, such as scanning tunnelling microscopy [1], has often been touted as the catalyst for the surge in activity and progress in nanoscale science and technology. Images of nanoscale structural detail have served as an invaluable investigative resource and continue to fascinate with the fantastical reality of an intricate nether world existing all around us, but hidden from view of the naked eye by a disparity in scale. As is so often the case, the invention of the scanning tunnelling microscope heralded far more than just a useful new apparatus, it demonstrated the scope for exploiting the subtleties of electronic contact. The shrinking of electronic devices has been a driving force for research into molecular electronics, in which an understanding of the nature of electronic contact at junctions is crucial. In response, the number of experimental techniques in molecular electronics has increased rapidly in recent years. Scanning tunnelling microscopes have been used to study electron transfer through molecular films on a conducting substrate, and the need to monitor the contact force of scanning tunnelling electrodes led to the use of atomic force microscopy probes coated in a conducting layer as studied by Cui and colleagues in Arizona [2]. In this issue a collaboration of researchers at Delft University and Leiden University in the Netherlands report a new device architecture for the independent mechanical and electrostatic tuning of nanoscale charge transport, which will enable thorough studies of molecular transport in the future [3]. Scanning probes can also be used to pattern surfaces, such as through spatially-localized Suzuki and Heck reactions in chemical scanning probe lithography. Mechanistic aspects of spatially confined Suzuki and Heck chemistry are also reported in this issue by researchers in Oxford [4]. All these developments in molecular electronics fabrication and characterization provide alternative

  17. Non-contact quantification of laser micro-impulse in water by atomic force microscopy and its application for biomechanics

    Science.gov (United States)

    Hosokawa, Yoichiroh

    2011-12-01

    We developed a local force measurement system of a femtosecond laser-induced impulsive force, which is due to shock and stress waves generated by focusing an intense femtosecond laser into water with a highly numerical aperture objective lens. In this system, the force localized in micron-sized region was detected by bending movement of a cantilever of atomic force microscope (AFM). Here we calculated the bending movement of the AFM cantilever when the femtosecond laser is focused in water at the vicinity of the cantilever and the impulsive force is loaded on the cantilever. From the result, a method to estimate the total of the impulsive force at the laser focal point was suggested and applied to estimate intercellular adhesion strength.

  18. Hydrocarbon contamination increases the liquid water content of frozen Antarctic soils.

    Science.gov (United States)

    Siciliano, Steven D; Schafer, Alexis N; Forgeron, Michelle A M; Snape, Ian

    2008-11-15

    We do not yet understand why fuel spills can cause greater damage in polar soils than in temperate soils. The role of water in the freezing environment may partly be responsible for why polar soils are more sensitive to pollution. We hypothesized that hydrocarbons alter the liquid water in frozen soil, and we evaluated this hypothesis by conducting laboratory and field experiments at Casey Station, Antarctica. Liquid water content in frozen soils (theta(liquid)) was estimated by time domain reflectometry in laboratory, field collected soils, and in situ field measurements. Our results demonstrate an increase in liquid water associated with hydrocarbon contamination in frozen soils. The dependence of theta(liquid) on aged fuel and spiked fuel were almost identical,with a slope of 2.6 x 10(-6) mg TPH (total petroleum hydrocarbons) kg(-1) for aged fuel and 3.1 x 10(-6) mg TPH kg(-1) for spiked fuel. In situ measurements found theta(liquid) depends, r2 = 0.75, on fuel for silt loam soils (theta(liquid) = 0.094 + 7.8 x 10(-6) mg TPH kg(-1)) but not on fuel for silt clay loam soils. In our study, theta(liquid) doubled in field soils and quadrupled in laboratory soils contaminated with diesel which may have profound implications on frost heave models in contaminated soils.

  19. Selective capture of water using microporous adsorbents to increase the lifetime of lubricants.

    Science.gov (United States)

    Ng, Eng-Poh; Delmotte, Luc; Mintova, Svetlana

    2009-01-01

    Long live lubricants: The selective capture of water from lubricants using nanosized microporous aluminophosphate (AEI) and aluminosilicate materials was studied. Nearly 98 % of the moisture was removed from the lubricating oil under ambient conditions, resulting in a significant improvement in the lubricating service lifetime. Moreover, both the lubricant and the microporous sorbents can be recovered and reused.The selective capture of water from lubricants using nanosized microporous aluminophosphate and aluminosilicate materials was studied with an aim to increase the lifetime of the lubricating mineral oil. The amount of water present in oxidized lubricating oil before and after treatment with microporous materials was studied by FTIR spectroscopy and determined quantitatively using the Karl Fischer titration method. Nanosized aluminophosphate revealed a high selectivity for water without adsorbing other additives, in contrast to nanosized aluminosilicates which also adsorb polar oxidation products and ionic additives. About 98 % of the initial moisture could be removed from the lubricating oil under ambient conditions, resulting in a significant improvement in the lubricating service lifetime. Moreover, no by-products are formed during the process and both the lubricant and the sorbents can be recovered and reused, thus the method is environmentally friendly.

  20. Contextualizing Intergroup Contact: Do Political Party Cues Enhance Contact Effects?

    DEFF Research Database (Denmark)

    Sønderskov, Kim Mannemar; Thomsen, Jens Peter Frølund

    2015-01-01

    political parties on us-them categorizations heightens the awareness of group memberships. This focus in turn enhances the positive intergroup contact effect by stimulating majority members to perceive contacted persons as prototypical outgroup members. A multilevel analysis of 22 countries and almost 37......,000 individuals confirms that the ability of intergroup contact to reduce antiforeigner sentiment increases when political parties focus intensively on immigration issues and cultural differences. Specifically, both workplace contact and interethnic friendship become more effective in reducing antiforeigner...

  1. Enhanced water use efficiency in global terrestrial ecosystems under increasing aerosol loadings

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaoliang; Chen, Min; Liu, Yaling; Miralles, Diego G.; Wang, Faming

    2017-05-01

    Aerosols play a crucial role in the climate system, affecting incoming radiation and cloud formation. Based on a modelling framework that couples ecosystem processes with the atmospheric transfer of radiation, we analyze the effect of aerosols on surface incoming radiation, gross primary productivity (GPP), water losses from ecosystems through evapotranspiration (ET) and ecosystem water use efficiency (WUE, defined as GPP/ET) for 2003–2010 and validate them at global FLUXNET sites. The total diffuse radiation increases under relatively low or intermediate aerosol loadings, but decreases under more polluted conditions. We find that aerosol-induced changes in GPP depend on leaf area index, aerosol loading and cloudiness. Specifically, low and moderate aerosol loadings cause increases in GPP for all plant types, while heavy aerosol loadings result in enhancement (decrease) in GPP for dense (sparse) vegetation. On the other hand, ET is mainly negatively affected by aerosol loadings due to the reduction in total incoming radiation. Finally, WUE shows a consistent rise in all plant types under increasing aerosol loadings. Overall, the simulated daily WUE compares well with observations at 43 eddy-covariance tower sites (R2=0.84 and RMSE=0.01gC (kg H2O)-1) with better performance at forest sites. In addition to the increasing portions of diffuse light, the rise in WUE is also favored by the reduction in radiation- and heat-stress caused by the aerosols, especially for wet and hot climates.

  2. Increasing Water Use Efficiency Comes at a Cost for Norway Spruce

    Directory of Open Access Journals (Sweden)

    Tanja G M Sanders

    2016-11-01

    Full Text Available Intrinsic water use efficiency (WUEi in trees is an indication of the ratio of carbon assimilation to the rate of transpiration. It is generally assumed that it is a response to water availability. In agricultural research, the question of drought tolerance by increased WUEi has been well studied. In general, the increase is a trade-off for productivity and is therefore not desired. For forest trees, this question is less clearly understood. Using stable carbon isotopes derived from tree rings combined with productivity as the product of the annual growth increment and annual density measurements, we compared the change in WUEi over a 15 year period. While WUEi increased over this period, the productivity decreased, causing an opposing trend. The gradient of the correlation between WUEi and productivity varies between provenances and sites. Counterintuitively, the populations at the drier site showed low WUEi values at the beginning of the investigation. Slopes vary with the provenance from Poland showing the least decline in productivity. In general, we found that a decline in productivity aligned with an increase in WUEi.

  3. THERMAL CONDUCTANCE IN AQUATIC BIRDS IN RELATION TO THE DEGREE OF WATER CONTACT, BODY-MASS, AND BODY-FAT - ENERGETIC IMPLICATIONS OF LIVING IN A STRONG COOLING ENVIRONMENT

    NARCIS (Netherlands)

    DEVRIES, J; VANEERDEN, MR

    1995-01-01

    Thermal conductance of carcasses of 14 aquatic bird species was determined by the warming constant technique. The effect on thermal conductance of body mass, age sex, fat deposits, and the degree of contact with water were studied. Only body mass and the degree of submergence in water had an effect.

  4. Tear film proteins deposited on high water content contact lenses identified with two-dimensional gel electrophoresis and mass spectrometry.

    Science.gov (United States)

    Nielsen, Kim; Vorum, Henrik; Ehlers, Niels; Aagaard, Nicolaj; Hjortdal, Jesper; Honoré, Bent

    2015-11-01

    Tear film proteins adhere to the surface of contact lenses (CLs). While the proteins in the tears have been extensively studied with various proteomic techniques, adhered proteins to CLs are less studied. In this pilot study, we have separated proteins with 2D gel electrophoresis prior to the conventional mass spectrometry (MS) in order to analyse the deposited proteins on hydrogel CLs from myopic patients. pHEMA and PVA hydrogel CLs worn by 3 patients for different time lengths were analysed. After wear, the CLs were frozen at -20°C. Proteins were extracted in lysis buffer, separated on 12% polyacrylamide gels and silver-stained. Protein spots were excised and identified with liquid chromatography - tandem MS. Deposited proteins were extracted with a yield of 26-66 μg and separated by 2D gel electrophoresis. The silver-stained gels showed similar protein patterns independent of the patient, hydrogel type and wear time. Seventy-two spots were analysed with MS, representing at least 12 different tear film proteins or protein fragments. Deposited tear film proteins from a single set of CLs worn for 1 day can successfully be analysed first with 2D gel electrophoresis and subsequently with MS, thus making examination of individual patients possible. The protein composition appeared homogeneous between the test persons which is a necessity for additional comparison analysis. The molecular masses of the identified proteins indicate that protein degradation occurs only as a minor event. Myopic patients were investigated in this pilot study, but the combined techniques can easily be applied to other eye diseases. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  5. Aerobic Exercise Training Increases Muscle Water Content in Obese Middle-Age Men

    DEFF Research Database (Denmark)

    Mora-Rodríguez, Ricardo; Sanchez-Roncero, Alicia; Fernández-Elías, Valentin Emilio;

    2016-01-01

    L⁻¹·kg⁻¹·min⁻¹) metabolic syndrome men completed a 4-month aerobic cycling training program. Vastus lateralis muscle biopsies were collected before and 72 h after the completion of the last training bout. Water content, total protein, glycogen concentration, and citrate synthase activity were measured in biopsy tissue.......023). Cardiorespiratory fitness (i.e., V˙O2peak), exercise maximal fat oxidation (i.e., FOmax), and maximal cycling power (i.e., Wmax) improved with training (11%, 33%, and 10%, respectively; P ...) although without reaching statistical significance when expressed as per kilogram of wet weight (P = 0.15). CONCLUSIONS: Our findings suggest that aerobic cycling training increases quadriceps muscle water although reduces muscle protein concentration in obese metabolic syndrome men. Reduced protein...

  6. It is possible to increase by over thirty per cent the Nile Water availability

    Energy Technology Data Exchange (ETDEWEB)

    Lemperiere, F.

    2011-01-15

    The population of the Nile catchment is presently 250 Million and will probably reach 400 Million in 2040. The catchment includes two parts of about same population but with a very different climate. - The upstream rainy part (most of this area is in Ethiopia, Uganda and South Sudan). - The downstream dry part i.e North Sudan and Egypt. The available water from the Nile runoff is evaluated as average as 72 Billion m{sup 3} /year; it is quite totally coming from the upstream part and used in the downstream part. For their development the upstream populations (including also part of Tanzania, Kenya, Congo, Rwanda and Burundi) are now requiring a significant share of the run off generated from local rains when Egypt and North Sudan claim historic rights on the Nile Waters. The best way to avoid conflicts is to increase the water availability for keeping in Egypt and North Sudan at least the water volume presently used and to allow to upstream countries the water resources necessary for their development, possibly in the range of 100 m{sup 3} / year / capita in 2030 or 2040. The average total runoff of the Nile is in fact close to 140 Billion m{sup 3} / year but over 40 Billion evaporate in the South Sudan Swamps and 15 Billion in the reservoirs of Aswan and Northern Sudan. A solution for reducing by half these two main losses is presented in this paper: it is based upon a concrete knowledge of the local very specific data and upon a successful experience of adapted technical solutions

  7. Increased consumption of ethanol and sugar water in mice lacking the dopamine D2 long receptor.

    Science.gov (United States)

    Bulwa, Zachary B; Sharlin, Jordan A; Clark, Peter J; Bhattacharya, Tushar K; Kilby, Chessa N; Wang, Yanyan; Rhodes, Justin S

    2011-11-01

    Individual differences in dopamine D2 receptor (D2R) expression in the brain are thought to influence motivation and reinforcement for ethanol and other rewards. D2R exists in two isoforms, D2 long (D2LR) and D2 short (D2SR), produced by alternative splicing of the same gene. The relative contributions of D2LR versus D2SR to ethanol and sugar water drinking are not known. Genetic engineering was used to produce a line of knockout (KO) mice that lack D2LR and consequently have increased expression of D2SR. KO and wild-type (WT) mice of both sexes were tested for intake of 20% ethanol, 10% sugar water and plain tap water using established drinking-in-the-dark procedures. Mice were also tested for effects of the D2 antagonist eticlopride on intake of ethanol to determine whether KO responses were caused by lack of D2LR or overrepresentation of D2SR. Locomotor activity on running wheels and in cages without wheels was also measured for comparison. D2L KO mice drank significantly more ethanol than WT in both sexes. KO mice drank more sugar water than WT in females but not in males. Eticlopride dose dependently decreased ethanol intake in all groups except male KO. KO mice were less physically active than WT in cages with or without running wheels. Results suggest that overrepresentation of D2SR contributes to increased intake of ethanol in the KO mice. Decreasing wheel running and general levels of physical activity in the KO mice rules out the possibility that higher intake results from higher motor activity. Results extend the literature implicating altered expression of D2R in risk for addiction by delineating the contribution of individual D2R isoforms. These findings suggest that D2LR and D2SR play differential roles in consumption of alcohol and sugar rewards.

  8. Increased childhood liver cancer mortality and arsenic in drinking water in northern Chile.

    Science.gov (United States)

    Liaw, Jane; Marshall, Guillermo; Yuan, Yan; Ferreccio, Catterina; Steinmaus, Craig; Smith, Allan H

    2008-08-01

    Arsenic in drinking water is an established cause of lung, bladder, and skin cancers in adults and may also cause adult kidney and liver cancers. Some evidence for these effects originated from region II of Chile, which had a period of elevated arsenic levels in drinking water, in particular from 1958 to 1970. This unique exposure scenario provides a rare opportunity to investigate the effects of early-life arsenic exposure on childhood mortality; to our knowledge, this is the first study of childhood cancer mortality and high concentrations of arsenic in drinking water. In this article, we compare cancer mortality rates under the age of 20 in region II during 1950 to 2000 with those of unexposed region V, dividing subjects into those born before, during, or after the peak exposure period. Mortality from the most common childhood cancers, leukemia and brain cancer, was not increased in the exposed population. However, we found that childhood liver cancer mortality occurred at higher rates than expected. For those exposed as young children, liver cancer mortality between ages 0 and 19 was especially high: the relative risk (RR) for males born during this period was 8.9 [95% confidence interval (95% CI), 1.7-45.8; P = 0.009]; for females, the corresponding RR was 14.1 (95% CI, 1.6-126; P = 0.018); and for males and females pooled, the RR was 10.6 (95% CI, 2.9-39.2; P water during early childhood may result in an increase in childhood liver cancer mortality.

  9. Evidence from Chile that arsenic in drinking water may increase mortality from pulmonary tuberculosis.

    Science.gov (United States)

    Smith, Allan H; Marshall, Guillermo; Yuan, Yan; Liaw, Jane; Ferreccio, Catterina; Steinmaus, Craig

    2011-02-15

    Arsenic in drinking water causes increased mortality from several cancers, ischemic heart disease, bronchiectasis, and other diseases. This paper presents the first evidence relating arsenic exposure to pulmonary tuberculosis, by estimating mortality rate ratios for Region II of Chile compared with Region V for the years 1958-2000. The authors compared mortality rate ratios with time patterns of arsenic exposure, which increased abruptly in 1958 in Region II and then declined starting in 1971. Tuberculosis mortality rate ratios in men started increasing in 1968, 10 years after high arsenic exposure commenced. The peak male 5-year mortality rate ratio occurred during 1982-1986 (rate ratio = 2.1, 95% confidence interval: 1.7, 2.6; P cause of chronic lung disease. Finding weaker associations in women is unsurprising, because this is true of most arsenic-caused health effects. Confirmatory evidence is needed from other arsenic-exposed populations.

  10. Application of three-dimensional discrete element face-to-face contact model with fissure water pressure to stability analysis of landslide in Panluo iron mine

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Lei; WEI; Zuoan; LIU; Xiaoyu; LI; Shihai

    2005-01-01

    Three-dimensional discrete element face-to-face contact model with fissure water pressure is established in this paper and the model is used to simulate three-stage process of landslide under fissure water pressure in the opencast mine, according to the actual state of landslide in Panluo iron mine where landslide happened in 1990 and was fathered in 1999. The calculation results show that fissure water pressure on the sliding surface is the main reason causing landslide and the local soft interlayer weakens the stability of slope. If the discrete element method adopts the same assumption as the limit equilibrium method, the results of two methods are in good agreement; while if the assumption is not adopted in the discrete element method, the critical φ numerically calculated is less than the one calculated by use of the limit equilibrium method for the sameC. Thus, from an engineering point of view, the result from the discrete element model simulation is safer and has more widely application since the discrete element model takes into account the effect of rock mass structures.

  11. Acute non-contact anterior cruciate ligament tears are associated with relatively increased vastus medialis to semimembranosus cross-sectional area ratio: a case-control retrospective MR study.

    Science.gov (United States)

    Wieschhoff, Ged G; Mandell, Jacob C; Czuczman, Gregory J; Nikac, Violeta; Shah, Nehal; Smith, Stacy E

    2017-07-15

    Hamstring muscle deficiency is increasingly recognized as a risk factor for anterior cruciate ligament (ACL) tears. The purpose of this study is to evaluate the vastus medialis to semimembranosus cross-sectional area (VM:SM CSA) ratio on magnetic resonance imaging (MRI) in patients with ACL tears compared to controls. One hundred knee MRIs of acute ACL tear patients and 100 age-, sex-, and side-matched controls were included. Mechanism of injury, contact versus non-contact, was determined for each ACL tear subject. The VM:SM CSA was measured on individual axial slices with a novel method using image-processing software. One reader measured all 200 knees and the second reader measured 50 knees at random to assess inter-reader variability. The intraclass correlation coefficient (ICC) was calculated to evaluate for correlation between readers. T-tests were performed to evaluate for differences in VM:SM CSA ratios between the ACL tear group and control group. The ICC for agreement between the two readers was 0.991 (95% confidence interval 0.984-0.995). Acute ACL tear patients have an increased VM:SM CSA ratio compared to controls (1.44 vs. 1.28; p = 0.005). Non-contact acute ACL tear patients have an increased VM:SM CSA ratio compared to controls (1.48 vs. 1.20; p = 0.003), whereas contact acute ACL tear patients do not (1.23 vs. 1.26; p = 0.762). Acute non-contact ACL tears are associated with increased VM:SM CSA ratios, which may imply a relative deficiency in hamstring strength. This study also demonstrates a novel method of measuring the relative CSA of muscles on MRI.

  12. QUESTIONNAIRES IN THE SCREENING FOR Schistosoma mansoni INFECTION: A STUDY OF SOCIO DEMOGRAPHIC AND WATER CONTACT VARIABLES IN FOUR COMMUNITIES IN BRAZIL

    Directory of Open Access Journals (Sweden)

    Lima e Costa Maria Fernanda F.

    1998-01-01

    Full Text Available The use of questionnaires has been recommended for identifying, at a lower cost, individuals at risk for schistosomiasis. In this study, validity of information obtained by questionnaire in the screening for Schistosoma mansoni infection was assessed in four communities in the State of Minas Gerais, Brazil. Explanatory variables were water contact activities, sociodemographic characteristics and previous treatment for schistosomiasis. From 677, 1474, 766 and 3290 individuals eligible for stool examination in the communities, 89 to 97% participated in the study. The estimated probability of individuals to be infected, if they have all characteristics identified as independently associated with S.mansoni infection, varied from 15% in Canabrava, to 42% in Belo Horizonte, 48% in Comercinho and 80% in São José do Acácio. Our results do not support the hypothesis that a same questionnaire on risk factors could be used in screening for S.mansoni infection in different communities.

  13. Contact air abrasion.

    Science.gov (United States)

    Porth, R

    1999-05-01

    The advantages of contact air abrasion techniques are readily apparent. The first, of course, is the greatly increased ease of use. Working with contact also tends to speed the learning curve by giving the process a more natural dental feel. In addition, as one becomes familiar with working with a dust stream, the potential for misdirecting the air flow is decreased. The future use of air abrasion for deep decay removal will make this the treatment of choice for the next millennium.

  14. Identifying the causes of contact dermatitis.

    Science.gov (United States)

    Jones, Ruth; Horn, Helen M

    2014-06-01

    Contact dermatitis results from skin contact with an exogenous substance. It can be caused by direct contact, airborne particles, vapours or light. Individuals of any age can be affected. The two most common variants are irritant contact dermatitis (ICD) and allergic contact dermatitis (ACD). ICD is more common and has a worse prognosis. Other less common forms of contact dermatitis include photocontact allergy and, in food handlers, protein contact dermatitis. ICD is a form of eczema and is induced by direct inflammatory pathways without prior sensitisation. Classical ACD is mediated by type 4 cell-mediated immunity. Sensitisation occurs within 5 to 16 days of skin contact with a potential allergen but at this first exposure there is no inflammation. Frequent exposure and high concentrations of potential allergens increase the risk of sensitisation. If eczema is recurrent/persistent, or occurs in an individual with no previous history of eczema, contact dermatitis should be considered. Dorsal aspects of the hands are most often affected by ICD, usually with involvement of the finger webs. Cumulative effects of water, soaps and detergents are the most common cause of ICD which affects the hands more often than any other site. Nickel, fragrances, rubber accelerators and biocides are the most common sensitisers in ACD. Patients with leg ulcers and stasis eczema are at especially high risk of developing allergies to ingredients of their topical treatments, dressings and bandages. If ACD is suspected the patient should be referred to secondary care for patch testing. Age should not be a deterrent to patch testing. Accurate diagnosis, avoidance of identified allergens and protection from irritants are the key to successful treatment.

  15. Exploring the Nature of Contact Freezing

    Science.gov (United States)

    Kiselev, A. A.; Hoffmann, N.; Duft, D.; Leisner, T.

    2012-12-01

    The freezing of supercooled water droplets upon contact with aerosol particles (contact nucleation of ice) is the least understood mechanism of ice formation in atmospheric clouds. Although experimental evidences suggest that some aerosols can be better IN in the contact than in the immersion mode (that is, triggering ice nucleation at higher temperature), no final explanation of this phenomena currently exists. On the other hand, the contact freezing is believed to be responsible for the enhanced rate of secondary ice formation occasionally observed in LIDAR measurements in the cold mixed phase clouds. Recently we have been able to show that the freezing of supercooled droplets electrodynamically levitated in the laminar flow containing mineral dust particles (kaolinite) is a process solely governed by a rate of collisions between the supercooled droplet and the aerosol particles. We have shown that the probability of droplet freezing on a single contact with aerosol particle may differ over an order of magnitude for kaolinite particles having different genesis and morphology. In this presentation we extend the study of contact nucleation of ice and compare the IN efficiency measured for DMA-selected kaolinite, illite and hematite particles. We show that the freezing probability increases towards unity as the temperature decreases and discuss the functional form of this temperature dependence. We explore the size dependence of the contact freezing probability and show that it scales with the surface area of the particles, thus resembling the immersion freezing behavior. However, for all minerals investigated so far, the contact freezing has been shown to dominate over immersion freezing on the short experimental time scales. Finally, based on the combined ESEM and electron microprobe analysis, we discuss the significance of particle morphology and variability of chemical composition on its IN efficiency in contact mode.

  16. Repeated sensory contact with aggressive mice rapidly leads to an anticipatory increase in core body temperature and physical activity that precedes the onset of aversive responding.

    Science.gov (United States)

    Pardon, Marie-Christine; Kendall, David A; Pérez-Diaz, Fernando; Duxon, Mark S; Marsden, Charles A

    2004-08-01

    The present study investigated whether the 'psychological threat' induced by sensory contact with an aggressive conspecific would be a sufficient factor in inducing behavioural and physiological disturbances. Repeated sensory contact with an aggressive mouse (social threat) in a partitioned cage was compared with repeated exposure to a novel partitioned cage in male NMRI mice. We first examined parameters of stress responsiveness (body weight, plasma corticosterone levels, frequency of self-grooming and defecation). The temperature and physical activity responses to stress were also recorded during and after the 4 weeks of stress using radiotelemetry. Finally, cognitivo-emotional performance was assessed after acute stress and 2 and 4 weeks of stress by measuring decision making, sequential alternation performance and behaviour in the elevated T-maze. Social threat had a greater impact than novel cage exposure on most parameters of stress responsiveness, although mice did not habituate to either stressor. Social threat rapidly led to an anticipatory rise in core body temperature and physical activity before the scheduled stress sessions. Such anticipation developed within the first week and persisted for 9 days after ending the stress procedure. Some memory impairment in the sequential alternation test was found in stressed mice, independent of the stressor. After 4 weeks of stress, inhibitory avoidance in the elevated T-maze was enhanced in socially stressed mice and reduced in novel cage mice. The sustained anticipation of stress in the social threat group preceded aversive responding. It remains to be established whether anticipation contributes to the development of aversive responses.

  17. Low-dielectric layer increases nanosecond electric discharges in distilled water

    Directory of Open Access Journals (Sweden)

    Ahmad Hamdan

    2016-10-01

    Full Text Available Electric discharge in liquids is an emerging field of research, and is involved into various environmental applications (water purification, fuel reforming, nanomaterial synthesis, etc.. Increasing the treatment efficiency with simultaneous decreasing of the energy consumption are the main goals of today’s research. Here we present an experimental study of nanosecond discharge in distilled water covered by a layer of dielectric material. We demonstrate through this paper that the discharge efficiency can be improved by changing the interface position regarding the anode tip. The efficiency increase is due to the increase of the discharge probability as well as the plasma volume. The understanding of the experimental results is brought and strengthened by simulating the electric field distribution, using Comsol Multiphysics software. Because the dielectric permittivity ( ε is discontinuous at the interface, the electric field is enhanced by a factor that depends on the relative value of ε of the two liquids. The present result is very promising in future: opportunities for potential applications as well as fundamental studies for discharges in liquid.

  18. Low-dielectric layer increases nanosecond electric discharges in distilled water

    Science.gov (United States)

    Hamdan, Ahmad; Cha, Min Suk

    2016-10-01

    Electric discharge in liquids is an emerging field of research, and is involved into various environmental applications (water purification, fuel reforming, nanomaterial synthesis, etc.). Increasing the treatment efficiency with simultaneous decreasing of the energy consumption are the main goals of today's research. Here we present an experimental study of nanosecond discharge in distilled water covered by a layer of dielectric material. We demonstrate through this paper that the discharge efficiency can be improved by changing the interface position regarding the anode tip. The efficiency increase is due to the increase of the discharge probability as well as the plasma volume. The understanding of the experimental results is brought and strengthened by simulating the electric field distribution, using Comsol Multiphysics software. Because the dielectric permittivity ( ɛ ) is discontinuous at the interface, the electric field is enhanced by a factor that depends on the relative value of ɛ of the two liquids. The present result is very promising in future: opportunities for potential applications as well as fundamental studies for discharges in liquid.

  19. Low-dielectric layer increases nanosecond electric discharges in distilled water

    KAUST Repository

    Hamdan, Ahmad

    2016-10-24

    Electric discharge in liquids is an emerging field of research, and is involved into various environmental applications (water purification, fuel reforming, nanomaterial synthesis, etc.). Increasing the treatment efficiency with simultaneous decreasing of the energy consumption are the main goals of today’s research. Here we present an experimental study of nanosecond discharge in distilled water covered by a layer of dielectric material. We demonstrate through this paper that the discharge efficiency can be improved by changing the interface position regarding the anode tip. The efficiency increase is due to the increase of the discharge probability as well as the plasma volume. The understanding of the experimental results is brought and strengthened by simulating the electric field distribution, using Comsol Multiphysics software. Because the dielectric permittivity (ε) is discontinuous at the interface, the electric field is enhanced by a factor that depends on the relative value of ε of the two liquids. The present result is very promising in future: opportunities for potential applications as well as fundamental studies for discharges in liquid.

  20. Elucidating the mechanical effects of pore water pressure increase on the stability of unsaturated soil slopes

    Science.gov (United States)

    Buscarnera, G.

    2012-12-01

    The increase of the pore water pressure due to rain infiltration can be a dominant component in the activation of slope failures. This paper shows an application of the theory of material stability to the triggering analysis of this important class of natural hazards. The goal is to identify the mechanisms through which the process of suction removal promotes the initiation of mechanical instabilities. The interplay between increase in pore water pressure, and failure mechanisms is investigated at material point level. In order to account for multiple failure mechanisms, the second-order work criterion is used and different stability indices are devised. The paper shows that the theory of material stability can assess the risk of shear failure and static liquefaction in both saturated and unsaturated contexts. It is shown that the combined use of an enhanced definition of second-order work for unsaturated porous media and a hydro-mechanical constitutive framework enables to retrieve bifurcation conditions for water-infiltration processes in unsaturated deposits. This finding discloses the importance of the coupling terms that incorporate the interaction between the solid skeleton and the pore fluids. As a consequence, these theoretical results suggest that some material properties that are not directly associated with the shearing resistance (e.g., the potential for wetting compaction) can play an important role in the initiation of slope failures. According to the proposed interpretation, the process of pore pressure increase can be understood as a trigger of uncontrolled strains, which at material point level are reflected by the onset of bifurcation conditions.

  1. Regional increase of mean chloride concentration in water due to the application of deicing salt.

    Science.gov (United States)

    Thunqvist, Eva-Lotta

    2004-06-05

    The Directive of the European Parliament and of the Council 2000/60/EC: Establishing a Framework for Community Action in the Field of Water Policy, states that it is necessary to consider human activities within a river basin in order to prevent and reduce the spreading of pollutants and to achieve good water status. This paper shows a simple method to estimate the environmental pressure from the deicing of roads as steady state chloride concentration in water. The data processed are presented using GIS. The result showed that the contribution of deicing salt is of importance for the chloride concentration on a regional scale. The increase in chloride concentration is also compared to the background concentration and other sources of chloride within the river basin. Road salt applied by the Swedish National Road Administration (SNRA) accounts for more than half of the total chloride load for the river basin investigated. The method presented may easily be generalised to a national scale for monitoring the environmental effects of deicing salt application.

  2. Onset of Grain Boundary Migration and Drastic Weakening of Quartzite during increasing grade of Metamorphism in the Contact Aureole surrounding the Eureka Valley-Joshua Flat-Beer Creek pluton, California, USA

    Science.gov (United States)

    Morgan, S. S.; Student, J. J.; Jakeway, J.

    2015-12-01

    The Eureka Valley-Joshua Flat-Beer Creek (EJB) pluton in eastern California is surrounded by a ~1.3 km wide intensely deformed concordant aureole of metasedimentary rocks. South of the pluton, the Harkless Quartzite can be mapped from where it is located outside the aureole, with its regional strike through the transition into the aureole and concordancy with the pluton. The transition into concordancy, which is fairly abrupt, occurs over a distance of less than 100 m. Across this transition the bedding rotates close to 90° to become subvertical. Here the metasedimentary formations in the aureole have undergone 65% shortening. A suite of Harkless Quartzite samples was collected starting at 2.3 km south of the pluton, across the transition into concordancy at 1.3 km, and to within 450m from the pluton contact. Microstructurally, the transition is defined by changes in the dominant recrystallization mechanisms. At 2.3 km from the pluton, subgrain rotation recrystallization (SGR) plus grain boundary migration (GBM) operate together and many sedimentary grains (rounded grain boundaries) exist. As the pluton is approached, SGR decreases, GBM increases, and rounded grain boundaries slowly disappear. The abrupt transition into concordancy is marked by the final disappearance of SGR and rounded grain boundaries and extensive GBM. The transition is not completely smooth, and other variables such as pinning and amount of fluid inclusions seem to have a strong local affect on the dominant recrystallization mechanism. We suspect that the onset of extensive GBM allows for the diffusion of water into the crystal lattice which results in the drastic weakening and rotation of metasedimentary formations into concordancy.

  3. Increasing hydro turbine operation range and efficiencies using water injection in draft tubes

    Energy Technology Data Exchange (ETDEWEB)

    Francke, Haakon Hjort

    2010-09-15

    It is a well known fact that most Francis turbines, because of the fixed blade design, faces challenges when running at partial load operation. Especially in the operating range below approximately 50 % of the rated output, it is common to observe severe pressure pulsations and surge in the draft tube. These pressure fluctuations are believed to be related to the swirling flow exiting the runner. By using water jets in the draft tube cone directed towards the swirling flow, the swirl strength is believed to be reduced and thereby also the pressure fluctuations produced by the swirl. This system thus has a potential of increasing the turbine operating range. The system can be activated when needed, and will not affect the turbine when running at its best efficiency point.Based on the main hypothesis, a simplified swirl rig was designed and constructed in order to investigate the nozzle influence on the swirling flow and on the pressure pulsations in a simplified environment. To expand the understanding of the nozzle performance in a Francis turbine, experiments were conducted in a model turbine with a prototype of movable nozzles. To establish a link between laboratory nozzle measurements and full scale nozzle measurements, field measurements were carried out on full scale Francis turbines running at partial discharge. For this purpose the turbines installed at Skarsfjord Power Station and Skibotn Power Station were used, where full scale nozzle injection systems were installed. The test results suggested that the concept of water injection worked, but not unconditionally. A reduction in pressure fluctuations was achieved both in laboratory and field experiments, as well as a noticeable reduction regarding fluctuations in the shaft run-out at Skibotn. In addition, water injection gave a surprisingly positive effect at overload conditions in the model turbine, even though the nozzle angle was directed in the same direction as the overload swirl. Ideally, the results

  4. Contact angle hysteresis: study by dynamic cycling contact angle measurements and variable angle spectroscopic ellipsometry on polyimide.

    Science.gov (United States)

    Hennig, A; Eichhorn, K-J; Staudinger, U; Sahre, K; Rogalli, M; Stamm, M; Neumann, A W; Grundke, K

    2004-08-03

    The phenomenon of contact angle hysteresis was studied on smooth films of polyimide, a polymer type used in the microelectronic industry, by dynamic cycling contact angle measurements based on axisymmetric drop shape analysis-profile in combination with variable angle spectroscopic ellipsometry (VASE). It was found that both advancing and receding contact angles became smaller with increasing the number of cycles and are, therefore, not a property of the dry solid alone. The changes of the wetting behavior during these dynamic cycling contact angle measurements are attributed mainly to swelling and/or liquid retention. To reveal the water-induced changes of the polymer film, the polyimide surface was studied before and after the contact with a water droplet by VASE. Both the experimental ellipsometric spectrum for Delta and that for Psi as well as the corresponding simulations show characteristic shifts due to the contact with water. The so-called effective medium approximation was applied to recover information about the thickness and effective optical constants of the polymer layer from the ellipsometrically measured values of Delta and Psi. On the basis of these results, the swelling and retention behavior of the polyimide films in contact with water droplets were discussed.

  5. Increasing water vapor transport to the Greenland Ice Sheet revealed using self-organizing maps

    Science.gov (United States)

    Mattingly, Kyle S.; Ramseyer, Craig A.; Rosen, Joshua J.; Mote, Thomas L.; Muthyala, Rohi

    2016-09-01

    The Greenland Ice Sheet (GrIS) has been losing mass in recent decades, with an acceleration in mass loss since 2000. In this study, we apply a self-organizing map classification to integrated vapor transport data from the ERA-Interim reanalysis to determine if these GrIS mass loss trends are linked to increases in moisture transport to Greenland. We find that "moist" days (i.e., days featuring anomalously intense water vapor transport to Greenland) were significantly more common during 2000-2015 compared to 1979-1994. Furthermore, the two most intense GrIS melt seasons during the last 36 years were either preceded by a record percentage of moist winter days (2010) or occurred during a summer with a record frequency of moist days (2012). We hypothesize that moisture transport events alter the GrIS energy budget by increasing downwelling longwave radiation and turbulent fluxes of sensible and latent energy.

  6. Intermittent cold water swim stress increases immobility and interferes with escape performance in rat.

    Science.gov (United States)

    Christianson, John P; Drugan, Robert C

    2005-11-30

    The behavioral consequences of intermittent, 5 s cold-water swims (15 degrees C) or confinement were assessed 24 h after stress in a 5 min forced swim test or an instrumental swim escape test (SET). The SET was conducted with temporal and instrumental parameters similar to the shock-motivated shuttle escape test. The tests detected significantly increased immobility in the forced swim test and increased latency to escape in the SET. These results extend previous findings with intermittent swim stress and provide evidence that intermittent swim stress produces behavioral deficits similar to other stress models. This new model may be a useful tool for exploring the physiological mechanisms underlying the stress response.

  7. Multi-species biofilms defined from drinking water microorganisms provide increased protection against chlorine disinfection.

    Science.gov (United States)

    Schwering, Monika; Song, Joanna; Louie, Marie; Turner, Raymond J; Ceri, Howard

    2013-09-01

    A model biofilm, formed of multiple species from environmental drinking water, including opportunistic pathogens, was created to explore the tolerance of multi-species biofilms to chlorine levels typical of water-distribution systems. All species, when grown planktonically, were killed by concentrations of chlorine within the World Health Organization guidelines (0.2-5.0 mg l(-1)). Higher concentrations (1.6-40-fold) of chlorine were required to eradicate biofilm populations of these strains, ~70% of biofilms tested were not eradicated by 5.0 mg l(-1) chlorine. Pathogenic bacteria within the model multi-species biofilms had an even more substantial increase in chlorine tolerance; on average ~700-1100 mg l(-1) chlorine was required to eliminate pathogens from the biofilm, 50-300-fold higher than for biofilms comprising single species. Confocal laser scanning microscopy of biofilms showed distinct 3D structures and multiple cell morphologies and arrangements. Overall, this study showed a substantial increase in the chlorine tolerance of individual species with co-colonization in a multi-species biofilm that was far beyond that expected as a result of biofilm growth on its own.

  8. Biochar amendment to coarse sandy subsoil improves root growth and increases water retention

    DEFF Research Database (Denmark)

    Bruun, Esben; Petersen, C. T.; Hansen, E.

    2014-01-01

    Crop yields and yield potentials on Danish coarse sandy soils are strongly limited due to restricted root growth and poor water and nutrient retention. We investigated if biochar amendment to subsoil can improve root development in barley and significantly increase soil water retention. Spring...... barley (Hordeum vulgare cv. Anakin) was grown in soil columns (diameter: 30 cm) prepared with 25 cm topsoil, 75 cm biochar-amended subsoil, and 30 cm un-amended subsoil lowermost placed on an impervious surface. Low-temperature gasification straw-biochar (at 0, 0.50, 1.0, 2.0, and 4.0 wt%) and slow...... pyrolysis hardwood-biochar (at 2 wt%) were investigated. One wt% can be scaled up to 102 Mg/ha of char. After full irrigation and drainage, the in-situ moisture content at 30-80 cm depth increased linearly (R2 = 0.99) with straw-biochar content at a rate corresponding to 0.029 m3/m3/%. The lab determined...

  9. Development of a nanostructured lipid carrier formulation for increasing photo-stability and water solubility of Phenylethyl Resorcinol

    Science.gov (United States)

    Fan, Hengfeng; Liu, Guoqing; Huang, Yiqing; Li, Yan; Xia, Qiang

    2014-01-01

    The Phenylethyl Resorcinol loaded nanostructured lipid carrier (PR-NLC) was developed by hot high-pressure homogenization method. The freshly prepared PR-NLC showed a spherical morphology under transmission electron microscope, and the particle size was 218.3 ± 9.2 nm. The value of the zeta potential of PR-NLC decreased from -30.2 ± 1.9 mV to -64.9 ± 1.3 mV when the dilution times reach 10. The loading amount of PR encapsulated in NLC was 2.94 ± 0.03%, and the average entrapment efficiencies of PR-NLC determinated by size exclusion chromatography and ultrafiltration were 90.2 ± 0.6% and 98.3 ± 0.3%. Lyophilization was proved feasible for the storage of NLC dispersion. Fourier transform infrared spectra (FTIR) was exploited to investigate the possible drug-lipid complex formation. Advancements in water solubility of PR were demonstrated by NLC using a contact angle measurement. The hemolysis percentage of the NLC was less than 1.3% in a certain range of concentration. In 90 days' storage, 88.6 ± 2.8% of PR remained unchanged in PR-NLC under natural daylight. In vitro release studies revealed a sustained drug release, and in vitro penetration studies showed an increase of retention amount of PR in the skin, when applying PR-NLC. Therefore, the NLC might be a potential delivery vehicle in cosmetic dermal products.

  10. Development of a nanostructured lipid carrier formulation for increasing photo-stability and water solubility of Phenylethyl Resorcinol

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Hengfeng; Liu, Guoqing; Huang, Yiqing; Li, Yan; Xia, Qiang, E-mail: xiaq@seu.edu.cn

    2014-01-01

    The Phenylethyl Resorcinol loaded nanostructured lipid carrier (PR-NLC) was developed by hot high-pressure homogenization method. The freshly prepared PR-NLC showed a spherical morphology under transmission electron microscope, and the particle size was 218.3 ± 9.2 nm. The value of the zeta potential of PR-NLC decreased from −30.2 ± 1.9 mV to −64.9 ± 1.3 mV when the dilution times reach 10. The loading amount of PR encapsulated in NLC was 2.94 ± 0.03%, and the average entrapment efficiencies of PR-NLC determinated by size exclusion chromatography and ultrafiltration were 90.2 ± 0.6% and 98.3 ± 0.3%. Lyophilization was proved feasible for the storage of NLC dispersion. Fourier transform infrared spectra (FTIR) was exploited to investigate the possible drug–lipid complex formation. Advancements in water solubility of PR were demonstrated by NLC using a contact angle measurement. The hemolysis percentage of the NLC was less than 1.3% in a certain range of concentration. In 90 days’ storage, 88.6 ± 2.8% of PR remained unchanged in PR-NLC under natural daylight. In vitro release studies revealed a sustained drug release, and in vitro penetration studies showed an increase of retention amount of PR in the skin, when applying PR-NLC. Therefore, the NLC might be a potential delivery vehicle in cosmetic dermal products.

  11. Increasing efficiency in ethanol production: Water footprint and economic productivity of sugarcane ethanol under nine different water regimes in north-eastern Brazil

    Directory of Open Access Journals (Sweden)

    Daniel Chico

    2015-06-01

    Full Text Available Ethanol production in Brazil has grown by 219% between 2001 and 2012, increasing the use of land and water resources. In the semi-arid north-eastern Brazil, irrigation is the main way for improving sugarcane production. This study aimed at quantifying water consumed in ethanol production from sugarcane in this region using the water footprint (WF indicator and complementing it with an evaluation of the water apparent productivity (WAP. This way we were able to provide a measure of the crop´s physical and economic water productivity using, respectively, the WF and WAP concepts. We studied sugarcane cultivation under nine different water regimes, including rainfed and full irrigation. Data from a mill of the state of Alagoas for three production seasons were used. Irrigation influenced sugarcane yield increasing total profit per hectare and economic water productivity. Full irrigation showed the lowest WF, 1229 litres of water per litre of ethanol (L/L, whereas rainfed production showed the highest WF, 1646 L/L. However, the lower WF in full irrigation as compared to the rest of the water regimes implied the use of higher volumes of blue water per cultivated hectare. Lower water regimes yielded the lowest economic productivity, 0.72 US$/m3 for rainfed production as compared to 1.11 US$/m3 for full irrigation. Since economic revenues are increased with higher water regimes, there are incentives for the development of these higher water regimes. This will lead to higher general crop water and economic productivity at field level, as green water is replaced by blue water consumption.

  12. Increasing efficiency in ethanol production: Water footprint and economic productivity of sugarcane ethanol under nine different water regimes in north-eastern Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Chico, D.; Santiago, A. D.; Garrido, A.

    2015-07-01

    Ethanol production in Brazil has grown by 219% between 2001 and 2012, increasing the use of land and water resources. In the semi-arid north-eastern Brazil, irrigation is the main way for improving sugarcane production. This study aimed at quantifying water consumed in ethanol production from sugarcane in this region using the water footprint (WF) indicator and complementing it with an evaluation of the water apparent productivity (WAP). This way we were able to provide a measure of the crop´s physical and economic water productivity using, respectively, the WF and WAP concepts. We studied sugarcane cultivation under nine different water regimes, including rainfed and full irrigation. Data from a mill of the state of Alagoas for three production seasons were used. Irrigation influenced sugarcane yield increasing total profit per hectare and economic water productivity. Full irrigation showed the lowest WF, 1229 litres of water per litre of ethanol (L/L), whereas rainfed production showed the highest WF, 1646 L/L. However, the lower WF in full irrigation as compared to the rest of the water regimes implied the use of higher volumes of blue water per cultivated hectare. Lower water regimes yielded the lowest economic productivity, 0.72 US$/m3 for rainfed production as compared to 1.11 US$/m3 for full irrigation. Since economic revenues are increased with higher water regimes, there are incentives for the development of these higher water regimes. This will lead to higher general crop water and economic productivity at field level, as green water is replaced by blue water consumption. (Author)

  13. Oxygenated drinking water enhances immune activity in broiler chicks and increases survivability against Salmonella Gallinarum in experimentally infected broiler chicks.

    Science.gov (United States)

    Jung, Bock-Gie; Lee, Jin-A; Nam, Kyoung-Woo; Lee, Bong-Joo

    2012-03-01

    It has been suggested that drinking oxygenated water may improve oxygen availability, which may increase vitality and improving immune activity. The present study evaluated the immune enhancing effects of oxygenated drinking water in broiler chicks and demonstrated the protective efficacy of oxygenated drinking water against Salmonella Gallinarum in experimentally infected broiler chicks. Continuous drinking of oxygenated water markedly increased serum lysozyme activity, peripheral blood mononuclear cell proliferation and the CD4(+)/CD8(+) splenocyte ratio in broiler chicks. In the chicks experimentally infected with S. Gallinarum, oxygenated drinking water alleviated symptoms and increased survival. These findings suggest that oxygenated drinking water enhances immune activity in broiler chicks, and increases survivability against S. Gallinarum in experimentally infected broiler chicks.

  14. Ensuring Safe Use of Contact Lens Solution

    Science.gov (United States)

    ... evaluating contact lens solutions and the development of Acanthamoeba keratitis, a rare but serious eye infection that's ... contact lenses to water has been associated with Acanthamoeba keratitis, a corneal infection that is resistant to ...

  15. Extending 'Contact Tracing' into the Community within a 50-Metre Radius of an Index Tuberculosis Patient Using Xpert MTB/RIF in Urban, Pakistan: Did It Increase Case Detection?

    Science.gov (United States)

    Fatima, Razia; Qadeer, Ejaz; Yaqoob, Aashifa; Haq, Mahboob Ul; Majumdar, Suman S; Shewade, Hemant D; Stevens, Robert; Creswell, Jacob; Mahmood, Nasir; Kumar, Ajay M V

    2016-01-01

    Currently, only 62% of incident tuberculosis (TB) cases are reported to the national programme in Pakistan. Several innovative interventions are being recommended to detect the remaining 'missed' TB cases. One such intervention involved expanding contact investigation to the community using the Xpert MTB/RIF test. This was a before and after intervention study involving retrospective record review. Passive case finding and household contact investigation was routinely done in the pre-intervention period July 2011-June 2013. Four districts with a high concentration of slums were selected as intervention areas; Lahore, Rawalpindi, Faisalabad and Islamabad. Here, in the intervention period, July 2013-June 2015, contact investigation beyond household was conducted: all people staying within a radius of 50 metres (using Geographical Information System) from the household of smear positive TB patients were screened for tuberculosis. Those with presumptive TB were investigated using smear microscopy and the Xpert MTB/RIF test was performed on smear negative patients. All the diagnosed TB patients were linked to TB treatment and care. A total of 783043 contacts were screened for tuberculosis: 23741(3.0%) presumptive TB patients were identified of whom, 4710 (19.8%) all forms and 4084(17.2%) bacteriologically confirmed TB patients were detected. The contribution of Xpert MTB/RIF to bacteriologically confirmed TB patients was 7.6%. The yield among investigated presumptive child TB patients was 5.1%. The overall yield of all forms TB patients among investigated was 22.3% among household and 19.1% in close community. The intervention contributed an increase of case detection of bacteriologically confirmed tuberculosis by 6.8% and all forms TB patients by 7.9%. Community contact investigation beyond household not only detected additional TB patients but also increased TB case detection. However, further long term assessments and cost-effectiveness studies are required before

  16. Microbial metabolism alters pore water chemistry and increases consolidation of oil sands tailings.

    Science.gov (United States)

    Arkell, Nicholas; Kuznetsov, Petr; Kuznetsova, Alsu; Foght, Julia M; Siddique, Tariq

    2015-01-01

    Tailings produced during bitumen extraction from surface-mined oil sands ores (tar sands) comprise an aqueous suspension of clay particles that remain dispersed for decades in tailings ponds. Slow consolidation of the clays hinders water recovery for reuse and retards volume reduction, thereby increasing the environmental footprint of tailings ponds. We investigated mechanisms of tailings consolidation and revealed that indigenous anaerobic microorganisms altered porewater chemistry by producing CO and CH during metabolism of acetate added as a labile carbon amendment. Entrapped biogenic CO decreased tailings pH, thereby increasing calcium (Ca) and magnesium (Mg) cations and bicarbonate (HCO) concentrations in the porewater through dissolution of carbonate minerals. Soluble ions increased the porewater ionic strength, which, with higher exchangeable Ca and Mg, decreased the diffuse double layer of clays and increased consolidation of tailings compared with unamended tailings in which little microbial activity was observed. These results are relevant to effective tailings pond management strategies. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Objective assessment of topical anti-inflammatory drug activity on experimentally induced nickel contact dermatitis: comparison between visual scoring, colorimetry, laser Doppler velocimetry and transepidermal water loss.

    Science.gov (United States)

    Queille-Roussel, C; Duteil, L; Padilla, J M; Poncet, M; Czernielewski, J

    1990-01-01

    Four topical anti-inflammatory drugs were investigated for their effect on allergic contact dermatitis. Nickel dermatitis was chosen for its high incidence in European healthy volunteers. Experimental lesions were treated twice daily with two steroids, two non-steroidal anti-inflammatory drugs and a blank base for 4.5 days without occlusion. The influence of treatments was assessed by daily visual grading and one site was left untreated for comparison over the same period. To quantify drug activities objectively, skin colour (colorimetry), skin blood flow (laser Doppler velocimetry) and transepidermal water loss (evaporimetry) were measured before drugs were first applied, then 6 hr after the last application. As expected, only Dermoval cream significantly improved the spontaneous clinical evolution in comparison with the other creams (Hydrocortisone Aster à 1%. Parfenac, indomethacin 2.5% and Skinbase) and the untreated site. Colorimetric parameter a* (redness) and L* (luminance) showed more differences between treatments than the other criteria and a close relationship was obtained between these two parameters and skin blood flow, all three being highly correlated to visual grading. Transepidermal water loss appeared less related to clinical improvement but this parameter could prove helpful for detecting compounds which could be irritant to diseased skin.

  18. Increased ambient air temperature alters the severity of soil water repellency

    Science.gov (United States)

    van Keulen, Geertje; Sinclair, Kat; Hallin, Ingrid; Doerr, Stefan; Urbanek, Emilia; Quinn, Gerry; Matthews, Peter; Dudley, Ed; Francis, Lewis; Gazze, S. Andrea; Whalley, Richard

    2017-04-01

    Soil repellency, the inability of soils to wet readily, has detrimental environmental impacts such as increased runoff, erosion and flooding, reduced biomass production, inefficient use of irrigation water and preferential leaching of pollutants. Its impacts may exacerbate (summer) flood risks associated with more extreme drought and precipitation events. In this study we have tested the hypothesis that transitions between hydrophobic and hydrophilic soil particle surface characteristics, in conjunction with soil structural properties, strongly influence the hydrological behaviour of UK soils under current and predicted UK climatic conditions. We have addressed the hypothesis by applying different ambient air temperatures under controlled conditions to simulate the effect of predicted UK climatic conditions on the wettability of soils prone to develop repellency at different severities. Three UK silt-loam soils under permanent vegetation were selected for controlled soil perturbation studies. The soils were chosen based on the severity of hydrophobicity that can be achieved in the field: severe to extreme (Cefn Bryn, Gower, Wales), intermediate to severe (National Botanical Garden, Wales), and subcritical (Park Grass, Rothamsted Research near London). The latter is already highly characterised so was also used as a control. Soils were fully saturated with water and then allowed to dry out gradually upon exposure to controlled laboratory conditions. Soils were allowed to adapt for a few hours to a new temperature prior to initiation of the controlled experiments. Soil wettability was determined at highly regular intervals by measuring water droplet penetration times. Samples were collected at four time points: fully wettable, just prior to and after the critical soil moisture concentrations (CSC), and upon reaching air dryness (to constant weight), for further (ultra)metaproteomic and nanomechanical studies to allow integration of bulk soil characterisations with

  19. Grab a Cup, Fill It Up! An Intervention to Promote the Convenience of Drinking Water and Increase Student Water Consumption During School Lunch

    Science.gov (United States)

    Kenney, Erica L.; Gortmaker, Steven L.; Carter, Jill E.; Howe, M. Caitlin W.; Reiner, Jennifer F.; Cradock, Angie L.

    2017-01-01

    Objectives We evaluated a low-cost strategy for schools to improve the convenience and appeal of drinking water. Methods We conducted a group-randomized, controlled trial in 10 Boston, Massachusetts, schools in April through June 2013 to test a cafeteria-based intervention. Signage promoting water and disposable cups were installed near water sources. Mixed linear regression models adjusting for clustering evaluated the intervention impact on average student water consumption over 359 lunch periods. Results The percentage of students in intervention schools observed drinking water during lunch nearly doubled from baseline to follow-up compared with controls (+9.4%; P intake across all students (P sugar-sweetened beverages declined (−3.3%; P < .005). Conclusions The current default of providing water through drinking fountains in cafeterias results in low water consumption. This study shows that an inexpensive intervention to improve drinking water’s convenience by providing cups can increase student water consumption. PMID:26180950

  20. Prioritized Contact Transport Stream

    Science.gov (United States)

    Hunt, Walter Lee, Jr. (Inventor)

    2015-01-01

    A detection process, contact recognition process, classification process, and identification process are applied to raw sensor data to produce an identified contact record set containing one or more identified contact records. A prioritization process is applied to the identified contact record set to assign a contact priority to each contact record in the identified contact record set. Data are removed from the contact records in the identified contact record set based on the contact priorities assigned to those contact records. A first contact stream is produced from the resulting contact records. The first contact stream is streamed in a contact transport stream. The contact transport stream may include and stream additional contact streams. The contact transport stream may be varied dynamically over time based on parameters such as available bandwidth, contact priority, presence/absence of contacts, system state, and configuration parameters.

  1. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise

    Science.gov (United States)

    Trevor F. Keenan; David Y. Hollinger; Gil Boher; Danilo Dragoni; J. William Munger; Hans Peter. Schmid

    2013-01-01

    Terrestrial plants remove CO2 from the atmosphere through photosynthesis, a process that is accompanied by the loss of water vapour from leaves. The ratio of water loss to carbon gain, or water-use efficiency, is a key characteristic of ecosystem function that is central to the global cycles of water, energy and carbon. Here we analyse direct,...

  2. Percutaneous penetration characteristics and release kinetics of contact allergens encapsulated in ethosomes

    DEFF Research Database (Denmark)

    Madsen, Jakob Torp; Vogel, Stefan; Johansen, Jeanne Duus;

    2011-01-01

    Formulation of the contact allergens dinitrochlorobenzene and isoeugenol in ethanolic liposomes (ethosomes) increases their sensitizing properties in the local lymph node assay compared with an ethanol-water formulation of the allergens. Likewise, isoeugenol and methyldibromo-glutaronitrile formu...

  3. Increasing the oral bioavailability of the poorly water soluble drug itraconazole with ordered mesoporous silica.

    Science.gov (United States)

    Mellaerts, Randy; Mols, Raf; Jammaer, Jasper A G; Aerts, Caroline A; Annaert, Pieter; Van Humbeeck, Jan; Van den Mooter, Guy; Augustijns, Patrick; Martens, Johan A

    2008-05-01

    This study aims to evaluate the in vivo performance of ordered mesoporous silica (OMS) as a carrier for poorly water soluble drugs. Itraconazole was selected as model compound. Physicochemical characterization was carried out by SEM, TEM, nitrogen adsorption, DSC, TGA and in vitro dissolution. After loading itraconazole into OMS, its oral bioavailability was compared with the crystalline drug and the marketed product Sporanox in rabbits and dogs. Plasma concentrations of itraconazole and OH-itraconazole were determined by HPLC-UV. After administration of crystalline itraconazole in dogs (20mg), no systemic itraconazole could be detected. Using OMS as a carrier, the AUC0-8 was boosted to 681+/-566 nM h. In rabbits, the AUC0-24 increased significantly from 521+/-159 nM h after oral administration of crystalline itraconazole (8 mg) to 1069+/-278 nM h when this dose was loaded into OMS. Tmax decreased from 9.8+/-1.8 to 4.2+/-1.8h. No significant differences (AUC, Cmax, and Tmax) could be determined when comparing OMS with Sporanox in both species. The oral bioavailability of itraconazole formulated with OMS as a carrier compares well with the marketed product Sporanox, in rabbits as well as in dogs. OMS can therefore be considered as a promising carrier to achieve enhanced oral bioavailability for drugs with extremely low water solubility.

  4. Multiwall carbon nanotubes increase the microbial community in crude oil contaminated fresh water sediments.

    Science.gov (United States)

    Abbasian, Firouz; Lockington, Robin; Palanisami, Thavamani; Megharaj, Mallavarapu; Naidu, Ravi

    2016-01-01

    Since crude oil contamination is one of the biggest environmental concerns, its removal from contaminated sites is of interest for both researchers and industries. In situ bioremediation is a promising technique for decreasing or even eliminating crude oil and hydrocarbon contamination. However, since these compounds are potentially toxic for many microorganisms, high loads of contamination can inhibit the microbial community and therefore reduce the removal rate. Therefore, any strategy with the ability to increase the microbial population in such circumstances can be of promise in improving the remediation process. In this study, multiwall carbon nanotubes were employed to support microbial growth in sediments contaminated with crude oil. Following spiking of fresh water sediments with different concentrations of crude oil alone and in a mixture with carbon nanotubes for 30days, the microbial profiles in these sediments were obtained using FLX-pyrosequencing. Next, the ratios of each member of the microbial population in these sediments were compared with those values in the untreated control sediment. This study showed that combination of crude oil and carbon nanotubes can increase the diversity of the total microbial population. Furthermore, these treatments could increase the ratios of several microorganisms that are known to be effective in the degradation of hydrocarbons.

  5. Creatine Supplementation Increases Total Body Water in Soccer Players: a Deuterium Oxide Dilution Study.

    Science.gov (United States)

    Deminice, R; Rosa, F T; Pfrimer, K; Ferrioli, E; Jordao, A A; Freitas, E

    2016-02-01

    This study aimed to evaluate changes in total body water (TBW) in soccer athletes using a deuterium oxide dilution method and bioelectrical impedance (BIA) formulas after 7 days of creatine supplementation. In a double-blind controlled manner, 13 healthy (under-20) soccer players were divided randomly in 2 supplementation groups: Placebo (Pla, n=6) and creatine supplementation (CR, n=7). Before and after the supplementation period (0.3 g/kg/d during 7 days), TBW was determined by deuterium oxide dilution and BIA methods. 7 days of creatine supplementation lead to a large increase in TBW (2.3±1.0 L) determined by deuterium oxide dilution, and a small but significant increase in total body weight (1.0±0.4 kg) in Cr group compared to Pla. The Pla group did not experience any significant changes in TBW or body weight. Although 5 of 6 BIA equations were sensitive to determine TBW changes induced by creatine supplementation, the Kushner et al. 16 method presented the best concordance levels when compared to deuterium dilution method. In conclusion, 7-days of creatine supplementation increased TBW determined by deuterium oxide dilution or BIA formulas. BIA can be useful to determine TBW changes promoted by creatine supplementation in soccer athletes, with special concern for formula choice.

  6. Low concentrations of copper in drinking water increase AP-1 binding in the brain.

    Science.gov (United States)

    Lung, Shyang; Li, Huihui; Bondy, Stephen C; Campbell, Arezoo

    2015-12-01

    Copper (Cu) in trace amounts is essential for biological organisms. However, dysregulation of the redox-active metal has been implicated in different neurological disorders such as Wilson's, Menkes', Alzheimer's, and Parkinson's diseases. Since many households use Cu tubing in the plumbing system, and corrosion causes the metal to leach into the drinking water, there may be adverse effects on the central nervous system connected with low-level chronic exposure. The present study demonstrates that treatment with a biologically relevant concentration of Cu for 3 months significantly increases activation of the redox-modulated transcription factor AP-1 in mouse brains. This was independent of an upstream kinase indicated in AP-1 activation. Another redox-active transcription factor, NF-κB, was not significantly modified by the Cu exposure. These results indicate that the effect of Cu on AP-1 is unique and may involve direct modulation of DNA binding.

  7. Increase in hippocampal water diffusion and volume during experimental pneumococcal meningitis is aggravated by bacteremia

    DEFF Research Database (Denmark)

    Holler, Jon G; Brandt, Christian T; Leib, Stephen L

    2014-01-01

    of experimental pneumococcal meningitis, 2) to explore the influence of accompanying bacteremia on hippocampal water distribution and volume, 3) and to correlate these findings to the extent of apoptosis in the hippocampus. METHODS: Experimental meningitis in rats was induced by intracisternal injection of live...... pneumococci. The study comprised of four experimental groups. I. Uninfected controls (n = 8); II. Meningitis (n = 11); III. Meningitis with early onset bacteremia by additional i.v. injection of live pneumococci (n = 10); IV. Meningitis with attenuated bacteremia by treatment with serotype-specific anti...... significantly increased in meningitis rats compared to uninfected controls (Kruskal-Wallis test, p = 0.0001, Dunns Post Test, p bacteremia as compared to meningitis rats with attenuated bacteremia (p 

  8. The effect of increasing water temperatures on Schistosoma mansoni transmission and Biomphalaria pfeifferi population dynamics: an agent-based modelling study.

    Directory of Open Access Journals (Sweden)

    Nicky McCreesh

    Full Text Available There is increasing interest in the control and elimination of schistosomiasis. Little is known, however, about the likely effects of increasing water-body temperatures on transmission.We have developed an agent-based model of the temperature-sensitive stages of the Schistosoma and intermediate host snail life-cycles, parameterised using data from S. mansoni and Biomphalaria pfeifferi laboratory and field-based observations. Infection risk is calculated as the number of cercariae in the model, adjusted for their probability of causing infection.The number of snails in the model is approximately constant between 15-31°C. Outside this range, snail numbers drop sharply, and the snail population cannot survive outside the range 14-32°C. Mean snail generation time decreases with increasing temperature from 176 days at 14°C to 46 days at 26°C. Human infection risk is highest between 16-18°C and 1pm and 6-10pm in calm water, and 20-25°C and 12-4pm in flowing water. Infection risk increases sharply when temperatures increase above the minimum necessary for sustained transmission.The model suggests that, in areas where S. mansoni is already endemic, warming of the water at transmission sites will have differential effects on both snails and parasites depending on abiotic properties of the water-body. Snail generation times will decrease in most areas, meaning that snail populations will recover faster from natural population reductions and from snail-control efforts. We suggest a link between the ecological properties of transmission sites and infection risk which could significantly affect the outcomes of interventions designed to alter water contact behaviour--proposing that such interventions are more likely to reduce infection levels at river locations than lakes, where infection risk remains high for longer. In cooler areas where snails are currently found, increasing temperatures may significantly increase infection risk, potentially leading

  9. Determining the ecological water allocation in a hyper-arid catchment with increasing competition for water resources

    Science.gov (United States)

    Ling, Hongbo; Zhang, Pei; Xu, Hailiang; Zhang, Guangpeng

    2016-10-01

    Meeting ecological water requirement adequately plays a significant role in guaranteeing the stability of river basin ecosystems in arid lands. The amounts of water leaked through the riverbed and drawn by ecological brakes in Tarim River were ascertained. Based on data related to soil, hydrology, and vegetation of the river basin, the aims of this paper are to 1) analyse the variation in the size of soil particles and in hydraulic conductivity of four sections of the river; 2) calculate the amount of water that leaked from the riverbed and the percentage of ecological water requirement that can be guaranteed at different frequencies of water inflow; and 3) recommend - using a combination of particle size analysis, Darcy's Law, and GIS - the amount of water to be drawn from ecological brakes along both banks of the river for meeting ecological water requirement adequately. The results showed that 1) the size of soil particles in the riverbed ranged from 1.6 μm to 98.9 μm; 2) hydraulic conductivity followed the normal distribution from year to year but varied in spatial terms, that is across different section of the river; 3) riverbed leakage varied with water frequencies, being 11.36 × 108 m3, 10.62 × 108 m3, 9.84 × 108 m3, 9.32 × 108 m3, and 8.87 × 108 m3 at the frequencies of 10%, 25%, 50%, 75%, and 90%, respectively; 4) the distance over which the leakage contributed to meeting ecological water requirement in the south bank was greater than or equal to the distance in the north bank; and 5) water drawn from ecological brakes on the north bank exceeded that drawn from the brakes on the south bank by 10.89 × 108 m3-11.28 × 108 m3. Ecological water requirement of the desert riparian vegetation was met mainly from riverbed leakage in the south and by drawing from ecological brakes in the north. The present research not only offers a scientific method that could be used for developing suitable schemes for meeting ecological water requirement but also

  10. Contact angle hysteresis of a drop spreading over metal surfaces

    Directory of Open Access Journals (Sweden)

    Kuznetsov Geniy

    2016-01-01

    Full Text Available The paper presents experimental data on the contact angle hysteresis of the distilled water drop spreading over the surfaces of non-ferrous metals. The measurements of the advancing and receding contact angles were carried out by method of sitting drop on the horizontal surface during increasing and decreasing drop volume with a syringe pump. It was found that the contact line speed has a great influence on the hysteresis of the polished non-elastic substrates. The mechanism of spreading was described using the balance of the forces from the physical point of view.

  11. Increased water diffusivity in the frontal and temporal cortices of schizophrenic patients.

    Science.gov (United States)

    Shin, Yong-Wook; Kwon, Jun Soo; Ha, Tae Hyon; Park, Hae-Jeong; Kim, Dae Jin; Hong, Soon Beom; Moon, Won-Jin; Lee, Jong Min; Kim, In Young; Kim, Sun I; Chung, Eun Chul

    2006-05-01

    Schizophrenia has been suggested to be the result of both macroscopic and microscopic abnormalities in the brain. Although no definitive clinico-pathological correlations have been found to reconcile the many facets inherent in this disorder, the recent development of the magnetic resonance diffusion tensor imaging (DTI) has allowed us to gather useful information regarding the microcircuitry of the brain. Specifically, the apparent diffusion coefficient (ADC) reflects the degree of diffusion barriers and heterosynaptic communication for the brain neurotransmitter. Nineteen patients with DSM-IV schizophrenia and 21 age- and sex-matched control subjects participated in DTI, and the severity of the patients' symptoms was evaluated according to the Positive and Negative Syndrome Scale (PANSS). The ADC values were determined and compared between patients and control subjects via voxel-based morphometry. The results show an increased ADC in the bilateral fronto-temporal regions of the schizophrenic patients, as compared with those of the control subjects. In addition, the ADC values in the area of the right insular were correlated with the negative syndromes from the PANSS. Our findings of increased water diffusivity in the fronto-temporal regions of schizophrenic patients and the correlation between negative symptom scales and the ADC in the right insular region indicate that damaged brain microcircuitry might contribute to the pathophysiology of schizophrenia. These findings contribute towards integrating micro and macrostructural abnormalities and syndromes of schizophrenia.

  12. Exponential increase of signal crayfish in running waters in Sweden – due to illegal introductions?

    Directory of Open Access Journals (Sweden)

    Bohman P.

    2011-07-01

    Full Text Available Sweden has only one indigenous species of crayfish, the noble crayfish (Astacus astacus, Fabricius. There has been a steady decline of noble crayfish populations in Sweden since 1907, mainly due to the crayfish plague. To substitute the noble crayfish fishery lost, the Swedish government launched a large-scale introduction of the signal crayfish (Pacifastacus leniusculus Dana. Today, the signal crayfish is regarded as a chronic carrier of the crayfish plague, and an expansion of the species may seriously threaten the noble crayfish. This paper examines the decrease of noble crayfish populations, and the concurrent expansion of signal crayfish in running waters. Data from the Swedish Electrofishing RegiSter (SERS was used. We found that in 1980–1984 the noble crayfish occurred in 4.5% of the studied river sections. In 2008–2009 the occurrences had decreased to 1.9%. In contrast, the signal crayfish had increased in occurrence, from 0.2% (1980–1984 to 11.8% in (2008–2009. We studied the number of stocking permits for signal crayfish introductions, and the available signal crayfish population from the open fishery in Lake Vättern, as possible causes of this expansion. A negative correlation between stocking permits and increased occurrence in streams, and a positive correlation between the availability of crayfish in Lake Vättern and the occurrence in streams was found. This suggests that the expansion of signal crayfish may be due to illegal introductions, further endangering the endemic noble crayfish.

  13. Conservation agriculture increases soil organic carbon and residual water content in upland crop production systems

    Directory of Open Access Journals (Sweden)

    Victor B. Ella

    2016-01-01

    Full Text Available Conservation agriculture involves minimum soil disturbance, continuous ground cover, and diversified crop rotations or mixtures. Conservation agriculture production systems (CAPS have the potential to improve soil quality if appropriate cropping systems are developed. In this study, five CAPS including different cropping patterns and cover crops under two fertility levels, and a plow-based system as control, were studied in a typical upland agricultural area in northern Mindanao in the Philippines. Results showed that soil organic carbon (SOC at 0- 5-cm depth for all CAPS treatments generally increased with time while SOC under the plow-based system tended to decline over time for both the high (120, 60 and 60 kg N P K ha-1 and moderate (60-30-30 kg N P K ha-1 fertility levels. The cropping system with maize + Stylosanthes guianensis in the first year followed by Stylosanthes guianensis and fallow in the second year, and the cassava + Stylosanthes guianensis exhibited the highest rate of SOC increase for high and moderate fertility levels, respectively. After one, two, and three cropping seasons, plots under CAPS had significantly higher soil residual water content (RWC than under plow-based systems. Results of this study suggest that conservation agriculture has a positive impact on soil quality, while till systems negatively impact soil characteristics.

  14. Mechanical Contact Experiments and Simulations

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Martins, P; Zhang, W.

    2011-01-01

    Mechanical contact is studied under dynamic development by means of a combined numerical and experimental investigation. The experiments are designed to allow dynamical development of non-planar contact areas with significant expansion in all three directions as the load is increased. Different...... geometries and different materials are analyzed including contact between dissimilar materials. The numerical implementation is performed with a finite element computer program based on the irreducible flow formulation, and contact between deformable objects is modelled by applying the penalty method....... The overall investigation serves for testing and validating the numerical implementation of the mechanical contact, which is one of the main contributions to a system intended for 3D simulation of resistance welding. Correct modelling of contact between parts to be welded, as well as contact with electrodes...

  15. Guided design of heating and cooling mains for lower water and energy consumption and increased efficiency

    CSIR Research Space (South Africa)

    Gololo, V

    2011-01-01

    Full Text Available in higher cooling water flowrate and low cooling water return temperature thus reducing cooling towers efficiency. This indicates the importance of the system structure, the possibility of mixing of heating or cooling water; recycling and reuse of heating...

  16. Evaluating the impact of demand-side management on water resources under changing climatic conditions and increasing population.

    Science.gov (United States)

    Dawadi, Srijana; Ahmad, Sajjad

    2013-01-15

    This study investigated the effect of increasing population and changing climatic conditions on the water resources of a semi-arid region, the Las Vegas Valley (LVV) in southern Nevada. A system dynamics model was developed for the LVV from 1989 to 2035. The impact of climate change on water demand and the water supply from the Colorado River was modeled, using projections from 16 global climate models for 3 emission scenarios. Variability in water demand and supply under different scenarios of population growth and demand management, including water conservation and water pricing, was evaluated. With the population growth that was projected, if no further demand management policies were implemented, the LVV would not be able to meet the water demand in the near future. However, by combining water conservation and pricing policies, the available supply could last well into the future. The reduction in water demand in 2035 was predicted to be 327 million cubic meters (MCM) for 'status quo' population growth, or 30.6%; 408 MCM for 50% of the projected growth, or 38%; and 511 MCM for no population growth, or 47.8%. Water supply reliability decreased significantly with changing climatic conditions. Therefore, major challenges to water sustainability in the LVV would be due to rapid population growth as well as to climate variability. However, with the combination of reduced population growth rate and water conservation policies, the Colorado River supply could meet the future demand of the LVV most of the time.

  17. The Role of Political Action and Media in Increasing Public Awareness of Water Scarcity: Combined Effects on Water Use Behavior

    Science.gov (United States)

    Quesnel, K.; Roby, N.; Gonzales, P.; Ajami, N.

    2016-12-01

    In the midst of California's current drought, authorities have enacted widespread initiatives aimed at coping with water scarcity, for example the first mandatory statewide urban water use reductions in 2015. But to what extent have these measures resulted in decreased water consumption? To answer this question, our research examines the impact of political actions on water use by using media as a proxy. News media outlets have heavily covered the progression of the California drought, and this outreach has played an important role in disseminating information and raising public awareness. To our knowledge, the relationship between political action/media coverage and water use has yet to be examined. In this study, we extract the number of articles related to the term "California Drought" from six widely-read national and statewide newspapers from 2005 to 2015. We study the relationship between media and monthly urban water use at the utility level using multivariate panel regression and principal components analysis to examine how media interacts with other modes of influence such as climate, price, and the state of the economy and how populations of different socio-demographics are affected by media outreach. We also use daily household-level water use readings from recently installed Automated Meter Infrastructure (AMI) in one utility to examine the relationship on a finer spatiotemporal scale. Using a policy timeline, Google search rates, and newspaper article trends confirms the relationship between political actions, public awareness, and media outreach. Preliminary modeling indicates that media plays a significant role in altering water use patterns for residential customers and in utilities with specific local characteristics.

  18. Fusion of membranes during fertilization. Increases of the sea urchin egg's membrane capacitance and membrane conductance at the site of contact with the sperm

    OpenAIRE

    1992-01-01

    The early events of fertilization that precede and cause activation of an egg have not been fully elucidated. The earliest electrophysiological change in the sea urchin egg is a sperm-evoked increase of the egg's membrane conductance. The resulting depolarization facilitates entry of the fertilizing sperm and precludes the entry of supernumerary sperm. The sequence of the increase in the egg's membrane conductance, gamete membrane fusion, egg activation, and sperm entry, including causal rela...

  19. Study on Surface Wettability of Bamboo by Measurement of Contact Angle

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The main objective of this research is to evaluate the wettability of the processed bamboo surfaces. The important surface energy and acid-base properties for processed bamboo have been estimated by using contact angle techniques. According to the results, the change of ages has a positive relation with the contact angles of water on processed bamboo. The contact angles were increased after the bamboo surface treated in high temperature condition and preservation. The different treat methods have a stro...

  20. L-proline increases survival of tilapias infected by Streptococcus agalactiae in higher water temperature.

    Science.gov (United States)

    Zhao, Xian-Liang; Han, Yi; Ren, Shi-Tong; Ma, Yan-Mei; Li, Hui; Peng, Xuan-Xian

    2015-05-01

    Streptococcosis causes massive tilapia kills, which results in heavy economic losses of tilapia farming industry. Out of the Streptococcosis, Streptococcus agalactiae is the major pathogen. The bacterium causes higher mortality of tilapias in higher than lower temperatures. However, effect of temperature on metabolic regulation which is related to the mortality is largely unknown. The present study showed 50% and 70% mortality of tilapias cultured in 25 °C and 30 °C, respectively, in comparison with no death in 20 °C following infection caused by S. agalactiae. Then, GC/MS based metabolomics was used to investigate a global metabolic response of tilapia liver to the two higher water temperatures compared to 20 °C. Thirty-six and forty-five varied abundance of metabolites were identified in livers of tilapias cultured at 25 °C and 30 °C, respectively. More decreasing abundance of amino acids and increasing abundance of carbohydrates were detected in 30 °C than 25 °C groups. On the other hand, out of the pathways enriched, the first five biggest impact pathways belong to amino acid metabolism. Decreasing abundance of l-proline was identified as a crucial biomarker for indexing higher water temperature and a potential modulator to reduce the high death. This was validated by engineering injection or oral addition of l-proline. Exogenous l-proline led to elevated amino acid metabolism, which contributes to the elevated survivals. Our findings provide a potential metabolic modulator for controlling the disease, and shed some light on host metabolic prevention to infectious diseases.

  1. Contact angle hysteresis on regular pillar-like hydrophobic surfaces.

    Science.gov (United States)

    Yeh, Kuan-Yu; Chen, Li-Jen; Chang, Jeng-Yang

    2008-01-01

    A series of pillar-like patterned silicon wafers with different pillar sizes and spacing are fabricated by photolithography and further modified by a self-assembled fluorosilanated monolayer. The dynamic contact angles of water on these surfaces are carefully measured and found to be consistent with the theoretical predictions of the Cassie model and the Wenzel model. When a water drop is at the Wenzel state, its contact angle hysteresis increases along with an increase in the surface roughness. While the surface roughness is further raised beyond its transition roughness (from the Wenzel state to the Cassie state), the contact angle hysteresis (or receding contact angle) discontinuously drops (or jumps) to a lower (or higher) value. When a water drop is at the Cassie state, its contact angle hysteresis strongly depends on the solid fraction and has nothing to do with the surface roughness. Even for a superhydrophobic surface, the contact angle hysteresis may still exhibit a value as high as 41 degrees for the solid fraction of 0.563.

  2. Creosote bush (Larrea tridentata) resin increases water demands and reduces energy availability in desert woodrats (Neotoma lepida).

    Science.gov (United States)

    Mangione, Antonio M; Dearing, M Denise; Karasov, William H

    2004-07-01

    Although many plant secondary compounds are known to have serious consequences for herbivores, the costs of processing them are generally unknown. Two potential costs of ingestion and detoxification of secondary compounds are elevation of the minimum drinking water requirement and excretion of energetically expensive metabolites (i.e., glucuronides) in the urine. To address these impacts, we studied the costs of ingestion of resin from creosote bush (Larrea tridentata) on desert woodrats (Neotoma lepida). The following hypotheses were tested: ingestion of creosote resin by woodrats (1) increases minimum water requirement and (2) reduces energy available by increasing fecal and urinary energy losses. We tested the first hypothesis, by measuring the minimum water requirement of woodrats fed a control diet with and without creosote resin. Drinking water was given in decreasing amounts until woodrats could no longer maintain constant body mass. In two separate experiments, the minimum drinking water requirement of woodrats fed resin was higher than that of controls by 18-30% (about 1-1.7 ml/d). We tested several potential mechanisms of increased water loss associated with the increase in water requirement. The rate of fecal water loss was higher in woodrats consuming resin. Neither urinary water nor evaporative water loss was affected by ingestion of resin. Hypothesis 2 was tested by measuring energy fluxes of woodrats consuming control vs. resin-treated diets. Woodrats on a resin diet had higher urinary energy losses and, thus, metabolized a lower proportion of the dietary energy than did woodrats on control diet. Fecal energy excretion was not affected by resin. The excretion of glucuronic acid represented almost half of the energy lost as a consequence of resin ingestion. The increased water requirement and energy losses of woodrats consuming a diet with resin could have notable ecological consequences.

  3. Grab a Cup, Fill It Up! An Intervention to Promote the Convenience of Drinking Water and Increase Student Water Consumption During School Lunch.

    Science.gov (United States)

    Kenney, Erica L; Gortmaker, Steven L; Carter, Jill E; Howe, M Caitlin W; Reiner, Jennifer F; Cradock, Angie L

    2015-09-01

    We evaluated a low-cost strategy for schools to improve the convenience and appeal of drinking water. We conducted a group-randomized, controlled trial in 10 Boston, Massachusetts, schools in April through June 2013 to test a cafeteria-based intervention. Signage promoting water and disposable cups were installed near water sources. Mixed linear regression models adjusting for clustering evaluated the intervention impact on average student water consumption over 359 lunch periods. The percentage of students in intervention schools observed drinking water during lunch nearly doubled from baseline to follow-up compared with controls (+ 9.4%; P water intake across all students (P water from fountains; with cups, 5.2 (SE = 0.2) ounces. The percentage of intervention students observed with sugar-sweetened beverages declined (-3.3%; P water through drinking fountains in cafeterias results in low water consumption. This study shows that an inexpensive intervention to improve drinking water's convenience by providing cups can increase student water consumption.

  4. Contact oxidation to treat wine waste water%接触氧化法处理葡萄酒生产废水的研究

    Institute of Scientific and Technical Information of China (English)

    李伟; 李金成; 李杰; 李鹏

    2012-01-01

    针对葡萄酒生产过程中产生的废水水质波动大、负荷高等问题,采用接触氧化工艺对其进行处理.主要讨论研究了该处理工艺中进水水质调节、生物系统的培养调试、污泥的脱水干化等问题,并对运行过程中出现的污泥膨胀问题提出了解决方案.最终出水COD降低到80mg/L左右,SS降低到70mg/L左右,符合国家《污水综合排放标准》(GB 8978—1996)一级标准.%Owing to the high load and high fluctuation of waste water quality,it is treated by means of contact oxidation.This paper discusses the problems of the adjustment of inlet water quality,the training and regulation of the biological system,and the dewatering and drying of the sludge.And it also presents a few plans for solving the sludge bulking caused during the process.As a result,the COD is reduced to approximately 80 mg/L and SS to approximately 70 mg/L,which meets the first grade requirements of "Integrated Wastewater Discharge Standards "(GB 8979-1996).

  5. The Aging Study on Polyethylene Terephthalate with Surface Modification by Water Vapor Plasma

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The aging effects of the contact angle and surface energy on polyethylene tereph thalate (PET) have been investigated with surface modification by water vapor plasma. The experimental results show that the contact angle of water and PET decreases obviously and sur face energy increases. However, with the increase of the aging time, the contact angle and surface energy change back gradually to original state.

  6. Meticillin-resistant Staphylococcus aureus CC398 is an increasing cause of disease in people with no livestock contact in Denmark, 1999 to 2011

    DEFF Research Database (Denmark)

    Larsen, J.; Petersen, A.; Sørum, M.;

    2015-01-01

    identified 416 MRSA CC398-IIa isolates. Of these, 148 were from people with infections, including 51 from patients reporting no livestock exposure. The first cases of MRSA CC398-IIa infection in Denmark occurred in 2004. Subsequently, the incidence of MRSA CC398-IIa infection showed a linear annual increase...

  7. Incubating rainbow trout in soft water increased their later sensitivity to cadmium and zinc

    Science.gov (United States)

    Mebane, Christopher A.; Hennessy, Daniel P.; Dillon, Frank S.

    2010-01-01

    Water hardness is well known to affect the toxicity of some metals; however, reports on the influence of hardness during incubation or acclimation on later toxicity to metals have been conflicting. We incubated rainbow trout (Oncorhynchus mykiss) near the confluence of two streams, one with soft water and one with very-soft water (average incubation hardnesses of about 21 and 11 mg/L as CaCO3, respectively). After developing to the swim-up stage, the fish were exposed for 96-h to a mixture of cadmium (Cd) and zinc (Zn) in water with a hardness of 27 mg/L as CaCO3. The fish incubated in the higher hardness water were about two times more resistant than the fish incubated in the extremely soft water. This difference was similar or greater than the difference that would have been predicted by criteria hardness equations had the fish been tested in the different acclimation waters. We think it is plausible that the energy demands for fish to maintain homeostasis in the lower hardness water make the fish more sensitive to metals that inhibit ionoregulation such as Cd and Zn. We suggest that if important decisions were to be based upon test results, assumptions of adequate hardness acclimation should be carefully considered and short acclimation periods avoided. If practical, incubating rainbow trout in the control waters to be tested may reduce uncertainties in the possible influences of differing rearing water hardness on the test results.

  8. Fluorescence spectroscopy for field surveillance of THM formation precursors to increase sustainable drinking water treatment for the water industry

    Science.gov (United States)

    Stutter, Marc; Cooper, Pat; Wyness, Adam; Allan, Richard; Weir, Paul; Frogbrook, Zoe; Haffey, Mark

    2017-04-01

    Our understanding of the composition and diversity of dissolved organic matter (DOM) in natural waters is improving rapidly with techniques such as fluorescence spectroscopy. For the water industry issues of the reaction of DOM and different processes used to reduce microbial contamination in water for public supply are a pressing concern. A range of processes can be used but the common disinfection by free chlorine can react with DOM to produce a group of substances referred to as disinfection by-products (DBPs) that have been linked to health concerns. Hence, management at water treatment works aims to remove DOM prior to the disinfection reaction or change the treatment method. Both are costly financially and in terms of process chemical, such as coagulents that work variably with different DOM forms. Hence, enabling methods of catchment management, which have long been associated with tackling other forms of pollution (e.g. N, P) through source-pathway-receptor concepts, are options for the water industry where catchment raw water source management is a possible sustainable addition to conventional treatment. This presentation looks at the requirements and ongoing work to inform source water management options using bench-top fluorescence excitation-emission spectroscopy and hand-held sensors to detect DBP precursors, namely trihalomethanes (THMs), in complex multi-source environments. We start by introducing the forms of DOM discernible in the fluorescence excitation-emission matrix, how these have been ascribed to different compounds by previous studies and what wavelengths are available for in-situ detection. We then discuss methodology issues for sample storage and standard materials. Then we draw on results from a national set of Scottish catchments and a small catchment study to evaluate relationships between THM compounds from standard assay and GC-MS detection against spectral DOM surrogates, including catchment hydrochemical and spatial data covariates

  9. Low-water activity foods: increased concern as vehicles of foodborne pathogens.

    Science.gov (United States)

    Beuchat, Larry R; Komitopoulou, Evangelia; Beckers, Harry; Betts, Roy P; Bourdichon, François; Fanning, Séamus; Joosten, Han M; Ter Kuile, Benno H

    2013-01-01

    Foods and food ingredients with low water activity (a(w)) have been implicated with increased frequency in recent years as vehicles for pathogens that have caused outbreaks of illnesses. Some of these foodborne pathogens can survive for several months, even years, in low-a(w) foods and in dry food processing and preparation environments. Foodborne pathogens in low-a(w) foods often exhibit an increased tolerance to heat and other treatments that are lethal to cells in high-a(w) environments. It is virtually impossible to eliminate these pathogens in many dry foods or dry food ingredients without impairing organoleptic quality. Control measures should therefore focus on preventing contamination, which is often a much greater challenge than designing efficient control measures for high-a(w) foods. The most efficient approaches to prevent contamination are based on hygienic design, zoning, and implementation of efficient cleaning and sanitation procedures in the food processing environment. Methodologies to improve the sensitivity and speed of assays to resuscitate desiccated cells of foodborne pathogens and to detect them when present in dry foods in very low numbers should be developed. The goal should be to advance our knowledge of the behavior of foodborne pathogens in low-a(w) foods and food ingredients, with the ultimate aim of developing and implementing interventions that will reduce foodborne illness associated with this food category. Presented here are some observations on survival and persistence of foodborne pathogens in low-a(w) foods, selected outbreaks of illnesses associated with consumption of these foods, and approaches to minimize safety risks.

  10. Reproductive acclimation to increased water temperature in a tropical reef fish.

    Science.gov (United States)

    Donelson, Jennifer M; McCormick, Mark I; Booth, David J; Munday, Philip L

    2014-01-01

    Understanding the capacity of organisms to cope with projected global warming through acclimation and adaptation is critical to predicting their likely future persistence. While recent research has shown that developmental acclimation of metabolic attributes to ocean warming is possible, our understanding of the plasticity of key fitness-associated traits, such as reproductive performance, is lacking. We show that while the reproductive ability of a tropical reef fish is highly sensitive to increases in water temperature, reproductive capacity at +1.5°C above present-day was improved to match fish maintained at present-day temperatures when fish complete their development at the higher temperature. However, reproductive acclimation was not observed in fish reared at +3.0°C warmer than present-day, suggesting limitations to the acclimation possible within one generation. Surprisingly, the improvements seen in reproduction were not predicted by the oxygen- and capacity-limited thermal tolerance hypothesis. Specifically, pairs reared at +1.5°C, which showed the greatest capacity for reproductive acclimation, exhibited no acclimation of metabolic attributes. Conversely, pairs reared at +3.0°C, which exhibited acclimation in resting metabolic rate, demonstrated little capacity for reproductive acclimation. Our study suggests that understanding the acclimation capacity of reproductive performance will be critically important to predicting the impacts of climate change on biological systems.

  11. Increases in soil water content after the mortality of non-native trees in oceanic island forest ecosystems are due to reduced water loss during dry periods.

    Science.gov (United States)

    Hata, Kenji; Kawakami, Kazuto; Kachi, Naoki

    2016-03-01

    The control of dominant, non-native trees can alter the water balance of soils in forest ecosystems via hydrological processes, which results in changes in soil water environments. To test this idea, we evaluated the effects of the mortality of an invasive tree, Casuarina equisetifolia Forst., on the water content of surface soils on the Ogasawara Islands, subtropical islands in the northwestern Pacific Ocean, using a manipulative herbicide experiment. Temporal changes in volumetric water content of surface soils at 6 cm depth at sites where all trees of C. equisetifolia were killed by herbicide were compared with those of adjacent control sites before and after their mortality with consideration of the amount of precipitation. In addition, the rate of decrease in the soil water content during dry periods and the rate of increase in the soil water content during rainfall periods were compared between herbicide and control sites. Soil water content at sites treated with herbicide was significantly higher after treatment than soil water content at control sites during the same period. Differences between initial and minimum values of soil water content at the herbicide sites during the drying events were significantly lower than the corresponding differences in the control quadrats. During rainfall periods, both initial and maximum values of soil water contents in the herbicided quadrats were higher, and differences between the maximum and initial values did not differ between the herbicided and control quadrats. Our results indicated that the mortality of non-native trees from forest ecosystems increased water content of surface soils, due primarily to a slower rate of decrease in soil water content during dry periods.

  12. Lipstick Induced Contact Leucoderma

    OpenAIRE

    Gupta Lalit Kumar; Jain Suresh Kumar; Khare Ashok Kumar

    2001-01-01

    Lipstick is a commonly used cosmetic. Its use may sometimes lead to contact dermatitis. Contact leucoderma to lipsticks however, is not common. We report a patient developing contact leucoderma to lipstick in association with contact dermatitis.

  13. Lipstick Induced Contact Leucoderma

    Directory of Open Access Journals (Sweden)

    Gupta Lalit Kumar

    2001-01-01

    Full Text Available Lipstick is a commonly used cosmetic. Its use may sometimes lead to contact dermatitis. Contact leucoderma to lipsticks however, is not common. We report a patient developing contact leucoderma to lipstick in association with contact dermatitis.

  14. Moving droplets: The measurement of contact lines

    NARCIS (Netherlands)

    Poelma, C.; Franken, M.J.Z.; Kim, H.; Westerweel, J.

    2014-01-01

    Contact lines are the locations where a gas, liquid and a solid meet. From everyday experience we know that such contact lines can be mobile, for example in the case of a water droplet sliding over a glass surface. However, the continuum description of the flow towards or away from a contact line im

  15. Predicting impacts of increased CO₂ and climate change on the water cycle and water quality in the semiarid James River Basin of the Midwestern USA.

    Science.gov (United States)

    Wu, Yiping; Liu, Shuguang; Gallant, Alisa L

    2012-07-15

    Emissions of greenhouse gases and aerosols from human activities continue to alter the climate and likely will have significant impacts on the terrestrial hydrological cycle and water quality, especially in arid and semiarid regions. We applied an improved Soil and Water Assessment Tool (SWAT) to evaluate impacts of increased atmospheric CO(2) concentration and potential climate change on the water cycle and nitrogen loads in the semiarid James River Basin (JRB) in the Midwestern United States. We assessed responses of water yield, soil water content, groundwater recharge, and nitrate nitrogen (NO(3)-N) load under hypothetical climate-sensitivity scenarios in terms of CO(2), precipitation, and air temperature. We extended our predictions of the dynamics of these hydrological variables into the mid-21st century with downscaled climate projections integrated across output from six General Circulation Models. Our simulation results compared against the baseline period 1980 to 2009 suggest the JRB hydrological system is highly responsive to rising levels of CO(2) concentration and potential climate change. Under our scenarios, substantial decrease in precipitation and increase in air temperature by the mid-21st century could result in significant reduction in water yield, soil water content, and groundwater recharge. Our model also estimated decreased NO(3)-N load to streams, which could be beneficial, but a concomitant increase in NO(3)-N concentration due to a decrease in streamflow likely would degrade stream water and threaten aquatic ecosystems. These results highlight possible risks of drought, water supply shortage, and water quality degradation in this basin. Published by Elsevier B.V.

  16. Predicting Impacts of Increased CO2 and Climate Change on the Water Cycle and Water Quality in the Semiarid James River Basin of the Midwestern USA

    Science.gov (United States)

    Wu, Yiping; Liu, Shu-Guang; Gallant, Alisa L.

    2012-01-01

    Emissions of greenhouse gases and aerosols from human activities continue to alter the climate and likely will have significant impacts on the terrestrial hydrological cycle and water quality, especially in arid and semiarid regions. We applied an improved Soil and Water Assessment Tool (SWAT) to evaluate impacts of increased atmospheric CO2 concentration and potential climate change on the water cycle and nitrogen loads in the semiarid James River Basin (JRB) in the Midwestern United States. We assessed responses of water yield, soil water content, groundwater recharge, and nitrate nitrogen (NO3–N) load under hypothetical climate-sensitivity scenarios in terms of CO2, precipitation, and air temperature. We extended our predictions of the dynamics of these hydrological variables into the mid-21st century with downscaled climate projections integrated across output from six General Circulation Models. Our simulation results compared against the baseline period 1980 to 2009 suggest the JRB hydrological system is highly responsive to rising levels of CO2 concentration and potential climate change. Under our scenarios, substantial decrease in precipitation and increase in air temperature by the mid-21st century could result in significant reduction in water yield, soil water content, and groundwater recharge. Our model also estimated decreased NO3–N load to streams, which could be beneficial, but a concomitant increase in NO3–N concentration due to a decrease in streamflow likely would degrade stream water and threaten aquatic ecosystems. These results highlight possible risks of drought, water supply shortage, and water quality degradation in this basin.

  17. A comparative study of water-steam distillation with water-bubble distillation techniques to increase the quality of patchouli essential oil

    Science.gov (United States)

    Fitri, Noor; Yandi, Nefri; Hermawati, Julianto, Tatang Shabur

    2017-03-01

    A comparative study of the quality of patchouli oil using Water-Steam Distillation (WSD) and Water Bubble Distillation (WBD) techniques has been studied. The raw materials were Patchouli plants from Samigaluh village, Kulon Progo district, Yogyakarta. This study is aimed to compare two distillation techniques in order to find out the optimal distillation technique to increase the content of patchouli alcohol (patchoulol) and the quality of patchouli oil. Pretreatment such as withering, drying, size reduction and light fermentation were intended to increase the yield. One kilogramm of patchouli was moisturized with 500 mL of aquadest. The light fermentation process was carried out for 20 hours in a dark container. Fermented patchouli was extracted for 6 hours using Water-Steam and Water Bubble Distillation techniques. Physical and chemical properties test of patchouli oil were performed using SNI standard No. SNI-06-2385-2006 and the chemical composition of patchouli oil was analysed by GC-MS. As the results, the higher yield oil is obtained using Water-Steam Distillation, i.e. 5.9% versus 2.4%. Spesific gravity, refractive index and acid number of patchouli oil in Water-Steam Distillation results did not meet the SNI standard, i.e. 0.991; 1.623 and 13.19, while the Water Bubble Distillation met the standard, i.e. 0.955; 1.510 and 6.61. The patchoulol content using Water Bubble Distillation technique is 61.53%, significant higher than those using Water-Steam Distillation, i.e. 38.24%. Thus, Water Bubble Distillation promises a potential technique to increase the content of patchoulol in the patchouli oil.

  18. Receding contact lines: From sliding drops to immersion lithography

    NARCIS (Netherlands)

    Winkels, K.G.; Peters, I.R.; Evangelista, F.; Riepen, M.; Daerr, A.; Limat, L.; Snoeijer, J.H.

    2011-01-01

    Instabilities of receding contact lines often occur through the formation of a corner with a very sharp tip. These dewetting structures also appear in the technology of Immersion Lithography, where water is put between the lens and the silicon wafer to increase the optical resolution. In this paper

  19. Removal of infused water predominantly during insertion (water exchange) is consistently associated with an increase in adenoma detection rate - review of data in randomized controlled trials (RCTs) of water-related methods.

    Science.gov (United States)

    Leung, Fw; Harker, Jo; Leung, Jw; Siao-Salera, Rm; Mann, Sk; Ramirez, Fc; Friedland, S; Amato, A; Radaelli, F; Paggi, S; Terruzzi, V; Hsieh, Yh

    2011-07-01

    INTRODUCTION: Variation in outcomes in RcTs comparing water-related methods and air insufflation raises challenging questions regarding the new approach. This report reviews impact of water exchange - simultaneous infusion and removal of infused water during insertion on adenoma detection rate (ADR) defined as proportion of patients with a least one adenoma of any size. METHODS: Medline (2008-2011) searches, abstract of 2011 Digestive Disease Week (DDW) meeting and personal communications were considered to identify RcTs that compared water-related methods and air insufflation to aid insertion of colonoscope. RESULTS: Since 2008, eleven reports of RcTs (6 published, 1 submitted and 4 abstracts, n=1728) described ADR in patients randomized to be examined by air and water-related methods. The water-related methods differed in timing of removal of the infused water -predominantly during insertion (water exchange) (n=825) or predominantly during withdrawal (water immersion) (n=903). Water immersion was associated with both increases and decreases in ADR compared to respective air method patients and the net overall change (-7%) was significant. On the other hand water exchange was associated with increases in ADR consistently and the net changes (overall, 8%; proximal overall, 11%; and proximal Comparative data generated the hypothesis that significantly larger increases in overall and proximal colon ADRs were associated with water exchange than water immersion or air insufflation during insertion. The hypothesis should be evaluated by RCTs to elucidate the mechanism of water exchange on adenoma detection.

  20. Increasing demands on limited water resources: Consequences for two endangered plants in Amargosa Valley, USA.

    Science.gov (United States)

    Hasselquist, Niles J; Allen, Michael F

    2009-03-01

    Recent population expansion throughout the Southwest United States has created an unprecedented demand for already limited water resources, which may have severe consequences on the persistence of some species. Two such species are the federally protected Nitrophila mohavensis (Chenopodiaceae) and Grindelia fraxino-pratensis (Asteraceae) found in Amargosa Valley, one valley east of Death Valley, California. Because both species are federally protected, no plant material could be harvested for analysis. We therefore used a chamber system to collect transpired water for isotopic analysis. After a correction for isotopic enrichment during transpiration, δ(18)O values of plant xylem water were significantly different between N. mohavensis and G. fraxino-pratensis throughout the study. Using a multisource mixing model, we found that both N. mohavensis and G. fraxino-pratensis used soil moisture near the soil surface in early spring when surface water was present. However, during the dry summer months, G. fraxino-pratensis tracked soil moisture to deeper depths, whereas N. mohavensis continued to use soil moisture near the soil surface. These results indicate that pumping groundwater and subsequently lowering the water table may directly prevent G. fraxino-pratensis from accessing water, whereas these same conditions may indirectly affect N. mohavensis by reducing surface soil moisture and thus its ability to access water.

  1. Combined effects of fretting and pollutant particles on the contact resistance of the electrical connectors

    Directory of Open Access Journals (Sweden)

    Zhigang Kong

    2017-06-01

    Full Text Available Usually, when electrical connectors operate in vibration environments, fretting will be produced at the contact interfaces. In addition, serious environmental pollution particles will affect contact resistance of the connectors. The fretting will worsen the reliability of connectors with the pollutant particles. The combined effects of fretting and quartz particles on the contact resistance of the gold plating connectors are studied with a fretting test system. The results show that the frequencies have obvious effect on the contact resistance. The higher the frequency, the higher the contact resistance is. The quartz particles cause serious wear of gold plating, which make the nickel and copper layer exposed quickly to increase the contact resistance. Especially in high humidity environments, water supply certain adhesion function and make quartz particles easy to insert or cover the contact surfaces, and even cause opening resistance.

  2. Symbiosis with AMF and leaf Pi supply increases water deficit tolerance of woody species from seasonal dry tropical forest.

    Science.gov (United States)

    Frosi, Gabriella; Barros, Vanessa A; Oliveira, Marciel T; Santos, Mariana; Ramos, Diego G; Maia, Leonor C; Santos, Mauro G

    2016-12-01

    In seasonal dry tropical forests, plants are subjected to severe water deficit, and the arbuscular mycorrhizal fungi (AMF) or inorganic phosphorus supply (Pi) can mitigate the effects of water deficit. This study aimed to assess the physiological performance of Poincianella pyramidalis subjected to water deficit in combination with arbuscular mycorrhizal fungi (AMF) and leaf inorganic phosphorus (Pi) supply. The experiment was conducted in a factorial arrangement of 2 water levels (+H2O and -H2O), 2 AMF levels (+AMF and -AMF) and 2Pi levels (+Pi and -Pi). Leaf primary metabolism, dry shoot biomass and leaf mineral nutrients were evaluated. Inoculated AMF plants under well-watered and drought conditions had higher photosynthesis and higher shoot biomass. Under drought, AMF, Pi or AMF+Pi plants showed metabolic improvements in photosynthesis, leaf biochemistry and higher biomass compared to the plants under water deficit without AMF or Pi. After rehydration, those plants submitted to drought with AMF, Pi or AMF+Pi showed a faster recovery of photosynthesis compared to treatment under water deficit without AMF or Pi. However, plants under the drought condition with AMF showed a higher net photosynthesis rate. These findings suggest that AMF, Pi or AMF+Pi increase the drought tolerance in P. pyramidalis, and AMF associations under well-watered conditions increase shoot biomass and, under drought, promoted faster recovery of photosynthesis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. [Current contact allergens].

    Science.gov (United States)

    Geier, J; Uter, W; Lessmann, H; Schnuch, A

    2011-10-01

    Ever-changing exposure to contact allergens, partly due to statutory directives (e.g. nickel, chromate, methyldibromo glutaronitrile) or recommendations from industrial associations (e.g. hydroxyisohexyl 3-cyclohexene carboxaldehyde), requires on-going epidemiologic surveillance of contact allergy. In this paper, the current state with special focus in fragrances and preservatives is described on the basis of data of the Information Network of Departments of Dermatology (IVDK) of the year 2010. In 2010, 12,574 patients were patch tested in the dermatology departments belonging to the IVDK. Nickel is still the most frequent contact allergen. However the continuously improved EU nickel directive already has some beneficial effect; sensitization frequency in young women is dropping. In Germany, chromate-reduced cement has been in use now for several years, leading to a decline in chromate sensitization in brick-layers. Two fragrance mixes are part of the German baseline series; they are still relevant. The most important fragrances in these mixes still are oak moss absolute and hydroxyisohexyl 3-cyclohexene carboxaldehyde. However, in relation to these leading allergens, sensitization frequency to other fragrances contained in the mixes seems to be increasing. Among the preservatives, MCI/MI has not lost its importance as contact allergen, in contrast to MDBGN. Sources of MCI/MI sensitization obviously are increasingly found in occupational context. Methylisothiazolinone is a significant allergen in occupational settings, and less frequently in body care products.

  4. Water deficit in field-grown Gossypium hirsutum primarily limits net photosynthesis by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis.

    Science.gov (United States)

    Chastain, Daryl R; Snider, John L; Collins, Guy D; Perry, Calvin D; Whitaker, Jared; Byrd, Seth A

    2014-11-01

    Much effort has been expended to improve irrigation efficiency and drought tolerance of agronomic crops; however, a clear understanding of the physiological mechanisms that interact to decrease source strength and drive yield loss has not been attained. To elucidate the underlying mechanisms contributing to inhibition of net carbon assimilation under drought stress, three cultivars of Gossypium hirsutum were grown in the field under contrasting irrigation regimes during the 2012 and 2013 growing season near Camilla, Georgia, USA. Physiological measurements were conducted on three sample dates during each growing season (providing a broad range of plant water status) and included, predawn and midday leaf water potential (ΨPD and ΨMD), gross and net photosynthesis, dark respiration, photorespiration, and chlorophyll a fluorescence. End-of-season lint yield was also determined. ΨPD ranged from -0.31 to -0.95MPa, and ΨMD ranged from -1.02 to -2.67MPa, depending upon irrigation regime and sample date. G. hirsutum responded to water deficit by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis, thereby limiting PN and decreasing lint yield (lint yield declines observed during the 2012 growing season only). Conversely, even extreme water deficit, causing a 54% decline in PN, did not negatively affect actual quantum yield, maximum quantum yield, or photosynthetic electron transport. It is concluded that PN is primarily limited in drought-stressed G. hirsutum by decreased stomatal conductance, along with increases in respiratory and photorespiratory carbon losses, not inhibition or down-regulation of electron transport through photosystem II. It is further concluded that ΨPD is a reliable indicator of drought stress and the need for irrigation in field-grown cotton.

  5. Psoriasis and Contact Sensitivitiy

    Directory of Open Access Journals (Sweden)

    Deniz Arlı

    2013-03-01

    Full Text Available Objective: The aim of this study was to investigate the frequency of contact sensitivity in patients with psoriasis, whether there was an association between clinical types and contact sensitivity, whether patch test is a factor that causes Koebner reaction and frequency of contact sensitivity against commonly used topical corticosteroids. Methods: Fifty patients with psoriasis and 50 healthy volunteers were included in this study and ‘European standard series' and test units of active ingredients of some corticosteroids were performed on their upper back. The patches were read on hours 24, 48 and on day 7 in order to detect delayed allergic reactions and also Koebner reaction. The results of both groups were compared by using chi-square test. Results: At the end of the patch test allergic reaction was observed in 7 of 50 (14% patients with psoriasis and 12 of 50 (24% healthy volunteers. There was no statistically significant difference between allergic reaction of study group and healthy volunteers. There was no statistically significant difference between the clinical types of psoriasis and allergic contact sensitivity. The frequency of reaction increased in individuals having a positive sensitivity history to any substance in both patient and control groups. Reaction to topical steroids was not seen in any patients. Koebner phenomenon due to patch test was also not seen in any patients. Conclusion: We did not show any association between psoriasis and contact sensitivity in this study. We believe that contact allergens should be determined by using patch test in psoriatic patients with a positive history to any substance.

  6. Mechanical Contact Experiments and Simulations

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Martins, P; Zhang, W.;

    2011-01-01

    Mechanical contact is studied under dynamic development by means of a combined numerical and experimental investigation. The experiments are designed to allow dynamical development of non-planar contact areas with significant expansion in all three directions as the load is increased. Different...

  7. Modeling Caspian Sea water level oscillations under different scenarios of increasing atmospheric carbon dioxide concentrations

    OpenAIRE

    Roshan GholamReza; Moghbel Masumeh; Grab Stefan

    2012-01-01

    Abstract The rapid rise of Caspian Sea water level (about 2.25 meters since 1978) has caused much concern to all five surrounding countries, primarily because flooding has destroyed or damaged buildings and other engineering structures, roads, beaches and farm lands in the coastal zone. Given that climate, and more specifically climate change, is a primary factor influencing oscillations in Caspian Sea water levels, the effect of different climate change scenarios on future Caspian Sea levels...

  8. Vattenpaketet - a Swedish information package for increased awareness in water issues

    Science.gov (United States)

    Seibert, Jan; Paul, Susanne; Halldin, Sven; Darracq, Amélie

    2010-05-01

    Water issues often do not receive the same attention in school education as other environmental issues. Partly this may be due to a lack of suitable teaching material. Therefore, in 2008 a project has been initiated by the Swedish Hydrological Council (SHR) to compile an information kit, called ‘Vattenpaketet' (water package). The purpose of this information project is to create an information kit about water issues that can be used by teachers, study circle leaders and others in connection with activities on World Water Day on 22 March each year. The kit contains complete computer presentations, a booklet, working materials, and detailed teacher's instructions, and is freely available on a website http://www.vattendag.org/vattenpaketet/. The information material aims at combining local (i.e., Swedish) and global water issues as well as curiosity driven water experiments and more theoretical information. A preliminary version of the kit has already been used by many school teachers. Here we present this information kit and first experiences from its use in schools.

  9. Predicting impacts of increased CO{sub 2} and climate change on the water cycle and water quality in the semiarid James River Basin of the Midwestern USA

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yiping, E-mail: ywu@usgs.gov [ASRC Research and Technology Solutions, contractor to the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, Sioux Falls, SD 57198 (United States); Liu, Shuguang, E-mail: sliu@usgs.gov [U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, Sioux Falls, SD 57198 (United States); Geographic Information Science Center of Excellence, South Dakota State University, Brookings, SD 57007 (United States); Gallant, Alisa L., E-mail: gallant@usgs.gov [U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, Sioux Falls, SD 57198 (United States); Geographic Information Science Center of Excellence, South Dakota State University, Brookings, SD 57007 (United States)

    2012-07-15

    Emissions of greenhouse gases and aerosols from human activities continue to alter the climate and likely will have significant impacts on the terrestrial hydrological cycle and water quality, especially in arid and semiarid regions. We applied an improved Soil and Water Assessment Tool (SWAT) to evaluate impacts of increased atmospheric CO{sub 2} concentration and potential climate change on the water cycle and nitrogen loads in the semiarid James River Basin (JRB) in the Midwestern United States. We assessed responses of water yield, soil water content, groundwater recharge, and nitrate nitrogen (NO{sub 3}-N) load under hypothetical climate-sensitivity scenarios in terms of CO{sub 2}, precipitation, and air temperature. We extended our predictions of the dynamics of these hydrological variables into the mid-21st century with downscaled climate projections integrated across output from six General Circulation Models. Our simulation results compared against the baseline period 1980 to 2009 suggest the JRB hydrological system is highly responsive to rising levels of CO{sub 2} concentration and potential climate change. Under our scenarios, substantial decrease in precipitation and increase in air temperature by the mid-21st century could result in significant reduction in water yield, soil water content, and groundwater recharge. Our model also estimated decreased NO{sub 3}-N load to streams, which could be beneficial, but a concomitant increase in NO{sub 3}-N concentration due to a decrease in streamflow likely would degrade stream water and threaten aquatic ecosystems. These results highlight possible risks of drought, water supply shortage, and water quality degradation in this basin. - Highlights: Black-Right-Pointing-Pointer We used a modified version of SWAT to more accurately simulate the effects of CO{sub 2}. Black-Right-Pointing-Pointer Our sensitivity analysis indicated this basin is very responsive to climate change. Black

  10. Qunatifying the relative uncertainties of climate change and water demand projections to understand risk and increase resilience in water supply planning

    Science.gov (United States)

    Chang, S. J.; Graham, W. D.; Geurink, J. S.

    2016-12-01

    Climate change can change the magnitude and temporal characteristics of hydrologic responses which could impact the risk and resilience for public water supply facilities. Sustainable water resource planning requires reliable projections of potential future spatiotemporal changes in the regional hydrologic responses. Public water suppliers need to improve understanding of hydrologic response uncertainties associated with the choice of General Circulation Model (GCM), reference evapotranspiration (ET0) estimation method, and future water demands estimates to understand risk and increase resilience through adaptive management strategies. The objective of this study is to quantify uncertainties for hydrologic responses in west-central Florida associated with GCM selection, ET0 estimation method, and future water demand scenarios. Nine GCMs, eight ET0 estimation methods and water demand scenarios were used to develop inputs to the calibrated Integrated Northern Tampa Bay (INTB) model which was used to simulate hydrologic responses for 30 years for each of 520 simulation scenarios. INTB model simulated streamflow and groundwater levels for all simulation scenarios were used to assess future risks for the public water supply facilities of Tampa Bay Water.

  11. More efficient irrigation may compensate for increases in irrigation water requirements due to climate change in the Mediterranean area

    Science.gov (United States)

    Fader, Marianela; Shi, Sinan; von Bloh, Werner; Bondeau, Alberte; Cramer, Wolfgang

    2017-04-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. We will present a recently published study1 that estimates the current level of water demand for Mediterranean agriculture and simulates the potential impacts of climate change, population growth and transitions to water-saving irrigation and conveyance technologies. The results indicate that, at present, Mediterranean region could save 35% of water by implementing more efficient irrigation and conveyance systems, with large differences in the saving potentials across countries. Under climate change, more efficient irrigation is of vital importance for counteracting increases in irrigation water requirements. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4% and 18% from climate change alone by the end of the century if irrigation systems and conveyance are not improved. Population growth increases these numbers to 22% and 74%, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean. Both the Eastern and the Southern Mediterranean would need around 35% more water than today if they could afford some degree of modernization of irrigation and conveyance systems and benefit from the CO2-fertilization effect. However, in some scenarios water scarcity may constrain the supply of the irrigation water needed in future in Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain. In this study, vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL ("Lund-Potsdam-Jena managed Land") after a large development2 that comprised the improved representation of Mediterranean crops.

  12. 水附着状态下奥贝球铁的拉伸性能及断裂机制%The Tensile Properties of Austempered Ductile Iron in Condition of Contact with Water and its Fracture Mechanism

    Institute of Scientific and Technical Information of China (English)

    蔡启舟; 魏伯康; 林汉同; 田中雄一

    2001-01-01

    The tensile properties of austempered ductile iron (ADI) were tested in condition of contact with water and its fracture mechanism was investigated in this paper. Both tensile strength and elongation of the iron were decreased drastically, it exhibited remarkable water-embrittlement in condition of contact with water. Especially, ADI austempered specimens of the iron in process window showed more remarkable embrittlement than others. White spot region regarded as fracture initiation point was observed on fracture surface tested in contact with water. From this result, it was suggested that embrittlement behavior of ADI resulted from a local embrittlement near the surface of specimen during plastic deformation and it led to a rapid fracture of the entire specimen.%研究结果表明,水附着状态下,奥贝球铁的抗拉强度和伸长率显著降低,发生明显的脆化现象,特别是在工艺窗口内等温淬火处理的试样脆化更显著。经断口分析发现,这种脆化现象是水附着拉伸试样在塑性变形初期,表面附近产生了脆性断裂区域,作为试样破坏的起点,导致试样早期断裂而造成的。

  13. WATERS Network: Increasing Vertical Collaboration within Hydrology Research and Education Communities

    Science.gov (United States)

    Eschenbach, E. A.; Johnson, J.; Brus, C.; Carlson, P.; Giammar, D.; Grauer, B.; Hotaling, L.; Oguntimein, G.; Safferman, S.; Seiler, E.; Wentling, T.

    2006-12-01

    The WATer and Environmental Research Systems (WATERS) Network is envisioned to be a networked infrastructure of environmental field facilities that will establish a national environmental observatory and engineering analysis network to facilitate a more collaborative approach to addressing the challenges of large-scale human-stressed environmental systems. WATERS will transform our scientific understanding of how water quantity, quality and related components of the hydrologic cycle are impacted by natural and human influences by providing easily accessible real time environmental data and analysis tools to engineers, scientists, educators and policymakers. These tools include knowledge networks, a collaborative environmental modeling environment, maintenance of a real time data collection network, and a cybercollaboratory. WATERS will greatly enhance opportunities for the integration of research and education at all levels by facilitating collaboration between all the following groups: K-12 students and educators, university students and faculty and community, government, and industry stakeholders. The goal of facilitating collaboration is to strive for an evolution of educational reform objectives covering delivery of instruction, learning outcomes, and teacher/instructor training and professional development. WATERS will facilitate this advancement by providing: 1) A mechanism for communication and collaboration between educators, researchers and students via new and existing communication tools such as chat boards, blogs, etc; 2) A visually oriented data retrieval system/search engine for users to locate and collect relevant documents, images, and other forms of knowledge that exist in the public domain; 3) Access to real time data and analytical tools for discovery purposes by students from K-12 through graduate audiences; 4) A repository of lesson plans, learning activities, and learning materials that allows resource sharing; and 5) Professional development

  14. Change in diarrhoea trends and the increasing importance of microbiological water quality due to HIV/AIDS in South Africa

    CSIR Research Space (South Africa)

    Steyn, M

    2009-05-01

    Full Text Available and the increasing importance of microbiological water quality due to HIV/AIDS in South Africa MARONEL STEYN AND BETTINA GENTHE CSIR Natural Resources and the Environment, Stellenbosch, Cape Town, 7599, South Africa Email: msteyn@csir.co.za – www.csir.co.za In... potential risk for microbiological contamination of treated water supplies and associated diarrhoeal disease burden. Correlation of factors potentially contributing to diarrhoeal disease in South Africa # diarrhoea episodes in < 5 yrs Number...

  15. 21st century United States emissions mitigation could increase water stress more than the climate change it is mitigating.

    Science.gov (United States)

    Hejazi, Mohamad I; Voisin, Nathalie; Liu, Lu; Bramer, Lisa M; Fortin, Daniel C; Hathaway, John E; Huang, Maoyi; Kyle, Page; Leung, L Ruby; Li, Hong-Yi; Liu, Ying; Patel, Pralit L; Pulsipher, Trenton C; Rice, Jennie S; Tesfa, Teklu K; Vernon, Chris R; Zhou, Yuyu

    2015-08-25

    There is evidence that warming leads to greater evapotranspiration and surface drying, thus contributing to increasing intensity and duration of drought and implying that mitigation would reduce water stresses. However, understanding the overall impact of climate change mitigation on water resources requires accounting for the second part of the equation, i.e., the impact of mitigation-induced changes in water demands from human activities. By using integrated, high-resolution models of human and natural system processes to understand potential synergies and/or constraints within the climate-energy-water nexus, we show that in the United States, over the course of the 21st century and under one set of consistent socioeconomics, the reductions in water stress from slower rates of climate change resulting from emission mitigation are overwhelmed by the increased water stress from the emissions mitigation itself. The finding that the human dimension outpaces the benefits from mitigating climate change is contradictory to the general perception that climate change mitigation improves water conditions. This research shows the potential for unintended and negative consequences of climate change mitigation.

  16. Water and playing facilities as a factor increasing the efficiency of educational and training process of young athletes.

    Directory of Open Access Journals (Sweden)

    Sitnikova N.S.

    2011-03-01

    Full Text Available It is shown the role of water-game activities to enhance the efficiency of teaching and training process for athletes 10-16 years in the preparatory period and their effects on young athletes. It is proposed a set of exercises and games in the water for a sprinter. The basis of systems put different games, relay races, dynamic and static exercises, exercises on the recovery. Proved that the water-play classes young athletes develop harmoniously reinforce the emotional and physiological quality, improve health and increase the intellectual level.

  17. Irrigation Scheduling Using Low Cost Plant Leaf Temperature Sensor Based Water Application System for Increasing Water Productivity of Fruit Crop

    Directory of Open Access Journals (Sweden)

    Manish Debnath

    2016-01-01

    Full Text Available A sensor was designed and developed to measure the plant leaf temperature and ambient temperature in the kinnow orchard. The developed sensor circuit was then interfaced with the drip irrigation head works for irrigation automation. The microcontroller was programmed on based on leaf-air temperature differential values measured by the developed temperature sensors. The developed system was tested in the field for Kinnow (Citrus reticulata Blanco crop for its performance. The system maintained the soil moisture content nearer to the field capacity as per the leaf-air temperature differential conditions and used 8 % less water per month per plant compared to the using drip irrigation system. The developed automated system was of low cost which can be afforded by the small and marginal farmers and also easy to install.

  18. Increasing water stress negatively affects pear fruit growth by reducing first its xylem and then its phloem inflow.

    Science.gov (United States)

    Morandi, Brunella; Losciale, Pasquale; Manfrini, Luigi; Zibordi, Marco; Anconelli, Stefano; Galli, Fabio; Pierpaoli, Emanuele; Corelli Grappadelli, Luca

    2014-10-15

    Drought stress negatively affects many physiological parameters and determines lower yields and fruit size. This paper investigates on the effects of prolonged water restriction on leaf gas exchanges, water relations and fruit growth on a 24-h time-scale in order to understand how different physiological processes interact to each other to face increasing drought stress and affect pear productive performances during the season. The diurnal patterns of tree water relations, leaf gas exchanges, fruit growth, fruit vascular and transpiration flows were monitored at about 50, 95 and 145 days after full bloom (DAFB) on pear trees of the cv. Abbé Fétel, subjected to two irrigation regimes, corresponding to a water restitution of 100% and 25% of the estimated Etc, respectively. Drought stress progressively increased during the season due to lower soil tensions and higher daily vapour pressure deficits (VPDs). Stem water potential was the first parameter to be negatively affected by stress and determined the simultaneous reduction of fruit xylem flow, which at 95 DAFB was reflected by a decrease in fruit daily growth. Leaf photosynthesis was reduced only from 95 DAFB on, but was not immediately reflected by a decrease in fruit phloem flow, which instead was reduced only at 145 DAFB. This work shows how water stress negatively affects pear fruit growth by reducing first its xylem and then its phloem inflow. This determines a progressive increase in the phloem relative contribution to growth, which lead to the typical higher dry matter percentages of stressed fruit.

  19. [Contact allergies in musicians].

    Science.gov (United States)

    Gasenzer, E R; Neugebauer, E A M

    2012-12-01

    During the last years, the problem of allergic diseases has increased. Allergies are errant immune responses to a normally harmless substance. In musicians the allergic contact dermatitis to exotic woods is a special problem. Exotic rosewood contains new flavonoids, which trigger an allergic reaction after permanent contact with the instrument. High quality woodwind instruments such as baroque flute or clarinets are made in ebony or palisander because of its great sound. Today instruments for non-professional players are also made in these exotic materials and non-professionals may have the risk to develop contact dermatitis, too. Brass-player has the risk of an allergic reaction to the different metals contained in the metal sheets of modern flutes and brass instruments. Specially nickel and brass alloys are used to product flute tubes or brass instruments. Special problem arises in children: patients who are allergic to plants or foods have a high risk to develop contact dermatitis. Parents don't know the materials of low-priced instruments for beginners. Often unknown cheap woods from exotic areas are used. Low-priced brass instruments contain high amount of brass and other cheap metals. Physicians should advice musician-patients or parents about the risks of the different materials and look for the reason of eczema on mouth, face, or hands.

  20. Reorganization of water utilities - regionalization, an opportunity to increase their efficiency A comparative literature - Albania Case

    Directory of Open Access Journals (Sweden)

    Julian Naqellari

    2017-03-01

    Full Text Available The purpose of this research is the study and analysis of factors affecting the need for reorganization of entities engaged in water supply services. From this perspective, the research seeks to identify international practices made in this regard and how they can be adapted to water utilities in Albania. The objective of this paper is to show that regionalization of water utilities is a successful development direction not only of studied literature but also practice in Albania. The study is based on sources of information taken from primary and secondary sources. The selected method for collecting and processing information from primary sources is the empirical method through direct surveys and questionnaires, whereas from secondary sources is descriptive and analytical method. As secondary sources, we are consulted and referred to academic resources, such as articles, books, studies and reports carried out and published by national organizations, local and foreign companies in this field.

  1. /Au Back Contacts

    Science.gov (United States)

    Paudel, Naba R.; Compaan, Alvin D.; Yan, Yanfa

    2014-08-01

    We report on the fabrication and characterization of CdTe thin-film solar cells with Cu-free MoO3- x /Au back contacts. CdTe solar cells with sputtered CdTe absorbers of thicknesses from 0.5 to 1.75 μm were fabricated on Pilkington SnO2:F/SnO2-coated soda-lime glasses coated with a 60- to 80-nm sputtered CdS layer. The MoO3- x /Au back contact layers were deposited by thermal evaporation. The incorporation of MoO3- x layer was found to improve the open circuit voltage ( V OC) but reduce the fill factor of the ultrathin CdTe cells. The V OC was found to increase as the CdTe thickness increased.

  2. Scientific Opinion on the safety assessment of the active substances, sodium erythorbate, sodium carbonate, sodium bicarbonate, iron sulphate, activated carbon, cellulose, calcium hydroxide, calcium chloride and water, for use as active system in food contact materials

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF

    2014-02-01

    Full Text Available This scientific opinion of EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids deals with the safety assessment of the active substances sodium erythorbate, sodium carbonate, sodium bicarbonate, iron sulfate, activated carbon, cellulose, calcium hydroxide, calcium chloride and water, used in mixture which is packed into sachets for absorbing oxygen/carbon dioxide emitting from/into the headspace surrounding packed food. All substances of this formulation have been evaluated and approved for use as additives in plastic food contact materials or as food additives. No migration of calcium, iron and sodium ions was detected. No volatile organic compounds other than carbon dioxide were detected at the limit of detection of 0.5 μg/l. The CEF Panel concluded that the use of the substances sodium erythorbate, sodium carbonate, sodium bicarbonate, iron sulfate, activated carbon, cellulose, calcium hydroxide, calcium chloride and water does not raise a safety concern when used in oxygen absorber/carbon dioxide emitter systems, in sachets that prevent the physical release of their contents into the food. The sachets are to be placed in the headspace of the packaging and as such may come into occasional contact with the food, e.g. during handling. The sachet should not come into direct contact with liquid foods or foods that have and external aqueous liquid phase on the surface (liquid or exudates.

  3. Dynamic behavior of the water droplet impact on a textured hydrophobic/superhydrophobic surface: the effect of the remaining liquid film arising on the pillars' tops on the contact time.

    Science.gov (United States)

    Li, Xiying; Ma, Xuehu; Lan, Zhong

    2010-04-06

    We have fabricated a series of textured silicon surfaces decorated by square arrays of pillars whose radius and pitch can be adjusted independently. These surfaces possessed a hydrophobic/superhydrophobic property after silanization. The dynamic behavior of water droplets impacting these structured surfaces was examined using a high-speed camera. Experimental results validated that the remaining liquid film on the pillars' tops gave rise to a wet surface instead of a dry surface as the water droplet began to recede away from the textured surfaces. Also, experimental results demonstrated that the difference in the contact time was subjected to the solid fraction referred to as the ratio of the actual area contacting with the liquid to its projected area on the textured surface. Because the mechanism by which the residual liquid film emerges on the pillars' tops can essentially be ascribed to the pinch-off of the liquid threads, we further addressed the changes in the contact time in terms of the characteristic time of pinch-off of an imaginary liquid cylinder whose radius is related to the solid fraction and the maximum contact area. The match of the theoretical analysis and the experimental results substantiates the assumption aforementioned.

  4. Increased self-diffusion of brain water in hydrocephalus measured by MR imaging

    DEFF Research Database (Denmark)

    Gideon, P; Thomsen, C; Gjerris, F

    1994-01-01

    We used MR imaging to measure the apparent brain water self-diffusion in 5 patients with normal pressure hydrocephalus (NPH), in 2 patients with high pressure hydrocephalus (HPH), and in 8 age-matched controls. In all patients with NPH significant elevations of the apparent diffusion coefficients...... (ADC) of brain water were found within periventricular white matter, in the corpus callosum, in the internal capsule, within cortical gray matter, and in cerebrospinal fluid, whereas normal ADCs were found within the basal ganglia. In 2 patients with HPH elevated ADCs were found most prominently within...

  5. Corn stover harvest increases herbicide movement to subsurface drains – Root Zone Water Quality Model simulations

    Science.gov (United States)

    BACKGROUND: Removal of crop residues for bioenergy production can alter soil hydrologic properties, but there is little information on its impact on transport of herbicides and their degradation products to subsurface drains. The Root Zone Water Quality Model, previously calibrated using measured fl...

  6. Water-removed spectra increase the retrieval accuracy when estimating savanna grass nitrogen and phosphorus concentrations

    NARCIS (Netherlands)

    Ramoelo, A.; Skidmore, A.K.; Schlerf, M.; Mathieu, R.; Heitkonig, I.M.A.

    2011-01-01

    Information about the distribution of grass foliar nitrogen (N) and phosphorus (P) is important for understanding rangeland vitality and for facilitating the effective management of wildlife and livestock. Water absorption effects in the near-infrared (NIR) and shortwave-infrared (SWIR) regions pose

  7. Increased brain water self-diffusion in patients with idiopathic intracranial hypertension

    DEFF Research Database (Denmark)

    Gideon, P; Sørensen, P S; Thomsen, C;

    1995-01-01

    PURPOSE: To investigate changes in brain water diffusion in patients with idiopathic intracranial hypertension. METHODS: A motion-compensated MR pulse sequence was used to create diffusion maps of the apparent diffusion coefficient (ADC) in 12 patients fulfilling conventional diagnostic criteria ...

  8. Straw gasification biochar increases plant available water capacity and plant growth in coarse sandy soil

    DEFF Research Database (Denmark)

    Hansen, Veronika; Hauggaard-Nielsen, Henrik; Petersen, Carsten Tilbæk

    Gasification biochar (GB) contains recalcitrant carbon that can contribute to soil carbon sequestration and soil quality improvement. However, the impact of GB on plant available water capacity (AWC) and plant growth in diverse soil types needs further reserach. A pot experiment with spring barley...

  9. Increasing reliability of system water heaters for steam-turbine installations at the design stage

    Science.gov (United States)

    Brezgin, V. I.; Brodov, Yu. M.; Brezgin, D. V.

    2015-12-01

    A system for designing water heaters of steam-turbine installations based on uniting standards, reference information, and some numerical procedures with design procedures via wide use of parameterization is considered. The developed design system is based on extensive application of modern information technologies.

  10. Increased insight in microbial processes in rapid sandfilters in drinking water treatment (DW BIOFILTERS)

    DEFF Research Database (Denmark)

    Albrechtsen, Hans-Jørgen; Gülay, Arda; Lee, Carson

    2012-01-01

    been established at Islevbro Water Works (operated by Copenhagen Energy) with material from the full-scale afterfilter. After validation that the pilot plant is mimicking the full scale filter, it will be used to investigate processes at larger scales such as backwashing procedures and effect...

  11. Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction.

    Science.gov (United States)

    Jackson, Robert B; Vengosh, Avner; Darrah, Thomas H; Warner, Nathaniel R; Down, Adrian; Poreda, Robert J; Osborn, Stephen G; Zhao, Kaiguang; Karr, Jonathan D

    2013-07-09

    Horizontal drilling and hydraulic fracturing are transforming energy production, but their potential environmental effects remain controversial. We analyzed 141 drinking water wells across the Appalachian Plateaus physiographic province of northeastern Pennsylvania, examining natural gas concentrations and isotopic signatures with proximity to shale gas wells. Methane was detected in 82% of drinking water samples, with average concentrations six times higher for homes wells (P = 0.0006). Ethane was 23 times higher in homes wells (P = 0.0013); propane was detected in 10 water wells, all within approximately 1 km distance (P = 0.01). Of three factors previously proposed to influence gas concentrations in shallow groundwater (distances to gas wells, valley bottoms, and the Appalachian Structural Front, a proxy for tectonic deformation), distance to gas wells was highly significant for methane concentrations (P = 0.007; multiple regression), whereas distances to valley bottoms and the Appalachian Structural Front were not significant (P = 0.27 and P = 0.11, respectively). Distance to gas wells was also the most significant factor for Pearson and Spearman correlation analyses (P wells was the only statistically significant factor (P wells have drinking water contaminated with stray gases.

  12. Coping with increasing water and land resources limitation for meeting world's food needs: the role of virtual water and virtual land trade

    Science.gov (United States)

    Soriano, Barbara; Garrido, Alberto; Novo, Paula

    2013-04-01

    Increasing pressure to expand agriculture production is giving rise to renewed interest to obtain access to land and water resources in the world. Water footprint evaluations show the importance of green water in global food trade and production. Green water and land are almost inseparable resources. In this work we analyse the role of foreign direct investment and cooperation programmes from developed countries in developing counties, focusing on virtual water trade and associated resources. We develop econometric models with the aim to explain observed trends in virtual water exports from developing countries as explained by the inverse flow of investments and cooperation programmes. We analyse the main 19 emerging food exporters, from Africa, Asia and America, using 15 years of data. Results show that land per capita availability and foreign direct investments explain observed flows of virtual water exports. However, there is no causality with these and flows cooperation investments. Our analysis sheds light on the underlying forces explaining the phenomenon of land grab, which is the appropriation of land access in developing countries by food-importers.

  13. Trout density and health in a stream with variable water temperatures and trace element concentrations: does a cold-water source attract trout to increased metal exposure?

    Science.gov (United States)

    Harper, D.D.; Farag, A.M.; Hogstr, C.; MacConnell, Elizabeth

    2009-01-01

    A history of hard-rock mining has resulted in elevated concentrations of heavy metals in Prickly Pear Creek (MT. USA). Remediation has improved water quality; however, dissolved zinc and cadmium concentrations still exceed U.S. Environmental Protection Agency water-quality criteria. Physical habitat, salmonid density, fish health, and water quality were assessed, and metal concentrations in fish tissues, biofilm, and macroinvertebrates were determined to evaluate the existing condition in the watershed. Cadmium, zinc, and lead concentrations in fish tissues, biofilm, and invertebrates were significantly greater than those at the upstream reference site and an experimental site farther downstream of the confluence. Fish densities were greatest, and habitat quality for trout was better, downstream of the confluence, where water temperatures were relatively cool (16??C). Measures of fish health (tissue metal residues, histology, metallothionein concentrations, and necropsies), however, indicate that the health of trout at this site was negatively affected. Trout were in colder but more contaminated water and were subjected to increased trace element exposures and associated health effects. Maximum water temperatures in Prickly Pear Creek were significantly lower directly below Spring Creek (16??C) compared to those at an experimental site 10 km downstream (26??C). Trout will avoid dissolved metals at concentrations below those measured in Prickly Pear Creek; however, our results suggest that the preference of trout to use cool water temperatures may supersede behaviors to avoid heavy metals. ?? 2009 SETAC.

  14. Scientific Opinion on the safety assessment of the active substances, sodium erythorbate, sodium carbonate, sodium bicarbonate, iron sulphate, activated carbon, cellulose, calcium hydroxide, calcium chloride and water, for use as active system in food contact materials

    OpenAIRE

    2014-01-01

    This scientific opinion of EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids deals with the safety assessment of the active substances sodium erythorbate, sodium carbonate, sodium bicarbonate, iron sulfate, activated carbon, cellulose, calcium hydroxide, calcium chloride and water, used in mixture which is packed into sachets for absorbing oxygen/carbon dioxide emitting from/into the headspace surrounding packed food. All substances of this formulation have been e...

  15. 18S Ribosomal DNA Typing and Tracking of Acanthamoeba Species Isolates from Corneal Scrape Specimens, Contact Lenses, Lens Cases, and Home Water Supplies of Acanthamoeba Keratitis Patients in Hong Kong

    OpenAIRE

    Booton, G. C.; Kelly, D J; Chu, Y.-W.; Seal, D. V.; Houang, E.; Lam, D S C; Byers, T. J.; Fuerst, P A

    2002-01-01

    We examined partial 18S ribosomal DNA (Rns) sequences of Acanthamoeba isolates cultured in a study of microbial keratitis in Hong Kong. Sequence differences were sufficient to distinguish closely related strains and were used to examine links between strains obtained from corneal scrape specimens, contact lenses, lens cases, lens case solutions, and home water-supply faucets of patients with Acanthamoeba. We also looked for evidence of mixed infections. Identification of Acanthamoeba Rns geno...

  16. Potential of Soil Amendments (Biochar and Gypsum in increasing Water Use Efficiency of Abelmoschus esculentus L. Moench

    Directory of Open Access Journals (Sweden)

    Aniqa eBatool

    2015-09-01

    Full Text Available Water being an essential component for plant growth and development, its scarcity poses serious threat to crops around the world. Climate changes and global warming are increasing the temperature of earth hence becoming an ultimate cause of water scarcity. It is need of the day to use potential soil amendments that could increase the plants’ resistance under such situations. Biochar and gypsum were used in the present study to improve the water use efficiency and growth of Abelmoschus esculentus L. Moench (Lady’s Finger. A six weeks experiment was conducted under greenhouse conditions. Stress treatments were applied after thirty days of sowing. Plant height, leaf area, photosynthesis, transpiration rate, stomatal conductance and water use efficiency were determined weekly under stressed (60% field capacity and non-stressed (100% field capacity conditions. Stomatal conductance and transpiration rate decreased and reached near to zero in stressed plants. Stressed plants also showed resistance to water stress upto five weeks and gradually perished at sixth week. On the other hand, water use efficiency improved in stressed plants containing biochar and gypsum as compared to untreated plants. Biochar alone is a better strategy to promote plant growth and WUE specifically of Abelmoschus esculentus, compared to its application in combination with gypsum.

  17. Water vapor increase in the northern hemispheric lower stratosphere by the Asian monsoon anticyclone observed during TACTS campaign in 2012

    Science.gov (United States)

    Rolf, Christian; Vogel, Bärbel; Hoor, Peter; Günther, Gebhard; Krämer, Martina; Müller, Rolf; Müller, Stephan; Riese, Martin

    2017-04-01

    Water vapor plays a key role in determining the radiative balance in the upper troposphere and lower stratosphere (UTLS) and thus the climate of the Earth (Forster and Shine, 2002; Riese et al., 2012). Therefore a detailed knowledge about transport pathways and exchange processes between troposphere and stratosphere is required to understand the variability of water vapor in this region. The Asian monsoon anticyclone caused by deep convection over and India and east Asia is able to transport air masses from the troposphere into the nothern extra-tropical stratosphere (Müller et al. 2016, Vogel et al. 2016). These air masses contain pollution but also higher amounts of water vapor. An increase in water vapor of about 0.5 ppmv in the extra-tropical stratosphere above a potential temperature of 380 K was detected between August and September 2012 by in-situ instrumentation above the European northern hemisphere during the HALO aircraft mission TACTS. Here, we investigated the origin of this water vapor increase with the help of the 3D Lagrangian chemistry transport model CLaMS (McKenna et al., 2002). We can assign an origin of the moist air masses in the Asian region (North and South India and East China) with the help of model origin tracers. Additionally, back trajectories of these air masses with enriched water vapor are used to differentiate between transport from the Asia monsoon anticyclone and the upwelling of moister air in the tropics particularly from the Pacific and Southeast Asia.

  18. Potential changes in bacterial metabolism associated with increased water temperature and nutrient inputs in tropical humic lagoons.

    Science.gov (United States)

    Scofield, Vinicius; Jacques, Saulo M S; Guimarães, Jean R D; Farjalla, Vinicius F

    2015-01-01

    Temperature and nutrient concentrations regulate aquatic bacterial metabolism. However, few studies have focused on the effect of the interaction between these factors on bacterial processes, and none have been performed in tropical aquatic ecosystems. We analyzed the main and interactive effects of changes in water temperature and N and P concentrations on bacterioplankton production (BP), bacterioplankton respiration (BR) and bacterial growth efficiency (BGE) in tropical coastal lagoons. We used a factorial design with three levels of water temperature (25, 30, and 35°C) and four levels of N and/or P additions (Control, N, P, and NP additions) in five tropical humic lagoons. When data for all lagoons were pooled together, a weak interaction was observed between the increase in water temperature and the addition of nutrients. Water temperature alone had the greatest impact on bacterial metabolism by increasing BR, decreasing BP, and decreasing BGE. An increase of 1°C lead to an increase of ~4% in BR, a decrease of ~0.9% in BP, and a decrease of ~4% in BGE. When data were analyzed separately, lagoons responded differently to nutrient additions depending on Dissolved Organic Carbon (DOC) concentration. Lagoons with lowest DOC concentrations showed the strongest responses to nutrient additions: BP increased in response to N, P, and their interaction, BR increased in response to N and the interaction between N and P, and BGE was negatively affected, mainly by the interaction between N and P additions. Lagoons with the highest DOC concentrations showed almost no significant relationship with nutrient additions. Taken together, these results show that different environmental drivers impact bacterial processes at different scales. Changes of bacterial metabolism related to the increase of water temperature are consistent between lagoons, therefore their consequences can be predicted at a regional scale, while the effect of nutrient inputs is specific to different

  19. Dynamic contact angle cycling homogenizes heterogeneous surfaces.

    Science.gov (United States)

    Belibel, R; Barbaud, C; Mora, L

    2016-12-01

    In order to reduce restenosis, the necessity to develop the appropriate coating material of metallic stent is a challenge for biomedicine and scientific research over the past decade. Therefore, biodegradable copolymers of poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) were prepared in order to develop a new coating exhibiting different custom groups in its side chain and being able to carry a drug. This material will be in direct contact with cells and blood. It consists of carboxylic acid and hexylic groups used for hydrophilic and hydrophobic character, respectively. The study of this material wettability and dynamic surface properties is of importance due to the influence of the chemistry and the potential motility of these chemical groups on cell adhesion and polymer kinetic hydrolysis. Cassie theory was used for the theoretical correction of contact angles of these chemical heterogeneous surfaces coatings. Dynamic Surface Analysis was used as practical homogenizer of chemical heterogeneous surfaces by cycling during many cycles in water. In this work, we confirmed that, unlike receding contact angle, advancing contact angle is influenced by the difference of only 10% of acidic groups (%A) in side-chain of polymers. It linearly decreases with increasing acidity percentage. Hysteresis (H) is also a sensitive parameter which is discussed in this paper. Finally, we conclude that cycling provides real information, thus avoiding theoretical Cassie correction. H(10)is the most sensible parameter to %A.

  20. Moderate wetting and drying increases rice yield and reduces water use, grain arsenic level, and methane emission

    Directory of Open Access Journals (Sweden)

    Jianchang Yang

    2017-04-01

    Full Text Available To meet the major challenge of increasing rice production to feed a growing population under increasing water scarcity, many water-saving regimes have been introduced in irrigated rice, such as an aerobic rice system, non-flooded mulching cultivation, and alternate wetting and drying (AWD. These regimes could substantially enhance water use efficiency (WUE by reducing irrigation water. However, such enhancements greatly compromise grain yield. Recent work has shown that moderate AWD, in which photosynthesis is not severely inhibited and plants can rehydrate overnight during the soil drying period, or plants are rewatered at a soil water potential of −10 to −15 kPa, or midday leaf potential is approximately −0.60 to −0.80 MPa, or the water table is maintained at 10 to 15 cm below the soil surface, could increase not only WUE but also grain yield. Increases in grain yield WUE under moderate AWD are due mainly to reduced redundant vegetative growth; improved canopy structure and root growth; elevated hormonal levels, in particular increases in abscisic acid levels during soil drying and cytokinin levels during rewatering; and enhanced carbon remobilization from vegetative tissues to grain. Moderate AWD could also improve rice quality, including reductions in grain arsenic accumulation, and reduce methane emissions from paddies. Adoption of moderate AWD with an appropriate nitrogen application rate may exert a synergistic effect on grain yield and result in higher WUE and nitrogen use efficiency. Further research is needed to understand root–soil interaction and evaluate the long-term effects of moderate AWD on sustainable agriculture.

  1. Modeling caspian sea water level oscilLations Under Diffrent Scenarioes of Increasing Atmospheric Carbon Dioxide Concentrations

    Directory of Open Access Journals (Sweden)

    GholamReza Roshan

    2012-12-01

    Full Text Available The rapid rise of Caspian Sea water level (about 2.25 meters since 1978 has caused much concern to all five surrounding countries, primarily because flooding has destroyed or damaged buildings and other engineering structures, roads, beaches and farm lands in thecoastal zone. Given that climate, and more specifically climate change, is a primary factor influencing oscillations in Caspian Sea water levels, the effect of different climate change scenarios on future Caspian Sea levels was stimulated. Variations in environmentalparameters such as temperature, precipitation, evaporation, tmospheric carbon dioxide and water level oscillations of the Caspian sea and surrounding regions, are considered for bothpast (1951-2006 and future (2025-2100 time frames. The output of the UKHADGEM general circulation model and five alternative scenarios including A1CAI, BIASF, BIMES WRE450 and WRE750 were extracted using the MAGICC SCENGEN Model software(version 5.3. The results suggest that the mean temperature of the Caspian Sea region (Bandar-E-Anzali monitoring site has increased by ca. 0.17ºC per decade under the impacts of atmospheric carbon dioxide changes (r=0.21. The Caspian Sea water level has increasedby ca. +36 mm per decade (r=0.82 between the years 1951-2006. Mean results from all modeled scenarios indicate that the temperature will increase by ca. 3.64ºC and precipitation will decrease by ca. 10% (182 mm over the Caspian Sea, whilst in the Volga river basin,temperatures are projected to increase by ca. 4.78ºC and precipitation increase by ca. 12% (58 mm by the year 2100. Finally, statistical modeling of the Caspian Sea water levels projectfuture water level increases of between 86 cm and 163 cm by the years 2075 and 2100, respectively.

  2. Calcium polycarbophil, a water absorbing polymer, increases bowel movement and prevents sennoside-induced diarrhea in dogs.

    Science.gov (United States)

    Saito, T; Yamada, T; Iwanaga, Y; Morikawa, K; Nagata, O; Kato, H; Mizumoto, A; Itoh, Z

    2000-07-01

    The effects of calcium polycarbophil (CP), a water-absorbing polymer, on bowel movement were examined in comparison with known laxatives and anti-diarrheal agents in dogs, a species that resembles humans for stool output. CP increased stool frequency, fecal water content and fecal weight in a dose-dependent manner, but did not induce diarrhea. Sennoside and carboxymethylcellulose sodium (CMC-Na) increased fecal water content and induced diarrhea at lower doses than that which enhanced stool frequency. Trimebutine decreased stool frequency, fecal weight and fecal water content, resulting in inhibition rather than stimulation of defecation. In sennoside-induced diarrhea, loperamide and CP improved stool consistency and this was accompanied by reduced fecal moisture and frequency of diarrhea. In contrast, CMC-Na aggravated stool consistency with increased fecal water content and frequency of diarrhea, and trimebutine had little noticeable effect apart from reducing fecal weight. Our results show that CP has both laxative and anti-diarrheal effects in dogs and differed from conventional laxatives and anti-diarrheal agents. CP may be a suitable agent for treatment of idiopathic constipation, secretory diarrhea and irritable bowel syndrome with alternating constipation and diarrhea and with either predominating in terms of less side effects such as diarrhea or constipation.

  3. Increased water deficit decreases Douglas fir growth throughout western US forests

    Science.gov (United States)

    Restaino, Christina M; Peterson, David L.; Littell, Jeremy

    2016-01-01

    Changes in tree growth rates can affect tree mortality and forest feedbacks to the global carbon cycle. As air temperature increases, evaporative demand also increases, increasing effective drought in forest ecosystems. Using a spatially comprehensive network of Douglas-fir (Pseudotsuga menziesii) chronologies from 122 locations that experience distinctly different climate in the western United States, we show that increased temperature decreases growth via vapor pressure deficit (VPD) across all latitudes. Under an ensemble of global circulation models, we project an increase in both the mean VPD associated with the lowest growth extremes and the probability of exceeding these VPD values. As temperature continues to increase in future decades, we can expect deficit-related stress to increase and consequently Douglas-fir growth to decrease throughout its US range.

  4. Increased water deficit decreases Douglas fir growth throughout western US forests.

    Science.gov (United States)

    Restaino, Christina M; Peterson, David L; Littell, Jeremy

    2016-08-23

    Changes in tree growth rates can affect tree mortality and forest feedbacks to the global carbon cycle. As air temperature increases, evaporative demand also increases, increasing effective drought in forest ecosystems. Using a spatially comprehensive network of Douglas fir (Pseudotsuga menziesii) chronologies from 122 locations that represent distinct climate environments in the western United States, we show that increased temperature decreases growth via vapor pressure deficit (VPD) across all latitudes. Using an ensemble of global circulation models, we project an increase in both the mean VPD associated with the lowest growth extremes and the probability of exceeding these VPD values. As temperature continues to increase in future decades, we can expect deficit-related stress to increase and consequently Douglas fir growth to decrease throughout its US range.

  5. WEXA: exergy analysis for increasing the efficiency of air/water heat pumps - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gasser, L.; Wellig, B.; Hilfiker, K.

    2008-04-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) presents the results of a study at the made by the Engineering and Architecture department at the Lucerne University of Applied Sciences and Arts. The subject of the WEXA study (Waermepumpen-Exergie-Analyse - heat pump exergy analysis) is the analysis of the operation of air/water heat-pumps using exergy analysis methods. The basic thermodynamics of heating systems using heat-pumps is discussed. The exergy analyses and exergy balances for the various components and processes of an air/water heat-pump are presented and discussed. Comparisons are presented for heat-pumps with on/off and continuous control systems for their compressors and fans. The paper is concluded with a collection of appendices on the subject.

  6. Increasing Crop Yields in Water Stressed Countries by Combining Operations of Freshwater Reservoir and Wastewater Reclamation Plant

    Science.gov (United States)

    Bhushan, R.; Ng, T. L.

    2015-12-01

    Freshwater resources around the world are increasing in scarcity due to population growth, industrialization and climate change. This is a serious concern for water stressed countries, including those in Asia and North Africa where future food production is expected to be negatively affected by this. To address this problem, we investigate the potential of combining freshwater reservoir and wastewater reclamation operations. Reservoir water is the cheaper source of irrigation, but is often limited and climate sensitive. Treated wastewater is a more reliable alternative for irrigation, but often requires extensive further treatment which can be expensive. We propose combining the operations of a reservoir and a wastewater reclamation plant (WWRP) to augment the supply from the reservoir with reclaimed water for increasing crop yields in water stressed regions. The joint system of reservoir and WWRP is modeled as a multi-objective optimization problem with the double objective of maximizing the crop yield and minimizing total cost, subject to constraints on reservoir storage, spill and release, and capacity of the WWRP. We use the crop growth model Aquacrop, supported by The Food and Agriculture Organization of the United Nations (FAO), to model crop growth in response to water use. Aquacrop considers the effects of water deficit on crop growth stages, and from there estimates crop yield. We generate results comparing total crop yield under irrigation with water from just the reservoir (which is limited and often interrupted), and yield with water from the joint system (which has the potential of higher supply and greater reliability). We will present results for locations in India and Africa to evaluate the potential of the joint operations for improving food security in those areas for different budgets.

  7. Ion Implanted Passivated Contacts for Interdigitated Back Contacted Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Young, David L.; Nemeth, William; LaSalvia, Vincenzo; Reedy, Robert; Bateman, Nicholas; Stradins, Pauls

    2015-06-14

    We describe work towards an interdigitated back contacted (IBC) solar cell utilizing ion implanted, passivated contacts. Formation of electron and hole passivated contacts to n-type CZ wafers using tunneling SiO2 and ion implanted amorphous silicon (a-Si) are described. P and B were ion implanted into intrinsic amorphous Si films at several doses and energies. A series of post-implant anneals showed that the passivation quality improved with increasing annealing temperatures up to 900 degrees C. The recombination parameter, Jo, as measured by a Sinton lifetime tester, was Jo ~ 14 fA/cm2 for Si:P, and Jo ~ 56 fA/cm2 for Si:B contacts. The contact resistivity for the passivated contacts, as measured by TLM patterns, was 14 milliohm-cm2 for the n-type contact and 0.6 milliohm-cm2 for the p-type contact. These Jo and pcontact values are encouraging for forming IBC cells using ion implantation to spatially define dopants.

  8. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Vision and Daily Eye Drops After One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume Contacts May Contain Chemicals ...

  9. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... use of colored contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses ...

  10. Increasing the oral bioavailability of poorly water-soluble carbamazepine using immediate-release pellets supported on SBA-15 mesoporous silica

    Directory of Open Access Journals (Sweden)

    Li G

    2012-11-01

    Full Text Available Zhouhua Wang,1,2 Bao Chen,1 Guilan Quan,1 Feng Li,1 Qiaoli Wu,1 Linghui Dian,1 Yixuan Dong,1 Ge Li,2 Chuanbin Wu1,21School of Pharmaceutical Sciences, 2Research and Development Center of Pharmaceutical Engineering, Sun Yat-sen University, Guangzhou, People’s Republic of ChinaBackground and methods: The aim of this study was to develop an immediate-release pellet formulation with improved drug dissolution and adsorption. Carbamazepine, a poorly water-soluble drug, was adsorbed into mesoporous silica (SBA-15-CBZ via a wetness impregnation method and then processed by extrusion/spheronization into pellets. Physicochemical characterization of the preparation was carried out by scanning electron microscopy, transmission electron microscopy, nitrogen adsorption, small-angle and wide-angle x-ray diffraction, and differential scanning calorimetry. Flowability and wettability of the drug-loaded silica powder were evaluated by bulk and tapped density and by the angle of repose and contact angle, respectively. The drug-loaded silica powder was formulated into pellets to improve flowability.Results: With maximum drug loading in SBA-15 matrices determined to be 20% wt, in vitro release studies demonstrated that the carbamazepine dissolution rate was notably improved from both the SBA-15 powder and the corresponding pellets as compared with the bulk drug. Correspondingly, the oral bioavailability of SBA-15-CBZ pellets was increased considerably by 1.57-fold in dogs (P < 0.05 compared with fast-release commercial carbamazepine tablets.Conclusion: Immediate-release carbamazepine pellets prepared from drug-loaded silica provide a feasible approach for development of a rapidly acting oral formulation for this poorly water-soluble drug and with better absorption.Keywords: ordered mesoporous silica, poorly water-soluble drug, carbamazepine, extrusion, spheronization, pellets, bioavailability

  11. Contact Graph Routing

    Science.gov (United States)

    Burleigh, Scott C.

    2011-01-01

    Contact Graph Routing (CGR) is a dynamic routing system that computes routes through a time-varying topology of scheduled communication contacts in a network based on the DTN (Delay-Tolerant Networking) architecture. It is designed to enable dynamic selection of data transmission routes in a space network based on DTN. This dynamic responsiveness in route computation should be significantly more effective and less expensive than static routing, increasing total data return while at the same time reducing mission operations cost and risk. The basic strategy of CGR is to take advantage of the fact that, since flight mission communication operations are planned in detail, the communication routes between any pair of bundle agents in a population of nodes that have all been informed of one another's plans can be inferred from those plans rather than discovered via dialogue (which is impractical over long one-way-light-time space links). Messages that convey this planning information are used to construct contact graphs (time-varying models of network connectivity) from which CGR automatically computes efficient routes for bundles. Automatic route selection increases the flexibility and resilience of the space network, simplifying cross-support and reducing mission management costs. Note that there are no routing tables in Contact Graph Routing. The best route for a bundle destined for a given node may routinely be different from the best route for a different bundle destined for the same node, depending on bundle priority, bundle expiration time, and changes in the current lengths of transmission queues for neighboring nodes; routes must be computed individually for each bundle, from the Bundle Protocol agent's current network connectivity model for the bundle s destination node (the contact graph). Clearly this places a premium on optimizing the implementation of the route computation algorithm. The scalability of CGR to very large networks remains a research topic

  12. Impact of Increasing Stratospheric Water Vapor on Ozone Depletion and Temperature Change

    Institute of Scientific and Technical Information of China (English)

    TIAN Wenshou; Martyn P. CHIPPERFIELD; L(U) Daren

    2009-01-01

    Using a detailed, fully coupled chemistry climate model (CCM), the effect of increasing stratospheric H2O on ozone and temperature is investigated. Different CCM time-slice runs have been performed to investigate the chemical and radiative impacts of an assumed 2 ppmv increase in H2O. The chemical effects of this H2O increase lead to an overall decrease of the total column ozone (TCO) by ~1% in the tropics and by a maximum of 12% at southern high latitudes. At northern high latitudes, the TCO is increased by only up to 5% due to stronger transport in the Arctic. A 2-ppmv H2O increase in the model's radiation scheme causes a cooling of the tropical stratosphere of no more than 2 K, but a cooling of more than 4 K at high latitudes. Consequently, the TCO is increased by about 2%-6%. Increasing stratospheric H2O, therefore, cools the stratosphere both directly and indirectly, except in the polar regions where the temperature responds differcntly due to feedbacks between ozone and H2O changes. The combined chemical and radiative effects of increasing H2O may give rise to more cooling in the tropics and middle latitudes but less cooling in the polar stratosphere. The combined effects of H2O increases on ozone tend to offset each other, except in the Arctic stratosphere where both the radiative and chemical impacts give rise to increased ozone. The chemical and radiative effects of increasing H2O cause dynamical responses in the stratosphere with an evident hemispheric asymmetry. In terms of ozone recovery, increasing the stratospheric H2O is likely to accelerate the recovery in the northern high latitudcs and delay it in the southern high latitudes. The modeled ozone recovery is more significant between 2000-2050 than between 2050-2100, driven mainly by the larger relative change in chlorine in the earlier period.

  13. Laser surface texturing of 316L stainless steel in air and water: A method for increasing hydrophilicity via direct creation of microstructures

    Science.gov (United States)

    Razi, Sepehr; Madanipour, Khosro; Mollabashi, Mahmoud

    2016-06-01

    Laser processing of materials in water contact is sometimes employed for improving the machining, cutting or welding quality. Here, we demonstrate surface patterning of stainless steel grade 316L by nano-second laser processing in air and water. Suitable adjustments of laser parameters offer a variety of surface patterns on the treated targets. Furthermore alterations of different surface features such as surface chemistry and wettability are investigated in various processing circumstances. More than surface morphology, remarkable differences are observed in the surface oxygen content and wettability of the samples treated in air and water at the same laser processing conditions. Mechanisms of the changes are discussed extensively.

  14. Nitric oxide increases tolerance responses to moderate water deficit in leaves of Phaseolus vulgaris and Vigna unguiculata bean species.

    Science.gov (United States)

    Zimmer-Prados, Lucas Martins; Moreira, Ana Sílvia Franco Pinheiro; Magalhaes, Jose Ronaldo; França, Marcel Giovanni Costa

    2014-07-01

    Drought stress is one of the most intensively studied and widespread constraints, and nitric oxide (NO) is a key signaling molecule involved in the mediation of abiotic stresses in plants. We demonstrated that a sprayed solution of NO from donor sodium nitroprusside increased drought stress tolerance responses in both sensitive (Phaseolus vulgaris) and tolerant (Vigna unguiculata) beans. In intact plants subjected to halting irrigation, NO increased the leaf relative water content and stomatal conductance in both species. After cutting leaf discs and washing them, NO induced increased electrolyte leakage, which was more evident in the tolerant species. These leaf discs were then subjected to different water deficits, simulating moderate and severe drought stress conditions through polyethylene glycol solutions. NO supplied at moderate drought stress revealed a reduced membrane injury index in sensitive species. In hydrated discs and at this level of water deficit, NO increased the electron transport rate in both species, and a reduction of these rates was observed at severe stress levels. Taken together, it can be shown that NO has an effective role in ameliorating drought stress effects, activating tolerance responses at moderate water deficit levels and in both bean species which present differential drought tolerance.

  15. Decreased toxicity of aluminium when the ionic strength increases in water; Blir aluminium mindre toksisk naar ionestyrken i vannet oeker?

    Energy Technology Data Exchange (ETDEWEB)

    Alstad, E.W. [Oslo Univ. (Norway)

    1996-01-01

    The conference paper evaluates the acute mortality of fish caused by the toxicity of aluminium in water. The evaluation is based on the polymerization hypothesis. According to the author, the level of toxicity decreases when the concentration and charge of ions increase. The paper presents the preliminary results from the executed experiment. 2 refs., 2 figs., 1 tab.

  16. Characterization of Time-Dependent Contact Angles for Oleic Acid Mixed Sands with Different Particle Size Fractions

    DEFF Research Database (Denmark)

    Wijewardana, Y. N. S.; Kawamoto, Ken; Komatsu, Toshiko

    2014-01-01

    ) mixed sands representing four different particle size fractions ranging from 0.105 to 0.84 mm. Initial soil-water contact angle (αi), and the time dependence of contact angle were measured by the sessile drop method. Results showed that the αi value for fine and middle sand fractions increased rapidly...

  17. Increased potency of an inactivated trivalent polio vaccine with oil-in-water emulsions.

    Science.gov (United States)

    Baldwin, Susan L; Fox, Christopher B; Pallansch, Mark A; Coler, Rhea N; Reed, Steven G; Friede, Martin

    2011-01-17

    The use of inactivated poliovirus vaccines (IPV) will be required to achieve, world-wide eradication of polio. The current expense of IPV is however prohibitive for, some countries, and therefore efforts to decrease the costs of the vaccine are a high, priority. Our results show that the addition of oil-in-water emulsion adjuvants to an, inactivated trivalent poliovirus vaccine are dose-sparing and are capable of enhancing, neutralizing antibody titers in the rat potency model. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Mediterranean irrigation under climate change: more efficient irrigation needed to compensate for increases in irrigation water requirements

    Science.gov (United States)

    Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W.

    2016-03-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. This study systematically assesses how climate change and increases in atmospheric CO2 concentrations may affect irrigation requirements in the Mediterranean region by 2080-2090. Future demographic change and technological improvements in irrigation systems are taken into account, as is the spread of climate forcing, warming levels and potential realization of the CO2-fertilization effect. Vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL (Lund-Potsdam-Jena managed Land) after an extensive development that comprised the improved representation of Mediterranean crops. At present the Mediterranean region could save 35 % of water by implementing more efficient irrigation and conveyance systems. Some countries such as Syria, Egypt and Turkey have a higher savings potential than others. Currently some crops, especially sugar cane and agricultural trees, consume on average more irrigation water per hectare than annual crops. Different crops show different magnitudes of changes in net irrigation requirements due to climate change, the increases being most pronounced in agricultural trees. The Mediterranean area as a whole may face an increase in gross irrigation requirements between 4 and 18 % from climate change alone if irrigation systems and conveyance are not improved (4 and 18 % with 2 °C global warming combined with the full CO2-fertilization effect and 5 °C global warming combined with no CO2-fertilization effect, respectively). Population growth increases these numbers to 22 and 74 %, respectively, affecting mainly the southern and eastern Mediterranean. However, improved irrigation technologies and conveyance systems have a large water saving potential, especially in the eastern Mediterranean, and may be able to

  19. More Yield with Less Water: Increasing Water Use Efficiency by Capitalizing on the Adaptation of Native Shrubs in the Sudano-Sahel

    Science.gov (United States)

    Bogie, Nathaniel; Bayala, Roger; Diedhiou, Ibrahima; Dick, Richard; Ghezzehei, Teamrat

    2016-04-01

    A changing climate along with human and animal population pressure can have a devastating effect on crop yields and food security in the Sudano-Sahel. Agricultural solutions to address soil degradation and crop water stress are needed to combat this increasingly difficult situation. Significant differences in crop success have been observed in peanut and millet grown in association with two native evergreen shrubs Piliostigma reticulatum, and Guiera senegalensis at the sites of Nioro du Rip and Keur Matar, respectively. We investigate how farmers can increase crop productivity by capitalizing on the evolutionary adaptation of native shrubs to the harsh Sudano-Sahelian environment as well as the physical mechanisms at work in the system that can lead to more robust yields. Research plots at Keur Matar Arame with no fertilizer added were monitored in 2013 using two soil moisture sensor networks at depths of 10, 20, 40, 60, 100, 200, and 300cm. Cropping season water use total calculated based on beginning and end of season soil moisture and seasonal precipitation data revealed that crop-only plot used 411±32 mm of water, and the crop and shrub plot used 439±42 mm of water. Taking into account the quantity of crop biomass produced and neglecting the shrub biomass produced, the crop and shrub plot had a water use efficiency of 1.60 kg ha-1 mm-1 and the crop only plot had 0.269 kg ha-1 mm-1. Water status was measured three times throughout the season on millet leaves and revealed no significant trends. Handheld NDVI readings revealed significantly higher NDVI values in crop and shrub plots at all measurement dates. These findings build on work that was completed in 2004 at the site, but further increases in crop yields have been shown. Increasing water use efficiency by over 500% can be a great advantage in years of limited water availability such as 2013. Using even the limited resources that farmers possess, this agroforestry technique can be expanded over wide

  20. [Occupational contact dermatitis in hairdressers].

    Science.gov (United States)

    Kieć-Swierczyńska, Marta; Krycisz, Beata; Chomiczewska, Dorota

    2009-01-01

    Numerous data from the medical literature show that working as a hairdresser is associated with the highest risk of occupational contact dermatitis. In Europe, hairdressers rank first of all occupation groups with the highest prevalence of occupational dermatitis. It is estimated that 10-20% and even 50% of hairdressers are affected with skin disorders. Skin problems occur soon after commencing hairdressing, in the first 2 years of work, sometimes during vocational training. The most common factors contributing to skin damage include water, shampoos, detergents, conditioners, hair dyes, bleaches, permanent wave solutions and components of gloves. Water and wet work are prime skin irritants - causal factors of irritant contact dermatitis while p-phenylenediamine, glyceryl monothioglycolate, ammonium persulfate and also fragrances, preservatives, disinfectants and metals are the most important allergens, which induce allergic contact dermatitis.

  1. Contact resistance at planar metal contacts on bilayer graphene and effects of molecular insertion layers

    Science.gov (United States)

    Nouchi, Ryo

    2017-03-01

    The possible origins of metal–bilayer graphene (BLG) contact resistance are investigated by taking into consideration the bandgap formed by interfacial charge transfer at the metal contacts. Our results show that a charge injection barrier (Schottky barrier) does not contribute to the contact resistance because the BLG under the contacts is always degenerately doped. We also showed that the contact-doping-induced increase in the density of states (DOS) of BLG under the metal contacts decreases the contact resistance owing to enhanced charge carrier tunnelling at the contacts. The contact doping can be enhanced by inserting molecular dopant layers into the metal contacts. However, carrier tunnelling through the insertion layer increases the contact resistance, and thus, alternative device structures should be employed. Finally, we showed that the inter-band transport by variable range hopping via in-gap states is the largest contributor to contact resistance when the carrier type of the gated channel is opposite to the contact doping carrier type. This indicates that the strategy of contact resistance reduction by the contact-doping-induced increase in the DOS is effective only for a single channel transport branch (n- or p-type) depending on the contact doping carrier type.

  2. Fabricating customized hydrogel contact lens

    Science.gov (United States)

    Childs, Andre; Li, Hao; Lewittes, Daniella M.; Dong, Biqin; Liu, Wenzhong; Shu, Xiao; Sun, Cheng; Zhang, Hao F.

    2016-10-01

    Contact lenses are increasingly used in laboratories for in vivo animal retinal imaging and pre-clinical studies. The lens shapes often need modification to optimally fit corneas of individual test subjects. However, the choices from commercially available contact lenses are rather limited. Here, we report a flexible method to fabricate customized hydrogel contact lenses. We showed that the fabricated hydrogel is highly transparent, with refractive indices ranging from 1.42 to 1.45 in the spectra range from 400 nm to 800 nm. The Young’s modulus (1.47 MPa) and hydrophobicity (with a sessile drop contact angle of 40.5°) have also been characterized experimentally. Retinal imaging using optical coherence tomography in rats wearing our customized contact lenses has the quality comparable to the control case without the contact lens. Our method could significantly reduce the cost and the lead time for fabricating soft contact lenses with customized shapes, and benefit the laboratorial-used contact lenses in pre-clinical studies.

  3. Increased water content in bacterial cellulose synthesized under rotating magnetic fields.

    Science.gov (United States)

    Fijałkowski, Karol; Żywicka, Anna; Drozd, Radosław; Junka, Adam Feliks; Peitler, Dorota; Kordas, Marian; Konopacki, Maciej; Szymczyk, Patrycja; Rakoczy, Rafał

    2017-01-01

    The current study describes properties of bacterial cellulose (BC) obtained from Komagataeibacter xylinus cultures exposed to the rotating magnetic field (RMF) of 50 Hz frequency and magnetic induction of 34 mT for controlled time during 6 days of cultivation. The experiments were carried out in the customized RMF exposure system adapted for biological studies. The obtained BC displayed an altered micro-structure, degree of porosity, and water-related parameters in comparison to the non-treated, control BC samples. The observed effects were correlated to the duration and the time of magnetic exposure during K. xylinus cultivation. The most preferred properties in terms of water-related properties were found for BC obtained in the setting, where RMF generator was switched off for the first 72 h of cultivation and switched on for the next 72 h. The described method of BC synthesis may be of special interest for the production of absorbent, antimicrobial-soaked dressings and carrier supports for the immobilization of microorganisms and proteins.

  4. Surface properties of dental polymers: measurements of contact angles, roughness and fluoride release

    Directory of Open Access Journals (Sweden)

    Fátima Namen

    2008-09-01

    Full Text Available OBJECTIVE: Earlier studies on some dental materials measured roughness and/or contact angles or fluoride release separately. In the present study, five dental polymers were investigated to ascertain their contact angles, wettability, roughness, and fluoride release in dry or wet conditions. METHODS: Samples for 5 materials were prepared and stored dry or wet in deionized water pH 6.8. Samples were submitted to finishing/polishing procedures, and the measurements in Goniometer, roughness (µm and fluoride analysis RESULTS AND CONCLUSIONS: Except for the Ariston pHc, all the materials displayed high contact angles when measured with water, showing hydrophobic characteristics. Roughness changed the contact angles, especially those of Ariston (α < 0.05. Fluoride did not modify the contact angles, but increased the roughness of the finished material.

  5. Increase of gastric area and weight gain in rats submitted to the ingestion of gasified water

    National Research Council Canada - National Science Library

    José Roberto Ferreira Santiago; Shoiti Kobayasi; José Mauro Granjeiro

    2004-01-01

    PURPOSE: Due to the progressive increasing in the use of gasified drinks and weight gain in the Brazilian population, in addition to the fact that carbonic gas is present in all soft drinks, an experimental...

  6. Steady and transient forced convection heat transfer for water flowing in small tubes with exponentially increasing heat inputs

    Science.gov (United States)

    Shibahara, M.; Fukuda, K.; Liu, Q. S.; Hata, K.

    2017-03-01

    Steady and transient heat transfer coefficients for water flowing in small tubes with exponentially increasing heat inputs were measured. Platinum tubes with inner diameters of 1.0 and 2.0 mm were used as test tubes, which were mounted vertically in the experimental water loop. In the experiment, the upward flow velocity ranged from 2 to 16 m/s, and the corresponding Reynolds numbers ranged from 4.77 × 103 to 9.16 × 104 at the inlet liquid temperatures ranged from 298 to 343 K. The heat generation rate exponentially increased with the function. The period of the heat generation rate ranged from 24 ms to 17.5 s. Experimental results indicate that steady heat transfer coefficients decreased with the increase in the inner diameter of the small tube. Moreover, the ratio of bulk viscosity to near-wall viscosity of water increased with the rise in surface temperature of the vertical tube. From the experimental data, correlations of steady-state heat transfer for inner diameters of 1.0 and 2.0 mm were obtained. The heat transfer coefficient increased with decreasing the period of the heat generation rate as the flow velocity decreased. Moreover, the Nusselt number under the transient condition was affected by the Fourier number and the Reynolds number.

  7. Steady and transient forced convection heat transfer for water flowing in small tubes with exponentially increasing heat inputs

    Science.gov (United States)

    Shibahara, M.; Fukuda, K.; Liu, Q. S.; Hata, K.

    2016-06-01

    Steady and transient heat transfer coefficients for water flowing in small tubes with exponentially increasing heat inputs were measured. Platinum tubes with inner diameters of 1.0 and 2.0 mm were used as test tubes, which were mounted vertically in the experimental water loop. In the experiment, the upward flow velocity ranged from 2 to 16 m/s, and the corresponding Reynolds numbers ranged from 4.77 × 103 to 9.16 × 104 at the inlet liquid temperatures ranged from 298 to 343 K. The heat generation rate exponentially increased with the function. The period of the heat generation rate ranged from 24 ms to 17.5 s. Experimental results indicate that steady heat transfer coefficients decreased with the increase in the inner diameter of the small tube. Moreover, the ratio of bulk viscosity to near-wall viscosity of water increased with the rise in surface temperature of the vertical tube. From the experimental data, correlations of steady-state heat transfer for inner diameters of 1.0 and 2.0 mm were obtained. The heat transfer coefficient increased with decreasing the period of the heat generation rate as the flow velocity decreased. Moreover, the Nusselt number under the transient condition was affected by the Fourier number and the Reynolds number.

  8. Surface modification of ultra thin PES-zeolite using thermal annealing to increase flux and rejection of produced water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kusworo, T. D., E-mail: tdkusworo@che.undip.ac.id; Widayat,; Pradini, A. W.; Armeli, Y. P. [Department of Chemical Engineering, University of Diponegoro Prof. Soedarto, Tembalang, Semarang, 50239, Phone/Fax : (024) 7460058 (Indonesia)

    2015-12-29

    Membrane technology is an alternative of water treatment based on filtration that is being developed. Surface Modification using heat treatment has been investigated to improve the performance of ultra thin PES-Zeolite nanocomposite membrane for produced water treatment from Pertamina Balongan. Two types of membranes with surface modification and without modification were prepared to study the effect of surface modification on its permeation properties. Asymmetric ultra thin PES-Zeolite nanocomposite membrane for produced water treatment was casted using the dry/wet phase inversion technique from dope solutions containing polyethersulfone, N-methyl-2-pyrrolidone (NMP) as a solvent and zeolite as a filler. Experimental results showed that the heat treatment at near glass transition temperature was increase the rejection of COD, Turbidity and ion Ca{sup 2+}. The better adherence of zeolite particles in the polymer matrix combined with formation of charge transfer complexes (CTCs) and cross-linking might be the main factors to enhance the percent of rejection. Field emission scanning electron microscopy (FESEM) micrographs showed that the selective layer and the substructure of PES-zeolite membrane became denser and more compact after the heat treatment. The FESEM micrographs also showed that the heat treatment was increased the adherence of zeolite particle and polymer. Membranes treated at 180 °C for 15 seconds indicated increase the rejection and small decrease in flux for produced water treatment.

  9. Increasing gas output by an active water-pressure regime interaction in a massive deposit at the Korobsk field

    Energy Technology Data Exchange (ETDEWEB)

    Trubaev, V.L.; Shandrygin, A.N.

    1983-02-01

    Controlled water flooding and pressurization were used to increase the gas output at the Korobsk field (USSR). The mechanics of gas accumulation under flooding conditions depend on the macroheterogeneity of the collector; optimizing the gas output involves selective flooding and pressurizing the water to prevent gas pocket formation in the zones bypassed by the flooded front. Strata mapping of the Korobsk field, combined with theoretical and laboratory studies of the geological characteristics of the deposit, has made it possible to estimate the location and distribution of the various types of residual gas pockets.

  10. Facile manipulation of receding contact angles of a substrate by roughening and fluorination

    Science.gov (United States)

    Li, Yueh-Feng; Wu, Cyuan-Jhang; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2015-11-01

    Contact angle hysteresis plays a paramount role in anti-smudge surfaces. In this study, surface roughness is systematically altered on some polymeric substrates such as polystyrene and poly(methyl methacrylate) by roughening and its effect on contact angle hysteresis is investigated via measuring advancing and receding contact angles of water. The wettability on these substrates is also modified by vapor-phase deposition of perfluorooctyltrichlorosilane, while the surface morphology is kept the same. As surface roughness is increased, the advancing contact angle grows but three types of the receding contact angle (θr) behavior have been identified: (i) monotonic reduction of θr, (ii) monotonic enhancement of θr, and (iii) presence of a minimum of θr. A plausible mechanism based on the stability of air pockets is proposed to explain our experimental findings. The manipulation of receding contact angles can be achieved based on our findings.

  11. Increased insight in microbial processes in rapid sandfilters in drinking water treatment (DW BIOFILTERS)

    DEFF Research Database (Denmark)

    Albrechtsen, Hans-Jørgen; Gülay, Arda; Lee, Carson

    2012-01-01

    . The sustainability and climate friendliness are evaluated by life cycle assessment (LCA). Molecular methods based on qPCR are being developed and implemented to quantify bacteria in different functional groups, such as those responsible for nitrification. This allows for development of diagnostic tools to detect......The aim of this research project is to improve our knowledge on biological rapid sand filters as they are present in thousands groundwater based water works. This includes molecular investigations of the microorganisms responsible for the individual processes (e.g. nitrification); and detailed...... monitoring and experiments in the filters and laboratory to provide insight in the process mechanisms, kinetics and effect of environmental factors. Management of the filters (e.g. backwashing, flow rate, carrier type) will be investigated at pilot and full scale, supported by mathematical models...

  12. Increasing a Community's Knowledge about Drought, Watershed Ecosystems, and Water Quality Through Educational Activities Added to Coastal Cleanup Day Events

    Science.gov (United States)

    Brinker, R.; Allen, L.; Cole, P.; Rho, C.

    2016-12-01

    International Coastal Cleanup Day, held each September, is an effective campaign to bring volunteers together to clean trash from beaches and waterways and document results. Over 500,000 participants cleared over 9 million pounds of trash in 2015. To build on the enthusiasm for this event, the city of Livermore, California's Water Resource Department, the Livermore Valley Joint Unified School District, Livermore Area Recreation and Parks Department created a water education program to embed within the city's Coastal Cleanup Day events. Goals of the education program are to increase awareness of the local watershed and its geographic reach, impacts of climate change and drought on local water supplies, pollution sources and impacts of local pollution on the ocean, positive impacts of a recent plastic bag ban, water quality assessment, and action steps citizens can take to support a healthy watershed. Volunteers collect and test water samples (when water is in the creek) using modified GLOBE and World Water Monitoring Day protocols. Test results are uploaded to the World Water Monitoring Day site and documented on the program web site. Volunteers report that they did not know about watersheds, impacts of local pollution, and water quality components before the education program. Volunteers are encouraged to adopt a creek spot for one year, and continue to collect and document trash. High school and middle school science classes added the water quality testing into curriculum, and regularly visit creek sites to clean the spots and monitor habitats. Each year for the past five years, about 300 volunteers have worked on creek clean-up events, 20 have adopted creek sites, and collected over 4,000 gallons of trash annually. As a result of these efforts, sites have been downgraded from a trash hot spot of concern. Strategies will be shared to expand an established (or start a new) Coastal Cleanup Day event into a successful watershed and climate awareness citizen science

  13. Design of high-pressure direct contact heater for promising power supply units: Experimental substantiation

    Science.gov (United States)

    Somova, E. V.; Shvarts, A. L.; Turkin, A. V.

    2016-11-01

    The results of experimental studies of superheated steam condensation on feed water jets in a highpressure, direct-contact heat exchanger are presented. Direct contact feed water heater (DCFWH) can be used in a dual-flow diagram of a steam-power unit with ultrasupercritical steam parameters (35 MPa, 700/720°C). The direct contact feed water heater is included in the flow diagram of the II circuit in a promising power unit; it provides feed water heating to 340°C in all maintenance and emergency operation modes of the unit. The reliability of the high-pressure direct contact heater operation in this flow diagram is of major importance in relation to the danger of lead solidification in the tube space of the steam generator. Technical requirements to the design of the high-pressure direct contact heater for increasing the heat exchange efficiency are formulated based on the results of earlier studies with steam-water mixture as the heating medium. The results of studies of superheated steam condensation on jets presented in this study testify that feed water is additionally heated to the required temperature at the output of the installation. The influence of initial feed water parameters (outflow velocity and temperature) on the jet heating length is elucidated. The numerical approximation of the experimental data for determination of the jet heating length in the nominal and partial power unit loads is obtained. The results of the calculations are used to simplify the design of the water-supplying element for the direct contact feed water heater. The proposed design of direct contact feed water heater is characterized by simplicity and low metal intensity, which provides the installation reliability at the considered pressure level due to the minimum number of structural elements.

  14. Detecting changes in rainfall pattern and seasonality index vis-à-vis increasing water scarcity in Maharashtra

    Indian Academy of Sciences (India)

    Pulak Guhathakurta; Elizabeth Saji

    2013-06-01

    Knowledge of mean rainfall and its variability of smaller spatial scale are important for the planners in various sectors including water and agriculture. In the present work, long rainfall data series (1901–2006) of districts of Maharashtra in monthly and seasonal scales are constructed and then mean rainfall and coefficient of variability are analyzed to get the spatial pattern and variability. Significant long term changes in monthly rainfall in the district scale are identified by trend analysis of rainfall time series. The seasonality index which is the measure of distribution of precipitation throughout the seasonal cycle is used to classify the different rainfall regime. Also long term changes of the seasonality index are identified by the trend analysis. The state Maharashtra which is to the northwest of peninsular India is highly influenced by the southwest monsoon and the state is facing water scarcity almost every year. This study will help to find out possible reason for the increasing water scarcity in Maharashtra.

  15. Reliability growth of thin film resistors contact

    Directory of Open Access Journals (Sweden)

    Lugin A. N.

    2010-10-01

    Full Text Available Necessity of resistive layer growth under the contact and in the contact zone of resistive element is shown in order to reduce peak values of current flow and power dissipation in the contact of thin film resistor, thereby to increase the resistor stability to parametric and catastrophic failures.

  16. Impact of Increased Corn Production on Ground Water Quality and Human Health

    Science.gov (United States)

    In this study, we use a complex coupled modeling system to assess the impacts of increased corn production on groundwater. In particular, we show how the models provide new information on the drivers of contamination in groundwater, and then relate pollutant concentration change...

  17. Residue management increases fallow water conservation and yield deficit irrigated crops grown in rotation with wheat

    Science.gov (United States)

    No-tillage (NT) residue management provides cover to increase precipitation capture compared with disk tillage (DT) or in the absence of a cover crop. Therefore, NT has the potential to reduce irrigation withdrawals from the declining Ogallala Aquifer. In a 4-year study, we quantified DT and NT effe...

  18. Study on computation of optimal depth increase of embossed panels of stainless water tank for energy storage system

    Directory of Open Access Journals (Sweden)

    Dae-Hung Kang

    2016-07-01

    Full Text Available The objective of this study was to compute the optimal depth increase of the embossed panels of a stainless water tank used for an energy storage system. The pressing used to emboss the panels of the stainless water tank decreases their thickness. By assuming that the panels had the same volume before ( V o and after the change ( V c , we found an equation that computed how much the thickness of the panels decreased. According to the obtained thickness equation, the thickness of arch-embossed panels decreased by 50% relative to flat panels, and that of pyramid-embossed panels decreased by up to 30%. We also performed finite element method analyses of four flat panels, four arch-embossed panels, and four pyramid-embossed panels by applying the thickness equation for different depth increase. As a result, the optimal depth increase of the arch-embossed panels was 70–90 mm, and that of the pyramid-embossed panels was 150–200 mm. We concluded that these computed optimal depth increase could be useful in the economic design of a stainless water tank for an energy storage system.

  19. Contact Dermatitis in Pediatrics.

    Science.gov (United States)

    Pelletier, Janice L; Perez, Caroline; Jacob, Sharon E

    2016-08-01

    Contact dermatitis is an umbrella term that describes the skin's reaction to contacted noxious or allergenic substances. The two main categories of contact dermatitis are irritant type and allergic type. This review discusses the signs, symptoms, causes, and complications of contact dermatitis. It addresses the testing, treatment, and prevention of contact dermatitis. Proper management of contact dermatitis includes avoidance measures for susceptible children. Implementation of a nickel directive (regulating the use of nickel in jewelry and other products that come into contact with the skin) could further reduce exposure to the most common allergens in the pediatric population. [Pediatr Ann. 2016;45(8):e287-e292.].