WorldWideScience

Sample records for increased nonconducted p-wave

  1. Micro Electro Discharge Machining for Nonconductive Ceramic Materials

    Directory of Open Access Journals (Sweden)

    Mohammad Yeakub Ali

    2018-03-01

    Full Text Available In micro-electro discharge machining (micro-EDM of nonconductive ceramics, material is removed mainly by spalling due to the dominance of alternating thermal load. The established micro-EDM models established for single spark erosion are not applicable for nonconductive ceramics because of random spalling. Moreover, it is difficult to create single spark on a nonconductive ceramic workpiece when the spark is initiated by the assisting electrode. In this paper, theoretical model of material removal rate (MRR as the function of capacitance and voltage is developed for micro-EDM of nonconductive zirconium oxide (ZrO2. It is shown that the charging and discharging duration depend on the capacitance and resistances of the circuit. The number of sparks per unit time is estimated from the single spark duration s derived from heat transfer fundamentals. The model showed that both the capacitance and voltage are significant process parameters where any increase of capacitance and voltage increases the MRR. However, capacitance was found to be the dominating parameter over voltage. As in case of higher capacitances, the creation of a conductive carbonic layer on the machined surface was not stable; the effective window of machining 101 - 103 pF capacitance and 80 - 100 V gap voltage or 10 - 470 pF capacitance and 80 - 110 V gap voltage. This fact was confirmed EDX analysis where the presence of high carbon content was evident. Conversely, the spark was found to be inconsistent using parameters beyond these ranges and consequently insignificant MRR. Nevertheless, the effective number of sparks per second were close to the predicted numbers when machining conductive copper material. In addition, higher percentage of ineffective pulses was observed during the machining which eventually reduced the MRR. In case of validation, average deviations between the predicted and experimental values were found to be around 10%. Finally, micro-channels were machined on

  2. P Wave Dispersion is Increased in Pulmonary Stenosis

    Directory of Open Access Journals (Sweden)

    Namik Ozmen

    2006-01-01

    Full Text Available Aim: The right atrium pressure load is increased in pulmonary stenosis (PS that is a congenital anomaly and this changes the electrophysiological characteristics of the atria. However, there is not enough data on the issue of P wave dispersion (PWD in PS. Methods: Forty- two patients diagnosed as having valvular PS with echocardiography and 33 completely healthy individuals as the control group were included in the study. P wave duration, p wave maximum (p max and p minimum (p min were calculated from resting electrocariography (ECG obtained at the rate of 50 mm/sec. P wave dispersion was derived by subtracting p min from p max. The mean pressure gradient (MPG at the pulmonary valve, structure of the valve and diameters of the right and left atria were measured with echocardiography. The data from two groups were compared with the Mann-Whitney U test and correlation analysis was performed with the Pearson correlation technique. Results: There wasn’t any statistically significance in the comparison of age, left atrial diameter and p min between two groups. While the MPG at the pulmonary valve was 43.11 ± 18.8 mmHg in PS patients, it was 8.4 ± 4.5 mmHg in the control group. While p max was 107.1 ± 11.5 in PS group, it was 98.2 ± 5.1 in control group (p=0.01, PWD was 40.4 ± 1.2 in PS group, and 27.2 ± 9.3 in the control group (p=0.01Moreover, while the diameter of the right atrium in PS group was greater than that of the control group, (38.7 ± 3.9 vs 30.2 ± 2.5, p=0.02. We detected a correlation between PWD and pressure gradient in regression analysis. Conclusion: P wave dispersion and p max are increased in PS. While PWD was correlated with the pressure gradient that is the degree of narrowing, it was not correlated with the diameters of the right and left atria.

  3. [P wave dispersion increased in childhood depending on blood pressure, weight, height, and cardiac structure and function].

    Science.gov (United States)

    Chávez-González, Elibet; González-Rodríguez, Emilio; Llanes-Camacho, María Del Carmen; Garí-Llanes, Merlin; García-Nóbrega, Yosvany; García-Sáez, Julieta

    2014-01-01

    Increased P wave dispersion are identified as a predictor of atrial fibrillation. There are associations between hypertension, P wave dispersion, constitutional and echocardiographic variables. These relationships have been scarcely studied in pediatrics. The aim of this study was to determine the relationship between P wave dispersion, blood pressure, echocardiographic and constitutional variables, and determine the most influential variables on P wave dispersion increases in pediatrics. In the frame of the PROCDEC II project, children from 8 to 11 years old, without known heart conditions were studied. Arterial blood pressure was measured in all the children; a 12-lead surface electrocardiogram and an echocardiogram were done as well. Left ventricular mass index mean values for normotensive (25.91±5.96g/m(2.7)) and hypertensive (30.34±8.48g/m(2.7)) showed significant differences P=.000. When we add prehypertensive and hypertensive there are 50.38% with normal left ventricular mass index and P wave dispersion was increased versus 13.36% of normotensive. Multiple regression demonstrated that the mean blood pressure, duration of A wave of mitral inflow, weight and height have a value of r=0.88 as related to P wave dispersion. P wave dispersion is increased in pre- and hypertensive children compared to normotensive. There are pre- and hypertensive patients with normal left ventricular mass index and increased P wave dispersion. Mean arterial pressure, duration of the A wave of mitral inflow, weight and height are the variables with the highest influence on increased P wave dispersion. Copyright © 2013 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  4. Increased P-wave dispersion a risk for atrial fibrillation in adolescents with anorexia nervosa.

    Science.gov (United States)

    Ertuğrul, İlker; Akgül, Sinem; Derman, Orhan; Karagöz, Tevfik; Kanbur, Nuray

    2016-01-01

    Studies have shown that a prolonged P-wave dispersion is a risk factor for the development of atrial fibrillation. The aim of this study was to evaluate P-wave dispersion in adolescents with anorexia nervosa at diagnosis. We evaluated electrocardiographic findings, particularly the P-wave dispersion, at initial assessment in 47 adolescents with anorexia nervosa. Comparison of P-wave dispersion between adolescents with anorexia nervosa and controls showed a statistically significant higher P-wave dispersion in patients with anorexia nervosa (72 ± 16.3 msec) when compared to the control group (43.8 ± 9.5 msec). Percent of body weight lost, lower body mass index, and higher weight loss rate in the patients with anorexia nervosa had no effect on P-wave dispersion. Due to the fact that anorexia nervosa has a high mortality rate we believe that cardiac pathologies such as atrial fibrillation must also be considered in the medical evaluation.

  5. Investigation of surface roughness in micro-electro discharge machining of nonconductive ZrO2 for MEMS application

    International Nuclear Information System (INIS)

    Sabur, A; Moudood, A; Ali, M Y; Maleque, M A

    2013-01-01

    Micro-electro discharge machining technique, a noncontact machining process, is applied for drilling blind hole on nonconductive ZrO 2 ceramic for MEMS application. A conductive layer of adhesive copper is applied on the workpiece surface to initiate the sparks. Kerosene is used as dielectric for creation of continuous conductive pyrolytic carbon layer on the machined surface. Experiments are conducted by varying the voltage (V), capacitance (C) and rotational speed (N). Correlating these variables a mathematical model for surface roughness (SR) is developed using Taguchi method. The results showed that the V and C are the significant parameters of SR in micro-EDM for nonconductive ZrO 2 ceramic. The model also showed that SR increases with the increase of V and C

  6. Method for electrically producing dispersions of a nonconductive fluid in a conductive medium

    Science.gov (United States)

    DePaoli, David W.; Tsouris, Constantinos; Feng, James Q.

    1998-01-01

    A method for use in electrically forming dispersions of a nonconducting fluid in a conductive medium that minimizes power consumption, gas generation, and sparking between the electrode of the nozzle and the conductive medium. The method utilizes a nozzle having a passageway, the wall of which serves as the nozzle electrode, for the transport of the nonconducting fluid into the conductive medium. A second passageway provides for the transport of a flowing low conductivity buffer fluid which results in a region of the low conductivity buffer fluid immediately adjacent the outlet from the first passageway to create the necessary protection from high current drain and sparking. An electrical potential difference applied between the nozzle electrode and an electrode in contact with the conductive medium causes formation of small droplets or bubbles of the nonconducting fluid within the conductive medium. A preferred embodiment has the first and second passageways arranged in a concentric configuration, with the outlet tip of the first passageway withdrawn into the second passageway.

  7. Competing p-wave orders

    International Nuclear Information System (INIS)

    Donos, Aristomenis; Gauntlett, Jerome P; Pantelidou, Christiana

    2014-01-01

    We construct electrically charged, asymptotically AdS 5 black hole solutions that are dual to d = 4 CFTs in a superfluid phase with either p-wave or (p + ip)-wave order. The two types of black holes have non-vanishing charged two-form in the bulk and appear at the same critical temperature in the unbroken phase. Both the p-wave and the (p + ip)-wave phase can be thermodynamically preferred, depending on the mass and charge of the two-form, and there can also be first order transitions between them. The p-wave black holes have a helical structure and some of them exhibit the phenomenon of pitch inversion as the temperature is decreased. Both the p-wave and the (p + ip)-wave black holes have zero entropy density ground states at zero temperature and we identify some new ground states which exhibit scaling symmetry, including a novel scenario for the emergence of conformal symmetry in the IR. (paper)

  8. Micro Electro Discharge Machining of Electrically Nonconductive Ceramics

    International Nuclear Information System (INIS)

    Schubert, A.; Zeidler, H.; Hackert, M.; Wolf, N.

    2011-01-01

    EDM is a known process for machining of hard and brittle materials. Due to its noncontact and nearly forceless behaviour, it has been introduced into micro manufacturing and through constant development it is now an important means for producing high-precision micro geometries. One restriction of EDM is its limitation to electrically conducting materials.Today many applications, especially in the biomedical field, make use of the benefits of ceramic materials, such as high strength, very low wear and biocompatibility. Common ceramic materials such as Zirconium dioxide are, due to their hardness in the sintered state, difficult to machine with conventional cutting techniques. A demand for the introduction of EDM to these materials could so far not be satisfied because of their nonconductive nature.At the Chemnitz University of Technology and the Fraunhofer IWU, investigations in the applicability of micro-EDM for the machining of nonconductive ceramics are being conducted. Tests are undertaken using micro-EDM drilling with Tungsten carbide tool electrodes and ZrO 2 ceramic workpieces. A starting layer, in literature often referred to as 'assisting electrode' is used to set up a closed electric circuit to start the EDM process. Combining carbon hydride based dielectric and a specially designed low-frequency vibration setup to excite the workpiece, the process environment can be held within parameters to allow for a constant EDM process even after the starting layer is machined. In the experiments a cylindrical 120 μm diameter Tungsten carbide tool electrode and Y 2 O 3 - and MgO- stabilized ZrO 2 worpieces are used. The current and voltage signals of the discharges within the different stages of the process (machining of the starting layer, machining of the base material, transition stage) are recorded and their characteristics compared to discharges in metallic material. Additionally, the electrode feed is monitored. The influences of the process parameters are

  9. Integration of conducting polymer network in non-conductive polymer substrates

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; West, Keld; Hassager, Ole

    2006-01-01

    Anew method for integration ofconjugated, inherently conducting polymers into non-conductive polymer substrates has been developed. Alayer of the conducting polymer is polymerised by chemical oxidation, e.g. using Fe(ID) p-toluene sulfonate (ferri tosylate) followed by washing with a solvent which...... simultaneously removes residual and spent oxidant and at the same time dissolves the top layer of the polymer substrate. This results in an integration of the conducting polymer into the surface layers of the polymer substrate. Several combinations of conducting polymers and substrates have been tested...... absorption during sequential reactive ion etching has allowed for analysis of the PEDOT distribution within the surface layer of thePMMA substrate. The surface resistance ofthe conducting polymer layer remains low while the surface layer at the same time adapts some of the mechanical properties...

  10. P-S & S-P Elastic Wave Conversions from Linear Arrays of Oriented Microcracks

    Science.gov (United States)

    Jiang, L.; Modiriasari, A.; Bobet, A.; Pyrak-Nolte, L. J.

    2017-12-01

    Natural and induced processes can produce oriented mechanical discontinuities such as en echelon cracks, fractures and faults. Previous research has shown that compressional to shear (P-S) wave conversions occur at normal incidence to a fracture because of cross-coupling fracture compliances (Nakagawa et al., 2000). Here, experiments and computer simulation are presented to demonstrate the link among cross-coupling stiffness, microcrack orientation and energy partitioning among P, S, and P-S/S-P waves. A FormLabs 2 3D printer was used to fabricate 7 samples (50 mm x 50 mm x 100 mm) with linear arrays of microcracks oriented at 0, 15, 30, 45, 60, 75, and 900 with a print resolution of 0.025 mm. The microcracks were elliptical in cross-sections (2 mm long by 1 mm wide), through the 50 mm thickness of sample, and spaced 3 mm (center-to-center for adjacent cracks). A 25 mm length of each sample contained no microcracks to act as a reference material. Broadband transducers (0.2-1.5 MHz) were used to transmit and receive P and polarized S wave signals that were propagated at normal incidence to the linear array of microcracks. P-wave amplitude increased, while S-wave amplitude remained relatively constant, as the microcrack orientation increased from 0o to 90o. At normal incidence, P-S and S-P wave conversions emerged and increased in amplitude as the crack inclination increased from 00 to 450. From 450 to 900, the amplitude of these converted modes decreased. Between negative and positive crack angles, the P-to-S and S-to-P waves were 1800 phase reversed. The observed energy partitioning matched the computed compliances obtained from numerical simulations with ABAQUS. The cross-coupling compliance for cracks inclined at 450 was found to be the smallest magnitude. 3D printing enabled the study of microstructural effects on macro-scale wave measurements. Information on the orientation of microcracks or even en echelon fractures and faults is contained in P-S conversions

  11. Suspension chemistry and electrophoretic deposition of zirconia electrolyte on conducting and non-conducting substrates

    International Nuclear Information System (INIS)

    Das, Debasish; Basu, Rajendra N.

    2013-01-01

    Graphical abstract: - Highlights: • Stable suspension of yttria stabilized zirconia (YSZ) obtained in isopropanol medium. • Suspension chemistry and process parameters for electrophoretic deposition optimized. • Deposited film quality changed with iodine and water (dispersants) concentration. • Dense YSZ film (∼5 μm) fabricated onto non-conducting porous NiO-YSZ anode substrate. - Abstract: Suspensions of 8 mol% yttria stabilized zirconia (YSZ) particulates in isopropanol medium are prepared using acetylacetone, iodine and water as dispersants. The effect of dispersants concentration on suspension stability, particle size distribution, electrical conductivity and pH of the suspensions are studied in detail to optimize the suspension chemistry. Electrophoretic deposition (EPD) has been conducted to produce thin and dense YSZ electrolyte films. Deposition kinetics have been studied in depth and good quality films on conducting substrate are obtained at an applied voltage of 15 V for 3 min. YSZ films are also fabricated on non-conducting NiO-YSZ anode substrate using a steel plate on the reverse side of the substrate. Upon co-firing at 1400 °C for 6 h a dense YSZ film of thickness ∼5 μm is obtained. Such a half cell (anode + electrolyte) can be used to fabricate a solid oxide fuel cell on applying a suitable cathode layer

  12. Temperature effect on microstructure and P-wave propagation in Linyi sandstone

    International Nuclear Information System (INIS)

    Sun, Hui; Sun, Qiang; Deng, Wenni; Zhang, Weiqiang; Lü, Chao

    2017-01-01

    Highlights: • Mass loss rate, P-wave velocity change rate and damage factor increase exponentially as temperatures rise. • The damage threshold temperature of sandstone samples is 300 °C and limit temperature is 900 °C. • P-wave velocity change rate of sandstone exhibits excellent linearity with mass loss rate. • Damage factor can be well expressed by mass loss rate. - Abstract: In order to study the effect of high temperature on the sandstone, scanning electron microscope (SEM) experiments and primary wave (P-wave) velocity tests have been carried out on sandstone specimens heated to different temperature. The results showed that: (1) the mass loss rate increases exponentially with the increase of temperature and reaches 2.97% at 900 °C; (2) the P-wave velocity change rate increases exponentially with the increase of temperature while there is some fluctuation before 500 °C; (3) the damage threshold temperature of sandstone samples is 300 °C and the limit temperature is 900 °C; (4) there is a good linear relationship between the mass loss rate and the P-wave velocity change rate, and the correlation coefficient (R) of the fitting line is 0.989; (5) the damage caused by high temperature can be reflected better by the mass loss rate than P-wave velocity change rate. The results obtained in this paper will be good for predicting the properties of sandstone when exposed to high temperature.

  13. Estimating the Wet-Rock P-Wave Velocity from the Dry-Rock P-Wave Velocity for Pyroclastic Rocks

    Science.gov (United States)

    Kahraman, Sair; Fener, Mustafa; Kilic, Cumhur Ozcan

    2017-07-01

    Seismic methods are widely used for the geotechnical investigations in volcanic areas or for the determination of the engineering properties of pyroclastic rocks in laboratory. Therefore, developing a relation between the wet- and dry-rock P-wave velocities will be helpful for engineers when evaluating the formation characteristics of pyroclastic rocks. To investigate the predictability of the wet-rock P-wave velocity from the dry-rock P-wave velocity for pyroclastic rocks P-wave velocity measurements were conducted on 27 different pyroclastic rocks. In addition, dry-rock S-wave velocity measurements were conducted. The test results were modeled using Gassmann's and Wood's theories and it was seen that estimates for saturated P-wave velocity from the theories fit well measured data. For samples having values of less and greater than 20%, practical equations were derived for reliably estimating wet-rock P-wave velocity as function of dry-rock P-wave velocity.

  14. Holographic s-wave and p-wave Josephson junction with backreaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yong-Qiang; Liu, Shuai [Institute of Theoretical Physics, Lanzhou University,Lanzhou 730000, People’s Republic of (China)

    2016-11-22

    In this paper, we study the holographic models of s-wave and p-wave Josephoson junction away from probe limit in (3+1)-dimensional spacetime, respectively. With the backreaction of the matter, we obtained the anisotropic black hole solution with the condensation of matter fields. We observe that the critical temperature of Josephoson junction decreases with increasing backreaction. In addition to this, the tunneling current and condenstion of Josephoson junction become smaller as backreaction grows larger, but the relationship between current and phase difference still holds for sine function. Moreover, condenstion of Josephoson junction deceases with increasing width of junction exponentially.

  15. P wave dispersion and maximum P wave duration are independently associated with rapid renal function decline.

    Science.gov (United States)

    Su, Ho-Ming; Tsai, Wei-Chung; Lin, Tsung-Hsien; Hsu, Po-Chao; Lee, Wen-Hsien; Lin, Ming-Yen; Chen, Szu-Chia; Lee, Chee-Siong; Voon, Wen-Chol; Lai, Wen-Ter; Sheu, Sheng-Hsiung

    2012-01-01

    The P wave parameters measured by 12-lead electrocardiogram (ECG) are commonly used as noninvasive tools to assess for left atrial enlargement. There are limited studies to evaluate whether P wave parameters are independently associated with decline in renal function. Accordingly, the aim of this study is to assess whether P wave parameters are independently associated with progression to renal end point of ≥25% decline in estimated glomerular filtration rate (eGFR). This longitudinal study included 166 patients. The renal end point was defined as ≥25% decline in eGFR. We measured two ECG P wave parameters corrected by heart rate, i.e. corrected P wave dispersion (PWdisperC) and corrected P wave maximum duration (PWdurMaxC). Heart function and structure were measured from echocardiography. Clinical data, P wave parameters, and echocardiographic measurements were compared and analyzed. Forty-three patients (25.9%) reached renal end point. Kaplan-Meier curves for renal end point-free survival showed PWdisperC > median (63.0 ms) (log-rank P = 0.004) and PWdurMaxC > median (117.9 ms) (log-rank Pfunction decline.

  16. Dynamic tunneling force microscopy for characterizing electronic trap states in non-conductive surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wang, R.; Williams, C. C., E-mail: clayton@physics.utah.edu [Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112 (United States)

    2015-09-15

    Dynamic tunneling force microscopy (DTFM) is a scanning probe technique for real space mapping and characterization of individual electronic trap states in non-conductive films with atomic scale spatial resolution. The method is based upon the quantum mechanical tunneling of a single electron back and forth between a metallic atomic force microscopy tip and individual trap states in completely non-conducting surface. This single electron shuttling is measured by detecting the electrostatic force induced on the probe tip at the shuttling frequency. In this paper, the physical basis for the DTFM method is unfolded through a physical model and a derivation of the dynamic tunneling signal as a function of several experimental parameters is shown. Experimental data are compared with the theoretical simulations, showing quantitative consistency and verifying the physical model used. The experimental system is described and representative imaging results are shown.

  17. The Relationship Between Aging and P Wave Dispersion

    Directory of Open Access Journals (Sweden)

    İrfan Barutçu

    2009-12-01

    Full Text Available Objective: Atrial fibrillation (AF, commonly observed in advanced ages, displays striking age dependent increase and increased P wave dispersion (PWD has been shown to be a predictor of AF. In this studywe sought to determine whether P wave duration and PWD increase with aging. Method and Results: Eighty-three elderly subjects (group-I mean age 75±8 years and 40 healthy young subjects (group-II, mean age 37±6 years participated in this study. 12-lead ECG recorded at a paper speed of 50mm/s was obtained from each participant. Maximum (Pmax and minimum P wave duration (Pmin was measured manually with a caliper and the difference between two values was defined asPWD. Pmax and PWD were significantly higher in group-I compared to group-II. (98±8 vs. 93±8 p=0.01, 41±12 vs. 34±13 p=0.002, respectively. Among the elderly population when those with cardiovascular disorders such as hypertension, coronary artery disease and heart failure were excluded, Pmax and PWD were still significantly higher than the young population. (Pmax: 98±7 vs. 93±7, p=0.02 and PWD: 42±11 vs. 34±13, p=0.002. Moreover, on correlation analysis a positive correlation was detected between Pmaxand PWD and aging. (r=0.29, p=0.004; r=0.30, p=0.003 respectively.Conclusion: PWD shows age dependent increase and may be a useful marker for estimation the risk of developing AF seen in advanced ages.

  18. Electrically nonconductive shield for electric equipment generating ionizing radiation

    International Nuclear Information System (INIS)

    Aitken, D.

    1979-01-01

    As a radiation protection shield there is proposed a nonconductive shield fabricated from epoxides or other plastics material and containing finely dispersed radiation absorbing metal. It is to be designed in such a way that it lies in the range of a high electric gradient in the equipment, close to the radiation-producing component. As suitable metals there are mentioned tin, tungsten, and lead resp. their oxides. As an example there is used an X-ray shielding. (RW) 891 RW/RW 892 MKO [de

  19. Tube Inner Coating of Non-Conductive Films by Pulsed Reactive Coaxial Magnetron Plasma with Outer Anode

    Directory of Open Access Journals (Sweden)

    Musab Timan Idriss Gasab

    2018-03-01

    Full Text Available The double-ended coaxial magnetron pulsed plasma (DCMPP method with auxiliary outer anode was introduced in order to achieve the uniform coating of non-conductive thin films on the inner walls of insulator tubes. In this study, titanium (Ti was employed as a cathode (sputtering target, and a glass tube was used as a substrate. In an argon (Ar and oxygen (O2 gas mixture, magnetron plasma was generated. Oxygen gas was introduced to deposit a titanium oxide (TiO2 film. A comparison between films coated with and without an auxiliary outer anode was made. As a result, it was clearly shown that the DCMPP method using an auxiliary outer anode enhanced the uniformity of the deposited non-conductive film compared to the conventional DCMPP method. Moreover, the optimum conditions under which the thin TiO2 film was deposited on the inner wall of the glass tube were revealed. From the results, it was supposed that the auxiliary outer anode contributed to the uniformity of the distributions of deposited negative charge on the non-conductive film and consequently the electric field and the plasma density uniform.

  20. Damping properties of non-conductive composite materials for applications in power transmission pylons

    DEFF Research Database (Denmark)

    Kliem, Mathias; Rüppel, Marvin; Høgsberg, Jan

    2018-01-01

    This study aims to characterize the fibre direction dependent damping properties of non-conductive composite materialsto be used in newly designed electrical power transm°ission pylons, on which the conducting cables will be directlyconnected. Thus, the composite structure can be designed both to...

  1. Geometrical aspects in optical wave-packet dynamics.

    Science.gov (United States)

    Onoda, Masaru; Murakami, Shuichi; Nagaosa, Naoto

    2006-12-01

    We construct a semiclassical theory for propagation of an optical wave packet in a nonconducting medium with a periodic structure of dielectric permittivity and magnetic permeability, i.e., a nonconducting photonic crystal. We employ a quantum-mechanical formalism in order to clarify its link to those of electronic systems. It involves the geometrical phase, i.e., Berry's phase, in a natural way, and describes an interplay between orbital motion and internal rotation. Based on the above theory, we discuss the geometrical aspects of the optical Hall effect. We also consider a reduction of the theory to a system without periodic structure and apply it to the transverse shift of an optical beam at an interface reflection or refraction. For a generic incident beam with an arbitrary polarization, an identical result for the transverse shift of each reflected or transmitted beam is given by the following different approaches: (i) analytic evaluation of wave-packet dynamics, (ii) total angular momentum (TAM) conservation for individual photons, and (iii) numerical simulation of wave-packet dynamics. It is consistent with a result by classical electrodynamics. This means that the TAM conservation for individual photons is already taken into account in wave optics, i.e., classical electrodynamics. Finally, we show an application of our theory to a two-dimensional photonic crystal, and propose an optimal design for the enhancement of the optical Hall effect in photonic crystals.

  2. Electrophoretic deposition of thin film zirconia electrolyte on non-conducting NiO-YSZ substrate

    International Nuclear Information System (INIS)

    Das, Debasish; Basu, Rajendra N.

    2014-01-01

    Eight (8) mol% yttria stabilized zirconia (YSZ), an electrolyte material for solid oxide fuel cell (SOFC), has been deposited onto porous non-conducting NiO-YSZ substrate using electrophoretic deposition technique (EPD) from a stable non-aqueous suspension of YSZ. Normally, EPD cannot be performed on a non-conducting substrate, but, in this present study, YSZ particulate film has been successfully deposited on a non-conducting NiO-YSZ substrate following two different EPD approaches:(a) using a conducting metallic plate on the reverse side of the porous NiO-YSZ anode substrate and (b) using a conducting polymer coated NiO-YSZ substrate. The deposited films are then formed dense coatings of 5-15 μm after sintering at 1400℃ for 6 h in air. Surface and cross-sectional morphologies of green and sintered films deposited by different EPD approaches are investigated using SEM. La 0.65 Sr 0.3 MnO 3 (LSM), a cathode for SOFC, is then screen-printed onto the electrolyte layer of such sintered half cells (anode+electrolyte) prepared by both the above approaches to construct SOFC single cells. A maximum output power density of 0.37 W.cm -2 is obtained using single cells prepared by conducting metallic plate assisted EPD compared to that of 0.73 W.cm -2 for polymer coated at 800℃ using H 2 as fuel and O 2 as oxidant. (author)

  3. EFFECT OF pH ON ELECTROLESS Ni-P COATING OF CONDUCTIVE AND NON-CONDUCTIVE MATERIALS

    Directory of Open Access Journals (Sweden)

    Subrata Roy

    2011-12-01

    Full Text Available Electroless nickel-phosphorus (Ni-P coating of carbon steel as well as a polypropylene substrate was conducted using sodium hypophosphite as a reducing agent in alkaline media. The influence of pH on coating appearances and the properties of the coatings for both steel and the polypropylene substrate were studied. A nickel-phosphorus coating of good appearance was obtained in the pH range between 5.5 and 12.5 on the carbon steel substrate and between 8.5 and 12 on the polypropylene substrate. The percentage of Ni content in the coating increased with increasing pH of the bath solution. A smooth, uniform microstructure was found in the coating deposited in relatively lower pH solutions compared to higher pH baths. The microhardness of the Ni-P coating decreased with an increasing percentage Ni content in the deposit.

  4. Earthquake early warning using P-waves that appear after initial S-waves

    Science.gov (United States)

    Kodera, Y.

    2017-12-01

    As measures for underprediction for large earthquakes with finite faults and overprediction for multiple simultaneous earthquakes, Hoshiba (2013), Hoshiba and Aoki (2015), and Kodera et al. (2016) proposed earthquake early warning (EEW) methods that directly predict ground motion by computing the wave propagation of observed ground motion. These methods are expected to predict ground motion with a high accuracy even for complicated scenarios because these methods do not need source parameter estimation. On the other hand, there is room for improvement in their rapidity because they predict strong motion prediction mainly based on the observation of S-waves and do not explicitly use P-wave information available before the S-waves. In this research, we propose a real-time P-wave detector to incorporate P-wave information into these wavefield-estimation approaches. P-waves within a few seconds from the P-onsets are commonly used in many existing EEW methods. In addition, we focus on P-waves that may appear in the later part of seismic waves. Kurahashi and Irikura (2013) mentioned that P-waves radiated from strong motion generation areas (SMGAs) were recognizable after S-waves of the initial rupture point in the 2011 off the Pacific coast of Tohoku earthquake (Mw 9.0) (the Tohoku-oki earthquake). Detecting these P-waves would enhance the rapidity of prediction for the peak ground motion generated by SMGAs. We constructed a real-time P-wave detector that uses a polarity analysis. Using acceleration records in boreholes of KiK-net (band-pass filtered around 0.5-10 Hz with site amplification correction), the P-wave detector performed the principal component analysis with a sliding window of 4 s and calculated P-filter values (e.g. Ross and Ben-Zion, 2014). The application to the Tohoku-oki earthquake (Mw 9.0) showed that (1) peaks of P-filter that corresponded to SMGAs appeared in several stations located near SMGAs and (2) real-time seismic intensities (Kunugi et al

  5. BAYESZ, S-Wave, P-Wave Resonance Level Spacing and Strength Functions

    International Nuclear Information System (INIS)

    Moore, M.S.

    1982-01-01

    A - Description of problem or function: BAYESZ calculates average s- and p-wave level spacings, strength functions, and average radiation widths of a mixed sequence of s- and p-wave resonances whose parameters are supplied as input. The code is based on two physical assumptions: 1) The neutron reduced width distribution for each open channel is a chi-squared distribution with one degree of freedom, i.e. Porter-Thomas. 2) The spacing distribution follows the Gaussian Orthogonal Ensemble. This property is used, however, only to fix the s- to p-wave level density ratio as proportional to (2J+1) with a spin cut-off correction. B - Method of solution: The method used is an extension of that described by Moore et al. in reference (1), and is based on the method of moments of a truncated Porter-Thomas distribution. C - Restrictions on the complexity of the problem: Parameters for a maximum of 500 individual resonances can be specified. This restriction can be relaxed by increasing array dimensions

  6. Sensitivity analysis of P-waves and S-waves to gas hydrate in the Shenhu area using OBS

    Science.gov (United States)

    Xing, Lei; Liu, Xueqin; Zhang, Jin; Liu, Huaishan; Zhang, Jing; Li, Zizheng; Wang, Jianhua

    2018-02-01

    Compared to towed streamers, ocean-bottom seismometers (OBS) obtain both S-wave data and richer wavefield information. In this paper, the induced polarization method is used to conduct wavefield separation on OBS data obtained from the Shenhu area in the South China Sea. A comparison of the changes in P- and S-waves, and a comprehensive analysis of geological factors within the area, enable analysis and description of the occurrence of natural gas hydrate in the study area. Results show an increase in P-wave velocity when natural gas hydrate exists in the formation, whereas the S-wave velocity remains almost constant, as S-waves can only propagate through the rock skeleton. Therefore, the bottom-simulating reflection (BSR) response of the P-wave is better than that of the S-wave in the frequency analysis profile. In a wide-angle section, the refractive wave of the hydrate layer is evident when using P-wave components but identification is difficult with S-wave components. This velocity model illustrates the sensitivity of P- and S-wave components to gas hydrate. The use of this polarization method and results of analysis provide technical and theoretical support for research on hydrate deposits and other geological features in the Shenhu area.

  7. Functionalization of silicon nanowires by conductive and non-conductive polymers

    Science.gov (United States)

    Belhousse, S.; Tighilt, F.-Z.; Sam, S.; Lasmi, K.; Hamdani, K.; Tahanout, L.; Megherbi, F.; Gabouze, N.

    2017-11-01

    The work reports on the development of hybrid devices based on silicon nanowires (SiNW) with polymers and the difference obtained when using conductive and non-conductive polymers. SiNW have attracted much attention due to their importance in understanding the fundamental properties at low dimensionality as well as their potential application in nanoscale devices as in field effect transistors, chemical or biological sensors, battery electrodes and photovoltaics. SiNW arrays were formed using metal assisted chemical etching method. This process is simple, fast and allows obtaining a wide range of silicon nanostructures. Hydrogen-passivated SiNW surfaces show relatively poor stability. Surface modification with organic species confers the desired stability and enhances the surface properties. For this reason, this work proposes a covalent grafting of organic material onto SiNW surface. We have chosen a non-conductive polymer polyvinylpyrrolidone (PVP) and conductive polymers polythiophene (PTh) and polypyrrole (PPy), in order to evaluate the electric effect of the polymers on the obtained materials. The hybrid structures were elaborated by the polymerization of the corresponding conjugated monomers by electrochemical route; this electropolymerization offers several advantages such as simplicity and rapidity. SiNW functionalization by conductive polymers has shown to have a huge effect on the electrical mobility. Hybrid surface morphologies were characterized by scanning electron microscopy (SEM), infrared spectroscopy (FTIR-ATR) and contact angle measurements.

  8. ESTIMA, Neutron Width Level Spacing, Neutron Strength Function of S- Wave, P-Wave Resonances

    International Nuclear Information System (INIS)

    Fort, E.

    1982-01-01

    1 - Description of problem or function: ESTIMA calculates level spacing and neutron strength function of a mixed sequence of s- and p-wave resonances given a set of neutron widths as input parameters. Three algorithms are used, two of which calculate s-wave average parameters and assume that the reduced widths obey a Porter-Thomas distribution truncated by a minimum detection threshold. The third performs a maximum likelihood fit to a truncated chi-squared distribution of any specified number of degrees of freedom, i.e. it can be used for calculating s-wave or p-wave average parameters. Resonances of undeclared angular orbital momentum are divided into groups of probable s-wave and probable p-wave by a simple application of Bayes' Theorem. 2 - Method of solution: Three algorithms are used: i) GAMN method, based on simple moments properties of a Porter-Thomas distribution. ii) Missing Level Estimator, a simplified version of the algorithm used by the program BAYESZ. iii) ESTIMA, a maximum likelihood fit. 3 - Restrictions on the complexity of the problem: A maximum of 400 resonances is allowed in the version available from NEADB, however this restriction can be relaxed by increasing array dimensions

  9. GENERAL P, TYPE-I S, AND TYPE-II S WAVES IN ANELASTIC SOLIDS; INHOMOGENEOUS WAVE FIELDS IN LOW-LOSS SOLIDS.

    Science.gov (United States)

    Borcherdt, Roger D.; Wennerberg, Leif

    1985-01-01

    The physical characteristics for general plane-wave radiation fields in an arbitrary linear viscoelastic solid are derived. Expressions for the characteristics of inhomogeneous wave fields, derived in terms of those for homogeneous fields, are utilized to specify the characteristics and a set of reference curves for general P and S wave fields in arbitrary viscoelastic solids as a function of wave inhomogeneity and intrinsic material absorption. The expressions show that an increase in inhomogeneity of the wave fields cause the velocity to decrease, the fractional-energy loss (Q** minus **1) to increase, the deviation of maximum energy flow with respect to phase propagation to increase, and the elliptical particle motions for P and type-I S waves to approach circularity. Q** minus **1 for inhomogeneous type-I S waves is shown to be greater than that for type-II S waves, with the deviation first increasing then decreasing with inhomogeneity. The mean energy densities (kinetic, potential, and total), the mean rate of energy dissipation, the mean energy flux, and Q** minus **1 for inhomogeneous waves are shown to be greater than corresponding characteristics for homogeneous waves, with the deviations increasing as the inhomogeneity is increased for waves of fixed maximum displacement amplitude.

  10. P-wave dispersion: relationship to left ventricular function in sickle cell anaemia.

    Science.gov (United States)

    Oguanobi, N I; Onwubere, B J; Ike, S O; Anisiuba, B C; Ejim, E C; Ibegbulam, O G

    2011-01-01

    The prognostic implications of P-wave dispersion in patients with a variety of cardiac disease conditions are increasingly being recognised. The relationship between P-wave dispersion and left ventricular function in sickle cell anaemia is unknown. This study was aimed at evaluating the relationship between P-wave dispersion and left ventricular function in adult Nigerian sickle cell anaemia patients. Between February and August 2007, a total of 62 sickle cell anaemia patients (aged 18-44 years; mean 28.27 ± 5.58) enrolled in the study. These were drawn from patients attending the adult sickle cell clinic of the University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu. An equal number of age- and gender-matched normal subjects served as controls. All the participants were evaluated with electrocardiography and echocardiography. P-wave dispersion was defined as the difference between the maximum and minimum P-wave duration measured in a 12-lead electrocardiogram. P-wave duration and P-wave dispersion were significantly higher in patients than in controls. Significant correlation was demonstrated between P-wave dispersion and age in the patients (r = 0.387; p = 0.031). A comparison of subsets of sickle cell anaemia patients and controls with comparable haematocrit values (30-35%) showed significantly higher P-wave duration and P-wave dispersion in the patients than in the controls. The P-wave duration in patients and controls, respectively, was 111.10 ± 14.53 ms and 89.14 ± 16.45 ms (t = 3.141; p = 0.006). P-wave dispersion was 64.44 ± 15.86 ms in the patients and 36.43 ± 10.35 ms in the controls (t = 2.752; p = 0.013). Significant negative correlation was found between P-wave dispersion and left ventricular transmitral E/A ratio (r = -0.289; p = 0.023). These findings suggest that P-wave dispersion could be useful in the evaluation of sickle cell patients with left ventricular diastolic dysfunction. Further prospective studies are recommended to evaluate

  11. Conducting to non-conducting transition in dual transmission lines using a ternary model with long-range correlated disorder

    International Nuclear Information System (INIS)

    Lazo, E.; Diez, E.

    2010-01-01

    In this work we study the behavior of the allowed and forbidden frequencies in disordered classical dual transmission lines when the values of capacitances {C j } are distributed according to a ternary model with long-range correlated disorder. We introduce the disorder from a random sequence with a power spectrum S(k)∝k -(2α-1) , where α≥0.5 is the correlation exponent. From this sequence we generate an asymmetric ternary map using two map parameters b 1 and b 2 , which adjust the occupancy probability of each possible value of the capacitances C j ={C A, C B, C C, }. If the sequence of capacitance values is totally at random α=0.5 (white noise), the electrical transmission line is in the non-conducting state for every frequency ω. When we introduce long-range correlations in the distribution of capacitances, the electrical transmission lines can change their conducting properties and we can find a transition from the non-conducting to conducting state for a fixed system size. This implies the existence of critical values of the map parameters for each correlation exponent α. By performing finite-size scaling we obtain the asymptotic value of the map parameters in the thermodynamic limit for any α. With these data we obtain a phase diagram for the symmetric ternary model, which separates the non-conducting state from the conducting one. This is the fundamental result of this Letter. In addition, introducing one or more impurities in random places of the long-range correlated distribution of capacitances, we observe a dramatic change in the conducting properties of the electrical transmission lines, in such a way that the system jumps from conducting to non-conducting states. We think that this behavior can be considered as a possible mechanism to secure communication.

  12. Protonium spectrosopy and identification of P-wave and S-wave initial states of p-p annihilations at rest with the ASTERIX experiment at LEAR

    International Nuclear Information System (INIS)

    Gastaldi, U.; Ahmad, S.; Amsler, C.

    1984-01-01

    This chapter discusses an experiment designed to study the general features of p - p interactions at rest, to extend work done in the spectroscopy of light mesons produced in p - p annihilations at rest, and to search with high sensitivity for gluonium, qq - qq baryonium structures and NN states bound by strong interactions. The effect of using a gas target and a large acceptance X-ray detector is examined. The rate and the signature of antiprotons stopping in the gas target are investigated. Topics covered include the protonium cascade and spectroscopy; a comparison of S-wave and P-wave p - p annihilations at rest; - p stop and the formation of p - p atoms; the x-ray detector (projection chamber, electronics, tests); and examples of estimations of signal and background (protonium spectroscopy, search of resonances in P-wave annihilations, search of resonances in S-wave annihilations). The distinctive features of the ASTERIX experiment are the use of a gaseous H 2 target instead of a conventional liquid H 2 one; an X-ray detector of large overall detection efficiency, low energy threshold and low background rate that enables identification of P-wave and S-wave annihilation events from 2P and 1S levels of protonium; a detection system for the products of p - p annihilations; and a trigger system that enables filtration of the acquisition of events by means of two independent chains of processors working in parallel

  13. Two markers in predicting the cardiovascular events in patients with polycystic ovary syndrome: increased P-wave and QT dispersion.

    Science.gov (United States)

    Akdag, S; Cim, N; Yildizhan, R; Akyol, A; Ozturk, F; Babat, N

    2015-09-01

    Polycystic ovary syndrome (PCOS) is a prevalent disease with many potential long-term cardiovascular risks. P-wave dispersion (Pdis) and QT dispersion (QTdis) have been shown to be noninvasive electrocardiographic predictors for development of cardiac arrhythmias. In this study we aimed to search Pdis and QTdis parameters in patients with PCOS. The study included 82 patients with PCOS and 74 age- and sex-matched healthy controls. Baseline 12-lead electrocardiographic and transthoracic echocardiographic measurements were evaluated. P-wave maximum duration (Pmax), P-wave minimum duration (Pmin), Pdis, QT interval, heart rate-corrected QT dispersion and QTdis were calculated by two cardiologists. Patients wirh PCOS had significantly higher QT dispersion (49.5 ± 14.1 vs. 37.9 ± 12.6 ms, p PCOS patients.

  14. Scanning Electron Microscopy of Nonconductive Specimens at Critical Energies in a Cathode Lens System

    Czech Academy of Sciences Publication Activity Database

    Frank, Luděk; Zadražil, Martin; Müllerová, Ilona

    2001-01-01

    Roč. 23, č. 1 (2001), s. 36-50 ISSN 0161-0457 R&D Projects: GA ČR GA202/96/0961; GA ČR GA202/99/0008 Institutional research plan: CEZ:AV0Z2065902 Keywords : scanning electron microscopy * specimen charging * nonconductive specimens Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.389, year: 2001

  15. Depth of source from long period P-waves

    International Nuclear Information System (INIS)

    Roy, Falguni

    1986-01-01

    Short period (SP) seismograms are much better than long period (LP) seismograms to get the time resolution needed for the focal depth estimation. However, complex scattering effects due to crustal inhomogeneities and also the multi-pathing of signals usually complicate the short period records. On the other hand the seismograms from long period signals demonstrate clear coherent body waves. Therefore, for intermediate depths (15-60 km) prediction error filtering of LP signals will be useful for identifying the depth phases. Such a study has been carried out in the first part of this report. In a group of 7 events, the p p phases have been extracted from LP signals and the depths so estimated compared well with the published data. For explosions at shallow depths (depth p phases will tend to cancel each other in LP seismograms. As the source depth increases, the cancellation becomes less effective. This feature can be used for the identification of an event as well as for getting an estimate of the source depth. This phenomenon can be successfully exploited for identifying multiple explosions, because at teleseismic distances (Δ > 30 o ) no LP (around 20s period) P waves will be seen in the seismogram due to such events whereas relatively strong SP signals and LP Rayleigh waves will be observed. This phenomenon has been studied for 16 events. For three of these events having m b as high as 6.1 and presumed to be underground explosions, one could not see any P wave on remaining 13 events (which were classified as earthquakes), it was possible to set a threshold value of m b above which an earthquake should produce LP P-wave signals at a given distance. (author)

  16. Method of forming electronically conducting polymers on conducting and nonconducting substrates

    Science.gov (United States)

    Murphy, Oliver J. (Inventor); Hitchens, G. Duncan (Inventor); Hodko, Dalibor (Inventor); Clarke, Eric T. (Inventor); Miller, David L. (Inventor); Parker, Donald L. (Inventor)

    2001-01-01

    The present invention provides electronically conducting polymer films formed from photosensitive formulations of pyrrole and an electron acceptor that have been selectively exposed to UV light, laser light, or electron beams. The formulations may include photoinitiators, flexibilizers, solvents and the like. These solutions can be used in applications including printed circuit boards and through-hole plating and enable direct metallization processes on non-conducting substrates. After forming the conductive polymer patterns, a printed wiring board can be formed by sensitizing the polymer with palladium and electrolytically depositing copper.

  17. Higher P-Wave Dispersion in Migraine Patients with Higher Number of Attacks

    Directory of Open Access Journals (Sweden)

    A. Koçer

    2012-01-01

    Full Text Available Objective and Aim. An imbalance of the sympathetic system may explain many of the clinical manifestations of the migraine. We aimed to evaluate P-waves as a reveal of sympathetic system function in migraine patients and healthy controls. Materials and Methods. Thirty-five episodic type of migraine patients (complained of migraine during 5 years or more, BMI < 30 kg/m2 and 30 controls were included in our study. We measured P-wave durations (minimum, maximum, and dispersion from 12-lead ECG recording during pain-free periods. ECGs were transferred to a personal computer via a scanner and then used for magnification of x400 by Adobe Photoshop software. Results. P-wave durations were found to be similar between migraine patients and controls. Although P WD (P-wave dispersion was similar, the mean value was higher in migraine subjects. P WD was positively correlated with P max (P<0.01. Attacks number per month and male gender were the factors related to the P WD (P<0.01. Conclusions. Many previous studies suggested that increased sympathetic activity may cause an increase in P WD. We found that P WD of migraine patients was higher than controls, and P WD was related to attacks number per month and male gender. Further studies are needed to explain the chronic effects of migraine.

  18. Non-conductive nanomaterial enhanced electrochemical response in stripping voltammetry: The use of nanostructured magnesium silicate hollow spheres for heavy metal ions detection.

    Science.gov (United States)

    Xu, Ren-Xia; Yu, Xin-Yao; Gao, Chao; Jiang, Yu-Jing; Han, Dong-Dong; Liu, Jin-Huai; Huang, Xing-Jiu

    2013-08-06

    Nanostructured magnesium silicate hollow spheres, one kind of non-conductive nanomaterials, were used in heavy metal ions (HMIs) detection with enhanced performance for the first time. The detailed study of the enhancing electrochemical response in stripping voltammetry for simultaneous detection of ultratrace Cd(2+), Pb(2+), Cu(2+) and Hg(2+) was described. Electrochemical properties of modified electrodes were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The operational parameters which have influence on the deposition and stripping of metal ions, such as supporting electrolytes, pH value, and deposition time were carefully studied. The anodic stripping voltammetric performance toward HMIs was evaluated using square wave anodic stripping voltammetry (SWASV) analysis. The detection limits achieved (0.186nM, 0.247nM, 0.169nM and 0.375nM for Cd(2+), Pb(2+), Cu(2+) and Hg(2+)) are much lower than the guideline values in drinking water given by the World Health Organization (WHO). In addition, the interference and stability of the modified electrode were also investigated under the optimized conditions. An interesting phenomenon of mutual interference between different metal ions was observed. Most importantly, the sensitivity of Pb(2+) increased in the presence of certain concentrations of other metal ions, such as Cd(2+), Cu(2+) and Hg(2+) both individually and simultaneously. The proposed electrochemical sensing method is thus expected to open new opportunities to broaden the use of SWASV in analysis for detecting HMIs in the environment. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. P-wave indices in patients with pulmonary emphysema: do P-terminal force and interatrial block have confounding effects?

    Science.gov (United States)

    Chhabra, Lovely; Chaubey, Vinod K; Kothagundla, Chandrasekhar; Bajaj, Rishi; Kaul, Sudesh; Spodick, David H

    2013-01-01

    Pulmonary emphysema causes several electrocardiogram changes, and one of the most common and well known is on the frontal P-wave axis. P-axis verticalization (P-axis > 60°) serves as a quasidiagnostic indicator of emphysema. The correlation of P-axis verticalization with the radiological severity of emphysema and severity of chronic obstructive lung function have been previously investigated and well described in the literature. However, the correlation of P-axis verticalization in emphysema with other P-indices like P-terminal force in V1 (Ptf), amplitude of initial positive component of P-waves in V1 (i-PV1), and interatrial block (IAB) have not been well studied. Our current study was undertaken to investigate the effects of emphysema on these P-wave indices in correlation with the verticalization of the P-vector. Unselected, routinely recorded electrocardiograms of 170 hospitalized emphysema patients were studied. Significant Ptf (s-Ptf) was considered ≥40 mm.ms and was divided into two types based on the morphology of P-waves in V1: either a totally negative (-) P wave in V1 or a biphasic (+/-) P wave in V1. s-Ptf correlated better with vertical P-vectors than nonvertical P-vectors (P = 0.03). s-Ptf also significantly correlated with IAB (P = 0.001); however, IAB and P-vector verticalization did not appear to have any significant correlation (P = 0.23). There was a very weak correlation between i-PV1 and frontal P-vector (r = 0.15; P = 0.047); however, no significant correlation was found between i-PV1 and P-amplitude in lead III (r = 0.07; P = 0.36). We conclude that increased P-tf in emphysema may be due to downward right atrial position caused by right atrial displacement, and thus the common assumption that increased P-tf implies left atrial enlargement should be made with caution in patients with emphysema. Also, the lack of strong correlation between i-PV1 and P-amplitude in lead III or vertical P-vector may suggest the predominant role of downward

  20. A Method for Coupling a Direct Current Power Source Across a Dielectric Membrane or Other Non-Conducting Membrane

    National Research Council Canada - National Science Library

    Steinbrecher, Donald H

    2008-01-01

    .... A second set of plates on the second side of the membrane form a set of coupling capacitors wherein the non-conducting dielectric membrane becomes part of the coupling-capacitor dielectric material...

  1. Temporal change in shallow subsurface P- and S-wave velocities and S-wave anisotropy inferred from coda wave interferometry

    Science.gov (United States)

    Yamamoto, M.; Nishida, K.; Takeda, T.

    2012-12-01

    logarithm of the lapse time. At some stations, the estimated P-wave velocity also shows co-seismic velocity decrease and subsequent gradual recovery. However, the magnitude of estimated P-wave velocity change is much smaller than that of S-wave, and at the other stations, the magnitude of P-wave velocity change is smaller than the resolution of our analysis. Using the CCFs computed from horizontal components, we also determine the seismic anisotropy in subsurface structure, and examine its temporal change. The estimated strength of anisotropy strength shows co-seismic increase at most of stations where co-seismic velocity change is detected. Nevertheless, the direction of anisotropy after the 2011 Tohoku earthquake stays about the same as before. These results suggest that, in addition to the change in pore pressure and corresponding decrease in the rigidity, the change in the aspect ratio of pre-existing subsurface fractures/micro-crack may be another key mechanism causing the co-seismic velocity change in shallow subsurface structures.

  2. P-wave scattering and the distribution of heterogeneity around Etna volcano

    Directory of Open Access Journals (Sweden)

    Toni Zieger

    2016-09-01

    Full Text Available Volcanoes and fault zones are areas of increased heterogeneity in the Earth crust that leads to strong scattering of seismic waves. For the understanding of the volcanic structure and the role of attenuation and scattering processes it is important to investigate the distribution of heterogeneity. We used the signals of air-gun shots to investigate the distribution of heterogeneity around Mount Etna. We devise a new methodology that is based on the coda energy ratio which we define as the ratio between the energy of the direct P-wave and the energy in a later coda window. This is based on the basic assumption that scattering caused by heterogeneity removes energy from the direct P-waves. We show that measurements of the energy ratio are stable with respect to changes of the details of the time windows definitions. As an independent proxy of the scattering strength along the ray path we measure the peak delay time of the direct P-wave. The peak delay time is well correlated with the coda energy ratio. We project the observation in the directions of the incident rays at the stations. Most notably is an area with increased wave scattering in the volcano and east of it. The strong heterogeneity found supports earlier observations and confirms the possibility to use P-wave sources for the determination of scattering properties. We interpret the extension of the highly heterogeneous zone towards the east as a potential signature of inelastic deformation processes induced by the eastward sliding of flank of the volcano.

  3. P-wave dispersion in endogenous and exogenous subclinical hyperthyroidism.

    Science.gov (United States)

    Gen, R; Akbay, E; Camsari, A; Ozcan, T

    2010-02-01

    The aim of this study was to measure maximum P wave duration (Pmax) and P wave dispersion (PWD), which can be indicators for the risk of paroxysmal atrial fibrillation when increased, and to reveal their relationship with thyroid hormone levels in patients with endogenous and exogenous subclinical hyperthyroidism. Seventy-one patients with sublinical thyrotoxicosis (34 endogenous, 37 exogenous) and 69 healthy individuals were enrolled in the study. Pmax and minimum P wave duration (Pmin) on electrocardiogram recordings were measured and PWD was calculated as Pmax-Pmin. Pmax (pendogenous subclinical hyperthyroidism compared with the control group. Pmax (pexogenous subclinical thyrotoxicosis compared with the control group. Pmax (p=0.710) and PWD (p=0.127) were not significantly different in patients with endogenous subclinical hyperthyroidism compared with exogenous subclinical hyperthyroid patients. Pmax and PWD negatively associated with TSH in endogenous and exogenous subclinical hyperthyroidism. In the present study, we observed that Pmax and PWD were longer in patients with endogenous and exogenous subclinical hyperthyroidism. Lack of a difference in Pmax and PWD between patients with endogenous and exogenous subclinical hyperthyroidism seems to support the idea that hormone levels rather than the etiology of thyrotoxicosis affect the heart.

  4. Real-Time Detection of Rupture Development: Earthquake Early Warning Using P Waves From Growing Ruptures

    Science.gov (United States)

    Kodera, Yuki

    2018-01-01

    Large earthquakes with long rupture durations emit P wave energy throughout the rupture period. Incorporating late-onset P waves into earthquake early warning (EEW) algorithms could contribute to robust predictions of strong ground motion. Here I describe a technique to detect in real time P waves from growing ruptures to improve the timeliness of an EEW algorithm based on seismic wavefield estimation. The proposed P wave detector, which employs a simple polarization analysis, successfully detected P waves from strong motion generation areas of the 2011 Mw 9.0 Tohoku-oki earthquake rupture. An analysis using 23 large (M ≥ 7) events from Japan confirmed that seismic intensity predictions based on the P wave detector significantly increased lead times without appreciably decreasing the prediction accuracy. P waves from growing ruptures, being one of the fastest carriers of information on ongoing rupture development, have the potential to improve the performance of EEW systems.

  5. Quasiparticle Green's function theory of the Josephson effect in chiral p-wave superconductor/diffusive normal metal/chiral p-wave superconductor junctions

    NARCIS (Netherlands)

    Sawa, Y.; Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch

    2007-01-01

    We study the Josephson effect in chiral p-wave superconductor/diffusive normal metal (DN)/chiral p-wave superconductor (CP/DN/CP) junctions using quasiclassical Green's function formalism with proper boundary conditions. The px+ipy-wave symmetry of superconducting order parameter is chosen which is

  6. Non-conductive ferromagnetic carbon-coated (Co, Ni) metal/polystyrene nanocomposites films

    Energy Technology Data Exchange (ETDEWEB)

    Takacs, H., E-mail: helene.takacs@gmail.com [CEA, LETI, MINATEC Campus, Grenoble 38054 (France); LTM-CNRS-UJF, CEA, LETI, Minatec Campus, Grenoble 38054 (France); Viala, B.; Hermán, V. [CEA, LETI, MINATEC Campus, Grenoble 38054 (France); Tortai, J.-H. [LTM-CNRS-UJF, CEA, LETI, Minatec Campus, Grenoble 38054 (France); Duclairoir, F. [Université Grenoble Alpes, INAC, Grenoble 38054 (France); CEA, INAC, Grenoble 38054 (France)

    2016-03-07

    This article reports non-conductive ferromagnetic properties of metal/polymer nanocomposite films intended to be used for RF applications. The nanocomposite arrangement is unique showing a core double-shell structure of metal-carbon-polystyrene: M/C//P{sub 1}/P{sub 2}, where M = Co, Ni is the core material, C = graphene or carbon is the first shell acting as a protective layer against oxidation, P{sub 1} = pyrene-terminated polystyrene is the second shell for electrical insulation, and P{sub 2} = polystyrene is a supporting matrix (// indicates actual grafting). The nanocomposite formulation is briefly described, and the film deposition by spin-coating is detailed. Original spin-curves are reported and analyzed. One key outcome is the achievement of uniform and cohesive films at the wafer scale. Structural properties of films are thoroughly detailed, and weight and volume fractions of M/C are considered. Then, a comprehensive overview of DC magnetic and electrical properties is reported. A discussion follows on the magnetic softness of the nanocomposites vs. that of a single particle (theoretical) and the raw powder (experimental). Finally, unprecedented achievement of high magnetization (∼0.6 T) and ultra-high resistivity (∼10{sup 10 }μΩ cm) is shown. High magnetization comes from the preservation of the existing protective shell C, with no significant degradation on the particle net-moment, and high electrical insulation is ensured by adequate grafting of the secondary shell P{sub 1}. To conclude, the metal/polymer nanocomposites are situated in the landscape of soft ferromagnetic materials for RF applications (i.e., inductors and antennas), by means of two phase-diagrams, where they play a crucial role.

  7. In-medium P-wave quarkonium from the complex lattice QCD potential

    International Nuclear Information System (INIS)

    Burnier, Yannis; Kaczmarek, Olaf; Rothkopf, Alexander

    2016-01-01

    We extend our lattice QCD potential based study http://dx.doi.org/10.1007/JHEP12(2015)101 of the in-medium properties of heavy quark bound states to P-wave bottomonium and charmonium. Similar to the behavior found in the S-wave channel their spectra show a characteristic broadening, as well as mass shifts to lower energy with increasing temperature. In contrast to the S-wave states, finite angular momentum leads to the survival of spectral peaks even at temperatures, where the continuum threshold reaches below the bound state remnant mass. We elaborate on the ensuing challenges in defining quarkonium dissolution and present estimates of melting temperatures for the spin averaged χ b and χ c states. As an application to heavy-ion collisions we further estimate the contribution of feed down to S-wave quarkonium through the P-wave states after freezeout.

  8. In-medium P-wave quarkonium from the complex lattice QCD potential

    Energy Technology Data Exchange (ETDEWEB)

    Burnier, Yannis [Institute of Theoretical Physics, EPFL,CH-1015 Lausanne (Switzerland); Kaczmarek, Olaf [Fakultät für Physik, Universität Bielefeld,D-33615 Bielefeld (Germany); Rothkopf, Alexander [Institute for Theoretical Physics, Heidelberg University,Philosophenweg 16, 69120 Heidelberg (Germany)

    2016-10-07

    We extend our lattice QCD potential based study http://dx.doi.org/10.1007/JHEP12(2015)101 of the in-medium properties of heavy quark bound states to P-wave bottomonium and charmonium. Similar to the behavior found in the S-wave channel their spectra show a characteristic broadening, as well as mass shifts to lower energy with increasing temperature. In contrast to the S-wave states, finite angular momentum leads to the survival of spectral peaks even at temperatures, where the continuum threshold reaches below the bound state remnant mass. We elaborate on the ensuing challenges in defining quarkonium dissolution and present estimates of melting temperatures for the spin averaged χ{sub b} and χ{sub c} states. As an application to heavy-ion collisions we further estimate the contribution of feed down to S-wave quarkonium through the P-wave states after freezeout.

  9. P-wave indices in patients with pulmonary emphysema: do P-terminal force and interatrial block have confounding effects?

    Directory of Open Access Journals (Sweden)

    Chhabra L

    2013-05-01

    Full Text Available Lovely Chhabra,1 Vinod K Chaubey,1 Chandrasekhar Kothagundla,1 Rishi Bajaj,1 Sudesh Kaul,1 David H Spodick2 1Department of Internal Medicine, 2Department of Cardiovascular Diseases, University of Massachusetts Medical School, Worcester, MA, USA Introduction: Pulmonary emphysema causes several electrocardiogram changes, and one of the most common and well known is on the frontal P-wave axis. P-axis verticalization (P-axis > 60° serves as a quasidiagnostic indicator of emphysema. The correlation of P-axis verticalization with the radiological severity of emphysema and severity of chronic obstructive lung function have been previously investigated and well described in the literature. However, the correlation of P-axis verticalization in emphysema with other P-indices like P-terminal force in V1 (Ptf, amplitude of initial positive component of P-waves in V1 (i-PV1, and interatrial block (IAB have not been well studied. Our current study was undertaken to investigate the effects of emphysema on these P-wave indices in correlation with the verticalization of the P-vector. Materials and methods: Unselected, routinely recorded electrocardiograms of 170 hospitalized emphysema patients were studied. Significant Ptf (s-Ptf was considered ≥40 mm.ms and was divided into two types based on the morphology of P-waves in V1: either a totally negative (- P wave in V1 or a biphasic (+/- P wave in V1. Results: s-Ptf correlated better with vertical P-vectors than nonvertical P-vectors (P = 0.03. s-Ptf also significantly correlated with IAB (P = 0.001; however, IAB and P-vector verticalization did not appear to have any significant correlation (P = 0.23. There was a very weak correlation between i-PV1 and frontal P-vector (r = 0.15; P = 0.047; however, no significant correlation was found between i-PV1 and P-amplitude in lead III (r = 0.07; P = 0.36. Conclusion: We conclude that increased P-tf in emphysema may be due to downward right atrial position caused by

  10. P-wave and surface wave survey for permafrost analysis in alpine regions

    Science.gov (United States)

    Godio, A.; Socco, L. V.; Garofalo, F.; Arato, A.; Théodule, A.

    2012-04-01

    of seismic data involved the tomographic interpretation of traveltime P-wave first arrivals by considering the continuous refraction of the ray-paths. Several surface-wave dispersion curves were extracted in f-k domain along the seismic line and then inverted through a laterally constrained inversion algorithm to obtain a pseudo-2D section of S-wave velocity. Georadar investigation (about 2 km of georadar lines in the first site) confirmed the presence both of fine and coarse sediments in the uppermost layer; the seismic data allowed the moraines to be characterized down to 20-25 meters of depth. At the elevation of 2700 m asl, we observed a general decrease of the P-wave traveltimes collected in November, when the near surface layer was in frozen condition, respect to the data acquired in June. The frozen layer is responsible of the inversion of P-wave velocity with depth; the higher velocity layer (frozen) cannot be detected in the tomographic interpretation of refraction tomographic of the P-wave arrivals. Compressional wave velocity ranges from 700 m/s on the uppermost part, to 2000-2500 m/s in the internal part of the sediments reaching values higher than 5000 m/s at depth about 20 m. The analysis of surface wave permitted to estimate a slight increase from summer to winter of the S-wave velocity, in the depth range between 0 to 5 m.

  11. Holographic p-wave superconductor models with Weyl corrections

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    2015-04-01

    Full Text Available We study the effect of the Weyl corrections on the holographic p-wave dual models in the backgrounds of AdS soliton and AdS black hole via a Maxwell complex vector field model by using the numerical and analytical methods. We find that, in the soliton background, the Weyl corrections do not influence the properties of the holographic p-wave insulator/superconductor phase transition, which is different from that of the Yang–Mills theory. However, in the black hole background, we observe that similarly to the Weyl correction effects in the Yang–Mills theory, the higher Weyl corrections make it easier for the p-wave metal/superconductor phase transition to be triggered, which shows that these two p-wave models with Weyl corrections share some similar features for the condensation of the vector operator.

  12. Morphological variability of the P-wave for premature envision of paroxysmal atrial fibrillation events.

    Science.gov (United States)

    Martínez, Arturo; Alcaraz, Raul; Rieta, Jose J

    2014-01-01

    The present work introduces the first study on the P-wave morphological variability two hours preceding the onset of paroxysmal atrial fibrillation (PAF). The development of non-invasive methods able to track P-wave alterations over time is a clinically relevant tool to anticipate as much as possible the envision of a new PAF episode. This information is essential for further improvement of preventive and patient-tailored treatment strategies, which could avert the loss of sinus rhythm. In this way, risks for the patients could be minimized and their quality of life improved. Recently, the P-wave morphological analysis is drawing increasing attention because differences in morphology can reflect different atrial activation patterns. Indeed, the P-wave morphology study has recently proved to be useful for determining the presence of an underlying pathophysiological condition in patients prone to atrial fibrillation. However, the P-wave morphology variability over time has not been studied yet. In this respect, the present work puts forward some parameters related to the P-wave shape and energy with the ability to quantify non-invasively the notable atrial conduction alterations preceding the onset of PAF. Results showed that P-wave fragmentation and area presented higher variability over time as the onset of PAF approximates. By properly combining these indices, an average global accuracy of 86.33% was achieved to discern between electrocardiogram segments from healthy subjects, far from a PAF episode and less than one hour close to a PAF episode. As a consequence, the P-wave morphology long-term analysis seems to be a useful tool for the non-invasive envision of PAF onset with a reasonable anticipation. Nonetheless, further research is required to corroborate this finding and to validate the capability of the proposed P-wave metrics in the earlier prediction of PAF onset.

  13. Morphological variability of the P-wave for premature envision of paroxysmal atrial fibrillation events

    International Nuclear Information System (INIS)

    Martínez, Arturo; Alcaraz, Raul; Rieta, Jose J

    2014-01-01

    The present work introduces the first study on the P-wave morphological variability two hours preceding the onset of paroxysmal atrial fibrillation (PAF). The development of non-invasive methods able to track P-wave alterations over time is a clinically relevant tool to anticipate as much as possible the envision of a new PAF episode. This information is essential for further improvement of preventive and patient-tailored treatment strategies, which could avert the loss of sinus rhythm. In this way, risks for the patients could be minimized and their quality of life improved. Recently, the P-wave morphological analysis is drawing increasing attention because differences in morphology can reflect different atrial activation patterns. Indeed, the P-wave morphology study has recently proved to be useful for determining the presence of an underlying pathophysiological condition in patients prone to atrial fibrillation. However, the P-wave morphology variability over time has not been studied yet. In this respect, the present work puts forward some parameters related to the P-wave shape and energy with the ability to quantify non-invasively the notable atrial conduction alterations preceding the onset of PAF. Results showed that P-wave fragmentation and area presented higher variability over time as the onset of PAF approximates. By properly combining these indices, an average global accuracy of 86.33% was achieved to discern between electrocardiogram segments from healthy subjects, far from a PAF episode and less than one hour close to a PAF episode. As a consequence, the P-wave morphology long-term analysis seems to be a useful tool for the non-invasive envision of PAF onset with a reasonable anticipation. Nonetheless, further research is required to corroborate this finding and to validate the capability of the proposed P-wave metrics in the earlier prediction of PAF onset. (paper)

  14. Covariant trace formalism for heavy meson s-wave to p-wave transitions

    International Nuclear Information System (INIS)

    Balk, S.; Koerner, J.G.; Thompson, G.; Hussain, F.

    1992-06-01

    Heavy meson, s- to p-wave, weak transitions are studied in the context of the Heavy Quark Effective Theory using covariant meson wave functions. We use the trace formalism to evaluate the weak transitions. As expected from heavy quark symmetry, the eight transitions between s- and p-wave states are described in terms of only two universal form factors which are given in terms of explicit wave function overlap integrals. We present our results in terms of both invariant and helicity amplitudes. Using our helicity amplitude expressions we discuss rate formulae, helicity structure functions and joint angular decay distributions in the decays B-bar→D**(→(D,D*)+π)+W - (→l - ν l ). The heavy quark symmetry predictions for the one-pion transitions D**→(D,D*)+π are similarly worked out by using trace techniques. (author). 35 refs, 3 figs, 2 tabs

  15. What is the difference in the p-wave and s-wave photodetachment in an electric field?

    OpenAIRE

    Du, M. L.

    2009-01-01

    By applying closed-orbit theory to an existing model, a simple formula is derived for the modulation function of s-wave photo-detachment in the presence of a static electric field. We then compare the s-wave modulation function with the p-wave modulation function. We show the maximums (minimums) in the s-wave modulation function correspond to the minimums (maximums) in the p-wave modulation function because of a phase difference of $\\pi$ in their oscillations. The oscillation amplitude in the...

  16. Magnetohydrodynamic waves driven by p-modes

    International Nuclear Information System (INIS)

    Khomenko, Elena; Santamaria, Irantzu Calvo

    2013-01-01

    Waves are observed at all layers of the solar atmosphere and the magnetic field plays a key role in their propagation. While deep down in the atmosphere the p-modes are almost entirely of acoustic nature, in the upper layers magnetic forces are dominating, leading to a large variety of new wave modes. Significant advances have been made recently in our understanding of the physics of waves interaction with magnetic structures, with the help of analytical theories, numerical simulations, as well as high-resolution observations. In this contribution, we review recent observational findings and current theoretical ideas in the field, with an emphasis on the following questions: (i) Peculiarities of the observed wave propagation in network, plage and facular regions; (ii) Role of the mode transformation and observational evidences of this process: (iii) Coupling of the photosphere, chromosphere, and above by means of waves propagating in magnetic structures.

  17. Selective detection and recovery of gold at tannin-immobilized non-conducting electrode

    Energy Technology Data Exchange (ETDEWEB)

    Banu, Khaleda, E-mail: kbanu@ucla.edu [Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095 (United States); Venture Business Laboratory, Center for Advanced Science and Innovation, Osaka University, Suita, Osaka 565-0871 (Japan); Shimura, Takayoshi [Venture Business Laboratory, Center for Advanced Science and Innovation, Osaka University, Suita, Osaka 565-0871 (Japan); Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University (Japan); Sadeghi, Saman, E-mail: samsadeghi@mednet.ucla.edu [Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095 (United States)

    2015-01-01

    Highlights: • Selective detection of gold at non-conducting (NC) polymer modified electrode. • Mimosa tannin oxidized on glassy carbon electrode surface as NC polymeric film. • Permselective diffusion and mediated electron transfer at NC electrode surface. • Chemical recovery of gold is due to the reducing ability of the NC polymeric film. • Adsorption capacity of Au(III) on carbon fiber was 29 ± 1.45 mg g{sup −1} at 60 °C. - Abstract: A tannin-immobilized glassy carbon electrode (TIGC) was prepared via electrochemical oxidation of the naturally occurring polyphenolic mimosa tannin, which generated a non-conducting polymeric film (NCPF) on the electrode surface. The fouling of the electrode surface by the electropolymerized film was evaluated by monitoring the electrode response of ferricyanide ions as a redox marker. The NCPF was permselective to HAuCl{sub 4}, and the electrochemical reduction of HAuCl{sub 4} to metallic gold at the TIGC electrode was evaluated by recording the reduction current during cyclic voltammetry measurement. In the mixed electrolyte containing HAuCl{sub 4} along with FeCl{sub 3} and/or CuCl{sub 2}, the NCPF remained selective toward the electrochemical reduction of HAuCl{sub 4} into the metallic state. The chemical reduction of HAuCl{sub 4} into metallic gold was also observed when the NCPF was inserted into an acidic gold solution overnight. The adsorption capacity of Au(III) on tannin-immobilized carbon fiber was 29 ± 1.45 mg g{sup −1} at 60 °C. In the presence of excess Cu(II) and Fe(III), tannin-immobilized NCPF proved to be an excellent candidate for the selective detection and recovery of gold through both electrochemical and chemical processes.

  18. Selective detection and recovery of gold at tannin-immobilized non-conducting electrode

    International Nuclear Information System (INIS)

    Banu, Khaleda; Shimura, Takayoshi; Sadeghi, Saman

    2015-01-01

    Highlights: • Selective detection of gold at non-conducting (NC) polymer modified electrode. • Mimosa tannin oxidized on glassy carbon electrode surface as NC polymeric film. • Permselective diffusion and mediated electron transfer at NC electrode surface. • Chemical recovery of gold is due to the reducing ability of the NC polymeric film. • Adsorption capacity of Au(III) on carbon fiber was 29 ± 1.45 mg g −1 at 60 °C. - Abstract: A tannin-immobilized glassy carbon electrode (TIGC) was prepared via electrochemical oxidation of the naturally occurring polyphenolic mimosa tannin, which generated a non-conducting polymeric film (NCPF) on the electrode surface. The fouling of the electrode surface by the electropolymerized film was evaluated by monitoring the electrode response of ferricyanide ions as a redox marker. The NCPF was permselective to HAuCl 4 , and the electrochemical reduction of HAuCl 4 to metallic gold at the TIGC electrode was evaluated by recording the reduction current during cyclic voltammetry measurement. In the mixed electrolyte containing HAuCl 4 along with FeCl 3 and/or CuCl 2 , the NCPF remained selective toward the electrochemical reduction of HAuCl 4 into the metallic state. The chemical reduction of HAuCl 4 into metallic gold was also observed when the NCPF was inserted into an acidic gold solution overnight. The adsorption capacity of Au(III) on tannin-immobilized carbon fiber was 29 ± 1.45 mg g −1 at 60 °C. In the presence of excess Cu(II) and Fe(III), tannin-immobilized NCPF proved to be an excellent candidate for the selective detection and recovery of gold through both electrochemical and chemical processes

  19. A deterministic model for the growth of non-conducting electrical tree structures

    International Nuclear Information System (INIS)

    Dodd, S J

    2003-01-01

    Electrical treeing is of interest to the electrical generation, transmission and distribution industries as it is one of the causes of insulation failure in electrical machines, switchgear and transformer bushings. In this paper a deterministic electrical tree growth model is described. The model is based on electrostatics and local electron avalanches to model partial discharge activity within the growing tree structure. Damage to the resin surrounding the tree structure is dependent on the local electrostatic energy dissipation by partial discharges within the tree structure and weighted by the magnitudes of the local electric fields in the resin surrounding the tree structure. The model is successful in simulating the formation of branched structures without the need of a random variable, a requirement of previous stochastic models. Instability in the spatial development of partial discharges within the tree structure takes the role of the stochastic element as used in previous models to produce branched tree structures. The simulated electrical trees conform to the experimentally observed behaviour; tree length versus time and electrical tree growth rate as a function of applied voltage for non-conducting electrical trees. The phase synchronous partial discharge activity and the spatial distribution of emitted light from the tree structure are also in agreement with experimental data for non-conducting trees as grown in a flexible epoxy resin and in polyethylene. The fact that similar tree growth behaviour is found using pure amorphous (epoxy resin) and semicrystalline (polyethylene) materials demonstrate that neither annealed or quenched noise, representing material inhomogeneity, is required for the formation of irregular branched structures (electrical trees). Instead, as shown in this paper, branched growth can occur due to the instability of individual discharges within the tree structure

  20. s- and p-wave neutron spectroscopy. Xc. Intermediate structure: 88Sr

    International Nuclear Information System (INIS)

    Malan, J.G.; Pineo, W.F.E.; Divadeenam, M.; Choi, B.H.; Bilpuch, E.G.; Newson, H.W.

    1975-01-01

    Neutron total cross section measurements of natural Sr were made from 50-875 keV using a high resolution proton beam and the 7 Li(p,n) reaction as a neutron source. These data were analyzed with the help of an R-Matrix code to extract resonance (energies and other) parameters up to about 850 keV. 2p-1h and particle-vibration doorway interpretation of the s-,p- and d-wave resonances is attempted in terms of the sum rule Σγ/subn/ 2 =γ/subd/ 2 . Predictions based on both of these models agree with the experimental results. As expected the p-wave resonances are stronger than either s- and d-wave structure. Theory accounts for the p-wave strength remarkably well. Possible location of the p-wave s.p. resonance is reproduced with a real potential and its damping due to the imaginary potential is calculated. More fragmentation of the strong p-wave doorways is observed than was expected for a compound nucleus so near 90 Zr, but a larger strength function is observed, apparently due to the p-wave giant resonance. (U.S.)

  1. Assembly of graphene oxide on nonconductive nonwovens by the synergistic effect of interception and electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Kunyan; Zhu, Ting; Li, Xianhua; Shan, Mingjing; Xu, Zhiwei, E-mail: xuzhiwei@tjpu.edu.cn; Jiao, Yanan [Tianjin Polytechnic University, Key Laboratory of Advanced Braided Composites, Ministry of Education (China)

    2015-09-15

    Electrophoretic deposition has always been an attractive method to deposit nanoparticles on conductive materials, while most fiber-based materials have poor conductivity which limits the application of electrophoretic deposition in assembling nanoparticles onto fiber-based materials. A new approach to assemble graphene oxide (GO) nanosheets on nonconductive nonwovens via the synergistic effect of electrophoresis and fiber interception was reported in this study. To improve surface wettability, polypropylene (PP) nonwovens were modified by acrylic acid and subsequent N{sub 2} plasma treatment. Then GO nanosheets were anchored onto modified nonwovens by electrophoresis process and nonwoven interception. The results of scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) manifested that etching and grafting simultaneously occurred on the surface of modified PP nonwovens, resulting in a great improvement of nonwoven hydrophily, which corresponded to the results of water contact angle. Furthermore, the results of X-ray diffraction, energy dispersive X-ray, SEM, and FTIR indicated that different amounts of GO nanosheets were successfully assembled onto modified PP nonwovens. This method provides a new avenue for incorporating carbon nanoparticles with nonconductive fiber-based materials, and modified PP nonwovens assembled with GO nanosheets show good air filtration performance for sodium chloride aerosol with a filtration efficiency of 87.9 % and a pressure drop of 36.4 mmH{sub 2}O, and the reduced GO/PP composite nonwovens exhibit enhanced conductivity.

  2. Detection and monitoring of shear crack growth using S-P conversion of seismic waves

    Science.gov (United States)

    Modiriasari, A.; Bobet, A.; Pyrak-Nolte, L. J.

    2017-12-01

    A diagnostic method for monitoring shear crack initiation, propagation, and coalescence in rock is key for the detection of major rupture events, such as slip along a fault. Active ultrasonic monitoring was used in this study to determine the precursory signatures to shear crack initiation in pre-cracked rock. Prismatic specimens of Indiana limestone (203x2101x638x1 mm) with two pre-existing parallel flaws were subjected to uniaxial compression. The flaws were cut through the thickness of the specimen using a scroll saw. The length of the flaws was 19.05 mm and had an inclination angle with respect to the loading direction of 30o. Shear wave transducers were placed on each side of the specimen, with polarization parallel to the loading direction. The shear waves, given the geometry of the flaws, were normally incident to the shear crack forming between the two flaws during loading. Shear crack initiation and propagation was detected on the specimen surface using digital image correlation (DIC), while initiation inside the rock was monitored by measuring full waveforms of the transmitted and reflected shear (S) waves across the specimen. Prior to the detection of a shear crack on the specimen surface using DIC, transmitted S waves were converted to compressional (P) waves. The emergence of converted S-P wave occurs because of the presence of oriented microcracks inside the rock. The microcracks coalesce and form the shear crack observed on the specimen surface. Up to crack coalescence, the amplitude of the converted waves increased with shear crack propagation. However, the amplitude of the transmitted shear waves between the two flaws did not change with shear crack initiation and propagation. This is in agreement with the conversion of elastic waves (P- to S-wave or S- to P-wave) observed by Nakagawa et al., (2000) for normal incident waves. Elastic wave conversions are attributed to the formation of an array of oriented microcracks that dilate under shear stress

  3. P-wave duration and the risk of atrial fibrillation

    DEFF Research Database (Denmark)

    Nielsen, Jonas B; Kühl, Jørgen T; Pietersen, Adrian

    2015-01-01

    BACKGROUND: Results on the association between P-wave duration and the risk of atrial fibrillation (AF) are conflicting. OBJECTIVE: The purpose of this study was to obtain a detailed description of the relationship between P-wave duration and the risk of AF. METHODS: Using computerized analysis o...

  4. P wave duration and dispersion in patients with hyperthyroidism and the short-term effects of antithyroid treatment.

    Science.gov (United States)

    Guntekin, Unal; Gunes, Yilmaz; Simsek, Hakki; Tuncer, Mustafa; Arslan, Sevket

    2009-09-01

    Prolonged P wave duration and P wave dispersion (PWD) have been associated with an increased risk for atrial fibrillation (AF). Hyperthytodism is a frequent cause of atrial fibrillation (AF). Forty-two patients with newly diagnosed overt hyperthyroidism and 20 healthy people were enrolled in the study. Transthoracic echocardiography, 12 lead surface ECG and thyroid hormone levels were studied at the time of enrollment and after achievement of euthyroid state with propylthiouracil treatment. Maximum P wave duration (Pmax) (97.4+/-14.6 vs. 84.2+/-9.5 msec, phyperthyroid patients compared to control group. Pmax and PWD were significantly correlated with the presence of hyperthyroidism. Pmax (97.4+/-14.6 to 84.3+/-8.6 msec, phyperthyroidism. Diastolic dyfunction was seen in 5 patients at hyperthroid state but only in one patient at euthyroid state. Hyperthyroidism is associated with prolonged P wave duration and dispersion. Achievement of euthyroid state with propylthiouracil treatment results in shortening of P wave variables. Diastolic function may have a partial effect for the increased Pmax and PWD. Shortening of Pmax and PWD may be a marker for the prevention of AF with the anti-thyroid treatment.

  5. Seasonality of P wave microseisms from NCF-based beamforming using ChinArray

    Science.gov (United States)

    Wang, Weitao; Gerstoft, Peter; Wang, Baoshan

    2018-06-01

    Teleseismic P wave microseisms produce interference signals with high apparent velocity in noise cross-correlation functions (NCFs). Sources of P wave microseisms can be located with NCFs from seismic arrays. Using the vertical-vertical component NCFs from a large-aperture array in southwestern China (ChinArray), we studied the P wave source locations and their seasonality of microseisms at two period bands (8-12 and 4-8 s) with an NCF-based beamforming method. The sources of P, PP and PKPbc waves are located. The ambiguity between P and PP source locations is analysed using averaged significant ocean wave height and sea surface pressure as constraints. The results indicate that the persistent P wave sources are mainly located in the deep oceans such as the North Atlantic, North Pacific and Southern Ocean, in agreement with previous studies. The Gulf of Alaska is found to generate P waves favouring the 8-12 s period band. The seasonality of P wave sources is consistent with the hemispheric storm pattern, which is stronger in local winter. Using the identified sources, arrival times of the interference signals are predicted and agree well with observations. The interference signals exhibit seasonal variation, indicating that body wave microseisms in southwestern China are from multiple seasonal sources.

  6. What Do s- and p-Wave Neutron Average Radiative Widths Reveal

    Energy Technology Data Exchange (ETDEWEB)

    Mughabghab, S.F.

    2010-04-30

    A first observation of two resonance-like structures at mass numbers 92 and 112 in the average capture widths of the p-wave neutron resonances relative to the s-wave component is interpreted in terms of a spin-orbit splitting of the 3p single-particle state into P{sub 3/2} and P{sub 1/2} components at the neutron separation energy. A third structure at about A = 124, which is not correlated with the 3p-wave neutron strength function, is possibly due to the Pygmy Dipole Resonance. Five significant results emerge from this investigation: (i) The strength of the spin-orbit potential of the optical-model is determined as 5.7 {+-} 0.5 MeV, (ii) Non-statistical effects dominate the p-wave neutron-capture in the mass region A = 85 - 130, (iii) The background magnitude of the p-wave average capture-width relative to that of the s-wave is determined as 0.50 {+-} 0.05, which is accounted for quantitatively in tenns of the generalized Fermi liquid model of Mughabghab and Dunford, (iv) The p-wave resonances arc partially decoupled from the giant-dipole resonance (GDR), and (v) Gamma-ray transitions, enhanced over the predictions of the GDR, are observed in the {sup 90}Zr - {sup 98}Mo and Sn-Ba regions.

  7. The predictive value of P-wave duration by signal-averaged electrocardiogram in acute ST elevation myocardial infarction.

    Science.gov (United States)

    Shturman, Alexander; Bickel, Amitai; Atar, Shaul

    2012-08-01

    The prognostic value of P-wave duration has been previously evaluated by signal-averaged ECG (SAECG) in patients with various arrhythmias not associated with acute myocardial infarction (AMI). To investigate the clinical correlates and prognostic value of P-wave duration in patients with ST elevation AMI (STEMI). The patients (n = 89) were evaluated on the first, second and third day after admission, as well as one week and one month post-AMI. Survival was determined 2 years after the index STEMI. In comparison with the upper normal range of P-wave duration ( 40% (128.79 +/- 28 msec) (P = 0.001). P-wave duration above 120 msec was significantly correlated with increased complication rate; namely, sustained ventricular tachyarrhythmia (36%), congestive heart failure (41%), atrial fibrillation (11%), recurrent angina (14%), and re-infarction (8%) (P = 0.012, odds ratio 4.267, 95% confidence interval 1.37-13.32). P-wave duration of 126 msec on the day of admission was found to have the highest predictive value for in-hospital complications including LVEF 40% (area under the curve 0.741, P < 0.001). However, we did not find a significant correlation between P-wave duration and mortality after multivariate analysis. P-wave duration as evaluated by SAECG correlates negatively with LVEF post-STEMI, and P-wave duration above 126 msec can be utilized as a non-invasive predictor of in-hospital complications and low LVEF following STEMI.

  8. P-wave velocity test for assessment of geotechnical properties of ...

    Indian Academy of Sciences (India)

    Administrator

    P-wave velocity test, a non-destructive and easy method to apply in both field ... ditions, has increasingly been conducted to determine the geotechnical properties of rock materials. .... nent elements in the study area and rich in molds of reed ... Kocabas crystals 5–10 μm in size with no internal architecture ... organic matter.

  9. Assessment of atrial electromechanical interval and P wave dispersion in patients with polycystic ovary syndrome.

    Science.gov (United States)

    Bayır, Pınar Türker; Güray, Ümit; Duyuler, Serkan; Demirkan, Burcu; Kayaalp, Oya; Kanat, Selçuk; Güray, Yeşim

    2016-02-01

    Polycystic ovary syndrome (PCOS) is associated with increased cardiovascular risk, including ischemic stroke. Prolonged atrial electromechanical interval (EMI) is related to increased atrial fibrillation (AF) risk. The aim of the study is to evaluate atrial EMI and electrocardiographic P-wave indices related to increased AF risk in patients with PCOS. Forty PCOS patients diagnosed on the basis of the Rotterdam criteria and 20 age-matched controls were prospectively included. patients with atrioventricular or intraventricular conduction abnormalities, dysrhythmia or taking antiarrhythmic drugs, atherosclerotic heart disease, cardiomyopathies, valvular lesions, pericardial disease, a history of pulmonary emboli or pulmonary hypertension, and abnormal thyroid function were excluded. Intra and interatrial EMI were measured by tissue Doppler imaging and P-wave dispersion (Pd) was calculated on 12-lead electrocardiography (ECG). The Isovolumetric relaxation time was the interval between the aortic valve closure artifact at the end of the LV outflow envelope and the mitral valve opening artifact at the beginning of the mitral E wave. Patients with PCOS had significantly higher interatrial [38 (24-65) ms vs. 16 (9-19) ms pPCOS group compared with control group [45 (27-60) ms vs. 30 (26-38) ms, pPCOS. PCOS is associated with prolonged inter- and intra-atrial conduction times, which are related to increased AF risk.

  10. EMHD micro-pumping of a non-conducting shear-thinning fluid under EDL phenomena

    International Nuclear Information System (INIS)

    Gaikwad, Harshad; Borole, Chetan; Basu, Dipankar N.; Mondal, Pranab K.

    2016-01-01

    The Electro-Magneto-Hydrodynamic (EMHD) pumping of a binary fluid system constituted by one non-conducting shear-thinning fluid (top layer) by exploiting the transverse momentum exchange through the interfacial viscous shearing effect from a conducting Newtonian fluid layer (bottom layer) in a microfluidic channel is investigated. An externally applied electric field drives the conducting fluid layer under the influence of an applied magnetic field as well. The study reveals that the volume transport of shear-thinning fluid gets augmented for low magnetic field strength, higher electrical double layer (EDL) effect, low viscosity ratio and moderate potential ratio. It is also established that the volumetric flow rate reduces significantly for the higher magnetic field strength. (author)

  11. P-wave assignment of 232Th neutron resonances

    International Nuclear Information System (INIS)

    Corvi, F.; Pasquariello, G.; Veen, T. van der

    1978-01-01

    A method of p-wave assignment which exploits the parity dependence of the primary capture γ-ray spectrum was applied to the 232 Th resonance. The yield of capture γ-rays above 4.4 MeV from a 6 mm thick metallic thorium disk was measured in the neutron energy range 20-2200 eV and compared to a similar run with γ-rays in the range 3.7 - 4.4 MeV. A total of 58 resonances showing an enhancement of the high energy γ-ray yield were assigned as p-waves. Assuming that their reduced neutron widths follow a Porter-Thomas distribution, their average value and then the p-wave strength function S 1 were estimated with a maximum likelihood method. The results are: average neutron width=3.4(+0.8 or -0.6)meV; S 1 = 2.0 (+0.5 or -0.4).10 -4

  12. Effect of P T symmetry on nonlinear waves for three-wave interaction models in the quadratic nonlinear media

    Science.gov (United States)

    Shen, Yujia; Wen, Zichao; Yan, Zhenya; Hang, Chao

    2018-04-01

    We study the three-wave interaction that couples an electromagnetic pump wave to two frequency down-converted daughter waves in a quadratic optical crystal and P T -symmetric potentials. P T symmetric potentials are shown to modulate stably nonlinear modes in two kinds of three-wave interaction models. The first one is a spatially extended three-wave interaction system with odd gain-and-loss distribution in the channel. Modulated by the P T -symmetric single-well or multi-well Scarf-II potentials, the system is numerically shown to possess stable soliton solutions. Via adiabatical change of system parameters, numerical simulations for the excitation and evolution of nonlinear modes are also performed. The second one is a combination of P T -symmetric models which are coupled via three-wave interactions. Families of nonlinear modes are found with some particular choices of parameters. Stable and unstable nonlinear modes are shown in distinct families by means of numerical simulations. These results will be useful to further investigate nonlinear modes in three-wave interaction models.

  13. Treadmill walking with load carriage increases aortic pressure wave reflection.

    Science.gov (United States)

    Ribeiro, Fernando; Oliveira, Nórton L; Pires, Joana; Alves, Alberto J; Oliveira, José

    2014-01-01

    The study examined the effects of treadmill walking with load carriage on derived measures of central pressure and augmentation index in young healthy subjects. Fourteen male subjects (age 31.0 ± 1.0 years) volunteered in this study. Subjects walked 10 minutes on a treadmill at a speed of 5 km/h carrying no load during one session and a load of 10% of their body weight on both upper limbs in two water carboys with handle during the other session. Pulse wave analysis was performed at rest and immediately after exercise in the radial artery of the right upper limb by applanation tonometry. The main result indicates that walking with load carriage sharply increased augmentation index at 75 bpm (-5.5 ± 2.2 to -1.4 ± 2.2% vs. -5.2 ± 2.8 to -5.5 ± 2.1%, p<0.05), and also induced twice as high increments in central pulse pressure (7.4 ± 1.5 vs. 3.1 ± 1.4 mmHg, p<0.05) and peripheral (20.5 ± 2.7 vs. 10.3 ± 2.5 mmHg, p<0.05) and central systolic pressure (14.7 ± 2.1 vs. 7.4 ± 2.0 mmHg, p<0.05). Walking with additional load of 10% of their body weight (aerobic exercise accompanied by upper limb isometric contraction) increases derived measures of central pressure and augmentation index, an index of wave reflection and arterial stiffness. Copyright © 2013 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  14. Growth of electron plasma waves above and below f/sub p/ in the electron foreshock

    International Nuclear Information System (INIS)

    Cairns, I.H.; Fung, S.F.

    1988-01-01

    With increasing penetration into the electron foreshock the characteristics of the electrostatic waves driven by streaming electrons change continuously from the familiar intense waves near the electron plasma frequency f/sub p/ to weak bursts of broadband waves initially significantly above f/sub p/ and then well below f/sub p/. Growth well below f/sub p/ has been demonstrated theoretically for slow, cold electron beams, and the broadband waves below f/sub p/ in the foreshock have been interpreted in terms of the very cold or sharp ''cutoff'' feature of a cutoff distribution for small cutoff speeds. However, an approximate theoretical criterion indicates that the electron beams studied hitherto are unstable to reactive rather than kinetic growth, thereby favoring very narrow-band growth contrary to the observed broadband growth. In this paper we determine conditions for kinetic growth well above and below f/sub p/ for both cold and warm beams over a wide range of beam densities and speeds. We verify that kinetic growth below f/sub p/ is possible for cold, slow beams and for warm, dense beams (over wide range of beam velocities)

  15. Evaluation of P-Wave Dispersion, Diastolic Function, and Atrial Electromechanical Conduction in Pediatric Patients with Subclinical Hypothyroidism.

    Science.gov (United States)

    Irdem, Ahmet; Aydın Sahin, Derya; Kervancioglu, Mehmet; Baspinar, Osman; Sucu, Murat; Keskin, Mehmet; Kilinc, Metin

    2016-09-01

    This study aimed to evaluate ventricular diastolic dysfunction, inter- and intraatrial conduction delay, and P-wave dispersion in pediatric patients with subclinical hypothyroidism. The study comprised a total of 30 pediatric patients with subclinical hypothyroidism (SH) (mean age 7.8 ± 3.2 years) and 30 healthy children (mean age 8.4 ± 3.6 years) as the control group. A SH diagnosis was made in the event of increased serum thyroid-stimulating hormone (TSH) and decreased serum free triiodothyronine (T3 ) and free thyroxine (T4 ) concentrations. Conventional Doppler imaging (TDI) showed low mitral early diastolic E-wave velocity and E/A ratio (P wave velocity (P = 0.001) in hypothyroidism patients. Moreover, patients with hypothyroidism had significantly lower left ventricular (LV) septal Em velocity and Em /Am ratios compared with the control group (P wave dispersion was significantly different in the pediatric patients with hypothyroidism (P wave dispersion, and ventricle diastolic dysfunction in pediatric patients with hypothyroidism. © 2016, Wiley Periodicals, Inc.

  16. Study of NΣ cusp in p+pp+K{sup +}+Λ with partial wave analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lu, S.; Muenzer, R.; Epple, E.; Fabbietti, L. [Excellenz Cluster Universe, Technische Universitaet Muenchen (Germany); Ritman, J.; Roderburg, E.; Hauenstein, F. [FZ Juelich (Germany); Collaboration: Hades and FOPI Collaboration

    2016-07-01

    In the last years, an analysis of exclusive reaction of p+pp+K{sup +}+Λ has been carried out using Bonn-Gatchina Partial Wave Analysis. In a combined analysis of data from Hades, Fopi, Disto and Cosy-TOF, an energy dependent production process is determined. This analysis has shown that a sufficient description of the p+pp+K{sup +}+Λ is quite challenging due to the presence of resonances N* and interference, which requires Partial Wave Analysis. A pronounced narrow structure is observed in its projection on the pΛ-invariant mass. This peak structure, which appears around the NΣ threshold, has a strongly asymmetric structure and is interpreted a NΣ cusp effect. In this talk, the results from a combined analysis will be shown, with a special focus on the NΣ cusp structure and a description using Flatte parametrization.

  17. P-Wave and S-Wave Velocity Structure of Submarine Landslide Associated With Gas Hydrate Layer on Frontal Ridge of Northern Cascadia Margin

    Science.gov (United States)

    He, T.; Lu, H.; Yelisetti, S.; Spence, G.

    2015-12-01

    The submarine landslide associated with gas hydrate is a potential risk for environment and engineering projects, and thus from long time ago it has been a hot topic of hydrate research. The study target is Slipstream submarine landslide, one of the slope failures observed on the frontal ridges of the Northern Cascadia accretionary margin off Vancouver Island. The previous studies indicated a possible connection between this submarine landslide feature and gas hydrate, whose occurrence is indicated by a prominent bottom-simulating reflector (BSR), at a depth of ~265-275 m beneath the seafloor (mbsf). The OBS (Ocean Bottom Seismometer) data collected during SeaJade (Seafloor Earthquake Array - Japan Canada Cascadia Experiment) project were used to derive the subseafloor velocity structure for both P- and S-wave using travel times picked from refraction and reflection events. The P-wave velocity structure above the BSR showed anomalous high velocities of about 2.0 km/s at shallow depths of 100 mbsf, closely matching the estimated depth of the glide plane (100 ± 10 m). Forward modelling of S-waves was carried out using the data from the OBS horizontal components. The S-wave velocities, interpreted in conjunction with the P-wave results, provide the key constraints on the gas hydrate distribution within the pores. The hydrate distribution in the pores is important for determining concentrations, and also for determining the frame strength which is critical for controlling slope stability of steep frontal ridges. The increase in S-wave velocity suggests that the hydrate is distributed as part of the load-bearing matrix to increase the rigidity of the sediment.

  18. Comparison of Wave Energy Transport at the Comets p/Halley and p/Giacobini-Zinner

    Science.gov (United States)

    Sding, A.; Glassmeir, K. H.; Fuselier, S. A.; Neubauer, Fritz M.; Tsurutani, B. T.

    1995-01-01

    Using magnetic field, plasma density and flow observations from spacecraft flybys of two comets, Eler variables are determined in order to study wave propogation directions. We investigate the inbound path of the Giotto spacecraft flyby of comet p/Halley outside the bow shock, and the inbound and outbound path of the ICE spacecraft flyby of comet p/Giacobini-Zinner outsinde of the bow wave.

  19. Evasion of HSR in S-wave charmonium decaying to P-wave light hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gang [Qufu Normal University, Department of Physics, Qufu (China); Liu, Xiao-Hai [Peking University, Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Beijing (China); Zhao, Qiang [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China); CAS, Theoretical Physics Center for Science Facilities, Beijing (China)

    2013-09-15

    The S-wave charmonium decaying to a P-wave and S-wave light hadron pairs are supposed to be suppressed by the helicity selection rule in the perturbative QCD framework. With an effective Lagrangian method, we show that the intermediate charmed meson loops can provide a possible mechanism for the evasion of the helicity selection rule, and result in sizeable decay branching ratios in some of those channels. The theoretical predictions can be examined by the forthcoming BES-III data in the near future. (orig.)

  20. P-wave velocity changes in freezing hard low-porosity rocks: a laboratory-based time-average model

    Directory of Open Access Journals (Sweden)

    D. Draebing

    2012-10-01

    Full Text Available P-wave refraction seismics is a key method in permafrost research but its applicability to low-porosity rocks, which constitute alpine rock walls, has been denied in prior studies. These studies explain p-wave velocity changes in freezing rocks exclusively due to changing velocities of pore infill, i.e. water, air and ice. In existing models, no significant velocity increase is expected for low-porosity bedrock. We postulate, that mixing laws apply for high-porosity rocks, but freezing in confined space in low-porosity bedrock also alters physical rock matrix properties. In the laboratory, we measured p-wave velocities of 22 decimetre-large low-porosity (< 10% metamorphic, magmatic and sedimentary rock samples from permafrost sites with a natural texture (> 100 micro-fissures from 25 °C to −15 °C in 0.3 °C increments close to the freezing point. When freezing, p-wave velocity increases by 11–166% perpendicular to cleavage/bedding and equivalent to a matrix velocity increase from 11–200% coincident to an anisotropy decrease in most samples. The expansion of rigid bedrock upon freezing is restricted and ice pressure will increase matrix velocity and decrease anisotropy while changing velocities of the pore infill are insignificant. Here, we present a modified Timur's two-phase-equation implementing changes in matrix velocity dependent on lithology and demonstrate the general applicability of refraction seismics to differentiate frozen and unfrozen low-porosity bedrock.

  1. 3D elastic full waveform inversion using P-wave excitation amplitude: Application to OBC field data

    KAUST Repository

    Oh, Juwon; Kalita, Mahesh; Alkhalifah, Tariq Ali

    2017-01-01

    We propose an efficient elastic full waveform inversion (FWI) based on the P-wave excitation amplitude (maximum energy arrival) approximation in the source wavefields. Because, based on the P-wave excitation approximation (ExA), the gradient direction is approximated by the cross-correlation of source and receiver wavefields at only excitation time, it estimates the gradient direction faster than its conventional counterpart. In addition to this computational speedup, the P-wave excitation approximation automatically ignores SP and SS correlations in the approximated gradient direction. In elastic FWI for ocean bottom cable (OBC) data, the descent direction for the S-wave velocity is often degraded by undesired long-wavelength features from the SS correlation. For this reason, the P-wave excitation approach increases the convergence rate of multi-parameter FWI compared to the conventional approach. The modified 2D Marmousi model with OBC acquisition is used to verify the differences between the conventional method and ExA. Finally, the feasibility of the proposed method is demonstrated on a real OBC data from North Sea.

  2. 3D elastic full waveform inversion using P-wave excitation amplitude: Application to OBC field data

    KAUST Repository

    Oh, Juwon

    2017-12-05

    We propose an efficient elastic full waveform inversion (FWI) based on the P-wave excitation amplitude (maximum energy arrival) approximation in the source wavefields. Because, based on the P-wave excitation approximation (ExA), the gradient direction is approximated by the cross-correlation of source and receiver wavefields at only excitation time, it estimates the gradient direction faster than its conventional counterpart. In addition to this computational speedup, the P-wave excitation approximation automatically ignores SP and SS correlations in the approximated gradient direction. In elastic FWI for ocean bottom cable (OBC) data, the descent direction for the S-wave velocity is often degraded by undesired long-wavelength features from the SS correlation. For this reason, the P-wave excitation approach increases the convergence rate of multi-parameter FWI compared to the conventional approach. The modified 2D Marmousi model with OBC acquisition is used to verify the differences between the conventional method and ExA. Finally, the feasibility of the proposed method is demonstrated on a real OBC data from North Sea.

  3. Shifts and widths of p-wave confinement induced resonances in atomic waveguides

    International Nuclear Information System (INIS)

    Saeidian, Shahpoor; Melezhik, Vladimir S; Schmelcher, Peter

    2015-01-01

    We develop and analyze a theoretical model to study p-wave Feshbach resonances of identical fermions in atomic waveguides by extending the two-channel model of Lange et al (2009 Phys. Rev. A 79 013622) and Saeidian et al (2012 Phys. Rev. A 86 062713). The experimentally known parameters of Feshbach resonances in free space are used as input of the model. We calculate the shifts and widths of p-wave magnetic Feshbach resonance of 40 K atoms emerging in harmonic waveguides as p-wave confinement induced resonance (CIR). Particularly, we show a possibility to control the width and shift of the p-wave CIR by the trap frequency and the applied magnetic field which could be used in corresponding experiments. Our analysis also demonstrates the importance of the inclusion of the effective range in the computational schemes for the description of the p-wave CIRs contrary to the case of s-wave CIRs where the influence of this term is negligible. (paper)

  4. Associations between high callous-unemotional traits and quality of life across youths with non-conduct disorder diagnoses.

    Science.gov (United States)

    Herpers, Pierre C M; Klip, Helen; Rommelse, Nanda N J; Greven, Corina U; Buitelaar, Jan K

    2016-05-01

    Research regarding callous-unemotional (CU) traits in non-conduct disorder (CD) diagnoses is sparse. We investigated the presence of high CU traits and their associations with quality of life (QoL) in a clinically referred sample of youths with non-CD diagnoses. Parents of 1018 children referred to a child and adolescent psychiatric clinic and rated their child's CU traits and QoL. Experienced clinicians derived DSM-IV-TR diagnoses based on systematic clinical evaluations of these children. High CU traits compared to low CU traits were present in 38.5 % of the sample, and more often in boys than girls (69.4 vs. 30.6 %, p = .004), and were associated with more police contacts (12.2 vs. 3.5 %, p disorder (odds ratio; OR = 1.61; 95 % CI 1.24-2.09; p disorder not otherwise specified/oppositional defiant disorder (OR = 4.98; 95 % CI 2.93-8.64; p disorder (OR = 1.01; 95 % CI .79-1.31; p = .94), were more likely to have high than low CU traits. Those with anxiety/mood disorders were more likely to have low than high CU traits (OR = .59; 95 % CI .42-82; p = .002). In all diagnostic groups, high CU compared to low CU traits were associated with significantly lower QoL, while controlling for gender, age, and comorbidity. As such, high CU traits significantly modify QoL in non-CD disorders.

  5. p-wave pion production from nucleon-nucleon collisions

    International Nuclear Information System (INIS)

    Baru, V.; Epelbaum, E.; Haidenbauer, J.; Hanhart, C.; Kudryavtsev, A. E.; Lensky, V.; Meissner, U.-G.

    2009-01-01

    We investigate p-wave pion production in nucleon-nucleon collisions up to next-to-next-to-leading order in chiral effective field theory. In particular, we show that it is possible to describe simultaneously the p-wave amplitudes in the pn→ppπ - , pp→pnπ + , pp→dπ + channels by adjusting a single low-energy constant accompanying the short-range operator that is available at this order. This study provides a nontrivial test of the applicability of chiral effective field theory to reactions of the type NN→NNπ.

  6. Significant correlation of P-wave parameters with left atrial volume index and left ventricular diastolic function.

    Science.gov (United States)

    Tsai, Wei-Chung; Lee, Kun-Tai; Wu, Ming-Tsang; Chu, Chih-Sheng; Lin, Tsung-Hsien; Hsu, Po-Chao; Su, Ho-Ming; Voon, Wen-Chol; Lai, Wen-Ter; Sheu, Sheng-Hsiung

    2013-07-01

    The 12-lead electrocardiogram (ECG) is a commonly used tool to access left atrial enlargement, which is a marker of left ventricular diastolic dysfunction (LVDD). The aim of this study was to evaluate any association of the P-wave measurements in ECG with left atrial volume (LAV) index and LVDD. This study enrolled 270 patients. In this study, 4 ECG P-wave parameters corrected by heart rate, that is, corrected P-wave maximum duration (PWdurMaxC), corrected P-wave dispersion (PWdisperC), corrected P-wave area (PWareaC) and corrected mean P-wave duration (meanPWdurC), were measured. LAV and left ventricular diastolic parameters were measured from echocardiography. LVDD was defined as a pseudonormal or restrictive mitral inflow pattern. The 4 P-wave parameters were significantly correlated with the LAV index after adjusting for age, sex, diabetes, hypertension, coronary artery disease, body mass index and diastolic blood pressure in multivariate analysis. The standardized β coefficients of PWdurMaxC, PWdisperC, meanPWdurC and PWareaC were 0.338, 0.298, 0.215 and 0.296, respectively. The 4 P-wave parameters were also significantly correlated with LVDD after multivariate logistic regression analysis. The odds ratios (95% confidence intervals) of PWdurMaxC, PWdisperC, meanPWdurC and PWareaC were 1.03 (1.01-1.04), 1.02 (1.04-1.04), 1.04 (1.02-1.07) and 1.01 (1.00-1.02), respectively. This study demonstrated that PWdurMaxC, PWdisperC, meanPWdurC and PWareaC were important determinants of the LAV index and LVDD. Therefore, screening patients by means of the 12-lead ECG may be helpful in identifying a high-risk group of increased LAV index and LVDD.

  7. Waveform inversion for orthorhombic anisotropy with P-waves: feasibility & resolution

    KAUST Repository

    Kazei, Vladimir

    2018-01-27

    Various parameterizations have been suggested to simplify inversions of first arrivals, or Pwaves, in orthorhombic anisotropic media, but the number and type of retrievable parameters have not been decisively determined. We show that only six parameters can be retrieved from the dynamic linearized inversion of Pwaves. These parameters are different from the six parameters needed to describe the kinematics of Pwaves. Reflection-based radiation patterns from the PP scattered waves are remapped into the spectral domain to allow for our resolution analysis based on the effective angle of illumination concept. Singular value decomposition of the spectral sensitivities from various azimuths, offset coverage scenarios, and data bandwidths allows us to quantify the resolution of different parameterizations, taking into account the signal-to-noise ratio in a given experiment. According to our singular value analysis, when the primary goal of inversion is determining the velocity of the Pwaves, gradually adding anisotropy of lower orders (isotropic, vertically transversally isotropic, orthorhombic) in hierarchical parameterization is the best choice. Hierarchical parametrization reduces the tradeoff between the parameters and makes gradual introduction of lower anisotropy orders straightforward. When all the anisotropic parameters affecting Pwave propagation need to be retrieved simultaneously, the classic parameterization of orthorhombic medium with elastic stiffness matrix coefficients and density is a better choice for inversion. We provide estimates of the number and set of parameters that can be retrieved from surface seismic data in different acquisition scenarios. To set up an inversion process, the singular values determine the number of parameters that can be inverted and the resolution matrices from the parameterizations can be used to ascertain the set of parameters that can be resolved.

  8. Anomalous incident-angle and elliptical-polarization rotation of an elastically refracted P-wave

    Science.gov (United States)

    Fa, Lin; Fa, Yuxiao; Zhang, Yandong; Ding, Pengfei; Gong, Jiamin; Li, Guohui; Li, Lijun; Tang, Shaojie; Zhao, Meishan

    2015-08-01

    We report a newly discovered anomalous incident-angle of an elastically refracted P-wave, arising from a P-wave impinging on an interface between two VTI media with strong anisotropy. This anomalous incident-angle is found to be located in the post-critical incident-angle region corresponding to a refracted P-wave. Invoking Snell’s law for a refracted P-wave provides two distinctive solutions before and after the anomalous incident-angle. For an inhomogeneously refracted and elliptically polarized P-wave at the anomalous incident-angle, its rotational direction experiences an acute variation, from left-hand elliptical to right-hand elliptical polarization. The new findings provide us an enhanced understanding of acoustical-wave scattering and lead potentially to widespread and novel applications.

  9. P-Wave Amplitude and PR Changes in Patients With Inappropriate Sinus Tachycardia: Findings Supportive of a Central Mechanism.

    Science.gov (United States)

    Field, Michael E; Donateo, Paolo; Bottoni, Nicola; Iori, Matteo; Brignole, Michele; Kipp, Ryan T; Kopp, Douglas E; Leal, Miguel A; Eckhardt, Lee L; Wright, Jennifer M; Walsh, Kathleen E; Page, Richard L; Hamdan, Mohamed H

    2018-04-19

    The mechanism of inappropriate sinus tachycardia (IST) remains incompletely understood. We prospectively compared 3 patient groups: 11 patients with IST (IST Group), 9 control patients administered isoproterenol (Isuprel Group), and 15 patients with cristae terminalis atrial tachycardia (AT Group). P-wave amplitude in lead II and PR interval were measured at a lower and higher heart rate (HR1 and HR2, respectively). P-wave amplitude increased significantly with the increase in HR in the IST Group (0.16±0.07 mV at HR1=97±12 beats per minute versus 0.21±0.08 mV at HR2=135±21 beats per minute, P =0.001). The average increase in P-wave amplitude in the IST Group was similar to the Isuprel Group ( P =0.26). PR interval significantly shortened with the increases in HR in the IST Group (146±15 ms at HR1 versus 128±16 ms at HR2, P PR interval was noted in the Isuprel Group ( P =0.6). In contrast, patients in the atrial tachycardia Group experienced PR lengthening during atrial tachycardia when compared with baseline normal sinus rhythm (153±25 ms at HR1=78±17 beats per minute versus 179±29 ms at HR2=140±28 beats per minute, P PR shortening similar to what is seen in healthy controls following isoproterenol infusion. The increase in P-wave amplitude and absence of PR lengthening in IST support an extrinsic mechanism consistent with a state of sympatho-excitation with cephalic shift in sinus node activation and enhanced atrioventricular nodal conduction. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  10. Barrelet zeros and elastic π+p partial waves

    International Nuclear Information System (INIS)

    Chew, D.M.; Urban, M.

    1976-06-01

    A procedure is proposed for constructing low-order partial-wave amplitudes from a knowledge of Barrelet zeros near the physical region. The method is applied to the zeros already obtained for elastic π + p scattering data between 1.2 and 2.2 GeV cm energies. The partial waves emerge with errors that are straight-forwardly related to the accuracy of the data and satisfy unitarity without any constraint being imposed. There are significant differences from the partial waves obtained by other methods; this can be partially explained by the fact that no previous partial-wave analysis has been able to solve the discrete ambiguity. The cost of the analysis is much less

  11. Effect of pore water pressure on P-wave velocity in water-filled sands with partial air saturation; Fukanzen howa jotai no suna shiryo wo denpasuru P ha sokudo ni oyobosu kangeki suiatsu no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Kanema, T [Chishitsu-Keisoku Co. Ltd., Tokyo (Japan)

    1997-10-22

    With an objective to elucidate change in velocity of elastic waves in association with water pressure increase in a sand bed below the groundwater level in a shallow portion of the ground, a measurement experiment was carried out on P-wave velocity in sand samples with partial air saturation. The experiment has used fine sand having an equivalent coefficient of 2.40, a soil particle density of 2.68 g/cm {sup 3} or 60%, and a grain size of 0.36 mm. Inside the water-filled sand sample, two accelerometers were embedded 20 cm apart from each other as vibration receivers. An electromagnetic hammer for P-wave was used as the vibration source. In the experiment, measurement was carried out on the P-wave velocity in association with increase in pore water pressure by applying water pressure afresh to the water-filled sample. As a result of the experiment, the following matters were disclosed: the P-wave velocity increases as the pore water pressure was increased, and a phenomenon was recognized that the dominant frequency changes into high frequency; the degree of increase in the P-wave velocity varies depending on initial saturation of the sample; and bubbles in the pore fluid have their volume decreased due to compression resulted from increased pore water pressure and dissolution of air into the pore water. 6 refs., 11 figs.

  12. P-polarized surface waves in a slab waveguide with left-handed material for sensing applications

    International Nuclear Information System (INIS)

    Taya, Sofyan A.

    2015-01-01

    In this paper, surface waves excited at the interface between left-handed and right-handed materials are employed for sensing applications. The propagation of p-polarized (TM) surface waves in a three-layer slab waveguide structure with air core layer as an analyte and anisotropic left-handed materials as claddings is investigated for detection of any changes in the refractive index of the analyte. The dispersion equations and the sensitivity of the effective refractive index to any change in the air layer index are derived, plotted, and discussed in details. The field profile is also explored. It is found that the sensitivity of the proposed surface wave sensor is almost independent of the wavelength of the propagating wave. A considerable sensitivity improvement can be obtained with the increase of transverse components of the left-handed material permittivity. - Highlights: • P-polarized surface waves in a three-layer slab waveguide are employed for sensing applications. • The structure contains air core layer as an analyte and anisotropic left-handed material in the claddings. • The sensitivity is found to be almost independent of the wavelength of the propagating wave. • Unusual sensitivity enhancement is observed as the transverse components of the LHM permittivity increase. • The asymmetric waveguide structure exhibits much higher sensitivity compared to the symmetric one

  13. Evaluation of QT and P wave dispersion and mean platelet volume among inflammatory bowel disease patients.

    Science.gov (United States)

    Dogan, Yuksel; Soylu, Aliye; Eren, Gulay A; Poturoglu, Sule; Dolapcioglu, Can; Sonmez, Kenan; Duman, Habibe; Sevindir, Isa

    2011-01-01

    In inflammatory bowel disease (IBD) number of thromboembolic events are increased due to hypercoagulupathy and platelet activation. Increases in mean platelet volume (MPV) can lead to platelet activation, this leads to thromboembolic events and can cause acute coronary syndromes. In IBD patients, QT-dispersion and P-wave dispersion are predictors of ventricular arrhythmias and atrial fibrilation; MPV is accepted as a risk factor for acute coronary syndromes, we aimed at evaluating the correlations of these with the duration of disease, its localization and activity. The study group consisted of 69 IBD (Ulcerative colitis n: 54, Crohn's Disease n: 15) patients and the control group included 38 healthy individuals. Disease activity was evaluated both endoscopically and clinically. Patients with existing cardiac conditions, those using QT prolonging medications and having systemic diseases, anemia and electrolyte imbalances were excluded from the study. QT-dispersion, P-wave dispersion and MPV values of both groups were compared with disease activity, its localization, duration of disease and the antibiotics used. The P-wave dispersion values of the study group were significantly higher than those of the control group. Duration of the disease was not associated with QT-dispersion, and MPV levels. QT-dispersion, P-wave dispersion, MPV and platelet count levels were similar between the active and in mild ulcerative colitis patients. QT-dispersion levels were similar between IBD patients and the control group. No difference was observed between P-wave dispersion, QT-dispersion and MPV values; with regards to disease duration, disease activity, and localization in the study group (p>0.05). P-wave dispersion which is accepted as a risk factor for the development of atrial fibirilation was found to be high in our IBD patients. This demonstrates us that the risk of developing atrial fibrillation may be high in patients with IBD. No significant difference was found in the QT

  14. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume I P-Wave Measurements in Borehole C4993 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.

    Energy Technology Data Exchange (ETDEWEB)

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-07-06

    In this volume (I), all P-wave measurements are presented that were performed in Borehole C4993 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 370 to 1400 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1200 ft, depth intervals of 20 ft were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4993, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4993, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

  15. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume III P-Wave Measurements in Borehole C4997 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.

    Energy Technology Data Exchange (ETDEWEB)

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    In this volume (III), all P-wave measurements are presented that were performed in Borehole C4997 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 390 to 1220 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 40 ft (later relocated to 27.5 ft due to visibility in borehole after rain) in Borehole C4997, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4997, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

  16. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume II P-Wave Measurements in Borehole C4996 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.

    Energy Technology Data Exchange (ETDEWEB)

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-07-06

    In this volume (II), all P-wave measurements are presented that were performed in Borehole C4996 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 360 to 1400 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1180 ft, depth intervals of 20 ft were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4996, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4996, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

  17. Scattering amplitude of ultracold atoms near the p-wave magnetic Feshbach resonance

    International Nuclear Information System (INIS)

    Zhang Peng; Naidon, Pascal; Ueda, Masahito

    2010-01-01

    Most of the current theories on the p-wave superfluid in cold atomic gases are based on the effective-range theory for the two-body scattering, where the low-energy p-wave scattering amplitude f 1 (k) is given by f 1 (k)=-1/[ik+1/(Vk 2 )+1/R]. Here k is the incident momentum, V and R are the k-independent scattering volume and effective range, respectively. However, due to the long-range nature of the van der Waals interaction between two colliding ultracold atoms, the p-wave scattering amplitude of the two atoms is not described by the effective-range theory [J. Math. Phys. 4, 54 (1963); Phys. Rev. A 58, 4222 (1998)]. In this paper we provide an explicit calculation for the p-wave scattering of two ultracold atoms near the p-wave magnetic Feshbach resonance. We show that in this case the low-energy p-wave scattering amplitude f 1 (k)=-1/[ik+1/(V eff k 2 )+1/(S eff k)+1/R eff ] where V eff , S eff , and R eff are k-dependent parameters. Based on this result, we identify sufficient conditions for the effective-range theory to be a good approximation of the exact scattering amplitude. Using these conditions we show that the effective-range theory is a good approximation for the p-wave scattering in the ultracold gases of 6 Li and 40 K when the scattering volume is enhanced by the resonance.

  18. Design of mm-wave InP DHBT power amplifiers

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Yan, Lei

    2011-01-01

    In this paper suitable topologies for mm-wave integrated power amplifiers using InP DHBT technology is investigated. Among the standard topologies for mm-wave power cells: common-emitter, common-base, and cascode configuration, the cascode configuration proves the most promising in terms of output...

  19. Dispersion durations of P-wave and QT interval in children treated with a ketogenic diet.

    Science.gov (United States)

    Doksöz, Önder; Güzel, Orkide; Yılmaz, Ünsal; Işgüder, Rana; Çeleğen, Kübra; Meşe, Timur

    2014-04-01

    Limited data are available on the effects of a ketogenic diet on dispersion duration of P-wave and QT-interval measures in children. We searched for the changes in these measures with serial electrocardiograms in patients treated with a ketogenic diet. Twenty-five drug-resistant patients with epilepsy treated with a ketogenic diet were enrolled in this study. Electrocardiography was performed in all patients before the beginning and at the sixth month after implementation of the ketogenic diet. Heart rate, maximum and minimum P-wave duration, P-wave dispersion, and maximum and minimum corrected QT interval and QT dispersion were manually measured from the 12-lead surface electrocardiogram. Minimum and maximum corrected QT and QT dispersion measurements showed nonsignificant increase at month 6 compared with baseline values. Other previously mentioned electrocardiogram parameters also showed no significant changes. A ketogenic diet of 6 months' duration has no significant effect on electrocardiogram parameters in children. Further studies with larger samples and longer duration of follow-up are needed to clarify the effects of ketogenic diet on P-wave dispersion and corrected QT and QT dispersion. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Neutron resonance spectroscopy on 113Cd: The p-wave levels

    International Nuclear Information System (INIS)

    Frankle, C.M.; Bowman, C.D.; Bowman, J.D.; Seestrom, S.J.; Sharapov, E.I.; Popov, Y.P.; Roberson, N.R.

    1992-01-01

    Weak levels in the compound nucleus 114 Cd were located by neutron time-of-flight spectroscopy techniques. Neutron capture measurements were performed with both a natural cadmium target and a highly enriched 113 Cd target. A total of 22 new resonances were located in the neutron energy interval 20-500 eV and were assumed to be p-wave. Resonance parameters, E 0 and gΓ n , are given for the newly identified levels. The p-wave strength function was determined to be 10 4 S 1 =2.8±0.8 and the average level spacing left-angle D 1 right-angle=14 eV. Comparison of the reduced widths with a Porter-Thomas distribution is consistent with having missed 15% of the p-wave levels

  1. Statistical analysis of P-wave neutron reduced widths

    International Nuclear Information System (INIS)

    Joshi, G.C.; Agrawal, H.M.

    2000-01-01

    The fluctuations of the p-wave neutron reduced widths for fifty one nuclei have been analyzed with emphasis on recent measurements by a statistical procedure which is based on the method of maximum likelihood. It is shown that the p-wave neutron reduced widths of even-even nuclei fallow single channel Porter Thomas distribution (χ 2 -distribution with degree of freedom ν=1) for most of the cases where there are no intermediate structure. It is emphasized that the distribution in nuclei other than even-even may differ from a χ 2 -distribution with one degree of freedom. Possible explanation and significance of this deviation from ν=1 is given. (author)

  2. P-wave velocity structure beneath the northern Antarctic Peninsula

    Science.gov (United States)

    Park, Y.; Kim, K.; Jin, Y.

    2010-12-01

    We have imaged tomographically the tree-dimensional velocity structure of the upper mantle beneath the northern Antarctic Peninsula using teleseismic P waves. The data came from the seven land stations of the Seismic Experiment in Patagonia and Antarctica (SEPA) campaigned during 1997-1999, a permanent IRIS/GSN station (PMSA), and 3 seismic stations installed at scientific bases, Esperanza (ESPZ), Jubany (JUBA), and King Sejong (KSJ), in South Shetland Islands. All of the seismic stations are located in coast area, and the signal to noise ratios (SNR) are very low. The P-wave model was inverted from 95 earthquakes resulting in 347 ray paths with P- and PKP-wave arrivals. The inverted model shows a strong low velocity anmaly beneath the Bransfield Strait, and a fast anomaly beneath the South Shetland Islands. The low velocity anomaly beneath the Bransfield might be due to a back arc extension, and the fast velocity anomaly beneath the South Shetland Islands could indicates the cold subducted slab.

  3. P Wave Duration And Dispersion In Patients With Hyperthyroidism And The Short-term Effects Of Antithyroid Treatment

    Directory of Open Access Journals (Sweden)

    Unal Guntekin

    2009-09-01

    Full Text Available Background: Prolonged P wave duration and P wave dispersion (PWD have been associated with an increased risk for atrial fibrillation (AF. Hyperthytodism is a frequent cause of atrial fibrillation (AF. Methods: Forty-two patients with newly diagnosed overt hyperthyroidism and 20 healthy people were enrolled in the study. Transthoracic echocardiography, 12 lead surface ECG and thyroid hormone levels were studied at the time of enrollment and after achievement of euthyroid state with propylthiouracil treatment. Results: Maximum P wave duration (Pmax (97.4±14.6 vs. 84.2±9.5 msec, p<0.001, PWD (42.9±10.7 vs. 31.0±6.2 msec, p<0.001, deceleration (DT (190.7±22.6 vs. 177.0±10.2 msec, p=0.013 and isovolumetric relaxation times (IVRT (90.9±11.2 vs. 79.6±10.5 msec, p<0.001 were significantly higher in hyperthyroid patients compared to control group. Pmax and PWD were significantly correlated with the presence of hyperthyroidism. Pmax (97.4±14.6 to 84.3±8.6 msec, p<0,001 Pmin (54.1±8.6 to 48.1±8.5 msec, p=0.002, PWD (42.9±10.7 to 35.9±8.1 msec, p=0.002 and DT (190.7±22.6 to 185.5±18.3, p=0.036 were significantly decreased after achievement of euthyroid state in patients with hyperthyroidism. Diastolic dyfunction was seen in 5 patients at hyperthroid state but only in one patient at euthyroid state. Conclusions: Hyperthyroidism is associated with prolonged P wave duration and dispersion. Achievement of euthyroid state with propylthiouracil treatment results in shortening of P wave variables. Diastolic function may have a partial effect for the increased Pmax and PWD. Shortening of Pmax and PWD may be a marker for the prevention of AF with the anti-thyroid treatment.

  4. Wave dynamics of generalized continua

    CERN Document Server

    Bagdoev, Alexander G; Shekoyan, Ashot V

    2016-01-01

    This monograph is devoted to problems of propagation and stability of linear and nonlinear waves in continuous media with complex structure. It considers the different media, such as solid with cavities, preliminary deformed disperse medium, solid with porosity filled by the electrically conductive and non-conductive liquid, magnetoelastic, piezo-semiconductors, crystals with dislocations, composites with inclusions, an electrically conductive asymmetrical liquid, a mixture of gas with a drop liquid. The book also considers the propagation of a laser beam through a two-level medium. The presented results are based on methods of evolution and modulation equations that were developed by the authors. The book is intended for scientific and technical researchers, students and post-graduate students specializing in mechanics of continuous media, physical acoustics, and physics of the solid state.

  5. P Wave Duration And Dispersion In Patients With Hyperthyroidism And The Short-term Effects Of Antithyroid Treatment

    OpenAIRE

    Unal Guntekin; Yilmaz Gunes; Hakki Simsek; Mustafa Tuncer; Sevket Arslan

    2009-01-01

    Background: Prolonged P wave duration and P wave dispersion (PWD) have been associated with an increased risk for atrial fibrillation (AF). Hyperthytodism is a frequent cause of atrial fibrillation (AF). Methods: Forty-two patients with newly diagnosed overt hyperthyroidism and 20 healthy people were enrolled in the study. Transthoracic echocardiography, 12 lead surface ECG and thyroid hormone levels were studied at the time of enrollment and after achievement of euthyroid state with propylth...

  6. Waveform inversion for orthorhombic anisotropy with P waves: feasibility and resolution

    Science.gov (United States)

    Kazei, Vladimir; Alkhalifah, Tariq

    2018-05-01

    Various parametrizations have been suggested to simplify inversions of first arrivals, or P waves, in orthorhombic anisotropic media, but the number and type of retrievable parameters have not been decisively determined. We show that only six parameters can be retrieved from the dynamic linearized inversion of P waves. These parameters are different from the six parameters needed to describe the kinematics of P waves. Reflection-based radiation patterns from the P-P scattered waves are remapped into the spectral domain to allow for our resolution analysis based on the effective angle of illumination concept. Singular value decomposition of the spectral sensitivities from various azimuths, offset coverage scenarios and data bandwidths allows us to quantify the resolution of different parametrizations, taking into account the signal-to-noise ratio in a given experiment. According to our singular value analysis, when the primary goal of inversion is determining the velocity of the P waves, gradually adding anisotropy of lower orders (isotropic, vertically transversally isotropic and orthorhombic) in hierarchical parametrization is the best choice. Hierarchical parametrization reduces the trade-off between the parameters and makes gradual introduction of lower anisotropy orders straightforward. When all the anisotropic parameters affecting P-wave propagation need to be retrieved simultaneously, the classic parametrization of orthorhombic medium with elastic stiffness matrix coefficients and density is a better choice for inversion. We provide estimates of the number and set of parameters that can be retrieved from surface seismic data in different acquisition scenarios. To set up an inversion process, the singular values determine the number of parameters that can be inverted and the resolution matrices from the parametrizations can be used to ascertain the set of parameters that can be resolved.

  7. P- and S-body wave tomography of the state of Nevada.

    Energy Technology Data Exchange (ETDEWEB)

    Preston, Leiph

    2010-04-01

    P- and S-body wave travel times collected from stations in and near the state of Nevada were inverted for P-wave velocity and the Vp/Vs ratio. These waves consist of Pn, Pg, Sn and Sg, but only the first arriving P and S waves were used in the inversion. Travel times were picked by University of Nevada Reno colleagues and were culled for inclusion in the tomographic inversion. The resulting tomographic model covers the entire state of Nevada to a depth of {approx}90 km; however, only the upper 40 km indicate relatively good resolution. Several features of interest are imaged including the Sierra Nevada, basin structures, and low velocities at depth below Yucca Mountain. These velocity structure images provide valuable information to aide in the interpretation of geothermal resource areas throughout the state on Nevada.

  8. Probing the P -wave charmonium decays of Bc meson

    Science.gov (United States)

    Rui, Zhou

    2018-02-01

    Motivated by the large number of Bc meson decay modes observed recently by several detectors at the LHC, we present a detailed analysis of the Bc meson decaying to the P -wave charmonium states and a light pseudoscalar (P ) or vector (V ) meson within the framework of perturbative QCD factorization. The P -wave charmonium distribution amplitudes are extracted from the n =2 , l =1 Schrödinger states for a Coulomb potential, which can be taken as the universal nonperturbative objects to analyze the hard exclusive processes with P -wave charmonium production. It is found that these decays have large branching ratios of the order of 10-5˜10-2 , which seem to be in the reach of future experiments. We also provide predictions for the polarization fractions and relative phases of Bc→(χc 1,χc 2,hc)V decays. It is expected that the longitudinal polarization amplitudes dominate the branching ratios according to the quark helicity analysis, and the magnitudes and phases of parallel polarization amplitude are approximately equal to the perpendicular ones. The obtained results are compared with available experimental data, our previous studies, and numbers from other approaches.

  9. Shock waves in P-bar target

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhijing; Anderson, K.

    1991-11-01

    The deposition of large amount of beam energy in short time will cause high temperature and pressure in the center of P-bar Target, and this disturbance will propagate outwards as a shock wave. Shock wave induced material changes which are of our concern include void growth and accompanying density decrease which will decrease antiproton yield, and crack formation and fracture as was observed in tungsten target which will destroy the integrity of the target. Our objective is to analyze the shock wave behavior in the target, optimize its design so that the destructive effects of shock wave can be minimized, the integrity of the target can be maintained, and a reasonably high yield of antiproton production can be achieved. In this report we put together some results of our analysis of a cylindrical copper target. We hope that it will provide a general overview of the shock wave phenomena in the target, establish a basis for further research, and facilitate the target design. First, energy deposition data are analyzed, and it is justified that as an approximation, the problem can be treated as axi-symmetric. The average data therefore are used as energy profile, however, the maximum energy deposition are still used as the peak value. Next some basic estimations are made as to what temperature and pressure can reach at present level of energy deposition. Then some characteristics of wave propagation in a thermal shock loaded solid are illustrated with a one-dimensional model. Since there is no analytical solution available for cylindrical geometry, our understanding of the problem relies on numerical model, which are performed via finite element package ANSYS. results of numerical analysis are summarized, sources of potential danger are identified, and design ideas to minimize the damage are proposed.

  10. Shock waves in P-bar target

    International Nuclear Information System (INIS)

    Tang, Zhijing; Anderson, K.

    1991-11-01

    The deposition of large amount of beam energy in short time will cause high temperature and pressure in the center of P-bar Target, and this disturbance will propagate outwards as a shock wave. Shock wave induced material changes which are of our concern include void growth and accompanying density decrease which will decrease antiproton yield, and crack formation and fracture as was observed in tungsten target which will destroy the integrity of the target. Our objective is to analyze the shock wave behavior in the target, optimize its design so that the destructive effects of shock wave can be minimized, the integrity of the target can be maintained, and a reasonably high yield of antiproton production can be achieved. In this report we put together some results of our analysis of a cylindrical copper target. We hope that it will provide a general overview of the shock wave phenomena in the target, establish a basis for further research, and facilitate the target design. First, energy deposition data are analyzed, and it is justified that as an approximation, the problem can be treated as axi-symmetric. The average data therefore are used as energy profile, however, the maximum energy deposition are still used as the peak value. Next some basic estimations are made as to what temperature and pressure can reach at present level of energy deposition. Then some characteristics of wave propagation in a thermal shock loaded solid are illustrated with a one-dimensional model. Since there is no analytical solution available for cylindrical geometry, our understanding of the problem relies on numerical model, which are performed via finite element package ANSYS. results of numerical analysis are summarized, sources of potential danger are identified, and design ideas to minimize the damage are proposed

  11. Effects of Single Dose Energy Drink on QT and P-Wave Dispersion

    Directory of Open Access Journals (Sweden)

    Huseyin Arinc

    2013-12-01

    Full Text Available INTRODUCTION: Aim of this study is to evaluate the cardiac electrophysiological effects of energy drink (Red Bull on QT and P duration and dispersion on surface electrocardiogram. METHODS: Twenty healthy volunteers older than 17 years of age were included the study. Subjects with a cardiac rhythm except sinus rhythm, history of atrial or ventricular arrhythmia, family history of premature sudden cardiac death, palpitations, T-wave abnormalities, QTc interval greater than 440 milliseconds, or those P-waves and QT intervals unavailable in at least eight ECG leads were excluded. Subjects having insomnia, lactose intolerance, caffeine allergy, recurrent headaches, depression, any psychiatric condition, and history of alcohol or drug abuse, pregnant or lactating women were also excluded from participation. 12 lead ECG was obtained before and after consumption of 250 cc enegry drink. QT and P-wave dispersion was calculated. RESULTS: No significant difference have occurred in heart rate (79 ± 14 vs.81 ±13, p=0.68, systolic pressure (114 ± 14 vs.118 ± 16,p=0.38, diastolic blood pressure (74 ± 12 vs.76 ± 14, p=0.64, QT dispersion (58 ± 12 vs. 57 ± 22, p= 0.785 and P-wave dispersion (37 ± 7 vs. 36 ± 13, p= 0.755 between before and 2 hours after consumption of energy drink. DISCUSSION AND CONCLUSION: Consumption of single dose energy drink doesn't affect QT dispersion and P-wave dispersion, heart rate and blood pressure in healthy adults.

  12. Diagnostic accuracy of electrocardiographic P wave related parameters in the assessment of left atrial size in dogs with degenerative mitral valve disease.

    Science.gov (United States)

    Soto-Bustos, Ángel; Caro-Vadillo, Alicia; Martínez-DE-Merlo, Elena; Alonso-Alegre, Elisa González

    2017-10-07

    The purpose of this research was to compare the accuracy of newly described P wave-related parameters (P wave area, Macruz index and mean electrical axis) with classical P wave-related parameters (voltage and duration of P wave) for the assessment of left atrial (LA) size in dogs with degenerative mitral valve disease. One hundred forty-six dogs (37 healthy control dogs and 109 dogs with degenerative mitral valve disease) were prospectively studied. Two-dimensional echocardiography examinations and a 6-lead ECG were performed prospectively in all dogs. Echocardiography parameters, including determination of the ratios LA diameter/aortic root diameter and LA area/aortic root area, were compared to P wave-related parameters: P wave area, Macruz index, mean electrical axis voltage and duration of P wave. The results showed that P wave-related parameters (classical and newly described) had low sensitivity (range=52.3 to 77%; median=60%) and low to moderate specificity (range=47.2 to 82.5%; median 56.3%) for the prediction of left atrial enlargement. The areas under the curve of P wave-related parameters were moderate to low due to poor sensitivity. In conclusion, newly P wave-related parameters do not increase the diagnostic capacity of ECG as a predictor of left atrial enlargement in dogs with degenerative mitral valve disease.

  13. How valuable is P-wave dispersion in the determination of carboxyhemoglobin levels?

    Science.gov (United States)

    Sener, M T; Anci, Y; Kalkan, K; Kir, M Z; Emet, M

    2014-05-01

    To determine whether or not wave/interval dispersions in electrocardiography (ECG) are increased, and to define whether wave and interval dispersions are correlated with carboxyhemoglobin (COHb) levels. ECG, complete blood count, and biochemical parameters were taken from 87 patients with carbon monoxide (CO) poisoning as well as 90 control patients with similar age, gender, and body mass index distribution. COHb levels were recorded in CO-poisoning patients. The COHb levels and the relationships with ECG parameters were studied. Pmax, Pmin, Pd, PRmax, PRmin, PRd, QTmax, QTmin, QTd, cQTmax, cQTmin, cQTd, Tmax, Tmin, and Td in ECG were higher in intoxicated patients than the control group (p < 0.05 for all). Pearson's correlation analyses showed moderately significant positive correlations between COHb level and Pmax (r = 0.224; p = 0.037) and Pd (r = 0.222; p = 0.039). The receiver-operator characteristic (ROC) curve showed that a Pd value of 38 ms determined by ECG separates patients with a COHb ≥ 20% with area under the ROC curve of 0.78 (95%CI = 0.71-0.83), a sensitivity of 67.9% (95%CI = 59.4-75.6), a specificity of 95% (95%CI = 83.0-99.2], a positive predictive value of 97.9% (95%CI = 92.5-99.7), and a negative predictive value of 46.3% (95%CI = 35.3-57.7.) A significant increase in wave/interval dispersions in the ECG of CO-poisoning patients compared with controls may show that not only a part is affected but both atrium and the ventricles as a whole are affected by hypoxic ischemia. When COHb levels of the patients are unavailable, P dispersion on ECG may show CO poisoning level of the patient.

  14. Energy-Saving Sintering of Electrically Conductive Powders by Modified Pulsed Electric Current Heating Using an Electrically Nonconductive Die

    Science.gov (United States)

    Ito, Mikio; Kawahara, Kenta; Araki, Keita

    2014-04-01

    Sintering of Cu and thermoelectric Ca3Co4O9 was tried using a modified pulsed electric current sintering (PECS) process, where an electrically nonconductive die was used instead of a conventional graphite die. The pulsed electric current flowed through graphite punches and sample powder, which caused the Joule heating of the powder compact itself, resulting in sintering under smaller power consumption. Especially for the Ca3Co4O9 powder, densification during sintering was also accelerated by this modified PECS process.

  15. Renormalization group approach to a p-wave superconducting model

    International Nuclear Information System (INIS)

    Continentino, Mucio A.; Deus, Fernanda; Caldas, Heron

    2014-01-01

    We present in this work an exact renormalization group (RG) treatment of a one-dimensional p-wave superconductor. The model proposed by Kitaev consists of a chain of spinless fermions with a p-wave gap. It is a paradigmatic model of great actual interest since it presents a weak pairing superconducting phase that has Majorana fermions at the ends of the chain. Those are predicted to be useful for quantum computation. The RG allows to obtain the phase diagram of the model and to study the quantum phase transition from the weak to the strong pairing phase. It yields the attractors of these phases and the critical exponents of the weak to strong pairing transition. We show that the weak pairing phase of the model is governed by a chaotic attractor being non-trivial from both its topological and RG properties. In the strong pairing phase the RG flow is towards a conventional strong coupling fixed point. Finally, we propose an alternative way for obtaining p-wave superconductivity in a one-dimensional system without spin–orbit interaction.

  16. P-wave dispersion and its relationship to aortic stiffness in patients with acute myocardial infarction after cardiac rehabilitation

    Directory of Open Access Journals (Sweden)

    Rezzan Deniz Acar

    2014-07-01

    Full Text Available BACKGROUND: The aim of our study was to investigate the P-wave dispersion from standard electrocardiograms (ECGs in patients with acute myocardial infarction (AMI after cardiac rehabilitation (CR and determine its relation to arterial stiffness. METHODS: This is a prospective study included 33 patients with AMI and successfully re-vascularized by percutaneous coronary intervention (PCI underwent CR. Left ventricular ejection fraction (LVEF was measured by biplane Simpson’s method. Left atrium (LA volume was calculated. The maximum and minimum durations of P-waves (Pmax and Pmin, respectively were detected, and the difference between Pmax and Pmin was defined as P-wave dispersion (Pd = Pmax–Pmin. Aortic elasticity parameters were measured. RESULTS: LVEF was better after CR. The systolic and diastolic blood pressures decreased after CR, these differences were statistically significant. With exercise training, LA volume decreased significantly. Pmax and Pd values were significantly shorter after the CR program. The maximum and minimum P-waves and P-wave dispersion after CR were 97 ± 6 ms, 53 ± 5 ms, and 44 ± 5 ms, respectively. Aortic strain and distensibility increased and aortic stiffness index was decreased significantly. Aortic stiffness index was 0.4 ± 0.2 versus 0.3 ± 0.2, P = 0.001. Aortic stiffness and left atrial volume showed a moderate positive correlation with P-wave dispersion (r = 0.52, P = 0.005; r = 0.64, P = 0.000, respectively. CONCLUSION: This study showed decreased arterial stiffness indexes in AMI patient’s participated CR, with a significant relationship between the electromechanical properties of the LA that may raise a question of the preventive effect of CR from atrial fibrillation and stroke in patients with acute myocardial infarction.   Keywords: Cardiac Rehabilitation, P-Wave Dispersion, Aortic Stiffness, Acute Myocardial Infarction 

  17. Optimal Analysis of Left Atrial Strain by Speckle Tracking Echocardiography: P-wave versus R-wave Trigger.

    Science.gov (United States)

    Hayashi, Shuji; Yamada, Hirotsugu; Bando, Mika; Saijo, Yoshihito; Nishio, Susumu; Hirata, Yukina; Klein, Allan L; Sata, Masataka

    2015-08-01

    Left atrial (LA) strain analysis using speckle tracking echocardiography is useful for assessing LA function. However, there is no established procedure for this method. Most investigators have determined the electrocardiographic R-wave peak as the starting point for LA strain analysis. To test our hypothesis that P-wave onset should be used as the starting point, we measured LA strain using 2 different starting points and compared the strain values with the corresponding LA volume indices obtained by three-dimensional (3D) echocardiography. We enrolled 78 subjects (61 ± 17 years, 25 males) with and without various cardiac diseases in this study and assessed global longitudinal LA strain by two-dimensional speckle tracking strain echocardiography using EchoPac software. We used either R-wave peak or P-wave onset as the starting point for determining LA strains during the reservoir (Rres, Pres), conduit (Rcon, Pcon), and booster pump (Rpump, Ppump) phases. We determined the maximum, minimum, and preatrial contraction LA volumes, and calculated the LA total, passive, and active emptying fractions using 3D echocardiography. The correlation between Pres and LA total emptying fraction was better than the correlation between Rres and LA total emptying fraction (r = 0.458 vs. 0.308, P = 0.026). Pcon and Ppump exhibited better correlation with the corresponding 3D echocardiographic parameters than Rcon (r = 0.560 vs. 0.479, P = 0.133) and Rpump (r = 0.577 vs. 0.345, P = 0.003), respectively. LA strain in any phase should be analyzed using P-wave onset as the starting point rather than R-wave peak. © 2014, Wiley Periodicals, Inc.

  18. Comparison of P-wave dispersion in healthy dogs, dogs with chronic valvular disease and dogs with disturbances of supraventricular conduction

    Directory of Open Access Journals (Sweden)

    Nicpoń Józef

    2011-03-01

    Full Text Available Abstract Background P-wave dispersion (Pd is a new ECG index used in human cardiology and veterinary medicine. It is defined as the difference between the maximum and the minimum P-wave duration recorded from multiple different ECG leads. So far no studies were performed assessing the importance of P-wave dispersion in dogs. Methods The current study was aimed at determining proper value of Pd in healthy dogs (group I, dogs with chronic valvular disease (group II and dogs with disturbances of supraventricular conduction (group III. The tests were carried out in 53 healthy dogs, 23 dogs with chronic valvular disease and 12 dogs with disturbances of supraventricular conduction of various breeds, sexes and body weight from 1,5 to 80 kg, aged between 0,5 and 17 years, submitted to the ECG examination. ECG was acquired in dogs in a standing position with BTL SD-8 electrocardiographic device and analyzed once the recording was enlarged. P-wave duration was calculated in 9 ECG leads (I, II, III, aVR, aVL, aVF, V1, V2, V4 from 5 cardiac cycles. Results The proper P-wave dispersion in healthy dogs was determined at up to 24 ms. P-wave dispersion was statistically significant increased (p Conclusions The P-wave dispersion is a constant index in healthy dogs, that is why it can be used for evaluating P wave change in dogs with chronic valvular disease and in dogs with disturbances of supraventricular conduction.

  19. Improved bag models of P-wave baryons

    International Nuclear Information System (INIS)

    Wang Fan; Wong Chunwa

    1988-01-01

    Problems in two previous bag-model calculations of P-wave baryon states are pointed out. The two-body matrix elements used in one of these models, the Myhrer-Wroldsen bag model, have now been revised and corrected by Myhrer, Umino and Wroldsen. We use their corrected matrix elements to construct simple bag models in which baryon masses are stabilized against collapse by using a finite pion size. We find that baryon masses in both ground and excited states can be fitted with the same model parameters. Models with small-bag baryons of the type proposed by Brown and Rho are then obtained. Typical bag radii are 0.5 fm for N, 0.6 fm for Δ and 0.7 fm for P-wave nonstrange baryons. In these models, the mixing angles are still unsatisfactory, while inadequacy in the treatment of center-of-mass motion found in an earlier paper persists. These results are briefly discussed. especially in connection with skyrmion models. (orig.)

  20. An acoustic wave equation for pure P wave in 2D TTI media

    KAUST Repository

    Zhan, Ge; Pestana, Reynam C.; Stoffa, Paul L.

    2011-01-01

    In this paper, a pure P wave equation for an acoustic 2D TTI media is derived. Compared with conventional TTI coupled equations, the resulting equation is unconditionally stable due to the complete isolation of the SV wave mode. To avoid numerical dispersion and produce high quality images, the rapid expansion method REM is employed for numerical implementation. Synthetic results validate the proposed equation and show that it is a stable algorithm for modeling and reverse time migration RTM in a TTI media for any anisotropic parameter values. © 2011 Society of Exploration Geophysicists.

  1. Numerical solutions of several reflected shock-wave flow fields with nonequilibrium chemical reactions

    Science.gov (United States)

    Hanson, R. K.; Presley, L. L.; Williams, E. V.

    1972-01-01

    The method of characteristics for a chemically reacting gas is used in the construction of the time-dependent, one-dimensional flow field resulting from the normal reflection of an incident shock wave at the end wall of a shock tube. Nonequilibrium chemical reactions are allowed behind both the incident and reflected shock waves. All the solutions are evaluated for oxygen, but the results are generally representative of any inviscid, nonconducting, and nonradiating diatomic gas. The solutions clearly show that: (1) both the incident- and reflected-shock chemical relaxation times are important in governing the time to attain steady state thermodynamic properties; and (2) adjacent to the end wall, an excess-entropy layer develops wherein the steady state values of all the thermodynamic variables except pressure differ significantly from their corresponding Rankine-Hugoniot equilibrium values.

  2. Increasing vaccine production using pulsed ultrasound waves.

    Directory of Open Access Journals (Sweden)

    Jida Xing

    Full Text Available Vaccination is a safe and effective approach to prevent deadly diseases. To increase vaccine production, we propose that a mechanical stimulation can enhance protein production. In order to prove this hypothesis, Sf9 insect cells were used to evaluate the increase in the expression of a fusion protein from hepatitis B virus (HBV S1/S2. We discovered that the ultrasound stimulation at a frequency of 1.5 MHz, intensity of 60 mW/cm2, for a duration of 10 minutes per day increased HBV S1/S2 by 27%. We further derived a model for transport through a cell membrane under the effect of ultrasound waves, tested the key assumptions of the model through a molecular dynamics simulation package, NAMD (Nanoscale Molecular Dynamics program and utilized CHARMM force field in a steered molecular dynamics environment. The results show that ultrasound waves can increase cell permeability, which, in turn, can enhance nutrient / waste exchange thus leading to enhanced vaccine production. This finding is very meaningful in either shortening vaccine production time, or increasing the yield of proteins for use as vaccines.

  3. Determination of Pwave arrival time of acoustic events

    Directory of Open Access Journals (Sweden)

    Matěj Petružálek

    2010-10-01

    Full Text Available The new approach to the P-wave arrival time determination based on acoustic emission data from loading experiments is tested.The algorithm used in this paper is built on the STA/LTA function computed by a convolution that speeds up the computation processvery much. The picking process makes use of shifting of temporary onset until certain conditions are fulfill and as a main decisioncriterion on the threshold exceeding of the STA/LTA derivation function is used. The P-wave onset time is determined in a selectedinterval that corresponds to the theoretical propagation of elastic wave in the rock sample. Results obtained by our algorithm werecorrelated with data acquired manually and a high order statistic software as well.

  4. P-wave holographic superconductor/insulator phase transitions affected by dark matter sector

    International Nuclear Information System (INIS)

    Rogatko, Marek; Wysokinski, Karol I.

    2016-01-01

    The holographic approach to building the p-wave superconductors results in three different models: the Maxwell-vector, the SU(2) Yang-Mills and the helical. In the probe limit approximation, we analytically examine the properties of the first two models in the theory with dark matter sector. It turns out that the effect of dark matter on the Maxwell-vector p-wave model is the same as on the s-wave superconductor studied earlier. For the non-Abelian model we study the phase transitions between p-wave holographic insulator/superconductor and metal/superconductor. Studies of marginally stable modes in the theory under consideration allow us to determine features of p-wave holographic droplet in a constant magnetic field. The dependence of the superconducting transition temperature on the coupling constant α to the dark matter sector is affected by the dark matter density ρ_D. For ρ_D>ρ the transition temperature is a decreasing function of α. The critical chemical potential μ_c for the quantum phase transition between insulator and metal depends on the chemical potential of dark matter μ_D and for μ_D=0 is a decreasing function of α.

  5. Multiplane wave imaging increases signal-to-noise ratio in ultrafast ultrasound imaging

    International Nuclear Information System (INIS)

    Tiran, Elodie; Deffieux, Thomas; Correia, Mafalda; Maresca, David; Osmanski, Bruno-Felix; Pernot, Mathieu; Tanter, Mickael; Sieu, Lim-Anna; Bergel, Antoine; Cohen, Ivan

    2015-01-01

    Ultrafast imaging using plane or diverging waves has recently enabled new ultrasound imaging modes with improved sensitivity and very high frame rates. Some of these new imaging modalities include shear wave elastography, ultrafast Doppler, ultrafast contrast-enhanced imaging and functional ultrasound imaging. Even though ultrafast imaging already encounters clinical success, increasing even more its penetration depth and signal-to-noise ratio for dedicated applications would be valuable.Ultrafast imaging relies on the coherent compounding of backscattered echoes resulting from successive tilted plane waves emissions; this produces high-resolution ultrasound images with a trade-off between final frame rate, contrast and resolution. In this work, we introduce multiplane wave imaging, a new method that strongly improves ultrafast images signal-to-noise ratio by virtually increasing the emission signal amplitude without compromising the frame rate. This method relies on the successive transmissions of multiple plane waves with differently coded amplitudes and emission angles in a single transmit event. Data from each single plane wave of increased amplitude can then be obtained, by recombining the received data of successive events with the proper coefficients.The benefits of multiplane wave for B-mode, shear wave elastography and ultrafast Doppler imaging are experimentally demonstrated. Multiplane wave with 4 plane waves emissions yields a 5.8  ±  0.5 dB increase in signal-to-noise ratio and approximately 10 mm in penetration in a calibrated ultrasound phantom (0.7 d MHz −1 cm −1 ). In shear wave elastography, the same multiplane wave configuration yields a 2.07  ±  0.05 fold reduction of the particle velocity standard deviation and a two-fold reduction of the shear wave velocity maps standard deviation. In functional ultrasound imaging, the mapping of cerebral blood volume results in a 3 to 6 dB increase of the contrast-to-noise ratio in

  6. Lifshitz effects on holographic p-wave superfluid

    Directory of Open Access Journals (Sweden)

    Ya-Bo Wu

    2015-02-01

    Full Text Available In the probe limit, we numerically build a holographic p-wave superfluid model in the four-dimensional Lifshitz black hole coupled to a Maxwell-complex vector field. We observe the rich phase structure and find that the Lifshitz dynamical exponent z contributes evidently to the effective mass of the matter field and dimension of the gravitational background. Concretely, we obtain that the Cave of Winds appeared only in the five-dimensional anti-de Sitter (AdS spacetime, and the increasing z hinders not only the condensate but also the appearance of the first-order phase transition. Furthermore, our results agree with the Ginzburg–Landau results near the critical temperature. In addition, the previous AdS superfluid model is generalized to the Lifshitz spacetime. Keywords: Gauge/gravity duality, Holographic superconductor, Lifshitz black hole, Maxwell-complex vector field

  7. On the resolution of ECG acquisition systems for the reliable analysis of the P-wave

    International Nuclear Information System (INIS)

    Censi, Federica; Calcagnini, Giovanni; Mattei, Eugenio; Triventi, Michele; Bartolini, Pietro; Corazza, Ivan; Boriani, Giuseppe

    2012-01-01

    The analysis of the P-wave on surface ECG is widely used to assess the risk of atrial arrhythmias. In order to provide reliable results, the automatic analysis of the P-wave must be precise and reliable and must take into account technical aspects, one of those being the resolution of the acquisition system. The aim of this note is to investigate the effects of the amplitude resolution of ECG acquisition systems on the P-wave analysis. Starting from ECG recorded by an acquisition system with a less significant bit (LSB) of 31 nV (24 bit on an input range of 524 mVpp), we reproduced an ECG signal as acquired by systems with lower resolution (16, 15, 14, 13 and 12 bit). We found that, when the LSB is of the order of 128 µV (12 bit), a single P-wave is not recognizable on ECG. However, when averaging is applied, a P-wave template can be extracted, apparently suitable for the P-wave analysis. Results obtained in terms of P-wave duration and morphology revealed that the analysis of ECG at lowest resolutions (from 12 to 14 bit, LSB higher than 30 µV) could lead to misleading results. However, the resolution used nowadays in modern electrocardiographs (15 and 16 bit, LSB <10 µV) is sufficient for the reliable analysis of the P-wave. (note)

  8. Contribution from S and P waves in pp annihilation at rest

    CERN Document Server

    Bendiscioli, G; Fontana, A; Montagna, P; Rotondi, A; Salvini, P; Bertin, A; Bruschi, M; Capponi, M; De Castro, S; Donà, R; Galli, D; Giacobbe, B; Marconi, U; Massa, I; Piccinini, M; Cesari, N S; Spighi, R; Vecchi, S; Vagnoni, V M; Villa, M; Vitale, A; Zoccoli, A; Bianconi, A; Bonomi, G; Lodi-Rizzini, E; Venturelli, L; Zenoni, A; Cicalò, C; De Falco, A; Masoni, A; Puddu, G; Serci, S; Usai, G L; Gorchakov, O E; Prakhov, S N; Rozhdestvensky, A M; Tretyak, V I; Poli, M; Gianotti, P; Guaraldo, C; Lanaro, A; Lucherini, V; Petrascu, C; Kudryavtsev, A E; Balestra, F; Bussa, M P; Busso, L; Cerello, P G; Denisov, O Yu; Ferrero, L; Grasso, A; Maggiora, A; Panzarasa, A; Panzieri, D; Tosello, F; Botta, E; Bressani, Tullio; Calvo, D; Costa, S; D'Isep, D; Feliciello, A; Filippi, A; Marcello, S; Mirfakhraee, N; Agnello, M; Iazzi, F; Minetti, B; Tessaro, S

    2001-01-01

    The annihilation frequencies of 19 pp annihilation reactions at rest obtained in different target densities are analysed in order to determine the values of the P-wave annihilation percentage at each target density and the average hadronic branching ratios from P- and S-states. Both the assumptions of linear dependence of the annihilation frequencies on the P-wave annihilation percentage of the protonium state and the approach with the enhancement factors of Batty (1989) are considered. Furthermore the cases of incompatible measurements are discussed. (55 refs).

  9. Algorithm Indicating Moment of P-Wave Arrival Based on Second-Moment Characteristic

    Directory of Open Access Journals (Sweden)

    Jakub Sokolowski

    2016-01-01

    Full Text Available The moment of P-wave arrival can provide us with many information about the nature of a seismic event. Without adequate knowledge regarding the onset moment, many properties of the events related to location, polarization of P-wave, and so forth are impossible to receive. In order to save time required to indicate P-wave arrival moment manually, one can benefit from automatic picking algorithms. In this paper two algorithms based on a method finding a regime switch point are applied to seismic event data in order to find P-wave arrival time. The algorithms are based on signals transformed via a basic transform rather than on raw recordings. They involve partitioning the transformed signal into two separate series and fitting logarithm function to the first subset (which corresponds to pure noise and therefore it is considered stationary, exponent or power function to the second subset (which corresponds to nonstationary seismic event, and finding the point at which these functions best fit the statistic in terms of sum of squared errors. Effectiveness of the algorithms is tested on seismic data acquired from O/ZG “Rudna” underground copper ore mine with moments of P-wave arrival initially picked by broadly known STA/LTA algorithm and then corrected by seismic station specialists. The results of proposed algorithms are compared to those obtained using STA/LTA.

  10. Role of the P-wave high frequency energy and duration as noninvasive cardiovascular predictors of paroxysmal atrial fibrillation.

    Science.gov (United States)

    Alcaraz, Raúl; Martínez, Arturo; Rieta, José J

    2015-04-01

    A normal cardiac activation starts in the sinoatrial node and then spreads throughout the atrial myocardium, thus defining the P-wave of the electrocardiogram. However, when the onset of paroxysmal atrial fibrillation (PAF) approximates, a highly disturbed electrical activity occurs within the atria, thus provoking fragmented and eventually longer P-waves. Although this altered atrial conduction has been successfully quantified just before PAF onset from the signal-averaged P-wave spectral analysis, its evolution during the hours preceding the arrhythmia has not been assessed yet. This work focuses on quantifying the P-wave spectral content variability over the 2h preceding PAF onset with the aim of anticipating as much as possible the arrhythmic episode envision. For that purpose, the time course of several metrics estimating absolute energy and ratios of high- to low-frequency power in different bands between 20 and 200Hz has been computed from the P-wave autoregressive spectral estimation. All the analyzed metrics showed an increasing variability trend as PAF onset approximated, providing the P-wave high-frequency energy (between 80 and 150Hz) a diagnostic accuracy around 80% to discern between healthy subjects, patients far from PAF and patients less than 1h close to a PAF episode. This discriminant power was similar to that provided by the most classical time-domain approach, i.e., the P-wave duration. Furthermore, the linear combination of both metrics improved the diagnostic accuracy up to 88.07%, thus constituting a reliable noninvasive harbinger of PAF onset with a reasonable anticipation. The information provided by this methodology could be very useful in clinical practice either to optimize the antiarrhythmic treatment in patients at high-risk of PAF onset and to limit drug administration in low risk patients. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Study on the P-wave feature time course as early predictors of paroxysmal atrial fibrillation

    International Nuclear Information System (INIS)

    Martínez, Arturo; Alcaraz, Raúl; Rieta, José J

    2012-01-01

    Atrial fibrillation (AF) is the most common cardiac arrhythmia in clinical practice, increasing the risk of stroke and all-cause mortality. Its mechanisms are poorly understood, thus leading to different theories and controversial interpretation of its behavior. In this respect, it is unknown why AF is self-terminating in certain individuals, which is called paroxysmal AF (PAF), and not in others. Within the context of biomedical signal analysis, predicting the onset of PAF with a reasonable advance has been a clinical challenge in recent years. By predicting arrhythmia onset, the loss of normal sinus rhythm could be addressed by means of preventive treatments, thus minimizing risks for the patients and improving their quality of life. Traditionally, the study of PAF onset has been undertaken through a variety of features characterizing P-wave spatial diversity from the standard 12-lead electrocardiogram (ECG) or from signal-averaged ECGs. However, the variability of features from the P-wave time course before PAF onset has not been exploited yet. This work introduces a new alternative to assess time diversity of the P-wave features from single-lead ECG recordings. Furthermore, the method is able to assess the risk of arrhythmia 1 h before its onset, which is a relevant advance in order to provide clinically useful PAF risk predictors. Results were in agreement with the electrophysiological changes taking place in the atria. Hence, P-wave features presented an increasing variability as PAF onset approximates, thus suggesting intermittently disturbed conduction in the atrial tissue. In addition, high PAF risk prediction accuracy, greater than 90%, has been reached in the two considered scenarios, i.e. discrimination between healthy individuals and PAF patients and between patients far from PAF and close to PAF onset. Nonetheless, more long-term studies have to be analyzed and validated in future works. (paper)

  12. Three-Stage InP Submillimeter-Wave MMIC Amplifier

    Science.gov (United States)

    Pukala, David; Samoska, Lorene; Man, King; Gaier, Todd; Deal, William; Lai, Richard; Mei, Gerry; Makishi, Stella

    2008-01-01

    A submillimeter-wave monolithic integrated- circuit (S-MMIC) amplifier has been designed and fabricated using an indium phosphide (InP) 35-nm gate-length high electron mobility transistor (HEMT) device, developed at Northrop Grumman Corporation. The HEMT device employs two fingers each 15 micrometers wide. The HEMT wafers are grown by molecular beam epitaxy (MBE) and make use of a pseudomorphic In0.75Ga0.25As channel, a silicon delta-doping layer as the electron supply, an In0.52Al0.48As buffer layer, and an InP substrate. The three-stage design uses coplanar waveguide topology with a very narrow ground-to-ground spacing of 14 micrometers. Quarter-wave matching transmission lines, on-chip metal-insulator-metal shunt capacitors, series thin-film resistors, and matching stubs were used in the design. Series resistors in the shunt branch arm provide the basic circuit stabilization. The S-MMIC amplifier was measured for S-parameters and found to be centered at 320 GHz with 13-15-dB gain from 300-345 GHz. This chip was developed as part of the DARPA Submillimeter Wave Imaging Focal Plane Technology (SWIFT) program (see figure). Submillimeter-wave amplifiers could enable more sensitive receivers for earth science, planetary remote sensing, and astrophysics telescopes, particularly in radio astronomy, both from the ground and in space. A small atmospheric window at 340 GHz exists and could enable ground-based observations. However, the submillimeter-wave regime (above 300 GHz) is best used for space telescopes as Earth s atmosphere attenuates most of the signal through water and oxygen absorption. Future radio telescopes could make use of S-MMIC amplifiers for wideband, low noise, instantaneous frequency coverage, particularly in the case of heterodyne array receivers.

  13. Standard Test Method for Normal Spectral Emittance at Elevated Temperatures of Nonconducting Specimens

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1971-01-01

    1.1 This test method describes an accurate technique for measuring the normal spectral emittance of electrically nonconducting materials in the temperature range from 1000 to 1800 K, and at wavelengths from 1 to 35 μm. It is particularly suitable for measuring the normal spectral emittance of materials such as ceramic oxides, which have relatively low thermal conductivity and are translucent to appreciable depths (several millimetres) below the surface, but which become essentially opaque at thicknesses of 10 mm or less. 1.2 This test method requires expensive equipment and rather elaborate precautions, but produces data that are accurate to within a few percent. It is particularly suitable for research laboratories, where the highest precision and accuracy are desired, and is not recommended for routine production or acceptance testing. Because of its high accuracy, this test method may be used as a reference method to be applied to production and acceptance testing in case of dispute. 1.3 This test metho...

  14. Military jet pilots have higher p-wave dispersions compared to the transport aircraft aircrew

    Directory of Open Access Journals (Sweden)

    Mustafa Çakar

    2016-08-01

    Full Text Available Objectives: For the purpose of flight safety military aircrew must be healthy. P-wave dispersion (PWD is the p-wave length difference in an electrocardiographic (ECG examination and represents the risk of developing atrial fibrillation. In the study we aimed at investigating PWD in healthy military aircrew who reported for periodical examinations. Material and Methods: Seventy-five asymptomatic military aircrew were enrolled in the study. All the subjects underwent physical, radiologic and biochemical examinations, and a 12-lead electrocardiography. P-wave dispersions were calculated. Results: The mean age of the study participants was 36.15±8.97 years and the mean p-wave duration was 100.8±12 ms in the whole group. Forty-seven subjects were non-pilot aircrew, and 28 were pilots. Thirteen study subjects were serving in jets, 49 in helicopters, and 13 were transport aircraft pilots. Thirty-six of the helicopter and 11 of the transport aircraft aircrew were non-pilot aircrew. P-wave dispersion was the lowest in the transport aircraft aircrew, and the highest in jet pilots. P-wave dispersions were similar in the pilots and non-pilot aircrew. Twenty-three study subjects were overweight, 19 had thyroiditis, 26 had hepatosteatosis, 4 had hyperbilirubinemia, 2 had hypertension, and 5 had hyperlipidemia. The PWD was significantly associated with thyroid-stimulating hormone (TSH levels. Serum uric acid levels were associated with p-wave durations. Serum TSH levels were the most important predictor of PWD. Conclusions: When TSH levels were associated with PWD, uric acid levels were associated with p-wave duration in the military aircrew. The jet pilots had higher PWDs. These findings reveal that military jet pilots may have a higher risk of developing atrial fibrillation, and PWD should be recorded during periodical examinations.

  15. Increased P diffusion as an explanation of increased P availability in flooded rice soils

    International Nuclear Information System (INIS)

    Turner, F.T.; Gilliam, J.W.

    1976-01-01

    Phosphorus supply factors (capacity, kinetic, intensity, and diffusivity) and plant growth were the approaches used to assess P supply of flooded rice soils. Increases in the capacity, intensity and kinetic factors, as measured by E-value, solution P concentration, and soil P release rate to a distilled water 'sink' respectively, were unpronounced and infrequent upon water-saturation of ten soils. However, increases in the diffusivity factor, as measured by 32 P diffusion coefficients, were at least ten-fold as soil moisture increased. The greatest increases in P diffusion occurred as soil moisture increased beyond one-third bar. Using a P-fertilized soil or P treated powdered cellulose as the P source and a minus P nutrient solution to nourish a split root system with water and nutrients, data were obtained which suggested that P uptake and rice shoot growth (indicators of P availability) increased with increasing moisture level. Phosphorus uptake and rice-shoot growth were greatest when the soil or P treated cellulose were water-saturated. These data indicate that increased soil P availability upon flooding can be attributed to an increase in the diffusivity factor

  16. Relation between the behaviors of P-wave and QT dispersions in elderly patients with heart failure

    Directory of Open Access Journals (Sweden)

    Szlejf Cláudia

    2002-01-01

    Full Text Available OBJECTIVE: To assess the relation between P-wave and QT dispersions in elderly patients with heart failure. METHODS: Forty-seven elderly patients (75.6±6 years with stable heart failure in NYHA functional classes II or III and with ejection fractions of 37±6% underwent body surface mapping to analyze P-wave and QT dispersions. The degree of correlation between P-wave and QT dispersions was assessed, and P-wave dispersion values in patients with QT dispersion greater than and smaller than 100 ms were compared. RESULTS: The mean values of P-wave and QT dispersions were 54±14 ms and 68±27 ms, respectively. The correlation between the 2 variables was R=0.41 (p=0.04. In patients with QT dispersion values > 100 ms, P-wave dispersion was significantly greater than in those with QT dispersion values < 100 ms (58±16 vs 53±12 ms, p=0.04 . CONCLUSION: Our results suggest that, in elderly patients with heart failure, a correlation between the values of P-wave and QT dispersions exists. These findings may have etiopathogenic, pathophysiologic, prognostic, and therapeutic implications, which should be investigated in other studies.

  17. P-wave excited {B}_{c}^{* * } meson photoproduction at the LHeC

    Science.gov (United States)

    Kai, He; Huan-Yu, Bi; Ren-You, Zhang; Xiao-Zhou, Li; Wen-Gan, Ma

    2018-05-01

    As an important sequential work of the S-wave {B}c(* ) ({}1{S}0({}3{S}1) ) meson production at the large hadron electron collider (LHeC), we investigate the production of the P-wave excited {B}c* * states (1 P 1 and 3 P J with J = 0, 1, 2) via photoproduction mechanism within the framework of nonrelativistic QCD at the LHeC. Generally, the {e}-+P\\to γ +g\\to {B}c* * +b+\\bar{c} process is considered as the main production mechanism at an electron–proton collider due to the large luminosity of the gluon. However, according to our experience on the S-wave {B}c(* ) meson production at the LHeC, the extrinsic production mechanism, i.e., {e}-+P\\to γ +c\\to {B}c* * +b and {e}-+P\\to γ +\\bar{b} \\to {B}c* * +\\bar{c}, could also provide dominating contributions at low p T region. A careful treatment between these channels is performed and the results on total and differential cross sections, together with main uncertainties are discussed. Taking the quark masses m b = 4.90 ± 0.40 GeV and m c = 1.50 ± 0.20 GeV into account and summing up all the production channels, we expect to accumulate ({2.48}-1.75+3.55)× {10}4 {B}c* * ({}1{P}1), ({1.14}-0.82+1.49)× {10}4 {B}c* * ({}3{P}0),({2.38}-1.74+3.39)× {10}4 {B}c* * ({}3{P}1) and ({5.59}-3.93+7.84)× {10}4 {B}c* * ({}3{P}2) events at the \\sqrt{S}=1.30 {{T}}{{e}}{{V}} LHeC in one operation year with luminosity { \\mathcal L }={10}33 cm‑2 s‑1. With such sizable events, it is worth studying the properties of excited P-wave {B}c* * states at the LHeC.

  18. Four-wave mixing and parametric four-wave mixing near the 4P-4S transition of the potassium atom

    International Nuclear Information System (INIS)

    Katharakis, M; Merlemis, N; Serafetinides, A; Efthimiopoulos, T

    2002-01-01

    Potassium 4S 1/2 -6S 1/2 two-photon excitation initiates the emission of several internally generated photons. For the first time two emission lines, one close to and one below the potassium 4P 3/2 level, are reported for low pumping intensity. Radiation emitted below the 4P 3/2 level is due to a parametric four-wave mixing process that uses the photons emitted at the 5P 3/2 -4S 1/2 transition and a two-step four-wave mixing process generates the line emitted close to the 4P 3/2 level

  19. Scattered P'P' waves observed at short distances

    Science.gov (United States)

    Earle, Paul S.; Rost, Sebastian; Shearer, Peter M.; Thomas, Christine

    2011-01-01

    We detect previously unreported 1 Hz scattered waves at epicentral distances between 30° and 50° and at times between 2300 and 2450 s after the earthquake origin. These waves likely result from off-azimuth scattering of PKPbc to PKPbc in the upper mantle and crust and provide a new tool for mapping variations in fine-scale (10 km) mantle heterogeneity. Array beams from the Large Aperture Seismic Array (LASA) clearly image the scattered energy gradually emerging from the noise and reaching its peak amplitude about 80 s later, and returning to the noise level after 150 s. Stacks of transverse versus radial slowness (ρt, ρr) show two peaks at about (2, -2) and (-2,-2) s/°, indicating the waves arrive along the major arc path (180° to 360°) and significantly off azimuth. We propose a mantle and surface PKPbc to PKPbc scattering mechanism for these observations because (1) it agrees with the initiation time and distinctive slowness signature of the scattered waves and (2) it follows a scattering path analogous to previously observed deep-mantle PK•KP scattering (Chang and Cleary, 1981). The observed upper-mantle scattered waves and PK•KP waves fit into a broader set of scattered waves that we call P′•d•P′, which can scatter from any depth, d, in the mantle.

  20. Correlating P-wave Velocity with the Physico-Mechanical Properties of Different Rocks

    Science.gov (United States)

    Khandelwal, Manoj

    2013-04-01

    In mining and civil engineering projects, physico-mechanical properties of the rock affect both the project design and the construction operation. Determination of various physico-mechanical properties of rocks is expensive and time consuming, and sometimes it is very difficult to get cores to perform direct tests to evaluate the rock mass. The purpose of this work is to investigate the relationships between the different physico-mechanical properties of the various rock types with the P-wave velocity. Measurement of P-wave velocity is relatively cheap, non-destructive and easy to carry out. In this study, representative rock mass samples of igneous, sedimentary, and metamorphic rocks were collected from the different locations of India to obtain an empirical relation between P-wave velocity and uniaxial compressive strength, tensile strength, punch shear, density, slake durability index, Young's modulus, Poisson's ratio, impact strength index and Schmidt hammer rebound number. A very strong correlation was found between the P-wave velocity and different physico-mechanical properties of various rock types with very high coefficients of determination. To check the sensitivity of the empirical equations, Students t test was also performed, which confirmed the validity of the proposed correlations.

  1. P wave detector with PP rhythm tracking: evaluation in different arrhythmia contexts

    International Nuclear Information System (INIS)

    Portet, François

    2008-01-01

    Automatic detection of atrial activity (P waves) in an electrocardiogram (ECG) is a crucial task to diagnose the presence of arrhythmias. The P wave is difficult to detect and most of the approaches in the literature have been evaluated on normal sinus rhythms and rarely considered arrhythmia contexts other than atrial flutter and fibrillation. A novel knowledge-based P wave detector algorithm is presented. It is self-adaptive to the patient and able to deal with certain arrhythmias by tracking the PP rhythm. The detector has been tested on 12 records of the MIT-BIH arrhythmia database containing several ventricular and supra-ventricular arrhythmias. On the overall records, the detector demonstrates Se = 96.60% and Pr = 95.46%; for the normal sinus rhythm, it reaches Se = 97.76% and Pr = 96.80% and, in the case of Mobitz type II, it demonstrates Se = 72.79% and Pr = 99.51%. It also shows good performance for trigeminy and bigeminy, and outperforms some more sophisticated techniques. Although the results emphasize the difficulty of P wave detection in difficult arrhythmias (supra and ventricular tachycardias), it shows that domain knowledge can efficiently support signal processing techniques

  2. InP HEMT Integrated Circuits for Submillimeter Wave Radiometers in Earth Remote Sensing

    Science.gov (United States)

    Deal, William R.; Chattopadhyay, Goutam

    2012-01-01

    The operating frequency of InP integrated circuits has pushed well into the Submillimeter Wave frequency band, with amplification reported as high as 670 GHz. This paper provides an overview of current performance and potential application of InP HEMT to Submillimeter Wave radiometers for earth remote sensing.

  3. Doubly excited P-wave resonance states of H− in Debye plasmas

    International Nuclear Information System (INIS)

    Jiao, L. G.; Ho, Y. K.

    2013-01-01

    We investigate the doubly excited P-wave resonance states of H − system in Debye plasmas modeled by static screened Coulomb potentials. The screening effects of the plasma environment on resonance parameters (energy and width) are investigated by employing the complex-scaling method with Hylleraas-type wave functions for both the shape and Feshbach resonances associated with the H(N = 2 to 6) thresholds. Under the screening conditions, the H(N) threshold states are no longer l degenerate, and all the H − resonance energy levels are shifted away from their unscreened values toward the continuum. The influence of Debye plasmas on resonance widths has also been investigated. The shape resonance widths are broadened with increasing plasma screening strength, whereas the Feshbach resonance widths would generally decrease. Our results associated with the H(N = 2) and H(N = 3) thresholds are compared with others in the literature

  4. Detecting the Elusive P-Wave: A New ECG Lead to Improve the Recording of Atrial Activity.

    Science.gov (United States)

    Kennedy, Alan; Finlay, Dewar D; Guldenring, Daniel; Bond, Raymond R; McLaughlin, James

    2016-02-01

    In this study, we report on a lead selection method that was developed to detect the optimal bipolar electrode placement for recording of the P-wave. The study population consisted of 117 lead body surface potential maps recorded from 229 healthy subjects. The optimal bipolar lead was developed using the training set (172 subjects) then extracted from the testing dataset (57 subjects) and compared to other lead systems previously reported for improved recording of atrial activity. All leads were assessed in terms of P-wave, QRS, and STT root mean square (RMS). The P/QRST RMS ratio was also investigated to determine the atrioventricular RMS ratio. Finally, the effect of minor electrode misplacements on the P-lead was investigated. The P-lead discovered in this study outperformed all other investigated leads in terms of P-wave RMS. The P-lead showed a significant improvement in median P-wave RMS (93 versus 72 μV, p < 0.001) over the next best lead, Lead II. An improvement in QRS and STT RMS was also observed from the P-lead in comparison to lead II (668 versus 573 μV, p < 0.001) and (327 versus 196 μV, p < 0.001). Although P-wave RMS was reduced by incorrect electrode placement, significant improvement over Lead II was still evident. The P-lead improves P-wave RMS signal strength over all other investigated leads. Also the P-lead does not reduce QRS and STT RMS making it an appropriate choice for atrial arrhythmia monitoring. Given the improvement in signal-to-noise ratio, an improvement in algorithms that rely on P-wave analysis may be achieved.

  5. Modeling of pseudoacoustic P-waves in orthorhombic media with a low-rank approximation

    KAUST Repository

    Song, Xiaolei

    2013-06-04

    Wavefield extrapolation in pseudoacoustic orthorhombic anisotropic media suffers from wave-mode coupling and stability limitations in the parameter range. We use the dispersion relation for scalar wave propagation in pseudoacoustic orthorhombic media to model acoustic wavefields. The wavenumber-domain application of the Laplacian operator allows us to propagate the P-waves exclusively, without imposing any conditions on the parameter range of stability. It also allows us to avoid dispersion artifacts commonly associated with evaluating the Laplacian operator in space domain using practical finite-difference stencils. To handle the corresponding space-wavenumber mixed-domain operator, we apply the low-rank approximation approach. Considering the number of parameters necessary to describe orthorhombic anisotropy, the low-rank approach yields space-wavenumber decomposition of the extrapolator operator that is dependent on space location regardless of the parameters, a feature necessary for orthorhombic anisotropy. Numerical experiments that the proposed wavefield extrapolator is accurate and practically free of dispersion. Furthermore, there is no coupling of qSv and qP waves because we use the analytical dispersion solution corresponding to the P-wave.

  6. Numerical simulation of amplification of space charge waves in n-InP films

    International Nuclear Information System (INIS)

    Garcia-Barrientos, Abel; Palankovski, Vassil

    2011-01-01

    The non-linear interaction of space charge waves including the amplification in microwave and millimeter wave range in n-InP films, possessing the negative differential conductance phenomenon, is investigated theoretically. Both the amplified signal and the generation of harmonics of the input signal are demonstrated, which are due to non-linear effect of the negative differential resistance. It is possible to observe an amplification of the space charge waves in n-InP films of submicron thicknesses at essentially higher frequencies f <70 GHz, when compared with n-GaAs films f < 44 GHz. The increment observed in the gain is due to the larger dynamic range in n-InP than in n-GaAs films.

  7. Induced charge electrophoresis of a conducting cylinder in a nonconducting cylindrical pore and its micromotoring application

    Science.gov (United States)

    Feng, Huicheng; Wong, Teck Neng; Che, Zhizhao

    2016-08-01

    Induced charge electrophoresis of a conducting cylinder suspended in a nonconducting cylindrical pore is theoretically analyzed and a micromotor is proposed that utilizes the cylinder rotation. The cylinder velocities are analytically obtained in the Dirichlet and the Neumann boundary conditions of the electric field on the cylindrical pore. The results show that the cylinder not only translates but also rotates when it is eccentric with respect to the cylindrical pore. The influences of a number of parameters on the cylinder velocities are characterized in detail. The cylinder trajectories show that the cylinder approaches and becomes stationary at certain positions within the cylindrical pore. The proposed micromotor is capable of working under a heavy load with a high rotational velocity when the eccentricity is large and the applied electric field is strong.

  8. Determination of elastic anisotropy of rocks from P- and S-wave velocities: numerical modelling and lab measurements

    Science.gov (United States)

    Svitek, Tomáš; Vavryčuk, Václav; Lokajíček, Tomáš; Petružálek, Matěj

    2014-12-01

    The most common type of waves used for probing anisotropy of rocks in laboratory is the direct P wave. Information potential of the measured P-wave velocity, however, is limited. In rocks displaying weak triclinic anisotropy, the P-wave velocity depends just on 15 linear combinations of 21 elastic parameters, called the weak-anisotropy parameters. In strong triclinic anisotropy, the P-wave velocity depends on the whole set of 21 elastic parameters, but inversion for six of them is ill-conditioned and these parameters are retrieved with a low accuracy. Therefore, in order to retrieve the complete elastic tensor accurately, velocities of S waves must also be measured and inverted. For this purpose, we developed a lab facility which allows the P- and S-wave ultrasonic sounding of spherical rock samples in 132 directions distributed regularly over the sphere. The velocities are measured using a pair of P-wave sensors with the transmitter and receiver polarized along the radial direction and using two pairs of S-wave sensors with the transmitter and receiver polarized tangentially to the spherical sample in mutually perpendicular directions. We present inversion methods of phase and ray velocities for elastic parameters describing general triclinic anisotropy. We demonstrate on synthetic tests that the inversion becomes more robust and stable if the S-wave velocities are included. This applies even to the case when the velocity of the S waves is measured in a limited number of directions and with a significantly lower accuracy than that of the P wave. Finally, we analyse velocities measured on a rock sample from the Outokumpu deep drill hole, Finland. We present complete sets of elastic parameters of the sample including the error analysis for several levels of confining pressure ranging from 0.1 to 70 MPa.

  9. P-wave and QT dispersion in patients with conversion disorder

    Directory of Open Access Journals (Sweden)

    Izci F

    2015-03-01

    Full Text Available Filiz Izci,1 Hilal Hocagil,2 Servet Izci,3 Vedat Izci,4 Merve Iris Koc,5 Rezzan Deniz Acar3 1Department of Psychiatry, Istanbul Bilim University, Sisli Florence Nightingale Hospital; 2Department of Emergency, Faculty of Medicine Hospital Zonguldak Bulent Ecevit University, Zonguldak, Turkey; 3Department of Cardiology, Kosuyolu High Specialization Training and Research Hospital, Istanbul, Turkey; 4Department of Emergency, Kartal Training and Research Hospital, Istanbul, Turkey; 5Department of Psychiatry, Erenköy Training and Research Hospital for Psychiatry, Istanbul, Turkey Objective: The aim of this study was to investigate QT dispersion (QTd, which is the noninvasive marker of ventricular arrhythmia and sudden cardiac death, and P-wave dispersion, which is the noninvasive marker of atrial arrhythmia, in patients with conversion disorder (CD.Patients and methods: A total of 60 patients with no known organic disease who were admitted to outpatient emergency clinic and were diagnosed with CD after psychiatric consultation were included in this study along with 60 healthy control subjects. Beck Anxiety Inventory and Beck Depression Scale were administered to patients and 12-lead electrocardiogram measurements were obtained. Pd and QTd were calculated by a single blinded cardiologist.Results: There was no statistically significant difference in terms of age, sex, education level, socioeconomic status, weight, height, and body mass index between CD patients and controls. Beck Anxiety Inventory scores (25.2±10.8 and 3.8±3.2, respectively, P<0.001 and Beck Depression Scale scores (11.24±6.15 and 6.58±5.69, respectively, P<0.01 were significantly higher in CD patients. P-wave dispersion measurements did not show any significant differences between conversion patients and control group (46±5.7 vs 44±5.5, respectively, P=0.156. Regarding QTc and QTd, there was a statistically significant increase in all intervals in conversion patients (416

  10. Magnetic manipulation of topological states in p-wave superconductors

    DEFF Research Database (Denmark)

    Mercaldo, Maria Teresa; Cuoco, Mario; Kotetes, Panagiotis

    2018-01-01

    Substantial experimental investigation has provided evidence for spin-triplet pairing in diverse classes of materials and in a variety of artificial heterostructures. One of the fundamental challenges in this framework is how to manipulate the topological behavior of p-wave superconductors (PSC...

  11. Automatic picking of direct P, S seismic phases and fault zone head waves

    Science.gov (United States)

    Ross, Z. E.; Ben-Zion, Y.

    2014-10-01

    We develop a set of algorithms for automatic detection and picking of direct P and S waves, as well as fault zone head waves (FZHW), generated by earthquakes on faults that separate different lithologies and recorded by local seismic networks. The S-wave picks are performed using polarization analysis and related filters to remove P-wave energy from the seismograms, and utilize STA/LTA and kurtosis detectors in tandem to lock on the phase arrival. The early portions of P waveforms are processed with STA/LTA, kurtosis and skewness detectors for possible first-arriving FZHW. Identification and picking of direct P and FZHW is performed by a multistage algorithm that accounts for basic characteristics (motion polarities, time difference, sharpness and amplitudes) of the two phases. The algorithm is shown to perform well on synthetic seismograms produced by a model with a velocity contrast across the fault, and observed data generated by earthquakes along the Parkfield section of the San Andreas fault and the Hayward fault. The developed techniques can be used for systematic processing of large seismic waveform data sets recorded near major faults.

  12. Constraining P-wave velocity variations in the upper mantle beneath Southeast Asia

    NARCIS (Netherlands)

    Li, Chang; Hilst, R.D. van der; Toksöz, M. Nafi

    2006-01-01

    We have produced a P-wave model of the upper mantle beneath Southeast (SE) Asia from reprocessed short period International Seismological Centre (ISC) P and pP data, short period P data of the Annual Bulletin of Chinese Earthquakes (ABCE), and long period PP-P data.We used 3D sensitivity kernels

  13. Genetic determinants of P wave duration and PR segment

    NARCIS (Netherlands)

    Verweij, Niek; Mateo Leach, Irene; van den Boogaard, Malou; van Veldhuisen, Dirk J.; Christoffels, Vincent M.; Hillege, Hans L.; van Gilst, Wiek H.; Barnett, Phil; de Boer, Rudolf A.; van der Harst, Pim

    2014-01-01

    The PR interval on the ECG reflects atrial depolarization and atrioventricular nodal delay which can be partially differentiated by P wave duration and PR segment, respectively. Genome-wide association studies have identified several genetic loci for PR interval, but it remains to be determined

  14. Genetic Determinants of P Wave Duration and PR Segment

    NARCIS (Netherlands)

    Verweij, Niek; Mateo Leach, Irene; van den Boogaard, Malou; van Veldhuisen, Dirk J.; Christoffels, Vincent M.; Hillege, Hans L.; van Gilst, Wiek H.; Barnett, Phil; de Boer, Rudolf A.; van der Harst, Pim

    Background-The PR interval on the ECG reflects atrial depolarization and atrioventricular nodal delay which can be partially differentiated by P wave duration and PR segment, respectively. Genome-wide association studies have identified several genetic loci for PR interval, but it remains to be

  15. Determination of the S-wave scattering shape parameter P from the zero-energy wave function

    International Nuclear Information System (INIS)

    Kermode, M.W.; van Dijk, W.

    1990-01-01

    We show that for S-wave scattering at an energy k 2 by a local potential which supports no more than one bound state, the shape parameter P and coefficients of higher powers of k 2 in the effective range expansion function cotδ=-1/a+1/2 r 0 k 2 -Pr 0 3 k 3 +Qr 0 5 k 6 +..., where δ is the phase shift, may be obtained from the zero-energy wave function, u 0 (r). Thus δ itself may be determined from u 0 . We show that Pr 0 3 =∫ 0 R [β(r)u 0 2 (r)-bar β(r)bar u 0 2 (r)]dr, where r 0 is the effective range, β(r) is determined from an integral involving the wave function, and bar β(r) is a simple function of r which involves the scattering length and effective range

  16. Square vortex lattice in p-wave superconductors

    International Nuclear Information System (INIS)

    Shiraishi, J.

    1999-01-01

    Making use of the Ginzburg Landau equation for isotropic p-wave superconductors, we construct the single vortex solution in part analytically. The fourfold symmetry breaking term arising from the tetragonal symmetry distortion of the Fermi surface is crucial, since this term indicates a fourfold distortion of the vortex core somewhat similar to the one found in d-wave superconductors. This fourfold distortion of the vortex core in turn favors the square vortex lattice as observed recently by small angle neutron scattering (SANS) experiment from Sr 2 RuO 4 . We find that the hexagonal vortex lattice at H = H c1 transforms into the square one for H = H cr = 0.26 H c2 . On the other hand the SANS data does not reveal such transition. The square vortex covers everywhere studied by the SANS implying H cr is very close to H c1 . Therefore some improvement in the present model is certainly desirable. (orig.)

  17. Selective detection and recovery of gold at tannin-immobilized non-conducting electrode.

    Science.gov (United States)

    Banu, Khaleda; Shimura, Takayoshi; Sadeghi, Saman

    2015-01-01

    A tannin-immobilized glassy carbon electrode (TIGC) was prepared via electrochemical oxidation of the naturally occurring polyphenolic mimosa tannin, which generated a non-conducting polymeric film (NCPF) on the electrode surface. The fouling of the electrode surface by the electropolymerized film was evaluated by monitoring the electrode response of ferricyanide ions as a redox marker. The NCPF was permselective to HAuCl4, and the electrochemical reduction of HAuCl4 to metallic gold at the TIGC electrode was evaluated by recording the reduction current during cyclic voltammetry measurement. In the mixed electrolyte containing HAuCl4 along with FeCl3 and/or CuCl2, the NCPF remained selective toward the electrochemical reduction of HAuCl4 into the metallic state. The chemical reduction of HAuCl4 into metallic gold was also observed when the NCPF was inserted into an acidic gold solution overnight. The adsorption capacity of Au(III) on tannin-immobilized carbon fiber was 29±1.45 mg g(-1) at 60°C. In the presence of excess Cu(II) and Fe(III), tannin-immobilized NCPF proved to be an excellent candidate for the selective detection and recovery of gold through both electrochemical and chemical processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Analytical solution for the transient wave propagation of a buried cylindrical P-wave line source in a semi-infinite elastic medium with a fluid surface layer

    Science.gov (United States)

    Shan, Zhendong; Ling, Daosheng

    2018-02-01

    This article develops an analytical solution for the transient wave propagation of a cylindrical P-wave line source in a semi-infinite elastic solid with a fluid layer. The analytical solution is presented in a simple closed form in which each term represents a transient physical wave. The Scholte equation is derived, through which the Scholte wave velocity can be determined. The Scholte wave is the wave that propagates along the interface between the fluid and solid. To develop the analytical solution, the wave fields in the fluid and solid are defined, their analytical solutions in the Laplace domain are derived using the boundary and interface conditions, and the solutions are then decomposed into series form according to the power series expansion method. Each item of the series solution has a clear physical meaning and represents a transient wave path. Finally, by applying Cagniard's method and the convolution theorem, the analytical solutions are transformed into the time domain. Numerical examples are provided to illustrate some interesting features in the fluid layer, the interface and the semi-infinite solid. When the P-wave velocity in the fluid is higher than that in the solid, two head waves in the solid, one head wave in the fluid and a Scholte wave at the interface are observed for the cylindrical P-wave line source.

  19. Interactive Micromanipulation of Picking and Placement of Nonconductive Microsphere in Scanning Electron Microscope

    Directory of Open Access Journals (Sweden)

    Ning Cao

    2017-08-01

    Full Text Available In this paper, classified theoretical models, consisting of contact with and placement of microsphere and picking operations, are simplified and established to depict the interactive behaviors of external and internal forces in pushing manipulations, respectively. Sliding and/or rolling cases, resulting in the acceleration of micromanipulations, are discussed in detail. Effective contact detection is achieved by combining alterations of light-shadow and relative movement displacement between the tip-sphere. Picking operations are investigated by typical interactive positions and different end tilt angles. Placements are realized by adjusting the proper end tilt angles. These were separately conducted to explore the interactive operations of nonconductive glass microspheres in a scanning electron microscope. The experimental results demonstrate that the proposed contact detection method can efficiently protect the end-tip from damage, regardless of operator skills in initial positioning operations. E-beam irradiation onto different interactive positions with end tilt angles can be utilized to pick up microspheres without bending the end-tip. In addition, the results of releasing deviations away from the pre-setting point were utilized to verify the effectiveness of the placement tilt angles.

  20. P wave analysis indices in young healthy men: data from the digital electrocardiographic study in Hellenic Air Force Servicemen (DEHAS).

    Science.gov (United States)

    Gialafos, Elias J; Dilaveris, Polychronis E; Synetos, Andreas G; Tsolakidis, George F; Papaioannou, Theodoros G; Andrikopoulos, George K; Richter, Dimitris J; Triposkiadis, Filippos; Gialafos, John E

    2003-01-01

    P wave analysis from the 12-lead ECG is a recent contribution of noninvasive electrocardiology. P wave analysis indices (maximum and minimum P wave duration, P wave dispersion [Pdis = Pmax-Pmin], adjusted P wave dispersion [APdis = Pdis/square root of measured leads], summated P wave duration [Psum], standard deviation of P wave duration [Psd], mean P wave duration [Pmean]) can predict atrial arrhythmias. However, the definitions of all these indices are based on few studies. The aim of this analysis was to define normal values of these indices and the examine possible associations between P wave indices and clinical variables. The study included 1,353 healthy men, 24 +/- 3 years of age, who answered a questionnaire and underwent a detailed physical examination and a digitized 12-lead surface ECG. All P wave indices were analyzed by two independent investigators. Mean values of the ECG indices were: Pmax: 96 +/- 11 ms, Pmin: 57 +/- 9 ms, Pdis: 38 +/- 10 ms, Psum: 924 +/- 96 ms, Psd: 12 +/- 3, APdis: 11 +/- 3 ms, and Pmean: 77 +/- 8 ms. Age was significantly related with Pmax (r = 0.277, P < 0.01), Pmin (r = 0.255, P < 0.001), Psum (r = 0.074, P < 0.01), and Pmean (r = 0.074, P < 0.01). All ECG indices were significantly associated with the R-R interval, and among each other. This study defined normal indices of wave duration and correlations among them. These markers may play an important predictive role in patients with atrial conduction abnormalities.

  1. TRACING p -MODE WAVES FROM THE PHOTOSPHERE TO THE CORONA IN ACTIVE REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Junwei; Chen, Ruizhu [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085 (United States); Felipe, Tobías; Khomenko, Elena [Instituto de Astrofísica de Canarias, E-38025 La Laguna, Tenerife (Spain)

    2016-10-10

    Atmosphere above sunspots is abundant with different types of waves. Among these waves are running penumbral waves in the chromosphere, quasi-periodic oscillations in the lower coronal loops, and recently reported running waves in sunspots’ photosphere, all of which were interpreted as magnetoacoustic waves by some authors. Are these waves in different atmospheric layers related to each other, what is the nature of these waves, and where are the ultimate sources of these waves? Applying a time–distance helioseismic analysis over a suite of multi-wavelength observations above a sunspot, we demonstrate that the helioseismic p -mode waves are able to channel up from the photosphere through the chromosphere and transition region into the corona, and that the magnetoacoustic waves observed in different atmospheric layers are a same wave originating from the photosphere but exhibiting differently under different physical conditions. We also show waves of different frequencies travel along different paths, which can be used to derive the physical properties of the atmosphere above sunspots. Our numerical simulation of traveling of waves from a subphotospheric source qualitatively resembles the observed properties of the waves and offers an interpretation of the shapes of the wavefronts above the photosphere.

  2. Hybrid Theory of P-Wave Electron-Hydrogen Elastic Scattering

    Science.gov (United States)

    Bhatia, Anand

    2012-01-01

    We report on a study of electron-hydrogen scattering, using a combination of a modified method of polarized orbitals and the optical potential formalism. The calculation is restricted to P waves in the elastic region, where the correlation functions are of Hylleraas type. It is found that the phase shifts are not significantly affected by the modification of the target function by a method similar to the method of polarized orbitals and they are close to the phase shifts calculated earlier by Bhatia. This indicates that the correlation function is general enough to include the target distortion (polarization) in the presence of the incident electron. The important fact is that in the present calculation, to obtain similar results only 35-term correlation function is needed in the wave function compared to the 220-term wave function required in the above-mentioned previous calculation. Results for the phase shifts, obtained in the present hybrid formalism, are rigorous lower bounds to the exact phase shifts.

  3. Dynamic Response of Underground Circular Lining Tunnels Subjected to Incident P Waves

    Directory of Open Access Journals (Sweden)

    Hua Xu

    2014-01-01

    Full Text Available Dynamic stress concentration in tunnels and underground structures during earthquakes often leads to serious structural damage. A series solution of wave equation for dynamic response of underground circular lining tunnels subjected to incident plane P waves is presented by Fourier-Bessel series expansion method in this paper. The deformation and stress fields of the whole medium of surrounding rock and tunnel were obtained by solving the equations of seismic wave propagation in an elastic half space. Based on the assumption of a large circular arc, a series of solutions for dynamic stress were deduced by using a wave function expansion approach for a circular lining tunnel in an elastic half space rock medium subjected to incident plane P waves. Then, the dynamic response of the circular lining tunnel was obtained by solving a series of algebraic equations after imposing its boundary conditions for displacement and stress of the circular lining tunnel. The effects of different factors on circular lining rock tunnels, including incident frequency, incident angle, buried depth, rock conditions, and lining stiffness, were derived and several application examples are presented. The results may provide a good reference for studies on the dynamic response and aseismic design of tunnels and underground structures.

  4. Waveform inversion for orthorhombic anisotropy with P-waves: feasibility & resolution

    KAUST Repository

    Kazei, Vladimir; Alkhalifah, Tariq Ali

    2018-01-01

    Various parameterizations have been suggested to simplify inversions of first arrivals, or Pwaves, in orthorhombic anisotropic media, but the number and type of retrievable parameters have not been decisively determined. We show that only six

  5. Fermionic spectral functions in backreacting p-wave superconductors at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Giordano, G.L.; Grandi, N.E.; Lugo, A.R. [Instituto de Física de La Plata - CONICET & Departamento de Física - UNLP,C.C. 67, 1900 La Plata (Argentina)

    2017-04-14

    We investigate the spectral function of fermions in a p-wave superconducting state, at finite both temperature and gravitational coupling, using the AdS/CFT correspondence and extending previous research. We found that, for any coupling below a critical value, the system behaves as its zero temperature limit. By increasing the coupling, the “peak-dip-hump” structure that characterizes the spectral function at fixed momenta disappears. In the region where the normal/superconductor phase transition is first order, the presence of a non-zero order parameter is reflected in the absence of rotational symmetry in the fermionic spectral function at the critical temperature.

  6. Finite nuclear size and Lamb shift of p-wave atomic states

    International Nuclear Information System (INIS)

    Milstein, A.I.; Sushkov, O.P.; Terekhov, I.S.

    2003-01-01

    We consider corrections to the Lamb shift of the p-wave atomic states due to the finite nuclear size (FNS). In other words, these are radiative corrections to the atomic isotope shift related to the FNS. It is shown that the structure of the corrections is qualitatively different to that for the s-wave states. The perturbation theory expansion for the relative correction for a p 1/2 state starts with a α ln(1/Zα) term, while for the s 1/2 states it starts with a Zα 2 term. Here, α is the fine-structure constant and Z is the nuclear charge. In the present work, we calculate the α terms for that 2p states, the result for the 2p 1/2 state reads (8α/9π){ln[1/(Zα) 2 ]+0.710}. Even more interesting are the p 3/2 states. In this case the 'correction' is several orders of magnitude larger than the 'leading' FNS shift. However, absolute values of energy shifts related to these corrections are very small

  7. Modeling the effects of electrical and non-electrical parameters on the material removal and surface integrity in case of µEDM of a non-conductive ceramic material using a combined fuzzy-AOM approach

    DEFF Research Database (Denmark)

    Puthumana, Govindan

    2016-01-01

    Micro-EDM is a non-contact process based on the thermoelectric energy between a tool electrode and a workpiece. In μEDM process, the mechanism of material removal is melting and evaporation. The thermal energy in the discharge plasma helps remove material from the workpiece, at the same time...... and surface integrity for a non-conductive ceramic material. The fuzzy logic modeling system is employed for predicting the μEDM process responses. The trends in the material removal rate and hardness values with the chosen electrical and non-electrical parameter for the model and obtained using AOM approach...... are compared. The average deviation between the model predictions and the results obtained using AOM plots is less than 10%. The material removal rate (MRR) decreases linearly with voltage, indicating a difference in material removal mechanism in the μEDM of non-conductive materials....

  8. Wave refraction and backward magnon-plasmon polaritons in left-handed antiferromagnet/semiconductor superlattices

    International Nuclear Information System (INIS)

    Tarkhanyan, R.H.; Niarchos, D.G.

    2007-01-01

    Characteristics of the bulk electromagnetic waves in teraHertz frequency region are examined in a left-handed superlattice (SL) which consists of alternating layers of nonmagnetic semiconductor and nonconducting antiferromagnetic materials. General problem on the sign of the refractive index for anisotropic media is considered. It is shown that the phase refraction index is always positive while the group refractive index can be negative when some general conditions are fulfilled. Effective permittivity and permeability tensors of the SL are derived for perpendicular and parallel orientation of the magnetic anisotropy axis with respect to the plane of the layers. Problem of anomalous refraction for transverse electric and transverse magnetic-type polarized waves is examined in such media. Analytical expressions for both the phase and group refractive indices are obtained for various propagated modes. It is shown that, in general, three different types of the refracted waves with different relative orientation of the phase and group velocity vectors are possible in left-handed media. Unusual peculiarities of the backward modes corresponding to the coupled magnon-plasmon polaritons are considered. It is shown, in particular, that the number of the backward modes depends on the free charge carrier's density in semiconductor layers, variation of which allows to create different frequency regions for the wave propagation

  9. Design and modeling of InP DHBT power amplifiers at millimeter-wave frequencies

    DEFF Research Database (Denmark)

    Yan, Lei; Johansen, Tom K.

    2012-01-01

    In this paper, the design and modeling of InP DHBT based millimeter-wave(mm-wave) power amplifiers is described. This includes the modeling of InP DHBT devices and layout parasitics. An EM-circuit co-simulation approach is described to allow all parasitics to be modeled for accurate circuit...... demonstrates a power gain of 4.5dB with a saturated output power of 14.2dBm at 69.2GHz. © 2012 European Microwave Assoc....

  10. Can P wave wavelet analysis predict atrial fibrillation after coronary artery bypass grafting?

    Science.gov (United States)

    Vassilikos, Vassilios; Dakos, George; Chouvarda, Ioanna; Karagounis, Labros; Karvounis, Haralambos; Maglaveras, Nikolaos; Mochlas, Sotirios; Spanos, Panagiotis; Louridas, George

    2003-01-01

    The purpose of this study was the evaluation of Morlet wavelet analysis of the P wave as a means of predicting the development of atrial fibrillation (AF) in patients who undergo coronary artery bypass grafting (CABG). The P wave was analyzed using the Morlet wavelet in 50 patients who underwent successful CABG. Group A consisted of 17 patients, 12 men and 5 women, of mean age 66.9 +/- 5.9 years, who developed AF postoperatively. Group B consisted of 33 patients, 29 men and 4 women, mean age 62.4 +/- 7.8 years, who remained arrhythmid-free. Using custom-designed software, P wave duration and wavelet parameters expressing the mean and maximum energy of the P wave were calculated from 3-channel digital recordings derived from orthogonal ECG leads (X, Y, and Z), and the vector magnitude (VM) was determined in each of 3 frequency bands (200-160 Hz, 150-100 Hz and 90-50 Hz). Univariate logistic-regression analysis identified a history of hypertension, the mean and maximum energies in all frequency bands along the Z axis, the mean and maximum energies (expressed by the VM) in the 200-160 Hz frequency band, and the mean energy in the 150-100 Hz frequency band along the Y axis as predictors for post-CABG AF. Multivariate analysis identified hypertension, ejection fraction, and the maximum energies in the 90-50 Hz frequency band along the Z and composite-vector axes as independent predictors. This multivariate model had a sensitivity of 91% and a specificity of 65%. We conclude that the Morlet wavelet analysis of the P wave is a very sensitive method of identifying patients who are likely to develop AF after CABG. The occurrence of post-CABG AF can be explained by a different activation pattern along the Z axis.

  11. New results on the Roper resonance and the P{sub 11} partial wave

    Energy Technology Data Exchange (ETDEWEB)

    Sarantsev, A.V. [Helmholtz-Institut fuer Strahlen- und Kernphysik der Universitaet Bonn (Germany); Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Fuchs, M. [Helmholtz-Institut fuer Strahlen- und Kernphysik der Universitaet Bonn (Germany); Kotulla, M. [Physikalisches Institut, Universitaet Basel (Switzerland); II. Physikalisches Institut, Universitaet Giessen (Germany); Thoma, U. [Helmholtz-Institut fuer Strahlen- und Kernphysik der Universitaet Bonn (Germany); II. Physikalisches Institut, Universitaet Giessen (Germany); Ahrens, J. [Institut fuer Kernphysik, Universitaet Mainz (Germany); Annand, J.R.M. [Department of Physics and Astronomy, University of Glasgow (United Kingdom); Anisovich, A.V. [Helmholtz-Institut fuer Strahlen- und Kernphysik der Universitaet Bonn (Germany); Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Anton, G. [Physikalisches Institut, Universitaet Erlangen (Germany); Bantes, R. [Physikalisches Institut, Universitaet Bonn (Germany); Bartholomy, O. [Helmholtz-Institut fuer Strahlen- und Kernphysik der Universitaet Bonn (Germany); Beck, R. [Helmholtz-Institut fuer Strahlen- und Kernphysik der Universitaet Bonn (Germany); Institut fuer Kernphysik, Universitaet Mainz (Germany); Beloglazov, Yu. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Castelijns, R. [KVI, Groningen (Netherlands); Crede, V. [Helmholtz-Institut fuer Strahlen- und Kernphysik der Universitaet Bonn (Germany); Department of Physics, Florida State University (United States); Ehmanns, A.; Ernst, J.; Fabry, I. [Helmholtz-Institut fuer Strahlen- und Kernphysik der Universitaet Bonn (Germany); Flemming, H. [Physikalisches Institut, Universitaet Bochum (Germany); Foesel, A. [Physikalisches Institut, Universitaet Erlangen (Germany); Funke, Chr. [Helmholtz-Institut fuer Strahlen- und Kernphysik der Universitaet Bonn (Germany)] (and others)

    2008-01-17

    Properties of the Roper resonance, the first scalar excitation of the nucleon, are determined. Pole positions and residues of the P{sub 11} partial wave are studied in a combined analysis of pion- and photo-induced reactions. We find the Roper pole at {l_brace}(1371{+-}7)-i(92{+-}10){r_brace} MeV and an elasticity of 0.61{+-}0.03. The largest decay coupling is found for the N{sigma} ({sigma}=({pi}{pi})-S-wave). The analysis is based on new data on {gamma}p{yields}p{pi}{sup 0}{pi}{sup 0} for photons in the energy range from the two-pion threshold to 820 MeV from TAPS at Mainz and from 0.4 to 1.3 GeV from Crystal Barrel at Bonn and includes further data from other experiments. The partial wave analysis excludes the possibility that the Roper resonance is split into two states with different partial decay widths.

  12. Increased Risk of New-Onset Hypertension After Shock Wave Lithotripsy in Urolithiasis: A Nationwide Cohort Study.

    Science.gov (United States)

    Huang, Shi-Wei; Tsai, Chung-You; Wang, Jui; Pu, Yeong-Shiau; Chen, Pei-Chun; Huang, Chao-Yuan; Chien, Kuo-Liong

    2017-10-01

    Although shock wave lithotripsy is minimally invasive, earlier studies argued that it may increase patients' subsequent risk of hypertension and diabetes mellitus. This study evaluated the association between shock wave lithotripsy and new-onset hypertension or diabetes mellitus. The Taiwanese National Health Insurance Research Database was used to identify 20 219 patients aged 18 to 65 years who underwent the first stone surgical treatment (shock wave lithotripsy or ureterorenoscopic lithotripsy) between January 1999 and December 2011. A Cox proportional model was applied to evaluate associations. Time-varying Cox models were applied to evaluate the association between the number of shock wave lithotripsy sessions and the incidence of hypertension or diabetes mellitus. After a median follow-up of 74.9 and 82.6 months, 2028 and 688 patients developed hypertension in the shock wave lithotripsy and ureterorenoscopic lithotripsy groups, respectively. Patients who underwent shock wave lithotripsy had a higher probability of developing hypertension than patients who underwent ureterorenoscopic lithotripsy, with a hazard ratio of 1.20 (95% confidence interval, 1.10-1.31) after adjusting for covariates. The risk increased as the number of shock wave lithotripsy sessions increased. However, the diabetes mellitus risk was similar in the shock wave lithotripsy and ureterorenoscopic lithotripsy groups. Furthermore, the hazard ratio did not increase as the number of shock wave lithotripsy sessions increased. Shock wave lithotripsy consistently increased the incidence of hypertension on long-term follow-up. Therefore, alternatives to urolithiasis treatment (eg, endoscopic surgery or medical expulsion therapy) could avoid the hypertension risk. Furthermore, avoiding multiple sessions of shock wave lithotripsy could also evade the hypertension risk. © 2017 American Heart Association, Inc.

  13. Non-overlapped P- and S-wave Poynting vectors and its solution on Grid Method

    KAUST Repository

    Lu, Yong Ming; Liu, Qiancheng

    2017-01-01

    Poynting vector represents the local directional energy flux density of seismic waves in geophysics. It is widely used in elastic reverse time migration (RTM) to analyze source illumination, suppress low-wavenumber noise, correct for image polarity and extract angle-domain common imaging gather (ADCIG). However, the P and S waves are mixed together during wavefield propagation such that the P and S energy fluxes are not clean everywhere, especially at the overlapped points. In this paper, we use a modified elastic wave equation in which the P and S vector wavefields are naturally separated. Then, we develop an efficient method to evaluate the separable P and S poynting vectors, respectively, based on the view that the group velocity and phase velocity have the same direction in isotropic elastic media. We furthermore formulate our method using an unstructured mesh based modeling method named the grid method. Finally, we verify our method using two numerical examples.

  14. Non-overlapped P- and S-wave Poynting vectors and its solution on Grid Method

    KAUST Repository

    Lu, Yong Ming

    2017-12-12

    Poynting vector represents the local directional energy flux density of seismic waves in geophysics. It is widely used in elastic reverse time migration (RTM) to analyze source illumination, suppress low-wavenumber noise, correct for image polarity and extract angle-domain common imaging gather (ADCIG). However, the P and S waves are mixed together during wavefield propagation such that the P and S energy fluxes are not clean everywhere, especially at the overlapped points. In this paper, we use a modified elastic wave equation in which the P and S vector wavefields are naturally separated. Then, we develop an efficient method to evaluate the separable P and S poynting vectors, respectively, based on the view that the group velocity and phase velocity have the same direction in isotropic elastic media. We furthermore formulate our method using an unstructured mesh based modeling method named the grid method. Finally, we verify our method using two numerical examples.

  15. Improvement of a picking algorithm real-time P-wave detection by kurtosis

    Science.gov (United States)

    Ishida, H.; Yamada, M.

    2016-12-01

    Earthquake early warning (EEW) requires fast and accurate P-wave detection. The current EEW system in Japan uses the STA/LTAalgorithm (Allen, 1978) to detect P-wave arrival.However, some stations did not trigger during the 2011 Great Tohoku Earthquake due to the emergent onset. In addition, accuracy of the P-wave detection is very important: on August 1, 2016, the EEW issued a false alarm with M9 in Tokyo region due to a thunder noise.To solve these problems, we use a P-wave detection method using kurtosis statistics. It detects the change of statistic distribution of the waveform amplitude. This method was recently developed (Saragiotis et al., 2002) and used for off-line analysis such as making seismic catalogs. To apply this method for EEW, we need to remove an acausal calculation and enable a real-time processing. Here, we propose a real-time P-wave detection method using kurtosis statistics with a noise filter.To avoid false triggering by a noise, we incorporated a simple filter to classify seismic signal and noise. Following Kong et al. (2016), we used the interquartilerange and zero cross rate for the classification. The interquartile range is an amplitude measure that is equal to the middle 50% of amplitude in a certain time window. The zero cross rate is a simple frequency measure that counts the number of times that the signal crosses baseline zero. A discriminant function including these measures was constructed by the linear discriminant analysis.To test this kurtosis method, we used strong motion records for 62 earthquakes between April, 2005 and July, 2015, which recorded the seismic intensity greater equal to 6 lower in the JMA intensity scale. The records with hypocentral distance picks. It shows that the median error is 0.13 sec and 0.035 sec for STA/LTA and kurtosis method. The kurtosis method tends to be more sensitive to small changes in amplitude.Our approach will contribute to improve the accuracy of source location determination of

  16. Strong CMB constraint on P-wave annihilating dark matter

    Directory of Open Access Journals (Sweden)

    Haipeng An

    2017-10-01

    Full Text Available We consider a dark sector consisting of dark matter that is a Dirac fermion and a scalar mediator. This model has been extensively studied in the past. If the scalar couples to the dark matter in a parity conserving manner then dark matter annihilation to two mediators is dominated by the P-wave channel and hence is suppressed at very low momentum. The indirect detection constraint from the anisotropy of the Cosmic Microwave Background is usually thought to be absent in the model because of this suppression. In this letter we show that dark matter annihilation via bound state formation occurs through the S-wave and hence there is a constraint on the parameter space of the model from the Cosmic Microwave Background.

  17. Electromagnetic wave absorption properties of NiCoP alloy nanoparticles decorated on reduced graphene oxide nanosheets

    International Nuclear Information System (INIS)

    Ye, Weichun; Fu, Jiajia; Wang, Qin; Wang, Chunming; Xue, Desheng

    2015-01-01

    NiCoP alloy nanoparticles supported on reduced graphene oxide (NiCoP/RGO) are synthesized by in situ co-reduction of Ni 2+ , Co 2+ and graphene oxide (GO) with sodium hypophosphite in a one-pot reaction. This synthesis route is simple and can be used for industrial preparation. The different molar ratios of Ni/Co can be obtained by changing the molar ratio of their salts in the reaction bath. The effect of annealing temperature on the crystal structure of NiCoP alloys has been further investigated. After 500 °C annealing, NiCoP alloys exhibit good crystallinity. The as-prepared NiCoP/RGO composites demonstrate high dielectric constant and magnetic loss in the frequency range of 2–18 GHz due to the conductive and ferromagnetic behavior. Also, their coercivity and magnetization strength are decreased from magnetic measurement with the increase of Ni content. As the molar ratio of Ni/Co is 3:1, the maximum value of the reflection loss reaches to −17.84 dB. Furthermore, the NiCoP/RGO composites have better corrosion resistance than traditional iron series magnetic nanoparticles. It is expected that the composites with the thin, light-weighted and broadband absorbing and good anti-corrosion properties will have a great potential for electromagnetic wave absorption applications. - Highlights: • NiCoP alloys supported on graphene were prepared via a co-reduction method. • The nanocomposites exhibited strong microwave wave absorption properties. • The microwave absorption properties enhanced with the increase of Ni content. • The nanocomposites showed good anti-corrosion property

  18. Electromagnetic wave absorption properties of NiCoP alloy nanoparticles decorated on reduced graphene oxide nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Weichun, E-mail: yewch@lzu.edu.cn [Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou 730000 (China); Fu, Jiajia; Wang, Qin; Wang, Chunming [Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Xue, Desheng, E-mail: xueds@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou 730000 (China)

    2015-12-01

    NiCoP alloy nanoparticles supported on reduced graphene oxide (NiCoP/RGO) are synthesized by in situ co-reduction of Ni{sup 2+}, Co{sup 2+} and graphene oxide (GO) with sodium hypophosphite in a one-pot reaction. This synthesis route is simple and can be used for industrial preparation. The different molar ratios of Ni/Co can be obtained by changing the molar ratio of their salts in the reaction bath. The effect of annealing temperature on the crystal structure of NiCoP alloys has been further investigated. After 500 °C annealing, NiCoP alloys exhibit good crystallinity. The as-prepared NiCoP/RGO composites demonstrate high dielectric constant and magnetic loss in the frequency range of 2–18 GHz due to the conductive and ferromagnetic behavior. Also, their coercivity and magnetization strength are decreased from magnetic measurement with the increase of Ni content. As the molar ratio of Ni/Co is 3:1, the maximum value of the reflection loss reaches to −17.84 dB. Furthermore, the NiCoP/RGO composites have better corrosion resistance than traditional iron series magnetic nanoparticles. It is expected that the composites with the thin, light-weighted and broadband absorbing and good anti-corrosion properties will have a great potential for electromagnetic wave absorption applications. - Highlights: • NiCoP alloys supported on graphene were prepared via a co-reduction method. • The nanocomposites exhibited strong microwave wave absorption properties. • The microwave absorption properties enhanced with the increase of Ni content. • The nanocomposites showed good anti-corrosion property.

  19. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design.

    Science.gov (United States)

    Tao, Xinyong; Wang, Jianguo; Liu, Chong; Wang, Haotian; Yao, Hongbin; Zheng, Guangyuan; Seh, Zhi Wei; Cai, Qiuxia; Li, Weiyang; Zhou, Guangmin; Zu, Chenxi; Cui, Yi

    2016-04-05

    Lithium-sulfur batteries have attracted attention due to their six-fold specific energy compared with conventional lithium-ion batteries. Dissolution of lithium polysulfides, volume expansion of sulfur and uncontrollable deposition of lithium sulfide are three of the main challenges for this technology. State-of-the-art sulfur cathodes based on metal-oxide nanostructures can suppress the shuttle-effect and enable controlled lithium sulfide deposition. However, a clear mechanistic understanding and corresponding selection criteria for the oxides are still lacking. Herein, various nonconductive metal-oxide nanoparticle-decorated carbon flakes are synthesized via a facile biotemplating method. The cathodes based on magnesium oxide, cerium oxide and lanthanum oxide show enhanced cycling performance. Adsorption experiments and theoretical calculations reveal that polysulfide capture by the oxides is via monolayered chemisorption. Moreover, we show that better surface diffusion leads to higher deposition efficiency of sulfide species on electrodes. Hence, oxide selection is proposed to balance optimization between sulfide-adsorption and diffusion on the oxides.

  20. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design

    Science.gov (United States)

    Tao, Xinyong; Wang, Jianguo; Liu, Chong; Wang, Haotian; Yao, Hongbin; Zheng, Guangyuan; Seh, Zhi Wei; Cai, Qiuxia; Li, Weiyang; Zhou, Guangmin; Zu, Chenxi; Cui, Yi

    2016-01-01

    Lithium–sulfur batteries have attracted attention due to their six-fold specific energy compared with conventional lithium-ion batteries. Dissolution of lithium polysulfides, volume expansion of sulfur and uncontrollable deposition of lithium sulfide are three of the main challenges for this technology. State-of-the-art sulfur cathodes based on metal-oxide nanostructures can suppress the shuttle-effect and enable controlled lithium sulfide deposition. However, a clear mechanistic understanding and corresponding selection criteria for the oxides are still lacking. Herein, various nonconductive metal-oxide nanoparticle-decorated carbon flakes are synthesized via a facile biotemplating method. The cathodes based on magnesium oxide, cerium oxide and lanthanum oxide show enhanced cycling performance. Adsorption experiments and theoretical calculations reveal that polysulfide capture by the oxides is via monolayered chemisorption. Moreover, we show that better surface diffusion leads to higher deposition efficiency of sulfide species on electrodes. Hence, oxide selection is proposed to balance optimization between sulfide-adsorption and diffusion on the oxides. PMID:27046216

  1. P-wave velocity test for assessment of geotechnical properties of ...

    Indian Academy of Sciences (India)

    ... modulus of elasticity, water absorption and effective porosity, slake durability index, saturated and dry density of rock using -wave velocity (p). For this purpose geotechnical properties of nine different rock types were determined in the laboratory and their mineralogical composition examined using thin section analysis.

  2. Preliminary result of P-wave speed tomography beneath North Sumatera region

    Energy Technology Data Exchange (ETDEWEB)

    Jatnika, Jajat [Earth Science Study Program, Institute of Technology Bandung (Indonesia); Indonesian Meteorological, Climatological and Geophysical Agency (MCGA), Jakarta (Indonesia); Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id [Global Geophysical Research Group, Faculty of Mining and Petroleum Engineering, Insitute of Technology Bandung (Indonesia); Wandono [Indonesian Meteorological, Climatological and Geophysical Agency (MCGA), Jakarta (Indonesia)

    2015-04-24

    The structure of P-wave speed beneath the North Sumatra region was determined using P-wave arrival times compiled by MCGA from time periods of January 2009 to December 2012 combining with PASSCAL data for February to May 1995. In total, there are 2,246 local earthquake events with 10,666 P-wave phases from 63 stations seismic around the study area. Ray tracing to estimate travel time from source to receiver in this study by applying pseudo-bending method while the damped LSQR method was used for the tomographic inversion. Based on assessment of ray coverage, earthquakes and stations distribution, horizontal grid nodes was set up of 30×30 km2 for inside the study area and 80×80 km2 for outside the study area. The tomographic inversion results show low Vp anomaly beneath Toba caldera complex region and around the Sumatra Fault Zones (SFZ). These features are consistent with previous study. The low Vp anomaly beneath Toba caldera complex are observed around Mt. Pusuk Bukit at depths of 5 km down to 100 km. The interpretation is these anomalies may be associated with ascending hot materials from subduction processes at depths of 80 km down to 100 km. The obtained Vp structure from local tomography will give valuable information to enhance understanding of tectonic and volcanic in this study area.

  3. The offset-midpoint traveltime pyramid of P-waves in homogeneous orthorhombic media

    KAUST Repository

    Hao, Qi

    2016-07-18

    The offset-midpoint traveltime pyramid describes the diffraction traveltime of a point diffractor in homogeneous media. We have developed an analytic approximation for the P-wave offset-midpoint traveltime pyramid for homogeneous orthorhombic media. In this approximation, a perturbation method and the Shanks transform were implemented to derive the analytic expressions for the horizontal slowness components of P-waves in orthorhombic media. Numerical examples were shown to analyze the proposed traveltime pyramid formula and determined its accuracy and the application in calculating migration isochrones and reflection traveltime. The proposed offset-midpoint traveltime formula is useful for Kirchhoff prestack time migration and migration velocity analysis for orthorhombic media.

  4. The offset-midpoint traveltime pyramid of P-waves in homogeneous orthorhombic media

    KAUST Repository

    Hao, Qi; Stovas, Alexey; Alkhalifah, Tariq Ali

    2016-01-01

    The offset-midpoint traveltime pyramid describes the diffraction traveltime of a point diffractor in homogeneous media. We have developed an analytic approximation for the P-wave offset-midpoint traveltime pyramid for homogeneous orthorhombic media. In this approximation, a perturbation method and the Shanks transform were implemented to derive the analytic expressions for the horizontal slowness components of P-waves in orthorhombic media. Numerical examples were shown to analyze the proposed traveltime pyramid formula and determined its accuracy and the application in calculating migration isochrones and reflection traveltime. The proposed offset-midpoint traveltime formula is useful for Kirchhoff prestack time migration and migration velocity analysis for orthorhombic media.

  5. Spontaneous calcium waves in Bergman glia increase with age and hypoxia and may reduce tissue oxygen.

    Science.gov (United States)

    Mathiesen, Claus; Brazhe, Alexey; Thomsen, Kirsten; Lauritzen, Martin

    2013-02-01

    Glial calcium (Ca(2+)) waves constitute a means to spread signals between glial cells and to neighboring neurons and blood vessels. These waves occur spontaneously in Bergmann glia (BG) of the mouse cerebellar cortex in vivo. Here, we tested three hypotheses: (1) aging and reduced blood oxygen saturation alters wave activity; (2) glial Ca(2+) waves change cerebral oxygen metabolism; and (3) neuronal and glial wave activity is correlated. We used two-photon microscopy in the cerebellar cortexes of adult (8- to 15-week-old) and aging (48- to 80-week-old) ketamine-anesthetized mice after bolus loading with OGB-1/AM and SR101. We report that the occurrence of spontaneous waves is 20 times more frequent in the cerebellar cortex of aging as compared with adult mice, which correlated with a reduction in resting brain oxygen tension. In adult mice, spontaneous glial wave activity increased on reducing resting brain oxygen tension, and ATP-evoked glial waves reduced the tissue O(2) tension. Finally, although spontaneous Purkinje cell (PC) activity was not associated with increased glia wave activity, spontaneous glial waves did affect intracellular Ca(2+) activity in PCs. The increased wave activity during aging, as well as low resting brain oxygen tension, suggests a relationship between glial waves, brain energy homeostasis, and pathology.

  6. Relativistic corrections to the form factors of Bc into P-wave orbitally excited charmonium

    Science.gov (United States)

    Zhu, Ruilin

    2018-06-01

    We investigated the form factors of the Bc meson into P-wave orbitally excited charmonium using the nonrelativistic QCD effective theory. Through the analytic computation, the next-to-leading order relativistic corrections to the form factors were obtained, and the asymptotic expressions were studied in the infinite bottom quark mass limit. Employing the general form factors, we discussed the exclusive decays of the Bc meson into P-wave orbitally excited charmonium and a light meson. We found that the relativistic corrections lead to a large correction for the form factors, which makes the branching ratios of the decay channels B (Bc ± →χcJ (hc) +π± (K±)) larger. These results are useful for the phenomenological analysis of the Bc meson decays into P-wave charmonium, which shall be tested in the LHCb experiments.

  7. Attenuation of short-period P, PcP, ScP, and pP waves in the earth's mantle

    International Nuclear Information System (INIS)

    Bock, G.; Clements, J.R.

    1982-01-01

    The parameter t* (ratio of body wave travel time to the average quality factor Q) was estimated under various assumptions of the nature of the earthquake sources for short-period P, PcP, and ScP phases originating from earthquakes in the Fiji-Tonga region and recorded at the Warramunga Seismic Array at Tennant Creek (Northern Territory, Australia). Spectral ratios were calculated for the amplitudes of PcP to P and of pP to P. The data reveal a laterally varying Q structure in the Fiji-Tonga region. The high-Q lithosphere descending beneath the Tonga Island arc is overlain above 350 km depth by a wedgelike zone of high attenuation with an average Q/sub α/ between 120 and 200 at short periods. The upper mantle farther to the west of the Tonga island arc is less attenuating, with Q/sub α/, between 370 and 560. Q/sub α/ is about 500 in the upper mantle on the oceanic side of the subduction zone. The t* estimates of this study are much smaller than estimates from the free oscillation model SL8. This can be partly explained by regional variations of Q in the upper mantle. If no lateral Q variations occur in the lower mantle, a frequency-dependent Q can make the PcP and ScP observations consistent with model SL8. Adopting the absorption band model to describe the frequency dependence of Q, the parameter tau 2 , the cut-off period of the high-frequency end of the absorption band, was determined. For different source models with finite corner frequencies, the average tau 2 for the mantle is between 0.01 and 0.10 s (corresponding to frequencies between 16 and 1.6 Hz) as derived from the PcP data, and between 0.06 and 0.12 s (2.7 and 1.3 Hz), as derived from the ScP data

  8. Frequency-tunable terahertz wave generation via excitation of phonon-polaritons in GaP

    CERN Document Server

    Tanabé, T; Nishizawa, J I; Saitô, K; Kimura, T

    2003-01-01

    High-power, wide-frequency-tunable terahertz waves were generated based on difference-frequency generation in GaP crystals with small-angle noncollinear phase matching. The tunable frequency range was as wide as 0.5-7 THz, and the peak power remained high, near 100 mW, over most of the frequency region. The tuning properties were well described by the dispersion relationship for the phonon-polariton mode of GaP up to 6 THz. We measured the spectra of crystal polyethylene and crystal quartz with high resolution using this THz-wave source.

  9. Frequency-tunable terahertz wave generation via excitation of phonon-polaritons in GaP

    International Nuclear Information System (INIS)

    Tanabe, Tadao; Suto, Ken; Nishizawa, Jun-ichi; Saito, Kyosuke; Kimura, Tomoyuki

    2003-01-01

    High-power, wide-frequency-tunable terahertz waves were generated based on difference-frequency generation in GaP crystals with small-angle noncollinear phase matching. The tunable frequency range was as wide as 0.5-7 THz, and the peak power remained high, near 100 mW, over most of the frequency region. The tuning properties were well described by the dispersion relationship for the phonon-polariton mode of GaP up to 6 THz. We measured the spectra of crystal polyethylene and crystal quartz with high resolution using this THz-wave source

  10. Dynamics of skyrmions and edge states in the resistive regime of mesoscopic p-wave superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Fernández Becerra, V., E-mail: VictorLeonardo.FernandezBecerra@uantwerpen.be; Milošević, M.V., E-mail: milorad.milosevic@uantwerpen.be

    2017-02-15

    Highlights: • Voltage–current characterization of a mesoscopic p-wave superconducting sample. • Skyrmions and edge states are stabilized with an out-of-plane applied magnetic field. • In the resistive regime, moving skyrmions and the edge state behave distinctly different from the conventional kinematic vortices. - Abstract: In a mesoscopic sample of a chiral p-wave superconductor, novel states comprising skyrmions and edge states have been stabilized in out-of-plane applied magnetic field. Using the time-dependent Ginzburg–Landau equations we shed light on the dynamic response of such states to an external applied current. Three different regimes are obtained, namely, the superconducting (stationary), resistive (non-stationary) and normal regime, similarly to conventional s-wave superconductors. However, in the resistive regime and depending on the external current, we found that moving skyrmions and the edge state behave distinctly different from the conventional kinematic vortex, thereby providing new fingerprints for identification of p-wave superconductivity.

  11. Reflection of P and SV waves at the free surface of a monoclinic ...

    Indian Academy of Sciences (India)

    The propagation of plane waves in an anisotropic elastic medium possessing monoclinic symmetry is discussed. The expressions for the phase velocity of qP and qSV waves propagating in the plane of elastic symmetry are obtained in terms of the direction cosines of the propagation vector. It is shown that, in general, ...

  12. P-wave and QT dispersion in patients with conversion disorder.

    Science.gov (United States)

    Izci, Filiz; Hocagil, Hilal; Izci, Servet; Izci, Vedat; Koc, Merve Iris; Acar, Rezzan Deniz

    2015-01-01

    The aim of this study was to investigate QT dispersion (QTd), which is the noninvasive marker of ventricular arrhythmia and sudden cardiac death, and P-wave dispersion, which is the noninvasive marker of atrial arrhythmia, in patients with conversion disorder (CD). A total of 60 patients with no known organic disease who were admitted to outpatient emergency clinic and were diagnosed with CD after psychiatric consultation were included in this study along with 60 healthy control subjects. Beck Anxiety Inventory and Beck Depression Scale were administered to patients and 12-lead electrocardiogram measurements were obtained. Pd and QTd were calculated by a single blinded cardiologist. There was no statistically significant difference in terms of age, sex, education level, socioeconomic status, weight, height, and body mass index between CD patients and controls. Beck Anxiety Inventory scores (25.2±10.8 and 3.8±3.2, respectively, Pconversion patients and control group (46±5.7 vs 44±5.5, respectively, P=0.156). Regarding QTc and QTd, there was a statistically significant increase in all intervals in conversion patients (416±10 vs 398±12, Pdisorders was also observed in CD patients. QTc and QTd were significantly increased compared to the control group in patients with CD. These results suggest a possibility of increased risk of ventricular arrhythmia resulting from QTd in CD patients. Larger samples are needed to evaluate the clinical course and prognosis in terms of arrhythmia risk in CD patients.

  13. Wireless Data Transmission at Terahertz Carrier Waves Generated from a Hybrid InP-Polymer Dual Tunable DBR Laser Photonic Integrated Circuit.

    Science.gov (United States)

    Carpintero, Guillermo; Hisatake, Shintaro; de Felipe, David; Guzman, Robinson; Nagatsuma, Tadao; Keil, Norbert

    2018-02-14

    We report for the first time the successful wavelength stabilization of two hybrid integrated InP/Polymer DBR lasers through optical injection. The two InP/Polymer DBR lasers are integrated into a photonic integrated circuit, providing an ideal source for millimeter and Terahertz wave generation by optical heterodyne technique. These lasers offer the widest tuning range of the carrier wave demonstrated to date up into the Terahertz range, about 20 nm (2.5 THz) on a single photonic integrated circuit. We demonstrate the application of this source to generate a carrier wave at 330 GHz to establish a wireless data transmission link at a data rate up to 18 Gbit/s. Using a coherent detection scheme we increase the sensitivity by more than 10 dB over direct detection.

  14. The Effect of Raffaelea quercus-mongolicae Inoculations on the Formation of Non-conductive Sapwood of Quercus mongolica.

    Science.gov (United States)

    Torii, Masato; Matsuda, Yosuke; Seo, Sang Tae; Kim, Kyung Hee; Ito, Shin-Ichiro; Moon, Myung Jin; Kim, Seong Hwan; Yamada, Toshihiro

    2014-06-01

    In Korea, mass mortality of Quercus mongolica trees has become obvious since 2004. Raffaelea quercus-mongolicae is believed to be a causal fungus contributing the mortality. To evaluate the pathogenicity of the fungus to the trees, the fungus was multiple- and single-inoculated to the seedlings and twigs of the mature trees, respectively. In both the inoculations, the fungus was reisolated from more than 50% of inoculated twigs and seedlings. In the single inoculations, proportions of the transverse area of non-conductive sapwood at inoculation points and vertical lengths of discoloration expanded from the points were significantly different between the inoculation treatment and the control. In the multiple inoculations, no mortality was confirmed among the seedlings examined. These results showed that R. quercus-mongolicae can colonize sapwood, contribute to sapwood discoloration and disrupt sap flows around inoculation sites of Q. mongolica, although the pathogenicity of the fungus was not proven.

  15. Parity violation effects in the Josephson junction of a p-wave superconductor

    International Nuclear Information System (INIS)

    Belov, Nikolay A.; Harman, Zoltán

    2016-01-01

    The phenomenon of the parity violation due to weak interaction may be studied with superconducting systems. Previous research considered the case of conventional superconductors. We here theoretically investigate the parity violation effect in an unconventional p-wave ferromagnetic superconductor, and find that its magnitude can be increased by three orders of magnitude, as compared to results of earlier studies. For potential experimental observations, the superconductor UGe_2 is suggested, together with the description of a possible experimental scheme allowing one to effectively measure and control the phenomenon. Furthermore, we put forward a setup for a further significant enhancement of the signature of parity violation in the system considered.

  16. P-wave Feshbach resonances of ultracold 6Li

    International Nuclear Information System (INIS)

    Zhang, J.; Kempen, E.G.M. van; Bourdel, T.; Cubizolles, J.; Chevy, F.; Teichmann, M.; Tarruell, L.; Salomon, C.; Khaykovich, L.; Kokkelmans, S.J.J.M.F.

    2004-01-01

    We report the observation of three p-wave Feshbach resonances of 6 Li atoms in the lowest hyperfine state f=1/2. The positions of the resonances are in good agreement with theory. We study the lifetime of the cloud in the vicinity of the Feshbach resonances and show that, depending on the spin states, two- or three-body mechanisms are at play. In the case of dipolar losses, we observe a nontrivial temperature dependence that is well explained by a simple model

  17. Growth of electron plasma waves above and below f(p) in the electron foreshock

    Science.gov (United States)

    Cairns, Iver H.; Fung, Shing F.

    1988-01-01

    This paper investigates the conditions required for electron beams to drive wave growth significantly above and below the electron plasma frequency, f(p), by numerically solving the linear dispersion equation. It is shown that kinetic growth well below f(p) may occur over a broad range of frequencies due to the beam instability, when the electron beam is slow, dilute, and relatively cold. Alternatively, a cold or sharp feature at low parallel velocities in the distribution function may drive kinetic growth significantly below f(p). Kinetic broadband growth significantly above f(p) is explained in terms of faster warmer beams. A unified qualitative theory for the narrow-band and broad-band waves is proposed.

  18. Green‐wave surfing increases fat gain in a migratory ungulate

    Science.gov (United States)

    Middleton, Arthur D.; Merkle, Jerod A.; McWhirter, Douglas E.; Cook, John G.; Cook, Rachel C.; White, P.J.; Kauffman, Matthew J.

    2018-01-01

    Each spring, migratory herbivores around the world track or ‘surf’ green waves of newly emergent vegetation to distant summer or wet‐season ranges. This foraging tactic may help explain the great abundance of migratory herbivores on many seasonal landscapes. However, the underlying fitness benefits of this life‐history strategy remain poorly understood. A fundamental prediction of the green‐wave hypothesis is that migratory herbivores obtain fitness benefits from surfing waves of newly emergent vegetation more closely than their resident counterparts. Here we evaluate whether this behavior increases body‐fat levels – a critically important correlate of reproduction and survival for most ungulates – in elk Cervus elaphus of the Greater Yellowstone Ecosystem. Using satellite imagery and GPS tracking data, we found evidence that migrants (n = 23) indeed surfed the green wave, occupying sites 12.7 days closer to peak green‐up than residents (n = 16). Importantly, individual variation in surfing may help account for up to 6 kg of variation in autumn body‐fat levels. Our findings point to a pathway for anthropogenic changes to the green wave (e.g. climate change) or migrants’ ability to surf it (e.g. development) to impact migratory populations. To explore this possibility, we evaluated potential population‐level consequences of constrained surfing with a heuristic model. If green‐wave surfing deteriorates by 5–15 days from observed, our model predicts up to a 20% decrease in pregnancy rates, a 2.5% decrease in population growth, and a 30% decrease in abundance over 50 years. By linking green‐wave surfing to fitness and illustrating potential effects on population growth, our study provides new insights into the evolution of migratory behavior and the prospects for the persistence of migratory ungulate populations in a changing world.

  19. Pure Quasi-P-wave calculation in transversely isotropic media using a hybrid method

    KAUST Repository

    Wu, Zedong

    2018-04-12

    The acoustic approximation for anisotropic media is widely used in current industry imaging and inversion algorithms mainly because P-waves constitute the majority of the energy recorded in seismic exploration. The resulting acoustic formulas tend to be simpler, resulting in more efficient implementations, and depend on fewer medium parameters. However, conventional solutions of the acoustic wave equation with higher-order derivatives suffer from shear wave artifacts. Thus, we derive a new acoustic wave equation for wave propagation in transversely isotropic (TI) media, which is based on a partially separable approximation of the dispersion relation for TI media and free of shear wave artifacts. Even though our resulting equation is not a partial differential equation, it is still a linear equation. Thus, we propose to implement this equation efficiently by combining the finite difference approximation with spectral evaluation of the space-independent parts. The resulting algorithm provides solutions without the constrain of ε ≥ δ. Numerical tests demonstrate the effectiveness of the approach.

  20. Pure Quasi-P-wave calculation in transversely isotropic media using a hybrid method

    KAUST Repository

    Wu, Zedong; Liu, Hongwei; Alkhalifah, Tariq Ali

    2018-01-01

    The acoustic approximation for anisotropic media is widely used in current industry imaging and inversion algorithms mainly because P-waves constitute the majority of the energy recorded in seismic exploration. The resulting acoustic formulas tend to be simpler, resulting in more efficient implementations, and depend on fewer medium parameters. However, conventional solutions of the acoustic wave equation with higher-order derivatives suffer from shear wave artifacts. Thus, we derive a new acoustic wave equation for wave propagation in transversely isotropic (TI) media, which is based on a partially separable approximation of the dispersion relation for TI media and free of shear wave artifacts. Even though our resulting equation is not a partial differential equation, it is still a linear equation. Thus, we propose to implement this equation efficiently by combining the finite difference approximation with spectral evaluation of the space-independent parts. The resulting algorithm provides solutions without the constrain of ε ≥ δ. Numerical tests demonstrate the effectiveness of the approach.

  1. Constraining spatial variations in P-wave velocity in the upper mantle beneath SE Asia

    NARCIS (Netherlands)

    Li, C.; Hilst, R.D. van der; Toksoz, N.M.

    2006-01-01

    We have produced a P-wave model of the upper mantle beneath Southeast (SE) Asia from reprocessed short period International Seismological Centre (ISC) P and pP data, short period P data of the Annual Bulletin of Chinese Earthquakes (ABCE), and long period PP-P data.We used 3D sensitivity kernels

  2. TMS-induced cortical potentiation during wakefulness locally increases slow wave activity during sleep.

    Directory of Open Access Journals (Sweden)

    Reto Huber

    2007-03-01

    Full Text Available Sleep slow wave activity (SWA is thought to reflect sleep need, increasing in proportion to the length of prior wakefulness and decreasing during sleep. However, the process responsible for SWA regulation is not known. We showed recently that SWA increases locally after a learning task involving a circumscribed brain region, suggesting that SWA may reflect plastic changes triggered by learning.To test this hypothesis directly, we used transcranial magnetic stimulation (TMS in conjunction with high-density EEG in humans. We show that 5-Hz TMS applied to motor cortex induces a localized potentiation of TMS-evoked cortical EEG responses. We then show that, in the sleep episode following 5-Hz TMS, SWA increases markedly (+39.1+/-17.4%, p<0.01, n = 10. Electrode coregistration with magnetic resonance images localized the increase in SWA to the same premotor site as the maximum TMS-induced potentiation during wakefulness. Moreover, the magnitude of potentiation during wakefulness predicts the local increase in SWA during sleep.These results provide direct evidence for a link between plastic changes and the local regulation of sleep need.

  3. Design procedure for millimeter-wave InP DHBT stacked power amplifiers

    DEFF Research Database (Denmark)

    Squartecchia, Michele; Johansen, Tom Keinicke; Midili, Virginio

    2015-01-01

    The stacked-transistor concept for power amplifiers (PA) has been investigated in this work. Specifically, this architecture has been applied in the design of millimeter-wave monolithic microwave integrated circuits (MMICs) using indium phosphide (InP) double heterojunction bipolar transistors...

  4. Lamb waves increase sensitivity in nondestructive testing

    Science.gov (United States)

    Di Novi, R.

    1967-01-01

    Lamb waves improve sensitivity and resolution in the detection of small defects in thin plates and small diameter, thin-walled tubing. This improvement over shear waves applies to both longitudinal and transverse flaws in the specimens.

  5. Unconventional transport characteristics of p-wave superconducting junctions in Sr2RuO4-Ru eutectic system

    International Nuclear Information System (INIS)

    Kambara, H.; Kashiwaya, S.; Yaguchi, H.; Asano, Y.; Tanaka, Y.; Maeno, Y.

    2010-01-01

    We report on novel local transport characteristics of naturally formed p-wave superconducting junctions of Sr 2 RuO 4 -Ru eutectic system by using microfabrication technique. We observed quite anomalous voltage-current (differential resistance-current) characteristics for both I//ab and I//c directions, which are not seen in conventional Josephson junctions. The anomalous features suggest the internal degrees of freedom of the superconducting state, possibly due to chiral p-wave domain. The dc current acts as a driving force to move chiral p-wave domain walls and form larger critical current path to cause the anomalous hysteresis.

  6. Design of instantaneous liquid film thickness measurement system for conductive or non-conductive fluid with high viscosity

    Directory of Open Access Journals (Sweden)

    Yongxin Yu

    2017-06-01

    Full Text Available In the paper, a new capacitive sensor with a dielectric film coating was designed to measure the thickness of the liquid film on a flat surface. The measured medium can be conductive or non-conductive fluid with high viscosity such as silicone oil, syrup, CMC solution and melt. With the dielectric film coating, the defects caused by the humidity in a capacitor can be avoided completely. With a excitation frequency 0-20kHz, the static permittivity of capacitive sensor is obtained and stable when small thicknesses are monitored within the frequency of 0-3kHz. Based on the measurement principle, an experimental system was designed and verified including calibration and actual measurement for different liquid film thickness. Experimental results showed that the sensitivity, the resolution, repeatability and linear range of the capacitive sensor are satisfied to the liquid film thickness measurement. Finally, the capacitive measuring system was successfully applied to the water, silicone oil and syrup film thickness measurement.

  7. Signal-averaged P wave duration and the dimensions of the atria

    DEFF Research Database (Denmark)

    Dixen, Ulrik; Joens, Christian; Rasmussen, Bo V

    2004-01-01

    Delay of atrial electrical conduction measured as prolonged signal-averaged P wave duration (SAPWD) could be due to atrial enlargement. Here, we aimed to compare different atrial size parameters obtained from echocardiography with the SAPWD measured with a signal-averaged electrocardiogram (SAECG)....

  8. Holographic p-wave superconductor with disorder

    International Nuclear Information System (INIS)

    Areán, D.; Farahi, A.; Zayas, L.A. Pando; Landea, I. Salazar; Scardicchio, A.

    2015-01-01

    We implement the effects of disorder on a holographic p-wave superconductor by introducing a random chemical potential which defines the local energy of the charge carriers. Since there are various possibilities for the orientation of the vector order parameter, we explore the behavior of the condensate in the parallel and perpendicular directions to the introduced disorder. We clarify the nature of various branches representing competing solutions and construct the disordered phase diagram. We find that moderate disorder enhances superconductivity as determined by the value of the condensate. Though we mostly focus on uncorrelated noise, we also consider a disorder characterized by its spectral properties and study in detail its influence on the spectral properties of the condensate and charge density. We find fairly universal responses of the resulting power spectra characterized by linear functions of the disorder power spectrum.

  9. Separation of S-wave pseudoscalar and pseudovector amplitudes in {pi}{sup -}p{yields}{pi}{sup +}{pi}{sup -}n reaction on polarized target

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, R.; Lesniak, L.; Rybicki, K. [Institute of Nuclear Physics, Cracow (Poland)

    1996-06-01

    A new analysis of S-wave production amplitudes for the reaction {pi}{sup -}p{yields}{pi}{sup +}{pi}{sup -}n on a transversely polarized target is performed. It is based on the results obtained by CERN-Cracow-Munich collaboration in the {pi}{pi} energy range from 600 MeV to 1600 MeV at 17.2 GeV/c {pi}{sup -} momentum. Energy-independent separation of the S-wave pseudoscalar amplitude ({pi} exchange) from the pseudovector amplitude (a{sub 1} exchange) is carried out using assumptions much weaker than those in all previous analyses. We show that, especially around 1000 MeV and around 1500 MeV, the a{sub 1} exchange amplitude cannot be neglected. The scalar-isoscalar {pi}{pi} phase shift are calculated using fairly weak assumptions. Our results are consistent both with the so called ``up`` and the well-known ``down`` solution, provided we choose those in which the S-wave phases increase slower with the effective {pi}{pi} mass than the P-wave phases. Above 1420 MeV both sets of phase shifts increase with energy faster than in the experiment on an unpolarized target. This fact can be related to the presence of scalar resonance f{sub o}(1500). (author). 41 refs, 9 figs, 1 tab.

  10. Caffeine Increases Hippocampal Sharp Waves in Vitro.

    Science.gov (United States)

    Watanabe, Yusuke; Ikegaya, Yuji

    2017-01-01

    Caffeine promotes memory consolidation. Memory consolidation is thought to depend at least in part on hippocampal sharp waves (SWs). In the present study, we investigated the effect of bath-application of caffeine in spontaneously occurring SWs in mouse acute hippocampal slices. Caffeine induced an about 100% increase in the event frequency of SWs at concentrations of 60 and 200 µM. The effect of caffeine was reversible after washout of caffeine and was mimicked by an adenosine A 1 receptor antagonist, but not by an A 2A receptor antagonist. Caffeine increased SWs even in dentate-CA3 mini-slices without the CA2 regions, in which adenosine A 1 receptors are abundantly expressed in the hippocampus. Thus, caffeine facilitates SWs by inhibiting adenosine A 1 receptors in the hippocampal CA3 region or the dentate gyrus.

  11. The great 2006 heat wave over California and Nevada: Signal of an increasing trend

    Science.gov (United States)

    Gershunov, A.; Cayan, D.R.; Iacobellis, S.F.

    2009-01-01

    Most of the great California-Nevada heat waves can be classified into primarily daytime or nighttime events depending on whether atmospheric conditions are dry or humid. A rash of nighttime-accentuated events in the last decade was punctuated by an unusually intense case in July 2006, which was the largest heat wave on record (1948-2006). Generally, there is a positive trend in heat wave activity over the entire region that is expressed most strongly and clearly in nighttime rather than daytime temperature extremes. This trend in nighttime heat wave activity has intensified markedly since the 1980s and especially since 2000. The two most recent nighttime heat waves were also strongly expressed in extreme daytime temperatures. Circulations associated with great regional heat waves advect hot air into the region. This air can be dry or moist, depending on whether a moisture source is available, causing heat waves to be expressed preferentially during day or night. A remote moisture source centered within a marine region west of Baja California has been increasing in prominence because of gradual sea surface warming and a related increase in atmospheric humidity. Adding to the very strong synoptic dynamics during the 2006 heat wave were a prolonged stream of moisture from this southwestern source and, despite the heightened humidity, an environment in which afternoon convection was suppressed, keeping cloudiness low and daytime temperatures high. The relative contributions of these factors and possible relations to global warming are discussed. ?? 2009 American Meteorological Society.

  12. Local increase of anticyclonic wave activity over northern Eurasia under amplified Arctic warming: WAVE ACTIVITY RESPONSE TO ARCTIC MELTING

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Daokai [School of Atmospheric Sciences, Nanjing University, Nanjing China; Lu, Jian [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Sun, Lantao [CIRES, University of Colorado Boulder, Boulder Colorado USA; PSD, ESRL, NOAA, Boulder Colorado USA; Chen, Gang [Department of Earth and Atmospheric Sciences, UCLA, Los Angeles California USA; Zhang, Yaocun [School of Atmospheric Sciences, Nanjing University, Nanjing China

    2017-04-10

    In an attempt to resolve the controversy as to whether Arctic sea ice loss leads to more mid-latitude extremes, a metric of finite-amplitude wave activity is adopted to quantify the midlatitude wave activity and its change during the observed period of the drastic Arctic sea ice decline in both ERA Interim reanalysis data and a set of AMIP-type of atmospheric model experiments. Neither the experiment with the trend in the SST or that with the declining trend of Arctic sea ice can simulate the sizable midlatitude-wide reduction in the total wave activity (Ae) observed in the reanalysis, leaving its explanation to the atmospheric internal variability. On the other hand, both the diagnostics of the flux of the local wave activity and the model experiments lend evidence to a possible linkage between the sea ice loss near the Barents and Kara seas and the increasing trend of anticyclonic local wave activity over the northern part of the central Eurasia and the associated impacts on the frequency of temperature extremes.

  13. Fast Moment Magnitude Determination from P-wave Trains for Bucharest Rapid Early Warning System (BREWS)

    Science.gov (United States)

    Lizurek, Grzegorz; Marmureanu, Alexandru; Wiszniowski, Jan

    2017-03-01

    Bucharest, with a population of approximately 2 million people, has suffered damage from earthquakes in the Vrancea seismic zone, which is located about 170 km from Bucharest, at a depth of 80-200 km. Consequently, an earthquake early warning system (Bucharest Rapid earthquake Early Warning System or BREWS) was constructed to provide some warning about impending shaking from large earthquakes in the Vrancea zone. In order to provide quick estimates of magnitude, seismic moment was first determined from P-waves and then a moment magnitude was determined from the moment. However, this magnitude may not be consistent with previous estimates of magnitude from the Romanian Seismic Network. This paper introduces the algorithm using P-wave spectral levels and compares them with catalog estimates. The testing procedure used waveforms from about 90 events with catalog magnitudes from 3.5 to 5.4. Corrections to the P-wave determined magnitudes according to dominant intermediate depth events mechanism were tested for November 22, 2014, M5.6 and October 17, M6 events. The corrections worked well, but unveiled overestimation of the average magnitude result of about 0.2 magnitude unit in the case of shallow depth event ( H < 60 km). The P-wave spectral approach allows for the relatively fast estimates of magnitude for use in BREWS. The average correction taking into account the most common focal mechanism for radiation pattern coefficient may lead to overestimation of the magnitude for shallow events of about 0.2 magnitude unit. However, in case of events of intermediate depth of M6 the resulting M w is underestimated at about 0.1-0.2. We conclude that our P-wave spectral approach is sufficiently robust for the needs of BREWS for both shallow and intermediate depth events.

  14. A Maxwell-vector p-wave holographic superconductor in a particular background AdS black hole metric

    Directory of Open Access Journals (Sweden)

    Dan Wen

    2018-05-01

    Full Text Available We study the p-wave holographic superconductor for AdS black holes with planar event horizon topology for a particular Lovelock gravity, in which the action is characterized by a self-interacting scalar field nonminimally coupled to the gravity theory which is labeled by an integer k. As the Lovelock theory of gravity is the most general metric theory of gravity based on the fundamental assumptions of general relativity, it is a desirable theory to describe the higher dimensional spacetime geometry. The present work is devoted to studying the properties of the p-wave holographic superconductor by including a Maxwell field which nonminimally couples to a complex vector field in a higher dimensional background metric. In the probe limit, we find that the critical temperature decreases with the increase of the index k of the background black hole metric, which shows that a larger k makes it harder for the condensation to form. We also observe that the index k affects the conductivity and the gap frequency of the holographic superconductors.

  15. A Maxwell-vector p-wave holographic superconductor in a particular background AdS black hole metric

    Science.gov (United States)

    Wen, Dan; Yu, Hongwei; Pan, Qiyuan; Lin, Kai; Qian, Wei-Liang

    2018-05-01

    We study the p-wave holographic superconductor for AdS black holes with planar event horizon topology for a particular Lovelock gravity, in which the action is characterized by a self-interacting scalar field nonminimally coupled to the gravity theory which is labeled by an integer k. As the Lovelock theory of gravity is the most general metric theory of gravity based on the fundamental assumptions of general relativity, it is a desirable theory to describe the higher dimensional spacetime geometry. The present work is devoted to studying the properties of the p-wave holographic superconductor by including a Maxwell field which nonminimally couples to a complex vector field in a higher dimensional background metric. In the probe limit, we find that the critical temperature decreases with the increase of the index k of the background black hole metric, which shows that a larger k makes it harder for the condensation to form. We also observe that the index k affects the conductivity and the gap frequency of the holographic superconductors.

  16. Effektmålinger på Wave Star i Nissum Bredning

    DEFF Research Database (Denmark)

    Frigaard, Peter; Andersen, Thomas Lykke

    Wave Star test-maskinen i Nissum Bredning blev sat i kontinuerlig drift den 24. juli 2006. Igennem de seneste 2½ år er den producerede effekt blevet målt kontinuert og kun med mindre afbrydelser. Målingerne dækker over drift på alle årstiderne (forår, sommer, efterår, vinter) i et meget omskiftel...

  17. Elastic pion-nucleon P-wave scattering in soliton models

    International Nuclear Information System (INIS)

    Holzwarth, G.

    1990-01-01

    The equivalence of low-energy P-wave πN scattering in soliton models with the well-established Δ-isobar model is shown to hold even if all constraints on redundant collective variables are ignored. This provides strong support for the unusual (time-derivative) form of meson-baryon coupling in such models, and for the expectation that the soliton description of πN-scattering can be reliably extended down to pion threshold energies in a technically simple way. (orig.)

  18. Testing T-odd, p-even interactions with gamma-rays from neutron p-wave resonances

    International Nuclear Information System (INIS)

    Barabanov, A.L.

    1992-01-01

    A new method for the study of time reversal violation is described. It consists of measurements of the forward-backward asymmetry in individual gamma-ray transitions resulting from unpolarized neutron capture in p-wave resonance. An experiment with a 113 Cd target performed at the Dubna pulsed neutron source has been analyzed and a limit on the time reversal odd, parity even interaction extracted. The possibilities of experiments using the powerful pulsed neutron source at Los Alamos are considered. 23 refs.; 2 figs

  19. Acoustic VTI wavefield tomography of P-wave surface and VSP data

    KAUST Repository

    Li, Vladimir

    2017-08-17

    Transversely isotropic (TI) models have become standard in depth imaging and are often used in waveform inversion. Here, we develop a robust wave-equation-based tomographic algorithm for building acoustic VTI (transversely isotropic with a vertical symmetry axis) velocity models from P-wave surface reflection and vertical seismic profiling (VSP) data. Wavefield extrapolation is performed with an integral operator to avoid generating shear-wave artifacts. Focusing energy in extended images produced by reverse-time migration (RTM) makes it possible to update the zero-dip NMO velocity Vnmo and the anellipiticity parameter η. To constrain the anisotropy coefficient δ and improve the accuracy in Vnmo and η, we employ borehole information by introducing an additional objective-function term designed to fit VSP data. Image-guided smoothing is applied to both data- and image-domain gradients to steer the inversion towards geologically plausible solutions. Testing on the VTI Marmousi model shows that the joint inversion of surface and VSP data helps estimate all three relevant medium parameters.

  20. Acoustic VTI wavefield tomography of P-wave surface and VSP data

    KAUST Repository

    Li, Vladimir; Tsvankin, Ilya; Guitton, Antoine; Alkhalifah, Tariq Ali

    2017-01-01

    Transversely isotropic (TI) models have become standard in depth imaging and are often used in waveform inversion. Here, we develop a robust wave-equation-based tomographic algorithm for building acoustic VTI (transversely isotropic with a vertical symmetry axis) velocity models from P-wave surface reflection and vertical seismic profiling (VSP) data. Wavefield extrapolation is performed with an integral operator to avoid generating shear-wave artifacts. Focusing energy in extended images produced by reverse-time migration (RTM) makes it possible to update the zero-dip NMO velocity Vnmo and the anellipiticity parameter η. To constrain the anisotropy coefficient δ and improve the accuracy in Vnmo and η, we employ borehole information by introducing an additional objective-function term designed to fit VSP data. Image-guided smoothing is applied to both data- and image-domain gradients to steer the inversion towards geologically plausible solutions. Testing on the VTI Marmousi model shows that the joint inversion of surface and VSP data helps estimate all three relevant medium parameters.

  1. Three-dimensional modeling of the Nevada Test Site and vicinity from teleseismic p-wave residuals

    International Nuclear Information System (INIS)

    Monfort, M.E.; Evans, J.R.

    1982-01-01

    A teleseismic P-wave travel-time residual study is described which reveals the regional compressional-velocity structure of southern Nevada and neighboring parts of California to a depth of 280 km. During 1980, 98 teleseismic events were recorded at 53 sites. P-wave residuals were calculated relative to a network-wide average residual for each event and are displayed on maps of the stations for each of four event-azimuth quadrants. Fluctuations in these map-patterns of residuals with approach azimuth combined with results of linear, three-dimensional inversions of some 2887 residuals indicate the following characteristics of the velocity structure of the southern Nevada region: (1) a low-velocity body exists in the upper crust 50 km northeast of Beatty, Nevada, near the Miocene Timber Mountain-Silent Canyon caldera complex. Another highly localized low-velocity anomaly occurs near the southwest corner of the Nevada Test Site (NTS). These two anomalies seem to be part of a low-velocity trough extending from Death Valley, California, to about 50 km north of NTS; (2) there is a high-velocity body in the mantle between 81 and 131 km deep centered about 10 km north of the edge of the Timber Mountain caldera; (3) a broad low-velocity body is delineated between 81 and 131 km deep centered about 30 km north of Las Vegas; (4) there is a monotonic increase in travel-time delays from west to east across the region, probably indicating an eastward decrease in velocity, and lower than average velocities in southeastern Nevada below 31 km; and (5) considerable complexity in three-dimensional velocity structure exists in this part of the southern Great Basin. Inversions of teleseismic P-wave travel-time residuals were also performed on data from 12 seismometers in the immediate vicinity of the NTS to make good use of the closer station spacing in that area

  2. Data on the electromagnetic pion form factor and p-wave

    International Nuclear Information System (INIS)

    Dubnicka, S.; Meshcheryakov, V.A.; Milko, J.

    1980-01-01

    The pion form factor absolute value data (free of the omega meson contribution) are unified with the P-wave isovector ππ phase shift. The resultant real and imaginary parts of the pion form factor are described by means of the Pade approximation. All the data, which involve the pion form factor experimental points from the range of momenta - 0.8432 GeV 2 2 , the pion charge radius, and the P-wave isovector ππ phase shift in the elastic region (including also the generally accepted value of the scattering length) are mutually consistent. The data themselves through the Pade approximation reveal that the aforementioned consistency can be achieved only if the pion form factor left-hand cut from the second Riemann sheet is taken into account. Almost in all of the considered Pade approximations one stable pion form factor zero is found in the space-like region, which might indicate the existence of a diffraction minimum in the differential cross section for elastic e - π scattering as a consequence of the constituent structure of the pion like in the case of the electron elastic scattering on nuclei

  3. Travelling wave solutions to the K-P-P equation at supercritical wave speeds: a parallel to Simon Harris' probabilistic analysis

    NARCIS (Netherlands)

    Kyprianou, A.E.

    2000-01-01

    Recently Harris using probabilistic methods alone has given new proofs for the known existence asymptotics and unique ness of travelling wave solutions to the KPP equation Following in this vein we outline alternative probabilistic proofs for wave speeds exceeding the critical minimal wave speed

  4. Molecular components in P-wave charmed-strange mesons

    CERN Document Server

    Ortega, Pablo G.

    2016-10-26

    Results obtained by various experiments show that the $D_{s0}^{\\ast}(2317)$ and $D_{s1}(2460)$ mesons are very narrow states located below the $DK$ and $D^{\\ast}K$ thresholds, respectively. This is markedly in contrast with the expectations of naive quark models and heavy quark symmetry. Motivated by a recent lattice study which addresses the mass shifts of the $c\\bar{s}$ ground states with quantum numbers $J^{P}=0^{+}$ ($D_{s0}^{\\ast}(2317)$) and $J^{P}=1^{+}$ ($D_{s1}(2460)$) due to their coupling with $S$-wave $D^{(\\ast)}K$ thresholds, we perform a similar analysis within a nonrelativistic constituent quark model in which quark-antiquark and meson-meson degrees of freedom are incorporated. The quark model has been applied to a wide range of hadronic observables and thus the model parameters are completely constrained. The coupling between quark-antiquark and meson-meson Fock components is done using a modified version of the $^{3}P_{0}$ decay model. We observe that the coupling of the $0^{+}$ $(1^{+})$ mes...

  5. Diazonium-functionalized thin films from the spontaneous reaction of p-phenylenebis(diazonium) salts

    OpenAIRE

    Marshall, Nicholas; Rodriguez, Andres; Crittenden, Scott

    2018-01-01

    Salts of the diazonium coupling agent p-phenylenebis(diazonium) form diazonium-terminated conjugated thin films on a variety of conductive and nonconductive surfaces by spontaneous reaction of the coupling agent with the surface. The resulting diazonium-bearing surface can be reacted with various organic and inorganic nucleophiles to form a functionalized surface. These surfaces have been characterized with voltammetry, XPS, infrared and Raman spectroscopy, and atomic force microscopy. Substr...

  6. Depth variations of P-wave azimuthal anisotropy beneath East Asia

    Science.gov (United States)

    Wei, W.; Zhao, D.; Xu, J.

    2017-12-01

    We present a new P-wave anisotropic tomographic model beneath East Asia by inverting a total of 1,488,531 P wave arrival-time data recorded by the regional seismic networks in East Asia and temporary seismic arrays deployed on the Tibetan Plateau. Our results provide important new insights into the subducting Indian, Pacific and Philippine Sea plates and mantle dynamics in East Asia. Our tomographic images show that the northern limit of the subducting Indian plate has reached the Jinsha River suture in eastern Tibet. A striking variation of P-wave azimuthal anisotropy is revealed in the Indian lithosphere: the fast velocity direction (FVD) is NE-SW beneath the Indian continent, whereas the FVD is arc parallel beneath the Himalaya and Tibetan Plateau, which may reflect re-orientation of minerals due to lithospheric extension, in response to the India-Eurasia collision. The FVD in the subducting Philippine Sea plate beneath the Ryukyu arc is NE-SW(trench parallel), which is consistent with the spreading direction of the West Philippine Basin during its initial opening stage, suggesting that it may reflect the fossil anisotropy. A circular pattern of FVDs is revealed around the Philippine Sea slab beneath SE China. We suggest that it reflects asthenospheric strain caused by toroidal mantle flow around the edge of the subducting slab. We find a striking variation of the FVD with depth in the subducting Pacific slab beneath the Northeast Japan arc. It may be caused by slab dehydration that changed elastic properties of the slab with depth. The FVD in the mantle wedge beneath the Northeast Japan and Ryukyu arcs is trench normal, which reflects subduction-induced convection. Beneath the Kuril and Izu-Bonin arcs where oblique subduction occurs, the FVD in the mantle wedge is nearly normal to the moving direction of the downgoing Pacific plate, suggesting that the oblique subduction together with the complex slab morphology have disturbed the mantle flow.

  7. Using Co-located Rotational and Translational Ground-Motion Sensors to Characterize Seismic Scattering in the P-Wave Coda

    Science.gov (United States)

    Bartrand, J.; Abbott, R. E.

    2017-12-01

    We present data and analysis of a seismic data collect at the site of a historical underground nuclear explosion at Yucca Flat, a sedimentary basin on the Nevada National Security Site, USA. The data presented here consist of active-source, six degree-of-freedom seismic signals. The translational signals were collected with a Nanometrics Trillium Compact Posthole seismometer and the rotational signals were collected with an ATA Proto-SMHD, a prototype rotational ground motion sensor. The source for the experiment was the Seismic Hammer (a 13,000 kg weight-drop), deployed on two-kilometer, orthogonal arms centered on the site of the nuclear explosion. By leveraging the fact that compressional waves have no rotational component, we generated a map of subsurface scattering and compared the results to known subsurface features. To determine scattering intensity, signals were cut to include only the P-wave and its coda. The ratio of the time-domain signal magnitudes of angular velocity and translational acceleration were sectioned into three time windows within the coda and averaged within each window. Preliminary results indicate an increased rotation/translation ratio in the vicinity of the explosion-generated chimney, suggesting mode conversion of P-wave energy to S-wave energy at that location. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  8. Computational resources to filter gravitational wave data with P-approximant templates

    International Nuclear Information System (INIS)

    Porter, Edward K

    2002-01-01

    The prior knowledge of the gravitational waveform from compact binary systems makes matched filtering an attractive detection strategy. This detection method involves the filtering of the detector output with a set of theoretical waveforms or templates. One of the most important factors in this strategy is knowing how many templates are needed in order to reduce the loss of possible signals. In this study, we calculate the number of templates and computational power needed for a one-step search for gravitational waves from inspiralling binary systems. We build on previous works by first expanding the post-Newtonian waveforms to 2.5-PN order and second, for the first time, calculating the number of templates needed when using P-approximant waveforms. The analysis is carried out for the four main first-generation interferometers, LIGO, GEO600, VIRGO and TAMA. As well as template number, we also calculate the computational cost of generating banks of templates for filtering GW data. We carry out the calculations for two initial conditions. In the first case we assume a minimum individual mass of 1 M o-dot and in the second, we assume a minimum individual mass of 5 M o-dot . We find that, in general, we need more P-approximant templates to carry out a search than if we use standard PN templates. This increase varies according to the order of PN-approximation, but can be as high as a factor of 3 and is explained by the smaller span of the P-approximant templates as we go to higher masses. The promising outcome is that for 2-PN templates, the increase is small and is outweighed by the known robustness of the 2-PN P-approximant templates

  9. The effect of instanton-induced interaction on P-wave meson spectra ...

    Indian Academy of Sciences (India)

    possible to reproduce the observed spectra as the tensor and spin-orbit terms of. OGEP are attractive, and hence naturally triplet states masses will be lower than the corresponding singlet states. Hence, to reproduce the full P-wave spectra it is essential to include the hyperfine interaction term of III to have a consistent. 76.

  10. Electron-He+ P-wave elastic scattering and photoabsorption in two-electron systems

    International Nuclear Information System (INIS)

    Bhatia, A. K.

    2006-01-01

    In a previous paper [A. K. Bhatia, Phys. Rev. A 69, 032714 (2004)], electron-hydrogen P-wave scattering phase shifts were calculated using the optical potential approach based on the Feshbach projection operator formalism. This method is now extended to the singlet and triplet electron-He + P-wave scattering in the elastic region. Phase shifts are calculated using Hylleraas-type correlation functions with up to 220 terms. Results are rigorous lower bounds to the exact phase shifts, and they are compared to phase shifts obtained from the method of polarized orbitals and close-coupling calculations. The continuum functions calculated here are used to calculate photoabsorption cross sections. Photoionization cross sections of He and photodetachment cross sections of H - are calculated in the elastic region--i.e., leaving He + and H in their respective ground states--and compared with previous calculations. Radiative attachment rates are also calculated

  11. P-wave attenuation in the Pacific slab beneath northeastern Japan revealed by the spectral ratio of intraslab earthquakes

    Science.gov (United States)

    Shiina, Takahiro; Nakajima, Junichi; Matsuzawa, Toru

    2018-05-01

    We investigate P-wave attenuation, Qp-1, in the Pacific slab beneath northeastern (NE) Japan, adopting for the first time the spectral ratio technique for intraslab earthquakes. When seismograms of two earthquakes are recorded at a station and their ray paths to the station are largely overlapped, station-dependent amplification and structural effects on the overlapped rays can be canceled out from the ratio of the spectral amplitudes of the seismograms. Therefore, adopting the spectral ratio technique for intraslab earthquakes has a great advantage for the precise evaluation of Qp-1 in the slab because the structural effects above the slab, including the high-attenuation mantle wedge, are removed. For estimating the intraslab Qp-1, we determined corner frequency of the intraslab earthquakes using the S-coda wave spectral ratio as the first step. Then, we evaluated the inter-event path attenuation, Δt*, from the ratio of the spectral amplitudes of P waves. The obtained result shows that P-wave attenuation in the Pacific slab marks Qp-1 of 0.0015 (Qp of ∼670) at depths of 50-250 km. This indicates that the P-wave attenuation in the Pacific slab is weaker than that in the mantle wedge. The relatively high-Qp-1 is correlated with the distributions of intraslab earthquakes, suggesting that the P-wave amplitude is more attenuated around active seismicity zones in the slab. Therefore, our observations likely indicate the presence of fractures, hydrous minerals, and dehydrated fluid around seismogenic zones in the slab at intermediate depths.

  12. Mantle Attenuation Estimated from Regional and Teleseismic P-waves of Deep Earthquakes and Surface Explosions

    Science.gov (United States)

    Ichinose, G.; Woods, M.; Dwyer, J.

    2014-03-01

    We estimated the network-averaged mantle attenuation t*(total) of 0.5 s beneath the North Korea test site (NKTS) by use of P-wave spectra and normalized spectral stacks from the 25 May 2009 declared nuclear test (mb 4.5; IDC). This value was checked using P-waves from seven deep (580-600 km) earthquakes (4.8 test, which confirms the equality with the sum of t*(u) and t*(d). We included constraints on seismic moment, depth, and radiation pattern by using results from a moment tensor analysis and corner frequencies from modeling of P-wave spectra recorded at local distances. We also avoided finite-faulting effects by excluding earthquakes with complex source time functions. We assumed ω2 source models for earthquakes and explosions. The mantle attenuation beneath the NKTS is clearly different when compared with the network-averaged t* of 0.75 s for the western US and is similar to values of approximately 0.5 s for the Semipalatinsk test site within the 0.5-2 Hz range.

  13. Universal shift of the Brewster angle and disorder-enhanced delocalization of p waves in stratified random media.

    Science.gov (United States)

    Lee, Kwang Jin; Kim, Kihong

    2011-10-10

    We study theoretically the propagation and the Anderson localization of p-polarized electromagnetic waves incident obliquely on randomly stratified dielectric media with weak uncorrelated Gaussian disorder. Using the invariant imbedding method, we calculate the localization length and the disorder-averaged transmittance in a numerically precise manner. We find that the localization length takes an extremely large maximum value at some critical incident angle, which we call the generalized Brewster angle. The disorder-averaged transmittance also takes a maximum very close to one at the same incident angle. Even in the presence of an arbitrarily weak disorder, the generalized Brewster angle is found to be substantially different from the ordinary Brewster angle in uniform media. It is a rapidly increasing function of the average dielectric permittivity and approaches 90° when the average relative dielectric permittivity is slightly larger than two. We make a remarkable observation that the dependence of the generalized Brewster angle on the average dielectric permittivity is universal in the sense that it is independent of the strength of disorder. We also find, surprisingly, that when the average relative dielectric permittivity is less than one and the incident angle is larger than the generalized Brewster angle, both the localization length and the disorder-averaged transmittance increase substantially as the strength of disorder increases in a wide range of the disorder parameter. In other words, the Anderson localization of incident p waves can be weakened by disorder in a certain parameter regime.

  14. An efficient hybrid pseudospectral/finite-difference scheme for solving the TTI pure P-wave equation

    KAUST Repository

    Zhan, Ge

    2013-02-19

    The pure P-wave equation for modelling and migration in tilted transversely isotropic (TTI) media has attracted more and more attention in imaging seismic data with anisotropy. The desirable feature is that it is absolutely free of shear-wave artefacts and the consequent alleviation of numerical instabilities generally suffered by some systems of coupled equations. However, due to several forward-backward Fourier transforms in wavefield updating at each time step, the computational cost is significant, and thereby hampers its prevalence. We propose to use a hybrid pseudospectral (PS) and finite-difference (FD) scheme to solve the pure P-wave equation. In the hybrid solution, most of the cost-consuming wavenumber terms in the equation are replaced by inexpensive FD operators, which in turn accelerates the computation and reduces the computational cost. To demonstrate the benefit in cost saving of the new scheme, 2D and 3D reverse-time migration (RTM) examples using the hybrid solution to the pure P-wave equation are carried out, and respective runtimes are listed and compared. Numerical results show that the hybrid strategy demands less computation time and is faster than using the PS method alone. Furthermore, this new TTI RTM algorithm with the hybrid method is computationally less expensive than that with the FD solution to conventional TTI coupled equations. © 2013 Sinopec Geophysical Research Institute.

  15. An efficient hybrid pseudospectral/finite-difference scheme for solving the TTI pure P-wave equation

    International Nuclear Information System (INIS)

    Zhan, Ge; Pestana, Reynam C; Stoffa, Paul L

    2013-01-01

    The pure P-wave equation for modelling and migration in tilted transversely isotropic (TTI) media has attracted more and more attention in imaging seismic data with anisotropy. The desirable feature is that it is absolutely free of shear-wave artefacts and the consequent alleviation of numerical instabilities generally suffered by some systems of coupled equations. However, due to several forward–backward Fourier transforms in wavefield updating at each time step, the computational cost is significant, and thereby hampers its prevalence. We propose to use a hybrid pseudospectral (PS) and finite-difference (FD) scheme to solve the pure P-wave equation. In the hybrid solution, most of the cost-consuming wavenumber terms in the equation are replaced by inexpensive FD operators, which in turn accelerates the computation and reduces the computational cost. To demonstrate the benefit in cost saving of the new scheme, 2D and 3D reverse-time migration (RTM) examples using the hybrid solution to the pure P-wave equation are carried out, and respective runtimes are listed and compared. Numerical results show that the hybrid strategy demands less computation time and is faster than using the PS method alone. Furthermore, this new TTI RTM algorithm with the hybrid method is computationally less expensive than that with the FD solution to conventional TTI coupled equations. (paper)

  16. Application of perturbation theory to a P-wave eikonal equation in orthorhombic media

    KAUST Repository

    Stovas, Alexey; Masmoudi, Nabil; Alkhalifah, Tariq Ali

    2016-01-01

    The P-wave eikonal equation for orthorhombic (ORT) anisotropic media is a highly nonlinear partial differential equation requiring the solution of a sixth-order polynomial to obtain traveltimes, resulting in complex and time-consuming numerical

  17. Noninvasive evaluation of reverse atrial remodeling after catheter ablation of atrial fibrillation by P wave dispersion.

    Science.gov (United States)

    Fujimoto, Yuhi; Yodogawa, Kenji; Takahashi, Kenta; Tsuboi, Ippei; Hayashi, Hiroshi; Uetake, Shunsuke; Iwasaki, Yu-Ki; Hayashi, Meiso; Miyauchi, Yasushi; Shimizu, Wataru

    2017-11-01

    Atrial fibrillation (AF) itself creates structural and electrophysiological changes such as atrial enlargement, shortening of refractory period and decrease in conduction velocity, called "atrial remodeling", promoting its persistence. Although the remodeling process is considered to be reversible, it has not been elucidated in detail. The aim of this study was to assess the feasibility of P wave dispersion in the assessment of reverse atrial remodeling following catheter ablation of AF. Consecutive 126 patients (88 males, age 63.0 ± 10.4 years) who underwent catheter ablation for paroxysmal AF were investigated. P wave dispersion was calculated from the 12 lead ECG before, 1 day, 1 month, 3 months and 6 months after the procedure. Left atrial diameter (LAD), left atrial volume index (LAVI), left ventricular ejection fraction (LVEF), transmitral flow velocity waveform (E/A), and tissue Doppler (E/e') on echocardiography, plasma B-type natriuretic peptide (BNP) concentrations, serum creatinine, and estimated glomerular filtration rate (eGFR) were also measured. Of all patients, 103 subjects remained free of AF for 1 year follow-up. In these patients, P wave dispersion was not changed 1 day and 1 month after the procedure. However, it was significantly decreased at 3 and 6 months (50.1 ± 14.8 to 45.4 ± 14.4 ms, p < 0.05, 45.2 ± 9.9 ms, p < 0.05, respectively). Plasma BNP concentrations, LAD and LAVI were decreased (81.1 ± 103.8 to 44.8 ± 38.3 pg/mL, p < 0.05, 38.2 ± 5.7 to 35.9 ± 5.6 mm, p < 0.05, 33.3 ± 14.2 to 29.3 ± 12.3 mL/m 2 , p < 0.05) at 6 months after the procedure. There were no significant changes in LVEF, E/A, E/e', serum creatinine, and eGFR during the follow up period. P wave dispersion was decreased at 3 and 6 months after catheter ablation in patients without recurrence of AF. P wave dispersion is useful for assessment of reverse remodeling after catheter ablation of AF.

  18. Gas-hydrate concentration estimated from P- and S-wave velocities at the Mallik 2L-38 research well, Mackenzie Delta, Canada

    Science.gov (United States)

    Carcione, José M.; Gei, Davide

    2004-05-01

    We estimate the concentration of gas hydrate at the Mallik 2L-38 research site using P- and S-wave velocities obtained from well logging and vertical seismic profiles (VSP). The theoretical velocities are obtained from a generalization of Gassmann's modulus to three phases (rock frame, gas hydrate and fluid). The dry-rock moduli are estimated from the log profiles, in sections where the rock is assumed to be fully saturated with water. We obtain hydrate concentrations up to 75%, average values of 37% and 21% from the VSP P- and S-wave velocities, respectively, and 60% and 57% from the sonic-log P- and S-wave velocities, respectively. The above averages are similar to estimations obtained from hydrate dissociation modeling and Archie methods. The estimations based on the P-wave velocities are more reliable than those based on the S-wave velocities.

  19. Constraining dark matter late-time energy injection: decays and p-wave annihilations

    Energy Technology Data Exchange (ETDEWEB)

    Diamanti, Roberta; Mena, Olga; Palomares-Ruiz, Sergio; Vincent, Aaron C. [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València, Apartado de Correos 22085, E-46071 Valencia (Spain); Lopez-Honorez, Laura, E-mail: R.Diamanti@uva.nl, E-mail: llopezho@vub.ac.be, E-mail: omena@ific.uv.es, E-mail: sergio.palomares.ruiz@ific.uv.es, E-mail: vincent@ific.uv.es [Theoretische Natuurkunde Vrije Universiteit Brussel and The International Solvay Institutes Pleinlaan 2, B-1050 Brussels (Belgium)

    2014-02-01

    We use the latest cosmic microwave background (CMB) observations to provide updated constraints on the dark matter lifetime as well as on p-wave suppressed annihilation cross sections in the 1 MeV to 1 TeV mass range. In contrast to scenarios with an s-wave dominated annihilation cross section, which mainly affect the CMB close to the last scattering surface, signatures associated with these scenarios essentially appear at low redshifts (z∼<50) when structure began to form, and thus manifest at lower multipoles in the CMB power spectrum. We use data from Planck, WMAP9, SPT and ACT, as well as Lyman–α measurements of the matter temperature at z ∼ 4 to set a 95% confidence level lower bound on the dark matter lifetime of ∼ 4 × 10{sup 25} s for m{sub χ} = 100 MeV. This bound becomes lower by an order of magnitude at m{sub χ} = 1 TeV due to inefficient energy deposition into the intergalactic medium. We also show that structure formation can enhance the effect of p-wave suppressed annihilation cross sections by many orders of magnitude with respect to the background cosmological rate, although even with this enhancement, CMB constraints are not yet strong enough to reach the thermal relic value of the cross section.

  20. How a change in the interaction potential affects the p-wave scattering volume

    International Nuclear Information System (INIS)

    Jamieson, M J; Dalgarno, A

    2012-01-01

    We derive a simple expression for the change in the s-wave scattering length in terms of zero-energy wavefunctions, we generalize it to obtain an expression for the change in the p-wave scattering volume and we use both expressions to derive the first order differential equations of variable phase theory that are satisfied by the closely related accumulated scattering length and volume. We provide numerical demonstrations for the example of a pair of hydrogen atoms interacting via the X 1 Σ + g molecular state. (fast track communication)

  1. Experimental study on p-wave neutron strength functions for light nuclei

    International Nuclear Information System (INIS)

    Koester, L.; Waschkowski, W.; Meier, J.; Rau, G.; Salehi, M.

    1988-01-01

    Broad energy distributions in fast neutron beams have been achieved by appropriate filtering of the 236 U fission radiation provided from the RENT converter facility at the FRM research reactor. Transmission measurements in such beams result in average cross sections to which resonance reactions and shape elastic scattering contribute. We used a silicon (124.5 cm) filtered beam with a median energy of 143 keV (width 20 keV) and beams with 1.3 MeV (0.55 to 3 MeV) and 2.1 MeV (1 to 5.5 MeV) obtained through different filter combinations of lead and polyethylene. The relative high energies and the broad spectra made it possible to determine experimentally the contributions of s- and p-wave resonance reactions to the average cross section even for light nuclei. Using the three different beams we determined the average cross sections for the elements in the mass region A = 9 to 65. Analysing the measured cross sections by means of the R matrix formalism provided a complete set of p-wave strength functions and distant level parameters. Moreover, single particle shell effects in the cross sections were observed. In conclusion we obtained information on the 2P and the 3S size resonances and about the validity of the optical model for neutron reactions with light nuclei. (orig.)

  2. In-situ changes in the elastic wave velocity of rock with increasing temperature using high-resolution coda wave interferometry

    Science.gov (United States)

    Griffiths, Luke; Heap, Michael; Lengliné, Olivier; Schmittbuhl, Jean; Baud, Patrick

    2017-04-01

    Rock undergoes fluctuations in temperature in various settings in Earth's crust, including areas of volcanic or geothermal activity, or industrial environments such as hydrocarbon or geothermal reservoirs. Changes in temperature can cause thermal stresses that can result in the formation of microcracks, which affect the mechanical, physical, and transport properties of rocks. Of the affected physical properties, the elastic wave velocity of rock is particularly sensitive to microcracking. Monitoring the evolution of elastic wave velocity during the thermal stressing of rock therefore provides valuable insight into thermal cracking processes. One monitoring technique is Coda Wave Interferometry (CWI), which infers high-resolution changes in the medium from changes in multiple-scattered elastic waves. We have designed a new experimental setup to perform CWI whilst cyclically heating and cooling samples of granite (cylinders of 20 mm diameter and 40 mm length). In our setup, the samples are held between two pistons within a tube furnace and are heated and cooled at a rate of 1 °C/min to temperatures of up to 300 °C. Two high temperature piezo-transducers are each in contact with an opposing face of the rock sample. The servo-controlled uniaxial press compensates for the thermal expansion and contraction of the pistons and the sample, keeping the coupling between the transducers and the sample, and the axial force acting on the sample, constant throughout. Our setup is designed for simultaneous acoustic emission monitoring (AE is commonly used as a proxy for microcracking), and so we can follow thermal microcracking precisely by combining the AE and CWI techniques. We find that during the first heating/cooling cycle, the onset of thermal microcracking occurs at a relatively low temperature of around 65 °C. The CWI shows that elastic wave velocity decreases with increasing temperature and increases during cooling. Upon cooling, back to room temperature, there is an

  3. Explosion Generated Seismic Waves and P/S Methods of Discrimination from Earthquakes with Insights from the Nevada Source Physics Experiments

    Science.gov (United States)

    Walter, W. R.; Ford, S. R.; Pitarka, A.; Pyle, M. L.; Pasyanos, M.; Mellors, R. J.; Dodge, D. A.

    2017-12-01

    The relative amplitudes of seismic P-waves to S-waves are effective at identifying underground explosions among a background of natural earthquakes. These P/S methods appear to work best at frequencies above 2 Hz and at regional distances ( >200 km). We illustrate this with a variety of historic nuclear explosion data as well as with the recent DPRK nuclear tests. However, the physical basis for the generation of explosion S-waves, and therefore the predictability of this P/S technique as a function of path, frequency and event properties such as size, depth, and geology, remains incompletely understood. A goal of current research, such as the Source Physics Experiments (SPE), is to improve our physical understanding of the mechanisms of explosion S-wave generation and advance our ability to numerically model and predict them. The SPE conducted six chemical explosions between 2011 and 2016 in the same borehole in granite in southern Nevada. The explosions were at a variety of depths and sizes, ranging from 0.1 to 5 tons TNT equivalent yield. The largest were observed at near regional distances, with P/S ratios comparable to much larger historic nuclear tests. If we control for material property effects, the explosions have very similar P/S ratios independent of yield or magnitude. These results are consistent with explosion S-waves coming mainly from conversion of P- and surface waves, and are inconsistent with source-size based models. A dense sensor deployment for the largest SPE explosion allowed this conversion to be mapped in detail. This is good news for P/S explosion identification, which can work well for very small explosions and may be ultimately limited by S-wave detection thresholds. The SPE also showed explosion P-wave source models need to be updated for small and/or deeply buried cases. We are developing new P- and S-wave explosion models that better match all the empirical data. Historic nuclear explosion seismic data shows that the media in which

  4. Holographic p-wave superfluid in Gauss–Bonnet gravity

    International Nuclear Information System (INIS)

    Liu, Shancheng; Pan, Qiyuan; Jing, Jiliang

    2017-01-01

    We construct the holographic p-wave superfluid in Gauss–Bonnet gravity via a Maxwell complex vector field model and investigate the effect of the curvature correction on the superfluid phase transition in the probe limit. We obtain the rich phase structure and find that the higher curvature correction hinders the condensate of the vector field but makes it easier for the appearance of translating point from the second-order transition to the first-order one or for the emergence of the Cave of Winds. Moreover, for the supercurrents versus the superfluid velocity, we observe that our results near the critical temperature are independent of the Gauss–Bonnet parameter and agree well with the Ginzburg–Landau prediction.

  5. Holographic p-wave superfluid in Gauss–Bonnet gravity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shancheng [Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China); Pan, Qiyuan, E-mail: panqiyuan@126.com [Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China); Jing, Jiliang, E-mail: jljing@hunnu.edu.cn [Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China)

    2017-02-10

    We construct the holographic p-wave superfluid in Gauss–Bonnet gravity via a Maxwell complex vector field model and investigate the effect of the curvature correction on the superfluid phase transition in the probe limit. We obtain the rich phase structure and find that the higher curvature correction hinders the condensate of the vector field but makes it easier for the appearance of translating point from the second-order transition to the first-order one or for the emergence of the Cave of Winds. Moreover, for the supercurrents versus the superfluid velocity, we observe that our results near the critical temperature are independent of the Gauss–Bonnet parameter and agree well with the Ginzburg–Landau prediction.

  6. Mathematical Analysis of EDCA's Performance on the Control Channel of an IEEE 802.11p WAVE Vehicular Network

    Directory of Open Access Journals (Sweden)

    Hussein T. Mouftah

    2010-01-01

    Full Text Available Wireless networks for vehicular environments are gaining increasing importance due to their ability to provide a means for stations on the roadside and radio units on board of vehicles to communicate and share safety-related information, thus reducing the probability of accidents and increasing the efficiency of the transportation system. With this goal in mind, the IEEE is currently developing the Wireless Access in Vehicular Environments (WAVE IEEE 802.11p standard. WAVE devices use the IEEE 802.11's Enhanced Distributed Channel Access (EDCA MAC protocol to compete for the transmission medium. This work proposes an analytical tool to evaluate the performance of EDCA under the specific conditions of the so-called control channel (CCH of a WAVE environment, including the particular EDCA parameter values and the fact that all safety-critical data frames are broadcasted. The protocol is modeled using Markov chains and results related to throughput, frame-error rate, buffer occupancy and delay are obtained under different traffic-load conditions. The main analysis is performed assuming that the CCH works continuously, and then an explanation is given as to the considerations that are needed to account for the fact that activity on the CCH is intermittent.

  7. Synthetic seismograms - II. Synthesis of amplitude spectra and seismograms of P waves from underground nuclear explosions

    International Nuclear Information System (INIS)

    Banghar, A.R.

    1980-01-01

    As a part of programme of seismic detection of underground nuclear explosions, step by step variations in the amplitude spectra and waveforms of P wave signal, as it propagates from source to receiver region, are investigated. Influences on the amplitude spectra and waveforms of teleseismic p waves due to : (1) variation in the shape of reduced displacement potential, (2) variation of mantle Q values, (3) change in depth, (4) various yields, (5) spalling, and (6) variation of crustal structure at source as well as at receiver are studied. The results show that for a yield of 85 kilotons, the time structure of seismograms is nearly same for four types of reduced displacement potentials considered here. The duration of waveforms is affected both by crustal structure at source as well as due to spalling. In general, effect of receiver crust on seismograms is found to be minor. Synthesized and observed P wave seismograms for Longshot, Milrow and Cannikin underground nuclear explosions are computed at various seismometer array stations of the UKAEA. Computed seismograms compare well with the recorded ones. It is seen that: (1) overburden P wave velocity inferred from seismograms is less as compared to its value obtained from on-site measurements, and (2) the source function, the source crust transfer function, the mantle transfer function and the spalling function are the most important factors that influence shaping of spectra and seismograms. (M.G.B.)

  8. Ionization waves caused by the effects of a magnetic field

    International Nuclear Information System (INIS)

    Miura, Kosuke; Imazu, Shingo

    1980-01-01

    The self-excited ionization waves was observed in the Ne positive column. The experiments were made for Ne gas from 0.07 to 1.0 Torr, with the magnetic field from 0 to 3.33 kG. The discharge current were 10 to 300 mA. The longitudinal magnetic field was made by an air-core solenoid coil. The axial electric field was measured by two wall probes. The frequency, wave length and amplitude of waves were measured with a photo multiplier. It was found that the longitudinal magnetic field caused new self-excited ionization waves. The frequency of these waves decreased monotonously with increasing field. The behaviors of the wave length and amplitude were complicate, and the cause of these phenomena is related to the ionization waves due to the spatial resonance of electron gas, namely s-waves, p-waves and fluid γ-waves. The threshold of the magnetic field to cause the ionization waves increased with increasing gas pressure, and with decreasing discharge current in the range 0.07 to 0.44 Torr. The frequency of the self-excited ionization waves occurred at zero field was almost constant in the field-frequency relation. A simple dispersion equation was derived, and the Novak constant can be introduced. (J.P.N.)

  9. New results on the Roper resonance and the P-11 partial wave

    NARCIS (Netherlands)

    Sarantsev, A. V.; Fuchs, M.; Kotulla, M.; Thoma, U.; Ahrens, J.; Annand, J. R. M.; Anisovich, A. V.; Anton, G.; Bantes, R.; Bartholomy, O.; Beck, R.; Beloglazov, Yu.; Castelijns, R.; Crede, V.; Ehmanns, A.; Ernst, J.; Fabry, I.; Flemming, H.; Foesel, A.; Funke, Chr.; Gothe, R.; Gridnev, A.; Gutz, E.; Hoeffgen, St.; Horn, I.; Hoessl, J.; Hornidge, D.; Janssen, S.; Junkersfeld, J.; Kalinowsky, H.; Klein, F.; Klempt, E.; Koch, H.; Konrad, M.; Kopf, B.; Krusche, B.; Langheinrich, J.; Loehner, H.; Lopatin, I.; Lotz, J.; McGeorge, J. C.; MacGregor, I. J. D.; Matthaey, H.; Menze, D.; Messchendorp, J. G.; Metag, V.; Nikonov, V. A.; Novinski, D.; Novotny, R.; Ostrick, M.; van Pee, H.; Pfeiffer, M.; Radkov, A.; Rosner, G.; Rost, M.; Schmidt, C.; Schoch, B.; Suft, G.; Sumachev, V.; Szczepanek, T.; Walther, D.; Watts, D. P.; Weinheimer, Chr.

    2008-01-01

    Properties of the Roper resonance, the first scalar excitation of the nucleon, are determined. Pole positions and residues of the P-11 partial wave are studied in a combined analysis of pion- and photo-induced reactions. We find the Roper pole at {(1371 +/- 7) - i(92 +/- 10)} MeV and an elasticity

  10. Elastic Wave-equation Reflection Traveltime Inversion Using Dynamic Warping and Wave Mode Decomposition

    KAUST Repository

    Wang, T.

    2017-05-26

    Elastic full waveform inversion (EFWI) provides high-resolution parameter estimation of the subsurface but requires good initial guess of the true model. The traveltime inversion only minimizes traveltime misfits which are more sensitive and linearly related to the low-wavenumber model perturbation. Therefore, building initial P and S wave velocity models for EFWI by using elastic wave-equation reflections traveltime inversion (WERTI) would be effective and robust, especially for the deeper part. In order to distinguish the reflection travletimes of P or S-waves in elastic media, we decompose the surface multicomponent data into vector P- and S-wave seismogram. We utilize the dynamic image warping to extract the reflected P- or S-wave traveltimes. The P-wave velocity are first inverted using P-wave traveltime followed by the S-wave velocity inversion with S-wave traveltime, during which the wave mode decomposition is applied to the gradients calculation. Synthetic example on the Sigbee2A model proves the validity of our method for recovering the long wavelength components of the model.

  11. P and S wave Coda Calibration in Central Asia and South Korea

    Science.gov (United States)

    Kim, D.; Mayeda, K.; Gok, R.; Barno, J.; Roman-Nieves, J. I.

    2017-12-01

    Empirically derived coda source spectra provide unbiased, absolute moment magnitude (Mw) estimates for events that are normally too small for accurate long-period waveform modeling. In this study, we obtain coda-derived source spectra using data from Central Asia (Kyrgyzstan networks - KN and KR, and Tajikistan - TJ) and South Korea (Korea Meteorological Administration, KMA). We used a recently developed coda calibration module of Seismic WaveForm Tool (SWFT). Seismic activities during this recording period include the recent Gyeongju earthquake of Mw=5.3 and its aftershocks, two nuclear explosions from 2009 and 2013 in North Korea, and a small number of construction and mining-related explosions. For calibration, we calculated synthetic coda envelopes for both P and S waves based on a simple analytic expression that fits the observed narrowband filtered envelopes using the method outlined in Mayeda et al. (2003). To provide an absolute scale of the resulting source spectra, path and site corrections are applied using independent spectral constraints (e.g., Mw and stress drop) from three Kyrgyzstan events and the largest events of the Gyeongju sequence in Central Asia and South Korea, respectively. In spite of major tectonic differences, stable source spectra were obtained in both regions. We validated the resulting spectra by comparing the ratio of raw envelopes and source spectra from calibrated envelopes. Spectral shapes of earthquakes and explosions show different patterns in both regions. We also find (1) the source spectra derived from S-coda is more robust than that from the P-coda at low frequencies; (2) unlike earthquake events, the source spectra of explosions have a large disagreement between P and S waves; and (3) similarity is observed between 2016 Gyeongju and 2011 Virginia earthquake sequence in the eastern U.S.

  12. Design of a GaP/Si composite waveguide for CW terahertz wave generation via difference frequency mixing.

    Science.gov (United States)

    Saito, Kyosuke; Tanabe, Tadao; Oyama, Yutaka

    2014-06-10

    We design a GaP/Si composite waveguide to achieve efficient terahertz (THz) wave generation under collinear phase-matched difference frequency mixing (DFM) between near-infrared light sources. This waveguide structure provides a strong mode confinement of both near-infrared sources and THz wave, resulting in an efficient mode overlapping. The numerical results show that the waveguide can produce guided THz wave (5.93 THz) with a power conversion efficiency of 6.6×10(-4)  W(-1). This value is larger than previously obtained with the bulk GaP crystal: 0.5×10(-9)  W(-1) [J. Lightwave Technol.27, 3057 (2009)]. Our proposed composite waveguide can be achieved by bridging the telecom wavelength and THz frequency region.

  13. Exploration of auditory P50 gating in schizophrenia by way of difference waves

    DEFF Research Database (Denmark)

    Arnfred, Sidse M

    2006-01-01

    potentials but here this method along with low frequency filtering is applied exploratory on auditory P50 gating data, previously analyzed in the standard format (reported in Am J Psychiatry 2003, 160:2236-8). The exploration was motivated by the observation during visual peak detection that the AEP waveform......Electroencephalographic measures of information processing encompass both mid-latency evoked potentials like the pre-attentive auditory P50 potential and a host of later more cognitive components like P300 and N400.Difference waves have mostly been employed in studies of later event related...

  14. Nucleon-deuteron breakup quantities calculated with separable interactions including tensor forces and P-wave interactions

    International Nuclear Information System (INIS)

    Bruinsma, J.; Wageningen, R. van

    1977-01-01

    Nucleon-deuteron breakup calculations at a nucleon bombarding energy of 22.7 MeV have been performed with separable interactions including a tensor force and P-wave interactions. Differential cross sections and a selection of polarization quantities have been computed for special regions of the phase space. The influence of a tensor force and P-wave interactions on the differential cross section is of the order of 20%. Large discrepancies between theory and experiment occur for the vector analyzing powers, both for the kinematically complete and for the incomplete situation. The calculations show that there are kinematical situations in which the differential cross sections and the tensor analyzing powers are sufficiently large to make measurements feasible. (Auth.)

  15. Nondestructive evaluation of differently doped InP wafers by time-resolved four-wave mixing technique

    International Nuclear Information System (INIS)

    Kadys, A.; Sudzius, M.; Jarasiunas, K.; Mao Luhong; Sun Niefeng

    2006-01-01

    Photoelectric properties of semi-insulating, differently doped, and undoped indium phosphide wafers, grown by the liquid encapsulation Czochralski method, have been investigated by time-resolved picosecond four-wave mixing technique. Deep defect related carrier generation, recombination, and transport properties were investigated experimentally by measuring four-wave mixing kinetics and exposure characteristics. The presence of deep donor states in undoped InP was confirmed by a pronounced effect of a space charge electric field to carrier transport. On the other hand, the recharging dynamics of electrically active residual impurities was observed in undoped and Fe-doped InP through the process of efficient trapping of excess carriers. The bipolar diffusion coefficients and mobilities were determined for the all wafers

  16. Increasing accuracy of pulse transit time measurements by automated elimination of distorted photoplethysmography waves

    NARCIS (Netherlands)

    van Velzen, M.H.N.; Loeve, A.J.; Niehof, S.P.; Mik, E.G.

    2017-01-01

    <p>Photoplethysmography (PPG) is a widely available non-invasive optical technique to visualize pressure pulse waves (PWs). Pulse transit time (PTT) is a physiological parameter that is often derived from calculations on ECG and PPG signals and is based on tightly defined characteristics of the PW

  17. Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography

    Energy Technology Data Exchange (ETDEWEB)

    Brauchler, R.; Doetsch, J.; Dietrich, P.; Sauter, M.

    2012-01-10

    In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. The experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Göttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.

  18. Developing regionalized models of lithospheric thickness and velocity structure across Eurasia and the Middle East from jointly inverting P-wave and S-wave receiver functions with Rayleigh wave group and phase velocities

    Energy Technology Data Exchange (ETDEWEB)

    Julia, J; Nyblade, A; Hansen, S; Rodgers, A; Matzel, E

    2009-07-06

    In this project, we are developing models of lithospheric structure for a wide variety of tectonic regions throughout Eurasia and the Middle East by regionalizing 1D velocity models obtained by jointly inverting P-wave and S-wave receiver functions with Rayleigh wave group and phase velocities. We expect the regionalized velocity models will improve our ability to predict travel-times for local and regional phases, such as Pg, Pn, Sn and Lg, as well as travel-times for body-waves at upper mantle triplication distances in both seismic and aseismic regions of Eurasia and the Middle East. We anticipate the models will help inform and strengthen ongoing and future efforts within the NNSA labs to develop 3D velocity models for Eurasia and the Middle East, and will assist in obtaining model-based predictions where no empirical data are available and for improving locations from sparse networks using kriging. The codes needed to conduct the joint inversion of P-wave receiver functions (PRFs), S-wave receiver functions (SRFs), and dispersion velocities have already been assembled as part of ongoing research on lithospheric structure in Africa. The methodology has been tested with synthetic 'data' and case studies have been investigated with data collected at an open broadband stations in South Africa. PRFs constrain the size and S-P travel-time of seismic discontinuities in the crust and uppermost mantle, SRFs constrain the size and P-S travel-time of the lithosphere-asthenosphere boundary, and dispersion velocities constrain average S-wave velocity within frequency-dependent depth-ranges. Preliminary results show that the combination yields integrated 1D velocity models local to the recording station, where the discontinuities constrained by the receiver functions are superimposed to a background velocity model constrained by the dispersion velocities. In our first year of this project we will (i) generate 1D velocity models for open broadband seismic stations

  19. Wave Tank Studies of Phase Velocities of Short Wind Waves

    Science.gov (United States)

    Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.

    Wave tank studies of phase velocities of short wind waves have been carried out using Ka-band radar and an Optical Spectrum Analyser. The phase velocities were retrieved from measured radar and optical Doppler shifts, taking into account measurements of surface drift velocities. The dispersion relationship was studied in centimetre (cm)- and millimetre(mm)-scale wavelength ranges at different fetches and wind speeds, both for a clean water surface and for water covered with surfactant films. It is ob- tained that the phase velocities do not follow the dispersion relation of linear capillary- gravity waves, increasing with fetch and, therefore, depending on phase velocities of dominant decimetre (dm)-centimetre-scale wind waves. One thus can conclude that nonlinear cm-mm-scale harmonics bound to the dominant wind waves and propagat- ing with the phase velocities of the decimetric waves are present in the wind wave spectrum. The resulting phase velocities of short wind waves are determined by re- lation between free and bound waves. The relative intensity of the bound waves in the spectrum of short wind waves is estimated. It is shown that this relation depends strongly on the surfactant concentration, because the damping effect due to films is different for free and bound waves; this results to changes of phase velocities of wind waves in the presence of surfactant films. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).

  20. Application of perturbation theory to a P-wave eikonal equation in orthorhombic media

    KAUST Repository

    Stovas, Alexey

    2016-10-12

    The P-wave eikonal equation for orthorhombic (ORT) anisotropic media is a highly nonlinear partial differential equation requiring the solution of a sixth-order polynomial to obtain traveltimes, resulting in complex and time-consuming numerical solutions. To alleviate this complexity, we approximate the solution of this equation by applying a multiparametric perturbation approach. We also investigated the sensitivity of traveltime surfaces inORT mediawith respect to three anelliptic parameters. As a result, a simple and accurate P-wave traveltime approximation valid for ORT media was derived. Two different possible anelliptic parameterizations were compared. One of the parameterizations includes anelliptic parameters defined at zero offset: η1, η2, and ηxy. Another parameterization includes anelliptic parameters defined for all symmetry planes: η1, η2, and η3. The azimuthal behavior of sensitivity coefficients with different parameterizations was used to analyze the crosstalk between anelliptic parameters. © 2016 Society of Exploration Geophysicists.

  1. Triplicated P-wave measurements for waveform tomography of the mantle transition zone

    Directory of Open Access Journals (Sweden)

    S. C. Stähler

    2012-11-01

    Full Text Available Triplicated body waves sample the mantle transition zone more extensively than any other wave type, and interact strongly with the discontinuities at 410 km and 660 km. Since the seismograms bear a strong imprint of these geodynamically interesting features, it is highly desirable to invert them for structure of the transition zone. This has rarely been attempted, due to a mismatch between the complex and band-limited data and the (ray-theoretical modelling methods. Here we present a data processing and modelling strategy to harness such broadband seismograms for finite-frequency tomography. We include triplicated P-waves (epicentral distance range between 14 and 30° across their entire broadband frequency range, for both deep and shallow sources. We show that is it possible to predict the complex sequence of arrivals in these seismograms, but only after a careful effort to estimate source time functions and other source parameters from data, variables that strongly influence the waveforms. Modelled and observed waveforms then yield decent cross-correlation fits, from which we measure finite-frequency traveltime anomalies. We discuss two such data sets, for North America and Europe, and conclude that their signal quality and azimuthal coverage should be adequate for tomographic inversion. In order to compute sensitivity kernels at the pertinent high body wave frequencies, we use fully numerical forward modelling of the seismic wavefield through a spherically symmetric Earth.

  2. BCVEGPY2.0: An upgraded version of the generator BCVEGPY with the addition of hadroproduction of the P-wave B states

    Science.gov (United States)

    Chang, Chao-Hsi; Wang, Jian-Xiong; Wu, Xing-Gang

    2006-02-01

    The generator BCVEGPY is upgraded by improving some of its features and by adding the hadroproduction of the P-wave excited B states (denoted by BcJ,L=1∗ or by hB_c and χB_c). In order to make the generator more efficient, we manipulate the amplitude as compact as possible with special effort. The correctness of the program is tested by various checks. We denote it as BCVEGPY2.0. As for the added part of the P-wave production, only the dominant gluon-gluon fusion mechanism ( gg→BcJ,L=1∗+c¯+b) is taken into account. Moreover, in the program, not only the ability to compute the contributions from the color-singlet components ( to the P-wave production but also the ability to compute the contributions from the color-octet components ( are available. With BCVEGPY2.0 the contributions from the two 'color components' to the production of each of the P-wave states may be computed separately by an option, furthermore, besides individually the event samples of the S-wave and P-wave ( cb¯)-heavy-quarkonium in various correct (realistic) mixtures can be generated by relevant options too. Program summaryTitle of program: BCVEGPY Version: 2.0 (December, 2004) Catalogue identifier: ADWQ Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWQ Program obtained from: CPC Program Library, Queen's University of Belfast, N. Ireland Reference to original program: ADTJ (BCVEGPY1.0) Reference in CPC: Comput. Phys. Comm. 159 (2004) 192 Does the new version supersede the old program: yes Computer: Any computer with FORTRAN 77 or 90 compiler. The program has been tested on HP-SC45 Sigma-X parallel computer, Linux PCs and Windows PCs with Visual Fortran Operating systems: UNIX, Linux and Windows Programming language used: FORTRAN 77/90 Memory required to execute with typical data: About 2.0 MB No. of lines in distributed program, including test data, etc.: 124 297 No. of bytes in distributed program, including test data, etc.: 1 137 177 Distribution format: tar.g2 Nature of

  3. Arterial wave reflection decreases gradually from supine to upright

    DEFF Research Database (Denmark)

    van den Bogaard, Bas; Westerhof, Berend E; Best, Hendrik

    2011-01-01

    BACKGROUND. An increase in total peripheral resistance (TPR) usually increases arterial wave reflection. During passive head-up tilt (HUT), however, arterial wave reflection decreases with increasing TPR. This study addressed whether arterial wave reflection gradually decreases during HUT. METHODS....... In 10 healthy volunteers (22-39 years, nine males), we recorded finger arterial pressures in supine position (0°), and 30°and 70°degrees HUT and active standing (90°). Aortic pressure was constructed from the finger pressure signal and hemodynamics were calculated. Arterial wave reflection...... from 0.9 dyn s/cm(5) at 0? to 1.2, 1.4 and 1.4 dyn s/cm(5) at 30°, 70° and 90° (p wave reflection...

  4. Poisson's ratio model derived from P- and S-wave reflection seismic data at the CO2CRC Otway Project pilot site, Australia

    Science.gov (United States)

    Beilecke, Thies; Krawczyk, Charlotte M.; Tanner, David C.; Ziesch, Jennifer; Research Group Protect

    2014-05-01

    Compressional wave (P-wave) reflection seismic field measurements are a standard tool for subsurface exploration. 2-D seismic measurements are often used for overview measurements, but also as near-surface supplement to fill gaps that often exist in 3-D seismic data sets. Such supplementing 2-D measurements are typically simple with respect to field layout. This is an opportunity for the use of shear waves (S-waves). Within the last years, S-waves have become more and more important. One reason is that P- and S-waves are differently sensitive to fluids and pore fill so that the additional S-wave information can be used to enhance lithological studies. Another reason is that S-waves have the advantage of higher spatial resolution. Within the same signal bandwidth they typically have about half the wavelength of P-waves. In near-surface unconsolidated sediments they can even enhance the structural resolution by one order of magnitude. We make use of these capabilities within the PROTECT project. In addition to already existing 2-D P-wave data, we carried out a near surface 2-D S-wave field survey at the CO2CRC Otway Project pilot site, close to Warrnambool, Australia in November 2013. The combined analysis of P-wave and S-wave data is used to construct a Poisson's Ratio 2-D model down to roughly 600 m depth. The Poisson's ratio values along a 1 km long profile at the site are surprisingly high, ranging from 0.47 in the carbonate-dominated near surface to 0.4 at depth. In the literature, average lab measurements of 0.22 for unfissured carbonates and 0.37 for fissured examples have been reported. The high values that we found may indicate areas of rather unconsolidated or fractured material, or enhanced fluid contents, and will be subject of further studies. This work is integrated in a larger workflow towards prediction of CO2 leakage and monitoring strategies for subsurface storage in general. Acknowledgement: This work was sponsored in part by the Australian

  5. Energy loss of solar p modes due to the excitation of magnetic sausage tube waves: Importance of coupling the upper atmosphere

    International Nuclear Information System (INIS)

    Gascoyne, A.; Jain, R.; Hindman, B. W.

    2014-01-01

    We consider damping and absorption of solar p modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of p modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by p modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux tube. The deficit of p-mode energy is quantified through the damping rate, Γ, and absorption coefficient, α. The variation of Γ and α as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modeled as a polytrope that has been truncated at the photosphere. Such studies have found that the resulting energy loss by the p modes is very sensitive to the upper boundary condition, which, due to the lack of an upper atmosphere, have been imposed in a somewhat ad hoc manner. The model presented here avoids such problems by using an isothermal layer to model the overlying atmosphere (chromosphere, and, consequently, allows us to analyze the propagation of p-mode-driven sausage waves above the photosphere. In this paper, we restrict our attention to frequencies below the acoustic cut off frequency. We demonstrate the importance of coupling all waves (acoustic, magnetic) in the subsurface solar atmosphere with the overlying atmosphere in order to accurately model the interaction of solar f and p modes with sausage tube waves. In calculating the absorption and damping of p modes, we find that for low frequencies, below ≈3.5 mHz, the isothermal atmosphere, for the two-region model, behaves like a stress-free boundary condition applied at the interface (z = –z 0 ).

  6. Energy loss of solar p modes due to the excitation of magnetic sausage tube waves: Importance of coupling the upper atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Gascoyne, A.; Jain, R. [Applied Mathematics Department, University of Sheffield, Sheffield S3 7RH (United Kingdom); Hindman, B. W., E-mail: a.d.gascoyne@sheffield.ac.uk, E-mail: r.jain@sheffield.ac.uk [JILA and Department of Astrophysical and Planetary Sciences, University of Colorado at Boulder, Boulder, CO 80309-0440 (United States)

    2014-07-10

    We consider damping and absorption of solar p modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of p modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by p modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux tube. The deficit of p-mode energy is quantified through the damping rate, Γ, and absorption coefficient, α. The variation of Γ and α as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modeled as a polytrope that has been truncated at the photosphere. Such studies have found that the resulting energy loss by the p modes is very sensitive to the upper boundary condition, which, due to the lack of an upper atmosphere, have been imposed in a somewhat ad hoc manner. The model presented here avoids such problems by using an isothermal layer to model the overlying atmosphere (chromosphere, and, consequently, allows us to analyze the propagation of p-mode-driven sausage waves above the photosphere. In this paper, we restrict our attention to frequencies below the acoustic cut off frequency. We demonstrate the importance of coupling all waves (acoustic, magnetic) in the subsurface solar atmosphere with the overlying atmosphere in order to accurately model the interaction of solar f and p modes with sausage tube waves. In calculating the absorption and damping of p modes, we find that for low frequencies, below ≈3.5 mHz, the isothermal atmosphere, for the two-region model, behaves like a stress-free boundary condition applied at the interface (z = –z{sub 0}).

  7. D-Wave Electron-H, -He+, and -Li2+ Elastic Scattering and Photoabsorption in P States of Two-Electron Systems

    Science.gov (United States)

    Bhatia, A. K.

    2014-01-01

    In previous papers [A. K. Bhatia, Phys. Rev. A 85, 052708 (2012); 86, 032709 (2012); 87, 042705 (2013)] electron-H, -He+, and -Li2+ P-wave scattering phase shifts were calculated using the variational polarized orbital theory. This method is now extended to the singlet and triplet D-wave scattering in the elastic region. The long-range correlations are included in the Schrodinger equation by using the method of polarized orbitals variationally. Phase shifts are compared to those obtained by other methods. The present calculation provides results which are rigorous lower bonds to the exact phase shifts. Using the presently calculated D-wave and previously calculated S-wave continuum functions, photoionization of singlet and triplet P states of He and Li+ are also calculated, along with the radiative recombination rate coefficients at various electron temperatures.

  8. High frequency measurement of P- and S-wave velocities on crystalline rock massif surface - methodology of measurement

    Science.gov (United States)

    Vilhelm, Jan; Slavík, Lubomír

    2014-05-01

    For the purpose of non-destructive monitoring of rock properties in the underground excavation it is possible to perform repeated high-accuracy P- and S-wave velocity measurements. This contribution deals with preliminary results gained during the preparation of micro-seismic long-term monitoring system. The field velocity measurements were made by pulse-transmission technique directly on the rock outcrop (granite) in Bedrichov gallery (northern Bohemia). The gallery at the experimental site was excavated using TBM (Tunnel Boring Machine) and it is used for drinking water supply, which is conveyed in a pipe. The stable measuring system and its automatic operation lead to the use of piezoceramic transducers both as a seismic source and as a receiver. The length of measuring base at gallery wall was from 0.5 to 3 meters. Different transducer coupling possibilities were tested namely with regard of repeatability of velocity determination. The arrangement of measuring system on the surface of the rock massif causes better sensitivity of S-transducers for P-wave measurement compared with the P-transducers. Similarly P-transducers were found more suitable for S-wave velocity determination then P-transducers. The frequency dependent attenuation of fresh rock massif results in limited frequency content of registered seismic signals. It was found that at the distance between the seismic source and receiver from 0.5 m the frequency components above 40 kHz are significantly attenuated. Therefore for the excitation of seismic wave 100 kHz transducers are most suitable. The limited frequency range should be also taken into account for the shape of electric impulse used for exciting of piezoceramic transducer. The spike pulse generates broad-band seismic signal, short in the time domain. However its energy after low-pass filtration in the rock is significantly lower than the energy of seismic signal generated by square wave pulse. Acknowledgments: This work was partially

  9. Evidence for a magma reservoir beneath the Taipei metropolis of Taiwan from both S-wave shadows and P-wave delays.

    Science.gov (United States)

    Lin, Cheng-Horng

    2016-12-23

    There are more than 7 million people living near the Tatun volcano group in northern Taiwan. For the safety of the Taipei metropolis, in particular, it has been debated for decades whether or not these volcanoes are active. Here I show evidence of a deep magma reservoir beneath the Taipei metropolis from both S-wave shadows and P-wave delays. The reservoir is probably composed of either a thin magma layer overlay or many molten sills within thick partially molten rocks. Assuming that 40% of the reservoir is partially molten, its total volume could be approximately 350 km 3 . The exact location and geometry of the magma reservoir will be obtained after dense seismic arrays are deployed in 2017-2020.

  10. "3"1P Nuclear Magnetic Resonance of Charge-Density-Wave Transition in a Single Crystal of RuP

    International Nuclear Information System (INIS)

    Fan Guo-Zhi; Luo Jian-Lin; Chen Rong-Yan; Wang Nan-Lin

    2015-01-01

    We perform "3"1P nuclear magnetic resonance (NMR) measurements on a single crystal of RuP. The anomalies in resistivity at about T_A = 270 K and T_B = 330 K indicate that two phase transitions occur. The line shape of "3"1P NMR spectra in different temperature ranges is attributed to the charge density distribution. The Knight shift and spin-lattice relaxation rate 1/T_1T are measured from 10 K to 300 K. At about T_A = 270 K, they both decrease abruptly with the temperature reduction, which reveals the gap-opening behavior. Well below T_A, they act like the case of normal metal. Charge-density-wave phase transition is proposed to interpret the transition occurring at about T_A. (paper)

  11. Why Does Sleep Slow-Wave Activity Increase After Extended Wake? Assessing the Effects of Increased Cortical Firing During Wake and Sleep.

    Science.gov (United States)

    Rodriguez, Alexander V; Funk, Chadd M; Vyazovskiy, Vladyslav V; Nir, Yuval; Tononi, Giulio; Cirelli, Chiara

    2016-12-07

    During non-rapid eye movement (NREM) sleep, cortical neurons alternate between ON periods of firing and OFF periods of silence. This bi-stability, which is largely synchronous across neurons, is reflected in the EEG as slow waves. Slow-wave activity (SWA) increases with wake duration and declines homeostatically during sleep, but the underlying mechanisms remain unclear. One possibility is neuronal "fatigue": high, sustained firing in wake would force neurons to recover with more frequent and longer OFF periods during sleep. Another possibility is net synaptic potentiation during wake: stronger coupling among neurons would lead to greater synchrony and therefore higher SWA. Here, we obtained a comparable increase in sustained firing (6 h) in cortex by: (1) keeping mice awake by exposure to novel objects to promote plasticity and (2) optogenetically activating a local population of cortical neurons at wake-like levels during sleep. Sleep after extended wake led to increased SWA, higher synchrony, and more time spent OFF, with a positive correlation between SWA, synchrony, and OFF periods. Moreover, time spent OFF was correlated with cortical firing during prior wake. After local optogenetic stimulation, SWA and cortical synchrony decreased locally, time spent OFF did not change, and local SWA was not correlated with either measure. Moreover, laser-induced cortical firing was not correlated with time spent OFF afterward. Overall, these results suggest that high sustained firing per se may not be the primary determinant of SWA increases observed after extended wake. A long-standing hypothesis is that neurons fire less during slow-wave sleep to recover from the "fatigue" accrued during wake, when overall synaptic activity is higher than in sleep. This idea, however, has rarely been tested and other factors, namely increased cortical synchrony, could explain why sleep slow-wave activity (SWA) is higher after extended wake. We forced neurons in the mouse cortex to fire

  12. Prolonged signal-averaged P wave duration as a prognostic marker for morbidity and mortality in patients with congestive heart failure

    DEFF Research Database (Denmark)

    Dixen, Ulrik; Wallevik, Laura; Hansen, Maja

    2003-01-01

    To evaluate the prognostic roles of prolonged signal-averaged P wave duration (SAPWD), raised levels of natriuretic peptides, and clinical characteristics in patients with stable congestive heart failure (CHF).......To evaluate the prognostic roles of prolonged signal-averaged P wave duration (SAPWD), raised levels of natriuretic peptides, and clinical characteristics in patients with stable congestive heart failure (CHF)....

  13. T20 measurements for 1H(d searrow,γ)3He and the P-wave component of the nucleon-nucleon force

    International Nuclear Information System (INIS)

    Schmid, G.J.; Chasteler, R.M.; Weller, H.R.; Tilley, D.R.; Fonseca, A.C.; Lehman, D.R.

    1996-01-01

    Measurements of T 20 (θ lab =90 degree) for 1 H(d searrow,γ) 3 He, in the energy range E d (lab)=12.7 endash 19.8 MeV, have been compared with the results of new exact three-body Faddeev calculations using the Paris and Bonn-A nucleon-nucleon (NN) potentials. This comparison indicates a strong sensitivity of the T 20 observable to the p-wave part of the NN force. In particular, we find that the 3 P 1 component of the P-wave interaction is the dominant P-wave term affecting the value of T 20 (θ lab =90 degree) at these energies. This contrasts with the results of polarized N-D scattering studies where the 3 P 0 component has been found to dominate. cents 1996 The American Physical Society

  14. Detecting P and S-wave of Mt. Rinjani seismic based on a locally stationary autoregressive (LSAR) model

    Science.gov (United States)

    Nurhaida, Subanar, Abdurakhman, Abadi, Agus Maman

    2017-08-01

    Seismic data is usually modelled using autoregressive processes. The aim of this paper is to find the arrival times of the seismic waves of Mt. Rinjani in Indonesia. Kitagawa algorithm's is used to detect the seismic P and S-wave. Householder transformation used in the algorithm made it effectively finding the number of change points and parameters of the autoregressive models. The results show that the use of Box-Cox transformation on the variable selection level makes the algorithm works well in detecting the change points. Furthermore, when the basic span of the subinterval is set 200 seconds and the maximum AR order is 20, there are 8 change points which occur at 1601, 2001, 7401, 7601,7801, 8001, 8201 and 9601. Finally, The P and S-wave arrival times are detected at time 1671 and 2045 respectively using a precise detection algorithm.

  15. A physical model study of the travel times and conversion point locations of P-SV converted waves in vertical transversely isotropic media

    Science.gov (United States)

    Tseng, C.

    2013-12-01

    In exploration seismology, subsurface medium commonly exhibits anisotropy, characterized by a vertical transversely isotropic (VTI) model. Due to the need of exploring small reservoirs in complex structures, the seismic exploration is extended to deal with anisotropic media. The P-S converted wave seismic exploration is a relatively inexpensive, broadly applicable, and effective way to obtain the S-wave information of the medium. In anisotropic traveltime analysis, the moveout curve of horizontal P-SV event can help to determine the ratio of the P- and SV-wave vertical velocities, the normal moveout (NMO) velocity of SV-waves, and the anisotropy parameters. The P-SV conversion point (CP) location is of great importance to P-SV data binning, NMO corrections and common conversion point (CCP) stacking, and the anisotropy has a more significant effect on the conversion point location than on the moveout. In this study, we attempt to inspect the theoretical non-hyperbolic moveout and CP equations for the P-SV waves reflected from a VTI layer by numerical calculations and physical modeling. We are also interested in visualizing the variations of the conversion point locations from a designed VTI medium. In traveltime analysis, the theoretical moveout curve is accurate up to offsets about one and a half times the reflector depth (x/z=1.5). However, the moveout curve computed by Fermat's principle fits well to the physical data. The CP locations of P-SV waves are similar to those calculated by Fermat's principle and theoretical CP equation, which are verified by the physical modeling.

  16. Plant based dietary supplement increases urinary pH

    Directory of Open Access Journals (Sweden)

    Rao A Venket

    2008-11-01

    Full Text Available Abstract Background Research has demonstrated that the net acid load of the typical Western diet has the potential to influence many aspects of human health, including osteoporosis risk/progression; obesity; cardiovascular disease risk/progression; and overall well-being. As urinary pH provides a reliable surrogate measure for dietary acid load, this study examined whether a plant-based dietary supplement, one marketed to increase alkalinity, impacts urinary pH as advertised. Methods Using pH test strips, the urinary pH of 34 healthy men and women (33.9 +/- 1.57 y, 79.3 +/- 3.1 kg was measured for seven days to establish a baseline urinary pH without supplementation. After this initial baseline period, urinary pH was measured for an additional 14 days while participants ingested the plant-based nutritional supplement. At the end of the investigation, pH values at baseline and during the treatment period were compared to determine the efficacy of the supplement. Results Mean urinary pH statistically increased (p = 0.03 with the plant-based dietary supplement. Mean urinary pH was 6.07 +/- 0.04 during the baseline period and increased to 6.21 +/- 0.03 during the first week of treatment and to 6.27 +/- 0.06 during the second week of treatment. Conclusion Supplementation with a plant-based dietary product for at least seven days increases urinary pH, potentially increasing the alkalinity of the body.

  17. 125 GHz sine wave gating InGaAs/InP single-photon detector with a monolithically integrated readout circuit

    Science.gov (United States)

    Jiang, Wen-Hao; Liu, Jian-Hong; Liu, Yin; Jin, Ge; Zhang, Jun; Pan, Jian-Wei

    2017-12-01

    InGaAs/InP single-photon detectors (SPDs) are the key devices for applications requiring near-infrared single-photon detection. Gating mode is an effective approach to synchronous single-photon detection. Increasing gating frequency and reducing module size are important challenges for the design of such detector system. Here we present for the first time an InGaAs/InP SPD with 1.25 GHz sine wave gating using a monolithically integrated readout circuit (MIRC). The MIRC has a size of 15 mm * 15 mm and implements the miniaturization of avalanche extraction for high-frequency sine wave gating. In the MIRC, low-pass filters and a low-noise radio frequency amplifier are integrated based on the technique of low temperature co-fired ceramic, which can effectively reduce the parasitic capacitance and extract weak avalanche signals. We then characterize the InGaAs/InP SPD to verify the functionality and reliability of MIRC, and the SPD exhibits excellent performance with 27.5 % photon detection efficiency, 1.2 kcps dark count rate, and 9.1 % afterpulse probability at 223 K and 100 ns hold-off time. With this MIRC, one can further design miniaturized high-frequency SPD modules that are highly required for practical applications.

  18. Associations of electrocardiographic P-wave characteristics with left atrial function, and diffuse left ventricular fibrosis defined by cardiac magnetic resonance: The PRIMERI Study.

    Science.gov (United States)

    Tiffany Win, Theingi; Ambale Venkatesh, Bharath; Volpe, Gustavo J; Mewton, Nathan; Rizzi, Patricia; Sharma, Ravi K; Strauss, David G; Lima, Joao A; Tereshchenko, Larisa G

    2015-01-01

    Abnormal P-terminal force in lead V1 (PTFV1) is associated with an increased risk of heart failure, stroke, atrial fibrillation, and death. Our goal was to explore associations of left ventricular (LV) diffuse fibrosis with left atrial (LA) function and electrocardiographic (ECG) measures of LA electrical activity. Patients without atrial fibrillation (n = 91; mean age 59.5 years; 61.5% men; 65.9% white) with structural heart disease (spatial QRS-T angle ≥105° and/or Selvester QRS score ≥5 on ECG) but LV ejection fraction >35% underwent clinical evaluation, cardiac magnetic resonance, and resting ECG. LA function indices were obtained by multimodality tissue tracking using 2- and 4-chamber long-axis images. T1 mapping and late gadolinium enhancement were used to assess diffuse LV fibrosis and presence of scar. P-prime in V1 amplitude (PPaV1) and duration (PPdV1), averaged P-wave-duration, PR interval, and P-wave axis were automatically measured using 12 SLTM algorithm. PTFV1 was calculated as a product of PPaV1 and PPdV1. In linear regression after adjustment for demographic characteristics, body mass index, maximum LA volume index, presence of scar, and LV mass index, each decile increase in LV interstitial fibrosis was associated with 0.76 mV*ms increase in negative abnormal PTFV1 (95% confidence interval [CI] -1.42 to -0.09; P = .025), 15.3 ms prolongation of PPdV1 (95% CI 6.9 to 23.8; P = .001) and 5.4 ms prolongation of averaged P-duration (95% CI 0.9-10.0; P = .020). LV fibrosis did not affect LA function. PPaV1 and PTFV1 were associated with an increase in LA volumes and decrease in LA emptying fraction and LA reservoir function. LV interstitial fibrosis is associated with abnormal PTFV1, prolonged PPdV1, and P-duration, but does not affect LA function. Copyright © 2015 Heart Rhythm Society. All rights reserved.

  19. Scaling relation between earthquake magnitude and the departure time from P wave similar growth

    Science.gov (United States)

    Noda, Shunta; Ellsworth, William L.

    2016-01-01

    We introduce a new scaling relation between earthquake magnitude (M) and a characteristic of initial P wave displacement. By examining Japanese K-NET data averaged in bins partitioned by Mw and hypocentral distance, we demonstrate that the P wave displacement briefly displays similar growth at the onset of rupture and that the departure time (Tdp), which is defined as the time of departure from similarity of the absolute displacement after applying a band-pass filter, correlates with the final M in a range of 4.5 ≤ Mw ≤ 7. The scaling relation between Mw and Tdp implies that useful information on the final M can be derived while the event is still in progress because Tdp occurs before the completion of rupture. We conclude that the scaling relation is important not only for earthquake early warning but also for the source physics of earthquakes.

  20. Sensory disturbances, inhibitory deficits, and the P50 wave in schizophrenia

    Directory of Open Access Journals (Sweden)

    Vlcek P

    2014-07-01

    Full Text Available Premysl Vlcek,1 Petr Bob,1,2 Jiri Raboch1 1Center for Neuropsychiatric Research of Traumatic Stress, Department of Psychiatry and UHSL, First Faculty of Medicine, Charles University, Prague, Czech Republic; 2Central European Institute of Technology (CEITEC, Masaryk University, Brno, Czech Republic Abstract: Sensory gating disturbances in schizophrenia are often described as an inability to filter redundant sensory stimuli that typically manifest as inability to gate neuronal responses related to the P50 wave, characterizing a decreased ability of the brain to inhibit various responses to insignificant stimuli. It implicates various deficits of perceptual and attentional functions, and this inability to inhibit, or “gate”, irrelevant sensory inputs leads to sensory and information overload that also may result in neuronal hyperexcitability related to disturbances of habituation mechanisms. These findings seem to be particularly important in the context of modern electrophysiological and neuroimaging data suggesting that the filtering deficits in schizophrenia are likely related to deficits in the integrity of connections between various brain areas. As a consequence, this brain disintegration produces disconnection of information, disrupted binding, and disintegration of consciousness that in terms of modern neuroscience could connect original Bleuler’s concept of “split mind” with research of neural information integration. Keywords: event-related potential, information overload, inhibition, P50 wave, schizophrenia, splitting

  1. Wave Tank Studies of Strong Modulation of Wind Ripples Due To Long Waves

    Science.gov (United States)

    Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.

    Modulation of wind capillary-gravity ripples due to long waves has been studied in wave tank experiment at low wind speeds using Ka-band radar. The experiments were carried out both for clean water and the water surface covered with surfactant films. It is obtained that the modulation of radar signals is quite strong and can increase with surfactant concentration and fetch. It is shown that the hydrodynamic Modulation Transfer Function (MTF) calculated for free wind ripples and taking into account the kinematic (straining) effect, variations of the wind stress and variations of surfactant concentration strongly underestimates experimental MTF-values. The effect of strong modulation is assumed to be connected with nonlinear harmonics of longer dm-cm- scale waves - bound waves ("parasitic ripples"). The intensity of bound waves depends strongly on the amplitude of decimetre-scale waves, therefore even weak modulation of the dm-scale waves due to long waves results to strong ("cascade") modulation of bound waves. Modulation of the system of "free/bound waves" is estimated using results of wave tank studies of bound waves generation and is shown to be in quali- tative agreement with experiment. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).

  2. Three-nucleon force contribution in the distorted-wave theory of (d ,p ) reactions

    Science.gov (United States)

    Timofeyuk, N. K.

    2018-05-01

    The distorted-wave theory of A (d ,p )B reactions, widely used to analyze experimental data, is based on a Hamiltonian that includes only two-nucleon interactions. However, numerous studies of few-nucleon systems and many modern developments in nuclear structure theory show the importance of the three-nucleon (3 N ) force. The purpose of this paper is to study the contribution of the 3 N force of the simplest possible form to the A (d ,p )B reaction amplitude. This contribution is given by a new term that accounts for the interaction of the neutron and proton in the incoming deuteron with one of the target nucleons. This term involves a new type of nuclear matrix elements containing an infinite number of target excitations in addition to the main part associated with the traditional overlap function between A and B . The nuclear matrix elements are calculated for double-closed shell targets within a mean field theory where target excitations are shown to be equivalent to exchanges between valence and core nucleons. These matrix elements can be readily incorporated into available reaction codes if the 3 N interaction has a spin-independent zero-range form. Distorted-wave calculations are presented for a contact 3 N force with the volume integral fixed by the chiral effective field theory at the next-to-next-to-leading order. For this particular choice, the 3 N contribution is noticeable, especially at high deuteron incident energies. No 3 N effects are seen for incident energies below the Coulomb barrier. The finite range can significantly affect the 3 N contribution to the (d ,p ) cross sections. Finite-range studies require new formal developments and, therefore, their contribution is preliminarily assessed within the plane-wave Born approximation, together with sensitivity to the choice of the deuteron model.

  3. p and d wave neutron strength functions for rare earth nuclei

    International Nuclear Information System (INIS)

    Kononov, V.N.; Yurlov, B.D.

    1978-01-01

    The authors obtained p and d wave neutron strength functions by analysis of average fast neutron radiative capture cross-sections for the isotopes sup(142, 144, 146, 148, 150)Nd, sup(144, 147, 148, 149, 150, 152, 154)Sm, sup(151, 153)Eu, sup(156, 158, 160)Gd and sup(166, 168, 170)Er. The data are compared with results obtained by other authors, with calculations based on the optical model and with computations based on the semi-microscopic approach. (author)

  4. Wave Overtopping of a Barrier Beach

    Science.gov (United States)

    2009-09-01

    but can result in increased dune erosion along Scenic Road as occurred in 1993, 1997, and 2005 (James, 2005). Field data and observations for...factors are equal to 1. The equations for these run-up formulas are parameterized on significant wave height at the toe of the structure as measured in...3 exp C r SS RQ C D HgH γ ⎛ ⎞ = −⎜ ⎟ ⎝ ⎠ 2pξ > where the significant wave height at the toe of the structure, SH and pT are used. Again the

  5. The high exponent limit $p \\to \\infty$ for the one-dimensional nonlinear wave equation

    OpenAIRE

    Tao, Terence

    2009-01-01

    We investigate the behaviour of solutions $\\phi = \\phi^{(p)}$ to the one-dimensional nonlinear wave equation $-\\phi_{tt} + \\phi_{xx} = -|\\phi|^{p-1} \\phi$ with initial data $\\phi(0,x) = \\phi_0(x)$, $\\phi_t(0,x) = \\phi_1(x)$, in the high exponent limit $p \\to \\infty$ (holding $\\phi_0, \\phi_1$ fixed). We show that if the initial data $\\phi_0, \\phi_1$ are smooth with $\\phi_0$ taking values in $(-1,1)$ and obey a mild non-degeneracy condition, then $\\phi$ converges locally uniformly to a piecewis...

  6. Influence of welded boundaries in anelastic media on energy flow, and characteristics of P, S-I, and S-II waves: Observational evidence for inhomogeneous body waves in low-loss solids

    Science.gov (United States)

    Borcherdt, Roger D.; Glassmoyer, Gary; Wennerberg, Leif

    1986-10-01

    A general computer code, developed to calculate anelastic reflection-refraction coefficients, energy flow, and the physical characteristics for general P, S-I, and S-II waves, quantitatively describes physical characteristics for wave fields in anelastic media that do not exist in elastic media. Consideration of wave fields incident on boundaries between anelastic media shows that scattered wave fields experience reductions in phase and energy speeds, increases in maximum attenuation and Q-1, and directions of maximum energy flow distinct from phase propagation. Each of these changes in physical characteristics are shown to vary with angle of incidence. Finite relaxation times for anelastic media result in energy flow due to interaction of superimposed radiation fields and contribute to energy flow across anelastic boundaries for all angles of incidence. Agreement of theoretical and numerical results with laboratory measurements argues for the validity of the theoretical and numerical formulations incorporating inhomogeneous wave fields. The agreement attests to the applicability of the model and helps confirm the existence of inhomogeneous body waves and their associated set of distinct physical characteristics in the earth. The existence of such body waves in layered, low-loss anelastic solids implies the need to reformulate some seismological models of the earth. The exact anelastic formulation for a liquid-solid interface with no low-loss approximations predicts the existence of a range of angles of incidence or an anelastic Rayleigh window, through which significant amounts of energy are transmitted across the boundary. The window accounts for the discrepancy apparent between measured reflection data presented in early textbooks and predictions based on classical elasticity theory. Characteristics of the anelastic Rayleigh window are expected to be evident in certain sets of wide-angle, ocean-bottom reflection data and to be useful in estimating Q-1 for some

  7. Hyperfine structure of the S- and P-wave states of muonic deuterium

    International Nuclear Information System (INIS)

    Martynenko, A. P.; Martynenko, G. A.; Sorokin, V. V.; Faustov, R. N.

    2016-01-01

    Corrections of order α"5 and α"6 to the hyperfine structure of the S- and P-wave states of muonic deuteriumwere calculated on the basis of the quasipotential approach in quantum electrodynamics. Relativistic corrections, vacuum-polarization and deuteron-structure effects, and recoil corrections were taken into account in this calculation. The resulting hyperfine-splitting values can be used in a comparison with experimental data obtained by the CREMA Collaboration.

  8. Tunneling current into the vortex lattice states of s-and p- wave superconductors

    International Nuclear Information System (INIS)

    Kowalewski, L.; Nogala, M.M.; Thomas, M.; Wojciechowski, R.J.

    2000-01-01

    The tunneling current between the metallic tip of a scanning microscope and s- and p-wave superconductors in quantizing magnetic field is investigated. The differential conductance is calculated both as a function of bias voltage at the centre of the vortex line and for varying position of the scanning tunneling microscope tip at a stable voltage. (author)

  9. Calculating qP-wave traveltimes in 2-D TTI media by high-order fast sweeping methods with a numerical quartic equation solver

    Science.gov (United States)

    Han, Song; Zhang, Wei; Zhang, Jie

    2017-09-01

    A fast sweeping method (FSM) determines the first arrival traveltimes of seismic waves by sweeping the velocity model in different directions meanwhile applying a local solver. It is an efficient way to numerically solve Hamilton-Jacobi equations for traveltime calculations. In this study, we develop an improved FSM to calculate the first arrival traveltimes of quasi-P (qP) waves in 2-D tilted transversely isotropic (TTI) media. A local solver utilizes the coupled slowness surface of qP and quasi-SV (qSV) waves to form a quartic equation, and solve it numerically to obtain possible traveltimes of qP-wave. The proposed quartic solver utilizes Fermat's principle to limit the range of the possible solution, then uses the bisection procedure to efficiently determine the real roots. With causality enforced during sweepings, our FSM converges fast in a few iterations, and the exact number depending on the complexity of the velocity model. To improve the accuracy, we employ high-order finite difference schemes and derive the second-order formulae. There is no weak anisotropy assumption, and no approximation is made to the complex slowness surface of qP-wave. In comparison to the traveltimes calculated by a horizontal slowness shooting method, the validity and accuracy of our FSM is demonstrated.

  10. Di-Neutral Pion Production in the Triplet P Wave States of Charmonium

    Energy Technology Data Exchange (ETDEWEB)

    Vidnovic, Theodore, III [Minnesota U.

    2002-12-01

    Fermilab experiment E835 has used proton-antiproton annihilations to perform a search for charmonium in the $\\pi^0 \\pi^0$ final state in the triplet P-wave region (3340-3570 MeV). States with even total angular momentum and positive Parity and C-parity have access to the $\\pi^0 \\pi^0$ final state. An enhancement in the $p\\bar{p} \\to \\pi^0 \\pi^0$ cross section was observed at the $X_{c0}$ resonance. The enhancement was found to be a factor of 20 larger than the expected resonant cross section and was attributed to interference between the $X_{c0}$ and the large non-resonant continuum. The general helicity structure of the $\\pi^0 \\pi^0$ differential cross section was studied and the product of the branching fractions, $Br(p\\bar{p}\\to X_{c0}$ ) x Br($X_{c0} \\to \\pi^0 \\pi^0$ ) = (5.09 ± 0.81(stat) ± 0.25 (sys) x $10^{-7}$ was measured.

  11. Fast T Wave Detection Calibrated by Clinical Knowledge with Annotation of P and T Waves

    Directory of Open Access Journals (Sweden)

    Mohamed Elgendi

    2015-07-01

    Full Text Available Background: There are limited studies on the automatic detection of T waves in arrhythmic electrocardiogram (ECG signals. This is perhaps because there is no available arrhythmia dataset with annotated T waves. There is a growing need to develop numerically-efficient algorithms that can accommodate the new trend of battery-driven ECG devices. Moreover, there is also a need to analyze long-term recorded signals in a reliable and time-efficient manner, therefore improving the diagnostic ability of mobile devices and point-of-care technologies. Methods: Here, the T wave annotation of the well-known MIT-BIH arrhythmia database is discussed and provided. Moreover, a simple fast method for detecting T waves is introduced. A typical T wave detection method has been reduced to a basic approach consisting of two moving averages and dynamic thresholds. The dynamic thresholds were calibrated using four clinically known types of sinus node response to atrial premature depolarization (compensation, reset, interpolation, and reentry. Results: The determination of T wave peaks is performed and the proposed algorithm is evaluated on two well-known databases, the QT and MIT-BIH Arrhythmia databases. The detector obtained a sensitivity of 97.14% and a positive predictivity of 99.29% over the first lead of the validation databases (total of 221,186 beats. Conclusions: We present a simple yet very reliable T wave detection algorithm that can be potentially implemented on mobile battery-driven devices. In contrast to complex methods, it can be easily implemented in a digital filter design.

  12. InP Devices For Millimeter-Wave Monolithic Circuits

    Science.gov (United States)

    Binari, S. C.; Neidert, R. E.; Dietrich, H. B.

    1989-11-01

    High efficiency, mm-wave operation has been obtained from lateral transferred-electron devices (TEDs) designed with a high resistivity region located near the cathode contact. At 29.9 GHz, a CW power output of 29.1 mW with a conversion efficiency of 6.7% has been achieved with cavity-tuned discrete devices. This result represents the highest power output and efficiency of a lateral TED in this frequency range. The lateral devices also had a CW power output of 0.4 mW at 98.5 GHz and 0.9 mW at 75.2 GHz. In addition, a monolithic oscillator incorporating the lateral TED has been demonstrated at 79.9 GHz. InP Schottky-barrier diodes have been fabricated using selective MeV ion implantation into semi-insulating InP substrates. Using Si implantation with energies of up to 6.0 MeV, n+ layers as deep as 3 μm with peak carrier concentrations of 2 x 1018 cm-3 have been obtained. These devices have been evaluated as mixers and detectors at 94 GHz and have demonstrated a conversion loss of 7.6 dB and a zero-bias detector sensitivity as high as 400 mV/mW.

  13. P-wave anisotropic velocity tomography beneath the Japan islands: Large-scale images and details in the Kanto district

    Science.gov (United States)

    Ishise, M.; Koketsu, K.; Miyake, H.; Oda, H.

    2006-12-01

    The Japan islands arc is located in the convergence zone of the North American (NA), Amurian (AM), Pacific (PAC) and Philippine Sea (PHS) plates, and its parts are exposed to various tectonic settings. For example, at the Kanto district in its central part, these four plates directly interact with each, so that disastrous future earthquakes are expected along the plate boundaries and within the inland areas. In order to understand this sort of complex tectonic setting, it is necessary to know the seismological structure in various perspectives. We investigate the seismic velocity structure beneath the Japan islands in view of P-wave anisotropy. We improved a hitherto-known P-wave tomography technique so that the 3-D structure of isotropic and anisotropic velocities and earthquake hypocenter locations are determined from P-wave arrival times of local earthquakes [Ishise and Oda, 2005]. In the tomography technique, P-wave anisotropy is assumed to hold hexagonal symmetry with horizontal symmetry axis. The P-wave arrival times used in this study are complied in the Japan University Network Earthquake Catalog. The results obtained are summarized as follows; (1) the upper crust anisotropy is governed by the present-day stress field arising from the interaction between the plates surrounding the Japan islands arc, (2) the mantle anisotropy is caused by the present-day mantle flow induced by slab subduction and continental plate motion, (3) the old PAC slab keeps its original slab anisotropy which was captured when the plate was formed, while the youngest part of the PHS slab has lost the original anisotropy during its subduction and has gained new anisotropy which is controlled by the present-day stress field. We also carried out a further study on high-resolution seismic tomography for understanding the specific characteristics of the Kanto district. We mostly focused on the elucidation of the dual subduction formed by the PHS and PAC slabs using seismological data

  14. Weak-anisotropy approximations of P-wave phase and ray velocities for anisotropy of arbitrary symmetry

    Czech Academy of Sciences Publication Activity Database

    Farra, V.; Pšenčík, Ivan

    2016-01-01

    Roč. 60, č. 3 (2016), s. 403-418 ISSN 0039-3169 Institutional support: RVO:67985530 Keywords : weak anisotropy * P-wave * phase velocity * ray velocity Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.764, year: 2016

  15. Backward elastic p3He-scattering and high momentum components of 3He wave function

    International Nuclear Information System (INIS)

    Uzikov, Yu.N.

    1998-01-01

    It is shown that owing to a dominance of np-pair transfer mechanism of backward elastic p 3 He-scattering for incident proton kinetic energies T p > 1 GeV the cross section of this process is defined mainly by the values of the Faddeev component of the wave function of 3 He nucleus, φ 23 (q 23 , p 1 ), at high relative momenta q 23 > 0.6 GeV/c of the NN-pair in the 1 S 0 -state and at low spectator momenta p 1 ∼ 0 - 0.2 GeV/c

  16. A novel device for measuring arterial stiffness using finger-toe pulse wave velocity: Validation study of the pOpmètre®.

    Science.gov (United States)

    Alivon, Maureen; Vo-Duc Phuong, Thao; Vignon, Virginie; Bozec, Erwan; Khettab, Hakim; Hanon, Olivier; Briet, Marie; Halimi, Jean-Michel; Hallab, Magid; Plichart, Matthieu; Mohammedi, Kamel; Marre, Michel; Boutouyrie, Pierre; Laurent, Stéphane

    2015-04-01

    The finger-toe pathway could be a good alternative for assessing arterial stiffness conveniently. To evaluate the accuracy of the pOpmètre®--a new device that measures finger-toe pulse wave velocity (ft-PWV). The pOpmètre has two photodiode sensors, positioned on the finger and the toe. Pulse waves are recorded continuously for 20 seconds, and the difference in pulse wave transit time between toe and finger (ft-TT) is calculated. The travelled distance is estimated using subject height. Study 1 compared ft-PWV with carotid-femoral PWV (cf-PWV) obtained by the reference method (SphygmoCor®) in 86 subjects (mean age 53±20 years), including 69 patients with various pathologies and 17 healthy normotensives. Study 2 compared changes in ft-PWV and cf-PWV during a cold pressor test in 10 healthy subjects. Study 3 assessed repeatability in 45 patients. ft-PWV correlated significantly with cf-PWV (R2=0.43; P<0.0001). A better correlation was found in terms of transit time (R2=0.61; P<0.0001). The discrepancy between transit times was related to age. The cold pressor test induced parallel changes in cf-PWV and ft-PWV, with increased aortic stiffness that was reversible during recovery. Intra-session repeatability was very good, with a coefficient of variation of 4.52%. The pOpmètre® allows measurement of arterial stiffness in routine clinical practice. The greatest advantages of ft-PWV are simplicity, rapidity, feasibility, acceptability by patients and correct agreement with the reference technique. Further studies are needed to adjust for bias and to validate the pOpmètre in larger populations. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. Application of the Aero-Hydro-Elastic Model, HAWC2-WAMIT, to Offshore Data from Floating Power Plants Hybrid Wind- and Wave-Energy Test Platform, P37

    DEFF Research Database (Denmark)

    Bellew, Sarah; Yde, Anders; Verelst, David Robert

    2014-01-01

    numerical models, which can combine the aerodynamic, hydrodynamic, structural exibility and mooring components. Very little oshore data exists, however, in order to validate these numerical models. Floating Power Plant are the developers of a oating, hybrid wind- and wave-energy device. The device uses...... the pitching wave energy devices, not only to increase and smooth the power output from the platform, but also to take the energy from the waves in a controlled manner, resulting in a stable platform for the wind turbine and a safe harbour for O&M. They are currently developing the nal design for their rst...... full-scale prototype, the P80, which has a width of 80 m. As part of the development, Floating Power Plant have completed 4 oshore test-phases (totalling over 2 years oshore operation) on a 37 m wide scaled test device, the P37. This paper focuses on the comparison of one of the leading numerical...

  18. Determining Ocean-Bottom Seismometer Orientations from the RHUM-RUM experiment from P-wave and Rayleigh wave polarizations

    Science.gov (United States)

    Scholz, John-Robert; Barruol, Guilhem; Fontaine, Fabrice R.; Sigloch, Karin

    2016-04-01

    sensor orientations. In this study, we analyzed particle motions of P-waves (P-pol) and of Rayleigh waves (R-pol) to quantify the orientation of each of the 57 OBS. We performed 213 polarization measurements based on 35 earthquakes for P-pol, and 381 polarization measurements based on 48 earthquakes for R-pol. This allowed us to successfully determine the North/South orientations for 40 out of 57 OBS: 13 stations were devoid of usable data and 4 stations were too noisy. From twice the standard deviation (95% confidence interval), we estimate the errors between 1° and 20°.

  19. Angular (Gothic) aortic arch leads to enhanced systolic wave reflection, central aortic stiffness, and increased left ventricular mass late after aortic coarctation repair: evaluation with magnetic resonance flow mapping.

    Science.gov (United States)

    Ou, Phalla; Celermajer, David S; Raisky, Olivier; Jolivet, Odile; Buyens, Fanny; Herment, Alain; Sidi, Daniel; Bonnet, Damien; Mousseaux, Elie

    2008-01-01

    We sought to investigate the mechanism whereby a particular deformity of the aortic arch, an angulated Gothic shape, might lead to hypertension late after anatomically successful repair of aortic coarctation. Fifty-five normotensive patients with anatomically successful repair of aortic coarctation and either a Gothic (angulated) or a Romanesque (smooth and rounded) arch were studied with magnetic resonance angiography and flow mapping in both the ascending and descending aortas. Systolic waveforms, central aortic stiffness, and pulse velocity were measured. We hypothesized that arch angulation would result in enhanced systolic wave reflection with loss of energy across the aortic arch, as well as increased central aortic stiffness. Twenty patients were found to have a Gothic, and 35 a Romanesque, arch. Patients with a Gothic arch showed markedly augmented systolic wave reflection (12 +/- 6 vs 5 +/- 0.3 mL, P Gothic arch (5.6 +/- 1.1 vs 4.1 +/- 1 m/s, P Gothic aortic arch is associated with increased systolic wave reflection, as well as increased central aortic stiffness and left ventricular mass index. These findings explain (at least in part) the association between this pattern of arch geometry and late hypertension at rest and on exercise in subjects after coarctation repair.

  20. Effects of Single Dose Energy Drink on QT and P-Wave Dispersion

    OpenAIRE

    Arınç, Hüseyin; Sarli, Bahadir; Baktir, Ahmet Oguz; Yolcu, Mustafa; Ozyildirim, Serhan; Kayardi, Mahmut; Cosgun, Mehmet; Erguzel, Nuri; Gunduz, Huseyin; Uyan, Cihangir

    2013-01-01

    Objective: Aim of this study is to evaluate the cardiac electrophysiological effects of energy drink (Red Bull) on QT and P duration and dispersion on surface electrocardiogram.Methods: Twenty healthy volunteers older than 17 years of age were included the study. Subjects with a cardiac rhythm except sinus rhythm, history of atrial or ventricular arrhythmia, family history of premature sudden cardiac death, palpitations, T-wave abnormalities, QTc interval greater than 440 milliseconds, or tho...

  1. A P-wave velocity model of the upper crust of the Sannio region (Southern Apennines, Italy

    Directory of Open Access Journals (Sweden)

    M. Cocco

    1998-06-01

    Full Text Available This paper describes the results of a seismic refraction profile conducted in October 1992 in the Sannio region, Southern Italy, to obtain a detailed P-wave velocity model of the upper crust. The profile, 75 km long, extended parallel to the Apenninic chain in a region frequently damaged in historical time by strong earthquakes. Six shots were fired at five sites and recorded by a number of seismic stations ranging from 41 to 71 with a spacing of 1-2 km along the recording line. We used a two-dimensional raytracing technique to model travel times and amplitudes of first and second arrivals. The obtained P-wave velocity model has a shallow structure with strong lateral variations in the southern portion of the profile. Near surface sediments of the Tertiary age are characterized by seismic velocities in the 3.0-4.1 km/s range. In the northern part of the profile these deposits overlie a layer with a velocity of 4.8 km/s that has been interpreted as a Mesozoic sedimentary succession. A high velocity body, corresponding to the limestones of the Western Carbonate Platform with a velocity of 6 km/s, characterizes the southernmost part of the profile at shallow depths. At a depth of about 4 km the model becomes laterally homogeneous showing a continuous layer with a thickness in the 3-4 km range and a velocity of 6 km/s corresponding to the Meso-Cenozoic limestone succession of the Apulia Carbonate Platform. This platform appears to be layered, as indicated by an increase in seismic velocity from 6 to 6.7 km/s at depths in the 6-8 km range, that has been interpreted as a lithological transition from limestones to Triassic dolomites and anhydrites of the Burano formation. A lower P-wave velocity of about 5.0-5.5 km/s is hypothesized at the bottom of the Apulia Platform at depths ranging from 10 km down to 12.5 km; these low velocities could be related to Permo-Triassic siliciclastic deposits of the Verrucano sequence drilled at the bottom of the Apulia

  2. Automatic detection of P- and S-wave arrival times: new strategies based on the modified fractal method and basic matching pursuit.

    Science.gov (United States)

    Chi Durán, R. K.; Comte, D.; Diaz, M. A.; Silva, J. F.

    2017-12-01

    In this work, new strategies for automatic identification of P- and S-wave arrival times from digital recorded local seismograms are proposed and analyzed. The database of arrival times previously identified by a human reader was compared with automatic identification techniques based on the Fourier transformation in reduced time (spectrograms), fractal analysis, and the basic matching pursuit algorithm. The first two techniques were used to identify the P-wave arrival times, while the third was used for the identification of the S-wave. For validation, the results were compared with the short-time average over long-time average (STA/LTA) of Rietbrock et al., Geophys Res Lett 39(8), (2012) for the database of aftershocks of the 2010 Maule Mw = 8.8 earthquake. The identifiers proposed in this work exhibit good results that outperform the STA/LTA identifier in many scenarios. The average difference from the reference picks (times obtained by the human reader) in P- and S-wave arrival times is 1 s.

  3. New data on $K^{-}p \\rightarrow K^{-}p $and $\\overline{K}^{0}n$ and a partial wave analysis between 1840 and 2234 MeV center of mass energy

    CERN Document Server

    Hemingway, Richard J; Harmsen D M; Kiesling, C; Petersen, J O; Plane, D E; Putzer, A; Wittex, W; Eades, J no 1; Harmsen D M no 1; Hemingway, R J no 1; Kiesling, C no 3; Petersen, J O no 1; Plane, D E no 3; Putzer, A no 2; Wittex, W no 3

    1975-01-01

    The angular distributions of the reactions K/sup -/p to K/sup -/p and K/sup -/p to K/sup 0/n have been measured at 23 incident K/sup -/ momenta between 1.136 and 1.798 GeV/c using the bubble chamber technique. These data, together with other published data on the same reactions, including K/sup -/p polarisations, KN total cross sections and measurements of Re f(0)/Im f(0), have been analysed in terms of partial-wave amplitudes. Resonance behaviour is confirmed for the P /sub 03/ partial wave at 1890 MeV. The resonance parameters of the F /sub 15/(1915), F/sub 17/(2030) and G/sub 07/(2100) have been redetermined. No evidence has been found for new resonances coupling significantly to KN in the energy region explored. (24 refs).

  4. Increased Frame Rate for Plane Wave Imaging Without Loss of Image Quality

    DEFF Research Database (Denmark)

    Jensen, Jonas; Stuart, Matthias Bo; Jensen, Jørgen Arendt

    2015-01-01

    Clinical applications of plane wave imaging necessitate the creation of high-quality images with the highest possible frame rate for improved blood flow tracking and anatomical imaging. However, linear array transducers create grating lobe artefacts, which degrade the image quality especially...... in the near field for λ-pitch transducers. Artefacts can only partly be suppressed by increasing the number of emissions, and this paper demonstrates how the frame rate can be increased without loss of image quality by using λ/2-pitch transducers. The number of emissions and steering angles are optimized...

  5. Laser driven detonation waves above a solid target

    International Nuclear Information System (INIS)

    Emmony, D.C.

    1975-01-01

    The interaction of a TEA CO 2 laser pulse with a carbon target in an argon atmosphere (p approximately mmHg) is shown to produce a double detonation wave system. The laser driven detonation wave becomes the most important as the gas pressure is increased. Calculation of the energy in the detonation waves is in good agreement with the incident laser energy at different times during the main laser pulse and the long tail. The observation of the incident laser detonation wave accounts for the anomalous energies reported previously. (Auth.)

  6. Higher Fock states and power counting in exclusive P-wave quarkonium decays

    CERN Document Server

    Bolz, J; Schuler, G A; Bolz, Jan; Kroll, Peter; Schuler, Gerhard A.

    1998-01-01

    Exclusive processes at large momentum transfer Q factor into perturbatively calculable short-distance parts and long-distance hadronic wave functions. Usually, only contributions from the leading Fock states have to be included to leading order in 1/Q. We show that for exclusive decays of P-wave quarkonia the contribution from the next-higher Fock state |Q Qbar g> contributes at the same order in 1/Q. We investigate how the constituent gluon attaches to the hard process in order to form colour-singlet final-state hadrons and argue that a single additional long-distance factor is sufficient to parametrize the size of its contribution. Incorporating transverse degrees of freedom and Sudakov factors, our results are perturbatively stable in the sense that soft phase-space contributions are largely suppressed. Explicit calculations yield good agreement with data on chi_{c J} decays into pairs of pions, kaons, and etas. We also comment on J/psi decays into two pions.

  7. Phenomenological study of the p p →π+p n reaction

    Science.gov (United States)

    Fäldt, G.; Wilkin, C.

    2018-02-01

    Fully constrained bubble chamber data on the p p →π+p n and p p →π+d reactions are used to investigate the ratio of the counting rates for the two processes as function of the p n excitation energy Q . Though it is important to include effects associated with the p -wave nature of pion production, the data are insufficient to establish unambiguously the dependence on Q . The angular distributions show the presence of higher partial waves which seem to be anomalously large at small Q . The dispersion relation method to determine scattering lengths is extended to encompass cases where, as for the p p →π+p n reaction, there is a bound state and, in a test example, it is shown that the values deduced for the low-energy neutron-proton scattering parameters are significantly influenced by the pion p -wave behavior.

  8. The effects of core-reflected waves on finite fault inversions with teleseismic body wave data

    Science.gov (United States)

    Qian, Yunyi; Ni, Sidao; Wei, Shengji; Almeida, Rafael; Zhang, Han

    2017-11-01

    Teleseismic body waves are essential for imaging rupture processes of large earthquakes. Earthquake source parameters are usually characterized by waveform analyses such as finite fault inversions using only turning (direct) P and SH waves without considering the reflected phases from the core-mantle boundary (CMB). However, core-reflected waves such as ScS usually have amplitudes comparable to direct S waves due to the total reflection from the CMB and might interfere with the S waves used for inversion, especially at large epicentral distances for long duration earthquakes. In order to understand how core-reflected waves affect teleseismic body wave inversion results, we develop a procedure named Multitel3 to compute Green's functions that contain turning waves (direct P, pP, sP, direct S, sS and reverberations in the crust) and core-reflected waves (PcP, pPcP, sPcP, ScS, sScS and associated reflected phases from the CMB). This ray-based method can efficiently generate synthetic seismograms for turning and core-reflected waves independently, with the flexibility to take into account the 3-D Earth structure effect on the timing between these phases. The performance of this approach is assessed through a series of numerical inversion tests on synthetic waveforms of the 2008 Mw7.9 Wenchuan earthquake and the 2015 Mw7.8 Nepal earthquake. We also compare this improved method with the turning-wave only inversions and explore the stability of the new procedure when there are uncertainties in a priori information (such as fault geometry and epicentre location) or arrival time of core-reflected phases. Finally, a finite fault inversion of the 2005 Mw8.7 Nias-Simeulue earthquake is carried out using the improved Green's functions. Using enhanced Green's functions yields better inversion results as expected. While the finite source inversion with conventional P and SH waves is able to recover large-scale characteristics of the earthquake source, by adding PcP and ScS phases

  9. THE EFFECT OF A TWISTED MAGNETIC FIELD ON THE PERIOD RATIO P{sub 1}/P{sub 2} OF NONAXISYMMETRIC MAGNETOHYDRODYNAMIC WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Karami, K. [Department of Physics, University of Kurdistan, Pasdaran Street, Sanandaj (Iran, Islamic Republic of); Bahari, K., E-mail: KKarami@uok.ac.ir, E-mail: K.Bahari@razi.ac.ir [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of)

    2012-10-01

    We consider nonaxisymmetric magnetohydrodynamic (MHD) modes in a zero-beta cylindrical compressible thin magnetic flux tube modeled as a twisted core surrounded by a magnetically twisted annulus, with both embedded in a straight ambient external field. The dispersion relation is derived and solved analytically and numerically to obtain the frequencies of the nonaxisymmetric MHD waves. The main result is that the twisted magnetic annulus does affect the period ratio P{sub 1}/P{sub 2} of the kink modes. For the kink modes, the magnetic twist in the annulus region can achieve deviations from P{sub 1}/P{sub 2} = 2 of the same order of magnitude as in the observations. Furthermore, the effect of the internal twist on the fluting modes is investigated.

  10. Improvements on Semi-Classical Distorted-Wave model

    Energy Technology Data Exchange (ETDEWEB)

    Sun Weili; Watanabe, Y.; Kuwata, R. [Kyushu Univ., Fukuoka (Japan); Kohno, M.; Ogata, K.; Kawai, M.

    1998-03-01

    A method of improving the Semi-Classical Distorted Wave (SCDW) model in terms of the Wigner transform of the one-body density matrix is presented. Finite size effect of atomic nuclei can be taken into account by using the single particle wave functions for harmonic oscillator or Wood-Saxon potential, instead of those based on the local Fermi-gas model which were incorporated into previous SCDW model. We carried out a preliminary SCDW calculation of 160 MeV (p,p`x) reaction on {sup 90}Zr with the Wigner transform of harmonic oscillator wave functions. It is shown that the present calculation of angular distributions increase remarkably at backward angles than the previous ones and the agreement with the experimental data is improved. (author)

  11. Imaging the Mediterranean upper mantle by p- wave travel time tomography

    Directory of Open Access Journals (Sweden)

    A. Morelli

    1997-06-01

    Full Text Available Travel times of P-waves in the Euro-Mediterranean region show strong and consistent lateral variations, which can be associated to structural heterogeneity in the underlying crust and mantle. We analyze regional and tele- seismic data from the International Seismological Centre data base to construct a three-dimensional velocity model of the upper mantle. We parameterize the model by a 3D grid of nodes -with approximately 50 km spacing -with a linear interpolation law, which constitutes a three-dimensional continuous representation of P-wave velocity. We construct summary travel time residuals between pairs of cells of the Earth's surface, both inside our study area and -with a broader spacing -on the whole globe. We account for lower mantle heterogeneity outside the modeled region by using empirical corrections to teleseismic travel times. The tomo- graphic images show generai agreement with other seismological studies of this area, with apparently higher detail attained in some locations. The signature of past and present lithospheric subduction, connected to Euro- African convergence, is a prominent feature. Active subduction under the Tyrrhenian and Hellenic arcs is clearly imaged as high-velocity bodies spanning the whole upper mantle. A clear variation of the lithospheric structure beneath the Northem and Southern Apennines is observed, with the boundary running in correspon- dence of the Ortona-Roccamonfina tectonic lineament. The western section of the Alps appears to have better developed roots than the eastern, possibly reflecting à difference in past subduction of the Tethyan lithosphere and subsequent continental collision.

  12. Computational study on full-wave inversion based on the elastic wave-equation; Dansei hado hoteishiki full wave inversion no model keisan ni yoru kento

    Energy Technology Data Exchange (ETDEWEB)

    Uesaka, S [Kyoto University, Kyoto (Japan). Faculty of Engineering; Watanabe, T; Sassa, K [Kyoto University, Kyoto (Japan)

    1997-05-27

    Algorithm is constructed and a program developed for a full-wave inversion (FWI) method utilizing the elastic wave equation in seismic exploration. The FWI method is a method for obtaining a physical property distribution using the whole observed waveforms as the data. It is capable of high resolution which is several times smaller than the wavelength since it can handle such phenomena as wave reflection and dispersion. The method for determining the P-wave velocity structure by use of the acoustic wave equation does not provide information about the S-wave velocity since it does not consider S-waves or converted waves. In an analysis using the elastic wave equation, on the other hand, not only P-wave data but also S-wave data can be utilized. In this report, under such circumstances, an inverse analysis algorithm is constructed on the basis of the elastic wave equation, and a basic program is developed. On the basis of the methods of Mora and of Luo and Schuster, the correction factors for P-wave and S-wave velocities are formulated directly from the elastic wave equation. Computations are performed and the effects of the hypocenter frequency and vibration transmission direction are examined. 6 refs., 8 figs.

  13. Boson-triboson Scattering with Yamaguchi potential. 2. Inclusion of additional p-wave component for the 3+1-subamplitude

    International Nuclear Information System (INIS)

    Matsui, Yoshiko

    1999-01-01

    In order to investigate the p-wave contribution from the 3+1-subamplitude in the S-wave phase shift for boson-triboson elastic scattering when the Yamaguchi potential for the two-body interaction is assumed, the Faddeev-Osborn equation for a system of four identical bosons in solved numerically by extending the previous calculation to include the p-wave component for the 3+1-subamplitude. The results obtained closely resemble the previous results. The calculated phase shift generally has the standard behavior of the two-body phase shift for a loosely bound state and has further characteristic behavior represented by a valley witha peak as fine structure. The phase shift obtained in the present calculation has a higher peak and a deeper valley than the previous one, while the positions of the peak and the valley in the two sets of results agree precisely. Thus the calculated resonance energies are the same as those obtained in the previous result. (author)

  14. 3D elastic full-waveform inversion for OBC data using the P-wave excitation amplitude

    KAUST Repository

    Oh, Juwon

    2017-08-17

    We suggest a fast and efficient 3D elastic full waveform inversion (FWI) algorithm based on the excitation amplitude (maximum energy arrival) of the P-wave in the source wavefield. It evaluates the gradient direction significantly faster than its conventional counterpart. In addition, it removes the long-wavelength artifacts from the gradient, which are often originated from SS correlation process. From these advantages, the excitation approach offers faster convergence not only for the S wave velocity, but also for the entire process of multi-parameter inversion, compared to the conventional FWI. The feasibility of the proposed method is demonstrated through the synthetic Marmousi and a real OBC data from North Sea.

  15. 3D elastic full-waveform inversion for OBC data using the P-wave excitation amplitude

    KAUST Repository

    Oh, Juwon; Kalita, Mahesh; Alkhalifah, Tariq Ali

    2017-01-01

    We suggest a fast and efficient 3D elastic full waveform inversion (FWI) algorithm based on the excitation amplitude (maximum energy arrival) of the P-wave in the source wavefield. It evaluates the gradient direction significantly faster than its conventional counterpart. In addition, it removes the long-wavelength artifacts from the gradient, which are often originated from SS correlation process. From these advantages, the excitation approach offers faster convergence not only for the S wave velocity, but also for the entire process of multi-parameter inversion, compared to the conventional FWI. The feasibility of the proposed method is demonstrated through the synthetic Marmousi and a real OBC data from North Sea.

  16. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter; Brorsen, Michael

    Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004.......Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004....

  17. Low-lying S-wave and P-wave dibaryons in a nodal structure analysis

    International Nuclear Information System (INIS)

    Liu Yuxin; Li Jingsheng; Bao Chengguang

    2003-01-01

    The inherent nodal surface structure analysis approach is proposed for six-quark clusters with u, d, and s quarks. The wave functions of the six-quark clusters are classified, and the contribution of the hidden-color channels are discussed. The quantum numbers and configurations of the wave functions of the low-lying dibaryons are obtained. The states [ΩΩ] (0,0 + ) , [ΩΩ] (0,2 - ) , [Ξ * Ω] (1/2,0 + ) , and [Σ * Σ * ] (0,4 - ) and the hidden-color channel states with the same quantum numbers are proposed to be the candidates of experimentally observable dibaryons

  18. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star....

  19. Geological formation characterisation by acoustic waves

    International Nuclear Information System (INIS)

    Mari, J.L.; Gaudiani, P.; Delay, J.

    2010-01-01

    the source. It is given by the following relationship: Ic = (A2 + A3) / A1. We present two field examples. The results obtained with the first acoustic data set show a constant offset section in the 330 - 390 m depth interval, the P velocity log with its associated standard deviation. The Std is used to estimate the uncertainties associated with the log. The amplitude log and the shape index log Ic (c), the S velocity log computed by the hybrid method and the Poisson's ratio log are shown too. Poisson's ratio log points out an anomalous zone at a depth of 343 - 347 m associated with a strong Ic anomaly, a decrease of the amplitude of refracted P wave. The Ic index has detected a thin shaly layer with a large change in the borehole diameter. The strong change in the signal shape is introduced by the interference between the refracted P wave and the reflected refracted P wave at the level of the shaly layer. The interference leads to an increase of the std associated with the velocity log (V P ). The shape index is used here to detect wave interferences. The phenomena occur in presence of fractures. A second example illustrates that point. The acoustic data have been recorded in a well drilled in a fractured granite formation. The processing and the analysis of the data have been described in detail by Mari et al. (1996). It shows a constant offset section, the picked times and the amplitudes associated with the 3 first phases of the refracted P wave which are used to compute the shape index. The acoustic results are compared with those obtained by the fracturing analysis done on cores (fracture Index ). The synthesis of these observations demonstrated the importance of acoustic coring for the identification of potentially circulating structures and for assessing their productivity. The presented examples have shown that the full wave form acoustic logging allows a quantitative evaluation of the geological formation based on conventional logs (formation

  20. Relativistic electron beam acceleration by cascading nonlinear Landau damping of electromagnetic waves in a plasma

    International Nuclear Information System (INIS)

    Sugaya, R.; Ue, A.; Maehara, T.; Sugawa, M.

    1996-01-01

    Acceleration and heating of a relativistic electron beam by cascading nonlinear Landau damping involving three or four intense electromagnetic waves in a plasma are studied theoretically based on kinetic wave equations and transport equations derived from relativistic Vlasov endash Maxwell equations. Three or four electromagnetic waves excite successively two or three nonresonant beat-wave-driven relativistic electron plasma waves with a phase velocity near the speed of light [v p =c(1-γ -2 p ) 1/2 , γ p =ω/ω pe ]. Three beat waves interact nonlinearly with the electron beam and accelerate it to a highly relativistic energy γ p m e c 2 more effectively than by the usual nonlinear Landau damping of two electromagnetic waves. It is proved that the electron beam can be accelerated to more highly relativistic energy in the plasma whose electron density decreases temporally with an appropriate rate because of the temporal increase of γ p . copyright 1996 American Institute of Physics

  1. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Andersen, Thomas Lykke

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star....

  2. Whole-mantle P-wave velocity structure and azimuthal anisotropy

    Science.gov (United States)

    Yamamoto, Y.; Zhao, D.

    2009-12-01

    There are some hotspot volcanoes on Earth, such as Hawaii and Iceland. The mantle plume hypothesis was proposed forty years ago to explain hotspot volcanoes (e.g., Wilson, 1963; Morgan, 1971). Seismic tomography is a powerful technique to detect mantle plumes and determine their detailed structures. We determined a new whole-mantle 3-D P-wave velocity model (Tohoku model) using a global tomography method (Zhao, 2004, 2009). A flexible-grid approach with a grid interval of ~200 km is adopted to conduct the tomographic inversion. Our model shows that low-velocity (low-V) anomalies with diameters of several hundreds of kilometers are visible from the core-mantle boundary (CMB) to the surface under the major hotspot regions. Under South Pacific where several hotspots including Tahiti exist, there is a huge low-V anomaly from the CMB to the surface. This feature is consistent with the previous models. We conducted extensive resolution tests in order to understand whether this low-V anomaly shows a single superplume or a plume cluster. Unfortunately this problem is still not resolved because the ray path coverage in the mantle under South Pacific is not good enough. A network of ocean bottom seismometers is necessary to solve this problem. To better understand the whole-mantle structure and dynamics, we also conducted P-wave tomographic inversions for the 3-D velocity structure and azimuthal anisotropy. At each grid node there are three unknown parameters: one represents the isotropic velocity, the other two represent the azimuthal anisotropy. Our results show that in the shallow part of the mantle (Japan trench axis. In the Tonga subduction zone, the FVD is also perpendicular to the trench axis. Under the Tibetan region the FVD is NE-SW, which is parallel to the direction of the India-Asia collision. In the deeper part of the upper mantle and in the lower mantle, the amplitude of anisotropy is reduced. One interesting feature is that the FVD aligns in a radiated fashion

  3. Longitudinal evaluation of P-wave dispersion and P-wave maximum in children after transcatheter device closure of secundum atrial septal defect.

    Science.gov (United States)

    Grignani, Robert Teodoro; Tolentino, Kim Martin; Rajgor, Dimple Dayaram; Quek, Swee Chye

    2015-06-01

    Transcatheter device closure of the secundum atrial septal defect (ASD) in children prevents atrial arrhythmias in older age. However, the benefits of favourable atrial electrocardiographic markers in these children remain elusive. We aimed to review the electrocardiographic markers of atrial activity in a longitudinal fashion. We retrospectively reviewed longitudinal data of all children who underwent transcatheter device closure at the National University Hospital between 2004 and 2013. The inclusion criteria included the presence of a secundum-type ASD with left to right shunt and evidence of increased right ventricular volume load (Q p/Q s ratio >1.5 and/or right ventricular dilatation). A total of 25 patients with a mean follow-up of 44.7 ± 33.47 (7.3-117.4) months were included. P maximum and P dispersion decreased at 2 months, P amplitude at 1 week and remained so until last follow-up. A positive trend was seen with a correlation coefficient of +0.12 for P maximum, +0.08 for P dispersion and 0.34 for P amplitude. There was a higher baseline P amplitude and P dispersion in patients who were older than 10 years and a non-significant trend to support an increase in both P maximum (71.0 ± 8.8 vs. 73.2 ± 12.7), P dispersion (17.0 ± 6.5 vs. 22.0 ± 11.3) and P amplitude (0.88 ± 0.25 vs. 1.02 ± 0.23) in patients with an ASD more than 15 mm compared with an ASD <15 mm. There is reduction in both P maximum and P dispersion as early as 2 months, which persisted on follow-up. Earlier closure may result in more favourable electrocardiographic results.

  4. Design wave estimation considering directional distribution of waves

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; Deo, M.C

    .elsevier.com/locate/oceaneng Technical Note Design wave estimation considering directional distribution of waves V. Sanil Kumar a,C3 , M.C. Deo b a OceanEngineeringDivision,NationalInstituteofOceanography,Donapaula,Goa-403004,India b Civil... of Physical Oceanography Norway, Report method for the routine 18, 1020–1034. ocean waves. Division of No. UR-80-09, 187 p. analysis of pitch and roll Conference on Coastal Engineering, 1. ASCE, Taiwan, pp. 136–149. Deo, M.C., Burrows, R., 1986. Extreme wave...

  5. Entanglement entropy in a holographic p-wave superconductor model

    Directory of Open Access Journals (Sweden)

    Li-Fang Li

    2015-05-01

    Full Text Available In a recent paper, arXiv:1309.4877, a holographic p-wave model has been proposed in an Einstein–Maxwell-complex vector field theory with a negative cosmological constant. The model exhibits rich phase structure depending on the mass and the charge of the vector field. We investigate the behavior of the entanglement entropy of dual field theory in this model. When the above two model parameters change, we observe the second order, first order and zeroth order phase transitions from the behavior of the entanglement entropy at some intermediate temperatures. These imply that the entanglement entropy can indicate not only the occurrence of the phase transition, but also the order of the phase transition. The entanglement entropy is indeed a good probe to phase transition. Furthermore, the “retrograde condensation” which is a sub-dominated phase is also reflected on the entanglement entropy.

  6. Entanglement entropy in a holographic p-wave superconductor model

    Energy Technology Data Exchange (ETDEWEB)

    Li, Li-Fang, E-mail: lilf@itp.ac.cn [State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); Cai, Rong-Gen, E-mail: cairg@itp.ac.cn [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Li, Li, E-mail: liliphy@itp.ac.cn [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Shen, Chao, E-mail: sc@nssc.ac.cn [State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-05-15

    In a recent paper, (arXiv:1309.4877), a holographic p-wave model has been proposed in an Einstein–Maxwell-complex vector field theory with a negative cosmological constant. The model exhibits rich phase structure depending on the mass and the charge of the vector field. We investigate the behavior of the entanglement entropy of dual field theory in this model. When the above two model parameters change, we observe the second order, first order and zeroth order phase transitions from the behavior of the entanglement entropy at some intermediate temperatures. These imply that the entanglement entropy can indicate not only the occurrence of the phase transition, but also the order of the phase transition. The entanglement entropy is indeed a good probe to phase transition. Furthermore, the “retrograde condensation” which is a sub-dominated phase is also reflected on the entanglement entropy.

  7. Séparation des ondes P et S à l'aide de la matrice spectrale avec informations à priori The Separation of P and S Waves Using the Spectral Matrix with a Priori Information

    Directory of Open Access Journals (Sweden)

    Mari J. L.

    2006-11-01

    out in two steps: (a First step: Realignment of the data, according to an apparent velocity model given a priori or introduced by picking, to give to the wave Wi(f an infinite apparent velocity. (b Second step: Limitation of the recording time in a time window centered on the wave to be extracted so as to minimize the interference of the other waves. The average applied to calculate the matrix is a high frequency average and a low distance average to preserve the variation in the character of the wave (phase and amplitude. The first eigenvector of the spectral matrix thus estimated represents the wave vector Si(f of the desired wave Wi (f. To extract p waves, it is necessary to calculate p matrices. This gives a set of normalized vectors Si(f for i = 1 to p. We shall apply this type of treatment to seismic data of the VSP type, recorded in a well drilled on a complex geological structure. Presentation of the data - The VSP consists in 48 measurement points located between the depths of 1050 and 1755 m, at intervals of 15 m. The source is a vertical vibrator, transmitting a vibroseismic signal in the frequency band 14 to 125 Hz, over a duration of 8 s. The source is offset 654 m from the wellhead. The average number of vibrations per measurement point is 3. The well geophone is the Schlumberger SAT. C probe, equipped with a system of three gimbal-mounted geophones, the time sampling interval is 2 ms, for a recording time of 2 s after correlation. Data preprocessing includes correlation, printing, stacking of the unit recordings at each level, and the re-orientation of the horizontal components, designed to compensate for the rotation of the tool and to obtain a seismic recording located in the plane passing through the well and the source. Figures 1 and 2 show the vertical component Z of the VSP and the horizontal component X after re-orientation. Wave separation. Separation is aimed to extract the downgoing and upgoing P compressional waves and the SV shear waves

  8. 3D P and S Wave Velocity Structure and Tremor Locations in the Parkfield Region

    Science.gov (United States)

    Zeng, X.; Thurber, C. H.; Shelly, D. R.; Bennington, N. L.; Cochran, E. S.; Harrington, R. M.

    2014-12-01

    We have assembled a new dataset to refine the 3D seismic velocity model in the Parkfield region. The S arrivals from 184 earthquakes recorded by the Parkfield Experiment to Record MIcroseismicity and Tremor array (PERMIT) during 2010-2011 were picked by a new S wave picker, which is based on machine learning. 74 blasts have been assigned to four quarries, whose locations were identified with Google Earth. About 1000 P and S wave arrivals from these blasts at permanent seismic network were also incorporated. Low frequency earthquakes (LFEs) occurring within non-volcanic tremor (NVT) are valuable for improving the precision of NVT location and the seismic velocity model at greater depths. Based on previous work (Shelley and Hardebeck, 2010), waveforms of hundreds of LFEs in same family were stacked to improve signal qualify. In a previous study (McClement et al., 2013), stacked traces of more than 30 LFE families at the Parkfileld Array Seismic Observatory (PASO) have been picked. We expanded our work to include LFEs recorded by the PERMIT array. The time-frequency Phase Weight Stacking (tf-PWS) method was introduced to improve the stack quality, as direct stacking does not produce clear S-wave arrivals on the PERMIT stations. This technique uses the coherence of the instantaneous phase among the stacked signals to enhance the signal-to-noise ratio (SNR) of the stack. We found that it is extremely effective for picking LFE arrivals (Thurber et al., 2014). More than 500 P and about 1000 S arrivals from 58 LFE families were picked at the PERMIT and PASO arrays. Since the depths of LFEs are much deeper than earthquakes, we are able to extend model resolution to lower crustal depths. Both P and S wave velocity structure have been obtained with the tomoDD method. The result suggests that there is a low velocity zone (LVZ) in the lower crust and the location of the LVZ is consistent with the high conductivity zone beneath the southern segment of the Rinconada fault that

  9. Pulse Wave Variation during the Menstrual Cycle in Women with Menstrual Pain

    Directory of Open Access Journals (Sweden)

    Soo Hyung Jeon

    2016-01-01

    Full Text Available Objective. This study is performed to obtain objective diagnostic indicators associated with menstrual pain using pulse wave analysis. Methods. Using a pulse diagnostic device, we measured the pulse waves of 541 women aged between 19 and 30 years, placed in either an experimental group with menstrual pain (n=329 or a control group with little or no menstrual pain (n=212. Measurements were taken during both the menstrual and nonmenstrual periods, and comparative analysis was performed. Results. During the nonmenstrual period, the experimental group showed a significantly higher value in the left radial artery for the radial augmentation index (RAI (p=0.050 but significantly lower values for pulse wave energy (p=0.021 and time to first peak from baseline (T1 (p=0.035 in the right radial artery. During the menstrual period, the experimental group showed significantly lower values in the left radial artery for cardiac diastole and pulse wave area during diastole and significantly higher values for pulse wave area during systole, ratio of systolic phase to the full heartbeat, and systolic-diastolic ratio. Conclusion. We obtained indicators of menstrual pain in women during the menstrual period, including prolonged systolic and shortened diastolic phases, increases in pulse wave energy and area of representative pulse wave, and increased blood vessel resistance.

  10. Automatic identification of fault zone head waves and direct P waves and its application in the Parkfield section of the San Andreas Fault, California

    Science.gov (United States)

    Li, Zefeng; Peng, Zhigang

    2016-06-01

    Fault zone head waves (FZHWs) are observed along major strike-slip faults and can provide high-resolution imaging of fault interface properties at seismogenic depth. In this paper, we present a new method to automatically detect FZHWs and pick direct P waves secondary arrivals (DWSAs). The algorithm identifies FZHWs by computing the amplitude ratios between the potential FZHWs and DSWAs. The polarities, polarizations and characteristic periods of FZHWs and DSWAs are then used to refine the picks or evaluate the pick quality. We apply the method to the Parkfield section of the San Andreas Fault where FZHWs have been identified before by manual picks. We compare results from automatically and manually picked arrivals and find general agreement between them. The obtained velocity contrast at Parkfield is generally 5-10 per cent near Middle Mountain while it decreases below 5 per cent near Gold Hill. We also find many FZHWs recorded by the stations within 1 km of the background seismicity (i.e. the Southwest Fracture Zone) that have not been reported before. These FZHWs could be generated within a relatively wide low velocity zone sandwiched between the fast Salinian block on the southwest side and the slow Franciscan Mélange on the northeast side. Station FROB on the southwest (fast) side also recorded a small portion of weak precursory signals before sharp P waves. However, the polarities of weak signals are consistent with the right-lateral strike-slip mechanisms, suggesting that they are unlikely genuine FZHW signals.

  11. The effects of staggered bandgap in the InP/CdSe and CdSe/InP core/shell quantum dots.

    Science.gov (United States)

    Kim, Sunghoon; Park, Jaehyun; Kim, Sungwoo; Jung, Won; Sung, Jaeyoung; Kim, Sang-Wook

    2010-06-15

    New type-II structures of CdSe/InP and InP/CdSe core-shell nanocrystals which have staggered bandgap alignment were fabricated. Using a simple model for the wave function for electrons and holes in InP/CdSe and CdSe/InP core/shell nanocrystals showed the wave function of the electron and hole spread into the shell, respectively. The probability density of the InP/CdSe and CdSe/InP core/shell QDs also showed a similar tendency. As a result, the structure exhibits increased delocalization of electrons and holes, leading to a red-shift in absorption and emission. Quantum yield increased in the InP/CdSe, however decreased in the CdSe/InP. The reason may be due to the surface trap and high activation barrier for de-trapping in the InP shell. 2010 Elsevier Inc. All rights reserved.

  12. Partial wave analysis of the Q region in the reactions K-p→K-π+π-p and K-p→antikaon neutral π-π0p at 14.3GeV/c

    International Nuclear Information System (INIS)

    Tovey, S.N.; Hansen, J.D.; Paler, K.; Shah, T.P.; Borg, A.; Denegri, D.; Pons, Y.; Spiro, M.

    1975-01-01

    The reactions K - p→K - π + π - and K - p→ antikaon-neutral π - π 0 p at 14.3GeV/c has been studied using respectively 15992 and 3723 events. Partial wave analysis of the region 1.0 + but that the partial wave substrates have very different branching ratios into (rho) and K*π, the K*π component of the 1 + state being similar to the 1 + state of the 3π system produced in the reaction πp→(3π)p [fr

  13. Regulating NETosis: Increasing pH Promotes NADPH Oxidase-Dependent NETosis

    Science.gov (United States)

    Khan, Meraj A.; Philip, Lijy M.; Cheung, Guillaume; Vadakepeedika, Shawn; Grasemann, Hartmut; Sweezey, Neil; Palaniyar, Nades

    2018-01-01

    Neutrophils migrating from the blood (pH 7.35–7.45) into the surrounding tissues encounter changes in extracellular pH (pHe) conditions. Upon activation of NADPH oxidase 2 (Nox), neutrophils generate large amounts of H+ ions reducing the intracellular pH (pHi). Nevertheless, how extracellular pH regulates neutrophil extracellular trap (NET) formation (NETosis) is not clearly established. We hypothesized that increasing pH increases Nox-mediated production of reactive oxygen species (ROS) and neutrophil protease activity, stimulating NETosis. Here, we found that raising pHe (ranging from 6.6 to 7.8; every 0.2 units) increased pHi of both activated and resting neutrophils within 10–20 min (Seminaphtharhodafluor dual fluorescence measurements). Since Nox activity generates H+ ions, pHi is lower in neutrophils that are activated compared to resting. We also found that higher pH stimulated Nox-dependent ROS production (R123 generation; flow cytometry, plate reader assay, and imaging) during spontaneous and phorbol myristate acetate-induced NETosis (Sytox Green assays, immunoconfocal microscopy, and quantifying NETs). In neutrophils that are activated and not resting, higher pH stimulated histone H4 cleavage (Western blots) and NETosis. Raising pH increased Escherichia coli lipopolysaccharide-, Pseudomonas aeruginosa (Gram-negative)-, and Staphylococcus aureus (Gram-positive)-induced NETosis. Thus, higher pHe promoted Nox-dependent ROS production, protease activity, and NETosis; lower pH has the opposite effect. These studies provided mechanistic steps of pHe-mediated regulation of Nox-dependent NETosis. Raising pH either by sodium bicarbonate or Tris base (clinically known as Tris hydroxymethyl aminomethane, tromethamine, or THAM) increases NETosis. Each Tris molecule can bind 3H+ ions, whereas each bicarbonate HCO3− ion binds 1H+ ion. Therefore, the amount of Tris solution required to cause the same increase in pH level is less than that of equimolar

  14. Regulating NETosis: Increasing pH Promotes NADPH Oxidase-Dependent NETosis

    Directory of Open Access Journals (Sweden)

    Meraj A. Khan

    2018-02-01

    Full Text Available Neutrophils migrating from the blood (pH 7.35–7.45 into the surrounding tissues encounter changes in extracellular pH (pHe conditions. Upon activation of NADPH oxidase 2 (Nox, neutrophils generate large amounts of H+ ions reducing the intracellular pH (pHi. Nevertheless, how extracellular pH regulates neutrophil extracellular trap (NET formation (NETosis is not clearly established. We hypothesized that increasing pH increases Nox-mediated production of reactive oxygen species (ROS and neutrophil protease activity, stimulating NETosis. Here, we found that raising pHe (ranging from 6.6 to 7.8; every 0.2 units increased pHi of both activated and resting neutrophils within 10–20 min (Seminaphtharhodafluor dual fluorescence measurements. Since Nox activity generates H+ ions, pHi is lower in neutrophils that are activated compared to resting. We also found that higher pH stimulated Nox-dependent ROS production (R123 generation; flow cytometry, plate reader assay, and imaging during spontaneous and phorbol myristate acetate-induced NETosis (Sytox Green assays, immunoconfocal microscopy, and quantifying NETs. In neutrophils that are activated and not resting, higher pH stimulated histone H4 cleavage (Western blots and NETosis. Raising pH increased Escherichia coli lipopolysaccharide-, Pseudomonas aeruginosa (Gram-negative-, and Staphylococcus aureus (Gram-positive-induced NETosis. Thus, higher pHe promoted Nox-dependent ROS production, protease activity, and NETosis; lower pH has the opposite effect. These studies provided mechanistic steps of pHe-mediated regulation of Nox-dependent NETosis. Raising pH either by sodium bicarbonate or Tris base (clinically known as Tris hydroxymethyl aminomethane, tromethamine, or THAM increases NETosis. Each Tris molecule can bind 3H+ ions, whereas each bicarbonate HCO3− ion binds 1H+ ion. Therefore, the amount of Tris solution required to cause the same increase in pH level is less than that of equimolar

  15. Use of non-quarter-wave designs to increase the damage resistance of reflectors at 532 and 1064 nanometers

    International Nuclear Information System (INIS)

    Gill, D.H.; Newnam, B.E.; McLeod, J.

    1977-01-01

    The damage resistance of multilayer dielectric laser reflectors has been increased by using non-quarter-wave thicknesses for the top few layers. These designs minimize the standing-wave electric field in the high-index layers, which are generally the weaker layers. Algebraic equations have been derived for optimum film thicknesses and for the resulting peak electric fields. Five sets of reflectors for 532 and 1064 nm were fabricated according to these designs by two vendors using two different material combinations. Each set contained one reflector of standard all-quarter-wave design and three reflectors each with a different number of modified layers. The damage thresholds of the modified designs were found to be higher than the all-quarter-wave designs, in some cases by a factor greater than 2. The damage thresholds have been analyzed and explained in terms of standing-wave electric field patterns

  16. Heat waves in the United States: mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. communities.

    Science.gov (United States)

    Anderson, G Brooke; Bell, Michelle L

    2011-02-01

    Devastating health effects from recent heat waves, and projected increases in frequency, duration, and severity of heat waves from climate change, highlight the importance of understanding health consequences of heat waves. We analyzed mortality risk for heat waves in 43 U.S. cities (1987-2005) and investigated how effects relate to heat waves' intensity, duration, or timing in season. Heat waves were defined as ≥ 2 days with temperature ≥ 95th percentile for the community for 1 May through 30 September. Heat waves were characterized by their intensity, duration, and timing in season. Within each community, we estimated mortality risk during each heat wave compared with non-heat wave days, controlling for potential confounders. We combined individual heat wave effect estimates using Bayesian hierarchical modeling to generate overall effects at the community, regional, and national levels. We estimated how heat wave mortality effects were modified by heat wave characteristics (intensity, duration, timing in season). Nationally, mortality increased 3.74% [95% posterior interval (PI), 2.29-5.22%] during heat waves compared with non-heat wave days. Heat wave mortality risk increased 2.49% for every 1°F increase in heat wave intensity and 0.38% for every 1-day increase in heat wave duration. Mortality increased 5.04% (95% PI, 3.06-7.06%) during the first heat wave of the summer versus 2.65% (95% PI, 1.14-4.18%) during later heat waves, compared with non-heat wave days. Heat wave mortality impacts and effect modification by heat wave characteristics were more pronounced in the Northeast and Midwest compared with the South. We found higher mortality risk from heat waves that were more intense or longer, or those occurring earlier in summer. These findings have implications for decision makers and researchers estimating health effects from climate change.

  17. Stability investigation for InP DHBT mm‐wave power amplifier

    DEFF Research Database (Denmark)

    Yan, Lei; Johansen, Tom Keinicke; Kammersgaard, Jacob

    2013-01-01

    microwave integrated circuit power amplifier. Experimental results from a redesigned power amplifier with improved stability are presented to confirm that the previously detected oscillation loop is removed using odd‐mode stabilization resistors with the correct choice of values and locations. © 2012 Wiley......In this article, we discuss stability issues for mm‐wave monolithic integrated power amplifiers using InP double heterojunction bipolar transistor (DHBT) technology targeting E‐band applications at 71–76 GHz and 81–86 GHz. Different stability detection methods based on the classical two‐port K......‐Δs pair, linear three‐port graphical analysis, system identifications, circuit modal analysis, and normalized determinant function are all reviewed. The corresponding techniques are employed to predict the occurrence of instability at 15 GHz observed during measurements on a fabricated monolithic...

  18. Periodic heat wave determination of thermal diffusivity of clays ...

    African Journals Online (AJOL)

    The responses of Ankaful, Tetegu (# 1 & 2) and Mamfe clays to periodic heat waves were analyzed to deter-mine the thermal diffusivity values. The temperature amplitude attenuated with depth of penetration, while the phase shift increased. The thermal diffusivity values ranged from 3.0 - 9.5 x 10P-7P mP2P/s by amplitude ...

  19. Impaired left ventricular systolic function and increased brachial-ankle pulse-wave velocity are independently associated with rapid renal function progression.

    Science.gov (United States)

    Chen, Szu-Chia; Lin, Tsung-Hsien; Hsu, Po-Chao; Chang, Jer-Ming; Lee, Chee-Siong; Tsai, Wei-Chung; Su, Ho-Ming; Voon, Wen-Chol; Chen, Hung-Chun

    2011-09-01

    Heart failure and increased arterial stiffness are associated with declining renal function. Few studies have evaluated the association between left ventricular ejection fraction (LVEF) and brachial-ankle pulse-wave velocity (baPWV) and renal function progression. The aim of this study was to assess whether LVEFfunction was estimated by eGFR slope. The renal end point was defined as ≥25% decline in eGFR. Clinical and echocardiographic parameters were compared and analyzed. After a multivariate analysis, serum hematocrit was positively associated with eGFR slope, and diabetes mellitus, baPWV (P=0.031) and LVEFfunction decline and progression to the renal end point.

  20. New data on $K^{-}p \\rightarrow \\omega\\Lambda$ and a partial wave analysis between the cm energies 1915 and 2168 Mev

    CERN Document Server

    Nakkasyan, A

    1975-01-01

    Cross sections of the reaction K/sup -/p to pi /sup +/ pi /sup -/ pi /sup 0/ Lambda are determined in a bubble chamber study at 10 incoming beam momenta between 1.425 GeV/c and 1.800 GeV/c. For the subsample K /sup -/p to omega Lambda , cross sections and angular distributions are presented together with their legendre polynomial expansions and those of the single and joint density matrix elements. An energy dependent partial-wave analysis is performed including earlier data. The data is well fitted by constant background amplitudes in the outgoing S, P and D waves plus two I=0 resonances in this region, the well established G/sub 7/ Lambda (2100) and the P/sub 3/ Lambda (1870) . (14 refs).

  1. Weak-anisotropy moveout approximations for P-waves in homogeneous layers of monoclinic or higher anisotropy symmetries

    Czech Academy of Sciences Publication Activity Database

    Farra, V.; Pšenčík, Ivan; Jílek, P.

    2016-01-01

    Roč. 81, č. 2 (2016), C39-C59 ISSN 0016-8033 R&D Projects: GA ČR(CZ) GAP210/11/0117 Institutional support: RVO:67985530 Keywords : anisotropy * P-wave * travel time * moveout Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.391, year: 2016

  2. Stimulated Raman scattering of sub-millimeter waves in bismuth

    Science.gov (United States)

    Kumar, Pawan; Tripathi, V. K.

    2007-12-01

    A high-power sub-millimeter wave propagating through bismuth, a semimetal with non-spherical energy surfaces, parametrically excites a space-charge mode and a back-scattered electromagnetic wave. The free carrier density perturbation associated with the space-charge wave couples with the oscillatory velocity due to the pump to derive the scattered wave. The scattered and pump waves exert a pondermotive force on electrons and holes, driving the space-charge wave. The collisional damping of the decay waves determines the threshold for the parametric instability. The threshold intensity for 20 μm wavelength pump turns out to be ˜2×1012 W/cm2. Above the threshold, the growth rate scales increase with ωo, attain a maximum around ωo=6.5ωp, and, after this, falls off.

  3. Plasma waves

    National Research Council Canada - National Science Library

    Swanson, D. G

    1989-01-01

    ... Swanson, D.G. (Donald Gary), D a t e - Plasma waves. Bibliography: p. Includes index. 1. Plasma waves. QC718.5.W3S43 1989 ISBN 0-12-678955-X I. Title. 530.4'4 88-34388 Printed in the United Sta...

  4. P-wave pulse analysis to retrieve source and propagation effects in the case of Vrancea earthquakes

    International Nuclear Information System (INIS)

    Popescu, E.; Popa, M.; Placinta, A.; Grecu, B.; Radulian, M.

    2004-01-01

    Seismic source parameters and attenuation structure properties are obtained from the first P-wave pulse analysis and empirical Green's function deconvolution. The P pulse characteristics are combined effects of source and path properties. To reproduce the real source and structure parameters it is crucial to apply a method able to distinguish between the different factors affecting the observed seismograms. For example the empirical Green's function deconvolution method (Hartzell, 1978) allows the retrieval of the apparent source time function or source spectrum corrected for path, site and instrumental effects. The apparent source duration is given by the width of the deconvoluted source pulse and is directly related to the source dimension. Once the source time function established, next we can extract the parameters related to path effects. The difference between the pulse recorded at a given station and the source pulse obtained by deconvolution is a measure of the attenuation along the path from focus to the station. On the other hand, the pulse width variations with azimuth depend critically on the fault plane orientation and source directivity. In favourable circumstances (high signal/noise ratio, high resolution and station coverage), the method of analysis proposed in this paper allows the constraint of the rupture plane among the two nodal planes characterizing the fault plane solution, even for small events. P-wave pulse analysis was applied for 25 Vrancea earthquakes recorded between 1999 and 2003 by the Romanian local network to determine source parameters and attenuation properties. Our results outline high-stress drop seismic energy release with relatively simple rupture process for the considered events and strong lateral variation of attenuation of seismic waves across Carpathians Arc. (authors)

  5. Efficient Wave Energy Amplification with Wave Reflectors

    DEFF Research Database (Denmark)

    Kramer, Morten Mejlhede; Frigaard, Peter Bak

    2002-01-01

    Wave Energy Converters (WEC's) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased to approximately 130......-140%. In the paper a procedure for calculating the efficiency and optimizing the geometry of wave reflectors are described, this by use of a 3D boundary element method. The calculations are verified by laboratory experiments and a very good agreement is found. The paper gives estimates of possible power benifit...... for different geometries of the wave reflectors and optimal geometrical design parameters are specified. On this basis inventors of WEC's can evaluate whether a specific WEC possible could benefit from wave reflectors....

  6. Application of P-wave Hybrid Theory to the Scattering of Electrons from He+ and Resonances in He and H ion

    Science.gov (United States)

    Bhatia, A. K.

    2012-01-01

    The P-wave hybrid theory of electron-hydrogen elastic scattering [Phys. Rev. A 85, 052708 (2012)] is applied to the P-wave scattering from He ion. In this method, both short-range and long-range correlations are included in the Schroedinger equation at the same time, by using a combination of a modified method of polarized orbitals and the optical potential formalism. The short-correlation functions are of Hylleraas type. It is found that the phase shifts are not significantly affected by the modification of the target function by a method similar to the method of polarized orbitals and they are close to the phase shifts calculated earlier by Bhatia [Phys. Rev. A 69, 032714 (2004)]. This indicates that the correlation function is general enough to include the target distortion (polarization) in the presence of the incident electron. The important fact is that in the present calculation, to obtain similar results only a 20-term correlation function is needed in the wave function compared to the 220- term wave function required in the above-mentioned calculation. Results for the phase shifts, obtained in the present hybrid formalism, are rigorous lower bounds to the exact phase shifts. The lowest P-wave resonances in He atom and hydrogen ion have been calculated and compared with the results obtained using the Feshbach projection operator formalism [Phys. Rev. A, 11, 2018 (1975)]. It is concluded that accurate resonance parameters can be obtained by the present method, which has the advantage of including corrections due to neighboring resonances, bound states and the continuum in which these resonance are embedded.

  7. Cw hyper-Raman laser and four-wave mixing in atomic sodium

    Science.gov (United States)

    Klug, M.; Kablukov, S. I.; Wellegehausen, B.

    2005-01-01

    Continuous wave hyper-Raman (HR) generation in a ring cavity on the 6s → 4p transition at 1640 nm in sodium is realized for the first time by two-photon excitation of atomic sodium on the 3s → 6s transition with a continuous wave (cw) dye laser at 590 nm and a single frequency argon ion laser at 514 nm. It is shown, that the direction and efficiency of HR lasing depends on the propagation direction of the pump waves and their frequencies. More than 30% HR gain is measured at 250 mW of pump laser powers for counter-propagating pump waves and a medium length of 90 mm. For much shorter interaction lengths and corresponding focussing of the pump waves a dramatic increase of the gain is predicted. For co-propagating pump waves, in addition, generation of 330 nm radiation on the 4p → 3s transition by a four-wave mixing (FWM) process is observed. Dependencies of HR and parametric four-wave generation have been investigated and will be discussed.

  8. Splitting and oscillation of Majorana zero modes in the p-wave BCS-BEC evolution with plural vortices

    International Nuclear Information System (INIS)

    Mizushima, T.; Machida, K.

    2010-01-01

    We investigate how the vortex-vortex separation changes Majorana zero modes in the vicinity of the BCS-BEC (Bose-Einstein condensation) topological phase transition of p-wave resonant Fermi gases. By analytically and numerically solving the Bogoliubov-de Gennes equation for spinless p-wave superfluids with plural vortices, it is demonstrated that the quasiparticle tunneling between neighboring vortices gives rise to the quantum oscillation of the low-lying spectra on the scale of the Fermi wavelength in addition to the exponential splitting. This rapid oscillation, which appears in the weak-coupling regime as a consequence of quantum oscillations of quasiparticle wave functions, disappears in the vicinity of the BCS-BEC topological phase transition. This is understandable from that the wave function of the Majorana zero modes is described by the modified Bessel function in the strong-coupling regime, and thus it becomes spread over the vortex core region. Due to the exponential divergence of the modified Bessel function, the concrete realization of the Majorana zero modes near the topological phase transition requires the neighboring vortices to be separated beyond the length scale defined by the coherence length and the dimensionless coupling constant. All these behaviors are also confirmed by carrying out the full numerical diagonalization of the nonlocal Bogoliubov-de Gennes equation in a two-dimensional geometry. Furthermore, this argument is expanded into the case of three-vortex systems, where a pair of core-bound and edge-bound Majorana states survive at zero-energy state regardless of the vortex separation.

  9. How to increase the efficiency of the electrical discharge method for destruction of nonconductive solid materials

    Energy Technology Data Exchange (ETDEWEB)

    Voitenko, N. V., E-mail: tevn@hvd.tpu.ru; Yudin, A. S.; Kuznetsova, N. S. [National Research Tomsk Polytechnic University (Russian Federation); Krastelev, E. G. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2016-12-15

    The paper deals with the relevance of using electrical discharge technology for construction works in the city. The technical capabilities of the installation for the multi-borehole electro-discharge splitting off and destruction of rocks and concrete are described. The ways to increase the efficiency of the electrical discharge method for the destruction of solids are proposed. In order to augment the discharge circuit energy, the energy storage is separated into two individual capacitor batteries. The throttle with the inductance of 28.6 μH is installed in one of the batteries, which increases the duration of the channel energy release to 400 μs and the efficiency of electrical discharge splitting off of concrete.

  10. Quantitative analysis of T-wave morphology increases confidence in drug-induced cardiac repolarization abnormalities: evidence from the investigational IKr inhibitor Lu 35-138

    DEFF Research Database (Denmark)

    Graff, Claus; Matz, Jørgen; Christensen, Ellen B

    2009-01-01

    prolongation. Seventy-nine healthy subjects were included in this parallel study. After a baseline day during which no drug was given, 40 subjects received an I(Kr)-blocking antipsychotic compound (Lu 35-138) on 7 consecutive days while 39 subjects received placebo. Resting ECGs were recorded and used...... to determine a combined measure of repolarization morphology (morphology combination score [MCS]), based on asymmetry, flatness, and notching. Replicate measurements were used to determine reliable change and study power for both measures. Lu 35-138 increased the QTc interval with corresponding changes in T......-wave morphology as determined by MCS. For subjects taking Lu 35-138, T-wave morphology was a more reliable indicator of I(Kr) inhibition than QTcF (chi(2) = 20.3, P = .001). At 80% study power for identifying a 5-millisecond placebo-adjusted change from baseline for QTcF, the corresponding study power for MCS...

  11. Wave energy

    Energy Technology Data Exchange (ETDEWEB)

    Whittaker, T.J.T. (Queen' s Univ., Belfast, Northern Ireland (UK)); White, P.R.S. (Lanchester Polytechnic, Coventry (UK)); Baker, A.C.J. (Binnie and Partners, London (UK))

    1988-10-01

    An informal discussion on various wave energy converters is reported. These included a prototype oscillating water column (OWC) device being built on the Isle of Islay in Scotland; the SEA Clam; a tapering channel device (Tapchan) raising incoming waves into a lagoon on a Norwegian island and an OWC device on the same island. The Norwegian devices are delivering electricity at about 5.5p/KWh and 4p/KWh respectively with possibilities for reduction to 2.5-3p/KWh and 3p/KWh under favourable circumstances. The discussion ranged over comparisons with progress in wind power, engineering aspects, differences between inshore and offshore devices, tidal range and energy storage. (UK).

  12. A partial wave analysis of world data for the reaction π-p → K0Λ from threshold to 2350 MeV/c

    International Nuclear Information System (INIS)

    Baker, R.D.; Blissett, J.A.; Bloodworth, I.J.

    1977-06-01

    All available world data for the reaction π - p → K 0 Λ up to 2350 MeV/c incident momentum have been analysed using both the Barrelet (Nuovo Cimento; 8A:331 (1972)) zero technique and a conventional energy-dependent fit. The results of the two methods are in good agreement. Resonances are required in the S 11 , P 11 , P 13 and D 13 partial waves. There is also an enhancement in the D 15 wave around 1900 MeV. No other resonances are required. (author)

  13. Nonlinear radiation of waves at combination frequencies due to radiation-surface wave interaction in plasmas

    International Nuclear Information System (INIS)

    El Naggar, I.A.; Hussein, A.M.; Khalil, Sh.M.

    1992-09-01

    Electromagnetic waves radiated with combination frequencies from a semi-bounded plasma due to nonlinear interaction of radiation with surface wave (both of P-polarization) has been investigated. Waves are radiated both into vacuum and plasma are found to be P-polarized. We take into consideration the continuity at the plasma boundary of the tangential components of the electric field of the waves. The case of normal incidence of radiation and rarefield plasma layer is also studied. (author). 7 refs

  14. Deep rock damage in the San Andreas Fault revealed by P- and S-type fault-zone-guided waves

    Science.gov (United States)

    Ellsworth, William L.; Malin, Peter E.

    2011-01-01

    Damage to fault-zone rocks during fault slip results in the formation of a channel of low seismic-wave velocities. Within such channels guided seismic waves, denoted by Fg, can propagate. Here we show with core samples, well logs and Fg-waves that such a channel is crossed by the SAFOD (San Andreas Fault Observatory at Depth) borehole at a depth of 2.7 km near Parkfield, California, USA. This laterally extensive channel extends downwards to at least half way through the seismogenic crust, more than about 7 km. The channel supports not only the previously recognized Love-type- (FL) and Rayleigh-type- (FR) guided waves, but also a new fault-guided wave, which we name FF. As recorded 2.7 km underground, FF is normally dispersed, ends in an Airy phase, and arrives between the P- and S-waves. Modelling shows that FF travels as a leaky mode within the core of the fault zone. Combined with the drill core samples, well logs and the two other types of guided waves, FF at SAFOD reveals a zone of profound, deep, rock damage. Originating from damage accumulated over the recent history of fault movement, we suggest it is maintained either by fracturing near the slip surface of earthquakes, such as the 1857 Fort Tejon M 7.9, or is an unexplained part of the fault-creep process known to be active at this site.

  15. BEC-BCS crossover in a (p+ip)-wave pairing Hamiltonian coupled to bosonic molecular pairs

    International Nuclear Information System (INIS)

    Dunning, Clare; Isaac, Phillip S.; Links, Jon; Zhao, Shao-You

    2011-01-01

    We analyse a (p+ip)-wave pairing BCS Hamiltonian, coupled to a single bosonic degree of freedom representing a molecular condensate, and investigate the nature of the BEC-BCS crossover for this system. For a suitable restriction on the coupling parameters, we show that the model is integrable and we derive the exact solution by the algebraic Bethe ansatz. In this manner we also obtain explicit formulae for correlation functions and compute these for several cases. We find that the crossover between the BEC state and the strong pairing p+ip phase is smooth for this model, with no intermediate quantum phase transition.

  16. Incremento en la dispersión de la onda P al disminuir el tiempo de eyección auricular en hipertensos y prehipertensos Increment in P wave dispersion by decreasing atrial ejection time in hypertensive and prehypertensive patients

    Directory of Open Access Journals (Sweden)

    Elibet Chávez

    2011-07-01

    Full Text Available Introducción: hace algunos años se viene estudiando la relación entre disfunción diastólica y dispersión de la onda P del electrocardiograma, y en este sentido, la ecocardiografía emerge como herramienta para mejorar la estratificación de riesgo en hipertensos leves. Objetivo: determinar la dependencia de la dispersión de la onda P del electrocardiograma de variables ecocardiográficas en una población pediátrica. Métodos: se estudiaron 400 niños, de un total de 450, pertenecientes a tres escuelas primarias, y se excluyeron aquellos cuyos padres no desearon que participaran en el estudio y a quienes tuvieran patologías congénitas conocidas. Se realizó electrocardiograma de superficie de doce derivaciones y se practicaron cuatro tomas de presión arterial. Se midieron los valores de P máxima y P mínima, y se calculó la dispersión de la onda P del electrocardiograma; además se hizo, ecocardiografía para mediciones estructurales y Doppler pulsado del flujo mitral. Resultados: los valores de media para la duración de la onda A del flujo mitral no muestran diferencias significativas; sin embargo, existe un coeficiente de correlación (r y p significativos entre la dispersión de la onda P y la duración de la onda A del flujo mitral para normotensos (r= - 0,117 p=0,05, prehipertensos (r= - 0,309 p=0,001 e hipertensos (r= - 0,586 p=0,001. Existen diferencias significativas entre las medias de dispersión de la onda P entre los grupos de diagnóstico. Conclusiones: se evidencia dependencia de la dispersión de la onda P, del electrocardiograma y de la duración de la onda A del flujo de entrada mitral, hechos que se relacionan con riesgo de fibrilación auricular en el adulto, por lo que quizás este resultado dé un acercamiento a predicciones de riesgo más tempranas en edades pediátricas.Introduction: the relationship between diastolic dysfunction and P wave dispersion in the electrocardiogram is being studied since some

  17. Physical modeling and analysis of P-wave attenuation anisotropy in transversely isotropic media

    Digital Repository Service at National Institute of Oceanography (India)

    Zhu, Y.; Tsvankin, I.; Dewangan, P.; Van Wijk, K.

    here H20849Figures 1 and 2aH20850 was to verify the accuracy of the parameter-esti- mation results obtained by Dewangan et al. H208492006H20850. The P-wave source H20849a flat-faced, cylindrical, piezoelectric-contact transducerH20850 was fixed... are assumed to be constant. Receivers 10.8 cm 60 cm Source 70? symmetry axis Figure 1. Physical model of a TI layer with the symmetry axis tilted at 70? H20849from Dewangan et al., 2006H20850. The transmitted wavefield is excited by an ultrasonic contact...

  18. Effect of Floquet engineering on the p-wave superconductor with second-neighbor couplings

    Science.gov (United States)

    Li, X. P.; Li, C. F.; Wang, L. C.; Zhou, L.

    2018-06-01

    The influence of the Floquet engineering on a particular one-dimensional p-wave superconductor, Kitaev model, with second-neighbor couplings is investigated in this paper. The effective Hamiltonians in the rotated reference frames have been obtained, and the convergent regions of the approximated Hamiltonian as well as the topological phase diagrams have been analyzed and discussed. We show that by modulating the external driving field amplitude, frequency as well as the second-neighbor hopping amplitude, the rich phase diagrams and transitions between different topological phases can be obtained.

  19. Time-lapse changes of P- and S-wave velocities and shear wave splitting in the first year after the 2011 Tohoku earthquake, Japan: shallow subsurface

    Science.gov (United States)

    Sawazaki, Kaoru; Snieder, Roel

    2013-04-01

    We detect time-lapse changes in P- and S-wave velocities (hereafter, VP and VS, respectively) and shear wave splitting parameters associated with the 2011 Tohoku earthquake, Japan, at depths between 0 and 504 m. We estimate not only medium parameters but also the 95 per cent confidence interval of the estimated velocity change by applying a new least squares inversion scheme to the deconvolution analysis of KiK-net vertical array records. Up to 6 per cent VS reduction is observed at more than half of the analysed KiK-net stations in northeastern Japan with over 95 per cent confidence in the first month after the main shock. There is a considerable correlation between the S-wave traveltime delay and the maximum horizontal dynamic strain (MDS) by the main shock motion when the strain exceeds 5 × 10- 4 on the ground surface. This correlation is not clearly observed for MDS at the borehole bottom. On the contrary, VP and shear wave splitting parameters do not show systematic changes after the Tohoku earthquake. These results indicate that the time-lapse change is concentrated near the ground surface, especially in loosely packed soil layers. We conclude that the behaviour of VP, VS and shear wave splitting parameters are explained by the generation of omnidirectional cracks near the ground surface and by the diffusion of water in the porous subsurface. Recovery of VS should be related to healing of the crack which is proportional to the logarithm of the lapse time after the main shock and/or to decompaction after shaking.

  20. Revisiting the difference between traveling-wave and standing-wave thermoacoustic engines - A simple analytical model for the standing-wave one

    Science.gov (United States)

    Yasui, Kyuichi; Kozuka, Teruyuki; Yasuoka, Masaki; Kato, Kazumi

    2015-11-01

    There are two major categories in a thermoacoustic prime-mover. One is the traveling-wave type and the other is the standing-wave type. A simple analytical model of a standing-wave thermoacoustic prime-mover is proposed at relatively low heat-flux for a stack much shorter than the acoustic wavelength, which approximately describes the Brayton cycle. Numerical simulations of Rott's equations have revealed that the work flow (acoustic power) increases by increasing of the amplitude of the particle velocity (| U|) for the traveling-wave type and by increasing cosΦ for the standing-wave type, where Φ is the phase difference between the particle velocity and the acoustic pressure. In other words, the standing-wave type is a phase-dominant type while the traveling-wave type is an amplitude-dominant one. The ratio of the absolute value of the traveling-wave component (| U|cosΦ) to that of the standing-wave component (| U|sinΦ) of any thermoacoustic engine roughly equals the ratio of the absolute value of the increasing rate of | U| to that of cosΦ. The different mechanism between the traveling-wave and the standing-wave type is discussed regarding the dependence of the energy efficiency on the acoustic impedance of a stack as well as that on ωτα, where ω is the angular frequency of an acoustic wave and τα is the thermal relaxation time. While the energy efficiency of the traveling-wave type at the optimal ωτα is much higher than that of the standing-wave type, the energy efficiency of the standing-wave type is higher than that of the traveling-wave type at much higher ωτα under a fixed temperature difference between the cold and the hot ends of the stack.

  1. Major enhancement of extra-low-frequency radiation by increasing the high-frequency heating wave power in electrojet modulation

    International Nuclear Information System (INIS)

    Kuo, S.P.; Lee, S.H.; Kossey, Paul

    2002-01-01

    Extra-low-frequency (ELF) wave generation by modulated polar electrojet currents is studied. The amplitude-modulated high-frequency (HF) heating wave excites a stimulated thermal instability to enhance the electrojet current modulation by the passive Ohmic heating process. Inelastic collisions of electrons with neutral particles (mainly due to vibrational excitation of N 2 ) damp nonlinearly this instability, which is normally saturated at low levels. However, the electron's inelastic collision loss rate drops rapidly to a low value in the energy regime from 3.5 to 6 eV. As the power of the modulated HF heating wave exceeds a threshold level, it is shown that significant electron heating enhanced by the stimulated thermal instability can indeed cause a steep drop in the electron inelastic collision loss rate. Consequently, this instability saturates at a much higher level, resulting to a near step increase (of about 10-13 dB, depending on the modulation wave form) in the spectral intensity of ELF radiation. The dependence of the threshold power of the HF heating wave on the modulation frequency is determined

  2. Finnish physicians' stress related to information systems keeps increasing: a longitudinal three-wave survey study.

    Science.gov (United States)

    Heponiemi, Tarja; Hyppönen, Hannele; Vehko, Tuulikki; Kujala, Sari; Aalto, Anna-Mari; Vänskä, Jukka; Elovainio, Marko

    2017-10-17

    Poorly functioning, time-consuming, and inadequate information systems are among the most important work-related psychosocial factors causing stress in physicians. The present study examined the trend in the perceived stress that was related to information systems (SRIS) among Finnish physicians during a nine-year follow-up. In addition, we examined the associations of gender, age, employment sector, specialization status, leadership position, on-call burden, and time pressure with SRIS change and levels. A longitudinal design with three survey data collection waves (2006, 2010 and 2015) based on a random sample of Finnish physicians in 2006 was used. The study sample included 1095 physicians (62.3% women, mean age 54.4 years) who provided data on SRIS in every wave. GLM repeated measures analyses were used to examine the associations between independent variables and the SRIS trend during the years 2006, 2010, and 2015. SRIS increased during the study period. The estimated marginal mean of SRIS in 2006 was 2.80 (95% CI = 2.68-2.92) and the mean increase was 0.46 (95% CI = 0.30-0.61) points from 2006 to 2010 and 0.25 (95% CI = 0.11-0.39) points from 2010 to 2015. Moreover, our results show that the increase was most pronounced in primary care, whereas in hospitals SRIS did not increase between 2010 and 2015. SRIS increased more among those in a leadership position. On-call duties and high time-pressures were associated with higher SRIS levels during all waves. Changing, difficult, and poorly functioning information systems (IS) are a prominent source of stress among Finnish physicians and this perceived stress continues to increase. Organizations should implement arrangements to ease stress stemming from IS especially for those with a high workload and on-call or leadership duties. To decrease IS-related stress, it would be important to study in more detail the main IS factors that contribute to SRIS. Earlier studies indicate that the usability and stability

  3. Inner core boundary topography explored with reflected and diffracted P waves

    Science.gov (United States)

    deSilva, Susini; Cormier, Vernon F.; Zheng, Yingcai

    2018-03-01

    The existence of topography of the inner core boundary (ICB) can affect the amplitude, phase, and coda of body waves incident on the inner core. By applying pseudospectral and boundary element methods to synthesize compressional waves interacting with the ICB, these effects are predicted and compared with waveform observations in pre-critical, critical, post-critical, and diffraction ranges of the PKiKP wave reflected from the ICB. These data sample overlapping regions of the inner core beneath the circum-Pacific belt and the Eurasian, North American, and Australian continents, but exclude large areas beneath the Pacific and Indian Oceans and the poles. In the pre-critical range, PKiKP waveforms require an upper bound of 2 km at 1-20 km wavelength for any ICB topography. Higher topography sharply reduces PKiKP amplitude and produces time-extended coda not observed in PKiKP waveforms. The existence of topography of this scale smooths over minima and zeros in the pre-critical ICB reflection coefficient predicted from standard earth models. In the range surrounding critical incidence (108-130 °), this upper bound of topography does not strongly affect the amplitude and waveform behavior of PKIKP + PKiKP at 1.5 Hz, which is relatively insensitive to 10-20 km wavelength topography height approaching 5 km. These data, however, have a strong overlap in the regions of the ICB sampled by pre-critical PKiKP that require a 2 km upper bound to topography height. In the diffracted range (>152°), topography as high as 5 km attenuates the peak amplitudes of PKIKP and PKPCdiff by similar amounts, leaving the PKPCdiff/PKIKP amplitude ratio unchanged from that predicted by a smooth ICB. The observed decay of PKPCdiff into the inner core shadow and the PKIKP-PKPCdiff differential travel time are consistent with a flattening of the outer core P velocity gradient near the ICB and iron enrichment at the bottom of the outer core.

  4. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume V S-Wave Measurements in Borehole C4996 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.

    Energy Technology Data Exchange (ETDEWEB)

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    Velocity measurements in shallow sediments from ground surface to approximately 370 to 400 feet bgs were collected by Redpath Geophysics using impulsive S- and P-wave seismic sources (Redpath 2007). Measurements below this depth within basalt and sedimentary interbeds were made by UTA between October and December 2006 using the T-Rex vibratory seismic source in each of the three boreholes. Results of these measurements including seismic records, wave-arrival identifications and interpreted velocity profiles are presented in the following six volumes: I. P-Wave Measurements in Borehole C4993 II. P-Wave Measurements in Borehole C4996 III. P-Wave Measurements in Borehole C4997 IV. S-Wave Measurements in Borehole C4993 V. S-Wave Measurements in Borehole C4996 VI. S-Wave Measurements in Borehole C4997 In this volume (V), all S-wave measurements are presented that were performed in Borehole C4996 at the WTP with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver.

  5. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume VI S-Wave Measurements in Borehole C4997 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.

    Energy Technology Data Exchange (ETDEWEB)

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    Velocity measurements in shallow sediments from ground surface to approximately 370 to 400 feet bgs were collected by Redpath Geophysics using impulsive S- and P-wave seismic sources (Redpath 2007). Measurements below this depth within basalt and sedimentary interbeds were made by UTA between October and December 2006 using the T-Rex vibratory seismic source in each of the three boreholes. Results of these measurements including seismic records, wave-arrival identifications and interpreted velocity profiles are presented in the following six volumes: I. P-Wave Measurements in Borehole C4993 II. P-Wave Measurements in Borehole C4996 III. P-Wave Measurements in Borehole C4997 IV. S-Wave Measurements in Borehole C4993 V. S-Wave Measurements in Borehole C4996 VI. S-Wave Measurements in Borehole C4997 In this volume (VI), all S-wave measurements are presented that were performed in Borehole C4997 at the WTP with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver.

  6. Extracorporeal shock wave therapy for treatment of plantar fasciitis

    International Nuclear Information System (INIS)

    Dastgir, N.

    2014-01-01

    Objective: To explore the effect of extracorporeal shock wave therapy in patients with chronic plantar faciitis. Methods: The prospective study was conducted at Department of Orhopaedic, Regional Hospital, Limerick, Ireland from January to December 2004 and comprised 70 heels in 62 patients with chronic plantar fasciitis in whom conventional conservative treatment consisting of non-steroidal anti-inflammatory drugs, heel cup, orthoses and/or shoe modifications, local steroid injections had failed, and they were treated with low energy extracorporeal shock wave therapy. Patients were reviewed at 6, 12 and 24 weeks post treatment. Results: At follow-up there was significant decrease in pain on the visual analogue scale (p<0.027), with significant improvement in pain score (p<0.009) and in functional score (p<0.001). The comfortable walking distance had increased significantly and there were no reported side effects. Conclusion: Extracorporeal shock wave therapy is a new modality providing good pain relief and a satisfactory clinical outcome in patients with chronic plantar fasciitis. (author)

  7. 3-D crustal P-wave velocity tomography of the Italian region using local and regional seismicity data

    Directory of Open Access Journals (Sweden)

    F. M. Mele

    1995-06-01

    Full Text Available A tomographic experiment was performed in the Italian region using local and regional arrivaI times of p and S seismological phases selected from the Italian National Bulletin in the time interval 1984-1991. We deter- mined a 3-D crustal P-wave velocity model using a simultaneous inversion method that iteratively re1ocates the hypocenters and computes the unknown model parameters. A fast two-point ray tracing algorithm was adopted to compute the ray paths and travel times of P", S", P g' Sg phases with good accuracy. Synthetic tests were performed using the "true" hypocenter and station distribution to rough1y evaluate the extension of the areas most densely spanned by the ray paths; the agreement between synthetic and computed models is more satisfactory at Moho depths than in the upper crust. The qua1ity of the model resulting from inversion of real data is examined by the ca1culation of the Spread Function (Toomey and Foulger, 1989. The 3-D crustal P-wave velocity mode1 of the Italian region shows remarkab1e trends at Moho depths: the areas east of the Apennines call for positive adjustments of the initial velocity va1ue, while the west region shows negative ad- justments. The correspondence among the main features of the velocity field, the map of Moho isobaths and the map of the gravity anoma1ies is also outlined.

  8. Teleseismic P-wave tomography of the Sunda-Banda Arc subduction zone

    Science.gov (United States)

    Harris, C. W.; Miller, M. S.; Widiyantoro, S.; Supendi, P.; O'Driscoll, L.; Roosmawati, N.; Porritt, R.

    2017-12-01

    The Sunda-Banda Arc is the site of multiple ongoing tectonic deformation processes and is perhaps the best example of the transition from subduction of oceanic lithosphere to an active arc-continent collision. Investigating the mantle structure that has resulted from the collision of continental Australia, as well as the concurrent phenomena of continental subduction, slab-rollback, lithospheric tearing, and subduction polarity reversal is possible through seismic tomography. While both regional scale and global tomographic models have previously been constructed to study the tectonics this region, here we use 250 seismic stations that span the length of this convergent margin to invert for P-wave velocity perturbations in the upper mantle. We combine data from a temporary deployment of 30 broadband instruments as part of the NSF-funded Banda Arc Project, along with data from permanent broadband stations maintained by the Meteorological, Climatological, and Geophysical Agency of Indonesia (BMKG) to image mantle structure, in particular the subducted Indo-Australian plate. The BMKG dataset spans 2009-2017 and includes >200 broadband seismometers. The Banda Arc array (network YS) adds coverage and resolution to southeastern Indonesia and Timor-Leste, where few permanent seismometers are located but the Australian continent-Banda Arc collision is most advanced. The preliminary model was computed using 50,000 teleseismic P-wave travel-time residuals and 3D finite frequency sensitivity kernels. Results from the inversion of the combined dataset are presented as well as resolution tests to assess the quality of the model. The velocity model shows an arcuate Sunda-Banda slab with morphological changes along strike that correlate with the tectonic collision. The model also features the double-sided Molucca Sea slab and regions of high velocity below the bottom of the transition zone. The resolution added by the targeted USC deployment is clear when comparing models that

  9. Relic gravity waves from braneworld inflation

    International Nuclear Information System (INIS)

    Sahni, Varun; Sami, M.; Souradeep, Tarun

    2002-01-01

    We discuss a scenario in which extra dimensional effects allow a scalar field with a steep potential to play the dual role of the inflaton as well as dark energy (quintessence). The post-inflationary evolution of the universe in this scenario is generically characterized by a 'kinetic regime' during which the kinetic energy of the scalar field greatly exceeds its potential energy resulting in a 'stiff' equation of state for scalar field matter P φ ≅ρ φ . The kinetic regime precedes the radiation dominated epoch and introduces an important new feature into the spectrum of relic gravity waves created quantum mechanically during inflation. The amplitude of the gravity wave spectrum increases with the wave number for wavelengths shorter than the comoving horizon scale at the commencement of the radiative regime. This 'blue tilt' is a generic feature of models with steep potentials and imposes strong constraints on a class of inflationary braneworld models. Prospects for detection of the gravity wave background by terrestrial and space-borne gravity wave observatories such as LIGO II and LISA are discussed

  10. Detonation Wave Profile

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Laboratory

    2015-12-14

    The Zel’dovich-von Neumann-Doering (ZND) profile of a detonation wave is derived. Two basic assumptions are required: i. An equation of state (EOS) for a partly burned explosive; P(V, e, λ). ii. A burn rate for the reaction progress variable; d/dt λ = R(V, e, λ). For a steady planar detonation wave the reactive flow PDEs can be reduced to ODEs. The detonation wave profile can be determined from an ODE plus algebraic equations for points on the partly burned detonation loci with a specified wave speed. Furthermore, for the CJ detonation speed the end of the reaction zone is sonic. A solution to the reactive flow equations can be constructed with a rarefaction wave following the detonation wave profile. This corresponds to an underdriven detonation wave, and the rarefaction is know as a Taylor wave.

  11. Variation in the defect structure of p-CdTe single crystals at the passage of the laser shock wave

    International Nuclear Information System (INIS)

    Baidullaeva, A.; Vlasenko, A.I.; Gorkovenko, B.L.; Lomovtsev, A.V.; Mozol', P.E.

    2000-01-01

    Variations in the minority-carrier lifetime, photoluminescence spectra, dark current and photocurrent temperature dependences of high-resistivity p-CdTe crystals under the action of the laser shock wave are investigated. It is shown that the variations in the aforementioned characteristics during the passage of the shock wave are defined by the generation of the nonequilibrium carriers from deep centers, and, after that, the variations are defined by the formation of intrinsic defects and their subsequent interaction with the defects existing in the initial crystals

  12. Elastic wave speeds and moduli in polycrystalline ice Ih, si methane hydrate, and sll methane-ethane hydrate

    Science.gov (United States)

    Helgerud, M.B.; Waite, W.F.; Kirby, S.H.; Nur, A.

    2009-01-01

    We used ultrasonic pulse transmission to measure compressional, P, and shear, S, wave speeds in laboratory-formed polycrystalline ice Ih, si methane hydrate, and sll methane-ethane hydrate. From the wave speed's linear dependence on temperature and pressure and from the sample's calculated density, we derived expressions for bulk, shear, and compressional wave moduli and Poisson's ratio from -20 to 15??C and 22.4 to 32.8 MPa for ice Ih, -20 to 15??C and 30.5 to 97.7 MPa for si methane hydrate, and -20 to 10??C and 30.5 to 91.6 MPa for sll methane-ethane hydrate. All three materials had comparable P and S wave speeds and decreasing shear wave speeds with increasing applied pressure. Each material also showed evidence of rapid intergranular bonding, with a corresponding increase in wave speed, in response to pauses in sample deformation. There were also key differences. Resistance to uniaxial compaction, indicated by the pressure required to compact initially porous samples, was significantly lower for ice Ih than for either hydrate. The ice Ih shear modulus decreased with increasing pressure, in contrast to the increase measured in both hydrates ?? 2009.

  13. A Case Study of Short-term Wave Forecasting Based on FIR Filter: Optimization of the Power Production for the Wavestar Device

    DEFF Research Database (Denmark)

    Ferri, Francesco; Sichani, Mahdi Teimouri; Frigaard, Peter

    2012-01-01

    Short-term wave forecasting plays a crucial role for the control of a wave energy converter (WEC), in order to increase the energy harvest from the waves, as well as to increase its life time. In the paper it is shown how the surface elevation of the waves and the force acting on the WEC can be p...

  14. Spike-like solitary waves in incompressible boundary layers driven by a travelling wave.

    Science.gov (United States)

    Feng, Peihua; Zhang, Jiazhong; Wang, Wei

    2016-06-01

    Nonlinear waves produced in an incompressible boundary layer driven by a travelling wave are investigated, with damping considered as well. As one of the typical nonlinear waves, the spike-like wave is governed by the driven-damped Benjamin-Ono equation. The wave field enters a completely irregular state beyond a critical time, increasing the amplitude of the driving wave continuously. On the other hand, the number of spikes of solitary waves increases through multiplication of the wave pattern. The wave energy grows in a sequence of sharp steps, and hysteresis loops are found in the system. The wave energy jumps to different levels with multiplication of the wave, which is described by winding number bifurcation of phase trajectories. Also, the phenomenon of multiplication and hysteresis steps is found when varying the speed of driving wave as well. Moreover, the nature of the change of wave pattern and its energy is the stability loss of the wave caused by saddle-node bifurcation.

  15. Impact of Project P.A.T.H.S. on adolescent developmental outcomes in Hong Kong: findings based on seven waves of data.

    Science.gov (United States)

    Shek, Daniel T L; Ma, Cecilia M S

    2012-01-18

    The present study examined the longitudinal impact of Project P.A.T.H.S. (Positive Adolescent Training through Holistic Social Programmes) on adolescent developmental outcomes in Hong Kong. Using a longitudinal randomized group design, seven waves of data were collected from 24 experimental schools (n=4049 at wave 1) in which students participated in the Tier 1 Program of Project P.A.T.H.S. and 24 control schools (n=3797 at wave 1). Results based on individual growth curve modeling generally showed that, relative to the control participants, participants in the experimental group had: (a) a higher level of positive development; (b) a lower level of substance abuse; and (c) a lower level of delinquent behavior. Participants who regarded the program to be beneficial also showed higher levels of positive development and lower levels of problem behavior than did the control school students. The present findings suggest that Project P.A.T.H.S. is effective in promoting positive development and preventing adolescent problem behavior in Chinese adolescents in Hong Kong.

  16. Partial wave analysis of the 18O(p,α0)15N reaction

    International Nuclear Information System (INIS)

    Wild, L.W.J.; Spicer, B.M.

    1979-01-01

    A partial wave analysis of the differential cross sections for the 18 O(p,α 0 ) 15 N reaction has been carried out applying the formalism of Blatt and Biedenharn (1952), made specific for this reaction. The differential cross sections, measured at 200 keV intervals from 6.6 to 10.4 MeV bombarding energy, were subjected to least-squares fitting to this specific analytic expression. Two resonances were given by the analysis, the 19 F states being at 14.71+-0.07 MeV (1/2 - ) and 14.80 + 0.07 MeV (1/2) +

  17. A Study on Detection of Elastic Wave Using Patch Type Piezo-Polymer Sensor

    International Nuclear Information System (INIS)

    Kim, Ki Bok; Yoon, Dong Jin; Kueon, Jae Hwa; Lee, Young Seop

    2004-01-01

    Patch type piezo-polymer sensors for smart structures were experimented to detect elastic wave. The pencil lead braking test was performed to analyze the characteristics of patch-type piezo-polymer sensors such as polyvinyliden fluoride (PVDF) and polyvinylidene fluoride trifluorethylene (P(VDF-TrFE)) for several test specimens with various elastic wave velocities and acoustical impedances. The characteristics of the patch-type piezo-polymer sensor were compared with the commercial PZT acoustic emission (AE) sensor. The vacuum grease and epoxy resin were used as a couplant for the acoustic impedance matching between the sensor and specimen. The peak amplitude of elastic wave increased as the diameter of piezo-film and acoustical impedance of the specimen increased. The frequency detection range of the piezo-film sensors decreased with increasing diameter of the piezo-film sensor. The P(VDF-TrFE) sensor was more sensitive than the PVDF sensor

  18. Ultrasonic P- and S-Wave Attenuation and Petrophysical Properties of Deccan Flood Basalts, India, as Revealed by Borehole Studies

    Science.gov (United States)

    Vedanti, Nimisha; Malkoti, Ajay; Pandey, O. P.; Shrivastava, J. P.

    2018-03-01

    Petrophysical properties and ultrasonic P- and S-wave attenuation measurements on 35 Deccan basalt core specimens, recovered from Killari borehole site in western India, provide unique reference data-sets for a lesser studied Deccan Volcanic Province. These samples represent 338-m-thick basaltic column, consisting four lava flows each of Ambenali and Poladpur Formations, belonging to Wai Subgroup of the Deccan volcanic sequence. These basalt samples are found to be iron-rich (average FeOT: 13.4 wt%), but relatively poor in silica content (average SiO2: 47.8 wt%). The saturated massive basalt cores are characterized by a mean density of 2.91 g/cm3 (range 2.80-3.01 g/cm3) and mean P- and S-wave velocities of 5.89 km/s (range 5.01-6.50 km/s) and 3.43 km/s (range 2.84-3.69 km/s), respectively. In comparison, saturated vesicular basalt cores show a wide range in density (2.40-2.79 g/cm3) as well as P-wave (3.28-4.78 km/s) and S-wave (1.70-2.95 km/s) velocities. Based on the present study, the Deccan volcanic sequence can be assigned a weighted mean density of 2.74 g/cm3 and a low V p and V s of 5.00 and 3.00 km/s, respectively. Such low velocities in Deccan basalts can be attributed mainly to the presence of fine-grained glassy material, high iron contents, and hydrothermally altered secondary mineral products, besides higher porosity in vesicular samples. The measured Q values in saturated massive basalt cores vary enormously (Q p: 33-1960 and Q s: 35-506), while saturated vesicular basalt samples exhibit somewhat lesser variation in Q p (6-46) as well as Q s (5-49). In general, high-porosity rocks exhibit high attenuation, but we observed the high value of attenuation in some of the massive basalt core samples also. In such cases, energy loss is mainly due to the presence of fine-grained glassy material as well as secondary alteration products like chlorophaeite, that could contribute to intrinsic attenuation. Dominance of weekly bound secondary minerals might also be

  19. Ferromagnetic resonance and spin-wave resonances in GaMnAsP films

    Science.gov (United States)

    Liu, Xinyu; Li, Xiang; Bac, Seul-Ki; Zhang, Xucheng; Dong, Sining; Lee, Sanghoon; Dobrowolska, Margaret; Furdyna, Jacek K.

    2018-05-01

    A series of Ga1-xMnxAs1-yPy films grown by MBE on GaAs (100) substrates was systematically studied by ferromagnetic resonance (FMR). Magnetic anisotropy parameters were obtained by analyzing the angular dependence of the FMR data. The results clearly show that the easy axis of the films shifts from the in-plane [100] direction to the out-of-plane [001], indicating the emergence of a strong tensile-strain-induced perpendicular anisotropy when the P content exceeds y ≈ 0.07. Multiple resonances were observed in Ga1-xMnxAs1-yPy films with thicknesses over 48 nm, demonstrating the existence of exchange-dominated non-propagating spin-wave modes governed by surface anisotropy.

  20. High C reactive protein associated with increased pulse wave velocity among urban men with metabolic syndrome in Malaysia.

    Science.gov (United States)

    Aminuddin, Amilia; Zakaria, Zaiton; Fuad, Ahmad F; Kamsiah, Jaarin; Othman, Faizah; Das, Srijit; Kamisah, Yusof; Qodriyah, Haji S; Jubri, Zakiah; Nordin, Nor Anita M; Ngah, Wan Z

    2013-03-01

    To determine the association between carotid femoral pulse wave velocity (PWVCF); augmentation index (AI); and high-sensitivity C reactive protein (hs-CRP) with metabolic syndrome (MetS), and to determine the influence of ethnicity on PWVCF and AI, and the association between high hs-CRP and increased PWV, and AI in MetS. A cross-sectional study was conducted at Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia from September 2009 to September 2011. Three hundred and eighty men (Chinese and Malays) were recruited from the study. The PWVCF and AI were measured by Vicorder (SMT Medical, Wuerzburg, Germany). The hs-CRP level was also determined. We defined MetS using the International Diabetes Federation (IDF) and harmonized criteria. Malays had higher AI compared to the Malaysian Chinese. Patients with MetS had higher PWVCF (IDF criteria: 8.5 [8.3-8.7] versus 8.2 [8.0-8.4] m/s, p=0.03; harmonized criteria: 8.5 [8.4-8.7] versus 8.2 [8.0-8.4] m/s, p=0.007) and hs-CRP (IDF criteria: 0.9+/-2.0 versus 0.4+/-1.1 mg/L, p=0.0007; harmonized criteria: 0.8+/-1.9 versus 0.4+/-1.1 mg/L, p=0.002) compared to non-MetS. In subjects with MetS, those with high hs-CRP (>3 mg/L) had higher PWVCF. Augmentation index values were significantly higher in Malays compared with Malaysian Chinese. Metabolic syndrome was associated with increased PWVCF and hs-CRP. Patients with MetS and high hs-CRP were associated with higher PWVCF. The measurement of hs-CRP reflects the degree of subclinical vascular damage in MetS.

  1. S, P, D, F, G-waves KN phase shifts in a constituent quark model with a spin-orbit interaction

    International Nuclear Information System (INIS)

    Lemaire, S.; Labarsouque, J.; Silvestre-Brac, B.

    2002-01-01

    The I=1 and I=0 kaon-nucleon s, p, d, f, g-waves phase shifts have been calculated in a nonrelativistic quark potential model using the resonating group method (RGM). The interquark potential includes gluon exchanges with a spin-orbit interaction. This force has been determined to reproduce as well as possible the meson and baryon spectra. The same force is employed for the cluster and intercluster dynamics and the relative KN wave-function is calculated without any approximation. While some channels are correctly described, the theory is still unable to explain others

  2. Investigation on relationship between epicentral distance and growth curve of initial P-wave propagating in local heterogeneous media for earthquake early warning system

    Science.gov (United States)

    Okamoto, Kyosuke; Tsuno, Seiji

    2015-10-01

    In the earthquake early warning (EEW) system, the epicenter location and magnitude of earthquakes are estimated using the amplitude growth rate of initial P-waves. It has been empirically pointed out that the growth rate becomes smaller as epicentral distance becomes far regardless of the magnitude of earthquakes. So, the epicentral distance can be estimated from the growth rate using this empirical relationship. However, the growth rates calculated from different earthquakes at the same epicentral distance mark considerably different values from each other. Sometimes the growth rates of earthquakes having the same epicentral distance vary by 104 times. Qualitatively, it has been considered that the gap in the growth rates is due to differences in the local heterogeneities that the P-waves propagate through. In this study, we demonstrate theoretically how local heterogeneities in the subsurface disturb the relationship between the growth rate and the epicentral distance. Firstly, we calculate seismic scattered waves in a heterogeneous medium. First-ordered PP, PS, SP, and SS scatterings are considered. The correlation distance of the heterogeneities and fractional fluctuation of elastic parameters control the heterogeneous conditions for the calculation. From the synthesized waves, the growth rate of the initial P-wave is obtained. As a result, we find that a parameter (in this study, correlation distance) controlling heterogeneities plays a key role in the magnitude of the fluctuation of the growth rate. Then, we calculate the regional correlation distances in Japan that can account for the fluctuation of the growth rate of real earthquakes from 1997 to 2011 observed by K-NET and KiK-net. As a result, the spatial distribution of the correlation distance shows locality. So, it is revealed that the growth rates fluctuate according to the locality. When this local fluctuation is taken into account, the accuracy of the estimation of epicentral distances from initial P-waves

  3. Millimeter wave and terahertz wave transmission characteristics in plasma

    International Nuclear Information System (INIS)

    Ma Ping; Qin Long; Chen Weijun; Zhao Qing; Shi Anhua; Huang Jie

    2013-01-01

    An experiment was conducted on the shock tube to explore the transmission characteristics of millimeter wave and terahertz wave in high density plasmas, in order to meet the communication requirement of hypersonic vehicles during blackout. The transmission attenuation curves of millimeter wave and terahertz wave in different electron density and collision frequency were obtained. The experiment was also simulated by auxiliary differential equation finite-difference time-domain (ADE-FDTD) methods. The experimental and numerical results show that the transmission attenuation of terahertz wave in the plasma is smaller than that of millimeter wave under the same conditions. The transmission attenuation of terahertz wave in the plasma is enhanced with the increase of electron density. The terahertz wave is a promising alternative to the electromagnetic wave propagation in high density plasmas. (authors)

  4. Wakefulness delta waves increase after cortical plasticity induction.

    Science.gov (United States)

    Assenza, G; Pellegrino, G; Tombini, M; Di Pino, G; Di Lazzaro, V

    2015-06-01

    Delta waves (DW) are present both during sleep and in wakefulness. In the first case, DW are considered effectors of synaptic plasticity, while in wakefulness, when they appear in the case of brain lesions, their functional meaning is not unanimously recognized. To throw light on the latter, we aimed to investigate the impact on DW exerted by the cortical plasticity-inducing protocol of intermittent theta burst stimulation (iTBS). Twenty healthy subjects underwent iTBS (11 real iTBS and nine sham iTBS) on the left primary motor cortex with the aim of inducing long-term potentiation (LTP)-like phenomena. Five-minute resting open-eye 32-channel EEG, right opponens pollicis motor-evoked potentials (MEPs), and alertness behavioral scales were collected before and up to 30 min after the iTBS. Power spectral density (PSD), interhemispheric coherence between homologous sensorimotor regions, and intrahemispheric coherence were calculated for the frequency bands ranging from delta to beta. Real iTBS induced a significant increase of both MEP amplitude and DW PSD lasting up to 30 min after stimulation, while sham iTBS did not. The DW increase was evident over frontal areas ipsilateral and close to the stimulated cortex (electrode F3). Neither real nor sham iTBS induced significant modifications in the PSD of theta, alpha, and beta bands and in the interhemispheric coherence. Behavioral visuo-analogic scales score did not demonstrate changes in alertness after stimulations. No correlations were found between MEP amplitude and PSD changes in the delta band. Our data showed that LTP induction in the motor cortex during wakefulness, by means of iTBS, is accompanied by a large and enduring increase of DW over the ipsilateral frontal cortex. The present results are strongly in favor of a prominent role of DW in the neural plasticity processes taking place during the awake state. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland

  5. Some nonlinear processes relevant to the beat wave accelerator

    International Nuclear Information System (INIS)

    Bingham, R.; Mori, W.B.

    1985-03-01

    The beat wave accelerator depends on the generation of a large amplitude plasma wave with a phase velocity close to the velocity of light c. The plasma wave (ωsub(p), ksub(p)) is generated by beating colinear laser beams (ω 1 , k 1 ) and (ω 2 ,k 2 ) with ωsub(p) = ω 1 -ω 2 , ksub(p) = k 1 -k 2 . Since the process involves both large amplitude transverse and longitudinal waves, various nonlinear instabilities associated with either wave may occur. The object of the article is to discuss some of the processes that may compete with the beat wave generation listing their threshold and growth rate. (author)

  6. System on Package (SoP) Millimeter Wave Filters for 5G Applications

    KAUST Repository

    Showail, Jameel

    2018-05-01

    Bandpass filters are an essential component of wireless communication systems that only transmits frequencies corresponding to the communication band and rejects all other frequencies. As the deployment of 5G draws nearer, first deployments are expected in 2020 [1], the need for viable filters at the new frequency bands becomes more imminent. Size and performance are two critical considerations for a filter that will be used in emerging mobile communication applications. The high frequency of 5G communication, 28 GHz as opposed to sub 6 GHz for nearly all previous communication protocols, means that previously utilized lumped component based solutions cannot be implemented since they are ill-suited for mm-wave applications. The focus of this work is the miniaturization of a high-performance filter. The Substrate Integrated Waveguide (SIW) is a high performance and promising structure and Low Temperature Co-Fired Ceramic (LTCC) is a high-performance material that both can operate at higher frequencies than the technologies used for previous telecommunication generations. To miniaturize the structure, a compact folded four-cavity SIW filter is designed, implemented and tested. The feeding structure is integrated into the filter to exploit the System on Package (SoP) attributes of LTCC and further reduce the total area of the filter individually and holistically when looking at the final integrated system. Two unique three dimensional (3D) integrated SoP LTCC two-stage SIW single cavity filters and one unique four-cavity filter all with embedded planar resonators are designed, fabricated and tested. The embedded resonators create a two-stage effect in a single cavity filter. The better single cavity design provides a 15% fractional bandwidth at a center frequency of 28.12 GHz, and with an insertion loss of -0.53 dB. The fabricated four-cavity filter has a 3-dB bandwidth of .98GHz centered at 27.465 GHz, and with an insertion loss of -2.66 dB. The designs presented

  7. Arterial wave reflection and aortic valve calcification in an elderly community-based cohort.

    Science.gov (United States)

    Sera, Fusako; Russo, Cesare; Iwata, Shinichi; Jin, Zhezhen; Rundek, Tatjana; Elkind, Mitchell S V; Homma, Shunichi; Sacco, Ralph L; Di Tullio, Marco R

    2015-04-01

    Aortic valve calcification (AVC) without stenosis is common in the elderly, is associated with cardiovascular morbidity and mortality, and may progress to aortic valve stenosis. Arterial stiffness and pulse-wave reflection are important components of proximal aortic hemodynamics, but their relationship with AVC is not established. To investigate the relationship of arterial wave reflection and stiffness with AVC, pulse wave analysis and AVC evaluation by echocardiography were performed in 867 participants from the Cardiovascular Abnormalities and Brain Lesions study. Participants were divided into four categories on the basis of the severity and extent of AVC: (1) none or mild focal AVC, (2) mild diffuse AVC, (3) moderate to severe focal AVC, and (4) moderate to severe diffuse AVC. Central blood pressures and pulse pressure, total arterial compliance, augmentation index, and time to wave reflection were assessed using applanation tonometry. Indicators of arterial stiffness and wave reflection were significantly associated with AVC severity, except for central systolic and diastolic pressures and time to reflection. After adjustment for pertinent covariates (age, sex, race/ethnicity, and estimated glomerular filtration rate), only augmentation pressure (P = .02) and augmentation index (P = .002) were associated with the severity of AVC. Multivariate logistic regression analysis revealed that augmentation pressure (odds ratio per mm Hg, 1.14; 95% confidence interval, 1.02-1.27; P = .02) and augmentation index (odds ratio per percentage point, 1.07; 95% confidence interval, 1.01-1.13; P = .02) were associated with an increased risk for moderate to severe diffuse AVC, even when central blood pressure value was included in the same model. Arterial wave reflection is associated with AVC severity, independent of blood pressure values. Increased contribution of wave reflection to central blood pressure could be involved in the process leading to AVC. Copyright © 2015

  8. On the possibility of the autoresonant motion of an electron in a slow electromagnetic wave

    International Nuclear Information System (INIS)

    Milantiev, V.P.

    1994-01-01

    By autoresonant motion one usually means the motion when the condition of cyclotron resonance of gyrating particle with electromagnetic wave is conserved during all the time of the motion in spite of the relativistic mass increase. Such a motion takes place only in the case of vacuum wave, when the phase velocity ν p is equal to the speed of light in a vacuum C. Otherwise autoresonance is impossible, and energy of the particle oscillates in time. The authors now discuss the possibility of the autoresonance in a slow electromagnetic wavep < c) propagating along the straight lines of the external magnetic field. It turns out that the autoresonant regime of the motion in a slow electromagnetic wave possible if some rather restrictive relations between the electric drift velocity and the phase velocity of wave take place. It depends also on the polarization of wave. The general case of the elliptical polarization is considered. The optimal regime corresponds to the wave with linear polarization in the direction of the constant electric field. For this case the calculations show that energy of the particle can unlimitedly increase (or decrease). The rate of acceleration can be even larger than in the case of vacuum wave. Radiation forces will restrict this process

  9. Substance P and Calcitonin gene-related peptide expression in human periodontal ligament after root canal preparation with Reciproc Blue, WaveOne Gold, XP EndoShaper and hand files.

    Science.gov (United States)

    Caviedes-Bucheli, J; Rios-Osorio, N; Rey-Rojas, M; Laguna-Rivero, F; Azuero-Holguin, M M; Diaz, L E; Curtidor, H; Castaneda-Ramirez, J J; Munoz, H R

    2018-05-17

    To quantify the Substance P (SP) and Calcitonin gene-related peptide (CGRP) expression in healthy human periodontal ligament from premolars after root canal preparation with Reciproc Blue, WaveOne Gold, XP EndoShaper and hand files. Fifty human periodontal ligament samples were obtained from healthy mandibular premolars where extraction was indicated for orthodontic reasons. Prior to extraction, 40 of these premolars were equally divided into four groups, and root canals were prepared using four different systems: Reciproc Blue, WaveOne Gold, XP EndoShaper, and a hand instrumentation technique. The remaining 10 healthy premolars were extracted without treatment and served as a negative control group. All periodontal ligament samples were processed, and SP and CGRP were measured by radioimmunoassay. The Kruskal-Wallis test was used to establish significant differences between groups and LSD post hoc comparisons were also performed. Greater SP and CGRP values were found in the hand instrumentation group, followed by the XP EndoShaper, WaveOne Gold and the Reciproc groups. The lower SP and CGRP values were for the healthy periodontal ligament group. The Kruskal-Wallis test revealed significant differences between groups (p 0.05). All the root canal preparation techniques tested increased SP and CGRP expression in human periodontal ligament, with hand files and XP EndoShaper instruments being associated with greater neuropeptide release compared to Reciproc Blue and WaveOne Gold files. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Separate P‐ and SV‐wave equations for VTI media

    KAUST Repository

    Pestana, Reynam C.; Ursin, Bjø rn; Stoffa, Paul L.

    2011-01-01

    In isotropic media we use the scalar acoustic wave equation to perform reverse time migration RTM of the recorded pressure wavefleld data. In anisotropic media P- and SV-waves are coupled and the elastic wave equation should be used for RTM. However, an acoustic anisotropic wave equation is often used instead. This results in significant shear wave energy in both modeling and RTM. To avoid this undesired SV-wave energy, we propose a different approach to separate P- and SV-wave components for vertical transversely isotropic VTI media. We derive independent pseudo-differential wave equations for each mode. The derived equations for P- and SV-waves are stable and reduce to the isotropic case. The equations presented here can be effectively used to model and migrate seismic data in VTI media where ε - δ is small. The SV-wave equation we develop is now well-posed and triplications in the SV wavefront are removed resulting in stable wave propagation. We show modeling and RTM results using the derived pure P-wave mode in complex VTI media and use the rapid expansion method REM to propagate the waveflelds in time. © 2011 Society of Exploration Geophysicists.

  11. Excitation of a surface wave by an s-polarized electromagnetic wave incident upon a boundary of a dense magnetoactive plasma

    International Nuclear Information System (INIS)

    Dragila, R.; Vukovic, S.

    1988-01-01

    The properties of surfave waves that are associated with a boundary between a rare plasma and a dense magnetoactive plasma and that propagate along a dc magnetic field are investigated. It is shown that the presence of the magnetic field introduces symmetry in terms of the polarization of the incident electromagnetic wave that excites the surface waves. A surface wave excited by an incident p-polarized (s-polarized) electromagnetic wave leaks in the form of an s-polarized (p-polarized) electromagnetic wave. The rate of rotation of polarization is independent of the polarization of the incident wave. Because a surface wave can leak in the form of an s-polarized electromagnetic wave, it can also be pumped by such a wave, and conditions were found for excitation of a surface wave by an s-polarized incident electromagnetic wave

  12. Studies on the propagation of relativistic plasma waves in high density plasmas produced by hypersonic ionizing shock waves

    International Nuclear Information System (INIS)

    Williams, R.L.; Johnson, J.A. III

    1993-01-01

    The feasibility of using an ionizing shock wave to produce high density plasmas suitable for the propagation large amplitude relativistic plasma waves is being investigated. A 20 kv arc driven shock tube of coaxial geometry produces a hypersonic shock wave (10 p > 10 17 cm -3 ). The shock can be made to reflect off the end of the tube, collide with its wake, and thus increase the plasma density further. After reflecting, the plasma is at rest. The shock speed is measured using piezoelectric pressure probes and the ion density is measured using laser induced fluorescence (LIF) techniques on argon 488.0 nm and 422.8 nm lines. The future plans are to excite large amplitude relativistic plasma waves in this plasma by either injecting a short pulse laser (Laser Wake Field Scheme), two beating lasers (Plasma Beat Wave Scheme), or a short bunch of relativistic electrons (Plasma Wake Field Scheme). Results of recent computational and theoretical studies, as well as initial experimental measurements on the plasma using LIF, are reported. Implications for the application of high density plasmas produced in this way to such novel schemes as the plasma wave accelerator, photon accelerator, plasma wave undulator, and also plasma lens, are discussed. The effect of plasma turbulence is also discussed

  13. Imaging the Moho beneath Sedimentary Basins: A Comparative Study of Virtual Deep Seismic Sounding (VDSS) and P Wave Receiver Functions (PRF)

    Science.gov (United States)

    Liu, T.; Klemperer, S. L.; Yu, C.; Ning, J.

    2017-12-01

    In the past decades, P wave receiver functions (PRF) have been routinely used to image the Moho, although it is well known that PRFs are susceptible to contamination from sedimentary multiples. Recently, Virtual Deep Seismic Sounding (VDSS) emerged as a novel method to image the Moho. However, despite successful applications of VDSS on multiple datasets from different areas, how sedimentary basins affect the waveforms of post-critical SsPmp, the Moho reflection phase used in VDSS, is not widely understood. Here, motivated by a dataset collected in the Ordos plateau, which shows distinct effects of sedimentary basins on SsPmp and Pms waveforms, we use synthetic seismograms to study the effects of sedimentary basins on SsPmp and Pms, the phases used in VDSS and PRF respectively. The results show that when the sedimentary thickness is on the same order of magnitude as the dominant wavelength of the incident S wave, SsPmp amplitude decreases significantly with S velocity of the sedimentary layer, whereas increasing sedimentary thickness has little effect in SsPmp amplitude. Our explanation is that the low S velocity layer at the virtual source reduces the incident angle of S wave at the free surface, thus decreases the S-to-P reflection coefficient at the virtual source. In addition, transmission loss associated with the bottom of sedimentary basins also contributes to reducing SsPmp amplitude. This explains not only our observations from the Ordos plateau, but also observations from other areas where post-critical SsPmp is expected to be observable, but instead is too weak to be identified. As for Pms, we observe that increasing sedimentary thickness and decreasing sedimentary velocities both can cause interference between sedimentary multiples and Pms, rendering the Moho depths inferred from Pms arrival times unreliable. The reason is that although Pms amplitude does not vary with sedimentary thickness or velocities, as sedimentary velocities decrease and thickness

  14. Overnight changes in the slope of sleep slow waves during infancy.

    Science.gov (United States)

    Fattinger, Sara; Jenni, Oskar G; Schmitt, Bernhard; Achermann, Peter; Huber, Reto

    2014-02-01

    Slow wave activity (SWA, 0.5-4.5 Hz) is a well-established marker for sleep pressure in adults. Recent studies have shown that increasing sleep pressure is reflected by an increased synchronized firing pattern of cortical neurons, which can be measured by the slope of sleep slow waves. Thus we aimed at investigating whether the slope of sleep slow waves might provide an alternative marker to study the homeostatic regulation of sleep during early human development. All-night sleep electroencephalography (EEG) was recorded longitudinally at 2, 4, 6, and 9 months after birth. Home recording. 11 healthy full-term infants (5 male, 6 female). None. The slope of sleep slow waves increased with age. At all ages the slope decreased from the first to the last hour of non rapid-eye-movement (NREM) sleep, even when controlling for amplitude differences (P why the steepest slope was found in the occipital derivation. Our results provide evidence that the homeostatic regulation of sleep develops early in human infants.

  15. Neutron wave reflexions in interface media with transport equation P1 approximation

    International Nuclear Information System (INIS)

    Oliveira Vellozo, S. de.

    1977-01-01

    The propagation of neutron waves in non multiplying media is investigated employing the Telegrapher's equation obtained from the P 1 approximation of the time, space and energy dependent Boltzmann equation. Solution of the problem of propagation of sinusoidally modulated source incident on one face of the medium is obtained by analysing the Fourier component of a pulsed source introduced, for the corresponding frequency. The amplitude and the phase of the flux are computed as a function of frequency in media consisting of one, two and three regions in order to study the effects of reflection at the interfaces. The results are compared with those from the Diffusion approximation obtained by neglecting the term involving the second order time derivative. (author)

  16. Majorana zero modes in the hopping-modulated one-dimensional p-wave superconducting model.

    Science.gov (United States)

    Gao, Yi; Zhou, Tao; Huang, Huaixiang; Huang, Ran

    2015-11-20

    We investigate the one-dimensional p-wave superconducting model with periodically modulated hopping and show that under time-reversal symmetry, the number of the Majorana zero modes (MZMs) strongly depends on the modulation period. If the modulation period is odd, there can be at most one MZM. However if the period is even, the number of the MZMs can be zero, one and two. In addition, the MZMs will disappear as the chemical potential varies. We derive the condition for the existence of the MZMs and show that the topological properties in this model are dramatically different from the one with periodically modulated potential.

  17. Exploring the Potential for Increased Production from the Wave Energy Converter Lifesaver by Reactive Control

    Directory of Open Access Journals (Sweden)

    Marta Molinas

    2013-07-01

    Full Text Available Fred Olsen is currently testing their latest wave energy converter (WEC, Lifesaver, outside of Falmouth Bay in England, preparing it for commercial operation at the Wavehub test site. Previous studies, mostly focusing on hydrodynamics and peak to average power reduction, have shown that this device has potential for increased power extraction using reactive control. This article extends those analyses, adding a detailed model of the all-electric power take-off (PTO system, consisting of a permanent magnet synchronous generator, inverter and DC-link. Time domain simulations are performed to evaluate the PTO capabilities of the modeled WEC. However, when tuned towards reactive control, the generator losses become large, giving a very low overall system efficiency. Optimal control with respect to electrical output power is found to occur with low added mass, and when compared to pure passive loading, a 1% increase in annual energy production is estimated. The main factor reducing the effect of reactive control is found to be the minimum load-force constraint of the device. These results suggest that the Lifesaver has limited potential for increased production by reactive control. This analysis is nevertheless valuable, as it demonstrates how a wave-to-wire model can be used for investigation of PTO potential, annual energy production estimations and evaluations of different control techniques for a given WEC device.

  18. The incorporation of fault zone head wave and direct wave secondary arrival times and arrival polarizations into seismic tomography: Application to the Parkfield, California area

    Science.gov (United States)

    Bennington, N. L.; Thurber, C. H.; Peng, Z.; Zhao, P.

    2012-12-01

    We present a 3D P-wave velocity (Vp) model of the Parkfield region that utilizes existing P-wave arrival time data, including fault zone head waves (FZHW), plus new data from direct wave secondary arrivals (DWSA). The first-arrival and DWSA travel times are obtained as the global and local minimum travel time paths, respectively. The inclusion of DWSA results in as much as a 10% increase in the across-fault velocity contrast for the Vp model at Parkfield relative to Thurber et al. (2006). Viewed along strike, three pronounced velocity contrast regions are observed: a pair of strong positive velocity contrasts (SW fast), one NW of the 1966 Parkfield hypocenter and the other SE of the 2004 Parkfield hypocenter, and a strong negative velocity contrast (NE fast) between the two hypocenters. The negative velocity contrast partially to entirely encompasses peak coseismic slip estimated in several slip models for the 2004 earthquake, suggesting that the negative velocity contrast played a part in defining the rupture patch of the 2004 Parkfield earthquake. We expand on this work by modifying our seismic tomography algorithm to incorporate arrival polarizations (azimuths). Synthetic tests will be presented to demonstrate the improvements in velocity structure when arrival polarizations are incorporated. These tests will compare the synthetic model recovered when FZHW/DWSA arrivals as well as existing P-wave arrival time data are inverted to that recovered with the same dataset with the inclusion of arrival polarizations. We plan to extend this work to carry out a full scale seismic tomography/relocation inversion at Parkfield, CA utilizing arrival polarizations from all first-P arrivals, and FZHW/DWSA arrivals as well as existing P-wave arrival time data. This effort requires the determination of polarization data for all P-waves and FZHW's at Parkfield. To this end, we use changes in the arrival azimuth from fault normal to source-receiver direction to identify FZHW and

  19. Rupture imaging of the Mw 7.9 12 May 2008 Wenchuan earthquake from back projection of teleseismic P waves

    Science.gov (United States)

    Xu, Yan; Koper, Keith D.; Sufri, Oner; Zhu, Lupei; Hutko, Alexander R.

    2009-04-01

    The Mw 7.9 Wenchuan earthquake of 12 May 2008 was the most destructive Chinese earthquake since the 1976 Tangshan event. Tens of thousands of people were killed, hundreds of thousands were injured, and millions were left homeless. Here we infer the detailed rupture process of the Wenchuan earthquake by back-projecting teleseismic P energy from several arrays of seismometers. This technique has only recently become feasible and is potentially faster than traditional finite-fault inversion of teleseismic body waves; therefore, it may reduce the notification time to emergency response agencies. Using the IRIS DMC, we collected 255 vertical component broadband P waves at 30-95° from the epicenter. We found that at periods of 5 s and greater, nearly all of these P waves were coherent enough to be used in a global array. We applied a simple down-sampling heuristic to define a global subarray of 70 stations that reduced the asymmetry and sidelobes of the array response function (ARF). We also considered three regional subarrays of seismometers in Alaska, Australia, and Europe that had apertures less than 30° and P waves that were coherent to periods as short as 1 s. Individual ARFs for these subarrays were skewed toward the subarrays; however, the linear sum of the regional subarray beams at 1 s produced a symmetric ARF, similar to that of the groomed global subarray at 5 s. For both configurations we obtained the same rupture direction, rupture length, and rupture time. We found that the Wenchuan earthquake had three distinct pulses of high beam power at 0, 23, and 57 s after the origin time, with the pulse at 23 s being highest, and that it ruptured unilaterally to the northeast for about 300 km and 110 s, with an average speed of 2.8 km/s. It is possible that similar results can be determined for future large dip-slip earthquakes within 20-30 min of the origin time using relatively sparse global networks of seismometers such as those the USGS uses to locate

  20. Rupture imaging of the Mw 7.9 12 May 2008 Wenchuan earthquake from back projection of teleseismic P waves

    Science.gov (United States)

    Xu, Y.; Koper, K.D.; Sufri, O.; Zhu, L.; Hutko, Alexander R.

    2009-01-01

    [1] The Mw 7.9 Wenchuan earthquake of 12 May 2008 was the most destructive Chinese earthquake since the 1976 Tangshan event. Tens of thousands of people were killed, hundreds of thousands were injured, and millions were left homeless. Here we infer the detailed rupture process of the Wenchuan earthquake by back-projecting teleseismic P energy from several arrays of seismometers. This technique has only recently become feasible and is potentially faster than traditional finite-fault inversion of teleseismic body waves; therefore, it may reduce the notification time to emergency response agencies. Using the IRIS DMC, we collected 255 vertical component broadband P waves at 30-95?? from the epicenter. We found that at periods of 5 s and greater, nearly all of these P waves were coherent enough to be used in a global array. We applied a simple down-sampling heuristic to define a global subarray of 70 stations that reduced the asymmetry and sidelobes of the array response function (ARF). We also considered three regional subarrays of seismometers in Alaska, Australia, and Europe that had apertures less than 30?? and P waves that were coherent to periods as short as 1 s. Individual ARFs for these subarrays were skewed toward the subarrays; however, the linear sum of the regional subarray beams at 1 s produced a symmetric ARF, similar to that of the groomed global subarray at 5 s. For both configurations we obtained the same rupture direction, rupture length, and rupture time. We found that the Wenchuan earthquake had three distinct pulses of high beam power at 0, 23, and 57 s after the origin time, with the pulse at 23 s being highest, and that it ruptured unilaterally to the northeast for about 300 km and 110 s, with an average speed of 2.8 km/s. It is possible that similar results can be determined for future large dip-slip earthquakes within 20-30 min of the origin time using relatively sparse global networks of seismometers such as those the USGS uses to locate

  1. Glutamate microinjection in the medial septum of rats decreases paradoxical sleep and increases slow wave sleep.

    Science.gov (United States)

    Mukherjee, Didhiti; Kaushik, Mahesh K; Jaryal, Ashok Kumar; Kumar, Velayudhan Mohan; Mallick, Hruda Nanda

    2012-05-09

    The role of the medial septum in suppressing paradoxical sleep and promoting slow wave sleep was suggested on the basis of neurotoxic lesion studies. However, these conclusions need to be substantiated with further experiments, including chemical stimulation studies. In this report, the medial septum was stimulated in adult male rats by microinjection of L-glutamate. Sleep-wakefulness was electrophysiologically recorded, through chronically implanted electrodes, for 2 h before the injection and 4 h after the injection. There was a decrease in paradoxical sleep during the first hour and an increase in slow wave sleep during the second hour after the injection. The present findings not only supported the lesion studies but also showed that the major role of the medial septum is to suppress paradoxical sleep.

  2. An adaptive Bayesian inversion for upper mantle structure using surface waves and scattered body waves

    Science.gov (United States)

    Eilon, Zachary; Fischer, Karen M.; Dalton, Colleen A.

    2018-04-01

    We present a methodology for 1-D imaging of upper mantle structure using a Bayesian approach that incorporates a novel combination of seismic data types and an adaptive parameterisation based on piecewise discontinuous splines. Our inversion algorithm lays the groundwork for improved seismic velocity models of the lithosphere and asthenosphere by harnessing the recent expansion of large seismic arrays and computational power alongside sophisticated data analysis. Careful processing of P- and S-wave arrivals isolates converted phases generated at velocity gradients between the mid-crust and 300 km depth. This data is allied with ambient noise and earthquake Rayleigh wave phase velocities to obtain detailed VS and VP velocity models. Synthetic tests demonstrate that converted phases are necessary to accurately constrain velocity gradients, and S-p phases are particularly important for resolving mantle structure, while surface waves are necessary for capturing absolute velocities. We apply the method to several stations in the northwest and north-central United States, finding that the imaged structure improves upon existing models by sharpening the vertical resolution of absolute velocity profiles, offering robust uncertainty estimates, and revealing mid-lithospheric velocity gradients indicative of thermochemical cratonic layering. This flexible method holds promise for increasingly detailed understanding of the upper mantle.

  3. Calculation of the total electron excitation cross section in the Born approximation using Slater wave functions for the Li (2s yields 2p), Li (2s yields 3p), Na (3s yields 4p), Mg (3p yields 4s), Ca (4s yields 4p) and K (4s yields 4p) excitations. M.S. Thesis

    Science.gov (United States)

    Simsic, P. L.

    1974-01-01

    Excitation of neutral atoms by inelastic scattering of incident electrons in gaseous nebulae were investigated using Slater Wave functions to describe the initial and final states of the atom. Total cross sections using the Born Approximation are calculated for: Li(2s yields 2p), Na(3s yields 4p), k(4s yields 4p). The intensity of emitted radiation from gaseous nebulae is also calculated, and Maxwell distribution is employed to average the kinetic energy of electrons.

  4. Increasing of the ST segment in the derivations with Q wave in the early effort test after acute myocardial infarction

    International Nuclear Information System (INIS)

    Sanfins, V.M.; Machado, I.; Sousa, F.; Quelhas, I.; Fernandes, J.; Reis, F.; Lourenco, A.; Goncalo, L.; Correia, L.; Amorim, I.; Pereira, A.; Almeida, J. de

    1997-01-01

    Full text: : The objective of this work is to evaluate the raising of the ST segment in the Q wave derivations in the precocious effort test (ET) after acute myocardial infarction (AMI) in patients with AMI of the anterior wall, submitted to thrombolysis. It is a prospective study involving 36 patients (P) with AMI of the anterior wall, consecutively interned in the Coronary Unit and submitted to thrombolysis, between June 1995 to June 1996. All the patients realized ET, according Bruce protocol and isotopic study with Thallium 201, with reinjection until 24 h, both without anti-ischemic therapy. The additional raising of ST greater or equal to 1mm, in two or more consecutive Q wave derivations was considered as positivity criterion in the ET. The quantification of the ischemia and/or viability in Thallium-201 was made through analysis of the tomographic images and the bull's eye, using the habitual criterion of positivity. The obtained results were compared and the sensibility, the specificity, the acuity and the positive and negative predictive values of the ST segment raising were evaluated, in the identification of the ischemia and/or viability detected in the isotopic study. The average age was of 53,4 years old (36-73), 29 (80,5%) were male. From the 21 (58,3%) of the patients who had ischemia and/or viability in Thallium-201, 18 (86%) presented alterations in the ST segment in ET. 24 (66,7%) of the patients who presented alterations in the ST segment in ET, 18 (75%) had also ischemia and/or viability in Thallium-201. Relatively to Thallium-201, the sensibility, specificity, acuity and positive and negative predictive values of the ST segment raising in the Q wave derivations in ET were, respectively of 86%, 60%, 75%, 75% and 75%. The ST segment raising in the Q wave derivations were positively correlated with the existence of ischemia and/or viability in the infarction area. However, it is necessary to continue the study and increase the sample size to

  5. A numerical study of the wave shoaling effect on wind-wave momentum flux

    Science.gov (United States)

    Hao, Xuanting; Shen, Lian

    2017-11-01

    Momentum transfer between wind and waves is crucial to many physical processes in air-sea interactions. For decades, there has been a number of observational evidence that the surface roughness in the nearshore region is notably higher than in the open sea. In order to explain the mechanism behind this important phenomenon, in particular the wave shoaling effect on surface roughness, we conduct a series of numerical experiments using the wind-wave module of WOW (Wave-Ocean-Wind), a high-fidelity computational framework developed in house. We use prescribed monochromatic waves with linear shoaling effect incorporated, while the wind field is simulated using wall-resolved large-eddy simulation. A comparison between a shallow water wave case and deep water wave cases shows remarkably stronger wave effects on the wind for the former. Detailed analyses show that the increased surface roughness is closely associated with the increased form drag that is mainly due to the reduced wave age in wave shoaling.

  6. Reflectors to Focus Wave Energy

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    2005-01-01

    Wave Energy Converters (WEC’s) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased by approximately 30......-50%. Clearly longer wave reflectors will focus more wave energy than shorter wave reflectors. Thus the draw back is the increased wave forces for the longer wave reflectors. In the paper a procedure for calculating the energy efficiency and the wave forces on the reflectors are described, this by use of a 3D...... boundary element method. The calculations are verified by laboratory experiments and a very good agreement is found. The paper gives estimates of possible power benefit for different wave reflector geometries and optimal geometrical design parameters are specified. On this basis inventors of WEC’s can...

  7. Near-surface compressional and shear wave speeds constrained by body-wave polarization analysis

    Science.gov (United States)

    Park, Sunyoung; Ishii, Miaki

    2018-06-01

    A new technique to constrain near-surface seismic structure that relates body-wave polarization direction to the wave speed immediately beneath a seismic station is presented. The P-wave polarization direction is only sensitive to shear wave speed but not to compressional wave speed, while the S-wave polarization direction is sensitive to both wave speeds. The technique is applied to data from the High-Sensitivity Seismograph Network in Japan, and the results show that the wave speed estimates obtained from polarization analysis are compatible with those from borehole measurements. The lateral variations in wave speeds correlate with geological and physical features such as topography and volcanoes. The technique requires minimal computation resources, and can be used on any number of three-component teleseismic recordings, opening opportunities for non-invasive and inexpensive study of the shallowest (˜100 m) crustal structures.

  8. Arterial wave reflection and subclinical left ventricular systolic dysfunction.

    Science.gov (United States)

    Russo, Cesare; Jin, Zhezhen; Takei, Yasuyoshi; Hasegawa, Takuya; Koshaka, Shun; Palmieri, Vittorio; Elkind, Mitchell Sv; Homma, Shunichi; Sacco, Ralph L; Di Tullio, Marco R

    2011-03-01

    Increased arterial wave reflection is a predictor of cardiovascular events and has been hypothesized to be a cofactor in the pathophysiology of heart failure. Whether increased wave reflection is inversely associated with left-ventricular (LV) systolic function in individuals without heart failure is not clear. Arterial wave reflection and LV systolic function were assessed in 301 participants from the Cardiovascular Abnormalities and Brain Lesions (CABL) study using two-dimensional echocardiography and applanation tonometry of the radial artery to derive central arterial waveform by a validated transfer function. Aortic augmentation index (AIx) and wasted energy index (WEi) were used as indices of wave reflection. LV systolic function was measured by LV ejection fraction (LVEF) and tissue Doppler imaging (TDI). Mitral annulus peak systolic velocity (Sm), peak longitudinal strain and strain rate were measured. Participants with history of coronary artery disease, atrial fibrillation, LVEF less than 50% or wall motion abnormalities were excluded. Mean age of the study population was 68.3 ± 10.2 years (64.1% women, 65% hypertensive). LV systolic function by TDI was lower with increasing wave reflection, whereas LVEF was not. In multivariate analysis, TDI parameters of LV longitudinal systolic function were significantly and inversely correlated to AIx and WEi (P values from 0.05 to 0.002). In a community cohort without heart failure and with normal LVEF, an increased arterial wave reflection was associated with subclinical reduction in LV systolic function assessed by novel TDI techniques. Further studies are needed to investigate the prognostic implications of this relationship.

  9. Disruption of perineuronal nets increases the frequency of sharp wave ripple events.

    Science.gov (United States)

    Sun, Zhi Yong; Bozzelli, P Lorenzo; Caccavano, Adam; Allen, Megan; Balmuth, Jason; Vicini, Stefano; Wu, Jian-Young; Conant, Katherine

    2018-01-01

    Hippocampal sharp wave ripples (SWRs) represent irregularly occurring synchronous neuronal population events that are observed during phases of rest and slow wave sleep. SWR activity that follows learning involves sequential replay of training-associated neuronal assemblies and is critical for systems level memory consolidation. SWRs are initiated by CA2 or CA3 pyramidal cells (PCs) and require initial excitation of CA1 PCs as well as participation of parvalbumin (PV) expressing fast spiking (FS) inhibitory interneurons. These interneurons are relatively unique in that they represent the major neuronal cell type known to be surrounded by perineuronal nets (PNNs), lattice like structures composed of a hyaluronin backbone that surround the cell soma and proximal dendrites. Though the function of the PNN is not completely understood, previous studies suggest it may serve to localize glutamatergic input to synaptic contacts and thus influence the activity of ensheathed cells. Noting that FS PV interneurons impact the activity of PCs thought to initiate SWRs, and that their activity is critical to ripple expression, we examine the effects of PNN integrity on SWR activity in the hippocampus. Extracellular recordings from the stratum radiatum of horizontal murine hippocampal hemisections demonstrate SWRs that occur spontaneously in CA1. As compared with vehicle, pre-treatment (120 min) of paired hemislices with hyaluronidase, which cleaves the hyaluronin backbone of the PNN, decreases PNN integrity and increases SWR frequency. Pre-treatment with chondroitinase, which cleaves PNN side chains, also increases SWR frequency. Together, these data contribute to an emerging appreciation of extracellular matrix as a regulator of neuronal plasticity and suggest that one function of mature perineuronal nets could be to modulate the frequency of SWR events. © 2017 Wiley Periodicals, Inc.

  10. Anomalous Hall effect in semiconductor quantum wells in proximity to chiral p -wave superconductors

    Science.gov (United States)

    Yang, F.; Yu, T.; Wu, M. W.

    2018-05-01

    By using the gauge-invariant optical Bloch equation, we perform a microscopic kinetic investigation on the anomalous Hall effect in chiral p -wave superconducting states. Specifically, the intrinsic anomalous Hall conductivity in the absence of the magnetic field is zero as a consequence of Galilean invariance in our description. As for the extrinsic channel, a finite anomalous Hall current is obtained from the impurity scattering with the optically excited normal quasiparticle current even at zero temperature. From our kinetic description, it can be clearly seen that the excited normal quasiparticle current is due to an induced center-of-mass momentum of Cooper pairs through the acceleration driven by ac electric field. For the induced anomalous Hall current, we show that the conventional skew-scattering channel in the linear response makes the dominant contribution in the strong impurity interaction. In this case, our kinetic description as a supplementary viewpoint mostly confirms the results of Kubo formalism in the literature. Nevertheless, in the weak impurity interaction, this skew-scattering channel becomes marginal and we reveal that an induction channel from the Born contribution dominates the anomalous Hall current. This channel, which has long been overlooked in the literature, is due to the particle-hole asymmetry by nonlinear optical excitation. Finally, we study the case in the chiral p -wave superconducting state with a transverse conical magnetization, which breaks the Galilean invariance. In this situation, the intrinsic anomalous Hall conductivity is no longer zero. Comparison of this intrinsic channel with the extrinsic one from impurity scattering is addressed.

  11. Upper-mantle velocities below the Scandinavian Mountains from P- and S- wave traveltime tomography

    DEFF Research Database (Denmark)

    Hejrani, Babak; Balling, N.; Jacobsen, B. H.

    2017-01-01

    More than 20000 arrival-times of teleseismic P- and S-waves were measured over a period of more than 10 years in five separate temporary and two permanent seismic networks covering the Scandinavian (Scandes) Mountains and adjacent areas of the Baltic Shield. The relative traveltime residuals were...... between Lofoten and the crest of the Northern Scandes Mountains and stays off the coast further north. Seismic velocities in the depth interval 100-300 km change across the UMVB from low relative VP and even lower relative VS on the western side to high relative VP and even higher relative VS to the east...

  12. Wave attenuation charcteristics of tethered float system

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.

    incident wave height transmitted wave height G wave number float mass number of rows of floats drag power transmitted wave power incident wave power 111 112 P. Vethamony float radius wave period time velocity and acceleration of fluid... particles, respectively wave attenuation in percentage displacement, velocity and acceleration of float, respectively amplitude of float displacement added mass damping coefficient fluid particle displacement amplitude of fluid particle displacement...

  13. Fractionated Repetitive Extracorporeal Shock Wave Therapy: A New Standard in Shock Wave Therapy?

    Directory of Open Access Journals (Sweden)

    Tobias Kisch

    2015-01-01

    Full Text Available Background. ESWT has proven clinical benefit in dermatology and plastic surgery. It promotes wound healing and improves tissue regeneration, connective tissue disorders, and inflammatory skin diseases. However, a single treatment session or long intervals between sessions may reduce the therapeutic effect. The present study investigated the effects of fractionated repetitive treatment in skin microcirculation. Methods. 32 rats were randomly assigned to two groups and received either fractionated repetitive high-energy ESWT every ten minutes or placebo shock wave treatment, applied to the dorsal lower leg. Microcirculatory effects were continuously assessed by combined laser Doppler imaging and photospectrometry. Results. In experimental group, cutaneous tissue oxygen saturation was increased 1 minute after the first application and until the end of the measuring period at 80 minutes after the second treatment (P<0.05. The third ESWT application boosted the effect to its highest extent. Cutaneous capillary blood flow showed a significant increase after the second application which was sustained for 20 minutes after the third application (P<0.05. Placebo group showed no statistically significant differences. Conclusions. Fractionated repetitive extracorporeal shock wave therapy (frESWT boosts and prolongs the effects on cutaneous hemodynamics. The results indicate that frESWT may provide greater benefits in the treatment of distinct soft tissue disorders compared with single-session ESWT.

  14. Nonlinear ion-acoustic waves and solitons in a magnetized plasma

    International Nuclear Information System (INIS)

    Lee, L.C.; Kan, J.R.

    1981-01-01

    A unified formulation is presented to study the nonlinear low-frequency electrostatic waves in a magnetized low-β plasma. It is found that there exist three types of nonlinear waves; (1) nonlinear ion-cyclotron periodic waves with a wave speed V/sub p/ > C/sub s/ (ion-acoustic velocity); (2) nonlinear ion-acoustic periodic waves with V/sub p/ < C/sub s/ costheta; and (3) ion-acoustic solitons with C/sub s/ costheta < V/sub p/ < C/sub s/, where theta is the angle between the wave vector and the magnetic field

  15. p-Adic quantum mechanics

    International Nuclear Information System (INIS)

    Vladimirov, V.S.; Volovich, I.V.

    1988-01-01

    Quantum mechanics above the field of p-adic numbers is constructed. Three formulations of p-adic quantum mechanics are considered: 1) quantum mechanics with complex-valued wave functions and p-adic coordinates and pulses; an approach based on Weyl representation is suggested; 2) the probability (Euclidean) formulation; 3) the secondary quantization representation (Fock representation) with p-adic wave functions

  16. Experimental Measurement of Wave Field Variations around Wave Energy Converter Arrays

    OpenAIRE

    O'Boyle, Louise; Elsäßer, Björn; Whittaker, Trevor

    2017-01-01

    Wave energy converters (WECs) inherently extract energy from incident waves. For wave energy to become a significant power provider in the future, large farms of WECs will be required. This scale of energy extraction will increase the potential for changes in the local wave field and coastal environment. Assessment of these effects is necessary to inform decisions on the layout of wave farms for optimum power output and minimum environmental impact, as well as on potential site selection. An ...

  17. Increased Optoelectronic Quality and Uniformity of Hydrogenated p-InP Thin Films

    KAUST Repository

    Wang, Hsin-Ping; Sutter-Fella, Carolin M.; Lobaccaro, Peter; Hettick, Mark; Zheng, Maxwell; Lien, Der-Hsien; Miller, D. Westley; Warren, Charles W.; Roe, Ellis T; Lonergan, Mark C; Guthrey, Harvey L.; Haegel, Nancy M.; Ager, Joel W.; Carraro, Carlo; Maboudian, Roya; He, Jr-Hau; Javey, Ali

    2016-01-01

    The thin-film vapor-liquid-solid (TF-VLS) growth technique presents a promising route for high quality, scalable and cost-effective InP thin films for optoelectronic devices. Towards this goal, careful optimization of material properties and device performance is of utmost interest. Here, we show that exposure of polycrystalline Zn-doped TF-VLS InP to a hydrogen plasma (in the following referred to as hydrogenation) results in improved optoelectronic quality as well as lateral optoelectronic uniformity. A combination of low temperature photoluminescence and transient photocurrent spectroscopy were used to analyze the energy position and relative density of defect states before and after hydrogenation. Notably, hydrogenation reduces the intra-gap defect density by one order of magnitude. As a metric to monitor lateral optoelectronic uniformity of polycrystalline TF-VLS InP, photoluminescence and electron beam induced current mapping reveal homogenization of the grain versus grain boundary upon hydrogenation. At the device level, we measured more than 260 TF-VLS InP solar cells before and after hydrogenation to verify the improved optoelectronic properties. Hydrogenation increased the average open-circuit voltage (VOC) of individual TF-VLS InP solar cells by up to 130 mV, and reduced the variance in VOC for the analyzed devices.

  18. Increased Optoelectronic Quality and Uniformity of Hydrogenated p-InP Thin Films

    KAUST Repository

    Wang, Hsin-Ping

    2016-06-08

    The thin-film vapor-liquid-solid (TF-VLS) growth technique presents a promising route for high quality, scalable and cost-effective InP thin films for optoelectronic devices. Towards this goal, careful optimization of material properties and device performance is of utmost interest. Here, we show that exposure of polycrystalline Zn-doped TF-VLS InP to a hydrogen plasma (in the following referred to as hydrogenation) results in improved optoelectronic quality as well as lateral optoelectronic uniformity. A combination of low temperature photoluminescence and transient photocurrent spectroscopy were used to analyze the energy position and relative density of defect states before and after hydrogenation. Notably, hydrogenation reduces the intra-gap defect density by one order of magnitude. As a metric to monitor lateral optoelectronic uniformity of polycrystalline TF-VLS InP, photoluminescence and electron beam induced current mapping reveal homogenization of the grain versus grain boundary upon hydrogenation. At the device level, we measured more than 260 TF-VLS InP solar cells before and after hydrogenation to verify the improved optoelectronic properties. Hydrogenation increased the average open-circuit voltage (VOC) of individual TF-VLS InP solar cells by up to 130 mV, and reduced the variance in VOC for the analyzed devices.

  19. Partial-wave analysis of the reaction K−p → $\\lambda$ (1520) $\\pi$ in the energy region 1915 – 2170 MeV

    CERN Document Server

    Litchfield, P J; Baillon, Paul; Putzer, A; Schleich, H

    1974-01-01

    A partial-wave analysis has been carried out on the reaction K/sup -/p to Lambda (1520) pi to K/sup -/p pi /sup 0/. The Sigma (2030) is observed with an amplitude at resonance of 0.14+or-0.03. Evidence is also presented for the formation of the /sup 3///sub 2//sup -/ Sigma (1940). (14 refs).

  20. [Electrical acupoint stimulation increases athletes' rapid strength].

    Science.gov (United States)

    Yang, Hua-yuan; Liu, Tang-yi; Kuai, Le; Gao, Ming

    2006-05-01

    To search for a stimulation method for increasing athletes' performance. One hundred and fifty athletes were randomly divided into a trial group and a control group, 75 athletes in each group. Acupoints were stimulated with audio frequency pulse modulated wave and multi-blind method were used to investigate effects of the electric stimulation of acupoints on 30-meter running, standing long jumping and Cybex isokinetic testing index. The acupoint electric stimulation method could significantly increase athlete's performance (P < 0.05), and the biomechanical indexes, maximal peak moment of force (P < 0.05), force moment accelerating energy (P < 0.05) and average power (P < 0.05). Electrical acupoint stimulation can enhance athlete's rapid strength.

  1. Remote effects of extracorporeal shock wave therapy on cutaneous microcirculation.

    Science.gov (United States)

    Kisch, Tobias; Sorg, Heiko; Forstmeier, Vinzent; Knobloch, Karsten; Liodaki, Eirini; Stang, Felix; Mailänder, Peter; Krämer, Robert

    2015-11-01

    Extracorporeal shock wave treatment (ESWT) has proven its clinical benefits in different fields of medicine. Tissue regeneration and healing is improved after shock wave treatment. Even in the case of burn wounds angiogenesis and re-epithelialization is accelerated, but ESWT in extensive burn wounds is impracticable. High energy ESWT influences cutaneous microcirculation at body regions remote from application site. Eighteen Sprague Dawley rats were randomly assigned to two groups and received either high energy ESWT (Group A: total 1000 impulses, 10 J) or placebo shock wave treatment (Group B: 0 impulses, 0 J), applied to the dorsal lower leg of the hind limb. Ten minutes later microcirculatory effects were assessed at the contralateral lower leg of the hind limb (remote body region) by combined Laser-Doppler-Imaging and Photospectrometry. In Group A cutaneous capillary blood velocity was significantly increased by 152.8% vs. placebo ESWT at the remote body location (p = 0.01). Postcapillary venous filling pressure remained statistically unchanged (p > 0.05), while cutaneous tissue oxygen saturation increased by 12.7% in Group A (p = 0.220). High energy ESWT affects cutaneous hemodynamics in body regions remote from application site in a standard rat model. The results of this preliminary study indicate that ESWT might be beneficial even in disseminated and extensive burn wounds by remote shock wave effects and should therefore be subject to further scientific evaluation. Copyright © 2015 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  2. San andreas fault zone head waves near parkfield, california.

    Science.gov (United States)

    Ben-Zion, Y; Malin, P

    1991-03-29

    Microearthquake seismograms from the borehole seismic network on the San Andreas fault near Parkfield, California, provide three lines of evidence that first P arrivals are "head" waves refracted along the cross-fault material contrast. First, the travel time difference between these arrivals and secondary phases identified as direct P waves scales linearly with the source-receiver distance. Second, these arrivals have the emergent wave character associated in theory and practice with refracted head waves instead of the sharp first breaks associated with direct P arrivals. Third, the first motion polarities of the emergent arrivals are reversed from those of the direct P waves as predicted by the theory of fault zone head waves for slip on the San Andreas fault. The presence of fault zone head waves in local seismic network data may help account for scatter in earthquake locations and source mechanisms. The fault zone head waves indicate that the velocity contrast across the San Andreas fault near Parkfield is approximately 4 percent. Further studies of these waves may provide a way of assessing changes in the physical state of the fault system.

  3. Laboratory measurements of P- and S-wave anisotropy in synthetic rocks by 3D printing

    Science.gov (United States)

    Kong, L.; Ostadhassan, M.; Tamimi, N.; Li, C.; Alexeyev, A.

    2017-12-01

    Synthetic rocks have been widely used to realize the models with controlled factors in rock physics and geomechanics experiments. Additive manufacturing technology, known as 3D printing, is becoming a popular method to produce the synthetic rocks as the advantages of timesaving, economics, and control. In terms of mechanical properties, the duplicability of 3D printed rock towards a natural rock has been studied whereas the seismic anisotropy still remains unknown as being the key factor in conducting rock physics experiments. This study utilized a 3D printer with gypsum as the ink to manufacture a series of synthetic rocks that have the shapes of octagonal prisms, with half of them printed from lateral and another half from the bottom. An ultrasonic investigation system was set up to measure the P- and S- wave velocities at different frequencies while samples were under dry conditions. The results show the impact of layered property on the P- and S- wave velocities. The measurement results were compared with the predicted results of Hudson model, demonstrating that the synthetic rock from 3D printing is a transverse isotropic model. The seismic anisotropy indicates that the availability of using 3D printed rocks to duplicate natural rocks for the purpose of recreating the experiments of rock physics. Future experiments will be performed on the dependence of seismic anisotropy on fracture geometry and density in 3D printed synthetic rocks.

  4. VSP [Vertical Seismic Profiling] and cross hole tomographic imaging for fracture characterization

    International Nuclear Information System (INIS)

    Majer, E.L.; Peterson, J.E.; Myer, L.R.; Karasaki, K.; Daley, T.M.; Long, J.C.S.

    1989-09-01

    For the past several years LBL has been carrying out experiments at various fractured rock sites to determine the fundamental nature of the propagation of seismic waves in fractured media. These experiments have been utilizing high frequency (1000 to 10000 Hz.) signals in a cross-hole configuration at scales of several tens of meters. Three component sources and receivers are used to map fracture density, and orientation. The goal of the experiments has been to relate the seismological parameters to the hydrological parameters, if possible, in order to provide a more accurate description of a starting model for hydrological characterization. The work is ultimately aimed at the characterization and monitoring of the Yucca Mountain site for the storage of nuclear waste. In addition to these controlled experiments multicomponent VSP work has been carried out at several sites to determine fracture characteristics. The results to date indicate that both P-wave and S-wave can be used to map the location of fractures. In addition, fractures that are open and conductive are much more visible to seismic waves that non-conductive fractures. The results of these tests indicate direct use in an unsaturated environment. 12 refs., 10 figs

  5. Fertilization stimulates an increase in inositol trisphosphate and inositol lipid levels in Xenopus eggs.

    Science.gov (United States)

    Snow, P; Yim, D L; Leibow, J D; Saini, S; Nuccitelli, R

    1996-11-25

    Previous experiments from our lab have suggested that the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) is required for sperm-induced egg activation in Xenopus laevis. Here we measure the endogenous production of both Ins(1,4,5)P3 and PIP2 during the sperm-induced and ionomycin-induced calcium wave in the egg and find that both increase following fertilization. Ins(1,4,5)P3 increases 3.2-fold from an unfertilized egg level of 0.13 pmole per egg (0.29 microM) to a peak of 0.42 pmole per egg (0.93 microM) as the calcium wave reaches the antipode in the fertilized egg. This continuous production of Ins(1,4,5)P3 during the time that the Ca2+ wave is propagating across the egg suggests the involvement of Ins(1,4,5)P3 in wave propagation. This increase in Ins(1,4,5)P3 is smaller in ionomycin-activated eggs than in sperm-activated eggs, suggesting that the sperm-induced production of Ins(1,4,5)P3 involves a PIP2 hydrolysis pathway that is not simply raising intracellular Ca2+. While one might expect PIP2 levels to fall as a result of hydrolysis, we find that PIP2 actually increases 2-fold. The total lipid fraction in unfertilized egg exhibits 0.8 pmole PIP2 per egg and this increases to 1.5 pmole as the calcium wave reaches the antipode. The PIP2 concentration peaks 2 min after the completion of the calcium wave at 1.8 pmole per egg. The amount of PIP2 in the animal and vegetal hemispheres of the egg was also measured by cutting frozen eggs in half. The vegetal hemisphere contained twice the amount of PIP2 as the animal hemisphere but it also contained twice the amount of lipid. Thus, there was an equivalent amount of PIP2 normalized to lipid in each hemisphere. Isolated animal and vegetal hemisphere cortices exhibit similar PIP2 concentrations, suggesting that the 2-fold higher total PIP2 in the vegetal half is not due to a gradient of PIP2 in the plasma membrane, but rather implies that cytoplasmic organelle membranes also contain PIP2.

  6. Spin-wave logic devices based on isotropic forward volume magnetostatic waves

    International Nuclear Information System (INIS)

    Klingler, S.; Pirro, P.; Brächer, T.; Leven, B.; Hillebrands, B.; Chumak, A. V.

    2015-01-01

    We propose the utilization of isotropic forward volume magnetostatic spin waves in modern wave-based logic devices and suggest a concrete design for a spin-wave majority gate operating with these waves. We demonstrate by numerical simulations that the proposed out-of-plane magnetized majority gate overcomes the limitations of anisotropic in-plane magnetized majority gates due to the high spin-wave transmission through the gate, which enables a reduced energy consumption of these devices. Moreover, the functionality of the out-of-plane majority gate is increased due to the lack of parasitic generation of short-wavelength exchange spin waves

  7. Spin-wave logic devices based on isotropic forward volume magnetostatic waves

    Energy Technology Data Exchange (ETDEWEB)

    Klingler, S., E-mail: stefan.klingler@wmi.badw-muenchen.de; Pirro, P.; Brächer, T.; Leven, B.; Hillebrands, B.; Chumak, A. V. [Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern (Germany)

    2015-05-25

    We propose the utilization of isotropic forward volume magnetostatic spin waves in modern wave-based logic devices and suggest a concrete design for a spin-wave majority gate operating with these waves. We demonstrate by numerical simulations that the proposed out-of-plane magnetized majority gate overcomes the limitations of anisotropic in-plane magnetized majority gates due to the high spin-wave transmission through the gate, which enables a reduced energy consumption of these devices. Moreover, the functionality of the out-of-plane majority gate is increased due to the lack of parasitic generation of short-wavelength exchange spin waves.

  8. Continuous wave protocol for simultaneous polarization and optical detection of P1-center electron spin resonance

    Science.gov (United States)

    Kamp, E. J.; Carvajal, B.; Samarth, N.

    2018-01-01

    The ready optical detection and manipulation of bright nitrogen vacancy center spins in diamond plays a key role in contemporary quantum information science and quantum metrology. Other optically dark defects such as substitutional nitrogen atoms (`P1 centers') could also become potentially useful in this context if they could be as easily optically detected and manipulated. We develop a relatively straightforward continuous wave protocol that takes advantage of the dipolar coupling between nitrogen vacancy and P1 centers in type 1b diamond to detect and polarize the dark P1 spins. By combining mutual spin flip transitions with radio frequency driving, we demonstrate the simultaneous optical polarization and detection of the electron spin resonance of the P1 center. This technique should be applicable to detecting and manipulating a broad range of dark spin populations that couple to the nitrogen vacancy center via dipolar fields, allowing for quantum metrology using these spin populations.

  9. Upper-mantle P- and S- wave velocities across the Northern Tornquist Zone from traveltime tomography

    DEFF Research Database (Denmark)

    Hejrani, Babak; Balling, N.; Jacobsen, B. H.

    2015-01-01

    This study presents P- and S-wave velocity variations for the upper mantle in southern Scandinavia and northern Germany based on teleseismic traveltime tomography. Tectonically, this region includes the entire northern part of the prominent Tornquist Zone which follows along the transition from old...... delineated between shield areas (with high seismic mantle velocity) and basins (with lower velocity). It continues northwards into southern Norway near the Oslo Graben area and further north across the Southern Scandes Mountains. This main boundary, extending to a depth of at least 300 km, is even more...

  10. Wave characteristics off Visakhapatnam coast during a cyclone

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; AshokKumar, K.; Raju, N.S.N.

    CURRENT SCIENC E, VOL. 86, NO. 11, 10 JUNE 2004 *For correspondence. (e - mail: sanil@darya.nio.org) Wave characteristics off Visakhapatnam coast du r ing a cyclone V. Sanil Kumar*, K. Ashok Kumar and N. S. N. Raju Ocean Engineering Division.... Wave period The variation of average wave period ( T 02 ), period corr e- sponding to maximum wave height ( T H max ) and wave p e- riod corresponding to maximum spectral energy ( T p ) during the observation period are shown in Figure 4. Du r- i ng...

  11. Magnetohydrodynamic waves, electrohydrodynamic waves and photons

    International Nuclear Information System (INIS)

    Carstoin, J.

    1984-01-01

    Two new subjects have lately attracted increased attention: the magnetohydrodynamics (m.h.d.) and the theory of lasers. Equally important is the subject of electrohydrodynamics (e.h.d.). Now, clearly, all electromagnetic waves carry photons; it is the merit of Louis de Broglie to have had reconciled the validity of the Maxwell equations with existence of the latter. I have, recently, derived L. de Broglie's equations from the equations C. It seems natural to assume that the m.h.d. waves carry also photons, but how to reconcile the m.h.d axioms with the existence of photons ... a problem which has, so far, escaped the notice of physicists. In the lines which follows, an attempt is made to incorporate the photons in the m.h.d. waves, re e.h.d. waves in a rather simple fashion

  12. Neuroendocrine prostate cancer (NEPCa) increased the neighboring PCa chemo-resistance via altering the PTHrP/p38/Hsp27/androgen receptor (AR)/p21 signals

    Science.gov (United States)

    Cui, Yun; Sun, Yin; Hu, Shuai; Luo, Jie; Li, Lei; Li, Xin; Yeh, Shuyuan; Jin, Jie; Chang, Chawnshang

    2016-01-01

    Prostatic neuroendocrine cells (NE) are an integral part of prostate cancer (PCa) that are associated with PCa progression. As the current androgen-deprivation therapy (ADT) with anti-androgens may promote the neuroendocrine PCa (NEPCa) development, and few therapies can effectively suppress NEPCa, understanding the impact of NEPCa on PCa progression may help us to develop better therapies to battle PCa. Here we found NEPCa cells could increase the docetaxel-resistance of their neighboring PCa cells. Mechanism dissection revealed that through secretion of PTHrP, NEPCa cells could alter the p38/MAPK/Hsp27 signals in their neighboring PCa cells that resulted in increased androgen receptor (AR) activity via promoting AR nuclear translocation. The consequences of increased AR function might then increase docetaxel-resistance via increasing p21 expression. In vivo xenograft mice experiments also confirmed NEPCa could increase the docetaxel-resistance of neighboring PCa, and targeting this newly identified PTHrP/p38/Hsp27/AR/p21 signaling pathway with either p38 inhibitor (SB203580) or sh-PTHrP may result in improving/restoring the docetaxel sensitivity to better suppress PCa. PMID:27375022

  13. Calculation of deuteron wave functions with relativistic interactions

    International Nuclear Information System (INIS)

    Buck, W.W. III.

    1976-01-01

    Deuteron wave functions with a repulsive core are obtained numerically from a fully relativistic wave equation introduced by Gross. The numerical technique enables analytic solutions for classes of interactions composed of the relativistic exchanges of a single pion and a single phenomenological meson, sigma. The pion is chosen to interact as a mixture of pseudoscalar and pseudovector. The amount of mixture is determined by a free mixing parameter, lambda, ranging between 1 (pure pseudoscalar) and (pure pseudovector). Each value of lambda corresponds, then, to a different interaction. Solutions are found for lambda = 1, .9, .8, .6, and 0. The wave functions for each interaction come in a group of four. Of the four wave functions, two are the usual S and D state wave functions, while the remaining two, arising out of the relativistic prescription, are identified as 3 P 1 and 1 P 1 wave functions (P state wave functions). For the interactions solved for, the D state probabilities ranged between 5.1 percent and 6.3 percent, while the total P state probabilities ranged between 0.7 percent and 2.7 percent. The method of obtaining solutions was to adjust the sigma meson parameters to give the correct binding energy and a good quadrupole moment. All wave functions obtained are applied to relativistic N-d scattering in the backward direction where the effect of the P states is quite measurable

  14. Changes in Cerebral Partial Oxygen Pressure and Cerebrovascular Reactivity During Intracranial Pressure Plateau Waves.

    Science.gov (United States)

    Lang, Erhard W; Kasprowicz, Magdalena; Smielewski, Peter; Pickard, John; Czosnyka, Marek

    2015-08-01

    Plateau waves in intracranial pressure (ICP) are frequently recorded in neuro intensive care and are not yet fully understood. To further investigate this phenomenon, we analyzed partial pressure of cerebral oxygen (pbtO2) and a moving correlation coefficient between ICP and mean arterial blood pressure (ABP), called PRx, along with the cerebral oxygen reactivity index (ORx), which is a moving correlation coefficient between cerebral perfusion pressure (CPP) and pbtO2 in an observational study. We analyzed 55 plateau waves in 20 patients after severe traumatic brain injury. We calculated ABP, ABP pulse amplitude (ampABP), ICP, CPP, pbtO2, heart rate (HR), ICP pulse amplitude (ampICP), PRx, and ORx, before, during, and after each plateau wave. The analysis of variance with Bonferroni post hoc test was used to compare the differences in the variables before, during, and after the plateau wave. We considered all plateau waves, even in the same patient, independent because they are separated by long intervals. We found increases for ICP and ampICP according to our operational definitions for plateau waves. PRx increased significantly (p = 0.00026), CPP (p pressure remains stable in ICP plateau waves, while cerebral autoregulatory indices show distinct changes, which indicate cerebrovascular reactivity impairment at the top of the wave. PbtO2 decreases during the waves and may show a slight overshoot after normalization. We assume that this might be due to different latencies of the cerebral blood flow and oxygen level control mechanisms. Other factors may include baseline conditions, such as pre-plateau wave cerebrovascular reactivity or pbtO2 levels, which differ between studies.

  15. Physics of waves

    CERN Document Server

    Elmore, William C

    1985-01-01

    Because of the increasing demands and complexity of undergraduate physics courses (atomic, quantum, solid state, nuclear, etc.), it is often impossible to devote separate courses to the classic wave phenomena of optics, acoustics, and electromagnetic radiation. This brief comprehensive text helps alleviate the problem with a unique overview of classical wave theory in one volume.By examining a sequence of concrete and specific examples (emphasizing the physics of wave motion), the authors unify the study of waves, developing abstract and general features common to all wave motion. The fundam

  16. Trend analysis of wave storminess: wave direction and its impact on harbour agitation

    Directory of Open Access Journals (Sweden)

    M. Casas-Prat

    2010-11-01

    Full Text Available In the context of wave climate variability, long-term alterations in the wave storminess pattern of the Catalan coast (northwestern Mediterranean Sea are analysed in terms of wave energy content and wave direction, on the basis of wave hindcast data (from 44-year time series. In general, no significant temporal trends are found for annual mean and maximum energy. However, the same analysis carried out separately for different wave directions reveals a remarkable increase in the storm energy of events from the south, which is partly due to a rise in the annual percentage of such storms. A case study of Tarragona Port (on the southern Catalan coast highlights the importance of including changes in wave direction in the study of potential impacts of climate change. In particular, an increase in the frequency of storms from the south leads to greater agitation inside the Port.

  17. Spontaneous calcium waves in Bergman glia increase with age and hypoxia and may reduce tissue oxygen

    DEFF Research Database (Denmark)

    Mathiesen, Claus; Brazhe, Alexey; Thomsen, Kirsten Joan

    2013-01-01

    Glial calcium (Ca(2+)) waves constitute a means to spread signals between glial cells and to neighboring neurons and blood vessels. These waves occur spontaneously in Bergmann glia (BG) of the mouse cerebellar cortex in vivo. Here, we tested three hypotheses: (1) aging and reduced blood oxygen sa...... activity during aging, as well as low resting brain oxygen tension, suggests a relationship between glial waves, brain energy homeostasis, and pathology.......Glial calcium (Ca(2+)) waves constitute a means to spread signals between glial cells and to neighboring neurons and blood vessels. These waves occur spontaneously in Bergmann glia (BG) of the mouse cerebellar cortex in vivo. Here, we tested three hypotheses: (1) aging and reduced blood oxygen...... saturation alters wave activity; (2) glial Ca(2+) waves change cerebral oxygen metabolism; and (3) neuronal and glial wave activity is correlated. We used two-photon microscopy in the cerebellar cortexes of adult (8- to 15-week-old) and aging (48- to 80-week-old) ketamine-anesthetized mice after bolus...

  18. Experimental Measurement of Wave Field Variations around Wave Energy Converter Arrays

    Directory of Open Access Journals (Sweden)

    Louise O’Boyle

    2017-01-01

    Full Text Available Wave energy converters (WECs inherently extract energy from incident waves. For wave energy to become a significant power provider in the future, large farms of WECs will be required. This scale of energy extraction will increase the potential for changes in the local wave field and coastal environment. Assessment of these effects is necessary to inform decisions on the layout of wave farms for optimum power output and minimum environmental impact, as well as on potential site selection. An experimental campaign to map, at high resolution, the wave field variation around arrays of 5 oscillating water column WECs and a methodology for extracting scattered and radiated waves is presented. The results highlight the importance of accounting for the full extent of the WEC behavior when assessing impacts on the wave field. The effect of radiated waves on the wave field is not immediately apparent when considering changes to the entire wave spectrum, nor when observing changes in wave climate due to scattered and radiated waves superimposed together. The results show that radiated waves may account for up to 50% of the effects on wave climate in the near field in particular operating conditions.

  19. Rarefaction and compression waves of the first sound in superfluid He-II

    International Nuclear Information System (INIS)

    Efimov, V.F.; Kolmakov, G.V.; Lebedeva, E.V.; Mezhov-Deglin, L.P.; Trusov, A.B.

    1999-01-01

    The evolution of the form of the first sound waves, excited by the pulse heater in the superfluid He-II with increase in the thermal pulse Q-capacity, is studied. Propagation of the first sound rarefaction wave (heating wave), subsequent transformation of the rarefaction wave into the compression wave and further into the compression shock wave with Q growth are observed in the fluid, compressed up to 13.3 atm., i.e. it is possible to judge about the change in the heat transfer conditions at the solid body - He-II interface by the change in the sound wave form. It is established that heat expansion of the He-I normal fluid layer, originating at the interface between He-II and the heater by the Q-capacity exceeding certain critical one, is the basic cause of the compression waves excitation in He-II by the pressures of P ≥ 1 atm [ru

  20. Demonstration of enhanced continuous-wave operation of blue laser diodes on a semipolar 202¯1¯ GaN substrate using indium-tin-oxide/thin-p-GaN cladding layers.

    Science.gov (United States)

    Mehari, Shlomo; Cohen, Daniel A; Becerra, Daniel L; Nakamura, Shuji; DenBaars, Steven P

    2018-01-22

    The benefits of utilizing transparent conductive oxide on top of a thin p-GaN layer for continuous-wave (CW) operation of blue laser diodes (LDs) were investigated. A very low operating voltage of 5.35 V at 10 kA/cm 2 was obtained for LDs with 250 nm thick p-GaN compared to 7.3 V for LDs with conventional 650 nm thick p-GaN. An improved thermal performance was also observed for the thin p-GaN samples resulting in a 40% increase in peak light output power and a 32% decrease in surface temperature. Finally, a tradeoff was demonstrated between low operating voltage and increased optical modal loss in the indium tin oxide (ITO) with thinner p-GaN. LDs lasing at 445 nm with 150 nm thick p-GaN had an excess modal loss while LDs with an optimal 250 nm thick p-GaN resulted in optical output power of 1.1 W per facet without facet coatings and a wall-plug efficiency of 15%.

  1. Local determination of weak anisotropy parameters from walkaway VSP qP-wave data in the Java Sea region

    Czech Academy of Sciences Publication Activity Database

    Gomes, E.; Zheng, Xuyao; Pšenčík, Ivan; Horne, S.; Leaney, S.

    2004-01-01

    Roč. 48, č. 1 (2004), s. 215-231 ISSN 0039-3169 R&D Projects: GA AV ČR IAA3012309; GA AV ČR KSK3012103 Grant - others:CHJFSS(CN) No.103021 Institutional research plan: CEZ:AV0Z3012916 Keywords : weak anisotropy * qP waves * walkaway VSP Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.447, year: 2004

  2. Spontaneous calcium waves in Bergman glia increase with age and hypoxia and may reduce tissue oxygen

    OpenAIRE

    Mathiesen, Claus; Brazhe, Alexey; Thomsen, Kirsten; Lauritzen, Martin

    2012-01-01

    Glial calcium (Ca2+) waves constitute a means to spread signals between glial cells and to neighboring neurons and blood vessels. These waves occur spontaneously in Bergmann glia (BG) of the mouse cerebellar cortex in vivo. Here, we tested three hypotheses: (1) aging and reduced blood oxygen saturation alters wave activity; (2) glial Ca2+ waves change cerebral oxygen metabolism; and (3) neuronal and glial wave activity is correlated. We used two-photon microscopy in the cerebellar cortexes of...

  3. Physiological responses of rice to increased day and night temperatures

    NARCIS (Netherlands)

    Shi, Wanju

    2017-01-01

    <p>A more rapid increase in night-time temperature compared with day-time temperature and the increased frequency of heat waves associated with climate change present a serious threat to rice (Oryza sativa L.) production and food security. This thesis aims to understand the impact of high

  4. P R Sengupta

    Indian Academy of Sciences (India)

    Home; Journals; Sadhana. P R Sengupta. Articles written in Sadhana. Volume 26 Issue 4 August 2001 pp 363-370. Surface waves in fibre-reinforced anisotropic elastic media · P R Sengupta Sisir Nath · More Details Abstract Fulltext PDF. The aim of this paper is to investigate surface waves in anisotropic fibre-reinforced ...

  5. Impact of Bounded Noise and Rewiring on the Formation and Instability of Spiral Waves in a Small-World Network of Hodgkin-Huxley Neurons.

    Science.gov (United States)

    Yao, Yuangen; Deng, Haiyou; Ma, Chengzhang; Yi, Ming; Ma, Jun

    2017-01-01

    Spiral waves are observed in the chemical, physical and biological systems, and the emergence of spiral waves in cardiac tissue is linked to some diseases such as heart ventricular fibrillation and epilepsy; thus it has importance in theoretical studies and potential medical applications. Noise is inevitable in neuronal systems and can change the electrical activities of neuron in different ways. Many previous theoretical studies about the impacts of noise on spiral waves focus an unbounded Gaussian noise and even colored noise. In this paper, the impacts of bounded noise and rewiring of network on the formation and instability of spiral waves are discussed in small-world (SW) network of Hodgkin-Huxley (HH) neurons through numerical simulations, and possible statistical analysis will be carried out. Firstly, we present SW network of HH neurons subjected to bounded noise. Then, it is numerically demonstrated that bounded noise with proper intensity σ, amplitude A, or frequency f can facilitate the formation of spiral waves when rewiring probability p is below certain thresholds. In other words, bounded noise-induced resonant behavior can occur in the SW network of neurons. In addition, rewiring probability p always impairs spiral waves, while spiral waves are confirmed to be robust for small p, thus shortcut-induced phase transition of spiral wave with the increase of p is induced. Furthermore, statistical factors of synchronization are calculated to discern the phase transition of spatial pattern, and it is confirmed that larger factor of synchronization is approached with increasing of rewiring probability p, and the stability of spiral wave is destroyed.

  6. Modeling of pseudoacoustic P-waves in orthorhombic media with a low-rank approximation

    KAUST Repository

    Song, Xiaolei; Alkhalifah, Tariq Ali

    2013-01-01

    Wavefield extrapolation in pseudoacoustic orthorhombic anisotropic media suffers from wave-mode coupling and stability limitations in the parameter range. We use the dispersion relation for scalar wave propagation in pseudoacoustic orthorhombic

  7. Thermal Cracking in Westerly Granite Monitored Using Direct Wave Velocity, Coda Wave Interferometry, and Acoustic Emissions

    Science.gov (United States)

    Griffiths, L.; Lengliné, O.; Heap, M. J.; Baud, P.; Schmittbuhl, J.

    2018-03-01

    To monitor both the permanent (thermal microcracking) and the nonpermanent (thermo-elastic) effects of temperature on Westerly Granite, we combine acoustic emission monitoring and ultrasonic velocity measurements at ambient pressure during three heating and cooling cycles to a maximum temperature of 450°C. For the velocity measurements we use both P wave direct traveltime and coda wave interferometry techniques, the latter being more sensitive to changes in S wave velocity. During the first cycle, we observe a high acoustic emission rate and large—and mostly permanent—apparent reductions in velocity with temperature (P wave velocity is reduced by 50% of the initial value at 450°C, and 40% upon cooling). Our measurements are indicative of extensive thermal microcracking during the first cycle, predominantly during the heating phase. During the second cycle we observe further—but reduced—microcracking, and less still during the third cycle, where the apparent decrease in velocity with temperature is near reversible (at 450°C, the P wave velocity is decreased by roughly 10% of the initial velocity). Our results, relevant for thermally dynamic environments such as geothermal reservoirs, highlight the value of performing measurements of rock properties under in situ temperature conditions.

  8. Nonlinear Wave Propagation and Solitary Wave Formation in Two-Dimensional Heterogeneous Media

    KAUST Repository

    Luna, Manuel

    2011-05-01

    Solitary wave formation is a well studied nonlinear phenomenon arising in propagation of dispersive nonlinear waves under suitable conditions. In non-homogeneous materials, dispersion may happen due to effective reflections between the material interfaces. This dispersion has been used along with nonlinearities to find solitary wave formation using the one-dimensional p-system. These solitary waves are called stegotons. The main goal in this work is to find two-dimensional stegoton formation. To do so we consider the nonlinear two-dimensional p-system with variable coefficients and solve it using finite volume methods. The second goal is to obtain effective equations that describe the macroscopic behavior of the variable coefficient system by a constant coefficient one. This is done through a homogenization process based on multiple-scale asymptotic expansions. We compare the solution of the effective equations with the finite volume results and find a good agreement. Finally, we study some stability properties of the homogenized equations and find they and one-dimensional versions of them are unstable in general.

  9. Effects of Baseline Selection on Magnetocardiography: P-Q and T-P Intervals

    International Nuclear Information System (INIS)

    Lim, Hyun Kyoon; Kwon, Hyuk Chan; Kim, Tae En; Lee, Yong Ho; Kim, Jin Mok; Kim, In Seon; Kim, Ki Woong; Park, Yong Ki

    2007-01-01

    The baseline selection is the first and important step to analyze magnetocardiography (MCG) parameters. There are no difficulties to select the baseline between P- and Q-wave peak (P-Q interval) of MCG wave recorded from healthy subjects because the P-Q intervals of the healthy subjects do not much vary. However, patients with ischemic heart disease often show an unstable P-Q interval which does not seem to be appropriate for the baseline. In this case, T-P interval is alternatively recommended for the baseline. However, there has been no study on the difference made by the baseline selection. In this study, we studied the effect of the different baseline selection. MCG data were analyzed from twenty healthy subjects and twenty one patients whose baselines were alternatively selected in the T-P interval for their inappropriate P-Q interval. Paired T-test was used to compare two set of data. Fifteen parameters derived from the R-wave peak, the T-wave peak, and the period, T max/3 ∼ T max were compared for the different baseline selection. As a result, most parameters did not show significant differences (p>0.05) except few parameters. Therefore, there will be no significant differences if anyone of two intervals were selected for the MCG baseline. However, for the consistent analysis, P-Q interval is strongly recommended for the baseline correction.

  10. Shock waves in weakly compressed granular media.

    Science.gov (United States)

    van den Wildenberg, Siet; van Loo, Rogier; van Hecke, Martin

    2013-11-22

    We experimentally probe nonlinear wave propagation in weakly compressed granular media and observe a crossover from quasilinear sound waves at low impact to shock waves at high impact. We show that this crossover impact grows with the confining pressure P0, whereas the shock wave speed is independent of P0-two hallmarks of granular shocks predicted recently. The shocks exhibit surprising power law attenuation, which we model with a logarithmic law implying that shock dissipation is weak and qualitatively different from other granular dissipation mechanisms. We show that elastic and potential energy balance in the leading part of the shocks.

  11. Ion Bernstein wave experiments on the Alcator C tokamak

    International Nuclear Information System (INIS)

    Moody, J.D.

    1988-09-01

    Ion Bernstein wave experiments are carried out on the Alcator C tokamak to study wave excitation, propagation, absorption, and plasma heating due to wave power absorption. It is shown that ion Bernstein wave power is coupled into the plasma and follows the expected dispersion relation. The antenna loading is maximized when the hydrogen second harmonic layer is positioned just behind the antenna. Plasma heating results at three values of the toroidal magnetic field are presented. Central ion temperature increases of ΔT/sub i//Ti /approx lt/ 0.1 and density increases Δn/n 6 s/sup /minus/1/ for plasmas within the density range 0.6 /times/ 10 20 m/sup /minus/3/ ≤ /bar n//sub e/ ≤ 4 /times/ 10 20 m/sup /minus/3/ and magnetic fields 2.4 ≥ ω/Ω/sub H/ ≥ 1.1. The density increases is usually accompanied by an improvement in the global particle confinement time relative to the Ohmic value. The ion heating rate is measured to be ΔT/sub i//P/sub rf/ ≅ 2-4.5 eV/kW at low densities. At higher densities /bar n//sub e/ ≤ 1.5 /times/ 10 20 m/sup /minus/3/ the ion heating rate dramatically decreases. It is shown that the decrease in the ion heating rate can be explained by the combined effects of wave scattering through the edge turbulence and the decreasing on energy confinement of these discharges with density. The effect of observed edge turbulence is shown to cause a broadening of the rf power deposition profile with increasing density. It is shown that the inferred value of the Ohmic ion thermal conduction, when compared to the Chang-Hinton neoclassical prediction, exhibits an increasing anomaly with increasing plasma density

  12. Resiliency of the Nation's Power Grid: Assessing Risks of Premature Failure of Large Power Transformers Under Climate Warming and Increased Heat Waves

    Science.gov (United States)

    Schlosser, C. A.; Gao, X.; Morgan, E.

    2017-12-01

    The aging pieces of our nation's power grid - the largest machine ever built - are at a critical time. Key assets in the transmission system, including large power transformers (LPTs), are approaching their originally designed lifetimes. Moreover, extreme weather and climate events upon which these design lifetimes are partially based are expected to change. In particular, more frequent and intense heat waves can accelerate the degradation of LPTs' insulation/cooling system. Thus, there are likely thousands of LPTs across the United States under increasing risk of premature failure - yet this risk has not been assessed. In this study, we investigate the impact of climate warming and corresponding shifts in heat waves for critical LPTs located in the Northeast corridor of the United States to assess: To what extent do changes in heat waves/events present a rising threat to the transformer network over the Northeast U.S. and to what extent can climate mitigation reduce this risk? This study focuses on a collection of LPTs with a high degree of "betweenness" - while recognizing other factors such as: connectivity, voltage rating, MVA rating, approximate price, weight, location/proximity to major transportation routes, and age. To assess the risk of future change in heat wave occurrence we use an analogue method, which detects the occurrence of heat waves based on associated large-scale atmospheric conditions. This method is compared to the more conventional approach that uses model-simulated daily maximum temperature. Under future climate warming scenarios, multi-model medians of both methods indicate strong increases in heat wave frequency during the latter half of this century. Under weak climate mitigation - the risks imposed from heat wave occurrence could quadruple, but a modest mitigation scenario cuts the increasing threat in half. As important, the analogue method substantially improves the model consensus through reduction of the interquartile range by a

  13. Electromagnetic wave matching device

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.

    1997-01-01

    The present invention provides a matching device capable of increasing an efficiency of combining beams of electromagnetic waves outputted from an output window of a gyrotron which is expected for plasma heating of a thermonuclear reactor and an electromagnetic wave transmission system as high as possible. Namely, an electromagnetic wave matching device reflects beams of electromagnetic waves incident from an inlet by a plurality of phase correction mirrors and combines them to an external transmission system through an exit. In this case, the phase correction mirrors change the phase of the beams of electromagnetic waves incident to the phase correction mirrors by a predetermined amount corresponding to the position of the reflection mirrors. Then, the beams of electromagnetic waves outputted, for example, from a gyrotron can properly be shaped as desired for the intensity and the phase. As a result, combination efficiency with the transmission system can be increased. (I.S.)

  14. Generalized collar waves in acoustic logging while drilling

    International Nuclear Information System (INIS)

    Wang Xiu-Ming; He Xiao; Zhang Xiu-Mei

    2016-01-01

    Tool waves, also named collar waves, propagating along the drill collars in acoustic logging while drilling (ALWD), strongly interfere with the needed P- and S-waves of a penetrated formation, which is a key issue in picking up formation P- and S-wave velocities. Previous studies on physical insulation for the collar waves designed on the collar between the source and the receiver sections did not bring to a satisfactory solution. In this paper, we investigate the propagation features of collar waves in different models. It is confirmed that there exists an indirect collar wave in the synthetic full waves due to the coupling between the drill collar and the borehole, even there is a perfect isolator between the source and the receiver. The direct collar waves propagating all along the tool and the indirect ones produced by echoes from the borehole wall are summarized as the generalized collar waves. Further analyses show that the indirect collar waves could be relatively strong in the full wave data. This is why the collar waves cannot be eliminated with satisfactory effect in many cases by designing the physical isolators carved on the tool. (special topic)

  15. Faddeev wave function decomposition using bipolar harmonics

    International Nuclear Information System (INIS)

    Friar, J.L.; Tomusiak, E.L.; Gibson, B.F.; Payne, G.L.

    1981-01-01

    The standard partial wave (channel) representation for the Faddeev solution to the Schroedinger equation for the ground state of 3 nucleons is written in terms of functions which couple the interacting pair and spectator angular momenta to give S, P, and D waves. For each such coupling there are three terms, one for each of the three cyclic permutations of the nucleon coordinates. A series of spherical harmonic identities is developed which allows writing the Faddeev solution in terms of a basis set of 5 bipolar harmonics: 1 for S waves; 1 for P waves; and 3 for D waves. The choice of a D-wave basis is largely arbitrary, and specific choices correspond to the decomposition schemes of Derrick and Blatt, Sachs, Gibson and Schiff, and Bolsterli and Jezak. The bipolar harmonic form greatly simplifies applications which utilize the wave function, and we specifically discuss the isoscalar charge (or mass) density and the 3 He Coulomb energy

  16. Observation of a new type of low-frequency waves at comet 67P/Churyumov-Gerasimenko

    Directory of Open Access Journals (Sweden)

    I. Richter

    2015-08-01

    Full Text Available We report on magnetic field measurements made in the innermost coma of 67P/Churyumov-Gerasimenko in its low-activity state. Quasi-coherent, large-amplitude (δ B/B ~ 1, compressional magnetic field oscillations at ~ 40 mHz dominate the immediate plasma environment of the nucleus. This differs from previously studied cometary interaction regions where waves at the cometary ion gyro-frequencies are the main feature. Thus classical pickup-ion-driven instabilities are unable to explain the observations. We propose a cross-field current instability associated with newborn cometary ion currents as a possible source mechanism.

  17. Topological aspect and the pairing symmetries on spin-triplet chiral p-wave superconductor under strain

    Science.gov (United States)

    Imai, Yoshiki; Sigrist, Manfred

    2018-05-01

    Motivated by recent experiments on Sr2RuO4, the effect of uniaxial strain on the chiral p-wave superconductor is discussed. We study particularly the relation between the topological indices and different pairing states in the superconducting phase through the thermal Hall conductivity, which is proportional to temperature and the Chern number in the very low-temperature limit. We show that the temperature-dependence of the thermal Hall conductivity under uniaxial strain depends strongly on the form of the pairing state. The obtained result may provide a possible experimental probe for the pairing structure in Sr2RuO4.

  18. Reduction of exchangeable calcium and magnesium in soil with increasing pH

    Directory of Open Access Journals (Sweden)

    Miyazawa Mário

    2001-01-01

    Full Text Available A laboratory study was conducted with soil samples and synthetic solutions to investigate possible mechanisms related with reduction in KCl exchangeable Ca and Mg with increasing pH. Increasing soil pH over 5.3 with CaCO3 added to the soil and with NaOH solution added to soil/KCl suspension increased adsorptions of Ca and Mg. The reduction of Mg was greater than Ca and was related to the concentration of soil exchangeable Al. The decreases of soluble Ca and Mg following addition of Al in synthetic solution were at pH > 7.5. The isomorphic coprecipitation reaction with Al compounds may be the most possible mechanism responsible for the decrease of exchangeable Ca and Mg with increasing pH. Possible chemical reactions are presented.

  19. Evolution of microstructure and elastic wave velocities in dehydrated gypsum samples

    Science.gov (United States)

    Milsch, Harald; Priegnitz, Mike

    2012-12-01

    We report on changes in P and S-wave velocities and rock microstructure induced by devolatilization reactions using gypsum as a reference analog material. Cylindrical samples of natural alabaster were dehydrated in air, at ambient pressure, and temperatures between 378 and 423 K. Dehydration did not proceed homogeneously but via a reaction front moving sample inwards separating an outer highly porous rim from the remaining gypsum which, above approximately 393 (±5) K, concurrently decomposed into hemihydrate. Overall porosity was observed to continuously increase with reaction progress from approximately 2% for fully hydrated samples to 30% for completely dehydrated ones. Concurrently, P and S-wave velocities linearly decreased with porosity from 5.2 and 2.7 km/s to 1.0 and 0.7 km/s, respectively. It is concluded that a linearized empirical Raymer-type model extended by a critical porosity term and based on the respective time dependent mineral and pore volumes reasonably replicates the P and S-wave data in relation to reaction progress and porosity.

  20. Fracturing process and effect of fracturing degree on wave velocity of a crystalline rock

    Directory of Open Access Journals (Sweden)

    Charalampos Saroglou

    2017-10-01

    Full Text Available The present paper investigates the effect of fracturing degree on P- and S-wave velocities in rock. The deformation of intact brittle rocks under loading conditions is characterized by a microcracking procedure, which occurs due to flaws in their microscopic structure and propagates through the intact rock, leading to shear fracture. This fracturing process is of fundamental significance as it affects the mechanical properties of the rock and hence the wave velocities. In order to determine the fracture mechanism and the effect of fracturing degree, samples were loaded at certain percentages of peak strength and ultrasonic wave velocity was recorded after every test. The fracturing degree was recorded on the outer surface of the sample and quantified by the use of the indices P10 (traces of joints/m, P20 (traces of joints/m2 and P21 (length of fractures/m2. It was concluded that the wave velocity decreases exponentially with increasing fracturing degree. Additionally, the fracturing degree is described adequately with the proposed indices. Finally, other parameters concerning the fracture characteristics, rock type and scale influence were found to contribute to the velocity decay and need to be investigated further.

  1. Wave impact on a deck or baffle

    Science.gov (United States)

    Md Noar, Nor Aida Zuraimi; Greenhow, Martin

    2015-02-01

    Some coastal or ocean structures have deck-like baffles or horizontal platforms that can be exposed to wave action in heavy seas. A similar situation may occur in partially-filled tanks with horizontal baffles that become engulfed by sloshing waves. This can result in dangerous wave impact loads (slamming) causing a rapid rise of pressures which may lead to local damaging by crack initiation and/or propagation. We consider the wave impact against the whole of underside of horizontal deck (or baffle) projecting from a seawall (or vertical tank wall), previously studied by Wood and Peregrine (1996) using a different method based on conformal mappings. The approach used is to simplify the highly time-dependent and very nonlinear problem by considering the time integral of the pressure over the duration of the impact pressure-impulse, P (x, y). Our method expresses this in terms of eigenfunctions that satisfy the boundary conditions apart from that on the impact region and the matching of the two regions (under the platform and under the free surface); this results in a matrix equation to be solved numerically. As in Wood and Peregrine, we found that the pressure impulse on the deck increases when the length of deck increases, there is a strong pressure gradient beneath the deck near the seaward edge and the maximum pressure impulse occurs at the landward end of the impact zone.

  2. Aspartame exacerbates EEG spike-wave discharge in children with generalized absence epilepsy: a double-blind controlled study.

    Science.gov (United States)

    Camfield, P R; Camfield, C S; Dooley, J M; Gordon, K; Jollymore, S; Weaver, D F

    1992-05-01

    There are anecdotal reports of increased seizures in humans after ingestion of aspartame. We studied 10 children with newly diagnosed but untreated generalized absence seizures. Ambulatory cassette recording of EEG allowed quantification of numbers and length of spike-wave discharges in a double-blind study on two consecutive days. On one day the children received 40 mg/kg aspartame and on the other day, a sucrose-sweetened drink. Baseline EEG was the same before aspartame and sucrose. Following aspartame compared with sucrose, the number of spike-wave discharges per hour and mean length of spike-wave discharges increased but not to a statistically significant degree. However, the total duration of spike-wave discharge per hour was significantly increased after aspartame (p = 0.028), with a 40% +/- 17% (SEM) increase in the number of seconds per hour of EEG recording that the children spent in spike-wave discharge. Aspartame appears to exacerbate the amount of EEG spike wave in children with absence seizures. Further studies are needed to establish if this effect occurs at lower doses and in other seizure types.

  3. Split degenerate states and stable p+ip phases from holography

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Zhang-Yu; Zeng, Hui [Kunming University of Science and Technology, Kunming (China); Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing (China); Pan, Qiyuan [Hunan Normal Univ., Key Lab. of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for Quantum Effects and Applications, Dept. of Physics, Changsha (China); Zeng, Hua-Bi [Yangzhou University, College of Physics Science and Technology, Yangzhou, Jiangsu (China); National Central University, Department of Physics, Chungli (China)

    2017-02-15

    In this paper, we investigate the p+ip superfluid phases in the complex vector field holographic p-wave model. We find that in the probe limit, the p+ip phase and the p-wave phase are equally stable, hence the p and ip orders can be mixed with an arbitrary ratio to form more general p+λip phases, which are also equally stable with the p-wave and p+ip phases. As a result, the system possesses a degenerate thermal state in the superfluid region. We further study the case on considering the back-reaction on the metric, and we find that the degenerate ground states will be separated into p-wave and p+ip phases, and the p-wave phase is more stable. Finally, due to the different critical temperature of the zeroth order phase transitions from p-wave and p+ip phases to the normal phase, there is a temperature region where the p+ip phase exists but the p-wave phase does not. In this region we find the stable holographic p+ip phase for the first time. (orig.)

  4. Spectrum of harmonic emission by inhomogeneous plasma in intense electromagnetic wave

    International Nuclear Information System (INIS)

    Kovalev, V.F.; Pustovalov, V.V.

    1989-01-01

    The spectrum and angular distribution of the harmonics of arbitrary index emitted by a cold, inhomogeneous electron plasma subjected to a p-polarized electromagnetic wave have been studied analytically. The results are shown in graphical form. The intensity of the wave was varied over a wide range. At energy flux densities of the electromagnetic wave at which the inverse effect of the higher harmonics on the lower harmonics becomes appreciable, it becomes possible to observe a decay of the absolute value of the complex amplitude of a harmonic with increasing harmonic index in vacuum which is substantially slower than that predicted by the theory for a weak nonlinearity

  5. Increasing Incidence of Plasmodium knowlesi Malaria following Control of P. falciparum and P. vivax Malaria in Sabah, Malaysia

    Science.gov (United States)

    William, Timothy; Rahman, Hasan A.; Jelip, Jenarun; Ibrahim, Mohammad Y.; Menon, Jayaram; Grigg, Matthew J.; Yeo, Tsin W.; Anstey, Nicholas M.; Barber, Bridget E.

    2013-01-01

    Background The simian parasite Plasmodium knowlesi is a common cause of human malaria in Malaysian Borneo and threatens the prospect of malaria elimination. However, little is known about the emergence of P. knowlesi, particularly in Sabah. We reviewed Sabah Department of Health records to investigate the trend of each malaria species over time. Methods Reporting of microscopy-diagnosed malaria cases in Sabah is mandatory. We reviewed all available Department of Health malaria notification records from 1992–2011. Notifications of P. malariae and P. knowlesi were considered as a single group due to microscopic near-identity. Results From 1992–2011 total malaria notifications decreased dramatically, with P. falciparum peaking at 33,153 in 1994 and decreasing 55-fold to 605 in 2011, and P. vivax peaking at 15,857 in 1995 and decreasing 25-fold to 628 in 2011. Notifications of P. malariae/P. knowlesi also demonstrated a peak in the mid-1990s (614 in 1994) before decreasing to ≈100/year in the late 1990s/early 2000s. However, P. malariae/P. knowlesi notifications increased >10-fold between 2004 (n = 59) and 2011 (n = 703). In 1992 P. falciparum, P. vivax and P. malariae/P. knowlesi monoinfections accounted for 70%, 24% and 1% respectively of malaria notifications, compared to 30%, 31% and 35% in 2011. The increase in P. malariae/P. knowlesi notifications occurred state-wide, appearing to have begun in the southwest and progressed north-easterly. Conclusions A significant recent increase has occurred in P. knowlesi notifications following reduced transmission of the human Plasmodium species, and this trend threatens malaria elimination. Determination of transmission dynamics and risk factors for knowlesi malaria is required to guide measures to control this rising incidence. PMID:23359830

  6. Impacts of wave-induced circulation in the surf zone on wave setup

    Science.gov (United States)

    Guérin, Thomas; Bertin, Xavier; Coulombier, Thibault; de Bakker, Anouk

    2018-03-01

    Wave setup corresponds to the increase in mean water level along the coast associated with the breaking of short-waves and is of key importance for coastal dynamics, as it contributes to storm surges and the generation of undertows. Although overall well explained by the divergence of the momentum flux associated with short waves in the surf zone, several studies reported substantial underestimations along the coastline. This paper investigates the impacts of the wave-induced circulation that takes place in the surf zone on wave setup, based on the analysis of 3D modelling results. A 3D phase-averaged modelling system using a vortex force formalism is applied to hindcast an unpublished field experiment, carried out at a dissipative beach under moderate to very energetic wave conditions (Hm 0 = 6m at breaking and Tp = 22s). When using an adaptive wave breaking parameterisation based on the beach slope, model predictions for water levels, short waves and undertows improved by about 30%, with errors reducing to 0.10 m, 0.10 m and 0.09 m/s, respectively. The analysis of model results suggests a very limited impact of the vertical circulation on wave setup at this dissipative beach. When extending this analysis to idealized simulations for different beach slopes ranging from 0.01 to 0.05, it shows that the contribution of the vertical circulation (horizontal and vertical advection and vertical viscosity terms) becomes more and more relevant as the beach slope increases. In contrast, for a given beach slope, the wave height at the breaking point has a limited impact on the relative contribution of the vertical circulation on the wave setup. For a slope of 0.05, the contribution of the terms associated with the vertical circulation accounts for up to 17% (i.e. a 20% increase) of the total setup at the shoreline, which provides a new explanation for the underestimations reported in previously published studies.

  7. Partial-wave analysis of the reaction $K^{-}$ p -> $\\overline{K} \\delta$ (1230) in the energy region 1915–2170 MeV

    CERN Document Server

    Litchfield, P J; Baillon, Paul; Albrecht, A; Putzer, A

    1974-01-01

    A partial-wave analysis has been carried out on the reaction K/sup -/p to K/sup -/ Delta /sup +/(1230) to K/sup -/p pi /sup 0/ in the centre of mass energy region 1915-2170 MeV. The Sigma (2030) is observed with an amplitude at resonance of 0.16+or-0.03. Strong formation of the /sup 3///sub 2//sup -/ Sigma (1940) is also indicated. (9 refs).

  8. Seismic interferometry of railroad induced ground motions: body and surface wave imaging

    Science.gov (United States)

    Quiros, Diego A.; Brown, Larry D.; Kim, Doyeon

    2016-04-01

    Seismic interferometry applied to 120 hr of railroad traffic recorded by an array of vertical component seismographs along a railway within the Rio Grande rift has recovered surface and body waves characteristic of the geology beneath the railway. Linear and hyperbolic arrivals are retrieved that agree with surface (Rayleigh), direct and reflected P waves observed by nearby conventional seismic surveys. Train-generated Rayleigh waves span a range of frequencies significantly higher than those recovered from typical ambient noise interferometry studies. Direct P-wave arrivals have apparent velocities appropriate for the shallow geology of the survey area. Significant reflected P-wave energy is also present at relatively large offsets. A common midpoint stack produces a reflection image consistent with nearby conventional reflection data. We suggest that for sources at the free surface (e.g. trains) increasing the aperture of the array to record wide angle reflections, in addition to longer recording intervals, might allow the recovery of deeper geological structure from railroad traffic. Frequency-wavenumber analyses of these recordings indicate that the train source is symmetrical (i.e. approaching and receding) and that deeper refracted energy is present although not evident in the time-offset domain. These results confirm that train-generated vibrations represent a practical source of high-resolution subsurface information, with particular relevance to geotechnical and environmental applications.

  9. Low-energy P-wave phaseshifts for positron-hydrogen elastic scattering using an adiabatic approximation

    International Nuclear Information System (INIS)

    Armour, E.A.G.; Beker, C.A.; Farina, J.E.G.

    1981-01-01

    P-wave phaseshifts for positron-hydrogen elastic scattering are calculated using a new adiabatic approximation in which the length of the radius vector from the proton to the positron is fixed but its direction is allowed to vary. This adiabatic approximation makes possible the full inclusion in the calculation of virtual states in which angular momentum is transferred to the target H atom. The results obtained agree qualitatively with the highly accurate results of Bhatia and co-workers (Phys. Rev.; A9:219 (1974)) and are much closer to them than the results obtained using the usual adiabatic approximation in which the radius vector from the proton to the positron is fixed. (author)

  10. Elastic I=3 /2 p -wave nucleon-pion scattering amplitude and the Δ (1232) resonance from Nf=2+1 lattice QCD

    DEFF Research Database (Denmark)

    Andersen, Christian Walther; Bulava, John; Hörz, Ben

    2018-01-01

    We present the first direct determination of meson-baryon resonance parameters from a scattering amplitude calculated using lattice QCD. In particular, we calculate the elastic I=3/2, p-wave nucleon-pion amplitude on a single ensemble of Nf=2+1 Wilson-clover fermions with mπ=280 MeV and mK=460 Me......V. At these quark masses, the Δ(1232) resonance pole is found close to the N-π threshold and a Breit-Wigner fit to the amplitude gives gΔNπBW=19.0(4.7) in agreement with phenomenological determinations.......We present the first direct determination of meson-baryon resonance parameters from a scattering amplitude calculated using lattice QCD. In particular, we calculate the elastic I=3/2, p-wave nucleon-pion amplitude on a single ensemble of Nf=2+1 Wilson-clover fermions with mπ=280 MeV and mK=460 Me...

  11. Experimental exposure to diesel exhaust increases arterial stiffness in man

    Directory of Open Access Journals (Sweden)

    Newby David E

    2009-03-01

    Full Text Available Abstract Introduction Exposure to air pollution is associated with increased cardiovascular morbidity, although the underlying mechanisms are unclear. Vascular dysfunction reduces arterial compliance and increases central arterial pressure and left ventricular after-load. We determined the effect of diesel exhaust exposure on arterial compliance using a validated non-invasive measure of arterial stiffness. Methods In a double-blind randomized fashion, 12 healthy volunteers were exposed to diesel exhaust (approximately 350 μg/m3 or filtered air for one hour during moderate exercise. Arterial stiffness was measured using applanation tonometry at the radial artery for pulse wave analysis (PWA, as well as at the femoral and carotid arteries for pulse wave velocity (PWV. PWA was performed 10, 20 and 30 min, and carotid-femoral PWV 40 min, post-exposure. Augmentation pressure (AP, augmentation index (AIx and time to wave reflection (Tr were calculated. Results Blood pressure, AP and AIx were generally low reflecting compliant arteries. In comparison to filtered air, diesel exhaust exposure induced an increase in AP of 2.5 mmHg (p = 0.02 and in AIx of 7.8% (p = 0.01, along with a 16 ms reduction in Tr (p = 0.03, 10 minutes post-exposure. Conclusion Acute exposure to diesel exhaust is associated with an immediate and transient increase in arterial stiffness. This may, in part, explain the increased risk for cardiovascular disease associated with air pollution exposure. If our findings are confirmed in larger cohorts of susceptible populations, this simple non-invasive method of assessing arterial stiffness may become a useful technique in measuring the impact of real world exposures to combustion derived-air pollution.

  12. WAVE-E: The WAter Vapour European-Explorer Mission

    Science.gov (United States)

    Jimenez-LLuva, David; Deiml, Michael; Pavesi, Sara

    2017-04-01

    In the last decade, stratosphere-troposphere coupling processes in the Upper Troposphere Lower Stratosphere (UTLS) have been increasingly recognized to severely impact surface climate and high-impact weather phenomena. Weakened stratospheric circumpolar jets have been linked to worldwide extreme temperature and high-precipitation events, while anomalously strong stratospheric jets can lead to an increase in surface winds and tropical cyclone intensity. Moreover, stratospheric water vapor has been identified as an important forcing for global decadal surface climate change. In the past years, operational weather forecast and climate models have adapted a high vertical resolution in the UTLS region in order to capture the dynamical processes occurring in this highly stratified region. However, there is an evident lack of available measurements in the UTLS region to consistently support these models and further improve process understanding. Consequently, both the IPCC fifth assessment report and the ESA-GEWEX report 'Earth Observation and Water Cycle Science Priorities' have identified an urgent need for long-term observations and improved process understanding in the UTLS region. To close this gap, the authors propose the 'WAter Vapour European - Explorer' (WAVE-E) space mission, whose primary goal is to monitor water vapor in the UTLS at 1 km vertical, 25 km horizontal and sub-daily temporal resolution. WAVE-E consists of three quasi-identical small ( 500 kg) satellites (WAVE-E 1-3) in a constellation of Sun-Synchronous Low Earth Orbits, each carrying a limb sounding and cross-track scanning mid-infrared passive spectrometer (824 cm-1 to 829 cm-1). The core of the instruments builds a monolithic, field-widened type of Michelson interferometer without any moving parts, rendering it rigid and fault tolerant. Synergistic use of WAVE-E and MetOp-NG operational satellites is identified, such that a data fusion algorithm could provide water vapour profiles from the

  13. Study of the p + p → π+ + d reaction close to threshold

    International Nuclear Information System (INIS)

    Drochner, M.; Kemmerling, G.; Zwoll, K.; Frekers, D.; Garske, W.; Klimala, W.; Kolev, D.; Tsenov, R.; Kutsarova, T.

    1996-01-01

    The p + p → π + + d reaction has been studied at excess energies between 0.275 MeV and 3.86 MeV. The experiments were performed with the external proton beam of the COoler SYnchrotron (COSY) in Julich. Differential and total cross sections were measured employing a high resolution magnetic spectrometer with nearly 4π acceptance in the centre of the mass system. The values of the total cross sections are - when corrected for the Coulomb effects - in agreement with the results obtained from the time reversed reactions as well as from isospin related reactions. The measured anisotropies between 0.008 and 0.29 indicate that the p-wave is not negligible even so close to threshold. The s-wave and p-wave contributions at threshold are deduced. (author)

  14. Increased Arf/p53 activity in stem cells, aging and cancer.

    Science.gov (United States)

    Carrasco-Garcia, Estefania; Moreno, Manuel; Moreno-Cugnon, Leire; Matheu, Ander

    2017-04-01

    Arf/p53 pathway protects the cells against DNA damage induced by acute stress. This characteristic is the responsible for its tumor suppressor activity. Moreover, it regulates the chronic type of stress associated with aging. This is the basis of its anti-aging activity. Indeed, increased gene dosage of Arf/p53 displays elongated longevity and delayed aging. At a cellular level, it has been recently shown that increased dosage of Arf/p53 delays age-associated stem cell exhaustion and the subsequent decline in tissue homeostasis and regeneration. However, p53 can also promote aging if constitutively activated. In this context, p53 reduces tissue regeneration, which correlates with premature exhaustion of stem cells. We discuss here the current evidence linking the Arf/p53 pathway to the processes of aging and cancer through stem cell regulation. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  15. S-P wave travel time residuals and lateral inhomogeneity in the mantle beneath Tibet and the Himalaya

    Science.gov (United States)

    Molnar, P.; Chen, W.-P.

    1984-01-01

    S-P wave travel time residuals were measured in earthquakes in Tibet and the Himalaya in order to study lateral inhomogeneities in the earth's mantle. Average S-P residuals, measured with respect to Jeffrey-Bullen (J-B) tables for 11 earthquakes in the Himalaya are less than +1 second. Average J-B S-P from 10 of 11 earthquakes in Tibet, however, are greater than +1 second even when corrected for local crustal thickness. The largest values, ranging between 2.5 and 4.9 seconds are for five events in central and northern Tibet, and they imply that the average velocities in the crust and upper mantle in this part of Tibet are 4 to 10 percent lower than those beneath the Himalaya. On the basis of the data, it is concluded that it is unlikely that a shield structure lies beneath north central Tibet unless the S-P residuals are due to structural variations occurring deeper than 250 km.

  16. Future heat waves and surface ozone

    Science.gov (United States)

    Meehl, Gerald A.; Tebaldi, Claudia; Tilmes, Simone; Lamarque, Jean-Francois; Bates, Susan; Pendergrass, Angeline; Lombardozzi, Danica

    2018-06-01

    A global Earth system model is used to study the relationship between heat waves and surface ozone levels over land areas around the world that could experience either large decreases or little change in future ozone precursor emissions. The model is driven by emissions of greenhouse gases and ozone precursors from a medium-high emission scenario (Representative Concentration Pathway 6.0–RCP6.0) and is compared to an experiment with anthropogenic ozone precursor emissions fixed at 2005 levels. With ongoing increases in greenhouse gases and corresponding increases in average temperature in both experiments, heat waves are projected to become more intense over most global land areas (greater maximum temperatures during heat waves). However, surface ozone concentrations on future heat wave days decrease proportionately more than on non-heat wave days in areas where ozone precursors are prescribed to decrease in RCP6.0 (e.g. most of North America and Europe), while surface ozone concentrations in heat waves increase in areas where ozone precursors either increase or have little change (e.g. central Asia, the Mideast, northern Africa). In the stabilized ozone precursor experiment, surface ozone concentrations increase on future heat wave days compared to non-heat wave days in most regions except in areas where there is ozone suppression that contributes to decreases in ozone in future heat waves. This is likely associated with effects of changes in isoprene emissions at high temperatures (e.g. west coast and southeastern North America, eastern Europe).

  17. Increased p53 and decreased p21 accompany apoptosis induced by ultraviolet radiation in the nervous system of a crustacean

    International Nuclear Information System (INIS)

    Hollmann, Gabriela; Linden, Rafael; Giangrande, Angela; Allodi, Silvana

    2016-01-01

    Highlights: • The paper characterizes molecular pathways of cell responses to environmental doses of UV in brain tissue of a crab species. • The UV radiation changes levels of proteins which trigger apoptotic or cell cycle arrest pathways and also it changes neurotrophins which lead to apoptosis of neural cell in the central nervous system (CNS) of the crab Ucides cordatus. • The UVB wavelengths in the solar simulator damaged the DNA, either directly or indirectly, by increasing ROS, and induced the increase of p53 and AKT, which blocked p21 and increased the expression of activated caspase-3, triggering apoptosis. The signs of death increased the expression of neurotrophins (BDNF and GDNF), which continued to stimulate the apoptosis signaling mediated by caspase-3. • In the brain of the crab U. cordatus, p53/p21 relationship in response to UV radiation is different from that of most mammals. - Abstract: Ultraviolet (UV) radiation can produce biological damage, leading the cell to apoptosis by the p53 pathway. This study evaluated some molecular markers of the apoptosis pathway induced by UVA, UVB and UVA+ UVB (Solar Simulator, SIM) in environmental doses, during five consecutive days of exposure, in the brain of the crab Ucides cordatus. We evaluated the central nervous system (CNS) by immunoblotting the content of proteins p53, p21, phosphorylated AKT, BDNF, GDNF, activated caspase-3 (C3) and phosphohistone H3 (PH3); and by immunohistochemical tests of the cells labeled for PH3 and C3. After the fifth day of exposure, UVB radiation and SIM increased the protein content of p53, increasing the content of AKT and, somehow, blocking p21, increasing the content of activated caspase-3, which led the cells to apoptosis. The signs of death affected the increase in neurotrophins, such as BDNF and GDNF, stimulating the apoptotic cascade of events. Immunohistochemical assays and immunoblotting showed that apoptosis was present in the brains of all UV groups, while

  18. Increased p53 and decreased p21 accompany apoptosis induced by ultraviolet radiation in the nervous system of a crustacean

    Energy Technology Data Exchange (ETDEWEB)

    Hollmann, Gabriela, E-mail: gabrielahollmann@biof.ufrj.br [Programa de Pós Graduação em Ciências Biológicas-Fisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21941-590 (Brazil); Linden, Rafael, E-mail: rlinden@biof.ufrj.br [Programa de Pós Graduação em Ciências Biológicas-Fisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21941-590 (Brazil); Giangrande, Angela, E-mail: angela.giangrande@igbmc.fr [Institut de Génétique et de Biologie Moléculaire et Cellulaire-IGBMC, INSERM, Strasbourg (France); Allodi, Silvana, E-mail: sallodi@biof.ufrj.br [Programa de Pós Graduação em Ciências Biológicas-Fisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21941-590 (Brazil)

    2016-04-15

    Highlights: • The paper characterizes molecular pathways of cell responses to environmental doses of UV in brain tissue of a crab species. • The UV radiation changes levels of proteins which trigger apoptotic or cell cycle arrest pathways and also it changes neurotrophins which lead to apoptosis of neural cell in the central nervous system (CNS) of the crab Ucides cordatus. • The UVB wavelengths in the solar simulator damaged the DNA, either directly or indirectly, by increasing ROS, and induced the increase of p53 and AKT, which blocked p21 and increased the expression of activated caspase-3, triggering apoptosis. The signs of death increased the expression of neurotrophins (BDNF and GDNF), which continued to stimulate the apoptosis signaling mediated by caspase-3. • In the brain of the crab U. cordatus, p53/p21 relationship in response to UV radiation is different from that of most mammals. - Abstract: Ultraviolet (UV) radiation can produce biological damage, leading the cell to apoptosis by the p53 pathway. This study evaluated some molecular markers of the apoptosis pathway induced by UVA, UVB and UVA+ UVB (Solar Simulator, SIM) in environmental doses, during five consecutive days of exposure, in the brain of the crab Ucides cordatus. We evaluated the central nervous system (CNS) by immunoblotting the content of proteins p53, p21, phosphorylated AKT, BDNF, GDNF, activated caspase-3 (C3) and phosphohistone H3 (PH3); and by immunohistochemical tests of the cells labeled for PH3 and C3. After the fifth day of exposure, UVB radiation and SIM increased the protein content of p53, increasing the content of AKT and, somehow, blocking p21, increasing the content of activated caspase-3, which led the cells to apoptosis. The signs of death affected the increase in neurotrophins, such as BDNF and GDNF, stimulating the apoptotic cascade of events. Immunohistochemical assays and immunoblotting showed that apoptosis was present in the brains of all UV groups, while

  19. LLNL-G3Dv3: Global P wave tomography model for improved regional and teleseismic travel time prediction: LLNL-G3DV3---GLOBAL P WAVE TOMOGRAPHY

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, N. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Myers, S. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Johannesson, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Matzel, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-10-06

    [1] We develop a global-scale P wave velocity model (LLNL-G3Dv3) designed to accurately predict seismic travel times at regional and teleseismic distances simultaneously. The model provides a new image of Earth's interior, but the underlying practical purpose of the model is to provide enhanced seismic event location capabilities. The LLNL-G3Dv3 model is based on ∼2.8 millionP and Pnarrivals that are re-processed using our global multiple-event locator called Bayesloc. We construct LLNL-G3Dv3 within a spherical tessellation based framework, allowing for explicit representation of undulating and discontinuous layers including the crust and transition zone layers. Using a multiscale inversion technique, regional trends as well as fine details are captured where the data allow. LLNL-G3Dv3 exhibits large-scale structures including cratons and superplumes as well numerous complex details in the upper mantle including within the transition zone. Particularly, the model reveals new details of a vast network of subducted slabs trapped within the transition beneath much of Eurasia, including beneath the Tibetan Plateau. We demonstrate the impact of Bayesloc multiple-event location on the resulting tomographic images through comparison with images produced without the benefit of multiple-event constraints (single-event locations). We find that the multiple-event locations allow for better reconciliation of the large set of direct P phases recorded at 0–97° distance and yield a smoother and more continuous image relative to the single-event locations. Travel times predicted from a 3-D model are also found to be strongly influenced by the initial locations of the input data, even when an iterative inversion/relocation technique is employed.

  20. Trend analysis of the wave storminess: the wave direction

    Science.gov (United States)

    Casas Prat, M.; Sierra, J. P.; Mösso, C.; Sánchez-Arcilla, A.

    2009-09-01

    Climate change has an important role in the current scientific research because of its possible future negative consequences. Concerning the climate change in the coastal engineering field, the apparent sea level rise is one of the key parameters as well as the wave height and the wave direction temporal variations. According to the IPCC (2007), during the last century the sea level has been increasing with a mean rate of 1.7 ± 0.5 mm/yr. However, at local/regional scale the tendency significantly differs from the global trend since the local pressure and wind field variations become more relevant. This appears to be particularly significant in semi-enclosed areas in the Mediterranean Sea (Cushman-Roisin et al., 2001). Even though the existing unsolved questions related to the sea level rise, the uncertainty concerning the wave height is even larger, in which stormy conditions are especially important because they are closely related to processes such as coastal erosion, flooding, etc. Therefore, it is necessary to identify possible existing tendencies of storm related parameters. In many studies, only the maximum wave height and storm duration are analysed, remaining the wave direction in a second term. Note that a possible rotation of the mean wave direction may involve severe consequences since most beach and harbour defence structures have been designed assuming a constant predominant wave incidence. Liste et al. (2004) illustrated this fact with an example in which a rotation of only 2 degrees of the mean energy flux vector could produce a beach retreat of 20 m. Another possible consequence would be a decrease of the harbour operability: increased frequency of storms in the same direction as the harbour entrance orientation would influence the navigability. The present study, which focuses in the Catalan coast (NW Mediterranean Sea), aims to improve the present knowledge of the wave storminess variations at regional scale, specially focusing on the wave

  1. Freak waves in white dwarfs and magnetars

    International Nuclear Information System (INIS)

    Sabry, R.; Moslem, W. M.; Shukla, P. K.

    2012-01-01

    We report properties of ion acoustic freak waves that propagate in a plasma composed of warm ions and ultrarelativistic electrons and positrons. The dynamics of the nonlinear freak waves is governed by the nonlinear Schrödinger equation. The possible region for the freak waves to exist is defined precisely for typical parameters of white dwarfs and magnetars corona. It is found that for low wave number, the nonlinear ion-acoustic wave packets are structurally stable in magnetars corona than in white dwarfs. However, for large wave numbers the situation is opposite. The critical wave number threshold (k c ), which indicates where the modulational instability sets in, is defined for both applications. It is seen that near to k c the freak wave amplitude becomes high, but it decreases whenever we stepped away from k c . For the wave numbers close to k c , the increase of the unperturbed density ratio of positrons-to-electrons (β) would lead to increase the freak wave amplitude, but for larger wave numbers the amplitude decreases with the increase of β.

  2. The velocity of the arterial pulse wave: a viscous-fluid shock wave in an elastic tube.

    Science.gov (United States)

    Painter, Page R

    2008-07-29

    The arterial pulse is a viscous-fluid shock wave that is initiated by blood ejected from the heart. This wave travels away from the heart at a speed termed the pulse wave velocity (PWV). The PWV increases during the course of a number of diseases, and this increase is often attributed to arterial stiffness. As the pulse wave approaches a point in an artery, the pressure rises as does the pressure gradient. This pressure gradient increases the rate of blood flow ahead of the wave. The rate of blood flow ahead of the wave decreases with distance because the pressure gradient also decreases with distance ahead of the wave. Consequently, the amount of blood per unit length in a segment of an artery increases ahead of the wave, and this increase stretches the wall of the artery. As a result, the tension in the wall increases, and this results in an increase in the pressure of blood in the artery. An expression for the PWV is derived from an equation describing the flow-pressure coupling (FPC) for a pulse wave in an incompressible, viscous fluid in an elastic tube. The initial increase in force of the fluid in the tube is described by an increasing exponential function of time. The relationship between force gradient and fluid flow is approximated by an expression known to hold for a rigid tube. For large arteries, the PWV derived by this method agrees with the Korteweg-Moens equation for the PWV in a non-viscous fluid. For small arteries, the PWV is approximately proportional to the Korteweg-Moens velocity divided by the radius of the artery. The PWV in small arteries is also predicted to increase when the specific rate of increase in pressure as a function of time decreases. This rate decreases with increasing myocardial ischemia, suggesting an explanation for the observation that an increase in the PWV is a predictor of future myocardial infarction. The derivation of the equation for the PWV that has been used for more than fifty years is analyzed and shown to yield

  3. Wave effects on a pressure sensor

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; DeSa, E; Desa, E; McKeown, J.; Peshwe, V.B.

    Wave flume experiments indicated that for waves propagating on quiescent waters the sensor's performance improved (i.e. the difference Delta P between the average hydrostatic and measured pressures was small and positive) when the inlet...

  4. Scattering of lower-hybrid waves by drift-wave density fluctuations: solutions of the radiative transfer equation

    International Nuclear Information System (INIS)

    Andrews, P.L.; Perkins, F.W.

    1983-01-01

    The investigation of the scattering of lower-hybrid waves by density fluctuations arising from drift waves in tokamaks is distinguished by the presence in the wave equation of a large, random, derivative-coupling term. The propagation of the lower-hybrid waves is well represented by a radiative transfer equation when the scale size of the density fluctuations is small compared to the overall plasma size. The radiative transfer equation is solved in two limits: first, the forward scattering limit, where the scale size of density fluctuations is large compared to the lower-hybrid perpendicular wavelength, and second, the large-angle scattering limit, where this inequality is reversed. The most important features of these solutions are well represented by analytical formulas derived by simple arguments. Based on conventional estimates for density fluctuations arising from drift waves and a parabolic density profile, the optical depth tau for scattering through a significant angle, is given by tauroughly-equal(2/N 2 /sub parallel/) (#betta#/sub p/i0/#betta#) 2 (m/sub e/c 2 /2T/sub i/)/sup 1/2/ [c/α(Ω/sub i/Ω/sub e/)/sup 1/2/ ], where #betta#/sub p/i0 is the central ion plasma frequency and T/sub i/ denotes the ion temperature near the edge of the plasma. Most of the scattering occurs near the surface. The transmission through the scattering region scales as tau - 1 and the emerging intensity has an angular spectrum proportional to cos theta, where sin theta = k/sub perpendicular/xB/sub p//(k/sub perpendicular/B/sub p/), and B/sub p/ is the poloidal field

  5. Anomalous shear wave delays and surface wave velocities at Yellowstone Caldera, Wyoming

    International Nuclear Information System (INIS)

    Daniel, R.G.; Boore, D.M.

    1982-01-01

    To investigate the effects of a geothermal area on the propagation of intermediate-period (1--30 s) teleseismic body waves and surface waves, a specially designed portable seismograph system was operated in Yellowstone Caldera, Wyoming. Travel time residuals, relative to a station outside the caldera, of up to 2 s for compressional phases are in agreement with short-period residuals for P phases measured by other investigators. Travel time delays for shear arrivals in the intermediate-period band range from 2 to 9 s and decrease with increasing dT/dΔ. Measured Rayleigh wave phase velocities are extremely low, ranging from 3.2 km/s at 27-s period to 2.0 km/s at 7-s period; the estimated uncertainty associated with these values is 15%. We propose a model for compressional and shear velocities and Poisson's ratio beneath the Yellowstone caldera which fits the teleseismic body and surface wave data: it consists of a highly anomalous crust with an average shear velocity of 3.0 km/s overlying an upper mantle with average velocity of 4.1 km/s. The high average value of Poisson's ratio in the crust (0.34) suggests the presence of fluids there; Poisson's ratio in the mantle between 40 and approximately 200 km is more nearly normal (0.29) than in the crust. A discrepancy between normal values of Poisson's ratio in the crust calculated from short-period data and high values calculated from teleseismic data can be resolved by postulating a viscoelastic crustal model with frequency-dependent shear velocity and attenuation

  6. Plasma production from helicon waves

    International Nuclear Information System (INIS)

    Degeling, A.W.; Jung, C.O.; Boswell, R.W.; Ellingboe, A.R.

    1996-01-01

    Experimental measurements taken in a large magnetoplasma show that a simple double half-turn antenna will excite m=1 helicon waves with wavelengths from 10 endash 60 cm. Increased ionization in the center of the downstream plasma is measured when the axial wavelength of the helicon wave becomes less than the characteristic length of the system, typically 50 endash 100 cm. A sharp maximum in the plasma density downstream from the source is measured for a magnetic field of 50 G, where the helicon wave phase velocity is about 3x10 8 cms -1 . Transport of energy away from the source to the downstream region must occur to create the hot electrons needed for the increased ionization. A simple model shows that electrons in a Maxwellian distribution most likely to ionize for these experimental conditions also have a velocity of around 3x10 8 cms -1 . This strong correlation suggests that the helicon wave is trapping electrons in the Maxwellian distribution with velocities somewhat slower than the wave and accelerating them into a quasibeam with velocity somewhat faster than the wave. The nonlinear increase in central density downstream as the power is increased for helicon waves with phase velocities close to the optimum electron velocity for ionization lends support to this idea. copyright 1996 American Institute of Physics

  7. Incorporating fault zone head wave and direct wave secondary arrival times into seismic tomography: Application at Parkfield, California

    Science.gov (United States)

    Bennington, Ninfa L.; Thurber, Clifford; Peng, Zhigang; Zhang, Haijiang; Zhao, Peng

    2013-03-01

    We present a three-dimensional (3D) P wave velocity (Vp) model of the Parkfield region that utilizes existing P wave arrival time data, including fault zone head waves (FZHWs), and data from direct wave secondary arrivals (DWSAs). The first-arrival and DWSA travel times are obtained as the global- and local-minimum travel time paths, respectively. The inclusion of FZHWs and DWSAs results in as much as a 5% and a 10% increase in the across-fault velocity contrast, respectively, for the Vp model at Parkfield relative to that of Thurber et al. [2006]. Viewed along strike, three pronounced velocity contrast regions are observed: a pair of strong positive velocity contrasts (SW fast), one NW of the 1966 Parkfield earthquake hypocenter and the other SE of the 2004 Parkfield earthquake hypocenter, and a strong negative velocity contrast (NE fast) between the two hypocenters. The negative velocity contrast partially to entirely encompasses peak coseismic slip estimated in several slip models for the 2004 earthquake, suggesting that the negative velocity contrast played a part in defining the rupture patch of the 2004 Parkfield earthquake. Following Ampuero and Ben-Zion (2008), the pattern of velocity contrasts is consistent with the observed bilateral rupture propagation for the 2004 Parkfield earthquake. Although the velocity contrasts also suggest bilateral rupture propagation for the 1966 Parkfield earthquake, the fault is creeping to the NW here, i.e., exhibiting velocity-strengthening behavior. Thus, it is not surprising that rupture propagated only SE during this event.

  8. EFFECT OF SHOCK WAVE THERAPYVERSUS CORTICOSTEROID INJECTION IN MANAGEMENT OFKNEE OSTEOARTHRITIS

    Directory of Open Access Journals (Sweden)

    Ahmed Ebrahim Elerian

    2016-04-01

    Full Text Available Background: knee Osteoarthritis is the most common cause of musculoskeletal pain and disability. Shockwaves have been used as an alternative treatment for musculoskeletal disorders; intra-articular injection of steroid is a common treatment for osteoarthritis of the knee. This study aimed to investigate the efficacy of Shock wave therapy versus Corticosteroid intra articular injection in case of knee osteoarthritis. Methods: Sixty patients were diagnosed mild to moderate knee osteoarthritis; they were included in the study. Their ages were 43:65 years with mean age 50 ± 3.5 years. Patients were divided randomly into three equal groups, group (A received shock wave therapy, group (B received two intra-articular injections of corticosteroid at 1-month intervals and group (C received sham shock wave. The outcome measurements were Western Ontario and McMaster Universities arthritis index (WOMAC values, knee ROM, and pain severity using the visual analogue scale (VAS were recorded. The patients were evaluated for these parameters before allocated in their groups then after 1, 2, and 6months later. Results: compared to sham group there were significant improvement of VAS and ROM of shock wave group and corticosteroid injection group than sham (placebo group (p<0.000, (p<0.006, and 0.02 respectively. Furthermore there was significant improve of shock wave group than corticosteroid injection group where p was <0.000 for VAS, ROM and (WOMAC. Conclusion: The results of this study suggested that shock wave therapy may provide effective modality for relieving pain, increase Range of motion and improve function in knee osteoarthritis patient than intra articular corticosteroid injection.

  9. Scattering of elastic waves by thin inclusions

    International Nuclear Information System (INIS)

    Simons, D.A.

    1980-01-01

    A solution is derived for the elastic waves scattered by a thin inclusion. The solution is asymptotically valid as inclusion thickness tends to zero with the other dimensions and the frequency fixed. The method entails first approximating the total field in the inclusion in terms of the incident wave by enforcing the appropriate continuity conditions on traction and displacement across the interface, then using these displacements and strains in the volume integral that gives the scattered field. Expressions are derived for the far-field angular distributions of P and S waves due to an incident plane P wave, and plots are given for normalized differential cross sections of an oblate spheroidal tungsten carbide inclusion in a titanium matrix

  10. First-order P-wave ray synthetic seismograms in inhomogeneous, weakly anisotropic, layered media

    Czech Academy of Sciences Publication Activity Database

    Pšenčík, Ivan; Farra, V.

    2014-01-01

    Roč. 198, č. 1 (2014), s. 298-307 ISSN 0956-540X R&D Projects: GA ČR(CZ) GAP210/11/0117 Institutional support: RVO:67985530 Keywords : body waves * seismic anisotropy * wave propagation Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.724, year: 2013

  11. Reflection of P and SV waves at the free surface of a monoclinic ...

    Indian Academy of Sciences (India)

    R.Narasimhan(krishtel emaging)1461 1996 Oct 15 13:05:22

    The propagation of plane waves in an anisotropic elastic medium possessing monoclinic symmetry is discussed. The expressions for ... Keywords. Anisotropic medium; elastic waves; monoclinic half-space; reflection coefficients. Proc. Indian Acad. Sci. ...... In contrast, for C < 0, the angle of reflec- tion is less than the angle of ...

  12. Wave analysis at frictional interface: A case wise study

    Science.gov (United States)

    Srivastava, Akanksha; Chattopadhyay, Amares; Singh, Pooja; Singh, Abhishek Kumar

    2018-03-01

    The present article deals with the propagation of a Stoneley wave and with the reflection as well as refraction of an incident P -wave at the frictional bonded interface between an initially stressed isotropic viscoelastic semi-infinite superstratum and an initially stressed isotropic substratum as case I and case II, respectively. The complex form of the velocity equation has been derived in closed form for the propagation of a Stoneley wave in the said structure. The real and imaginary parts of the complex form of the velocity equation correspond to the phase velocity and damped velocity of the Stoneley wave. Phase and damped velocity have been analysed against the angular frequency. The expressions of the amplitude ratios of the reflected and refracted waves are deduced analytically. The variation of the amplitude ratios is examined against the angle of incidence of the P -wave. The influence of frictional boundary parameters, initial stress, viscoelastic parameters on the phase and damped velocities of the Stoneley wave and the amplitude ratios of the reflected as well as refracted P - and SV -wave have been revealed graphically through numerical results.

  13. Internal Waves and Wave Attractors in Enceladus' Subsurface Ocean

    Science.gov (United States)

    van Oers, A. M.; Maas, L. R.; Vermeersen, B. L. A.

    2016-12-01

    One of the most peculiar features on Saturn moon Enceladus is its so-called tiger stripe pattern at the geologically active South Polar Terrain (SPT), as first observed in detail by the Cassini spacecraft early 2005. It is generally assumed that the four almost parallel surface lines that constitute this pattern are faults in the icy surface overlying a confined salty water reservoir. In 2013, we formulated the original idea [Vermeersen et al., AGU Fall Meeting 2013, abstract #P53B-1848] that the tiger stripe pattern is formed and maintained by induced, tidally and rotationally driven, wave-attractor motions in the ocean underneath the icy surface of the tiger-stripe region. Such wave-attractor motions are observed in water tank experiments in laboratories on Earth and in numerical experiments [Maas et al., Nature, 338, 557-561, 1997; Drijfhout and Maas, J. Phys. Oceanogr., 37, 2740-2763, 2007; Hazewinkel et al., Phys. Fluids, 22, 107102, 2010]. Numerical simulations show the persistence of wave attractors for a range of ocean shapes and stratifications. The intensification of the wave field near the location of the surface reflections of wave attractors has been numerically and experimentally confirmed. We measured the forces a wave attractor exerts on a solid surface, near a reflection point. These reflection points would correspond to the location of the tiger stripes. Combining experiments and numerical simulations we conclude that (1) wave attractors can exist in Enceladus' subsurface sea, (2) their shape can be matched to the tiger stripes, (3) the wave attractors cause a localized force at the water-ice boundaries, (4) this force could have been large enough to contribute to fracturing the ice and (5) the wave attractors localize energy (and particles) and cause dissipation along its path, helping explain Enceladus' enigmatic heat output at the tiger stripes.

  14. Shock wave propagation in neutral and ionized gases

    International Nuclear Information System (INIS)

    Podder, N. K.; Wilson IV, R. B.; Bletzinger, P.

    2008-01-01

    Preliminary measurements on a recently built shock tube are presented. Planar shock waves are excited by the spark discharge of a capacitor, and launched into the neutral argon or nitrogen gas as well as its ionized glow discharge in the pressure region 1-17 Torr. For the shock wave propagation in the neutral argon at fixed capacitor charging voltage, the shock wave velocity is found to increase nonlinearly at the lower pressures, reach a maximum at an intermediate pressure, and then decrease almost linearly at the higher pressures, whereas the shock wave strength continues to increase at a nonlinear rate over the entire range of pressure. However, at fixed gas pressure the shock wave velocity increases almost monotonically as the capacitor charging voltage is increased. For the shock wave propagation in the ionized argon glow, the shock wave is found to be most influenced by the glow discharge plasma current. As the plasma current is increased, both the shock wave propagation velocity and the dispersion width are observed to increase nonlinearly

  15. Static and Dynamic Reservoir Characterization Using High Resolution P-Wave Velocity Data in Delhi Field, la

    Science.gov (United States)

    Hussain, S.; Davis, T.

    2012-12-01

    Static and dynamic reservoir characterization was done on high resolution P-wave seismic data in Delhi Field, LA to study the complex stratigraphy of the Holt-Bryant sands and to delineate the CO2 flow path. The field is undergoing CO2 injection for enhanced oil recovery. The seismic data was bandwidth extended by Geotrace to decrease the tuning thickness effect. Once the authenticity of the added frequencies in the data was determined, the interpretation helped map thin Tuscaloosa and Paluxy sands. Cross-equalization was done on the baseline and monitor surveys to remove the non-repeatable noise in the data. Acoustic impedance (AI) inversion was done on the baseline and monitor surveys to map the changes in AI with CO2 injection in the field. Figure 1 shows the AI percentage change at Base Paluxy. The analysis helped identify areas that were not being swept by CO2. Figure 2 shows the CO2 flow paths in Tuscaloosa formation. The percentage change of AI with CO2 injection and pressure increase corresponded with the fluid substitution modeling results. Time-lapse interpretation helped in delineating the channels, high permeability zones and the bypassed zones in the reservoir.; Figure 1: P-impedance percentage difference map with a 2 ms window centered at the base of Paluxy with the production data from June 2010 overlain; the black dashed line is the oil-water contact; notice the negative impedance change below the OWC. The lighter yellow color shows area where Paluxy is not being swept completely. ; Figure 2: P-impedance percentage difference map at TUSC 7 top; the white triangles are TUSC 7 injectors and the white circles are TUSC 7 producers; the black polygons show the flow paths of CO2.

  16. Numerical investigation of freak waves

    Science.gov (United States)

    Chalikov, D.

    2009-04-01

    of wave energy. It is naive to expect that high order moments such as skewness and kurtosis can serve as predictors or even indicators of freak waves. Firstly, the above characteristics cannot be calculated with the use of spectrum usually determined with low accuracy. Such calculations are definitely unstable to a slight perturbation of spectrum. Secondly, even if spectrum is determined with high accuracy (for example calculated with the use of exact model), the high order moments cannot serve as the predictors, since they change synchronically with variations of extreme wave heights. Appearance of freak waves occurs simultaneously with increase of the local kurtosis, hence, kurtosis is simply a passive indicator of the same local geometrical properties of a wave field. This effect disappears completely, if spectrum is calculated over a very wide ensemble of waves. In this case existence of a freak wave is just disguised by other, non freak waves. Thirdly, all high order moments are dependant of spectral presentation - they increase with increasing of spectral resolution and cut-frequency. Statistics of non-dimensional waves as well as emergence of extreme waves is the innate property of a nonlinear wave field. Probability function for steep waves has been constructed. Such type function can be used for development of operational forecast of freak waves based on a standard forecast provided by the 3-d generation wave prediction model (WAVEWATCH or WAM).

  17. Vehicular Networks and Road Safety: an Application for Emergency/Danger Situations Management Using the WAVE/802.11p Standard

    Directory of Open Access Journals (Sweden)

    Peppino Fazio

    2013-01-01

    Full Text Available Car-to-car communication makes possible offering many services for vehicular environment, mainly to improve the safety. The decentralized kind of these networks requires new protocols to distribute information. The advantages that it offers depend on the penetration rate, that will be enough only after years since the introduction, due to the longevity of the current cars. The V2X communication requires On-Board Units (OBUs in the vehicles, and Road-Side Units (RSUs on the roads. The proposed application uses the peculiarities of the VANETs to advise danger or emergency situations with V2V and V2I message exchange. IEEE 802.11p is standard on which the communication is based, that provides the physical and the MAC layers. The WAVE protocol uses this standard, implementing other protocols defined by the family of standards IEEE P1609 in the upper layers. They define security services, resource management, multichannel operations and the message exchange protocol in WAVE. The performance of the application will be evaluated through many simulations executed in different scenarios, to provide general data independent from them.

  18. Quantum information entropies of the eigenstates for the P(o)schl-Teller-like potential

    Institute of Scientific and Technical Information of China (English)

    Guo-Hua Sun; M.Avila Aoki; Shi-Hai Dong

    2013-01-01

    Shannon entropy for lower position and momentum eigenstates of P(o)schl-Teller-like potential is evaluated.Based on the entropy densities demonstrated graphically,we note that the wave through of the position information entropy density ρ(x) moves right when the potential parameter V1 increases and its amplitude decreases.However,its wave through moves left with the increase in the potential parameter |V2|.Concerning the momentum information entropy density p(p),we observe that its amplitude increases with increasing potential parameter V1,but its amplitude decreases with increasing |V2|.The Bialynicki-Birula-Mycielski (BBM) inequality has also been tested for a number of states.Moreover,there exist eigenstates that exhibit squeezing in the momentum information entropy.Finally,we note that position information entropy increases with V1,but decreases with |V2|.However,the variation of momentum information entropy is contrary to that of the position information entropy.

  19. The high resolution shear wave seismic reflection technique

    International Nuclear Information System (INIS)

    Johnson, W.J.; Clark, J.C.

    1991-04-01

    This report presents the state-of-the-art of the high resolution S-wave reflection technique. Published and unpublished literature has been reviewed and discussions have been held with experts. Result is to confirm that the proposed theoretical and practical basis for identifying aquifer systems using both P- and S-wave reflections is sound. Knowledge of S-wave velocity and P-wave velocity is a powerful tool for assessing the fluid characteristics of subsurface layers. Material properties and lateral changes in material properties such as change from clay to sand, can be inferred from careful dual evaluation of P and S-wave records. The high resolution S-wave reflection technique has seen its greatest application to date as part of geotechnical studies for building foundations in the Far East. Information from this type of study has been evaluated and will be incorporated in field studies. In particular, useful information regarding S-wave sources, noise suppression and recording procedures will be incorporated within the field studies. Case histories indicate that the best type of site for demonstrating the power of the high resolution S-wave technique will be in unconsolidated soil without excessive structural complexities. More complex sites can form the basis for subsequent research after the basic principles of the technique can be established under relatively uncomplicated conditions

  20. Langmuir-like waves and radiation in planetary foreshocks

    Science.gov (United States)

    Cairns, Iver H.; Robinson, P. A.; Anderson, R. R.; Gurnett, D. A.; Kurth, W. S.

    1995-01-01

    The basic objectives of this NASA Grant are to develop theoretical understandings (tested with spacecraft data) of the generation and characteristics of electron plasma waves, commonly known as Langmuir-like waves, and associated radiation near f(sub p) and 2f(sub p) in planetary foreshocks. (Here f(sub p) is plasma frequency.) Related waves and radiation in the source regions of interplanetary type III solar radio bursts provide a simpler observational and theoretical context for developing and testing such understandings. Accordingly, applications to type III bursts constitute a significant fraction of the research effort. The testing of the new Stochastic Growth Theory (SGT) for type III bursts, and its extension and testing for foreshock waves and radiation, constitutes a major longterm strategic goal of the research effort.