WorldWideScience

Sample records for increased oxygen transport

  1. Carbogen inhalation increases oxygen transport to hypoperfused brain tissue in patients with occlusive carotid artery disease: increased oxygen transport to hypoperfused brain

    DEFF Research Database (Denmark)

    Ashkanian, Mahmoud; Gjedde, Albert; Mouridsen, Kim

    2009-01-01

    to inhaled oxygen (the mixture known as carbogen). In the present study, we measured CBF by positron emission tomography (PET) during inhalation of test gases (O(2), carbogen, and atmospheric air) in healthy volunteers (n = 10) and in patients with occlusive carotid artery disease (n = 6). Statistical...... and Sa(O2) are readily obtained with carbogen, while oxygen increases only Sa(O2). Thus, carbogen improves oxygen transport to brain tissue more efficiently than oxygen alone. Further studies with more subjects are, however, needed to investigate the applicability of carbogen for long-term inhalation...

  2. Oxygen transport membrane

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof.......The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof....

  3. Artificial oxygen transport protein

    Science.gov (United States)

    Dutton, P. Leslie

    2014-09-30

    This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.

  4. Oxygen transport by oxygen potential gradient in dense ceramic oxide membranes

    Energy Technology Data Exchange (ETDEWEB)

    Maiya, P.S.; Balachandran, U.; Dusek, J.T.; Mieville, R.L. [Argonne National Lab., IL (United States). Energy Technology Div.; Kleefisch, M.S.; Udovich, C.A. [Amoco Exploration/Production, Naperville, IL (United States)

    1996-05-01

    Numerous studies have been conducted in recent years on the partial oxidation of methane to synthesis gas (syngas: CO + H{sub 2}) with air as the oxidant. In partial oxidation, a mixed-oxide ceramic membrane selectively transports oxygen from the air; this transport is driven by the oxygen potential gradient. Of the several ceramic materials the authors have tested, a mixed oxide based on the Sr-Fe-Co-O system has been found to be very attractive. Extensive oxygen permeability data have been obtained for this material in methane conversion experiments carried out in a reactor. The data have been analyzed by a transport equation based on the phenomenological theory of diffusion under oxygen potential gradients. Thermodynamic calculations were used to estimate the driving force for the transport of oxygen ions. The results show that the transport equation deduced from the literature describes the permeability data reasonably well and can be used to determine the diffusion coefficients and the associated activation energy of oxygen ions in the ceramic membrane material.

  5. Intramyocardial oxygen transport by quantitative diffuse reflectance spectroscopy in calves

    Science.gov (United States)

    Lindbergh, Tobias; Larsson, Marcus; Szabó, Zoltán; Casimir-Ahn, Henrik; Strömberg, Tomas

    2010-03-01

    Intramyocardial oxygen transport was assessed during open-chest surgery in calves by diffuse reflectance spectroscopy using a small intramuscular fiber-optic probe. The sum of hemo- and myoglobin tissue fraction and oxygen saturation, the tissue fraction and oxidation of cytochrome aa3, and the tissue fraction of methemoglobin were estimated using a calibrated empirical light transport model. Increasing the oxygen content in the inhaled gas, 21%-50%-100%, in five calves (group A) gave an increasing oxygen saturation of 19+/-4%, 24+/-5%, and 28+/-8% (panimals increased with LVAD pump speed (p<0.001, ANOVA) and with oxygen content in inhaled gas (p<0.001, ANOVA). The cytochrome aa3 oxidation level was above 96% in both group A and group B calves, including the two cases involving cardiac arrest. In conclusion, the estimated tissue fractions and oxygenation/oxidation levels of the myocardial chromophores during respiratory and hemodynamic provocations were in agreement with previously presented results, demonstrating the potential of the method.

  6. Effects of whole-body gamma irradiation on oxygen transport by rat erythrocytes

    International Nuclear Information System (INIS)

    Thiriot, Christian; Kergonou, J.F.; Rocquet, Guy; Allary, Michel; Saint-Blancard, Jacques

    1982-01-01

    In this work, we studied the influence of whole-body gamma irradiation (8 Gy) upon oxygen transport by erythrocytes, through the erythrocyte count and related parameters, and through the factors affecting the oxygen affinity of hemoglobin. The oxygen affinity of hemoglobin is increased from day D + 5 after irradiation, and a severe erythropenia develops from day D + 8. These modifications probably result in tissue hypoxia via diminished oxygen transport from lungs to tissues, and decreased oxygen release from oxyhemoglobin in tissues

  7. Does recombinant human Epo increase exercise capacity by means other than augmenting oxygen transport?

    DEFF Research Database (Denmark)

    Lundby, C; Robach, P; Boushel, R

    2008-01-01

    This study was performed to test the hypothesis that administration of recombinant human erythropoietin (rHuEpo) in humans increases maximal oxygen consumption by augmenting the maximal oxygen carrying capacity of blood. Systemic and leg oxygen delivery and oxygen uptake were studied during...... before rHuEpo treatment). Blood buffer capacity remained unaffected by rHuEpo treatment and hemodilution. The augmented hematocrit did not compromise peak cardiac output. In summary, in healthy humans, rHuEpo increases maximal oxygen consumption due to augmented systemic and muscular peak oxygen delivery....

  8. Efficiency increase of complex production and transport systems management

    Directory of Open Access Journals (Sweden)

    Kornilov S.

    2017-01-01

    Full Text Available This article deals with the problem of the reduced efficiency of management in complex production - transport systems due to the lack of co-ordination in the operation of industrial enterprises and transport carrying out their maintenance. The existing transport service schedules for auxiliary departments do not take into account possible changes in operating conditions, the probability of malfunctions and the amount of reserves, which leads to an increase in general production costs. To solve this problem, we propose to use the interval regulation of production and transport processes in all departments of the complex production and transport systems. Also, such regulation involves the determination of traffic service priority. This will allow passing on from the regulated control of production and transport processes to the situational one, adapted to specific conditions, and reducing losses from untimely transport servicing, which will lead to a stores reduction and efficiency increase of the enterprise circulating facilities use. Testing the effectiveness of interval regulation was performed on the system and dynamics simulation model of liquid iron transportation in the oxygen converter shop of the metallurgical enterprise. It was established that the use of interval regulation processes in iron production and its transportation will allow decreasing non-productive downtime by 21% and the amount of the liquid iron in anticipation of recasting in the oxygen converter shop – by 33%. Economical effect of reducing the liquid iron downtime during transportation to the oxygen converter shop will be about 30 million rubles per year.

  9. Ceramic oxygen transport membrane array reactor and reforming method

    Science.gov (United States)

    Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles; Wilson, Jamie R; Gonzalez, Javier E.; Doraswami, Uttam R.

    2017-10-03

    The invention relates to a commercially viable modular ceramic oxygen transport membrane system for utilizing heat generated in reactively-driven oxygen transport membrane tubes to generate steam, heat process fluid and/or provide energy to carry out endothermic chemical reactions. The system provides for improved thermal coupling of oxygen transport membrane tubes to steam generation tubes or process heater tubes or reactor tubes for efficient and effective radiant heat transfer.

  10. A theoretical model for oxygen transport in skeletal muscle under conditions of high oxygen demand.

    Science.gov (United States)

    McGuire, B J; Secomb, T W

    2001-11-01

    Oxygen transport from capillaries to exercising skeletal muscle is studied by use of a Krogh-type cylinder model. The goal is to predict oxygen consumption under conditions of high demand, on the basis of a consideration of transport processes occurring at the microvascular level. Effects of the decline in oxygen content of blood flowing along capillaries, intravascular resistance to oxygen diffusion, and myoglobin-facilitated diffusion are included. Parameter values are based on human skeletal muscle. The dependence of oxygen consumption on oxygen demand, perfusion, and capillary density are examined. When demand is moderate, the tissue is well oxygenated and consumption is slightly less than demand. When demand is high, capillary oxygen content declines rapidly with axial distance and radial oxygen transport is limited by diffusion resistance within the capillary and the tissue. Under these conditions, much of the tissue is hypoxic, consumption is substantially less than demand, and consumption is strongly dependent on capillary density. Predicted consumption rates are comparable with experimentally observed maximal rates of oxygen consumption.

  11. Ceramic oxygen transport membrane array reactor and reforming method

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles; Wilson, Jamie R.; Gonzalez, Javier E.; Doraswami, Uttam R.

    2016-11-08

    The invention relates to a commercially viable modular ceramic oxygen transport membrane reforming reactor configured using repeating assemblies of oxygen transport membrane tubes and catalytic reforming reactors.

  12. Oxygen Transport Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the

  13. Numerical simulation of ion transport membrane reactors: Oxygen permeation and transport and fuel conversion

    KAUST Repository

    Hong, Jongsup

    2012-07-01

    Ion transport membrane (ITM) based reactors have been suggested as a novel technology for several applications including fuel reforming and oxy-fuel combustion, which integrates air separation and fuel conversion while reducing complexity and the associated energy penalty. To utilize this technology more effectively, it is necessary to develop a better understanding of the fundamental processes of oxygen transport and fuel conversion in the immediate vicinity of the membrane. In this paper, a numerical model that spatially resolves the gas flow, transport and reactions is presented. The model incorporates detailed gas phase chemistry and transport. The model is used to express the oxygen permeation flux in terms of the oxygen concentrations at the membrane surface given data on the bulk concentration, which is necessary for cases when mass transfer limitations on the permeate side are important and for reactive flow modeling. The simulation results show the dependence of oxygen transport and fuel conversion on the geometry and flow parameters including the membrane temperature, feed and sweep gas flow, oxygen concentration in the feed and fuel concentration in the sweep gas. © 2012 Elsevier B.V.

  14. The influence of systemic hemodynamics and oxygen transport on cerebral oxygen saturation in neonates after the Norwood procedure.

    Science.gov (United States)

    Li, Jia; Zhang, Gencheng; Holtby, Helen; Guerguerian, Anne-Marie; Cai, Sally; Humpl, Tilman; Caldarone, Christopher A; Redington, Andrew N; Van Arsdell, Glen S

    2008-01-01

    Ischemic brain injury is an important morbidity in neonates after the Norwood procedure. Its relationship to systemic hemodynamic oxygen transport is poorly understood. Sixteen neonates undergoing the Norwood procedure were studied. Continuous cerebral oxygen saturation was measured by near-infrared spectroscopy. Continuous oxygen consumption was measured by respiratory mass spectrometry. Pulmonary and systemic blood flow, systemic vascular resistance, oxygen delivery, and oxygen extraction ratio were derived with measurements of arterial, and superior vena cava and pulmonary venous gases and pressures at 2- to 4-hour intervals during the first 72 hours in the intensive care unit. Mean cerebral oxygen saturation was 66% +/- 12% before the operation, reduced to 51% +/- 13% on arrival in the intensive care unit, and remained low during the first 8 hours; it increased to 56% +/- 9% at 72 hours, still significantly lower than the preoperative level (P blood flow and oxygen delivery (P blood flow (P = .001) and hemoglobin (P = .02) and negatively correlated with systemic vascular resistance (P = .003). It was not correlated with oxygen consumption (P > .05). Cerebral oxygen saturation decreased significantly in neonates during the early postoperative period after the Norwood procedure and was significantly influenced by systemic hemodynamic and metabolic events. As such, hemodynamic interventions to modify systemic oxygen transport may provide further opportunities to reduce the risk of cerebral ischemia and improve neurodevelopmental outcomes.

  15. Effect of hemodialysis on factors influencing oxygen transport.

    Science.gov (United States)

    Hirszel, P; Maher, J F; Tempel, G E; Mengel, C E

    1975-06-01

    Ten patients underwent 4 study hemodialyses, one with standard dialysis conditions, one with an isophosphate dialysate, one with simultaneous ammonium chloride loading, and other, after pretreatment, with sodium bicarbonate. Measurement of hemoglobin oxygen affinity (P-50), erythrocyte 2,3-DPG, blood-gasses, and serum chemistries revealed biochemically effective hemodialyses and slight changes in oxygen transport parameters. The P-50 (in vivo) values decreased slightly but significantly (p greater than 0.05) with dialysis. When corrected to pH 7.4, eliminating the Bohr effect, P-50 increased (p greater than 0.05). With unmodified dialysis elevated values of 2,3-DPG (in comparison to normal) decreased, a change that did not correlate with delta-p-50, delta-serum phosphate, or delta-serum creatinine. With standard and isophosphate dialyses Po-2 decreased significantly. The decrease correlated with delta-hydrogen ion concentration and did not occur with dialyses designed to maintain pH constant. Thus, hemodialysis influences many factors that affect oxygen transport in different and counterbalancing directions. These changes are not totally explained by alterations in 2,3-DPG, pH or serum phosphate. Maintenance of acidosis or hyperphosphatemia during dialysis is not recommended.

  16. Relationship Between Cerebral Oxygenation and Hemodynamic and Oxygen Transport Parameters in Surgery for Acquired Heart Diseases

    Directory of Open Access Journals (Sweden)

    A. I. Lenkin

    2012-01-01

    Full Text Available Objective: to evaluate the relationship between cerebral oxygenation and hemodynamic and oxygen transport parameters in surgical correction of concomitant acquired heart diseases. Subjects and methods. Informed consent was received from 40 patients who required surgery because of concomitant (two or more acquired heart defects. During procedure, perioperative monitoring of oxygen transport and cerebral oxygenation was performed with the aid of PiCCO2 monitor (Pulsion Medical Systems, Germany and a Fore-Sight cerebral oximeter (CASMED, USA. Anesthesia was maintained with propofol and fen-tanyl, by monitoring the depth of anesthesia. Early postoperative intensive therapy was based on the protocol for early targeted correction of hemodynamic disorders. Oxygen transport and cerebral oxygenation parameters were estimated intraopera-tively and within 24 postoperative hours. A statistical analysis including evaluation of Spearman correlations was performed with the aid of SPSS 15.0. Results. During perfusion, there was a relationship between cerebral oximetry values and hemat-ocrit levels, and oxygen partial pressure in the venous blood. Furthermore, a negative correlation between cerebral oximetry values and blood lactate levels was found 30 minutes after initiation of extracorporeal circulation (EC. During the study, there was a positive correlation between cerebral oxygenation and values of cardiac index, central venous saturation, and oxygen delivery index. There was a negative relationship between cerebral oxygenation and extravascular lung water at the beginning of surgery and a correlation between cerebral oximetry values and oxygenation index by the end of the first 24 postoperative hours. Conclusion. The cerebral oxygenation values correlate -with the main determinants of oxygen transport during EC and after cardiac surgical procedures. Cerebral oximetry may be used in early targeted therapy for the surgical correction of acquired combined

  17. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  18. Thermophysical properties and oxygen transport in (Thx,Pu1-x)O2.

    Science.gov (United States)

    Galvin, C O T; Cooper, M W D; Rushton, M J D; Grimes, R W

    2016-10-31

    Using Molecular Dynamics, this paper investigates the thermophysical properties and oxygen transport of (Th x ,Pu 1-x )O 2 (0 ≤ x ≤ 1) between 300-3500 K. In particular, the superionic transition is investigated and viewed via the thermal dependence of lattice parameter, linear thermal expansion coefficient, enthalpy and specific heat at constant pressure. Oxygen diffusivity and activation enthalpy are also investigated. Below the superionic temperature an increase of oxygen diffusivity for certain compositions of (Th x ,Pu 1-x )O 2 compared to the pure end members is predicted. Oxygen defect formation enthalpies are also examined, as they underpin the superionic transition temperature and the increase in oxygen diffusivity. The increase in oxygen diffusivity for (Th x ,Pu 1-x )O 2 is explained in terms of lower oxygen defect formation enthalpies for (Th x ,Pu 1-x )O 2 than PuO 2 and ThO 2 , while links are drawn between the superionic transition temperature and oxygen Frenkel disorder.

  19. Coolant Chemistry Control: Oxygen Mass Transport in Lead Bismuth Eutectic

    International Nuclear Information System (INIS)

    Weisenburger, A.; Mueller, G.; Bruzzese, C.; Glass, A.

    2015-01-01

    In lead-bismuth cooled transmutation systems, oxygen, dissolved in the coolant at defined quantities, is required for stable long-term operation by assuring the formation of protective oxide scales on structural steel surfaces. Extracted oxygen must be permanently delivered to the system and distributed in the entire core. Therefore, coolant chemistry control involves detailed knowledge on oxygen mass transport. Beside the different flow regimes a core might have stagnant areas at which oxygen delivery can only be realised by diffusion. The difference between oxygen transport in flow paths and in stagnant zones is one of the targets of such experiments. To investigate oxygen mass transport in flowing and stagnant conditions, a dedicated facility was designed based on computational fluid dynamics (CFD). CFD also was applied to define the position of oxygen sensors and ultrasonic Doppler velocimetry transducers for flow measurements. This contribution will present the test facility, design relevant CFD calculations and results of first tests performed. (authors)

  20. A computational study of the effect of capillary network anastomoses and tortuosity on oxygen transport.

    Science.gov (United States)

    Goldman, D; Popel, A S

    2000-09-21

    The objective of this study was to investigate the effects of capillary network anastomoses and tortuosity on oxygen transport in skeletal muscle, as well as the importance of muscle fibers in determining the arrangement of parallel capillaries. Countercurrent flow and random capillary blockage (e.g. by white blood cells) were also studied. A general computational model was constructed to simulate oxygen transport from a network of blood vessels within a rectangular volume of tissue. A geometric model of the capillary network structure, based on hexagonally packed muscle fibers, was constructed to produce networks of straight unbranched capillaries, capillaries with anastomoses, and capillaries with tortuosity, in order to examine the effects of these geometric properties. Quantities examined included the tissue oxygen tension and the capillary oxyhemoglobin saturation. The computational model included a two-phase simulation of blood flow. Appropriate parameters were chosen for working hamster cheek-pouch retractor muscle. Our calculations showed that the muscle-fiber geometry was important in reducing oxygen transport heterogeneity, as was countercurrent flow. Tortuosity was found to increase tissue oxygenation, especially when combined with anastomoses. In the absence of tortuosity, anastomoses had little effect on oxygen transport under normal conditions, but significantly improved transport when vessel blockages were present. Copyright 2000 Academic Press.

  1. Oxygen Transport: A Simple Model for Study and Examination.

    Science.gov (United States)

    Gaar, Kermit A., Jr.

    1985-01-01

    Describes an oxygen transport model computer program (written in Applesoft BASIC) which uses such variables as amount of time lapse from beginning of the simulation, arterial blood oxygen concentration, alveolar oxygen pressure, and venous blood oxygen concentration and pressure. Includes information on obtaining the program and its documentation.…

  2. Oxygen transport properties estimation by DSMC-CT simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Domenico [Istituto di Metodologie Inorganiche e dei Plasmi, Consiglio Nazionale delle Ricerche - Via G. Amendola, 122 - 70125 Bari (Italy); Frezzotti, Aldo; Ghiroldi, Gian Pietro [Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano - Via La Masa, 34 - 20156 Milano (Italy)

    2014-12-09

    Coupling DSMC simulations with classical trajectories calculations is emerging as a powerful tool to improve predictive capabilities of computational rarefied gas dynamics. The considerable increase of computational effort outlined in the early application of the method (Koura,1997) can be compensated by running simulations on massively parallel computers. In particular, GPU acceleration has been found quite effective in reducing computing time (Ferrigni,2012; Norman et al.,2013) of DSMC-CT simulations. The aim of the present work is to study rarefied Oxygen flows by modeling binary collisions through an accurate potential energy surface, obtained by molecular beams scattering (Aquilanti, et al.,1999). The accuracy of the method is assessed by calculating molecular Oxygen shear viscosity and heat conductivity following three different DSMC-CT simulation methods. In the first one, transport properties are obtained from DSMC-CT simulations of spontaneous fluctuation of an equilibrium state (Bruno et al, Phys. Fluids, 23, 093104, 2011). In the second method, the collision trajectory calculation is incorporated in a Monte Carlo integration procedure to evaluate the Taxman’s expressions for the transport properties of polyatomic gases (Taxman,1959). In the third, non-equilibrium zero and one-dimensional rarefied gas dynamic simulations are adopted and the transport properties are computed from the non-equilibrium fluxes of momentum and energy. The three methods provide close values of the transport properties, their estimated statistical error not exceeding 3%. The experimental values are slightly underestimated, the percentage deviation being, again, few percent.

  3. Micromechanism of oxygen transport during initial stage oxidation in Si(100) surface: A ReaxFF molecular dynamics simulation study

    International Nuclear Information System (INIS)

    Sun, Yu; Liu, Yilun; Chen, Xuefeng; Zhai, Zhi; Xu, Fei; Liu, Yijun

    2017-01-01

    Highlights: • A competition mechanism between thermal actuation and compressive stress blocking was found for the oxygen transport. • At low temperature, a compressive stress was generated in the oxide layer which blocked oxygen transport into the deeper region. • O atoms gained larger possibility to go deeper inward as temperature increase. • The related film quality was well explained by the competition mechanism. - Abstract: The early stage oxidation in Si(100) surface has been investigated in this work by a reactive force field molecular dynamics (ReaxFF MD) simulation, manifesting that the oxygen transport acted as a dominant issue for initial oxidation process. Due to the oxidation, a compressive stress was generated in the oxide layer which blocked the oxygen transport perpendicular to the Si(100) surface and further prevented oxidation in the deeper layer. In contrast, thermal actuation was beneficial to the oxygen transport into deeper layer as temperature increases. Therefore, a competition mechanism was found for the oxygen transport during early stage oxidation in Si(100) surface. At room temperature, the oxygen transport was governed by the blocking effect of compressive stress, so a better quality oxide film with more uniform interface and more stoichiometric oxide structure was obtained. Indeed, the mechanism presented in this work is also applicable for other self-limiting oxidation (e.g. metal oxidation) and is helpful for the design of high-performance electronic devices.

  4. Micromechanism of oxygen transport during initial stage oxidation in Si(100) surface: A ReaxFF molecular dynamics simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yu, E-mail: yu.sun@xjtu.edu.cn [State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Institute for Computational Mechanics and Its Applications, Northwestern Polytechnical University, Xi’an 710072 (China); Liu, Yilun [State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Chen, Xuefeng; Zhai, Zhi [State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Xu, Fei [Institute for Computational Mechanics and Its Applications, Northwestern Polytechnical University, Xi’an 710072 (China); Liu, Yijun [Institute for Computational Mechanics and Its Applications, Northwestern Polytechnical University, Xi’an 710072 (China); Mechanical Engineering, University of Cincinnati, Cincinnati, OH 45221-0072 (United States)

    2017-06-01

    Highlights: • A competition mechanism between thermal actuation and compressive stress blocking was found for the oxygen transport. • At low temperature, a compressive stress was generated in the oxide layer which blocked oxygen transport into the deeper region. • O atoms gained larger possibility to go deeper inward as temperature increase. • The related film quality was well explained by the competition mechanism. - Abstract: The early stage oxidation in Si(100) surface has been investigated in this work by a reactive force field molecular dynamics (ReaxFF MD) simulation, manifesting that the oxygen transport acted as a dominant issue for initial oxidation process. Due to the oxidation, a compressive stress was generated in the oxide layer which blocked the oxygen transport perpendicular to the Si(100) surface and further prevented oxidation in the deeper layer. In contrast, thermal actuation was beneficial to the oxygen transport into deeper layer as temperature increases. Therefore, a competition mechanism was found for the oxygen transport during early stage oxidation in Si(100) surface. At room temperature, the oxygen transport was governed by the blocking effect of compressive stress, so a better quality oxide film with more uniform interface and more stoichiometric oxide structure was obtained. Indeed, the mechanism presented in this work is also applicable for other self-limiting oxidation (e.g. metal oxidation) and is helpful for the design of high-performance electronic devices.

  5. Thermophysical properties and oxygen transport in (Thx,Pu1−x)O2

    Science.gov (United States)

    Galvin, C. O. T.; Cooper, M. W. D.; Rushton, M. J. D.; Grimes, R. W.

    2016-01-01

    Using Molecular Dynamics, this paper investigates the thermophysical properties and oxygen transport of (Thx,Pu1−x)O2 (0 ≤ x ≤ 1) between 300–3500 K. In particular, the superionic transition is investigated and viewed via the thermal dependence of lattice parameter, linear thermal expansion coefficient, enthalpy and specific heat at constant pressure. Oxygen diffusivity and activation enthalpy are also investigated. Below the superionic temperature an increase of oxygen diffusivity for certain compositions of (Thx,Pu1−x)O2 compared to the pure end members is predicted. Oxygen defect formation enthalpies are also examined, as they underpin the superionic transition temperature and the increase in oxygen diffusivity. The increase in oxygen diffusivity for (Thx,Pu1−x)O2 is explained in terms of lower oxygen defect formation enthalpies for (Thx,Pu1−x)O2 than PuO2 and ThO2, while links are drawn between the superionic transition temperature and oxygen Frenkel disorder. PMID:27796314

  6. Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane

    KAUST Repository

    Hong, Jongsup; Kirchen, Patrick; Ghoniem, Ahmed F.

    2013-01-01

    concentration enhances oxygen permeation substantially. This is accomplished through promoting oxidation reactions (oxygen consumption) and the transport of the products and reaction heat towards the membrane, which lowers the oxygen concentration and increases

  7. The nursing perspective on monitoring hemodynamics and oxygen transport.

    Science.gov (United States)

    Tucker, Dawn; Hazinski, Mary Fran

    2011-07-01

    Maintenance of adequate systemic oxygen delivery requires careful clinical assessment integrated with hemodynamic measurements and calculations to detect and treat conditions that may compromise oxygen delivery and lead to life-threatening shock, respiratory failure, or cardiac arrest. The bedside nurse constantly performs such assessments and measurements to detect subtle changes and trends in patient condition. The purpose of this editorial is to highlight nursing perspectives about the hemodynamic and oxygen transport monitoring systems summarized in the Pediatric Cardiac Intensive Care Society Evidence- Based Review and Consensus Statement on Monitoring of Hemodynamics and Oxygen Transport Balance. There is no substitute for the observations of a knowledgeable and experienced clinician who understands the patient's condition and potential causes of deterioration and is able to evaluate response to therapy.

  8. Spin transport in oxygen adsorbed graphene nanoribbon

    Science.gov (United States)

    Kumar, Vipin

    2018-04-01

    The spin transport properties of pristine graphene nanoribbons (GNRs) have been most widely studied using theoretical and experimental tools. The possibilities of oxidation of fabricated graphene based nano electronic devices may change the device characteristics, which motivates to further explore the properties of graphene oxide nanoribbons (GONRs). Therefore, we present a systematic computational study on the spin polarized transport in surface oxidized GNR in antiferromagnetic (AFM) spin configuration using density functional theory combined with non-equilibrium Green's function (NEGF) method. It is found that the conductance in oxidized GNRs is significantly suppressed in the valance band and the conduction band. A further reduction in the conductance profile is seen in presence of two oxygen atoms on the ribbon plane. This change in the conductance may be attributed to change in the surface topology of the ribbon basal plane due to presence of the oxygen adatoms, where the charge transfer take place between the ribbon basal plane and the oxygen atoms.

  9. Localized increase of tissue oxygen tension by magnetic targeted drug delivery

    Science.gov (United States)

    Liong, Celine; Ortiz, Daniel; Ao-ieong, Eilleen; Navati, Mahantesh S.; Friedman, Joel M.; Cabrales, Pedro

    2014-07-01

    Hypoxia is the major hindrance to successful radiation therapy of tumors. Attempts to increase the oxygen (O2) tension (PO2) of tissue by delivering more O2 have been clinically disappointing, largely due to the way O2 is transported and released by the hemoglobin (Hb) within the red blood cells (RBCs). Systemic manipulation of O2 transport increases vascular resistance due to metabolic autoregulation of blood flow to prevent over oxygenation. This study investigates a new technology to increase O2 delivery to a target tissue by decreasing the Hb-O2 affinity of the blood circulating within the targeted tissue. As the Hb-O2 affinity decreases, the tissue PO2 to satisfy tissue O2 metabolic needs increases without increasing O2 delivery or extraction. Paramagnetic nanoparticles (PMNPs), synthetized using gadolinium oxide, were coated with the cell permeable Hb allosteric effector L35 (3,5-trichlorophenylureido-phenoxy-methylpropionic acid). L35 decreases Hb affinity for O2 and favors the release of O2. The L35-coated PMNPs (L35-PMNPs) were intravenously infused (10 mg kg-1) to hamsters instrumented with the dorsal window chamber model. A magnetic field of 3 mT was applied to localize the effects of the L35-PMNPs to the window chamber. Systemic O2 transport characteristics and microvascular tissue oxygenation were measured after administration of L35-PMNPs with and without magnetic field. The tissue PO2 in untreated control animals was 25.2 mmHg. L35-PMNPs without magnetic field decreased tissue PO2 to 23.4 mmHg, increased blood pressure, and reduced blood flow, largely due to systemic modification of Hb-O2 affinity. L35-PMNPs with magnetic field increased tissue PO2 to 27.9 mmHg, without systemic or microhemodynamic changes. These results indicate that localized modification of Hb-O2 affinity can increase PO2 of target tissue without affecting systemic O2 delivery or triggering O2 autoregulation mechanisms. This technology can be used to treat local hypoxia and to

  10. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

    2014-01-07

    A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

  11. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles

    2016-01-19

    A method and apparatus for producing heat used in a synthesis gas production process is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the steam reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5

  12. Central Hemodynamics and Oxygen Transport in Various Activation of Patients Operated On Under Extracorporeal Circulation

    Directory of Open Access Journals (Sweden)

    Ye. V. Dzybinskaya

    2009-01-01

    Full Text Available Objective: to study central hemodynamics, the determinants of myocardial oxygen balance, and the parameters of oxygen transport in various activation of patients after surgery under extracorporeal circulation. Subjects and methods. Thirty-four patients aged 57.8±2.5 years who had coronary heart disease were divided into 2 groups: 1 those with late activation (artificial ventilation time 157±9 min and 2 those with immediate activation (artificial ventilation time 33±6 min. Group 2 patients were, if required, given fentanyl, midazolam, or myorelaxants. Results. During activation, there were no intergroup differences in the mean levels of the major parameters of cardiac pump function, in the determinants of coronary blood flow (coronary perfusion gradients and myocardial oxygen demand (the product of heart rate by systolic blood pressure, and in the parameters of oxygen transport, including arterial lactatemia. After tracheal extubation, the left ventricular pump coefficient was increased considerably (up to 3.8±0.2 and 4.4±0.2 gm/mm Hg/m2 in Groups 1 and 2, respectively; p<0.05 with minimum inotropic support (dopamine and/or dobutamine being used at 2.7±0.3 and 2.4±0.3 mg/kg/min, respectively. In both groups, there were no close correlations between the indices of oxygen delivery and consumption at all stages of the study, which was indicative of no transport-dependent oxygen uptake. Conclusion. When the early activation protocol was followed up, the maximum acceleration of early activation, including that using specific antagonists of anesthetics, has no negative impact on central hemodynamics, the determinants of myocardial oxygen balance and transport in patients operated on under extracorporeal circulation. Key words: early activation, surgery under extracorporeal circulation, tracheal extubation in the operating-room, central hemodynamics, oxygen transport.

  13. Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane

    KAUST Repository

    Hong, Jongsup

    2013-02-01

    The interactions between oxygen permeation and homogeneous fuel oxidation reactions on the sweep side of an ion transport membrane (ITM) are examined using a comprehensive model, which couples the dependency of the oxygen permeation rate on the membrane surface conditions and detailed chemistry and transport in the vicinity of the membrane. We assume that the membrane surface is not catalytic to hydrocarbon or syngas oxidation. Results show that increasing the sweep gas inlet temperature and fuel concentration enhances oxygen permeation substantially. This is accomplished through promoting oxidation reactions (oxygen consumption) and the transport of the products and reaction heat towards the membrane, which lowers the oxygen concentration and increases the gas temperature near the membrane. Faster reactions at higher fuel concentration and higher inlet gas temperature support substantial fuel conversion and lead to a higher oxygen permeation flux without the contribution of surface catalytic activity. Beyond a certain maximum in the fuel concentration, extensive heat loss to the membrane (and feed side) reduces the oxidation kinetic rates and limits oxygen permeation as the reaction front reaches the membrane. The sweep gas flow rate and channel height have moderate impacts on oxygen permeation and fuel conversion due to the residence time requirements for the chemical reactions and the location of the reaction zone relative to the membrane surface. © 2012 Elsevier B.V.

  14. Safety Standard for Oxygen and Oxygen Systems: Guidelines for Oxygen System Design, Materials Selection, Operations, Storage, and Transportation

    Science.gov (United States)

    1996-01-01

    NASA's standard for oxygen system design, materials selection, operation, and transportation is presented. Minimum guidelines applicable to NASA Headquarters and all NASA Field Installations are contained.

  15. Effect of oxygenated perfluorocarbon on isolated islets during transportation.

    Science.gov (United States)

    Terai, Sachio; Tsujimura, Toshiaki; Li, Shiri; Hori, Yuichi; Toyama, Hirochika; Shinzeki, Makoto; Matsumoto, Ippei; Kuroda, Yoshikazu; Ku, Yonson

    2010-08-01

    Previous studies demonstrated the efficacy of the two-layer method (TLM) using oxygenated perfluorochemicals (PFC) for pancreas preservation. The current study investigated the effect of oxygenated PFC on isolated islets during transportation. Purified rat islets were stored in an airtight conical tube for 24h in RPMI culture medium at 22 degrees C or University of Wisconsin solution (UW) at 4 degrees C, either with or without oxygenated PFC. After storage, the islets were assessed for in vitro viability by static incubation (SI), FDA/PI staining, and energy status (ATP, energy charge, and ADP/ATP ratio) and for in vivo viability by a transplantation study. UW at 4 degrees C and RPMI medium at 22 degrees C maintained islet quality almost equally in both in vitro and in vivo assessments. The ATP levels and energy status in the groups with PFC were significantly lower than those without PFC. The groups with PFC showed a significantly higher ADP/ATP ratio than those without PFC. In the transplantation study, blood glucose levels and AUC in the UW+PFC group were significantly higher than those in UW group. UW at 4 degrees C and RPMI medium at 22 degrees C maintained islet quality equally under the conditions for islet transportation. The addition of oxygenated PFC, while advantageous for pancreas preservation, is not useful for islet transportation. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Catalyst containing oxygen transport membrane

    Science.gov (United States)

    Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

    2012-12-04

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  17. Oxygen transport properties estimation by classical trajectory–direct simulation Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Domenico, E-mail: domenico.bruno@cnr.it [Istituto di Metodologie Inorganiche e dei Plasmi, Consiglio Nazionale delle Ricerche– Via G. Amendola 122, 70125 Bari (Italy); Frezzotti, Aldo, E-mail: aldo.frezzotti@polimi.it; Ghiroldi, Gian Pietro, E-mail: gpghiro@gmail.com [Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano–Via La Masa 34, 20156 Milano (Italy)

    2015-05-15

    Coupling direct simulation Monte Carlo (DSMC) simulations with classical trajectory calculations is a powerful tool to improve predictive capabilities of computational dilute gas dynamics. The considerable increase in computational effort outlined in early applications of the method can be compensated by running simulations on massively parallel computers. In particular, Graphics Processing Unit acceleration has been found quite effective in reducing computing time of classical trajectory (CT)-DSMC simulations. The aim of the present work is to study dilute molecular oxygen flows by modeling binary collisions, in the rigid rotor approximation, through an accurate Potential Energy Surface (PES), obtained by molecular beams scattering. The PES accuracy is assessed by calculating molecular oxygen transport properties by different equilibrium and non-equilibrium CT-DSMC based simulations that provide close values of the transport properties. Comparisons with available experimental data are presented and discussed in the temperature range 300–900 K, where vibrational degrees of freedom are expected to play a limited (but not always negligible) role.

  18. Surface oxygen vacancy and oxygen permeation flux limits of perovskite ion transport membranes

    KAUST Repository

    Hunt, Anton; Dimitrakopoulos, Georgios; Ghoniem, Ahmed F.

    2015-01-01

    © 2015 Elsevier B.V. The mechanisms and quantitative models for how oxygen is separated from air using ion transport membranes (ITMs) are not well understood, largely due to the experimental complexity for determining surface exchange reactions

  19. System and method for air temperature control in an oxygen transport membrane based reactor

    Science.gov (United States)

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  20. Oxygen transport as a structure probe for heterogeneous polymeric systems

    Science.gov (United States)

    Hu, Yushan

    Although permeability of small molecules is often measured as an important performance property, deeper analysis of the transport characteristics provides insight into polymer structure, especially if used in combination with other characterization techniques. Transport of small gas molecules senses the permeable amorphous structure and probes the nature of free volume. This work focuses on oxygen transport, supplemented with other methods of physical analysis, as a probe for: (1) the nature of free volume and crystalline morphology in the crystallized glassy state, (2) the nature of free volume and hierarchical structure in liquid crystalline polymers, and (3) the role of dispersed polyamide phase geometry on oxygen barrier properties of poly(ethylene terephthalate) (PET)/polyamide blends. In the first part, the improvement in oxygen-barrier properties of glassy polyesters by crystallization was examined. Examples included poly(ethylene naphthalate) (PEN), and a copolymer based on PET in which 55 mol% terephthalate was replaced with 4,4'-bibenzoate. Explanation of the unexpectedly high solubility of crystallized PEN required a two-phase transport model consisting of an impermeable crystalline phase of constant density and a permeable amorphous phase of variable density. The resulting relationship between oxygen solubility and amorphous phase density was consistent with free volume concepts of gas sorption. In the second part, oxygen barrier properties of liquid crystalline (LC) polyesters based on poly(diethylene glycol 4,4'-bibenzoate) (PDEGBB) were studied. This study extended the 2-phase transport model for oxygen transport of non-LC crystalline polymers to a smectic LCP. It was possible to systematically vary the solid state structure of (PDEGBB) from LC glass to crystallized LC glass. The results were consistent with a liquid crystalline state intermediate between the permeable amorphous glass and the impermeable 3-dimensional crystal. In this interpretation

  1. The transport of oxygen isotopes in hydrothermal systems

    International Nuclear Information System (INIS)

    McKibbin, R.; Absar, A.; Blattner, P.

    1986-01-01

    As groundwater passes through porous rocks, exchange of oxygen between the fluid and the solid matrix causes a change in the oxygen isotope concentrations in both water and rock. If the rate at which the exchange takes place can be estimated (as a function of the isotope concentrations and temperature) then the time taken for a rock/water system to come to equilibrium with respect to isotope concentration might be calculated. In this paper, the equation for isotope transport is derived using conservation laws, and a simple equation to describe the rate of isotope exchange is proposed. These are combined with the equations for fluid flow in a porous medium, to produce a general set of equations describing isotope transport in a hydrothermal system. These equations are solved numerically, using typical parameters, for the one-dimensional case. Oxygen isotope data from the basement rocks underlying Kawerau geothermal field are modelled. The results indicate that the time taken for exchange of 18 O to present-day values is less than the postulated age of hydrothermal alteration in that field. This suggests that, although controlled by similar parameters, oxygen isotope exchange, in felsic rocks at least, is much faster than hydrothermal alteration. This conclusion is consistent with the petrographic observations from the Kawerau system as well as other geothermal fields

  2. Enhancing oxygen transport through Mixed-Ionic-and-Electronic-Conducting ceramic membranes

    Science.gov (United States)

    Yu, Anthony S.

    Ceramic membranes based on Mixed-Ionic-and-Electronic-Conducting (MIEC) oxides are capable of separating oxygen from air in the presence of an oxygen partial-pressure gradient. These MIEC membranes show great promise for oxygen consuming industrial processes, such as the production of syngas from steam reforming of natural gas (SRM), as well as for electricity generation in Solid Oxide Fuel Cells (SOFC). For both applications, the overall performance is dictated by the rate of oxygen transport across the membrane. Oxygen transport across MIEC membranes is composed of a bulk oxygen-ion diffusion process and surface processes, such as surface reactions and adsorption/desorption of gaseous reactants/products. The main goal of this thesis was to determine which process is rate-limiting in order to significantly enhance the overall rate of oxygen transport in MIEC membrane systems. The rate-limiting step was determined by evaluating the total resistance to oxygen transfer, Rtot. Rtot is the sum of a bulk diffusion resistance in the membrane itself, Rb, and interfacial loss components, Rs. Rb is a function of the membrane's ionic conductivity and thickness, while Rs arises primarily from slow surface-exchange kinetics that cause the P(O2) at the surfaces of the membrane to differ from the P(O 2) in the adjacent gas phases. Rtot can be calculated from the Nernst potential across the membrane and the measured oxygen flux. The rate-limiting process can be determined by evaluating the relative contributions of the various losses, Rs and Rb, to Rtot. Using this method, this thesis demonstrates that for most membrane systems, Rs is the dominating factor. In the development of membrane systems with high oxygen transport rates, thin membranes with high ionic conductivities are required to achieve fast bulk oxygen-ion diffusion. However, as membrane thickness is decreased, surface reaction kinetics become more important in determining the overall transport rate. The two

  3. Oxygen transport in La1-xSrxFe1-yMnyO3-δ perovskites

    DEFF Research Database (Denmark)

    Mikkelsen, L.; Andersen, I.G.K.; Skou, E.M.

    2002-01-01

    The oxygen transport in La1-xSrxFe1-yMnyO3-delta (LSFM) with 0 less than or equal to x less than or equal to 0.5 and y = 0.2 and 03 has been examined with a thermogravimetric method. As long as x less than or equal to y, the oxygen transport was found to be very slow while the oxygen transport in...

  4. Oxygen transport in waterlogged soils, Part II. Diffusion coefficients

    International Nuclear Information System (INIS)

    Obando Moncayo, F.H.

    2004-01-01

    Several equations are available for Oxygen Transport in Waterlogged Soils and have been used for soils and plants. All of them are some form of first Fick's law as given by dQ = - DA(dc/dx)/dt. This equation illustrates some important aspects of aeration in waterlogged soils; first, D is a property of the medium and the gas, and is affected by temperature T. Likewise, the amount of diffusing substance dQ in dt is a direct function of the cross sectional area A and inversely proportional to the distance x. In fact, increasing the water content of air-dry soil, drastically decreases A and creates a further resistance for the flow of oxygen through water films around root plants, soil micro organisms and soil aggregates. The solid phase is also limiting the cross-section of surface of the free gaseous diffusion and the length and tortuosity of diffusion path in soil. In most of cases, soil gas porosity and tortuosity of soil voids are expressed in the equations of diffusion as a broad 'diffusion coefficient' (apparent coefficient diffusion). The process of soil respiration is complicated, involves many parameters, and is difficult to realistically quantify. With regard to the oxygen supply, it is convenient to distinguish macro and micro models, and hence, the flux of oxygen is assumed to have two steps. The first step is related to oxygen diffusion from the atmosphere and the air-filled porosity. The second step is related to the oxygen diffusion through water-films in and around plant roots, soil micro organisms and aggregates. Because of these models we obtain coefficients of macro or micro diffusion, rates of macro or micro diffusion, etc. In the macro diffusion process oxygen is transferred in the soil profile, mainly from the soil surface to a certain depth of the root zone, while micro diffusion deals with the flux over very short distances. Both processes, macro and micro diffusion are highly influenced by soil water content. Of course, if water is added to

  5. Evaluation of the participation of ferredoxin in oxygen reduction in the photosynthetic electron transport chain of isolated pea thylakoids.

    Science.gov (United States)

    Kozuleva, Marina A; Ivanov, Boris N

    2010-07-01

    The contribution to reduction of oxygen by ferredoxin (Fd) to the overall reduction of oxygen in isolated pea thylakoids was studied in the presence of Fd versus Fd + NADP(+). The overall rate of electron transport was measured using a determination of Photosystem II quantum yield from chlorophyll fluorescence parameters, and the rate of oxidation of Fd was measured from the light-induced redox changes of Fd. At low light intensity, increasing Fd concentration from 5 to 30 microM in the absence of NADP(+) increased the proportion of oxygen reduction by Fd from 25-35 to 40-60% in different experiments. This proportion decreased with increasing light intensity. When NADP(+) was added in the presence of 15 microM Fd, which was optimal for the NADP(+) reduction rate, the participation of Fd in the reduction of oxygen was low, no more than 10%, and it also decreased with increasing light intensity. At high light intensity, the overall oxygen reduction rates in the presence of Fd + NADP(+) and in the presence of Fd alone were comparable. The significance of reduction of dioxygen either by water-soluble Fd or by the membrane-bound carriers of the photosynthetic electron transport chain for redox signaling under different light intensities is discussed.

  6. Optimisation of oxygen ion transport in materials for ceramic membrane devices.

    Science.gov (United States)

    Kilner, J A

    2007-01-01

    Oxygen transport in ceramic oxide materials has received much attention over the past few decades. Much of this interest has stemmed from the desire to construct high temperature electrochemical devices for energy conversion, an example being the solid oxide fuel cell. In order to achieve high performance for these devices, insights are needed in how to achieve optimum performance from the functional components such as the electrolytes and electrodes. This includes the optimisation of oxygen transport through the crystal lattice of electrode and electrolyte materials and across the homogeneous (grain boundary) and heterogeneous interfaces that exist in real devices. Strategies are discussed for the optimisation of these quantities and current problems in the characterisation of interfacial transport are explored.

  7. Computational Modeling of Oxygen Transport in the Microcirculation: From an Experiment-Based Model to Theoretical Analyses

    OpenAIRE

    Lücker, Adrien

    2017-01-01

    Oxygen supply to cells by the cardiovascular system involves multiple physical and chemical processes that aim to satisfy fluctuating metabolic demand. Regulation mechanisms range from increased heart rate to minute adaptations in the microvasculature. The challenges and limitations of experimental studies in vivo make computational models an invaluable complement. In this thesis, oxygen transport from capillaries to tissue is investigated using a new numerical model that is tailored for vali...

  8. Hollow Nanospheres with Fluorous Interiors for Transport of Molecular Oxygen in Water

    KAUST Repository

    Vu, Khanh B.; Chen, Tianyou; Almahdali, Sarah; Bukhriakov, Konstantin; Rodionov, Valentin

    2016-01-01

    are gas-permeable and feature reactive functional groups for easy modification of the exterior. These features make the SFC-filled nanospheres promising vehicles for respiratory oxygen storage and transport. Uptake of molecular oxygen into nanosphere

  9. Oxygen dynamics and transport in the Mediterranean sponge Aplysina aerophoba

    DEFF Research Database (Denmark)

    Hoffmann, F.; Røy, Hans; Bayer, K.

    2008-01-01

    The Mediterranean sponge Aplysina aerophoba kept in aquaria or cultivation tanks can stop pumping for several hours or even days. To investigate changes in the chemical microenvironments, we measured oxygen profiles over the surface and into the tissue of pumping and non-pumping A. aerophoba...... specimens with Clark-type oxygen microelectrodes (tip diameters 18-30 μm). Total oxygen consumption rates of whole sponges were measured in closed chambers. These rates were used to back-calculate the oxygen distribution in a finite-element model. Combining direct measurements with calculations of diffusive...... flux and modeling revealed that the tissue of non-pumping sponges turns anoxic within 15 min, with the exception of a 1 mm surface layer where oxygen intrudes due to molecular diffusion over the sponge surface. Molecular diffusion is the only transport mechanism for oxygen into non-pumping sponges...

  10. Oxygen transport in waterlogged soils, Part I. Approaches to modelling soil and crop response to oxygen deficiency

    International Nuclear Information System (INIS)

    Obando Moncayo, F.H.

    2004-01-01

    This lecture outlines in a simple way the mathematics of various cases of diffusion which have been widely used in modelling soil aeration. Simplifications of the general equation of diffusion (Fick's law) giving two possible forms of the problem: planar or one-dimensional diffusion and radial diffusion are given. Furthermore, the solution of diffusion equation is obtained by the analogy to the problem of electrical flow (Ohm's law). Taking into consideration the soil respiration process, the continuity equation which accounts for the law of conservation of mass is solved. The purpose of this paper has been to review the interrelation soil structure-air movement in waterlogged clay soils, and its consequences on plant growth and crop production. Thus, the mathematics of diffusion is presented, and then its application to specific cases of soil aeration such as diffusion in the soil profile, soil aggregates and roots is given. The following assumptions are taken into consideration. Gas flow in soils is basically diffusion-dependent. Gas-phase diffusion is the major mechanism for vertical or longitudinal transport (long distance transport); this means, with depth Z in the soil profile (macro diffusion). For horizontal transport (short distance transport or micro diffusion) which is assumed to be in X direction; in this case, the geometry of aggregates and the liquid phase are the major components of resistance for diffusion. Soil aggregates and roots are considered to be spherical and cylindrical in shape respectively. Soil oxygen consumption, Sr, is taken to be independent of the oxygen concentration and considered to proceed at the same rate until oxygen supply drops to critical levels. Thus, aeration problems are assumed to begin when at any time, in the root zone, the oxygen diffusion rate, ODR, becomes less than 30x10 -8 g.cm -2 .sec -1 , or the value of redox potential Eh is less than +525 mv

  11. Radial transport of high-energy oxygen ions into the deep inner magnetosphere observed by Van Allen Probes

    Science.gov (United States)

    Mitani, K.; Seki, K.; Keika, K.; Gkioulidou, M.; Lanzerotti, L. J.; Mitchell, D. G.; Kletzing, C.

    2017-12-01

    It is known that proton is main contributor of the ring current and oxygen ions can make significant contribution during major magnetic storms. Ions are supplied to the ring current by radial transport from the plasma sheet. Convective transport of lower-energy protons and diffusive transport of higher-energy protons were reported to contribute to the storm-time and quiet-time ring current respectively [e.g., Gkioulidou et al., 2016]. However, supply mechanisms of the oxygen ions are not clear. To characterize the supply of oxygen ions to the ring current during magnetic storms, we studied the properties of energetic proton and oxygen ion phase space densities (PSDs) for specific magnetic moment (μ) during the April 23-25, 2013, geomagnetic storm observed by the Van Allen Probes mission. We here report on radial transport of high-energy (μ ≥ 0.5 keV/nT) oxygen ions into the deep inner magnetosphere during the late main phase of the magnetic storm. Since protons show little change during this period, this oxygen radial transport is inferred to cause the development of the late main phase. Enhancement of poloidal magnetic fluctuations is simultaneously observed. We estimated azimuthal mode number ≤5 by using cross wavelet analysis with ground-based observation of IMAGE ground magnetometers. The fluctuations can resonate with drift and bounce motions of the oxygen ions. The results suggest that combination of the drift and drift-bounce resonances is responsible for the radial transport of high-energy oxygen ions into the deep inner magnetosphere. We also report on the radial transport of the high-energy oxygen ions into the deep inner magnetosphere during other magnetic storms.

  12. Modeling of Cerebral Oxygen Transport Based on In vivo Microscopic Imaging of Microvascular Network Structure, Blood Flow, and Oxygenation.

    Science.gov (United States)

    Gagnon, Louis; Smith, Amy F; Boas, David A; Devor, Anna; Secomb, Timothy W; Sakadžić, Sava

    2016-01-01

    Oxygen is delivered to brain tissue by a dense network of microvessels, which actively control cerebral blood flow (CBF) through vasodilation and contraction in response to changing levels of neural activity. Understanding these network-level processes is immediately relevant for (1) interpretation of functional Magnetic Resonance Imaging (fMRI) signals, and (2) investigation of neurological diseases in which a deterioration of neurovascular and neuro-metabolic physiology contributes to motor and cognitive decline. Experimental data on the structure, flow and oxygen levels of microvascular networks are needed, together with theoretical methods to integrate this information and predict physiologically relevant properties that are not directly measurable. Recent progress in optical imaging technologies for high-resolution in vivo measurement of the cerebral microvascular architecture, blood flow, and oxygenation enables construction of detailed computational models of cerebral hemodynamics and oxygen transport based on realistic three-dimensional microvascular networks. In this article, we review state-of-the-art optical microscopy technologies for quantitative in vivo imaging of cerebral microvascular structure, blood flow and oxygenation, and theoretical methods that utilize such data to generate spatially resolved models for blood flow and oxygen transport. These "bottom-up" models are essential for the understanding of the processes governing brain oxygenation in normal and disease states and for eventual translation of the lessons learned from animal studies to humans.

  13. Dynamic Factors Affecting Gaseous Ligand Binding in an Artificial Oxygen Transport Protein‡

    Science.gov (United States)

    Zhang, Lei; Andersen, Eskil M.E.; Khajo, Abdelahad; Magliozzo, Richard S.; Koder, Ronald L.

    2013-01-01

    We report the functional analysis of an artificial hexacoordinate oxygen transport protein, HP7, which operates via a mechanism similar to that of human neuroglobin and cytoglobin: the destabilization of one of two heme-ligating histidine residues. In the case of HP7 this is the result of the coupling of histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Here we compare gaseous ligand binding, including rates, affinities and oxyferrous state lifetimes, of both heme binding sites in HP7. We find that despite the identical sequence of helices in both binding sites, there are differences in oxygen affinity and oxyferrous state lifetime which may be the result of differences in the freedom of motion imposed by the candelabra fold on the two sites of the protein. We further examine the effect of mutational removal of the buried glutamates on function. Heme iron in the ferrous state of this mutant is rapidly oxidized when when exposed to oxygen. Compared to HP7, distal histidine affinity is increased by a 22-fold decrease in the histidine ligand off-rate. EPR comparison of these ferric hemoproteins demonstrates that the mutation increases disorder at the heme binding site. NMR-detected deuterium exchange demonstrates that the mutation greatly increases water penetration into the protein core. The inability of the mutant protein to bind oxygen may be due to increased water penetration, the large decrease in binding rate caused by the increase in distal histidine affinity, or a combination of the two factors. Together these data underline the importance of the control of protein dynamics in the design of functional artificial proteins. PMID:23249163

  14. Dynamic factors affecting gaseous ligand binding in an artificial oxygen transport protein.

    Science.gov (United States)

    Zhang, Lei; Andersen, Eskil M E; Khajo, Abdelahad; Magliozzo, Richard S; Koder, Ronald L

    2013-01-22

    We report the functional analysis of an artificial hexacoordinate oxygen transport protein, HP7, which operates via a mechanism similar to that of human neuroglobin and cytoglobin: the destabilization of one of two heme-ligating histidine residues. In the case of HP7, this is the result of the coupling of histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Here we compare gaseous ligand binding, including rates, affinities, and oxyferrous state lifetimes, of both heme binding sites in HP7. We find that despite the identical sequence of helices in both binding sites, there are differences in oxygen affinity and oxyferrous state lifetime that may be the result of differences in the freedom of motion imposed by the candelabra fold on the two sites of the protein. We further examine the effect of mutational removal of the buried glutamates on function. Heme iron in the ferrous state of this mutant is rapidly oxidized when exposed to oxygen. Compared to that of HP7, the distal histidine affinity is increased by a 22-fold decrease in the histidine ligand off rate. Electron paramagnetic resonance comparison of these ferric hemoproteins demonstrates that the mutation increases the level of disorder at the heme binding site. Nuclear magnetic resonance-detected deuterium exchange demonstrates that the mutation greatly increases the degree of penetration of water into the protein core. The inability of the mutant protein to bind oxygen may be due to an increased level of water penetration, the large decrease in binding rate caused by the increase in distal histidine affinity, or a combination of the two factors. Together, these data underline the importance of the control of protein dynamics in the design of functional artificial proteins.

  15. Renal transplantation induces mitochondrial uncoupling, increased kidney oxygen consumption, and decreased kidney oxygen tension

    NARCIS (Netherlands)

    Papazova, Diana A.; Friederich-Persson, Malou; Joles, Jaap A.; Verhaar, Marianne C.

    2015-01-01

    Hypoxia is an acknowledged pathway to renal injury and ischemia-reperfusion (I/R) and is known to reduce renal oxygen tension (PO2). We hypothesized that renal I/R increases oxidative damage and induces mitochondrial uncoupling, resulting in increased oxygen consumption and hence kidney

  16. Significance of myoglobin as an oxygen store and oxygen transporter in the intermittently perfused human heart: a model study.

    Science.gov (United States)

    Endeward, Volker; Gros, Gerolf; Jürgens, Klaus D

    2010-07-01

    The mechanisms by which the left ventricular wall escapes anoxia during the systolic phase of low blood perfusion are investigated, especially the role of myoglobin (Mb), which can (i) store oxygen and (ii) facilitate intracellular oxygen transport. The quantitative role of these two Mb functions is studied in the maximally working human heart. Because discrimination between Mb functions has not been achieved experimentally, we use a Krogh cylinder model here. At a heart rate of 200 beats/min and a 1:1 ratio of diastole/systole, the systole lasts for 150 ms. The basic model assumption is that, with mobile Mb, the oxygen stored in the end-diastolic left ventricle wall exactly meets the demand during the 150 ms of systolic cessation of blood flow. The coronary blood flow necessary to achieve this agrees with literature data. By considering Mb immobile or setting its concentration to zero, respectively, we find that, depending on Mb concentration, Mb-facilitated O(2) transport maintains O(2) supply to the left ventricle wall during 22-34 of the 150 ms, while Mb storage function accounts for a further 12-17 ms. When Mb is completely absent, anoxia begins to develop after 116-99 ms. While Mb plays no significant role during diastole, it supplies O(2) to the left ventricular wall for < or = 50 ms of the 150 ms systole, whereas capillary haemoglobin is responsible for approximately 80 ms. Slight increases in haemoglobin concentration, blood flow, or capillary density can compensate the absence of Mb, a finding which agrees well with the observations using Mb knockout mice.

  17. Oxygen nonstoichiometry and transport properties of strontium substituted lanthanum cobaltite

    DEFF Research Database (Denmark)

    Søgaard, Martin; Hendriksen, Peter Vang; Mogensen, Mogens Bjerg

    2006-01-01

    Oxygen nonstoichiometry, structure and transport properties of the two compositions (La-0.6 Sr-0.4)(0.99)CoO3-delta (LSC40) and La0.85Sr0.15CoO3-delta (LSC15) were measured. It was found that the oxygen nonstoichiometry as a function of the temperature and oxygen partial pressure could be described...... using the itinerant electron model. The electrical conductivity, sigma, of the materials is high (sigma > 500 S cm(-1)) in the measured temperature range (650 - 1000 degrees C) and oxygen partial pressure range (0.209-10(-4) atm). At 900 degrees C the electrical conductivity is 1365 and 1491 S cm(-1......) in air for LSC40 and LSC15, respectively. A linear correlation between the electrical conductivity and the oxygen vacancy concentration was found for both samples. The mobility of the electron-holes was inversely proportional with the absolute temperature indicating a metallic type conductivity for LSC40...

  18. Oxygen transport and cardiovascular function at extreme altitude: lessons from Operation Everest II

    Science.gov (United States)

    Sutton, J. R.; Reeves, J. T.; Groves, B. M.; Wagner, P. D.; Alexander, J. K.; Hultgren, H. N.; Cymerman, A.; Houston, C. S.

    1992-01-01

    Operation Everest II was designed to examine the physiological responses to gradual decompression simulating an ascent of Mt Everest (8,848 m) to an inspired PO2 of 43 mmHg. The principal studies conducted were cardiovascular, respiratory, muscular-skeletal and metabolic responses to exercise. Eight healthy males aged 21-31 years began the "ascent" and six successfully reached the "summit", where their resting arterial blood gases were PO2 = 30 mmHg and PCO2 = 11 mmHg, pH = 7.56. Their maximal oxygen uptake decreased from 3.98 +/- 0.2 L/min at sea level to 1.17 +/- 0.08 L/min at PIO2 43 mmHg. The principal factors responsible for oxygen transport from the atmosphere to tissues were (1) Alveolar ventilation--a four fold increase. (2) Diffusion from the alveolus to end capillary blood--unchanged. (3) Cardiac function (assessed by hemodynamics, echocardiography and electrocardiography)--normal--although maximum cardiac output and heart rate were reduced. (4) Oxygen extraction--maximal with PvO2 14.8 +/- 1 mmHg. With increasing altitude maximal blood and muscle lactate progressively declined although at any submaximal intensity blood and muscle lactate was higher at higher altitudes.

  19. Dual phase oxygen transport membrane for efficient oxyfuel combustion

    International Nuclear Information System (INIS)

    Ramasamy, Madhumidha

    2016-01-01

    Oxygen transport membranes (OTMs) are attracting great interest for the separation of oxygen from air in an energy efficient way. A variety of solid oxide ceramic materials that possess mixed ionic and electronic conductivity (MIEC) are being investigated for efficient oxygen separation (Betz '10, Skinner '03). Unfortunately these materials do not exhibit high degradation stability under harsh ambient conditions such as flue gas containing CO_2, SO_x, H_2O and dust, pressure gradients and high temperatures that are typical in fossil fuel power plants. For this reason, dual phase composite membranes are developed to combine the best characteristics of different compounds to achieve high oxygen permeability and sufficient chemical and mechanical stability at elevated temperatures. In this thesis, the dual phase membrane Ce_0_._8Gd_0_._2O_2_-_δ - FeCo_2O_4 (CGO-FCO) was developed after systematic investigation of various combinations of ionic and electronic conductors. The phase distribution of the composite was investigated in detail using electron microscopes and this analysis revealed the phase interaction leading to grain boundary rock salt phase and formation of perovskite secondary phase. A systematic study explored the onset of phase interactions to form perovskite phase and the role of this unintended phase as pure electronic conductor was identified. Additionally optimization of conventional sintering process to eliminate spinel phase decomposition into rock salt was identified. An elaborate study on the absolute minimum electronic conductor requirement for efficient percolation network was carried out and its influence on oxygen flux value was measured. Oxygen permeation measurements in the temperature range of 600 C - 1000 C under partial pressure gradient provided by air and argon as feed and sweep gases are used to identify limiting transport processes. The dual phase membranes are much more prone to surface exchange limitations because of the limited

  20. A compartment model of alveolar-capillary oxygen diffusion with ventilation-perfusion gradient and dynamics of air transport through the respiratory tract.

    Science.gov (United States)

    Jaworski, Jacek; Redlarski, Grzegorz

    2014-08-01

    This paper presents a model of alveolar-capillary oxygen diffusion with dynamics of air transport through the respiratory tract. For this purpose electrical model representing the respiratory tract mechanics and differential equations representing oxygen membrane diffusion are combined. Relevant thermodynamic relations describing the mass of oxygen transported into the human body are proposed as the connection between these models, as well as the influence of ventilation-perfusion mismatch on the oxygen diffusion. The model is verified based on simulation results of varying exercise intensities and statistical calculations of the results obtained during various clinical trials. The benefit of the approach proposed is its application in simulation-based research aimed to generate quantitative data of normal and pathological conditions. Based on the model presented, taking into account many essential physiological processes and air transport dynamics, comprehensive and combined studies of the respiratory efficiency can be performed. The impact of physical exercise, precise changes in respiratory tract mechanics and alterations in breathing pattern can be analyzed together with the impact of various changes in alveolar-capillary oxygen diffusion. This may be useful in simulation of effects of many severe medical conditions and increased activity level. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The Mechanisms of Oxygen Reduction in the Terminal Reducing Segment of the Chloroplast Photosynthetic Electron Transport Chain.

    Science.gov (United States)

    Kozuleva, Marina A; Ivanov, Boris N

    2016-07-01

    The review is dedicated to ascertainment of the roles of the electron transfer cofactors of the pigment-protein complex of PSI, ferredoxin (Fd) and ferredoxin-NADP reductase in oxygen reduction in the photosynthetic electron transport chain (PETC) in the light. The data regarding oxygen reduction in other segments of the PETC are briefly analyzed, and it is concluded that their participation in the overall process in the PETC under unstressful conditions should be insignificant. Data concerning the contribution of Fd to the oxygen reduction in the PETC are examined. A set of collateral evidence as well as results of direct measurements of the involvement of Fd in this process in the presence of isolated thylakoids led to the inference that this contribution in vivo is negligible. The increase in oxygen reduction rate in the isolated thylakoids in the presence of either Fd or Fd plus NADP + under increasing light intensity was attributed to the increase in oxygen reduction executed by the membrane-bound oxygen reductants. Data are presented which imply that a main reductant of the O 2 molecule in the terminal reducing segment of the PETC is the electron transfer cofactor of PSI, phylloquinone. The physiological significance of characteristic properties of oxygen reductants in this segment of the PETC is discussed. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Enhanced safety margins during wet transport of irradiated fuel by catalytic recombination of radiolysis hydrogen and oxygen

    International Nuclear Information System (INIS)

    Spencer, J.T.; Bankhead, M.; Hodge, N.A.

    2004-01-01

    BNFL has developed and tested a new method for use in wet transport of irradiated fuel. The method uses a catalyst to recombine the hydrogen and oxygen produced from radiolysis. The catalyst is installed in the nitrogen ullage gas region. It has twin benefits as it eliminates a gas mixture that could, in principle, exceed the safe target levels set to ensure safety during Transport, and it also reduces overall gas pressure. Pure water radiolysis predictions, from experiment and theory, indicate very low levels of hydrogen and oxygen generation. BNFL's historic experience is that in some transport packages it is possible to produce higher levels of hydrogen and oxygen. This drives the need to improve on our existing ullage gas remediation technology. Our studies of the radiolysis science and our flask data suggest it is the interaction of the liquors and material surfaces that is giving rise to the enhanced levels of hydrogen and/or oxygen. This technical paper demonstrates the performance of the recombiner catalyst under normal and extreme conditions of transport. The paper will present experimental data that shows the recombiner catalyst working to manage the hydrogen and oxygen levels

  3. OXYGEN TRANSPORT CERAMIC MEMBRANES

    International Nuclear Information System (INIS)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-01-01

    Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals. This project has the following 6 main tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques

  4. Scaling laws for oxygen transport across the space-filling system of respiratory membranes in the human lung

    Science.gov (United States)

    Hou, Chen

    Space-filling fractal surfaces play a fundamental role in how organisms function at various levels and in how structure determines function at different levels. In this thesis, we develop a quantitative theory of oxygen transport to and across the surface of the highly branched, space-filling system of alveoli, the fundamental gas exchange unit (acinar airways), in the human lung. Oxygen transport in the acinar airways is by diffusion, and we treat the two steps---diffusion through the branched airways, and transfer across the alveolar membranes---as a stationary diffusion-reaction problem, taking into account that there may be steep concentration gradients between the entrance and remote alveoli (screening). We develop a renormalization treatment of this screening effect and derive an analytic formula for the oxygen current across the cumulative alveolar membrane surface, modeled as a fractal, space-filling surface. The formula predicts the current from a minimum of morphological data of the acinus and appropriate values of the transport parameters, through a number of power laws (scaling laws). We find that the lung at rest operates near the borderline between partial screening and no screening; that it switches to no screening under exercise; and that the computed currents agree with measured values within experimental uncertainties. From an analysis of the computed current as a function of membrane permeability, we find that the space-filling structure of the gas exchanger is simultaneously optimal with respect to five criteria. The exchanger (i) generates a maximum oxygen current at minimum permeability; (ii) 'wastes' a minimum of surface area; (iii) maintains a minimum residence time of oxygen in the acinar airways; (iv) has a maximum fault tolerance to loss of permeability; and (v) generates a maximum current increase when switching from rest to exercise.

  5. An On-Line Oxygen Forecasting System for Waterless Live Transportation of Flatfish Based on Feature Clustering

    Directory of Open Access Journals (Sweden)

    Yongjun Zhang

    2017-09-01

    Full Text Available Accurate prediction of forthcoming oxygen concentration during waterless live fish transportation plays a key role in reducing the abnormal occurrence, increasing the survival rate in delivery operations, and optimizing manufacturing costs. The most effective ambient monitoring techniques that are based on the analysis of historical process data when performing forecasting operations do not fully consider current ambient influence. This is likely lead to a greater deviation in on-line oxygen level forecasting in real situations. Therefore, it is not advisable for the system to perform early warning and on-line air adjustment in delivery. In this paper, we propose a hybrid method and its implementation system that combines a gray model (GM (1, 1 with least squares support vector machines (LSSVM that can be used effectively as a forecasting model to perform early warning effectively according to the dynamic changes of oxygen in a closed system. For accurately forecasting of the oxygen level, the fuzzy C-means clustering (FCM algorithm was utilized for classification according to the flatfish’s physical features—i.e., length and weight—for more pertinent training. The performance of the gray model-particle swarm optimization-least squares support vector machines (GM-PSO-LSSVM model was compared with the traditional modeling approaches of GM (1, 1 and LSSVM by applying it to predict on-line oxygen level, and the results showed that its predictions were more accurate than those of the LSSVM and grey model. Therefore, it is a suitable and effective method for abnormal condition forecasting and timely control in the waterless live transportation of flatfish.

  6. Dual phase oxygen transport membrane for efficient oxyfuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Madhumidha

    2016-07-01

    Oxygen transport membranes (OTMs) are attracting great interest for the separation of oxygen from air in an energy efficient way. A variety of solid oxide ceramic materials that possess mixed ionic and electronic conductivity (MIEC) are being investigated for efficient oxygen separation (Betz '10, Skinner '03). Unfortunately these materials do not exhibit high degradation stability under harsh ambient conditions such as flue gas containing CO{sub 2}, SO{sub x}, H{sub 2}O and dust, pressure gradients and high temperatures that are typical in fossil fuel power plants. For this reason, dual phase composite membranes are developed to combine the best characteristics of different compounds to achieve high oxygen permeability and sufficient chemical and mechanical stability at elevated temperatures. In this thesis, the dual phase membrane Ce{sub 0.8}Gd{sub 0.2}O{sub 2-δ} - FeCo{sub 2}O{sub 4} (CGO-FCO) was developed after systematic investigation of various combinations of ionic and electronic conductors. The phase distribution of the composite was investigated in detail using electron microscopes and this analysis revealed the phase interaction leading to grain boundary rock salt phase and formation of perovskite secondary phase. A systematic study explored the onset of phase interactions to form perovskite phase and the role of this unintended phase as pure electronic conductor was identified. Additionally optimization of conventional sintering process to eliminate spinel phase decomposition into rock salt was identified. An elaborate study on the absolute minimum electronic conductor requirement for efficient percolation network was carried out and its influence on oxygen flux value was measured. Oxygen permeation measurements in the temperature range of 600 C - 1000 C under partial pressure gradient provided by air and argon as feed and sweep gases are used to identify limiting transport processes. The dual phase membranes are much more prone to surface

  7. Gradually Increased Oxygen Administration Improved Oxygenation and Mitigated Oxidative Stress after Resuscitation from Severe Hemorrhagic Shock.

    Science.gov (United States)

    Luo, Xin; Yin, Yujing; You, Guoxing; Chen, Gan; Wang, Ying; Zhao, Jingxiang; Wang, Bo; Zhao, Lian; Zhou, Hong

    2015-11-01

    The optimal oxygen administration strategy during resuscitation from hemorrhagic shock (HS) is still controversial. Improving oxygenation and mitigating oxidative stress simultaneously seem to be contradictory goals. To maximize oxygen delivery while minimizing oxidative damage, the authors proposed the notion of gradually increased oxygen administration (GIOA), which entails making the arterial blood hypoxemic early in resuscitation and subsequently gradually increasing to hyperoxic, and compared its effects with normoxic resuscitation, hyperoxic resuscitation, and hypoxemic resuscitation in severe HS. Rats were subjected to HS, and on resuscitation, the rats were randomly assigned to four groups (n = 8): the normoxic, the hyperoxic, the hypoxemic, and the GIOA groups. Rats were observed for an additional 1 h. Hemodynamics, acid-base status, oxygenation, and oxidative injury were observed and evaluated. Central venous oxygen saturation promptly recovered only in the hyperoxic and the GIOA groups, and the liver tissue partial pressure of oxygen was highest in the GIOA group after resuscitation. Oxidative stress in GIOA group was significantly reduced compared with the hyperoxic group as indicated by the reduced malondialdehyde content, increased catalase activity, and the lower histologic injury scores in the liver. In addition, the tumor necrosis factor-α and interleukin-6 expressions in the liver were markedly decreased in the GIOA group than in the hyperoxic and normoxic groups as shown by the immunohistochemical staining. GIOA improved systemic/tissue oxygenation and mitigated oxidative stress simultaneously after resuscitation from severe HS. GIOA may be a promising strategy to improve resuscitation from HS and deserves further investigation.

  8. The obtaining and properties of asymmetric ion transport membrane for separating of oxygen from air

    Science.gov (United States)

    Solovieva, A. A.; Kulbakin, I. V.

    2018-04-01

    The bilayer oxygen-permeable membrane, consisting of a thin-film dense composite based on Co3O4 - 36 wt. % Bi2O3, and of a porous ceramic substrate of Co2SiO4, was synthesized and characterized. The way for obtaining of porous ceramic based on cobalt silicate was found, while the microstructure and the mechanical properties of porous ceramic were studied. Layered casting with post-pressing was used to cover the surface of porous support of Co2SiO4 by the Co3O4 - 36 wt. % Bi2O3 - based film. Transport properties of the asymmetric membrane have been studied, the kinetic features of oxygen transport have been established, and the characteristic thickness of the membrane has been estimated. The methods to prevent the high-temperature creep of ion transport membranes based on solid/molten oxides, which are the promising ones for obtaining of pure oxygen from air, are proposed and discussed.

  9. Oxygen intrusion into anoxic fjords leads to increased methylmercury availability

    Science.gov (United States)

    Veiteberg Braaten, Hans Fredrik; Pakhomova, Svetlana; Yakushev, Evgeniy

    2013-04-01

    Mercury (Hg) appears in the oxic surface waters of the oceans at low levels (sub ng/L). Because inorganic Hg can be methylated into the toxic and bioaccumulative specie methylmercury (MeHg) levels can be high at the top of the marine food chain. Even though marine sea food is considered the main risk driver for MeHg exposure to people most research up to date has focused on Hg methylation processes in freshwater systems. This study identifies the mechanisms driving formation of MeHg during oxygen depletion in fjords, and shows how MeHg is made available in the surface water during oxygen intrusion. Studies of the biogeochemical structure in the water column of the Norwegian fjord Hunnbunn were performed in 2009, 2011 and 2012. In autumn of 2011 mixing flushing events were observed and lead to both positive and negative effects on the ecosystem state in the fjord. The oxygenated water intrusions lead to a decrease of the deep layer concentrations of hydrogen sulfide (H2S), ammonia and phosphate. On the other hand the intrusion also raised the H2S boundary from 8 m to a shallower depth of just 4 m. Following the intrusion was also observed an increase at shallower depths of nutrients combined with a decrease of pH. Before flushing events were observed concentrations of total Hg (TotHg) increased from 1.3 - 1.7 ng/L in the surface layer of the fjord to concentrations ranging from 5.2 ng/L to 6.4 ng/L in the anoxic zone. MeHg increased regularly from 0.04 ng/L in the surface water to a maximum concentration of 5.2 ng/L in the deeper layers. This corresponds to an amount of TotHg present as MeHg ranging from 2.1 % to 99 %. The higher concentrations of MeHg in the deeper layer corresponds to an area where no oxygen is present and concentrations of H2S exceeds 500 µM, suggesting a production of MeHg in the anoxic area as a result of sulphate reducing bacteria activity. After flushing the concentrations of TotHg showed a similar pattern ranging from 0.6 ng/L in the

  10. Oxygen transport and GeO2 stability during thermal oxidation of Ge

    Science.gov (United States)

    da Silva, S. R. M.; Rolim, G. K.; Soares, G. V.; Baumvol, I. J. R.; Krug, C.; Miotti, L.; Freire, F. L.; da Costa, M. E. H. M.; Radtke, C.

    2012-05-01

    Oxygen transport during thermal oxidation of Ge and desorption of the formed Ge oxide are investigated. Higher oxidation temperatures and lower oxygen pressures promote GeO desorption. An appreciable fraction of oxidized Ge desorbs during the growth of a GeO2 layer. The interplay between oxygen desorption and incorporation results in the exchange of O originally present in GeO2 by O from the gas phase throughout the oxide layer. This process is mediated by O vacancies generated at the GeO2/Ge interface. The formation of a substoichiometric oxide is shown to have direct relation with the GeO desorption.

  11. Effect of selective blockade of oxygen consumption, glucose transport, and Ca2+ influx on thyroxine action in human mononuclear cells

    DEFF Research Database (Denmark)

    Kvetny, J; Matzen, L E

    1990-01-01

    The effect of selective blockade of cellular glucose transporters, Ca2+ influx, and mitochondrial oxygen consumption on thyroxine (T4)-stimulated oxygen consumption and glucose uptake was examined in human mononuclear blood cells. Blockade of glucose transporters by cytochalasin B (1 x 10(-5) mol....../L) and of Ca2+ influx by alprenolol (1 x 10(-5) mol/L) and verapamil (4 x 10(-4) mol/L) inhibited T4-activated glucose uptaken and reduced T4-stimulated oxygen consumption by 20%. Uncoupling of mitochondrial oxygen consumption by azide (1 x 10(-3) mol/L) inhibited T4-stimulated oxygen consumption, but had...... no effect on glucose uptake. We conclude that T4-stimulated glucose uptake in human mononuclear blood cells is dependent on intact glucose transporters and Ca2+ influx, but not on mitochondrial oxygen consumption. However, oxygen consumption is, in part, dependent on intact glucose uptake....

  12. Reclaimed wastewater quality enhancement by oxygen injection during transportation.

    Science.gov (United States)

    Rodríguez-Gómez, L E; Alvarez, M; Rodríguez-Sevilla, J; Marrero, M C; Hernández, A

    2011-01-01

    In-sewer treatments have been studied in sewer systems, but few have been carried out on reclaimed wastewater systems. A study of oxygen injection has been performed in a completely filled gravity pipe, 0.6 m in diameter and 62 km long, in cast iron with concrete inside coating, which is part of the reclaimed wastewater reuse scheme of Tenerife (Spain). A high pressure oxygen injection system was installed at 16.0 km from pipe inlet and a constant dosage of 30 mg/L O(2) has been injected during six months, under three different operational modes (low COD, 63 mg/L; high COD, 91 mg/L; and partially nitrified water). Oxygen has been consumed in nitrification and organic matter reduction. Generally, nitrification is clearly favored instead of the organic matter oxidation. Nitrification occurs, in general, with nitrite accumulation due to the presence of free ammonia above 1 mg/L. Denitrification is in all cases incomplete due to a limitation of easily biodegradable organic matter content, inhibiting the appearance of anaerobic conditions and sulfide generation. A notable reduction of organic matter parameters is achieved (TSS below 10 mg/L), which is significantly higher than that observed under the ordinary transport conditions without oxygen. This leads to a final cost reduction, and the oxygen injection system helps water reuse managers to maintain a final good water quality in the case of a treatment plant malfunction.

  13. Hollow Nanospheres with Fluorous Interiors for Transport of Molecular Oxygen in Water

    KAUST Repository

    Vu, Khanh B.

    2016-08-11

    A dispersion system for saturated fluorocarbon (SFC) liquids based on permeable hollow nanospheres with fluorous interiors is described. The nanospheres are well dispersible in water and are capable of immediate uptake of SFCs. The nanosphere shells are gas-permeable and feature reactive functional groups for easy modification of the exterior. These features make the SFC-filled nanospheres promising vehicles for respiratory oxygen storage and transport. Uptake of molecular oxygen into nanosphere-stabilized SFC dispersions is demonstrated.

  14. Design and optimization of porous ceramic supports for asymmetric ceria-based oxygen transport membranes

    DEFF Research Database (Denmark)

    Kaiser, Andreas; Foghmoes, Søren Preben Vagn; Pećanac, G.

    2016-01-01

    The microstructure, mechanical properties and gas permeability of porous supports of Ce0.9Gd0.1O1.95−δ (CGO) were investigated as a function of sintering temperature and volume fraction of pore former for use in planar asymmetric oxygen transport membranes (OTMs). With increasing the pore former...... content from 11 vol% to 16 vol%, the gas permeabilities increased by a factor of 5 when support tapes were sintered to comparable densities. The improved permeabilities were due to a more favourable microstructure with larger interconnected pores at a porosity of 45% and a fracture strength of 47±2 MPa (m...

  15. One-dimensional model of oxygen transport impedance accounting for convection perpendicular to the electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mainka, J. [Laboratorio Nacional de Computacao Cientifica (LNCC), CMC 6097, Av. Getulio Vargas 333, 25651-075 Petropolis, RJ, Caixa Postal 95113 (Brazil); Maranzana, G.; Thomas, A.; Dillet, J.; Didierjean, S.; Lottin, O. [Laboratoire d' Energetique et de Mecanique Theorique et Appliquee (LEMTA), Universite de Lorraine, 2, avenue de la Foret de Haye, 54504 Vandoeuvre-les-Nancy (France); LEMTA, CNRS, 2, avenue de la Foret de Haye, 54504 Vandoeuvre-les-Nancy (France)

    2012-10-15

    A one-dimensional (1D) model of oxygen transport in the diffusion media of proton exchange membrane fuel cells (PEMFC) is presented, which considers convection perpendicular to the electrode in addition to diffusion. The resulting analytical expression of the convecto-diffusive impedance is obtained using a convection-diffusion equation instead of a diffusion equation in the case of classical Warburg impedance. The main hypothesis of the model is that the convective flux is generated by the evacuation of water produced at the cathode which flows through the porous media in vapor phase. This allows the expression of the convective flux velocity as a function of the current density and of the water transport coefficient {alpha} (the fraction of water being evacuated at the cathode outlet). The resulting 1D oxygen transport impedance neglects processes occurring in the direction parallel to the electrode that could have a significant impact on the cell impedance, like gas consumption or concentration oscillations induced by the measuring signal. However, it enables us to estimate the impact of convection perpendicular to the electrode on PEMFC impedance spectra and to determine in which conditions the approximation of a purely diffusive oxygen transport is valid. Experimental observations confirm the numerical results. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Two decades' experience with interfacility transport on extracorporeal membrane oxygenation.

    Science.gov (United States)

    Bryner, Benjamin; Cooley, Elaine; Copenhaver, William; Brierley, Kristin; Teman, Nicholas; Landis, Denise; Rycus, Peter; Hemmila, Mark; Napolitano, Lena M; Haft, Jonathan; Park, Pauline K; Bartlett, Robert H

    2014-10-01

    Interfacility transport of patients on extracorporeal membrane oxygenation (ECMO) has been performed in large numbers at only a few programs. Limited data are available on outcomes after ECMO transport to justify expanding or discontinuing these programs. This was a retrospective review of a 20-year, single-institution experience with interhospital ECMO transport as well as a systematic review of reports of transfers of patients on ECMO. Results of both were compared with historical data from the international registry of the Extracorporeal Life Support Organization (ELSO). Between 1990 and 2012, ECMO was used to facilitate transport of 221 patients to our institution, and 135 (62%) survived to discharge. Review of an additional 27 case series describing ECMO transport of 643 patients showed an overall survival of 61%. After stratifying by age and primary indication for ECMO, survival of transported patients was not significantly different compared with all ECMO patients in the ELSO registry, with the exception of pediatric patients treated for respiratory failure (transported patients in this category had higher survival than those in the ELSO registry). Interfacility transport on ECMO is feasible and can be accomplished safely in the critically ill. Survival of transported patients is comparable to age-matched and treatment-matched ECMO patients at large. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  17. A computational model for simulating solute transport and oxygen consumption along the nephrons

    Science.gov (United States)

    Vallon, Volker; Edwards, Aurélie

    2016-01-01

    The goal of this study was to investigate water and solute transport, with a focus on sodium transport (TNa) and metabolism along individual nephron segments under differing physiological and pathophysiological conditions. To accomplish this goal, we developed a computational model of solute transport and oxygen consumption (QO2) along different nephron populations of a rat kidney. The model represents detailed epithelial and paracellular transport processes along both the superficial and juxtamedullary nephrons, with the loop of Henle of each model nephron extending to differing depths of the inner medulla. We used the model to assess how changes in TNa may alter QO2 in different nephron segments and how shifting the TNa sites alters overall kidney QO2. Under baseline conditions, the model predicted a whole kidney TNa/QO2, which denotes the number of moles of Na+ reabsorbed per moles of O2 consumed, of ∼15, with TNa efficiency predicted to be significantly greater in cortical nephron segments than in medullary segments. The TNa/QO2 ratio was generally similar among the superficial and juxtamedullary nephron segments, except for the proximal tubule, where TNa/QO2 was ∼20% higher in superficial nephrons, due to the larger luminal flow along the juxtamedullary proximal tubules and the resulting higher, flow-induced transcellular transport. Moreover, the model predicted that an increase in single-nephron glomerular filtration rate does not significantly affect TNa/QO2 in the proximal tubules but generally increases TNa/QO2 along downstream segments. The latter result can be attributed to the generally higher luminal [Na+], which raises paracellular TNa. Consequently, vulnerable medullary segments, such as the S3 segment and medullary thick ascending limb, may be relatively protected from flow-induced increases in QO2 under pathophysiological conditions. PMID:27707705

  18. Impacts of nitric oxide and superoxide on renal medullary oxygen transport and urine concentration

    Science.gov (United States)

    Edwards, Aurélie; Layton, Anita T.

    2015-01-01

    The goal of this study was to investigate the reciprocal interactions among oxygen (O2), nitric oxide (NO), and superoxide (O2−) and their effects on medullary oxygenation and urinary output. To accomplish that goal, we developed a detailed mathematical model of solute transport in the renal medulla of the rat kidney. The model represents the radial organization of the renal tubules and vessels, which centers around the vascular bundles in the outer medulla and around clusters of collecting ducts in the inner medulla. Model simulations yield significant radial gradients in interstitial fluid oxygen tension (Po2) and NO and O2− concentration in the OM and upper IM. In the deep inner medulla, interstitial fluid concentrations become much more homogeneous, as the radial organization of tubules and vessels is not distinguishable. The model further predicts that due to the nonlinear interactions among O2, NO, and O2−, the effects of NO and O2− on sodium transport, osmolality, and medullary oxygenation cannot be gleaned by considering each solute's effect in isolation. An additional simulation suggests that a sufficiently large reduction in tubular transport efficiency may be the key contributing factor, more so than oxidative stress alone, to hypertension-induced medullary hypoxia. Moreover, model predictions suggest that urine Po2 could serve as a biomarker for medullary hypoxia and a predictor of the risk for hospital-acquired acute kidney injury. PMID:25651567

  19. Effect of oxygen defects on transport properties and Tc of YBa2Cu3O6+x: Displacement energy for plane and chain oxygen and implications for irradiation-induced resistivity and Tc suppression

    International Nuclear Information System (INIS)

    Tolpygo, S.K.; Lin, J.; Gurvitch, M.; Hou, S.Y.; Phillips, J.M.

    1996-01-01

    The effect of electron irradiation with energy from 20 to 120 keV on the resistivity, Hall coefficient, and superconducting critical temperature T c of YBa 2 Cu 3 O 6+x thin films has been studied. The threshold energy of incident electrons for T c suppression has been found, and the displacement energy for oxygen in CuO 2 planes has been evaluated as 8.4 eV for irradiation along the c axis. The kinetics of production of the in-plane oxygen vacancies has been studied and found to be governed by athermal recombination of vacancy-interstitial pairs. The evaluated recombination volume constitutes about 21 unit cells. The increase in the T-linear resistivity slope and Hall coefficient at unchanged T c was observed in irradiations with subthreshold incident energies and was ascribed to the effect of chain oxygen displacements. The upper limit on the displacement energy for chain oxygen has been estimated as 2.8 eV. In x=0.9 samples the T c suppression by in-plane oxygen defects and increase in residual resistivity have been found to be, respectively, -280 K and 1.5 mΩcm per defect in the unit cell. It is shown that T c suppression by in-plane oxygen defects is a universal function of the transport impurity scattering rate and can be described qualitatively by pair-breaking theory for d-wave superconductors with nonmagnetic potential scatterers. Evaluation of scattering and pair-breaking rates as well as the scattering cross section and potential is given. A comparison of the influence of in-plane oxygen defects on transport properties with that of other in-plane defects, such as Zn and Ni substitutions for Cu, is also made. copyright 1996 The American Physical Society

  20. The Pathway for Oxygen: Tutorial Modelling on Oxygen Transport from Air to Mitochondrion: The Pathway for Oxygen.

    Science.gov (United States)

    Bassingthwaighte, James B; Raymond, Gary M; Dash, Ranjan K; Beard, Daniel A; Nolan, Margaret

    2016-01-01

    The 'Pathway for Oxygen' is captured in a set of models describing quantitative relationships between fluxes and driving forces for the flux of oxygen from the external air source to the mitochondrial sink at cytochrome oxidase. The intervening processes involve convection, membrane permeation, diffusion of free and heme-bound O2 and enzymatic reactions. While this system's basic elements are simple: ventilation, alveolar gas exchange with blood, circulation of the blood, perfusion of an organ, uptake by tissue, and consumption by chemical reaction, integration of these pieces quickly becomes complex. This complexity led us to construct a tutorial on the ideas and principles; these first PathwayO2 models are simple but quantitative and cover: (1) a 'one-alveolus lung' with airway resistance, lung volume compliance, (2) bidirectional transport of solute gasses like O2 and CO2, (3) gas exchange between alveolar air and lung capillary blood, (4) gas solubility in blood, and circulation of blood through the capillary syncytium and back to the lung, and (5) blood-tissue gas exchange in capillaries. These open-source models are at Physiome.org and provide background for the many respiratory models there.

  1. Osmotic phenomena in application for hyperbaric oxygen treatment.

    Science.gov (United States)

    Babchin, A; Levich, E; Melamed M D, Y; Sivashinsky, G

    2011-03-01

    Hyperbaric oxygen (HBO) treatment defines the medical procedure when the patient inhales pure oxygen at elevated pressure conditions. Many diseases and all injuries are associated with a lack of oxygen in tissues, known as hypoxia. HBO provides an effective method for fast oxygen delivery in medical practice. The exact mechanism of the oxygen transport under HBO conditions is not fully identified. The objective of this article is to extend the colloid and surface science basis for the oxygen transport in HBO conditions beyond the molecular diffusion transport mechanism. At a pressure in the hyperbaric chamber of two atmospheres, the partial pressure of oxygen in the blood plasma increases 10 times. The sharp increase of oxygen concentration in the blood plasma creates a considerable concentration gradient between the oxygen dissolved in the plasma and in the tissue. The concentration gradient of oxygen as a non-electrolyte solute causes an osmotic flow of blood plasma with dissolved oxygen. In other words, the molecular diffusion transport of oxygen is supplemented by the convective diffusion raised due to the osmotic flow, accelerating the oxygen delivery from blood to tissue. A non steady state equation for non-electrolyte osmosis is solved asymptotically. The solution clearly demonstrates two modes of osmotic flow: normal osmosis, directed from lower to higher solute concentrations, and anomalous osmosis, directed from higher to lower solute concentrations. The fast delivery of oxygen from blood to tissue is explained on the basis of the strong molecular interaction between the oxygen and the tissue, causing an influx of oxygen into the tissue by convective diffusion in the anomalous osmosis process. The transport of the second gas, nitrogen, dissolved in the blood plasma, is also taken into the consideration. As the patient does not inhale nitrogen during HBO treatment, but exhales it along with oxygen and carbon dioxide, the concentration of nitrogen in blood

  2. Investigation of oxygen impurity transport using the O4+ visible spectral line in the Aditya tokamak

    International Nuclear Information System (INIS)

    Chowdhuri, M.B.; Ghosh, J.; Banerjee, S.; Dey, Ritu; Manchanda, R.; Kumar, Vinay; Vasu, P.; Patel, K.M.; Atrey, P.K.; Shankara Joisa, Y.; Rao, C.V.S.; Tanna, R.L.; Raju, D.; Chattopadhyay, P.K.; Jha, R.; Gupta, C.N.; Bhatt, S.B.; Saxena, Y.C.

    2013-01-01

    Intense visible lines from Be-like oxygen impurity are routinely observed in the Aditya tokamak. The spatial profile of brightness of a Be-like oxygen spectral line (2p3p 3 D 3 –2p3d 3 F 4 ) at 650.024 nm is used to investigate oxygen impurity transport in typical discharges of the Aditya tokamak. A 1.0 m multi-track spectrometer (Czerny–Turner) capable of simultaneous measurements from eight lines of sight is used to obtain the radial profile of brightness of O 4+ spectral emission. The emissivity profile of O 4+ spectral emission is obtained from the spatial profile of brightness using an Abel-like matrix inversion. The oxygen transport coefficients are determined by reproducing the experimentally measured emissivity profiles of O 4+ , using a one-dimensional empirical impurity transport code, STRAHL. Much higher values of the diffusion coefficient compared with the neo-classical values are observed in both the high magnetic field edge region (D inboard max ∼30 m 2 s -1 ) and the low magnetic field edge region (D outboard max ∼45 m 2 s -1 ) of typical Aditya ohmic plasmas, which seems to be due to fluctuation-induced transport. The diffusion coefficient at the limiter radius in the low-field (outboard) region is typically ∼ twice as high as that at the limiter radius in the high-field (inboard) region. (paper)

  3. A high-resolution non-invasive approach to quantify oxygen transport across the capillary fringe and within the underlying groundwater.

    Science.gov (United States)

    Haberer, Christina M; Rolle, Massimo; Liu, Sanheng; Cirpka, Olaf A; Grathwohl, Peter

    2011-03-25

    Oxygen transport across the capillary fringe is relevant for many biogeochemical processes. We present a non-invasive technique, based on optode technology, to measure high-resolution concentration profiles of oxygen across the unsaturated/saturated interface. By conducting a series of quasi two-dimensional flow-through laboratory experiments, we show that vertical hydrodynamic dispersion in the water-saturated part of the capillary fringe is the process limiting the mass transfer of oxygen. A number of experimental conditions were tested in order to investigate the influence of grain size and horizontal flow velocity on transverse vertical dispersion in the capillary fringe. In the same setup, analogous experiments were simultaneously carried out in the fully water-saturated zone, therefore allowing a direct comparison with oxygen transfer across the capillary fringe. The outcomes of the experiments under various conditions show that oxygen transport in the two zones of interest (i.e., the unsaturated/saturated interface and the saturated zone) is characterized by very similar transverse dispersion coefficients. An influence of the capillary fringe morphology on oxygen transport has not been observed. These results may be explained by the narrow grain size distribution used in the experiments, leading to a steep decline in water saturation at the unsaturated/saturated interface and to the absence of trapped gas in this transition zone. We also modeled flow (applying the van Genuchten and the Brooks-Corey relationships) and two-dimensional transport across the capillary fringe, obtaining simulated profiles of equivalent aqueous oxygen concentration that were in good agreement with the observations. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Modeling of oxygen transport and cellular energetics explains observations on in vivo cardiac energy metabolism.

    Directory of Open Access Journals (Sweden)

    Daniel A Beard

    2006-09-01

    Full Text Available Observations on the relationship between cardiac work rate and the levels of energy metabolites adenosine triphosphate (ATP, adenosine diphosphate (ADP, and phosphocreatine (CrP have not been satisfactorily explained by theoretical models of cardiac energy metabolism. Specifically, the in vivo stability of ATP, ADP, and CrP levels in response to changes in work and respiratory rate has eluded explanation. Here a previously developed model of mitochondrial oxidative phosphorylation, which was developed based on data obtained from isolated cardiac mitochondria, is integrated with a spatially distributed model of oxygen transport in the myocardium to analyze data obtained from several laboratories over the past two decades. The model includes the components of the respiratory chain, the F0F1-ATPase, adenine nucleotide translocase, and the mitochondrial phosphate transporter at the mitochondrial level; adenylate kinase, creatine kinase, and ATP consumption in the cytoplasm; and oxygen transport between capillaries, interstitial fluid, and cardiomyocytes. The integrated model is able to reproduce experimental observations on ATP, ADP, CrP, and inorganic phosphate levels in canine hearts over a range of workload and during coronary hypoperfusion and predicts that cytoplasmic inorganic phosphate level is a key regulator of the rate of mitochondrial respiration at workloads for which the rate of cardiac oxygen consumption is less than or equal to approximately 12 mumol per minute per gram of tissue. At work rates corresponding to oxygen consumption higher than 12 mumol min(-1 g(-1, model predictions deviate from the experimental data, indicating that at high work rates, additional regulatory mechanisms that are not currently incorporated into the model may be important. Nevertheless, the integrated model explains metabolite levels observed at low to moderate workloads and the changes in metabolite levels and tissue oxygenation observed during graded

  5. A theoretical model for the effects of reduced hemoglobin-oxygen affinity on tumor oxygenation

    International Nuclear Information System (INIS)

    Kavanagh, Brian D.; Secomb, Timothy W.; Hsu, Richard; Lin, P.-S.; Venitz, Jurgen; Dewhirst, Mark W.

    2002-01-01

    Purpose: To develop a theoretical model for oxygen delivery to tumors, and to use the model to simulate the effects of changing the affinity of hemoglobin for oxygen on tumor oxygenation. Methods and Materials: Hemoglobin affinity is expressed in terms of P 50 , the partial pressure of oxygen (Po 2 ) at half saturation. Effects of changing P 50 on arterial Po 2 are predicted using an effective vessel approach to describe diffusive oxygen transport in the lungs, assuming fixed systemic oxygen demand and fixed blood flow rate. The decline in oxygen content of blood as it flows through normal tissue before entering the tumor region is assumed fixed. The hypoxic fraction of the tumor region is predicted using a three-dimensional simulation of diffusion from a network of vessels whose geometry is derived from observations of tumor microvasculature in the rat. Results: In air-breathing rats, predicted hypoxic fraction decreases with moderate increases in P 50 , but increases with further increases of P 50 , in agreement with previous experimental results. In rats breathing hyperoxic gases, and in humans breathing either normoxic or hyperoxic gases, increased P 50 is predicted to improve tumor oxygenation. Conclusions: The results support the administration of synthetic agents to increase P 50 during radiation treatment of tumors

  6. Research and Development on Oxygen Transport Membranes at the Technical University of Denmark from Materials to Modules

    DEFF Research Database (Denmark)

    Kiebach, Wolff-Ragnar; Pirou, Stéven; Ovtar, Simona

    2016-01-01

    Oxygen transport membranes (OTMs) are inorganic, high temperature devices that have the potential to efficiently supply oxygen to combustion processes, for example for oxy-fired (biomass) gasification or in the cement and steel industry. This work reviews aspects of material selection, design...

  7. Oxygen transport enhancement by functionalized magnetic nanoparticles (FMP) in bioprocesses

    Science.gov (United States)

    Ataide, Filipe Andre Prata

    The enhancement of fluid properties, namely thermal conductivity and mass diffusivity for a wide range of applications, through the use of nanosized particles' suspensions has been gathering increasing interest in the scientific community. In previous studies, Olle et al. (2006) showed an enhancement in oxygen absorption to aqueous solutions of up to 6-fold through the use of functionalized nanosized magnetic particles with oleic acid coating. Krishnamurthy et al. (2006) showed a remarkable 26-fold enhancement in dye diffusion in water. These two publications are landmarks in mass transfer enhancement in chemical systems through the use of nanoparticles. The central goal of this Ph.D. thesis was to develop functionalized magnetic nanoparticles to enhance oxygen transport in bioprocesses. The experimental protocol for magnetic nanoparticles synthesis and purification adopted in this thesis is a modification of that reported by Olle et al. (2006). This is facilitated by employing twice the quantity of ammonia, added at a slower rate, and by filtering the final nanoparticle solution in a cross-flow filtration modulus against 55 volumes of distilled water. This modification in the protocol resulted in improved magnetic nanoparticles with measurably higher mass transfer enhancement. Magnetic nanoparticles with oleic acid and Hitenol-BC coating were screened for oxygen transfer enhancement, since these particles are relatively inexpensive and easy to synthesize. A glass 0.5-liter reactor was custom manufactured specifically for oxygen transport studies in magnetic nanoparticles suspensions. The reactor geometry, baffles and Rushton impeller are of standard dimensions. Mass transfer tests were conducted through the use of the sulphite oxidation method, applying iodometric back-titration. A 3-factor central composite circumscribed design (CCD) was adopted for design of experiments in order to generate sufficiently informative data to model the effect of magnetic

  8. Ketosis After Cardiopulmonary Bypass in Children Is Associated With an Inadequate Balance Between Oxygen Transport and Consumption.

    Science.gov (United States)

    Klee, Philippe; Arni, Delphine; Saudan, Sonja; Schwitzgebel, Valérie M; Sharma, Ruchika; Karam, Oliver; Rimensberger, Peter C

    2016-09-01

    Hyperglycemia after cardiac surgery and cardiopulmonary bypass in children has been associated with worse outcome; however, causality has never been proven. Furthermore, the benefit of tight glycemic control is inconsistent. The purpose of this study was to describe the metabolic constellation of children before, during, and after cardiopulmonary bypass, in order to identify a subset of patients that might benefit from insulin treatment. Prospective observational study, in which insulin treatment was initiated when postoperative blood glucose levels were more than 12 mmol/L (216 mg/dL). Tertiary PICU. Ninety-six patients 6 months to 16 years old undergoing cardiac surgery with cardiopulmonary bypass. None. Metabolic tests were performed before anesthesia, at the end of cardiopulmonary bypass, at PICU admission, and 4 and 12 hours after PICU admission, as well as 4 hours after initiation of insulin treatment. Ketosis was present in 17.9% patients at the end of cardiopulmonary bypass and in 31.2% at PICU admission. Young age was an independent risk factor for this condition. Ketosis at PICU admission was an independent risk factor for an increased difference between arterial and venous oxygen saturation. Four hours after admission (p = 0.05). Insulin corrected ketosis within 4 hours. In this study, we found a high prevalence of ketosis at PICU admission, especially in young children. This was independently associated with an imbalance between oxygen transport and consumption and was corrected by insulin. These results set the basis for future randomized controlled trials, to test whether this subgroup of patients might benefit from increased glucose intake and insulin during surgery to avoid ketosis, as improving oxygen transport and consumption might improve patient outcome.

  9. The effect of topological defects and oxygen adsorption on the electronic transport properties of single-walled carbon-nanotubes

    International Nuclear Information System (INIS)

    Grujicic, M.; Cao, G.; Singh, R.

    2003-01-01

    Ab initio density functional theory (DFT) calculations of the interactions between isolated infinitely-long semiconducting zig-zag (10, 0) or isolated infinitely-long metallic arm-chair (5, 5) single-walled carbon-nanotubes (SWCNTs) and single oxygen-molecules are carried out in order to determine the character of molecular-oxygen adsorption and its effect on electronic transport properties of these SWCNTs. A Green's function method combined with a nearest-neighbor tight-binding Hamiltonian in a non-orthogonal basis is used to compute the electrical conductance of SWCNTs and its dependence on the presence of topological defects in SWCNTs and of molecular-oxygen adsorbates. The computational results obtained show that in both semiconducting and metallic SWCNTs, oxygen-molecules are physisorbed to the defect-free nanotube walls, but when such walls contain topological defects, oxygen-molecules become strongly chemisorbed. In semiconducting (10, 0) SWCNTs, physisorbed O 2 -molecules are found to significantly increase electrical conductance while the effect of 7-5-5-7 defects is practically annulled by chemisorbed O 2 -molecules. In metallic (5, 5) SWCNTs, both O 2 adsorbates and 7-5-5-7 defects are found to have a relatively small effect on electrical conductance of these nanotubes

  10. Basic regulatory principles of Escherichia coli's electron transport chain for varying oxygen conditions

    NARCIS (Netherlands)

    Henkel, S.G.; Ter Beek, A.S.; Steinsiek, S.; Stagge, S.; Bettenbrock, K.; Teixeira De Mattos, M.J.; Sauter, T.; Sawodny, O.; Ederer, M.

    2014-01-01

    For adaptation between anaerobic, micro-aerobic and aerobic conditions Escherichia coli's metabolism and in particular its electron transport chain (ETC) is highly regulated. Although it is known that the global transcriptional regulators FNR and ArcA are involved in oxygen response it is unclear

  11. Linking Arenicola marina irrigation behavior to oxygen transport and dynamics in sandy sediments

    DEFF Research Database (Denmark)

    Timmermann, Karen; Banta, Gary T.; Glud, Ronnie Nøhr

    2007-01-01

    In this study we examine how the irrigation behavior of the common lugworm Arenicola marina affects the distribution, transport and dynamics of oxygen in sediments using microelectrodes, planar optodes and diagenetic modeling. The irrigation pattern was characterized by a regular recurring period...... and only in rare situations with very high pumping rates (>200 ml h-1) and/or a narrow feeding funnel (water....... concentration in the burrow was high (80% air saturation) and oxygen was detected at distances up to 0.7 mm from the burrow wall. Volume specific oxygen consumption rates calculated from measured oxygen profiles were up to 4 times higher for sediments surrounding worm burrows as compared to surface sediments....... Model results indicated that oxygen consumption also was higher in the feeding pocket/funnel compared to the activity in surface sediments. An oxygen budget revealed that 49% of the oxygen pumped into the burrow during lugworm irrigation was consumed by the worm itself while 23% supported the diffusive...

  12. Feasibility of electrokinetic oxygen supply for soil bioremediation purposes.

    Science.gov (United States)

    Mena Ramírez, E; Villaseñor Camacho, J; Rodrigo Rodrigo, M A; Cañizares Cañizares, P

    2014-12-01

    This paper studies the possibility of providing oxygen to a soil by an electrokinetic technique, so that the method could be used in future aerobic polluted soil bioremediation treatments. The oxygen was generated from the anodic reaction of water electrolysis and transported to the soil in a laboratory-scale electrokinetic cell. Two variables were tested: the soil texture and the voltage gradient. The technique was tested in two artificial soils (clay and sand) and later in a real silty soil, and three voltage gradients were used: 0.0 (control), 0.5, and 1.0 V cm(-1). It was observed that these two variables strongly influenced the results. Oxygen transport into the soil was only available in the silty and sandy soils by oxygen diffusion, obtaining high dissolved oxygen concentrations, between 4 and 9 mg L(-1), useful for possible aerobic biodegradation processes, while transport was not possible in fine-grained soils such as clay. Electro-osmotic flow did not contribute to the transport of oxygen, and an increase in voltage gradients produced higher oxygen transfer rates. However, only a minimum fraction of the electrolytically generated oxygen was efficiently used, and the maximum oxygen transport rate observed, approximately 1.4 mgO2 L(-1)d(-1), was rather low, so this technique could be only tested in slow in-situ biostimulation processes for organics removal from polluted soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. A role for haemolymph oxygen capacity in heat tolerance of eurythermal crabs.

    Directory of Open Access Journals (Sweden)

    Folco eGiomi

    2013-05-01

    Full Text Available Heat tolerance in aquatic ectotherms is constrained by a mismatch, occurring at high temperatures, between oxygen delivery and demand which compromises the maintenance of aerobic scope. The present study analyses how the wide thermal tolerance range of an eurythermal model species, the green crab Carcinus maenas is supported and limited by its ability to sustain efficient oxygen transport to tissues. Similar to other eurytherms, C. maenas sustains naturally occurring acute warming events through the integrated response of circulatory and respiratory systems. The response of C. maenas to warming is characterized by two phases. During initial warming, oxygen consumption and heart rate increase while stroke volume and haemolymph oxygen partial pressures decrease. During further warming, dissolved oxygen levels in the venous compartment decrease below the threshold of full haemocyanin oxygen saturation. The progressive release of haemocyanin bound oxygen with further warming follows an exponential pattern, thereby saving energy in oxygen transport and causing an associated leveling off of metabolic rate. According to the concept of oxygen and capacity limited thermal tolerance, this indicates that the thermal tolerance window is widened by the increasing contribution of haemocyanin oxygen transport and associated energy savings in cardiocirculation. Haemocyanin bound oxygen sustains cardiac performance to cover the temperature range experienced by C. maenas in the field. To our knowledge this is the first study providing evidence of a relationship between thermal tolerance and blood (haemolymph oxygen transport in eurythermal invertebrates.

  14. A role for haemolymph oxygen capacity in heat tolerance of eurythermal crabs.

    Science.gov (United States)

    Giomi, Folco; Pörtner, Hans-Otto

    2013-01-01

    Heat tolerance in aquatic ectotherms is constrained by a mismatch, occurring at high temperatures, between oxygen delivery and demand which compromises the maintenance of aerobic scope. The present study analyses how the wide thermal tolerance range of an eurythermal model species, the green crab Carcinus maenas is supported and limited by its ability to sustain efficient oxygen transport to tissues. Similar to other eurytherms, C. maenas sustains naturally occurring acute warming events through the integrated response of circulatory and respiratory systems. The response of C. maenas to warming can be characterized by two phases. During initial warming, oxygen consumption and heart rate increase, while stroke volume and haemolymph oxygen partial pressure decrease. During further warming, dissolved oxygen levels in the venous compartment decrease below the threshold of full haemocyanin oxygen saturation. The progressive release of haemocyanin bound oxygen with further warming follows an exponential pattern, thereby saving energy in oxygen transport and causing an associated leveling off of metabolic rate. According to the concept of oxygen and capacity limited thermal tolerance (OCLTT), this indicates that the thermal tolerance window is widened by the increasing contribution of haemocyanin oxygen transport and associated energy savings in cardiocirculation. Haemocyanin bound oxygen sustains cardiac performance to cover the temperature range experienced by C. maenas in the field. To our knowledge this is the first study providing evidence of a relationship between thermal tolerance and blood (haemolymph) oxygen transport in a eurythermal invertebrate.

  15. Increased transvascular lipoprotein transport in diabetes

    DEFF Research Database (Denmark)

    Jensen, Jan Skov; Feldt-Rasmussen, Bo; Borch-Johnsen, Knut

    2005-01-01

    CONTEXT: Diabetes is associated with a highly increased risk of atherosclerosis, especially if hypertension or albuminuria is present. OBJECTIVE: We hypothesized that the increased transvascular lipoprotein transport in diabetes may be further accelerated if hypertension or albuminuria is present...... of transvascular transport. RESULTS: Transvascular LDL transport was 1.8 (1.6-2.0), 2.3 (2.0-2.6), and 2.6 (1.3-4.0)%/[h x (liter/m2)] in healthy controls, diabetic controls, and diabetes patients with systolic hypertension or albuminuria, respectively (P = 0.013; F = 4.5; df =2; ANOVA). These differences most...... likely were not caused by altered hepatic LDL receptor expression, glycosylation of LDL, small LDL size, or medicine use. CONCLUSIONS: Transvascular LDL transport is increased in patients with diabetes mellitus, especially if systolic hypertension or albuminuria is present. Accordingly, lipoprotein flux...

  16. [TRANSPORT OF OXYGEN DURING GEOMETRICAL RECONSTRUCTION OF THE LEFT VENTRICLE IN CONJUNCTION WITH CORONARY ARTERY BYPASS GRAFTING AND USING OF HIGH THORACIC EPIDURAL ANESTHESIA AS A MAJOR COMPONENT OF GENERAL ANAESTHESIA].

    Science.gov (United States)

    Zatevahina, M V; Farzutdinov, A F; Rahimov, A A; Makrushin, I M; Kvachantiradze, G Y

    2015-01-01

    The purpose of the study is to examine the perioperative dynamics of strategic blood oxygen transport indicators: delivery (DO2), consumption (VO2), the coefficient of oxygen uptake (CUO2) and their composition, as well as the dynamics of blood lactate indicators in patients with ischaemic heart disease (IHD) who underwent surgery under cardiopulmonary bypass with high thoracic epidural anaesthesia (HTEA) as the main component of anesthesia. Research was conducted in 30 patients with a critical degree of operational risk, during the correction of post-infarction heart aneurysmn using the V. Dor method in combination with coronary artery bypass grafting. The strategic blood oxygen transport indicators (delivery, consumption and the oxygen uptake coefficient) showed a statistically significant decrease compared to the physiological norm and to the initial data at two points of the research: the intubation of the trachea and during cardiopulmonary bypass. The system components of oxygen were influenced at problematic stages by the dynamics of SvO2 (increase), AVD (decrease), hemodilution withe fall of the HIb- in the process of JR in the persence of superficial hypothermia. The maintenance of optimal CA in the context of HTEA, combined with a balanced volemic load and a minimized cardiotonic support ensured the stabilisation of strategic blood oxygen transport indicators aithe postperfusion stage and during the immediate postoperative period The article is dedicated to the study of strategic blood oxygen transport indicators and their components during the operation of geometric reconstruc-tion of the left ventricle combined with coronary artery-bypass using cardiopulmonary bypass and with high thoracic epidural anesthesia as the main component of general anaesthesia. The analysis has covered the stagewise delivery dynamics, consumption and the oxygen uptake coefficient at II stages of the operation and of the immediate postoperative period. The study has ident (fled

  17. Characterization of transport properties in uranium dioxide: the case of the oxygen auto-diffusion

    International Nuclear Information System (INIS)

    Fraczkiewicz, M.; Baldinozzi, G.

    2008-01-01

    Point defects in uranium dioxide which control the transport phenomena are still badly known. The aim of this work is to show how in carrying out several experimental techniques, it is possible to demonstrate both the existence and to determine the nature (charge and localization) of predominant defects responsible of the transport phenomena in a fluorite-type structure oxide. The oxygen diffusion in the uranium dioxide illustrates this. In the first part of this work, the accent is put on the electric properties of uranium dioxide and more particularly on the variation laws of the electric conductivity in terms of temperature, of oxygen potential and of the impurities amounts present in the material. These evolutions are connected to point and charged complex defects models and the pertinence of these models is discussed. Besides, it is shown how the electric conductivity measurements can allow to define oxygen potential domains in which the concentrations in electronic carriers are controlled. This characterization being made, it is shown that the determination of the oxygen intrinsic diffusion coefficient and particularly its dependence to the oxygen potential and to the amount of impurity, allows to determine the main defect responsible to the atomic diffusion as well as its nature and its charge. In the second part, the experimental techniques to determine the oxygen diffusion coefficient are presented: there are the isotopic exchange technique for introducing the tracer in the material, and two techniques to characterize the diffusion profiles (SIMS and NRA). Examples of preliminary results are given for mono and polycrystalline samples. At last, from this methodology on uranium dioxide, studies considered to quantify the thermal and physicochemical effects are presented. Experiments considered with the aim to characterize the radiation diffusion in uranium dioxide are presented too. (O.M.)

  18. pH-Sensitive Amphiphilic Block-Copolymers for Transport and Controlled Release of Oxygen

    KAUST Repository

    Patil, Yogesh Raghunath

    2017-05-31

    Saturated fluorocarbons, their derivatives and emulsions are capable of dissolving anomalously high amounts of oxygen and other gases. The mechanistic aspects of this remarkable effect remain to be explored experimentally. Here, the synthesis of a library of amphiphilic fluorous block-copolymers incorporating different fluorinated monomers is described, and the capacity of these copolymers for oxygen transport in water is systematically investigated. The structure of the fluorous monomer employed was found to have a profound effect on both the oxygen-carrying capacity and the gas release kinetics of the polymer emulsions. Furthermore, the release of O2 from the polymer dispersions could be triggered by changing the pH of the solution. This is the first example of a polymer-based system for controlled release of a non-polar, non-covalently entrapped respiratory gas.

  19. pH-Sensitive Amphiphilic Block-Copolymers for Transport and Controlled Release of Oxygen

    KAUST Repository

    Patil, Yogesh Raghunath; Almahdali, Sarah; Vu, Khanh B.; Zapsas, Georgios; Hadjichristidis, Nikolaos; Rodionov, Valentin

    2017-01-01

    Saturated fluorocarbons, their derivatives and emulsions are capable of dissolving anomalously high amounts of oxygen and other gases. The mechanistic aspects of this remarkable effect remain to be explored experimentally. Here, the synthesis of a library of amphiphilic fluorous block-copolymers incorporating different fluorinated monomers is described, and the capacity of these copolymers for oxygen transport in water is systematically investigated. The structure of the fluorous monomer employed was found to have a profound effect on both the oxygen-carrying capacity and the gas release kinetics of the polymer emulsions. Furthermore, the release of O2 from the polymer dispersions could be triggered by changing the pH of the solution. This is the first example of a polymer-based system for controlled release of a non-polar, non-covalently entrapped respiratory gas.

  20. High energy lithium-oxygen batteries - Transport barriers and thermodynamics

    KAUST Repository

    Das, Shyamal K.

    2012-01-01

    We show that it is possible to achieve higher energy density lithium-oxygen batteries by simultaneously lowering the discharge overpotential and increasing the discharge capacity via thermodynamic variables alone. By assessing the relative effects of temperature and pressure on the cell discharge profiles, we characterize and diagnose the critical roles played by multiple dynamic processes that have hindered implementation of the lithium-oxygen battery. © 2012 The Royal Society of Chemistry.

  1. Carbonic anhydrase inhibition increases retinal oxygen tension and dilates retinal vessels

    DEFF Research Database (Denmark)

    Pedersen, Daniella Bach; Koch Jensen, Peter; la Cour, Morten

    2005-01-01

    Carbonic anhydrase inhibitors (CAIs) increase blood flow in the brain and probably also in the optic nerve and retina. Additionally they elevate the oxygen tension in the optic nerve in the pig. We propose that they also raise the oxygen tension in the retina. We studied the oxygen tension in the...... in the pig retina and optic nerve before and after dorzolamide injection. Also the retinal vessel diameters during carbonic anhydrase inhibition were studied....

  2. Oxygen transport membrane reactor based method and system for generating electric power

    Science.gov (United States)

    Kelly, Sean M.; Chakravarti, Shrikar; Li, Juan

    2017-02-07

    A carbon capture enabled system and method for generating electric power and/or fuel from methane containing sources using oxygen transport membranes by first converting the methane containing feed gas into a high pressure synthesis gas. Then, in one configuration the synthesis gas is combusted in oxy-combustion mode in oxygen transport membranes based boiler reactor operating at a pressure at least twice that of ambient pressure and the heat generated heats steam in thermally coupled steam generation tubes within the boiler reactor; the steam is expanded in steam turbine to generate power; and the carbon dioxide rich effluent leaving the boiler reactor is processed to isolate carbon. In another configuration the synthesis gas is further treated in a gas conditioning system configured for carbon capture in a pre-combustion mode using water gas shift reactors and acid gas removal units to produce hydrogen or hydrogen-rich fuel gas that fuels an integrated gas turbine and steam turbine system to generate power. The disclosed method and system can also be adapted to integrate with coal gasification systems to produce power from both coal and methane containing sources with greater than 90% carbon isolation.

  3. Influence of gemfibrozil on sulfate transport in human erythrocytes during the oxygenation-deoxygenation cycle

    Czech Academy of Sciences Publication Activity Database

    Tellone, E.; Ficarra, S.; Scatena, R.; Giardina, B.; Kotyk, Arnošt; Russo, A.; Colucci, D.; Bellocco, E.; Lagana, G.; Galtieri, A.

    2008-01-01

    Roč. 57, č. 4 (2008), s. 621-629 ISSN 0862-8408 R&D Projects: GA AV ČR(CZ) 1ET400110403 Institutional research plan: CEZ:AV0Z50110509 Keywords : gemfibrozil * sulfate transport * oxygenation-deoxygenation Subject RIV: CE - Biochemistry Impact factor: 1.653, year: 2008

  4. Short-term molecular acclimation processes of legume nodules to increased external oxygen concentration

    Directory of Open Access Journals (Sweden)

    Ulrike eAvenhaus

    2016-01-01

    Full Text Available Nitrogenase is an oxygen labile enzyme. Microaerobic conditions within the infected zone of nodules are maintained primarily by an oxygen diffusion barrier located in the nodule cortex. Flexibility of the oxygen diffusion barrier is important for the acclimation processes of nodules in response to changes in external oxygen concentration. The hypothesis of the present study was that there are additional molecular mechanisms involved. Nodule activity of Medicago truncatula plants were continuously monitored during a change from 21 to 25 or 30 % oxygen around root nodules by measuring nodule H2 evolution. Within about two minutes of the increase in oxygen concentration, a steep decline in nitrogenase activity occurred. A quick recovery commenced about eight minutes later. A qPCR-based analysis of the expression of genes for nitrogenase components showed a tendency towards upregulation during the recovery. The recovery resulted in a new constant activity after about 30 minutes, corresponding to approximately 90 % of the pre-treatment level. An RNAseq-based comparative transcriptome profiling of nodules at that point in time revealed that genes for nodule-specific cysteine-rich (NCR peptides, defensins, leghaemoglobin and chalcone and stilbene synthase were significantly upregulated when considered as a gene family. A gene for a nicotianamine synthase-like protein (Medtr1g084050 showed a strong increase in count number. The gene appears to be of importance for nodule functioning, as evidenced by its consistently high expression in nodules and a strong reaction to various environmental cues that influence nodule activity. A Tnt1-mutant that carries an insert in the coding sequence (cds of that gene showed reduced nitrogen fixation and less efficient acclimation to an increased external oxygen concentration. It was concluded that sudden increases in oxygen concentration around nodules destroy nitrogenase, which is quickly counteracted by an increased

  5. Laminar oxy-fuel diffusion flame supported by an oxygen-permeable-ion-transport membrane

    KAUST Repository

    Hong, Jongsup

    2013-03-01

    A numerical model with detailed gas-phase chemistry and transport was used to predict homogeneous fuel conversion processes and to capture the important features (e.g., the location, temperature, thickness and structure of a flame) of laminar oxy-fuel diffusion flames stabilized on the sweep side of an oxygen permeable ion transport membrane (ITM). We assume that the membrane surface is not catalytic to hydrocarbon or syngas oxidation. It has been demonstrated that an ITM can be used for hydrocarbon conversion with enhanced reaction selectivity such as oxy-fuel combustion for carbon capture technologies and syngas production. Within an ITM unit, the oxidizer flow rate, i.e., the oxygen permeation flux, is not a pre-determined quantity, since it depends on the oxygen partial pressures on the feed and sweep sides and the membrane temperature. Instead, it is influenced by the oxidation reactions that are also dependent on the oxygen permeation rate, the initial conditions of the sweep gas, i.e., the fuel concentration, flow rate and temperature, and the diluent. In oxy-fuel combustion applications, the sweep side is fuel-diluted with CO2, and the entire unit is preheated to achieve a high oxygen permeation flux. This study focuses on the flame structure under these conditions and specifically on the chemical effect of CO2 dilution. Results show that, when the fuel diluent is CO2, a diffusion flame with a lower temperature and a larger thickness is established in the vicinity of the membrane, in comparison with the case in which N2 is used as a diluent. Enhanced OH-driven reactions and suppressed H radical chemistry result in the formation of products with larger CO and H2O and smaller H2 concentrations. Moreover, radical concentrations are reduced due to the high CO2 fraction in the sweep gas. CO2 dilution reduces CH3 formation and slows down the formation of soot precursors, C2H2 and C2H4. The flame location impacts the species diffusion and heat transfer from the

  6. Nitric Oxide is Required for Homeostasis of Oxygen and Reactive Oxygen Species in Barley Roots under Aerobic Conditions

    DEFF Research Database (Denmark)

    Gupta, Kapuganti J; Hebelstrup, Kim; Kruger, Nicholas J

    2014-01-01

    Oxygen, the terminal electron acceptor for mitochondrial electron transport, is vital for plants because of its role in the production of ATP by oxidative phosphorylation. While photosynthetic oxygen production contributes to the oxygen supply in leaves, reducing the risk of oxygen limitation of ...... electron transport chain (Gupta et al., 2011). Thus, NO could influence oxygen consumption under normal aerobic conditions in roots, and it is this specific function that is assessed here.......Oxygen, the terminal electron acceptor for mitochondrial electron transport, is vital for plants because of its role in the production of ATP by oxidative phosphorylation. While photosynthetic oxygen production contributes to the oxygen supply in leaves, reducing the risk of oxygen limitation...

  7. Aerobic scope and cardiovascular oxygen transport is not compromised at high temperatures in the toad Rhinella marina.

    Science.gov (United States)

    Overgaard, Johannes; Andersen, Jonas L; Findsen, Anders; Pedersen, Pil B M; Hansen, Kasper; Ozolina, Karlina; Wang, Tobias

    2012-10-15

    Numerous recent studies convincingly correlate the upper thermal tolerance limit of aquatic ectothermic animals to reduced aerobic scope, and ascribe the decline in aerobic scope to failure of the cardiovascular system at high temperatures. In the present study we investigate whether this 'aerobic scope model' applies to an air-breathing and semi-terrestrial vertebrate Rhinella marina (formerly Bufo marinus). To quantify aerobic scope, we measured resting and maximal rate of oxygen consumption at temperatures ranging from 10 to 40°C. To include potential effects of acclimation, three groups of toads were acclimated chronically at 20, 25 and 30°C, respectively. The absolute difference between resting and maximal rate of oxygen consumption increased progressively with temperature and there was no significant decrease in aerobic scope, even at temperature immediately below the lethal limit (41-42°C). Haematological and cardiorespiratory variables were measured at rest and immediately after maximal activity at benign (30°C) and critically high (40°C) temperatures. Within this temperature interval, both resting and active heart rate increased, and there was no indication of respiratory failure, judged from high arterial oxygen saturation, P(O2) and [Hb(O2)]. With the exception of elevated resting metabolic rate for cold-acclimated toads, we found few differences in the thermal responses between acclimation groups with regard to the cardiometabolic parameters. In conclusion, we found no evidence for temperature-induced cardiorespiratory failure in R. marina, indicating that maintenance of aerobic scope and oxygen transport is unrelated to the upper thermal limit of this air-breathing semi-terrestrial vertebrate.

  8. The Experimental Measurement of Local and Bulk Oxygen Transport Resistances in the Catalyst Layer of Proton Exchange Membrane Fuel Cells.

    Science.gov (United States)

    Wang, Chao; Cheng, Xiaojing; Lu, Jiabin; Shen, Shuiyun; Yan, Xiaohui; Yin, Jiewei; Wei, Guanghua; Zhang, Junliang

    2017-12-07

    Remarkable progress has been made in reducing the cathodic Pt loading of PEMFCs; however, a huge performance loss appears at high current densities, indicating the existence of a large oxygen transport resistance associated with the ultralow Pt loading catalyst layer. To reduce the Pt loading without sacrificing cell performance, it is essential to illuminate the oxygen transport mechanism in the catalyst layer. Toward this goal, an experimental approach to measure the oxygen transport resistance in catalyst layers is proposed and realized for the first time in this study. The measuring approach involves a dual-layer catalyst layer design, which consists of a dummy catalyst layer and a practical catalyst layer, followed by changing the thickness of dummy layer to respectively quantify the local and bulk resistances via limiting current measurements combined with linear extrapolation. The experimental results clearly reveal that the local resistance dominates the total resistance in the catalyst layer.

  9. Surface oxygen vacancy and oxygen permeation flux limits of perovskite ion transport membranes

    KAUST Repository

    Hunt, Anton

    2015-09-01

    © 2015 Elsevier B.V. The mechanisms and quantitative models for how oxygen is separated from air using ion transport membranes (ITMs) are not well understood, largely due to the experimental complexity for determining surface exchange reactions at extreme temperatures (>800°C). This is especially true when fuels are present at the permeate surface. For both inert and reactive (fuels) operations, solid-state oxygen surface vacancies (δ) are ultimately responsible for driving the oxygen flux, JO2. In the inert case, the value of δ at either surface is a function of the local PO2 and temperature, whilst the magnitude of δ dictates both the JO2 and the inherent stability of the material. In this study values of δ are presented based on experimental measurements under inert (CO2) sweep: using a permeation flux model and local PO2 measurements, collected by means of a local gas-sampling probe in our large-scale reactor, we can determine δ directly. The ITM assessed was La0.9Ca0.1FeO3-δ (LCF); the relative resistances to JO2 were quantified using the pre-defined permeation flux model and local PO2 values. Across a temperature range from 825°C to 1056°C, δ was found to vary from 0.007 to 0.029 (<1%), safely within material stability limits, whilst the permeate surface exchange resistance dominates. An inert JO2 limit was identified owing to a maximum sweep surface δ, δmaxinert. The physical presence of δmaxinert is attributed to a rate limiting step shift from desorption to associative electron transfer steps on the sweep surface as PO2 is reduced. Permeate surface exchange limitations under non-reactive conditions suggest that reactive (fuel) operation is necessary to accelerate surface chemistry for future work, to reduce flux resistance and push δpast δmaxinert in a stable manner.

  10. Temperature effects on hemocyanin oxygen binding in an antarctic cephalopod.

    Science.gov (United States)

    Zielinski, S; Sartoris, F J; Pörtner, H O

    2001-02-01

    The functional relevance of oxygen transport by hemocyanin of the Antarctic octopod Megaleledone senoi and of the eurythermal cuttlefish Sepia officinalis was analyzed by continuous and simultaneous recordings of changes in pH and hemocyanin oxygen saturation in whole blood at various temperatures. These data were compared to literature data on other temperate and cold-water cephalopods (octopods and giant squid). In S. officinalis, the oxygen affinity of hemocyanin changed at deltaP50/degrees C = 0.12 kPa (pH 7.4) with increasing temperatures; this is similar to observations in temperate octopods. In M. senoi, thermal sensitivity was much smaller (delta log P50/delta pH) increased with increasing temperature in both the cuttlefish and the Antarctic octopod. At low PO2 (1.0 kPa) and pH (7.2), the presence of a large venous oxygen reserve (43% saturation) insensitive to pH reflects reduced pH sensitivity and high oxygen affinity in M. senoi hemocyanin at 0 degrees C. In S. officinalis, this reserve was 19% at pH 7.4, 20 degrees C, and 1.7 kPa O2, a level still higher than in squid. These findings suggest that the lower metabolic rate of octopods and cuttlefish compared to squid is reflected in less pH-dependent oxygen transport. Results of the hemocyanin analysis for the Antarctic octopod were similar to those reported for Vampyroteuthis--an extremely high oxygen affinity supporting a very low metabolic rate. In contrast to findings in cold-adapted giant squid, the minimized thermal sensitivity of oxygen transport in Antarctic octopods will reduce metabolic scope and thereby contribute to their stenothermality.

  11. Behavior of oxygen impurities in tokamak. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    El-Sharif, R N; Beket, A H [Plasma and Nuclear Fusion Department, Nuclear Research Center, Atomic Energy Aurhority, Cairo (Egypt)

    1996-03-01

    Impurity transport in tokamak plasma is a subject of great importance in present day tokamak experiments. The transport of oxygen as an impurity element in small tokamak was studied theoretically. The viscosity coefficient of oxygen has been calculated in different approximation 13 and 21 moment approximation, taking into consideration {chi}>>1,{chi}{omega}{sub c} {tau}. It was found that in 21 moment approximation additional terms added to the perturbation from equilibrium leads to increase in viscosity coefficients than in 13 moments approximation. 9 figs.

  12. Rates of oxygen uptake increase independently of changes in heart rate in late stages of development and at hatching in the green iguana, Iguana iguana.

    Science.gov (United States)

    Sartori, Marina R; Abe, Augusto S; Crossley, Dane A; Taylor, Edwin W

    2017-03-01

    Oxygen consumption (VO 2 ), heart rate (f H ), heart mass (M h ) and body mass (M b ) were measured during embryonic incubation and in hatchlings of green iguana (Iguana iguana). Mean f H and VO 2 were unvarying in early stage embryos. VO 2 increased exponentially during the later stages of embryonic development, doubling by the end of incubation, while f H was constant, resulting in a 2.7-fold increase in oxygen pulse. Compared to late stage embryos, the mean inactive level of VO 2 in hatchlings was 1.7 fold higher, while f H was reduced by half resulting in a further 3.6 fold increase in oxygen pulse. There was an overall negative correlation between mean f H and VO 2 when data from hatchlings was included. Thus, predicting metabolic rate as VO 2 from measurements of f H is not possible in embryonic reptiles. Convective transport of oxygen to supply metabolism during embryonic incubation was more reliably indicated as an index of cardiac output (CO i ) derived from the product of f H and M h . However, a thorough analysis of factors determining rates of oxygen supply during development and eclosion in reptiles will require cannulation of blood vessels that proved impossible in the present study, to determine oxygen carrying capacity by the blood and arteriovenous oxygen content difference (A-V diff), plus patterns of blood flow. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Oxygen transport and degradation properties of high-temperature membranes for CO{sub 2}-free power plants; Sauerstofftransport und Degradationsverhalten von Hochtemperaturmembranen fuer CO{sub 2}-freie Kraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Schlehuber, Dominic

    2010-07-01

    This thesis deals with membranes for oxygen separation from air for high temperature application in fossil power plants within the scope of the oxyfuel-process. Different perovskite membrane materials (ABO3-ae) were investigated concerning the oxygen transport and their chemical stability under operation condition. The association between oxygen transport properties and both the thermodynamic boundary conditions as well as the material properties (membrane thickness and surface properties) was studied. One possibility to achieve higher oxygen fluxes through the membrane is to reduce the thickness. In this case the influence of surface processes on the overall permeation becomes noteworthy. The effect of different membrane surface modifications on the permeation rate was investigated. For example it could be confirmed, that a porous layer on the membrane surface significantly increases the permeation flux due to the compensation of surface exchange limitations. Beyond that, degradation processes during the operation under power plant condition were investigated. Special attention was attached to the influence of degradation on the permeation flux during long term operation. Thereby kinetic demixing of the membrane material was observed. (orig.)

  14. Analysis of the clinical backgrounds of patients who developed respiratory acidosis under high-flow oxygen therapy during emergency transport.

    Science.gov (United States)

    Ogino, Hirokazu; Nishimura, Naoki; Yamano, Yasuhiko; Ishikawa, Genta; Tomishima, Yutaka; Jinta, Torahiko; Takahashi, Osamu; Chohnabayashi, Naohiko

    2016-01-01

    High-flow oxygen is often administered to patients during emergency transport and can sometimes cause respiratory acidosis with disturbed consciousness, thereby necessitating mechanical ventilation. Although oxygen titration in chronic obstructive pulmonary disease patients during emergency transport reduces mortality rates, the clinical risk factors for respiratory acidosis in emergency settings are not fully understood. Therefore, we analyzed the clinical backgrounds of patients who developed respiratory acidosis during pre-hospital transport. This was a retrospective study of patients who arrived at our hospital by emergency transport in 2010 who received high-flow oxygen while in transit. Respiratory acidosis was defined by the following arterial blood gas readings: pH, ≤7.35; PaCO 2 , ≥45 mmHg; and HCO 3 - , ≥24 mmol/L. The risk factors were identified using multivariable logistic regression analysis. In 765 study patients, 66 patients showed respiratory acidosis. The following risk factors for respiratory acidosis were identified: age, ≥65 years (odds ratio [OR] 1.4; 95% confidence interval [CI], 0.7-2.8); transportation time, ≥10 min (OR 2.0; 95% CI, 1.1-3.7); three digits on the Japan Coma Scale (OR 3.1; 95% CI, 1.7-5.8); percutaneous oxygen saturation, ≤90% (OR 1.6; 95% CI, 0.8-3.0); tuberculosis (OR 4.5; 95% CI, 1.4-15.1); asthma (OR 1.8; 95% CI, 0.6-5.3); pneumonia (OR 1.5; 95% CI, 0.7-3.1); and lung cancer (OR 3.9; 95% CI, 1.5-10.1). These underlying diseases as risk factors included both comorbid diseases and past medical conditions. The factors identified may contribute to the development of respiratory acidosis. Further studies on preventing respiratory acidosis will improve the quality of emergency medical care.

  15. Diffusion of oxygen through cork stopper: is it a Knudsen or a Fickian mechanism?

    Science.gov (United States)

    Lagorce-Tachon, Aurélie; Karbowiak, Thomas; Simon, Jean-Marc; Gougeon, Régis; Bellat, Jean-Pierre

    2014-09-17

    The aim of this work is to identify which law governs oxygen transfer through cork: Knudsen or Fickian mechanism. This is important to better understand wine oxidation during post-bottling aging. Oxygen transfer through cork wafers is measured at 298 K using a manometric permeation technique. Depending on the mechanism, we can extract the transport coefficients. Increasing the initial pressure of oxygen from 50 to 800 hPa leads to a change in the values of the transport coefficients. This implies that oxygen transport through cork does not obey the Knudsen law. From these results, we conclude that the limiting step of oxygen transport through cork occurs in the cell wall following Fickian law. From the diffusion dependence's coefficients with pressure, we also extract by applying transition state theory an apparent activation volume of 45 ± 4 nm(3). This high value indicates that oxygen molecules also diffuse from one site to another by passing through a gas phase.

  16. Correction of Oxygen Transport and Metabolic Disturbances in Acute Poisoning by Neurotropic Substances

    Directory of Open Access Journals (Sweden)

    G. A. Livanov

    2007-01-01

    Full Text Available Objective: to examine the capacities of pharmacological correction of impairments in oxygen-transporting systems and metabolic processes with perfluorane and cytoflavin in critically ill patients with acute intoxication with neurotropic poisons.Subjects and methods. Metabolic sequels of severe hypoxia, free radical processes, and endogenous intoxications were studied in 62 patients with the severest acute intoxication with neurotropic poisons.Results. The studies have established that hypoxia and metabolic changes lead to the development of endotoxicosis. Intensifying endotoxicosis in turn enhances hypoxic lesion. Thus, the major task of intensive care is to restore oxygen delivery and to diminish metabolic disturbances and endotoxicosis. Ways of correcting hypoxia and metabolic disturbances are considered in the severe forms of acute poisoning. 

  17. Hydrogenation and hydrodeoxygenation of biomass-derived oxygenates to liquid alkanes for transportation fuels.

    Science.gov (United States)

    Sun, Shaohui; Yang, Ruishu; Wang, Xin; Yan, Shaokang

    2018-04-01

    An attractive approach for the production of transportation fuels from renewable biomass resources is to convert oxygenates into alkanes. In this paper, C 5 -C 20 alkanes formed via the hydrogenation and hydrodeoxygenation of the oligomers of furfuryl alcohol(FA) can be used as gasoline, diesel and jet fuel fraction. The first step of the process is the oligomers of FA convert into hydrogenated products over Raney Ni catalyst in a batch reactor. The second step of the process converts hydrogenated products to alkanes via hydrodeoxygenation over different bi-functional catalysts include hydrogenation and acidic deoxidization active sites. After this process, the oxygen content decreased from 22.1 wt% in the oligomers of FA to 0.58 wt% in the hydrodeoxygenation products.

  18. Low oxygen level increases proliferation and metabolic changes in bovine granulosa cells.

    Science.gov (United States)

    Shiratsuki, Shogo; Hara, Tomotaka; Munakata, Yasuhisa; Shirasuna, Koumei; Kuwayama, Takehito; Iwata, Hisataka

    2016-12-05

    The present study addresses molecular backgrounds underlying low oxygen induced metabolic changes and 1.2-fold change in bovine granulosa cell (GCs) proliferation. RNA-seq revealed that low oxygen (5%) upregulated genes associated with HIF-1 and glycolysis and downregulated genes associated with mitochondrial respiration than that in high oxygen level (21%). Low oxygen level induced high glycolytic activity and low mitochondrial function and biogenesis. Low oxygen level enhanced GC proliferation with high expression levels of HIF-1, VEGF, AKT, mTOR, and S6RP, whereas addition of anti-VEGF antibody decreased cellular proliferation with low phosphorylated AKT and mTOR expression levels. Low oxygen level reduced SIRT1, whereas activation of SIRT1 by resveratrol increased mitochondrial replication and decreased cellular proliferation with reduction of phosphorylated mTOR. These results suggest that low oxygen level stimulates the HIF1-VEGF-AKT-mTOR pathway and up-regulates glycolysis, which contributes to GC proliferation, and downregulation of SIRT1 contributes to hypoxia-associated reduction of mitochondria and cellular proliferation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Membrane transporters mediating root signalling and adaptive responses to oxygen deprivation and soil flooding.

    Science.gov (United States)

    Shabala, Sergey; Shabala, Lana; Barcelo, Juan; Poschenrieder, Charlotte

    2014-10-01

    This review provides a comprehensive assessment of a previously unexplored topic: elucidating the role that plasma- and organelle-based membrane transporters play in plant-adaptive responses to flooding. We show that energy availability and metabolic shifts under hypoxia and anoxia are critical in regulating membrane-transport activity. We illustrate the high tissue and time dependence of this regulation, reveal the molecular identity of transporters involved and discuss the modes of their regulation. We show that both reduced oxygen availability and accumulation of transition metals in flooded roots result in a reduction in the cytosolic K(+) pool, ultimately determining the cell's fate and transition to programmed cell death (PCD). This process can be strongly affected by hypoxia-induced changes in the amino acid pool profile and, specifically, ϒ-amino butyric acid (GABA) accumulation. It is suggested that GABA plays an important regulatory role, allowing plants to proceed with H2 O2 signalling to activate a cascade of genes that mediate plant adaptation to flooding while at the same time, preventing the cell from entering a 'suicide program'. We conclude that progress in crop breeding for flooding tolerance can only be achieved by pyramiding the numerous physiological traits that confer efficient energy maintenance, cytosolic ion homeostasis, and reactive oxygen species (ROS) control and detoxification. © 2014 John Wiley & Sons Ltd.

  20. Effect of oxygen breathing and perfluorocarbon emulsion treatment on air bubbles in adipose tissue during decompression sickness

    DEFF Research Database (Denmark)

    Randsoe, T; Hyldegaard, O

    2009-01-01

    Decompression sickness (DCS) after air diving has been treated with success by means of combined normobaric oxygen breathing and intravascular perfluorocarbon (PFC) emulsions causing increased survival rate and faster bubble clearance from the intravascular compartment. The beneficial PFC effect...... has been explained by the increased transport capacity of oxygen and inert gases in blood. However, previous reports have shown that extravascular bubbles in lipid tissue of rats suffering from DCS will initially grow during oxygen breathing at normobaric conditions. We hypothesize that the combined...... effect of normobaric oxygen breathing and intravascular PFC infusion could lead to either enhanced extravascular bubble growth on decompression due to the increased oxygen supply, or that PFC infusion could lead to faster bubble elimination due to the increased solubility and transport capacity in blood...

  1. The beneficial role of rubble mound coastal structures on seawater oxygenation

    Directory of Open Access Journals (Sweden)

    E. I. Daniil

    2000-10-01

    Full Text Available The beneficial role of rubble mound coastal structures on oxygenation under the effect of waves is discussed, based on analytical considerations and experimental data from laboratory experiments with permeable and impermeable structures. Significant oxygenation of the wave-protected area was observed as a result of horizontal transport through the permeable structure. A two-cell model describing the transport of dissolved oxygen (DO near a rubble mound breakwater structure was developed and used for the determination of the oxygen transfer coefficients from the experimental data. Oxygen transfer through the air–water interface is considered a source term in the transport equation and the oxygen flux through the structure is taken into account. The mass transport equations for both sides of the structure are solved analytically in terms of time evolution of DO concentration. The behaviour of the solution is illustrated for three different characteristic cases of initial conditions. The oxygen transfer through the air-water interface in the wave-influenced area increases the DO content in the area; the resulting oxygen flux through the structure is discussed. The analytical results depend on the initial conditions, the oxygen transfer coefficient and the exchange flow rate through the structure. Experiments with impermeable structures show that air water oxygen transfer in the harbour area is negligible in the absence of waves. In addition the ratio of the horizontal DO flux to the vertical flux into the seaward side tends towards a constant value, independent of the initial conditions.Key words: Oceanography: physical (air-sea interactions; surface waves and tides

  2. LOW OXYGENATION STATUS INCREASES NAUSEA-VOMITING INCIDENCE IN HEMODIALYSIS PATIENTS

    Directory of Open Access Journals (Sweden)

    Cornelia DY Nekada

    2017-08-01

    Full Text Available Background and Objective: Data from Indonesia Basic Health Research (2013 states that the chronic renal failure in Indonesia is increasing, especially in Yogyakarta with the prevalence of chronic renal failure of 0,3%. If the patients of chronic renal failure are in End Stage Renal Disease (ESRD, the kidney needs replacement therapy to help its function. This therapy is called Continuous Renal Replacement Therapy (CRRT or Hemodialysis (HD. Hemodialysis therapy may influence to the imbalance of oxyhemoglobin in the blood. Patients undergoing hemodialysis may experience intradialytic nausea and vomiting. The objective of this study is to identify whether there is a relationship between pre-dialysis oxygenation status through oxygen saturation (SpO2 and respiratory rate (RR examination and the intradialytic nausea-vomiting occurrence. Method: This research is a comparative research with analytical cross sectional design. This research was conducted in hemodialysis room in Public Hospital of Panembahan Senopati Bantul. The subject of the research was taken using total sampling, by paying attention to research ethics. The total research subjects are 183 respondents. The researchers measured the oxygen saturation and patients’ respiratory rate and examined the intradialytic nausea and vomiting complaints. Result: The analysis result of Fisher’s exact in this research shows p value of 0,000 both in bivariate analysis of oxygen saturation to the nausea and vomiting occurrence and in bivariate analysis of the respiratory rate to the nausea and vomiting occurrence. The multivariate analysis employing regression logistic shows that the OR of oxygen saturation is 73,57, this means that the measurement of the abnormal oxygen saturation has the chance of seventy three times more to the nausea and vomiting occurrence, if compared to the patients with normal oxygen saturation. Conclusion and Suggestion: Intradialytic nausea and vomiting is one of the causes

  3. Influence of oxygen concentration on ethylene removal using dielectric barrier discharge

    Science.gov (United States)

    Takahashi, Katsuyuki; Motodate, Takuma; Takaki, Koichi; Koide, Shoji

    2018-01-01

    Ethylene gas is decomposed using a dielectric barrier discharge plasma reactor for long-period preservation of fruits and vegetables. The oxygen concentration in ambient gas is varied from 2 to 20% to simulate the fruit and vegetable transport container. The experimental results show that the efficiency of ethylene gas decomposition increases with decreasing oxygen concentration. The reactions of ethylene molecules with ozone are analyzed by Fourier transform infrared spectrometry. The analysis results show that the oxidization process by ozone is later than that by oxygen atoms. The amount of oxygen atoms that contribute to ethylene removal increases with decreasing oxygen concentration because the reaction between oxygen radicals and oxygen molecules is suppressed at low oxygen concentrations. Ozone is completely removed and the energy efficiency of C2H4 removal is increased using manganese dioxide as a catalyst.

  4. Hydrogenation and hydrodeoxygenation of biomass-derived oxygenates to liquid alkanes for transportation fuels

    Directory of Open Access Journals (Sweden)

    Shaohui Sun

    2018-04-01

    Full Text Available An attractive approach for the production of transportation fuels from renewable biomass resources is to convert oxygenates into alkanes. In this paper, C5–C20 alkanes formed via the hydrogenation and hydrodeoxygenation of the oligomers of furfuryl alcohol(FA can be used as gasoline, diesel and jet fuel fraction. The first step of the process is the oligomers of FA convert into hydrogenated products over Raney Ni catalyst in a batch reactor. The second step of the process converts hydrogenated products to alkanes via hydrodeoxygenation over different bi-functional catalysts include hydrogenation and acidic deoxidization active sites. After this process, the oxygen content decreased from 22.1 wt% in the oligomers of FA to 0.58 wt% in the hydrodeoxygenation products.

  5. Determination of oxygen effective diffusivity in porous gas diffusion layer using a three-dimensional pore network model

    International Nuclear Information System (INIS)

    Wu Rui; Zhu Xun; Liao Qiang; Wang Hong; Ding Yudong; Li Jun; Ye Dingding

    2010-01-01

    In proton exchange membrane fuel cell (PEMFC) models, oxygen effective diffusivity is the most important parameter to characterize the oxygen transport in the gas diffusion layer (GDL). However, its determination is a challenge due to its complex dependency on GDL structure. In the present study, a three-dimensional network consisting of spherical pores and cylindrical throats is developed and used to investigate the effects of GDL structural parameters on oxygen effective diffusivity under the condition with/without water invasion process. Oxygen transport in the throat is described by Fick's law and water invasion process in the network is simulated using the invasion percolation with trapping algorithm. The simulation results reveal that oxygen effective diffusivity is slightly affected by network size but increases with decreasing the network heterogeneity and with increasing the pore connectivity. Impacts of network anisotropy on oxygen transport are also investigated in this paper. The anisotropic network is constructed by constricting the throats in the through-plane direction with a constriction factor. It is found that water invasion has a more severe negative influence on oxygen transport in an anisotropic network. Finally, two new correlations are introduced to determine the oxygen effective diffusivity for the Toray carbon paper GDLs.

  6. Liquid films on shake flask walls explain increasing maximum oxygen transfer capacities with elevating viscosity.

    Science.gov (United States)

    Giese, Heiner; Azizan, Amizon; Kümmel, Anne; Liao, Anping; Peter, Cyril P; Fonseca, João A; Hermann, Robert; Duarte, Tiago M; Büchs, Jochen

    2014-02-01

    In biotechnological screening and production, oxygen supply is a crucial parameter. Even though oxygen transfer is well documented for viscous cultivations in stirred tanks, little is known about the gas/liquid oxygen transfer in shake flask cultures that become increasingly viscous during cultivation. Especially the oxygen transfer into the liquid film, adhering on the shake flask wall, has not yet been described for such cultivations. In this study, the oxygen transfer of chemical and microbial model experiments was measured and the suitability of the widely applied film theory of Higbie was studied. With numerical simulations of Fick's law of diffusion, it was demonstrated that Higbie's film theory does not apply for cultivations which occur at viscosities up to 10 mPa s. For the first time, it was experimentally shown that the maximum oxygen transfer capacity OTRmax increases in shake flasks when viscosity is increased from 1 to 10 mPa s, leading to an improved oxygen supply for microorganisms. Additionally, the OTRmax does not significantly undermatch the OTRmax at waterlike viscosities, even at elevated viscosities of up to 80 mPa s. In this range, a shake flask is a somehow self-regulating system with respect to oxygen supply. This is in contrary to stirred tanks, where the oxygen supply is steadily reduced to only 5% at 80 mPa s. Since, the liquid film formation at shake flask walls inherently promotes the oxygen supply at moderate and at elevated viscosities, these results have significant implications for scale-up. © 2013 Wiley Periodicals, Inc.

  7. How many oxygen cylinders do you need to take on transport? A nomogram for cylinder size and duration.

    Science.gov (United States)

    Lutman, D; Petros, A J

    2006-09-01

    When undertaking patient retrieval, it is important to take adequate supplies of oxygen to ensure patient safety. Oxygen can be delivered via a flowmeter into a facemask or used to drive pneumatic ventilators. Given the lack of space in the back of an ambulance or helicopter, the numbers of cylinders that can be taken is limited, hence the number needed to complete the journey must be carefully calculated prior to embarking. We have produced nomograms to predict how many oxygen cylinders will be consumed during a given journey when using either a flowmeter or a commonly used transport ventilator.

  8. Oxygen limitation modulates pH regulation of catabolism and hydrogenases, multidrug transporters, and envelope composition in Escherichia coli K-12

    Directory of Open Access Journals (Sweden)

    Radmacher Michael D

    2006-10-01

    Full Text Available Abstract Background In Escherichia coli, pH regulates genes for amino-acid and sugar catabolism, electron transport, oxidative stress, periplasmic and envelope proteins. Many pH-dependent genes are co-regulated by anaerobiosis, but the overall intersection of pH stress and oxygen limitation has not been investigated. Results The pH dependence of gene expression was analyzed in oxygen-limited cultures of E. coli K-12 strain W3110. E. coli K-12 strain W3110 was cultured in closed tubes containing LBK broth buffered at pH 5.7, pH 7.0, and pH 8.5. Affymetrix array hybridization revealed pH-dependent expression of 1,384 genes and 610 intergenic regions. A core group of 251 genes showed pH responses similar to those in a previous study of cultures grown with aeration. The highly acid-induced gene yagU was shown to be required for extreme-acid resistance (survival at pH 2. Acid also up-regulated fimbriae (fimAC, periplasmic chaperones (hdeAB, cyclopropane fatty acid synthase (cfa, and the "constitutive" Na+/H+ antiporter (nhaB. Base up-regulated core genes for maltodextrin transport (lamB, mal, ATP synthase (atp, and DNA repair (recA, mutL. Other genes showed opposite pH responses with or without aeration, for example ETS components (cyo,nuo, sdh and hydrogenases (hya, hyb, hyc, hyf, hyp. A hypF strain lacking all hydrogenase activity showed loss of extreme-acid resistance. Under oxygen limitation only, acid down-regulated ribosome synthesis (rpl,rpm, rps. Acid up-regulated the catabolism of sugar derivatives whose fermentation minimized acid production (gnd, gnt, srl, and also a cluster of 13 genes in the gadA region. Acid up-regulated drug transporters (mdtEF, mdtL, but down-regulated penicillin-binding proteins (dacACD, mreBC. Intergenic regions containing regulatory sRNAs were up-regulated by acid (ryeA, csrB, gadY, rybC. Conclusion pH regulates a core set of genes independently of oxygen, including yagU, fimbriae, periplasmic chaperones, and nha

  9. Huge supply/demand increases seen in oxygenate forecasts

    International Nuclear Information System (INIS)

    Rhoades, A.K.

    1992-01-01

    Industry originally projected that oxygenate supply would not be able to meet the demand created by U.S. oxygenated and reformulated gasoline mandates. This paper reports that those projections have been reserved in two recent industry reports - one from Chemical Market Associates Inc. (CMAI) and one from Pace Consultants Inc. Pace's report, by Paulo Nery and Nathan Sims, predicts gasoline and oxygenates demand, and examines the role ethanol may play in changing those values. CMAI's report estimates captive supply and demand of butylenes and oxygenates. Oxygenates are entering the domestic gasoline market this winter as a result of the 1990 U.S. Clean Air Act Amendments. Methyl tertiary butyl ether (MTBE) is the most important oxygenate, although ethanol, ethyl tertiary butyl ether (ETBE), and tertiary amyl methyl ether (TAME) are gathering market strength. Ethanol's strength is derived from President Bush's ruling granting a waiver to reformulated gasoline containing ethanol. This waiver allows ethanol blends to have a vapor pressure 1 psi higher than other types of gasoline

  10. Oxygen Transport Membrane Reactors for Oxy-Fuel Combustion and Carbon Capture Purposes

    Science.gov (United States)

    Falkenstein-Smith, Ryan L.

    This thesis investigates oxygen transport membrane reactors (OTMs) for the application of oxy-fuel combustion. This is done by evaluating the material properties and oxygen permeability of different OTM compositions subjected to a variety of operating conditions. The scope of this work consists of three components: (1) evaluate the oxygen permeation capabilities of perovskite-type materials for the application of oxy-fuel combustion; (2) determine the effects of dual-phase membrane compositions on the oxygen permeation performance and membrane characteristics; and (3) develop a new method for estimating the oxygen permeation performance of OTMs utilized for the application of oxy-fuel combustion. SrSc0.1Co0.9O3-delta (SSC) is selected as the primary perovskite-type material used in this research due to its reported high ionic and electronic conductive properties and chemical stability. SSC's oxygen ion diffusivity is investigated using a conductivity relaxation technique and thermogravimetric analysis. Material properties such as chemical structure, morphology, and ionic and electronic conductivity are examined by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), and conductivity testing using a four-probe method, respectively. Oxygen permeation tests study the oxygen permeability OTMs under modified membrane temperatures, sweeping gas flow rates, sweeping gas compositions, membrane configurations, and membrane compositions. When utilizing a pure CO2 sweeping gas, the membrane composition was modified with the addition of Sm0.2Ce0.8O1.9-delta (SDC) at varying wt.% to improve the membranes mechanical stability. A newly developed method to evaluate the oxygen permeation performance of OTMs is also presented by fitting OTM's oxygen permeability to the methane fraction in the sweeping gas composition. The fitted data is used to estimate the overall performance and size of OTMs utilized for the application of oxy-fuel combustion. The findings from this

  11. Analysis of the clinical backgrounds of patients who developed respiratory acidosis under high‐flow oxygen therapy during emergency transport

    Science.gov (United States)

    Ogino, Hirokazu; Yamano, Yasuhiko; Ishikawa, Genta; Tomishima, Yutaka; Jinta, Torahiko; Takahashi, Osamu; Chohnabayashi, Naohiko

    2015-01-01

    Aim High‐flow oxygen is often administered to patients during emergency transport and can sometimes cause respiratory acidosis with disturbed consciousness, thereby necessitating mechanical ventilation. Although oxygen titration in chronic obstructive pulmonary disease patients during emergency transport reduces mortality rates, the clinical risk factors for respiratory acidosis in emergency settings are not fully understood. Therefore, we analyzed the clinical backgrounds of patients who developed respiratory acidosis during pre‐hospital transport. Methods This was a retrospective study of patients who arrived at our hospital by emergency transport in 2010 who received high‐flow oxygen while in transit. Respiratory acidosis was defined by the following arterial blood gas readings: pH, ≤7.35; PaCO 2, ≥45 mmHg; and HCO 3 −, ≥24 mmol/L. The risk factors were identified using multivariable logistic regression analysis. Results In 765 study patients, 66 patients showed respiratory acidosis. The following risk factors for respiratory acidosis were identified: age, ≥65 years (odds ratio [OR] 1.4; 95% confidence interval [CI], 0.7–2.8); transportation time, ≥10 min (OR 2.0; 95% CI, 1.1–3.7); three digits on the Japan Coma Scale (OR 3.1; 95% CI, 1.7–5.8); percutaneous oxygen saturation, ≤90% (OR 1.6; 95% CI, 0.8–3.0); tuberculosis (OR 4.5; 95% CI, 1.4–15.1); asthma (OR 1.8; 95% CI, 0.6–5.3); pneumonia (OR 1.5; 95% CI, 0.7–3.1); and lung cancer (OR 3.9; 95% CI, 1.5–10.1). These underlying diseases as risk factors included both comorbid diseases and past medical conditions. Conclusions The factors identified may contribute to the development of respiratory acidosis. Further studies on preventing respiratory acidosis will improve the quality of emergency medical care. PMID:29123744

  12. Metallic substrate materials for thin film oxygen transport membranes for application in a fossil power plant

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Y.; Baumann, S.; Sebold, D.; Meulenberg, W.A.; Stoever, D. [Forschungszentrum Juelich GmbH (DE). Inst. fuer Energieforschung (IEF) - IEF-1 Materials Synthesis and Processing

    2010-07-01

    La{sub 0.58}Sr{sub 0.4}CO{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCF58428) and Ba{sub 0.5}Sr{sub 0.5}CO{sub 0.8}Fe{sub 3-{delta}} (BSCF5582) exhibit high oxygen permeability due to their high ionic and electronic conductivity. For this reason they are under discussion for application in oxygen transport membranes (OTMs) in zero-emission power plants using oxyfuel technology. A thin film membrane which can increase the oxygen flux is beneficial and a structural substrate is required. Two types of Ni-base alloys were studied as substrate material candidates with a number of advantages, such as high strength, high temperature stability, easy joining and similar thermal expansion coefficient to the selected perovskite materials. Chemical compositions and thermal expansion coefficients of Ni-base alloys were measured in this study. LSCF58428 and BSCF5582 layers were screen printed on Ni-based alloys and co-fired at high temperature in air. The microstructure and element analysis of samples were characterized by scanning electron microscopy (SEM and EDX). A Ni-base alloy, MCrAlY, with a high Al content was the most suitable substrate material, and showed better chemical compatibility with perovskite materials at high temperature than Hastelloy X, which is a chromia-forming Ni-base alloy. A reaction occurred between Sr in the perovskite and the alumina surface layers on MCr-AlY. However, the reaction zone did not increase in thickness during medium-term annealing at 800 C in air. Hence, it is expected that this reaction will not prevent the application of MCr-AlY as a substrate material. (orig.)

  13. Increased cerebral oxygen extraction capacity in patients with Alzheimer’s disease

    DEFF Research Database (Denmark)

    Eskildsen, Simon Fristed; Gyldensted, Louise; Nagenthiraja, Kartheeban

    Vascular risk factors are suspected to play a role in the etiology of Alzheimer’s disease. Recently, a model that relates capillary dysfunction to the development of AD was proposed [1]. The model predicts that increased capillary dysfunction leads to increased oxygen extraction in order to support...

  14. Transport properties of water and oxygen in yttria-stabilized zirconia; Transporteigenschaften von Wasser und Sauerstoff in Yttrium-stabilisiertem Zirkoniumdioxid

    Energy Technology Data Exchange (ETDEWEB)

    Pietrowski, Martha Joanna

    2012-12-21

    Oxide materials that adopt the fluorite structure, such as yttria-stabilized zirconia (YSZ), play a central role in electrochemical devices, such as fuel cells and sensors, because of their high ionic conductivity. By virtue of the technological importance of such devices there exists a broad interest in understanding and enhancing mass transport processes in YSZ. In such oxides, not only does transport through the bulk play a critical role; interfaces (internal and external) have an influence, too. The effect of interfaces on the transport properties, however, is not investigated in detail, and remains in many places unclear. In this work two open questions concerning the effect of interfaces on mass transport processes in YSZ are addressed: The first issue is the phenomenon of protonic conductivity observed at low temperatures for nanocrystalline YSZ in wet atmospheres. This protonic conductivity was attributed to the high density of interfaces (grain boundaries) caused by the nanostructure, in which protonic species can be mobile. Through isotope exchange experiments with subsequent Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) the presence of hydrogen in nano-YSZ was confirmed. Questions as to which hydrogen-containing species are present and which transport path is taken in nanocrystalline YSZ were examined by means of in-situ of near-infrared (NIR) spectroscopy. The results indicate that water is adsorbed on internal surfaces, such as pores and micro-cracks. Microscopic analysis of nanocrystalline YSZ showed first indications of nanopores. The second issue concerned transport across the solidgas interface, that is the surface. To this end, oxygen isotope exchange experiments were performed on single crystal samples of yttria-stabilised zirconia under wet and dry conditions as function of oxygen partial pressure pO{sub 2} and water partial pressure pH{sub 2}O with subsequent determination of the oxygen isotope profiles by ToF-SIMS. As expected, the

  15. Pancreas Oxygen Persufflation Increases ATP Levels as Shown by Nuclear Magnetic Resonance

    Science.gov (United States)

    Scott, W.E.; Weegman, B.P.; Ferrer-Fabrega, J.; Stein, S.A.; Anazawa, T.; Kirchner, V.A.; Rizzari, M.D.; Stone, J.; Matsumoto, S.; Hammer, B.E.; Balamurugan, A.N.; Kidder, L.S.; Suszynski, T.M.; Avgoustiniatos, E.S.; Stone, S.G.; Tempelman, L.A.; Sutherland, D.E.R.; Hering, B.J.; Papas, K.K.

    2010-01-01

    Background Islet transplantation is a promising treatment for type 1 diabetes. Due to a shortage of suitable human pancreata, high cost, and the large dose of islets presently required for long-term diabetes reversal; it is important to maximize viable islet yield. Traditional methods of pancreas preservation have been identified as suboptimal due to insufficient oxygenation. Enhanced oxygen delivery is a key area of improvement. In this paper, we explored improved oxygen delivery by persufflation (PSF), ie, vascular gas perfusion. Methods Human pancreata were obtained from brain-dead donors. Porcine pancreata were procured by en bloc viscerectomy from heparinized donation after cardiac death donors and were either preserved by either two-layer method (TLM) or PSF. Following procurement, organs were transported to a 1.5-T magnetic resonance (MR) system for 31P nuclear magnetic resonance spectroscopy to investigate their bioenergetic status by measuring the ratio of adenosine triphosphate to inorganic phosphate (ATP:Pi) and for assessing PSF homogeneity by MRI. Results Human and porcine pancreata can be effectively preserved by PSF. MRI showed that pancreatic tissue was homogeneously filled with gas. TLM can effectively raise ATP:Pi levels in rat pancreata but not in larger porcine pancreata. ATP:Pi levels were almost undetectable in porcine organs preserved with TLM. When human or porcine organs were preserved by PSF, ATP:Pi was elevated to levels similar to those observed in rat pancreata. Conclusion The methods developed for human and porcine pancreas PSF homogeneously deliver oxygen throughout the organ. This elevates ATP levels during preservation and may improve islet isolation outcomes while enabling the use of marginal donors, thus expanding the usable donor pool. PMID:20692395

  16. Mathematical modeling of oxygen transport in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Ann Mari

    1997-12-31

    This thesis develops mathematical models to describe the electrochemical performance of a solid oxide fuel cell cathode based on electrochemical kinetics and mass transfer. The individual effects of various coupled processes are investigated. A one-dimensional model is developed based on porous electrode theory. Two different mechanisms are investigated for the charge transfer reaction. One of these assumes that intermediately adsorbed oxygen atoms are reduced at the electrode/electrolyte interface, similar to the models proposed for metal electrodes. Simulated polarization curves exhibit limited currents due to depletion of oxygen adsorbates at high cathodic overvoltages. An empirical correlation is confirmed to exist between the limiting current an the oxygen partial pressure, however, a similar correlation often assumed to exist between the measured polarization resistance and the oxygen partial pressure could not be justified. For the other model, oxygen vacancies are assumed to be exchanged directly at the electrode/electrolyte interface. The electrochemical behaviour is improved by reducing the oxygen partial pressure, due to increased vacancy concentration of the electrode material. Simulated polarization curves exhibit Tafel-like slopes in the cathodic direction, which are due to polarization concentration, and not activation polarization in the conventional sense. Anodic limiting currents are predicted due to lack of available free sites for vacancy exchange at the cathode side. The thesis also presents a theoretical treatment of current and potential distributions in simple two-dimensional cell geometries, and a two-dimensional model for a porous electrode-electrolyte system for investigation of the effect of interfacial diffusion of adsorbates along the electrode/electrolyte interface. 172 refs., 60 figs., 11 tabs.

  17. Properties and performance of BaxSr1-xCo0.8Fe0.2O3-d materials for oxygen transport membranes

    NARCIS (Netherlands)

    Vente, Jaap F.; McIntosh, S.; McIntosh, Steven; Haije, Wim G.; Bouwmeester, Henricus J.M.

    2006-01-01

    The present paper discusses the oxygen transport properties, oxygen stoichiometry, phase stability, and chemical and mechanical stability of the perovskites $${\\text{Ba}}_{{0.5}} {\\text{Sr}}_{{0.5}} {\\text{Co}}_{{0.8}} {\\text{Fe}}_{{0.2}} {\\text{O}}_{{3 - \\delta }} $$ (BSCF) and

  18. Skeletal muscle-specific expression of PGC-1α-b, an exercise-responsive isoform, increases exercise capacity and peak oxygen uptake.

    Directory of Open Access Journals (Sweden)

    Miki Tadaishi

    Full Text Available Maximal oxygen uptake (VO(2max predicts mortality and is associated with endurance performance. Trained subjects have a high VO(2max due to a high cardiac output and high metabolic capacity of skeletal muscles. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α, a nuclear receptor coactivator, promotes mitochondrial biogenesis, a fiber-type switch to oxidative fibers, and angiogenesis in skeletal muscle. Because exercise training increases PGC-1α in skeletal muscle, PGC-1α-mediated changes may contribute to the improvement of exercise capacity and VO(2max. There are three isoforms of PGC-1α mRNA. PGC-1α-b protein, whose amino terminus is different from PGC-1α-a protein, is a predominant PGC-1α isoform in response to exercise. We investigated whether alterations of skeletal muscle metabolism by overexpression of PGC-1α-b in skeletal muscle, but not heart, would increase VO(2max and exercise capacity.Transgenic mice showed overexpression of PGC-1α-b protein in skeletal muscle but not in heart. Overexpression of PGC-1α-b promoted mitochondrial biogenesis 4-fold, increased the expression of fatty acid transporters, enhanced angiogenesis in skeletal muscle 1.4 to 2.7-fold, and promoted exercise capacity (expressed by maximum speed by 35% and peak oxygen uptake by 20%. Across a broad range of either the absolute exercise intensity, or the same relative exercise intensities, lipid oxidation was always higher in the transgenic mice than wild-type littermates, suggesting that lipid is the predominant fuel source for exercise in the transgenic mice. However, muscle glycogen usage during exercise was absent in the transgenic mice.Increased mitochondrial biogenesis, capillaries, and fatty acid transporters in skeletal muscles may contribute to improved exercise capacity via an increase in fatty acid utilization. Increases in PGC-1α-b protein or function might be a useful strategy for sedentary subjects to perform exercise

  19. Diffusive flux in a model of stochastically gated oxygen transport in insect respiration

    Energy Technology Data Exchange (ETDEWEB)

    Berezhkovskii, Alexander M. [Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892 (United States); Shvartsman, Stanislav Y. [Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544 (United States)

    2016-05-28

    Oxygen delivery to insect tissues is controlled by transport through a branched tubular network that is connected to the atmosphere by valve-like gates, known as spiracles. In certain physiological regimes, the spiracles appear to be randomly switching between open and closed states. Quantitative analysis of this regime leads a reaction-diffusion problem with stochastically switching boundary condition. We derive an expression for the diffusive flux at long times in this problem. Our approach starts with the derivation of the passage probability for a single particle that diffuses between a stochastically gated boundary, which models the opening and closing spiracle, and the perfectly absorbing boundary, which models oxygen absorption by the tissue. This passage probability is then used to derive an expression giving the diffusive flux as a function of the geometric parameters of the tube and characteristic time scales of diffusion and gate dynamics.

  20. Predicted consequences of diabetes and SGLT inhibition on transport and oxygen consumption along a rat nephron

    Science.gov (United States)

    Vallon, Volker; Edwards, Aurélie

    2016-01-01

    Diabetes increases the reabsorption of Na+ (TNa) and glucose via the sodium-glucose cotransporter SGLT2 in the early proximal tubule (S1-S2 segments) of the renal cortex. SGLT2 inhibitors enhance glucose excretion and lower hyperglycemia in diabetes. We aimed to investigate how diabetes and SGLT2 inhibition affect TNa and sodium transport-dependent oxygen consumption QO2active along the whole nephron. To do so, we developed a mathematical model of water and solute transport from the Bowman space to the papillary tip of a superficial nephron of the rat kidney. Model simulations indicate that, in the nondiabetic kidney, acute and chronic SGLT2 inhibition enhances active TNa in all nephron segments, thereby raising QO2active by 5–12% in the cortex and medulla. Diabetes increases overall TNa and QO2active by ∼50 and 100%, mainly because it enhances glomerular filtration rate (GFR) and transport load. In diabetes, acute and chronic SGLT2 inhibition lowers QO2active in the cortex by ∼30%, due to GFR reduction that lowers proximal tubule active TNa, but raises QO2active in the medulla by ∼7%. In the medulla specifically, chronic SGLT2 inhibition is predicted to increase QO2active by 26% in late proximal tubules (S3 segments), by 2% in medullary thick ascending limbs (mTAL), and by 9 and 21% in outer and inner medullary collecting ducts (OMCD and IMCD), respectively. Additional blockade of SGLT1 in S3 segments enhances glucose excretion, reduces QO2active by 33% in S3 segments, and raises QO2active by SGLT2 blockade in diabetes lowers cortical QO2active and raises medullary QO2active, particularly in S3 segments. PMID:26764207

  1. Exhaustive Exercise-induced Oxidative Stress Alteration of Erythrocyte Oxygen Release Capacity.

    Science.gov (United States)

    Xiong, Yanlian; Xiong, Yanlei; Wang, Yueming; Zhao, Yajin; Li, Yaojin; Ren, Yang; Wang, Ruofeng; Zhao, Mingzi; Hao, Yitong; Liu, Haibei; Wang, Xiang

    2018-05-24

    The aim of the present study is to explore the effect of exhaustive running exercise (ERE) in the oxygen release capacity of rat erythrocytes. Rats were divided into sedentary control (C), moderate running exercise (MRE) and exhaustive running exercise groups. The thermodynamics and kinetics properties of the erythrocyte oxygen release process of different groups were tested. We also determined the degree of band-3 oxidative and phosphorylation, anion transport activity and carbonic anhydrase isoform II(CAII) activity. Biochemical studies suggested that exhaustive running significantly increased oxidative injury parameters in TBARS and methaemoglobin levels. Furthermore, exhaustive running significantly decreased anion transport activity and carbonic anhydrase isoform II(CAII) activity. Thermodynamic analysis indicated that erythrocytes oxygen release ability also significantly increased due to elevated 2,3-DPG level after exhaustive running. Kinetic analysis indicated that exhaustive running resulted in significantly decreased T50 value. We presented evidence that exhaustive running remarkably impacted thermodynamics and kinetics properties of RBCs oxygen release. In addition, changes in 2,3-DPG levels and band-3 oxidation and phosphorylation could be the driving force for exhaustive running induced alterations in erythrocytes oxygen release thermodynamics and kinetics properties.

  2. Calculation of transport coefficients in an axisymmetric plasma

    International Nuclear Information System (INIS)

    Shumaker, D.E.

    1976-01-01

    A method of calculating the transport coefficient in an axisymmetric toroidal plasma is presented. This method is useful in calculating the transport coefficients in a Tokamak plasma confinement device. The particle density and temperature are shown to be a constant on a magnetic flux surface. Transport equations are given for the total particle flux and total energy flux crossing a closed toroidal surface. Also transport equations are given for the toroidal magnetic flux. A computer code was written to calculate the transport coefficients for a three species plasma, electrons and two species of ions. This is useful for calculating the transport coefficients of a plasma which contains impurities. It was found that the particle and energy transport coefficients are increased by a large amount, and the transport coefficients for the toroidal magnetic field are reduced by a small amount. For example, a deuterium plasma with 1.3 percent oxygen, one of the particle transport coefficients is increased by a factor of about four. The transport coefficients for the toroidal magnetic flux are reduced by about 20 percent. The increase in the particle transport coefficient is due to the collisional scattering of the deuterons by the heavy oxygen ions which is larger than the deuteron electron scattering, the normal process for particle transport in a two species plasma. The reduction in the toroidal magnetic flux transport coefficients are left unexplained

  3. Mitigating an increase of specific power consumption in a cryogenic air separation unit at reduced oxygen production

    Science.gov (United States)

    Singla, Rohit; Chowdhury, Kanchan

    2017-02-01

    Specific power consumed in a Linde double column air separation unit (ASU) increases as the quantity of oxygen produced at a given purity is decreased due to the changes of system requirement or market demand. As the plant operates in part load condition, the specific power consumption (SPC) increases as the total power consumption remains the same. In order to mitigate the increase of SPC at lower oxygen production, the operating pressure of high pressure column (HPC) can be lowered by extending the low pressure column (LPC) by a few trays and adding a second reboiler. As the duty of second reboiler in LPC is increased, the recovery of oxygen decreases with a lowering of the HPC pressure. This results in mitigation of the increase of SPC of the plant. A Medium pressure ASU with dual reboiler that produces pressurised gaseous and liquid products of oxygen and nitrogen is simulated in Aspen Hysys 8.6®, a commercial process simulator to determine SPC at varying oxygen production. The effects of reduced pressure of air feed into the cold box on the size of heat exchangers (HX) are analysed. Operation strategy to obtain various oxygen production rates at varying demand is also proposed.

  4. Investigation on the oxygen transport mechanisms in the Sarcheshmeh waste rock dumps

    Directory of Open Access Journals (Sweden)

    Saeed Yousefi

    2015-04-01

    Full Text Available Introduction Pyrite oxidation and acid mine drainage (AMD are the serious environmental problems associated with the mining activities in sulphide ores. The rate of pyrite oxidation is governed by the availability of oxygen (Borden, 2003. Therefore, the identifying oxygen supplying mechanism is one of the most important issues related to the environmental assessment of waste rock dumps (Cathles and Apps, 1975; Jaynes et al., 1984; Davis and Ritchie, 1986. Although comprehensive researches were performed on the mathematical description of oxygen transport processes using the numerical modeling (Morin et al., 1988; Blowes et al., 1991; Wunderly et al., 1986; Elberling et al., 1994; Jannesar Malakooti et al., 2014, so far, the interactions between these processes and geochemical and mineralogical characteristics has not been studied especially in waste rock dumps. Therefore the main objective of this study is to identify the evidences for knowing the oxygen transport mechanisms in the waste dumps and also, its role in intensity of pyrite oxidation. It is expected that such these structural studies could be useful for better understanding of dominant processes in numerical modeling and also providing environmental management strategies in the study area and other sites by similar characteristics. Materials and Methods In this study, thirty solid samples were collected from six excavated trenches in the waste rock dumps No. 19 and 31 of the Sarcheshmeh porphyry copper mine. Collected samples were studied using several methods such as XRD, ASTM-D2492, paste pH and grain size distribution. The results obtained from these methods were used with the field observations in order to characterize some detail information about oxygen supplying mechanisms for oxidation reactions in the waste rock dumps. Result The main minerals found by the XRD analysis were quartz and muscovite which were present in all samples. Pyrite, orthose, albite, and chlorite were also

  5. Effects of Reactive Oxygen Species on Tubular Transport along the Nephron.

    Science.gov (United States)

    Gonzalez-Vicente, Agustin; Garvin, Jeffrey L

    2017-03-23

    Reactive oxygen species (ROS) are oxygen-containing molecules naturally occurring in both inorganic and biological chemical systems. Due to their high reactivity and potentially damaging effects to biomolecules, cells express a battery of enzymes to rapidly metabolize them to innocuous intermediaries. Initially, ROS were considered by biologists as dangerous byproducts of respiration capable of causing oxidative stress, a condition in which overproduction of ROS leads to a reduction in protective molecules and enzymes and consequent damage to lipids, proteins, and DNA. In fact, ROS are used by immune systems to kill virus and bacteria, causing inflammation and local tissue damage. Today, we know that the functions of ROS are not so limited, and that they also act as signaling molecules mediating processes as diverse as gene expression, mechanosensation, and epithelial transport. In the kidney, ROS such as nitric oxide (NO), superoxide (O₂ - ), and their derivative molecules hydrogen peroxide (H₂O₂) and peroxynitrite (ONO₂ - ) regulate solute and water reabsorption, which is vital to maintain electrolyte homeostasis and extracellular fluid volume. This article reviews the effects of NO, O₂ - , ONO₂ - , and H₂O₂ on water and electrolyte reabsorption in proximal tubules, thick ascending limbs, and collecting ducts, and the effects of NO and O₂ - in the macula densa on tubuloglomerular feedback.

  6. Augmenting Transport versus Increasing Cold Storage to Improve Vaccine Supply Chains

    Science.gov (United States)

    Haidari, Leila A.; Connor, Diana L.; Wateska, Angela R.; Brown, Shawn T.; Mueller, Leslie E.; Norman, Bryan A.; Schmitz, Michelle M.; Paul, Proma; Rajgopal, Jayant; Welling, Joel S.; Leonard, Jim; Chen, Sheng-I; Lee, Bruce Y.

    2013-01-01

    Background When addressing the urgent task of improving vaccine supply chains, especially to accommodate the introduction of new vaccines, there is often a heavy emphasis on stationary storage. Currently, donations to vaccine supply chains occur largely in the form of storage equipment. Methods This study utilized a HERMES-generated detailed, dynamic, discrete event simulation model of the Niger vaccine supply chain to compare the impacts on vaccine availability of adding stationary cold storage versus transport capacity at different levels and to determine whether adding stationary storage capacity alone would be enough to relieve potential bottlenecks when pneumococcal and rotavirus vaccines are introduced by 2015. Results Relieving regional level storage bottlenecks increased vaccine availability (by 4%) more than relieving storage bottlenecks at the district (1% increase), central (no change), and clinic (no change) levels alone. Increasing transport frequency (or capacity) yielded far greater gains (e.g., 15% increase in vaccine availability when doubling transport frequency to the district level and 18% when tripling). In fact, relieving all stationary storage constraints could only increase vaccine availability by 11%, whereas doubling the transport frequency throughout the system led to a 26% increase and tripling the frequency led to a 30% increase. Increasing transport frequency also reduced the amount of stationary storage space needed in the supply chain. The supply chain required an additional 61,269L of storage to relieve constraints with the current transport frequency, 55,255L with transport frequency doubled, and 51,791L with transport frequency tripled. Conclusions When evaluating vaccine supply chains, it is important to understand the interplay between stationary storage and transport. The HERMES-generated dynamic simulation model showed how augmenting transport can result in greater gains than only augmenting stationary storage and can reduce

  7. Augmenting transport versus increasing cold storage to improve vaccine supply chains.

    Science.gov (United States)

    Haidari, Leila A; Connor, Diana L; Wateska, Angela R; Brown, Shawn T; Mueller, Leslie E; Norman, Bryan A; Schmitz, Michelle M; Paul, Proma; Rajgopal, Jayant; Welling, Joel S; Leonard, Jim; Chen, Sheng-I; Lee, Bruce Y

    2013-01-01

    When addressing the urgent task of improving vaccine supply chains, especially to accommodate the introduction of new vaccines, there is often a heavy emphasis on stationary storage. Currently, donations to vaccine supply chains occur largely in the form of storage equipment. This study utilized a HERMES-generated detailed, dynamic, discrete event simulation model of the Niger vaccine supply chain to compare the impacts on vaccine availability of adding stationary cold storage versus transport capacity at different levels and to determine whether adding stationary storage capacity alone would be enough to relieve potential bottlenecks when pneumococcal and rotavirus vaccines are introduced by 2015. Relieving regional level storage bottlenecks increased vaccine availability (by 4%) more than relieving storage bottlenecks at the district (1% increase), central (no change), and clinic (no change) levels alone. Increasing transport frequency (or capacity) yielded far greater gains (e.g., 15% increase in vaccine availability when doubling transport frequency to the district level and 18% when tripling). In fact, relieving all stationary storage constraints could only increase vaccine availability by 11%, whereas doubling the transport frequency throughout the system led to a 26% increase and tripling the frequency led to a 30% increase. Increasing transport frequency also reduced the amount of stationary storage space needed in the supply chain. The supply chain required an additional 61,269L of storage to relieve constraints with the current transport frequency, 55,255L with transport frequency doubled, and 51,791L with transport frequency tripled. When evaluating vaccine supply chains, it is important to understand the interplay between stationary storage and transport. The HERMES-generated dynamic simulation model showed how augmenting transport can result in greater gains than only augmenting stationary storage and can reduce stationary storage needs.

  8. Blood oxygen and carbon dioxide transport in man

    OpenAIRE

    McElderry, Linda A.

    1981-01-01

    The effect of long term domiciliary oxygen therapy on the position and shape of the oxygen dissociation curve, together with other haematologic variables such as 2,3- diphosphoglycerate (2,3-DPG), haemoglobin concentration, packed cell volume, mean corpuscular haemoglobin concentration, and arterial blood gas and pH values, has been studied in patients with chronic bronchitis. Twenty-six patients were randomly allocated to receive either no oxygen therapy or 15 hours p...

  9. Transport and magnetoresistance effect in an oxygen-deficient SrTiO3/La0.67Sr0.33MnO3 heterojunction

    International Nuclear Information System (INIS)

    Wang Jing; Chen Chang-Le; Yang Shi-Hai; Luo Bing-Cheng; Duan Meng-Meng; Jin Ke-Xin

    2013-01-01

    An oxygen-deficient SrTiO 3 /La 0.67 Sr 0.33 MnO 3 heterojunction is fabricated on an SrTiO 3 (001) substrate by a pulsed laser deposition method. The electrical characteristics of the heterojunction are studied systematically in a temperature range from 80 K to 300 K. The transport mechanism follows I ∞ exp(eV/nkT) under small forward bias, while it becomes space charge limited and follows I ∞ V m(T) with 1.49 < m < 1.99 under high bias. Such a heterojunction also exhibits magnetoresistance (MR) effect. The absolute value of negative MR monotonically increases with temperature decreasing and reaches 26.7% at 80 K under H = 0.7 T. Various factors, such as strain and oxygen deficiency play dominant roles in the characteristics. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. The role of oxygen-increased respirator in humans ascending to high altitude

    Directory of Open Access Journals (Sweden)

    Shen Guanghao

    2012-08-01

    Full Text Available Abstract Background Acute mountain sickness (AMS is common for people who live in low altitude areas ascending to the high altitude. Many instruments have been developed to treat mild cases of AMS. However, long-lasting and portable anti-hypoxia equipment for individual is not yet available. Methods Oxygen-increased respirator (OIR has been designed to reduce the risk of acute mountain sickness in acute exposure to low air pressure. It can increase the density of oxygen by increasing total atmospheric pressure in a mask. Male subjects were screened, and eighty-eight were qualified to perform the experiments. The subjects were divided into 5 groups and were involved in some of the tests at 4 different altitudes (Group 1, 2: 3700 m; Group 3,4,5: 4000 m, 4700 m, 5380 m with and without OIR. These tests include heart rate, saturation of peripheral oxygen (SpO2, malondialdehyde (MDA, superoxide dismutase (SOD, blood lactate (BLA and PWC (physical work capacity -170. Results The results showed that higher SpO2, lower heart rate (except during exercise and better recovery of heart rate were observed from all the subjects ’with OIR’ compared with ’without OIR’ (P Conclusions We suggested that OIR may play a useful role in protecting people ascending to high altitude before acclimatization.

  11. Oxygen transport and myocardial function after the administration of albumin 5%, hydroxyethylstarch 6% and succinylated gelatine 4% to rabbits

    NARCIS (Netherlands)

    Himpe, D. G.; de Hert, S. G.; Vermeyen, K. M.; Adriaensen, H. F.

    2002-01-01

    BACKGROUND AND OBJECTIVE: The effects of administering albumin 5%, hydroxyethylstarch 6% and succinylated gelatine 4% on oxygen transport and left ventricular function were prospectively investigated in different experimental conditions: baseline, fluid load, after 10 min of myocardial ischaemia and

  12. The hydroxypyridinone iron chelator CP94 increases methyl-aminolevulinate-based photodynamic cell killing by increasing the generation of reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Yuktee Dogra

    2016-10-01

    Full Text Available Methyl-aminolevulinate-based photodynamic therapy (MAL-PDT is utilised clinically for the treatment of non-melanoma skin cancers and pre-cancers and the hydroxypyridinone iron chelator, CP94, has successfully been demonstrated to increase MAL-PDT efficacy in an initial clinical pilot study. However, the biochemical and photochemical processes leading to CP94-enhanced photodynamic cell death, beyond the well-documented increases in accumulation of the photosensitiser protoporphyrin IX (PpIX, have not yet been fully elucidated. This investigation demonstrated that MAL-based photodynamic cell killing of cultured human squamous carcinoma cells (A431 occurred in a predominantly necrotic manner following the generation of singlet oxygen and ROS. Augmenting MAL-based photodynamic cell killing with CP94 co-treatment resulted in increased PpIX accumulation, MitoSOX-detectable ROS generation (probably of mitochondrial origin and necrotic cell death, but did not affect singlet oxygen generation. We also report (to our knowledge, for the first time the detection of intracellular PpIX-generated singlet oxygen in whole cells via electron paramagnetic resonance spectroscopy in conjunction with a spin trap.

  13. Acclimatory responses of the Daphnia pulex proteome to environmental changes. I. Chronic exposure to hypoxia affects the oxygen transport system and carbohydrate metabolism

    Directory of Open Access Journals (Sweden)

    Madlung Johannes

    2009-04-01

    Full Text Available Abstract Background Freshwater planktonic crustaceans of the genus Daphnia show a remarkable plasticity to cope with environmental changes in oxygen concentration and temperature. One of the key proteins of adaptive gene control in Daphnia pulex under hypoxia is hemoglobin (Hb, which increases in hemolymph concentration by an order of magnitude and shows an enhanced oxygen affinity due to changes in subunit composition. To explore the full spectrum of adaptive protein expression in response to low-oxygen conditions, two-dimensional gel electrophoresis and mass spectrometry were used to analyze the proteome composition of animals acclimated to normoxia (oxygen partial pressure [Po2]: 20 kPa and hypoxia (Po2: 3 kPa, respectively. Results The comparative proteome analysis showed an up-regulation of more than 50 protein spots under hypoxia. Identification of a major share of these spots revealed acclimatory changes for Hb, glycolytic enzymes (enolase, and enzymes involved in the degradation of storage and structural carbohydrates (e.g. cellubiohydrolase. Proteolytic enzymes remained constitutively expressed on a high level. Conclusion Acclimatory adjustments of the D. pulex proteome to hypoxia included a strong induction of Hb and carbohydrate-degrading enzymes. The scenario of adaptive protein expression under environmental hypoxia can be interpreted as a process to improve oxygen transport and carbohydrate provision for the maintenance of ATP production, even during short episodes of tissue hypoxia requiring support from anaerobic metabolism.

  14. Effects of whole body UV-irradiation on oxygen delivery from the erythrocyte

    International Nuclear Information System (INIS)

    Humpeler, E.; Mairbaeurl, H.; Hoenigsmann, H.

    1982-01-01

    In 16 healthy caucasian volunteers (mean age: 22.2 years) the influence of whole body UV-irradiation on the oxygen transport properties of erythrocytes was investigated. Four hours after irradiation with UV (using the minimal erythema dose, MED) no variation of haemoglobin concentration, hematocrit, mean corpuscular haemoglobin concentration, pH or standard bicarbonate could be found, whereas inorganic plasma phosphate (Psub(i)), calcium, the intraerythrocytic 2,3-diphosphoglycerate (2,3-DPG), the activity of erythrocytic phosphofructokinase (PFK) and pyruvatekinase (PK) increased significantly. The half saturation tension of oxygen (P 50 -value) tended to increase. The increase of Psub(i) causes - via a stimulation of the glycolytic pathway - an increase in 2,3-DPG concentration and thus results in a shift of the oxygen dissociation curve. It is therefore possible to enhance tissue oxygenation by whole body UV-irradiation. (orig.)

  15. Reactive oxygen species-driven HIF1α triggers accelerated glycolysis in endothelial cells exposed to low oxygen tension

    International Nuclear Information System (INIS)

    Paik, Jin-Young; Jung, Kyung-Ho; Lee, Jin-Hee; Park, Jin-Won; Lee, Kyung-Han

    2017-01-01

    Endothelial cells and their metabolic state regulate glucose transport into underlying tissues. Here, we show that low oxygen tension stimulates human umbilical vein endothelial cell 18 F–fluorodeoxyglucose ( 18 F–FDG) uptake and lactate production. This was accompanied by augmented hexokinase activity and membrane Glut-1, and increased accumulation of hypoxia-inducible factor-1α (HIF1α). Restoration of oxygen reversed the metabolic effect, but this was blocked by HIF1α stabilization. Hypoxia-stimulated 18 F–FDG uptake was completely abrogated by silencing of HIF1α expression or by a specific inhibitor. There was a rapid and marked increase of reactive oxygen species (ROS) by hypoxia, and ROS scavenging or NADPH oxidase inhibition completely abolished hypoxia-stimulated HIF1α and 18 F–FDG accumulation, placing ROS production upstream of HIF1α signaling. Hypoxia-stimulated HIF1α and 18 F–FDG accumulation was blocked by the protein kinase C (PKC) inhibitor, staurosporine. The phosphatidylinositol 3-kinase (PI3K) inhibitor, wortmannin, blocked hypoxia-stimulated 18 F–FDG uptake and attenuated hypoxia-responsive element binding of HIF1α without influencing its accumulation. Thus, ROS-driven HIF1α accumulation, along with PKC and PI3K signaling, play a key role in triggering accelerated glycolysis in endothelial cells under hypoxia, thereby contributing to 18 F–FDG transport.

  16. The influence of ascorbic acid on the oxygen consumption and the heat production by the cells of wheat seedling roots with their mitochondrial electron transport chain inhibited at complexes I and III

    International Nuclear Information System (INIS)

    Gordon, L.K.; Rakhmatullina, D.F.; Ogorodnikova, T.I.; Alyabyev, A.J.; Minibayeva, F.V.; Loseva, N.L.; Mityashina, S.Y.

    2007-01-01

    The influence of exogenous ascorbic acid (AsA) on oxidative phosphorylation was studied using wheat seedling roots. Treatment of them with AsA stimulated the rates of oxygen consumption and the heat production and caused a decrease of the respiratory coefficient. The increase in respiration was prevented by inhibitors of ascorbate oxidase, diethyldithiocarbamate (DEDTC), and of cytochrome oxidase, cyanide (KCN). Exogenous AsA sharply stimulated the rate of oxygen consumption of roots when complexes I and III of the mitochondrial electron transport chain were inhibited by rotenone and antimycin A, respectively, while the rates of heat production did not change significantly. It is concluded that AsA is a potent energy substrate, which can be used in conditions of failing I and III complexes in the mitochondrial electron transport chain

  17. Erythropoietin, 2,3 DPG, oxygen transport capacity, and altitude training in adolescent Alpine skiers.

    Science.gov (United States)

    Son, Hee Jeong; Kim, Hyo Jeong; Kim, Jin Hae; Ohno, Hideki; Kim, Chang Keun

    2012-01-01

    Rapid growth during adolescence caused by metabolic changes and their metabolic response to anaerobic and aerobic exercise differs considerably from that in adults and this is especially true in the responses to stresses, such as altitude exposure. However, there is little information on the suitability of exercise training at altitude for young athletes. Six male Korean adolescent alpine skiers (13-17 yr), with a skiing career of 3-5 yr, participated in the study. All subjects were exposed to an altitude of 2700 m (8858 ft) for 5 wk and altitude exposure consisted of 6 d/wk of training (4-5 h/d), with living quarters at 2100 m (-6890 ft) (Tignes, France). The 5 wk of ski training at altitude were maintained at the same level (the same number of slalom and giant slalom skiing trials) as at sea level. There was a significant increase in oxygen transport capacity, despite decreased erythropoietin (EPO) production (-31%) after altitude training. Red blood cell (RBC), hemoglobin (Hb), hematocrit (Hct), and 2,3 DPG concentrations increased significantly during altitude exposure and after return to sea level. Results indicate that applying altitude training in adolescent skiers may improve their endurance performance. However, EPO production during altitude training needs to be evaluated in larger future studies.

  18. Spontaneous calcium waves in Bergman glia increase with age and hypoxia and may reduce tissue oxygen.

    Science.gov (United States)

    Mathiesen, Claus; Brazhe, Alexey; Thomsen, Kirsten; Lauritzen, Martin

    2013-02-01

    Glial calcium (Ca(2+)) waves constitute a means to spread signals between glial cells and to neighboring neurons and blood vessels. These waves occur spontaneously in Bergmann glia (BG) of the mouse cerebellar cortex in vivo. Here, we tested three hypotheses: (1) aging and reduced blood oxygen saturation alters wave activity; (2) glial Ca(2+) waves change cerebral oxygen metabolism; and (3) neuronal and glial wave activity is correlated. We used two-photon microscopy in the cerebellar cortexes of adult (8- to 15-week-old) and aging (48- to 80-week-old) ketamine-anesthetized mice after bolus loading with OGB-1/AM and SR101. We report that the occurrence of spontaneous waves is 20 times more frequent in the cerebellar cortex of aging as compared with adult mice, which correlated with a reduction in resting brain oxygen tension. In adult mice, spontaneous glial wave activity increased on reducing resting brain oxygen tension, and ATP-evoked glial waves reduced the tissue O(2) tension. Finally, although spontaneous Purkinje cell (PC) activity was not associated with increased glia wave activity, spontaneous glial waves did affect intracellular Ca(2+) activity in PCs. The increased wave activity during aging, as well as low resting brain oxygen tension, suggests a relationship between glial waves, brain energy homeostasis, and pathology.

  19. Modifying TiO{sub 2} surface architecture by oxygen plasma to increase dye sensitized solar cell efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Rajmohan, Gayathri Devi [Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds, Victoria 3216 (Australia); Dai, Xiujuan J., E-mail: jane.dai@deakin.edu.au [Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds, Victoria 3216 (Australia); Tsuzuki, Takuya; Lamb, Peter R. [Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds, Victoria 3216 (Australia); Plessis, Johan du [School of Applied Sciences, RMIT University, GPO Box 2476 V, Melbourne, Victoria 3001 (Australia); Huang, Fuzhi; Cheng, Yi-Bing [Department of Materials Engineering, Monash University, Melbourne, Victoria 3800 (Australia)

    2013-10-31

    Oxygen plasma treatment of TiO{sub 2} films has been used to improve the efficiency of dye sensitized solar cells. Both a commercial TiO{sub 2} sample and a TiO{sub 2} thin film synthesized by a sol-gel technique were treated using a custom built inductively coupled plasma apparatus. X-ray photoelectron spectroscopy revealed that oxygen-plasma treatment increased the number of oxygen functional groups (hydroxyl groups) and introduced some Ti{sup 3+} species on the surface of TiO{sub 2}. A sample solar cell with plasma treated TiO{sub 2} showed an overall solar-to-electricity conversion efficiency of 4.3%, about a 13% increase over untreated TiO{sub 2}. The photon conversion efficiency for the plasma treated TiO{sub 2} was 34% higher than untreated TiO{sub 2}. This enhanced cell-performance is partly due to increased dye adsorption from an increase in surface oxygen functional groups and also may be partly due to Ti{sup 3+} states on the surface of TiO{sub 2}. - Highlights: • Oxygen plasma is used to generate hydroxyl groups on the surface of TiO{sub 2} • Parallel study was conducted using a spin coated TiO{sub 2} and a Commercial TiO{sub 2} film. • The plasma functionalization caused increased dye uptake. • Some species in Ti{sup 3+} state are also generated after oxygen plasma. • Dye sensitised solar cell with functionalised electrode showed improved efficiency.

  20. Respiration and substrate transport rates as well as reactive oxygen species production distinguish mitochondria from brain and liver.

    Science.gov (United States)

    Gusdon, Aaron M; Fernandez-Bueno, Gabriel A; Wohlgemuth, Stephanie; Fernandez, Jenelle; Chen, Jing; Mathews, Clayton E

    2015-09-10

    Aberrant mitochondrial function, including excessive reactive oxygen species (ROS) production, has been implicated in the pathogenesis of human diseases. The use of mitochondrial inhibitors to ascertain the sites in the electron transport chain (ETC) resulting in altered ROS production can be an important tool. However, the response of mouse mitochondria to ETC inhibitors has not been thoroughly assessed. Here we set out to characterize the differences in phenotypic response to ETC inhibitors between the more energetically demanding brain mitochondria and less energetically demanding liver mitochondria in commonly utilized C57BL/6J mice. We show that in contrast to brain mitochondria, inhibiting distally within complex I or within complex III does not increase liver mitochondrial ROS production supported by complex I substrates, and liver mitochondrial ROS production supported by complex II substrates occurred primarily independent of membrane potential. Complex I, II, and III enzymatic activities and membrane potential were equivalent between liver and brain and responded to ETC. inhibitors similarly. Brain mitochondria exhibited an approximately two-fold increase in complex I and II supported respiration compared with liver mitochondria while exhibiting similar responses to inhibitors. Elevated NADH transport and heightened complex II-III coupled activity accounted for increased complex I and II supported respiration, respectively in brain mitochondria. We conclude that important mechanistic differences exist between mouse liver and brain mitochondria and that mouse mitochondria exhibit phenotypic differences compared with mitochondria from other species.

  1. Effect of hydrophobic additive on oxygen transport in catalyst layer of proton exchange membrane fuel cells

    Science.gov (United States)

    Wang, Shunzhong; Li, Xiaohui; Wan, Zhaohui; Chen, Yanan; Tan, Jinting; Pan, Mu

    2018-03-01

    Oxygen transport resistance (OTR) is a critical factor influencing the performance of proton exchange membrane fuel cells (PEMFCs). In this paper, an effective method to reduce the OTR of catalyst layers (CLs) by introducing a hydrophobic additive into traditional CLs is proposed. A low-molecular-weight polytetrafluoroethylene (PTFE) is selected for its feasibility to prepare an emulsion, which is mixed with a traditional catalyst ink to successfully fabricate the CL with PTFE of 10 wt%. The PTFE film exists in the mesopores between the carbon particles. The limiting current of the hydrophobic CL was almost 4000 mA/cm2, which is 500 mA/cm2 higher than that of the traditional CL. PTFE reduces the OTR of the CL in the dry region by as much as 24 s/m compared to the traditional CL and expands the dry region from 2000 mA/cm2 in the traditional CL to 2500 mA/cm2. Furthermore, the CL with the hydrophobic agent can improve the oxygen transport in the wet region (>2000 mA/cm2) more effectively than that in the dry region. All these results indicate that the CL with the hydrophobic agent shows a superior performance in terms of optimizing water management and effectively reduces the OTR in PEMFCs.

  2. Phenotypic plasticity in blood–oxygen transport in highland and lowland deer mice

    Science.gov (United States)

    Tufts, Danielle M.; Revsbech, Inge G.; Cheviron, Zachary A.; Weber, Roy E.; Fago, Angela; Storz, Jay F.

    2013-01-01

    SUMMARY In vertebrates living at high altitude, arterial hypoxemia may be ameliorated by reversible changes in the oxygen-carrying capacity of the blood (regulated by erythropoiesis) and/or changes in blood–oxygen affinity (regulated by allosteric effectors of hemoglobin function). These hematological traits often differ between taxa that are native to different elevational zones, but it is often unknown whether the observed physiological differences reflect fixed, genetically based differences or environmentally induced acclimatization responses (phenotypic plasticity). Here, we report measurements of hematological traits related to blood–O2 transport in populations of deer mice (Peromyscus maniculatus) that are native to high- and low-altitude environments. We conducted a common-garden breeding experiment to assess whether altitude-related physiological differences were attributable to developmental plasticity and/or physiological plasticity during adulthood. Under conditions prevailing in their native habitats, high-altitude deer mice from the Rocky Mountains exhibited a number of pronounced hematological differences relative to low-altitude conspecifics from the Great Plains: higher hemoglobin concentrations, higher hematocrits, higher erythrocytic concentrations of 2,3-diphosphoglycerate (an allosteric regulator of hemoglobin–oxygen affinity), lower mean corpuscular hemoglobin concentrations and smaller red blood cells. However, these differences disappeared after 6 weeks of acclimation to normoxia at low altitude. The measured traits were also indistinguishable between the F1 progeny of highland and lowland mice, indicating that there were no persistent differences in phenotype that could be attributed to developmental plasticity. These results indicate that the naturally occurring hematological differences between highland and lowland mice are environmentally induced and are largely attributable to physiological plasticity during adulthood. PMID

  3. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01

    the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  4. Characterization of water quality and simulation of temperature, nutrients, biochemical oxygen demand, and dissolved oxygen in the Wateree River, South Carolina, 1996-98

    Science.gov (United States)

    Feaster, Toby D.; Conrads, Paul

    2000-01-01

    and validate the Branched Lagrangian Transport Model. The data include dye-tracer concentrations collected at six locations, stream-reaeration data collected at four locations, and water-quality and water-temperature data collected at nine locations. Hydraulic data for the Branched Lagrangian Transport Model were simulated by using the U.S. Geological Survey BRANCH one-dimensional, unsteady-flow model. Data that were used to calibrate and validate the BRANCH model included time-series of water-level and streamflow data at three locations. The domain of the hydraulic model and the transport model was a 57.3- and 43.5-mile reach of the river, respectively. A sensitivity analysis of the simulated dissolved-oxygen concentrations to model coefficients and data inputs indicated that the simulated dissolved-oxygen concentrations were most sensitive to changes in the boundary concentration inputs of water temperature and dissolved oxygen followed by sensitivity to the change in streamflow. A 35-percent increase in streamflow resulted in a negative normalized sensitivity index, indicating a decrease in dissolved-oxygen concentrations. The simulated dissolved-oxygen concentrations showed no significant sensitivity to changes in model input rate kinetics. To demonstrate the utility of the Branched Lagrangian Transport Model of the Wateree River, the model was used to simulate several hydrologic and water-quality scenarios to evaluate the effects on simulated dissolved-oxygen concentrations. The first scenario compared the 24-hour mean dissolved-oxygen concentrations for August 13, 1997, as simulated during the model validation, with simulations using two different streamflow patterns. The mean streamflow for August 13, 1997, was 2,000 cubic feet per second. Simulations were run using mean streamflows of 1,000 and 1,400 cubic feet per second while keeping the water-quality boundary conditions the same as were used during the validation simulations. When compared t

  5. Textile Inspired Lithium-Oxygen Battery Cathode with Decoupled Oxygen and Electrolyte Pathways.

    Science.gov (United States)

    Xu, Shaomao; Yao, Yonggang; Guo, Yuanyuan; Zeng, Xiaoqiao; Lacey, Steven D; Song, Huiyu; Chen, Chaoji; Li, Yiju; Dai, Jiaqi; Wang, Yanbin; Chen, Yanan; Liu, Boyang; Fu, Kun; Amine, Khalil; Lu, Jun; Hu, Liangbing

    2018-01-01

    The lithium-air (Li-O 2 ) battery has been deemed one of the most promising next-generation energy-storage devices due to its ultrahigh energy density. However, in conventional porous carbon-air cathodes, the oxygen gas and electrolyte often compete for transport pathways, which limit battery performance. Here, a novel textile-based air cathode is developed with a triple-phase structure to improve overall battery performance. The hierarchical structure of the conductive textile network leads to decoupled pathways for oxygen gas and electrolyte: oxygen flows through the woven mesh while the electrolyte diffuses along the textile fibers. Due to noncompetitive transport, the textile-based Li-O 2 cathode exhibits a high discharge capacity of 8.6 mAh cm -2 , a low overpotential of 1.15 V, and stable operation exceeding 50 cycles. The textile-based structure can be applied to a range of applications (fuel cells, water splitting, and redox flow batteries) that involve multiple phase reactions. The reported decoupled transport pathway design also spurs potential toward flexible/wearable Li-O 2 batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Growth of anodic oxide films on oxygen-containing niobium

    Energy Technology Data Exchange (ETDEWEB)

    Habazaki, H. [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan)]. E-mail: habazaki@eng.hokudai.ac.jp; Ogasawara, T. [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Konno, H. [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Shimizu, K. [University Chemical Laboratory, Keio University, Yokohama 223-8522 (Japan); Asami, K. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Saito, K. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Nagata, S. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Skeldon, P. [Corrosion and Protection Centre, School of Materials, The University of Manchester, P.O. Box 88, Manchester M60 1QD (United Kingdom); Thompson, G.E. [Corrosion and Protection Centre, School of Materials, The University of Manchester, P.O. Box 88, Manchester M60 1QD (United Kingdom)

    2005-09-20

    The present study is directed at understanding of the influence of oxygen in the metal on anodic film growth on niobium, using sputter-deposited niobium containing from about 0-52 at.% oxygen, with anodizing carried out at high efficiency in phosphoric acid electrolyte. The findings reveal amorphous anodic niobia films, with no significant effect of oxygen on the field strength, transport numbers, mobility of impurity species and capacitance. However, since niobium is partially oxidized due to presence of oxygen in the substrate, less charge is required to form the films, hence reducing the time to reach a particular film thickness and anodizing voltage. Further, the relative thickness of film material formed at the metal/film interface is increased by the incorporation of oxygen species into the films from the substrate, with an associated altered depth of incorporation of phosphorus species into the films.

  7. Improved Intratumoral Oxygenation Through Vascular Normalization Increases Glioma Sensitivity to Ionizing Radiation

    International Nuclear Information System (INIS)

    McGee, Mackenzie C.; Hamner, J. Blair; Williams, Regan F.; Rosati, Shannon F.; Sims, Thomas L.; Ng, Catherine Y.; Gaber, M. Waleed; Calabrese, Christopher; Wu Jianrong; Nathwani, Amit C.; Duntsch, Christopher; Merchant, Thomas E.; Davidoff, Andrew M.

    2010-01-01

    Purpose: Ionizing radiation, an important component of glioma therapy, is critically dependent on tumor oxygenation. However, gliomas are notable for areas of necrosis and hypoxia, which foster radioresistance. We hypothesized that pharmacologic manipulation of the typically dysfunctional tumor vasculature would improve intratumoral oxygenation and, thus, the antiglioma efficacy of ionizing radiation. Methods and Materials: Orthotopic U87 xenografts were treated with either continuous interferon-β (IFN-β) or bevacizumab, alone, or combined with cranial irradiation (RT). Tumor growth was assessed by quantitative bioluminescence imaging; the tumor vasculature using immunohistochemical staining, and tumor oxygenation using hypoxyprobe staining. Results: Both IFN-β and bevaziumab profoundly affected the tumor vasculature, albeit with different cellular phenotypes. IFN-β caused a doubling in the percentage of area of perivascular cell staining, and bevacizumab caused a rapid decrease in the percentage of area of endothelial cell staining. However, both agents increased intratumoral oxygenation, although with bevacizumab, the effect was transient, being lost by 5 days. Administration of IFN-β or bevacizumab before RT was significantly more effective than any of the three modalities as monotherapy or when RT was administered concomitantly with IFN-β or bevacizumab or 5 days after bevacizumab. Conclusion: Bevacizumab and continuous delivery of IFN-β each induced significant changes in glioma vascular physiology, improving intratumoral oxygenation and enhancing the antitumor activity of ionizing radiation. Additional investigation into the use and timing of these and other agents that modify the vascular phenotype, combined with RT, is warranted to optimize cytotoxic activity.

  8. Inhaled nitric oxide augments nitric oxide transport on sickle cell hemoglobin without affecting oxygen affinity

    OpenAIRE

    Gladwin, Mark T.; Schechter, Alan N.; Shelhamer, James H.; Pannell, Lewis K.; Conway, Deirdre A.; Hrinczenko, Borys W.; Nichols, James S.; Pease-Fye, Margaret E.; Noguchi, Constance T.; Rodgers, Griffin P.; Ognibene, Frederick P.

    1999-01-01

    Nitric oxide (NO) inhalation has been reported to increase the oxygen affinity of sickle cell erythrocytes. Also, proposed allosteric mechanisms for hemoglobin, based on S-nitrosation of β-chain cysteine 93, raise the possibilty of altering the pathophysiology of sickle cell disease by inhibiting polymerization or by increasing NO delivery to the tissue. We studied the effects of a 2-hour treatment, using varying concentrations of inhaled NO. Oxygen affinity, as measured by P50, did not respo...

  9. Increased tissue oxygenation explains the attenuation of hyperemia upon repetitive pneumatic compression of the lower leg.

    Science.gov (United States)

    Messere, Alessandro; Ceravolo, Gianluca; Franco, Walter; Maffiodo, Daniela; Ferraresi, Carlo; Roatta, Silvestro

    2017-12-01

    The rapid hyperemia evoked by muscle compression is short lived and was recently shown to undergo a rapid decrease even in spite of continuing mechanical stimulation. The present study aims at investigating the mechanisms underlying this attenuation, which include local metabolic mechanisms, desensitization of mechanosensitive pathways, and reduced efficacy of the muscle pump. In 10 healthy subjects, short sequences of mechanical compressions ( n = 3-6; 150 mmHg) of the lower leg were delivered at different interstimulus intervals (ranging from 20 to 160 s) through a customized pneumatic device. Hemodynamic monitoring included near-infrared spectroscopy, detecting tissue oxygenation and blood volume in calf muscles, and simultaneous echo-Doppler measurement of arterial (superficial femoral artery) and venous (femoral vein) blood flow. The results indicate that 1 ) a long-lasting (>100 s) increase in local tissue oxygenation follows compression-induced hyperemia, 2 ) compression-induced hyperemia exhibits different patterns of attenuation depending on the interstimulus interval, 3 ) the amplitude of the hyperemia is not correlated with the amount of blood volume displaced by the compression, and 4 ) the extent of attenuation negatively correlates with tissue oxygenation ( r  = -0,78, P < 0.05). Increased tissue oxygenation appears to be the key factor for the attenuation of hyperemia upon repetitive compressive stimulation. Tissue oxygenation monitoring is suggested as a useful integration in medical treatments aimed at improving local circulation by repetitive tissue compression. NEW & NOTEWORTHY This study shows that 1 ) the hyperemia induced by muscle compression produces a long-lasting increase in tissue oxygenation, 2 ) the hyperemia produced by subsequent muscle compressions exhibits different patterns of attenuation at different interstimulus intervals, and 3 ) the extent of attenuation of the compression-induced hyperemia is proportional to the level of

  10. Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions

    OpenAIRE

    Kasischke, Karl A; Lambert, Elton M; Panepento, Ben; Sun, Anita; Gelbard, Harris A; Burgess, Robert W; Foster, Thomas H; Nedergaard, Maiken

    2010-01-01

    Oxygen transport imposes a possible constraint on the brain's ability to sustain variable metabolic demands, but oxygen diffusion in the cerebral cortex has not yet been observed directly. We show that concurrent two-photon fluorescence imaging of endogenous nicotinamide adenine dinucleotide (NADH) and the cortical microcirculation exposes well-defined boundaries of tissue oxygen diffusion in the mouse cortex. The NADH fluorescence increases rapidly over a narrow, very low pO2 range with a p ...

  11. Oxygen nonstoichiometry and ionic transport properties of La0.4Sr0.6CoO3-delta .

    Science.gov (United States)

    Sitte, W; Bucher, E; Benisek, A; Preis, W

    2001-09-01

    Homogeneous samples of La0.4Sr0.6CoO3-delta were obtained by the glycine nitrate process. The oxygen nonstoichiometry was determined from oxygen exchange measurements as a function of oxygen partial pressure (10(-4) bar PO2 PO2-range between 10(-4) and 10(-2) bar to yield D and the ionic conductivity sigma(i) from the long time solution of the diffusion equation. Values for D from polarization measurements at T= 775 degrees C and from oxygen exchange measurements at T= 725 degrees C are in good agreement with each other. D and sigma(1) increase with increasing PO2 (10(-4) to 10(-2) bar). The ionic conductivity shows a maximum at 3-delta approximately 2.82 and decreases with decreasing oxygen content indicating the possible formation of vacancy ordered structures.

  12. Impact of thermal conductivity models on the coupling of heat transport, oxygen diffusion, and deformation in (U, Pu)O nuclear fuel elements

    Science.gov (United States)

    Mihaila, Bogdan; Stan, Marius; Crapps, Justin; Yun, Di

    2013-02-01

    We study the coupled thermal transport, oxygen diffusion, and thermal expansion in a generic nuclear fuel rod consisting of a (U) fuel pellet separated by a helium gap from zircaloy cladding. Steady-state and time-dependent finite-element simulations with a variety of initial- and boundary-value conditions are used to study the effect of the Pu content, y, and deviation from stoichiometry, x, on the temperature and deformation profiles in this fuel element. We find that the equilibrium radial temperature and deformation profiles are most sensitive to x at small values of y. For larger values of y, the effects of oxygen and Pu content are equally important. Following a change in the heat-generation rate, the centerline temperature, the radial deformation of the fuel pellet, and the centerline deviation from stoichiometry track each other closely in (U,Pu)O, as the characteristic time scales of the heat transport and oxygen diffusion are similar. This result is different from the situation observed in the case of UO fuels.

  13. Norepinephrine transporter blocker atomoxetine increases salivary alpha amylase

    NARCIS (Netherlands)

    Warren, C.M.; van den Brink, R.L.; Nieuwenhuis, S.; Bosch, J.A.

    It has been suggested that central norepinephrine (NE) activity may be inferred from increases in salivary alpha-amylase (SAA), but data in favor of this proposition are limited. We administered 40mg of atomoxetine, a selective NE transporter blocker that increases central NE levels, to 24 healthy

  14. Oxygen, water, and sodium chloride transport in soft contact lenses materials.

    Science.gov (United States)

    Gavara, Rafael; Compañ, Vicente

    2017-11-01

    Oxygen permeability, diffusion coefficient of the sodium ions and water flux and permeability in different conventional hydrogel (Hy) and silicone-hydrogel (Si-Hy) contact lenses have been measured experimentally. The results showed that oxygen permeability and transmissibility requirements of the lens have been addressed through the use of siloxane containing hydrogels. In general, oxygen and sodium chloride permeability values increased with the water content of the lens but there was a percolation phenomenon from a given value of water uptake mainly in the Si-Hy lenses which appeared to be related with the differences between free water and bound water contents. The increase of ion permeability with water content did not follow a unique trend indicating a possible dependence of the chemical structure of the polymer and character ionic and non-ionic of the lens. Indeed, the salt permeability values for silicone hydrogel contact lenses were one order of magnitude below those of conventional hydrogel contact lenses, which can be explained by a diffusion of sodium ions occurring only through the hydrophilic channels. The increase of the ionic permeability in Si-Hy materials may be due to the confinement of ions in nanoscale water channels involving possible decreased degrees of freedom for diffusion of both water and ions. In general, ionic lenses presented values of ionic permeability and diffusivity higher than most non-ionic lenses. The tortuosity of the ionic lenses is lower than the non-ionic Si-Hy lenses. Frequency 55 and PureVision exhibited the highest water permeability and flux values and, these parameters were greater for ionic Si-Hy lenses than for ionic conventional hydrogel lenses. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2218-2231, 2017. © 2016 Wiley Periodicals, Inc.

  15. Metabolic changers in oxygen transport in patients with diabetes mellitus type 2. Possibilities for correction

    Directory of Open Access Journals (Sweden)

    I Z Bondarenko

    2009-06-01

    Full Text Available Diabetes mellitus type 2 (DM2 - is an independent predictor of development of heart failure (HF. Spiroergometry - is a method for studying blood gas exchange parameters, commonly used for specification of HF. The purpose: 1. To study features of gas exchange at patients with DM2 without cardiovascular diseases in comparison with healthy control. 2. To estimate efficiency of metoprolol for correction of metabolic disturbances in patients with DM2. Materials and methods: 12 patients with DM2, aged 48,4±8, without history of cardiovascular diseases and 15 control subjects, aged 43,6±8 underwent cardio-pulmonary exercise test on treadmill, according to Bruce protocol. Exercise energy, VO2 peak, MET, VE max, VCO2 production were observed. Results: Patients with DM2 had a reduced exercise duration (p<0,001, lower peak oxygen consumption (p<0,001, VCO2 production and MET (p<0,005, than controls, representing the same state of hypoxia as in patients with ischemic heart disease (IHD of functional class 2. The introduction of metoprolol to patients with DM2 significantly increased exercise duration time and VCO2 production (p<0,005. Conclusions: 1. VO2 consumption in patients with DM2 is decreased to the same levels as in persons without DM2, who have IHD and HF. 2. Changes in oxygen-transport in persons with DM2 may serve as a marker of negative influence of the disease on cardiovascular system status. 3. Metoprolol improves parameters of cardio-respiratory system in patients with DM2.

  16. 2,3-diphosphoglycerate and oxygen supply of tissues in cardiosurgical diabetics.

    Science.gov (United States)

    Beder, I; Mataseje, A; Kittova, M; Carsky, J; Fischer, V

    2005-01-01

    The oxygen supply of tissues was studied under haemodilution in cardiosurgical diabetic and non-diabetic patients. There were 30 cardiosurgery patients examined, 9 were patients with diabetes mellitus.and 21 were non-diabetic patients. Venous blood samples were examined preoperatively, intraoperatively and for 10 days after operation. Haemodilution caused a decrease in haematocrit values in both groups, as well as in the erythrocyte count and haemoglobin concentration. Postoperatively, an increase was recorded in haematological values in both groups, the values had not reached the baseline even by 10th day. Increased values of blood oxygen saturation and partial oxygen pressure during the operation returned to baseline in both groups in the postoperative days. Values of p50 did not change in both groups for the period of observation. The obtained data suggest that sufficient oxygen supply to tissues was ensured under haemodilution in cardiosurgery patients in both groups. These results confirm multifactorial dependence of blood oxygen transport to tissues (Tab. 1, Fig. 3, Ref. 13).

  17. Methodology for the assessment of oxygen as an energy carrier

    Science.gov (United States)

    Yang, Ming Wei

    Due to the energy intensity of the oxygen generating process, the electric power grid would benefit if the oxygen generating process was consumed electric power only during low demand periods. Thus, the question to be addressed in this study is whether oxygen production and/or usage can be modified to achieve energy storage and/or transmission objectives at lower cost. The specific benefit to grid would be a leveling, over time, of the demand profile and thus would require less installation capacity. In order to track the availability of electricity, a compressed air storage unit is installed between the cryogenic distillation section and the main air compressor of air separation unit. A profit maximizing scheme for sizing storage inventory and related equipments is developed. The optimum scheme is capable of market responsiveness. Profits of steel maker, oxy-combustion, and IGCC plants with storage facilities can be higher than those plants without storage facilities, especially, at high-price market. Price tracking feature of air storage integration will certainly increase profit margins of the plants. The integration may push oxy-combustion and integrated gasification combined cycle process into economic viability. Since oxygen is used in consumer sites, it may generate at remote locations and transport to the place needed. Energy losses and costs analysis of oxygen transportation is conducted for various applications. Energy consumptions of large capacity and long distance GOX and LOX pipelines are lower than small capacity pipelines. However, transportation losses and costs of GOX and LOX pipelines are still higher than electricity transmission.

  18. Effect of oxygen vacancies on magnetic and transport properties of Sr2IrO4

    Science.gov (United States)

    Dwivedi, Vinod Kumar; Mukhopadhyay, Soumik

    2018-05-01

    Iridates have recently attracted growing interest because of their potential for realizing various interesting phases like interaction driven Mott-type insulator and magnetically driven Slater-type. In this paper, we present the magnetic and electrical transport properties of polycrystalline Sr2IrO4 synthesized by solid state reaction route. We find a ferromagnetic transition at 240 K. The Curie-Weiss law behavior hold good above the magnetic transition temperature TMag = 240 K with a small effective paramagnetic magnetic moment μeff = 0.25 µB/f.u. and a Curie-Weiss temperature, θCW = +100 K. Zero field cooled (ZFC) magnetization shows a gradual dcrease below 150 K, while same for field cooled (FC) below 50 K. Interestingly, below temperatures, ⁓ 10 K, a sharp increase in ZFC and FC magnetization can be seen. A temperature dependent resistivity reveals insulating behavior followed by power law mechanism. The sintering of sample in air leads to the very low value of resistivity is likely related to Sr or oxygen vacancies.

  19. Determining the Source of Water Vapor in a Cerium Oxide Electrochemical Oxygen Separator to Achieve Aviator Grade Oxygen

    Science.gov (United States)

    Graf, John; Taylor, Dale; Martinez, James

    2014-01-01

    More than a metric ton of water is transported to the International Space Station (ISS) each year to provide breathing oxygen for the astronauts. Water is a safe and compact form of stored oxygen. The water is electrolyzed on ISS and ambient pressure oxygen is delivered to the cabin. A much smaller amount of oxygen is used each year in spacesuits to conduct Extra Vehicular Activities (EVAs). Space suits need high pressure (>1000 psia) high purity oxygen (must meet Aviator Breathing Oxygen "ABO" specifications, >99.5% O2). The water / water electrolysis system cannot directly provide high pressure, high purity oxygen, so oxygen for EVAs is transported to ISS in high pressure gas tanks. The tanks are relatively large and heavy, and the majority of the system launch weight is for the tanks and not the oxygen. Extracting high purity oxygen from cabin air and mechanically compressing the oxygen might enable on-board production of EVA grade oxygen using the existing water / water electrolysis system. This capability might also benefit human spaceflight missions, where oxygen for EVAs could be stored in the form of water, and converted into high pressure oxygen on-demand. Cerium oxide solid electrolyte-based ion transport membranes have been shown to separate oxygen from air, and a supported monolithic wafer form of the CeO2 electrolyte membrane has been shown to deliver oxygen at pressures greater than 300 psia. These supported monolithic wafers can withstand high pressure differentials even though the membrane is very thin, because the ion transport membrane is supported on both sides (Fig 1). The monolithic supported wafers have six distinct layers, each with matched coefficients of thermal expansion. The wafers are assembled into a cell stack which allows easy air flow across the wafers, uniform current distribution, and uniform current density (Fig 2). The oxygen separation is reported to be "infinitely selective" to oxygen [1] with reported purity of 99.99% [2

  20. Blood oxygen transport in common map turtles during simulated hibernation.

    Science.gov (United States)

    Maginniss, Leigh A; Ekelund, Summer A; Ultsch, Gordon R

    2004-01-01

    We assessed the effects of cold and submergence on blood oxygen transport in common map turtles (Graptemys geographica). Winter animals were acclimated for 6-7 wk to one of three conditions at 3 degrees C: air breathing (AB-3 degrees C), normoxic submergence (NS-3 degrees C), and hypoxic (PO2=49 Torr) submergence (HS-3 degrees C). NS-3 degrees C turtles exhibited a respiratory alkalosis (pH 8.07; PCO2=7.9 Torr; [lactate]=2.2 mM) relative to AB-3 degrees C animals (pH 7.89; PCO2=13.4 Torr; [lactate]=1.1 mM). HS-3 degrees C animals experienced a profound metabolic acidosis (pH 7.30; PCO2=7.9 Torr; [lactate]=81 mM). NS-3 degrees C turtles exhibited an increased blood O2 capacity; however, isoelectric focusing revealed no seasonal changes in the isohemoglobin (isoHb) profile. Blood O2 affinity was significantly increased by cold acclimation; half-saturation pressures (P50's) for air-breathing turtles at 3 degrees and 22 degrees C were 6.5 and 18.8 Torr, respectively. P50's for winter animals submerged in normoxic and hypoxic water were 5.2 and 6.5 Torr, respectively. CO2 Bohr slopes (Delta logP50/Delta pH) were -0.15, -0.16, and -0.07 for AB-3 degrees C, NS-3 degrees C, and HS-3 degrees C turtles, respectively; the corresponding value for AB-22 degrees C was -0.37. The O2 equilibrium curve (O2EC) shape was similar for AB-3 degrees C and NS-3 degrees C turtles; Hill plot n coefficients ranged from 1.8 to 2.0. The O2EC shape for HS-3 degrees C turtles was anomalous, exhibiting high O2 affinity below P50 and a right-shifted segment above half-saturation. We suggest that increases in Hb-O2 affinity and O2 capacity enhance extrapulmonary O2 uptake by turtles overwintering in normoxic water. The anomalous O2EC shape and reduced CO2 Bohr effect of HS-3 degrees C turtles may also promote some aerobic metabolism in hypoxic water.

  1. Understanding Oxygen Vacancy Formation, Interaction, Transport, and Strain in SOFC Components via Combined Thermodynamics and First Principles Calculations

    Science.gov (United States)

    Das, Tridip

    Understanding of the vacancy formation, interaction, increasing its concentration and diffusion, and controlling its chemical strain will advance the design of mixed ionic and electronic conductor (MIEC) materials via element doping and strain engineering. This is especially central to improve the performance of the solid oxide fuel cell (SOFC), an energy conversion device for sustainable future. The oxygen vacancy concentration grows exponentially with the temperature at dilute vacancy concentration but not at higher concentration, or even decreases due to oxygen vacancy interaction and vacancy ordered phase change. This limits the ionic conductivity. Using density functional theory (DFT), we provided fundamental understanding on how oxygen vacancy interaction originates in one of the typical MIEC, La1-xSrxFeO3-delta (LSF). The vacancy interaction is determined by the interplay of the charge state of multi-valence ion (Fe), aliovalent doping (La/Sr ratio), the crystal structure, and the oxygen vacancy concentration and/or nonstoichiometry (delta). It was found excess electrons left due to the formation of a neutral oxygen vacancy get distributed to Fe directly connected to the vacancy or to the second nearest neighboring Fe, based on crystal field splitting of Fe 3d orbital in different Fe-O polyhedral coordination. The progressively larger polaron size and anisotropic shape changes with increasing Sr-content resulted in increasing oxygen vacancy interactions, as indicated by an increase in the oxygen vacancy formation energy above a critical delta threshold. This was consistent with experimental results showing that Sr-rich LSF and highly oxygen deficient compositions are prone to oxygen-vacancy-ordering-induced phase transformations, while Sr-poor and oxygen-rich LSF compositions are not. Since oxygen vacancy induced phase transformations, cause a decrease in the mobile oxygen vacancy site fraction (X), both delta and X were predicted as a function of

  2. Factors Determining the Oxygen Permeability of Biological Membranes: Oxygen Transport Across Eye Lens Fiber-Cell Plasma Membranes.

    Science.gov (United States)

    Subczynski, Witold Karol; Widomska, Justyna; Mainali, Laxman

    2017-01-01

    Electron paramagnetic resonance (EPR) spin-label oximetry allows the oxygen permeability coefficient to be evaluated across homogeneous lipid bilayer membranes and, in some cases, across coexisting membrane domains without their physical separation. The most pronounced effect on oxygen permeability is observed for cholesterol, which additionally induces the formation of membrane domains. In intact biological membranes, integral proteins induce the formation of boundary and trapped lipid domains with a low oxygen permeability. The effective oxygen permeability coefficient across the intact biological membrane is affected not only by the oxygen permeability coefficients evaluated for each lipid domain but also by the surface area occupied by these domains in the membrane. All these factors observed in fiber cell plasma membranes of clear human eye lenses are reviewed here.

  3. Basic regulatory principles of Escherichia coli's electron transport chain for varying oxygen conditions.

    Science.gov (United States)

    Henkel, Sebastian G; Ter Beek, Alexander; Steinsiek, Sonja; Stagge, Stefan; Bettenbrock, Katja; de Mattos, M Joost Teixeira; Sauter, Thomas; Sawodny, Oliver; Ederer, Michael

    2014-01-01

    For adaptation between anaerobic, micro-aerobic and aerobic conditions Escherichia coli's metabolism and in particular its electron transport chain (ETC) is highly regulated. Although it is known that the global transcriptional regulators FNR and ArcA are involved in oxygen response it is unclear how they interplay in the regulation of ETC enzymes under micro-aerobic chemostat conditions. Also, there are diverse results which and how quinones (oxidised/reduced, ubiquinone/other quinones) are controlling the ArcBA two-component system. In the following a mathematical model of the E. coli ETC linked to basic modules for substrate uptake, fermentation product excretion and biomass formation is introduced. The kinetic modelling focusses on regulatory principles of the ETC for varying oxygen conditions in glucose-limited continuous cultures. The model is based on the balance of electron donation (glucose) and acceptance (oxygen or other acceptors). Also, it is able to account for different chemostat conditions due to changed substrate concentrations and dilution rates. The parameter identification process is divided into an estimation and a validation step based on previously published and new experimental data. The model shows that experimentally observed, qualitatively different behaviour of the ubiquinone redox state and the ArcA activity profile in the micro-aerobic range for different experimental conditions can emerge from a single network structure. The network structure features a strong feed-forward effect from the FNR regulatory system to the ArcBA regulatory system via a common control of the dehydrogenases of the ETC. The model supports the hypothesis that ubiquinone but not ubiquinol plays a key role in determining the activity of ArcBA in a glucose-limited chemostat at micro-aerobic conditions.

  4. Comparative genomic analyses of copper transporters and cuproproteomes reveal evolutionary dynamics of copper utilization and its link to oxygen.

    Directory of Open Access Journals (Sweden)

    Perry G Ridge

    2008-01-01

    Full Text Available Copper is an essential trace element in many organisms and is utilized in all domains of life. It is often used as a cofactor of redox proteins, but is also a toxic metal ion. Intracellular copper must be carefully handled to prevent the formation of reactive oxygen species which pose a threat to DNA, lipids, and proteins. In this work, we examined patterns of copper utilization in prokaryotes by analyzing the occurrence of copper transporters and copper-containing proteins. Many organisms, including those that lack copper-dependent proteins, had copper exporters, likely to protect against copper ions that inadvertently enter the cell. We found that copper use is widespread among prokaryotes, but also identified several phyla that lack cuproproteins. This is in contrast to the use of other trace elements, such as selenium, which shows more scattered and reduced usage, yet larger selenoproteomes. Copper transporters had different patterns of occurrence than cuproproteins, suggesting that the pathways of copper utilization and copper detoxification are independent of each other. We present evidence that organisms living in oxygen-rich environments utilize copper, whereas the majority of anaerobic organisms do not. In addition, among copper users, cuproproteomes of aerobic organisms were larger than those of anaerobic organisms. Prokaryotic cuproproteomes were small and dominated by a single protein, cytochrome c oxidase. The data are consistent with the idea that proteins evolved to utilize copper following the oxygenation of the Earth.

  5. Improvement of oxygen supply by an artificial carrier in combination with normobaric oxygenation decreases the volume of tissue hypoxia and tissue damage from transient focal cerebral ischemia

    NARCIS (Netherlands)

    Seiffge, David J.; Lapina, Natalia E.; Tsagogiorgas, Charalambos; Theisinger, Bastian; Henning, Robert H.; Schilling, Lothar

    Tissue hypoxia may play an important role in the development of ischemic brain damage. In the present study we investigated in a rat model of transient focal brain ischemia the neuroprotective effects of increasing the blood oxygen transport capacity by applying a semifluorinated alkane

  6. Effect of low oxygen partial pressure to the bumblebee respiration; Naruhanabachi ni okeru taikichu sanso bun'atsu henka no kokyu ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Komai, Y. [Japan Science and Technology Corp., Tokyo (Japan)

    1999-06-25

    Insects augment oxygen supply using convective transport during flight in two ways: with deforming tracheae by surrounding muscles movement (muscle pumping) and with contracting air sacs by exoskeleton movement (abdominal or thoracic pumping). However, because induced flow inside tracheae is difficult to measure, it is not known how the convective transport actually contributes. By comparison between direct measurement of oxygen partial pressure in a flight muscle based on electrochemical method and flight/ventilation activities in a bumblebee, Bumbus hypocrita hypocruta, a method was developed for estimating gas transport efficiency. Oxygen partial pressure, P{sub 02}, in the bee periodically fluctuated with discontinuous abdominal movement in normal air. While the P{sub 02} strongly varied among individuals in normal air, the P{sub 02} took a unique value in oxygen poor air ({<=}8%). By enhancing ventilation, the bee could respire in an oxygen poor atmosphere up to 2%. Furthermore, the bee could fly in an atmosphere of 6%, in which the P{sub 02} decreased to 0.7%. Estimated efficiency of the gas transport increases with atmospheric oxygen concentration decreases. (author)

  7. Tracking Oxygen Vacancies in Thin Film SOFC Cathodes

    Science.gov (United States)

    Leonard, Donovan; Kumar, Amit; Jesse, Stephen; Kalinin, Sergei; Shao-Horn, Yang; Crumlin, Ethan; Mutoro, Eva; Biegalski, Michael; Christen, Hans; Pennycook, Stephen; Borisevich, Albina

    2011-03-01

    Oxygen vacancies have been proposed to control the rate of the oxygen reduction reaction and ionic transport in complex oxides used as solid oxide fuel cell (SOFC) cathodes [1,2]. In this study oxygen vacancies were tracked, both dynamically and statically, with the combined use of scanned probe microscopy (SPM) and scanning transmission electron microscopy (STEM). Epitaxial films of La 0.8 Sr 0.2 Co O3 (L SC113) and L SC113 / LaSrCo O4 (L SC214) on a GDC/YSZ substrate were studied, where the latter showed increased electrocatalytic activity at moderate temperature. At atomic resolution, high angle annular dark field STEM micrographs revealed vacancy ordering in L SC113 as evidenced by lattice parameter modulation and EELS studies. The evolution of oxygen vacancy concentration and ordering with applied bias and the effects of bias cycling on the SOFC cathode performance will be discussed. Research is sponsored by the of Materials Sciences and Engineering Division, U.S. DOE.

  8. Impact of Increasing Levels of Oxygen Consumption on the Evolution of Color, Phenolic, and Volatile Compounds of Nebbiolo Wines.

    Science.gov (United States)

    Petrozziello, Maurizio; Torchio, Fabrizio; Piano, Federico; Giacosa, Simone; Ugliano, Maurizio; Bosso, Antonella; Rolle, Luca

    2018-01-01

    Since the end of the last century, many works have been carried out to verify the effect of controlled oxygen intake on the chemical and organoleptic characteristics of red wines. In spite of the large number of studies on this subject, oxygen remains a cutting-edge research topic in oenology. Oxygen consumption leads to complex and not univocal changes in wine composition, sometimes positive such as color stabilization, softening of mouthfeel, increase of aroma complexity. However, the variability of these effects, which depend both on the oxygenation conditions and the composition of the wine, require more efforts in this research field to effectively manage wine oxygen exposure. The present study is focused on the evolution of the chemical composition of four different Nebbiolo wines, each of them added with 4 different doses of oxygen (7, 14, 21, and 28 mg/L total intake) during the first month of storage. In this perspective, the evolution over time of wine color and polyphenols was studied. Acetaldehyde, glyceraldehyde and glyoxylic acid were quantified by HPLC. These compounds can play a role in wine aging creating condensed colored and stable products involving anthocyanins with or without tannins. Moreover, some volatile aldehydes correlated with oxidized olfactory notes, including methional and (E)-2-alkenals, have been quantified by GC-MS. Overall, during storage a decrease of color intensity, total and free anthocyanins and an increase in polymeric pigments (in particular the contribution to the red color of pigments not-bleachable by SO 2 or dTAT%) and some minor aldehydes was observed. Nevertheless, the differences in color parameters between the samples with different doses of oxygen were modest. These evidences were in contrast with an evident and detectable increase of free acetaldehyde content at increasing doses of oxygen measured after 60 days of storage. The effect of oxygen on color and production of SO 2 non-bleachable pigments during aging

  9. Impact of Increasing Levels of Oxygen Consumption on the Evolution of Color, Phenolic, and Volatile Compounds of Nebbiolo Wines

    Science.gov (United States)

    Petrozziello, Maurizio; Torchio, Fabrizio; Piano, Federico; Giacosa, Simone; Ugliano, Maurizio; Bosso, Antonella; Rolle, Luca

    2018-01-01

    Since the end of the last century, many works have been carried out to verify the effect of controlled oxygen intake on the chemical and organoleptic characteristics of red wines. In spite of the large number of studies on this subject, oxygen remains a cutting-edge research topic in oenology. Oxygen consumption leads to complex and not univocal changes in wine composition, sometimes positive such as color stabilization, softening of mouthfeel, increase of aroma complexity. However, the variability of these effects, which depend both on the oxygenation conditions and the composition of the wine, require more efforts in this research field to effectively manage wine oxygen exposure. The present study is focused on the evolution of the chemical composition of four different Nebbiolo wines, each of them added with 4 different doses of oxygen (7, 14, 21, and 28 mg/L total intake) during the first month of storage. In this perspective, the evolution over time of wine color and polyphenols was studied. Acetaldehyde, glyceraldehyde and glyoxylic acid were quantified by HPLC. These compounds can play a role in wine aging creating condensed colored and stable products involving anthocyanins with or without tannins. Moreover, some volatile aldehydes correlated with oxidized olfactory notes, including methional and (E)-2-alkenals, have been quantified by GC-MS. Overall, during storage a decrease of color intensity, total and free anthocyanins and an increase in polymeric pigments (in particular the contribution to the red color of pigments not-bleachable by SO2 or dTAT%) and some minor aldehydes was observed. Nevertheless, the differences in color parameters between the samples with different doses of oxygen were modest. These evidences were in contrast with an evident and detectable increase of free acetaldehyde content at increasing doses of oxygen measured after 60 days of storage. The effect of oxygen on color and production of SO2 non-bleachable pigments during aging

  10. WAYS TO INCREASE COMPETITIVENESS OF RAILWAY TRANSPORT IN MODERN CONDITIONS

    Directory of Open Access Journals (Sweden)

    P. V. Bech

    2015-07-01

    Full Text Available Purpose. In this paper it is necessary to analyze the types of competition in the transport market in order to find ways to improve the competitiveness of railway transport and to determine the ensuring equal conditions for all market participants by eliminating discrimination in competition. Methodology. Analysis of recent research and publications on the subject was held by the authors. The question of the development of competition, increased competitiveness in railway transport was investigated. Attention is drawn to the fact that due to the decline in traffic volumes on all modes of transport competition may significantly change the usual sphere the effective use of different modes of transport. Every mode of transport occupies a particular segment of the transport market, taking into account its technical and economic features, weakly competing, and in some cases do not compete with each other (except the road transport. However, it is entirely possible competition inside these segments.Findings. The problems of management of competitiveness, including the transport market, which required extensive analysis and serious scientific study, were identified. Originality. As a result of this work the features of transport and production of transport in modern conditions were structured. The dependences of passenger turnover and freight turnover by mode of transport over the past decade were shown. The question of additional profits by providing the cargo owners a range of service was examined. The optimal combination of cost and quality of such services at each transportation company promotes increasing its competitive status. Practical value. Competition between enterprises of the industry put the aim of improving the competitiveness of not only railway subsystems directly involved in technology movement of cargoes and the movement of passengers, but also the organization of infrastructure in the first place – subsystems to expand services

  11. Hemodynamic and oxygen transport patterns for outcome prediction, therapeutic goals, and clinical algorithms to improve outcome. Feasibility of artificial intelligence to customize algorithms.

    Science.gov (United States)

    Shoemaker, W C; Patil, R; Appel, P L; Kram, H B

    1992-11-01

    A generalized decision tree or clinical algorithm for treatment of high-risk elective surgical patients was developed from a physiologic model based on empirical data. First, a large data bank was used to do the following: (1) describe temporal hemodynamic and oxygen transport patterns that interrelate cardiac, pulmonary, and tissue perfusion functions in survivors and nonsurvivors; (2) define optimal therapeutic goals based on the supranormal oxygen transport values of high-risk postoperative survivors; (3) compare the relative effectiveness of alternative therapies in a wide variety of clinical and physiologic conditions; and (4) to develop criteria for titration of therapy to the endpoints of the supranormal optimal goals using cardiac index (CI), oxygen delivery (DO2), and oxygen consumption (VO2) as proxy outcome measures. Second, a general purpose algorithm was generated from these data and tested in preoperatively randomized clinical trials of high-risk surgical patients. Improved outcome was demonstrated with this generalized algorithm. The concept that the supranormal values represent compensations that have survival value has been corroborated by several other groups. We now propose a unique approach to refine the generalized algorithm to develop customized algorithms and individualized decision analysis for each patient's unique problems. The present article describes a preliminary evaluation of the feasibility of artificial intelligence techniques to accomplish individualized algorithms that may further improve patient care and outcome.

  12. Ultramicroelectrode studies of oxygen reduction in polyelectrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Holdcroft, S.; Abdou, M.S.; Beattie, P.; Basura, V. [Simon Fraser Univ., Burnaby, BC (Canada). Dept. of Chemistry

    1997-12-31

    A study on the oxygen reduction reaction in a solid state electrochemical cell was presented. The oxygen reduction reaction is a rate limiting reaction in the operation of solid polymer electrolyte fuel cells which use H{sub 2} and O{sub 2}. Interest in the oxygen reduction reaction of platinum electrodes in contact with Nafion electrolytes stems from its role in fuel cell technology. The kinetics of the oxygen reduction reaction in different polyelectrolyte membranes, such as Nafion and non-Nafion membranes, were compared. The electrode kinetics and mass transport parameters of the oxygen reduction reaction in polyelectrolyte membranes were measured by ultramicroelectrode techniques. The major difference found between these two classes of membrane was the percentage of water, which is suggestive of superior electrochemical mass transport properties of the non-Nafion membranes. 2 refs. 1 fig.

  13. Mitochondrial Respiration and Oxygen Tension.

    Science.gov (United States)

    Shaw, Daniel S; Meitha, Karlia; Considine, Michael J; Foyer, Christine H

    2017-01-01

    Measurements of respiration and oxygen tension in plant organs allow a precise understanding of mitochondrial capacity and function within the context of cellular oxygen metabolism. Here we describe methods that can be routinely used for the isolation of intact mitochondria, and the determination of respiratory electron transport, together with techniques for in vivo determination of oxygen tension and measurement of respiration by both CO 2 production and O 2 consumption that enables calculation of the respiratory quotient [CO 2 ]/[O 2 ].

  14. Oxygen diffusion in nanocrystalline yttria-stabilized zirconia: the effect of grain boundaries.

    Science.gov (United States)

    De Souza, Roger A; Pietrowski, Martha J; Anselmi-Tamburini, Umberto; Kim, Sangtae; Munir, Zuhair A; Martin, Manfred

    2008-04-21

    The transport of oxygen in dense samples of yttria-stabilized zirconia (YSZ), of average grain size d approximately 50 nm, has been studied by means of 18O/16O exchange annealing and secondary ion mass spectrometry (SIMS). Oxygen diffusion coefficients (D*) and oxygen surface exchange coefficients (k*) were measured for temperatures 673oxygen partial pressure of 900 mbar. No evidence is found for fast diffusion along grain boundaries. Rather, the analysis indicates that grain boundaries hinder oxygen transport.

  15. OXYGEN TRANSPORT CERAMIC MEMBRANES

    International Nuclear Information System (INIS)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2002-01-01

    Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals

  16. Graphite and PMMA as pore formers for thermoplastic extrusion of porous 3Y-TZP oxygen transport membrane supports

    DEFF Research Database (Denmark)

    Bjørnetun Haugen, Astri; Gurauskis, Jonas; Kaiser, Andreas

    2016-01-01

    A gas permeable porous support is a crucial part of an asymmetric oxygen transport membrane (OTM). Here, we develop feedstocks for thermoplastic extrusion of tubular, porous 3Y-TZP (partially stabilized zirconia polycrystals, (Y2O3)0.03(ZrO2)0.97)) ceramics, using graphite and/or polymethyl....... This demonstrates the suitability of thermoplastic extrusion for fabrication of porous 3Y-TZP OTM supports, or for other technologies requiring porous ceramics....

  17. Significant social events and increasing use of life-sustaining treatment: trend analysis using extracorporeal membrane oxygenation as an example.

    Science.gov (United States)

    Chen, Yen-Yuan; Chen, Likwang; Huang, Tien-Shang; Ko, Wen-Je; Chu, Tzong-Shinn; Ni, Yen-Hsuan; Chang, Shan-Chwen

    2014-03-04

    Most studies have examined the outcomes of patients supported by extracorporeal membrane oxygenation as a life-sustaining treatment. It is unclear whether significant social events are associated with the use of life-sustaining treatment. This study aimed to compare the trend of extracorporeal membrane oxygenation use in Taiwan with that in the world, and to examine the influence of significant social events on the trend of extracorporeal membrane oxygenation use in Taiwan. Taiwan's extracorporeal membrane oxygenation uses from 2000 to 2009 were collected from National Health Insurance Research Dataset. The number of the worldwide extracorporeal membrane oxygenation cases was mainly estimated using Extracorporeal Life Support Registry Report International Summary July 2012. The trend of Taiwan's crude annual incidence rate of extracorporeal membrane oxygenation use was compared with that of the rest of the world. Each trend of extracorporeal membrane oxygenation use was examined using joinpoint regression. The measurement was the crude annual incidence rate of extracorporeal membrane oxygenation use. Each of the Taiwan's crude annual incidence rates was much higher than the worldwide one in the same year. Both the trends of Taiwan's and worldwide crude annual incidence rates have significantly increased since 2000. Joinpoint regression selected the model of the Taiwan's trend with one joinpoint in 2006 as the best-fitted model, implying that the significant social events in 2006 were significantly associated with the trend change of extracorporeal membrane oxygenation use following 2006. In addition, significantly social events highlighted by the media are more likely to be associated with the increase of extracorporeal membrane oxygenation use than being fully covered by National Health Insurance. Significant social events, such as a well-known person's successful extracorporeal membrane oxygenation use highlighted by the mass media, are associated with the use of

  18. Effects of Fiber Type and Size on the Heterogeneity of Oxygen Distribution in Exercising Skeletal Muscle

    Science.gov (United States)

    Liu, Gang; Mac Gabhann, Feilim; Popel, Aleksander S.

    2012-01-01

    The process of oxygen delivery from capillary to muscle fiber is essential for a tissue with variable oxygen demand, such as skeletal muscle. Oxygen distribution in exercising skeletal muscle is regulated by convective oxygen transport in the blood vessels, oxygen diffusion and consumption in the tissue. Spatial heterogeneities in oxygen supply, such as microvascular architecture and hemodynamic variables, had been observed experimentally and their marked effects on oxygen exchange had been confirmed using mathematical models. In this study, we investigate the effects of heterogeneities in oxygen demand on tissue oxygenation distribution using a multiscale oxygen transport model. Muscles are composed of different ratios of the various fiber types. Each fiber type has characteristic values of several parameters, including fiber size, oxygen consumption, myoglobin concentration, and oxygen diffusivity. Using experimentally measured parameters for different fiber types and applying them to the rat extensor digitorum longus muscle, we evaluated the effects of heterogeneous fiber size and fiber type properties on the oxygen distribution profile. Our simulation results suggest a marked increase in spatial heterogeneity of oxygen due to fiber size distribution in a mixed muscle. Our simulations also suggest that the combined effects of fiber type properties, except size, do not contribute significantly to the tissue oxygen spatial heterogeneity. However, the incorporation of the difference in oxygen consumption rates of different fiber types alone causes higher oxygen heterogeneity compared to control cases with uniform fiber properties. In contrast, incorporating variation in other fiber type-specific properties, such as myoglobin concentration, causes little change in spatial tissue oxygenation profiles. PMID:23028531

  19. Oxygen diffusion in bilayer polymer films

    DEFF Research Database (Denmark)

    Poulsen, Lars; Zebger, Ingo; Tofte, Jannik Pentti

    2004-01-01

    Experiments to quantify oxygen diffusion have been performed on polymer samples in which a film of poly(ethylene-co-norbornene) was cast onto a film of polystyrene which, in turn, was cast onto an oxygen-impermeable substrate. In the technique employed, the time evolution of oxygen transport...... through the film of poly(ethylene-co-norbornene) and into the polystyrene film was monitored using the phosphorescence of singlet oxygen as a spectroscopic probe. To analyze the data, it was necessary to solve Fick's second law of diffusion for both polymer films. Tractable analytical and numerical...

  20. Charge doping and large lattice expansion in oxygen-deficient heteroepitaxial WO3

    Science.gov (United States)

    Mattoni, Giordano; Filippetti, Alessio; Manca, Nicola; Zubko, Pavlo; Caviglia, Andrea D.

    2018-05-01

    Tungsten trioxide (WO3) is a versatile material with widespread applications ranging from electrochromics and optoelectronics to water splitting and catalysis of chemical reactions. For technological applications, thin films of WO3 are particularly appealing, taking advantage from a high surface-to-volume ratio and tunable physical properties. However, the growth of stoichiometric crystalline thin films is challenging because the deposition conditions are very sensitive to the formation of oxygen vacancies. In this paper, we show how background oxygen pressure during pulsed laser deposition can be used to tune the structural and electronic properties of WO3 thin films. By performing x-ray diffraction and low-temperature electrical transport measurements, we find changes in the WO3 lattice volume of up to 10% concomitantly with a resistivity drop of more than five orders of magnitude at room temperature as a function of increased oxygen deficiency. We use advanced ab initio calculations to describe in detail the properties of the oxygen vacancy defect states and their evolution in terms of excess charge concentration. Our results depict an intriguing scenario where structural, electronic, optical, and transport properties of WO3 single-crystal thin films can all be purposely tuned by controlling the oxygen vacancy formation during growth.

  1. Striking the right chord: moving music increases psychological transportation and behavioral intentions.

    Science.gov (United States)

    Strick, Madelijn; de Bruin, Hanka L; de Ruiter, Linde C; Jonkers, Wouter

    2015-03-01

    Three experiments among university students (N = 372) investigated the persuasive power of moving (i.e., intensely emotional and "chills"-evoking) music in audio-visual advertising. Although advertisers typically aim to increase elaborate processing of the message, these studies illustrate that the persuasive effect of moving music is based on increased narrative transportation ("getting lost" in the ad's story), which reduces critical processing. In Experiment 1, moving music increased transportation and some behavioral intentions (e.g., to donate money). Experiment 2 experimentally increased the salience of manipulative intent of the advertiser, and showed that moving music reduces inferences of manipulative intent, leading in turn to increased behavioral intentions. Experiment 3 tested boundary effects, and showed that moving music fails to increase behavioral intentions when the salience of manipulative intent is either extremely high (which precludes transportation) or extremely low (which precludes reduction of inferences of manipulative intent). Moving music did not increase memory performance, beliefs, and explicit attitudes, suggesting that the influence is affect-based rather cognition-based. Together, these studies illustrate that moving music reduces inferences of manipulation and increases behavioral intentions by transporting viewers into the story of the ad. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  2. 3D modeling of effects of increased oxygenation and activity concentration in tumors treated with radionuclides and antiangiogenic drugs

    Energy Technology Data Exchange (ETDEWEB)

    Lagerloef, Jakob H.; Kindblom, Jon; Bernhardt, Peter [Department of Radiation Physics, Goeteborg University, Goeteborg 41345 (Sweden); Department of Oncology, Sahlgrenska University Hospital, Goeteborg 41345 (Sweden); Department of Radiation Physics, Goeteborg University, Goeteborg, Sweden and Department of Nuclear Medicine, Sahlgrenska University Hospital, Goeteborg 41345 (Sweden)

    2011-08-15

    Purpose: Formation of new blood vessels (angiogenesis) in response to hypoxia is a fundamental event in the process of tumor growth and metastatic dissemination. However, abnormalities in tumor neovasculature often induce increased interstitial pressure (IP) and further reduce oxygenation (pO{sub 2}) of tumor cells. In radiotherapy, well-oxygenated tumors favor treatment. Antiangiogenic drugs may lower IP in the tumor, improving perfusion, pO{sub 2} and drug uptake, by reducing the number of malfunctioning vessels in the tissue. This study aims to create a model for quantifying the effects of altered pO{sub 2}-distribution due to antiangiogenic treatment in combination with radionuclide therapy. Methods: Based on experimental data, describing the effects of antiangiogenic agents on oxygenation of GlioblastomaMultiforme (GBM), a single cell based 3D model, including 10{sup 10} tumor cells, was developed, showing how radionuclide therapy response improves as tumor oxygenation approaches normal tissue levels. The nuclides studied were {sup 90}Y, {sup 131}I, {sup 177}Lu, and {sup 211}At. The absorbed dose levels required for a tumor control probability (TCP) of 0.990 are compared for three different log-normal pO{sub 2}-distributions: {mu}{sub 1} = 2.483, {sigma}{sub 1} = 0.711; {mu}{sub 2} = 2.946, {sigma}{sub 2} = 0.689; {mu}{sub 3} = 3.689, and {sigma}{sub 3} = 0.330. The normal tissue absorbed doses will, in turn, depend on this. These distributions were chosen to represent the expected oxygen levels in an untreated hypoxic tumor, a hypoxic tumor treated with an anti-VEGF agent, and in normal, fully-oxygenated tissue, respectively. The former two are fitted to experimental data. The geometric oxygen distributions are simulated using two different patterns: one Monte Carlo based and one radially increasing, while keeping the log-normal volumetric distributions intact. Oxygen and activity are distributed, according to the same pattern. Results: As tumor pO{sub 2

  3. Dorzolamide increases retinal oxygen tension after branch retinal vein occlusion

    DEFF Research Database (Denmark)

    Noergaard, Michael Hove; Bach-Holm, Daniella; Scherfig, Erik

    2008-01-01

    To study the effect of dorzolamide on the preretinal oxygen tension (RPO(2)) in retinal areas affected by experimental branch retinal vein occlusion (BRVO) in pigs.......To study the effect of dorzolamide on the preretinal oxygen tension (RPO(2)) in retinal areas affected by experimental branch retinal vein occlusion (BRVO) in pigs....

  4. Oxygen, the lead actor in the pathophysiologic drama: enactment of the trinity of normoxia, hypoxia, and hyperoxia in disease and therapy.

    Science.gov (United States)

    Kulkarni, Aditi C; Kuppusamy, Periannan; Parinandi, Narasimham

    2007-10-01

    Aerobic life has evolved a dependence on molecular oxygen for its mere survival. Mitochondrial oxidative phosphorylation absolutely requires oxygen to generate the currency of energy in aerobes. The physiologic homeostasis of these organisms is strictly maintained by optimal cellular and tissue-oxygenation status through complex oxygen-sensing mechanisms, signaling cascades, and transport processes. In the event of fluctuating oxygen levels leading to either an increase (hyperoxia) or decrease (hypoxia) in cellular oxygen, the organism faces a crisis involving depletion of energy reserves, altered cell-signaling cascades, oxidative reactions/events, and cell death or tissue damage. Molecular oxygen is activated by both nonenzymatic and enzymatic mechanisms into highly reactive oxygen species (ROS). Aerobes have evolved effective antioxidant defenses to counteract the reactivity of ROS. Although the ROS are also required for many normal physiologic functions of the aerobes, overwhelming production of ROS coupled with their insufficient scavenging by endogenous antioxidants will lead to detrimental oxidative stress. Needless to say, molecular oxygen is at the center of oxygenation, oxidative phosphorylation, and oxidative stress. This review focuses on the biology and pathophysiology of oxygen, with an emphasis on transport, sensing, and activation of oxygen, oxidative phosphorylation, oxygenation, oxidative stress, and oxygen therapy.

  5. Impact of Increasing Levels of Oxygen Consumption on the Evolution of Color, Phenolic, and Volatile Compounds of Nebbiolo Wines

    Directory of Open Access Journals (Sweden)

    Maurizio Petrozziello

    2018-04-01

    Full Text Available Since the end of the last century, many works have been carried out to verify the effect of controlled oxygen intake on the chemical and organoleptic characteristics of red wines. In spite of the large number of studies on this subject, oxygen remains a cutting-edge research topic in oenology. Oxygen consumption leads to complex and not univocal changes in wine composition, sometimes positive such as color stabilization, softening of mouthfeel, increase of aroma complexity. However, the variability of these effects, which depend both on the oxygenation conditions and the composition of the wine, require more efforts in this research field to effectively manage wine oxygen exposure. The present study is focused on the evolution of the chemical composition of four different Nebbiolo wines, each of them added with 4 different doses of oxygen (7, 14, 21, and 28 mg/L total intake during the first month of storage. In this perspective, the evolution over time of wine color and polyphenols was studied. Acetaldehyde, glyceraldehyde and glyoxylic acid were quantified by HPLC. These compounds can play a role in wine aging creating condensed colored and stable products involving anthocyanins with or without tannins. Moreover, some volatile aldehydes correlated with oxidized olfactory notes, including methional and (E-2-alkenals, have been quantified by GC-MS. Overall, during storage a decrease of color intensity, total and free anthocyanins and an increase in polymeric pigments (in particular the contribution to the red color of pigments not-bleachable by SO2 or dTAT% and some minor aldehydes was observed. Nevertheless, the differences in color parameters between the samples with different doses of oxygen were modest. These evidences were in contrast with an evident and detectable increase of free acetaldehyde content at increasing doses of oxygen measured after 60 days of storage. The effect of oxygen on color and production of SO2 non-bleachable pigments

  6. Diffusive oxygen shunting between vessels in the preglomerular renal vasculature: anatomic observations and computational modeling.

    Science.gov (United States)

    Gardiner, Bruce S; Thompson, Sarah L; Ngo, Jennifer P; Smith, David W; Abdelkader, Amany; Broughton, Brad R S; Bertram, John F; Evans, Roger G

    2012-09-01

    To understand how geometric factors affect arterial-to-venous (AV) oxygen shunting, a mathematical model of diffusive oxygen transport in the renal cortex was developed. Preglomerular vascular geometry was investigated using light microscopy (providing vein shape, AV separation, and capillary density near arteries) and published micro-computed tomography (CT) data (providing vessel size and AV separation; Nordsletten DA, Blackett S, Bentley MD, Ritman EL, Smith NP. IUPS Physiome Project. http://www.physiome.org.nz/publications/nordsletten_blackett_ritman_bentley_smith_2005/folder_contents). A "U-shaped" relationship was observed between the arterial radius and the distance between the arterial and venous lumens. Veins were found to partially wrap around the artery more consistently for larger rather than smaller arteries. Intrarenal arteries were surrounded by an area of fibrous tissue, lacking capillaries, the thickness of which increased from ∼5 μm for the smallest arteries (200-μm diameter). Capillary density was greater near smaller arteries than larger arteries. No capillaries were observed between wrapped AV vessel pairs. The computational model comprised a single AV pair in cross section. Geometric parameters critical in renal oxygen transport were altered according to variations observed by CT and light microscopy. Lumen separation and wrapping of the vein around the artery were found to be the critical geometric factors determining the amount of oxygen shunted between AV pairs. AV oxygen shunting increases both as lumen separation decreases and as the degree of wrapping increases. The model also predicts that capillaries not only deliver oxygen, but can also remove oxygen from the cortical parenchyma close to an AV pair. Thus the presence of oxygen sinks (capillaries or tubules) near arteries would reduce the effectiveness of AV oxygen shunting. Collectively, these data suggest that AV oxygen shunting would be favored in larger vessels common to the

  7. Development of thin film oxygen transport membranes on metallic supports

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Ye

    2012-04-25

    interlayer, though it comprised some cracks. The second interlayer had a crack-free and porous structure. The top membrane layer was deposited by physical vapor deposition (magnetron sputtering) with a thickness of 3.8 {mu}m improving the gastightness considerably but showing still reasonable air-leakage. Summarizing, the successful development of a metal-perovskite-composite could be shown, which acts as a basis for a further development of a gas-tight metal supported oxygen transport asymmetric membrane structure. (orig.)

  8. Production of an accelerated oxygen-14 beam

    International Nuclear Information System (INIS)

    Powell, J.; O'Neil, J.P.; Cerny, Joseph

    2003-01-01

    BEARS is an ongoing project to provide a light-ion radioactive-beam capability at the 88-Inch Cyclotron at LBNL. Light radioactive isotopes are produced at a 10 MeV proton medical cyclotron, transported 350 m via a high-speed gas transport capillary, cryogenically separated, and injected into the 88-Inch Cyclotron's ion source. The first radioactive beam successfully accelerated was carbon-11 and beams of intensity more than 10 8 ions/s have been utilized for experiments. Development of oxygen-14 as the second BEARS beam presented considerable technical challenges, both due to its short half-life of 71 s and the radiation chemistry of oxygen in the target. The usual techniques developed for medical uses of oxygen-15 involve the addition of significant amounts of carrier oxygen, something that would overload the ion source. As a solution, oxygen-14 is produced as water in a carrier-free form, and is chemically converted in two steps to carbon dioxide, a form readily usable by the BEARS. This system has been built and is operational, and initial tests of accelerating an oxygen-14 beam have been performed

  9. Increasing the availability of urban passenger transport on objective ...

    African Journals Online (AJOL)

    Increasing the availability of urban passenger transport on objective control data ... mathematical modeling, probability theory and mathematical statistics, expert ... intended for development of methods and means of operative management of ...

  10. Production of an accelerated oxygen-14 beam

    CERN Document Server

    Powell, J; Cerny, J

    2003-01-01

    BEARS is an ongoing project to provide a light-ion radioactive-beam capability at the 88-Inch Cyclotron at LBNL. Light radioactive isotopes are produced at a 10 MeV proton medical cyclotron, transported 350 m via a high-speed gas transport capillary, cryogenically separated, and injected into the 88-Inch Cyclotron's ion source. The first radioactive beam successfully accelerated was carbon-11 and beams of intensity more than 10 sup 8 ions/s have been utilized for experiments. Development of oxygen-14 as the second BEARS beam presented considerable technical challenges, both due to its short half-life of 71 s and the radiation chemistry of oxygen in the target. The usual techniques developed for medical uses of oxygen-15 involve the addition of significant amounts of carrier oxygen, something that would overload the ion source. As a solution, oxygen-14 is produced as water in a carrier-free form, and is chemically converted in two steps to carbon dioxide, a form readily usable by the BEARS. This system has bee...

  11. Increased expression of electron transport chain genes in uterine leiomyoma.

    Science.gov (United States)

    Tuncal, Akile; Aydin, Hikmet Hakan; Askar, Niyazi; Ozkaya, Ali Burak; Ergenoglu, Ahmet Mete; Yeniel, Ahmet Ozgur; Akdemir, Ali; Ak, Handan

    2014-01-01

    The etiology and pathophysiology of uterine leiomyomas, benign smooth muscle tumors of the uterus, are not well understood. To evaluate the role of mitochondria in uterine leiomyoma, we compared electron transport gene expressions of uterine leiomyoma tissue with myometrium tissue in six uterine leiomyoma patients by RT-PCR array. Our results showed an average of 1.562 (±0.445) fold increase in nuclear-encoded electron transport genes. These results might suggest an increase in size, number, or activity of mitochondria in uterine leiomyoma that, to our knowledge, has not been previously reported. © 2014 by the Association of Clinical Scientists, Inc.

  12. Effect of Sr substituted La 2−x Sr x NiO 4+δ (x = 0, 0.2, 0.4, 0.6, and 0.8) on oxygen stoichiometry and oxygen transport properties

    KAUST Repository

    Inprasit, T.; Wongkasemjit, S.; Skinner, S. J.; Burriel, M.; Limthongkul, P.

    2015-01-01

    © The Royal Society of Chemistry 2015. Stoichiometry and oxygen diffusion properties of La2-xSrxNiO4±δ with x = 0.2, 0.4, 0.6, and 0.8 prepared via a sol-gel method were investigated in this study. Iodometric titration and thermogravimetric analysis were used to determine the oxygen non-stoichiometry. Over the entire compositional range, the samples exhibit oxygen hyperstoichiometry with the minimum value δ = 0.14 at x = 0.4. Mixed effects of reduction of oxygen excess and increasing valence of Ni were found to serve as charge compensation mechanisms; the former dominated at a low level of substitution, x < 0.4, while the latter dominated at higher levels of Sr (0.4 < x < 0.8). The highest oxygen diffusion coefficient was found for the minimum amount of Sr substitution, x = 0.2, continuously decreasing with x until x = 0.6. An unusual increase in D∗ was observed when the Sr content increased up to x = 0.8.

  13. Monocarboxylate transporter-dependent mechanism confers resistance to oxygen- and glucose-deprivation injury in astrocyte-neuron co-cultures.

    Science.gov (United States)

    Gao, Chen; Zhou, Liya; Zhu, Wenxia; Wang, Hongyun; Wang, Ruijuan; He, Yunfei; Li, Zhiyun

    2015-05-06

    Hypoxic and low-glucose stressors contribute to neuronal death in many brain diseases. Astrocytes are anatomically well-positioned to shield neurons from hypoxic injury. During hypoxia/ischemia, lactate released from astrocytes is taken up by neurons and stored for energy. This process is mediated by monocarboxylate transporters (MCTs) in the central nervous system. In the present study, we investigated the ability of astrocytes to protect neurons from oxygen- and glucose-deprivation (OGD) injury via an MCT-dependent mechanism in vitro. Primary cultures of neurons, astrocytes, and astrocytes-neurons derived from rat hippocampus were subjected to OGD, MCT inhibition with small interfering (si)RNA. Cell survival and expression of MCT4, MCT2, glial fibrillary acidic protein, and neuronal nuclear antigen were evaluated. OGD significantly increased cell death in neuronal cultures and up-regulated MCT4 expression in astrocyte cultures, but no increased cell death was observed in neuron-astrocyte co-cultures or astrocyte cultures. However, neuronal cell death in co-cultures was increased by exposure to MCT4- or MCT2-specific siRNA, and this effect was attenuated by the addition of lactate into the extracellular medium of neuronal cultures prior to OGD. These findings demonstrate that resistance to OGD injury in astrocyte-neuron co-cultures occurs via an MCT-dependent mechanism. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Persistent increase in oxygen consumption and impaired neurovascular coupling after spreading depression in rat neocortex

    DEFF Research Database (Denmark)

    Hansen, Henning Piilgaard; Lauritzen, Martin

    2009-01-01

    trauma. Here we tested the hypothesis that single episodes of CSD induced acute hypoxia, and prolonged impairment of neurovascular and neurometabolic coupling. Cortical spreading depression was induced in rat frontal cortex, whereas cortical electrical activity and local field potentials (LFPs) were......Cortical spreading depression (CSD) is associated with a dramatic failure of brain ion homeostasis and increased energy metabolism. There is strong clinical and experimental evidence to suggest that CSD is the mechanism of migraine, and involved in progressive neuronal injury in stroke and head...... recorded by glass microelectrodes, cerebral blood flow (CBF) by laser-Doppler flowmetry, and tissue oxygen tension (tpO(2)) with polarographic microelectrodes. Cortical spreading depression increased cerebral metabolic rate of oxygen (CMRO(2)) by 71%+/-6.7% and CBF by 238%+/-48.1% for 1 to 2 mins...

  15. Oxygen therapy - infants

    Science.gov (United States)

    ... breathe increased amounts of oxygen to get normal levels of oxygen in their blood. Oxygen therapy provides babies with the extra oxygen. Information Oxygen is a gas that the cells in your body need to work properly. The ...

  16. Feasibility Study of Increasing Multimodal Interaction between Private and Public Transport Based on the Use of Intellectual Transport Systems and Services

    Directory of Open Access Journals (Sweden)

    Ulrich Weidmann

    2011-04-01

    Full Text Available The introduction of intellectual transport systems and services (ITS into the public and private transport sectors is closely connected with the development of multimodality in transport system (particularly, in towns and their suburbs. Taking into consideration the problems of traffic jams, the need for increasing the efficiency of power consumption and reducing the amount of burnt gases ejected into the air and the harmful effect of noise, the use of multimodal transport concept has been growing fast recently in most cities. It embraces a system of integrated tickets, the infrastructure, allowing a passenger to leave a car or a bike near a public transport station and to continue his/her travel by public transport (referred to as ‘Park&Ride’, ‘Bike&Ride’, as well as, real-time information system, universal design, and computer-aided traffic control. These concepts seem to be even more effective, when multimodal intellectual transport systems and services (ITS are introduced. In Lithuania, ITS is not widely used in passenger transportation, though its potential is great, particularly, taking into consideration the critical state of the capacity of public transport infrastructure. The paper considers the possibilities of increasing the effectiveness of public transport system ITS by increasing its interaction with private transport in the context of multimodal concept realization.Article in Lithuanian

  17. Oxygen transport through soft contact lens and cornea: Lens characterization and metabolic modeling

    Science.gov (United States)

    Chhabra, Mahendra

    The human cornea requires oxygen to sustain metabolic processes critical for its normal functioning. Any restriction to corneal oxygen supply from the external environment (e.g., by wearing a low oxygen-permeability contact lens) can lead to hypoxia, which may cause corneal edema (swelling), limbal hyperemia, neovascularization, and corneal acidosis. The need for adequate oxygen to the cornea is a major driving force for research and development of hypertransmissible soft contact lenses (SCLs). Currently, there is no standard technique for measuring oxygen permeability (Dk) of hypertransmissible silicone-hydrogel SCLs. In this work, an electrochemistry-based polarographic apparatus was designed, built, and operated to measure oxygen permeability in hypertransmissible SCLs. Unlike conventional methods where a range of lens thickness is needed for determining oxygen permeabilities of SCLs, this apparatus requires only a single lens thickness. The single-lens permeameter provides a reliable, efficient, and economic tool for measuring oxygen permeabilities of commercial hypertransmissible SCLs. The single-lens permeameter measures not only the product Dk, but, following modification, it measures separately diffusivity, D, and solubility, k, of oxygen in hypertransmissible SCLs. These properties are critical for designing better lens materials that ensure sufficient oxygen supply to the cornea. Metabolism of oxygen in the cornea is influenced by contact-lens-induced hypoxia, diseases such as diabetes, surgery, and drug treatment, Thus, estimation of the in-vivo corneal oxygen consumption rate is essential for gauging adequate oxygen supply to the cornea. Therefore, we have developed an unsteady-state reactive-diffusion model for the cornea-contact-lens system to determine in-vivo human corneal oxygen-consumption rate. Finally, a metabolic model was developed to determine the relation between contact-lens oxygen transmissibility (Dk/L) and corneal oxygen deficiency. A

  18. Oxygen-Dependent Transcriptional Regulator Hap1p Limits Glucose Uptake by Repressing the Expression of the Major Glucose Transporter Gene RAG1 in Kluyveromyces lactis▿

    Science.gov (United States)

    Bao, Wei-Guo; Guiard, Bernard; Fang, Zi-An; Donnini, Claudia; Gervais, Michel; Passos, Flavia M. Lopes; Ferrero, Iliana; Fukuhara, Hiroshi; Bolotin-Fukuhara, Monique

    2008-01-01

    The HAP1 (CYP1) gene product of Saccharomyces cerevisiae is known to regulate the transcription of many genes in response to oxygen availability. This response varies according to yeast species, probably reflecting the specific nature of their oxidative metabolism. It is suspected that a difference in the interaction of Hap1p with its target genes may explain some of the species-related variation in oxygen responses. As opposed to the fermentative S. cerevisiae, Kluyveromyces lactis is an aerobic yeast species which shows different oxygen responses. We examined the role of the HAP1-equivalent gene (KlHAP1) in K. lactis. KlHap1p showed a number of sequence features and some gene targets (such as KlCYC1) in common with its S. cerevisiae counterpart, and KlHAP1 was capable of complementing the hap1 mutation. However, the KlHAP1 disruptant showed temperature-sensitive growth on glucose, especially at low glucose concentrations. At normal temperature, 28°C, the mutant grew well, the colony size being even greater than that of the wild type. The most striking observation was that KlHap1p repressed the expression of the major glucose transporter gene RAG1 and reduced the glucose uptake rate. This suggested an involvement of KlHap1p in the regulation of glycolytic flux through the glucose transport system. The ΔKlhap1 mutant showed an increased ability to produce ethanol during aerobic growth, indicating a possible transformation of its physiological property to Crabtree positivity or partial Crabtree positivity. Dual roles of KlHap1p in activating respiration and repressing fermentation may be seen as a basis of the Crabtree-negative physiology of K. lactis. PMID:18806211

  19. Pulsatile Flow and Transport of Blood past a Cylinder: Basic Transport for an Artificial Lung.

    Science.gov (United States)

    Zierenberg, Jennifer R.

    2005-11-01

    The fluid mechanics and transport for flow of blood past a single cylinder is investigated using CFD. This work refers to an artificial lung in which oxygen travels through fibers oriented perpendicularly to the incoming blood flow. A pulsatile blood flow was considered: Ux=U0[ 1+A( φt ) ], where Ux is the velocity far from the cylinder. The Casson equation was used to describe the shear thinning and yield stress properties of blood. The presence of hemoglobin (i.e. facilitated diffusion) was considered. We examined the effect of A, U0 and φ on the flow and transport by varying the dimensionless parameters: A; Reynolds number, Re; and Womersley parameter, α. Two different feed gases were considered: pure O2 and air. The flow and concentration fields were computed for Re = 5, 10, and 40, 0 transport is found to primarily depend on Re and to increase with increasing Re, α and decreasing A. The presence of hemoglobin increases mass transport. Supported by NIH HL69420, NSF Fellowship

  20. Indirect Liquefaction of Biomass to Transportation Fuels Via Mixed Oxygenated Intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Eric C.D.

    2016-11-14

    This paper presents a comparative techno-economic analysis of four emerging conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with specific focus on pathways utilizing oxygenated intermediates. The processing steps include: biomass-to-syngas via indirect gasification, gas cleanup, conversion of syngas to alcohols/oxygenates followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation.

  1. Replacing the Transfusion of 1–2 Units of Blood with Plasma Expanders that Increase Oxygen Delivery Capacity: Evidence from Experimental Studies

    Directory of Open Access Journals (Sweden)

    Amy G. Tsai

    2014-10-01

    Full Text Available At least a third of the blood supply in the world is used to transfuse 1–2 units of packed red blood cells for each intervention and most clinical trials of blood substitutes have been carried out at this level of oxygen carrying capacity (OCC restoration. However, the increase of oxygenation achieved is marginal or none at all for molecular hemoglobin (Hb products, due to their lingering vasoactivity. This has provided the impetus for the development of “oxygen therapeutics” using Hb-based molecules that have high oxygen affinity and target delivery of oxygen to anoxic areas. However it is still unclear how these oxygen carriers counteract or mitigate the functional effects of anemia due to obstruction, vasoconstriction and under-perfusion. Indeed, they are administered as a low dosage/low volume therapeutic Hb (subsequently further diluted in the circulatory pool and hence induce extremely small OCC changes. Hyperviscous plasma expanders provide an alternative to oxygen therapeutics by increasing the oxygen delivery capacity (ODC; in anemia they induce supra-perfusion and increase tissue perfusion (flow by as much as 50%. Polyethylene glycol conjugate albumin (PEG-Alb accomplishes this by enhancing the shear thinning behavior of diluted blood, which increases microvascular endothelial shear stress, causes vasodilation and lowering peripheral vascular resistance thus facilitating cardiac function. Induction of supra-perfusion takes advantage of the fact that ODC is the product of OCC and blood flow and hence can be maintained by increasing either or both. Animal studies suggest that this approach may save a considerable fraction of the blood supply. It has an additional benefit of enhancing tissue clearance of toxic metabolites.

  2. Cardiovascular oxygen transport limitations to thermal niche expansion and the role of environmental Po2 in Antarctic notothenioid fishes.

    Science.gov (United States)

    Buckley, Bradley A; Hedrick, Michael S; Hillman, Stanley S

    2014-01-01

    The notothenioid fishes of the Southern Ocean possess some of the lowest upper thermal thresholds of any species and display a range of cardiovascular features that distinguish them from other fishes. Some species lack hemoglobin, and it has been posited that the inability to deliver sufficient oxygen at elevated temperature may in part determine upper thermal thresholds. Here, we provide an analysis of systemic O2 transport based on circulatory resistance, cardiac outputs, and cardiac power for three species of Antarctic fishes, including species that possess hemoglobin (Trematomus bernacchii, Pagothenia borchgrevinki) and a species lacking hemoglobin (Chaenocephalus aceratus) and that differ in their cardiovascular characteristics. This analysis supports the hypothesis that the mutation resulting in the lack of hemoglobin would be metabolically prohibitive at elevated temperatures. The analysis also suggests that such a mutation would be least detrimental to species with greater cardiac power outputs and lower total peripheral resistance. Decreased environmental Po2 has the greatest detrimental effect on the metabolic capacity in the species without hemoglobin. These data indicate that differences in cardiovascular characteristics of the notothenioid fishes place varying limits on thermal niche expansion in these species, but any significant increase in environmental temperature or decrease in environmental Po2 will prohibit maintenance of cardiovascular systemic O2 transport in all species. These data also suggest an evolutionary sequence of events such that a reduction in hematocrit, to reduce blood viscosity and resistance, was a first step in the invasion of low-temperature habitats and loss of hemoglobin was followed by increased cardiac power output to achieve sustainable metabolic rates.

  3. [Domiciliary oxygen therapy].

    Science.gov (United States)

    Abdel Kafi, S

    2010-09-01

    In Belgium, oxygen therapy is becoming more and more accessible. When oxygen is needed for short periods or for special indications as palliative care, an agreement between mutual insurance companies and pharmacists allows the practitioner the home installation of gazeous oxygen cylinder or of oxygen concentrator. When long term oxygen therapy (LTOT) is indicated for patients with respiratory insufficiency, the pneumologist must first ask the INAMI the authorization to install one of the following modalities: oxygen concentrator with or without demand oxygen delivery cylinder and liquid oxygen. The goal of LTOT is to increase survival and quality of life. The principal and well accepted indication for LTOT is severe hypoxemia. The beneficial effects of oxygen therapy limited at night or on exertion are controversial. In order to increase patient's autonomy, oxygen can be prescribed for ambulation, respecting prescription's rules. At each step of oxygen therapy implementing (indication, choice of the device and follow-up) the patient under oxygen may benefit from a joint approach between the general practitioner and the chest specialist.

  4. A theoretical evaluation of the oxygen concentration in a corrosion-fatigue crack

    International Nuclear Information System (INIS)

    Turnbull, A.

    1981-01-01

    The oxygen concentration in a corrosion-fatigue crack has been evaluated theoretically by assuming that oxygen was consumed by cathodic reduction on the walls of the crack and mass transport occurred by diffusion and advection (forced convection), with the latter resulting from the sinusoidal variation of the displacement of the crack walls. By using parameters relevant to a compact tension specimen, the time-dependent distribution of the oxygen concentration in the crack was calculated as a function of ΔK (the range of the stress intensity factor), R-value (minimum load/maximum load), frequency, crack length, and electrode potential. The influence of advection was to significantly enhance the mass transport of oxygen in the crack compared with ''diffusion-only'' even at low frequencies and low ΔK. Regions in the crack were identified in which advection dominance or diffusion dominance of the mass transport of oxygen occurred

  5. Innovative oxide materials for electrochemical energy conversion and oxygen separation

    Science.gov (United States)

    Belousov, V. V.

    2017-10-01

    Ion-conducting solid metal oxides are widely used in high-temperature electrochemical devices for energy conversion and oxygen separation. However, liquid metal oxides possessing unique electrochemical properties still remain of limited use. The review demonstrates the potential for practical applications of molten oxides. The transport properties of molten oxide materials are discussed. The emphasis is placed on the chemical diffusion of oxygen in the molten oxide membrane materials for electrochemical energy conversion and oxygen separation. The thermodynamics of these materials is considered. The dynamic polymer chain model developed to describe the oxygen ion transport in molten oxides is discussed. Prospects for further research into molten oxide materials are outlined. The bibliography includes 145 references.

  6. Oxygen transport membranes for biomass gasification and cement industry

    DEFF Research Database (Denmark)

    Cheng, Shiyang

    .1Ce0.9-xO1.95-δ increases with increasing concentration of Pr. The drastic decline of activation energy of electron hole migration (10-15 at.%) indicates a drastic decrease of hopping energy as continuous percolating “Pr-path” forms in the Face-Centred Cubic (FCC) Unit Cell. This provides a new...... of structural supports. An asymmetric (thin dense layer on a porous support) dual phase composite membrane of 70 vol.% Gd0.1Ce0.9O1.95-δ-30 vol.% La0.6Sr0.4FeO3-δ (GCO-LSF) was fabricated by a “one step” phase-inversion tape casting. Oxygen flux measurement as well as electrical conductivity relaxation......-1 at 850°C was measured over 300 hours in O2/N2. Segregation of barium sulphate and cobalt oxide was found on the surface of the dense membranes, which is ascribed to the reaction between sulphur-containing binder (PESF) and BSCFZ powder. Significant loss of Co, Sr and Fe and enrichment of BaSO4...

  7. PROBLEMS OF THE EFFICIENCY INCREASING OF TRANSPORTATION BY AIR OF UKRAINIAN SSR (1960-1980

    Directory of Open Access Journals (Sweden)

    Anatoliy Gorban

    2015-11-01

    Full Text Available The article is devoted to the problems of the efficiency increasing of the air transportation. The difficulties of increasing the efficiency of transportation by air in Ukrainian SSR in 1960-1980 were researched, factors that adversely affected the organization of the transport sector were determined and depicted. The article analyzes what caused such difficulties and it was found out that the causes of these difficulties are connected with the organizational problems of air transport of Ukrainian SSR, which negatively affected the operation of the industry. The central aim of the research is to focus on the main problems of air transport of Ukrainian SSR. So, we should say that the transport operation of those years was distributed too unevenly and was dependent on the population density of the territory of the republic. Purpose of the article is to determine, compile and analyze the factors that negatively affected the organization of air transportation of the Ukrainian republic and reduced the efficiency of its operation. Results of the research shows technical, organization and economical deficiency of air transport of Ukrainian SSR which caused the ineffectiveness of this type of transport and determines the nature of such difficulties. Statement of the problem. During the specified period (1960–1980 the air transport had undergone rapid development. Many new airlines were opened, airports were being built and reconstructed, the terms of exploiting of turbojet aircrafts were increased, the speed of planes was increasing. All these facts ensured safe and reliable air connection of all district centers, connected Ukraine with the other Soviet republics and foreign countries by air corridors. Ukrainian Department of Civil Aviation became the biggest regional Department of the Ministry of Civil Aviation of the USSR. But, at the same time the intensity of the increase of cargo and passenger transportation since 1970s led to accumulation of

  8. Mixed oxygen ion/electron-conducting ceramics for oxygen separation

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J.W.; Armstrong, T.R.; Armstrong, B.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-08-01

    Mixed oxygen ion and electron-conducting ceramics are unique materials that can passively separate high purity oxygen from air. Oxygen ions move through a fully dense ceramic in response to an oxygen concentration gradient, charge-compensated by an electron flux in the opposite direction. Compositions in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, perovskites where M=Sr, Ca, and Ba, and N=Mn, Ni, Cu, Ti, and Al, have been prepared and their electrical, oxygen permeation, oxygen vacancy equilibria, and catalytic properties evaluated. Tubular forms, disks, and asymmetric membrane structures, a thin dense layer on a porous support of the same composition, have been fabricated for testing purposes. In an oxygen partial gradient, the passive oxygen flux through fully dense structures was highly dependent on composition. An increase in oxygen permeation with increased temperature is attributed to both enhanced oxygen vacancy mobility and higher vacancy populations. Highly acceptor-doped compositions resulted in oxygen ion mobilities more than an order of magnitude higher than yttria-stabilized zirconia. The mixed conducting ceramics have been utilized in a membrane reactor configuration to upgrade methane to ethane and ethylene. Conditions were established to balance selectivity and throughput in a catalytic membrane reactor constructed from mixed conducting ceramics.

  9. Modelling the effects of oxygen evolution in the all-vanadium redox flow battery

    International Nuclear Information System (INIS)

    Al-Fetlawi, H.; Shah, A.A.; Walsh, F.C.

    2010-01-01

    The impact of oxygen evolution and bubble formation on the performance of an all-vanadium redox flow battery is investigated using a two-dimensional, non-isothermal model. The model is based on mass, charge, energy and momentum conservation, together with a kinetic model for the redox and gas-evolving reactions. The multi-phase mixture model is used to describe the transport of oxygen in the form of gas bubbles. Numerical simulations are compared to experimental data, demonstrating good agreement. Parametric studies are performed to investigate the effects of changes in the operating temperature, electrolyte flow rate and bubble diameter on the extent of oxygen evolution. Increasing the electrolyte flow rate is found to reduce the volume of the oxygen gas evolved in the positive electrode. A larger bubble diameter is demonstrated to increase the buoyancy force exerted on the bubbles, leading to a faster slip velocity and a lower gas volume fraction. Substantial changes are observed over the range of reported bubble diameters. Increasing the operating temperature was found to increase the gas volume as a result of the enhanced rate of O 2 evolution. The charge efficiency of the cell drops markedly as a consequence.

  10. [Correlation between the inspired fraction of oxygen, maternal partial oxygen pressure, and fetal partial oxygen pressure during cesarean section of normal pregnancies].

    Science.gov (United States)

    Castro, Carlos Henrique Viana de; Cruvinel, Marcos Guilherme Cunha; Carneiro, Fabiano Soares; Silva, Yerkes Pereira; Cabral, Antônio Carlos Vieira; Bessa, Roberto Cardoso

    2009-01-01

    Despite changes in pulmonary function, maternal oxygenation is maintained during obstetric regional blocks. But in those situations, the administration of supplementary oxygen to parturients is a common practice. Good fetal oxygenation is the main justification; however, this has not been proven. The objective of this randomized, prospective study was to test the hypothesis of whether maternal hyperoxia is correlated with an increase in fetal gasometric parameters in elective cesarean sections. Arterial blood gases of 20 parturients undergoing spinal block with different inspired fractions of oxygen were evaluated and correlated with fetal arterial blood gases. An increase in maternal inspired fraction of oxygen did not show any correlation with an increase of fetal partial oxygen pressure. Induction of maternal hyperoxia by the administration of supplementary oxygen did not increase fetal partial oxygen pressure. Fetal gasometric parameters did not change even when maternal parameters changed, induced by hyperoxia, during cesarean section under spinal block.

  11. Paracellular transport and energy utilization in the renal tubule.

    Science.gov (United States)

    Yu, Alan S L

    2017-09-01

    Paracellular transport across the tight junction is a general mechanism for transepithelial transport of solutes in epithelia, including the renal tubule. However, why paracellular transport evolved, given the existence of a highly versatile system for transcellular transport, is unknown. Recent studies have identified the paracellular channel, claudin-2, that is responsible for paracellular reabsorption of sodium in the proximal renal tubule. Knockout of claudin-2 in mice impairs proximal sodium and fluid reabsorption but is compensated by upregulation of sodium reabsorption in the loop of Henle. This occurs at the expense of increased renal oxygen consumption, hypoxia of the outer medulla and increased susceptibility to ischemic kidney injury. Paracellular transport can be viewed as a mechanism to exploit the potential energy in existing electrochemical gradients to drive passive transepithelial transport without consuming additional energy. In this way, it enhances the efficiency of energy utilization by transporting epithelia.

  12. Deletion of CGLD1 Impairs PSII and Increases Singlet Oxygen Tolerance of Green Alga Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Jiale Xing

    2017-12-01

    Full Text Available The green alga Chlamydomonas reinhardtii is a key model organism for studying photosynthesis and oxidative stress in unicellular eukaryotes. Using a forward genetics approach, we have identified and characterized a mutant x32, which lacks a predicted protein named CGLD1 (Conserved in Green Lineage and Diatom 1 in GreenCut2, under normal and stress conditions. We show that loss of CGLD1 resulted in minimal photoautotrophic growth and PSII activity in the organism. We observed reduced amount of PSII complex and core subunits in the x32 mutant based on blue-native (BN/PAGE and immunoblot analysis. Moreover, x32 exhibited increased sensitivity to high-light stress and altered tolerance to different reactive oxygenic species (ROS stress treatments, i.e., decreased resistance to H2O2/or tert-Butyl hydroperoxide (t-BOOH and increased tolerance to neutral red (NR and rose bengal (RB that induce the formation of singlet oxygen, respectively. Further analysis via quantitative real-time PCR (qRT-PCR indicated that the increased singlet-oxygen tolerance of x32 was largely correlated with up-regulated gene expression of glutathione-S-transferases (GST. The phenotypical and physiological implications revealed from our experiments highlight the important roles of CGLD1 in maintaining structure and function of PSII as well as in protection of Chlamydomonas under photo-oxidative stress conditions.

  13. Thermochemical conversion of biomass in smouldering combustion across scales: The roles of heterogeneous kinetics, oxygen and transport phenomena.

    Science.gov (United States)

    Huang, Xinyan; Rein, Guillermo

    2016-05-01

    The thermochemical conversion of biomass in smouldering combustion is investigated here by combining experiments and modeling at two scales: matter (1mg) and bench (100g) scales. Emphasis is put on the effect of oxygen (0-33vol.%) and oxidation reactions because these are poorly studied in the literature in comparison to pyrolysis. The results are obtained for peat as a representative biomass for which there is high-quality experimental data published previously. Three kinetic schemes are explored, including various steps of drying, pyrolysis and oxidation. The kinetic parameters are found using the Kissinger-Genetic Algorithm method, and then implemented in a one-dimensional model of heat and mass transfer. The predictions are validated with thermogravimetric and bench-scale experiments and then analyzed to unravel the role of heterogeneous reaction. This is the first time that the influence of oxygen on biomass smouldering is explained in terms of both chemistry and transport phenomena across scales. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Critical appraisal on the role of catalysts for the oxygen reduction reaction in lithium-oxygen batteries

    International Nuclear Information System (INIS)

    Lodge, Andrew W.; Lacey, Matthew J.; Fitt, Matthew; Garcia-Araez, Nuria; Owen, John R.

    2014-01-01

    This work reports a detailed characterization of the reduction of oxygen in pyrrolidinium-based ionic liquids for application to lithium-oxygen batteries. It is found that, in the absence of Li + , all electron transfer kinetics are fast, and therefore, the reactions are limited by the mass transport rate. Reversible reduction of O 2 to O 2 • − and O 2 • − to O 2 2− take place at E 0 = 2.1 V and 0.8 V vs. Li + /Li, respectively. In the presence of Li + , O 2 is reduced to LiO 2 first and then to Li 2 O 2 . The solubility product constant of Li 2 O 2 is found to be around 10 −51 , corroborating the hypothesis that electrode passivation by Li 2 O 2 deposition is an important issue that limits the capacity delivered by lithium-oxygen batteries. Enhancing the rate of Li 2 O 2 formation by using different electrode materials would probably lead to faster electrode passivation and hence smaller charge due to oxygen reduction (smaller capacity of the battery). On the contrary, soluble redox catalysts can not only increase the reaction rate of Li 2 O 2 formation but also avoid electrode passivation since the fast diffusion of the soluble redox catalyst would displace the formation of Li 2 O 2 at a sufficient distance from the electrode surface

  15. Characteristics of Honeycomb-Type Oxygen Generator with Electrolyte Based on Doped Bismuth Oxide

    Science.gov (United States)

    Chen, Yu-Wen; Liu, Yi-Xin; Wang, Sea-Fue; Devasenathipathy, Rajkumar

    2018-03-01

    An oxygen generator using Y-doped Bi2O3 as electrolyte to transport oxygen ions has been developed, having honeycomb-type structure with dimensions of 40 mm × 35 mm × 30 mm and consisting of 13 × 12 channels. External wire circuitry for the channels arrayed using parallel, series, and hybrid connection was evaluated to achieve the best oxygen separation efficiency. It was observed that the oxygen generator with hybrid connection facilitated evolution of oxygen at maximum of 117 sccm and high purity > 99.9% at 550°C under current flow of 14 A. Addition of 5 wt.% silane and 3 wt.% glass-ceramic powder to the Ag slurry used at both electrodes not only increased the coverage of the metal electrode on the ceramic substrate during dip coating but also prevented cracking at the electrode layer of the module under stress from the electric field and temperature during high-temperature operation, thus reducing the decay rate of the oxygen generator in durability testing.

  16. Retinoic acid-induced differentiation increases the rate of oxygen consumption and enhances the spare respiratory capacity of mitochondria in SH-SY5Y cells.

    Science.gov (United States)

    Xun, Zhiyin; Lee, Do-Yup; Lim, James; Canaria, Christie A; Barnebey, Adam; Yanonne, Steven M; McMurray, Cynthia T

    2012-04-01

    Retinoic acid (RA) is used in differentiation therapy to treat a variety of cancers including neuroblastoma. The contributing factors for its therapeutic efficacy are poorly understood. However, mitochondria (MT) have been implicated as key effectors in RA-mediated differentiation process. Here we utilize the SH-SY5Y human neuroblastoma cell line as a model to examine how RA influences MT during the differentiation process. We find that RA confers an approximately sixfold increase in the oxygen consumption rate while the rate of glycolysis modestly increases. RA treatment does not increase the number of MT or cause measurable changes in the composition of the electron transport chain. Rather, RA treatment significantly increases the mitochondrial spare respiratory capacity. We propose a competition model for the therapeutic effects of RA. Specifically, the high metabolic rate in differentiated cells limits the availability of metabolic nutrients for use by the undifferentiated cells and suppresses their growth. Thus, RA treatment provides a selective advantage for the differentiated state. Published by Elsevier Ireland Ltd.

  17. Modeling the transport properties of epitaxially grown thermoelectric oxide thin films using spectroscopic ellipsometry

    KAUST Repository

    Sarath Kumar, S. R.

    2012-02-01

    The influence of oxygen vacancies on the transport properties of epitaxial thermoelectric (Sr,La)TiO3 thin films is determined using electrical and spectroscopic ellipsometry (SE) measurements. Oxygen vacancy concentration was varied by ex-situ annealing in Ar and Ar/H2. All films exhibited degenerate semiconducting behavior, and electrical conductivity decreased (258–133 S cm−1) with increasing oxygen content. Similar decrease in the Seebeck coefficient is observed and attributed to a decrease in effective mass (7.8–3.2 me ), as determined by SE. Excellent agreement between transport properties deduced from SE and direct electrical measurements suggests that SE is an effective tool for studying oxide thin film thermoelectrics.

  18. Modeling the transport properties of epitaxially grown thermoelectric oxide thin films using spectroscopic ellipsometry

    KAUST Repository

    Sarath Kumar, S. R.; Abutaha, Anas I.; Hedhili, Mohamed N.; Alshareef, Husam N.

    2012-01-01

    The influence of oxygen vacancies on the transport properties of epitaxial thermoelectric (Sr,La)TiO3 thin films is determined using electrical and spectroscopic ellipsometry (SE) measurements. Oxygen vacancy concentration was varied by ex-situ annealing in Ar and Ar/H2. All films exhibited degenerate semiconducting behavior, and electrical conductivity decreased (258–133 S cm−1) with increasing oxygen content. Similar decrease in the Seebeck coefficient is observed and attributed to a decrease in effective mass (7.8–3.2 me ), as determined by SE. Excellent agreement between transport properties deduced from SE and direct electrical measurements suggests that SE is an effective tool for studying oxide thin film thermoelectrics.

  19. Functionality of albumin-derived perfluorocarbon-based artificial oxygen carriers in the Langendorff-heart †.

    Science.gov (United States)

    Wrobeln, Anna; Schlüter, Klaus D; Linders, Jürgen; Zähres, Manfred; Mayer, Christian; Kirsch, Michael; Ferenz, Katja B

    2017-06-01

    The aim of this study was to prove whether albumin-derived perfluorocarbon-based nanoparticles (capsules) can operate as a novel artificial oxygen carrier in a rat Langendorff-heart perfusion model. Hearts perfused with capsules showed increased left ventricular pressure and rate pressure product compared to hearts perfused with pure Krebs-Henseleit (KH)-buffer. The capsules prevented the myocardium from functional fail when in their absence a noxious ischemia was observed. Capsules did not change rheological properties of KH-buffer and could repeatedly reload with oxygen. This albumin-derived perfluorocarbon-based artificial oxygen carrier preserved the function of rat hearts due to the transport of oxygen in a satisfactory manner. Because of these positive results, the functionality of the applied capsules should be verified in living animals.

  20. Effects of massive transfusion on oxygen availability

    Directory of Open Access Journals (Sweden)

    José Otávio Costa Auler Jr

    Full Text Available OBJECTIVE: To determine oxygen derived parameters, hemodynamic and biochemical laboratory data (2,3 Diphosphoglycerate, lactate and blood gases analysis in patients after cardiac surgery who received massive blood replacement. DESIGN: Prospective study. SETTING: Heart Institute (Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Brazil. PARTICIPANTS: Twelve patients after cardiac surgery who received massive transfusion replacement; six of them evolved to a fatal outcome within the three-day postoperative follow-up. MEASUREMENTS AND MAIN RESULTS: The non-survivors group (n=6 presented high lactate levels and low P50 levels, when compared to the survivors group (p<0.05. Both groups presented an increase in oxygen consumption and O2 extraction, and there were no significant differences between them regarding these parameters. The 2,3 DPG levels were slightly reduced in both groups. CONCLUSIONS: This study shows that patients who are massively transfused following cardiovascular surgery present cell oxygenation disturbances probably as a result of O2 transport inadequacy.

  1. Silicon Micropore-Based Parallel Plate Membrane Oxygenator.

    Science.gov (United States)

    Dharia, Ajay; Abada, Emily; Feinberg, Benjamin; Yeager, Torin; Moses, Willieford; Park, Jaehyun; Blaha, Charles; Wright, Nathan; Padilla, Benjamin; Roy, Shuvo

    2018-02-01

    Extracorporeal membrane oxygenation (ECMO) is a life support system that circulates the blood through an oxygenating system to temporarily (days to months) support heart or lung function during cardiopulmonary failure until organ recovery or replacement. Currently, the need for high levels of systemic anticoagulation and the risk for bleeding are main drawbacks of ECMO that can be addressed with a redesigned ECMO system. Our lab has developed an approach using microelectromechanical systems (MEMS) fabrication techniques to create novel gas exchange membranes consisting of a rigid silicon micropore membrane (SμM) support structure bonded to a thin film of gas-permeable polydimethylsiloxane (PDMS). This study details the fabrication process to create silicon membranes with highly uniform micropores that have a high level of pattern fidelity. The oxygen transport across these membranes was tested in a simple water-based bench-top set-up as well in a porcine in vivo model. It was determined that the mass transfer coefficient for the system using SµM-PDMS membranes was 3.03 ± 0.42 mL O 2 min -1 m -2 cm Hg -1 with pure water and 1.71 ± 1.03 mL O 2 min -1 m -2 cm Hg -1 with blood. An analytic model to predict gas transport was developed using data from the bench-top experiments and validated with in vivo testing. This was a proof of concept study showing adequate oxygen transport across a parallel plate SµM-PDMS membrane when used as a membrane oxygenator. This work establishes the tools and the equipoise to develop future generations of silicon micropore membrane oxygenators. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  2. The role of sacrificial fugitives in thermoplastic extrusion feedstocks onproperties of MgO supports for oxygen transport membranes

    DEFF Research Database (Denmark)

    Kothanda Ramachandran, Dhavanesan; Kwok, Kawai; Søgaard, Martin

    2015-01-01

    2014AbstractThree different compositions of MgO compounds were investigated for use in oxygen transport membranes. Porous MgO supports were extruded using different kind (size, morphology and chemistry) of pore formers: A flaky graphite, a spherical graphite and ideal spheres of PMMA. The influence...... of the pore former on microstructure, gas permeation and the mechanical properties for various sintering temperatures were investigated.The gas permeation behavior of the MgO supports was highly dependent on pore neck size and total open porosity. MgO substrate, with 20% spherical graphite as a pore former...

  3. Sustained in situ measurements of dissolved oxygen, methane and water transport processes in the benthic boundary layer at MC118, northern Gulf of Mexico

    Science.gov (United States)

    Martens, Christopher S.; Mendlovitz, Howard P.; Seim, Harvey; Lapham, Laura; D'Emidio, Marco

    2016-07-01

    Within months of the BP Macondo Wellhead blowout, elevated methane concentrations within the water column revealed a significant retention of light hydrocarbons in deep waters plus corresponding dissolved oxygen (DO) deficits. However, chemical plume tracking efforts were hindered by a lack of in situ monitoring capabilities. Here, we describe results from in situ time-series, lander-based investigations of physical and biogeochemical processes controlling dissolved oxygen, and methane at Mississippi Canyon lease block 118 ( 18 km from the oil spill) conducted shortly after the blowout through April 2012. Multiple sensor arrays plus open-cylinder flux chambers (;chimneys;) deployed from a benthic lander collected oxygen, methane, pressure, and current speed and direction data within one meter of the seafloor. The ROVARD lander system was deployed for an initial 21-day test experiment (9/13/2010-10/04/2010) at 882 m depth before a longer 160-day deployment (10/24/2011-4/01/2012) at 884 m depth. Temporal variability in current directions and velocities and water temperatures revealed strong influences of bathymetrically steered currents and overlying along-shelf flows on local and regional water transport processes. DO concentrations and temperature were inversely correlated as a result of water mass mixing processes. Flux chamber measurements during the 160-day deployment revealed total oxygen utilization (TOU) averaging 11.6 mmol/m2 day. Chimney DO concentrations measured during the 21-day deployment exhibited quasi-daily variations apparently resulting from an interaction between near inertial waves and the steep topography of an elevated scarp immediately adjacent to the 21-day deployment site that modulated currents at the top of the chimney. Variability in dissolved methane concentrations suggested significant temporal variability in gas release from nearby hydrocarbon seeps and/or delivery by local water transport processes. Free-vehicle (lander) monitoring

  4. Effects of oxygen concentration on atmospheric pressure dielectric barrier discharge in Argon-Oxygen Mixture

    Science.gov (United States)

    Li, Xuechun; Li, Dian; Wang, Younian

    2016-09-01

    A dielectric barrier discharge (DBD) can generate a low-temperature plasma easily at atmospheric pressure and has been investigated for applications in trials in cancer therapy, sterilization, air pollution control, etc. It has been confirmed that reactive oxygen species (ROS) play a key role in the processes. In this work, we use a fluid model to simulate the plasma characteristics for DBD in argon-oxygen mixture. The effects of oxygen concentration on the plasma characteristics have been discussed. The evolution mechanism of ROS has been systematically analyzed. It was found that the ground state oxygen atoms and oxygen molecular ions are the dominated oxygen species under the considered oxygen concentrations. With the oxygen concentration increasing, the densities of electrons, argon atomic ions, resonance state argon atoms, metastable state argon atoms and excited state argon atoms all show a trend of decline. The oxygen molecular ions density is high and little influenced by the oxygen concentration. Ground state oxygen atoms density tends to increase before falling. The ozone density increases significantly. Increasing the oxygen concentration, the discharge mode begins to change gradually from the glow discharge mode to Townsend discharge mode. Project supported by the National Natural Science Foundation of China (Grant No. 11175034).

  5. High oxygen partial pressure increases photodynamic effect on HeLa cell lines in the presence of chloraluminium phthalocyanine.

    Science.gov (United States)

    Bajgar, Robert; Kolarova, Hana; Bolek, Lukas; Binder, Svatopluk; Pizova, Klara; Hanakova, Adela

    2014-08-01

    Photodynamic therapy (PDT) is linked with oxidative damage of biomolecules causing significant impairment of essential cellular functions that lead to cell death. It is the reason why photodynamic therapy has found application in treatment of different oncological, cardiovascular, skin and eye diseases. Efficacy of PDT depends on combined action of three components; sensitizer, light and oxygen. In the present study, we examined whether higher partial pressure of oxygen increases lethality in HeLa cell lines exposed to light in the presence of chloraluminium phthalocyanine disulfonate (ClAlPcS2). ClAlPcS2- sensitized HeLa cells incubated under different oxygen conditions were exposed to PDT. Production of singlet oxygen ((1)O2) and other forms of reactive oxygen species (ROS) as well as changes in mitochondrial membrane potential were determined by appropriately sensitive fluorescence probes. The effect of PDT on HeLa cell viability under different oxygen conditions was quantified using the standard methylthiazol tetrazolium (MTT) test. At the highest oxygen concentration of 28 ± 2 mg/l HeLa cells were significantly more sensitive to light-activated ClAlPcS2 (EC50=0.29 ± 0.05 μM) in comparison to cells incubated at lower oxygen concentrations of 8 ± 0.5 and 0.5 ± 0.1 mg/l, where the half maximal effective concentration was 0.42 ± 0.06 μM and 0.94 ± 0.14 μM, respectively. Moreover, we found that the higher presence of oxygen is accompanied with higher production of singlet oxygen, a higher rate of type II photodynamic reactions, and a significant drop in the mitochondrial membrane potential. These results demonstrate that the photodynamic effect in cervical cancer cells utilizing ClAlPcS2 significantly depends on oxygen level. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  6. Oxygen dynamics around buried lesser sandeels Ammodytes tobianus (Linnaeus 1785): mode of ventilation and oxygen requirements

    DEFF Research Database (Denmark)

    Behrens, Jane W; Stahl, Henrik J; Steffensen, John F

    2007-01-01

    The oxygen environment around buried sandeels (Ammodytes tobianus) was monitored by planar optodes. The oxygen penetration depth at the sediment interface was only a few mm. Thus fish, typically buried at 1-4 cm depth, were generally in anoxic sediment. However, they induced an advective transport...... down along the body, referred to as ;plume ventilation'. Yet, within approximately 30 min the oxic plume was replenished by oxygen-depleted water from the gills. The potential for cutaneous respiration by the buried fish was thus of no quantitative importance. Calculations derived by three independent...... methods (each with N=3) revealed that the oxygen uptake of sandeel buried for 6-7 h was 40-50% of previous estimates on resting respirometry of non-buried fish, indicating lower O(2) requirements during burial on a diurnal timescale. Buried fish exposed to decreasing oxygen tensions gradually approached...

  7. A novel ion transport membrane reactor for fundamental investigations of oxygen permeation and oxy-combustion under reactive flow conditions

    KAUST Repository

    Kirchen, Patrick

    2013-01-01

    Ion transport membrane (ITM) reactors present an attractive technology for combined air separation and fuel conversion in applications such as syngas production, oxidative coupling or oxy-combustion, with the promise of lower capital and operating costs, as well higher product selectivities than traditional technologies. The oxygen permeation rate through a given ITM is defined by the membrane temperature and oxygen chemical potential difference across it. Both of these parameters can be strongly influenced by thermochemical reactions occurring in the vicinity of the membrane, though in the literature they are often characterized in terms of the well mixed product stream at the reactor exit. This work presents the development of a novel ITM reactor for the fundamental investigation of the coupling between fuel conversion and oxygen permeation under well defined fluid dynamic and thermodynamic conditions, including provisions for spatially resolved, in-situ investigations. A planar, finite gap stagnation flow reactor with optical and probe access to the reaction zone is used to facilitate in-situ measurements and cross-validation with detailed numerical simulations. Using this novel reactor, baseline measurements are presented to elucidate the impact of the sweep gas fuel (CH4) fraction on the oxygen permeation and fuel conversion. In addition, the difference between well-mixed gas compositions measured at the reactor outlet and those measured in the vicinity of the membrane surface are discussed, demonstrating the unique utility of the reactor. © 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  8. Hydrogen-oxygen steam generator applications for increasing the efficiency, maneuverability and reliability of power production

    Science.gov (United States)

    Schastlivtsev, A. I.; Borzenko, V. I.

    2017-11-01

    The comparative feasibility study of the energy storage technologies showed good applicability of hydrogen-oxygen steam generators (HOSG) based energy storage systems with large-scale hydrogen production. The developed scheme solutions for the use of HOSGs for thermal power (TPP) and nuclear power plants (NPP), and the feasibility analysis that have been carried out have shown that their use makes it possible to increase the maneuverability of steam turbines and provide backup power supply in the event of failure of the main steam generating equipment. The main design solutions for the integration of hydrogen-oxygen steam generators into the main power equipment of TPPs and NPPs, as well as their optimal operation modes, are considered.

  9. Low Oxygen Modulates Multiple Signaling Pathways, Increasing Self-Renewal, While Decreasing Differentiation, Senescence, and Apoptosis in Stromal MIAMI Cells

    Science.gov (United States)

    Rios, Carmen; D'Ippolito, Gianluca; Curtis, Kevin M.; Delcroix, Gaëtan J.-R.; Gomez, Lourdes A.; El Hokayem, Jimmy; Rieger, Megan; Parrondo, Ricardo; de las Pozas, Alicia; Perez-Stable, Carlos; Howard, Guy A.

    2016-01-01

    Human bone marrow multipotent mesenchymal stromal cell (hMSC) number decreases with aging. Subpopulations of hMSCs can differentiate into cells found in bone, vasculature, cartilage, gut, and other tissues and participate in their repair. Maintaining throughout adult life such cell subpopulations should help prevent or delay the onset of age-related degenerative conditions. Low oxygen tension, the physiological environment in progenitor cell-rich regions of the bone marrow microarchitecture, stimulates the self-renewal of marrow-isolated adult multilineage inducible (MIAMI) cells and expression of Sox2, Nanog, Oct4a nuclear accumulation, Notch intracellular domain, notch target genes, neuronal transcriptional repressor element 1 (RE1)-silencing transcription factor (REST), and hypoxia-inducible factor-1 alpha (HIF-1α), and additionally, by decreasing the expression of (i) the proapoptotic proteins, apoptosis-inducing factor (AIF) and Bak, and (ii) senescence-associated p53 expression and β-galactosidase activity. Furthermore, low oxygen increases canonical Wnt pathway signaling coreceptor Lrp5 expression, and PI3K/Akt pathway activation. Lrp5 inhibition decreases self-renewal marker Sox2 mRNA, Oct4a nuclear accumulation, and cell numbers. Wortmannin-mediated PI3K/Akt pathway inhibition leads to increased osteoblastic differentiation at both low and high oxygen tension. We demonstrate that low oxygen stimulates a complex signaling network involving PI3K/Akt, Notch, and canonical Wnt pathways, which mediate the observed increase in nuclear Oct4a and REST, with simultaneous decrease in p53, AIF, and Bak. Collectively, these pathway activations contribute to increased self-renewal with concomitant decreased differentiation, cell cycle arrest, apoptosis, and/or senescence in MIAMI cells. Importantly, the PI3K/Akt pathway plays a central mechanistic role in the oxygen tension-regulated self-renewal versus osteoblastic differentiation of progenitor cells. PMID:27059084

  10. Increase of transport-logistic servicing efficiency of Sverdlovsk region’s agroindustrial complex (on the example of grain cargoes transportation

    Directory of Open Access Journals (Sweden)

    Mikhail Borisovich Petrov

    2011-12-01

    Full Text Available In this paper, the features of Sverdlovsk region to ensure grain products are reviewed. The dependence of the agricultural sector and the conditions of its transport and logistics are substantiated. It is proven that transport and logistics services have the greatest impact not on harvest and on its processing and storage. The choice of transport and logistics service strategy for enterprises of agriculture depends on productivity, prices for grain and its products and the financial condition of the producer. From the calculations made in the paper it is visible that rail transport has a significant — more than double — advantage over the automobile transport on unit costs for carriage in bulk grain cargo, but, for some reason, road transport is beginning to occupy an increasing share in the carriage of grain cargoes. Based on comparative analysis of costs to import grain cargo using various transport modes, recommendations for improvement of transport and logistics infrastructure are made, as well as measures for improving the payments system between producers, processors and transporters are suggested.

  11. High temperature thermoelectric properties of strontium titanate thin films with oxygen vacancy and niobium doping

    KAUST Repository

    Sarath Kumar, S. R.; Barasheed, Abeer Z.; Alshareef, Husam N.

    2013-01-01

    We report the evolution of high temperature thermoelectric properties of SrTiO3 thin films doped with Nb and oxygen vacancies. Structure-property relations in this important thermoelectric oxide are elucidated and the variation of transport properties with dopant concentrations is discussed. Oxygen vacancies are incorporated during growth or annealing in Ar/H2 above 800 K. An increase in lattice constant due to the inclusion of Nb and oxygen vacancies is found to result in an increase in carrier density and electrical conductivity with simultaneous decrease in carrier effective mass and Seebeck coefficient. The lattice thermal conductivity at 300 K is found to be 2.22 W m-1 K-1, and the estimated figure of merit is 0.29 at 1000 K. © 2013 American Chemical Society.

  12. High temperature thermoelectric properties of strontium titanate thin films with oxygen vacancy and niobium doping

    KAUST Repository

    Sarath Kumar, S. R.

    2013-08-14

    We report the evolution of high temperature thermoelectric properties of SrTiO3 thin films doped with Nb and oxygen vacancies. Structure-property relations in this important thermoelectric oxide are elucidated and the variation of transport properties with dopant concentrations is discussed. Oxygen vacancies are incorporated during growth or annealing in Ar/H2 above 800 K. An increase in lattice constant due to the inclusion of Nb and oxygen vacancies is found to result in an increase in carrier density and electrical conductivity with simultaneous decrease in carrier effective mass and Seebeck coefficient. The lattice thermal conductivity at 300 K is found to be 2.22 W m-1 K-1, and the estimated figure of merit is 0.29 at 1000 K. © 2013 American Chemical Society.

  13. Transport of oxygen ions in Er doped La2Mo2O9 oxide ion conductors: Correlation with microscopic length scales

    Science.gov (United States)

    Paul, T.; Ghosh, A.

    2018-01-01

    We report oxygen ion transport in La2-xErxMo2O9 (0.05 ≤ x ≤ 0.25) oxide ion conductors. We have measured conductivity and dielectric spectra at different temperatures in a wide frequency range. The mean square displacement and spatial extent of non-random sub-diffusive regions are estimated from the conductivity spectra and dielectric spectra, respectively, using linear response theory. The composition dependence of the conductivity is observed to be similar to that of the spatial extent of non-random sub-diffusive regions. The behavior of the composition dependence of the mean square displacement of oxygen ions is opposite to that of the conductivity. The attempt frequency estimated from the analysis of the electric modulus agrees well with that obtained from the Raman spectra analysis. The full Rietveld refinement of X-ray diffraction data of the samples is performed to estimate the distance between different oxygen lattice sites. The results obtained from such analysis confirm the ion hopping within the spatial extent of non-random sub-diffusive regions.

  14. Seasonal changes in blood oxygen transport and acid-base status in the tegu lizard, Tupinambis merianae.

    Science.gov (United States)

    Andrade, Denis V; Brito, Simone P; Toledo, Luís Felipe; Abe, Augusto S

    2004-05-20

    Oxygen-binding properties, blood gases, and acid-base parameters were studied in tegu lizards, Tupinambis merianae, at different seasons and temperatures. Independent of temperature and pH, blood oxygen affinity was higher in dormant lizards than in those active during the summer. Haematocrit (Hct) and hemoglobin content ([Hb]) were greater in active lizards resulting in a higher oxygen-carrying capacity. Nucleoside triphosphate content ([NTP]) was reduced during dormancy, but the ratio between [NTP] and [Hb] remained unchanged. Dormancy was accompanied by an increase in plasma bicarbonate ([HCO-(3)]pl) and an elevation of arterial CO2 partial pressure (PaCO2) and CO2 content in the plasma (CplCO2). These changes in acid-base parameters persist over a broad range of body temperatures. In vivo, arterial O2 partial pressure (PaO2) and O2 content (CaO2) were not affected by season and tended to increase with temperature. Arterial pH (pHa) of dormant animals is reduced compared to active lizards at body temperatures below 15 degrees C, while no significant difference was noticed at higher temperatures. Copyright 2003 Elsevier B.V.

  15. Oxygen reduction kinetics and transport properties of (Ba,Sr)(Co,Fe)O3-δ solid oxide fuel cell cathode materials

    International Nuclear Information System (INIS)

    Wang, Lei; Merkle, Rotraut; Baumann, Frank S.; Maier, Joachim; Fleig, Juergen

    2007-01-01

    Full text: The oxygen reduction at the surface of cathode materials is crucial for the performance of solid oxide fuel cells (SOFC), but a detailed understanding of the mechanism is not available yet. (Ba x Sr 1-x )(Co 1-y Fe y )O 3-δ shows strongly improved oxygen reduction rates compared to previously applied perovskite cathode materials. In this work, surface rate constants as well as bulk transport properties are studied. (Ba x Sr 1-x )(Co 1-y Fe y )O 3-δ with 0≤x≤0.5, 0.2≤y≤1 was synthesized by the Pechini method. Oxygen stoichoimetry was obtained from thermo-gravimetric analysis, confirming that Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-δ has an exceptionally low oxygen content which is generally smaller than 2.5. Dense thin films were grown by pulsed laser deposition (PLD) and patterned into circular microelectrodes by photolithography. The surface resistance R s , which dominate the overall electrode resistance, were measured by impedance spectroscopy on individual microelectrodes at different T, pO 2 and applied electrical bias. PLD technique greatly helps to study the oxygen reduction kinetics since only measurements on dense thin films allow to record absolute R s values without interference from morphology effects. These R s values were found to be much lower than those for (La,Sr)(Co,Fe)O 3-δ . The variation of the surface reaction rates with A-site and B-site composition was studied and correlations with bulk materials properties such as oxygen nonstoichiometry, ionic mobility or oxidation enthalpy were examined. Plausible reaction mechanisms as well as possible reasons for the high absolute surface reaction rates will be discussed

  16. Use of Atomic Oxygen for Increased Water Contact Angles of Various Polymers for Biomedical Applications

    Science.gov (United States)

    deGroh, Kim; Berger, Lauren; Roberts, Lily

    2009-01-01

    The purpose of this study was to determine the effect of atomic oxygen (AO) exposure on the hydrophilicity of nine different polymers for biomedical applications. Atomic oxygen treatment can alter the chemistry and morphology of polymer surfaces, which may increase the adhesion and spreading of cells on Petri dishes and enhance implant growth. Therefore, nine different polymers were exposed to atomic oxygen and water-contact angle, or hydrophilicity, was measured after exposure. To determine whether hydrophilicity remains static after initial atomic oxygen exposure, or changes with higher fluence exposures, the contact angles between the polymer and water droplet placed on the polymer s surface were measured versus AO fluence. The polymers were exposed to atomic oxygen in a 100-W, 13.56-MHz radio frequency (RF) plasma asher, and the treatment was found to significantly alter the hydrophilicity of non-fluorinated polymers. Pristine samples were compared with samples that had been exposed to AO at various fluence levels. Minimum and maximum fluences for the ashing trials were set based on the effective AO erosion of a Kapton witness coupon in the asher. The time intervals for ashing were determined by finding the logarithmic values of the minimum and maximum fluences. The difference of these two values was divided by the desired number of intervals (ideally 10). The initial desired fluence was then multiplied by this result (2.37), as was each subsequent desired fluence. The flux in the asher was determined to be approximately 3.0 x 10(exp 15) atoms/sq cm/sec, and each polymer was exposed to a maximum fluence of 5.16 x 10(exp 20) atoms/sq cm.

  17. Controlling Oxygen Mobility in Ruddlesden–Popper Oxides

    Directory of Open Access Journals (Sweden)

    Dongkyu Lee

    2017-03-01

    Full Text Available Discovering new energy materials is a key step toward satisfying the needs for next-generation energy conversion and storage devices. Among the various types of oxides, Ruddlesden–Popper (RP oxides (A2BO4 are promising candidates for electrochemical energy devices, such as solid oxide fuel cells, owing to their attractive physicochemical properties, including the anisotropic nature of oxygen migration and controllable stoichiometry from oxygen excess to oxygen deficiency. Thus, understanding and controlling the kinetics of oxygen transport are essential for designing optimized materials to use in electrochemical energy devices. In this review, we first discuss the basic mechanisms of oxygen migration in RP oxides depending on oxygen nonstoichiometry. We then focus on the effect of changes in the defect concentration, crystallographic orientation, and strain on the oxygen migration in RP oxides. We also briefly review their thermal and chemical stability. Finally, we conclude with a perspective on potential research directions for future investigation to facilitate controlling oxygen ion migration in RP oxides.

  18. Transport increase and confinement degradation caused by MARFE

    Science.gov (United States)

    Shi, Peng; Zhuang, Ge; Gao, Li; Zhou, Yinan

    2017-10-01

    Recently, the MARFE phenomenon associated with high density plasmas has been observed on J-TEXT Ohmically heated discharges. The MARFE on J-TEXT is charactered by the poloidally local region at high field side (HFS) edge with high density and strong radiation. At the almost same time of MARFE appearance, the density peaking factor and sawtooth oscillation reach maximum and decrease with density increasing, infers that the plasma confinement is saturated. By analyzing the far-forward scattering signals from polarimeter-interferometer, it is found that the local radial density turbulence at high field edge increases significantly after MARFE onset. It is inferred that the local particle transport at MARFE affected region (HFS edge) is enhanced. The enhancement of radial transport at MARFE affected region is considered as the possible reason for confinement saturation on J-TEXT. Furthermore, the trapped electron mode (TEM) with quasi-coherent characteristics is measured by far-forward scattering. The TEMs are always observed in plasmas with low density, and disappear after the plasma density exceeds a threshold. The density threshold of TEM disappearance is consistent with the density threshold of MARFE onset. The evolution of turbulences affirms that the MARFE may be the cause of energy confinement transition from LOC to SOC.

  19. Accounting for oxygen in the renal cortex: a computational study of factors that predispose the cortex to hypoxia.

    Science.gov (United States)

    Lee, Chang-Joon; Gardiner, Bruce S; Ngo, Jennifer P; Kar, Saptarshi; Evans, Roger G; Smith, David W

    2017-08-01

    We develop a pseudo-three-dimensional model of oxygen transport for the renal cortex of the rat, incorporating both the axial and radial geometry of the preglomerular circulation and quantitative information regarding the surface areas and transport from the vasculature and renal corpuscles. The computational model was validated by simulating four sets of published experimental studies of renal oxygenation in rats. Under the control conditions, the predicted cortical tissue oxygen tension ([Formula: see text]) or microvascular oxygen tension (µPo 2 ) were within ±1 SE of the mean value observed experimentally. The predicted [Formula: see text] or µPo 2 in response to ischemia-reperfusion injury, acute hemodilution, blockade of nitric oxide synthase, or uncoupling mitochondrial respiration, were within ±2 SE observed experimentally. We performed a sensitivity analysis of the key model parameters to assess their individual or combined impact on the predicted [Formula: see text] and µPo 2 The model parameters analyzed were as follows: 1 ) the major determinants of renal oxygen delivery ([Formula: see text]) (arterial blood Po 2 , hemoglobin concentration, and renal blood flow); 2 ) the major determinants of renal oxygen consumption (V̇o 2 ) [glomerular filtration rate (GFR) and the efficiency of oxygen utilization for sodium reabsorption (β)]; and 3) peritubular capillary surface area (PCSA). Reductions in PCSA by 50% were found to profoundly increase the sensitivity of [Formula: see text] and µPo 2 to the major the determinants of [Formula: see text] and V̇o 2 The increasing likelihood of hypoxia with decreasing PCSA provides a potential explanation for the increased risk of acute kidney injury in some experimental animals and for patients with chronic kidney disease. Copyright © 2017 the American Physiological Society.

  20. Retinal Vessel Oxygen Saturation during 100% Oxygen Breathing in Healthy Individuals.

    Directory of Open Access Journals (Sweden)

    Olof Birna Olafsdottir

    Full Text Available To detect how systemic hyperoxia affects oxygen saturation in retinal arterioles and venules in healthy individuals.Retinal vessel oxygen saturation was measured in 30 healthy individuals with a spectrophotometric retinal oximeter (Oxymap T1. Oximetry was performed during breathing of room air, 100% oxygen (10 minutes, 6L/min and then again room air (10 minutes recovery.Mean oxygen saturation rises modestly in retinal arterioles during 100% oxygen breathing (94.5%±3.8 vs. 92.0%±3.7% at baseline, p<0.0001 and dramatically in retinal venules (76.2%±8.0% vs. 51.3%±5.6%, p<0.0001. The arteriovenous difference decreased during 100% oxygen breathing (18.3%±9.0% vs. 40.7%±5.7%, p<0.0001. The mean diameter of arterioles decreased during 100% oxygen breathing compared to baseline (9.7±1.4 pixels vs. 10.3±1.3 pixels, p<0.0001 and the same applies to the mean venular diameter (11.4±1.2 pixels vs. 13.3±1.5 pixels, p<0.0001.Breathing 100% oxygen increases oxygen saturation in retinal arterioles and more so in venules and constricts them compared to baseline levels. The dramatic increase in oxygen saturation in venules reflects oxygen flow from the choroid and the unusual vascular anatomy and oxygen physiology of the eye.

  1. Oxygen vacancies induced enhancement of photoconductivity of La0.5Sr0.5CoO3 - δ thin film

    Science.gov (United States)

    Gao, R. L.; Fu, C. L.; Cai, W.; Chen, G.; Deng, X. L.; Yang, H. W.; Sun, J. R.; Zhao, Y. G.; Shen, B. G.

    2014-09-01

    Effects of light and electrical current on the electrical transport properties and photovoltaic properties of oxygen-stoichiometric La0.5Sr0.5CoO3 and oxygen-deficient La0.5Sr0.5CoO3 - δ films prepared by pulsed laser deposition have been investigated. Oxygen-deficient films annealed in a vacuum show an obvious increase of resistance and lattice parameter. Besides, a direct correlation between the magnitude of the photoconductivity and oxygen vacancies in La0.5Sr0.5CoO3 - δ films has been observed. The light illumination causes a resistance drop to show the photoconductivity effect. Moreover, the photoconductivity can be remarkably enhanced by increasing the electrical current, that is, it exhibits current-enhanced photoconductivity (CEPC) effect. Oxygen deficiency in the annealed film leads to the formation of a structural disorder in the Co-O-Co conduction channel due to the accumulated oxygen vacancies and hence is believed to be responsible for the increase in higher photoconductivity. These results may be important for practical applications in photoelectric devices.

  2. Materials characterization of impregnated W and W–Ir cathodes after oxygen poisoning

    International Nuclear Information System (INIS)

    Polk, James E.; Capece, Angela M.

    2015-01-01

    Highlights: • Impregnated W and W–Ir cathodes were operated with 100 ppm of oxygen in Xe gas. • High concentrations of oxygen accelerated the formation of tungstate layers. • The W–Ir emitter exhibited less erosion and redeposition at the upstream end. • Tungsten was preferentially transported in the insert plasma of the W–Ir cathode. - Abstract: Electric thrusters use hollow cathodes as the electron source for generating the plasma discharge and for beam neutralization. These cathodes contain porous tungsten emitters impregnated with BaO material to achieve a lower surface work function and are operated with xenon propellant. Oxygen contaminants in the xenon plasma can poison the emitter surface, resulting in a higher work function and increased operating temperature. This could lead directly to cathode failure by preventing discharge ignition or could accelerate evaporation of the BaO material. Exposures over hundreds of hours to very high levels of oxygen can result in increased temperatures, oxidation of the tungsten substrate, and the formation of surface layers of barium tungstates. In this work, we present results of a cathode test in which impregnated tungsten and tungsten–iridium emitters were operated with 100 ppm of oxygen in the xenon plasma for several hundred hours. The chemical and morphological changes were studied using scanning electron microscopy, energy dispersive spectroscopy, and laser profilometry. The results provide strong evidence that high concentrations of oxygen accelerate the formation of tungstate layers in both types of emitters, a phenomenon not inherent to normal cathode operation. Deposits of pure tungsten were observed on the W–Ir emitter, indicating that tungsten is preferentially removed from the surface and transported in the insert plasma. A W–Ir cathode surface will therefore evolve to a pure W composition, eliminating the work function benefit of W–Ir. However, the W–Ir emitter exhibited less erosion

  3. Transporte intra-hospitalar de pacientes internados em UTI Neonatal: fatores de risco para intercorrências Intra-hospital transport of neonatal intensive care patients: risk factors for complications

    Directory of Open Access Journals (Sweden)

    Anna Luiza P. Vieira

    2007-09-01

    Full Text Available OBJETIVO: Estudar os fatores associados à hipotermia e ao aumento da necessidade de oxigênio e/ou suporte ventilatório durante o transporte intra-hospitalar de pacientes internados em Unidade de Terapia Intensiva neonatal. MÉTODOS: Estudo prospectivo de todos os pacientes internados na unidade neonatal que necessitaram de transporte intra-hospitalar de janeiro de 1997 a dezembro de 2000, entre segundas-feiras e sextas-feiras, das 8h às 17h. Fatores associados à hipotermia e ao aumento da necessidade de oxigênio e/ou de suporte ventilatório durante e até duas horas após o transporte foram estudados por meio de regressão logística. RESULTADOS: Foram realizados 502 transportes no período. Os pacientes tinham em média 2.000g, 35 semanas de idade gestacional ao nascer e 22 dias de vida. As principais indicações do transporte foram: cirurgia e realização de exames de imagem. A hipotermia ocorreu em 17% dos transportes e o aumento da necessidade de oxigênio e/ou de suporte ventilatório em 7%. Fatores associados à hipotermia foram: duração do transporte >3h (OR=2,1; IC95%=1,2-3,6, presença de malformações neurológicas (OR=1,7; IC95%=1,1-2,5, transporte realizado em 1997 (OR=1,7; IC95%=1,1-2,6 e peso no transporte >3.500g (OR=0,3; IC95%=0,16-0,68. Fatores de risco para o aumento da necessidade de oxigênio e/ou de suporte ventilatório foram: idade gestacional ao nascimento em semanas (OR=0,9; IC95%=0,8-0,9, idade em dias no transporte (OR=1,0; IC95%=1,0-1,1 e presença de malformações gastrintestinais e geniturinárias (OR=3,1; IC95%=1,6-6,2. CONCLUSÕES: As intercorrências relativas ao transporte intra-hospitalar são freqüentes nos neonatos em UTI e estão associadas às condições dos pacientes e dos transportes.OBJECTIVE: Evaluate factors associated with hypothermia and increased need of oxygen and/or ventilatory support during intra-hospital transport of neonatal intensive care patients. METHODS: Prospective study of

  4. Effect of argon addition into oxygen atmosphere on YBCO thin films deposition

    International Nuclear Information System (INIS)

    Mozhaev, P. B.; Borisenko, I. V.; Ovsyannikov, G. A.; Kuehle, A.; Bindslev-Hansen, J.; Johannes, L.; Skov, J. L.

    2002-01-01

    Multicomponent nature of the YBa 2 Cu 3 O x (YBCO) high-temperature superconductor makes difficult fabrication of smooth thin films: every local deviation from stoichiometry can result in seeding of a non-superconducting oxide particle. High density of such particles on typical YBCO thin film surface, however, presumes overall non-stoichiometry of the film. Such an effect can result from (i) non-uniform material transport from target to substrate, and (ii) re-evaporation or re-sputtering from the growing film surface. The first reason is more usual for laser ablation deposition technique, the second is typical for long sputtering deposition processes. Substitution of oxygen with argon in the deposition atmosphere improves surface quality of YBCO thin films deposited both by laser ablation and DC-sputtering at high pressure techniques. In the first case, the ablated species are scattered different ways in the oxygen atmosphere. Addition of argon decreases the inelastic scattering of barium; the proper part of Ar in the deposition atmosphere makes scattering and, hence, transport of all atoms uniform. The YBCO films deposited by DC-sputtering at high pressure technique are Ba-deficient also, but the reason is re-sputtering of Ba from the growing film as a result of negative oxygen ions bombardment. Such bombardment can lead also to chemical interaction of the deposited material with the substrate, as in the case of deposition of YBCO thin film on the CeO 2 buffer layer on sapphire. Substitution of oxygen with argon not only suppresses ion bombardment of the film, but also increases discharge stability due to presence of positive Ar + ions. The limiting factor of argon substitution is sufficient oxygenation of the growing oxide film. When oxygen partial pressure is too small, the superconducting quality of the YBCO thin film decreases and such a decrease cannot be overcome by prolonged oxygenation after deposition. (Authors)

  5. Effect of hypolimnetic oxygenation on oxygen depletion rates in two water-supply reservoirs.

    Science.gov (United States)

    Gantzer, Paul A; Bryant, Lee D; Little, John C

    2009-04-01

    Oxygenation systems, such as bubble-plume diffusers, are used to improve water quality by replenishing dissolved oxygen (DO) in the hypolimnia of water-supply reservoirs. The diffusers induce circulation and mixing, which helps distribute DO throughout the hypolimnion. Mixing, however, has also been observed to increase hypolimnetic oxygen demand (HOD) during system operation, thus accelerating oxygen depletion. Two water-supply reservoirs (Spring Hollow Reservoir (SHR) and Carvins Cove Reservoir (CCR)) that employ linear bubble-plume diffusers were studied to quantify diffuser effects on HOD. A recently validated plume model was used to predict oxygen addition rates. The results were used together with observed oxygen accumulation rates to evaluate HOD over a wide range of applied gas flow rates. Plume-induced mixing correlated well with applied gas flow rate and was observed to increase HOD. Linear relationships between applied gas flow rate and HOD were found for both SHR and CCR. HOD was also observed to be independent of bulk hypolimnion oxygen concentration, indicating that HOD is controlled by induced mixing. Despite transient increases in HOD, oxygenation caused an overall decrease in background HOD, as well as a decrease in induced HOD during diffuser operation, over several years. This suggests that the residual or background oxygen demand decreases from one year to the next. Despite diffuser-induced increases in HOD, hypolimnetic oxygenation remains a viable method for replenishing DO in thermally-stratified water-supply reservoirs such as SHR and CCR.

  6. Oxidation Kinetics of Chemically Vapor-Deposited Silicon Carbide in Wet Oxygen

    Science.gov (United States)

    Opila, Elizabeth J.

    1994-01-01

    The oxidation kinetics of chemically vapor-deposited SiC in dry oxygen and wet oxygen (P(sub H2O) = 0.1 atm) at temperatures between 1200 C and 1400 C were monitored using thermogravimetric analysis. It was found that in a clean environment, 10% water vapor enhanced the oxidation kinetics of SiC only very slightly compared to rates found in dry oxygen. Oxidation kinetics were examined in terms of the Deal and Grove model for oxidation of silicon. It was found that in an environment containing even small amounts of impurities, such as high-purity Al2O3 reaction tubes containing 200 ppm Na, water vapor enhanced the transport of these impurities to the oxidation sample. Oxidation rates increased under these conditions presumably because of the formation of less protective sodium alumino-silicate scales.

  7. Release of intracellular Calcium increase production of mitochondrial reactive oxygen species in renal distal epithelial cells

    DEFF Research Database (Denmark)

    Bjerregaard, Henning F.

    peroxide (H2O2) has traditionally been regarded as toxic by-products of aerobic metabolism. However, recent findings indicate that H2O2 act as a signalling molecule. The aim of the present study was to monitor, in real time, the rates of ROS generation in order to directly determine their production......Release of intracellular Calcium increase production of mitochondrial reactive oxygen species in renal distal epithelial cells. Henning F. Bjerregaard, Roskilde University, Department of Science, Systems and Models , 4000 Roskilde, Denmark. HFB@ RUC.DK Reactive oxygen species (ROS) like, hydrogen...... to G-protein stimulation of phospholipase C and release of inositol -3 phosphate. Cd (0.4 mM) treatment of A6 cells enhanced the ROS production after one minutes incubation. The production rate was constant for at least 10 to 20 min. Experiments showed that the Cd induced increase in ROS production...

  8. Tumor necrosis factor-alpha increases myocardial microvascular transport in vivo

    DEFF Research Database (Denmark)

    Hansen, P R; Svendsen, Jesper Hastrup; Høyer, S

    1994-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is a primary mediator in the pathogenesis of tissue injury, and high circulating levels of TNF-alpha are found in a variety of pathological conditions. In open-chest anesthetized dogs, the effects of intracoronary recombinant human TNF-alpha (rTNF-alpha; 100...... in cardiac output and was associated with the appearance of areas with myocardial necrosis in the regional left ventricular wall. The myocardial plasma flow rate and maximum plasma flow rate in response to a 30-s coronary occlusion were not influenced by rTNF-alpha, although a decrease in the myocardial...... ng/kg for 60 min) on myocardial microvascular transport of a small hydrophilic indicator was examined by the single-injection, residue-detection method. Intracoronary infusion of rTNF-alpha increased myocardial microvascular transport after 120 min. This increase was preceded by a sustained decline...

  9. Influence of oxygen treatment on transport properties of PbTe:In polycrystalline films

    International Nuclear Information System (INIS)

    Dashevsky, Z.; Shufer, E.; Kasiyan, V.; Flitsiyan, E.; Chernyak, L.

    2010-01-01

    In this work, the oxygen treatment of 1 μm thick n-type PbTe:In films was studied. Two main processes induced during the thermal treatment in oxygen atmosphere were identified. The inversion of the type of electrical conductivity in PbTe:In films from n- to p-type was observed after the thermal treatment in oxygen (T a =400 deg. C). This effect is related to indium segregation at the film surface. The photoconductivity demonstrated in PbTe:In films after oxygen treatment is due to oxygen diffusion along the grain boundaries and the creation of potential relief, which separates electron-hole pairs at the boundaries under light illumination.

  10. KCl stimulation increases norepinephrine transporter function in PC12 cells.

    Science.gov (United States)

    Mandela, Prashant; Ordway, Gregory A

    2006-09-01

    The norepinephrine transporter (NET) plays a pivotal role in terminating noradrenergic signaling and conserving norepinephrine (NE) through the process of re-uptake. Recent evidence suggests a close association between NE release and regulation of NET function. The present study evaluated the relationship between release and uptake, and the cellular mechanisms that govern these processes. KCl stimulation of PC12 cells robustly increased [3H]NE uptake via the NET and simultaneously increased [3H]NE release. KCl-stimulated increases in uptake and release were dependent on Ca2+. Treatment of cells with phorbol-12-myristate-13-acetate (PMA) or okadaic acid decreased [3H]NE uptake but did not block KCl-stimulated increases in [3H]NE uptake. In contrast, PMA increased [3H]NE release and augmented KCl-stimulated release, while okadaic acid had no effects on release. Inhibition of Ca2+-activated signaling cascades with KN93 (a Ca2+ calmodulin-dependent kinase inhibitor), or ML7 and ML9 (myosin light chain kinase inhibitors), reduced [3H]NE uptake and blocked KCl-stimulated increases in uptake. In contrast, KN93, ML7 and ML9 had no effect on KCl-stimulated [3H]NE release. KCl-stimulated increases in [3H]NE uptake were independent of transporter trafficking to the plasma membrane. While increases in both NE release and uptake mediated by KCl stimulation require Ca2+, different intracellular mechanisms mediate these two events.

  11. Increased understanding of neoclassical internal transport barrier on CHS

    International Nuclear Information System (INIS)

    Minami, T.

    2002-01-01

    The recent progress of the study on neoclassical internal transport barrier (N-ITB) of Compact Helical System (CHS) is reported. This barrier is formed due to the positive electric field and the electric field shear that are created by bifurcation of radial electric field with the electron cyclotron (EC) heating on helical devices. Previously N-ITB was observed for ECH plasma, recently N-ITB barrier was also observed for EC (53.2 GHz 2nd harmonic) heated NBI plasma. The N-ITB of EC heated NBI plasma is formed at the outer location (r/a=0.4-0.6) in comparison with that (r/a=0.3) of ECH plasma, so that the improved confinement region is expanded. The improvement in the ion energy transport is also observed and the ion temperature is increased up to 400 eV along with the electron temperature, that is two times higher than that of the plasma without N-ITB. The particle transport is studied by measuring the peak energy of Titanium Kα line intensity with the soft X-ray CCD camera. The energy is shifted from 4.68 kV to 4.73 kV by forming N-ITB. The improvement of the impurity transport has been confirmed inside N-ITB by comparing the experimental result with the MIST code. (author)

  12. Maternal and Fetal Recovery After Severe Respiratory Failure: A Case Report of Air Transportation of a Pregnant Woman on ECMO Using the CentriMag Transporter System.

    Science.gov (United States)

    Kaliyev, Rymbay; Kapyshev, Timur; Goncharov, Alex; Lesbekov, Timur; Pya, Yuri

    2015-01-01

    Use of extracorporeal membrane oxygenation (ECMO) for severe cardiopulmonary failure has increased because of improved outcomes. A specially designed ECMO transport system allows for safe transport of patients over long distances. We report a 28-year-old pregnant woman (26 weeks gestation) with acute respiratory distress syndrome in whom ECMO support was necessary for survival, and she was transported to another facility 1,155 km away with the aid of the portable ECMO system. Transport was uneventful, and the patient's condition remained stable. Acute respiratory distress syndrome improved gradually until the patient was discharged from the hospital with excellent maternal and fetal outcome.

  13. Soy-dairy protein blend and whey protein ingestion after resistance exercise increases amino acid transport and transporter expression in human skeletal muscle

    Science.gov (United States)

    Reidy, P. T.; Walker, D. K.; Dickinson, J. M.; Gundermann, D. M.; Drummond, M. J.; Timmerman, K. L.; Cope, M. B.; Mukherjea, R.; Jennings, K.; Volpi, E.

    2014-01-01

    Increasing amino acid availability (via infusion or ingestion) at rest or postexercise enhances amino acid transport into human skeletal muscle. It is unknown whether alterations in amino acid availability, from ingesting different dietary proteins, can enhance amino acid transport rates and amino acid transporter (AAT) mRNA expression. We hypothesized that the prolonged hyperaminoacidemia from ingesting a blend of proteins with different digestion rates postexercise would enhance amino acid transport into muscle and AAT expression compared with the ingestion of a rapidly digested protein. In a double-blind, randomized clinical trial, we studied 16 young adults at rest and after acute resistance exercise coupled with postexercise (1 h) ingestion of either a (soy-dairy) protein blend or whey protein. Phenylalanine net balance and transport rate into skeletal muscle were measured using stable isotopic methods in combination with femoral arteriovenous blood sampling and muscle biopsies obtained at rest and 3 and 5 h postexercise. Phenylalanine transport into muscle and mRNA expression of select AATs [system L amino acid transporter 1/solute-linked carrier (SLC) 7A5, CD98/SLC3A2, system A amino acid transporter 2/SLC38A2, proton-assisted amino acid transporter 1/SLC36A1, cationic amino acid transporter 1/SLC7A1] increased to a similar extent in both groups (P protein blend resulted in a prolonged and positive net phenylalanine balance during postexercise recovery compared with whey protein (P protein synthesis increased similarly between groups. We conclude that, while both protein sources enhanced postexercise AAT expression, transport into muscle, and myofibrillar protein synthesis, postexercise ingestion of a protein blend results in a slightly prolonged net amino acid balance across the leg compared with whey protein. PMID:24699854

  14. Technological advances in extracorporeal membrane oxygenation for respiratory failure.

    Science.gov (United States)

    Rehder, Kyle J; Turner, David A; Bonadonna, Desiree; Walczak, Richard J; Rudder, Robert J; Cheifetz, Ira M

    2012-08-01

    Extracorporeal membrane oxygenation (ECMO) for neonatal and pediatric cardiac and/or respiratory failure is well established, and its use for adult respiratory failure is rapidly increasing. Management strategies developed over the past 30 years coupled with significant recent technological advances have led to improved ECMO survival. These new technologies are expanding the potential applications for ECMO in exciting ways, including new patient populations and the ability to make ECMO mobile for both intra- and inter-hospital transport. In this article, we highlight some of the recent technological advances and their impact on the utilization of ECMO in increasingly diverse patient populations.

  15. Determination of relative CMRO2 from CBF and BOLD changes: significant increase of oxygen consumption rate during visual stimulation

    DEFF Research Database (Denmark)

    Kim, S.G.; Rostrup, Egill; Larsson, H.B.

    1999-01-01

    signal changes were measured simultaneously using the flow-sensitive alternating inversion recovery (FAIR) technique. During hypercapnia established by an end-tidal CO2 increase of 1.46 kPa, CBF in the visual cortex increased by 47.3 +/- 17.3% (mean +/- SD; n = 9), and deltaR2* was -0.478 +/- 0.147 sec......The blood oxygenation level-dependent (BOLD) effect in functional magnetic resonance imaging depends on at least partial uncoupling between cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) changes. By measuring CBF and BOLD simultaneously, the relative change in CMRO2 can...

  16. Increased Bile Acid Synthesis and Impaired Bile Acid Transport in Human Obesity

    OpenAIRE

    Haeusler, Rebecca A.; Camastra, Stefania; Nannipieri, Monica; Astiarraga, Brenno; Castro-Perez, Jose; Xie, Dan; Wang, Liangsu; Chakravarthy, Manu; Ferrannini, Ele

    2015-01-01

    We measured plasma bile acids, markers of bile acid synthesis, and expression of bile acid transporters in obese and nonobese subjects. We found that obesity was associated with increased bile acid synthesis and 12-hydroxylation, blunted response of plasma bile acids to insulin infusion or a mixed meal, and decreased expression of liver bile acid transporters.

  17. Oxygen enrichment incineration

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested

  18. Oxygen enrichment incineration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested.

  19. The modulation of oxygen vacancies by the combined current effect and temperature cycling in La0.7Sr0.3CoO3 film

    Science.gov (United States)

    Li, J.; Wang, J.; Kuang, H.; Zhao, Y. Y.; Qiao, K. M.; Liu, Y.; Hu, F. X.; Sun, J. R.; Shen, B. G.

    2018-05-01

    Modulating the oxygen defect concentration has been accepted as an effective method to obtain high catalytic activity in perovskite cobaltites. However, controllably modifying the oxygen vacancy is still a challenge in this type of materials, which strongly obstructs their application. Here, we report a successful oxygen vacancies modulation in the La0.7Sr0.3CoO3 (LSCO) film by using combined current effect and temperature cycling. The temperature dependent transport properties of the LSCO/LAO film were investigated. The results revealed that the resistance of the film keeps increasing under the repeated measurements. It was found that the accumulation of the oxygen vacancy by current effect transforms the Co4+ ion into Co3+ ion, which results in the enhancement of the resistance and thus the transport switching behavior. Moreover, the resistance in the cooling process was found to be much higher than that in previous cooling and heating processes, which indicates that the oxygen escapes more quickly in the high temperature region. On the other hand, our analysis indicates that the CoO6 distortion may contribute to the switching of transport behaviors in the low temperature region. Our work provides an effective and controllable way to modulate oxygen defect in the perovskite-type oxides.

  20. Increased Urinary Extracellular Vesicle Sodium Transporters in Cushing's Syndrome with Hypertension.

    Science.gov (United States)

    Salih, Mahdi; Bovée, Dominique M; van der Lubbe, Nils; Danser, Alexander H J; Zietse, Robert; Feelders, Richard A; Hoorn, Ewout J

    2018-05-02

    Increased renal sodium reabsorption contributes to hypertension in Cushing's syndrome (CS). Renal sodium transporters can be analyzed non-invasively in urinary extracellular vesicles (uEVs). To analyze renal sodium transporters in uEVs of patients with CS and hypertension. Observational study. University hospital. uEVs were isolated by ultracentrifugation and analyzed by immunoblotting in 10 CS patients and 7 age-matched healthy subjects. In 7 CS patients uEVs were analyzed before and after treatment. uEV protein abundance. The 10 CS patients were divided in those with suppressed and non-suppressed renin-angiotensin-aldosterone system (RAAS, n = 5/group). CS patients with suppressed RAAS had similar blood pressure but significantly lower serum potassium than CS patients with non-suppressed RAAS. Compared to healthy subjects, only those with suppressed RAAS had higher phosphorylated Na+-K+-Cl- cotransporter type 2 (pNKCC2) and higher total and phosphorylated Na+-Cl- cotransporter (NCC) in uEVs. Serum potassium but not urinary free cortisol correlated with pNKCC2, pNCC, and NCC in uEVs. Treatment of CS reversed the increases in pNKCC2, NCC, and pNCC. CS increases renal sodium transporter abundance in uEVs especially in patients with hypertension and suppressed RAAS. As potassium has recently been identified as an important driver of NCC activity, low serum potassium may also contribute to increased renal sodium reabsorption and hypertension in CS. These results may also be relevant for hypertension induced by exogenous glucocorticoids.

  1. Cocaine- and amphetamine-regulated transcript peptide increases mitochondrial respiratory chain complex II activity and protects against oxygen-glucose deprivation in neurons.

    Science.gov (United States)

    Sha, Dujuan; Wang, Luna; Zhang, Jun; Qian, Lai; Li, Qiming; Li, Jin; Qian, Jian; Gu, Shuangshuang; Han, Ling; Xu, Peng; Xu, Yun

    2014-09-25

    The mechanisms of ischemic stroke, a main cause of disability and death, are complicated. Ischemic stroke results from the interaction of various factors including oxidative stress, a key pathological mechanism that plays an important role during the acute stage of ischemic brain injury. This study demonstrated that cocaine- and amphetamine-regulated transcript (CART) peptide, specifically CART55-102, increased the survival rate, but decreased the mortality of neurons exposed to oxygen-glucose deprivation (OGD), in a dose-dependent manner. The above-mentioned effects of CART55-102 were most significant at 0.4nM. These results indicated that CART55-102 suppressed neurotoxicity and enhanced neuronal survival after oxygen-glucose deprivation. CART55-102 (0.4nM) significantly diminished reactive oxygen species levels and markedly increased the activity of mitochondrial respiratory chain complex II in oxygen-glucose deprived neurons. In summary, CART55-102 suppressed oxidative stress in oxygen-glucose deprived neurons, possibly through elevating the activity of mitochondrial respiratory chain complex II. This result provides evidence for the development of CART55-102 as an antioxidant drug. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions.

    Science.gov (United States)

    Kasischke, Karl A; Lambert, Elton M; Panepento, Ben; Sun, Anita; Gelbard, Harris A; Burgess, Robert W; Foster, Thomas H; Nedergaard, Maiken

    2011-01-01

    Oxygen transport imposes a possible constraint on the brain's ability to sustain variable metabolic demands, but oxygen diffusion in the cerebral cortex has not yet been observed directly. We show that concurrent two-photon fluorescence imaging of endogenous nicotinamide adenine dinucleotide (NADH) and the cortical microcirculation exposes well-defined boundaries of tissue oxygen diffusion in the mouse cortex. The NADH fluorescence increases rapidly over a narrow, very low pO(2) range with a p(50) of 3.4 ± 0.6 mm Hg, thereby establishing a nearly binary reporter of significant, metabolically limiting hypoxia. The transient cortical tissue boundaries of NADH fluorescence exhibit remarkably delineated geometrical patterns, which define the limits of tissue oxygen diffusion from the cortical microcirculation and bear a striking resemblance to the ideal Krogh tissue cylinder. The visualization of microvessels and their regional contribution to oxygen delivery establishes penetrating arterioles as major oxygen sources in addition to the capillary network and confirms the existence of cortical oxygen fields with steep microregional oxygen gradients. Thus, two-photon NADH imaging can be applied to expose vascular supply regions and to localize functionally relevant microregional cortical hypoxia with micrometer spatial resolution.

  3. Effects of Hemopure on maximal oxygen uptake and endurance performance in healthy humans.

    Science.gov (United States)

    Ashenden, M J; Schumacher, Y O; Sharpe, K; Varlet-Marie, E; Audran, M

    2007-05-01

    Haemoglobin-based oxygen carriers (HBOCs) such as Hemopure are touted as a tenable substitute for red blood cells and therefore potential doping agents, although the mechanisms of oxygen transport of HBOCs are incompletely understood. We investigated whether infusion of Hemopure increased maximal oxygen uptake (V.O 2max) and endurance performance in healthy subjects. Twelve male subjects performed two 4-minute submaximal exercise bouts equivalent to 60 % and 75 % of V.O (2max) on a cycle ergometer, followed by a ramped incremental protocol to elicit V.O (2max). A crossover design tested the effect of infusing either 30 g (6 subjects) or 45 g (6 subjects) of Hemopure versus a placebo. Under our study conditions, Hemopure did not increase V.O (2max) nor endurance performance. However, the infusion of Hemopure caused a decrease in heart rate of approximately 10 bpm (p=0.009) and an average increase in mean ( approximately 7 mmHg) and diastolic blood pressure ( approximately 8 mmHg) (p=0.046) at submaximal and maximal exercise intensities. Infusion of Hemopure did not bestow the same physiological advantages generally associated with infusion of red blood cells. It is conceivable that under exercise conditions, the hypertensive effects of Hemopure counter the performance-enhancing effect of improved blood oxygen carrying capacity.

  4. Thermotransport of nitrogen and oxygen in β-zirconium

    NARCIS (Netherlands)

    Vogel, D.L.; Rieck, G.D.

    1971-01-01

    An investigation of thermotransport of nitrogen in ß-zirconium is reported. Using a method previously described, the heat of transport turned out to be 25.1 kcal/mole with a standard deviation of 2.5 kcal/mole. The formerly published value of the heat of transport of oxygen in ß-zirconium, viz. 20

  5. Humidification of inspired oxygen is increased with pre-nasal cannula, compared to intranasal cannula.

    Science.gov (United States)

    Dellweg, Dominic; Wenze, Markus; Hoehn, Ekkehard; Bourgund, Olaf; Haidl, Peter

    2013-08-01

    Oxygen therapy is usually combined with a humidification device, to prevent mucosal dryness. Depending on the cannula design, oxygen can be administered pre- or intra-nasally (administration of oxygen in front of the nasal ostia vs cannula system inside the nasal vestibulum). The impact of cannula design on intra-nasal humidity, however, has not been investigated to date. First, to develop a system, that samples air from the nasal cavity and analyzes the humidity of these samples. Second, to investigate nasal humidity during pre-nasal and intra-nasal oxygen application, with and without humidification. We first developed and validated a sampling and analysis system to measure humidity from air samples. By means of this system we measured inspiratory air samples from 12 subjects who received nasal oxygen with an intra-nasal and pre-nasal cannula at different flows, with and without humidification. The sampling and analysis system showed good correlation to a standard hygrometer within the tested humidity range (r = 0.99, P humidification (P = .001, P humidification. With the addition of humidification we observed no significant change in humidity at any flow, and independent of pre- or intranasal oxygen administration. Pre-nasal administration of dry oxygen achieves levels of intranasal humidity similar to those achieved by intranasal administration in combination with a bubble through humidifier. Pre-nasal oxygen simplifies application and may reduce therapy cost.

  6. Electronic transport properties of pentacene single crystals upon exposure to air

    NARCIS (Netherlands)

    Jurchescu, OD; Baas, J; Palstra, TTM; Jurchescu, Oana D.

    2005-01-01

    We report the effect of air exposure on the electronic properties of pentacene single crystals. Air can diffuse reversibly in and out of the crystals and influences the physical properties. We discern two competing mechanisms that modulate the electronic transport. The presence of oxygen increases

  7. Circulation, eddies, oxygen, and nutrient changes in the eastern tropical South Pacific Ocean

    Science.gov (United States)

    Czeschel, R.; Stramma, L.; Weller, R. A.; Fischer, T.

    2015-06-01

    A large subsurface oxygen deficiency zone is located in the eastern tropical South Pacific Ocean (ETSP). The large-scale circulation in the eastern equatorial Pacific and off the coast of Peru in November/December 2012 shows the influence of the equatorial current system, the eastern boundary currents, and the northern reaches of the subtropical gyre. In November 2012 the equatorial undercurrent (EUC) is centered at 250 m depth, deeper than in earlier observations. In December 2012, the equatorial water is transported southeastward near the shelf in the Peru-Chile undercurrent (PCUC) with a mean transport of 1.4 Sv. In the oxygen minimum zone (OMZ), the flow is overlaid with strong eddy activity on the poleward side of the OMZ. Floats with parking depth at 400 m show fast westward flow in the mid-depth equatorial channel and sluggish flow in the OMZ. Floats with oxygen sensors clearly show the passage of eddies with oxygen anomalies. The long-term float observations in the upper ocean lead to a net community production estimate at about 18° S of up to 16.7 mmol C m-3 yr-1 extrapolated to an annual rate and 7.7 mmol C m-3 yr-1 for the time period below the mixed layer. Oxygen differences between repeated ship sections are influenced by the Interdecadal Pacific Oscillation (IPO), by the phase of El Niño, by seasonal changes, and by eddies, and hence have to be interpreted with care. At and south of the Equator the decrease in oxygen in the upper ocean since 1976 is related to an increase in nitrate, phosphate, and in part silicate.

  8. Electronic and Ionic Transport in Ce0.8PrxTb0.2−xO2−δ and Evaluation of Performance as Oxygen Permeation Membranes

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Hendriksen, Peter Vang

    2012-01-01

    to that of Ce0.9Gd0.1O1.95−δ, and was found to increase with increasing Pr/Tb ratio. The oxide ion mobility in Ce0.8PrxTb0.2−xO2−δ is similar to that in Ce1−2δGd2δO2−δ at the same oxygen vacancy concentration. Based on the measured ionic and electronic conductivities, fluxes through thin film Ce0.8PrxTb0.2−xO2......The electronic conductivity of Ce0.8PrxTb0.2−xO2−δ (x = 0, 0.05, 0.10, 0.15, 0.20) was determined in the oxygen activity range aO2 ≈ 103 – 10−17 at 700–900°C by Hebb-Wagner polarization. The electronic conductivity of all the Ce0.8PrxTb0.2−xO2−δ compositions was significantly enhanced as compared......−δ membranes were calculated. Calculated fluxes exceed 10 Nml min−1 cm−2 under oxyfuel relevant conditions (T = 800°C, aO2,permeate side = 10−3). Hence, in terms of transport properties, these materials are promising for this application. Interference between the ionic and electronic flows has...

  9. Oxygen redistribution in (UCe)Osub(2-x)

    International Nuclear Information System (INIS)

    Guedeney, Philippe.

    1983-01-01

    Redistribution of oxygen has been investigated in (Usub(0,7)Cesub(0,3))Osub(2-x) mixed oxide subjected to a temperature gradient in laboratory experiments, in order to apply the results to the nuclear fuel (UPu)Osub(2-x). Cylindrical sintered oxide specimens were exposed to temperature up to 1300 0 C with a longitudinal thermal gradient of about 400 0 C/cm. The most interesting feature of the experimental set-up is a solid-state electrochemical gauge (ThO 2 - Y 2 O 3 ), placed in the cold part of the sample which allows a continuous measurement of the oxygen activity. The experiments showed a fast oxygen migration down the thermal gradient. The calculations performed with a model based on solid-state thermodiffusion are in good agreement with experimental results. The heat of transport Q measured for bare samples reaches (7.2+-0.5)-kcal/mole. When the sample is coated with a tight fitting metallic cladding, an extra term Qe has to be added to the heat of transport Qe. This was interpreted as an electrotransport phenomena. On the same basis, calculations applied to radial oxygen redistribution in (UPu)Osub(2-x) seem to be adequate at least during the first stage of irradiation, taking Q=(20+-5)kcal/mole [fr

  10. Ceria Based Composite Membranes for Oxygen Separation

    DEFF Research Database (Denmark)

    Gurauskis, Jonas; Ovtar, Simona; Kaiser, Andreas

    2014-01-01

    Mixed ionic-electronic conducting membranes for oxygen gas separation are attracting a lot of interest due to their promising potential for the pure oxygen and the syngas production. Apart from the need for a sufficiently high oxygen permeation fluxes, the prolonged stability of these membranes...... under the large oxygen potential gradients at elevated temperatures is decisive for the future applications. The gadolinium doped cerium oxide (CGO) based composite membranes are considered as promising candidates due to inherent stability of CGO phase. The CGO matrix is a main oxygen ion transporter......; meanwhile the primary role of a secondary phase in this membrane is to compensate the low electronic conductivity of matrix at intended functioning conditions. In this work thin film (15-20 μm) composite membranes based on CGO matrix and LSF electronic conducting phase were fabricated and evaluated...

  11. Acrolein activates matrix metalloproteinases by increasing reactive oxygen species in macrophages

    International Nuclear Information System (INIS)

    O'Toole, Timothy E.; Zheng Yuting; Hellmann, Jason; Conklin, Daniel J.; Barski, Oleg; Bhatnagar, Aruni

    2009-01-01

    Acrolein is a ubiquitous component of environmental pollutants such as automobile exhaust, cigarette, wood, and coal smoke. It is also a natural constituent of several foods and is generated endogenously during inflammation or oxidation of unsaturated lipids. Because increased inflammation and episodic exposure to acrolein-rich pollutants such as traffic emissions or cigarette smoke have been linked to acute myocardial infarction, we examined the effects of acrolein on matrix metalloproteinases (MMPs), which destabilize atherosclerotic plaques. Our studies show that exposure to acrolein resulted in the secretion of MMP-9 from differentiated THP-1 macrophages. Acrolein-treatment of macrophages also led to an increase in reactive oxygen species (ROS), free intracellular calcium ([Ca 2+ ] i ), and xanthine oxidase (XO) activity. ROS production was prevented by allopurinol, but not by rotenone or apocynin and by buffering changes in [Ca 2+ ] I with BAPTA-AM. The increase in MMP production was abolished by pre-treatment with the antioxidants Tiron and N-acetyl cysteine (NAC) or with the xanthine oxidase inhibitors allopurinol or oxypurinol. Finally, MMP activity was significantly stimulated in aortic sections from apoE-null mice containing advanced atherosclerotic lesions after exposure to acrolein ex vivo. These observations suggest that acrolein exposure results in MMP secretion from macrophages via a mechanism that involves an increase in [Ca 2+ ] I , leading to xanthine oxidase activation and an increase in ROS production. ROS-dependent activation of MMPs by acrolein could destabilize atherosclerotic lesions during brief episodes of inflammation or pollutant exposure.

  12. Acrolein activates matrix metalloproteinases by increasing reactive oxygen species in macrophages.

    Science.gov (United States)

    O'Toole, Timothy E; Zheng, Yu-Ting; Hellmann, Jason; Conklin, Daniel J; Barski, Oleg; Bhatnagar, Aruni

    2009-04-15

    Acrolein is a ubiquitous component of environmental pollutants such as automobile exhaust, cigarette, wood, and coal smoke. It is also a natural constituent of several foods and is generated endogenously during inflammation or oxidation of unsaturated lipids. Because increased inflammation and episodic exposure to acrolein-rich pollutants such as traffic emissions or cigarette smoke have been linked to acute myocardial infarction, we examined the effects of acrolein on matrix metalloproteinases (MMPs), which destabilize atherosclerotic plaques. Our studies show that exposure to acrolein resulted in the secretion of MMP-9 from differentiated THP-1 macrophages. Acrolein-treatment of macrophages also led to an increase in reactive oxygen species (ROS), free intracellular calcium ([Ca2+](i)), and xanthine oxidase (XO) activity. ROS production was prevented by allopurinol, but not by rotenone or apocynin and by buffering changes in [Ca2+](I) with BAPTA-AM. The increase in MMP production was abolished by pre-treatment with the antioxidants Tiron and N-acetyl cysteine (NAC) or with the xanthine oxidase inhibitors allopurinol or oxypurinol. Finally, MMP activity was significantly stimulated in aortic sections from apoE-null mice containing advanced atherosclerotic lesions after exposure to acrolein ex vivo. These observations suggest that acrolein exposure results in MMP secretion from macrophages via a mechanism that involves an increase in [Ca2+](I), leading to xanthine oxidase activation and an increase in ROS production. ROS-dependent activation of MMPs by acrolein could destabilize atherosclerotic lesions during brief episodes of inflammation or pollutant exposure.

  13. Interfacial microstructure and shear strength of reactive air brazed oxygen transport membrane ceramic-metal alloy joints

    Science.gov (United States)

    FR, Wahid Muhamad; Yoon, Dang-Hyok; Raju, Kati; Kim, Seyoung; Song, Kwang-sup; Yu, Ji Haeng

    2018-01-01

    To fabricate a multi-layered structure for maximizing oxygen production, oxygen transport membrane (OTM) ceramics need to be joined or sealed hermetically metal supports for interfacing with the peripheral components of the system. Therefore, in this study, Ag-10 wt% CuO was evaluated as an effective filler material for the reactive air brazing of dense Ce0.9Gd0.1O2-δ-La0.7Sr0.3MnO3±δ (GDC-LSM) OTM ceramics. Thermal decomposition in air and wetting behavior of the braze filler was performed. Reactive air brazing was performed at 1050 °C for 30 min in air to join GDC-LSM with four different commercially available high temperature-resistant metal alloys, such as Crofer 22 APU, Inconel 600, Fecralloy, and AISI 310S. The microstructure and elemental distribution of the ceramic-ceramic and ceramic-metal interfaces were examined from polished cross-sections. The mechanical shear strength at room temperature for the as-brazed and isothermally aged (800 °C for 24 h) joints of all the samples was compared. The results showed that the strength of the ceramic-ceramic joints was decreased marginally by aging; however, in the case of metal-ceramic joints, different decreases in strengths were observed according to the metal alloy used, which was explained based on the formation of different oxide layers at the interfaces.

  14. Binding proteins enhance specific uptake rate by increasing the substrate-transporter encounter rate.

    Science.gov (United States)

    Bosdriesz, Evert; Magnúsdóttir, Stefanía; Bruggeman, Frank J; Teusink, Bas; Molenaar, Douwe

    2015-06-01

    Microorganisms rely on binding-protein assisted, active transport systems to scavenge for scarce nutrients. Several advantages of using binding proteins in such uptake systems have been proposed. However, a systematic, rigorous and quantitative analysis of the function of binding proteins is lacking. By combining knowledge of selection pressure and physiochemical constraints, we derive kinetic, thermodynamic, and stoichiometric properties of binding-protein dependent transport systems that enable a maximal import activity per amount of transporter. Under the hypothesis that this maximal specific activity of the transport complex is the selection objective, binding protein concentrations should exceed the concentration of both the scarce nutrient and the transporter. This increases the encounter rate of transporter with loaded binding protein at low substrate concentrations, thereby enhancing the affinity and specific uptake rate. These predictions are experimentally testable, and a number of observations confirm them. © 2015 FEBS.

  15. Oxygen diffusion in soils: Understanding the factors and processes needed for modeling

    Directory of Open Access Journals (Sweden)

    José Neira

    2015-08-01

    Full Text Available Oxygen is an important element for plant growth. Reducing its concentration in the soil affects plant physiological processes such as nutrient and water uptake as well as respiration, the redox potential of soil elements and the activity of microorganisms. The main mechanism of oxygen transport in the soil is by diffusion, a dynamic process greatly influenced by soil physical properties such as texture and structure, conditioning, pore size distribution, tortuosity and connectivity. Organic matter is a modifying agent of the soil's chemical and physical properties, affecting its structure and the porous matrix, which are determinants of oxygen transport. This study reviews the theory of soil gas diffusion and the effect of soil organic matter on the soil's physical properties and transport of gases. It also reviews gas diffusion models, particularly those including the effect of soil organic matter.

  16. Controlling factors of the oxygen balance in the Arabian Sea's OMZ

    Directory of Open Access Journals (Sweden)

    L. Resplandy

    2012-12-01

    Full Text Available The expansion of OMZs (oxygen minimum zones due to climate change and their possible evolution and impacts on the ecosystems and the atmosphere are still debated, mostly because of the unability of global climate models to adequatly reproduce the processes governing OMZs. In this study, we examine the factors controlling the oxygen budget, i.e. the equilibrium between oxygen sources and sinks in the northern Arabian Sea OMZ using an eddy-resolving biophysical model.

    Our model confirms that the biological consumption of oxygen is most intense below the region of highest productivity in the western Arabian Sea. The oxygen drawdown in this region is counterbalanced by the large supply of oxygenated waters originated from the south and advected horizontally by the western boundary current. Although the biological sink and the dynamical sources of oxygen compensate on annual average, we find that the seasonality of the dynamical transport of oxygen is 3 to 5 times larger than the seasonality of the biological sink. In agreement with previous findings, the resulting seasonality of oxygen concentration in the OMZ is relatively weak, with a variability of the order of 15% of the annual mean oxygen concentration in the oxycline and 5% elsewhere. This seasonality primarily arises from the vertical displacement of the OMZ forced by the monsoonal reversal of Ekman pumping across the basin. In coastal areas, the oxygen concentration is also modulated seasonally by lateral advection. Along the western coast of the Arabian Sea, the Somali Current transports oxygen-rich waters originated from the south during summer and oxygen-poor waters from the northeast during winter. Along the eastern coast of the Arabian Sea, we find that the main contributor to lateral advection in the OMZ is the Indian coastal undercurrent that advects southern oxygenated waters during summer and northern low-oxygen waters during winter. In this region, our model indicates that

  17. Oxygen transfer rate during the production of alginate by Azotobacter vinelandii under oxygen-limited and non oxygen-limited conditions

    Directory of Open Access Journals (Sweden)

    Peña Carlos F

    2011-02-01

    Full Text Available Abstract Background The oxygen transfer rate (OTR and dissolved oxygen tension (DOT play an important role in determining alginate production and its composition; however, no systematic study has been reported about the independent influence of the OTR and DOT. In this paper, we report a study about alginate production and the evolution of the molecular mass of the polymer produced by a wild-type A. vinelandii strain ATCC 9046, in terms of the maximum oxygen transfer rate (OTRmax in cultures where the dissolved oxygen tension (DOT was kept constant. Results The results revealed that in the two dissolved oxygen conditions evaluated, strictly controlled by gas blending at 0.5 and 5% DOT, an increase in the agitation rate (from 300 to 700 rpm caused a significant increase in the OTRmax (from 17 to 100 mmol L-1 h-1 for DOT of 5% and from 6 to 70 mmol L-1 h-1 for DOT of 0.5%. This increase in the OTRmax improved alginate production, as well as the specific alginate production rate (SAPR, reaching a maximal alginate concentration of 3.1 g L-1 and a SAPR of 0.031 g alg g biom-1 h-1 in the cultures at OTRmax of 100 mmol L-1 h-1. In contrast, the mean molecular mass (MMM of the alginate isolated from cultures developed under non-oxygen limited conditions increased by decreasing the OTRmax, reaching a maximal of 550 kDa at an OTRmax of 17 mmol L-1 h-1 . However, in the cultures developed under oxygen limitation (0.5% DOT, the MMM of the polymer was practically the same (around 200 kDa at 300 and 700 rpm, and this remained constant throughout the cultivation. Conclusions Overall, our results showed that under oxygen-limited and non oxygen-limited conditions, alginate production and its molecular mass are linked to the OTRmax, independently of the DOT of the culture.

  18. Interfacial oxygen and nitrogen induced dipole formation and vacancy passivation for increased effective work functions in TiN/HfO[sub 2] gate stacks

    KAUST Repository

    Hinkle, C. L.; Galatage, R. V.; Chapman, R. A.; Vogel, E. M.; Alshareef, Husam N.; Freeman, C.; Wimmer, E.; Niimi, H.; Li-Fatou, A.; Shaw, J. B.; Chambers, J. J.

    2010-01-01

    V are achieved with anneals that incorporate oxygen throughout the TiN with [O]=2.8×1021 cm−3 near the TiN/HfO2interface. However, further increasing the oxygen concentration via more aggressive anneals results in a relative decrease of the EWF and increase

  19. Design of a lunar oxygen production plant

    Science.gov (United States)

    Radhakrishnan, Ramalingam

    1990-01-01

    To achieve permanent human presence and activity on the moon, oxygen is required for both life support and propulsion. Lunar oxygen production using resources existing on the moon will reduce or eliminate the need to transport liquid oxygen from earth. In addition, the co-products of oxygen production will provide metals, structural ceramics, and other volatile compounds. This will enable development of even greater self-sufficiency as the lunar outpost evolves. Ilmenite is the most abundant metal-oxide mineral in the lunar regolith. A process involving the reaction of ilmenite with hydrogen at 1000 C to produce water, followed by the electrolysis of this water to provide oxygen and recycle the hydrogen has been explored. The objective of this 1990 Summer Faculty Project was to design a lunar oxygen-production plant to provide 5 metric tons of liquid oxygen per year from lunar soil. The results of this study describe the size and mass of the equipment, the power needs, feedstock quantity and the engineering details of the plant.

  20. Enhanced deep ocean ventilation and oxygenation with global warming

    Science.gov (United States)

    Froelicher, T. L.; Jaccard, S.; Dunne, J. P.; Paynter, D.; Gruber, N.

    2014-12-01

    Twenty-first century coupled climate model simulations, observations from the recent past, and theoretical arguments suggest a consistent trend towards warmer ocean temperatures and fresher polar surface oceans in response to increased radiative forcing resulting in increased upper ocean stratification and reduced ventilation and oxygenation of the deep ocean. Paleo-proxy records of the warming at the end of the last ice age, however, suggests a different outcome, namely a better ventilated and oxygenated deep ocean with global warming. Here we use a four thousand year global warming simulation from a comprehensive Earth System Model (GFDL ESM2M) to show that this conundrum is a consequence of different rates of warming and that the deep ocean is actually better ventilated and oxygenated in a future warmer equilibrated climate consistent with paleo-proxy records. The enhanced deep ocean ventilation in the Southern Ocean occurs in spite of increased positive surface buoyancy fluxes and a constancy of the Southern Hemisphere westerly winds - circumstances that would otherwise be expected to lead to a reduction in deep ocean ventilation. This ventilation recovery occurs through a global scale interaction of the Atlantic Meridional Overturning Circulation undergoing a multi-centennial recovery after an initial century of transient decrease and transports salinity-rich waters inform the subtropical surface ocean to the Southern Ocean interior on multi-century timescales. The subsequent upwelling of salinity-rich waters in the Southern Ocean strips away the freshwater cap that maintains vertical stability and increases open ocean convection and the formation of Antarctic Bottom Waters. As a result, the global ocean oxygen content and the nutrient supply from the deep ocean to the surface are higher in a warmer ocean. The implications for past and future changes in ocean heat and carbon storage will be discussed.

  1. The generation of singlet oxygen (o(2)) by the nitrodiphenyl ether herbicide oxyfluorfen is independent of photosynthesis.

    Science.gov (United States)

    Haworth, P; Hess, F D

    1988-03-01

    The mechanism of action of the p-nitrodiphenyl ether herbicides has remained ambiguous because of conflicting reports in the literature. The diphenyl ether herbicide oxyfluorfen causes a light induced consumption of oxygen which resembles the electron acceptor reaction of paraquat. However, this reaction is not linked to the transport of electrons through photosystem I. This conclusion is based on the observation that the rate of oxygen consumption, in the presence of oxyfluorfen, does not demonstrate a first order rate dependence on light intensity. Using the bleaching of N,N-dimethyl p-nitrosoaniline as a specific detector of singlet oxygen, we demonstrate that oxyfluorfen is a potent generator of this toxic radical. The production of singlet oxygen occurs in the presence of inhibitors of photosynthetic electron transport (oxyfluorfen at 10(-4) molar and paraquat) and also under temperature conditions (3 degrees C) which prevent electron transport. This light induced reaction results in oxygen consumption and is the primary cause of lethality for oxyfluorfen. The production of singlet oxygen occurs rapidly and at low herbicide concentrations (10(-9) molar). The reaction occurs without photosynthetic electron transport but does require an intact thylakoid membrane.

  2. Influence of oxygen partial pressure on defect concentrations and on oxygen diffusion in UO2+x

    International Nuclear Information System (INIS)

    Pizzi, Elisabetta

    2013-01-01

    The hyper-stoichiometric uranium dioxide (UO 2+x ) is stable over a wide range of temperature and compositions. Such variations of composition and the eventual presence of doping elements or impurities lead to a variation of anionic and electronic defect concentrations. Moreover, many properties of this material are affected by its composition modifications, in particular their atomic transport properties. Firstly we developed a point defect model to evaluate the dependence of the electronic and oxygen defect concentrations upon temperature, equilibrium oxygen partial pressure and impurity content. The physical constants of the model, in particular the equilibrium constants of the defect formation reactions were determined from deviation from stoichiometry and electrical conductivity measurements of literature. This work enabled us to interpret our measures of conductivity, oxygen chemical and self- diffusion coefficients. From a quantitative standpoint, the analysis of our experimental results allows to evaluate the oxygen interstitial diffusion coefficient but also its formation energy. Moreover, an estimate of oxygen di-interstitial formation energy is also provided. Presence of oxygen clusters leads oxygen self- and chemical diffusion to decrease. X-ray Absorption Spectroscopy characterization shows the presence of the same defect in the entire deviation from stoichiometry studied, confirming the approach used to develop the model. (author) [fr

  3. Interfacial oxygen and nitrogen induced dipole formation and vacancy passivation for increased effective work functions in TiN/HfO[sub 2] gate stacks

    KAUST Repository

    Hinkle, C. L.

    2010-03-09

    Effective work function (EWF) changes of TiN/HfO2annealed at low temperatures in different ambient environments are correlated with the atomic concentration of oxygen in the TiN near the metal/dielectric interface. EWF increases of 550 meV are achieved with anneals that incorporate oxygen throughout the TiN with [O]=2.8×1021 cm−3 near the TiN/HfO2interface. However, further increasing the oxygen concentration via more aggressive anneals results in a relative decrease of the EWF and increase in electrical thickness. First-principles calculations indicate the exchange of O and N atoms near the TiN/HfO2interface cause the formation of dipoles that increase the EWF.

  4. Water self-diffusion through narrow oxygenated carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Striolo, Alberto [School of Chemical Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019 (United States)

    2007-11-28

    The hydrophobic interior of carbon nanotubes, which is reminiscent of ion channels in cellular membranes, has inspired scientific research directed towards the production of, for example, membranes for water desalination, drug-delivery devices, and nanosyringes. To develop these technologies it is crucial to understand and predict the equilibrium and transport properties of confined water. We present here a series of molecular dynamics simulation results conducted to understand the extent to which the presence of a few oxygenated active sites, modeled as carbonyls, affects the transport properties of confined water. The model for the carbon nanotube is not intended to be realistic. Its only purpose is to allow us to understand the effect of a few oxygenated sites on the transport properties of water confined in a narrow cylindrical pore, which is otherwise hydrophobic. At low hydration levels we found little, if any, water diffusion. The diffusion, which appears to be of the Fickian type for sufficiently large hydration levels, becomes faster as the number of confined water molecules increases, reaches a maximum, and slows as water fills the carbon nanotubes. We explain our findings on the basis of two collective motion mechanisms observed from the analysis of sequences of simulation snapshots. We term the two mechanisms 'cluster-breakage' and 'cluster-libration' mechanisms. We observe that the cluster-breakage mechanism produces longer displacements for the confined water molecules than the cluster-libration one, but deactivates as water fills the carbon nanotube. From a practical point of view, our results are particularly important for two reasons: (1) at low hydration levels the presence of only eight carbonyl groups can prevent the diffusion of water through (8, 8) carbon nanotubes; and (2) the extremely fast self-diffusion coefficients observed for water within narrow carbon nanotubes are significantly decreased in the presence of only a

  5. Water self-diffusion through narrow oxygenated carbon nanotubes

    International Nuclear Information System (INIS)

    Striolo, Alberto

    2007-01-01

    The hydrophobic interior of carbon nanotubes, which is reminiscent of ion channels in cellular membranes, has inspired scientific research directed towards the production of, for example, membranes for water desalination, drug-delivery devices, and nanosyringes. To develop these technologies it is crucial to understand and predict the equilibrium and transport properties of confined water. We present here a series of molecular dynamics simulation results conducted to understand the extent to which the presence of a few oxygenated active sites, modeled as carbonyls, affects the transport properties of confined water. The model for the carbon nanotube is not intended to be realistic. Its only purpose is to allow us to understand the effect of a few oxygenated sites on the transport properties of water confined in a narrow cylindrical pore, which is otherwise hydrophobic. At low hydration levels we found little, if any, water diffusion. The diffusion, which appears to be of the Fickian type for sufficiently large hydration levels, becomes faster as the number of confined water molecules increases, reaches a maximum, and slows as water fills the carbon nanotubes. We explain our findings on the basis of two collective motion mechanisms observed from the analysis of sequences of simulation snapshots. We term the two mechanisms 'cluster-breakage' and 'cluster-libration' mechanisms. We observe that the cluster-breakage mechanism produces longer displacements for the confined water molecules than the cluster-libration one, but deactivates as water fills the carbon nanotube. From a practical point of view, our results are particularly important for two reasons: (1) at low hydration levels the presence of only eight carbonyl groups can prevent the diffusion of water through (8, 8) carbon nanotubes; and (2) the extremely fast self-diffusion coefficients observed for water within narrow carbon nanotubes are significantly decreased in the presence of only a few oxygenated active

  6. Hypoxic training increases maximal oxygen consumption in Thoroughbred horses well-trained in normoxia.

    Science.gov (United States)

    Ohmura, Hajime; Mukai, Kazutaka; Takahashi, Yuji; Takahashi, Toshiyuki; Jones, James H

    2017-01-01

    Hypoxic training is effective for improving athletic performance in humans. It increases maximal oxygen consumption (V̇O 2 max) more than normoxic training in untrained horses. However, the effects of hypoxic training on well-trained horses are unclear. We measured the effects of hypoxic training on V̇O 2 max of 5 well-trained horses in which V̇O 2 max had not increased over 3 consecutive weeks of supramaximal treadmill training in normoxia which was performed twice a week. The horses trained with hypoxia (15% inspired O 2 ) twice a week. Cardiorespiratory valuables were analyzed with analysis of variance between before and after 3 weeks of hypoxic training. Mass-specific V̇O 2 max increased after 3 weeks of hypoxic training (178 ± 10 vs. 194 ± 12.3 ml O 2 (STPD)/(kg × min), Phorses, at least for the durations of time evaluated in this study. Training while breathing hypoxic gas may have the potential to enhance normoxic performance of Thoroughbred horses.

  7. Disruption of mitochondrial DNA replication in Drosophila increases mitochondrial fast axonal transport in vivo.

    Directory of Open Access Journals (Sweden)

    Rehan M Baqri

    Full Text Available Mutations in mitochondrial DNA polymerase (pol gamma cause several progressive human diseases including Parkinson's disease, Alper's syndrome, and progressive external ophthalmoplegia. At the cellular level, disruption of pol gamma leads to depletion of mtDNA, disrupts the mitochondrial respiratory chain, and increases susceptibility to oxidative stress. Although recent studies have intensified focus on the role of mtDNA in neuronal diseases, the changes that take place in mitochondrial biogenesis and mitochondrial axonal transport when mtDNA replication is disrupted are unknown. Using high-speed confocal microscopy, electron microscopy and biochemical approaches, we report that mutations in pol gamma deplete mtDNA levels and lead to an increase in mitochondrial density in Drosophila proximal nerves and muscles, without a noticeable increase in mitochondrial fragmentation. Furthermore, there is a rise in flux of bidirectional mitochondrial axonal transport, albeit with slower kinesin-based anterograde transport. In contrast, flux of synaptic vesicle precursors was modestly decreased in pol gamma-alpha mutants. Our data indicate that disruption of mtDNA replication does not hinder mitochondrial biogenesis, increases mitochondrial axonal transport, and raises the question of whether high levels of circulating mtDNA-deficient mitochondria are beneficial or deleterious in mtDNA diseases.

  8. Activity-dependent increases in local oxygen consumption correlate with postsynaptic currents in the mouse cerebellum in vivo

    DEFF Research Database (Denmark)

    Mathiesen, Claus; Caesar, Kirsten; Thomsen, Kirsten Engelund

    2011-01-01

    Evoked neural activity correlates strongly with rises in cerebral metabolic rate of oxygen (CMRO(2)) and cerebral blood flow (CBF). Activity-dependent rises in CMRO(2) fluctuate with ATP turnover due to ion pumping. In vitro studies suggest that increases in cytosolic Ca(2+) stimulate oxidative m...

  9. Spatial and temporal oxygen distribution measured with oxygen microsensors in growing media with different levels of compaction

    DEFF Research Database (Denmark)

    Dresbøll, Dorte; Thorup-Kristensen, Kristian

    2011-01-01

    % compacted, respectively). The water distribution in the pot was determined as water content (gcm-3) in the top, middle and bottom layers of the peat. Oxygen content was also determined after a standard subirrigation cycle and after excessive irrigation where the bottom of the pots were left waterlogged...... for 24 h. Measurements were carried out at 5.5 weeks during the production phase and at 12 weeks at the end of the production. The results showed that with increasing compaction and density, more water was transported to the upper layers of the pot. After a standard irrigation cycle there was no effect...... in growing media and how this was affected by the physical characteristics of the growing media....

  10. The Generation of Singlet Oxygen (1O2) by the Nitrodiphenyl Ether Herbicide Oxyfluorfen Is Independent of Photosynthesis

    Science.gov (United States)

    Haworth, Phil; Hess, F. Dan

    1988-01-01

    The mechanism of action of the p-nitrodiphenyl ether herbicides has remained ambiguous because of conflicting reports in the literature. The diphenyl ether herbicide oxyfluorfen causes a light induced consumption of oxygen which resembles the electron acceptor reaction of paraquat. However, this reaction is not linked to the transport of electrons through photosystem I. This conclusion is based on the observation that the rate of oxygen consumption, in the presence of oxyfluorfen, does not demonstrate a first order rate dependence on light intensity. Using the bleaching of N,N-dimethyl p-nitrosoaniline as a specific detector of singlet oxygen, we demonstrate that oxyfluorfen is a potent generator of this toxic radical. The production of singlet oxygen occurs in the presence of inhibitors of photosynthetic electron transport (oxyfluorfen at 10−4 molar and paraquat) and also under temperature conditions (3°C) which prevent electron transport. This light induced reaction results in oxygen consumption and is the primary cause of lethality for oxyfluorfen. The production of singlet oxygen occurs rapidly and at low herbicide concentrations (10−9 molar). The reaction occurs without photosynthetic electron transport but does require an intact thylakoid membrane. PMID:16665968

  11. L-NIL prevents renal microvascular hypoxia and increase of renal oxygen consumption after ischemia-reperfusion in rats

    NARCIS (Netherlands)

    Legrand, Matthieu; Almac, Emre; Mik, Egbert G.; Johannes, Tanja; Kandil, Asli; Bezemer, Rick; Payen, Didier; Ince, Can

    2009-01-01

    Legrand M, Almac E, Mik EG, Johannes T, Kandil A, Bezemer R, Payen D, Ince C. L-NIL prevents renal microvascular hypoxia and increase of renal oxygen consumption after ischemia-reperfusion in rats. Am J Physiol Renal Physiol 296: F1109-F1117, 2009. First published February 18, 2009;

  12. Acute supramaximal exercise increases the brain oxygenation in relation to cognitive workload

    Directory of Open Access Journals (Sweden)

    Cem Seref Bediz

    2016-04-01

    Full Text Available Single bout of exercise can improve the performance on cognitive tasks. However, cognitive responses may be controversial due to different type, intensity, and duration of exercise. In addition, the mechanism of the effect of acute exercise on brain is still unclear. This study was aimed to investigate the effects of supramaximal exercise on cognitive tasks by means of brain oxygenation monitoring. The brain oxygenation of Prefrontal cortex (PFC was measured on 35 healthy male volunteers via functional Near Infrared Spectroscopy (fNIRS system. Subjects performed 2-Back test before and after the supramaximal exercise (Wingate Anaerobic Test lasting 30-s on cycle ergometer. The PFC oxygenation change evaluation revealed that PFC oxygenation rise during post-exercise 2-Back task was considerably higher than those in pre-exercise 2-Back task. In order to describe the relationship between oxygenation change and exercise performance, subjects were divided into two groups as high performers (HP and low performers (LP according to their peak power values (PP obtained from the supramaximal test. The oxy-hemoglobin (oxy-Hb values were compared between pre- and post-exercise conditions within subjects and also between subjects according to peak power. When performers were compared, in the HP group, the oxy-Hb values in post-exercise 2-Back test were significantly higher than those in pre-exercise 2-Back test. HP had significantly higher post-exercise oxy-Hb change (Δ than those of LP. In addition, peak power values of the total group were significantly correlated with Δoxy-Hb. The key findings of the present study revealed that acute supramaximal exercise has an impact on the brain oxygenation during a cognitive task. Also, the higher the anaerobic PP describes the larger the oxy-Hb response in post-exercise cognitive task. The current study also demonstrated a significant correlation between peak power (exercise load and post-exercise hemodynamic

  13. Manipulation of magnetic and magneto-transport properties of amorphous CoO1–v films

    International Nuclear Information System (INIS)

    Cao, Yan-ling; Zhang, Kun; Li, Huan-huan; Tian, Yu-feng; Yan, Shi-shen; Xiao, Shu-qin; Chen, Yan-xue; Kang, Shi-shou; Liu, Guo-lei; Mei, Liang-mo

    2015-01-01

    The magnetic and magneto-transport properties of amorphous CoO 1−v films have been systematically studied and manipulated by changing the concentration of oxygen vacancies. A giant exchange bias field H E ≈4380 Oe and a large coercivity H C ≈8500 Oe are observed at 5 K for the composite films. And, a metal to insulator transition has been demonstrated in CoO 1−v films by decreasing the concentration of oxygen vacancies. Moreover, a remarkable decrease of the exchange bias and a slight increase of the saturation magnetization can be obtained by modifying the microstructures through post-thermal annealing. - Highlights: • Magnetic and magneto-transport properties of amorphous CoO 1−v are studied. • A giant exchange bias effect with H E ≈4380 Oe and H C ≈8500 Oe is observed at 5 K. • A metal–insulator transition is observed in CoO 1−v by changing the oxygen pressure. • The exchange bias decreases while saturation magnetization increases with annealing

  14. Ambient oxygen promotes tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Ho Joong Sung

    2011-05-01

    Full Text Available Oxygen serves as an essential factor for oxidative stress, and it has been shown to be a mutagen in bacteria. While it is well established that ambient oxygen can also cause genomic instability in cultured mammalian cells, its effect on de novo tumorigenesis at the organismal level is unclear. Herein, by decreasing ambient oxygen exposure, we report a ∼50% increase in the median tumor-free survival time of p53-/- mice. In the thymus, reducing oxygen exposure decreased the levels of oxidative DNA damage and RAG recombinase, both of which are known to promote lymphomagenesis in p53-/- mice. Oxygen is further shown to be associated with genomic instability in two additional cancer models involving the APC tumor suppressor gene and chemical carcinogenesis. Together, these observations represent the first report directly testing the effect of ambient oxygen on de novo tumorigenesis and provide important physiologic evidence demonstrating its critical role in increasing genomic instability in vivo.

  15. Investigating the effects of critical phenomena in premixed methane-oxygen flames at cryogenic conditions

    Science.gov (United States)

    Gopal, Abishek; Yellapantula, Shashank; Larsson, Johan

    2017-11-01

    Methane is increasingly becoming viable as a rocket fuel in the latest generation of launch vehicles. In liquid rocket engines, fuel and oxidizer are injected under cryogenic conditions into the combustion chamber. At high pressures, typical of rocket combustion chambers, the propellants exist in supercritical states where the ideal gas thermodynamics are no longer valid. We investigate the effects of real-gas thermodynamics on transcritical laminar premixed methane-oxygen flames. The effect of the real-gas cubic equations of state and high-pressure transport properties on flame dynamics is presented. We also study real-gas effects on the extinction limits of the methane-oxygen flame.

  16. Continuum-based DFN-consistent simulations of oxygen ingress in fractured crystalline rocks

    Science.gov (United States)

    Trinchero, P.; Puigdomenech, I.; Molinero, J.; Ebrahimi, H.; Gylling, B.; Svensson, U.; Bosbach, D.; Deissmann, G.

    2016-12-01

    The potential transient infiltration of oxygenated glacial meltwater into initially anoxic and reducing fractured crystalline rocks during glaciation events is an issue of concern for some of the prospected deep geological repositories for spent nuclear fuel. Here, this problem is assessed using reactive transport calculations. First, a novel parameterisation procedure is presented, where flow, transport and geochemical parameters (i.e. hydraulic conductivity, effective/kinetic porosity, and mineral specific surface and abundance) are defined on a finite volume numerical grid based on the (spatially varying) properties of an underlying Discrete Fracture Network (DFN). Second, using this approach, a realistic reactive transport model of Forsmark, i.e. the selected site for the proposed Swedish spent nuclear fuel repository, is implemented. The model consists of more than 70 million geochemical transport degrees of freedom and simulates the ingress of oxygen-rich water from the recharge area of the domain and its depletion due to reactions with the Fe(II) mineral chlorite. Third, the calculations are solved in the supercomputer JUQUEEN of the Jülich Supercomputing Centre. The results of the simulations show that oxygen infiltrates relatively quickly along fractures and deformation zones until a steady state profile is reached, where geochemical reactions counterbalance advective transport processes. Interestingly, most of the iron-bearing minerals are consumed in the highly conductive zones, where larger mineral surfaces are available for reactions. An analysis based on mineral mass balance shows that the considered rock medium has enough capacity to buffer oxygen infiltration for a long period of time (i.e. some thousand years).

  17. Modulation of the tumor vasculature and oxygenation to improve therapy

    DEFF Research Database (Denmark)

    Siemann, Dietmar W; Horsman, Michael R

    2015-01-01

    The tumor microenvironment is increasingly recognized as a major factor influencing the success of therapeutic treatments and has become a key focus for cancer research. The progressive growth of a tumor results in an inability of normal tissue blood vessels to oxygenate and provide sufficient...... important are the functional consequences experienced by the tumor cells residing in such environments: adaptation to hypoxia, cell quiescence, modulation of transporters and critical signaling molecules, immune escape, and enhanced metastatic potential. Together these factors lead to therapeutic barriers...

  18. Oxygen Cylinders: “life” or “death”? | Gupta | African Health Sciences

    African Journals Online (AJOL)

    Oxygen is crucial to maintain and save human life. Other than medical purposes it is widely used for manufacture of mineral water, fabrication works and other industrial activities. If adequate precautionary measures are not adopted while handling, storage or transport of oxygen cylinder or container, accidental blast may ...

  19. Decreased muscle oxygenation and increased arterial blood flow in the non-exercising limb during leg exercise.

    Science.gov (United States)

    Shiroishi, Kiyoshi; Kime, Ryotaro; Osada, Takuya; Murase, Norio; Shimomura, Kousuke; Katsumura, Toshihito

    2010-01-01

    We evaluated arterial blood flow, muscle tissue oxygenation and muscle metabolism in the non-exercising limb during leg cycling exercise. Ten healthy male volunteers performed a graded leg cycling exercise at 0, 40, 80, 120 and 160 watts (W) for 5 min each. Tissue oxygenation index (TOI) of the non-exercising left forearm muscle was measured using a near-infrared spatially resolved spectroscopy (NIR(SRS)), and non-exercising forearm blood flow ((NONEX)FBF) in the brachial artery was also evaluated by a Doppler ultrasound system. We also determined O(2) consumption of the non-exercising forearm muscle (NONEXV(O)(2mus)) by the rate of decrease in O(2)Hb during arterial occlusion at each work rate. TOI was significantly decreased at 160 W (p exercising muscle may be reduced, even though (NONEX)FBF increases at high work rates during leg cycling exercise.

  20. Oxygen diffusion and oxygen effect in tumor tissue

    International Nuclear Information System (INIS)

    Eissa, H.M.; Hehn, G.

    1979-06-01

    The diffusion of oxygen in tumor cords of bronchus carcinoma of the lung have been studied with refined computer methods for solving the diffusion equation in axis symmetric tumor structures. In this tumor configuration we may find three different regions consisting of euoxic cells, hypoxic tumor cells and necrotic parts. In the case of oxygen supply from a capillary inside a cylinder of tumor tissue with radius 200 μm or in a tumor cord of radius 300 μm with oxygen supply by capillaries outside, we get a relation of well oxygenated cells to hypoxic cells approximately as 1:8 or as 1:1.1 respectively. Of course most of the tumor cords observed in histological slices have smaller diameters, so that an average of approximately 20% hypoxic cells can be assumed. Based on the work of Ardenne, the diffusion of oxygen and glucose in a tumor of type DS-carcinosarcom has been investigated in both intact tumor and tumor treated with ionizing radiation. We can show that a strong reoxygenation effect takes place in that the well supplied regions may increase in some tumor configurations up to a factor of four by volume. The biological consequences of the oxygen pressure determined in tumor cells are discussed in detail. The investigation of oxygen diffusion in the intercapillary tumor region should give a quantitative physical basis for considering the oxygen effect with the aim to explain the advantages of neutron therapy against conventional radiotherapy. (orig./MG) [de

  1. Effect of oxygen vacancy distribution on the thermoelectric properties of La-doped SrTiO3 epitaxial thin films

    KAUST Repository

    Sarath Kumar, S. R.; Abutaha, Anas I.; Hedhili, Mohamed N.; Alshareef, Husam N.

    2012-01-01

    A detailed study of the role of oxygen vacancies in determining the effective mass and high temperature (300–1000 K) thermoelectricproperties of La-doped epitaxial SrTiO3 thin films is presented. It is observed that at intermediate temperatures, a transition from degenerate to non-degenerate behavior is observed in the Seebeck coefficient, but not electrical conductivity, which is attributed to heterogeneous oxygen non-stoichiometry. Heikes formula is found to be invalid for the films with oxygen vacancies. By fitting the spectroscopic ellipsometry (SE) data, obtained in the range 300–2100 nm, using a Drude-Lorentz dispersion relation with two Lorentz oscillators, the electrical and optical properties of the films are extracted. Using the excellent agreement between the transport properties extracted from SE modeling and direct electrical measurements, we demonstrate that an increase in concentration of oxygen vacancies results in a simultaneous increase of both carrier concentration and electron effective mass, resulting in a higher power factor.

  2. Effect of oxygen vacancy distribution on the thermoelectric properties of La-doped SrTiO3 epitaxial thin films

    KAUST Repository

    Sarath Kumar, S. R.

    2012-12-03

    A detailed study of the role of oxygen vacancies in determining the effective mass and high temperature (300–1000 K) thermoelectricproperties of La-doped epitaxial SrTiO3 thin films is presented. It is observed that at intermediate temperatures, a transition from degenerate to non-degenerate behavior is observed in the Seebeck coefficient, but not electrical conductivity, which is attributed to heterogeneous oxygen non-stoichiometry. Heikes formula is found to be invalid for the films with oxygen vacancies. By fitting the spectroscopic ellipsometry (SE) data, obtained in the range 300–2100 nm, using a Drude-Lorentz dispersion relation with two Lorentz oscillators, the electrical and optical properties of the films are extracted. Using the excellent agreement between the transport properties extracted from SE modeling and direct electrical measurements, we demonstrate that an increase in concentration of oxygen vacancies results in a simultaneous increase of both carrier concentration and electron effective mass, resulting in a higher power factor.

  3. Optic nerve oxygenation

    DEFF Research Database (Denmark)

    Stefánsson, Einar; Pedersen, Daniella Bach; Jensen, Peter Koch

    2005-01-01

    The oxygen tension of the optic nerve is regulated by the intraocular pressure and systemic blood pressure, the resistance in the blood vessels and oxygen consumption of the tissue. The oxygen tension is autoregulated and moderate changes in intraocular pressure or blood pressure do not affect...... the optic nerve oxygen tension. If the intraocular pressure is increased above 40 mmHg or the ocular perfusion pressure decreased below 50 mmHg the autoregulation is overwhelmed and the optic nerve becomes hypoxic. A disturbance in oxidative metabolism in the cytochromes of the optic nerve can be seen...... at similar levels of perfusion pressure. The levels of perfusion pressure that lead to optic nerve hypoxia in the laboratory correspond remarkably well to the levels that increase the risk of glaucomatous optic nerve atrophy in human glaucoma patients. The risk for progressive optic nerve atrophy in human...

  4. Oxygenation measurements in head and neck cancers during hyperbaric oxygenation

    International Nuclear Information System (INIS)

    Becker, A.; Kuhnt, T.; Dunst, J.; Liedtke, H.; Krivokuca, A.; Bloching, M.

    2002-01-01

    Background: Tumor hypoxia has proven prognostic impact in head and neck cancers and is associated with poor response to radiotherapy. Hyperbaric oxygenation (HBO) offers an approach to overcome hypoxia. We have performed pO 2 measurements in selected patients with head and neck cancers under HBO to determine in how far changes in the oxygenation occur and whether a possible improvement of oxygenation parameters is maintained after HBO. Patients and Methods: Seven patients (five male, two female, age 51-63 years) with squamous cell cancers of the head and neck were investigated (six primaries, one local recurrence). The median pO 2 prior to HBO was determined with the Eppendorf histograph. Sites of measurement were enlarged cervical lymph nodes (n = 5), the primary tumor (n = 1) and local recurrence (n = 1). Patients then underwent HBO (100% O 2 at 240 kPa for 30 minutes) and the continuous changes in the oxygenation during HBO were determined with a Licox probe. Patients had HBO for 30 minutes (n = 6) to 40 minutes (n = 1). HBO was continued because the pO 2 had not reached a steady state after 30 minutes. After decompression, patients ventilated pure oxygen under normobaric conditions and the course of the pO 2 was further measured over about 15 minutes. Results: Prior to HBO, the median tumor pO 2 in the Eppendorf histography was 8.6 ± 5.4 mm Hg (range 3-19 mm Hg) and the pO 2 measured with the Licox probe was 17.3 ± 25.5 mm Hg (range 0-73 mm Hg). The pO 2 increased significantly during HBO to 550 ± 333 mm Hg (range 85-984 mm Hg, p = 0.018). All patients showed a marked increase irrespective of the oxygenation prior to HBO. The maximum pO 2 in the tumor was reached after 10-33 minutes (mean 17 minutes). After leaving the hyperbaric chamber, the pO 2 was 282 ± 196 mm Hg. All patients maintained an elevated pO 2 for further 5-25 minutes (138 ± 128 mm Hg, range 42-334 mm Hg, p = 0.028 vs the pO 2 prior to HBO). Conclusions: Hyperbaric oxygenation resulted in a

  5. Respiratory adaptations in carp blood. Influences of hypoxia, red cell organic phosphates, divalent cations and CO2 on hemoglobin-oxygen affinity

    DEFF Research Database (Denmark)

    Weber, Roy E.; Lykkeboe, G.

    1978-01-01

    This study concerns the adaptation of oxygen transporting function of carp blood to environment hypoxia, tracing the roles played by erythrocytic cofactors, inorganic cations, carbon dioxide and hemoglobin multiplicity. Carp acclimated to hypoxia ( 30 mmHg) display striking increases in blood oxy...

  6. ITM oxygen for gasification

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, P.A.; Foster, E.P. [Air Products and Chemicals Inc., Toronto, ON (Canada); Gunardson, H.H. [Air Products Canada Ltd., Mississauga, ON (Canada)

    2005-11-01

    This paper described a newly developed air separation technology called Ionic Transport Membrane (ITM), which reduces the overall cost of the gasification process. The technology is well suited for advanced energy conversion processes such as integrated gasification combined cycle (IGCC) that require oxygen and use heavy carbonaceous feedstocks such as residual oils, bitumens, coke and coal. It is also well suited for traditional industrial applications for oxygen and distributed power. Air Products Canada Limited developed the ceramic membrane air separation technology that can reduce the cost of pure oxygen by more than 30 per cent. The separation technology achieves a capital cost reduction of 30 per cent and an energy reduction of 35 per cent over conventional cryogenic air separation. ITM is an electrochemical process that integrates well with the gasification process and an IGCC option for producing electricity from the waste heat generated from gasification. This paper described the integration of ITM technology with both the gasification and IGCC processes and showed the attractive economics of ITM. 6 refs., 2 tabs., 6 figs.

  7. Event-Associated Oxygen Consumption Rate Increases ca. Five-Fold When Interictal Activity Transforms into Seizure-Like Events In Vitro

    Directory of Open Access Journals (Sweden)

    Karl Schoknecht

    2017-09-01

    Full Text Available Neuronal injury due to seizures may result from a mismatch of energy demand and adenosine triphosphate (ATP synthesis. However, ATP demand and oxygen consumption rates have not been accurately determined, yet, for different patterns of epileptic activity, such as interictal and ictal events. We studied interictal-like and seizure-like epileptiform activity induced by the GABAA antagonist bicuculline alone, and with co-application of the M-current blocker XE-991, in rat hippocampal slices. Metabolic changes were investigated based on recording partial oxygen pressure, extracellular potassium concentration, and intracellular flavine adenine dinucleotide (FAD redox potential. Recorded data were used to calculate oxygen consumption and relative ATP consumption rates, cellular ATP depletion, and changes in FAD/FADH2 ratio by applying a reactive-diffusion and a two compartment metabolic model. Oxygen-consumption rates were ca. five times higher during seizure activity than interictal activity. Additionally, ATP consumption was higher during seizure activity (~94% above control than interictal activity (~15% above control. Modeling of FAD transients based on partial pressure of oxygen recordings confirmed increased energy demand during both seizure and interictal activity and predicted actual FAD autofluorescence recordings, thereby validating the model. Quantifying metabolic alterations during epileptiform activity has translational relevance as it may help to understand the contribution of energy supply and demand mismatches to seizure-induced injury.

  8. Gas Transport and Exchange through Wetland Plant Aerenchyma

    DEFF Research Database (Denmark)

    Sorrell, Brian Keith; Brix, Hans

    2013-01-01

    Aerenchyma, the large airspaces in aquatic plants, is a rapid gas transport pathway between atmosphere and soil in wetlands. Oxygen transport aerates belowground tissue and oxidizes rhizosphere soil, an important process in wetland biogeochemistry. Most plant O2 transport occurs by diffusion...

  9. Persistent increase in oxygen consumption and impaired neurovascular coupling after spreading depression in rat neocortex.

    Science.gov (United States)

    Piilgaard, Henning; Lauritzen, Martin

    2009-09-01

    Cortical spreading depression (CSD) is associated with a dramatic failure of brain ion homeostasis and increased energy metabolism. There is strong clinical and experimental evidence to suggest that CSD is the mechanism of migraine, and involved in progressive neuronal injury in stroke and head trauma. Here we tested the hypothesis that single episodes of CSD induced acute hypoxia, and prolonged impairment of neurovascular and neurometabolic coupling. Cortical spreading depression was induced in rat frontal cortex, whereas cortical electrical activity and local field potentials (LFPs) were recorded by glass microelectrodes, cerebral blood flow (CBF) by laser-Doppler flowmetry, and tissue oxygen tension (tpO(2)) with polarographic microelectrodes. Cortical spreading depression increased cerebral metabolic rate of oxygen (CMRO(2)) by 71%+/-6.7% and CBF by 238%+/-48.1% for 1 to 2 mins. For the following 2 h, basal tpO(2) and CBF were reduced whereas basal CMRO(2) was persistently elevated by 8.1%+/-2.9%. In addition, within first hour after CSD we found impaired neurovascular coupling (LFP versus CBF), whereas neurometabolic coupling (LFP versus CMRO(2)) remained unaffected. Impaired neurovascular coupling was explained by both reduced vascular reactivity and suppressed function of cortical inhibitory interneurons. The protracted effects of CSD on basal CMRO(2) and neurovascular coupling may contribute to cellular dysfunction in patients with migraine and acutely injured cerebral cortex.

  10. Enhanced oxygen consumption in Herbaspirillum seropedicae fnr mutants leads to increased NifA mediated transcriptional activation.

    Science.gov (United States)

    Batista, Marcelo Bueno; Wassem, Roseli; Pedrosa, Fábio de Oliveira; de Souza, Emanuel Maltempi; Dixon, Ray; Monteiro, Rose Adele

    2015-05-07

    Orthologous proteins of the Crp/Fnr family have been previously implicated in controlling expression and/or activity of the NifA transcriptional activator in some diazotrophs. This study aimed to address the role of three Fnr-like proteins from H. seropedicae SmR1 in controlling NifA activity and consequent NifA-mediated transcription activation. The activity of NifA-dependent transcriptional fusions (nifA::lacZ and nifB::lacZ) was analysed in a series of H. seropedicae fnr deletion mutant backgrounds. We found that combined deletions in both the fnr1 and fnr3 genes lead to higher expression of both the nifA and nifB genes and also an increased level of nifH transcripts. Expression profiles of nifB under different oxygen concentrations, together with oxygen consumption measurements suggest that the triple fnr mutant has higher respiratory activity when compared to the wild type, which we believe to be responsible for greater stability of the oxygen sensitive NifA protein. This conclusion was further substantiated by measuring the levels of NifA protein and its activity in fnr deletion strains in comparison with the wild-type. Fnr proteins are indirectly involved in controlling the activity of NifA in H. seropedicae, probably as a consequence of their influence on respiratory activity in relation to oxygen availability. Additionally we can suggest that there is some redundancy in the physiological function of the three Fnr paralogs in this organism, since altered respiration and effects on NifA activity are only observed in deletion strains lacking both fnr1 and fnr3.

  11. Oxygen Effects in Anaerobic Digestion

    Directory of Open Access Journals (Sweden)

    Deshai Botheju

    2009-10-01

    Full Text Available Interaction of free oxygen in bio-gasification is a sparsely studied area, apart from the common argument of oxygen being toxic and inhibitory for anaerobic micro-cultures. Some studies have, however, revealed increased solubilisation of organic matter in the presence of some free oxygen in anaerobic digestion. This article analyses these counterbalancing phenomena with a mathematical modelling approach using the widely accepted biochemical model ADM 1. Aerobic oxidation of soluble carbon and inhibition of obligatory anaerobic organisms are modelled using standard saturation type kinetics. Biomass dependent first order hydrolysis kinetics is used to relate the increased hydrolysis rate with oxygen induced increase in biomass growth. The amended model, ADM 1-Ox (oxygen, has 25 state variables and 22 biochemical processes, presented in matrix form. The computer aided simulation tool AQUASIM 2.1 is used to simulate the developed model. Simulation predictions are evaluated against experimental data obtained using a laboratory batch test array comprising miniature anaerobic bio-reactors of 100 ml total volume each, operated under different initial air headspaces giving rise to the different oxygen loading conditions. The reactors were initially fed with a glucose solution and incubated at 35 Celsius, for 563 hours. Under the oxygen load conditions of 22, 44 and 88 mg/L, the ADM1-Ox model simulations predicted the experimental methane potentials quite adequately. Both the experimental data and the simulations suggest a linear reduction of methane potential with respect to the increase in oxygen load within this range.

  12. On Atomistic Models for Molecular Oxygen

    DEFF Research Database (Denmark)

    Javanainen, Matti; Vattulainen, Ilpo; Monticelli, Luca

    2017-01-01

    Molecular oxygen (O2) is key to all life on earth, as it is constantly cycled via photosynthesis and cellular respiration. Substantial scientific effort has been devoted to understanding every part of this cycle. Classical molecular dynamics (MD) simulations have been used to study some of the key...... processes involved in cellular respiration: O2 permeation through alveolar monolayers and cellular membranes, its binding to hemoglobin during transport in the bloodstream, as well as its transport along optimal pathways toward its reduction sites in proteins. Moreover, MD simulations can help interpret...

  13. The Evolution of Deepwater Dissolved Oxygen in the Northern South China Sea During the Past 400 ka

    Science.gov (United States)

    Wang, N.; Huang, B.; Dong, Y.

    2016-12-01

    Reconstruction of dissolved oxygen in paleo-ocean contributes toward understanding the history of ocean circulation, climate, causes of extinctions, and the evolution of marine organisms. Based on analysis of benthic foraminifera oxygen index (BFOI), the redox-sensitive trace elements (Mo/Al), the percentage of epifaunal benthic foraminifera and infaunal/epifaunal ratio at core MD12-3432, we reconstruct the evolution of deep water dissolved oxygen in northern South China Sea (SCS) during the past 400 ka and discuss the mechanisms of variable dissolved oxygen. Both BFOI and Mo/Al are redox indicators. Similar trends confirm that they reflect the variation of dissolved oxygen in seawater since 400 ka accurately. BFOI and Mo/Al indicate that dissolved oxygen was high in MIS 11-MIS 7 and decreased gradually during MIS 6- MIS 2. The percentage of epifauna decreased and infaunal/epifaunal ratio increased with decreasing dissolved oxygen. By comparison of dissolved oxygen and productivity indexes such as phytoplankton total (PT) and species abundances, we found that when PT fluctuated in the average range of 1000-1500 ng/g, the abundances of Bulimina and Uvigerina which represent high productivity increased. However, when PT reached the range of 2500-3000 ng/g, the abundances of Bulimina and Uvigerina didn't increase, but the abundances of dysoxic species Chilostomella oolina and Globobulimina pacifica increased and the dissolved oxygen reached low value. The reasons may be that the decomposition of excessive organic matter consumed more dissolved oxygen. The low dissolved oxygen suppressed the growth of Bulimina and Uvigerina and accelerated the boom of C. oolina and G. oolina. The dissolved oxygen is not only associated with productivity, but also affected by the thermohaline circulation. Benthic foraminifera F. favus is the representative species in Pacific deep water. Its appearance at 194 ka, 205 ka, 325, the 328 ka in MD12-3432 indicate that the upper border of

  14. Activity-dependent increases in local oxygen consumption correlate with post-synaptic currents in the mouse cerebellum in vivo

    DEFF Research Database (Denmark)

    Mathiesen, Claus; Caesar, Kirsten; Thomsen, Kirsten Joan

    2011-01-01

    Evoked neural activity correlates strongly with rises in cerebral metabolic rate of oxygen (CMRO2) and cerebral blood flow. Activity-dependent rises in CMRO2 fluctuate with ATP turnover due to ion pumping. In vitro studies suggest that increases in cytosolic Ca2+ stimulate oxidative metabolism vi...

  15. Role of endolymphatic anion transport in forskolin-induced Cl- activity increase of scala media.

    Science.gov (United States)

    Kitano, I; Mori, N; Matsunaga, T

    1995-03-01

    To determine the role of anion transport in the forskolin-induced Cl- increase of scala media (SM), effects of forskolin on the EP (endocochlear potential) and Cl- activity (ACl) in SM were examined with double-barrelled Cl(-)-selective microelectrodes. The experiments were carried out on guinea pig cochleae, using a few anion transport inhibitors: IAA-94 for a Cl- channel blocker, bumetanide (BU) for an Na+/K+/2Cl- cotransport blocker, and SITS and DIDS for Cl-/HCO3- exchange blockers. The application of forskolin (200 microM) into scala vestibuli (SV) caused a 20 mEq increase of endolymphatic ACl and a 15 mV elevation of EP, and IAA-94 with forskolin completely abolished these responses. Although each application of BU, SITS or DIDS did not completely suppress EP elevation, the concurrent application of these inhibitors completely suppressed EP with endolymphatic ACl increase. The results indicate the involvement of Cl- channels, Na+/K+/2Cl- cotransport and Cl-/HCO3- exchange in forskolin-induced increase of ACl and EP. The role of adenylate cyclase activation and Cl- transport in endolymph homeostasis was discussed.

  16. Yeast alter micro-oxygenation of wine: oxygen consumption and aldehyde production.

    Science.gov (United States)

    Han, Guomin; Webb, Michael R; Richter, Chandra; Parsons, Jessica; Waterhouse, Andrew L

    2017-08-01

    Micro-oxygenation (MOx) is a common winemaking treatment used to improve red wine color development and diminish vegetal aroma, amongst other effects. It is commonly applied to wine immediately after yeast fermentation (phase 1) or later, during aging (phase 2). Although most winemakers avoid MOx during malolactic (ML) fermentation, it is often not possible to avoid because ML bacteria are often present during phase 1 MOx treatment. We investigated the effect of common yeast and bacteria on the outcome of micro-oxygenation. Compared to sterile filtered wine, Saccharomyces cerevisiae inoculation significantly increased oxygen consumption, keeping dissolved oxygen in wine below 30 µg L -1 during micro-oxygenation, whereas Oenococcus oeni inoculation was not associated with a significant impact on the concentration of dissolved oxygen. The unfiltered baseline wine also had both present, although with much higher populations of bacteria and consumed oxygen. The yeast-treated wine yielded much higher levels of acetaldehyde, rising from 4.3 to 29 mg L -1 during micro-oxygenation, whereas no significant difference was found between the bacteria-treated wine and the filtered control. The unfiltered wine exhibited rapid oxygen consumption but no additional acetaldehyde, as well as reduced pyruvate. Analysis of the acetaldehyde-glycerol acetal levels showed a good correlation with acetaldehyde concentrations. The production of acetaldehyde is a key outcome of MOx and it is dramatically increased in the presence of yeast, although it is possibly counteracted by the metabolism of O. oeni bacteria. Additional controlled experiments are necessary to clarify the interaction of yeast and bacteria during MOx treatments. Analysis of the glycerol acetals may be useful as a proxy for acetaldehyde levels. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Oxygen therapy reduces postoperative tachycardia

    DEFF Research Database (Denmark)

    Stausholm, K; Kehlet, H; Rosenberg, J

    1995-01-01

    Concomitant hypoxaemia and tachycardia in the postoperative period is unfavourable for the myocardium. Since hypoxaemia per se may be involved in the pathogenesis of postoperative tachycardia, we have studied the effect of oxygen therapy on tachycardia in 12 patients randomly allocated to blinded...... air or oxygen by facemask on the second or third day after major surgery. Inclusion criteria were arterial hypoxaemia (oxygen saturation 90 beat.min-1). Each patient responded similarly to oxygen therapy: an increase in arterial oxygen saturation and a decrease...... in heart rate (p oxygen has a positive effect on the cardiac oxygen delivery and demand balance....

  18. Increased xylose affinity of Hxt2 through gene shuffling of hexose transporters in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Nijland, Jeroen G; Shin, Hyun Yong; de Waal, Paul P; Klaassen, Paul; Driessen, Arnold J M

    AIMS: Optimizing D-xylose transport in Saccharomyces cerevisiae is essential for efficient bioethanol production from cellulosic materials. We have used a gene shuffling approach of hexose (Hxt) transporters in order to increase the affinity for D-xylose. METHODS AND RESULTS: Various libraries were

  19. Increased long-term mortality after a high perioperative inspiratory oxygen fraction during abdominal surgery

    DEFF Research Database (Denmark)

    Meyhoff, Christian Sylvest; Jorgensen, Lars N; Wetterslev, Jørn

    2012-01-01

    A high perioperative inspiratory oxygen fraction (80%) has been recommended to prevent postoperative wound infections. However, the most recent and one of the largest trials, the PROXI trial, found no reduction in surgical site infection, and 30-day mortality was higher in patients given 80% oxygen...

  20. Prior exercise speeds pulmonary oxygen uptake kinetics and increases critical power during supine but not upright cycling.

    Science.gov (United States)

    Goulding, Richie P; Roche, Denise M; Marwood, Simon

    2017-09-01

    What is the central question of this study? Critical power (CP) represents the highest work rate for which a metabolic steady state is attainable. The physiological determinants of CP are unclear, but research suggests that CP might be related to the time constant of phase II oxygen uptake kinetics (τV̇O2). What is the main finding and its importance? We provide the first evidence that τV̇O2 is mechanistically related to CP. A reduction of τV̇O2 in the supine position was observed alongside a concomitant increase in CP. This effect may be contingent on measures of oxygen availability derived from near-infrared spectroscopy. Critical power (CP) is a fundamental parameter defining high-intensity exercise tolerance and is related to the time constant of phase II pulmonary oxygen uptake kinetics (τV̇O2). To test the hypothesis that this relationship is causal, we determined the impact of prior exercise ('priming') on CP and τV̇O2 in the upright and supine positions. Seventeen healthy men were assigned to either upright or supine exercise groups, whereby CP, τV̇O2 and muscle deoxyhaemoglobin kinetics (τ [HHb] ) were determined via constant-power tests to exhaustion at four work rates with (primed) and without (control) priming exercise at ∼31%Δ. During supine exercise, priming reduced τV̇O2 (control 54 ± 18 s versus primed 39 ± 11 s; P exercise had no effect on τV̇O2 (control 37 ± 12 s versus primed 35 ± 8 s; P = 0.82), τ [HHb] (control 10 ± 5 s versus primed 14 ± 10 s; P = 0.10) or CP (control 235 ± 42 W versus primed 232 ± 35 W; P = 0.57) during upright exercise. The concomitant reduction of τV̇O2 and increased CP following priming in the supine group, effects that were absent in the upright group, provide the first experimental evidence that τV̇O2 is mechanistically related to critical power. The increased τ [HHb+Mb] suggests that this effect was mediated, at least in part, by improved oxygen

  1. Measurement of oxygen thermomigration in a hypostoichiometric mixed oxide

    International Nuclear Information System (INIS)

    Norris, D.I.R.; Coleman, S.C.; Kay, P.

    1978-08-01

    A method of determining oxygen to metal ratios in hypostoichiometric (U, Ce)Osub(2-x) by means of lattice parameter measurement and its application to thermomigration experiments is described. The technique is shown to compare favourably with other methods when a simple structure prevails. It is found that oxygen redistributes down an imposed temperature gradient, confirming theoretical predictions, and that the measured Arrhenius slope decreases as the cerium valency decreases. This effect is more marked than in (U, Pu)Osub(2-x). The results are attributable to solid state transport of oxygen vacancies and suggest that immobile complexes incorporating some oxygen deficiency are more easily formed in (U, Ce)Osub(2-x) than in (U, Pu)Osub(2-x). (author)

  2. Enhanced oxygen delivery induced by perfluorocarbon emulsions in capillary tube oxygenators.

    Science.gov (United States)

    Vaslef, S N; Goldstick, T K

    1994-01-01

    Previous studies showed that a new generation of perfluorocarbon (PFC) emulsions increased tissue PO2 in the cat retina to a degree that could not be explained by the small increase in arterial O2 content seen after the infusion of low doses of 1 g PFC/kg body weight. It seems that increased O2 delivery at the tissue level after PFC infusion is caused by a local effect in the microcirculation. The authors studies this effect in vitro at steady state in a closed loop circuit, consisting of one of two types of capillary tube oxygenators, deoxygenator(s), a reservoir bag filled with anticoagulated bovine blood or saline (control), and a roller pump, to see if the addition of PFC would have an effect on the PO2 difference (delta PO2) across the capillary tube membrane oxygenator at a blood flow rate of 3 l/min. Perfluorocarbon was added in three incremental doses, each giving about 0.7 vol% of PFC. The delta PO2 across the oxygenator was measured before and after each dose. The mean percent increases in delta PO2 in blood for two types of oxygenators were 19.2 +/- 8% (mean +/- SD, n = 6, P = 0.002) and 9.9 +/- 4% (n = 3, P = 0.05), respectively, whereas the mean percent change in delta PO2 in saline was -4.9 +/- 2% (n = 2, P = 0.2). Inlet PO2s to the oxygenator were only minimally increased. The authors conclude that O2 delivery was significantly enhanced after injection of PFC in blood in this capillary tube model. A near wall excess of PFC particles may account for the augmentation of O2 diffusion in this model.

  3. SR-Site: Oxygen ingress in the rock at Forsmark during a glacial cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sidborn, Magnus (Kemakta Konsult AB (Sweden)); Sandstroem, Bjoern (WSP Sverige AB (Sweden)); Tullborg, Eva-Lena (Terralogica AB (Sweden)); Salas, Joaquin; Maia, Flavia; Delos, Anne; Molinero, Jorge (Amphos21 (Spain)); Hallbeck, Lotta; Pedersen, Karsten (Microbial Analytics Sweden AB (Sweden))

    2010-11-15

    The aim of this report is to assess the possibility for oxygen to be transported by glacial melt-water to canister positions in a final repository for spent nuclear fuel at the proposed location in Forsmark. The approach for this assessment is to combine reactive transport modelling with geological observations of present and historical indications of oxygen ingress. For safety assessment purposes a cautious approach in the modelling is required when estimating the extent of oxygen ingress. In this report, a cautious approach has been applied both in the conceptualisation of the problem and in the choice of input parameters used in the models. Oxygen consuming processes are only neglected in the modelling if they are expected to further decrease the extent of oxygen ingress. Several oxygen consuming processes have been identified, each of which may play an important role in the scavenging of oxygen along recharge flow paths in the rock. These processes include biological pathways with degradation of organic material of ground surface origin, and biotically mediated reactions with reduced rock minerals and with various materials expected to be present in the backfilled repository volume. In the absence of microbes most of these reactions may also follow abiotic pathways. Present day observations show that degradation of organic material is the most powerful oxygen scavenging process. At Forsmark, oxygen is generally depleted within a few metres under present day temperate conditions. Although biological activity is likely to exist also during different phases of a glaciation, large uncertainties exist regarding e.g. the population growth dynamics, the biotic reaction rates and the availability of organic material under the highly varying conditions expected. Microbial activity and degradation of organic material is therefore pessimistically neglected in the calculations in this report. In the absence of organic material, ferrous iron present in minerals in the rock

  4. SR-Site: Oxygen ingress in the rock at Forsmark during a glacial cycle

    International Nuclear Information System (INIS)

    Sidborn, Magnus; Sandstroem, Bjoern; Tullborg, Eva-Lena; Salas, Joaquin; Maia, Flavia; Delos, Anne; Molinero, Jorge; Hallbeck, Lotta; Pedersen, Karsten

    2010-11-01

    The aim of this report is to assess the possibility for oxygen to be transported by glacial melt-water to canister positions in a final repository for spent nuclear fuel at the proposed location in Forsmark. The approach for this assessment is to combine reactive transport modelling with geological observations of present and historical indications of oxygen ingress. For safety assessment purposes a cautious approach in the modelling is required when estimating the extent of oxygen ingress. In this report, a cautious approach has been applied both in the conceptualisation of the problem and in the choice of input parameters used in the models. Oxygen consuming processes are only neglected in the modelling if they are expected to further decrease the extent of oxygen ingress. Several oxygen consuming processes have been identified, each of which may play an important role in the scavenging of oxygen along recharge flow paths in the rock. These processes include biological pathways with degradation of organic material of ground surface origin, and biotically mediated reactions with reduced rock minerals and with various materials expected to be present in the backfilled repository volume. In the absence of microbes most of these reactions may also follow abiotic pathways. Present day observations show that degradation of organic material is the most powerful oxygen scavenging process. At Forsmark, oxygen is generally depleted within a few metres under present day temperate conditions. Although biological activity is likely to exist also during different phases of a glaciation, large uncertainties exist regarding e.g. the population growth dynamics, the biotic reaction rates and the availability of organic material under the highly varying conditions expected. Microbial activity and degradation of organic material is therefore pessimistically neglected in the calculations in this report. In the absence of organic material, ferrous iron present in minerals in the rock

  5. Effect of oxygen content on the electrical transport and superconducting properties of Pb0.5Sr2.5Y0.6Ca0.4Cu2O7-y

    International Nuclear Information System (INIS)

    Ruan, K.Q.; China Univ. of Science and Technology, Hefei, AH; Jin, H.; China Univ. of Science and Technology, Hefei, AH; Feng, Y.; China Univ. of Science and Technology, Hefei, AH; Zhou, Y.Q.; China Univ. of Science and Technology, Hefei, AH; Chui, X.D.; China Univ. of Science and Technology, Hefei, AH; Wang, C.Y.; China Univ. of Science and Technology, Hefei, AH; Cao, L.Z.; China Univ. of Science and Technology, Hefei, AH; Wang, L.B.; Zhang, Y.H.

    1997-01-01

    Two kinds of methods have been used to synthesize Pb 0.5 Sr 2.5 Y 0.6 Ca 0.4 Cu 2 O 7-y samples. The synthesized sample using the first method shows superconductivity, while that using the second method exhibits a localized behavior at low temperatures Thermogravimetric analysis (TGA) and electrical transport measurements have been carried out on superconducting and nonsuperconducting samples grown under the two kinds of synthesis conditions and the effect of oxygen content on the transport and superconducting properties is discussed briefly. (orig.)

  6. Anxiety-induced plasma norepinephrine augmentation increases reactive oxygen species formation by monocytes in essential hypertension.

    Science.gov (United States)

    Yasunari, Kenichi; Matsui, Tokuzo; Maeda, Kensaku; Nakamura, Munehiro; Watanabe, Takanori; Kiriike, Nobuo

    2006-06-01

    An association between anxiety and depression and increased blood pressure (BP) and cardiovascular disease risk has not been firmly established. We examined the hypothesis that anxiety and depression lead to increased plasma catecholamines and to production of reactive oxygen species (ROS) by mononuclear cells (MNC) in hypertensive individuals. We also studied the role of BP in this effect. In Protocol 1, a cross-sectional study was performed in 146 hypertensive patients to evaluate whether anxiety and depression affect BP and ROS formation by MNC through increasing plasma catecholamines. In Protocol 2, a 6-month randomized controlled trial using a subtherapeutic dose of the alpha(1)-adrenergic receptor antagonist doxazosin (1 mg/day) versus placebo in 86 patients with essential hypertension was performed to determine whether the increase in ROS formation by MNC was independent of BP. In Protocol 1, a significant relationship was observed between the following: trait anxiety and plasma norepinephrine (r = 0.32, P anxiety may increase plasma norepinephrine and increase ROS formation by MNC independent of BP in hypertensive patients.

  7. Eastward shift and maintenance of Arabian Sea oxygen minimum zone: Understanding the paradox

    Science.gov (United States)

    Acharya, Shiba Shankar; Panigrahi, Mruganka K.

    2016-09-01

    The dominance of Oxygen Minimum Zone in the eastern part of the Arabian Sea (ASOMZ) instead of the more bio-productive and likely more oxygen consuming western part is the first part of the paradox. The sources of oxygen to the ASOMZ were evaluated through the distributions of different water masses using the extended optimum multiparameter (eOMP) analysis, whereas the sinks of oxygen were evaluated through the organic matter remineralization, using the apparent oxygen utilization (AOU). The contributions of major source waters to the Arabian Sea viz. Indian Deep water (dIDW), Indian Central water (ICW), Persian Gulf Water (PGW) and Red Sea Water (RSW) have been quantified through the eOMP analysis which shows that the PGW and RSW are significant for the eastward shift of ASOMZ instead of voluminous ICW and dIDW. The distribution of Net Primary Production (NPP) and AOU clearly suggest the transport of organic detritus from the highly productive western Arabian Sea to its eastern counterpart which adds to the eastward shifting of ASOMZ. A revised estimate of the seasonal variation of areal extent and volume occupied by ASOMZ through analysis of latest available data reveals a distinct intensification of ASOMZ by 30% and increase in its volume by 5% during the spring-summer transition. However, during this seasonal transition the productivity in the Arabian Sea shows 100% increase in mean NPP. This disparity between ASOMZ and monsoonal variation of productivity is the other part of the paradox, which has been constrained through apparent oxygen utilization, Net Primary Production along with a variation of core depths of source waters. This study reveals a subtle balance between the circulation of marginal oxygen-rich water masses from the western Arabian Sea and organic matter remineralization in the eastern Arabian Sea in different seasons that explains the maintenance of ASOMZ throughout the year.

  8. Methane Post-Processor Development to Increase Oxygen Recovery beyond State-of-the-Art Carbon Dioxide Reduction Technology

    Science.gov (United States)

    Abney, Morgan B.; Greenwood, Zachary; Miller, Lee A.; Alvarez, Giraldo; Iannantuono, Michelle; Jones, Kenny

    2013-01-01

    State-of-the-art life support carbon dioxide (CO2) reduction technology, based on the Sabatier reaction, is theoretically capable of 50% recovery of oxygen from metabolic CO2. This recovery is constrained by the limited availability of reactant hydrogen. Post-processing of the methane byproduct from the Sabatier reactor results in hydrogen recycle and a subsequent increase in oxygen recovery. For this purpose, a Methane Post-Processor Assembly containing three sub-systems has been developed and tested. The assembly includes a Methane Purification Assembly (MePA) to remove residual CO2 and water vapor from the Sabatier product stream, a Plasma Pyrolysis Assembly (PPA) to partially pyrolyze methane into hydrogen and acetylene, and an Acetylene Separation Assembly (ASepA) to purify the hydrogen product for recycle. The results of partially integrated testing of the sub-systems are reported

  9. An Approach for Hydrogen Recycling in a Closed-loop Life Support Architecture to Increase Oxygen Recovery Beyond State-of-the-Art

    Science.gov (United States)

    Abney, Morgan B.; Miller, Lee; Greenwood, Zachary; Alvarez, Giraldo

    2014-01-01

    State-of-the-art atmosphere revitalization life support technology on the International Space Station is theoretically capable of recovering 50% of the oxygen from metabolic carbon dioxide via the Carbon Dioxide Reduction Assembly (CRA). When coupled with a Plasma Pyrolysis Assembly (PPA), oxygen recovery increases dramatically, thus drastically reducing the logistical challenges associated with oxygen resupply. The PPA decomposes methane to predominantly form hydrogen and acetylene. Because of the unstable nature of acetylene, a down-stream separation system is required to remove acetylene from the hydrogen stream before it is recycled to the CRA. A new closed-loop architecture that includes a PPA and downstream Hydrogen Purification Assembly (HyPA) is proposed and discussed. Additionally, initial results of separation material testing are reported.

  10. Oxygen doping of the high T/sub c/ superconducting perovskites

    International Nuclear Information System (INIS)

    Tarascon, J.M.; McKinnon, W.R.; Greene, L.H.; Hull, G.W.; Bagley, B.G.; Vogel, E.M.; Le Page, Y.

    1987-01-01

    Oxygen defect perovskites are studied because of their ability to reversibly intercalate oxygen atoms. Our previous studies of the La/sub 2-y/Sr/sub y/CuO/sub 4-x/ system shows that T/sub c/ is dramatically affected by subtle changes in oxygen content. However since this study did not achieve large values of x, a systematic study was not undertaken. The authors have found by thermogravimetric analysis (TGA) that a wide range of oxygen non-stoichiometry in the 90K superconductor YBa/sub 2/Cu/sub 3/O/sub 7-x/ is obtainable. This study of the effect of oxygen doping on the transport properties of the 40K material, and a systematic analysis of this over a broader range in the 90K superconductor is presented

  11. Cortical oxygenation suggests increased effort during cognitive inhibition in ecstasy polydrug users.

    Science.gov (United States)

    Roberts, C A; Montgomery, Catharine

    2015-11-01

    It is understood that 3,4-methylenedioxymethamphetamine (ecstasy) causes serotonin dysfunction and deficits in executive functioning. When investigating executive function, functional neuroimaging allows the physiological changes underlying these deficits to be investigated. The present study investigated behavioural and brain indices of inhibition in ecstasy-polydrug users. Twenty ecstasy-polydrug users and 20 drug-naïve participants completed an inhibitory control task (Random Letter Generation (RLG)) while prefrontal haemodynamic response was assessed using functional near infrared spectroscopy (fNIRS). There were no group differences on background measures including sleep quality and mood state. There were also no behavioural differences between the two groups. However, ecstasy-polydrug users displayed significant increases in oxygenated haemoglobin (oxy-Hb) from baseline compared to controls at several voxels relating to areas of the inferior right medial prefrontal cortex, as well the right and left dorsolateral prefrontal cortex. Regression analysis revealed that recency of ecstasy use was a significant predictor of oxy-Hb increase at two voxels over the right hemisphere after controlling for alcohol and cannabis use indices. Ecstasy-polydrug users show increased neuronal activation in the prefrontal cortex compared to non-users. This is taken to be compensatory activation/recruitment of additional resources to attain similar performance levels on the task, which may be reversible with prolonged abstinence. © The Author(s) 2015.

  12. Genomic and non-genomic regulation of PGC1 isoforms by estrogen to increase cerebral vascular mitochondrial biogenesis and reactive oxygen species protection

    Science.gov (United States)

    Kemper, Martin F.; Stirone, Chris; Krause, Diana N.; Duckles, Sue P.; Procaccio, Vincent

    2014-01-01

    We previously found that estrogen exerts a novel protective effect on mitochondria in brain vasculature. Here we demonstrate in rat cerebral blood vessels that 17β-estradiol (estrogen), both in vivo and ex vivo, affects key transcriptional coactivators responsible for mitochondrial regulation. Treatment of ovariectomized rats with estrogen in vivo lowered mRNA levels of peroxisome proliferator-activated receptor-γ coactivator-1 alpha (PGC-1α) but increased levels of the other PGC-1 isoforms: PGC-1β and PGC-1 related coactivator (PRC). In vessels ex vivo, estrogen decreased protein levels of PGC-1α via activation of phosphatidylinositol 3-kinase (PI3K). Estrogen treatment also increased phosphorylation of forkhead transcription factor, FoxO1, a known pathway for PGC-1α downregulation. In contrast to the decrease in PGC-1α, estrogen increased protein levels of nuclear respiratory factor 1, a known PGC target and mediator of mitochondrial biogenesis. The latter effect of estrogen was independent of PI3K, suggesting a separate mechanism consistent with increased expression of PGC-1β and PRC. We demonstrated increased mitochondrial biogenesis following estrogen treatment in vivo; cerebrovascular levels of mitochondrial transcription factor A and electron transport chain subunits as well as the mitochondrial/ nuclear DNA ratio were increased. We examined a downstream target of PGC-1β, glutamate-cysteine ligase (GCL), the rate-limiting enzyme for glutathione synthesis. In vivo estrogen increased protein levels of both GCL subunits and total glutathione levels. Together these data show estrogen differentially regulates PGC-1 isoforms in brain vasculature, underscoring the importance of these coactivators in adapting mitochondria in specific tissues. By upregulating PGC-1β and/or PRC, estrogen appears to enhance mitochondrial biogenesis, function and reactive oxygen species protection. PMID:24275351

  13. Therapeutic effect of forearm low level light treatment on blood flow, oxygenation, and oxygen consumption

    Science.gov (United States)

    Wang, Pengbo; Sun, Jiajing; Meng, Lingkang; Li, Zebin; Li, Ting

    2018-02-01

    Low level light/laser therapy (LLLT) is considered as a novel, non-invasive, and potential therapy in a variety of psychological and physical conditions, due to its effective intricate photobiomodulation. The mechanism of LLLT is that when cells are stimulated by photons, mitochondria produce a large quantity of ATP, which accelerates biochemical responses in the cell. It is of great significance to gain a clear insight into the change or interplay of various physiological parameters. In this study, we used functional near-infrared spectroscopy (fNIRS) and venous-occlusion plethysmography to measure the LLLT-induced changes in blood flow, oxygenation, and oxygen consumption in human forearms in vivo. Six healthy human participants (4 males and 2 females) were administered with 810-nm light emitted by LED array in ten minutes and blood flow, oxygenation and oxygen consumption were detected in the entire experiment. We found that LLLT induced an increase of blood flow and oxygen consumption on the treated site. Meanwhile, LLLT took a good role in promoting oxygenation of regional tissue, which was indicated by a significant increase of oxygenated hemoglobin concentration (Δ[HbO2]), a nearly invariable deoxygenated hemoglobin concentration (Δ[Hb]) and a increase of differential hemoglobin concentration (Δ[HbD] = Δ[HbO2] - Δ[Hb]). These results not only demonstrate enormous potential of LLLT, but help to figure out mechanisms of photobiomodulation.

  14. Effects of rearing density and dietary fat content on burst-swim performance and oxygen transport capacity in juvenile Atlantic salmon Salmo salar.

    Science.gov (United States)

    Hammenstig, D; Sandblom, E; Axelsson, M; Johnsson, J I

    2014-10-01

    The effects of hatchery rearing density (conventional or one third of conventional density) and feeding regime (high or reduced dietary fat levels) on burst-swim performance and oxygen transport capacity were studied in hatchery-reared Atlantic salmon Salmo salar, using wild fish as a reference group. There was no effect of rearing density or food regime on swimming performance in parr and smolts. The maximum swimming speed of wild parr was significantly higher than that of hatchery-reared conspecifics, while no such difference remained at the smolt stage. In smolts, relative ventricle mass was higher in wild S. salar compared with hatchery-reared fish. Moreover, wild S. salar had lower maximum oxygen consumption following a burst-swim challenge than hatchery fish. There were no effects of hatchery treatment on maximum oxygen consumption or relative ventricle mass. Haemoglobin and haematocrit levels, however, were lower in low-density fish than in fish reared at conventional density. Furthermore, dorsal-fin damage, an indicator of aggression, was similar in low-density reared and wild fish and lower than in S. salar reared at conventional density. Together, these results suggest that reduced rearing density is more important than reduced dietary fat levels in producing an S. salar smolt suitable for supplementary release. © 2014 The Fisheries Society of the British Isles.

  15. ρ0 Cells Feature De-Ubiquitination of SLC Transporters and Increased Levels and Fluxes of Amino Acids

    Directory of Open Access Journals (Sweden)

    André Bordinassi Medina

    2017-04-01

    Full Text Available Solute carrier (SLC transporters are a diverse group of membrane transporter proteins that regulate the cellular flux and distribution of endogenous and xenobiotic compounds. Post-translational modifications (PTMs, such as ubiquitination, have recently emerged as one of the major regulatory mechanisms in protein function and localization. Previously, we showed that SLC amino acid transporters were on average 6-fold de-ubiquitinated and increased amino acid levels were detected in ρ0 cells (lacking mitochondrial DNA, mtDNA compared to parental cells. Here, we elucidated the altered functionality of SLC transporters and their dynamic ubiquitination status by measuring the uptake of several isotopically labeled amino acids in both human osteosarcoma 143B.TK- and ρ0 cells. Our pulse chase analysis indicated that de-ubiquitinated amino acid transporters in ρ0 cells were accompanied by an increased transport rate, which leads to higher levels of amino acids in the cell. Finding SLC transport enhancers is an aim of the pharmaceutical industry in order to compensate for loss of function mutations in these genes. Thus, the ubiquitination status of SLC transporters could be an indicator for their functionality, but evidence for a direct connection between de-ubiquitination and transporter activity has to be further elucidated.

  16. Single-cell measurement of red blood cell oxygen affinity

    OpenAIRE

    Caprio, Di; Stokes, Chris; Higgins, John M.; Schonbrun, Ethan

    2015-01-01

    Oxygen is transported throughout the body by hemoglobin in red blood cells. While the oxygen affinity of blood is well understood and is routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of red blood cell volume and hemoglobin concentration are taken millions of times per day by clinical hematology analyzers and are important factors in determining the health of the hematologic system....

  17. Beta-hydroxybutyrate increases reactive oxygen species in late but not in early postimplantation embryonic cells in vitro.

    Science.gov (United States)

    Forsberg, H; Eriksson, U J; Melefors, O; Welsh, N

    1998-02-01

    Embryonic dysmorphogenesis has been blocked by antioxidant treatment in vivo and in vitro, suggesting that embryonic excess of reactive oxygen species (ROS) has a role in the teratogenic process of diabetic pregnancy. We report that the basal levels of ROS in dispersed rat embryonic cells in vitro, as determined by fluorescence of dichlorofluorescein (DCF), were not different in cells from control and diabetic pregnancy at day 10 or 12. Beta-hydroxybutyrate (beta-HB) and succinic acid monomethyl ester both augmented DCF fluorescence in cells from day 12 embryos of normal and diabetic rats but not from day 10 embryos. Cells of day 10 and day 12 embryos from normal and diabetic rats responded to increasing glucose concentrations with a dosage-dependent alleviation of DCF fluorescence. Day 10 embryonic cells exhibited high glucose utilization rates and high pentose phosphate shunt rates, but low mitochondrial oxidation rates. Moreover, in vitro culture of embryos between gestational days 9 and 10 in the presence of 20% oxygen induced an increased and glucose-sensitive oxidation of glucose compared with embryos not cultured in vitro. At gestation day 12, however, pentose phosphate shunt rates showed a decrease, whereas the mitochondrial beta-HB oxidation rates were increased compared with those at gestation day 10. This was paralleled by a lower expression of glucose 6-phosphate dehydrogenase- and phosphofructokinase-mRNA levels at day 12 than at day 10. On the other hand, H-ferritin mRNA expression at day 12 was high compared with day 10. None of the mRNA species investigated were affected by the diabetic state of the mother. It was concluded that beta-HB-induced stimulation of mitochondrial oxidative events may lead to the generation of ROS at gestational day 12, but probably not at day 10, when only a minute amount of mitochondrial activity occurs. Thus our results do not support the notion of diabetes-induced mitochondrial oxidative stress before the development of

  18. DEVELOPMENT OF REACTION-DRIVEN IONIC TRANSPORT MEMBRANES (ITMs) TECHNOLOGY: PHASE IV/BUDGET PERIOD 6 “Development of ITM Oxygen Technology for Integration in IGCC and Other Advanced Power Generation Systems”

    Energy Technology Data Exchange (ETDEWEB)

    David, Studer

    2012-03-01

    Air Products and Chemicals, along with development participants and in association with the U.S. Department of Energy, has made substantial progress in developing a novel air separation technology. Unlike conventional cryogenic processes, this method uses high-temperature ceramic membranes to produce high-purity oxygen. The membranes selectively transport oxygen ions with high flux and infinite theoretical selectivity. Reaction-driven ceramic membranes are fabricated from non-porous, multi-component metallic oxides, operate at temperatures typically over 700°C, and have exceptionally high oxygen flux and selectivity. Oxygen from low-pressure air permeates as oxygen ions through the ceramic membrane and is consumed through chemical reactions, thus creating a chemical driving force that pulls oxygen ions across the membrane at high rates. The oxygen reacts with a hydrocarbon fuel in a partial oxidation process to produce a hydrogen and carbon monoxide mixture – synthesis gas. This project expands the partial-oxidation scope of ITM technology beyond natural gas feed and investigates the potential for ITM reaction-driven technology to be used in conjunction with gasification and pyrolysis technologies to provide more economical routes for producing hydrogen and synthesis gas. This report presents an overview of the ITM reaction-driven development effort, including ceramic materials development, fabrication and testing of small-scale ceramic modules, ceramic modeling, and the investigation of gasifier integration schemes

  19. Recent advances in oxygen production for gasification

    Energy Technology Data Exchange (ETDEWEB)

    Gunardson, H.H. [Air Products Canada Ltd., Mississauga, ON (Canada)

    2005-07-01

    This paper described the Ionic Transport Membrane (ITM) technology that reduces the overall cost of the gasification process by 7 per cent. Gasification is a proven, but expensive technology for producing hydrogen and synthesis gas from low cost hydrocarbon feedstock. Gasification is also an alternative to conventional steam methane reforming based on natural gas. A key cost element in gasification is the production of oxygen. For that reason, Air Products Canada Limited developed a ceramic membrane air separation technology that can reduce the cost of pure oxygen by more than 30 per cent. The separation technology achieves a capital cost reduction of 30 per cent and an energy reduction of 35 per cent over conventional cryogenic air separation. ITM is an electrochemical process that integrates very well with the gasification process and an integrated gasification combined cycle (IGCC) option for production of electrical power from the waste heat generated from gasification. This paper described the integration of ITM technology with both the gasification and IGCC processes and showed how the superior economics of ITM can allow gasification to compete with steam methane reforming and thereby reduce dependency of oil sands development on increasingly scarce and costly natural gas.

  20. Insulin-increased L-arginine transport requires A(2A adenosine receptors activation in human umbilical vein endothelium.

    Directory of Open Access Journals (Sweden)

    Enrique Guzmán-Gutiérrez

    Full Text Available Adenosine causes vasodilation of human placenta vasculature by increasing the transport of arginine via cationic amino acid transporters 1 (hCAT-1. This process involves the activation of A(2A adenosine receptors (A(2AAR in human umbilical vein endothelial cells (HUVECs. Insulin increases hCAT-1 activity and expression in HUVECs, and A(2AAR stimulation increases insulin sensitivity in subjects with insulin resistance. However, whether A(2AAR plays a role in insulin-mediated increase in L-arginine transport in HUVECs is unknown. To determine this, we first assayed the kinetics of saturable L-arginine transport (1 minute, 37°C in the absence or presence of nitrobenzylthioinosine (NBTI, 10 µmol/L, adenosine transport inhibitor and/or adenosine receptors agonist/antagonists. We also determined hCAT-1 protein and mRNA expression levels (Western blots and quantitative PCR, and SLC7A1 (for hCAT-1 reporter promoter activity. Insulin and NBTI increased the extracellular adenosine concentration, the maximal velocity for L-arginine transport without altering the apparent K(m for L-arginine transport, hCAT-1 protein and mRNA expression levels, and SLC7A1 transcriptional activity. An A2AAR antagonist ZM-241385 blocked these effects. ZM241385 inhibited SLC7A1 reporter transcriptional activity to the same extent in cells transfected with pGL3-hCAT-1(-1606 or pGL3-hCAT-1(-650 constructs in the presence of NBTI + insulin. However, SLC7A1 reporter activity was increased by NBTI only in cells transfected with pGL3-hCAT-1(-1606, and the ZM-241385 sensitive fraction of the NBTI response was similar in the absence or in the presence of insulin. Thus, insulin modulation of hCAT-1 expression and activity requires functional A(2AAR in HUVECs, a mechanism that may be applicable to diseases associated with fetal insulin resistance, such as gestational diabetes.

  1. Oxygen Tension in the Aqueous Humor of Human Eyes under Different Oxygenation Conditions

    Directory of Open Access Journals (Sweden)

    Farideh Sharifipour

    2013-01-01

    Full Text Available Purpose: To measure oxygen tension in the aqueous humor of human eyes under different oxygenation conditions. Methods: This prospective comparative interventional case series consisted of two parts. In the first part, 120 consecutive patients scheduled for cataract surgery were randomized into group I (control group in which surgery was performed under local anesthesia inhaling 21% oxygen; group II in whom general anesthesia using 50% oxygen was employed; and group III receiving general anesthesia with 100% oxygen. After aspirating 0.2 ml aqueous humor under sterile conditions, the aqueous sample and a simultaneously drawn arterial blood sample were immediately analyzed using a blood gas analyzer. In part II the same procedures were performed in 10 patients after fitting a contact lens and patching the eye for 20 minutes (group IV and in 10 patients after transcorneal delivery of oxygen at a flow rate of 5 L/min (group V. Results: Mean aqueous PO2 in groups I, II and III was 112.3±6.2, 141.1±20.4, and 170.1±27 mmHg, respectively (P values <0.001 and mean arterial PO2 was 85.7±7.9, 184.6±46, and 379.1±75.9 mmHg, respectively (P values <0.001. Aqueous PO2 was 77.2±9.2 mmHg in group IV and 152.3±10.9 mmHg in group V (P values <0.001. There was a significant correlation between aqueous and blood PO2 (r=0.537, P<0.001. The contribution of atmospheric oxygen to aqueous PO2 was 23.7%. Conclusion: Aqueous oxygen tension is mostly dependent on the systemic circulation and in part on the atmosphere. Increasing inspiratory oxygen and transcorneal oxygen delivery both increase aqueous PO2 levels.

  2. Understanding why the volume of suboxic waters does not increase over centuries of global warming in an Earth System Model

    Directory of Open Access Journals (Sweden)

    A. Gnanadesikan

    2012-03-01

    Full Text Available Global warming is expected to reduce oxygen solubility and vertical exchange in the ocean, changes which would be expected to result in an increase in the volume of hypoxic waters. A simulation made with a full Earth System model with dynamical atmosphere, ocean, sea ice and biogeochemical cycling (the Geophysical Fluid Dynamics Laboratory's Earth System Model 2.1 shows that this holds true if the condition for hypoxia is set relatively high. However, the volume of the most hypoxic (i.e., suboxic waters does not increase under global warming, as these waters actually become more oxygenated. We show that the rise in dissolved oxygen in the tropical Pacific is associated with a drop in ventilation time. A term-by-term analysis within the least oxygenated waters shows an increased supply of dissolved oxygen due to lateral diffusion compensating an increase in remineralization within these highly hypoxic waters. This lateral diffusive flux is the result of an increase of ventilation along the Chilean coast, as a drying of the region under global warming opens up a region of wintertime convection in our model. The results highlight the potential sensitivity of suboxic waters to changes in subtropical ventilation as well as the importance of constraining lateral eddy transport of dissolved oxygen in such waters.

  3. Understanding why the volume of suboxic waters does not increase over centuries of global warming in an Earth System Model

    Science.gov (United States)

    Gnanadesikan, A.; Dunne, J. P.; John, J.

    2012-03-01

    Global warming is expected to reduce oxygen solubility and vertical exchange in the ocean, changes which would be expected to result in an increase in the volume of hypoxic waters. A simulation made with a full Earth System model with dynamical atmosphere, ocean, sea ice and biogeochemical cycling (the Geophysical Fluid Dynamics Laboratory's Earth System Model 2.1) shows that this holds true if the condition for hypoxia is set relatively high. However, the volume of the most hypoxic (i.e., suboxic) waters does not increase under global warming, as these waters actually become more oxygenated. We show that the rise in dissolved oxygen in the tropical Pacific is associated with a drop in ventilation time. A term-by-term analysis within the least oxygenated waters shows an increased supply of dissolved oxygen due to lateral diffusion compensating an increase in remineralization within these highly hypoxic waters. This lateral diffusive flux is the result of an increase of ventilation along the Chilean coast, as a drying of the region under global warming opens up a region of wintertime convection in our model. The results highlight the potential sensitivity of suboxic waters to changes in subtropical ventilation as well as the importance of constraining lateral eddy transport of dissolved oxygen in such waters.

  4. Storage capacity and oxygen mobility in mixed oxides from transition metals promoted by cerium

    Energy Technology Data Exchange (ETDEWEB)

    Perdomo, Camilo [Estado Sólido y Catálisis Ambiental (ESCA), Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 45-03, Bogotá (Colombia); Pérez, Alejandro [Grupo de Investigación Fitoquímica (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá D.C (Colombia); Molina, Rafael [Estado Sólido y Catálisis Ambiental (ESCA), Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 45-03, Bogotá (Colombia); Moreno, Sonia, E-mail: smorenog@unal.edu.co [Estado Sólido y Catálisis Ambiental (ESCA), Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 45-03, Bogotá (Colombia)

    2016-10-15

    Highlights: • Ce addition to the catalysts improves the availability of oxygen in the materials. • Mixed oxide with Co and Cu exhibits the best oxygen transport properties. • Co presence improves O{sub 2} mobility in the catalysts. • The presence of Cu in the solids improves redox properties. - Abstract: The oxygen mobility and storage capacity of Ce-Co/Cu-MgAl or Ce–MgAl mixed oxides, obtained by hydrotalcite precursors, were evaluated using Toluene-temperature-programmed-reaction, {sup 18}O{sub 2} isotopic exchange and O{sub 2}-H{sub 2} titration. The presence of oxygen vacancies-related species was evaluated by means of Electron Paramagnetic Resonance. A correlation was found between the studied properties and the catalytic activity of the oxides in total oxidation processes. It was evidenced that catalytic activity depends on two related processes: the facility with which the solid can be reduced and its ability to regenerate itself in the presence of molecular oxygen in the gas phase. These processes are enhanced by Cu-Co cooperative effect in the mixed oxides. Additionally, the incorporation of Ce in the Co-Cu catalysts improved their oxygen transport properties.

  5. Storage capacity and oxygen mobility in mixed oxides from transition metals promoted by cerium

    International Nuclear Information System (INIS)

    Perdomo, Camilo; Pérez, Alejandro; Molina, Rafael; Moreno, Sonia

    2016-01-01

    Highlights: • Ce addition to the catalysts improves the availability of oxygen in the materials. • Mixed oxide with Co and Cu exhibits the best oxygen transport properties. • Co presence improves O 2 mobility in the catalysts. • The presence of Cu in the solids improves redox properties. - Abstract: The oxygen mobility and storage capacity of Ce-Co/Cu-MgAl or Ce–MgAl mixed oxides, obtained by hydrotalcite precursors, were evaluated using Toluene-temperature-programmed-reaction, 18 O 2 isotopic exchange and O 2 -H 2 titration. The presence of oxygen vacancies-related species was evaluated by means of Electron Paramagnetic Resonance. A correlation was found between the studied properties and the catalytic activity of the oxides in total oxidation processes. It was evidenced that catalytic activity depends on two related processes: the facility with which the solid can be reduced and its ability to regenerate itself in the presence of molecular oxygen in the gas phase. These processes are enhanced by Cu-Co cooperative effect in the mixed oxides. Additionally, the incorporation of Ce in the Co-Cu catalysts improved their oxygen transport properties.

  6. Impurity transport in the Wendelstein VII-A stellarator

    International Nuclear Information System (INIS)

    1985-01-01

    Impurity radiation losses in net-current-free neutral-beam-heated plasmas in the Wendelstein W VII-A stellarator are the combined effect of particularly strong impurity sources and improved particle confinement as compared with ohmically heated tokamak-like plasma discharges. Experiments are described and conclusions are drawn about the impurity species, their origin and their transport behaviour. The impurity transport is modelled by a 1-D impurity transport and radiation code. The evolution of the total radiation in time and space deduced from soft-X-ray and bolometer measurements can be fairly well simulated by the code. Experimentally, oxygen was found to make the main contribution to the radiation losses. In the calculations, an influx of cold oxygen desorbed from the walls of the order of 10 13 -10 14 cm -2 .s -1 and a rate of fast injected oxygen corresponding to a 1% impurity content of the neutral beams in combination with neoclassical impurity transport leads to quantitative agreement between the simulation and the observed radiation. The transport of A1 trace impurities injected by the laser blow-off technique was experimentally studied by soft-X-ray measurements using a differential method allowing extraction of the time evolution of A1 XII, XIII radial profiles. These are compared with code predictions, together with additional spectroscopic measurements. The main features of the impurity transport are consistent with neoclassical predictions, which explain particularly the central impurity accumulation. Some details, however, seem to require additional 'anomalous' transport. Such an enhancement is correlated with distortions of the magnetic configuration around resonant magnetic surfaces. (author)

  7. Oxygen-transfer performance of a newly designed, very low-volume membrane oxygenator.

    Science.gov (United States)

    Burn, Felice; Ciocan, Sorin; Carmona, Natalia Mendez; Berner, Marion; Sourdon, Joevin; Carrel, Thierry P; Tevaearai Stahel, Hendrik T; Longnus, Sarah L

    2015-09-01

    Oxygenation of blood and other physiological solutions are routinely required in fundamental research for both in vitro and in vivo experimentation. However, very few oxygenators with suitable priming volumes (parallel-oriented microporous polypropylene hollow fibres, placed inside a hollow shell with a lateral-luer outlet, and sealed at both extremities. With this design, perfusate is delivered via the core-tube to the centre of the mini-oxygenator, and exits via the luer port. A series of mini-oxygenators were constructed and tested in an in vitro perfusion circuit by monitoring oxygen transfer using modified Krebs-Henseleit buffer or whole porcine blood. Effects of perfusion pressure and temperature over flows of 5-60 ml × min(-1) were assessed. Twelve mini-oxygenators with a mean priming volume of 1.5 ± 0.3 ml were evaluated. With buffer, oxygen transfer reached a maximum of 14.8 ± 1.0 ml O2 × l(-1) (pO2: 450 ± 32 mmHg) at perfusate flow rates of 5 ml × min(-1) and decreased with an increase in perfusate flow to 7.8 ± 0.7 ml ml O2 × l(-1) (pO2: 219 ± 24 mmHg) at 60 ml × min(-1). Similarly, with blood perfusate, oxygen transfer also decreased as perfusate flow increased, ranging from 33 ± 5 ml O2 × l(-1) at 5 ml × min(-1) to 11 ± 2 ml O2 × l(-1) at 60 ml × min(-1). Furthermore, oxygen transfer capacity remained stable with blood perfusion over a period of at least 2 h. We have developed a new miniaturized membrane oxygenator with an ultra-low priming volume (circuits, such as small animal extracorporeal circulation and ex vivo organ perfusion. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  8. Hydrogen/oxygen injection stopping method for nuclear power plant and emergent hydrogen/oxygen injection device

    International Nuclear Information System (INIS)

    Ishida, Ryoichi; Ota, Masamoto; Takagi, Jun-ichi; Hirose, Yuki

    1998-01-01

    The present invention provides a device for suppressing increase of electroconductivity of reactor water during operation of a BWR type reactor, upon occurrence of reactor scram of the plant or upon stopping of hydrogen/oxygen injection due to emergent stoppage of an injection device so as not to deteriorate the integrity of a gas waste processing system upon occurrence of scram. Namely, when injection of hydrogen/oxygen is stopped during plant operation, the injection amount of hydrogen is reduced gradually. Subsequently, injection of hydrogen is stopped. With such procedures, the increase of electroconductivity of reactor water can be suppressed upon stoppage of hydrogen injection. When injection of hydrogen/oxygen is stopped upon shut down of the plant, the amount of hydrogen injection is changed depending on the change of the feedwater flow rate, and then the plant is shut down while keeping hydrogen concentration of feedwater to a predetermined value. With such procedures, increase of the reactor water electroconductivity can be suppressed upon stoppage of hydrogen injection. Upon emergent stoppage of the hydrogen/oxygen injection device, an emergent hydrogen/oxygen injection device is actuated to continue the injection of hydrogen/oxygen. With such procedures, elevation of reactor water electroconductivity can be suppressed. (I.S.)

  9. Oxygen and animal evolution: Did a rise of atmospheric oxygen trigger the origin of animals?

    DEFF Research Database (Denmark)

    Mills, Daniel Brady; Canfield, Donald Eugene

    2014-01-01

    Recent studies challenge the classical view that the origin of animal life was primarily controlled by atmospheric oxygen levels. For example, some modern sponges, representing early-branching animals, can live under 200 times less oxygen than currently present in the atmosphere - levels commonly...... thought to have been maintained prior to their origination. Furthermore, it is increasingly argued that the earliest animals, which likely lived in low oxygen environments, played an active role in constructing the well-oxygenated conditions typical of the modern oceans. Therefore, while oxygen is still...

  10. Defect chemistry and oxygen transport of (La0.6Sr0.4 − xMx)0.99Co0.2Fe0.8O3 − δ, M = Ca (x = 0.05, 0.1), Ba (x = 0.1, 0.2), Sr: Part II: Oxygen transport

    DEFF Research Database (Denmark)

    Dalslet, Bjarke Thomas; Søgaard, Martin; Hendriksen, Peter Vang

    2009-01-01

    This paper is the second part of a two part series, where the effects of varying the A-site dopant on the defect chemistry and transport properties of the materials (La0.6Sr0.4 − xMx)0.99Co0.2Fe0.8O3 − δ, M = Sr, Ca (x = 0.05, 0.1), Ba (x = 0.1, 0.2) (LSMFC) have been investigated. In part I......, the findings on the defect chemistry were reported, while the oxygen transport properties are reported here in part II. In the investigated material series, the amount of divalent dopant has been kept constant, while Sr ions have been substituted with Ca ions (smaller ionic radius) or Ba ions (larger ionic...... electrolyte probe were used to extract the permeability and surface resistance, rs. The highest permeability was found for (La0.6Sr0.3Ca0.1)0.99Co0.2Fe0.8O3 − δ. The apparent activation energy of the permeability was 78 kJ/mol. The inverse surface resistance, rs− 1, also had an activated behavior...

  11. Role of apical oxygen in 2-1-4 electron-doped superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Richard, P.; Riou, G.; Jandl, S.; Poirier, M.; Fournier, P.; Nekvasil, V.; Divis, M

    2004-08-01

    We report a crystal-field infrared transmission and Raman study of oxygenated and reduced Nd{sub 2-x}Ce{sub x}CuO{sub 4} single crystals. Some Nd{sup 3+} crystal-field absorption bands corresponding to rare-earth ions in non-regular sites are attributed to Nd{sup 3+} ions in the vicinity of apical oxygens. This is correlated with a study of the A{sup *} ({approx}580 cm{sup -1}) Raman local mode and with the transport properties of undoped materials. We show that the apical oxygen is not removed by the reduction.

  12. Surface acoustic wave oxygen pressure sensor

    Science.gov (United States)

    Oglesby, Donald M. (Inventor); Upchurch, Billy T. (Inventor); Leighty, Bradley D. (Inventor)

    1994-01-01

    A transducer for the measurement of absolute gas-state oxygen pressure from pressures of less than 100 Pa to atmospheric pressure (1.01 x 10(exp 5) Pa) is based on a standard surface acoustic wave (SAW) device. The piezoelectric material of the SAW device is coated with a compound which will selectively and reversibly bind oxygen. When oxygen is bound by the coating, the mass of the coating increases by an amount equal to the mass of the bound oxygen. Such an increase in the mass of the coating causes a corresponding decrease in the resonant frequency of the SAW device.

  13. Cyanobacteria in sulfidic spring microbial mats can perform oxygenic and anoxygenic photosynthesis simultaneously during an entire diurnal period

    Directory of Open Access Journals (Sweden)

    Judith M Klatt

    2016-12-01

    Full Text Available We used microsensors to study the regulation of oxygenic and anoxygenic photosynthesis by light and sulfide in a cyanobacterium dominating microbial mats from cold sulfidic springs. Both photosynthetic modes were performed simultaneously over all H2S concentrations (1–2200 µM and irradiances (4–52 µmol photons m-2 s-1 tested. Anoxygenic photosynthesis increased with H2S concentration while the sum of oxygenic and anoxygenic photosynthetic rates was constant at each light intensity. Thus, the total photosynthetically driven electron transport rate was solely controlled by the irradiance level. The partitioning between the rates of these two photosynthetic modes was regulated by both light and H2S concentration. The plastoquinone pool (PQ receives electrons from sulfide:quinone:reductase (SQR in anoxygenic photosynthesis and from photosystem II (PSII in oxygenic photosynthesis. It is thus the link in the electron transport chain where both pathways intersect, and the compound that controls their partitioning. We fitted our data with a model of the photosynthetic electron transport that includes the kinetics of plastoquinone reduction and oxidation. The model results confirmed that the observed partitioning between photosynthetic modes can be explained by a simple kinetic control based on the affinity of SQR and PSII towards PQ. The SQR enzyme and PSII have similar affinities towards PQ, which explains the concurrent oxygenic and anoxygenic photosynthesis over an astonishingly wide range of H2S concentrations and irradiances. The elegant kinetic control of activity makes the cyanobacterium successful in the fluctuating spring environment. We discuss how these specific regulation mechanisms may have played a role in ancient H2S-rich oceans.

  14. The oxycoal process with cryogenic oxygen supply

    Science.gov (United States)

    Kather, Alfons; Scheffknecht, Günter

    2009-09-01

    Due to its large reserves, coal is expected to continue to play an important role in the future. However, specific and absolute CO2 emissions are among the highest when burning coal for power generation. Therefore, the capture of CO2 from power plants may contribute significantly in reducing global CO2 emissions. This review deals with the oxyfuel process, where pure oxygen is used for burning coal, resulting in a flue gas with high CO2 concentrations. After further conditioning, the highly concentrated CO2 is compressed and transported in the liquid state to, for example, geological storages. The enormous oxygen demand is generated in an air-separation unit by a cryogenic process, which is the only available state-of-the-art technology. The generation of oxygen and the purification and liquefaction of the CO2-enriched flue gas consumes significant auxiliary power. Therefore, the overall net efficiency is expected to be lowered by 8 to 12 percentage points, corresponding to a 21 to 36% increase in fuel consumption. Oxygen combustion is associated with higher temperatures compared with conventional air combustion. Both the fuel properties as well as limitations of steam and metal temperatures of the various heat exchanger sections of the steam generator require a moderation of the temperatures during combustion and in the subsequent heat-transfer sections. This is done by means of flue gas recirculation. The interdependencies among fuel properties, the amount and the temperature of the recycled flue gas, and the resulting oxygen concentration in the combustion atmosphere are investigated. Expected effects of the modified flue gas composition in comparison with the air-fired case are studied theoretically and experimentally. The different atmosphere resulting from oxygen-fired combustion gives rise to various questions related to firing, in particular, with regard to the combustion mechanism, pollutant reduction, the risk of corrosion, and the properties of the fly

  15. The oxycoal process with cryogenic oxygen supply.

    Science.gov (United States)

    Kather, Alfons; Scheffknecht, Günter

    2009-09-01

    Due to its large reserves, coal is expected to continue to play an important role in the future. However, specific and absolute CO2 emissions are among the highest when burning coal for power generation. Therefore, the capture of CO2 from power plants may contribute significantly in reducing global CO2 emissions. This review deals with the oxyfuel process, where pure oxygen is used for burning coal, resulting in a flue gas with high CO2 concentrations. After further conditioning, the highly concentrated CO2 is compressed and transported in the liquid state to, for example, geological storages. The enormous oxygen demand is generated in an air-separation unit by a cryogenic process, which is the only available state-of-the-art technology. The generation of oxygen and the purification and liquefaction of the CO2-enriched flue gas consumes significant auxiliary power. Therefore, the overall net efficiency is expected to be lowered by 8 to 12 percentage points, corresponding to a 21 to 36% increase in fuel consumption. Oxygen combustion is associated with higher temperatures compared with conventional air combustion. Both the fuel properties as well as limitations of steam and metal temperatures of the various heat exchanger sections of the steam generator require a moderation of the temperatures during combustion and in the subsequent heat-transfer sections. This is done by means of flue gas recirculation. The interdependencies among fuel properties, the amount and the temperature of the recycled flue gas, and the resulting oxygen concentration in the combustion atmosphere are investigated. Expected effects of the modified flue gas composition in comparison with the air-fired case are studied theoretically and experimentally. The different atmosphere resulting from oxygen-fired combustion gives rise to various questions related to firing, in particular, with regard to the combustion mechanism, pollutant reduction, the risk of corrosion, and the properties of the fly

  16. Oxygen dependency of porfiromycin cytotoxicity

    International Nuclear Information System (INIS)

    Marshall, R.S.; Rauth, A.M.

    1987-01-01

    The authors determined the oxygen dependency of toxicity for the bioreductive alkylating agents mitomycin C (MMC) and porfiromycin (PM) to investigate whether the toxicities of these agents increase in the range of oxygen tensions over which cells become increasingly radioresistant. In the present work the oxygen dependency of PM in CHO cells was determined by assaying survival as a function of time of exposure to 1.0 μg/ml PM under various known levels of oxygen. While PM demonstrated preferential hypoxic cell toxicity, aerobic cell survival was reduced ten-fold after five hours of exposure. Conversely, PM toxicity after a five hour hypoxic exposure to <0.001% oxygen appeared to be greater than that observed for similar MMC exposures, suggesting that PM may be more selective than MMC in killing hypoxic rather than aerobic cells. The authors are currently investigating this preferential toxicity in two human cell lines, one of which is resistant to these agents. At present, these observations suggest that PM may be more effective than MMC at destroying tumour cells in regions of intermediate and low oxygen tensions which may survive radiotherapy, though the range of oxygen tensions which mediate toxicity is similar for both agents

  17. Porous Fe21Cr7Al1Mo0.5Y metal supports for oxygen transport membranes: Thermo-mechanical properties, sintering and corrosion behaviour

    DEFF Research Database (Denmark)

    Glasscock, Julie; Mikkelsen, Lars; Persson, Åsa Helen

    2013-01-01

    and creep rates are sufficiently low. Ceramic interlayers with graded porosity and pore-size were applied and co-fired with the metal supports, producing substrates that were shown to be viable for a 3 μm dense Ce 0.8Gd0.2O1.9 - δ oxygen transport membrane deposited using sputtering. © 2013 Elsevier B.V....... are optimised simultaneously in-situ during sintering by controlling the growth rate of the oxide scale. Oxidation of metal supports with 20-40% porosity at 850 C and oxygen partial pressure of 10- 11 kPa showed sub-parabolic kinetics and stability over 3000 h. The FeCrAl steel shows vastly superior oxidation...... resistance compared with an FeCr steel of similar composition and porosity. Modelling of the alloy lifetime as a function of surface area and Al-content was performed, and lifetimes over 30 000 h are predicted for a metal support with 30% porosity operating at a temperature of 750 C, where the oxidation...

  18. Gasoline ether oxygenate occurrence in Europe, and a review of their fate and transport characteristics in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Stupp, D.; Gass, M.; Leiteritz, H. [Dr. Stupp Consulting DSC, Tauw, Bergisch Gladbach (Germany); Pijls, C. [TAUW, Apeldoorn (Netherlands); Thornton, S. [University of Sheffield, Sheffield (United Kingdom); Smith, J.; Dunk, M.; Grosjean, T.; Den Haan, K. [CONCAWE, Brussels (Belgium)

    2012-06-15

    Ether oxygenates are added to certain gasoline (petrol) formulations to improve combustion efficiency and to increase the octane rating. In this report the term gasoline ether oxygenates (GEO) refers collectively to methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE), tertiary amyl methyl ether (TAME), diisopropyl ether (DIPE), tertiary amyl ethyl ether (TAEE), tertiary hexyl methyl ether (THxME), and tertiary hexyl ethyl ether (THxEE), as well as the associated tertiary butyl alcohol (TBA). This report presents newly collated data on the production capacities and use of MTBE, ETBE, TAME, DIPE and TBA in 30 countries (27 EU countries and Croatia, Norway and Switzerland) to inform continued and effective environmental management practices for GEO by CONCAWE members. The report comprises data on gasoline use in Europe that were provided by CONCAWE and obtained from the European Commission. Furthermore Societe Generale de Surveillance (SGS) provided detailed analytical data (more than 1,200 sampling campaigns) on the GEO composition of gasoline in European countries in the period 2000-2010. Another major aspect of this report is the investigation of GEO distribution in groundwater, drinking water, surface water, runoff water, precipitation (rain/snow) and air in the European environment. Apart from the general sources of literature for the study, local environmental authorities and institutes in the 30 European countries have been contacted for additional information. Finally, a review of the international literature on GEO natural attenuation processes was undertaken with a focus on international reports and peer-reviewed scientific publications to give an overview on the known fate, transport and degradation mechanisms of GEO in the subsurface, to inform risk-management strategies that may rely on natural attenuation processes. The literature reveals that all GEO compounds used in fuels are highly water soluble and weakly retarded by aquifer

  19. Solid Oxide Fuel Cell Cathodes. Unraveling the Relationship Between Structure, Surface Chemistry and Oxygen Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Gopalan, Srikanth [Boston Univ., MA (United States)

    2013-03-31

    In this work we have considered oxygen reduction reaction on LSM and LSCF cathode materials. In particular we have used various spectroscopic techniques to explore the surface composition, transition metal oxidation state, and the bonding environment of oxygen to understand the changes that occur to the surface during the oxygen reduction process. In a parallel study we have employed patterned cathodes of both LSM and LSCF cathodes to extract transport and kinetic parameters associated with the oxygen reduction process.

  20. Radial transport of storm time ring current ions

    Science.gov (United States)

    Lui, A. T. Y.

    1993-01-01

    Radial transport of energetic ions for the development of the main phase of geomagnetic storms is investigated with data from the medium energy particle analyzer (MEPA) on the Charge Composition Explorer spacecraft, which monitored protons, helium ions, and the carbon-nitrogen-oxygen group, which is mostly dominated by oxygen ions. From a study of four geomagnetic storms, we show that the flux increase of these ions in the inner ring current region can be accounted for by an inward displacement of the ring current population by 0.5 to 3.5 R(E). There is a general trend that a larger inward displacement occurs at higher L shells than at lower ones. These results are in agreement with previous findings. The radially injected population consists of the prestorm population modified by substorm injections which occur on a much shorter time scale than that for a storm main phase. It is also found that the inward displacement is relatively independent of ion mass and energy, suggesting that the radial transport of these energetic ions is effected primarily by convective motion from a large electric field or by diffusion resulting from magnetic field fluctuations.

  1. Nutrient regeneration and oxygen demand in Bering Sea continental shelf sediments

    Science.gov (United States)

    Rowe, Gilbert T.; Phoel, William C.

    1992-04-01

    Measurements of seabed oxygen demand and nutrient regeneration were made on continental shelf sediments in the southeast Bering Sea from 1 to 15 June 1981. The mean seabed oxygen demand was relatively modest (267 μM O 2 m -2 h -1), equivalent to a utilization of 60 mg organic carbon m -2 day -1. The seasonal build up of ammonium over the mid-shelf domain was generated at least in part by the bottom biota, as previously suggested ( WHITLEDGEet al., 1986 , Continental Shelf Research, 5, 109-132), but on the outer shelf nitrate replaced ammonium as the dominant inorganic nitrogen compound that was regenerated from the sediments. Comparison of oxygen consumption with the organic matter in sedimenting particulate matter (sampled with sediment traps) could imply that benthic processes were not accounting for the fate of considerable quantities of organic matter. Benthic oxygen demand rates, however, probably lag behind the input of the spring bloom to the bottom, thus extending the remineralization process out over time. Consumption by small microheterotrophs in the water column was also a likely sink, although shelf export and advective transport north were possible as well. Estimated nitrification rates in surface sediments could account for only a small fraction of the abrupt increase in nitrate observed in the water column over the shelf just prior to the spring bloom.

  2. Oxygen enhancement of groundwater using an oxygen releasing compound in a funnel-and-gate system

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, D G

    1994-01-01

    ORC is a fine white MgO[sub 2] powder treated with a patented process so that a slow, relatively steady release of oxygen occurs when the powder is in contact with water. Recent work suggests ORC could potentially be used to increase the dissolved oxygen (DO) concentration of ground water, thereby enhancing the biodegradation of dissolved phase contaminants such as benzene and toluene from gasoline spills. Field and laboratory tests were performed to evaluate the oxygen release characteristics of ORC when mixed with filter sand and exposed to groundwater from an aquifer in Ontario. Quasi steady state oxygen release rates of 0.013-0.030 and 0.030 mg O[sub 2]/d per g of ORC were determined from the column and field tests respectively. The column tests indicated that steady state oxygen release conditions from the ORC required ca 90 d after initial contact with water, but field data indicated that oxygen release rate may continue to decrease. Falling head permeameter tests indicated that a maximum drop in hydraulic conductivity occurred within the first 48 h of exposure of ORC to water. Both laboratory and field studies indicated that ORC-contacted water increased in pH. Field studies further suggested an inverse correlation between pH increases and the ability of ORC to enhance DO concentration of ground water. The use of ORC in a funnel-and-gate scheme appears to be an effective means of increasing the DO concentration in ground water, thereby stimulating the in-situ bioremediation of many organic contaminants. 30 refs., 17 figs., 12 tabs.

  3. Increased red cell 2,3-diphosphoglycerate levels in haemodialysis patients treated with erythropoietin.

    Science.gov (United States)

    Horina, J H; Schwaberger, G; Brussee, H; Sauseng-Fellegger, G; Holzer, H; Krejs, G J

    1993-01-01

    The efficacy of recombinant human erythropoietin (rHuEpo) for the treatment of renal anaemia is well established. To assess the effect of rHuEpo treatment on physical performance we evaluated physical working capacity, oxygen uptake and red cell 2,3-diphosphoglycerate (DPG) values at rest and during and after exercise on a bicycle spiroergometer in eight chronically haemodialysed patients. Follow-up examination was carried out after a mean of 14 weeks (range 9-19 weeks), when mean haemoglobin had increased from 7.8 to a stable value of 13.0 g/dl in response to rHuEpo treatment (P level without rHuEpo treatment than after correction of anaemia. Therefore rHuEpo treatment results both in better oxygen transport capacity and reduced intraerythrocytic oxygen affinity, which is followed by improved oxygen delivery to tissues per unit of haemoglobin. These effects may explain the improvement of exercise capacity observed in dialysis patients after rHuEpo treatment.

  4. The effect of oxygen fugacity on the rheological evolution of crystallizing basaltic melts

    Science.gov (United States)

    Kolzenburg, S.; Di Genova, D.; Giordano, D.; Hess, K. U.; Dingwell, D. B.

    2018-04-01

    Storage and transport of silicate melts in the Earth's crust and their emplacement on the planet's surface occur almost exclusively at sub-liquidus temperatures. At these conditions, the melts undergo crystallization under a wide range of cooling-rates, deformation-rates, and oxygen fugacities (fO2). Oxygen fugacity is known to influence the thermodynamics and kinetics of crystallization in magmas and lavas. Yet, its influence on sub-liquidus rheology remains largely uncharted. We present the first rheological characterization of crystallizing lavas along natural cooling paths and deformation-rates and at varying fO2. Specifically, we report on apparent viscosity measurements for two crystallizing magmatic suspensions 1) at log ⁡ fO2 of -9.15 (quartz-fayalite-magnetite buffer, QFM, -2.1) and 2) in air. These fugacities span a range of reduced to oxidized conditions pertinent to magma migration and lava emplacement. We find that: 1) crystallization at constant cooling-rates results in a quasi-exponential increase in the apparent viscosity of the magmatic suspensions until they achieve their rheological cut off temperature (Tcutoff), where the melt effectively solidifies 2) the rheological departure and Tcutoff increase with increasing fO2 and 3) increasing fO2 results in decreased crystallization-rates. Based on the experimental results and by comparison with previous rheological isothermal studies we propose a generalisation of the effect of fO2 on the dynamic rheological evolution of natural magmatic and volcanic suspensions. We further discuss the implications for magmatic transport in plumbing and storage systems (e.g. conduits, dikes and magma chambers) and during lava flow emplacement.

  5. Alternative photosynthetic electron transport pathways during anaerobiosis in the green alga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Hemschemeier, Anja; Happe, Thomas

    2011-08-01

    Oxygenic photosynthesis uses light as energy source to generate an oxidant powerful enough to oxidize water into oxygen, electrons and protons. Upon linear electron transport, electrons extracted from water are used to reduce NADP(+) to NADPH. The oxygen molecule has been integrated into the cellular metabolism, both as the most efficient electron acceptor during respiratory electron transport and as oxidant and/or "substrate" in a number of biosynthetic pathways. Though photosynthesis of higher plants, algae and cyanobacteria produces oxygen, there are conditions under which this type of photosynthesis operates under hypoxic or anaerobic conditions. In the unicellular green alga Chlamydomonas reinhardtii, this condition is induced by sulfur deficiency, and it results in the production of molecular hydrogen. Research on this biotechnologically relevant phenomenon has contributed largely to new insights into additional pathways of photosynthetic electron transport, which extend the former concept of linear electron flow by far. This review summarizes the recent knowledge about various electron sources and sinks of oxygenic photosynthesis besides water and NADP(+) in the context of their contribution to hydrogen photoproduction by C. reinhardtii. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Right ventricular oxygen supply/demand balance in exercising dogs.

    Science.gov (United States)

    Hart, B J; Bian, X; Gwirtz, P A; Setty, S; Downey, H F

    2001-08-01

    This is the first investigation of right ventricular (RV) myocardial oxygen supply/demand balance in a conscious animal. A novel technique developed in our laboratory was used to collect right coronary (RC) venous blood samples from seven instrumented, conscious dogs at rest and during graded treadmill exercise. Contributions of the RV oxygen extraction reserve and the RC flow reserve to exercise-induced increases in RV oxygen demand were measured. Strenuous exercise caused a 269% increase in RV oxygen consumption. Expanded arteriovenous oxygen content difference (A-V(Delta)O2) provided 58% of this increase in oxygen demand, and increased RC blood flow (RCBF) provided 42%. At less strenuous exercise, expanded A-V(Delta)O2 provided 60-80% of the required oxygen, and increases in RCBF were small and driven by increased aortic pressure. RC resistance fell only at strenuous exercise after the extraction reserve had been mobilized. Thus RC resistance was unaffected by large decreases in RC venous PO2 until an apparent threshold at 20 mmHg was reached. Comparisons of RV findings with published left ventricular data from exercising dogs demonstrated that increased O2 demand of the left ventricle is met primarily by increasing coronary flow, whereas increased O2 extraction makes a greater contribution to RV O2 supply.

  7. Heptachlor induced mitochondria-mediated cell death via impairing electron transport chain complex III

    International Nuclear Information System (INIS)

    Hong, Seokheon; Kim, Joo Yeon; Hwang, Joohyun; Shin, Ki Soon; Kang, Shin Jung

    2013-01-01

    Highlights: •Heptachlor inhibited mitochondrial electron transport chain complex III activity. •Heptachlor promoted generation of reactive oxygen species. •Heptachlor induced Bax activation. •Heptachlor induced mitochondria-mediated and caspase-dependent apoptosis. -- Abstract: Environmental toxins like pesticides have been implicated in the pathogenesis of Parkinson’s disease (PD). Epidemiological studies suggested that exposures to organochlorine pesticides have an association with an increased PD risk. In the present study, we examined the mechanism of toxicity induced by an organochlorine pesticide heptachlor. In a human dopaminergic neuroblastoma SH-SY5Y cells, heptachlor induced both morphological and functional damages in mitochondria. Interestingly, the compound inhibited mitochondrial electron transport chain complex III activity. Rapid generation of reactive oxygen species and the activation of Bax were then detected. Subsequently, mitochondria-mediated, caspase-dependent apoptosis followed. Our results raise a possibility that an organochlorine pesticide heptachlor can act as a neurotoxicant associated with PD

  8. Heptachlor induced mitochondria-mediated cell death via impairing electron transport chain complex III

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seokheon; Kim, Joo Yeon; Hwang, Joohyun [Department of Molecular Biology, Sejong University, Seoul 143-747 (Korea, Republic of); Shin, Ki Soon [Department of Biology, Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kang, Shin Jung, E-mail: sjkang@sejong.ac.kr [Department of Molecular Biology, Sejong University, Seoul 143-747 (Korea, Republic of)

    2013-08-09

    Highlights: •Heptachlor inhibited mitochondrial electron transport chain complex III activity. •Heptachlor promoted generation of reactive oxygen species. •Heptachlor induced Bax activation. •Heptachlor induced mitochondria-mediated and caspase-dependent apoptosis. -- Abstract: Environmental toxins like pesticides have been implicated in the pathogenesis of Parkinson’s disease (PD). Epidemiological studies suggested that exposures to organochlorine pesticides have an association with an increased PD risk. In the present study, we examined the mechanism of toxicity induced by an organochlorine pesticide heptachlor. In a human dopaminergic neuroblastoma SH-SY5Y cells, heptachlor induced both morphological and functional damages in mitochondria. Interestingly, the compound inhibited mitochondrial electron transport chain complex III activity. Rapid generation of reactive oxygen species and the activation of Bax were then detected. Subsequently, mitochondria-mediated, caspase-dependent apoptosis followed. Our results raise a possibility that an organochlorine pesticide heptachlor can act as a neurotoxicant associated with PD.

  9. Increased coordination in public transport – which mechanisms are available?

    DEFF Research Database (Denmark)

    Sørensen, Claus Hedegaard; Longva, Frode

    2011-01-01

    After several years of New Public Management reforms within public transport, coordination seems to receive increased attention. With examples of actual as well as suggested changes taken from Denmark, Sweden and the UK the aim of the article is to analyse and classify the mechanisms utilized...... mechanism has its strengths and failures. The article also debates to what extent the mechanisms conflict with three core characteristics of New Public Management: Unbundling of the public sector into corporatized units; more contract-based competitive provision; and greater emphasis on output controls....

  10. Performance comparison of 15 transport ventilators.

    Science.gov (United States)

    Chipman, Daniel W; Caramez, Maria P; Miyoshi, Eriko; Kratohvil, Joseph P; Kacmarek, Robert M

    2007-06-01

    Numerous mechanical ventilators are designed and marketed for use in patient transport. The complexity of these ventilators differs considerably, but very few data exist to compare their operational capabilities. Using bench and animal models, we studied 15 currently available transport ventilators with regard to their physical characteristics, gas consumption (duration of an E-size oxygen cylinder), battery life, ease of use, need for compressed gas, ability to deliver set ventilation parameters to a test lung under 3 test conditions, and ability to maintain ventilation and oxygenation in normal and lung-injured sheep. Most of the ventilators tested were relatively simple to operate and had clearly marked controls. Oxygen cylinder duration ranged from 30 min to 77 min. Battery life ranged from 70 min to 8 hours. All except 3 of the ventilators were capable of providing various F(IO2) values. Ten of the ventilators had high-pressure and patient-disconnect alarms. Only 6 of the ventilators were able to deliver all settings as specifically set on the ventilator during the bench evaluation. Only 4 of the ventilators were capable of maintaining ventilation, oxygenation, and hemodynamics in both the normal and the lung-injured sheep. Only 2 of the ventilators met all the trial targets in all the bench and animal tests. With many of the ventilators, certain of the set ventilation parameters were inaccurate (differed by > 10% from the values from a cardiopulmonary monitor). The physical characteristics and high gas consumption of some of these ventilators may render them less desirable for patient transport.

  11. Implantable oxygen microelectrode suitable for medium-term investigations of post-surgical tissue hypoxia and changes in tumor tissue oxygenation produced by radiotherapy

    International Nuclear Information System (INIS)

    Burke, T.R.; Johnson, R.J.; Krishnamsetty, C.B.; Sako, K.; Karakousis, C.; Wojtas, F.

    1980-01-01

    Teflon-covered platinum oxygen probes were used to monitor tissue oxygen levels in post-surgical cancer patients and those treated with radiotherapy. Progressive wound healing was usually accompanied by a decrease in tissue pO2. Radiotherapy produced a slight increase in pO2 while hyperthermia effected a significant increase in the oxygen level during 100% oxygen breathing

  12. Hereditary stomatocytosis: association of low 2,3-diphosphoglycerate with increased cation pumping by the red cell.

    Science.gov (United States)

    Wiley, J S; Cooper, R A; Adachi, K; Asakura, T

    1979-01-01

    The levels of glycolytic intermediates have been measured in red cells from patients with both overhydrated and dehydrated varieties of the hereditary stomatocytosis syndrome. Red cell 2,3-diphosphoglycerate was reduced by 33% below normal in all patients with either stomatocyte or target cell morphologies (i.e. over or under hydrated varieties respectively). The relative decrement in 2,3-diphosphoglycerate was even greater when abnormal cells were compared with control cells with similar reticulocytosis. Red cell ADP concentrations in stomatocytosis were significantly increased above normal but ATP concentrations were not significantly changed. Whole blood oxygen affinity in stomatocytosis was increased in proportion to the lowered content of diphosphoglycerate. Some new parameters of membrane transport in hereditary stomatocytosis have been measured. Platelet K+ and Na+ concentrations and platelet K+ permeability were normal in stomatocytosis. The number of 3H-uridine transport sites in stomatocytes were increased by 9-39% above normal and this increment was the same as the increment in red cell lipids (0-38%). Hereditary stomatocytes contain 2-10-fold more cation pumps than normal and the increased active cation pumping may explain the high ADP, the low 2,3-diphosphoglycerate concentration and the increased oxygen affinity in this syndrome.

  13. Electron transport chain dysfunction by H(2)O (2) is linked to increased reactive oxygen species production and iron mobilization by lipoperoxidation: studies using Saccharomyces cerevisiae mitochondria.

    Science.gov (United States)

    Cortés-Rojo, Christian; Estrada-Villagómez, Mirella; Calderón-Cortés, Elizabeth; Clemente-Guerrero, Mónica; Mejía-Zepeda, Ricardo; Boldogh, Istvan; Saavedra-Molina, Alfredo

    2011-04-01

    The mitochondrial electron transport chain (ETC) contains thiol groups (-SH) which are reversibly oxidized to modulate ETC function during H(2)O(2) overproduction. Since deleterious effects of H(2)O(2) are not limited to -SH oxidation, due to the formation of other H(2)O(2)-derived species, some processes like lipoperoxidation could enhance the effects of H(2)O(2) over ETC enzymes, disrupt their modulation by -SH oxidation and increase superoxide production. To verify this hypothesis, we tested the effects of H(2)O(2) on ETC activities, superoxide production and iron mobilization in mitochondria from lipoperoxidation-resistant native yeast and lipoperoxidation-sensitized yeast. Only complex III activity from lipoperoxidation-sensitive mitochondria exhibited a higher susceptibility to H(2)O(2) and increased superoxide production. The recovery of ETC activity by the thiol reductanct β-mercaptoethanol (BME) was also altered at complex III, and a role was attributed to lipoperoxidation, the latter being also responsible for iron release. A hypothetical model linking lipoperoxidation, increased complex III damage, superoxide production and iron release is given.

  14. On the importance of Major Baltic Inflows for oxygenation of the central Baltic Sea

    Science.gov (United States)

    Neumann, Thomas; Radtke, Hagen; Seifert, Torsten

    2017-02-01

    In December 2014, the third strongest salt water inflow into the Baltic Sea occurred since 1880. It was assumed that the inflow would turn the entire bottom water of the Baltic Sea from anoxic into oxic conditions for an extended period. However, already in late 2015, the central Eastern Baltic Sea had turned back into anoxic conditions. This rapid oxygen decline was in fact surprising since a weaker inflow in 2003 ventilated the Baltic Sea for a longer period of time. With the aid of an ecosystem model of the Baltic Sea, the two inflows in 2003 and 2014 were analyzed in detail. Although the 2014 inflow event was twice as strong as the 2003 inflow event, oxygen transport continued after the latter one, supplying about the same amount of oxygen again. In addition to the major inflow event, a series of smaller inflows in 2003 supplied the extra oxygen transport. Therefore, the strength of a major inflow event alone cannot be used to predict the oxygenation impact. Instead, it is necessary to consider smaller events, in particular those occurring just before and after a major inflow event, as well. An element tagging method showed that the share of oxygen imported across the Danish Straits on the total oxygen arriving at the central Eastern Baltic Sea is between 10% and 20%. Therefore, the oxygen concentration of the inflowing water seems to be of less importance for the oxygenation effect on the central Baltic Sea due to the strong dilution effect.

  15. Separating the effects of partial submergence and soil oxygen demand on plant physiology.

    Science.gov (United States)

    van Bodegom, Peter M; Sorrell, Brian K; Oosthoek, Annelies; Bakker, Chris; Aerts, Rien

    2008-01-01

    In wetlands, a distinct zonation of plant species composition occurs along moisture gradients, due to differential flooding tolerance of the species involved. However, "flooding" comprises two important, distinct stressors (soil oxygen demand [SOD] and partial submergence) that affect plant survival and growth. To investigate how these two flooding stressors affect plant performance, we executed a factorial experiment (water depth x SOD) for six plant species of nutrient-rich and nutrient-poor conditions, occurring along a moisture gradient in Dutch dune slacks. Physiological, growth, and biomass responses to changed oxygen availability were quantified for all species. The responses were consistent with field zonation, but the two stressors affected species differently. Increased SOD increased root oxygen deprivation, as indicated by either raised porosity or increased alcohol dehydrogenase (ADH) activity in roots of flood-intolerant species (Calamagrostis epigejos and Carex arenaria). While SOD affected root functioning, partial submergence tended more to reduce photosynthesis (as shown both by gas exchange and 13C assimilation), leaf dark respiration, 13C partitioning from shoots to roots, and growth of these species. These processes were especially affected if the root oxygen supply was depleted by a combination of flooding and increased SOD. In contrast, the most flood-tolerant species (Juncus subnodulosus and Typha latifolia) were unaffected by any treatment and maintained high internal oxygen concentrations at the shoot : root junction and low root ADH activity in all treatments. For these species, the internal oxygen transport capacity was well in excess of what was needed to maintain aerobic metabolism across all treatments, although there was some evidence for effects of SOD on their nitrogen partitioning (as indicated by 865N values) and photosynthesis. Two species intermediate in flooding tolerance (Carex nigra and Schoenus nigricans) responded more

  16. Design of a mixed ionic/electronic conducting oxygen transport membrane pilot module

    Energy Technology Data Exchange (ETDEWEB)

    Pfaff, E.M.; Kaletsch, A.; Broeckmann, C. [RWTH Aachen University, IWM, Aachen (Germany)

    2012-03-15

    In the last years, a lot of ceramic materials were developed that, at higher temperatures, have a high electrical conductivity and a high conductivity of oxygen ions. Such mixed ionic/electronic conductors can be used to produce high-purity oxygen. This work focuses on the realization of a pilot membrane module, with BSCF (Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}}) perovskite selected as the membrane material. An amount of 500 kg of powder was industrially fabricated, spray-granulized and pressed into tubes. The best operation conditions concerning energy consumption were calculated, and a module reactor was designed operating at 850 C, with an air pressure of 15-20 bar on the feed site and a low vacuum of about 0.8 bar on the permeate site. Special emphasis was placed on joining alternatives for ceramic tubes in metallic bottoms. A first laboratory module was tested with a membrane area of 1 m{sup 2} and then advanced to a pilot module with 570 tubes and a capability of more than 300 000 L of pure oxygen per day. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Hyperoxia increases the uptake of 5-fluorouracil in mammary tumors independently of changes in interstitial fluid pressure and tumor stroma

    Directory of Open Access Journals (Sweden)

    Salvesen Gerd S

    2009-12-01

    Full Text Available Abstract Background Hypoxia is associated with increased resistance to chemo- and radiation-therapy. Hyperoxic treatment (hyperbaric oxygen has previously been shown to potentiate the effect of some forms of chemotherapy, and this has been ascribed to enhanced cytotoxicity or neovascularisation. The aim of this study was to elucidate whether hyperoxia also enhances any actual uptake of 5FU (5-fluorouracil into the tumor tissue and if this can be explained by changes in the interstitium and extracellular matrix. Methods One group of tumor bearing rats was exposed to repeated hyperbaric oxygen (HBO treatment (2 bar, pO2 = 2 bar, 4 exposures à 90 min, whereas one group was exposed to one single identical HBO treatment. Animals housed under normal atmosphere (1 bar, pO2 = 0.2 bar served as controls. Three doses of 5FU were tested for dose response. Uptake of [3H]-5FU in the tumor was assessed, with special reference to factors that might have contributed, such as interstitial fluid pressure (Pif, collagen content, oxygen stress (measured as malondialdehyd levels, lymphatics and transcapillary transport in the tumors. Results The uptake of the cytostatic agent increases immediately after a single HBO treatment (more than 50%, but not 24 hours after the last repeated HBO treatment. Thus, the uptake is most likely related to the transient increase in oxygenation in the tumor tissue. Factors like tumor Pif and collagen content, which decreased significantly in the tumor interstitium after repeated HBO treatment, was without effect on the drug uptake. Conclusion We showed that hyperoxia increases the uptake of [3H]-5FU in DMBA-induced mammary tumors per se, independently of changes in Pif, oxygen stress, collagen fibril density, or transendothelial transport alone. The mechanism by which such an uptake occur is still not elucidated, but it is clearly stimulated by elevated pO2.

  18. Effects of oxygen annealing on the physical properties and surface microstructures of La0.8Ba0.2MnO3 films

    International Nuclear Information System (INIS)

    Murugavel, P; Lee, J H; Lee, K-B; Park, J H; Chung, J-S; Yoon, J-G; Noh, T W

    2002-01-01

    We have investigated the effects of oxygen annealing on the transport properties and surface microstructures of epitaxial La 0.8 Ba 0.2 MnO 3 (LBMO) films deposited on SrTiO 3 substrate at different oxygen pressures using the pulsed laser deposition technique. The thickness dependence of the transport properties was strongly affected by the oxygen pressure during the deposition and the oxygen annealing temperature. Oxygen stoichiometry, in addition to the substrate-induced strain, was found to be a very important factor in controlling the physical properties of low-doped LBMO. Oxygen annealing seemed to induce strain and the strain accommodated in the films was relaxed by forming a secondary phase in an ordered rod-like shape or in particulate form

  19. NELL-1 increases pre-osteoblast mineralization using both phosphate transporter Pit1 and Pit2

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Catherine M. [Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza,7523 Boelter Hall, Los Angeles, CA 90095 (United States); Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, 40833 Le Conte Ave, Los Angeles, CA 90095 (United States); Zhang, Xinli; James, Aaron W.; Mari Kim, T.; Sun, Nichole [Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, 40833 Le Conte Ave, Los Angeles, CA 90095 (United States); Wu, Benjamin [Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza,7523 Boelter Hall, Los Angeles, CA 90095 (United States); Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, 40833 Le Conte Ave, Los Angeles, CA 90095 (United States); Ting, Kang [Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, 40833 Le Conte Ave, Los Angeles, CA 90095 (United States); Soo, Chia, E-mail: bsoo@ucla.edu [UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic, Hospital Research Center, University of California, Los Angeles, 2641 Charles E. Young Dr. South, Los Angeles, CA 90095 (United States)

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer NELL-1 accelerates extracellular matrix mineralization in MC3T3-E1 pre-osteoblasts. Black-Right-Pointing-Pointer NELL-1 significantly increases intracellular inorganic phosphate levels. Black-Right-Pointing-Pointer NELL-1 positively regulates osteogenesis but not proliferation in MC3T3-E1 cells. Black-Right-Pointing-Pointer NELL-1 regulates inorganic phosphate transporter activity. -- Abstract: NELL-1 is a potent osteoinductive molecule that enhances bone formation in multiple animal models through currently unidentified pathways. In the present manuscript, we hypothesized that NELL-1 may regulate osteogenic differentiation accompanied by alteration of inorganic phosphate (Pi) entry into the osteoblast via sodium dependent phosphate (NaPi) transporters. To determine this, MC3T3-E1 pre-osteoblasts were cultured in the presence of recombinant human (rh)NELL-1 or rhBMP-2. Analysis was performed for intracellular Pi levels through malachite green staining, Pit-1 and Pit-2 expression, and forced upregulation of Pit-1 and Pit-2. Results showed rhNELL-1 to increase MC3T3-E1 matrix mineralization and Pi influx associated with activation of both Pit-1 and Pit-2 channels, with significantly increased Pit-2 production. In contrast, Pi transport elicited by rhBMP-2 showed to be associated with increased Pit-1 production only. Next, neutralizing antibodies against Pit-1 and Pit-2 completely abrogated the Pi influx effect of rhNELL-1, suggesting rhNELL-1 is dependent on both transporters. These results identify one potential mechanism of action for rhNELL-1 induced osteogenesis and highlight a fundamental difference between NELL-1 and BMP-2 signaling.

  20. NELL-1 increases pre-osteoblast mineralization using both phosphate transporter Pit1 and Pit2

    International Nuclear Information System (INIS)

    Cowan, Catherine M.; Zhang, Xinli; James, Aaron W.; Mari Kim, T.; Sun, Nichole; Wu, Benjamin; Ting, Kang; Soo, Chia

    2012-01-01

    Highlights: ► NELL-1 accelerates extracellular matrix mineralization in MC3T3-E1 pre-osteoblasts. ► NELL-1 significantly increases intracellular inorganic phosphate levels. ► NELL-1 positively regulates osteogenesis but not proliferation in MC3T3-E1 cells. ► NELL-1 regulates inorganic phosphate transporter activity. -- Abstract: NELL-1 is a potent osteoinductive molecule that enhances bone formation in multiple animal models through currently unidentified pathways. In the present manuscript, we hypothesized that NELL-1 may regulate osteogenic differentiation accompanied by alteration of inorganic phosphate (Pi) entry into the osteoblast via sodium dependent phosphate (NaPi) transporters. To determine this, MC3T3-E1 pre-osteoblasts were cultured in the presence of recombinant human (rh)NELL-1 or rhBMP-2. Analysis was performed for intracellular Pi levels through malachite green staining, Pit-1 and Pit-2 expression, and forced upregulation of Pit-1 and Pit-2. Results showed rhNELL-1 to increase MC3T3-E1 matrix mineralization and Pi influx associated with activation of both Pit-1 and Pit-2 channels, with significantly increased Pit-2 production. In contrast, Pi transport elicited by rhBMP-2 showed to be associated with increased Pit-1 production only. Next, neutralizing antibodies against Pit-1 and Pit-2 completely abrogated the Pi influx effect of rhNELL-1, suggesting rhNELL-1 is dependent on both transporters. These results identify one potential mechanism of action for rhNELL-1 induced osteogenesis and highlight a fundamental difference between NELL-1 and BMP-2 signaling.

  1. Acrolein-Induced Increases in Blood Pressure and Heart Rate Are Coupled with Decreased Blood Oxygen Levels During Exposure in Hypertensive Rats

    Science.gov (United States)

    Exposure to air pollution increases the risk of cardiovascular morbidity and mortality, especially in individuals with pre-existing cardiovascular disease. Recent studies link exposure to air pollution with reduced blood oxygen saturation suggesting that hypoxia is a potential me...

  2. Perovskite-related oxide materials for oxygen-permeable electrochemical membrans

    OpenAIRE

    Naumovich, E. N.; Yaremchenko, A. A.; Viskup, A. P.; Kharton, V. V.

    2003-01-01

    This brief review is focused on the studies of mixed ionic-electronic conductors on the basis of lanthanum gallate doped with transition metal cations in the В sublattice. The substitution of gallium with iron, cobalt or nickel results in greater electronic conductivity, simultaneously keeping high level of the oxy-gen ionic transport. In particular, La0 90Sr0 10Ga0 65Ni0 20Mg0 1503d perovskite exhib-its attractive oxygen permeability, which is quite similar to that of La2Ni04- and (...

  3. Numerical simulation of ion transport membrane reactors: Oxygen permeation and transport and fuel conversion

    KAUST Repository

    Hong, Jongsup; Kirchen, Patrick; Ghoniem, Ahmed F.

    2012-01-01

    Ion transport membrane (ITM) based reactors have been suggested as a novel technology for several applications including fuel reforming and oxy-fuel combustion, which integrates air separation and fuel conversion while reducing complexity

  4. Impaired pH homeostasis in Arabidopsis lacking the vacuolar dicarboxylate transporter and analysis of carboxylic acid transport across the tonoplast.

    Science.gov (United States)

    Hurth, Marco Alois; Suh, Su Jeoung; Kretzschmar, Tobias; Geis, Tina; Bregante, Monica; Gambale, Franco; Martinoia, Enrico; Neuhaus, H Ekkehard

    2005-03-01

    Arabidopsis (Arabidopsis thaliana) mutants lacking the tonoplastic malate transporter AttDT (A. thaliana tonoplast dicarboxylate transporter) and wild-type plants showed no phenotypic differences when grown under standard conditions. To identify putative metabolic changes in AttDT knock-out plants, we provoked a metabolic scenario connected to an increased consumption of dicarboxylates. Acidification of leaf discs stimulated dicarboxylate consumption and led to extremely low levels of dicarboxylates in mutants. To investigate whether reduced dicarboxylate concentrations in mutant leaf cells and, hence, reduced capacity to produce OH(-) to overcome acidification might affect metabolism, we measured photosynthetic oxygen evolution under conditions where the cytosol is acidified. AttDT::tDNA protoplasts showed a much stronger inhibition of oxygen evolution at low pH values when compared to wild-type protoplasts. Apparently citrate, which is present in higher amounts in knock-out plants, is not able to replace dicarboxylates to overcome acidification. To raise more information on the cellular level, we performed localization studies of carboxylates. Although the total pool of carboxylates in mutant vacuoles was nearly unaltered, these organelles contained a lower proportion of malate and fumarate and a higher proportion of citrate when compared to wild-type vacuoles. These alterations concur with the observation that radioactively labeled malate and citrate are transported into Arabidopsis vacuoles by different carriers. In addition, wild-type vacuoles and corresponding organelles from AttDT::tDNA mutants exhibited similar malate channel activities. In conclusion, these results show that Arabidopsis vacuoles contain at least two transporters and a channel for dicarboxylates and citrate and that the activity of AttDT is critical for regulation of pH homeostasis.

  5. Single-cell measurement of red blood cell oxygen affinity.

    Science.gov (United States)

    Di Caprio, Giuseppe; Stokes, Chris; Higgins, John M; Schonbrun, Ethan

    2015-08-11

    Oxygen is transported throughout the body by hemoglobin (Hb) in red blood cells (RBCs). Although the oxygen affinity of blood is well-understood and routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of RBC volume and Hb concentration are taken millions of times per day by clinical hematology analyzers, and they are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume, and Hb concentration for individual RBCs in high throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.9%, which corresponds to the maximum slope of the oxygen-Hb dissociation curve. In addition, single-cell oxygen affinity is positively correlated with Hb concentration but independent of osmolarity, which suggests variation in the Hb to 2,3-diphosphoglycerate (2-3 DPG) ratio on a cellular level. By quantifying the functional behavior of a cellular population, our system adds a dimension to blood cell analysis and other measurements of single-cell variability.

  6. Increased biliary excretion of glutathione is generated by the glutathione-dependent hepatobiliary transport of antimony and bismuth.

    Science.gov (United States)

    Gyurasics, A; Koszorús, L; Varga, F; Gregus, Z

    1992-10-06

    We have recently demonstrated that the hepatobiliary transport of arsenic is glutathione-dependent and is associated with a profound increase in biliary excretion of glutathione (GSH), hepatic GSH depletion and diminished GSH conjugation (Gyurasics A, Varga F and Gregus Z, Biochem Pharmacol 41: 937-944 and Gyurasics A, Varga F and Gregus Z, Biochem Pharmacol 42: 465-468, 1991). The present studies in rats aimed to determine whether antimony and bismuth, other metalloids in group Va of the periodic table, also possess similar properties. Antimony potassium tartrate (25-100 mumol/kg, i.v.) and bismuth ammonium citrate (50-200 mumol/kg, i.v.) increased up to 50- and 4-fold, respectively, the biliary excretion of non-protein thiols (NPSH). This resulted mainly from increased hepatobiliary transport of GSH as suggested by a close parallelism in the biliary excretion of NPSH and GSH after antimony or bismuth administration. Within 2 hr, rats excreted into bile 55 and 3% of the dose of antimony (50 mumol/kg, i.v.) and bismuth (150 mumol/kg, i.v.), respectively. The time courses of the biliary excretion of these metalloids and NPSH or GSH were strikingly similar suggesting co-ordinate hepatobiliary transport of the metalloids and GSH. However, at the peak of their excretion, each molecule of antimony or bismuth resulted in a co-transport of approximately three molecules of GSH. Diethyl maleate, indocyanine green and sulfobromophthalein (BSP), which decreased biliary excretion of GSH, significantly diminished excretion of antimony and bismuth into bile indicating that hepatobiliary transport of these metalloids is GSH-dependent. Administration of antimony, but not bismuth, decreased hepatic GSH level by 30% and reduced the GSH conjugation and biliary excretion of BSP. These studies demonstrate that the hepatobiliary transport of trivalent antimony and bismuth is GSH-dependent similarly to the hepatobiliary transport of trivalent arsenic. Proportionally to their biliary

  7. Short-term responses of Dutch vacationers to a sharp increase in transport costs

    NARCIS (Netherlands)

    van Cranenburgh, S.

    2016-01-01

    This paper investigates vacationers’ short-term responses to a sharp increase in transport costs. It aims to (1) acquire an understanding of the relative popularity of the different types of responses among vacationers and (2) explore whether there are distinct market segments of vacationers that

  8. Oxygen restriction increases the infective potential of Listeria monocytogenes in vitro in Caco-2 cells and in vivo in guinea pigs

    Directory of Open Access Journals (Sweden)

    Licht Tine

    2007-06-01

    Full Text Available Abstract Background Listeria monocytogenes has been implicated in several food borne outbreaks as well as sporadic cases of disease. Increased understanding of the biology of this organism is important in the prevention of food borne listeriosis. The infectivity of Listeria monocytogenes ScottA, cultivated with and without oxygen restriction, was compared in vitro and in vivo. Fluorescent protein labels were applied to allow certain identification of Listeria cells from untagged bacteria in in vivo samples, and to distinguish between cells grown under different conditions in mixed infection experiments. Results Infection of Caco-2 cells revealed that Listeria cultivated under oxygen-restricted conditions were approximately 100 fold more invasive than similar cultures grown without oxygen restriction. This was observed for exponentially growing bacteria, as well as for stationary-phase cultures. Oral dosage of guinea pigs with Listeria resulted in a significantly higher prevalence (p Listeria in fecal samples was observed after dosage with oxygen-restricted bacteria. These differences were seen after challenge with single Listeria cultures, as well as with a mixture of two cultures grown with and without oxygen restriction. Conclusion Our results show for the first time that the environmental conditions to which L. monocytogenes is exposed prior to ingestion are decisive for its in vivo infective potential in the gastrointestinal tract after passage of the gastric barrier. This is highly relevant for safety assessment of this organism in food.

  9. Comparable cerebral oxygenation patterns in younger and older adults during dual-task walking with increasing load

    Directory of Open Access Journals (Sweden)

    Sarah A. Fraser

    2016-10-01

    Full Text Available The neuroimaging literature on dual-task gait clearly demonstrates increased prefrontal cortex (PFC involvement when performing a cognitive task while walking. However, findings from direct comparisons of the cerebral oxygenation patterns of younger (YA and older (OA adults during dual-task walking are mixed and it is unclear how YA and OA respond to increasing cognitive load (difficulty while walking. This functional near infra-red (fNIRS study examined cerebral oxygenation of YA and OA during self-paced dual-task treadmill walking at two different levels of cognitive load (auditory n-back. Changes in accuracy (% as well as oxygenated (HbO and deoxygenated (HbR hemoglobin were examined. For the HbO and HbR measures, eight regions of interest (ROIs were assessed: the anterior and posterior dorsolateral and ventrolateral PFC (aDLPFC, pDLPFC, aVLPFC, pVLPFC in each hemisphere. Nineteen YA (M = 21.83 yrs and 14 OA (M = 66.85 yrs walked at a self-selected pace while performing auditory 1-back and 2-back tasks. Walking alone (single motor: SM and performing the cognitive tasks alone (single cognitive: SC were compared to dual-task walking (DT = SM + SC. In the behavioural data, participants were more accurate in the lowest level of load (1-back compared to the highest (2-back; p ˂ .001. YA were more accurate than OA overall (p = .009, and particularly in the 2-back task (p = .048. In the fNIRS data, both younger and older adults had task effects (SM < DT in specific ROIs for ∆HbO (3 YA, 1 OA and ∆HbR (7 YA, 8 OA. After controlling for walk speed differences, direct comparisons between YA and OA did not reveal significant age differences, but did reveal a difficulty effect in HbO in the left aDLPFC (p = .028 and significant task effects (SM < DT in HbR for 6 of the 8 ROIs. Findings suggest that YA and OA respond similarly to manipulations of cognitive load when walking on a treadmill at a self-selected pace.

  10. In vivo vitamin C deficiency in guinea pigs increases ascorbate transporters in liver but not kidney and brain.

    Science.gov (United States)

    Søgaard, Ditte; Lindblad, Maiken M; Paidi, Maya D; Hasselholt, Stine; Lykkesfeldt, Jens; Tveden-Nyborg, Pernille

    2014-07-01

    Moderate vitamin C (vitC) deficiency (plasma concentrations less than 23 μmol/L) affects as much as 10% of adults in the Western World and has been associated with an increased mortality in disease complexes such as cardiovascular disease and the metabolic syndrome. The distribution of vitC within the body is subjected to complex and nonlinear pharmacokinetics and largely depends on the sodium-dependent vitC-specific transporters, sodium-dependent vitamin C transporter 1 (SVCT1) and sodium-dependent vitamin C transporter 2 (SVCT2). Although currently not established, it is likely to expect that a state of deficiency may affect the expression of these transporters to preserve vitC concentrations in specific target tissues. We hypothesized that diet-induced states of vitC deficiency lead to alterations in the messenger RNA (mRNA) and/or protein expression of vitC transporters, thereby regulating vitC tissue distribution. Using guinea pigs as a validated model, this study investigated the effects of a diet-induced vitC deficiency (100 mg vitC/kg feed) or depletion (0 mg vitC/kg feed) on the expression of transporters SVCT1 and SVCT2 in selected tissues and the transport from plasma to cerebrospinal fluid (CSF). In deficient animals, SVCT1 was increased in the liver, whereas a decreased SVCT1 expression but increased SVCT2 mRNA in livers of depleted animals suggests a shift in transporter expression as response to the diet. In CSF, a constant plasma:CSF ratio shows unaltered vitC transport irrespective of dietary regime. The study adds novel information to the complex regulation maintaining vitC homeostasis in vivo during states of deficiency. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Renal oxygen content is increased in healthy subjects after angiotensin-converting enzyme inhibition

    Directory of Open Access Journals (Sweden)

    Anna Stein

    2012-07-01

    Full Text Available OBJECTIVE: The association between renal hypoxia and the development of renal injury is well established. However, no adequate method currently exists to non-invasively measure functional changes in renal oxygenation in normal and injured patients. METHOD: R2* quantification was performed using renal blood oxygen level-dependent properties. Five healthy normotensive women (50±5.3 years underwent magnetic resonance imaging in a 1.5T Signa Excite HDx scanner (GE Healthcare, Waukesha, WI. A multiple fast gradient-echo sequence was used to acquire R2*/T2* images (sixteen echoes from 2.1 ms/slice to 49.6 ms/slice in a single breath hold per location. The images were post-processed to generate R2* maps for quantification. Data were recorded before and at 30 minutes after the oral administration of an angiotensin II-converting enzyme inhibitor (captopril, 25 mg. The results were compared using an ANOVA for repeated measurements (mean + standard deviation followed by the Tukey test. ClinicalTrials.gov: NCT01545479. RESULTS: A significant difference (p<0.001 in renal oxygenation (R2* was observed in the cortex and medulla before and after captopril administration: right kidney, cortex = 11.08 ± 0.56ms, medulla = 17.21 ± 1.47ms and cortex = 10.30 ± 0.44ms, medulla = 16.06 ± 1.74ms, respectively; and left kidney, cortex= 11.79 ± 1.85ms, medulla = 17.03 ± 0.88ms and cortex = 10.89 ± 0.91ms, medulla = 16.43 ± 1.49ms, respectively. CONCLUSIONS: This result suggests that the technique efficiently measured alterations in renal blood oxygenation after angiotensin II-converting enzyme inhibition and that it may provide a new strategy for identifying the early stages of renal disease and perhaps new therapeutic targets.

  12. Development of Dual-Phase Oxygen Transport Membranes for Carbon Capture Processes

    DEFF Research Database (Denmark)

    Pirou, Stéven

    Fossil fuel based power plants and industrial production of cement and steel are major sources of anthropogenic CO2 emissions. One of the most promising approaches to capture and store CO2 from such large point sources is the oxy-fuel combustion route, where pure oxygen instead of air is used...

  13. Influence of Cholesterol on the Oxygen Permeability of Membranes: Insight from Atomistic Simulations.

    Science.gov (United States)

    Dotson, Rachel J; Smith, Casey R; Bueche, Kristina; Angles, Gary; Pias, Sally C

    2017-06-06

    Cholesterol is widely known to alter the physical properties and permeability of membranes. Several prior works have implicated cell membrane cholesterol as a barrier to tissue oxygenation, yet a good deal remains to be explained with regard to the mechanism and magnitude of the effect. We use molecular dynamics simulations to provide atomic-resolution insight into the influence of cholesterol on oxygen diffusion across and within the membrane. Our simulations show strong overall agreement with published experimental data, reproducing the shapes of experimental oximetry curves with high accuracy. We calculate the upper-limit transmembrane oxygen permeability of a 1-palmitoyl,2-oleoylphosphatidylcholine phospholipid bilayer to be 52 ± 2 cm/s, close to the permeability of a water layer of the same thickness. With addition of cholesterol, the permeability decreases somewhat, reaching 40 ± 2 cm/s at the near-saturating level of 62.5 mol % cholesterol and 10 ± 2 cm/s in a 100% cholesterol mimic of the experimentally observed noncrystalline cholesterol bilayer domain. These reductions in permeability can only be biologically consequential in contexts where the diffusional path of oxygen is not water dominated. In our simulations, cholesterol reduces the overall solubility of oxygen within the membrane but enhances the oxygen transport parameter (solubility-diffusion product) near the membrane center. Given relatively low barriers to passing from membrane to membrane, our findings support hydrophobic channeling within membranes as a means of cellular and tissue-level oxygen transport. In such a membrane-dominated diffusional scheme, the influence of cholesterol on oxygen permeability is large enough to warrant further attention. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Fuel cell water transport

    Science.gov (United States)

    Vanderborgh, Nicholas E.; Hedstrom, James C.

    1990-01-01

    The moisture content and temperature of hydrogen and oxygen gases is regulated throughout traverse of the gases in a fuel cell incorporating a solid polymer membrane. At least one of the gases traverses a first flow field adjacent the solid polymer membrane, where chemical reactions occur to generate an electrical current. A second flow field is located sequential with the first flow field and incorporates a membrane for effective water transport. A control fluid is then circulated adjacent the second membrane on the face opposite the fuel cell gas wherein moisture is either transported from the control fluid to humidify a fuel gas, e.g., hydrogen, or to the control fluid to prevent excess water buildup in the oxidizer gas, e.g., oxygen. Evaporation of water into the control gas and the control gas temperature act to control the fuel cell gas temperatures throughout the traverse of the fuel cell by the gases.

  15. Preliminary Study of Oxygen-Enhanced Longitudinal Relaxation in MRI: A Potential Novel Biomarker of Oxygenation Changes in Solid Tumors

    International Nuclear Information System (INIS)

    O'Connor, James P.B.; Naish, Josephine H.; Parker, Geoff J.M.; Waterton, John C.; Watson, Yvonne; Jayson, Gordon C.; Buonaccorsi, Giovanni A.; Cheung, Sue; Buckley, David L.; McGrath, Deirdre M.; West, Catharine M.L.; Davidson, Susan E.; Roberts, Caleb; Mills, Samantha J.; Mitchell, Claire L.; Hope, Lynn; Ton, N. Chan; Jackson, Alan

    2009-01-01

    Purpose: There is considerable interest in developing non-invasive methods of mapping tumor hypoxia. Changes in tissue oxygen concentration produce proportional changes in the magnetic resonance imaging (MRI) longitudinal relaxation rate (R 1 ). This technique has been used previously to evaluate oxygen delivery to healthy tissues and is distinct from blood oxygenation level-dependent (BOLD) imaging. Here we report application of this method to detect alteration in tumor oxygenation status. Methods and materials: Ten patients with advanced cancer of the abdomen and pelvis underwent serial measurement of tumor R 1 while breathing medical air (21% oxygen) followed by 100% oxygen (oxygen-enhanced MRI). Gadolinium-based dynamic contrast-enhanced MRI was then performed to compare the spatial distribution of perfusion with that of oxygen-induced ΔR 1 . Results: ΔR 1 showed significant increases of 0.021 to 0.058 s -1 in eight patients with either locally recurrent tumor from cervical and hepatocellular carcinomas or metastases from ovarian and colorectal carcinomas. In general, there was congruency between perfusion and oxygen concentration. However, regional mismatch was observed in some tumor cores. Here, moderate gadolinium uptake (consistent with moderate perfusion) was associated with low area under the ΔR 1 curve (consistent with minimal increase in oxygen concentration). Conclusions: These results provide evidence that oxygen-enhanced longitudinal relaxation can monitor changes in tumor oxygen concentration. The technique shows promise in identifying hypoxic regions within tumors and may enable spatial mapping of change in tumor oxygen concentration.

  16. Oxygen isotopes in tree rings are a good proxy for Amazon precipitation and El Niño-Southern Oscillation variability

    Science.gov (United States)

    Brienen, Roel J. W.; Helle, Gerd; Pons, Thijs L.; Guyot, Jean-Loup; Gloor, Manuel

    2012-10-01

    We present a unique proxy for the reconstruction of variation in precipitation over the Amazon: oxygen isotope ratios in annual rings in tropical cedar (Cedrela odorata). A century-long record from northern Bolivia shows that tree rings preserve the signal of oxygen isotopes in precipitation during the wet season, with weaker influences of temperature and vapor pressure. Tree ring δ18O correlates strongly with δ18O in precipitation from distant stations in the center and west of the basin, and with Andean ice core δ18O showing that the signal is coherent over large areas. The signal correlates most strongly with basin-wide precipitation and Amazon river discharge. We attribute the strength of this (negative) correlation mainly to the cumulative rainout processes of oxygen isotopes (Rayleigh distillation) in air parcels during westward transport across the basin. We further find a clear signature of the El Niño-Southern Oscillation (ENSO) in the record, with strong ENSO influences over recent decades, but weaker influence from 1925 to 1975 indicating decadal scale variation in the controls on the hydrological cycle. The record exhibits a significant increase in δ18O over the 20th century consistent with increases in Andean δ18O ice core and lake records, which we tentatively attribute to increased water vapor transport into the basin. Taking these data together, our record reveals a fresh path to diagnose and improve our understanding of variation and trends of the hydrological cycle of the world's largest river catchment.

  17. Structure of the Zymomonas mobilis respiratory chain: oxygen affinity of electron transport and the role of cytochrome c peroxidase.

    Science.gov (United States)

    Balodite, Elina; Strazdina, Inese; Galinina, Nina; McLean, Samantha; Rutkis, Reinis; Poole, Robert K; Kalnenieks, Uldis

    2014-09-01

    The genome of the ethanol-producing bacterium Zymomonas mobilis encodes a bd-type terminal oxidase, cytochrome bc1 complex and several c-type cytochromes, yet lacks sequences homologous to any of the known bacterial cytochrome c oxidase genes. Recently, it was suggested that a putative respiratory cytochrome c peroxidase, receiving electrons from the cytochrome bc1 complex via cytochrome c552, might function as a peroxidase and/or an alternative oxidase. The present study was designed to test this hypothesis, by construction of a cytochrome c peroxidase mutant (Zm6-perC), and comparison of its properties with those of a mutant defective in the cytochrome b subunit of the bc1 complex (Zm6-cytB). Disruption of the cytochrome c peroxidase gene (ZZ60192) caused a decrease of the membrane NADH peroxidase activity, impaired the resistance of growing culture to exogenous hydrogen peroxide and hampered aerobic growth. However, this mutation did not affect the activity or oxygen affinity of the respiratory chain, or the kinetics of cytochrome d reduction. Furthermore, the peroxide resistance and membrane NADH peroxidase activity of strain Zm6-cytB had not decreased, but both the oxygen affinity of electron transport and the kinetics of cytochrome d reduction were affected. It is therefore concluded that the cytochrome c peroxidase does not terminate the cytochrome bc1 branch of Z. mobilis, and that it is functioning as a quinol peroxidase. © 2014 The Authors.

  18. Definition, significance and measurement of quantities pertaining to the oxygen carrying properties of human blood

    NARCIS (Netherlands)

    Zijlstra, WG; Maas, AHJ; Moran, RF

    1996-01-01

    A consistent set of definitions is given of the principal quantities pertaining to the oxygen transport by the blood, and of their mutual relationships, in relation to the methods used in their measurement. At the core is the correct definition of oxygen saturation, the deviation of which has

  19. Milrinone, dobutamine or epinephrine use in asphyxiated newborn pigs resuscitated with 100% oxygen.

    Science.gov (United States)

    Joynt, Chloë; Bigam, David L; Charrois, Gregory; Jewell, Laurence D; Korbutt, Gregory; Cheung, Po-Yin

    2010-06-01

    After resuscitation, asphyxiated neonates often develop poor cardiac function with hypotension, pulmonary hypertension and multiorgan ischemia. In a swine model of neonatal hypoxia-reoxygenation, effects of epinephrine, dobutamine and milrinone on systemic, pulmonary and regional hemodynamics and oxygen transport were compared. Controlled, block-randomized study. University research laboratory. Mixed breed piglets (1-3 days, 1.5-2.3 kg). In acutely instrumented piglets, normocapnic alveolar hypoxia (10-15% oxygen) was induced for 2 h followed by reoxygenation with 100% oxygen (1 h) then 21% oxygen (3 h). At 2 h of reoxygenation, after volume loading (Ringer's lactate 10 ml/kg), either saline (placebo), epinephrine (0.5 microg/kg/min), dobutamine (20 microg/kg/min) or milrinone (0.75 microg/kg/min) were infused for 2 h in a blinded, block-randomized fashion (n = 6/group). All medications similarly improved cardiac output, stroke volume and systemic oxygen delivery (vs. placebo-controls, p milrinone maintained, mean arterial pressure over pretreatment values while placebo-treated piglets developed hypotension and shock. The mean arterial to pulmonary arterial pressures ratio was not different among groups. All medications significantly increased carotid and intestinal, but not renal, arterial blood flows and oxygen delivery, whereas milrinone caused lower renal vascular resistance than epinephrine and dobutamine-treated groups. Plasma troponin I, plasma and myocardial lactate levels, and histologic ischemic features were not different among groups. In newborn piglets with hypoxia-reoxygenation, epinephrine, dobutamine and milrinone are effective inotropes to improve cardiac output, carotid and intestinal perfusion, without aggravating pulmonary hypertension. Milrinone may also improve renal perfusion.

  20. One year of Seaglider dissolved oxygen concentration profiles at the PAP site

    Science.gov (United States)

    Binetti, Umberto; Kaiser, Jan; Heywood, Karen; Damerell, Gillian; Rumyantseva, Anna

    2015-04-01

    Oxygen is one of the most important variables measured in oceanography, influenced both by physical and biological factors. During the OSMOSIS project, 7 Seagliders were used in 3 subsequent missions to measure a multidisciplinary suite of parameters at high frequency in the top 1000 m of the water column for one year, from September 2012 to September 2013. The gliders were deployed at the PAP time series station (nominally at 49° N 16.5° W) and surveyed the area following a butterfly-shaped path. Oxygen concentration was measured by Aanderaa optodes and calibrated using ship CTD O2 profiles during 5 deployment and recovery cruises, which were in turn calibrated by Winkler titration of discrete samples. The oxygen-rich mixed layer deepens in fall and winter and gets richer in oxygen when the temperature decreases. The spring bloom did not happen as expected, but instead the presence of a series of small blooms was measured throughout spring and early summer. During the summer the mixed layer become very shallow and oxygen concentrations decreased. A Deep Oxygen Maximum (DOM) developed along with a deep chlorophyll maximum during the summer and was located just below the mixed layer . At this depth, phytoplankton had favourable light and nutrient conditions to grow and produce oxygen, which was not subject to immediate outgassing. The oxygen concentration in the DOM was not constant, but decreased, then increased again until the end of the mission. Intrusions of oxygen rich water are also visible throughout the mission. These are probably due to mesoscale events through the horizontal transport of oxygen and/or nutrients that can enhance productivity, particularly at the edge of the fronts. We calculate net community production (NCP) by analysing the variation in oxygen with time. Two methods have been proposed. The classical oxygen budget method assumes that changes in oxygen are due to the sum of air-sea flux, isopycnal advection, diapycnal mixing and NCP. ERA

  1. A blood-oxygenation-dependent increase in blood viscosity due to a static magnetic field

    International Nuclear Information System (INIS)

    Yamamoto, Toru; Nagayama, Yuki; Tamura, Mamoru

    2004-01-01

    As the magnetic field of widely used MR scanners is one of the strongest magnetic fields to which people are exposed, the biological influence of the static magnetic field of MR scanners is of great concern. One magnetic interaction in biological subjects is the magnetic torque on the magnetic moment induced by biomagnetic substances. The red blood cell is a major biomagnetic substance, and the blood flow may be influenced by the magnetic field. However, the underlying mechanisms have been poorly understood. To examine the mechanisms of the magnetic influence on blood viscosity, we measured the time for blood to fall through a glass capillary inside and outside a 1.5 T MR scanner. Our in vitro results showed that the blood viscosity significantly increased in a 1.5 T MR scanner, and also clarified the mechanism of the interaction between red blood cells and the external magnetic field. Notably, the blood viscosity increased depending on blood oxygenation and the shear rate of the blood flow. Thus, our findings suggest that even a 1.5 T magnetic field may modulate blood flow

  2. Investigation of ferromagnetism in oxygen deficient hafnium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Erwin; Kurian, Jose; Krockenberger, Yoshiharu; Alff, Lambert [Institut fuer Materialwissenschaft, TU Darmstadt (Germany); Suter, Andreas [PSI, Villingen (Switzerland); Wilhelm, Fabrice; Rogalev, Andrei [ESRF, Grenoble (France)

    2008-07-01

    Oxygen deficient thin films of hafnium oxide were grown on single crystal r-cut and c-cut sapphire by reactive molecular beam epitaxy. RF-activated oxygen was used for the in situ oxidation of hafnium oxide thin films. Oxidation conditions were varied substantially in order to create oxygen deficiency in hafnium oxide films intentionally. The films were characterized by X-ray and magnetic measurements. X-ray diffraction studies show an increase in lattice parameter with increasing oxygen deficiency. Oxygen deficient hafnium oxide thin films also showed a decreasing bandgap with increase in oxygen deficiency. The magnetisation studies carried out with SQUID did not show any sign of ferromagnetism in the whole oxygen deficiency range. X-ray magnetic circular dichroism measurements also confirmed the absence of ferromagnetism in oxygen deficient hafnium oxide thin films.

  3. Neuroprotection of hyperbaric oxygen therapy in sub-acute traumatic brain injury: not by immediately improving cerebral oxygen saturation and oxygen partial pressure.

    Science.gov (United States)

    Zhou, Bao-Chun; Liu, Li-Jun; Liu, Bing

    2016-09-01

    Although hyperbaric oxygen (HBO) therapy can promote the recovery of neural function in patients who have suffered traumatic brain injury (TBI), the underlying mechanism is unclear. We hypothesized that hyperbaric oxygen treatment plays a neuroprotective role in TBI by increasing regional transcranial oxygen saturation (rSO 2 ) and oxygen partial pressure (PaO 2 ). To test this idea, we compared two groups: a control group with 20 healthy people and a treatment group with 40 TBI patients. The 40 patients were given 100% oxygen of HBO for 90 minutes. Changes in rSO 2 were measured. The controls were also examined for rSO 2 and PaO 2 , but received no treatment. rSO 2 levels in the patients did not differ significantly after treatment, but levels before and after treatment were significantly lower than those in the control group. PaO 2 levels were significantly decreased after the 30-minute HBO treatment. Our findings suggest that there is a disorder of oxygen metabolism in patients with sub-acute TBI. HBO does not immediately affect cerebral oxygen metabolism, and the underlying mechanism still needs to be studied in depth.

  4. Impaired pH Homeostasis in Arabidopsis Lacking the Vacuolar Dicarboxylate Transporter and Analysis of Carboxylic Acid Transport across the Tonoplast1

    Science.gov (United States)

    Hurth, Marco Alois; Suh, Su Jeoung; Kretzschmar, Tobias; Geis, Tina; Bregante, Monica; Gambale, Franco; Martinoia, Enrico; Neuhaus, H. Ekkehard

    2005-01-01

    Arabidopsis (Arabidopsis thaliana) mutants lacking the tonoplastic malate transporter AttDT (A. thaliana tonoplast dicarboxylate transporter) and wild-type plants showed no phenotypic differences when grown under standard conditions. To identify putative metabolic changes in AttDT knock-out plants, we provoked a metabolic scenario connected to an increased consumption of dicarboxylates. Acidification of leaf discs stimulated dicarboxylate consumption and led to extremely low levels of dicarboxylates in mutants. To investigate whether reduced dicarboxylate concentrations in mutant leaf cells and, hence, reduced capacity to produce OH− to overcome acidification might affect metabolism, we measured photosynthetic oxygen evolution under conditions where the cytosol is acidified. AttDT::tDNA protoplasts showed a much stronger inhibition of oxygen evolution at low pH values when compared to wild-type protoplasts. Apparently citrate, which is present in higher amounts in knock-out plants, is not able to replace dicarboxylates to overcome acidification. To raise more information on the cellular level, we performed localization studies of carboxylates. Although the total pool of carboxylates in mutant vacuoles was nearly unaltered, these organelles contained a lower proportion of malate and fumarate and a higher proportion of citrate when compared to wild-type vacuoles. These alterations concur with the observation that radioactively labeled malate and citrate are transported into Arabidopsis vacuoles by different carriers. In addition, wild-type vacuoles and corresponding organelles from AttDT::tDNA mutants exhibited similar malate channel activities. In conclusion, these results show that Arabidopsis vacuoles contain at least two transporters and a channel for dicarboxylates and citrate and that the activity of AttDT is critical for regulation of pH homeostasis. PMID:15728336

  5. Measurements and modeling of transport and impurity radial profiles in the EXTRAP T2R reversed field pinch

    Science.gov (United States)

    Kuldkepp, M.; Brunsell, P. R.; Cecconello, M.; Dux, R.; Menmuir, S.; Rachlew, E.

    2006-09-01

    Radial impurity profiles of oxygen in the rebuilt reversed field pinch EXTRAP T2R [P. R. Brunsell et al., Plasma Phys. Control. Fusion 43, 1457 (2001)] have been measured with a multichannel spectrometer. Absolute ion densities for oxygen peak between 1-4×1010cm-3 for a central electron density of 1×1013cm-3. Transport simulations with the one-dimensional transport code STRAHL with a diffusion coefficient of 20m2 s-1 yield density profiles similar to those measured. Direct measurement of the ion profile evolution during pulsed poloidal current drive suggests that the diffusion coefficient is reduced by a factor ˜2 in the core but remains unaffected toward the edge. Core transport is not significantly affected by the radial magnetic field growth seen at the edge in discharges without feedback control. This indicates that the mode core amplitude remains the same while the mode eigenfunction increases at the edge.

  6. Measurements and modeling of transport and impurity radial profiles in the EXTRAP T2R reversed field pinch

    International Nuclear Information System (INIS)

    Kuldkepp, M.; Brunsell, P. R.; Cecconello, M.; Dux, R.; Menmuir, S.; Rachlew, E.

    2006-01-01

    Radial impurity profiles of oxygen in the rebuilt reversed field pinch EXTRAP T2R [P. R. Brunsell et al., Plasma Phys. Control. Fusion 43, 1457 (2001)] have been measured with a multichannel spectrometer. Absolute ion densities for oxygen peak between 1-4x10 10 cm -3 for a central electron density of 1x10 13 cm -3 . Transport simulations with the one-dimensional transport code STRAHL with a diffusion coefficient of 20 m 2 s -1 yield density profiles similar to those measured. Direct measurement of the ion profile evolution during pulsed poloidal current drive suggests that the diffusion coefficient is reduced by a factor ∼2 in the core but remains unaffected toward the edge. Core transport is not significantly affected by the radial magnetic field growth seen at the edge in discharges without feedback control. This indicates that the mode core amplitude remains the same while the mode eigenfunction increases at the edge

  7. Recombination and detachment in oxygen discharges: the role of metastable oxygen molecules

    International Nuclear Information System (INIS)

    Gudmundsson, J T

    2004-01-01

    A global (volume averaged) model of oxygen discharges is used to study the transition from a recombination dominated discharge to a detachment dominated discharge. The model includes the metastable oxygen molecules O 2 (a 1 Δ g ) and O 2 (b 1 Σ g + ) and the three Herzberg states O 2 (A 3 Σ u + , A' 3 Δ u , c 1 Σ u - ). Dissociative attachment of the oxygen molecule in the ground state O 2 ( 3 Σ g - ) and the metastable oxygen molecule O 2 (a 1 Δ g ) are the dominating channels for creation of the negative oxygen ion O - . At high pressures, dissociative attachment of the Herzberg states contributes significantly to the creation of the negative oxygen ion, O - . The detachment by a collision of the metastable oxygen molecule O 2 (b 1 Σ g + ) with the oxygen ion, O - , is a significant loss process for the O - at pressures above 10 mTorr. Its contribution to the loss is more significant at a lower applied power, but at the higher pressures it is always significant. Detachment by collision with O( 3 P) is also an important loss mechanism for O - . We find that ion-ion recombination is the dominating loss process for negative ions in oxygen discharges at low pressures and calculate the critical pressure where the contributions of recombination reactions and detachment reactions are equal. This critical pressure depends on the applied power, increases with applied power and is in the range 5-14 mTorr in the pressure and power range investigated

  8. Near-infrared oxygen airglow from the Venus nightside

    Science.gov (United States)

    Crisp, D.; Meadows, V. S.; Allen, D. A.; Bezard, B.; Debergh, C.; Maillard, J.-P.

    1992-01-01

    Groundbased imaging and spectroscopic observations of Venus reveal intense near-infrared oxygen airglow emission from the upper atmosphere and provide new constraints on the oxygen photochemistry and dynamics near the mesopause (approximately 100 km). Atomic oxygen is produced by the Photolysis of CO2 on the dayside of Venus. These atoms are transported by the general circulation, and eventually recombine to form molecular oxygen. Because this recombination reaction is exothermic, many of these molecules are created in an excited state known as O2(delta-1). The airglow is produced as these molecules emit a photon and return to their ground state. New imaging and spectroscopic observations acquired during the summer and fall of 1991 show unexpected spatial and temporal variations in the O2(delta-1) airglow. The implications of these observations for the composition and general circulation of the upper venusian atmosphere are not yet understood but they provide important new constraints on comprehensive dynamical and chemical models of the upper mesosphere and lower thermosphere of Venus.

  9. Oxygen discharge and post-discharge kinetics experiments and modeling for the electric oxygen-iodine laser system.

    Science.gov (United States)

    Palla, A D; Zimmerman, J W; Woodard, B S; Carroll, D L; Verdeyen, J T; Lim, T C; Solomon, W C

    2007-07-26

    Laser oscillation at 1315 nm on the I(2P1/2)-->I(2P3/2) transition of atomic iodine has been obtained by a near resonant energy transfer from O2(a1Delta) produced using a low-pressure oxygen/helium/nitric oxide discharge. In the electric discharge oxygen-iodine laser (ElectricOIL) the discharge production of atomic oxygen, ozone, and other excited species adds levels of complexity to the singlet oxygen generator (SOG) kinetics which are not encountered in a classic purely chemical O2(a1Delta) generation system. The advanced model BLAZE-IV has been introduced to study the energy-transfer laser system dynamics and kinetics. Levels of singlet oxygen, oxygen atoms, and ozone are measured experimentally and compared with calculations. The new BLAZE-IV model is in reasonable agreement with O3, O atom, and gas temperature measurements but is under-predicting the increase in O2(a1Delta) concentration resulting from the presence of NO in the discharge and under-predicting the O2(b1Sigma) concentrations. A key conclusion is that the removal of oxygen atoms by NOX species leads to a significant increase in O2(a1Delta) concentrations downstream of the discharge in part via a recycling process; however, there are still some important processes related to the NOX discharge kinetics that are missing from the present modeling. Further, the removal of oxygen atoms dramatically inhibits the production of ozone in the downstream kinetics.

  10. Hyperbaric oxygen therapy in periodontal diseases

    Directory of Open Access Journals (Sweden)

    Swapna A. Mahale

    2013-01-01

    Full Text Available Hyperbaric oxygen (HBO 2 has been successfully used in several medical fields. The therapeutic effect is related to elevated partial oxygen pressure in the tissues. The pressure itself enhances oxygen solubility in the tissue fluids. HBO 2 has shown to affect angiogenesis, bone metabolism and bone turnover. Studies have been conducted to analyze the effects of HBO 2 therapy on periodontal disease. HBO 2 increases local oxygen distribution, especially at the base of the periodontal pocket, which inhibits the growth of anaerobic bacteria and allows the ischemic tissues to receive an adequate intake of oxygen sufficient for a rapid recovery of cell metabolism. It is increasingly being accepted as a beneficial adjunct to diverse clinical conditions. Nonhealing ulcers, chronic wounds and refractory osteomyelitis are a few conditions for which HBO therapy (HBOT has been extensively tried out. The dental surgeons have found a good ally in HBOT in managing dental condition.

  11. Determination of Biochemical Oxygen Demand of Area Waters: A Bioassay Procedure for Environmental Monitoring

    Science.gov (United States)

    Riehl, Matthew

    2012-01-01

    A graphical method for determining the 5-day biochemical oxygen demand (BOD5) for a body of water is described. In this bioassay, students collect a sample of water from a designated site, transport it to the laboratory, and evaluate the amount of oxygen consumed by naturally occurring bacteria during a 5-day incubation period. An accuracy check,…

  12. A health impact assessment of proposed public transportation service cuts and fare increases in Boston, Massachusetts (U.S.A.).

    Science.gov (United States)

    James, Peter; Ito, Kate; Buonocore, Jonathan J; Levy, Jonathan I; Arcaya, Mariana C

    2014-08-07

    Transportation decisions have health consequences that are often not incorporated into policy-making processes. Health Impact Assessment (HIA) is a process that can be used to evaluate health effects of transportation policy. We present a rapid HIA, conducted over eight weeks, evaluating health and economic effects of proposed fare increases and service cuts to Boston, Massachusetts' public transportation system. We used transportation modeling in concert with tools allowing for quantification and monetization of multiple pathways. We estimated health and economic costs of proposed public transportation system changes to be hundreds of millions of dollars per year, exceeding the budget gap the public transportation authority was required to close. Significant health pathways included crashes, air pollution, and physical activity. The HIA enabled stakeholders to advocate for more modest fare increases and service cuts, which were eventually adopted by decision makers. This HIA was among the first to quantify and monetize multiple pathways linking transportation decisions with health and economic outcomes, using approaches that could be applied in different settings. Including health costs in transportation decisions can lead to policy choices with both economic and public health benefits.

  13. A Health Impact Assessment of Proposed Public Transportation Service Cuts and Fare Increases in Boston, Massachusetts (U.S.A.

    Directory of Open Access Journals (Sweden)

    Peter James

    2014-08-01

    Full Text Available Transportation decisions have health consequences that are often not incorporated into policy-making processes. Health Impact Assessment (HIA is a process that can be used to evaluate health effects of transportation policy. We present a rapid HIA, conducted over eight weeks, evaluating health and economic effects of proposed fare increases and service cuts to Boston, Massachusetts’ public transportation system. We used transportation modeling in concert with tools allowing for quantification and monetization of multiple pathways. We estimated health and economic costs of proposed public transportation system changes to be hundreds of millions of dollars per year, exceeding the budget gap the public transportation authority was required to close. Significant health pathways included crashes, air pollution, and physical activity. The HIA enabled stakeholders to advocate for more modest fare increases and service cuts, which were eventually adopted by decision makers. This HIA was among the first to quantify and monetize multiple pathways linking transportation decisions with health and economic outcomes, using approaches that could be applied in different settings. Including health costs in transportation decisions can lead to policy choices with both economic and public health benefits.

  14. Using agent based modeling to assess the effect of increased Bus Rapid Transit system infrastructure on walking for transportation.

    Science.gov (United States)

    Lemoine, Pablo D; Cordovez, Juan Manuel; Zambrano, Juan Manuel; Sarmiento, Olga L; Meisel, Jose D; Valdivia, Juan Alejandro; Zarama, Roberto

    2016-07-01

    The effect of transport infrastructure on walking is of interest to researchers because it provides an opportunity, from the public policy point of view, to increase physical activity (PA). We use an agent based model (ABM) to examine the effect of transport infrastructure on walking. Particular relevance is given to assess the effect of the growth of the Bus Rapid Transit (BRT) system in Bogotá on walking. In the ABM agents are assigned a home, work location, and socioeconomic status (SES) based on which they are assigned income for transportation. Individuals must decide between the available modes of transport (i.e., car, taxi, bus, BRT, and walking) as the means of reaching their destination, based on resources and needed travel time. We calibrated the model based on Bogota's 2011 mobility survey. The ABM results are consistent with previous empirical findings, increasing BRT access does indeed increase the number of minutes that individuals walk for transportation, although this effect also depends on the availability of other transport modes. The model indicates a saturation process: as more BRT lanes are added, the increment in minutes walking becomes smaller, and eventually the walking time decreases. Our findings on the potential contribution of the expansion of the BRT system to walking for transportation suggest that ABMs may prove helpful in designing policies to continue promoting walking. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Development of pulmonary vascular response to oxygen

    International Nuclear Information System (INIS)

    Morin, F.C. III; Egan, E.A.; Ferguson, W.; Lundgren, C.E.

    1988-01-01

    The ability of the pulmonary circulation of the fetal lamb to respond to a rise in oxygen tension was studied from 94 to 146 days of gestation. The unanesthetized ewe breathed room air at normal atmospheric pressure, followed by 100% oxygen at three atmospheres absolute pressure in a hyperbaric chamber. In eleven near-term lambs, fetal arterial oxygen tension (Pa O 2 ) increased from 25 to 55 Torr, which increased the proportion or right ventricular output distributed to the fetal lungs from 8 to 59%. In five very immature lambs fetal Pa O 2 increased from 27 to 174 Torr, but the proportion of right ventricular output distributed to the lung did not change. In five of the near-term lambs, pulmonary blood flow was measured. For each measurement of the distribution of blood flow, approximately 8 x 10 5 spheres of 15-μm diameter, labeled with either 153 Gd, 113 Sn, 103 Ru, 95 Nb, or 46 Sc were injected. It increased from 34 to 298 ml · kg fetal wt -1 · min -1 , an 8.8-fold increase. The authors conclude that the pulmonary circulation of the fetal lamb does not respond to an increase in oxygen tension before 101 days of gestation; however, near term an increase in oxygen tension alone can induce the entire increase in pulmonary blood flow that normally occurs after the onset of breathing at birth

  16. Liquid-core nanocellulose-shell capsules with tunable oxygen permeability.

    Science.gov (United States)

    Svagan, A J; Bender Koch, C; Hedenqvist, M S; Nilsson, F; Glasser, G; Baluschev, S; Andersen, M L

    2016-01-20

    Encapsulation of oxygen sensitive components is important in several areas, including those in the food and pharmaceutical sectors, in order to improve shelf-life (oxidation resistance). Neat nanocellulose films demonstrate outstanding oxygen barrier properties, and thus nanocellulose-based capsules are interesting from the perspective of enhanced protection from oxygen. Herein, two types of nanocellulose-based capsules with liquid hexadecane cores were successfully prepared; a primary nanocellulose polyurea-urethane capsule (diameter: 1.66 μm) and a bigger aggregate capsule (diameter: 8.3 μm) containing several primary capsules in a nanocellulose matrix. To quantify oxygen permeation through the capsule walls, an oxygen-sensitive spin probe was dissolved within the liquid hexadecane core, allowing non-invasive measurements (spin-probe oximetry, electron spin resonance, ESR) of the oxygen concentration within the core. It was observed that the oxygen uptake rate was significantly reduced for both capsule types compared to a neat hexadecane solution containing the spin-probe, i.e. the slope of the non-steady state part of the ESR-curve was approximately one-third and one-ninth for the primary nanocellulose capsule and aggregated capsule, respectively, compared to that for the hexadecane sample. The transport of oxygen was modeled mathematically and by fitting to the experimental data, the oxygen diffusion coefficients of the capsule wall was determined. These values were, however, lower than expected and one plausible reason for this was that the ESR-technique underestimate the true oxygen uptake rate in the present systems at non-steady conditions, when the overall diffusion of oxygen was very slow. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Improvement of AD Biosynthesis Response to Enhanced Oxygen Transfer by Oxygen Vectors in Mycobacterium neoaurum TCCC 11979.

    Science.gov (United States)

    Su, Liqiu; Shen, Yanbing; Gao, Tian; Luo, Jianmei; Wang, Min

    2017-08-01

    In steroid biotransformation, soybean oil can improve the productivity of steroids by increasing substrate solubility and strengthen the cell membrane permeability. However, little is known of its role as oxygen carrier and its mechanism of promoting the steroid biotransformation. In this work, soybean oil used as oxygen vector for the enhancement of androst-4-ene-3,17-dione (AD) production by Mycobacterium neoaurum TCCC 11979 (MNR) was investigated. Upon the addition of 16% (v/v) soybean oil, the volumetric oxygen transfer coefficient (K L a) value increased by 44%, and the peak molar yield of AD (55.76%) was achieved. Analysis of intracellular cofactor levels showed high NAD + , ATP level, and a low NADH/NAD + ratio. Meanwhile, the two key enzymes of the tricarboxylic acid (TCA) cycle, namely, isocitrate dehydrogenase and α-ketoglutarate dehydrogenase, were upregulated after incubation with soybean oil. These enhancements induced by the increasing of oxygen supply showed positive effects on phytosterol (PS) bioconversion. Results could contribute to the understanding of effects of soybean oil as oxygen vector on steroid biotransformation and provided a convenient method for enhancing the efficiency of aerobic steroid biocatalysis.

  18. Dynamic oxygen-enhanced MRI of cerebrospinal fluid.

    Directory of Open Access Journals (Sweden)

    Taha M Mehemed

    Full Text Available Oxygen causes an increase in the longitudinal relaxation rate of tissues through its T1-shortening effect owing to its paramagnetic properties. Due to such effects, MRI has been used to study oxygen-related signal intensity changes in various body parts including cerebrospinal fluid (CSF space. Oxygen enhancement of CSF has been mainly studied using MRI sequences with relatively longer time resolution such as FLAIR, and T1 value calculation. In this study, fifteen healthy volunteers were scanned using fast advanced spin echo MRI sequence with and without inversion recovery pulse in order to dynamically track oxygen enhancement of CSF. We also focused on the differences of oxygen enhancement at sulcal and ventricular CSF. Our results revealed that CSF signal after administration of oxygen shows rapid signal increase in both sulcal CSF and ventricular CSF on both sequences, with statistically significant predominant increase in sulcal CSF compared with ventricular CSF. CSF is traditionally thought to mainly form from the choroid plexus in the ventricles and is absorbed at the arachnoid villi, however, it is also believed that cerebral arterioles contribute to the production and absorption of CSF, and controversy remains in terms of the precise mechanism. Our results demonstrated rapid oxygen enhancement in sulcal CSF, which may suggest inhaled oxygen may diffuse into sulcal CSF space rapidly probably due to the abundance of pial arterioles on the brain sulci.

  19. Clinical oxygen enhancement ratio of tumors in carbon ion radiotherapy: the influence of local oxygenation changes

    DEFF Research Database (Denmark)

    Antonovic, Laura; Lindblom, Emely; Dasu, Alexandru

    2014-01-01

    , using the repairable–conditionally repairable (RCR) damage model with parameters for human salivary gland tumor cells. The clinical oxygen enhancement ratio (OER) was defined as the ratio of doses required for a tumor control probability of 50% for hypoxic and well-oxygenated tumors. The resulting OER...... was well above unity for all fractionations. For the hypoxic tumor, the tumor control probability was considerably higher if LOCs were assumed, rather than static oxygenation. The beneficial effect of LOCs increased with the number of fractions. However, for very low fraction doses, the improvement related...... to LOCs did not compensate for the increase in total dose required for tumor control. In conclusion, our results suggest that hypoxia can influence the outcome of carbon ion radiotherapy because of the non-negligible oxygen effect at the low LETs in the SOBP. However, if LOCs occur, a relatively high...

  20. Polyamine transporters and polyamines increase furfural tolerance during xylose fermentation with ethanologenic Escherichia coli strain LY180.

    Science.gov (United States)

    Geddes, Ryan D; Wang, Xuan; Yomano, Lorraine P; Miller, Elliot N; Zheng, Huabao; Shanmugam, Keelnatham T; Ingram, Lonnie O

    2014-10-01

    Expression of genes encoding polyamine transporters from plasmids and polyamine supplements increased furfural tolerance (growth and ethanol production) in ethanologenic Escherichia coli LY180 (in AM1 mineral salts medium containing xylose). This represents a new approach to increase furfural tolerance and may be useful for other organisms. Microarray comparisons of two furfural-resistant mutants (EMFR9 and EMFR35) provided initial evidence for the importance of polyamine transporters. Each mutant contained a single polyamine transporter gene that was upregulated over 100-fold (microarrays) compared to that in the parent LY180, as well as a mutation that silenced the expression of yqhD. Based on these genetic changes, furfural tolerance was substantially reconstructed in the parent, LY180. Deletion of potE in EMFR9 lowered furfural tolerance to that of the parent. Deletion of potE and puuP in LY180 also decreased furfural tolerance, indicating functional importance of the native genes. Of the 8 polyamine transporters (18 genes) cloned and tested, half were beneficial for furfural tolerance (PotE, PuuP, PlaP, and PotABCD). Supplementing AM1 mineral salts medium with individual polyamines (agmatine, putrescine, and cadaverine) also increased furfural tolerance but to a smaller extent. In pH-controlled fermentations, polyamine transporter plasmids were shown to promote the metabolism of furfural and substantially reduce the time required to complete xylose fermentation. This increase in furfural tolerance is proposed to result from polyamine binding to negatively charged cellular constituents such as nucleic acids and phospholipids, providing protection from damage by furfural. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. Spontaneous calcium waves in Bergman glia increase with age and hypoxia and may reduce tissue oxygen

    DEFF Research Database (Denmark)

    Mathiesen, Claus; Brazhe, Alexey; Thomsen, Kirsten Joan

    2013-01-01

    Glial calcium (Ca(2+)) waves constitute a means to spread signals between glial cells and to neighboring neurons and blood vessels. These waves occur spontaneously in Bergmann glia (BG) of the mouse cerebellar cortex in vivo. Here, we tested three hypotheses: (1) aging and reduced blood oxygen sa...... activity during aging, as well as low resting brain oxygen tension, suggests a relationship between glial waves, brain energy homeostasis, and pathology.......Glial calcium (Ca(2+)) waves constitute a means to spread signals between glial cells and to neighboring neurons and blood vessels. These waves occur spontaneously in Bergmann glia (BG) of the mouse cerebellar cortex in vivo. Here, we tested three hypotheses: (1) aging and reduced blood oxygen...... saturation alters wave activity; (2) glial Ca(2+) waves change cerebral oxygen metabolism; and (3) neuronal and glial wave activity is correlated. We used two-photon microscopy in the cerebellar cortexes of adult (8- to 15-week-old) and aging (48- to 80-week-old) ketamine-anesthetized mice after bolus...

  2. Oxygen--a limiting factor for brain recovery.

    Science.gov (United States)

    Hadanny, Amir; Efrati, Shai

    2015-09-01

    Effective brain metabolism is highly dependent on a narrow therapeutic window of oxygen. In major insults to the brain (e.g., intracerebral hemorrhage), a slight decrease in oxygen supply, as occurs in a hypobaric environment at high altitude, has devastating effects on the injured brain tissue. Conversely, increasing brain oxygenation, by the use of hyperbaric oxygen therapy, can improve brain metabolism and its dependent regenerative processes.

  3. Oxygen - a limiting factor for brain recovery

    OpenAIRE

    Hadanny, Amir; Efrati, Shai

    2015-01-01

    Effective brain metabolism is highly dependent on a narrow therapeutic window of oxygen. In major insults to the brain (e.g., intracerebral hemorrhage), a slight decrease in oxygen supply, as occurs in a hypobaric environment at high altitude, has devastating effects on the injured brain tissue. Conversely, increasing brain oxygenation, by the use of hyperbaric oxygen therapy, can improve brain metabolism and its dependent regenerative processes.

  4. Oxygen and disorder effect in the magnetic properties of manganite films

    Energy Technology Data Exchange (ETDEWEB)

    Sirena, M. E-mail: sirenam@ib.cnea.gov.ar; Haberkorn, N.; Granada, M.; Steren, L.B.; Guimpel, J

    2004-05-01

    We have made a systematic study of the magnetic properties of low doped manganite films submitted to different oxygenation treatments. We have found that oxygenation dynamics depends critically of the strain field in the sample. The T{sub C} and the Mr increase as the oxygen content is increased. A decrease of the coercive field of the LSMO-STO films was observed, indicating that annealing treatments increase the oxygen content reducing oxygen vacancies.

  5. Oxygen and disorder effect in the magnetic properties of manganite films

    International Nuclear Information System (INIS)

    Sirena, M.; Haberkorn, N.; Granada, M.; Steren, L.B.; Guimpel, J.

    2004-01-01

    We have made a systematic study of the magnetic properties of low doped manganite films submitted to different oxygenation treatments. We have found that oxygenation dynamics depends critically of the strain field in the sample. The T C and the Mr increase as the oxygen content is increased. A decrease of the coercive field of the LSMO-STO films was observed, indicating that annealing treatments increase the oxygen content reducing oxygen vacancies

  6. Oxygen microclusters in Czochralski-grown Si probed by positron annihilation

    International Nuclear Information System (INIS)

    Uedono, Akira; Wei Long; Tanigawa, Shoichiro; Kawano, Takao; Ikari, Atsushi; Kawakami, Kazuto; Itoh, Hisayoshi.

    1994-01-01

    Trapping of positrons by oxygen microclusters in Czochralski-grown Si was studied. Lifetime spectra of positrons were measured for Si specimens annealed in the temperature range between 450degC and 1000degC. Positrons were found to be trapped by oxygen microclusters, and the trapping rate of positrons into such defects increased with increasing annealing temperature. In order to investigate the clustering behaviors of oxygen atoms in more derail, vacancy-oxygen complexes, V n O m (n,m=1,2, ···), were introduced by 3MeV electron irradiation. The concentration of monovacancy-oxygen complexes VO m (m=2,3, ···) increased with increasing annealing temperature. These facts were attributed that the oxygen microclusters, O m , were introduced by annealing above 700degC. (author)

  7. High performance electrode for electrochemical oxygen generator cell based on solid electrolyte ion transport membrane

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei; Shao, Zongping; Ran, Ran; Chen, Zhihao; Zeng, Pingying; Gu, Hongxia; Jin, Wanqin; Xu, Nanping [College of Chemistry and Chemical Engineering, Nanjing University of Technology, No. 5 Xin Mofan Road, Nanjing 210009, JiangSu (China)

    2007-06-30

    A double-layer composite electrode based on Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} + Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9} (BSCF + SDC) and BSCF + SDC + Ag was investigated to be a promising cathode and also anode for the electrochemical oxygen generator based on samaria doped ceria electrolyte. The Ag particles in the second layer were not only the current collector but also the improver for the oxygen adsorption at the electrode. a.c. impedance results indicated that the electrode polarization resistance, as low as 0.0058 {omega} cm{sup 2} was reached at 800 C under air. In oxygen generator cell performance test, the electrode resistance dropped to half of the value at zero current density under an applied current density of 2.34 A cm{sup -2} at 700 C, and on the same conditions the oxygen generator cell was continual working for more than 900 min with a Faradic efficiency of {proportional_to}100%. (author)

  8. Highly loaded behavior of kinesins increases the robustness of transport under high resisting loads.

    Directory of Open Access Journals (Sweden)

    Woochul Nam

    2015-03-01

    Full Text Available Kinesins are nano-sized biological motors which walk by repeating a mechanochemical cycle. A single kinesin molecule is able to transport its cargo about 1 μm in the absence of external loads. However, kinesins perform much longer range transport in cells by working collectively. This long range of transport by a team of kinesins is surprising because the motion of the cargo in cells can be hindered by other particles. To reveal how the kinesins are able to accomplish their tasks of transport in harsh intracellular circumstances, stochastic studies on the kinesin motion are performed by considering the binding and unbinding of kinesins to microtubules and their dependence on the force acting on kinesin molecules. The unbinding probabilities corresponding to each mechanochemical state of kinesin are modeled. The statistical characterization of the instants and locations of binding are captured by computing the probability of unbound kinesin being at given locations. It is predicted that a group of kinesins has a more efficient transport than a single kinesin from the perspective of velocity and run length. Particularly, when large loads are applied, the leading kinesin remains bound to the microtubule for long time which increases the chances of the other kinesins to bind to the microtubule. To predict effects of this behavior of the leading kinesin under large loads on the collective transport, the motion of the cargo is studied when the cargo confronts obstacles. The result suggests that the behavior of kinesins under large loads prevents the early termination of the transport which can be caused by the interference with the static or moving obstacles.

  9. Kinetics of oxygen species in an electrically driven singlet oxygen generator

    International Nuclear Information System (INIS)

    Azyazov, V.N.; Torbin, A.P.; Pershin, A.A.; Mikheyev, P.A.; Heaven, M.C.

    2015-01-01

    Highlights: • Vibrational excitation of O_3 increases the rate constant for O_3 + O_2(a) → 2O_2(X) + O. • Vibrationally excited O_3 is produced by the O + O_2(X) + M → O_3 + M reaction. • Ozone concentrations are impacted by the reactions of vibrationally excited O_3. • Relevant to ozone concentrations in oxygen discharges and the upper atmosphere. - Abstract: The kinetics of oxygen species in the gaseous medium of a discharge singlet oxygen generator has been revisited. Vibrationally excited ozone O_3(υ) formed in O + O_2 recombination is thought to be a significant agent in the deactivation of singlet oxygen O_2(a"1Δ), oxygen atom removal and ozone formation. It is shown that the process O_3(υ ⩾ 2) + O_2(a"1Δ) → 2O_2 + O is the main O_2(a"1Δ) deactivation channel in the post-discharge zone. If no measures are taken to decrease the oxygen atom concentration, the contribution of this process to the overall O_2(a"1Δ) removal is significant, even in the discharge zone. A simplified model for the kinetics of vibrationally excited ozone is proposed. Calculations based on this model yield results that are in good agreement with the experimental data.

  10. Control of sodium vapor transport in annuli

    International Nuclear Information System (INIS)

    Meadows, G.E.; Bohringer, A.P.

    1983-11-01

    The method used to control sodium vapor transport in the annuli of various components at the Fast Flux Test Facility (FFTF) is a downward purge of the annuli with high purity argon. The purge rates for the FFTF were selected by calculating the gas velocity required to overcome thermal convection transport in the annuli. To evaluate the effectiveness of the gas purge, laboratory apparatus was fabricated which simulated selected annuli in the FFTF In-Vessel Handling Machine (IVHM) and the Instrument Tree (IT) annuli. Tests were conducted at temperatures similar to FFTF conditions. Gas purge rates ranged from zero to 130% of FFTF flow rates. Test results show the effectiveness of a high purity gas purge in decreasing the accumulation of sodium vapor deposits in an annulus. The presence of water vapor and oxygen in the purge gas increased the sodium deposition rate by a factor of three over other tests usig high purity argon. The presence of a vapor control collar used in the IT annulus was shown to be beneficial for controlling vapor transport into the upper region of the annulus

  11. Study of transport of oxygen and water vapour between cells in valve regulated lead-acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Culpin, Barry [11 Bluebell Close, Whittle -le -Woods, Chorley PR6 7RH (United Kingdom); Peters, Ken [Battery Design and Manfg Systems, Glenbank, 77 Chatsworth Road, Worsley, Manchester M28 2GG (United Kingdom)

    2006-08-25

    Valve-regulated lead-acid batteries are maintenance free, safer, office compatible, and have higher volume efficiency than conventional designs. They are universally used in telecommunications and uninterruptible power supply systems. With the electrolyte immobilized in the separator or as a gel, it is feasible for a monobloc battery to have cells that are not fully sealed from one another, that is to have a common gas space, with certain attendant benefits. This study demonstrates that small differences in the saturation level, acid strength or operating temperature of the cells in such designs can initiate a cycle that may subsequently result in failure if the movement of oxygen and water vapour between cells is unrestricted. Cells that are initially out-of-balance will go further out-of-balance at an ever-increasing rate. This situation can also arise in monobloc designs with sealed cells if the intercell seal is inadequate or incomplete. Battery failure is associated with a re-distribution of water between the cells with some drying out and having high impedance. The preferential oxygen absorption in those cells produces heavily sulfated negative plates. Results on batteries tested under a range of overcharge conditions and temperatures are presented to illustrate these effects. The rate at which the cycle occurs depends on the initial relative density of the acid, the temperature or saturation imbalance between the cells, and the size of the interconnecting gas space. Batteries operating under a continuous cycling regime, particularly those with high overcharge currents and voltages that generate large volumes of oxygen, are more prone to this type of failure mode than batteries operating under low overcharge, intermittent cycling, or float conditions. (author)

  12. Oxygen, nitric oxide and articular cartilage

    Directory of Open Access Journals (Sweden)

    B Fermor

    2007-04-01

    Full Text Available Molecular oxygen is required for the production of nitric oxide (NO, a pro-inflammatory mediator that is associated with osteoarthritis and rheumatoid arthritis. To date there has been little consideration of the role of oxygen tension in the regulation of nitric oxide production associated with arthritis. Oxygen tension may be particularly relevant to articular cartilage since it is avascular and therefore exists at a reduced oxygen tension. The superficial zone exists at approximately 6% O2, while the deep zone exists at less than 1% O2. Furthermore, oxygen tension can alter matrix synthesis, and the material properties of articular cartilage in vitro.The increase in nitric oxide associated with arthritis can be caused by pro-inflammatory cytokines and mechanical stress. Oxygen tension significantly alters endogenous NO production in articular cartilage, as well as the stimulation of NO in response to both mechanical loading and pro-inflammatory cytokines. Mechanical loading and pro-inflammatory cytokines also increase the production of prostaglandin E2 (PGE2. There is a complex interaction between NO and PGE2, and oxygen tension can alter this interaction. These findings suggest that the relatively low levels of oxygen within the joint may have significant influences on the metabolic activity, and inflammatory response of cartilage as compared to ambient levels. A better understanding of the role of oxygen in the production of inflammatory mediators in response to mechanical loading, or pro-inflammatory cytokines, may aid in the development of strategies for therapeutic intervention in arthritis.

  13. Increasing arterial oxygen partial pressure during cardiopulmonary resuscitation is associated with improved rates of hospital admission.

    Science.gov (United States)

    Spindelboeck, Walter; Schindler, Otmar; Moser, Adrian; Hausler, Florian; Wallner, Simon; Strasser, Christa; Haas, Josef; Gemes, Geza; Prause, Gerhard

    2013-06-01

    As recent clinical data suggest a harmful effect of arterial hyperoxia on patients after resuscitation from cardiac arrest (CA), we aimed to investigate this association during cardiopulmonary resuscitation (CPR), the earliest and one of the most crucial phases of recirculation. We analysed 1015 patients who from 2003 to 2010 underwent out-of-hospital CPR administered by emergency medical services serving 300,000 inhabitants. Inclusion criteria for further analysis were nontraumatic background of CA and patients >18 years of age. One hundred and forty-five arterial blood gas analyses including oxygen partial pressure (paO2) measurement were obtained during CPR. We observed a highly significant increase in hospital admission rates associated with increases in paO2 in steps of 100 mmHg (13.3 kPa). Subsequently, data were clustered according to previously described cutoffs (≤ 60 mmHg [8 kPa

  14. Advective and diffusive contributions to reactive gas transport during pyrite oxidation in the unsaturated zone

    NARCIS (Netherlands)

    Binning, P. J.; POSTMA, D; Russell, T. F.; Wesselingh, J. A.; Boulin, P. F.

    2007-01-01

    [1] Pyrite oxidation in unsaturated mine waste rock dumps and soils is limited by the supply of oxygen from the atmosphere. In models, oxygen transport through the subsurface is often assumed to be driven by diffusion. However, oxygen comprises 23.2% by mass of dry air, and when oxygen is consumed

  15. Combined Increases in Mitochondrial Cooperation and Oxygen Photoreduction Compensate for Deficiency in Cyclic Electron Flow in Chlamydomonas reinhardtii[W][OPEN

    Science.gov (United States)

    Dang, Kieu-Van; Plet, Julie; Tolleter, Dimitri; Jokel, Martina; Cuiné, Stéphan; Carrier, Patrick; Auroy, Pascaline; Richaud, Pierre; Johnson, Xenie; Alric, Jean; Allahverdiyeva, Yagut; Peltier, Gilles

    2014-01-01

    During oxygenic photosynthesis, metabolic reactions of CO2 fixation require more ATP than is supplied by the linear electron flow operating from photosystem II to photosystem I (PSI). Different mechanisms, such as cyclic electron flow (CEF) around PSI, have been proposed to participate in reequilibrating the ATP/NADPH balance. To determine the contribution of CEF to microalgal biomass productivity, here, we studied photosynthesis and growth performances of a knockout Chlamydomonas reinhardtii mutant (pgrl1) deficient in PROTON GRADIENT REGULATION LIKE1 (PGRL1)–mediated CEF. Steady state biomass productivity of the pgrl1 mutant, measured in photobioreactors operated as turbidostats, was similar to its wild-type progenitor under a wide range of illumination and CO2 concentrations. Several changes were observed in pgrl1, including higher sensitivity of photosynthesis to mitochondrial inhibitors, increased light-dependent O2 uptake, and increased amounts of flavodiiron (FLV) proteins. We conclude that a combination of mitochondrial cooperation and oxygen photoreduction downstream of PSI (Mehler reactions) supplies extra ATP for photosynthesis in the pgrl1 mutant, resulting in normal biomass productivity under steady state conditions. The lower biomass productivity observed in the pgrl1 mutant in fluctuating light is attributed to an inability of compensation mechanisms to respond to a rapid increase in ATP demand. PMID:24989042

  16. Medical oxygen and air travel.

    Science.gov (United States)

    Lyznicki, J M; Williams, M A; Deitchman, S D; Howe, J P

    2000-08-01

    This report responds to a resolution that asked the American Medical Association (AMA) to take action to improve airport and airline accommodations for passengers requiring medical oxygen. Information for the report was derived from a search of the MEDLINE database and references listed in pertinent articles, as well as through communications with experts in aerospace and emergency medicine. Based on this information, the AMA Council on Scientific Affairs determined that commercial air travel exposes passengers to altitude-related hypoxia and gas expansion, which may cause some passengers to experience significant symptoms and medical complications during flight. Medical guidelines are available to help physicians evaluate and counsel potential passengers who are at increased risk of inflight hypoxemia. Supplemental oxygen may be needed for some passengers to maintain adequate tissue oxygenation and prevent hypoxemic complications. For safety and security reasons, federal regulations prohibit travelers from using their own portable oxygen system onboard commercial aircraft. Many U.S. airlines supply medical oxygen for use during flight but policies and procedures vary. Oxygen-dependent passengers must make additional arrangements for the use of supplemental oxygen in airports. Uniform standards are needed to specify procedures and equipment for the use of medical oxygen in airports and aboard commercial aircraft. Revision of federal regulations should be considered to accommodate oxygen-dependent passengers and permit them to have an uninterrupted source of oxygen from departure to destination.

  17. Oxygen self-diffusion mechanisms in monoclinic Zr O2 revealed and quantified by density functional theory, random walk analysis, and kinetic Monte Carlo calculations

    Science.gov (United States)

    Yang, Jing; Youssef, Mostafa; Yildiz, Bilge

    2018-01-01

    In this work, we quantify oxygen self-diffusion in monoclinic-phase zirconium oxide as a function of temperature and oxygen partial pressure. A migration barrier of each type of oxygen defect was obtained by first-principles calculations. Random walk theory was used to quantify the diffusivities of oxygen interstitials by using the calculated migration barriers. Kinetic Monte Carlo simulations were used to calculate diffusivities of oxygen vacancies by distinguishing the threefold- and fourfold-coordinated lattice oxygen. By combining the equilibrium defect concentrations obtained in our previous work together with the herein calculated diffusivity of each defect species, we present the resulting oxygen self-diffusion coefficients and the corresponding atomistically resolved transport mechanisms. The predicted effective migration barriers and diffusion prefactors are in reasonable agreement with the experimentally reported values. This work provides insights into oxygen diffusion engineering in Zr O2 -related devices and parametrization for continuum transport modeling.

  18. Effects of motexafin gadolinium on tumor oxygenation and cellular oxygen consumption

    International Nuclear Information System (INIS)

    Donnelly, E.T.; Liu, Y.; Rockwell, S.; Magda, D.

    2003-01-01

    Full text: Recent work in our laboratory showed that motexafin gadolinium (MGd, Xcytrin), a drug currently in Phase III clinical trials as an adjuvant to radiation therapy, modulates the oxygen tensions in EMT6 tumors. The median pO 2 increased from the control value of 1.5±0.4 mmHg to 7.4 ± 3.8 mmHg six hours after treatment with 40 μmol/kg MGd and the percentage of severely hypoxic readings in the tumors ( 7 plateau phase EMT6 cells in 3 mL Dulbecco's Modified Eagle's Medium supplemented with 10% dialyzed fetal bovine serum, which contains no ascorbic acid. In the absence of ascorbic acid, 100 μM MGd did not alter the cellular oxygen consumption rate for EMT6 cells significantly. Marked inhibition of cellular oxygen consumption was observed when cells were incubated with 100 μM MGd in medium supplemented with equimolar ascorbic acid (a 31.5% decrease in consumption was observed after 6 hours of treatment). The 5% mannitol vehicle solution with equimolar ascorbic acid had no discernible effect on cellular oxygen consumption. Ascorbic acid may facilitate cellular uptake of MGd via the intermediate formation of a MGd-oxalate complex. These studies suggest that changes in cellular oxygen consumption could contribute to the changes in tumor oxygenation seen after administration of MGd. These experiments were supported by Pharmacyclics and training grant T32CA09085 from the NIH (E.T.D.). We thank Dr. Raymond Russell for allowing us to use his oxygen electrode apparatus

  19. Intensification and deepening of the Arabian Sea oxygen minimum zone in response to increase in Indian monsoon wind intensity

    Science.gov (United States)

    Lachkar, Zouhair; Lévy, Marina; Smith, Shafer

    2018-01-01

    The decline in oxygen supply to the ocean associated with global warming is expected to expand oxygen minimum zones (OMZs). This global trend can be attenuated or amplified by regional processes. In the Arabian Sea, the world's thickest OMZ is highly vulnerable to changes in the Indian monsoon wind. Evidence from paleo-records and future climate projections indicates strong variations of the Indian monsoon wind intensity over climatic timescales. Yet, the response of the OMZ to these wind changes remains poorly understood and its amplitude and timescale unexplored. Here, we investigate the impacts of perturbations in Indian monsoon wind intensity (from -50 to +50 %) on the size and intensity of the Arabian Sea OMZ, and examine the biogeochemical and ecological implications of these changes. To this end, we conducted a series of eddy-resolving simulations of the Arabian Sea using the Regional Ocean Modeling System (ROMS) coupled to a nitrogen-based nutrient-phytoplankton-zooplankton-detritus (NPZD) ecosystem model that includes a representation of the O2 cycle. We show that the Arabian Sea productivity increases and its OMZ expands and deepens in response to monsoon wind intensification. These responses are dominated by the perturbation of the summer monsoon wind, whereas the changes in the winter monsoon wind play a secondary role. While the productivity responds quickly and nearly linearly to wind increase (i.e., on a timescale of years), the OMZ response is much slower (i.e., a timescale of decades). Our analysis reveals that the OMZ expansion at depth is driven by increased oxygen biological consumption, whereas its surface weakening is induced by increased ventilation. The enhanced ventilation favors episodic intrusions of oxic waters in the lower epipelagic zone (100-200 m) of the western and central Arabian Sea, leading to intermittent expansions of marine habitats and a more frequent alternation of hypoxic and oxic conditions there. The increased

  20. Intensification and deepening of the Arabian Sea oxygen minimum zone in response to increase in Indian monsoon wind intensity

    Directory of Open Access Journals (Sweden)

    Z. Lachkar

    2018-01-01

    Full Text Available The decline in oxygen supply to the ocean associated with global warming is expected to expand oxygen minimum zones (OMZs. This global trend can be attenuated or amplified by regional processes. In the Arabian Sea, the world's thickest OMZ is highly vulnerable to changes in the Indian monsoon wind. Evidence from paleo-records and future climate projections indicates strong variations of the Indian monsoon wind intensity over climatic timescales. Yet, the response of the OMZ to these wind changes remains poorly understood and its amplitude and timescale unexplored. Here, we investigate the impacts of perturbations in Indian monsoon wind intensity (from −50 to +50 % on the size and intensity of the Arabian Sea OMZ, and examine the biogeochemical and ecological implications of these changes. To this end, we conducted a series of eddy-resolving simulations of the Arabian Sea using the Regional Ocean Modeling System (ROMS coupled to a nitrogen-based nutrient–phytoplankton–zooplankton–detritus (NPZD ecosystem model that includes a representation of the O2 cycle. We show that the Arabian Sea productivity increases and its OMZ expands and deepens in response to monsoon wind intensification. These responses are dominated by the perturbation of the summer monsoon wind, whereas the changes in the winter monsoon wind play a secondary role. While the productivity responds quickly and nearly linearly to wind increase (i.e., on a timescale of years, the OMZ response is much slower (i.e., a timescale of decades. Our analysis reveals that the OMZ expansion at depth is driven by increased oxygen biological consumption, whereas its surface weakening is induced by increased ventilation. The enhanced ventilation favors episodic intrusions of oxic waters in the lower epipelagic zone (100–200 m of the western and central Arabian Sea, leading to intermittent expansions of marine habitats and a more frequent alternation of hypoxic and oxic conditions there

  1. Oxygen microclusters in Czochralski-grown Si probed by positron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Wei Long; Tanigawa, Shoichiro [Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science; Kawano, Takao; Ikari, Atsushi; Kawakami, Kazuto; Itoh, Hisayoshi

    1994-08-01

    Trapping of positrons by oxygen microclusters in Czochralski-grown Si was studied. Lifetime spectra of positrons were measured for Si specimens annealed in the temperature range between 450degC and 1000degC. Positrons were found to be trapped by oxygen microclusters, and the trapping rate of positrons into such defects increased with increasing annealing temperature. In order to investigate the clustering behaviors of oxygen atoms in more derail, vacancy-oxygen complexes, V{sub n}O{sub m} (n,m=1,2, {center_dot}{center_dot}{center_dot}), were introduced by 3MeV electron irradiation. The concentration of monovacancy-oxygen complexes VO{sub m}(m=2,3, {center_dot}{center_dot}{center_dot}) increased with increasing annealing temperature. These facts were attributed that the oxygen microclusters, O{sub m}, were introduced by annealing above 700degC. (author).

  2. Will open ocean oxygen stress intensify under climate change?

    Science.gov (United States)

    Gnanadesikan, A.; Dunne, J. P.; John, J.

    2011-07-01

    Global warming is expected to reduce oxygen solubility and vertical exchange in the ocean, changes which would be expected to result in an increase in the volume of hypoxic waters. A simulation made with a full earth system model with dynamical atmosphere, ocean, sea ice and biogeochemical cycling shows that this holds true if the condition for hypoxia is set relatively high. However, the volume of the most hypoxic waters does not increase under global warming, as these waters actually become more oxygenated. We show that the rise in oxygen is associated with a drop in ventilation time. A term-by-term analysis within the least oxygenated waters shows an increased supply of oxygen due to lateral diffusion. compensating an increase in remineralization within these highly hypoxic waters. This lateral diffusive flux is the result of an increase of ventilation along the Chilean coast, as a drying of the region under global warming opens up a region of wintertime convection in our model.

  3. Zero added oxygen for high quality sputtered ITO: A data science investigation of reduced Sn-content and added Zr

    International Nuclear Information System (INIS)

    Peshek, Timothy J.; Burst, James M.; Coutts, Timothy J.; Gessert, Timothy A.

    2016-01-01

    The authors demonstrate mobilities of >45 cm 2 /V s for sputtered tin-doped indium oxide (ITO) films at zero added oxygen. All films were deposited with 5 wt. % SnO 2 , instead of the more conventional 8–10 wt. %, and had varying ZrO 2 content from 0 to 3 wt. %, with a subsequent reduction in In 2 O 3 content. These films were deposited by radio-frequency magnetron sputtering from nominally stoichiometric targets with varying oxygen partial pressure in the sputter ambient. Anomalous behavior was discovered for films with no Zr-added, where a bimodality of high and low mobilities was discovered for nominally similar growth conditions. However, all films showed the lowest resistivity and highest mobilities when the oxygen partial pressure in the sputter ambient was zero. This result is contrasted with several other reports of ITO transport performance having a maximum for small but nonzero oxygen partial pressure. This result is attributed to the reduced concentration of SnO 2 . The addition of ZrO 2 yielded the highest mobilities at >55 cm 2 /V s and the films showed a modest increase in optical transmission with increasing Zr-content

  4. Computer program for calculating thermodynamic and transport properties of fluids

    Science.gov (United States)

    Hendricks, R. C.; Braon, A. K.; Peller, I. C.

    1975-01-01

    Computer code has been developed to provide thermodynamic and transport properties of liquid argon, carbon dioxide, carbon monoxide, fluorine, helium, methane, neon, nitrogen, oxygen, and parahydrogen. Equation of state and transport coefficients are updated and other fluids added as new material becomes available.

  5. A Low-Pressure Oxygen Storage System for Oxygen Supply in Low-Resource Settings.

    Science.gov (United States)

    Rassool, Roger P; Sobott, Bryn A; Peake, David J; Mutetire, Bagayana S; Moschovis, Peter P; Black, Jim Fp

    2017-12-01

    Widespread access to medical oxygen would reduce global pneumonia mortality. Oxygen concentrators are one proposed solution, but they have limitations, in particular vulnerability to electricity fluctuations and failure during blackouts. The low-pressure oxygen storage system addresses these limitations in low-resource settings. This study reports testing of the system in Melbourne, Australia, and nonclinical field testing in Mbarara, Uganda. The system included a power-conditioning unit, a standard oxygen concentrator, and an oxygen store. In Melbourne, pressure and flows were monitored during cycles of filling/emptying, with forced voltage fluctuations. The bladders were tested by increasing pressure until they ruptured. In Mbarara, the system was tested by accelerated cycles of filling/emptying and then run on grid power for 30 d. The low-pressure oxygen storage system performed well, including sustaining a pressure approximately twice the standard working pressure before rupture of the outer bag. Flow of 1.2 L/min was continuously maintained to a simulated patient during 30 d on grid power, despite power failures totaling 2.9% of the total time, with durations of 1-176 min (mean 36.2, median 18.5). The low-pressure oxygen storage system was robust and durable, with accelerated testing equivalent to at least 2 y of operation revealing no visible signs of imminent failure. Despite power cuts, the system continuously provided oxygen, equivalent to the treatment of one child, for 30 d under typical power conditions for sub-Saharan Africa. The low-pressure oxygen storage system is ready for clinical field trials. Copyright © 2017 by Daedalus Enterprises.

  6. Exercise-induced increase in glucose transport, GLUT-4, and VAMP-2 in plasma membrane from human muscle

    DEFF Research Database (Denmark)

    Kristiansen, S; Hargreaves, Mark; Richter, Erik

    1996-01-01

    contractions may induce trafficking of GLUT-4-containing vesicles via a mechanism similar to neurotransmitter release. Our results demonstrate for the first time exercise-induced translocation of GLUT-4 and VAMP-2 to the plasma membrane of human muscle and increased sarcolemmal glucose transport.......A major effect of muscle contractions is an increase in sarcolemmal glucose transport. We have used a recently developed technique to produce sarcolemmal giant vesicles from human muscle biopsy samples obtained before and after exercise. Six men exercised for 10 min at 50% maximal O2 uptake (Vo2max...

  7. Defect chemistry of ''BaCuO2''. Pt. 2. Transport properties and nature of defects

    International Nuclear Information System (INIS)

    Chiodelli, G.; Consiglio Nazionale delle Ricerche, Pavia; Anselmi-Tamburini, U.; Consiglio Nazionale delle Ricerche, Pavia; Arimondi, M.; Consiglio Nazionale delle Ricerche, Pavia; Spinolo, G.; Consiglio Nazionale delle Ricerche, Pavia; Flor, G.; Consiglio Nazionale delle Ricerche, Pavia

    1995-01-01

    The charge transport properties of ''BaCuO 2 '' with 88:90 (Ba:Cu) cation ratio were characterized by thermopower, electrical conductivity and ionic transport number measurements in a wide range of temperature and oxygen partial pressure conditions. The nature of carriers is always represented by small polarons due to self-trapping of the electronic holes generated by the oxygen non-stoichiometry equilibrium. Some anomalies in carrier mobility as a function of temperature are shown not to be related to incomplete ionization of oxygen atoms on interstitial sites (orig.)

  8. Virus Dynamics Are Influenced by Season, Tides and Advective Transport in Intertidal, Permeable Sediments.

    Science.gov (United States)

    Vandieken, Verona; Sabelhaus, Lara; Engelhardt, Tim

    2017-01-01

    Sandy surface sediments of tidal flats exhibit high microbial activity due to the fast and deep-reaching transport of oxygen and nutrients by porewater advection. On the other hand during low tide, limited transport results in nutrient and oxygen depletion concomitant to the accumulation of microbial metabolites. This study represents the first attempt to use flow-through reactors to investigate virus production, virus transport and the impact of tides and season in permeable sediments. The reactors were filled with intertidal sands of two sites (North beach site and backbarrier sand flat of Spiekeroog island in the German Wadden Sea) to best simulate advective porewater transport through the sediments. Virus and cell release along with oxygen consumption were measured in the effluents of reactors during continuous flow of water through the sediments as well as in tidal simulation experiments where alternating cycles with and without water flow (each for 6 h) were operated. The results showed net rates of virus production (0.3-13.2 × 10 6 viruses cm -3 h -1 ) and prokaryotic cell production (0.3-10.0 × 10 5 cells cm -3 h -1 ) as well as oxygen consumption rates (56-737 μmol l -1 h -1 ) to be linearly correlated reflecting differences in activity, season and location of the sediments. Calculations show that total virus turnover was fast with 2 to 4 days, whereas virus-mediated cell turnover was calculated to range between 5-13 or 33-91 days depending on the assumed burst sizes (number of viruses released upon cell lysis) of 14 or 100 viruses, respectively. During the experiments, the homogenized sediments in the reactors became vertically structured with decreasing microbial activities and increasing impact of viruses on prokaryotic mortality with depth. Tidal simulation clearly showed a strong accumulation of viruses and cells in the top sections of the reactors when the flow was halted indicating a consistently high virus production during low tide. In

  9. Thermoelectric properties of Sr0.61Ba0.39Nb2O6-δ ceramics in different oxygen-reduction conditions

    Science.gov (United States)

    Li, Yi; Liu, Jian; Wang, Chun-Lei; Su, Wen-Bin; Zhu, Yuan-Hu; Li, Ji-Chao; Mei, Liang-Mo

    2015-04-01

    The thermoelectric properties of Sr0.61Ba0.39Nb2O6-δ ceramics, reduced in different conditions, are investigated in the temperature range from 323 K to 1073 K. The electrical transport behaviors of the samples are dominated by the thermal-activated polaron hopping in the low temperature range, the Fermi glass behavior in the middle temperature range, and the Anderson localized behavior in the high temperature range. The thermal conductivity presents a plateau at high-temperatures, indicating a glass-like thermal conduction behavior. Both the thermoelectric power factor and the thermal conductivity increase with the increase of the degree of oxygen-reduction. Taking these two factors into account, the oxygen-reduction can still contribute to promoting the thermoelectric figure of merit. The highest ZT value is obtained to be ˜0.19 at 1073 K in the heaviest oxygen reduced sample. Project supported by the National Basic Research Program of China (Grant No. 2013CB632506) and the National Natural Science Foundation of China (Grant Nos. 51202132 and 51002087).

  10. The influence of flow redistribution on working rat muscle oxygenation.

    NARCIS (Netherlands)

    Hoofd, L.J.C.; Degens, H.

    2009-01-01

    We applied a theoretical model of muscle tissue O2 transport to investigate the effects of flow redistribution on rat soleus muscle oxygenation. The situation chosen was the anaerobic threshold where redistribution of flow is expected to have the largest impact. In the basic situation all

  11. Oxygen status during haemodialysis. The Cord-Group

    DEFF Research Database (Denmark)

    Nielsen, A L; Jensen, H Æ; Hegbrant, J

    1995-01-01

    Hypoxia during haemodialysis, mainly acetate, has been reported several times. In our study we have monitored oxygen status during 258 bicarbonate haemodialyses. A significant drop below 80 mmHg in mean oxygen tension occurred. Mean oxygen saturation reflected this drop but did not reach levels...... below 90%. The mean oxygen concentration was on the whole critical low, though slightly increasing during each haemodialysis session due to ultrafiltration. It is concluded that both hypoxia and hypoxaemia do occur during bicarbonate haemodialysis. To a group of patients generally having limited cardiac...... reserves, a poor oxygen status is a potentially serious complication to haemodialysis. Monitoring oxygen status is thus advisable....

  12. Biological Oxygen Demand in Soils and Litters

    Science.gov (United States)

    Smagin, A. V.; Smagina, M. V.; Sadovnikova, N. B.

    2018-03-01

    Biological oxygen demand (BOD) in mineral and organic horizons of soddy-podzolic soils in the forest-park belt of Moscow as an indicator of their microbial respiration and potential biodestruction function has been studied. The BOD of soil samples has been estimated with a portable electrochemical analyzer after incubation in closed flasks under optimum hydrothermal conditions. A universal gradation scale of this parameter from very low (140 g O2/(m3 h)) has been proposed for mineral and organic horizons of soil. A physically substantiated model has been developed for the vertical distribution of BOD in the soil, which combines the diffusion transport of oxygen from the atmosphere and its biogenic uptake in the soil by the first-order reaction. An analytical solution of the model in the stationary state has been obtained; from it, the soil oxygen diffusivity and the kinetic constants of O2 uptake have been estimated, and the profile-integrated total BOD value has been calculated (0.4-1.8 g O2/(m2 h)), which is theoretically identical to the potential oxygen flux from the soil surface due to soil respiration. All model parameters reflect the recreation load on the soil cover by the decrease in their values against the control.

  13. Critical hematocrit and oxygen partial pressure in the beating heart of pigs.

    Science.gov (United States)

    Hiebl, B; Mrowietz, C; Ploetze, K; Matschke, K; Jung, F

    2010-12-01

    In cardiac surgery the substitution of lost blood volume by plasma substitutes is a common therapeutical approach. None of the currently available blood substitutes has a sufficient oxygen transport capacity. This can limit the functional integrity of the myocardium known as highly oxygen consumptive. The study was aimed to get information about the minimal hematocrit, also known as critical hematocrit (cHct), which guarantees a stable and adequate oxygen partial pressure in the myocardium (pO2). In adult female pigs (n=7) the hematocrit was reduced by isovolemic blood dilution with an intravenous infusion of isotonic 4% gelatine polysuccinate solution, The substituted blood volume ranged between 3000ml and 7780ml (mean: 5254±1672ml). In all animals the pO2 of the myocardium of the beating heart and of the resting skeletal muscle increased until blood dilution resulted in a Hct decrease down to 15%. Further blood dilution resulted in a decrease of the pO2. Only after the Hct was <10% the pO2 was lower than before blood dilution and accompanied by a lethal ischemia of the myocardium. These data indicate a cHct of about 10% in the pig animal model. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Combined impact of water column oxygen and temperature on internal oxygen status and growth of Zostera marina seedlings and adult shoots

    DEFF Research Database (Denmark)

    Raun, Ane-Marie Løvendahl; Borum, Jens

    2013-01-01

    Eelgrass (Zostera marina L.) occasionally experiences severe die-offs during warm summer periods with variable water column oxygen partial pressures (pO). Eelgrass is known to be very intolerant to tissue anoxia with reduced growth and increasing mortality after ≤12h anoxia in the dark...... at temperatures of ≥25°C. In the present study we experimentally examine the impact of combined water column oxygen and temperature on oxygen dynamics in leaf meristems of seedlings and adult shoots to better understand how stressful environmental conditions affect eelgrass oxygen dynamics and subsequent growth...... and mortality. There was a strong interaction between water column oxygen and temperature on meristem pO implying that eelgrass is rather resistant to unfavorable oxygen conditions in winter but becomes increasingly vulnerable in summer, especially at high temperatures. At 25°C meristems became anoxic...

  15. [Effect of oxygen tubing connection site on percutaneous oxygen partial pressure and percutaneous carbon dioxide partial pressure in patients with chronic obstructive pulmonary disease during noninvasive positive pressure ventilation].

    Science.gov (United States)

    Mi, S; Zhang, L M

    2017-04-12

    Objective: We evaluated the effects of administering oxygen through nasal catheters inside the mask or through the mask on percutaneous oxygen partial pressure (PcO(2))and percutaneous carbon dioxide partial pressure (PcCO(2)) during noninvasive positive pressure ventilation (NPPV) to find a better way of administering oxygen, which could increase PcO(2) by increasing the inspired oxygen concentration. Methods: Ten healthy volunteers and 9 patients with chronic obstructive pulmonary disease complicated by type Ⅱ respiratory failure were included in this study. Oxygen was administered through a nasal catheter inside the mask or through the mask (oxygen flow was 3 and 5 L/min) during NPPV. PcO(2) and PcCO(2) were measured to evaluate the effects of administering oxygen through a nasal catheter inside the mask or through the mask, indirectly reflecting the effects of administering oxygen through nasal catheter inside the mask or through the mask on inspired oxygen concentration. Results: Compared to administering oxygen through the mask during NPPV, elevated PcO(2) was measured in administering oxygen through the nasal catheter inside the mask, and the differences were statistically significant ( P 0.05). Conclusion: Administering oxygen through a nasal catheter inside the mask during NPPV increased PcO(2) by increasing the inspired oxygen concentration but did not increase PcCO(2). This method of administering oxygen could conserve oxygen and be suitable for family NPPV. Our results also provided theoretical basis for the development of new masks.

  16. Kinetics of oxygen species in an electrically driven singlet oxygen generator

    Energy Technology Data Exchange (ETDEWEB)

    Azyazov, V.N., E-mail: azyazov@fian.smr.ru [Samara State Aerospace University, 443086 (Russian Federation); Lebedev Physical Institute of RAS, Samara 443011 (Russian Federation); Torbin, A.P.; Pershin, A.A. [Samara State Aerospace University, 443086 (Russian Federation); Lebedev Physical Institute of RAS, Samara 443011 (Russian Federation); Mikheyev, P.A., E-mail: mikheyev@fian.smr.ru [Samara State Aerospace University, 443086 (Russian Federation); Lebedev Physical Institute of RAS, Samara 443011 (Russian Federation); Heaven, M.C., E-mail: mheaven@emory.edu [Emory University, Atlanta, GA 30322 (United States)

    2015-12-16

    Highlights: • Vibrational excitation of O{sub 3} increases the rate constant for O{sub 3} + O{sub 2}(a) → 2O{sub 2}(X) + O. • Vibrationally excited O{sub 3} is produced by the O + O{sub 2}(X) + M → O{sub 3} + M reaction. • Ozone concentrations are impacted by the reactions of vibrationally excited O{sub 3}. • Relevant to ozone concentrations in oxygen discharges and the upper atmosphere. - Abstract: The kinetics of oxygen species in the gaseous medium of a discharge singlet oxygen generator has been revisited. Vibrationally excited ozone O{sub 3}(υ) formed in O + O{sub 2} recombination is thought to be a significant agent in the deactivation of singlet oxygen O{sub 2}(a{sup 1}Δ), oxygen atom removal and ozone formation. It is shown that the process O{sub 3}(υ ⩾ 2) + O{sub 2}(a{sup 1}Δ) → 2O{sub 2} + O is the main O{sub 2}(a{sup 1}Δ) deactivation channel in the post-discharge zone. If no measures are taken to decrease the oxygen atom concentration, the contribution of this process to the overall O{sub 2}(a{sup 1}Δ) removal is significant, even in the discharge zone. A simplified model for the kinetics of vibrationally excited ozone is proposed. Calculations based on this model yield results that are in good agreement with the experimental data.

  17. General factors that affects the increase of population mobility and principles of optimization of high-speed passenger transportations

    OpenAIRE

    Momot, A.

    2014-01-01

    Purpose. Analyze the main factors that influence the increased mobility of the population in the transport market of Ukraine. Methods. The article uses an improved method of determining the optimal areas of high-speed passenger trains and determines the value of rational transportation of passengers in different directions of speed traffic, as well as the method of marginal income. Results. In this article we analyzed seven major factors that influence the increased mobility of the population...

  18. 18O isotopic tracer studies of silicon oxidation in dry oxygen

    International Nuclear Information System (INIS)

    Han, C.J.

    1986-01-01

    Oxidation of silicon in dry oxygen has been an important process in the integrated circuit industry for making gate insulators on metal-oxide-semiconductory (MOS) devices. This work examines this process using isotopic tracers of oxygen to determine the transport mechanisms of oxygen through silicon dioxide. Oxides were grown sequentially using mass-16 and mass-18 oxygen gas sources to label the oxygen molecules from each step. The resulting oxides are analyzed using secondary ion mass spectrometry (SIMS). The results of these analyses suggest two oxidant species are present during the oxidation, each diffuses and oxidizes separately during the process. A model from this finding using a sum of two linear-parabolic growth rates, each representing the growth rate from one of the oxidants, describes the reported oxidation kinetics in the literature closely. A fit of this relationship reveals excellent fits to the data for oxide thicknesses ranging from 30 A to 1 μm and for temperatures ranging from 800 to 1200 0 C. The mass-18 oxygen tracers also enable a direct observation of the oxygen solubility in the silicon dioxide during a dry oxidation process. The SIMS profiles establish a maximum solubility for interstitial oxygen at 1000 0 C at 2 x 10 20 cm -3 . Furthermore, the mass-18 oxygen profiles show negligible network diffusion during an 1000 0 C oxidation

  19. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    Science.gov (United States)

    Lopaev, D. V.; Malykhin, E. M.; Zyryanov, S. M.

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature TV was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O(3P), O2, O2(1Δg) and O3 molecules in different vibrational states. The agreement of O3 and O(3P) density profiles and TV calculated in the model with observed ones was reached by varying the single model parameter—ozone production probability (\\gamma_{O_{3}}) on the quartz tube surface on the assumption that O3 production occurs mainly in the surface recombination of physisorbed O(3P) and O2. The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse \\gamma_{O_{3}} data obtained in the kinetic model. A good agreement between the experimental data and the data of both models—the kinetic 1D model and the phenomenological surface model—was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up the

  20. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    International Nuclear Information System (INIS)

    Lopaev, D V; Malykhin, E M; Zyryanov, S M

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O 3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature T V was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O 3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O( 3 P), O 2 , O 2 ( 1 Δ g ) and O 3 molecules in different vibrational states. The agreement of O 3 and O( 3 P) density profiles and T V calculated in the model with observed ones was reached by varying the single model parameter-ozone production probability (γ O 3 ) on the quartz tube surface on the assumption that O 3 production occurs mainly in the surface recombination of physisorbed O( 3 P) and O 2 . The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse γ O 3 data obtained in the kinetic model. A good agreement between the experimental data and the data of both models-the kinetic 1D model and the phenomenological surface model-was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O 3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up

  1. The roles of resuspension, diffusion and biogeochemical processes on oxygen dynamics offshore of the Rhône River, France: a numerical modeling study

    Science.gov (United States)

    Moriarty, Julia M.; Harris, Courtney K.; Fennel, Katja; Friedrichs, Marjorie A. M.; Xu, Kehui; Rabouille, Christophe

    2017-04-01

    Observations indicate that resuspension and associated fluxes of organic material and porewater between the seabed and overlying water can alter biogeochemical dynamics in some environments, but measuring the role of sediment processes on oxygen and nutrient dynamics is challenging. A modeling approach offers a means of quantifying these fluxes for a range of conditions, but models have typically relied on simplifying assumptions regarding seabed-water-column interactions. Thus, to evaluate the role of resuspension on biogeochemical dynamics, we developed a coupled hydrodynamic, sediment transport, and biogeochemical model (HydroBioSed) within the Regional Ocean Modeling System (ROMS). This coupled model accounts for processes including the storage of particulate organic matter (POM) and dissolved nutrients within the seabed; fluxes of this material between the seabed and the water column via erosion, deposition, and diffusion at the sediment-water interface; and biogeochemical reactions within the seabed. A one-dimensional version of HydroBioSed was then implemented for the Rhône subaqueous delta in France. To isolate the role of resuspension on biogeochemical dynamics, this model implementation was run for a 2-month period that included three resuspension events; also, the supply of organic matter, oxygen, and nutrients to the model was held constant in time. Consistent with time series observations from the Rhône Delta, model results showed that erosion increased the diffusive flux of oxygen into the seabed by increasing the vertical gradient of oxygen at the seabed-water interface. This enhanced supply of oxygen to the seabed, as well as resuspension-induced increases in ammonium availability in surficial sediments, allowed seabed oxygen consumption to increase via nitrification. This increase in nitrification compensated for the decrease in seabed oxygen consumption due to aerobic remineralization that occurred as organic matter was entrained into the water

  2. Increased understanding of the dynamics and transport in ITB plasmas from multi-machine comparisons

    International Nuclear Information System (INIS)

    Gohil, P.; Kinsey, J.; Parail, V.

    2003-01-01

    Our understanding of the physics of internal transport barriers (ITBs) is being furthered by analysis and comparisons of experimental data from many different tokamaks worldwide. An international database consisting of scalar and 2-D profile data on ITB plasmas is being developed to determine the requirements for the formation and sustainment of ITBs and to perform tests of theory-based transport models in an effort to improve the predictive capability of the models. Tests of several transport models (JETTO, Weiland model) using the 2-D profile data indicate that there is only limited agreement between the model predictions and the experimental results for the range of plasma conditions examined for the different devices (DIII-D, JET, JT-60U). Gyrokinetic stability analysis of the ITB discharges from these devices indicates that the ITG/TEM growth rates decrease with increased negative magnetic shear and that the ExB shear rate is comparable to the linear growth rates at the location of the ITB. (author)

  3. Singlet oxygen quenching by oxygen in tetraphenyl-porphyrin solutions

    International Nuclear Information System (INIS)

    Dedic, Roman; Korinek, Miloslav; Molnar, Alexander; Svoboda, Antonin; Hala, Jan

    2006-01-01

    Time-resolved measurement of singlet oxygen infrared phosphorescence is a powerful tool for determination of quantum yields and kinetics of its photosensitization. This technique was employed to investigate in detail the previously observed effect of singlet oxygen quenching by oxygen. The question whether the singlet oxygen is quenched by oxygen in ground or in excited state was addressed by study of two complementary dependencies of singlet oxygen lifetimes: on dissolved oxygen concentration and on excitation intensity. Oxygen concentration dependence study of meso-tetra(4-sulphonato)phenylporphyrin (TPPS 4 ) phosphorescence kinetics showed linearity of the dependence of TPPS 4 triplet state rate-constant. Corresponding bimolecular quenching constant of (1.5±0.1)x10 9 l/mol s was obtained. On the other hand, rate constants of singlet oxygen depopulation exhibit nonlinear dependence on oxygen concentration. Comparison of zero oxygen concentration-extrapolated value of singlet oxygen lifetime of (6.5±0.4) μs to (3.7±0.1) μs observed under air-saturated conditions indicates importance of the effect of quenching of singlet oxygen by oxygen. Upward-sloping dependencies of singlet oxygen depopulation rate-constant on excitation intensity evidence that singlet oxygen is predominantly quenched by oxygen in excited singlet state

  4. Rain increases methane production and methane oxidation in a boreal thermokarst bog

    Science.gov (United States)

    Neumann, R. B.; Moorberg, C.; Turner, J.; Wong, A.; Waldrop, M. P.; Euskirchen, E. S.; Edgar, C.; Turetsky, M. R.

    2017-12-01

    Bottom-up biogeochemical models of wetland methane emissions simulate the response of methane production, oxidation and transport to wetland conditions and environmental forcings. One reason for mismatches between bottom-up and top-down estimates of emissions is incomplete knowledge of factors and processes that control microbial rates and methane transport. To advance mechanistic understanding of wetland methane emissions, we conducted a multi-year field investigation and plant manipulation experiment in a thermokarst bog located near Fairbanks, Alaska. The edge of the bog is experiencing active permafrost thaw, while the center of the bog thawed 50 to 100 years ago. Our study, which captured both an average year and two of the wettest years on record, revealed how rain interacts with vascular vegetation and recently thawed permafrost to affect methane emissions. In the floating bog, rain water warmed and oxygenated the subsurface, but did not alter soil saturation. The warmer peat temperatures increased both microbial methane production and plant productivity at the edge of the bog near the actively thawing margin, but minimally altered microbial and plant activity in the center of the bog. These responses indicate processes at the edge of the bog were temperature limited while those in the center were not. The compounding effect of increased microbial activity and plant productivity at the edge of the bog doubled methane emissions from treatments with vascular vegetation during rainy years. In contrast, methane emissions from vegetated treatments in the center of the bog did not change with rain. The oxygenating influence of rain facilitated greater methane oxidation in treatments without vascular vegetation, which offset warming-induced increases in methane production at the edge of the bog and decreased methane emissions in the center of the bog. These results elucidate the complex and spatially variable response of methane production and oxidation in

  5. Respiratory physiology of vertebrates: life with and without oxygen

    National Research Council Canada - National Science Library

    Nilsson, Göran E

    2010-01-01

    ... sensing, uptake and transport in a textbook style. Subsequently, the reader is shown important examples of extreme respiratory performance, such as diving and high-altitude survival in mammals and birds, air breathing in fish, and those few vertebrates that can survive without any oxygen at all for several months, showing how evolution has s...

  6. Oxygen vacancy doping of hematite analyzed by electrical conductivity and thermoelectric power measurements

    Science.gov (United States)

    Mock, Jan; Klingebiel, Benjamin; Köhler, Florian; Nuys, Maurice; Flohre, Jan; Muthmann, Stefan; Kirchartz, Thomas; Carius, Reinhard

    2017-11-01

    Hematite (α -F e2O3 ) is known for poor electronic transport properties, which are the main drawback of this material for optoelectronic applications. In this study, we investigate the concept of enhancing electrical conductivity by the introduction of oxygen vacancies during temperature treatment under low oxygen partial pressure. We demonstrate the possibility of tuning the conductivity continuously by more than five orders of magnitude during stepwise annealing in a moderate temperature range between 300 and 620 K. With thermoelectric power measurements, we are able to attribute the improvement of the electrical conductivity to an enhanced charge-carrier density by more than three orders of magnitude. We compare the oxygen vacancy doping of hematite thin films with hematite nanoparticle layers. Thereby we show that the dominant potential barrier that limits charge transport is either due to grain boundaries in hematite thin films or due to potential barriers that occur at the contact area between the nanoparticles, rather than the potential barrier within the small polaron hopping model, which is usually applied for hematite. Furthermore, we discuss the transition from oxygen-deficient hematite α -F e2O3 -x towards the magnetite F e3O4 phase of iron oxide at high density of vacancies.

  7. Ocean Ridges and Oxygen

    Science.gov (United States)

    Langmuir, C. H.

    2014-12-01

    The history of oxygen and the fluxes and feedbacks that lead to its evolution through time remain poorly constrained. It is not clear whether oxygen has had discrete steady state levels at different times in Earth's history, or whether oxygen evolution is more progressive, with trigger points that lead to discrete changes in markers such as mass independent sulfur isotopes. Whatever this history may have been, ocean ridges play an important and poorly recognized part in the overall mass balance of oxidants and reductants that contribute to electron mass balance and the oxygen budget. One example is the current steady state O2 in the atmosphere. The carbon isotope data suggest that the fraction of carbon has increased in the Phanerozoic, and CO2 outgassing followed by organic matter burial should continually supply more O2 to the surface reservoirs. Why is O2 not then increasing? A traditional answer to this question would relate to variations in the fraction of burial of organic matter, but this fraction appears to have been relatively high throughout the Phanerozoic. Furthermore, subduction of carbon in the 1/5 organic/carbonate proportions would contribute further to an increasingly oxidized surface. What is needed is a flux of oxidized material out of the system. One solution would be a modern oxidized flux to the mantle. The current outgassing flux of CO2 is ~3.4*1012 moles per year. If 20% of that becomes stored organic carbon, that is a flux of .68*1012 moles per year of reduced carbon. The current flux of oxidized iron in subducting ocean crust is ~2*1012 moles per year of O2 equivalents, based on the Fe3+/Fe2+ ratios in old ocean crust compared to fresh basalts at the ridge axis. This flux more than accounts for the incremental oxidizing power produced by modern life. It also suggests a possible feedback through oxygenation of the ocean. A reduced deep ocean would inhibit oxidation of ocean crust, in which case there would be no subduction flux of oxidized

  8. The dual roles of red blood cells in tissue oxygen delivery

    DEFF Research Database (Denmark)

    Jensen, Frank Bo

    2009-01-01

    Vertebrate red blood cells (RBCs) seem to serve tissue oxygen delivery in two distinct ways. Firstly, RBCs enable the adequate transport of O2 between respiratory surfaces and metabolizing tissues by means of their high intracellular concentration of hemoglobin (Hb), appropriate allosteric...

  9. Information needs for increasing log transport efficiency

    Science.gov (United States)

    Timothy P. McDonald; Steven E. Taylor; Robert B. Rummer; Jorge Valenzuela

    2001-01-01

    Three methods of dispatching trucks to loggers were tested using a log transport simulation model: random allocation, fixed assignment of trucks to loggers, and dispatch based on knowledge of the current status of trucks and loggers within the system. This 'informed' dispatch algorithm attempted to minimize the difference in time between when a logger would...

  10. Evaluation of Losses Of Cold Energy of Cryogen Products in The Transport Systems

    Science.gov (United States)

    Uglanov, Dmitry; Sarmin, Dmitry; Tsapkova, Alexandra; Burdina, Yana

    2017-12-01

    At present, there are problems of energy saving in various areas of human life and in power complexes of industrial plants. One possible solution to the problem of increasing energy efficiency is the use of liquefied natural gas and its cold energy. Pipelines for fuel or gas supply in cryogen supply systems have different length depending on the mutual position of storage and cryogen consumption devices relatively to a start construction. Cryogen supply and transport systems include a lot of fittings of different assortment. Reservoirs can be installed on different elevation points. To reduce heat inleak and decrease cold energy of cryogen product different kinds of thermal insulation are used. Cryogen pipelines provide required operation conditions of storage and gasifying systems. The aim of the thermal calculation of cryogen transport and supply systems is to define the value of cryogen heat. In this paper it is shown values of cryogen temperature rise due to heat inleaks at cryogen’s transfer along transport systems for ethane, methane, oxygen and nitrogen were calculated. Heat inleaks also due to hydraulic losses were calculated. Specific losses of cold energy of cryogen product for laminar and turbulent flow were calculated. Correspondences of temperature rise, critical pipeline’s length and Reynolds number were defined for nitrogen, argon, methane and oxygen.

  11. Cold stress increases reactive oxygen species formation via TRPA1 activation in A549 cells.

    Science.gov (United States)

    Sun, Wenwu; Wang, Zhonghua; Cao, Jianping; Cui, Haiyang; Ma, Zhuang

    2016-03-01

    Reactive oxygen species (ROS) are responsible for lung damage during inhalation of cold air. However, the mechanism of the ROS production induced by cold stress in the lung is still unclear. In this work, we measured the changes of ROS and the cytosolic Ca(2+) concentration ([Ca(2+)]c) in A549 cell. We observed that cold stress (from 20 to 5 °C) exposure of A549 cell resulted in an increase of ROS and [Ca(2+)]c, which was completely attenuated by removing Ca(2+) from medium. Further experiments showed that cold-sensing transient receptor potential subfamily member 1 (TRPA1) agonist (allyl isothiocyanate, AITC) increased the production of ROS and the level of [Ca(2+)]c in A549 cell. Moreover, HC-030031, a TRPA1 selective antagonist, significantly inhibited the enhanced ROS and [Ca(2+)]c induced by AITC or cold stimulation, respectively. Taken together, these data demonstrated that TRPA1 activation played an important role in the enhanced production of ROS induced by cold stress in A549 cell.

  12. Increase in cerebral oxygenation during advanced life support in out-of-hospital patients is associated with return of spontaneous circulation.

    Science.gov (United States)

    Genbrugge, Cornelia; Meex, Ingrid; Boer, Willem; Jans, Frank; Heylen, René; Ferdinande, Bert; Dens, Jo; De Deyne, Cathy

    2015-03-24

    By maintaining sufficient cerebral blood flow and oxygenation, the goal of cardiopulmonary resuscitation (CPR) is to preserve the pre-arrest neurological state. To date, cerebral monitoring abilities during CPR have been limited. Therefore, we investigated the time-course of cerebral oxygen saturation values (rSO₂) during advanced life support in out-of-hospital cardiac arrest. Our primary aim was to compare rSO₂ values during advanced life support from patients with return of spontaneous circulation (ROSC) to patients who did not achieve ROSC. We performed an observational study to measure rSO₂ using Equanox (Nonin, Plymouth, MI) from the start of advanced life support in the pre-hospital setting. rSO₂ of 49 consecutive out-of-hospital cardiac arrest patients were analyzed. The total increase from initial rSO₂ value until two minutes before ROSC or end of advanced life support efforts was significantly larger in the group with ROSC 16% (9 to 36) compared to the patients without ROSC 10% (4 to 15) (P = 0.02). Mean rSO₂ from the start of measurement until two minutes before ROSC or until termination of advanced life support was higher in patients with ROSC than in those without, namely 39% ± 7 and 31% ± 4 (P = 0.05) respectively. During pre-hospital advanced life support, higher increases in rSO₂ are observed in patients attaining ROSC, even before ROSC was clinically determined. Our findings suggest that rSO₂ could be used in the future to guide patient tailored treatment during cardiac arrest and could therefore be a surrogate marker of the systemic oxygenation state of the patient.

  13. Electronic and ionic transport in Ce0.8PrxTb0.2-xO2-δ and evaluation of performance as oxygen permeation membranes

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Hendriksen, Peter Vang

    2012-01-01

    is significantly enhanced relative to that of a Ce0.9Gd0.1O1.95-δ membrane at high oxygen activities of the permeate gas (aO2 an > 10-15) due to the enhanced electronic conductivity of the Ce0.8PrxTb0.2-xO2-δ compounds. Interference between the ionic and electronic flows has a significant positive effect......The electronic conductivity of Ce0.8PrxTb0.2-xO2-δ (x = 0, 0.05, 0.10, 0.15, 0.20) was determined in the oxygen activity range aO2 ≈ 103 to aO2 ≈ 10-17 at 700- 900 °C by means of Hebb-Wagner polarisation. The electronic conductivity of all the Ce0.8PrxTb0.2-xO2-δ compositions was significantly...... enhanced as compared to that of Ce0.9Gd0.1O1.95-δ, and its value was found to increase with increasing Pr/Tb ratio. The ionic mobility of Ce0.8PrxTb0.2-xO2-δ is similar to that of Ce1- 2δGd2δO2-δ at the same oxygen vacancy concentration. The calculated oxygen flux of a Ce0.8PrxTb0.2-xO2-δ membrane...

  14. Direct Electrolysis of Molten Lunar Regolith for the Production of Oxygen and Metals on the Moon

    Science.gov (United States)

    Sirk, Aislinn H. C.; Sadoway, Donald R.; Sibille, Laurent

    2010-01-01

    When considering the construction of a lunar base, the high cost ($ 100,000 a kilogram) of transporting materials to the surface of the moon is a significant barrier. Therefore in-situ resource utilization will be a key component of any lunar mission. Oxygen gas is a key resource, abundant on earth and absent on the moon. If oxygen could be produced on the moon, this provides a dual benefit. Not only does it no longer need to be transported to the surface for breathing purposes; it can also be used as a fuel oxidizer to support transportation of crew and other materials more cheaply between the surface of the moon, and lower earth orbit (approximately $20,000/kg). To this end a stable, robust (lightly manned) system is required to produce oxygen from lunar resources. Herein, we investigate the feasibility of producing oxygen, which makes up almost half of the weight of the moon by direct electrolysis of the molten lunar regolith thus achieving the generation of usable oxygen gas while producing primarily iron and silicon at the cathode from the tightly bound oxides. The silicate mixture (with compositions and mechanical properties corresponding to that of lunar regolith) is melted at temperatures near 1600 C. With an inert anode and suitable cathode, direct electrolysis (no supporting electrolyte) of the molten silicate is carried out, resulting in production of molten metallic products at the cathode and oxygen gas at the anode. The effect of anode material, sweep rate, and electrolyte composition on the electrochemical behavior was investigated and implications for scale-up are considered. The activity and stability of the candidate anode materials as well as the effect of the electrolyte composition were determined. Additionally, ex-situ capture and analysis of the anode gas to calculate the current efficiency under different voltages, currents and melt chemistries was carried out.

  15. Using Lagrangian sampling to study water quality during downstream transport in the San Luis Drain, California, USA

    Science.gov (United States)

    Volkmar, E.C.; Dahlgren, R.A.; Stringfellow, W.T.; Henson, S.S.; Borglin, S.E.; Kendall, C.; Van Nieuwenhuyse, E. E.

    2011-01-01

    To investigate the mechanism for diel (24h) changes commonly observed at fixed sampling locations and how these diel changes relate to downstream transport in hypereutrophic surface waters, we studied a parcel of agricultural drainage water as it traveled for 84h in a concrete-lined channel having no additional water inputs or outputs. Algal fluorescence, dissolved oxygen, temperature, pH, conductivity, and turbidity were measured every 30min. Grab samples were collected every 2h for water quality analyses, including nutrients, suspended sediment, and chlorophyll/pheophytin. Strong diel patterns were observed for dissolved oxygen, pH, and temperature within the parcel of water. In contrast, algal pigments and nitrate did not exhibit diel patterns within the parcel of water, but did exhibit strong diel patterns for samples collected at a fixed sampling location. The diel patterns observed at fixed sampling locations for these constituents can be attributed to algal growth during the day and downstream transport (washout) of algae at night. Algal pigments showed a rapid daytime increase during the first 48h followed by a general decrease for the remainder of the study, possibly due to sedimentation and photobleaching. Algal growth (primarily diatoms) was apparent each day during the study, as measured by increasing dissolved oxygen concentrations, despite low phosphate concentrations (<0.01mgL-1). ?? 2011 Elsevier B.V.

  16. Design of generic coal conversion facilities: Production of oxygenates from synthesis gas---A technology review

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This report concentrates on the production of oxygenates from coal via gasification and indirect liquefaction. At the present the majority of oxygenate synthesis programs are at laboratory scale. Exceptions include commercial and demonstration scale plants for methanol and higher alcohols production, and ethers such as MTBE. Research and development work has concentrated on elucidating the fundamental transport and kinetic limitations governing various reactor configurations. But of equal or greater importance has been investigations into the optimal catalyst composition and process conditions for the production of various oxygenates.

  17. Oxygen regulation of nitrate uptake in denitrifying Pseudomonas aeruginosa.

    OpenAIRE

    Hernandez, D; Rowe, J J

    1987-01-01

    Oxygen had an immediate and reversible inhibitory effect on nitrate respiration by denitrifying cultures of Pseudomonas aeruginosa. Inhibition of nitrate utilization by oxygen appeared to be at the level of nitrate uptake, since nitrate reduction to nitrite in cell extracts was not affected by oxygen. The degree of oxygen inhibition was dependent on the concentration of oxygen, and increasing nitrate concentrations could not overcome the inhibition. The inhibitory effect of oxygen was maximal...

  18. Modeling the oxygen microheterogeneity of tumors for photodynamic therapy dosimetry

    Science.gov (United States)

    Pogue, Brian W.; Paulsen, Keith D.; O'Hara, Julia A.; Hoopes, P. Jack; Swartz, Harold

    2000-03-01

    Photodynamic theory of tumors uses optical excitation of a sensitizing drug within tissue to produce large deposits of singlet oxygen, which are thought to ultimately cause the tumor destruction. Predicting dose deposition of singlet oxygen in vivo is challenging because measurement of this species in vivo is not easily achieved. But it is possible to follow the concentration of oxygen in vivo, and so measuring the oxygen concentration transients during PDT may provide a viable method of estimating the delivered dose of singlet oxygen. However modeling the microscopic heterogeneity of the oxygen distribution within a tumor is non-trivial, and predicting the microscopic dose deposition requires further study, but this study present the framework and initial calibration needed or modeling oxygen transport in complex geometries. Computational modeling with finite elements provides a versatile structure within which oxygen diffusion and consumption can be modeled within realistic tissue geometries. This study develops the basic tools required to simulate a tumor region, and examines the role of (i) oxygen supply and consumption rates, (ii) inter- capillary spacing, (iii) photosensitizer distribution, and (iv) differences between simulated tumors and those derived directly from histology. The result of these calculations indicate that realistic tumor tissue capillary networks can be simulated using the finite element method, without excessive computational burden for 2D regions near 1 mm2, and 3D regions near 0.1mm3. These simulations can provide fundamental information about tissue and ways to implement appropriate oxygen measurements. These calculations suggest that photodynamic therapy produces the majority of singlet oxygen in and near the blood vessels, because these are the sites of highest oxygen tension. These calculations support the concept that tumor vascular regions are the major targets for PDT dose deposition.

  19. Intelligent Transport Systems in the Management of Road Transportation

    Science.gov (United States)

    Kalupová, Blanka; Hlavoň, Ivan

    2016-11-01

    Extension of European Union causes increase of free transfer of people and goods. At the same time they raised the problems associated with the transport, e.g. congestion and related accidents on roads, air traffic delays and more. To increase the efficiency and safety of transport, the European Commission supports the introduction of intelligent transport systems and services in all transport sectors. Implementation of intelligent transport systems and services in the road transport reduces accident frequency, increases the capacity of existing infrastructure and reduces congestions. Use of toll systems provides resources needed for the construction and operation of a new road network, improves public transport, cycling transport and walking transport, and also their multimodal integration with individual car transport.

  20. Increased transvascular escape rate and lymph drainage of albumin in pigs during intravenous diuretic medication. Relations to treatment in man and transport mechanisms

    DEFF Research Database (Denmark)

    Henriksen, J H; Parving, H H; Lassen, N A

    1982-01-01

    .05). Pressures in artery, right atrium, hepatic and portal veins did not change significantly from control to diuretic period. TERalb equals the lymphatic return rate of albumin provided the transport mechanisms are filtrative-convective (i.e. no local back transport). Additional measurements in five pigs...... with proteins of different molecular size confirmed a dominating filtrative-convective transport. The increased TERalb during diuretic medication is best explained by an increased lymph drainage, which may decrease interstitial fluid pressure and thereby increase the transmural capillary pressure difference...... being essential for a filtrative-convective transvascular albumin transport. Increased lymph drainage may contribute to the therapeutic effect of diuretic treatment in oedema and ascites....