WorldWideScience

Sample records for increased mi risk

  1. MiR-146a rs2910164 polymorphism increases the risk of digestive system cancer: A meta-analysis.

    Science.gov (United States)

    Xie, Wen Qun; Wang, Xiao Fan

    2017-02-01

    There is merging evidence suggesting that the miR-146a polymorphism might be associated with susceptibility to digestive system cancer. However, previous published studies have failed to achieve a definitive conclusion. To address this issue, an updated meta-analysis was performed. A comprehensive electronic search was conducted using the following source to identify the eligible studies: PubMed, Embase, China BioMedicine, the Cochrane Library, and Google Scholar. Odds ratios and its corresponding 95% confidence interval (CI) was used in the quantitative synthesis. The database search identified 1344 eligible studies, of which 32 (comprising 12,541 cases and 15,925 controls) were included. The results indicate that the miR-146a rs2910164 polymorphism was significantly associated with increased risk of digestive system cancer in heterozygote comparison (GC vs. CC: OR=1.15, 95% CI: 1.02-1.30, P=0.02), and recessive model (GG vs. GC+CC: OR=1.11, 95% CI: 1.04-1.17, P=0.006). Subgroup analysis by cancer site revealed increased risk in gastric cancer above heterozygote comparison (GG vs. GC: OR=1.13, 95% CI: 1.02-1.25, P=0.02), and recessive model (GG vs. GC+CC: OR=1.15, 95% CI: 1.04-1.26, P=0.006). Similarly, increased cancer risk was observed in hepatocellular carcinoma when compared with homozygote comparison (GG vs. CC: OR=1.21, 95% CI: 1.04-1.42, P=0.02), heterozygote comparison (GC vs. CC: OR=1.15, 95% CI: 1.02-1.29, P=0.02), and dominant model (GG+GC vs. CC: OR=1.16, 95% CI: 1.04-1.29, P=0.009). When stratified by ethnicity and quality score, increased cancer risks were also observed among Asians, Caucasians and high quality studies subgroup. The current study revealed that miR-146a G/C genetic polymorphism was more likely to be associated with digestive system cancer risk. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. miR-146a C/G polymorphism increased the risk of head and neck cancer, but overall cancer risk: an analysis of 89 studies.

    Science.gov (United States)

    Sun, Dezhong; Zhang, Xiaoyan; Zhang, Xiaolei

    2018-02-28

    Several studies have evaluated the association of miR-146a C/G with head and neck cancer (HNC) susceptibility, and overall cancer risk, but with inconclusive outcomes. To drive a more precise estimation, we carried out this meta-analysis. The literature was searched from MEDLINE (mainly PubMed), Embase, the Cochrane Library, and Google Scholar databases to identify eligible studies. A total of 89 studies were included. The results showed that miR-146a C/G was significantly associated with increased HNC risk in dominant model ( I 2 =15.6%, P heterogeneity =0.282, odds ratio (OR) =1.088, 95% confidence interval (CI) =1.002-1.182, P =0.044). However, no cancer risk was detected under all genetic models. By further stratified analysis, we found that rs4919510 mutation contributed to the risk of HNC amongst Asians under homozygote model ( I 2 =0, P heterogeneity =0.541, OR =1.189, 95% CI =1.025-1.378, P =0.022), and dominant model ( I 2 =0, P heterogeneity =0.959, OR =1.155, 95% CI =1.016-1.312, P =0.028). Simultaneously, in the stratified analysis by source of controls, a significantly increased cancer risk amongst population-based studies was found under homozygote model, dominant model, recessive model, and allele comparison model. However, no significant association was found in the stratified analysis by ethnicity and source of control. The results indicated that miR-146a C/G polymorphism may contribute to the increased HNC susceptibility and could be a promising target to forecast cancer risk for clinical practice. However, no significant association was found in subgroup analysis by ethnicity and source of control. To further confirm these results, well-designed large-scale case-control studies are needed in the future. © 2018 The Author(s).

  3. A genetic variant in miR-196a2 increased digestive system cancer risks: a meta-analysis of 15 case-control studies.

    Directory of Open Access Journals (Sweden)

    Jing Guo

    Full Text Available BACKGROUND: MicroRNAs (miRNAs negatively regulate the gene expression and act as tumor suppressors or oncogenes in oncogenesis. The association between single nucleotide polymorphism (SNP in miR-196a2 rs11614913 and the susceptibility of digestive system cancers was inconsistent in previous studies. METHODOLOGY/PRINCIPAL FINDINGS: An updated meta-analysis based on 15 independent case-control studies consisting of 4999 cancer patients and 7606 controls was performed to address this association. It was found that miR-196a2 polymorphism significantly elevated the risks of digestive system cancers (CT vs. TT, OR = 1.25, 95% CI = 1.07-1.45; CC vs. TT, OR = 1.38, 95% CI = 1.13-1.67; CC/CT vs. TT, OR = 1.29, 95% CI = 1.10-1.50; CC vs. CT/TT, OR = 1.14, 95% CI = 1.01-1.30; C vs. T, OR = 1.15, 95% CI = 1.05-1.26. We also found that variant in miR-196a2 increased the susceptibility of colorectal cancer (CRC (CT vs. TT, OR = 1.23, 95% CI = 1.04-1.44; CC vs. TT, OR = 1.32, 95% CI = 1.08-1.61; CC/CT vs. TT, OR = 1.25, 95% CI = 1.07-1.46; C vs. T, OR = 1.15, 95% CI = 1.05-1.28, while the association in recessive model (CC vs. CT/TT, OR = 1.16, 95% CI = 0.98-1.38 showed a marginal significance. Additionally, significant association between miR-196a2 polymorphism and increased risk of hepatocellular cancer (HCC was detected. By stratifying tumors on the basis of site of origin, source of controls, ethnicity and allele frequency in controls, elevated cancer risks were observed. CONCLUSION/SIGNIFICANCE: Our findings suggest the significant association between miR-196a2 polymorphism and increased susceptibility of digestive system cancers, especially of CRC, HCC and Asians. Besides, C allele may contribute to increased digestive cancer risks.

  4. MiR-27a rs895819 is involved in increased atrophic gastritis risk, improved gastric cancer prognosis and negative interaction with Helicobacter pylori

    Science.gov (United States)

    Xu, Qian; Chen, Tie-jun; He, Cai-yun; Sun, Li-ping; Liu, Jing-wei; Yuan, Yuan

    2017-01-01

    MiR-27a rs895819 is a loop-stem structure single nucleotide polymorphism affecting mature miR-27a function. In this study, we performed a comprehensive analysis about the association of rs895819 with gastric cancer risk and prognosis, atrophic gastritis risk, as well as the interactions with environmental factors. A total of 939 gastric cancer patients, 1,067 atrophic gastritis patients and 1,166 healthy controls were screened by direct sequencing and MALDI-TOF-MS. The association of rs895819 with clinical pathological parameters and prognostic survival in 357 gastric cancer patients was also been analyzed. The rs895819 variant genotype increased the risk for atrophic gastritis (1.58-fold) and gastric cancer (1.24-fold). While in stratified analysis, the risk effect was demonstrated more significantly in the female, age >60y, Helicobacter pylori (H. pylori) negative and non-drinker subgroups. Rs895819 and H. pylori showed an interaction effect for atrophic gastritis risk. In the survival analysis, the rs895819 AG heterozygosis was associated with better survival than the AA wild-type in the TNM stage I–II subgroup. In vitro study by overexpressing miR-27a, cells carrying polymorphic-type G allele expressed lower miR-27a than wild-type A allele. In conclusion, miR-27a rs895819 is implicated as a biomarker for gastric cancer and atrophic gastritis risk, and interacts with H. pylori in gastric carcinogenesis. PMID:28150722

  5. Decreased miR-128 and increased miR-21 synergistically cause podocyte injury in sepsis.

    Science.gov (United States)

    Wang, Shanshan; Wang, Jun; Zhang, Zengdi; Miao, Hongjun

    2017-08-01

    Glomerular podocytes are injured in sepsis. We studied, in a sepsis patient, whether microRNAs (miRNAs) play a role in the podocyte injury. Podocytes were cultured and treated with lipopolysaccharide (LPS). Filtration barrier function of podocyte was analyzed with albumin influx assay. Nephrin level was analyzed with reverse transcription polymerase chain reaction (RT-PCR) and western blot. MiRNAs were detected using miRNAs PCR Array and in situ hybridization. MiRNA target sites were evaluated with luciferase reporter assays. LPS impaired the filtration barrier function of podocytes. MiR-128 level was decreased and miR-21 level was increased in podocytes in vitro and in the sepsis patient. The decrease in miR-128 was sufficient to induce the loss of nephrin and the impairment of filtration barrier function, while the increase of miR-21 exacerbated the process. Snail and phosphatase and tensin homolog (PTEN) were identified as the targets of miR-128 and miR-21. Decreased miR-128 induced Snail expression, and the increased miR-21 stabilized Snail by regulating the PTEN/Akt/GSK3β pathway. Supplementation of miR-128 and inhibition of miR-21 suppressed Snail expression and prevented the podocyte injury induced by LPS. Our study suggests that decreased miR-128 and increased miR-21 synergistically cause podocyte injury and are the potential therapeutic targets in sepsis.

  6. Circulating miR-1, miR-133a, and miR-206 levels are increased after a half-marathon run.

    Science.gov (United States)

    Gomes, Clarissa P C; Oliveira, Getúlio P; Madrid, Bibiano; Almeida, Jeeser A; Franco, Octávio L; Pereira, Rinaldo W

    2014-11-01

    Circulating miRNAs are potential biomarkers that can be important molecules driving cell-to-cell communication. To investigate circulating muscle-specific miRNAs in recreational athletes. Three miRNAs from whole plasma before and after a half-marathon were analyzed by qPCR. MiR-1, -133a, and -206 significantly increased after the race. Increased levels of miRNAs after exercise point to potential biomarkers and to the possibility of being functional players following endurance training. These miRNAs are potential biomarkers of muscle damage or adaptation to exercise.

  7. Cardiovascular Risk and Statin Eligibility of Young Adults After an MI: Partners YOUNG-MI Registry.

    Science.gov (United States)

    Singh, Avinainder; Collins, Bradley L; Gupta, Ankur; Fatima, Amber; Qamar, Arman; Biery, David; Baez, Julio; Cawley, Mary; Klein, Josh; Hainer, Jon; Plutzky, Jorge; Cannon, Christopher P; Nasir, Khurram; Di Carli, Marcelo F; Bhatt, Deepak L; Blankstein, Ron

    2018-01-23

    Despite significant progress in primary prevention, the rate of MI has not declined in young adults. The purpose of this study was to evaluate statin eligibility based on the 2013 American College of Cardiology/American Heart Association guidelines for treatment of blood cholesterol and 2016 U.S. Preventive Services Task Force recommendations for statin use in primary prevention in a cohort of adults who experienced a first-time myocardial infarction (MI) at a young age. The YOUNG-MI registry is a retrospective cohort from 2 large academic centers, which includes patients who experienced an MI at age ≤50 years. Diagnosis of type 1 MI was adjudicated by study physicians. Pooled cohort risk equations were used to estimate atherosclerotic cardiovascular disease risk score based on data available prior to MI or at the time of presentation. Of 1,685 patients meeting inclusion criteria, 210 (12.5%) were on statin therapy prior to MI and were excluded. Among the remaining 1,475 individuals, the median age was 45 years, there were 294 (20%) women, and 846 (57%) had ST-segment elevation MI. At least 1 cardiovascular risk factor was present in 1,225 (83%) patients. The median 10-year atherosclerotic cardiovascular disease risk score of the cohort was 4.8% (interquartile range: 2.8% to 8.0%). Only 724 (49%) and 430 (29%) would have met criteria for statin eligibility per the 2013 American College of Cardiology/American Heart Association guidelines and 2016 U.S. Preventive Services Task Force recommendations, respectively. This finding was even more pronounced in women, in whom 184 (63%) were not eligible for statins by either guideline, compared with 549 (46%) men (p adults who present with an MI at a young age would not have met current guideline-based treatment thresholds for statin therapy prior to their MI. These findings highlight the need for better risk assessment tools among young adults. Copyright © 2018 American College of Cardiology Foundation. Published by

  8. miR-132 and miR-212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor

    International Nuclear Information System (INIS)

    Park, Jong-Kook; Henry, Jon C.; Jiang, Jinmai; Esau, Christine; Gusev, Yuriy; Lerner, Megan R.; Postier, Russell G.; Brackett, Daniel J.; Schmittgen, Thomas D.

    2011-01-01

    Research highlights: → The expression of miR-132 and miR-212 are significantly increased in pancreatic cancer. → miR-132 and miR-212 target the tumor suppressor pRb, resulting in enhanced proliferation. → miR-132 and miR-212 expression is increased by a β2 adrenergic receptor agonist, suggesting a novel mechanism for pancreatic cancer progression. -- Abstract: Numerous microRNAs (miRNAs) are reported as differentially expressed in cancer, however the consequence of miRNA deregulation in cancer is unknown for many miRNAs. We report that two miRNAs located on chromosome 17p13, miR-132 and miR-212, are over-expressed in pancreatic adenocarcinoma (PDAC) tissues. Both miRNAs are predicted to target the retinoblastoma tumor suppressor, Rb1. Validation of this interaction was confirmed by luciferase reporter assay and western blot in a pancreatic cancer cell line transfected with pre-miR-212 and pre-miR-132 oligos. Cell proliferation was enhanced in Panc-1 cells transfected with pre-miR-132/-212 oligos. Conversely, antisense oligos to miR-132/-212 reduced cell proliferation and caused a G 2 /M cell cycle arrest. The mRNA of a number of E2F transcriptional targets were increased in cells over expressing miR-132/-212. Exposing Panc-1 cells to the β2 adrenergic receptor agonist, terbutaline, increased the miR-132 and miR-212 expression by 2- to 4-fold. We report that over-expression of miR-132 and miR-212 result in reduced pRb protein in pancreatic cancer cells and that the increase in cell proliferation from over-expression of these miRNAs is likely due to increased expression of several E2F target genes. The β2 adrenergic pathway may play an important role in this novel mechanism.

  9. miR-132 and miR-212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong-Kook [College of Pharmacy, Ohio State University, Columbus, OH 43210 (United States); Henry, Jon C. [Department of Surgery, Ohio State University, Columbus, OH 43210 (United States); Jiang, Jinmai [College of Pharmacy, Ohio State University, Columbus, OH 43210 (United States); Esau, Christine [Regulus Therapeutics, Carlsbad, CA (United States); Gusev, Yuriy [Lombardi Cancer Center, Georgetown University, Washington, DC (United States); Lerner, Megan R. [Veterans Affairs Medical Center, Oklahoma City, OK (United States); Postier, Russell G. [Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Brackett, Daniel J. [Veterans Affairs Medical Center, Oklahoma City, OK (United States); Schmittgen, Thomas D., E-mail: Schmittgen.2@osu.edu [College of Pharmacy, Ohio State University, Columbus, OH 43210 (United States)

    2011-03-25

    Research highlights: {yields} The expression of miR-132 and miR-212 are significantly increased in pancreatic cancer. {yields} miR-132 and miR-212 target the tumor suppressor pRb, resulting in enhanced proliferation. {yields} miR-132 and miR-212 expression is increased by a {beta}2 adrenergic receptor agonist, suggesting a novel mechanism for pancreatic cancer progression. -- Abstract: Numerous microRNAs (miRNAs) are reported as differentially expressed in cancer, however the consequence of miRNA deregulation in cancer is unknown for many miRNAs. We report that two miRNAs located on chromosome 17p13, miR-132 and miR-212, are over-expressed in pancreatic adenocarcinoma (PDAC) tissues. Both miRNAs are predicted to target the retinoblastoma tumor suppressor, Rb1. Validation of this interaction was confirmed by luciferase reporter assay and western blot in a pancreatic cancer cell line transfected with pre-miR-212 and pre-miR-132 oligos. Cell proliferation was enhanced in Panc-1 cells transfected with pre-miR-132/-212 oligos. Conversely, antisense oligos to miR-132/-212 reduced cell proliferation and caused a G{sub 2}/M cell cycle arrest. The mRNA of a number of E2F transcriptional targets were increased in cells over expressing miR-132/-212. Exposing Panc-1 cells to the {beta}2 adrenergic receptor agonist, terbutaline, increased the miR-132 and miR-212 expression by 2- to 4-fold. We report that over-expression of miR-132 and miR-212 result in reduced pRb protein in pancreatic cancer cells and that the increase in cell proliferation from over-expression of these miRNAs is likely due to increased expression of several E2F target genes. The {beta}2 adrenergic pathway may play an important role in this novel mechanism.

  10. Identification of miRSNPs associated with the risk of multiple myeloma

    DEFF Research Database (Denmark)

    Macauda, Angelica; Calvetti, Diego; Maccari, Giuseppe

    2017-01-01

    to be associated with risk of various types of cancer, but they have never been investigated in MM. We performed an in silico genome-wide search for miRSNPs predicted to alter binding of miRNAs to their target sequences. We selected 12 miRSNPs and tested their association with MM risk. Our study population...... TCF19). Results from IMMEnSE were meta-analyzed with data from a previously published genome-wide association study (GWAS). The SNPs rs13409 (located in the 3'UTR of the POU5F1 gene), rs1419881 (TCF19), rs1049633, rs1049623 (both in DDR1) showed significant associations with MM risk. In conclusion, we...... pathogenesis, and several studies have identified single nucleotide polymorphisms (SNPs) associated with the susceptibility to the disease. SNPs within miRNA-binding sites in target genes (miRSNPs) may alter the strength of miRNA-mRNA interactions, thus deregulating protein expression. MiRSNPs are known...

  11. Increased risk of polycystic ovary syndrome (PCOS) associated with CC genotype of miR-146a gene variation.

    Science.gov (United States)

    Ebrahimi, Seyed Omar; Reiisi, Somayeh; Parchami Barjui, Shahrbanou

    2018-04-11

    Polycystic ovary syndrome (PCOS) is an endocrinopathy in reproductive-age women believed to be affected by several genetics and environmental factors or both. Different miRNAs are one of such genetic factors that their associations with PCOS have been implicated. For instance, miR-146a that is well known for strongly regulating the immune response and inflammation was upregulated in serum plasma, follicular fluid and granulosa cells of PCOS patients. Different studies have shown that genetic changes in pre-miRNA can cause change in the expression or biological function of mature miRNA. Therefore, the main aim of this study was to investigate the association of miR-146a gene variation (rs2910164) with the susceptibility to PCOS. This study consists of 180 patients with PCOS and 192 healthy women matched by age and geographical region. Genotyping were determined by using PCR-RFLP in all subjects. The genotype frequency and allele distributions of all subjects were evaluated using Fisher's exact test directed by SPSS v.20. The genotype and allele frequencies of the miR-146a polymorphism (rs2910164) significantly differ between PCOS and healthy controls. The frequencies of CC genotype (p = .054) and 'C' allele (p = .0001) of the miR-146a variant indicated a significant incidence in cases compared to controls. Such association was obtained in co-dominant (OR = 3.16) and dominant (OR = 2.29) models. Result of this study can be proposed that women with miR-146a variation are at a higher risk for developing PCOS, which can be due to up-regulation of miR-146a.

  12. Increased risk of cardiovascular disease (CVD) with age in HIV-positive men

    DEFF Research Database (Denmark)

    Petoumenos, K; Reiss, P; Ryom, L

    2014-01-01

    equations. METHODS: We analysed three endpoints: myocardial infarction (MI), coronary heart disease (CHD: MI or invasive coronary procedure) and CVD (CHD or stroke). We fitted a number of parametric age effects, adjusting for known risk factors and antiretroviral therapy (ART) use. The best-fitting age...... rates per 1000 person-years increased from 2.29, 3.11 and 3.65 in those aged 40-45 years to 6.53, 11.91 and 15.89 in those aged 60-65 years, respectively. The best-fitting models included inverse age for MI and age + age(2) for CHD and CVD. In D:A:D there was a slowly accelerating increased risk of CHD...... and CVD per year older, which appeared to be only modest yet was consistently raised compared with the risk in the general population. The relative risk of MI with age was not different between D:A:D and the general population. CONCLUSIONS: We found only limited evidence of accelerating increased risk...

  13. Genetic polymorphisms of miR-146a and miR-27a, H. pylori infection, and risk of gastric lesions in a Chinese population.

    Directory of Open Access Journals (Sweden)

    Ming-yang Song

    Full Text Available BACKGROUND: MicroRNAs (miRNAs have been implicated in various human diseases. Single nucleotide polymorphisms (SNPs in inflammation-related miRNA may play an important role in Helicobacter pylori (H. pylori-induced gastric lesions. To evaluate the associations between miRNA SNPs, H. pylori and gastric lesions, a population-based study was conducted in Linqu County, China. METHODOLOGY/PRINCIPAL FINDINGS: Based on serum miRNA array conducted in this population, two SNP loci (miR-146a rs2910164: G>C and miR-27a rs895819: T>C were determined by polymerase chain reaction-restriction fragment length polymorphism in 2,380 participants with diverse gastric lesions. Using participants with superficial gastritis and mild chronic atrophic gastritis as the reference group, we found that rs2910164 CC carriers had a significantly increased risk of intestinal metaplasia [adjusted odds ratio (OR, 1.42; 95% confidence interval (CI, 1.03-1.97] and dysplasia (OR, 1.54; 95% CI, 1.05-2.25 compared to GG carriers, whereas no significant association was observed for rs895819. Stratified analysis by H. pylori infection indicated that rs2910164 C allele was associated with an increased risk of intestinal metaplasia and dysplasia only among individuals infected with H. pylori (CC vs. GG: OR, 1.53; 95% CI, 1.12-2.08, P for trend = 0.004. Participants who simultaneously carried variant alleles and H. pylori infection were more likely to develop intestinal metaplasia and dysplasia, although the interaction between genetic variants and H. pylori infection was not significant (P for interaction = 0.35 for rs2910164 and 0.92 for rs895819. CONCLUSIONS/SIGNIFICANCE: These findings suggest that miR-146a rs2910164 polymorphism may contribute to the evolution of H. pylori-associated gastric lesions in this high-risk population.

  14. Inhibition of 14q32 MicroRNAs miR-329, miR-487b, miR-494, and miR-495 Increases Neovascularization and Blood Flow Recovery After Ischemia

    DEFF Research Database (Denmark)

    Welten, S. M. J.; Bastiaansen, Ajnm; de Jong, R. C. M.

    2014-01-01

    in mice after single femoral artery ligation. Methods and Results: Gene silencing oligonucleotides (GSOs) were used to inhibit 4 14q32 microRNAs, miR-329, miR-487b, miR-494, and miR-495, 1 day before double femoral artery ligation. Blood flow recovery was followed by laser Doppler perfusion imaging. All 4...... GSOs clearly improved blood flow recovery after ischemia. Mice treated with GSO-495 or GSO-329 showed increased perfusion already after 3 days (30% perfusion versus 15% in control), and those treated with GSO-329 showed a full recovery of perfusion after 7 days (versus 60% in control). Increased...

  15. A pri-miR-218 variant and risk of cervical carcinoma in Chinese women

    International Nuclear Information System (INIS)

    Shi, Ting-Yan; Cheng, Xi; Wu, Xiaohua; Wei, Qingyi; Chen, Xiao-Jun; Zhu, Mei-Ling; Wang, Meng-Yun; He, Jing; Yu, Ke-Da; Shao, Zhi-Ming; Sun, Meng-Hong; Zhou, Xiao-Yan

    2013-01-01

    MicroRNA (miRNA)-related single nucleotide polymorphisms (SNPs) may compromise miRNA binding affinity and modify mRNA expression levels of the target genes, thus leading to cancer susceptibility. However, few studies have investigated roles of miRNA-related SNPs in the etiology of cervical carcinoma. In this case–control study of 1,584 cervical cancer cases and 1,394 cancer-free female controls, we investigated associations between two miR-218-related SNPs involved in the LAMB3-miR-218 pathway and the risk of cervical carcinoma in Eastern Chinese women. We found that the pri-miR-218 rs11134527 variant GG genotype was significantly associated with a decreased risk of cervical carcinoma compared with AA/AG genotypes (adjusted OR=0.77, 95% CI=0.63-0.95, P=0.015). However, this association was not observed for the miR-218 binding site SNP (rs2566) on LAMB3. Using the multifactor dimensionality reduction analysis, we observed some evidence of interactions of these two SNPs with other risk factors, especially age at primiparity and menopausal status, in the risk of cervical carcinoma. The pri-miR-218 rs11134527 SNP was significantly associated with the risk of cervical carcinoma in Eastern Chinese women. Larger, independent studies are warranted to validate our findings

  16. Differential expression of miR-139, miR-486 and miR-21 in breast cancer patients sub-classified according to lymph node status

    DEFF Research Database (Denmark)

    Rask, Lene; Balslev, Eva; Søkilde, Rolf

    2014-01-01

    PURPOSE: Therapeutic decisions in breast cancer are increasingly guided by prognostic and predictive biomarkers. Non-protein-coding microRNAs (miRNAs) have recently been found to be deregulated in breast cancers and, in addition, to be correlated with several clinico-pathological features. One...... of the most consistently up-regulated miRNAs is miR-21. Here, we specifically searched for differentially expressed miRNAs in high-risk breast cancer patients as compared to low-risk breast cancer patients. In the same patients, we also compared miR-21 expression with the expression of its presumed target...... PTEN. METHODS: Both microarray and RT-qPCR techniques were used to assess miRNA expression levels in lymph node-positive and -negative human invasive ductal carcinoma tissues. Simultaneously, PTEN protein expression levels were assessed using immunohistochemistry. RESULTS: miR-486-5p and miR-139-5p...

  17. A new polymorphism biomarker rs629367 associated with increased risk and poor survival of gastric cancer in chinese by up-regulated miRNA-let-7a expression.

    Directory of Open Access Journals (Sweden)

    Qian Xu

    Full Text Available BACKGROUND: Variant in pri-miRNA could affect miRNA expression and mature process or splicing efficiency, thus altering the hereditary susceptibility and prognosis of cancer. We aimed to assess miRNA-let-7 single nucleotide polymorphisms (SNP associated with the risk and prognosis of gastric cancer (GC as predicting biomarkers, and furthermore, its possible mechanisms. METHODS: A two-stage case-control study was designed to screen four miRNA SNPs (pri-let-7a-2 rs629367 and rs1143770, pri-let-7a-1 rs10739971, pri-let-7f-2 rs17276588 in 107 GC patients, 107 atrophic gastritis (AG, and matched 124 controls using PCR-RFLP. Two promising SNPs were validated in another independent 1949 samples (including 579 gastric cancer patients, 649 atrophic gastritis and 721 controls using Sequenom MassARRAY platform and sequencing. RESULTS: We found that pri-let-7a-2 rs629367 CC variant genotype was associated with increased risks of gastric cancer and atrophic gastritis by 1.83-fold and 1.86-fold, respectively. For gastric cancer prognosis, patients with rs629367 CC genotype had significantly poorer survival than patients with AA genotype (log-rank P = 0.004. We further investigated the let-7a expression levels in serum and found that let-7a expression elevated gradually for rs629367 AA, CA, CC genotype in the atrophic gastritis group (P = 0.043. Furthermore, we confirmed these findings in vitro study by overexpressing let-7a carrying pri-let-7a-2 wild-type A or polymorphic-type C allele (P<0.001. CONCLUSIONS: pri-let-7a-2 rs629367 CC genotype could increase the risks of gastric cancer as well as atrophic gastritis and was also associated with poor survival of gastric cancer, which possibly by affecting the mature let-7a expression, and could serve as a predicting biomarker for high-risk and poor prognosis of gastric cancer.

  18. Deregulation of miR-100, miR-99a and miR-199b in tissues and plasma coexists with increased expression of mTOR kinase in endometrioid endometrial carcinoma

    International Nuclear Information System (INIS)

    Torres, Anna; Torres, Kamil; Pesci, Anna; Ceccaroni, Marcello; Paszkowski, Tomasz; Cassandrini, Paola; Zamboni, Giuseppe; Maciejewski, Ryszard

    2012-01-01

    Alterations of mTOR gene expression have been implicated in the pathogenesis of endometrioid endometrial cancer however only few studies explored the cause of increased mTOR activation in this malignancy. miRNAs are small, noncoding RNAs, which were proven to regulated gene expression at the posttranscriptional level. The study aimed to explore deregulation of miRNAs targeting mTOR kinase (miR-99a, miR-100 and miR-199b) as a possible cause of its altered expression in EEC tissues. In addition expression of the three miRNAs was investigated in plasma of EEC patients and was assessed in terms of diagnostic and prognostic utility. We investigated expression of mTOR kinase transcripts in 46 fresh tissue samples. Expression of miR-99a, miR-100 and miR-199b was investigated in the same group of fresh samples, and in additional 58 FFPE sections as well as in 48 plasma samples using qPCR. Relative quantification was performed using experimentally validated endogenous controls. mTOR kinase expression was increased in EEC tissues and was accompanied by decreased expression of all three miRNAs. Down-regulation of the investigated miRNAs was discovered in plasma of EEC patients and miRNA signatures classified EEC tissues (miR-99a/miR-100/miR-199b) and plasma (miR-99a/miR-199b) samples with higher accuracy in comparison to single miRNAs. We also revealed that miR-100 was an independent prognostic marker of overall survival. We conclude that increased expression of mTOR kinase coexists with down-regulation of its targeting miRNAs, which could suggest a new mechanism of mTOR pathway alterations in EEC. In addition, our findings implicate that miRNA signatures can be considered promising biomarkers for early detection and prognosis of endometrioid endometrial carcinoma

  19. Association between polymorphisms in pre-miRNA genes and risk of oral squamous cell cancer in a Chinese population.

    Directory of Open Access Journals (Sweden)

    Enjiao Zhang

    Full Text Available MicroRNAs play important roles in the development of human cancers. This case-control study is to evaluate the roles of the polymorphisms in pre-miRNAs on risk of oral cancer in a Chinese population.The genotypes of three polymorphisms were determined in 340 patients with oral squamous cell cancer and 340 healthy controls who were frequency matched for age and sex. Odds ratios (ORs and 95% confidence intervals (95%CIs were calculated to assess the association. All analyses were performed using the SPSS software. 3.154( 0.001.For miR-499 rs3746444, individuals carrying homozygous CC genotype had increased risks of oral cancer compared with the homozygous wild TT genotype (adjusted OR was 3.154, 95%CI was 1.555-6.397, P value was 0.001. The C allele of miR-499 rs3746444 was associated with a higher risk of oral cancer with significant odds ratio of 1.453. In the stratified analyses by sex, the associations between miR-499 rs3746444 and miR-146a rs2910164 polymorphisms with the susceptibility of oral squamous cell cancer were significant in males. However, with 1/4 as many subjects there were no significant associations between the three polymorphisms and oral cancer risks in females. The joint effects of miRNA polymorphisms and smoking on the risk of OSCC were analyzed and the results suggested that the association between microRNA genetic variants and OSCC risk was modified by smoking.These findings suggest that miR-499 rs3746444 and miR-146a rs2910164 polymorphisms may contribute to genetic susceptibility to oral squamous cell cancer.

  20. Decreased neutrophil-associated miRNA and increased B-cell associated miRNA expression during tuberculosis.

    Science.gov (United States)

    van Rensburg, I C; du Toit, L; Walzl, G; du Plessis, N; Loxton, A G

    2018-05-20

    MicroRNAs are short non-coding RNAs that regulate gene expression by binding to, and suppressing the expression of genes. Research show that microRNAs have potential to be used as biomarkers for diagnosis, treatment response and can be used for therapeutic interventions. Furthermore, microRNA expression has effects on immune cell functions, which may lead to disease. Considering the important protective role of neutrophils and B-cells during M.tb infection, we evaluated the expression of microRNAs, known to alter function of these cells, in the context of human TB. We utilised real-time PCR to evaluate the levels of microRNA transcripts in the peripheral blood of TB cases and healthy controls. We found that neutrophil-associated miR-197-3p, miR-99b-5p and miR-191-5p transcript levels were significantly lower in TB cases. Additionally, B-cell-associated miR-320a, miR-204-5p, miR331-3p and other transcript levels were higher in TB cases. The miRNAs differentially expressed in neutrophils are predominantly implicated in signalling pathways leading to cytokine productions. Here, the decreased expression in TB cases may imply a lack of suppression on signalling pathways, which may lead to increased production of pro-inflammatory cytokines such as interferon-gamma. Furthermore, the miRNAs differentially expressed in B-cells are mostly involved in the induction/suppression of apoptosis. Further functional studies are however required to elucidate the significance and functional effects of changes in the expression of these microRNAs. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice

    International Nuclear Information System (INIS)

    Hamrick, Mark W.; Herberg, Samuel; Arounleut, Phonepasong; He, Hong-Zhi; Shiver, Austin; Qi, Rui-Qun; Zhou, Li; Isales, Carlos M.

    2010-01-01

    Research highlights: → Aging is associated with muscle atrophy and loss of muscle mass, known as the sarcopenia of aging. → We demonstrate that age-related muscle atrophy is associated with marked changes in miRNA expression in muscle. → Treating aged mice with the adipokine leptin significantly increased muscle mass and the expression of miRNAs involved in muscle repair. → Recombinant leptin therapy may therefore be a novel approach for treating age-related muscle atrophy. -- Abstract: Age-associated loss of muscle mass, or sarcopenia, contributes directly to frailty and an increased risk of falls and fractures among the elderly. Aged mice and elderly adults both show decreased muscle mass as well as relatively low levels of the fat-derived hormone leptin. Here we demonstrate that loss of muscle mass and myofiber size with aging in mice is associated with significant changes in the expression of specific miRNAs. Aging altered the expression of 57 miRNAs in mouse skeletal muscle, and many of these miRNAs are now reported to be associated specifically with age-related muscle atrophy. These include miR-221, previously identified in studies of myogenesis and muscle development as playing a role in the proliferation and terminal differentiation of myogenic precursors. We also treated aged mice with recombinant leptin, to determine whether leptin therapy could improve muscle mass and alter the miRNA expression profile of aging skeletal muscle. Leptin treatment significantly increased hindlimb muscle mass and extensor digitorum longus fiber size in aged mice. Furthermore, the expression of 37 miRNAs was altered in muscles of leptin-treated mice. In particular, leptin treatment increased the expression of miR-31 and miR-223, miRNAs known to be elevated during muscle regeneration and repair. These findings suggest that aging in skeletal muscle is associated with marked changes in the expression of specific miRNAs, and that nutrient-related hormones such as leptin

  2. The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice

    Energy Technology Data Exchange (ETDEWEB)

    Hamrick, Mark W., E-mail: mhamrick@mail.mcg.edu [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Herberg, Samuel; Arounleut, Phonepasong [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); He, Hong-Zhi [Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI (United States); Department of Dermatology, Henry Ford Health System, Detroit, MI (United States); Shiver, Austin [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Qi, Rui-Qun [Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI (United States); Department of Dermatology, Henry Ford Health System, Detroit, MI (United States); Zhou, Li [Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI (United States); Department of Dermatology, Henry Ford Health System, Detroit, MI (United States); Department of Internal Medicine, Henry Ford Health System, Detroit, MI (United States); Isales, Carlos M. [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); others, and

    2010-09-24

    Research highlights: {yields} Aging is associated with muscle atrophy and loss of muscle mass, known as the sarcopenia of aging. {yields} We demonstrate that age-related muscle atrophy is associated with marked changes in miRNA expression in muscle. {yields} Treating aged mice with the adipokine leptin significantly increased muscle mass and the expression of miRNAs involved in muscle repair. {yields} Recombinant leptin therapy may therefore be a novel approach for treating age-related muscle atrophy. -- Abstract: Age-associated loss of muscle mass, or sarcopenia, contributes directly to frailty and an increased risk of falls and fractures among the elderly. Aged mice and elderly adults both show decreased muscle mass as well as relatively low levels of the fat-derived hormone leptin. Here we demonstrate that loss of muscle mass and myofiber size with aging in mice is associated with significant changes in the expression of specific miRNAs. Aging altered the expression of 57 miRNAs in mouse skeletal muscle, and many of these miRNAs are now reported to be associated specifically with age-related muscle atrophy. These include miR-221, previously identified in studies of myogenesis and muscle development as playing a role in the proliferation and terminal differentiation of myogenic precursors. We also treated aged mice with recombinant leptin, to determine whether leptin therapy could improve muscle mass and alter the miRNA expression profile of aging skeletal muscle. Leptin treatment significantly increased hindlimb muscle mass and extensor digitorum longus fiber size in aged mice. Furthermore, the expression of 37 miRNAs was altered in muscles of leptin-treated mice. In particular, leptin treatment increased the expression of miR-31 and miR-223, miRNAs known to be elevated during muscle regeneration and repair. These findings suggest that aging in skeletal muscle is associated with marked changes in the expression of specific miRNAs, and that nutrient

  3. A genetic risk score of 45 coronary artery disease risk variants associates with increased risk of myocardial infarction in 6041 Danish individuals

    DEFF Research Database (Denmark)

    Krarup, N T; Borglykke, A; Allin, K H

    2015-01-01

    with age as time scale was adjusted for sex, BMI, type 2 diabetes mellitus and smoking status. Analyses were also stratified either by sex or median age (below or above 45 years of age). We estimated GRS contribution to MI prediction by assessing net reclassification index (NRI) and integrated...... discrimination improvement (IDI) added to the European SCORE for 10-year MI risk prediction. RESULTS: The GRS associated significantly with risk of incident MI (allele-dependent hazard ratio (95%CI): 1.06 (1.02-1.11), p = 0.01) but not with CAD (p = 0.39). Stratification revealed association of GRS with MI...... in men (1.06 (1.01-1.12), p = 0.02) and in individuals above the median of 45.11 years of age (1.06 (1.00-1.12), p = 0.03). There was no interaction between GRS and gender (p = 0.90) or age (p = 0.83). The GRS improved neither NRI nor IDI. CONCLUSION: The GRS of 45 GWAS identified risk variants increase...

  4. miRNA-Processing Gene Methylation and Cancer Risk.

    Science.gov (United States)

    Joyce, Brian T; Zheng, Yinan; Zhang, Zhou; Liu, Lei; Kocherginsky, Masha; Murphy, Robert; Achenbach, Chad J; Musa, Jonah; Wehbe, Firas; Just, Allan; Shen, Jincheng; Vokonas, Pantel; Schwartz, Joel; Baccarelli, Andrea A; Hou, Lifang

    2018-05-01

    Background: Dysregulation of miRNA and methylation levels are epigenetic hallmarks of cancer, potentially linked via miRNA-processing genes. Studies have found genetic alterations to miRNA-processing genes in cancer cells and human population studies. Our objective was to prospectively examine changes in DNA methylation of miRNA-processing genes and their associations with cancer risk. Methods: We examined cohort data from the Department of Veterans' Affairs Normative Aging Study. Participants were assessed every 3 to 5 years starting in 1999 through 2013 including questionnaires, medical record review, and blood collection. Blood from 686 consenting participants was analyzed using the Illumina 450K BeadChip array to measure methylation at CpG sites throughout the genome. We selected 19 genes based on a literature review, with 519 corresponding CpG sites. We then used Cox proportional hazards models to examine associations with cancer incidence, and generalized estimating equations to examine associations with cancer prevalence. Associations at false discovery rate time to cancer development (positively for cg06751583, inversely for cg23230564 and cg21034183), whereas methylation of one CpG site ( DROSHA : cg16131300) was positively associated with cancer prevalence. Conclusions: DNA methylation of DROSHA , a key miRNA-processing gene, and TNRC6B may play a role in early carcinogenesis. Impact: Changes in miRNA processing may exert multiple effects on cancer development, including protecting against it via altered global miRNAs, and may be a useful early detection biomarker of cancer. Cancer Epidemiol Biomarkers Prev; 27(5); 550-7. ©2018 AACR . ©2018 American Association for Cancer Research.

  5. Comparison of risk factors of CHD in the men and women with MI.

    Science.gov (United States)

    Ilali, E; Taraghi, Z

    2010-04-01

    The purpose of this study is comparison of risk factors of MI in hospitalized men and women patients in CCU. The CHD is the most important cause of mortality in the industry countries. Different environmental and race in each location can affect on frequency of risk factors of MI. In this cross sectional study, comparison was done between men and women who have involved in MI. The random sampling method was used Blood sugar, cholesterol and homocystein, LPa, BMI, family history, skin color, smoking and the amount of activity were assessed with variables such as age. The data was collected via questionnaire from September until March 2004-2005. Finally the data were analyzed with using t-test, Chi square and pearson correlation. In this research 169 patients who involved in MI (114 men and 55 women) have participated. The mean of age in the men was 55.4 and in the women was 61.02. All patients had risk factors. In the men, smoking (52.6%) and family history (41.1%) were the most common risk factors of MI. In the women, hyperlipidemia (66.4%), diabetes (62%) and hypertension (58.2%) were the most common risk factors of MI. The mean of BMI in the men was 25.9 +/- 4.25 and in the women was 27.6 +/- 4.71. The mean of LPa in the men was 59.2 +/- 4.21 and in the women was 50.9 +/- 4.25. the mean of homocystein in the men was 10.7 +/- 7.67 and in the women was 8.9 +/- 14.45. Diabetes, hyperlipidemia, hypertension and smoking had significant relationship with age and sex (p homocystein, LPa, job, personality type and mobility didn't have significant relationship with age and sex. In this study the most common risk factors of MI in the men were smoking and positive family history and in the women were known hyperlipidemia and diabetes.

  6. MiRNA-Related SNPs and Risk of Esophageal Adenocarcinoma and Barrett's Esophagus: Post Genome-Wide Association Analysis in the BEACON Consortium.

    Directory of Open Access Journals (Sweden)

    Matthew F Buas

    Full Text Available Incidence of esophageal adenocarcinoma (EA has increased substantially in recent decades. Multiple risk factors have been identified for EA and its precursor, Barrett's esophagus (BE, such as reflux, European ancestry, male sex, obesity, and tobacco smoking, and several germline genetic variants were recently associated with disease risk. Using data from the Barrett's and Esophageal Adenocarcinoma Consortium (BEACON genome-wide association study (GWAS of 2,515 EA cases, 3,295 BE cases, and 3,207 controls, we examined single nucleotide polymorphisms (SNPs that potentially affect the biogenesis or biological activity of microRNAs (miRNAs, small non-coding RNAs implicated in post-transcriptional gene regulation, and deregulated in many cancers, including EA. Polymorphisms in three classes of genes were examined for association with risk of EA or BE: miRNA biogenesis genes (157 SNPs, 21 genes; miRNA gene loci (234 SNPs, 210 genes; and miRNA-targeted mRNAs (177 SNPs, 158 genes. Nominal associations (P0.50, and we did not find evidence for interactions between variants analyzed and two risk factors for EA/BE (smoking and obesity. This analysis provides the most extensive assessment to date of miRNA-related SNPs in relation to risk of EA and BE. While common genetic variants within components of the miRNA biogenesis core pathway appear unlikely to modulate susceptibility to EA or BE, further studies may be warranted to examine potential associations between unassessed variants in miRNA genes and targets with disease risk.

  7. Hsa-miR-34b/c rs4938723 T>C and hsa-miR-423 rs6505162 C>A polymorphisms are associated with the risk of esophageal cancer in a Chinese population.

    Directory of Open Access Journals (Sweden)

    Jun Yin

    Full Text Available Esophageal cancer is the eighth most common cancer and sixth leading cause of cancer associated death worldwide. Besides environmental risk factors, genetic factors might play an important role in the esophageal cancer carcinogenesis. We conducted a hospital based case-control study to evaluate the genetic susceptibility of functional single nucleotide polymorphisms (SNPs in the microRNAs on the development of esophageal cancer. A total of 629 esophageal squamous cell carcinoma (ESCC cases and 686 controls were recruited for this study. The hsa-miR-34b/c rs4938723 T>C, pri-miR-124-1 rs531564 C>G, pre-miR-125a rs12975333 G>T and hsa-miR-423 rs6505162 C>A genotypes were determined using Ligation Detection Reaction (LDR method. Our results demonstrated that hsa-miR-34b/c rs4938723 CC genotype had a decreased risk of ESCC. The association was evident among patients who never drinking. Hsa-miR-423 rs6505162 C>A might associated with a significantly increased risk of ESCC in patients who smoking. These findings indicated that functional polymorphisms hsa-miR-34b/c rs4938723 T>C and hsa-miR-423 rs6505162 C>A might alter individual susceptibility to ESCC. However, our results were obtained with a limited sample size. Future larger studies with other ethnic populations are required to confirm current findings.

  8. A New Polymorphism Biomarker rs629367 Associated with Increased Risk and Poor Survival of Gastric Cancer in Chinese by Up-Regulated miRNA-let-7a Expression

    Science.gov (United States)

    Xu, Qian; Dong, Qiguan; He, Caiyun; Liu, Wenjing; Sun, Liping; Liu, Jingwei; Xing, Chengzhong; Li, Xiaohang; Wang, Bengang; Yuan, Yuan

    2014-01-01

    Background Variant in pri-miRNA could affect miRNA expression and mature process or splicing efficiency, thus altering the hereditary susceptibility and prognosis of cancer. We aimed to assess miRNA-let-7 single nucleotide polymorphisms (SNP) associated with the risk and prognosis of gastric cancer (GC) as predicting biomarkers, and furthermore, its possible mechanisms. Methods A two-stage case-control study was designed to screen four miRNA SNPs (pri-let-7a-2 rs629367 and rs1143770, pri-let-7a-1 rs10739971, pri-let-7f-2 rs17276588) in 107 GC patients, 107 atrophic gastritis (AG), and matched 124 controls using PCR-RFLP. Two promising SNPs were validated in another independent 1949 samples (including 579 gastric cancer patients, 649 atrophic gastritis and 721 controls) using Sequenom MassARRAY platform and sequencing. Results We found that pri-let-7a-2 rs629367 CC variant genotype was associated with increased risks of gastric cancer and atrophic gastritis by 1.83-fold and 1.86-fold, respectively. For gastric cancer prognosis, patients with rs629367 CC genotype had significantly poorer survival than patients with AA genotype (log-rank P = 0.004). We further investigated the let-7a expression levels in serum and found that let-7a expression elevated gradually for rs629367 AA, CA, CC genotype in the atrophic gastritis group (P = 0.043). Furthermore, we confirmed these findings in vitro study by overexpressing let-7a carrying pri-let-7a-2 wild-type A or polymorphic-type C allele (Pcancer as well as atrophic gastritis and was also associated with poor survival of gastric cancer, which possibly by affecting the mature let-7a expression, and could serve as a predicting biomarker for high-risk and poor prognosis of gastric cancer. PMID:24760009

  9. High expression of miR-21 in tumor stroma correlates with increased cancer cell proliferation in human breast cancer

    DEFF Research Database (Denmark)

    Rask, Lene; Balslev, Eva; Jørgensen, Stine

    2011-01-01

    features, we performed in situ hybridization and semi-quantitative assessment of the miR-21 signal on 12 LN negative grade I (assumed low risk), and 12 LN positive grade II (high risk) breast cancers. miR-21 was predominantly seen in cancer associated fibroblast-like cells, with no difference in expression......Low-risk and high-risk breast cancer patients are stratified primarily according to their lymph node (LN) status and grading. However, some low-risk patients relapse, and some high-risk patients have a favorable clinical outcome, implying a need for better prognostic and predictive tests. Micro...... RNAs are often aberrantly expressed in cancer and microRNA-21 is upregulated in a variety of cancers, including breast cancer. High miR-21 levels have been associated with poor prognosis. To determine the cellular localization of miR-21 and to compare its expression levels with histopathological...

  10. SNP-SNP interactions of three new pri-miRNAs with the target gene PGC and multidimensional analysis of H. pylori in the gastric cancer/atrophic gastritis risk in a Chinese population.

    Science.gov (United States)

    Xu, Qian; Wu, Ye-Feng; Li, Ying; He, Cai-Yun; Sun, Li-Ping; Liu, Jing-Wei; Yuan, Yuan

    2016-04-26

    Gastric cancer (GC) is a multistep complex disease involving multiple genes, and gene-gene interactions have a greater effect than a single gene in determining cancer susceptibility. This study aimed to explore the interaction of the let-7e rs8111742, miR-365b rs121224, and miR-4795 rs1002765 single nucleotide polymorphisms (SNPs) with SNPs of the predicted target gene PGC and Helicobacter pylori status in GC and atrophic gastritis (AG) risk. Three miRNA SNPs and seven PGC SNPs were detected in 2448 cases using the Sequenom MassArray platform. Two pairwise combinations of miRNA and PGC SNPs were associated with increased AG risk (let-7e rs8111742 - PGC rs6458238 and miR-4795 rs1002765 - PGC rs9471643). Singly, miR-365b rs121224 and PGC rs6912200 had no effect individually but in combination they demonstrated an epistatic interaction associated with AG risk. Similarly, let-7e rs8111742 and miR-4795 rs1002765 SNPs interacted with H. pylori infection to increase GC risk (rs8111742: Pinteraction = 0.024; rs1002765: Pinteraction = 0.031, respectively). A three-dimensional interaction analysis found miR-4795 rs1002765, PGC rs9471643, and H. pylori infection positively interacted to increase AG risk (Pinteraction = 0.027). Also, let-7e rs8111742, PGC rs6458238, and H. pylori infection positively interacted to increase GC risk (Pinteraction = 0.036). Furthermore, both of these three-dimensional interactions had a dosage-effect correspondence (Ptrend < 0.001) and were verified by MDR. In conclusion, the miRNAs SNPs (let-7e rs8111742 and miR-4795 rs1002765) might have more superior efficiency when combined with PGC SNPs and/or H. pylori for GC or AG risk than a single SNP on its own.

  11. Increased circulating miR-21 levels are associated with kidney fibrosis.

    Directory of Open Access Journals (Sweden)

    François Glowacki

    Full Text Available MicroRNAs (miRNAs are a class of noncoding RNA acting at a post-transcriptional level to control the expression of large sets of target mRNAs. While there is evidence that miRNAs deregulation plays a causative role in various complex disorders, their role in fibrotic kidney diseases is largely unexplored. Here, we found a strong up-regulation of miR-21 in the kidneys of mice with unilateral ureteral obstruction and also in the kidneys of patients with severe kidney fibrosis. In addition, mouse primary fibroblasts derived from fibrotic kidneys exhibited higher miR-21 expression level compared to those derived from normal kidneys. Expression of miR-21 in normal primary kidney fibroblasts was induced upon TGFβ exposure, a key growth factor involved in fibrogenesis. Finally, ectopic expression of miR-21 in primary kidney fibroblasts was sufficient to promote myofibroblast differentiation. As circulating miRNAs have been suggested as promising non-invasive biomarkers, we further assess whether circulating miR-21 levels are associated with renal fibrosis using sera from 42 renal transplant recipients, categorized according to their renal fibrosis severity, evaluated on allograft biopsies (Interstitial Fibrosis/Tubular Atrophy (IF/TA. Circulating miR-21 levels are significantly increased in patients with severe IF/TA grade (IF/TA grade 3: 3.0±1.0 vs lower grade of fibrosis: 1.5±1.2; p = 0.001. By contrast, circulating miR-21 levels were not correlated with other renal histological lesions. In a multivariate linear regression model including IF/TA grade and estimated GFR, independent associations were found between circulating miR-21 levels and IF/TA score (ß = 0.307, p = 0.03, and between miR-21 levels and aMDRD (ß = -0.398, p = 0.006. Altogether, these data suggest miR-21 has a key pathogenic role in kidney fibrosis and may represent a novel, predictive and reliable blood marker of kidney fibrosis.

  12. Celecoxib increases miR-222 while deterring aromatase-expressing breast tumor growth in mice

    International Nuclear Information System (INIS)

    Wong, Tsz Yan; Li, Fengjuan; Lin, Shu-mei; Chan, Franky L; Chen, Shiuan; Leung, Lai K

    2014-01-01

    Breast cancer is one of the most deadly diseases in women. Inhibiting the synthesis of estrogen is effective in treating patients with estrogen-responsive breast cancer. Previous studies have demonstrated that use of cyclooxygenase (COX) inhibitors is associated with reduced breast cancer risk. In the present study, we employed an established mouse model for postmenopausal breast cancer to evaluate the potential mechanisms of the COX-2 inhibitor celecoxib. Aromatase-expressing MCF-7 cells were transplanted into ovariectomized athymic mice. The animals were given celecoxib at 1500 ppm or aspirin at 200 ppm by oral administration with androstenedione injection. Our results showed that both COX inhibitors could suppress the cancer xenograft growth without changing the plasma estrogen level. Protein expression of ERα, COX-2, Cyclin A, and Bcl-xL were reduced in celecoxib-treated tumor samples, whereas only Bcl-xL expression was suppressed in those treated with aspirin. Among the breast cancer-related miRNAs, miR-222 expression was elevated in samples treated with celecoxib. Further studies in culture cells verified that the increase in miR-222 expression might contribute to ERα downregulation but not the growth deterrence of cells. Overall, this study suggested that both celecoxib and aspirin could prevent breast cancer growth by regulating proteins in the cell cycle and apoptosis without blocking estrogen synthesis. Besides, celecoxib might affect miR expression in an undesirable fashion

  13. Diagnostic and prognostic potential of serum miR-7, miR-16, miR-25, miR-93, miR-182, miR-376a and miR-429 in ovarian cancer patients.

    Science.gov (United States)

    Meng, Xiaodan; Joosse, Simon A; Müller, Volkmar; Trillsch, Fabian; Milde-Langosch, Karin; Mahner, Sven; Geffken, Maria; Pantel, Klaus; Schwarzenbach, Heidi

    2015-11-03

    Owing to late diagnosis in advanced disease stages, prognosis of patients with epithelial ovarian cancer (EOC) is poor. The quantification of deregulated levels of microRNAs could facilitate earlier diagnosis and improve prognosis of EOC. Seven microRNAs (miR-7, miR-16, miR-25, miR-93, miR-182, miR-376a and miR-429) were quantified in the serum of 180 EOC patients and 66 healthy women by TaqMan PCR microRNA assays. Median follow-up time was 21 months. The effects of miR-7 and miR-429 on apoptosis, cell proliferation, migration and invasion were investigated in two (EOC) cell lines. Serum levels of miR-25 (P=0.0001) and miR-93 (P=0.0001) were downregulated, whereas those of miR-7 (P=0.001) and miR-429 (P=0.0001) were upregulated in EOC patients compared with healthy women. The four microRNAs discriminated EOC patients from healthy women with a sensitivity of 93% and a specificity of 92%. The levels of miR-429 positively correlated with CA125 values (P=0.0001) and differed between FIGO I-II and III-IV stages (P=0.001). MiR-429 was an independent predictor of overall survival (P=0.011). Overexpressed miR-429 in SKOV3 cells led to suppression of cell migration (P=0.037) and invasion (P=0.011). Increased levels of miR-7 were associated with lymph node metastases (P=0.0001) and FIGO stages III-IV (P=0.0001). Overexpressed miR-7 in SKOV3 cells resulted in increased cell migration (P=0.001) and invasion (P=0.011). Additionally, the increased levels of miR-376a correlated with FIGO stages III-IV (P=0.02). Our data indicate the diagnostic potential of miR-7, miR-25, miR-93 and miR-429 in EOC and the prognostic potential of miR-429. This microRNA panel may be promising molecules to be targeted in the treatment of EOC.

  14. A polymorphism in miR-1262 regulatory region confers the risk of lung cancer in Chinese population.

    Science.gov (United States)

    Xie, Kaipeng; Chen, Mengxi; Zhu, Meng; Wang, Cheng; Qin, Na; Liang, Cheng; Song, Ci; Dai, Juncheng; Jin, Guangfu; Shen, Hongbing; Lin, Dongxin; Ma, Hongxia; Hu, Zhibin

    2017-09-01

    It has been proposed that the majority of disease-associated loci identified by genome-wide association studies (GWAS) are enriched in non-coding regions, such as the promoter, enhancer or non-coding RNA genes. Thus, we performed a two-stage case-control study to systematically evaluate the association of genetic variants in miRNA regulatory regions (promoter and enhancer) with lung cancer risk in 7,763 subjects (discovery stage: 2,331 cases and 3,077 controls; validation stage: 1,065 cases and 1,290 controls). As a result, we identified that rs12740674 (C > T) in miR-1262 enhancer was significantly associated with the increased risk of lung cancer (additive model in discovery stage: adjusted OR = 1.31, 95%CI = 1.13-1.53, p = 3.846 × 10 -4 in Nanjing GWAS; adjusted OR = 1.20, 95%CI = 1.00-1.44, p = 0.041 in Beijing GWAS; validation stage: adjusted OR = 1.20, 95%CI = 1.03-1.41, p = 0.024). In meta-analysis, the p value for the association between rs12740674 and lung cancer risk reached 6.204 × 10 -6 (adjusted OR = 1.24, 95%CI = 1.13-1.36). Using 3DSNP database, The Cancer Genome Atlas (TCGA) data and functional assays, we observed that the risk T allele of rs12740674 reduced the expression level of miR-1262 in lung tissue through chromosomal looping, and overexpression of miR-1262 inhibited lung cancer cell proliferation probably through targeting the expression levels of ULK1 and RAB3D. Our findings confirmed the important role that genetic variants of noncoding sequence play in lung cancer susceptibility and indicated that rs12740674 in miR-1262 may be biologically relevant to lung carcinogenesis. © 2017 UICC.

  15. Association of the miR-196a2 C>T and miR-499 A>G polymorphisms with hepatitis B virus-related hepatocellular carcinoma risk: an updated meta-analysis

    Directory of Open Access Journals (Sweden)

    Zhu SL

    2016-04-01

    Full Text Available Shao-Liang Zhu,1,* Jian-Hong Zhong,1,* Wen-Feng Gong,1,* Hang Li,2 Le-Qun Li11Department of Hepatobiliary Surgery, 2Department of Ultrasound, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People’s Republic of China*These authors contributed equally to this workBackground: This study meta-analyzed data on the possible association of the miR-196a2 C>T (rs11614913 and miR-499 A>G (rs3746444 polymorphisms with risk of hepatitis B virus (HBV-related hepatocellular carcinoma (HCC.Methods: Databases in PubMed, EMBASE, Web of Science, China BioMedicine, and Google Scholar were systematically searched to identify relevant studies. Meta-analyses were performed to examine the association of the miR-196a2 C>T and miR-499 A>G polymorphisms with HBV-related HCC risk. Odds ratios (ORs and 95% confidence intervals (95% CIs were calculated.Results: A total of 13 studies involving 3,964 cases and 5,875 healthy controls were included. Random-effect meta-analysis showed that the T allele and TT genotype of miR-196a2 C>T were associated with significantly lower HBV-related HCC risk (allelic model, OR =0.84, 95% CI =0.71–0.99, P=0.04; homozygous model, OR =0.68, 95% CI =0.47–0.98, P=0.04. In contrast, miR-499 A>G showed no significant association with HBV-related HCC risk in either overall pooled analysis or ethnic subgroup analysis according to any of the four genetic models. Based on analysis of ethnic subgroups, neither miR-196a2 C>T nor miR-499 A>G was significantly associated with risk of HBV-related HCC in Chinese population.Conclusion: The polymorphism miR-196a2 C>T, but not miR-499 A>G, may be associated with decreased HBV-related HCC risk. These conclusions should be verified in large, well-designed studies.Keywords: microRNA, single nucleotide polymorphisms, hepatitis B virus related, meta-analysis, hepatocellular carcinoma

  16. Reduced miR-659-3p levels correlate with progranulin increase in hypoxic conditions: implications for frontotemporal dementia.

    Directory of Open Access Journals (Sweden)

    Paola ePiscopo

    2016-05-01

    Full Text Available Progranulin (PGRN is a secreted protein expressed ubiquitously throughout the body, including the brain, where it localizes in neurons and activated microglia. Loss-of-function mutations in the GRN gene are an important cause of familial Frontotemporal Lobar Degeneration (FTLD. PGRN has a neurotrophic and anti-inflammatory activity, and it is neuroprotective in several injury conditions, such as oxygen or glucose deprivation, oxidative injury, and hypoxic stress. Indeed, we have previously demonstrated that hypoxia induces the up-regulation of GRN transcripts. Several studies have shown microRNAs involvement in hypoxia. Moreover, in FTLD patients with a genetic variant of GRN (rs5848, the reinforcement of miR-659-3p binding site has been suggested to be a risk factor. Here, we report that miR-659-3p interacts directly with GRN 3’UTR as shown by luciferase assay in HeLa cells and ELISA and Western Blot analysis in HeLa and Kelly cells. Moreover, we demonstrate the physical binding between GRN mRNA and miR-659-3p employing a miRNA capture-affinity technology in SK-N-BE and Kelly cells. In order to study miRNAs involvement in hypoxia-mediated up-regulation of GRN, we evaluated miR-659-3p levels in SK-N-BE cells after 24h of hypoxic treatment, finding them inversely correlated to GRN transcripts. Furthermore, we analyzed an animal model of asphyxia, finding that GRN mRNA levels increased at post-natal day (pnd 1 and pnd 4 in rat cortices subjected to asphyxia in comparison to control rats and miR-659-3p decreased at pnd 4 just when GRN reached the highest levels. Our results demonstrate the interaction between miR-659-3p and GRN transcript and the involvement of miR-659-3p in GRN up-regulation mediated by hypoxic/ischemic insults.

  17. Downregulation of miR-99a/let-7c/miR-125b miRNA cluster predicts clinical outcome in patients with unresected malignant pleural mesothelioma.

    Science.gov (United States)

    Truini, Anna; Coco, Simona; Nadal, Ernest; Genova, Carlo; Mora, Marco; Dal Bello, Maria Giovanna; Vanni, Irene; Alama, Angela; Rijavec, Erika; Biello, Federica; Barletta, Giulia; Merlo, Domenico Franco; Valentino, Alessandro; Ferro, Paola; Ravetti, Gian Luigi; Stigliani, Sara; Vigani, Antonella; Fedeli, Franco; Beer, David G; Roncella, Silvio; Grossi, Francesco

    2017-09-15

    Malignant pleural mesothelioma (MPM) is an aggressive tumor with a dismal overall survival (OS) and to date no molecular markers are available to guide patient management. This study aimed to identify a prognostic miRNA signature in MPM patients who did not undergo tumor resection. Whole miRNA profiling using a microarray platform was performed using biopsies on 27 unresected MPM patients with distinct clinical outcome: 15 patients had short survival (OS36 months). Three prognostic miRNAs (mir-99a, let-7c, and miR-125b) encoded at the same cluster (21q21) were selected for further validation and tested on publicly available miRNA sequencing data from 72 MPM patients with survival data. A risk model was built based on these 3 miRNAs that was validated by quantitative PCR in an independent set of 30 MPM patients. High-risk patients had shorter median OS (7.6 months) as compared with low-risk patients (median not reached). In the multivariate Cox model, a high-risk score was independently associated with shorter OS (HR=3.14; 95% CI, 1.18-8.34; P=0.022). Our study identified that the downregulation of the miR-99a/let-7/miR-125b miRNA cluster predicts poor outcome in unresected MPM.

  18. A Serum Circulating miRNA Signature for Short-Term Risk of Progression to Active Tuberculosis Among Household Contacts

    Directory of Open Access Journals (Sweden)

    Fergal J. Duffy

    2018-04-01

    Full Text Available Biomarkers that predict who among recently Mycobacterium tuberculosis (MTB-exposed individuals will progress to active tuberculosis are urgently needed. Intracellular microRNAs (miRNAs regulate the host response to MTB and circulating miRNAs (c-miRNAs have been developed as biomarkers for other diseases. We performed machine-learning analysis of c-miRNA measurements in the serum of adult household contacts (HHCs of TB index cases from South Africa and Uganda and developed a c-miRNA-based signature of risk for progression to active TB. This c-miRNA-based signature significantly discriminated HHCs within 6 months of progression to active disease from HHCs that remained healthy in an independent test set [ROC area under the ROC curve (AUC 0.74, progressors < 6 Mo to active TB and ROC AUC 0.66, up to 24 Mo to active TB], and complements the predictions of a previous cellular mRNA-based signature of TB risk.

  19. A Serum Circulating miRNA Signature for Short-Term Risk of Progression to Active Tuberculosis Among Household Contacts.

    Science.gov (United States)

    Duffy, Fergal J; Thompson, Ethan; Downing, Katrina; Suliman, Sara; Mayanja-Kizza, Harriet; Boom, W Henry; Thiel, Bonnie; Weiner Iii, January; Kaufmann, Stefan H E; Dover, Drew; Tabb, David L; Dockrell, Hazel M; Ottenhoff, Tom H M; Tromp, Gerard; Scriba, Thomas J; Zak, Daniel E; Walzl, Gerhard

    2018-01-01

    Biomarkers that predict who among recently Mycobacterium tuberculosis (MTB)-exposed individuals will progress to active tuberculosis are urgently needed. Intracellular microRNAs (miRNAs) regulate the host response to MTB and circulating miRNAs (c-miRNAs) have been developed as biomarkers for other diseases. We performed machine-learning analysis of c-miRNA measurements in the serum of adult household contacts (HHCs) of TB index cases from South Africa and Uganda and developed a c-miRNA-based signature of risk for progression to active TB. This c-miRNA-based signature significantly discriminated HHCs within 6 months of progression to active disease from HHCs that remained healthy in an independent test set [ROC area under the ROC curve (AUC) 0.74, progressors < 6 Mo to active TB and ROC AUC 0.66, up to 24 Mo to active TB], and complements the predictions of a previous cellular mRNA-based signature of TB risk.

  20. Application of TRiMiCri for the evaluation of risk based microbiological criteria for Campylobacter on broiler meat

    DEFF Research Database (Denmark)

    Seliwiorstow, Tomasz; Uyttendaele, Mieke; De Zutter, Lieven

    2016-01-01

    A potential solution for the reduction of consumer exposure to Campylobacter is establishing a microbiological criterion (MC) for Campylobacter on broiler meat. In the present study the freely available software tool TRiMiCri was applied to evaluate risk-based microbiological criteria by two appr...... of microbiological criteria for Campylobacter in the EU is discussed. TRiMiCri provides user friendly software to evaluate the available data and can help risk managers in establishing risk based microbiological criteria for Campylobacter in broiler meat.......A potential solution for the reduction of consumer exposure to Campylobacter is establishing a microbiological criterion (MC) for Campylobacter on broiler meat. In the present study the freely available software tool TRiMiCri was applied to evaluate risk-based microbiological criteria by two...

  1. Increased Brain-Specific MiR-9 and MiR-124 in the Serum Exosomes of Acute Ischemic Stroke Patients.

    Directory of Open Access Journals (Sweden)

    Qiuhong Ji

    Full Text Available The aims of this study were to examine the alternation in serum exosome concentrations and the levels of serum exosomal miR-9 and miR-124, two brain-specific miRNAs, in acute ischemic stroke (AIS patients and to explore the predictive values of these miRNAs for AIS diagnosis and damage evaluation. Sixty-five patients with AIS at the acute stage were enrolled and 66 non-stroke volunteers served as controls. Serum exosomes isolated by ExoQuick precipitations were characterized by transmission electron microscopy, nanoparticle-tracking analysis and western blotting. The levels of exosomal miR-9 and miR-124 were determined by real-time quantitative PCR. Compared with controls, the concentration of serum exosomes and the median levels of serum exosomal miR-9 and miR-124 were significantly higher in AIS patients (p<0.01. The levels of both miR-9 and miR-124 were positively correlated with National Institutes of Health Stroke Scale (NIHSS scores, infarct volumes and serum concentrations of IL-6. The areas under the curve for exosomal miR-9 and miR-124 were 0.8026 and 0.6976, respectively. This proof of concept study suggests that serum exosomal miR-9 and miR-124 are promising biomarkers for diagnosing AIS and evaluating the degree of damage caused by ischemic injury. However, further studies are needed to explore the potential roles of the exosomes released from brain tissues in post stroke complications.

  2. Red meat consumption and risk of cardiovascular diseases-is increased iron load a possible link?

    Science.gov (United States)

    Quintana Pacheco, Daniel A; Sookthai, Disorn; Wittenbecher, Clemens; Graf, Mirja E; Schübel, Ruth; Johnson, Theron; Katzke, Verena; Jakszyn, Paula; Kaaks, Rudolf; Kühn, Tilman

    2018-01-01

    High iron load and red meat consumption could increase the risk of cardiovascular diseases (CVDs). As red meat is the main source of heme iron, which is in turn a major determinant of increased iron load, adverse cardiometabolic effects of meat consumption could be mediated by increased iron load. The object of the study was to assess whether associations between red meat consumption and CVD risk are mediated by iron load in a population-based human study. We evaluated relations between red meat consumption, iron load (plasma ferritin), and risk of CVD in the prospective EPIC-Heidelberg Study using a case-cohort sample including a random subcohort (n = 2738) and incident cases of myocardial infarction (MI, n = 555), stroke (n = 513), and CVD mortality (n = 381). Following a 4-step mediation analysis, associations between red meat consumption and iron load, red meat consumption and CVD risk, and iron load and CVD risk were assessed by multivariable regression models before finally testing to which degree associations between red meat consumption and CVD risk were attenuated by adjustment for iron status. Red meat consumption was significantly positively associated with ferritin concentrations and MI risk [HR per 50 g daily intake: 1.18 (95% CI: 1.05, 1.33)], but no significant associations with stroke risk and CVD mortality were observed. While direct associations between ferritin concentrations and MI risk as well as CVD mortality were significant in age- and sex-adjusted Cox regression models, these associations were substantially attenuated and no longer significant after multivariable adjustment for classical CVD risk factors. Strikingly, ferritin concentrations were positively associated with a majority of classical CVD risk factors (age, male sex, alcohol intake, obesity, inflammation, and lower education). Increased ferritin concentrations may be a marker of an overall unfavorable risk factor profile rather than a mediator of greater CVD risk due to meat

  3. Comprehensive review of genetic association studies and meta-analyses on miRNA polymorphisms and cancer risk.

    Directory of Open Access Journals (Sweden)

    Kshitij Srivastava

    Full Text Available MicroRNAs (miRNAs are small RNA molecules that regulate the expression of corresponding messenger RNAs (mRNAs. Variations in the level of expression of distinct miRNAs have been observed in the genesis, progression and prognosis of multiple human malignancies. The present study was aimed to investigate the association between four highly studied miRNA polymorphisms (mir-146a rs2910164, mir-196a2 rs11614913, mir-149 rs2292832 and mir-499 rs3746444 and cancer risk by using a two-sided meta-analytic approach.An updated meta-analysis based on 53 independent case-control studies consisting of 27573 cancer cases and 34791 controls was performed. Odds ratio (OR and 95% confidence interval (95% CI were used to investigate the strength of the association.Overall, the pooled analysis showed that mir-196a2 rs11614913 was associated with a decreased cancer risk (OR = 0.846, P = 0.004, TT vs. CC while other miRNA SNPs showed no association with overall cancer risk. Subgroup analyses based on type of cancer and ethnicity were also performed, and results indicated that there was a strong association between miR-146a rs2910164 and overall cancer risk in Caucasian population under recessive model (OR = 1.274, 95%CI = 1.096-1.481, P = 0.002. Stratified analysis by cancer type also associated mir-196a2 rs11614913 with lung and colorectal cancer at allelic and genotypic level.The present meta-analysis suggests an important role of mir-196a2 rs11614913 polymorphism with overall cancer risk especially in Asian population. Further studies with large sample size are needed to evaluate and confirm this association.

  4. Increasing of miR-148a 0061nd Decreasing of miR-146a Gene Expression in the Stomach with Ageing in Men

    Directory of Open Access Journals (Sweden)

    Shirin Abdolvand

    2017-06-01

    Full Text Available Abstract Background: The incidence of gastric cancer is different in two sexes with ratio 2 to 1 that it is more common in men. The most important biologically reason is sexual hormones between two sexes that lead to sexual dimorphism and in turn can cause a sex bias in incidence of disease between two sexes. Recently, studies have shown that microRNA is involved in sexual dimorphism in gene expression. Given the sexual dimorphism in the incidence of gastric cancer and sex hormones response elements in the regulatory regions of miR-146a and miR-148a genes, in this study, the expression of these two genes in the stomach of healthy men and women at different age groups were compared. Materials and Methods: Using endoscopy, gastric antrum tissues of 35 healthy women and 35 healthy men were collected. After RNA extraction and synthesis of cDNA, the expression of miR-146a and miR-148a genes were compared between sexes by Real time RT-PCR and data were analyzed using independent sample t and ANOVA tests. Results: There was no difference between men and women in genes expression of miR-146a and miR-148a. However, expression of miR-146a gene was significantly more in men under 45 years than men over 45 years (p= 0.017, df= 14, t= 1.47. Also, expression of miR-148a gene was significantly more in men over 45 years than men under 45 years (p=0.001, df= 12, t= 1.28. But the expression of both genes had no significant difference between women under 45 years and women over 45 years. Conclusion: Expression of miR-146a and miR-148a genes in the stomach is increased and decreased with aging in men, respectively.

  5. Differential expression of miRNAs in the serum of patients with high-risk oral lesions

    International Nuclear Information System (INIS)

    MacLellan, Sara Ann; Lawson, James; Baik, Jonathan; Guillaud, Martial; Poh, Catherine Fang-Yeu; Garnis, Cathie

    2012-01-01

    Oral cancer is one of the most commonly diagnosed cancers worldwide. Disease is often diagnosed at later stages, which is associated with a poor 5-year survival rate and a high rate of local recurrence. MicroRNAs (miRNAs), a group of small, noncoding RNAs, can be isolated from blood serum samples and have demonstrated utility as biomarkers in multiple cancer types. The aim of this study was to examine the expression profiles of circulating miRNAs in the serum of patients with high-risk oral lesions (HRLs; oral cancer or carcinoma in situ) and to explore their utility as potential oral cancer biomarkers. Global serum miRNA profiles were generated using quantitative PCR method from 1) patients diagnosed with HRLs and undergoing intent-to-cure surgical treatment (N = 30) and 2) a demographically matched, noncancer control group (N = 26). We next honed our list of serum miRNAs associated with disease by reducing the effects of interpatient variability; we compared serum miRNA profiles from samples taken both before and after tumor resections (N = 10). Based on these analyses, fifteen miRNAs were significantly upregulated and five were significantly downregulated based on presence of disease (minimum fold-change >2 in at least 50% of samples, P < 0.05, permutation). Five of these miRNAs (miR-16, let-7b, miR-338-3p, miR-223, and miR-29a) yielded an area under the ROC curve (AUC) >0.8, suggesting utility as noninvasive biomarkers for detection of oral cancer or high-grade lesions. Combining these serum miRNA profiles with other screening techniques could greatly improve the sensitivity in oral cancer detection

  6. miR-1 is increased in pulmonary hypertension and downregulates Kv1.5 channels in rat pulmonary arteries.

    Science.gov (United States)

    Mondejar-Parreño, Gema; Callejo, María; Barreira, Bianca; Morales-Cano, Daniel; Esquivel-Ruiz, Sergio; Moreno, Laura; Cogolludo, Angel; Perez-Vizcaino, Francisco

    2018-05-02

    ■The expression of miR-1 is increased in lungs from the Hyp/Su5416 PAH rat model. ■PASMC from this animal model are more depolarised and show decreased expression and activity of Kv1.5. ■miR-1 directly targets Kv1.5 channels, reduces Kv1.5 activity and induces membrane depolarization. ■Antagomir-1 prevents Kv1.5 channel downregulation and the depolarization induced by hypoxia/Su5416 exposition. Impairment of voltage-dependent potassium channel (Kv) plays a central role in the development of cardiovascular diseases, including pulmonary arterial hypertension (PAH). MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the 3'-UTR region of specific mRNAs. The aim of this study was to analyze the effects of miR-1 on Kv channel function in pulmonary arteries (PA). Kv channel activity was studied in PA from healthy animals transfected with miR-1 or scrambled-miR. Kv currents were studied using the whole-cell configuration of patch-clamp technique. The characterization of the Kv1.5 currents was performed with the selective inhibitor DPO-1. miR-1 expression was increased and Kv1.5 channels were decreased in lungs from a rat model of PAH induced by hypoxia and Su5416. miR-1 transfection increased cell capacitance, reduced Kv1.5 currents and induced membrane depolarization in isolated pulmonary artery smooth muscle cells (PASMCs). Luciferase reporter assay indicated that KCNA5, which encodes Kv1.5 channels, is a direct target gene of miR-1. Incubation of PA with Su5416 and hypoxia (3% O 2 ) increased miR-1 and induced a decline in Kv1.5 currents, which was prevented by antagomiR-1. In conclusion, these data indicate that miR-1 induces PASMC hypertrophy and reduces the activity and expression of Kv channels, suggesting a pathophysiological role in PAH. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Interactions of miR-323/miR-326/miR-329 and miR-130a/miR-155/miR-210 as prognostic indicators for clinical outcome of glioblastoma patients

    Directory of Open Access Journals (Sweden)

    Qiu Shuwei

    2013-01-01

    Full Text Available Abstract Background Glioblastoma multiforme (GBM is the most common and aggressive brain tumor with poor clinical outcome. Identification and development of new markers could be beneficial for the diagnosis and prognosis of GBM patients. Deregulation of microRNAs (miRNAs or miRs is involved in GBM. Therefore, we attempted to identify and develop specific miRNAs as prognostic and predictive markers for GBM patient survival. Methods Expression profiles of miRNAs and genes and the corresponding clinical information of 480 GBM samples from The Cancer Genome Atlas (TCGA dataset were downloaded and interested miRNAs were identified. Patients’ overall survival (OS and progression-free survival (PFS associated with interested miRNAs and miRNA-interactions were performed by Kaplan-Meier survival analysis. The impacts of miRNA expressions and miRNA-interactions on survival were evaluated by Cox proportional hazard regression model. Biological processes and network of putative and validated targets of miRNAs were analyzed by bioinformatics. Results In this study, 6 interested miRNAs were identified. Survival analysis showed that high levels of miR-326/miR-130a and low levels of miR-323/miR-329/miR-155/miR-210 were significantly associated with long OS of GBM patients, and also showed that high miR-326/miR-130a and low miR-155/miR-210 were related with extended PFS. Moreover, miRNA-323 and miRNA-329 were found to be increased in patients with no-recurrence or long time to progression (TTP. More notably, our analysis revealed miRNA-interactions were more specific and accurate to discriminate and predict OS and PFS. This interaction stratified OS and PFS related with different miRNA levels more detailed, and could obtain longer span of mean survival in comparison to that of one single miRNA. Moreover, miR-326, miR-130a, miR-155, miR-210 and 4 miRNA-interactions were confirmed for the first time as independent predictors for survival by Cox regression model

  8. Impact of Type 2 Myocardial Infarction (MI) on Hospital-Level MI Outcomes: Implications for Quality and Public Reporting.

    Science.gov (United States)

    Arora, Sameer; Strassle, Paula D; Qamar, Arman; Wheeler, Evan N; Levine, Alexandra L; Misenheimer, Jacob A; Cavender, Matthew A; Stouffer, George A; Kaul, Prashant

    2018-03-26

    The International Classification of Diseases (ICD) coding system does not recognize type 2 myocardial infarction (MI) as a separate entity; therefore, patients with type 2 MI continue to be categorized under the general umbrella of non-ST-segment-elevation myocardial infarction (NSTEMI). We aim to evaluate the impact of type 2 MI on hospital-level NSTEMI metrics and discuss the implications for quality and public reporting. We conducted a single-center retrospective analysis of 1318 patients discharged with a diagnosis of NSTEMI between July 2013 and October 2014. The Third Universal Definition was used to define type 1 and type 2 MI. Weighted Kaplan-Meier curves were used to analyze risk of mortality and readmission. Overall, 1039 patients met NSTEMI criteria per the Third Universal Definition; of those, 264 (25.4%) had type 2 MI. Patients with type 2 MI were older, were more likely to have chronic kidney disease, and had lower peak troponin levels. Compared with type 1 MI patients, those with type 2 MI had higher inpatient mortality (17.4% versus 4.7%, P <0.0001) and were more likely to die from noncardiovascular causes (71.7% versus 25.0%, P <0.0001). Despite weighting for patient characteristics and discharge medications, patients with type 2 MI had higher mortality at both 30 days (risk ratio: 3.63; 95% confidence interval, 1.67-7.88) and 1 year (risk ratio: 1.98; 95% confidence interval, 1.44-2.73) after discharge. Type 2 MI was also associated with a lower 30-day cardiovascular-related readmission (risk ratio: 0.49; 95% confidence interval, 0.12-2.06). NSTEMI metrics are significantly affected by type 2 MI patients. Type 2 MI patients have distinct etiologies, are managed differently, and have higher mortality compared with patients with type 1 MI. Moving forward, it may be appropriate to exclude type 2 MI data from NSTEMI quality metrics. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  9. Genetic Ablation of miR-33 Increases Food Intake, Enhances Adipose Tissue Expansion, and Promotes Obesity and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Nathan L. Price

    2018-02-01

    Full Text Available While therapeutic modulation of miRNAs provides a promising approach for numerous diseases, the promiscuous nature of miRNAs raises concern over detrimental off-target effects. miR-33 has emerged as a likely target for treatment of cardiovascular diseases. However, the deleterious effects of long-term anti-miR-33 therapies and predisposition of miR-33−/− mice to obesity and metabolic dysfunction exemplify the possible pitfalls of miRNA-based therapies. Our work provides an in-depth characterization of miR-33−/− mice and explores the mechanisms by which loss of miR-33 promotes insulin resistance in key metabolic tissues. Contrary to previous reports, our data do not support a direct role for SREBP-1-mediated lipid synthesis in promoting these effects. Alternatively, in adipose tissue of miR-33−/− mice, we observe increased pre-adipocyte proliferation, enhanced lipid uptake, and impaired lipolysis. Moreover, we demonstrate that the driving force behind these abnormalities is increased food intake, which can be prevented by pair feeding with wild-type animals.

  10. Circulating and Urinary miR-210 and miR-16 Increase during Cardiac Surgery Using Cardiopulmonary Bypass - A Pilot Study.

    Science.gov (United States)

    Mazzone, Annette L; Baker, Robert A; McNicholas, Kym; Woodman, Richard J; Michael, Michael Z; Gleadle, Jonathan M

    2018-03-01

    A pilot study to measure and compare blood and urine microRNAs miR-210 and miR-16 in patients undergoing cardiac surgery with cardiopulmonary bypass (CPB) and off-pump coronary artery bypass grafting surgery. Frequent serial blood and urine samples were taken from patients undergoing cardiac surgery with CPB (n = 10) and undergoing off-pump cardiac surgery (n = 5) before, during, and after surgery. Circulating miR-210 and miR-16 levels were determined by relative quantification real-time polymerase chain reaction. Levels of plasma-free haemoglobin (fHb), troponin-T, creatine kinase, and creatinine were measured. Perioperative serum miR-210 and miR-16 were elevated significantly compared to preoperative levels in patients undergoing cardiac surgery with CPB (CPB vs. Pre Op and Rewarm vs. Pre Op; p Octopus on vs. Pre Op); however, the release was less marked when compared to cardiac surgery with CPB. A significant association was observed between both miR-16 and miR-210 and plasma fHb when CPB was used ( r = -.549, p red cell, and renal injury during cardiac surgery.

  11. Progress risk assessment of oral premalignant lesions with saliva miRNA analysis

    International Nuclear Information System (INIS)

    Yang, Ya; Li, Yue-xiu; Yang, Xi; Jiang, Long; Zhou, Zuo-jun; Zhu, Ya-qin

    2013-01-01

    Oral cancer develops through multi-stages: from normal to mild (low grade) dysplasia (LGD), moderate dysplasia, and severe (high grade) dysplasia (HGD), to carcinoma in situ (CIS) and finally invasive oral squamous cell carcinomas (OSCC). Clinical and histological assessments are not reliable in predicting which precursor lesions will progress. The aim of this study was to assess the potential of a noninvasive approach to assess progress risk of oral precancerous lesions. We first used microRNA microarray to profile progressing LGD oral premaligant lesions (OPLs) from non-progressing LGD OPLs in order to explore the possible microRNAs deregulated in low grade OPLs which later progressed to HGD or OSCC. We then used RT-qPCR to detect miRNA targets from the microarray results in saliva samples of these patients. We identified a specific miRNA signature that is aberrantly expressed in progressing oral LGD leukoplakias. Similar expression patterns were detected in saliva samples from these patients. These results show promise for using saliva miRNA signature for monitoring of cancer precursor lesions and early detection of disease progression

  12. Disruption of the Cx43/miR21 pathway leads to osteocyte apoptosis and increased osteoclastogenesis with aging.

    Science.gov (United States)

    Davis, Hannah M; Pacheco-Costa, Rafael; Atkinson, Emily G; Brun, Lucas R; Gortazar, Arancha R; Harris, Julia; Hiasa, Masahiro; Bolarinwa, Surajudeen A; Yoneda, Toshiyuki; Ivan, Mircea; Bruzzaniti, Angela; Bellido, Teresita; Plotkin, Lilian I

    2017-06-01

    Skeletal aging results in apoptosis of osteocytes, cells embedded in bone that control the generation/function of bone forming and resorbing cells. Aging also decreases connexin43 (Cx43) expression in bone; and osteocytic Cx43 deletion partially mimics the skeletal phenotype of old mice. Particularly, aging and Cx43 deletion increase osteocyte apoptosis, and osteoclast number and bone resorption on endocortical bone surfaces. We examined herein the molecular signaling events responsible for osteocyte apoptosis and osteoclast recruitment triggered by aging and Cx43 deficiency. Cx43-silenced MLO-Y4 osteocytic (Cx43 def ) cells undergo spontaneous cell death in culture through caspase-3 activation and exhibit increased levels of apoptosis-related genes, and only transfection of Cx43 constructs able to form gap junction channels reverses Cx43 def cell death. Cx43 def cells and bones from old mice exhibit reduced levels of the pro-survival microRNA miR21 and, consistently, increased levels of the miR21 target phosphatase and tensin homolog (PTEN) and reduced phosphorylated Akt, whereas PTEN inhibition reduces Cx43 def cell apoptosis. miR21 reduction is sufficient to induce apoptosis of Cx43-expressing cells and miR21 deletion in miR21 fl/fl bones increases apoptosis-related gene expression, whereas a miR21 mimic prevents Cx43 def cell apoptosis, demonstrating that miR21 lies downstream of Cx43. Cx43 def cells release more osteoclastogenic cytokines [receptor activator of NFκB ligand (RANKL)/high-mobility group box-1 (HMGB1)], and caspase-3 inhibition prevents RANKL/HMGB1 release and the increased osteoclastogenesis induced by conditioned media from Cx43 def cells, which is blocked by antagonizing HMGB1-RAGE interaction. These findings identify a novel Cx43/miR21/HMGB1/RANKL pathway involved in preventing osteocyte apoptosis that also controls osteoclast formation/recruitment and is impaired with aging. © 2017 The Authors. Aging Cell published by the Anatomical Society

  13. Adrenaline promotes cell proliferation and increases chemoresistance in colon cancer HT29 cells through induction of miR-155

    International Nuclear Information System (INIS)

    Pu, Jun; Bai, Danna; Yang, Xia; Lu, Xiaozhao; Xu, Lijuan; Lu, Jianguo

    2012-01-01

    Highlights: ► Adrenaline increases colon cancer cell proliferation and its resistance to cisplatin. ► Adrenaline activates NFκB in a dose dependent manner. ► NFκB–miR-155 pathway contributes to cell proliferation and resistance to cisplatin. -- Abstract: Recently, catecholamines have been described as being involved in the regulation of cancer genesis and progression. Here, we reported that adrenaline increased the cell proliferation and decreased the cisplatin induced apoptosis in HT29 cells. Further study found that adrenaline increased miR-155 expression in an NFκB dependent manner. HT29 cells overexpressing miR-155 had a higher cell growth rate and more resistance to cisplatin induced apoptosis. In contrast, HT29 cells overexpressing miR-155 inhibitor displayed decreased cell proliferation and sensitivity to cisplatin induced cell death. In summary, our study here revealed that adrenaline–NFκB–miR-155 pathway at least partially contributes to the psychological stress induced proliferation and chemoresistance in HT29 cells, shedding light on increasing the therapeutic strategies of cancer chemotherapy.

  14. BDNF VAL66MET Polymorphism Elevates the Risk of Bladder Cancer via MiRNA-146b in Micro-Vehicles

    Directory of Open Access Journals (Sweden)

    Cong Li

    2018-01-01

    Full Text Available Background/Aims: Emerging studies on brain-derived neurotrophic factor (BDNF have shown that might be novel biomarkers and therapeutic targets for cancer. We explore the role of BDNF in the tumorigenesis of bladder cancer and the underlying molecular mechanism. Methods: 368 patients with diagnosed bladder cancer and 352 healthy controls were enrolled to evaluate the association of BDNF and the miR-146b. Bioinformatics algorithm analysis and luciferase assay were performed to identify the target genes of miR-146b. Real-time PCR and western-blot were carried out to validate the relationship between miR-146b and CRK. MTT assay and FACS were used to evaluated the proliferation and apoptosis of cancer cells. MVs were isolated and transfect into the culture cells to confirm the above observation. Results: The clinical study shows that BDNF Met/Met was significantly associated with the risk of bladder cancer. In addition, comparing with Val/Val and Val/Met, Met/Met has lower miR-146b level. Luciferase assay shows that BDNF Val/Val is apparently enhanced miR-146b promoter-luciferase, but not BDNF Met/Met. Based on luciferase assay, CRK is a direct target gene of miR-146b. MiR-146b mimics significantly inhibited the expression of CRK and activation of AKT level. The expression of CRK and the activation of AKT (p-AKT were significantly inhibited by MV-BDNF Val/Val-miR-146b or MV-BDNF Val/Met-miR-146b, but not MV-BDNF Met/Met-miR-146b. MV-BDNF Val/Val-miR-146b or Val/Met-miR-146b obviously inhibited cell proliferation, which eliminated by CRK. Meanwhile, with MV-BDNF Met/Met-miR-146b or Met/Met-miR-146b+CRK did not affect the proliferation. MV-BDNF Val/Val-miR-146b or Val/Met-miR-146b enhanced cell apoptosis, which could be eliminated by CRK. Meanwhile, MV-BDNF Met/Met-miR-146b or Met/Met-miR-146b+CRK did not promote apoptosis. Conclusion: BDNF VAL66MET polymorphism is associated with miR-146b and its target gene CRK. MiR-146b and CRK mediated BDNF VAL66

  15. Early second-trimester serum miRNA profiling predicts gestational diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Chun Zhao

    Full Text Available BACKGROUND: Gestational diabetes mellitus (GDM is one type of diabetes that presents during pregnancy and significantly increases the risk of a number of adverse consequences for the fetus and mother. The microRNAs (miRNA have recently been demonstrated to abundantly and stably exist in serum and to be potentially disease-specific. However, no reported study investigates the associations between serum miRNA and GDM. METHODOLOGY/PRINCIPAL FINDINGS: We systematically used the TaqMan Low Density Array followed by individual quantitative reverse transcription polymerase chain reaction assays to screen miRNAs in serum collected at 16-19 gestational weeks. The expression levels of three miRNAs (miR-132, miR-29a and miR-222 were significantly decreased in GDM women with respect to the controls in similar gestational weeks in our discovery evaluation and internal validation, and two miRNAs (miR-29a and miR-222 were also consistently validated in two-centric external validation sample sets. In addition, the knockdown of miR-29a could increase Insulin-induced gene 1 (Insig1 expression level and subsequently the level of Phosphoenolpyruvate Carboxy Kinase2 (PCK2 in HepG2 cell lines. CONCLUSIONS/SIGNIFICANCE: Serum miRNAs are differentially expressed between GDM women and controls and could be candidate biomarkers for predicting GDM. The utility of miR-29a, miR-222 and miR-132 as serum-based non-invasive biomarkers warrants further evaluation and optimization.

  16. miRNA engineering of CHO cells facilitates production of difficult-to-express proteins and increases success in cell line development.

    Science.gov (United States)

    Fischer, Simon; Marquart, Kim F; Pieper, Lisa A; Fieder, Juergen; Gamer, Martin; Gorr, Ingo; Schulz, Patrick; Bradl, Harald

    2017-07-01

    In recent years, coherent with growing biologics portfolios also the number of complex and thus difficult-to-express (DTE) therapeutic proteins has increased considerably. DTE proteins challenge bioprocess development and can include various therapeutic protein formats such as monoclonal antibodies (mAbs), multi-specific affinity scaffolds (e.g., bispecific antibodies), cytokines, or fusion proteins. Hence, the availability of robust and versatile Chinese hamster ovary (CHO) host cell factories is fundamental for high-yielding bioprocesses. MicroRNAs (miRNAs) have emerged as potent cell engineering tools to improve process performance of CHO manufacturing cell lines. However, there has not been any report demonstrating the impact of beneficial miRNAs on industrial cell line development (CLD) yet. To address this question, we established novel CHO host cells constitutively expressing a pro-productive miRNA: miR-557. Novel host cells were tested in two independent CLD campaigns using two different mAb candidates including a normal as well as a DTE antibody. Presence of miR-557 significantly enhanced each process step during CLD in a product independent manner. Stable expression of miR-557 increased the probability to identify high-producing cell clones. Furthermore, production cell lines derived from miR-557 expressing host cells exhibited significantly increased final product yields in fed-batch cultivation processes without compromising product quality. Strikingly, cells co-expressing miR-557 and a DTE antibody achieved a twofold increase in product titer compared to clones co-expressing a negative control miRNA. Thus, host cell engineering using miRNAs represents a promising tool to overcome limitations in industrial CLD especially with regard to DTE proteins. Biotechnol. Bioeng. 2017;114: 1495-1510. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Association Between Functional PSMD10 Rs111638916 Variant Regulated by MiR-505 and Gastric Cancer Risk in a Chinese Population

    Directory of Open Access Journals (Sweden)

    Yong Liu

    2015-09-01

    Full Text Available Background/Aims: Gankyrin is an oncoprotein involved in regulating the cell cycle through protein-protein interactions with cyclin-dependent kinase 4 and p53. However, its association with gastric cancer (GC risk has not yet been determined. In this study, we investigated micro RNA (miRNA-associated single nucleotide polymorphisms (SNPs in the 3′-untranslated region (UTR of the gankyrin gene PSMD10 to clarify the relationship between these SNPs and miRNAs in Chinese patients with GC. Methods: We performed a case-control study including 857 GC patients and 748 cancer-free controls. PSMD10 expression was investigated using genotyping, real-time polymerase chain reaction, cell transfection, and dual luciferase reporter assays. Results: Patients with histories of smoking, alcohol consumption, and cancer were more susceptible to GC than controls. The SNP rs111638916 in the PSMD10 3′-UTR was identified as a risk factor for GC and acted as a tumor promoting factor. SNP rs111638916 was also regulated by miR-505, resulting in up-regulation of gankyrin expression in patients with GA and AA genotypes. Carriers of the GA and AA genotypes also presented with larger tumors and had a higher risk of metastasis. Conclusion: The PSMD10 rs111638916 SNP is highly associated with an increased risk of GC in Chinese patients, and could serve as a novel biomarker for this disease.

  18. Protamine reduces bleeding complications associated with carotid endarterectomy without increasing the risk of stroke.

    Science.gov (United States)

    Stone, David H; Nolan, Brian W; Schanzer, Andres; Goodney, Philip P; Cambria, Robert A; Likosky, Donald S; Walsh, Daniel B; Cronenwett, Jack L

    2010-03-01

    Controversy persists regarding the use of protamine during carotid endarterectomy (CEA) based on prior conflicting reports documenting both reduced bleeding as well as increased stroke risk. The purpose of this study was to determine the effect of protamine reversal of heparin anticoagulation on the outcome of CEA in a contemporary multistate registry. We reviewed a prospective regional registry of 4587 CEAs in 4311 patients performed by 66 surgeons from 11 centers in Northern New England from 2003-2008. Protamine use varied by surgeon (38% routine use, 44% rare use, 18% selective use). Endpoints were postoperative bleeding requiring reoperation as well as potential thrombotic complications, including stroke, death, and myocardial infarction (MI). Predictors of endpoints were determined by multivariate logistic regression after associated variables were identified by univariate analysis. Of the 4587 CEAs performed, 46% utilized protamine, while 54% did not. Fourteen patients (0.64%) in the protamine-treated group required reoperation for bleeding compared with 42 patients (1.66%) in the untreated cohort (P = .001). Protamine use did not affect the rate of MI (1.1% vs 0.91%, P = .51), stroke (0.78% vs 1.15%, P = .2), or death (0.23% vs 0.32%, P = .57) between treated and untreated patients, respectively. By multivariate analysis, protamine (odds ratio [OR] 0.32, 95% confidence interval [CI], 0.17-0.63; P = .001) and patch angioplasty (OR 0.46, 95% CI, 0.26-0.81; P = .007) were independently associated with diminished reoperation for bleeding. A single center was associated with a significantly higher rate of reoperation for bleeding (OR 6.47, 95% CI, 3.02-13.9; P < .001). Independent of protamine use, consequences of reoperation for bleeding were significant, with a four-fold increase in MI, a seven-fold increase in stroke, and a 30-fold increase in death. Protamine reduced serious bleeding requiring reoperation during CEA without increasing the risk of MI, stroke

  19. Low Adiponectin Levels and Increased Risk of Type 2 Diabetes in Patients With Myocardial Infarction

    DEFF Research Database (Denmark)

    Lindberg, Søren; Jensen, Jan S; Pedersen, Sune H

    2014-01-01

    OBJECTIVE: Patients with acute myocardial infarction (MI) have increased risk of developing type 2 diabetes mellitus (T2DM). Adiponectin is an insulin-sensitizing hormone produced in adipose tissue, directly suppressing hepatic gluconeogenesis, stimulating fatty acid oxidation and glucose uptake...... 5.3-6.1]) 6% (n = 38) developed T2DM. Risk of T2DM was analyzed using a competing risk analysis. RESULTS: Low adiponectin levels were associated with increased risk of T2DM (P age, sex, hypertension, hypercholesterolemia, current smoking.......001). Importantly, plasma adiponectin added to the predictive value of blood glucose, with the combination of high blood glucose and low plasma adiponectin, vastly increasing the risk of developing T2DM (HR 9.6 [3.7-25.3]; P

  20. Adrenaline promotes cell proliferation and increases chemoresistance in colon cancer HT29 cells through induction of miR-155

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Jun [Department of General Surgery, Tangdu Hospital of the Fourth Military Medical University, Xi' an 710038 (China); Bai, Danna [Department of Cardiology, 323 Hospital of PLA, Xi' an 710054 (China); Yang, Xia [Department of Teaching and Medical Administration, Tangdu Hospital of the Fourth Military Medical University, Xi' an 710038 (China); Lu, Xiaozhao [Department of Nephrology, The 323 Hospital of PLA, Xi' an 710054 (China); Xu, Lijuan, E-mail: 13609296272@163.com [Department of Nephrology, The 323 Hospital of PLA, Xi' an 710054 (China); Lu, Jianguo, E-mail: lujianguo029@yahoo.com.cn [Department of General Surgery, Tangdu Hospital of the Fourth Military Medical University, Xi' an 710038 (China)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Adrenaline increases colon cancer cell proliferation and its resistance to cisplatin. Black-Right-Pointing-Pointer Adrenaline activates NF{kappa}B in a dose dependent manner. Black-Right-Pointing-Pointer NF{kappa}B-miR-155 pathway contributes to cell proliferation and resistance to cisplatin. -- Abstract: Recently, catecholamines have been described as being involved in the regulation of cancer genesis and progression. Here, we reported that adrenaline increased the cell proliferation and decreased the cisplatin induced apoptosis in HT29 cells. Further study found that adrenaline increased miR-155 expression in an NF{kappa}B dependent manner. HT29 cells overexpressing miR-155 had a higher cell growth rate and more resistance to cisplatin induced apoptosis. In contrast, HT29 cells overexpressing miR-155 inhibitor displayed decreased cell proliferation and sensitivity to cisplatin induced cell death. In summary, our study here revealed that adrenaline-NF{kappa}B-miR-155 pathway at least partially contributes to the psychological stress induced proliferation and chemoresistance in HT29 cells, shedding light on increasing the therapeutic strategies of cancer chemotherapy.

  1. Search for <mi>CP> Violation and Measurement of the Branching Fraction in the Decay <mi>D>0<mi>KS>0<mi>KS>0

    Energy Technology Data Exchange (ETDEWEB)

    Dash, N.; Bahinipati, S.; Bhardwaj, V.; Trabelsi, K.; Adachi, I.; Aihara, H.; Al Said, S.; Asner, D. M.; Aulchenko, V.; Aushev, T.; Ayad, R.; Babu, V.; Badhrees, I.; Bakich, A. M.; Bansal, V.; Barberio, E.; Bhuyan, B.; Biswal, J.; Bobrov, A.; Bondar, A.; Bonvicini, G.; Bozek, A.; Bračko, M.; Breibeck, F.; Browder, T. E.; Červenkov, D.; Chang, M. -C.; Chekelian, V.; Chen, A.; Cheon, B. G.; Chilikin, K.; Cho, K.; Choi, Y.; Cinabro, D.; Di Carlo, S.; Doležal, Z.; Drásal, Z.; Dutta, D.; Eidelman, S.; Epifanov, D.; Farhat, H.; Fast, J. E.; Ferber, T.; Fulsom, B. G.; Gaur, V.; Gabyshev, N.; Garmash, A.; Gillard, R.; Goldenzweig, P.; Haba, J.; Hara, T.; Hayasaka, K.; Hayashii, H.; Hedges, M. T.; Hou, W. -S.; Iijima, T.; Inami, K.; Ishikawa, A.; Itoh, R.; Iwasaki, Y.; Jacobs, W. W.; Jaegle, I.; Jeon, H. B.; Jin, Y.; Joffe, D.; Joo, K. K.; Julius, T.; Kahn, J.; Kaliyar, A. B.; Karyan, G.; Katrenko, P.; Kawasaki, T.; Kiesling, C.; Kim, D. Y.; Kim, H. J.; Kim, J. B.; Kim, K. T.; Kim, M. J.; Kim, S. H.; Kim, Y. J.; Kinoshita, K.; Kodyš, P.; Korpar, S.; Kotchetkov, D.; Križan, P.; Krokovny, P.; Kuhr, T.; Kulasiri, R.; Kumar, R.; Kumita, T.; Kuzmin, A.; Kwon, Y. -J.; Lange, J. S.; Lee, I. S.; Li, C. H.; Li, L.; Li, Y.; Li Gioi, L.; Libby, J.; Liventsev, D.; Lubej, M.; Luo, T.; Masuda, M.; Matvienko, D.; Merola, M.; Miyabayashi, K.; Miyata, H.; Mizuk, R.; Mohanty, G. B.; Mohanty, S.; Moon, H. K.; Mori, T.; Mussa, R.; Nakano, E.; Nakao, M.; Nanut, T.; Nath, K. J.; Natkaniec, Z.; Nayak, M.; Niiyama, M.; Nisar, N. K.; Nishida, S.; Ogawa, S.; Okuno, S.; Ono, H.; Pakhlov, P.; Pakhlova, G.; Pal, B.; Pardi, S.; Park, C. -S.; Park, H.; Paul, S.; Pedlar, T. K.; Pesántez, L.; Pestotnik, R.; Piilonen, L. E.; Prasanth, K.; Ritter, M.; Rostomyan, A.; Sahoo, H.; Sakai, Y.; Sandilya, S.; Santelj, L.; Sanuki, T.; Sato, Y.; Savinov, V.; Schneider, O.; Schnell, G.; Schwanda, C.; Schwartz, A. J.; Seino, Y.; Senyo, K.; Sevior, M. E.; Shebalin, V.; Shen, C. P.; Shibata, T. -A.; Shiu, J. -G.; Shwartz, B.; Simon, F.; Sokolov, A.; Solovieva, E.; Starič, M.; Strube, J. F.; Stypula, J.; Sumisawa, K.; Sumiyoshi, T.; Takizawa, M.; Tamponi, U.; Tanida, K.; Tenchini, F.; Uchida, M.; Uglov, T.; Unno, Y.; Uno, S.; Urquijo, P.; Usov, Y.; Van Hulse, C.; Varner, G.; Vorobyev, V.; Vossen, A.; Waheed, E.; Wang, C. H.; Wang, M. -Z.; Wang, P.; Watanabe, M.; Watanabe, Y.; Widmann, E.; Williams, K. M.; Won, E.; Yamashita, Y.; Ye, H.; Yelton, J.; Yook, Y.; Yuan, C. Z.; Yusa, Y.; Zhang, Z. P.; Zhilich, V.; Zhukova, V.; Zhulanov, V.; Zupanc, A.

    2017-10-01

    We report a study of the decay <mi>D>0<mi>KS>0<mi>KS>0 using 921 fb-1 of data collected at or near the Υ(4S) and Υ(5S) resonances with the Belle detector at the KEKB asymmetric energy e+e- collider. The measured time-integrated CP asymmetry is ACP(<mi>D>0<mi>KS>0<mi>KS>0) = (-0.02 ± 1.53 ± 0.02 ± 0.17)%, and the branching fraction is B(<mi>D>0<mi>KS>0<mi>KS>0) = (1.321 ± 0.023 ± 0.036 ± 0.044) × 10-4, where the first uncertainty is statistical, the second is systematic, and the third is due to the normalization mode (<mi>D>0<mi>KS>0π0). These results are significantly more precise than previous measurements available for this mode. The ACP measurement is consistent with the standard model expectation.

  2. Circulating miR-126 and miR-499 reflect progression of cardiovascular disease; correlations with uric acid and ejection fraction

    Directory of Open Access Journals (Sweden)

    Masoud Khanaghaei

    2016-04-01

    Full Text Available BackgroundThe aim of this study was to assess plasma levels of endothelium- and heart-associated microRNAs (miRNAs miR-126 and miR-499, respectively, using quantitative reverse transcriptase polymerase chain reaction.MethodsA two-step analysis was conducted on 75 patients undergoing off-pomp coronary artery bypass graft (CABG surgery. Five biomarkers of inflammation and cardiac injury were assessed in addition to the above-mentioned miRNAs.ResultsPlasma concentrations of miRNAs were found to be significantly correlated with plasma levels of cardiac troponin I (cTnI (miR-499, r 0.49, p~0.002; miR-126, r = 0.30, p~0.001, indicating cardiac damage. Data analysis revealed that miR-499 had higher sensitivity and specificity for cardiac injury than miR-126, which reflects more endothelial activation. Interestingly, a strong correlation was observed between both miRNAs and uric acid (UA levels with ventricular contractility measured as ejection fraction (EF (miR-499/EF%, r = 0.58, p~0.004; UA/EF%, r = -0.6, p~0.006; UA/miR-499, r = -0.34; UA/miR-126, r = 0.5, p~0.01.ConclusionsIn patients undergoing CABG, circulating miR-126/499 is associated with presentation of traditional risk factors and reflects post-operative response to injury. Plasma pool of miRNAs likely reflects extracellular miRNAs which are proportional to intracellular miRNA levels. Therefore, circulating levels of these miRNAs have prognostic implications in detection of higher risk of future cardiovascular events.

  3. Bone-related Circulating MicroRNAs miR-29b-3p, miR-550a-3p, and miR-324-3p and their Association to Bone Microstructure and Histomorphometry.

    Science.gov (United States)

    Feichtinger, Xaver; Muschitz, Christian; Heimel, Patrick; Baierl, Andreas; Fahrleitner-Pammer, Astrid; Redl, Heinz; Resch, Heinrich; Geiger, Elisabeth; Skalicky, Susanna; Dormann, Rainer; Plachel, Fabian; Pietschmann, Peter; Grillari, Johannes; Hackl, Matthias; Kocijan, Roland

    2018-03-20

    The assessment of bone quality and the prediction of fracture risk in idiopathic osteoporosis (IOP) are complex prospects as bone mineral density (BMD) and bone turnover markers (BTM) do not indicate fracture-risk. MicroRNAs (miRNAs) are promising new biomarkers for bone diseases, but the current understanding of the biological information contained in the variability of miRNAs is limited. Here, we investigated the association between serum-levels of 19 miRNA biomarkers of idiopathic osteoporosis to bone microstructure and bone histomorphometry based upon bone biopsies and µCT (9.3 μm) scans from 36 patients. Four miRNAs were found to be correlated to bone microarchitecture and seven miRNAs to dynamic histomorphometry (p microstructure parameters. miR-29b-3p and miR-324-p were found to be reduced in patients undergoing anti-resorptive therapy. This is the first study to report that serum levels of bone-related miRNAs might be surrogates of dynamic histomorphometry and potentially reveal changes in bone microstructure. Although these findings enhance the potential value of circulating miRNAs as bone biomarkers, further experimental studies are required to qualify the clinical utility of miRNAs to reflect dynamic changes in bone formation and microstructure.

  4. Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell

    International Nuclear Information System (INIS)

    Xu, Ning; Zhang, Jianjun; Shen, Conghuan; Luo, Yi; Xia, Lei; Xue, Feng; Xia, Qiang

    2012-01-01

    Highlights: ► miR-199a-5p levels were significantly decreased after cisplatin treatment. ► Cisplatin treatment induced autophagy activation. ► Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell. -- Abstract: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Systemic chemotherapy plays an important role in the treatment of patients with advanced liver cancer. However, chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy in the clinic, and the underlying mechanism of such resistance is not fully understood. In the study, we found that miR-199a-5p levels were significantly reduced in HCC patients treated with cisplatin-based chemotherapy. Cisplatin treatment also resulted in decreased miR-199a-5p levels in human HCC cell lines. Forced expression of miR-199a-5p promoted cisplatin-induced inhibition of cell proliferation. Cisplatin treatment activated autophagy in Huh7 and HepG2 cells, which increased cell proliferation. We further demonstrated that downregulated miR-199a-5p enhanced autophagy activation by targeting autophagy-associated gene 7 (ATG7). More important, autophagy inhibition abrogated miR-199a-5p downregulation-induced cell proliferation. These data demonstrated that miR-199a-5p/autophagy signaling represents a novel pathway regulating chemoresistance, thus offering a new target for chemotherapy of HCC.

  5. Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ning; Zhang, Jianjun; Shen, Conghuan; Luo, Yi; Xia, Lei; Xue, Feng [Department of Transplantation and Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, 1630 Dongfang Road, Shanghai 200127, People' s Republic of China (China); Xia, Qiang, E-mail: xiaqiang1@yahoo.com.cn [Department of Transplantation and Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, 1630 Dongfang Road, Shanghai 200127, People' s Republic of China (China)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer miR-199a-5p levels were significantly decreased after cisplatin treatment. Black-Right-Pointing-Pointer Cisplatin treatment induced autophagy activation. Black-Right-Pointing-Pointer Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell. -- Abstract: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Systemic chemotherapy plays an important role in the treatment of patients with advanced liver cancer. However, chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy in the clinic, and the underlying mechanism of such resistance is not fully understood. In the study, we found that miR-199a-5p levels were significantly reduced in HCC patients treated with cisplatin-based chemotherapy. Cisplatin treatment also resulted in decreased miR-199a-5p levels in human HCC cell lines. Forced expression of miR-199a-5p promoted cisplatin-induced inhibition of cell proliferation. Cisplatin treatment activated autophagy in Huh7 and HepG2 cells, which increased cell proliferation. We further demonstrated that downregulated miR-199a-5p enhanced autophagy activation by targeting autophagy-associated gene 7 (ATG7). More important, autophagy inhibition abrogated miR-199a-5p downregulation-induced cell proliferation. These data demonstrated that miR-199a-5p/autophagy signaling represents a novel pathway regulating chemoresistance, thus offering a new target for chemotherapy of HCC.

  6. miR-210 inhibits trophoblast invasion and is a serum biomarker for preeclampsia.

    Science.gov (United States)

    Anton, Lauren; Olarerin-George, Anthony O; Schwartz, Nadav; Srinivas, Sindhu; Bastek, Jamie; Hogenesch, John B; Elovitz, Michal A

    2013-11-01

    Preeclampsia is characterized by hypertension and proteinuria in pregnant women. Its exact cause is unknown. Preeclampsia increases the risk of maternal and fetal morbidity and mortality. Although delivery, often premature, is the only known cure, early targeted interventions may improve maternal and fetal outcomes. Successful intervention requires a better understanding of the molecular etiology of preeclampsia and the development of accurate methods to predict women at risk. To this end, we tested the role of miR-210, a miRNA up-regulated in preeclamptic placentas, in first-trimester extravillous trophoblasts. miR-210 overexpression reduced trophoblast invasion, a process necessary for uteroplacental perfusion, in an extracellular signal-regulated kinase/mitogen-activated protein kinase-dependent manner. Conversely, miR-210 inhibition promoted invasion. Furthermore, given that the placenta secretes miRNAs into the maternal circulation, we tested if serum expression of miR-210 was associated with the disease. We measured miR-210 expression in two clinical studies: a case-control study and a prospective cohort study. Serum miR-210 expression was significantly associated with a diagnosis of preeclampsia (P = 0.007, area under the receiver operator curves = 0.81) and was predictive of the disease, even months before clinical diagnosis (P preeclampsia that can help in identifying at-risk women for monitoring and treatment. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  7. Decreased Expression of miR-21, miR-26a, miR-29a, and miR-142-3p in CD4+ T Cells and Peripheral Blood from Tuberculosis Patients

    Science.gov (United States)

    Schattling, Stefanie; Kohns, Malte; Sander-Jülch, Claudia; Walzl, Gerhard; Hesseling, Anneke; Mayatepek, Ertan; Fleischer, Bernhard; Marx, Florian M.; Jacobsen, Marc

    2013-01-01

    The vast majority of Mycobacterium tuberculosis (M. tuberculosis) infected individuals are protected from developing tuberculosis and T cells are centrally involved in this process. MicroRNAs (miRNA) regulate T-cell functions and are biomarker candidates of disease susceptibility and treatment efficacy in M. tuberculosis infection. We determined the expression profile of 29 selected miRNAs in CD4+ T cells from tuberculosis patients and contacts with latent M. tuberculosis infection (LTBI). These analyses showed lower expression of miR-21, miR-26a, miR-29a, and miR-142-3p in CD4+ T cells from tuberculosis patients. Whole blood miRNA candidate analyses verified decreased expression of miR-26a, miR-29a, and miR-142-3p in children with tuberculosis as compared to healthy children with LTBI. Despite marked variances between individual donor samples, trends of increased miRNA candidate expression during treatment and recovery were observed. Functional in vitro analysis identified increased miR-21 and decreased miR-26a expression after re-stimulation of T cells. In vitro polarized Interleukin-17 positive T-cell clones showed activation-dependent miR-29a up-regulation. In order to characterize the role of miR-29a (a described suppressor of Interferon-γ in tuberculosis), we analyzed M. tuberculosis specific Interferon-γ expressing T cells in children with tuberculosis and healthy contacts but detected no correlation between miR-29a and Interferon-γ expression. Suppression of miR-29a in primary human T cells by antagomirs indicated no effect on Interferon-γ expression after in vitro activation. Finally, classification of miRNA targets revealed only a moderate overlap between the candidates. This may reflect differential roles of miR-21, miR-26a, miR-29a, and miR-142-3p in T-cell immunity against M. tuberculosis infection and disease. PMID:23613882

  8. Improved cardiovascular risk among Hispanic border participants of the HEART II Mi Corazón Mi Comunidad Promotores de Salud Model: the cohort intervention study 2009-2013

    Directory of Open Access Journals (Sweden)

    Hendrik Dirk ede Heer

    2015-06-01

    Full Text Available AbstractBackgroundCommunity resources (parks, recreational facilities provide opportunities for health promotion, but little is known about how to promote utilization of these resources and their impact on cardiovascular disease risk (CVD. MethodsThis cohort study evaluated the impact of an intervention called Mi Corazon Mi Comunidad (MiCMiC, which consisted of promoting use of community physical activity and nutrition resources by Promotoras de Salud/Community Health Workers. Participants were assessed at baseline and following the 4-month intervention. Attendance records were objectively collected to assess utilization of intervention programming. ResultsA total of 5 consecutive cohorts were recruited between 2009 and 2013. Participants were mostly females (86.0%, on average 46.6 years old, and 81% were low in acculturation. Participants who completed follow-up (n=413 showed significant improvements in reported health behaviors and body composition. Higher attendance significantly predicted greater improvements. The baseline to 4-month change for the highest versus the lowest attendance quartiles were (-5.2 lbs vs. +0.01 lbs, p<.001, waist circumference (-1.20 inches vs. -0.56 inches, p=.047, hip circumference (-1.13 inches vs. -0.41 inches, p<.001; hours of exercise/week (+3.87 hours vs. +0.81 hrs, p<.001, proportion of participants eating 5 servings of fruits and vegetables/day (+54.7% vs. 14.7%, p<.001.ConclusionsFollowing the Promotora-led MiCMiC intervention, substantial improvements in health behaviors and modest improvements in cardiovascular risk factors were found. Greater utilization of community resources was associated with more favorable changes. This study provided preliminary evidence for the effectiveness of Promotora-led interventions for promoting use of existing community resources in CVD risk reduction. Key Words: Community resources, community health workers, U.S.- Mexico border, Hispanic, cardiovascular disease, cohort

  9. Improved Cardiovascular Risk among Hispanic Border Participants of the Mi Corazón Mi Comunidad Promotores De Salud Model: The HEART II Cohort Intervention Study 2009-2013.

    Science.gov (United States)

    de Heer, Hendrik Dirk; Balcazar, Hector G; Wise, Sherrie; Redelfs, Alisha H; Rosenthal, E Lee; Duarte, Maria O

    2015-01-01

    Community resources (parks, recreational facilities) provide opportunities for health promotion, but little is known about how to promote utilization of these resources and their impact on cardiovascular disease risk (CVD). This cohort study evaluated the impact of an intervention called Mi Corazon Mi Comunidad (MiCMiC), which consisted of promoting use of community physical activity and nutrition resources by Promotoras de Salud/Community Health Workers. Participants were assessed at baseline and following the 4-month intervention. Attendance records were objectively collected to assess utilization of intervention programing. A total of five consecutive cohorts were recruited between 2009 and 2013. Participants were mostly females (86.0%), on average 46.6 years old, and 81% were low in acculturation. Participants who completed follow-up (n = 413) showed significant improvements in reported health behaviors and body composition. Higher attendance significantly predicted greater improvements. The baseline to 4-month change for the highest vs. the lowest attendance quartiles were for weight (-5.2 vs. +0.01 lbs, p < 0.001), waist circumference (-1.20 vs. -0.56 inches, p = 0.047), hip circumference (-1.13 vs. -0.41 inches, p < 0.001); hours of exercise/week (+3.87 vs. +0.81 hours, p < 0.001), proportion of participants eating five servings of fruits and vegetables/day (+54.7 vs. 14.7%, p < 0.001). Following the Promotora-led MiCMiC intervention, substantial improvements in health behaviors and modest improvements in cardiovascular risk factors were found. Greater utilization of community resources was associated with more favorable changes. This study provided preliminary evidence for the effectiveness of Promotora-led interventions for promoting use of existing community resources in CVD risk reduction.

  10. Increased Expression of miR-146a in Children With Allergic Rhinitis After Allergen-Specific Immunotherapy.

    Science.gov (United States)

    Luo, Xi; Hong, Haiyu; Tang, Jun; Wu, Xingmei; Lin, Zhibin; Ma, Renqiang; Fan, Yunping; Xu, Geng; Liu, Dabo; Li, Huabin

    2016-03-01

    MicroRNAs (miRs) were recently recognized to be important for immune cell differentiation and immune regulation. However, whether miRs were involved in allergen-specific immunotherapy (SIT) remains largely unknown. This study sought to examine changes in miR-146a and T regulatory cells in children with persistent allergic rhinitis (AR) after 3 months of subcutaneous immunotherapy (SCIT) and sublingual immunotherapy (SLIT). Twenty-four HDM-sensitized children with persistent AR were enrolled and treated with SCIT (n=13) or SLIT (n=11) for 3 months. Relative miR-146a and Foxp3 mRNA expression, the TRAF6 protein level, and the ratio of post-treatment to baseline IL-10+CD4+ T cells between the SCIT and SLIT groups were examined in the peripheral blood mononuclear cells (PBMCs) of AR patients using quantitative reverse transcription polymerase chain reaction (qRT-PCR), flow cytometry, and Western blot analysis, respectively. Serum levels of IL-5 and IL-10 were determined using ELISA. After 3 months of SIT, both the TNSS and INSS scores were significantly decreased compared to the baseline value (P<0.01). The relative expression of miR-146a and Foxp3 mRNA was significantly increased after both SCIT and SLIT (P<0.01). The ratio of post-treatment to baseline IL-10⁺CD4⁺ T cells and the serum IL-10 level were significantly increased in both the SCIT and SLIT groups (P<0.01), whereas the TRAF6 protein level and serum IL-5 level were significantly decreased (P<0.01). No significant differences in these biomarkers were observed between the SCIT and SLIT groups. Our findings suggest that miR-146a and its related biomarkers may be comparably modulated after both SCIT and SLIT, highlighting miR-146a as a potential therapeutic target for the improved management of AR.

  11. Visible Age-Related Signs and Risk of Ischemic Heart Disease in the General Population

    DEFF Research Database (Denmark)

    Christoffersen, Mette; Frikke-Schmidt, Ruth; Schnohr, Peter

    2014-01-01

    developed MI. Presence of frontoparietal baldness, crown top baldness, earlobe crease, and xanthelasmata was associated with increased risk of IHD or MI after multifactorial adjustment for chronological age and well-known cardiovascular risk factors. The risk of IHD and MI increased stepwise with increasing...... risk of IHD and MI increased with increasing number of visible age-related signs. CONCLUSIONS: Male pattern baldness, earlobe crease, and xanthelasmata-alone or in combination-associate with increased risk of ischemic heart disease and myocardial infarction independent of chronological age and other...

  12. MiR-608, pre-miR-124-1 and pre-miR26a-1 polymorphisms modify susceptibility and recurrence-free survival in surgically resected CRC individuals.

    Science.gov (United States)

    Ying, Hou-Qun; Peng, Hong-Xin; He, Bang-Shun; Pan, Yu-Qin; Wang, Feng; Sun, Hui-Ling; Liu, Xian; Chen, Jie; Lin, Kang; Wang, Shu-Kui

    2016-11-15

    Genetic variation within microRNA (miRNA) may result in its abnormal folding or aberrant expression, contributing to colorectal turmorigenesis and metastasis. However, the association of six polymorphisms (miR-608 rs4919510, miR-499a rs3746444, miR-146a rs2910164, pre-miR-143 rs41291957, pre-miR-124-1 rs531564 and pre-miR-26a-1 rs7372209) with colorectal cancer (CRC) risk, therapeutic response and survival remains unclear. A retrospective study was carried out to investigate the association in 1358 0-III stage resected CRC patients and 1079 healthy controls using Sequenom's MassARRAY platform. The results showed that rs4919510 was significantly associated with a decreased susceptibility to CRC in co-dominant, allele and recessive genetic models, and the protective role of rs4919510 allele G and genotype GG was more pronounced among stage 0-II cases; significant association between rs531564 and poor RFS was observed in cases undergoing adjuvant chemo-radiotherapy in co-dominant, allele and dominant models; moreover, there was a positive association between rs7372209 and recurrence-free survival in stage II cases in co-dominant and over-dominant models; additionally, a cumulative effect of rs531564 and rs7372209 at-risk genotypes with hazard ratio at 1.30 and 1.95 for one and two at-risk genotypes was examined in stage II cases, respectively. Our findings indicated that rs4919510 allele G and genotype GG were protective factors for 0-II stage CRC, rs7372209 and rs531564 could decrease RFS in II stage individuals and resected CRC patients receiving adjuvant chemo-radiology.

  13. The interaction of miR-34b/c polymorphisms and negative life events increases susceptibility to major depressive disorder in Han Chinese population.

    Science.gov (United States)

    Xu, Cheng; Yang, Chunxia; Zhang, Aixia; Xu, Yong; Li, Xinrong; Liu, Zhifen; Liu, Sha; Sun, Ning; Zhang, Kerang

    2017-06-09

    Previous studies have shown that microRNAs(miRNAs) are involved in the pathogenesis of MDD; in particular, miR-34b/c has been implicated in MDD risk and found to exert antidepressant effects. However, the effects of miR-34b/c polymorphisms on MDD risk have not been investigated. In this study, we evaluated the effect of miR-34b/c gene polymorphisms and their interaction with negative life events in relation to MDD, using data from 381 Han Chinese patients with MDD and 291 healthy volunteers. Allelic, genotypic, haplotypic, and gene-environment associations were analyzed using UNPHASED and SPSS software. After discarding data with extremely severe negative life events in our study population, we found an association between rs4938723, rs2187473 polymorphisms and MDD in the dominant models (TC/CC vs. TT, OR=1.45, P=0.027; TC/CC vs. TT, OR=3.32, P=0.030). In haplotype analysis, the C-G haplotype (rs4938723/rs28757623) showed the strongest association with MDD (OR=1.95, P=0.026). Additionally, we found significant gene-environment combination rs4938723 C allele, rs28757623 G allele and high level of negative life events (C-G-HN) was significantly associated with MDD (OR, 3.85; 95% CI, 1.62-9.13). In addition, the combination of (C-C-HN) is of significance (OR, 2.99; 95% CI, 1.36-6.60), indicating that the rs28757623 C allele may contribute to the risk of MDD as well. The sample size was small and the role of miR-34b/c polymorphisms for MDD should be assessed using independent samples from other ethnic populations. Our results suggest that miR-34b/c is a susceptibility factor for MDD stratified by negative life events and that rs4938723 is a significant association locus for gene-environment interaction in relation to MDD risk. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Colombia Mi Pronostico Flood Application: Updating and Improving the Mi Pronostico Flood Web Application to Include an Assessment of Flood Risk

    Science.gov (United States)

    Rushley, Stephanie; Carter, Matthew; Chiou, Charles; Farmer, Richard; Haywood, Kevin; Pototzky, Anthony, Jr.; White, Adam; Winker, Daniel

    2014-01-01

    Colombia is a country with highly variable terrain, from the Andes Mountains to plains and coastal areas, many of these areas are prone to flooding disasters. To identify these risk areas NASA's Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) was used to construct a digital elevation model (DEM) for the study region. The preliminary risk assessment was applied to a pilot study area, the La Mosca River basin. Precipitation data from the National Aeronautics and Space Administration (NASA) Tropical Rainfall Measuring Mission (TRMM)'s near-real-time rainfall products as well as precipitation data from the Instituto de Hidrologia, Meteorologia y Estudios Ambientales (the Institute of Hydrology, Meteorology and Environmental Studies, IDEAM) and stations in the La Mosca River Basin were used to create rainfall distribution maps for the region. Using the precipitation data and the ASTER DEM, the web application, Mi Pronóstico, run by IDEAM, was updated to include an interactive map which currently allows users to search for a location and view the vulnerability and current weather and flooding conditions. The geospatial information was linked to an early warning system in Mi Pronóstico that can alert the public of flood warnings and identify locations of nearby shelters.

  15. Potential impact of miR-137 and its targets in schizophrenia

    Directory of Open Access Journals (Sweden)

    Carrie eWright

    2013-04-01

    Full Text Available The significant impact of microRNAs (miRNAs on disease pathology is becoming increasingly evident. These small non-coding RNAs have the ability to post-transcriptionally silence the expression of thousands of genes. Therefore, dysregulation of even a single miRNA could confer a large polygenic effect. Schizophrenia is a genetically complex illness thought to involve multiple genes each contributing a small risk. Large genome-wide association studies identified miR-137, a miRNA shown to be involved in neuronal maturation, as one of the top risk genes. To assess the potential mechanism of impact of miR-137 in this disorder and identify its targets, we used a combination of literature searches, Ingenuity Pathway Analysis (IPA, and freely accessible bioinformatics resources. Using TargetScan and the Schizophrenia Gene Resource (SZGR database, we found that in addition to CSMD1, C10orf26, CACNA1C, TCF4, and ZNF804A, five schizophrenia risk genes whose transcripts are also validated miR-137 targets, there are other schizophrenia-associated genes that may be targets of miR-137, including ERBB4, GABRA1, GRIN2A, GRM5, GSK3B, NRG2 and HTR2C. IPA analyses of all the potential targets identified several nervous system functions as the top canonical pathways including synaptic long-term potentiation, a process implicated in learning and memory mechanisms and recently shown to be altered in patients with schizophrenia. Among the subset of targets involved in nervous system development and function, the top scoring pathways were ephrin receptor signaling and axonal guidance, processes that are critical for proper circuitry formation and were shown to be disrupted in schizophrenia. These results suggest that miR-137 may indeed play a substantial role in the genetic etiology of schizophrenia by regulating networks involved in neural development and brain function.

  16. miRNA Expression Profile after Status Epilepticus and Hippocampal Neuroprotection by Targeting miR-132

    Science.gov (United States)

    Jimenez-Mateos, Eva M.; Bray, Isabella; Sanz-Rodriguez, Amaya; Engel, Tobias; McKiernan, Ross C.; Mouri, Genshin; Tanaka, Katsuhiro; Sano, Takanori; Saugstad, Julie A.; Simon, Roger P.; Stallings, Raymond L.; Henshall, David C.

    2011-01-01

    When an otherwise harmful insult to the brain is preceded by a brief, noninjurious stimulus, the brain becomes tolerant, and the resulting damage is reduced. Epileptic tolerance develops when brief seizures precede an episode of prolonged seizures (status epilepticus). MicroRNAs (miRNAs) are small, noncoding RNAs that function as post-transcriptional regulators of gene expression. We investigated how prior seizure preconditioning affects the miRNA response to status epilepticus evoked by intra-amygdalar kainic acid in mice. The miRNA was extracted from the ipsilateral CA3 subfield 24 hours after focal-onset status epilepticus in animals that had previously received either seizure preconditioning (tolerance) or no preconditioning (injury), and mature miRNA levels were measured using TaqMan low-density arrays. Expression of 21 miRNAs was increased, relative to control, after status epilepticus alone, and expression of 12 miRNAs was decreased. Increased miR-132 levels were matched with increased binding to Argonaute-2, a constituent of the RNA-induced silencing complex. In tolerant animals, expression responses of >40% of the injury-group-detected miRNAs differed, being either unchanged relative to control or down-regulated, and this included miR-132. In vivo microinjection of locked nucleic acid-modified oligonucleotides (antagomirs) against miR-132 depleted hippocampal miR-132 levels and reduced seizure-induced neuronal death. Thus, our data strongly suggest that miRNAs are important regulators of seizure-induced neuronal death. PMID:21945804

  17. Big endothelin changes the cellular miRNA environment in TMOb osteoblasts and increases mineralization.

    Science.gov (United States)

    Johnson, Michael G; Kristianto, Jasmin; Yuan, Baozhi; Konicke, Kathryn; Blank, Robert

    2014-08-01

    Endothelin (ET1) promotes the growth of osteoblastic breast and prostate cancer metastases. Conversion of big ET1 to mature ET1, catalyzed primarily by endothelin converting enzyme 1 (ECE1), is necessary for ET1's biological activity. We previously identified the Ece1, locus as a positional candidate gene for a pleiotropic quantitative trait locus affecting femoral size, shape, mineralization, and biomechanical performance. We exposed TMOb osteoblasts continuously to 25 ng/ml big ET1. Cells were grown for 6 days in growth medium and then switched to mineralization medium for an additional 15 days with or without big ET1, by which time the TMOb cells form mineralized nodules. We quantified mineralization by alizarin red staining and analyzed levels of miRNAs known to affect osteogenesis. Micro RNA 126-3p was identified by search as a potential regulator of sclerostin (SOST) translation. TMOb cells exposed to big ET1 showed greater mineralization than control cells. Big ET1 repressed miRNAs targeting transcripts of osteogenic proteins. Big ET1 increased expression of miRNAs that target transcripts of proteins that inhibit osteogenesis. Big ET1 increased expression of 126-3p 121-fold versus control. To begin to assess the effect of big ET1 on SOST production we analyzed both SOST transcription and protein production with and without the presence of big ET1 demonstrating that transcription and translation were uncoupled. Our data show that big ET1 signaling promotes mineralization. Moreover, the results suggest that big ET1's osteogenic effects are potentially mediated through changes in miRNA expression, a previously unrecognized big ET1 osteogenic mechanism.

  18. Decreased expression of miR-21, miR-26a, miR-29a, and miR-142-3p in CD4⁺ T cells and peripheral blood from tuberculosis patients.

    Science.gov (United States)

    Kleinsteuber, Katja; Heesch, Kerrin; Schattling, Stefanie; Kohns, Malte; Sander-Jülch, Claudia; Walzl, Gerhard; Hesseling, Anneke; Mayatepek, Ertan; Fleischer, Bernhard; Marx, Florian M; Jacobsen, Marc

    2013-01-01

    The vast majority of Mycobacterium tuberculosis (M. tuberculosis) infected individuals are protected from developing tuberculosis and T cells are centrally involved in this process. MicroRNAs (miRNA) regulate T-cell functions and are biomarker candidates of disease susceptibility and treatment efficacy in M. tuberculosis infection. We determined the expression profile of 29 selected miRNAs in CD4(+) T cells from tuberculosis patients and contacts with latent M. tuberculosis infection (LTBI). These analyses showed lower expression of miR-21, miR-26a, miR-29a, and miR-142-3p in CD4(+) T cells from tuberculosis patients. Whole blood miRNA candidate analyses verified decreased expression of miR-26a, miR-29a, and miR-142-3p in children with tuberculosis as compared to healthy children with LTBI. Despite marked variances between individual donor samples, trends of increased miRNA candidate expression during treatment and recovery were observed. Functional in vitro analysis identified increased miR-21 and decreased miR-26a expression after re-stimulation of T cells. In vitro polarized Interleukin-17 positive T-cell clones showed activation-dependent miR-29a up-regulation. In order to characterize the role of miR-29a (a described suppressor of Interferon-γ in tuberculosis), we analyzed M. tuberculosis specific Interferon-γ expressing T cells in children with tuberculosis and healthy contacts but detected no correlation between miR-29a and Interferon-γ expression. Suppression of miR-29a in primary human T cells by antagomirs indicated no effect on Interferon-γ expression after in vitro activation. Finally, classification of miRNA targets revealed only a moderate overlap between the candidates. This may reflect differential roles of miR-21, miR-26a, miR-29a, and miR-142-3p in T-cell immunity against M. tuberculosis infection and disease.

  19. The interaction between coagulation factor 2 receptor and interleukin 6 haplotypes increases the risk of myocardial infarction in men.

    Directory of Open Access Journals (Sweden)

    Bruna Gigante

    Full Text Available The aim of the study was to investigate if the interaction between the coagulation factor 2 receptor (F2R and the interleukin 6 (IL6 haplotypes modulates the risk of myocardial infarction (MI in the Stockholm Heart Epidemiology Program (SHEEP. Seven SNPs at the F2R locus and three SNPs at the IL6 locus were genotyped. Haplotypes and haplotype pairs (IL6*F2R were generated. A logistic regression analysis was performed to analyze the association of the haplotypes and haplotype pairs with the MI risk. Presence of an interaction between the two haplotypes in each haplotype pair was calculated using two different methods: the statistical, on a multiplicative scale, which includes the cross product of the two factors into the logistic regression model; the biological, on an additive scale, which evaluates the relative risk associated with the joint presence of both factors. The ratio between the observed and the predicted effect of the joint exposure, the synergy index (S, indicates the presence of a synergy (S>1 or of an antagonism (S<1. None of the haplotypes within the two loci was associated with the risk of MI. Out of 22 different haplotype pairs, the haplotype pair 17 GGG*ADGTCCT was associated with an increased risk of MI with an OR (95%CI of 1.58 (1.05-2.41 (p = 0.02 in the crude and an OR of 1.72 (1.11-2.67 (p = 0.01 in the adjusted analysis. We observed the presence of an interaction on a multiplicative scale with an OR (95%CI of 2.24 (1.27-3.95 (p = 0.005 and a slight interactive effect between the two haplotypes on an additive scale with an OR (95%CI of 1.56 (1.02-2.37 (p = 0.03 and S of 1.66 (0.89-31. In conclusion, our results support the hypothesis that the interaction between these two functionally related genes may influence the risk of MI and suggest new mechanisms involved in the genetic susceptibility to MI.

  20. Mobile Motion Capture--MiMiC.

    Science.gov (United States)

    Harbert, Simeon D; Jaiswal, Tushar; Harley, Linda R; Vaughn, Tyler W; Baranak, Andrew S

    2013-01-01

    The low cost, simple, robust, mobile, and easy to use Mobile Motion Capture (MiMiC) system is presented and the constraints which guided the design of MiMiC are discussed. The MiMiC Android application allows motion data to be captured from kinematic modules such as Shimmer 2r sensors over Bluetooth. MiMiC is cost effective and can be used for an entire day in a person's daily routine without being intrusive. MiMiC is a flexible motion capture system which can be used for many applications including fall detection, detection of fatigue in industry workers, and analysis of individuals' work patterns in various environments.

  1. BAG3 increases the invasiveness of uterine corpus carcinoma cells by suppressing miR-29b and enhancing MMP2 expression.

    Science.gov (United States)

    Habata, Shutaro; Iwasaki, Masahiro; Sugio, Asuka; Suzuki, Miwa; Tamate, Masato; Satohisa, Seiro; Tanaka, Ryoichi; Saito, Tsuyoshi

    2015-05-01

    Approximately 30% of uterine corpus carcinomas are diagnosed at an advanced stage and have a poor prognosis. Our previous study indicated that BCL2-associated athanogene 3 (BAG3) enhances matrix metalloproteinase-2 (MMP2) expression and binds to MMP2 to positively regulate the process of cell invasion in ovarian cancer cells. Recently, altered miRNA expression patterns were observed in several groups of patients with endometrial cancers. One of the altered miRNAs, miR-29b, reportedly reduces tumor invasiveness by suppressing MMP2 expression. Our aim in the present study was to examine the relationships among BAG3, miR-29b and MMP2 in endometrioid adenocarcinoma cells. We found that BAG3 suppresses miR-29b expression and enhances MMP2 expression, which in turn increases cell motility and invasiveness. Moreover, restoration of miR-29b through BAG3 knockdown reduced MMP2 expression, as well as cell motility and invasiveness. Collectively, our findings indicate that BAG3 enhances MMP2 expression by suppressing miR-29b, thereby increasing the metastatic potential of endometrioid adenocarcinomas.

  2. Circulating miR-29a and miR-150 correlate with delivered dose during thoracic radiation therapy for non-small cell lung cancer

    International Nuclear Information System (INIS)

    Dinh, Tru-Khang T.; Fendler, Wojciech; Chałubińska-Fendler, Justyna; Acharya, Sanket S.; O’Leary, Colin; Deraska, Peter V.; D’Andrea, Alan D.; Chowdhury, Dipanjan; Kozono, David

    2016-01-01

    Risk of normal tissue toxicity limits the amount of thoracic radiation therapy (RT) that can be routinely prescribed to treat non-small cell lung cancer (NSCLC). An early biomarker of response to thoracic RT may provide a way to predict eventual toxicities—such as radiation pneumonitis—during treatment, thereby enabling dose adjustment before the symptomatic onset of late effects. MicroRNAs (miRNAs) were studied as potential serological biomarkers for thoracic RT. As a first step, we sought to identify miRNAs that correlate with delivered dose and standard dosimetric factors. We performed miRNA profiling of plasma samples obtained from five patients with Stage IIIA NSCLC at five dose-points each during radical thoracic RT. Candidate miRNAs were then assessed in samples from a separate cohort of 21 NSCLC patients receiving radical thoracic RT. To identify a cellular source of circulating miRNAs, we quantified in vitro miRNA expression intracellularly and within secreted exosomes in five NSCLC and stromal cell lines. miRNA profiling of the discovery cohort identified ten circulating miRNAs that correlated with delivered RT dose as well as other dosimetric parameters such as lung V20. In the validation cohort, miR-29a-3p and miR-150-5p were reproducibly shown to decrease with increasing radiation dose. Expression of miR-29a-3p and miR-150-5p in secreted exosomes decreased with radiation. This was concomitant with an increase in intracellular levels, suggesting that exosomal export of these miRNAs may be downregulated in both NSCLC and stromal cells in response to radiation. miR-29a-3p and miR-150-5p were identified as circulating biomarkers that correlated with delivered RT dose. miR-150 has been reported to decrease in the circulation of mammals exposed to radiation while miR-29a has been associated with fibrosis in the human heart, lungs, and kidneys. One may therefore hypothesize that outlier levels of circulating miR-29a-3p and miR-150-5p may eventually help

  3. rno-miR-665 targets BCL2L1 (Bcl-xl) and increases vulnerability to propofol in developing astrocytes.

    Science.gov (United States)

    Sun, Wen-Chong; Pei, Ling

    2016-07-01

    anaesthesia and risk for impairment. Here, it revealed that propofol-related neurotoxicity of neonatal astrocytes was under rno-miR-665 regulation during the brain growth spurt. Rno-miR-665 might act as a clinically alternative therapeutic target for treatment of neurological disorders in peadiatric anesthesia or sedation with propofol in future. © 2016 International Society for Neurochemistry.

  4. Risk factors for myocardial infarction during vacation travel.

    Science.gov (United States)

    Kop, Willem J; Vingerhoets, Ad; Kruithof, Gert-Jan; Gottdiener, John S

    2003-01-01

    Medical emergencies occur increasingly outside the usual health care area as a result of increased leisure and professional travel. Acute coronary syndromes are the leading cause of mortality during vacation. Vacation activities include physical and emotional triggers for myocardial infarction (MI). This study examines characteristics of vacation travel as risk factors for MI. Patients diagnosed with MI during vacation abroad (N = 92; age, 59.5 +/- 10.2; 79 men) were recruited through an emergency health insurance organization. Risk indicators for Vacation MI were examined and included: cardiovascular risk factors, psychosocial measures, and specific demands and activities related to vacation (eg, lodging accommodations, unfamiliar destination, mode of transportation, short-term planning). Vacation MI patients were compared with two reference groups: age-matched Vacation Controls with noncardiovascular medical emergencies (N = 67) and Hospital MI Controls, admitted in their usual health care area (N = 30). Vacation MI occurred disproportionately (21.1%) during the first 2 days of vacation. Cardiovascular risk factors were more prevalent among Vacation MI patients than Vacation Controls (p values traveling by car versus other modes of transportation (OR = 2.5, CI = 1.0-6.1) and among patients staying in a tent or mobile home versus hotel (OR = 9.7, CI = 2.0-47.9). Incidence of MI during vacation is highest during the first 2 days of vacation. Vacation activities such as adverse driving conditions and less luxurious accommodations may increase risk for MI. Individuals with known vulnerability for MI may therefore benefit from minimizing physical and emotional challenges specifically related to vacation travel.

  5. Excess fertilizer responsive miRNAs revealed in Linum usitatissimum L.

    Science.gov (United States)

    Melnikova, Nataliya V; Dmitriev, Alexey A; Belenikin, Maxim S; Speranskaya, Anna S; Krinitsina, Anastasia A; Rachinskaia, Olga A; Lakunina, Valentina A; Krasnov, George S; Snezhkina, Anastasiya V; Sadritdinova, Asiya F; Uroshlev, Leonid A; Koroban, Nadezda V; Samatadze, Tatiana E; Amosova, Alexandra V; Zelenin, Alexander V; Muravenko, Olga V; Bolsheva, Nadezhda L; Kudryavtseva, Anna V

    2015-02-01

    Effective fertilizer application is necessary to increase crop yields and reduce risk of plant overdosing. It is known that expression level of microRNAs (miRNAs) alters in plants under different nutrient concentrations in soil. The aim of our study was to identify and characterize miRNAs with expression alterations under excessive fertilizer in agriculturally important crop - flax (Linum usitatissimum L.). We have sequenced small RNAs in flax grown under normal and excessive fertilizer using Illumina GAIIx. Over 14 million raw reads was obtained for two small RNA libraries. 84 conserved miRNAs from 20 families were identified. Differential expression was revealed for several flax miRNAs under excessive fertilizer according to high-throughput sequencing data. For 6 miRNA families (miR395, miR169, miR408, miR399, miR398 and miR168) expression level alterations were evaluated on the extended sampling using qPCR. Statistically significant up-regulation was revealed for miR395 under excessive fertilizer. It is known that target genes of miR395 are involved in sulfate uptake and assimilation. However, according to our data alterations of the expression level of miR395 could be associated not only with excess sulfur application, but also with redundancy of other macro- and micronutrients. Furthermore expression level was evaluated for miRNAs and their predicted targets. The negative correlation between miR399 expression and expression of its predicted target ubiquitin-conjugating enzyme E2 gene was shown in flax for the first time. So we suggested miR399 involvement in phosphate regulation in L. usitatissimum. Revealed in our study expression alterations contribute to miRNA role in flax response to excessive fertilizer. Copyright © 2014 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  6. The Role of miR-330-3p/PKC-α Signaling Pathway in Low-Dose Endothelial-Monocyte Activating Polypeptide-II Increasing the Permeability of Blood-Tumor Barrier

    Directory of Open Access Journals (Sweden)

    Jiahui Liu

    2017-12-01

    Full Text Available This study was performed to determine whether EMAP II increases the permeability of the blood-tumor barrier (BTB by affecting the expression of miR-330-3p as well as its possible mechanisms. We determined the over-expression of miR-330-3p in glioma microvascular endothelial cells (GECs by Real-time PCR. Endothelial monocyte-activating polypeptide-II (EMAP-II significantly decreased the expression of miR-330-3p in GECs. Pre-miR-330-3p markedly decreased the permeability of BTB and increased the expression of tight junction (TJ related proteins ZO-1, occludin and claudin-5, however, anti-miR-330-3p had the opposite effects. Anti-miR-330-3p could enhance the effect of EMAP-II on increasing the permeability of BTB, however, pre-miR-330-3p partly reversed the effect of EMAP-II on that. Similarly, anti-miR-330-3p improved the effects of EMAP-II on increasing the expression levels of PKC-α and p-PKC-α in GECs and pre-miR-330-3p partly reversed the effects. MiR-330-3p could target bind to the 3′UTR of PKC-α. The results of in vivo experiments were similar to those of in vitro experiments. These suggested that EMAP-II could increase the permeability of BTB through inhibiting miR-330-3p which target negative regulation of PKC-α. Pre-miR-330-3p and PKC-α inhibitor decreased the BTB permeability and up-regulated the expression levels of ZO-1, occludin and claudin-5 while anti-miR-330-3p and PKC-α activator brought the reverse effects. Compared with EMAP-II, anti-miR-330-3p and PKC-α activator alone, the combination of the three combinations significantly increased the BTB permeability. EMAP-II combined with anti-miR-330-3p and PKCα activator could enhance the DOX’s effects on inhibiting the cell viabilities and increasing the apoptosis of U87 glioma cells. Our studies suggest that low-dose EMAP-II up-regulates the expression of PKC-α and increases the activity of PKC-α by inhibiting the expression of miR-330-3p, reduces the expression of ZO-1

  7. Novel Triazole linked 2-phenyl benzoxazole derivatives induce apoptosis by inhibiting miR-2, miR-13 and miR-14 function in Drosophila melanogaster.

    Science.gov (United States)

    Mondal, Tanmoy; Lavanya, A V S; Mallick, Akash; Dadmala, Tulshiram L; Kumbhare, Ravindra M; Bhadra, Utpal; Bhadra, Manika Pal

    2017-06-01

    Apoptosis is an important phenomenon in multi cellular organisms for maintaining tissue homeostasis and embryonic development. Defect in apoptosis leads to a number of disorders like- autoimmune disorder, immunodeficiency and cancer. 21-22 nucleotides containing micro RNAs (miRNAs/miRs) function as a crucial regulator of apoptosis alike other cellular pathways. Recently, small molecules have been identified as a potent inducer of apoptosis. In this study, we have identified novel Triazole linked 2-phenyl benzoxazole derivatives (13j and 13h) as a negative regulator of apoptosis inhibiting micro RNAs (miR-2, miR-13 and miR-14) in a well established in vivo model Drosophila melanogaster where the process of apoptosis is very similar to human apoptosis. These compounds inhibit miR-2, miR-13 and miR-14 activity at their target sites, which induce an increased caspase activity, and in turn influence the caspase dependent apoptotic pathway. These two compounds also increase the mitochondrial reactive oxygen species (ROS) level to trigger apoptotic cell death.

  8. Clinical relevance of microRNA miR-21, miR-31, miR-92a, miR-101, miR-106a and miR-145 in colorectal cancer

    International Nuclear Information System (INIS)

    Schee, Kristina; Boye, Kjetil; Abrahamsen, Torveig Weum; Fodstad, Øystein; Flatmark, Kjersti

    2012-01-01

    MicroRNAs (miRNAs) regulate gene expression by binding to mRNA, and can function as oncogenes or tumor suppressors depending on the target. In this study, using qRT-PCR, we examined the expression of six miRNAs (miR-21, miR-31, miR-92a, miR-101, miR-106a and miR-145) in tumors from 193 prospectively recruited patients with colorectal cancer, and associations with clinicopathological parameters and patient outcome were analyzed. The miRNAs were chosen based on previous studies for their biomarker potential and suggested biological relevance in colorectal cancer. The miRNA expression was examined by qRT-PCR. Associations between miRNA expression and clinicopathological variables were explored using Mann–Whitney U and Kruskal-Wallis test while survival was estimated using the Kaplan-Meier method and compared using the log-rank test. MiR-101 was hardly expressed in the tumor samples, while for the other miRNAs, variable expression levels and expression ranges were observed, with miR-21 being most abundantly expressed relative to the reference (RNU44). In our study cohort, major clinical significance was demonstrated only for miR-31, as high expression was associated with advanced tumor stage and poor differentiation. No significant associations were found between expression of the investigated miRNAs and metastasis-free or overall survival. Investigating the expression of six miRNAs previously identified as candidate biomarkers in colorectal cancer, few clinically relevant associations were detected in our patient cohort. Our results emphasize the importance of validating potential tumor markers in independent patient cohorts, and indicate that the role of miRNAs as colorectal cancer biomarkers is still undetermined

  9. IκK-16 decreases miRNA-155 expression and attenuates the human monocyte inflammatory response.

    Directory of Open Access Journals (Sweden)

    Norman James Galbraith

    Full Text Available Excessive inflammatory responses in the surgical patient may result in cellular hypo-responsiveness, which is associated with an increased risk of secondary infection and death. microRNAs (miRNAs, such as miR-155, are powerful regulators of inflammatory signalling pathways including nuclear factor κB (NFκB. Our objective was to determine the effect of IκK-16, a selective blocker of inhibitor of kappa-B kinase (IκK, on miRNA expression and the monocyte inflammatory response. In a model of endotoxin tolerance using primary human monocytes, impaired monocytes had decreased p65 expression with suppressed TNF-α and IL-10 production (P < 0.05. miR-155 and miR-138 levels were significantly upregulated at 17 h in the impaired monocyte (P < 0.05. Notably, IκK-16 decreased miR-155 expression with a corresponding dose-dependent decrease in TNF-α and IL-10 production (P < 0.05, and impaired monocyte function was associated with increased miR-155 and miR-138 expression. In the context of IκK-16 inhibition, miR-155 mimics increased TNF-α production, while miR-155 antagomirs decreased both TNF-α and IL-10 production. These data demonstrate that IκK-16 treatment attenuates the monocyte inflammatory response, which may occur through a miR-155-mediated mechanism, and that IκK-16 is a promising approach to limit the magnitude of an excessive innate inflammatory response to LPS.

  10. Increased risk of arterial thromboembolic events after Staphylococcus aureus bacteremia

    DEFF Research Database (Denmark)

    Mejer, N; Gotland, N; Uhre, M L

    2015-01-01

    OBJECTIVES: An association between infection and arterial thromboembolic events (ATE) has been suggested. Here we examined the risk of myocardial infarction (MI), stroke and other ATE after Staphylococcus aureus bacteremia (SAB). METHODS: Danish register-based nation-wide observational cohort study...

  11. Four-miRNA signature as a prognostic tool for lung adenocarcinoma.

    Science.gov (United States)

    Lin, Yan; Lv, Yufeng; Liang, Rong; Yuan, Chunling; Zhang, Jinyan; He, Dan; Zheng, Xiaowen; Zhang, Jianfeng

    2018-01-01

    The aim of this study was to generate a novel miRNA expression signature to accurately predict prognosis for patients with lung adenocarcinoma (LUAD). Using expression profiles downloaded from The Cancer Genome Atlas database, we identified multiple miRNAs with differential expression between LUAD and paired healthy tissues. We then evaluated the prognostic values of the differentially expressed miRNAs using univariate/multivariate Cox regression analysis. This analysis was ultimately used to construct a four-miRNA signature that effectively predicted patient survival. Finally, we analyzed potential functional roles of the target genes for these four miRNAs using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. Based on our cutoff criteria ( P 1.0), we identified a total of 187 differentially expressed miRNAs, including 148 that were upregulated in LUAD tissues and 39 that were downregulated. Four miRNAs (miR-148a-5p, miR-31-5p, miR-548v, and miR-550a-5p) were independently associated with survival based on Kaplan-Meier analysis. We generated a signature index based on the expression of these four miRNAs and stratified patients into low- and high-risk groups. Patients in the high-risk group had significantly shorter survival times than those in the low-risk group ( P =0.002). A functional enrichment analysis suggested that the target genes of these four miRNAs were involved in protein phosphorylation and the Hippo and sphingolipid signaling pathways. Taken together, our results suggest that our four-miRNA signature can be used as a prognostic tool for patients with LUAD.

  12. Increased MiR-221 expression in hepatocellular carcinoma tissues and its role in enhancing cell growth and inhibiting apoptosis in vitro

    International Nuclear Information System (INIS)

    Rong, Minhua; Chen, Gang; Dang, Yiwu

    2013-01-01

    MiR-221 is over-expressed in human hepatocellular carcinoma (HCC), but its clinical significance and function in HCC remains uncertain. The aim of the study was to investigate the relationship between miR-221 overexpression and clinicopathological parameters in HCC formalin-fixed paraffin-embedded (FFPE) tissues, and the effect of miR-221 inhibitor and mimic on different HCC cell lines in vitro. MiR-221 expression was detected using real time RT-qPCR in FFPE HCC and the adjacent noncancerous liver tissues. The relationship between miR-221 level and clinicopathological features was also analyzed. Furthermore, miR-221 inhibitor and mimic were transfected into HCC cell lines HepB3, HepG2 and SNU449. The effects of miR-221 on cell growth, cell cycle, caspase activity and apoptosis were also investigated by spectrophotometry, fluorimetry, fluorescence microscopy and flow cytometry, respectively. The relative expression of miR-221 in clinical TNM stages III and IV was significantly higher than that in the stages I and II. The miR-221 level was also upregulated in the metastatic group compared to the nonmetastatic group. Furthermore, miR-221 over-expression was related to the status of tumor capsular infiltration in HCC clinical samples. Functionally, cell growth was inhibited, cell cycle was arrested in G1/S-phase and apoptosis was increased by miR-221 inhibitor in vitro. Likewise, miR-221 mimic accelerated the cell growth. Expression of miR-221 in FFPE tissues could provide predictive significance for prognosis of HCC patients. Moreover, miR-221 inhibitor could be useful to suppress proliferation and induce apoptosis in HCC cells. Thus miR-221 might be a critical targeted therapy strategy for HCC

  13. Increased Expression of Herpes Virus-Encoded hsv1-miR-H18 and hsv2-miR-H9-5p in Cancer-Containing Prostate Tissue Compared to That in Benign Prostate Hyperplasia Tissue

    Directory of Open Access Journals (Sweden)

    Seok Joong Yun

    2016-06-01

    Full Text Available Purpose: Previously, we reported the presence of virus-encoded microRNAs (miRNAs in the urine of prostate cancer (CaP patients. In this study, we investigated the expression of two herpes virus-encoded miRNAs in prostate tissue. Methods: A total of 175 tissue samples from noncancerous benign prostatic hyperplasia (BPH, 248 tissue samples from patients with CaP and BPH, and 50 samples from noncancerous surrounding tissues from these same patients were analyzed for the expression of two herpes virus-encoded miRNAs by real-time polymerase chain reaction (PCR and immunocytochemistry using nanoparticles as molecular beacons. Results: Real-time reverse transcription-PCR results revealed significantly higher expression of hsv1-miR-H18 and hsv2-miRH9- 5p in surrounding noncancerous and CaP tissues than that in BPH tissue (each comparison, P<0.001. Of note, these miRNA were expressed equivalently in the CaP tissues and surrounding noncancerous tissues. Moreover, immunocytochemistry clearly demonstrated a significant enrichment of both hsv1-miR-H18 and hsv2-miR-H9 beacon-labeled cells in CaP and surrounding noncancerous tissue compared to that in BPH tissue (each comparison, P<0.05 for hsv1-miR-H18 and hsv2- miR-H9. Conclusions: These results suggest that increased expression of hsv1-miR-H18 and hsv2-miR-H95p might be associated with tumorigenesis in the prostate. Further studies will be required to elucidate the role of these miRNAs with respect to CaP and herpes viral infections.

  14. A path-based measurement for human miRNA functional similarities using miRNA-disease associations

    Science.gov (United States)

    Ding, Pingjian; Luo, Jiawei; Xiao, Qiu; Chen, Xiangtao

    2016-09-01

    Compared with the sequence and expression similarity, miRNA functional similarity is so important for biology researches and many applications such as miRNA clustering, miRNA function prediction, miRNA synergism identification and disease miRNA prioritization. However, the existing methods always utilized the predicted miRNA target which has high false positive and false negative to calculate the miRNA functional similarity. Meanwhile, it is difficult to achieve high reliability of miRNA functional similarity with miRNA-disease associations. Therefore, it is increasingly needed to improve the measurement of miRNA functional similarity. In this study, we develop a novel path-based calculation method of miRNA functional similarity based on miRNA-disease associations, called MFSP. Compared with other methods, our method obtains higher average functional similarity of intra-family and intra-cluster selected groups. Meanwhile, the lower average functional similarity of inter-family and inter-cluster miRNA pair is obtained. In addition, the smaller p-value is achieved, while applying Wilcoxon rank-sum test and Kruskal-Wallis test to different miRNA groups. The relationship between miRNA functional similarity and other information sources is exhibited. Furthermore, the constructed miRNA functional network based on MFSP is a scale-free and small-world network. Moreover, the higher AUC for miRNA-disease prediction indicates the ability of MFSP uncovering miRNA functional similarity.

  15. Exosome-mediated transfer of miR-222 is sufficient to increase tumor malignancy in melanoma.

    Science.gov (United States)

    Felicetti, Federica; De Feo, Alessandra; Coscia, Carolina; Puglisi, Rossella; Pedini, Francesca; Pasquini, Luca; Bellenghi, Maria; Errico, Maria Cristina; Pagani, Elena; Carè, Alessandra

    2016-02-24

    Growing evidence is showing that metastatic cell populations are able to transfer their characteristics to less malignant cells. Exosomes (EXOs) are membrane vesicles of endocytic origin able to convey their cargo of mRNAs, microRNAs (miRs), proteins and lipids from donors to proximal as well as distant acceptor cells. Our previous results indicated that miR-221&222 are key factors for melanoma development and dissemination. The aim of this study was to verify whether the tumorigenic properties associated with miR-222 overexpression can be also propagated by miR-222-containing EXOs. EXOs were isolated by UltraCentrifugation or Exoquick-TC(®) methods. Preparations of melanoma-derived vesicles were characterized by using the Nanosight™ technology and the expression of exosome markers analyzed by western blot. The expression levels of endogenous and exosomal miRNAs were examined by real time PCR. Confocal microscopy was used to evaluate transfer and uptake of microvesicles from donor to recipient cells. The functional significance of exosomal miR-222 was estimated by analyzing the vessel-like process formation, as well as cell cycle rates, invasive and chemotactic capabilities. Besides microvesicle marker characterization, we evidenced that miR-222 exosomal expression mostly reflected its abundance in the cells of origin, correctly paralleled by repression of its target genes, such as p27Kip1, and induction of the PI3K/AKT pathway, thus confirming its functional implication in cancer. The possible differential significance of PI3K/AKT blockade was assessed by using the BKM120 inhibitor in miR-222-transduced cell lines. In addition, in vitro cultures showed that vesicles released by miR-222-overexpressing cells were able to transfer miR-222-dependent malignancy when taken-up by recipient primary melanomas. Results were confirmed by antagomiR-221&222 treatments and by functional observations after internalization of EXOs devoid of these miRs. All together these data

  16. MiR-144 Increases Intestinal Permeability in IBS-D Rats by Targeting OCLN and ZO1

    Directory of Open Access Journals (Sweden)

    Qiuke Hou

    2017-12-01

    Full Text Available Background/Aims: Irritable bowel syndrome with diarrhoea (IBS-D is a chronic, functional bowel disorder characterized by abdominal pain or diarrhoea and altered bowel habits, which correlate with intestinal hyperpermeability. MicroRNAs (miRNAs are involved in regulating intestinal permeability in IBS-D. However, the role of miRNAs in regulating intestinal permeability and protecting the epithelial barrier remains unclear. Our goals were to (i identify differential expression of miRNAs and their targets in the distal colon of IBS-D rats; (ii verify in vitro whether occludin (OCLN and zonula occludens 1 (ZO1/TJP1 were direct targets of miR-144 and were down-regulated in IBS-D rats; and (iii determine whether down-regulation of miR-144 in vitro could reverse the pathological hallmarks of intestinal hyperpermeability via targeting OCLN and ZO1. Methods: The IBS-D rat model was established using 4% acetic acid and evaluated by haematoxylin-eosin (HE staining. The distal colon was obtained in order to perform miRNA microarray analysis and to isolate and culture colonic epithelial cells. When differential expression of miRNA was found, the results were verified by qRT-PCR, and the target genes were further explored by bioinformatics analysis. Correlation analyses were carried out to compare the expression of miRNA and target genes. Then, mutants, miRNA mimics and inhibitors of the target genes were constructed and transfected to colonic epithelial cells. qRT-PCR, western blotting, enzyme-linked immunosorbent assays (ELISAs and dual-luciferase assays were used to investigate the expression of miR-144 and OCLN, ZO1 in IBS-D rats. Results: There were 8 up-regulated and 18 down-regulated miRNAs identified in the IBS-D rat model. Of these, miR-144 was markedly up-regulated and resulted in the down-regulation of OCLN and ZO1 expression. Overexpression of miR-144 by transfection of miR-144 precursor markedly inhibited the expression of OCLN and ZO1. Further

  17. miR-34 increases in vitro PANC-1 cell sensitivity to gemcitabine via targeting Slug/PUMA.

    Science.gov (United States)

    Zhang, Qing-An; Yang, Xu-Hai; Chen, Dong; Yan, Xiang; Jing, Fu-Chun; Liu, Hong-Qian; Zhang, Ronghua

    2018-01-01

    miR-34 was deregulated in tumor tissues compared with corresponding noncancerous tissue samples. Furthermore, miR-34 may contribute to cancer-stromal interaction associated with cancer progression. However, whether miR-34 could decrease chemoresistance of cancer cells to chemotherapeutic agent remains unclear. In our study, we examined whether overexpression of miR-34 could sensitize gemcitabine -mediated apoptosis in human pancreatic cancer PANC-1 cells. We found that miR-34 markedly induced gemcitabine -mediated apoptosis in PANC-1 cells. miR-34 induced down-regulation of Slug expression and upregulation of p53 up-regulated modulator of apoptosis (PUMA) expression. The over-expression of Slug or downregulation of PUMA by Slug cDNA or PUMA siRNA transfection markedly blocked miR-34-induced gemcitabine sensitization. Furthermore, miR-34 induced PUMA expression by downregulation of Slug. Taken together, our study demonstrates that miR-34 enhances sensitization against gemcitabine-mediated apoptosis through the down-regulation of Slug expression, and up-regulation of Slug-dependent PUMA expression.

  18. Regulation of cardiac expression of the diabetic marker microRNA miR-29.

    Directory of Open Access Journals (Sweden)

    Nicholas Arnold

    Full Text Available Diabetes mellitus (DM is an independent risk factor for heart disease and its underlying mechanisms are unclear. Increased expression of diabetic marker miR-29 family miRNAs (miR-29a, b and c that suppress the pro-survival protein Myeloid Cell Leukemia 1(MCL-1 is reported in pancreatic β-cells in Type 1 DM. Whether an up-regulation of miR-29 family miRNAs and suppression of MCL-1 (dysregulation of miR-29-MCL-1 axis occurs in diabetic heart is not known. This study tested the hypothesis that insulin regulates cardiac miR-29-MCL-1 axis and its dysregulation correlates with DM progression. In vitro studies with mouse cardiomyocyte HL-1 cells showed that insulin suppressed the expression of miR-29a, b and c and increased MCL-1 mRNA. Conversely, Rapamycin (Rap, a drug implicated in the new onset DM, increased the expression of miR-29a, b and c and suppressed MCL-1 and this effect was reversed by transfection with miR-29 inhibitors. Rap inhibited mammalian target of rapamycin complex 1 (mTORC1 signaling in HL-1 cells. Moreover, inhibition of either mTORC1 substrate S6K1 by PF-4708671, or eIF4E-induced translation by 4E1RCat suppressed MCL-1. We used Zucker diabetic fatty (ZDF rat, a rodent model for DM, to test whether dysregulation of cardiac miR-29-MCL-1 axis correlates with DM progression. 11-week old ZDF rats exhibited significantly increased body weight, plasma glucose, insulin, cholesterol, triglycerides, body fat, heart weight, and decreased lean muscle mass compared to age-matched lean rats. Rap treatment (1.2 mg/kg/day, from 9-weeks to 15-weeks significantly reduced plasma insulin, body weight and heart weight, and severely dysregulated cardiac miR-29-MCL1 axis in ZDF rats. Importantly, dysregulation of cardiac miR-29-MCL-1 axis in ZDF rat heart correlated with cardiac structural damage (disorganization or loss of myofibril bundles. We conclude that insulin and mTORC1 regulate cardiac miR-29-MCL-1 axis and its dysregulation caused by reduced

  19. Opposing roles of miR-21 and miR-29 in the progression of fibrosis in Duchenne muscular dystrophy.

    Science.gov (United States)

    Zanotti, Simona; Gibertini, Sara; Curcio, Maurizio; Savadori, Paolo; Pasanisi, Barbara; Morandi, Lucia; Cornelio, Ferdinando; Mantegazza, Renato; Mora, Marina

    2015-07-01

    Excessive extracellular matrix deposition progressively replacing muscle fibres is the endpoint of most severe muscle diseases. Recent data indicate major involvement of microRNAs in regulating pro- and anti-fibrotic genes. To investigate the roles of miR-21 and miR-29 in muscle fibrosis in Duchenne muscle dystrophy, we evaluated their expression in muscle biopsies from 14 patients, and in muscle-derived fibroblasts and myoblasts. In Duchenne muscle biopsies, miR-21 expression was significantly increased, and correlated directly with COL1A1 and COL6A1 transcript levels. MiR-21 expression was also significantly increased in Duchenne fibroblasts, more so after TGF-β1 treatment. In Duchenne fibroblasts the expression of miR-21 target transcripts PTEN (phosphatase and tensin homolog deleted on chromosome 10) and SPRY-1 (Sprouty homolog 1) was significantly reduced; while collagen I and VI transcript levels and soluble collagen production were significantly increased. MiR-29a and miR-29c were significantly reduced in Duchenne muscle and myoblasts, and miR-29 target transcripts, COL3A1, FBN1 and YY1, significantly increased. MiR-21 silencing in mdx mice reduced fibrosis in the diaphragm muscle and in both Duchenne fibroblasts and mdx mice restored PTEN and SPRY-1 expression, and significantly reduced collagen I and VI expression; while miR-29 mimicking in Duchenne myoblasts significantly decreased miR-29 target transcripts. These findings indicate that miR-21 and miR-29 play opposing roles in Duchenne muscle fibrosis and suggest that pharmacological modulation of their expression has therapeutic potential for reducing fibrosis in this condition. Copyright © 2015. Published by Elsevier B.V.

  20. A detailed family history of myocardial infarction and risk of myocardial infarction

    DEFF Research Database (Denmark)

    Ranthe, Mattis Flyvholm; Petersen, Jonathan Aavang; Bundgård, Henning

    2015-01-01

    of cardiovascular medications. CONCLUSION: A detailed family history, particularly number of affected first- and second-degree relatives, contributes meaningfully to risk assessment, especially in middle-aged persons. Future studies should test for potential improvement of risk algorithm prediction using detailed......BACKGROUND: Family history of myocardial infarction (MI) is an independent risk factor for MI. Several genetic variants are associated with increased risk of MI and family history of MI in a first-degree relative doubles MI risk. However, although family history of MI is not a simple dichotomous...... risk factor, the impact of specific, detailed family histories has not received much attention, despite its high clinical relevance. We examined risk of MI by MIs in first- and second-degree relatives and by number and age of affected relatives. METHODS AND FINDINGS: Using Danish national registers, we...

  1. The miRNome of bipolar disorder.

    Science.gov (United States)

    Fries, Gabriel R; Carvalho, Andre F; Quevedo, Joao

    2018-06-01

    Epigenetic mechanisms have been suggested to play a key role in the pathophysiology of bipolar disorder (BD), among which microRNAs (miRNAs) may be of particular significance according to recent studies. We aimed to summarize miRNA studies in BD to identify consistent findings, limitations, and future directions of this emerging field. We performed a comprehensive search on PUBMED and Medline for studies investigating an association between BD and miRNAs. The included studies report miRNA alterations in postmortem brain tissues and in the periphery, cell culture and preclinical findings, genetic associations, and the effects of medications. Several studies report changes in miRNA expression levels in postmortem brain and in the periphery of patients, although most of the results so far have not been replicated and are not concordant between different populations. Genetic studies also suggest that miRNA genes are located within susceptibility loci of BD, and also a putative role of miRNAs in modulating genes previously shown to confer risk of BD. We did not perform a systematic review of the literature, and miRNAs represent only one facet of the plethora of epigenetic mechanisms that might be involved in BD's pathophysiology. miRNA findings in BD significantly vary between studies, but are consistent to suggest a key role for these molecules in BD's pathophysiology and treatment, particularly miR-34a and miR-137. Accordingly, miRNA might represent important biomarkers of illness to be used in the clinical settings, and potentially also for the development of novel therapeutics for BD in the near future. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A Serum miR Signature Specific to Low-Risk Prostate Cancer

    Science.gov (United States)

    2017-09-01

    clear threshold and a negative predictive value of 0.9 to predict the absence of highgrade PCa among the patients. A unique feature of our discovery...miRs we created a combined “miR Score” which had clear threshold and a negative predictive value of 0.9 to predict the absence of high-grade PCa among...analysis 24 Major Task 2: Measure miR panel in PCa patient sera Subtask 1: Isolate RNA (ongoing through this time frame ) 6-24 Dr. Nonn 0

  3. miRNAs in brain development

    International Nuclear Information System (INIS)

    Petri, Rebecca; Malmevik, Josephine; Fasching, Liana; Åkerblom, Malin; Jakobsson, Johan

    2014-01-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. In the brain, a large number of miRNAs are expressed and there is a growing body of evidence demonstrating that miRNAs are essential for brain development and neuronal function. Conditional knockout studies of the core components in the miRNA biogenesis pathway, such as Dicer and DGCR8, have demonstrated a crucial role for miRNAs during the development of the central nervous system. Furthermore, mice deleted for specific miRNAs and miRNA-clusters demonstrate diverse functional roles for different miRNAs during the development of different brain structures. miRNAs have been proposed to regulate cellular functions such as differentiation, proliferation and fate-determination of neural progenitors. In this review we summarise the findings from recent studies that highlight the importance of miRNAs in brain development with a focus on the mouse model. We also discuss the technical limitations of current miRNA studies that still limit our understanding of this family of non-coding RNAs and propose the use of novel and refined technologies that are needed in order to fully determine the impact of specific miRNAs in brain development. - Highlights: • miRNAs are essential for brain development and neuronal function. • KO of Dicer is embryonically lethal. • Conditional Dicer KO results in defective proliferation or increased apoptosis. • KO of individual miRNAs or miRNA families is necessary to determine function

  4. Genetic versus Non-Genetic Regulation of miR-103, miR-143 and miR-483-3p Expression in Adipose Tissue and Their Metabolic Implications—A Twin Study

    Directory of Open Access Journals (Sweden)

    Jette Bork-Jensen

    2014-07-01

    Full Text Available Murine models suggest that the microRNAs miR-103 and miR-143 may play central roles in the regulation of subcutaneous adipose tissue (SAT and development of type 2 diabetes (T2D. The microRNA miR-483-3p may reduce adipose tissue expandability and cause ectopic lipid accumulation, insulin resistance and T2D. We aimed to explore the genetic and non-genetic factors that regulate these microRNAs in human SAT, and to investigate their impact on metabolism in humans. Levels of miR-103, miR-143 and miR-483-3p were measured in SAT biopsies from 244 elderly monozygotic and dizygotic twins using real-time PCR. Heritability estimates were calculated and multiple regression analyses were performed to study associations between these microRNAs and measures of metabolism, as well as between these microRNAs and possible regulating factors. We found that increased BMI was associated with increased miR-103 expression levels. In addition, the miR-103 levels were positively associated with 2 h plasma glucose levels and hemoglobin A1c independently of BMI. Heritability estimates for all three microRNAs were low. In conclusion, the expression levels of miR-103, miR-143 and miR-483-3p in adipose tissue are primarily influenced by non-genetic factors, and miR-103 may be involved in the development of adiposity and control of glucose metabolism in humans.

  5. miR-181a and miR-630 regulate cisplatin-induced cancer cell death.

    Science.gov (United States)

    Galluzzi, Lorenzo; Morselli, Eugenia; Vitale, Ilio; Kepp, Oliver; Senovilla, Laura; Criollo, Alfredo; Servant, Nicolas; Paccard, Caroline; Hupé, Philippe; Robert, Thomas; Ripoche, Hugues; Lazar, Vladimir; Harel-Bellan, Annick; Dessen, Philippe; Barillot, Emmanuel; Kroemer, Guido

    2010-03-01

    MicroRNAs (miRNA) are noncoding RNAs that regulate multiple cellular processes, including proliferation and apoptosis. We used microarray technology to identify miRNAs that were upregulated by non-small cell lung cancer (NSCLC) A549 cells in response to cisplatin (CDDP). The corresponding synthetic miRNA precursors (pre-miRNAs) per se were not lethal when transfected into A549 cells yet affected cell death induction by CDDP, C2-ceramide, cadmium, etoposide, and mitoxantrone in an inducer-specific fashion. Whereas synthetic miRNA inhibitors (anti-miRNAs) targeting miR-181a and miR-630 failed to modulate the response of A549 to CDDP, pre-miR-181a and pre-miR-630 enhanced and reduced CDDP-triggered cell death, respectively. Pre-miR-181a and pre-miR-630 consistently modulated mitochondrial/postmitochondrial steps of the intrinsic pathway of apoptosis, including Bax oligomerization, mitochondrial transmembrane potential dissipation, and the proteolytic maturation of caspase-9 and caspase-3. In addition, pre-miR-630 blocked early manifestations of the DNA damage response, including the phosphorylation of the ataxia-telangiectasia mutated (ATM) kinase and of two ATM substrates, histone H2AX and p53. Pharmacologic and genetic inhibition of p53 corroborated the hypothesis that pre-miR-630 (but not pre-miR-181a) blocks the upstream signaling pathways that are ignited by DNA damage and converge on p53 activation. Pre-miR-630 arrested A549 cells in the G0-G1 phase of the cell cycle, correlating with increased levels of the cell cycle inhibitor p27(Kip1) as well as with reduced proliferation rates and resulting in greatly diminished sensitivity of A549 cells to the late S-G2-M cell cycle arrest mediated by CDDP. Altogether, these results identify miR-181a and miR-630 as novel modulators of the CDDP response in NSCLC.

  6. miR398 and miR395 are involved in response to SO2 stress in Arabidopsis thaliana.

    Science.gov (United States)

    Li, Lihong; Yi, Huilan; Xue, Meizhao; Yi, Min

    2017-11-01

    Sulfur dioxide (SO 2 ) is a common air pollutant that has adverse effects on plants. MicroRNAs (miRNAs) are small noncoding RNA that play critical roles in plant development and stress response. In this study, we found that two miRNAs, miR398 and miR395, were differentially expressed in Arabidopsis shoots under SO 2 stress. The expression of miR398 was down-regulated, and the transcript levels of its target genes, Cu/Zn superoxide dismutases (CSD1 and CSD2), were increased during SO 2 exposure. The activity of superoxide dismutase (SOD), one of the major antioxidant enzymes, was enhanced with the increase in the CSD transcript level, suggesting an important role of miR398 in response to SO 2 -induced oxidative stress. Meanwhile, the expression of miR395 was increased, and the transcript levels of its target genes, ATP sulfurylases (APS3 and APS4) and a low-affinity sulfate transporter (SULTR2;1), were decreased in Arabidopsis shoots, showing that miR395 played important roles in the regulation of sulfate assimilation and translocation during SO 2 exposure. The content of glutathione (GSH), an important sulfur-containing antioxidant, was enhanced with the changes in sulfur metabolism in Arabidopsis shoots under SO 2 stress. These results showed that both miR398 and miR395 were involved in protecting plants from oxidative damage during SO 2 exposure. Many stress-responsive cis-elements were found in the promoter regions of MIR398 and MIR395, suggesting that these miRNAs might respond to various environmental conditions, including SO 2 stress. Overall, our study provides an insight into the regulatory roles of miRNAs in response to SO 2 stress in plants, and highlights the molecular mechanisms of plant adaptation to environmental stress.

  7. miR-18a promotes cell proliferation of esophageal squamous cell carcinoma cells by increasing cylin D1 via regulating PTEN-PI3K-AKT-mTOR signaling axis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weiguo, E-mail: weiguozhangHU@gmail.com; Lei, Caipeng; Fan, Junli; Wang, Jing

    2016-08-12

    Esophageal squamous cell carcinoma (ESCC) is one of the lethal cancers with a high incidence rate in Asia. Cyclin D1 is overexpressed and plays an important role in the carcinogenesis of ESCC; however the mechanism of the deregulation of Cyclin D1 in ESCC remains to be determined. In the study, we found that miR-18a promotes the expression Cyclin D1 by targeting PTEN in eophageal squamous cell carcinoma TE13 and Eca109 cells. Transfection of miR-18a mimetics increased cyclin D1, while transfection of miR-18a antagomir decreased D1. Moreover, miR-18a-mediated upregulation of cyclin D1 was accompanied with downregulation of PTEN, which is a direct target of miR-18a, and increase of the phosphorylation of AKT and S6K1. In addition, pharmacologic inhibition of AKT or mTOR kinases abolished the increase of cyclinD1 by miR-18a, which was accompanied with decreased phosphorylation of Rb−S780 and inhibition of cell proliferation. Our results demonstrated the upregulation of miR-18a promoted cell proliferation by increasing cylin D1 via regulating PTEN-PI3K-AKT-mTOR signaling axis, suggesting that small molecule inhibitors of AKT-mTOR signaling are potential agents for the treatment of ESCC patients with upregulation of miR-17-92 cluster. - Highlights: • miR-18a promotes the proliferation of ESCC cells. • miR-18a increase cyclin D1 expression in ESCC cells. • miR-18a directly targets PTEN in ESCC cells. • Inhibition of AKT-mTOR prevents miR-18a-induced cyclin D1 in ESCC cells. • miR-18a antagomir sensitizes ESCC cells to cisplatin.

  8. Keystone Symposia "ncRNAs in Development and Cancer", Vancouver, Canada: Increased release of exosomes and export of invasion-modulating miRNAs miR921, -23b, -and -224 from metastatic urothelial carcinoma cells

    DEFF Research Database (Denmark)

    Ostenfeld, Marie Stampe; Jeppesen, Dennis Kjølhede; Laurberg, Jens Reumert

    2013-01-01

    Cancer cells secrete soluble factors and various extracellular vesicles, including exosomes, into their tissue microenvironment. The secretion of exosomes is speculated to facilitate local invasion and increase the propensity of tumors to form distant metastases. Here we present a characterization...... of exosome vesicles from isogenic urothelial carcinoma cell lines, with different metastatic propensity by western blotting, electron microscopy, nanoparticle tracking analysis, dynamic light scattering, and profiling of 671 miRNAs by qRT-PCR. An increase in the number of multivesicular bodies and exosomes...... was observed for metastatic FL3 cells compared to isogenic non-metastatic T24 cells. The release was significantly inhibited by knockdown of Rab27b and pharmacological inhibition of nsmase2 by GW4869. miRNA profiling was conducted on parental cells and their secreted exosomes. Here, selective export of miR921...

  9. The predictive value of CHADS₂ risk score in post myocardial infarction arrhythmias - a Cardiac Arrhythmias and RIsk Stratification after Myocardial infArction (CARISMA) substudy

    DEFF Research Database (Denmark)

    Ruwald, Anne-Christine Huth; Gang, Uffe; Thomsen, Poul Erik Bloch

    2014-01-01

    BACKGROUND: Previous studies have shown substantially increased risk of cardiac arrhythmias and sudden cardiac death in post-myocardial infarction (MI) patients. However it remains difficult to identify the patients who are at highest risk of arrhythmias in the post-MI setting. The purpose...... of this study was to investigate if CHADS₂ score (congestive heart failure, hypertension, age ≥75 years, diabetes and previous stroke/TCI [doubled]) can be used as a risk tool for predicting cardiac arrhythmias after MI. METHODS: The study included 297 post-MI patients from the CARISMA study with left....... Patients were stratified according to CHADS₂ score at enrollment. Congestive heart failure was defined as LVEF ≤40% and NYHA class II, III or IV. RESULTS: We found significantly increased risk of an arrhythmic event with increasing CHADS₂ score (CHADS₂ score=1-2: HR=2.1 [1.1-3.9], p=0.021, CHADS₂ score ≥ 3...

  10. Reference miRNAs for miRNAome analysis of urothelial carcinomas.

    Directory of Open Access Journals (Sweden)

    Nadine Ratert

    Full Text Available BACKGROUND/OBJECTIVE: Reverse transcription quantitative real-time PCR (RT-qPCR is widely used in microRNA (miRNA expression studies on cancer. To compensate for the analytical variability produced by the multiple steps of the method, relative quantification of the measured miRNAs is required, which is based on normalization to endogenous reference genes. No study has been performed so far on reference miRNAs for normalization of miRNA expression in urothelial carcinoma. The aim of this study was to identify suitable reference miRNAs for miRNA expression studies by RT-qPCR in urothelial carcinoma. METHODS: Candidate reference miRNAs were selected from 24 urothelial carcinoma and normal bladder tissue samples by miRNA microarrays. The usefulness of these candidate reference miRNAs together with the commonly for normalization purposes used small nuclear RNAs RNU6B, RNU48, and Z30 were thereafter validated by RT-qPCR in 58 tissue samples and analyzed by the algorithms geNorm, NormFinder, and BestKeeper. PRINCIPAL FINDINGS: Based on the miRNA microarray data, a total of 16 miRNAs were identified as putative reference genes. After validation by RT-qPCR, miR-101, miR-125a-5p, miR-148b, miR-151-5p, miR-181a, miR-181b, miR-29c, miR-324-3p, miR-424, miR-874, RNU6B, RNU48, and Z30 were used for geNorm, NormFinder, and BestKeeper analyses that gave different combinations of recommended reference genes for normalization. CONCLUSIONS: The present study provided the first systematic analysis for identifying suitable reference miRNAs for miRNA expression studies of urothelial carcinoma by RT-qPCR. Different combinations of reference genes resulted in reliable expression data for both strongly and less strongly altered miRNAs. Notably, RNU6B, which is the most frequently used reference gene for miRNA studies, gave inaccurate normalization. The combination of four (miR-101, miR-125a-5p, miR-148b, and miR-151-5p or three (miR-148b, miR-181b, and miR-874

  11. MiR-29c regulates the expression of miR-34c and miR-449a by targeting DNA methyltransferase 3a and 3b in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Niu, Man; Gao, Dan; Wen, Qiuyuan; Wei, Pingpin; Pan, Suming; Shuai, Cijun; Ma, Huiling; Xiang, Juanjuan; Li, Zheng; Fan, Songqing; Li, Guiyuan; Peng, Shuping

    2016-01-01

    Nasopharyngeal carcinoma (NPC) is prevalent in South East Asia and Southern China particularly, despite the reported 5-year survival ratio is relative higher than other deadly cancers such as liver, renal, pancreas cancer, the lethality is characterized by high metastatic potential in the early stage and high recurrence rate after radiation treatment. MicroRNA-29c was found to be down-regulated in the serum as well as in the tissue of nasopharyngeal carcinoma tissue. In this study, we found accidentally that the transfection of pre-miR-29c or miR-29c mimics significantly increases the expression level of miR-34c and miR-449a but doesn’t affect that of miR-222 using real-time quantitative PCR in nasopharyngeal carcinoma cell lines. To explore the molecular mechanism of the regulatory role, the cells are treated with 5-Aza-2-deoxycytidine (5-Aza-CdR) treatment and the level of miR-34c and miR-449a but not miR-222 accumulated by the treatment. DNA methyltransferase 3a, 3b were down-regulated by the 5-Aza-CdR treatment with western blot and real-time quantitative PCR. We found that pre-miR-29c or miR-29c mimics significantly increases the expression level of miR-34c and miR-449a. We further found DNA methyltransferase 3a and 3b are the target gene of miR-29c. Restoration of miR-29c in NPC cells down-regulated DNA methyltransferase 3a, 3b, but not DNA methyltransferase T1. The regulation of miR-29c/DNMTs/miR-34c/449a is an important molecular axis of NPC development and targeting DNMTs or restoring of miR-29c might be a promising therapy strategy for the prevention of NPC

  12. Novel genetic variants in miR-191 gene and familial ovarian cancer

    International Nuclear Information System (INIS)

    Shen, Jie; DiCioccio, Richard; Odunsi, Kunle; Lele, Shashikant B; Zhao, Hua

    2010-01-01

    Half of the familial aggregation of ovarian cancer can't be explained by any known risk genes, suggesting the existence of other genetic risk factors. Some of these unknown factors may not be traditional protein encoding genes. MicroRNA (miRNA) plays a critical role in tumorigenesis, but it is still unknown if variants in miRNA genes lead to predisposition to cancer. Considering the fact that miRNA regulates a number of tumor suppressor genes (TSGs) and oncogenes, genetic variations in miRNA genes could affect the levels of expression of TSGs or oncogenes and, thereby, cancer risk. To test this hypothesis in familial ovarian cancer, we screened for genetic variants in thirty selected miRNA genes, which are predicted to regulate key ovarian cancer genes and are reported to be misexpressed in ovarian tumor tissues, in eighty-three patients with familial ovarian cancer. All of the patients are non-carriers of any known BRCA1/2 or mismatch repair (MMR) gene mutations. Seven novel genetic variants were observed in four primary or precursor miRNA genes. Among them, three rare variants were found in the precursor or primary precursor of the miR-191 gene. In functional assays, the one variant located in the precursor of miR-191 resulted in conformational changes in the predicted secondary structures, and consequently altered the expression of mature miR-191. In further analysis, we found that this particular variant exists in five family members who had ovarian cancer. Our findings suggest that there are novel genetic variants in miRNA genes, and those certain genetic variants in miRNA genes can affect the expression of mature miRNAs and, consequently, might alter the regulation of TSGs or oncogenes. Additionally, the variant might be potentially associated with the development of familial ovarian cancer

  13. Risk of myocardial infarction in parents of HIV-infected Individuals: a population-based Cohort Study

    DEFF Research Database (Denmark)

    Rasmussen, Line D; Omland, Lars H; Pedersen, Court

    2010-01-01

    with the HIV disease and HAART or whether life-style related or genetic factors also increase the risk in this population. To establish whether the increased risk of myocardial infarction in HIV patients partly reflects an increased risk of MI in their families, we estimated the relative risk of MI in parents...

  14. Increased level of miRNA 30b-3p in patients with prostatic hyperplasia and testosterone with high-level of prostate-specific antigen

    Directory of Open Access Journals (Sweden)

    Wasnaa Jumaa Mohammad

    2018-01-01

    Full Text Available Background: Prostate cancer (PCa is the most common causing cancer-related in death in men and lack of reliable diagnostic tool. MicroRNAs are small molecules single-stranded RNA that affecting protein expression at the level of translation and dysregulation can dramatically affect cell metabolism. However, the using of circulating miRNAs as diagnostic biomarkers for diagnosis of PCa is still unknown. Methods: Ten patients with prostatic hyperplasia with high-level of PSA and 10 healthy controls were conducted in this study. The reverse transcription of miRNA based on quantitative polymerase chain reaction (qPCR were used for evaluating the dysregulation of miRNA 30b-3p and using of ELISA to evaluate the level of prostate-specific antigen (PSA and testosterone hormone. Results: Circulating miRNA 30b-3p level was increased in patients with prostatic hyperplasia with higher level of PSA as compared with healthy controls. Also, the testosterone hormone was increased in those patients as compared with normal level of testosterone in healthy individuals. Conclusion: The serum miRNA 30b-3p level increased in patients with hyperplasia in prostate and may be one of potential biomarker for diagnosis of PCa.

  15. miRSponge: a manually curated database for experimentally supported miRNA sponges and ceRNAs.

    Science.gov (United States)

    Wang, Peng; Zhi, Hui; Zhang, Yunpeng; Liu, Yue; Zhang, Jizhou; Gao, Yue; Guo, Maoni; Ning, Shangwei; Li, Xia

    2015-01-01

    In this study, we describe miRSponge, a manually curated database, which aims at providing an experimentally supported resource for microRNA (miRNA) sponges. Recent evidence suggests that miRNAs are themselves regulated by competing endogenous RNAs (ceRNAs) or 'miRNA sponges' that contain miRNA binding sites. These competitive molecules can sequester miRNAs to prevent them interacting with their natural targets to play critical roles in various biological and pathological processes. It has become increasingly important to develop a high quality database to record and store ceRNA data to support future studies. To this end, we have established the experimentally supported miRSponge database that contains data on 599 miRNA-sponge interactions and 463 ceRNA relationships from 11 species following manual curating from nearly 1200 published articles. Database classes include endogenously generated molecules including coding genes, pseudogenes, long non-coding RNAs and circular RNAs, along with exogenously introduced molecules including viral RNAs and artificial engineered sponges. Approximately 70% of the interactions were identified experimentally in disease states. miRSponge provides a user-friendly interface for convenient browsing, retrieval and downloading of dataset. A submission page is also included to allow researchers to submit newly validated miRNA sponge data. Database URL: http://www.bio-bigdata.net/miRSponge. © The Author(s) 2015. Published by Oxford University Press.

  16. Diagnostic accuracy of serum miR-122 and miR-199a in women with endometriosis.

    Science.gov (United States)

    Maged, Ahmed M; Deeb, Wesam S; El Amir, Azza; Zaki, Sherif S; El Sawah, Heba; Al Mohamady, Maged; Metwally, Ahmed A; Katta, Maha A

    2018-04-01

    To evaluate the value of serum microRNA-122 (miR-122) and miR-199a as reliable noninvasive biomarkers in the diagnosis of endometriosis. During 2015-2016, at a teaching hospital in Egypt, a prospective cohort study was conducted on 45 women with pelvic endometriosis and 35 women who underwent laparoscopy for pelvic pain but were not diagnosed with endometriosis. Blood and peritoneal fluid (PF) samples were collected; interleukin-6 (IL-6) was detected by enzyme-linked immunosorbent assay and miR-122 and miR-199a expression was measured by quantitative real-time polymerase chain reaction. The serum and PF levels of IL-6, miR-122, and miR-199a were significantly higher in women with endometriosis than in controls (Pendometriosis. Serum miR-122 and miR-199a were significantly increased in endometriosis, indicating that these microRNAs might serve as biomarkers for the diagnosis of endometriosis. © 2017 International Federation of Gynecology and Obstetrics.

  17. Coronary heart disease-associated variation in TCF21 disrupts a miR-224 binding site and miRNA-mediated regulation.

    Science.gov (United States)

    Miller, Clint L; Haas, Ulrike; Diaz, Roxanne; Leeper, Nicholas J; Kundu, Ramendra K; Patlolla, Bhagat; Assimes, Themistocles L; Kaiser, Frank J; Perisic, Ljubica; Hedin, Ulf; Maegdefessel, Lars; Schunkert, Heribert; Erdmann, Jeanette; Quertermous, Thomas; Sczakiel, Georg

    2014-03-01

    Genome-wide association studies (GWAS) have identified chromosomal loci that affect risk of coronary heart disease (CHD) independent of classical risk factors. One such association signal has been identified at 6q23.2 in both Caucasians and East Asians. The lead CHD-associated polymorphism in this region, rs12190287, resides in the 3' untranslated region (3'-UTR) of TCF21, a basic-helix-loop-helix transcription factor, and is predicted to alter the seed binding sequence for miR-224. Allelic imbalance studies in circulating leukocytes and human coronary artery smooth muscle cells (HCASMC) showed significant imbalance of the TCF21 transcript that correlated with genotype at rs12190287, consistent with this variant contributing to allele-specific expression differences. 3' UTR reporter gene transfection studies in HCASMC showed that the disease-associated C allele has reduced expression compared to the protective G allele. Kinetic analyses in vitro revealed faster RNA-RNA complex formation and greater binding of miR-224 with the TCF21 C allelic transcript. In addition, in vitro probing with Pb2+ and RNase T1 revealed structural differences between the TCF21 variants in proximity of the rs12190287 variant, which are predicted to provide greater access to the C allele for miR-224 binding. miR-224 and TCF21 expression levels were anti-correlated in HCASMC, and miR-224 modulates the transcriptional response of TCF21 to transforming growth factor-β (TGF-β) and platelet derived growth factor (PDGF) signaling in an allele-specific manner. Lastly, miR-224 and TCF21 were localized in human coronary artery lesions and anti-correlated during atherosclerosis. Together, these data suggest that miR-224 interaction with the TCF21 transcript contributes to allelic imbalance of this gene, thus partly explaining the genetic risk for coronary heart disease associated at 6q23.2. These studies implicating rs12190287 in the miRNA-dependent regulation of TCF21, in conjunction with

  18. MI (2-methyl-4-isothiazolin-3-one) contained in detergents is not detectable in machine washed textiles

    DEFF Research Database (Denmark)

    Hofmann, Maja A; Giménez-Arnau, Ana; Aberer, Werner

    2018-01-01

    hazard as a strong contact allergen, the risk depends on exposure. Regarding the risk of exposure levels for the consumer to MI in clothes it can be stated that the use of MI in laundry detergents is safe for the consumer if these products are used according to the instructions in the normal household......Background: European legislation has banned the preservative methylisothiazolinone (MI) from inclusion in leave-on cosmetics. However, the risk for allergic reactions depends on exposure. The aim of this study was to determine the risk of MI in laundry detergents for household machine washing....... Methods: Different formulations of laundry detergents with commercial MI levels, up to one thousand ppm were used and three different types of clothes were washed in a normal household machine setting one time and 10 times. The level of MI was measured by HPLC. Results: While MI could be retrieved...

  19. Evaluation of miR-182/miR-100 Ratio for Diagnosis and Survival Prediction in Bladder Cancer.

    Science.gov (United States)

    Chen, Zhanguo; Wu, Lili; Lin, Qi; Shi, Jing; Lin, Xiangyang; Shi, Liang

    2016-09-01

    Abnormal expression of microRNAs (miRNAs) plays an important role in development of several cancer types, including bladder cancer (BCa). However, the relationship between the ratio of miR-181/miR-100 and the prognosis of BCa has not been studied yet. The aim of this study was to evaluate the expression of miR-182, miR-100 and their clinical significance in BCa. Upregulation of miR-182 and down-regulation of miR-100 were validated in tissue specimens of 134 BCa cases compared with 148 normal bladder epithelia (NBE) specimens  using TaqMan-based real-time reverse transcription quantitative PCR (RT-qPCR). The diagnostic and prognostic evaluation of miR-182, miR-100, and miR-182/miR-100 ratio was also performed. miR-182 was upregulated in BCa and miR-100 was down-regulated in BCa compared with NBE (P ratio increased the diagnostic performance, yielding an AUC of 0.981 (97.01% sensitivity and 90.54% specificity). Moreover, miR-182/miR-100 ratio was associated with pT-stage, histological grade, BCa recurrence and carcinoma in situ (P analysis indicated that miR-182/miR-100 ratio was an independent prognostic factor for overall survival (Hazard ratio: 7.142; 95% CI: 2.106 - 9.891; P analysis revealed that high-level of miR-182/miR-100 ratio was significantly correlated with shortened survival time for BCa patients (P ratio may serve as a novel promising biomarker for diagnosis and survival prediction in BCa. Further studies are needed to elucidate the role of miR-182/miR-100 ratio as a non‑invasive diagnostic tool for BCa.

  20. Circulating Plasma Levels of miR-20b, miR-29b and miR-155 as Predictors of Bevacizumab Efficacy in Patients with Metastatic Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Paola Ulivi

    2018-01-01

    Full Text Available Targeting angiogenesis in the treatment of colorectal cancer (CRC is a common strategy, for which potential predictive biomarkers have been studied. miRNAs are small non-coding RNAs involved in several processes including the angiogenic pathway. They are very stable in biological fluids, which turns them into potential circulating biomarkers. In this study, we considered a case series of patients with metastatic (m CRC treated with a bevacizumab (B-based treatment, enrolled in the prospective multicentric Italian Trial in Advanced Colorectal Cancer (ITACa. We then analyzed a panel of circulating miRNAs in relation to the patient outcome. In multivariate analysis, circulating basal levels of hsa-miR-20b-5p, hsa-miR-29b-3p and hsa-miR-155-5p resulted in being significantly associated with progression-free survival (PFS (p = 0.027, p = 0.034 and p = 0.039, respectively and overall survival (OS (p = 0.044, p = 0.024 and p = 0.032, respectively. We also observed that an increase in hsa-miR-155-5p at the first clinical evaluation was significantly associated with shorter PFS (HR 3.03 (95% CI 1.06–9.09, p = 0.040 and OS (HR 3.45 (95% CI 1.18–10.00, p = 0.024, with PFS and OS of 9.5 (95% CI 6.8–18.7 and 15.9 (95% CI 8.4–not reached, respectively, in patients with an increase ≥30% of hsa-miR-155-5p and 22.3 (95% CI 10.2–25.5 and 42.9 (24.8–not reached months, respectively, in patients without such increase. In conclusion, our results highlight the potential usefulness of circulating basal levels of hsa-miR-20b-5p, hsa-miR-29b-3p and hsa-miR-155-5p in predicting the outcome of patients with mCRC treated with B. In addition, the variation of circulating hsa-miR-155-5p could also be indicative of the patient survival.

  1. miRConnect: Identifying Effector Genes of miRNAs and miRNA Families in Cancer Cells

    DEFF Research Database (Denmark)

    Hua, Youjia; Duan, Shiwei; Murmann, Andrea E

    2011-01-01

    have generated custom data sets containing expression information of 54 miRNA families sharing the same seed match. We have developed a novel strategy for correlating miRNAs with individual genes based on a summed Pearson Correlation Coefficient (sPCC) that mimics an in silico titration experiment......micro(mi)RNAs are small non-coding RNAs that negatively regulate expression of most mRNAs. They are powerful regulators of various differentiation stages, and the expression of genes that either negatively or positively correlate with expressed miRNAs is expected to hold information....... By focusing on the genes that correlate with the expression of miRNAs without necessarily being direct targets of miRNAs, we have clustered miRNAs into different functional groups. This has resulted in the identification of three novel miRNAs that are linked to the epithelial-to-mesenchymal transition (EMT...

  2. Xenosensor CAR mediates down-regulation of miR-122 and up-regulation of miR-122 targets in the liver

    Energy Technology Data Exchange (ETDEWEB)

    Kazantseva, Yuliya A.; Yarushkin, Andrei A.; Mostovich, Lyudmila A. [The Institute of Molecular Biology and Biophysics, Timakova str., 2/12, Novosibirsk 630117 (Russian Federation); Pustylnyak, Yuliya A. [Novosibirsk State University, Pirogova str., 2, Novosibirsk 630090 (Russian Federation); Pustylnyak, Vladimir O., E-mail: pustylnyak@ngs.ru [The Institute of Molecular Biology and Biophysics, Timakova str., 2/12, Novosibirsk 630117 (Russian Federation); Novosibirsk State University, Pirogova str., 2, Novosibirsk 630090 (Russian Federation); The Institute International Tomography Center of the Russian Academy of Sciences, Institutskaya str. 3-A, Novosibirsk 630090 (Russian Federation)

    2015-10-01

    MiR-122 is a major hepatic microRNA, accounting for more than 70% of the total liver miRNA population. It has been shown that miR-122 is associated with liver diseases, including hepatocellular carcinoma. Mir-122 is an intergenic miRNA with its own promoter. Pri-miR-122 expression is regulated by liver-enriched transcription factors, mainly by HNF4α, which mediates the expression via the interaction with a specific DR1 site. It has been shown that phenobarbital-mediated activation of constitutive androstane receptor (CAR), xenobiotic nuclear receptor, is associated with a decrease in miR-122 in the liver. In the present study, we investigated HNF4α–CAR cross-talk in the regulation of miR-122 levels and promitogenic signalling in mouse livers. The level of miR-122 was significantly repressed by treatment with 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP), which is an agonist of mouse CAR. ChIP assays demonstrated that TCPOBOP-activated CAR inhibited HNF4α transactivation by competing with HNF4α for binding to the DR1 site in the pri-miR-122 promoter. Such transcription factor replacement was strongly correlated with miR-122 down-regulation. Additionally, the decrease in miR-122 levels produced by CAR activation is accompanied by an increase in mRNA and cellular protein levels of E2f1 and its accumulation on the target cMyc gene promoter. The increase in accumulation of E2f1 on the target cMyc gene promoter is accompanied by an increase in cMyc levels and transcriptional activity. Thus, our results provide evidence to support the conclusion that CAR activation decreases miR-122 levels through suppression of HNF4α transcriptional activity and indirectly regulates the promitogenic protein cMyc. HNF4α–CAR cross-talk may provide new opportunities for understanding liver diseases and developing more effective therapeutic approaches to better drug treatments. - Highlights: • CAR activation decreased the level of miR-122 in mouse livers. • CAR decreases

  3. Xenosensor CAR mediates down-regulation of miR-122 and up-regulation of miR-122 targets in the liver

    International Nuclear Information System (INIS)

    Kazantseva, Yuliya A.; Yarushkin, Andrei A.; Mostovich, Lyudmila A.; Pustylnyak, Yuliya A.; Pustylnyak, Vladimir O.

    2015-01-01

    MiR-122 is a major hepatic microRNA, accounting for more than 70% of the total liver miRNA population. It has been shown that miR-122 is associated with liver diseases, including hepatocellular carcinoma. Mir-122 is an intergenic miRNA with its own promoter. Pri-miR-122 expression is regulated by liver-enriched transcription factors, mainly by HNF4α, which mediates the expression via the interaction with a specific DR1 site. It has been shown that phenobarbital-mediated activation of constitutive androstane receptor (CAR), xenobiotic nuclear receptor, is associated with a decrease in miR-122 in the liver. In the present study, we investigated HNF4α–CAR cross-talk in the regulation of miR-122 levels and promitogenic signalling in mouse livers. The level of miR-122 was significantly repressed by treatment with 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP), which is an agonist of mouse CAR. ChIP assays demonstrated that TCPOBOP-activated CAR inhibited HNF4α transactivation by competing with HNF4α for binding to the DR1 site in the pri-miR-122 promoter. Such transcription factor replacement was strongly correlated with miR-122 down-regulation. Additionally, the decrease in miR-122 levels produced by CAR activation is accompanied by an increase in mRNA and cellular protein levels of E2f1 and its accumulation on the target cMyc gene promoter. The increase in accumulation of E2f1 on the target cMyc gene promoter is accompanied by an increase in cMyc levels and transcriptional activity. Thus, our results provide evidence to support the conclusion that CAR activation decreases miR-122 levels through suppression of HNF4α transcriptional activity and indirectly regulates the promitogenic protein cMyc. HNF4α–CAR cross-talk may provide new opportunities for understanding liver diseases and developing more effective therapeutic approaches to better drug treatments. - Highlights: • CAR activation decreased the level of miR-122 in mouse livers. • CAR decreases

  4. Risk of anxiety and depressive disorders in patients with myocardial infarction

    Science.gov (United States)

    Feng, Hsin-Pei; Chien, Wu-Chien; Cheng, Wei-Tung; Chung, Chi-Hsiang; Cheng, Shu-Meng; Tzeng, Wen-Chii

    2016-01-01

    Abstract Anxiety and depressive symptoms are associated with adverse cardiovascular events after an acute myocardial infarction (MI). However, most studies focusing on anxiety or depression have used rating scales or self-report methods rather than clinical diagnosis. This study aimed to investigate the association between psychiatrist-diagnosed psychiatric disorders and cardiovascular prognosis. We sampled data from the National Health Insurance Research Database; 1396 patients with MI were recruited as the study cohort and 13,960 patients without MI were recruited as the comparison cohort. Cox proportional hazard regression models were used to examine the effect of MI on the risk of anxiety and depressive disorders. During the first 2 years of follow-up, patients with MI exhibited a significantly higher risk of anxiety disorders (adjusted hazard ratio [HR] = 5.06, 95% confidence interval [CI]: 4.61–5.54) and depressive disorders (adjusted HR = 7.23, 95% CI: 4.88–10.88) than those without MI did. Greater risk for anxiety and depressive disorders was observed among women and patients aged 45 to 64 years following an acute MI. Patients with post-MI anxiety had a 9.37-fold (95% CI: 4.45–19.70) higher risk of recurrent MI than those without MI did after adjustment for age, sex, socioeconomic status, and comorbidities. This nationwide population-based cohort study provides evidence that MI increases the risk of anxiety and depressive disorders during the first 2 years post-MI, and post-MI anxiety disorders are associated with a higher risk of recurrent MI. PMID:27559951

  5. Does retirement reduce the risk of myocardial infarction?

    DEFF Research Database (Denmark)

    Olesen, Kasper; Rugulies, Reiner; Rod, Naja Hulvej

    2014-01-01

    BACKGROUND: Recent studies have suggested that retirement may have beneficial effects on health outcomes. In this study we examined whether the risk of myocardial infarction (MI) was reduced following retirement in a Danish population sample. METHODS: Participants were 617 511 Danish workers, born...... of 1.11 (95% confidence interval: 1.06, 1.16) when comparing retirees with active workers of the same age. CONCLUSIONS: This study does not support the hypothesis that retirement reduces risk of MI. On the contrary, we find that retirement is associated with a modestly increased risk of MI....

  6. miRNA-497 Negatively Regulates the Growth and Motility of Chondrosarcoma Cells by Targeting Cdc25A.

    Science.gov (United States)

    Lu, Yandong; Li, Fangguo; Xu, Tao; Sun, Jie

    2016-01-01

    Chondrosarcoma (CHS) is the second most common malignant bone sarcoma with increased risk of invasion and metastasis. However, the regulatory mechanisms of CHS tumorigenesis remain unknown. Here we investigated the novel role of miR-497 in regulating chondrosarcoma cell growth and cell cycle arrest. RT-PCR analysis showed that the expression of miR-497 is aberrantly downregulated in human chondrosarcoma samples and cells. After transfection with miR-497 mimic or antagomir, the proliferation and apoptosis of JJ012 and OUMS-27 chondrosarcoma cells were determined by CCK-8 assay and flow cytometric analysis, respectively. Results showed that the proliferation capacity of JJ012 and OUMS-27 cells was significantly decreased by miR-497 overexpression but increased by miR-497 repression. Apoptosis in both cell types was remarkably enhanced by miR-497 mimic but inhibited by miR-497 antagomir. By bioinformatics and luciferase reporter analysis, Cdc25A was proven to be a direct target of miR-497 in chondrosarcoma cells. Further studies indicated that miR-497 modulates the growth of chondrosarcoma cells by targeting Cdc25A, in which the cell cycle inhibitor p21 is involved through a p53-independent pathway. In conclusion, we demonstrated that miR-497 represents a potential tumor suppressor in human chondrosarcoma that regulates the growth of chondrosarcoma cells by targeting Cdc25A. This may provide a novel therapeutic target for chondrosarcoma.

  7. Mycobacterium tuberculosis decreases human macrophage IFN-γ responsiveness through miR-132 and miR-26a.

    Science.gov (United States)

    Ni, Bin; Rajaram, Murugesan V S; Lafuse, William P; Landes, Michelle B; Schlesinger, Larry S

    2014-11-01

    IFN-γ-activated macrophages play an essential role in controlling intracellular pathogens; however, macrophages also serve as the cellular home for the intracellular pathogen Mycobacterium tuberculosis. Based on previous evidence that M. tuberculosis can modulate host microRNA (miRNA) expression, we examined the miRNA expression profile of M. tuberculosis-infected primary human macrophages. We identified 31 differentially expressed miRNAs in primary human macrophages during M. tuberculosis infection by NanoString and confirmed our findings by quantitative real-time RT-PCR. In addition, we determined a role for two miRNAs upregulated upon M. tuberculosis infection, miR-132 and miR-26a, as negative regulators of transcriptional coactivator p300, a component of the IFN-γ signaling cascade. Knockdown expression of miR-132 and miR-26a increased p300 protein levels and improved transcriptional, translational, and functional responses to IFN-γ in human macrophages. Collectively, these data validate p300 as a target of miR-132 and miR-26a, and demonstrate a mechanism by which M. tuberculosis can limit macrophage responses to IFN-γ by altering host miRNA expression. Copyright © 2014 by The American Association of Immunologists, Inc.

  8. Expression profiling of miR-96, miR-584 and miR-422a in colon ...

    African Journals Online (AJOL)

    Purpose: To determine the correlation between miRNAs; miR-96, miR-422a and miR584, and colon cancer, and also to test whether any of these miRNAs can act as non-invasive biomarkers in colon cancer. Methods: The tumor samples and the corresponding normal mucosa used in this study were collected from 60 ...

  9. Identification of miR-93 as a suitable miR for normalizing miRNA in plasma of tuberculosis patients.

    Science.gov (United States)

    Barry, Simone E; Chan, Brian; Ellis, Magda; Yang, YuRong; Plit, Marshall L; Guan, Guangyu; Wang, Xiaolin; Britton, Warwick J; Saunders, Bernadette M

    2015-07-01

    Tuberculosis (TB) remains a major public health issue. New tests to aid diagnoses and monitor the response to therapy are urgently required. There is growing interest in the use of microRNA (miRNA) profiles as diagnostic, prognostic or predictive markers in a range of clinical and infectious diseases, including Mycobacterium tuberculosis infection, however, challenges exist to accurately normalise miRNA levels in cohorts. This study examined the appropriateness of 12 miRs and RNU6B to normalise circulating plasma miRNA levels in individuals with active TB from 2 different geographical and ethnic regions. Twelve miRs (let-7, miR-16, miR-22, miR-26, miR-93, miR-103, miR-191, miR-192, miR-221, miR-423, miR-425 and miR-451) and RNU6B were selected based on their reported production by lung cells, expression in blood and previous use as a reference miRNA. Expression levels were analysed in the plasma of newly diagnosed TB patients from Australia and China compared with individuals with latent TB infection and healthy volunteers. Analysis with both geNorm and NormFinder software identified miR-93 as the most suitable reference miR in both cohorts, either when analysed separately or collectively. Interestingly, there were large variations in the expression levels of some miRs, in particular miR-192 and let-7, between the two cohorts, independent of disease status. These data identify miR-93 is a suitable reference miR for normalizing miRNA levels in TB patients, and highlight how environmental, and possibly ethnic, factors influence miRNA expression levels, demonstrating the necessity of assessing the suitability of reference miRs within the study population. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  10. Increased risk of coronary heart disease among individuals reporting adverse impact of stress on their health: the Whitehall II prospective cohort study.

    Science.gov (United States)

    Nabi, Hermann; Kivimäki, Mika; Batty, G David; Shipley, Martin J; Britton, Annie; Brunner, Eric J; Vahtera, Jussi; Lemogne, Cédric; Elbaz, Alexis; Singh-Manoux, Archana

    2013-09-01

    Response to stress can vary greatly between individuals. However, it remains unknown whether perceived impact of stress on health is associated with adverse health outcomes. We examined whether individuals who report that stress adversely affects their health are at increased risk of coronary heart disease (CHD) compared with those who report that stress has no adverse health impact. Analyses are based on 7268 men and women (mean age: 49.5 years, interquartile range: 11 years) from the British Whitehall II cohort study. Over 18 years of follow-up, there were 352 coronary deaths or first non-fatal myocardial infarction (MI) events. After adjustment for sociodemographic characteristics, participants who reported at baseline that stress has affected their health 'a lot or extremely' had a 2.12 times higher (95% CI 1.52-2.98) risk of coronary death or incident non-fatal MI when compared with those who reported no effect of stress on their health. This association was attenuated but remained statistically significant after adjustment for biological, behavioural, and other psychological risk factors including perceived stress levels, and measures of social support; fully adjusted hazard ratio: 1.49 (95% CI 1.01-2.22). In this prospective cohort study, the perception that stress affects health, different from perceived stress levels, was associated with an increased risk of coronary heart disease. Randomized controlled trials are needed to determine whether disease risk can be reduced by increasing clinical attention to those who complain that stress greatly affects their health.

  11. Measurement of Ratios of <mi>νμ> Charged-Current Cross Sections on C, Fe, and Pb to CH at Neutrino Energies 2–20 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Tice, B. G.; Datta, M.; Mousseau, J.; Aliaga, L.; Altinok, O.; Barrios Sazo, M. G.; Betancourt, M.; Bodek, A.; Bravar, A.; Brooks, W. K.; Budd, H.; Bustamante, M. J.; Butkevich, A.; Martinez Caicedo, D. A.; Castromonte, C. M.; Christy, M. E.; Chvojka, J.; da Motta, H.; Devan, J.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fiorentini, G. A.; Gago, A. M.; Gallagher, H.; Gran, R.; Harris, D. A.; Higuera, A.; Hurtado, K.; Jerkins, M.; Kafka, T.; Kordosky, M.; Kulagin, S. A.; Le, T.; Maggi, G.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martin Mari, C.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Miller, J.; Mislivec, A.; Morfín, J. G.; Muhlbeier, T.; Naples, D.; Nelson, J. K.; Norrick, A.; Osta, J.; Palomino, J. L.; Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ransome, R. D.; Ray, H.; Ren, L.; Rodrigues, P. A.; Savage, D. G.; Schellman, H.; Schmitz, D. W.; Simon, C.; Snider, F. D.; Solano Salinas, C. J.; Tagg, N.; Valencia, E.; Velásquez, J. P.; Walton, T.; Wolcott, J.; Zavala, G.; Zhang, D.; Ziemer, B. P.

    2014-06-01

    depletion at low mi>x> and enhancement at large mi>x>. Both become more pronounced as the nucleon number of the target nucleus increases. The data are not reproduced by GENIE, a conventional neutrino-nucleus scattering simulation, or by the alternative models for the nuclear dependence of inelastic scattering that are considered.

  12. Growth inhibitory effects of miR-221 and miR-222 in non-small cell lung cancer cells

    International Nuclear Information System (INIS)

    Yamashita, Ryo; Sato, Mitsuo; Kakumu, Tomohiko; Hase, Tetsunari; Yogo, Naoyuki; Maruyama, Eiichi; Sekido, Yoshitaka; Kondo, Masashi; Hasegawa, Yoshinori

    2015-01-01

    Both pro- and anti-oncogenic roles of miR-221 and miR-222 microRNAs are reported in several types of human cancers. A previous study suggested their oncogenic role in invasiveness in lung cancer, albeit only one cell line (H460) was used. To further evaluate involvement of miR-221 and miR-222 in lung cancer, we investigated the effects of miR-221 and miR-222 overexpression on six lung cancer cell lines, including H460, as well as one immortalized normal human bronchial epithelial cell line, HBEC4. miR-221 and miR-222 induced epithelial-to-mesenchymal transition (EMT)-like changes in a minority of HBEC4 cells but, unexpectedly, both the microRNAs rather suppressed their invasiveness. Consistent with the prior report, miR-221 and miR-222 promoted growth in H460; however, miR-221 suppressed growth in four other cell lines with no effects in one, and miR-222 suppressed growth in three cell lines but promoted growth in two. These are the first results to show tumor-suppressive effects of miR-221 and miR-222 in lung cancer cells, and we focused on clarifying the mechanisms. Cell cycle and apoptosis analyses revealed that growth suppression by miR-221 and miR-222 occurred through intra-S-phase arrest and/or apoptosis. Finally, lung cancer cell lines transfected with miR-221 or miR-222 became more sensitive to the S-phase targeting drugs, possibly due to an increased S-phase population. In conclusion, our data are the first to show tumor-suppressive effects of miR-221 and miR-222 on lung cancer, warranting testing their potential as therapeutics for the disease

  13. Threshold-dependent repression of SPL gene expression by miR156/miR157 controls vegetative phase change in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Jia He

    2018-04-01

    Full Text Available Vegetative phase change is regulated by a decrease in the abundance of the miRNAs, miR156 and miR157, and the resulting increase in the expression of their targets, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL transcription factors. To determine how miR156/miR157 specify the quantitative and qualitative changes in leaf morphology that occur during vegetative phase change, we measured their abundance in successive leaves and characterized the phenotype of mutations in different MIR156 and MIR157 genes. miR156/miR157 decline rapidly between leaf 1&2 and leaf 3 and decrease more slowly after this point. The amount of miR156/miR157 in leaves 1&2 greatly exceeds the threshold required to specify their identity. Subsequent leaves have relatively low levels of miR156/miR157 and are sensitive to small changes in their abundance. In these later-formed leaves, the amount of miR156/miR157 is close to the threshold required to specify juvenile vs. adult identity; a relatively small decrease in the abundance of miR156/157 in these leaves produces a disproportionately large increase in SPL proteins and a significant change in leaf morphology. miR157 is more abundant than miR156 but has a smaller effect on shoot morphology and SPL gene expression than miR156. This may be attributable to the inefficiency with which miR157 is loaded onto AGO1, as well as to the presence of an extra nucleotide at the 5' end of miR157 that is mis-paired in the miR157:SPL13 duplex. miR156 represses different targets by different mechanisms: it regulates SPL9 by a combination of transcript cleavage and translational repression and regulates SPL13 primarily by translational repression. Our results offer a molecular explanation for the changes in leaf morphology that occur during shoot development in Arabidopsis and provide new insights into the mechanism by which miR156 and miR157 regulate gene expression.

  14. miR-214-Dependent Increase of PHLPP2 Levels Mediates the Impairment of Insulin-Stimulated Akt Activation in Mouse Aortic Endothelial Cells Exposed to Methylglyoxal

    Directory of Open Access Journals (Sweden)

    Cecilia Nigro

    2018-02-01

    Full Text Available Evidence has been provided linking microRNAs (miRNAs and diabetic complications, by the regulation of molecular pathways, including insulin-signaling, involved in the pathophysiology of vascular dysfunction. Methylglyoxal (MGO accumulates in diabetes and is associated with cardiovascular complications. This study aims to analyze the contribution of miRNAs in the MGO-induced damaging effect on insulin responsiveness in mouse aortic endothelial cells (MAECs. miRNA modulation was performed by transfection of specific miRNA mimics and inhibitors in MAECs, treated or not with MGO. miRNA-target protein levels were evaluated by Western blot. PH domain leucine-rich repeat protein phosphatase 2 (PHLPP2 regulation by miR-214 was tested by luciferase assays and by the use of a target protector specific for miR-214 on PHLPP2-3′UTR. This study reveals a 4-fold increase of PHLPP2 in MGO-treated MAECs. PHLPP2 levels inversely correlate with miR-214 modulation. Moreover, miR-214 overexpression is able to reduce PHLPP2 levels in MGO-treated MAECs. Interestingly, a direct regulation of PHLPP2 is proved to be dependent by miR-214. Finally, the inhibition of miR-214 impairs the insulin-dependent Akt activation, while its overexpression rescues the insulin effect on Akt activation in MGO-treated MAECs. In conclusion, this study shows that PHLPP2 is a target of miR-214 in MAECs, and identifies miR-214 downregulation as a contributing factor to MGO-induced endothelial insulin-resistance.

  15. MiRNA-513a-5p inhibits progesterone receptor expression and constitutes a risk factor for breast cancer: the hOrmone and Diet in the ETiology of breast cancer prospective study.

    Science.gov (United States)

    Muti, Paola; Donzelli, Sara; Sacconi, Andrea; Hossain, Ahmed; Ganci, Federica; Frixa, Tania; Sieri, Sabina; Krogh, Vittorio; Berrino, Franco; Biagioni, Francesca; Strano, Sabrina; Beyene, Joseph; Yarden, Yosef; Blandino, Giovanni

    2018-02-09

    MicroRNAs (miRNAs) might be considered both predictors and players of cancer development. The aim of the present report was to investigate whether many years before the diagnosis of breast cancer miRNA expression is already disregulated. In order to test this hypothesis, we compared miRNAs extracted from leukocytes in healthy women who later developed breast cancer and in women who remain healthy during the whole 15-year follow-up time. Accordantly, we used a case-control study design nested in the hOrmone and Diet in the ETiology of breast cancer (ORDET) prospective cohort study addressing the possibility that miRNAs can serve as both early biomarkers and components of the hormonal etiological pathways leading to breast cancer development in premenopausal women. We compared leukocyte miRNA profiles of 191 incident premenopausal breast cancer cases and profiles of 191 women who remained healthy over a follow-up period of 20 years. The analysis identified 20 differentially expressed miRNAs in women candidate to develop breast cancer versus control women. The upregulated miRNAs, miR-513-a-5p, miR-513b-5p and miR-513c-5p were among the most significantly deregulated miRNAs. In multivariate analysis, miR-513a-5p upregulation was directly and statistically significant associated with breast cancer risk (OR = 1.69; 95% CI 1.08-2.64; P = 0.0293). In addition, the upregulation of miR-513-a-5p displayed the strongest direct association with serum progesterone and testosterone levels. The experimental data corroborated the inhibitory function of miR-513a-5p on progesterone receptor expression confirming that progesterone receptor is a target of miR-513a-5p. The identification of upregulated miR-513a-5p with its oncogenic potential further validates the use of miRNAs as long-term biomarker of breast cancer risk. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Circulating miRNAs and miRNA shuttles as biomarkers: Perspective trajectories of healthy and unhealthy aging.

    Science.gov (United States)

    Olivieri, Fabiola; Capri, Miriam; Bonafè, Massimiliano; Morsiani, Cristina; Jung, Hwa Jin; Spazzafumo, Liana; Viña, Jose; Suh, Yousin

    2017-07-01

    Human aging is a lifelong process characterized by a continuous trade-off between pro-and anti-inflammatory responses, where the best-adapted and/or remodeled genetic/epigenetic profile may develop a longevity phenotype. Centenarians and their offspring represent such a phenotype and their comparison to patients with age-related diseases (ARDs) is expected to maximize the chance to unravel the genetic makeup that better associates with healthy aging trajectories. Seemingly, such comparison is expected to allow the discovery of new biomarkers of longevity together with risk factor for the most common ARDs. MicroRNAs (miRNAs) and their shuttles (extracellular vesicles in particular) are currently conceived as those endowed with the strongest ability to provide information about the trajectories of healthy and unhealthy aging. We review the available data on miRNAs in aging and underpin the evidence suggesting that circulating miRNAs (and cognate shuttles), especially those involved in the regulation of inflammation (inflamma-miRs) may constitute biomarkers capable of reliably depicting healthy and unhealthy aging trajectories. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Measurement of target and double-spin asymmetries for the <mi>e><mi>peπ+(n>) reaction in the nucleon resonance region at low <mi>Q>2

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, X.; Adhikari, K. P.; Bosted, P.; Deur, A.; Drozdov, V.; El Fassi, L.; Kang, Hyekoo; Kovacs, K.; Kuhn, S.; Long, E.; Phillips, S. K.; Ripani, M.; Slifer, K.; Smith, L. C.; Adikaram, D.; Akbar, Z.; Amaryan, M. J.; Anefalos Pereira, S.; Asryan, G.; Avakian, H.; Badui, R. A.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Chen, J. -P.; Chetry, T.; Choi, Seonho; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Crede, V.; D' Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Djalali, C.; Dodge, G. E.; Dupre, R.; Egiyan, H.; El Alaoui, A.; Elouadrhiri, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Fersch, R.; Filippi, A.; Fleming, J. A.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gleason, C.; Golovach, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joosten, S.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Lanza, L.; Lenisa, P.; Livingston, K.; MacGregor, I. J. D.; Markov, N.; McKinnon, B.; Mirazita, M.; Mokeev, V.; Movsisyan, A.; Munevar, E.; Munoz Camacho, C.; Murdoch, G.; Nadel-Turonski, P.; Net, L. A.; Ni, A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Peng, P.; Pisano, S.; Pogorelko, O.; Price, J. W.; Puckett, A. J. R.; Raue, B. A.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schumacher, R. A.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stankovic, I.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tian, Ye; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zhang, J.; Zonta, I.

    2016-10-01

    We report measurements of target- and double-spin asymmetries for the exclusive channel <mi>e><mi>peπ+(n>) in the nucleon resonance region at Jefferson Lab using the CEBAF Large Acceptance Spectrometer (CLAS). These asymmetries were extracted from data obtained using a longitudinally polarized NH3 target and a longitudinally polarized electron beam with energies 1.1, 1.3, 2.0, 2.3, and 3.0 GeV. The new results are consistent with previous CLAS publications but are extended to a low Q2 range from 0.0065 to 0.35 (GeV/c)2. The Q2 access was made possible by a custom-built Cherenkov detector that allowed the detection of electrons for scattering angles as low as 6 degrees. These results are compared with the unitary isobar models JANR and MAID, the partial-wave analysis prediction from SAID, and the dynamic model DMT. In many kinematic regions our results, in particular results on the target asymmetry, help to constrain the polarization-dependent components of these models.

  18. Programming of adipose tissue miR-483-3p and GDF-3 expression by maternal diet in type 2 diabetes

    DEFF Research Database (Denmark)

    Ferland-McCollough, D; Fernandez-Twinn, D S; Cannell, I G

    2012-01-01

    substantially modulates the capacity of adipocytes to differentiate and store lipids. We show that some of these effects are mediated by translational repression of growth/differentiation factor-3, a target of miR-483-3p. We propose that increased miR-483-3p expression in vivo, programmed by early......Nutrition during early mammalian development permanently influences health of the adult, including increasing the risk of type 2 diabetes and coronary heart disease. However, the molecular mechanisms underlying such programming are poorly defined. Here we demonstrate that programmed changes in mi......RNA expression link early-life nutrition to long-term health. Specifically, we show that miR-483-3p is upregulated in adipose tissue from low-birth-weight adult humans and prediabetic adult rats exposed to suboptimal nutrition in early life. We demonstrate that manipulation of miR-483-3p levels in vitro...

  19. The impact of passive and active smoking on inflammation, lipid profile and the risk of myocardial infarction.

    Science.gov (United States)

    Attard, Ritienne; Dingli, Philip; Doggen, Carine J M; Cassar, Karen; Farrugia, Rosienne; Wettinger, Stephanie Bezzina

    2017-01-01

    To investigate the effect of passive smoking, active smoking and smoking cessation on inflammation, lipid profile and the risk of myocardial infarction (MI). A total of 423 cases with a first MI and 465 population controls from the Maltese Acute Myocardial Infarction (MAMI) Study were analysed. Data were collected through an interviewer-led questionnaire, and morning fasting blood samples were obtained. ORs adjusted for the conventional risk factors of MI (aORs) were calculated as an estimate of the relative risk of MI. The influence of smoking on biochemical parameters was determined among controls. Current smokers had a 2.7-fold (95% CI 1.7 to 4.2) and ex-smokers a 1.6-fold (95% CI 1.0 to 2.4) increased risk of MI. Risk increased with increasing pack-years and was accompanied by an increase in high-sensitivity C reactive protein levels and an abnormal lipid profile. Smoking cessation was associated with lower triglyceride levels. Exposure to passive smoking increased the risk of MI (aOR 3.2 (95% CI 1.7 to 6.3)), with the OR being higher for individuals exposed to passive smoking in a home rather than in a public setting (aOR 2.0 (95% CI 0.7 to 5.6) vs aOR 1.2 (95% CI 0.7 to 2.0)). Passive smoke exposure was associated with higher levels of total cholesterol, triglycerides and total cholesterol:high-density lipoprotein cholesterol ratio compared with individuals not exposed to passive smoking. Both active and passive smoking are strong risk factors for MI. This risk increased with increasing pack-years and decreased with smoking cessation. Such effects may be partly mediated through the influence of smoking on inflammation and lipid metabolism.

  20. Multiple Myeloma-Derived Exosomes Regulate the Functions of Mesenchymal Stem Cells Partially via Modulating miR-21 and miR-146a

    Directory of Open Access Journals (Sweden)

    Qian Cheng

    2017-01-01

    Full Text Available Exosomes derived from cancer cells can affect various functions of mesenchymal stem cells (MSCs via conveying microRNAs (miRs. miR-21 and miR-146a have been demonstrated to regulate MSC proliferation and transformation. Interleukin-6 (IL-6 secreted from transformed MSCs in turn favors the survival of multiple myeloma (MM cells. However, the effects of MM exosomes on MSC functions remain largely unclear. In this study, we investigated the effects of OPM2 (a MM cell line exosomes (OPM2-exo on regulating the proliferation, cancer-associated fibroblast (CAF transformation, and IL-6 secretion of MSCs and determined the role of miR-21 and miR-146a in these effects. We found that OPM2-exo harbored high levels of miR-21 and miR-146a and that OPM2-exo coculture significantly increased MSC proliferation with upregulation of miR-21 and miR-146a. Moreover, OPM2-exo induced CAF transformation of MSCs, which was evidenced by increased fibroblast-activated protein (FAP, α-smooth muscle actin (α-SMA, and stromal-derived factor 1 (SDF-1 expressions and IL-6 secretion. Inhibition of miR-21 or miR-146a reduced these effects of OPM2-exo on MSCs. In conclusion, MM could promote the proliferation, CAF transformation, and IL-6 secretion of MSCs partially through regulating miR21 and miR146a.

  1. Exploration of miRNA families for hypotheses generation.

    KAUST Repository

    Kamanu, T.K.

    2013-10-15

    Technological improvements have resulted in increased discovery of new microRNAs (miRNAs) and refinement and enrichment of existing miRNA families. miRNA families are important because they suggest a common sequence or structure configuration in sets of genes that hint to a shared function. Exploratory tools to enhance investigation of characteristics of miRNA families and the functions of family-specific miRNA genes are lacking. We have developed, miRNAVISA, a user-friendly web-based tool that allows customized interrogation and comparisons of miRNA families for hypotheses generation, and comparison of per-species chromosomal distribution of miRNA genes in different families. This study illustrates hypothesis generation using miRNAVISA in seven species. Our results unveil a subclass of miRNAs that may be regulated by genomic imprinting, and also suggest that some miRNA families may be species-specific, as well as chromosome- and/or strand-specific.

  2. A meta-analytic review of the association between two common SNPs in miRNAs and lung cancer susceptibility.

    Science.gov (United States)

    Xiao, Sha; Sun, Songzan; Long, Wenfang; Kuang, Shicheng; Liu, Yunru; Huang, Hairong; Zhou, Jing; Zhou, Yongjiang; Lu, Xiaobo

    2018-01-01

    MicroRNAs (miRNAs) are involved in many biological processes, including tumor suppression. Multiple studies have shown an association between the miRNA-196a2 rs11614913 and miRNA-146a rs2910164 polymorphisms and cancer risk. However, the implications of the reported data are debatable and inconclusive. Relevant articles were retrieved from the PubMed, EMBASE, China National Knowledge Infrastructure, and WanFang databases from January 1, 2007, to April 30, 2017. Studies were assessed based on designated inclusion and exclusion criteria, and data were manually extracted from relevant studies by two investigators. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to explore the association between two single-nucleotide polymorphisms (SNPs) in miRNAs and lung cancer susceptibility. Nine eligible articles were included, consisting of 3,101 cancer cases and 3,234 controls for miRNA-196a2 rs11614913, and 3,483 cases and 3,578 controls for miRNA-146a rs2910164. For studies evaluating miRNA-196a2 rs11614913, significant associations with lung cancer risk were discovered. Overall, the pooled analysis showed that miRNA-196a2 rs11614913 was associated with a decreased cancer risk (CC vs TT: OR = 1.25, 95% CI: 1.09-1.44; CT vs TT: OR = 1.26, 95% CI: 1.03-1.53). For miRNA-146a rs2910164, only the CC genotype was found to be associated with high lung cancer risk (OR = 1.30, 95% CI: 1.13-1.49). Subgroup analyses based on ethnicity, source of control group, and country indicated that there were strong associations between miRNA-146a rs2910164 and cancer risk. The results indicated that lung cancer risk was significantly associated with miRNA-196a2 rs11614913 and miRNA-146a rs2910164. These two common SNPs in miRNAs may be potential biomarkers of lung cancer.

  3. Association of MiRNA-146a, MiRNA-499, IRAK1 and PADI4 Polymorphisms with Rheumatoid Arthritis in Egyptian Population

    Directory of Open Access Journals (Sweden)

    Olfat Gamil Shaker

    2018-05-01

    Full Text Available Background/Aims: Rheumatoid arthritis (RA is a systemic autoimmune disease affecting up to 1% of the population worldwide. The aim of the present study was to investigate whether miRNA-146a rs2910164, miRNA-499 rs3746444, IRAK1 rs3027898 and PADI4 rs1748033 polymorphisms are associated with susceptibility to RA in Egyptians and whether they influence disease severity and activity. Methods: The study was performed on 104 unrelated RA patients and 112 healthy subjects. RA patients were further subdivided into active and inactive RA groups. Polymorphisms were genotyped by using real-time polymerase chain reaction with TaqMan allelic discrimination assay. Results: Significant differences in the frequency of miRNA-146a rs2910164, miRNA-499 rs3746444, IRAK1 rs3027898 and PADI4 rs1748033 alleles and genotypes were observed between RA patients and controls. Only CA and AA genotypes of IRAK1 rs3027898 shows a significant difference between active and inactive subgroups. MiRNA-146a rs2910164 and IRAK1 rs3027898 polymorphisms were a risk factor for predisposition to RA in codominant and dominant tested inheritance models, while, the miRNA-499 rs3746444 and PADI4 rs1748033 polymorphisms were a risk factor in codominant and recessive one. CG and GG genotypes of miRNA-146a rs2910164 were associated with positive erosions. CA genotype of IRAK1 rs3027898 was associated with low disease activity and negative erosions, while, the AA genotype was associated with high disease activity. CC genotype of PADI4 rs1748033 was associated with negative rheumatoid factor. Conclusion: The 4 studied SNPs were likely to play an important role in the susceptibility to RA and can influence disease severity and activity in Egyptian population.

  4. Three novel serum biomarkers, miR-1, miR-133a, and miR-206 for Limb-girdle muscular dystrophy, Facioscapulohumeral muscular dystrophy, and Becker muscular dystrophy.

    Science.gov (United States)

    Matsuzaka, Yasunari; Kishi, Soichiro; Aoki, Yoshitsugu; Komaki, Hirofumi; Oya, Yasushi; Takeda, Shin-Ichi; Hashido, Kazuo

    2014-11-01

    Muscular dystrophies are a clinically and genetically heterogeneous group of inherited myogenic disorders. In clinical tests for these diseases, creatine kinase (CK) is generally used as diagnostic blood-based biomarker. However, because CK levels can be altered by various other factors, such as vigorous exercise, etc., false positive is observed. Therefore, three microRNAs (miRNAs), miR-1, miR-133a, and miR-206, were previously reported as alternative biomarkers for duchenne muscular dystrophy (DMD). However, no alternative biomarkers have been established for the other muscular dystrophies. We, therefore, evaluated whether these miR-1, miR-133a, and miR-206 can be used as powerful biomarkers using the serum from muscular dystrophy patients including DMD, myotonic dystrophy 1 (DM1), limb-girdle muscular dystrophy (LGMD), facioscapulohumeral muscular dystrophy (FSHD), becker muscular dystrophy (BMD), and distal myopathy with rimmed vacuoles (DMRV) by qualitative polymerase chain reaction (PCR) amplification assay. Statistical analysis indicated that all these miRNA levels in serum represented no significant differences between all muscle disorders examined in this study and controls by Bonferroni correction. However, some of these indicated significant differences without correction for testing multiple diseases (P < 0.05). The median values of miR-1 levels in the serum of patients with LGMD, FSHD, and BMD were approximately 5.5, 3.3 and 1.7 compared to that in controls, 0.68, respectively. Similarly, those of miR-133a and miR-206 levels in the serum of BMD patients were about 2.5 and 2.1 compared to those in controls, 1.03 and 1.32, respectively. Taken together, our data demonstrate that levels of miR-1, miR-133a, and miR-206 in serum of BMD and miR-1 in sera of LGMD and FSHD patients showed no significant differences compared with those of controls by Bonferroni correction. However, the results might need increase in sample sizes to evaluate these three miRNAs as

  5. The Environmental Neurotoxicant PCB 95 Promotes Synaptogenesis via Ryanodine Receptor-Dependent miR132 Upregulation

    Science.gov (United States)

    Lesiak, Adam; Zhu, Mingyan; Chen, Hao; Appleyard, Suzanne M.; Impey, Soren; Wayman, Gary A.

    2014-01-01

    Non–dioxin-like (NDL) polychlorinated biphenyls (PCBs) are widespread environmental contaminants linked to neuropsychological dysfunction in children. NDL PCBs increase spontaneous Ca2+ oscillations in neurons by stabilizing ryanodine receptor (RyR) calcium release channels in the open configuration, which results in CREB-dependent dendritic outgrowth. In this study, we address the question of whether activation of CREB by NDL PCBs also triggers dendritic spine formation. Nanomolar concentrations of PCB 95, a NDL congener with potent RyR activity, significantly increased spine density and the frequency of miniature EPSCs in primary dissociated rat hippocampal cultures coincident with upregulation of miR132. Inhibition of RyR, CREB, or miR132 as well as expression of a mutant p250GAP cDNA construct that is not suppressed by miR132 blocked PCB 95 effects on spines and miniature EPSCs. PCB 95 also induced spine formation via RyR- and miR132-dependent mechanisms in hippocampal slice cultures. These data demonstrate a novel mechanism of PCB developmental neurotoxicity whereby RyR sensitization modulates spine formation and synaptogenesis via CREB-mediated miR132 upregulation, which in turn suppresses the translation of p250GAP, a negative regulator of synaptogenesis. In light of recent evidence implicating miR132 dysregulation in Rett syndrome and schizophrenia, these findings identify NDL PCBs as potential environmental risk factors for neurodevelopmental disorders. PMID:24431430

  6. miRSeqNovel

    DEFF Research Database (Denmark)

    Qian, Kui; Auvinen, Eeva; Greco, Dario

    2012-01-01

    We present miRSeqNovel, an R based workflow for miRNA sequencing data analysis. miRSeqNovel can process both colorspace (SOLiD) and basespace (Illumina/Solexa) data by different mapping algorithms. It finds differentially expressed miRNAs and gives conservative prediction of novel miRNA candidates...... with customized parameters. miRSeqNovel is freely available at http://sourceforge.net/projects/mirseq/files....

  7. Circulating miRNAs miR-34a and miR-150 associated with colorectal cancer progression

    Czech Academy of Sciences Publication Activity Database

    Aherne, S.T.; Madden, S.F.; Hughes, D. J.; Pardini, B.; Naccarati, A.; Levý, M.; Vodička, Pavel; Neary, P.; Dowling, P.; Clynes, M.

    2015-01-01

    Roč. 15, apr 30 (2015), s. 2-13 ISSN 1471-2407 R&D Projects: GA ČR GAP304/10/1286 Institutional support: RVO:68378041 Keywords : colorectal cancer * circulating miRNAs * miR-34a * miR-150 * miR-923 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.265, year: 2015

  8. An integrative genomic approach reveals coordinated expression of intronic miR-335, miR-342, and miR-561 with deregulated host genes in multiple myeloma

    Directory of Open Access Journals (Sweden)

    Agnelli Luca

    2008-08-01

    Full Text Available Abstract Background The role of microRNAs (miRNAs in multiple myeloma (MM has yet to be fully elucidated. To identify miRNAs that are potentially deregulated in MM, we investigated those mapping within transcription units, based on evidence that intronic miRNAs are frequently coexpressed with their host genes. To this end, we monitored host transcript expression values in a panel of 20 human MM cell lines (HMCLs and focused on transcripts whose expression varied significantly across the dataset. Methods miRNA expression was quantified by Quantitative Real-Time PCR. Gene expression and genome profiling data were generated on Affymetrix oligonucleotide microarrays. Significant Analysis of Microarrays algorithm was used to investigate differentially expressed transcripts. Conventional statistics were used to test correlations for significance. Public libraries were queried to predict putative miRNA targets. Results We identified transcripts specific to six miRNA host genes (CCPG1, GULP1, EVL, TACSTD1, MEST, and TNIK whose average changes in expression varied at least 2-fold from the mean of the examined dataset. We evaluated the expression levels of the corresponding intronic miRNAs and identified a significant correlation between the expression levels of MEST, EVL, and GULP1 and those of the corresponding miRNAs miR-335, miR-342-3p, and miR-561, respectively. Genome-wide profiling of the 20 HMCLs indicated that the increased expression of the three host genes and their corresponding intronic miRNAs was not correlated with local copy number variations. Notably, miRNAs and their host genes were overexpressed in a fraction of primary tumors with respect to normal plasma cells; however, this finding was not correlated with known molecular myeloma groups. The predicted putative miRNA targets and the transcriptional profiles associated with the primary tumors suggest that MEST/miR-335 and EVL/miR-342-3p may play a role in plasma cell homing and

  9. The clinical characteristics and prognostic significance of AID, miR-181b, and miR-155 expression in adult patients with de novo B-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Zhou, Guangquan; Cao, Yang; Dong, Weimin; Lin, Yan; Wang, Qi; Wu, Wei; Hua, Xiaoying; Ling, Yun; Xie, Xiaobao; Hu, Shaoyan; Cen, Jiannong; Gu, Weiying

    2017-09-01

    This study aimed to investigate clinical characteristics and prognostic significance of activation-induced cytidine deaminase (AID) gene, miR-181b and miR-155 expression in de novo adult B-cell acute lymphoblastic leukemia (B-ALL) patients. Results showed that AID and miR-155 expression were higher in B-ALL patients than healthy controls, while miR-181b expression was lower in B-ALL patients. In addition, Ph + B-ALLs had higher AID expression than Ph - B-ALLs, and its high expression was associated with BCR-ABL. Moreover, B-ALL patients with AID high or miR-181b low expression had a shorter overall survival (OS). AID high with miR-181b low , AID high with miR-155 low , miR-181b low , miR-155 low , AID high with miR-181b low and miR-155 low expression were associated with shorter OS. Combination of the three molecules are more accurate predictors for unfavorable OS compared with univariate group. Therefore, AID, miR-181b and miR-155 provide clinical prognosis of adult de novo B-ALL patients and may refine their molecular risk classification.

  10. Investigation of miR-1202, miR-135a, and miR-16 in Major Depressive Disorder and Antidepressant Response.

    Science.gov (United States)

    Fiori, Laura M; Lopez, Juan Pablo; Richard-Devantoy, Stéphane; Berlim, Marcelo; Chachamovich, Eduardo; Jollant, Fabrice; Foster, Jane; Rotzinger, Susan; Kennedy, Sidney H; Turecki, Gustavo

    2017-08-01

    Major depressive disorder is a debilitating illness, which is most commonly treated with antidepressant drugs. As the majority of patients do not respond on their first trial, there is great interest in identifying biological factors that indicate the most appropriate treatment for each patient. Studies suggest that microRNA represent excellent biomarkers to predict antidepressant response. We investigated the expression of miR-1202, miR-135a, and miR-16 in peripheral blood from 2 cohorts of depressed patients who received 8 weeks of antidepressant therapy. Expression was quantified at baseline and after treatment, and its relationship to treatment response and depressive symptoms was assessed. In both cohorts, responders displayed lower baseline miR-1202 levels compared with nonresponders, which increased following treatment. Ultimately, our results support the involvement of microRNA in antidepressant response and suggest that quantification of their levels in peripheral samples represents a valid approach to informing treatment decisions. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  11. Inhibition of miR-146b expression increases radioiodine-sensitivity in poorly differential thyroid carcinoma via positively regulating NIS expression

    Energy Technology Data Exchange (ETDEWEB)

    Li, Luchuan; Lv, Bin; Chen, Bo [Department of General Surgery, Shandong University Qilu Hospital, Jinan, Shandong 250012 (China); Guan, Ming [Department of General Surgery, Qihe People' s Hospital, Qihe, Shandong 251100 (China); Sun, Yongfeng [Department of General Surgery, Licheng District People' s Hospital, Jinan, Shandong 250115 (China); Li, Haipeng [Department of General Surgery, Caoxian People' s Hospital, Caoxian, Shandong 274400 (China); Zhang, Binbin; Ding, Changyuan; He, Shan [Department of General Surgery, Shandong University Qilu Hospital, Jinan, Shandong 250012 (China); Zeng, Qingdong, E-mail: qingdz0201@163.com [Department of General Surgery, Shandong University Qilu Hospital, Jinan, Shandong 250012 (China)

    2015-07-10

    Dedifferentiated thyroid carcinoma (DTC) with the loss of radioiodine uptake (RAIU) is often observed in clinical practice under radioiodine therapy, indicating the challenge for poor prognosis. MicroRNA (miRNA) has emerged as a promising therapeutic target in many diseases; yet, the role of miRNAs in RAIU has not been generally investigated. Based on recent studies about miRNA expression in papillary or follicular thyroid carcinomas, the expression profiles of several thyroid relative miRNAs were investigated in one DTC cell line, derived from normal DTC cells by radioiodine treatment. The top candidate miR-146b, with the most significant overexpression profiles in dedifferentiated cells, was picked up. Further research found that miR-146b could be negatively regulated by histone deacetylase 3 (HDAC3) in normal cells, indicating the correlation between miR-146b and Na{sup +}/I{sup −} symporter (NIS)-mediated RAIU. Fortunately, it was confirmed that miR-146b could regulate NIS expression/activity; what is more important, miR-146b interference would contribute to the recovery of radioiodine-sensitivity in dedifferentiated cells via positively regulating NIS. In the present study, it was concluded that NIS-mediated RAIU could be modulated by miR-146b; accordingly, miR-146b might serve as one of targets to enhance efficacy of radioactive therapy against poorly differential thyroid carcinoma (PDTC). - Highlights: • Significant upregulated miR-146b was picked up from thyroid relative miRNAs in DTC. • MiR-146b was negatively regulated by HDAC3 in normal thyroid carcinoma cells. • NIS activity and expression could be regulated by miR-146b in thyroid carcinoma. • MiR-146b inhibition could recover the decreased radioiodine-sensitivity of DTC cells.

  12. miREE: miRNA recognition elements ensemble

    Science.gov (United States)

    2011-01-01

    Background Computational methods for microRNA target prediction are a fundamental step to understand the miRNA role in gene regulation, a key process in molecular biology. In this paper we present miREE, a novel microRNA target prediction tool. miREE is an ensemble of two parts entailing complementary but integrated roles in the prediction. The Ab-Initio module leverages upon a genetic algorithmic approach to generate a set of candidate sites on the basis of their microRNA-mRNA duplex stability properties. Then, a Support Vector Machine (SVM) learning module evaluates the impact of microRNA recognition elements on the target gene. As a result the prediction takes into account information regarding both miRNA-target structural stability and accessibility. Results The proposed method significantly improves the state-of-the-art prediction tools in terms of accuracy with a better balance between specificity and sensitivity, as demonstrated by the experiments conducted on several large datasets across different species. miREE achieves this result by tackling two of the main challenges of current prediction tools: (1) The reduced number of false positives for the Ab-Initio part thanks to the integration of a machine learning module (2) the specificity of the machine learning part, obtained through an innovative technique for rich and representative negative records generation. The validation was conducted on experimental datasets where the miRNA:mRNA interactions had been obtained through (1) direct validation where even the binding site is provided, or through (2) indirect validation, based on gene expression variations obtained from high-throughput experiments where the specific interaction is not validated in detail and consequently the specific binding site is not provided. Conclusions The coupling of two parts: a sensitive Ab-Initio module and a selective machine learning part capable of recognizing the false positives, leads to an improved balance between

  13. Implementing the number needed to harm in clinical practice: risk of myocardial infarction in HIV-1-infected patients treated with abacavir

    DEFF Research Database (Denmark)

    Kowalska, J D; Kirk, O; Mocroft, A

    2010-01-01

    OBJECTIVES: The D:A:D study group reported a 1.9-fold increased relative risk (RR) of myocardial infarction (MI) associated with current or recent use of abacavir. The number needed to harm (NNH) incorporates information about the underlying risk of MI and the increased RR of MI in patients taking...

  14. Circulating miR-192 and miR-193b are markers of prediabetes and are modulated by an exercise intervention.

    Science.gov (United States)

    Párrizas, Marcelina; Brugnara, Laura; Esteban, Yaiza; González-Franquesa, Alba; Canivell, Sílvia; Murillo, Serafín; Gordillo-Bastidas, Elizabeth; Cussó, Roser; Cadefau, Joan A; García-Roves, Pablo M; Servitja, Joan-Marc; Novials, Anna

    2015-03-01

    Diabetes is frequently diagnosed late, when the development of complications is almost inevitable, decreasing the quality of life of patients. However, early detection of affected individuals would allow the implementation of timely and effective therapies. Here we set to describe the profile of circulating microRNAs (miRNAs) in prediabetic patients with the intention of identifying novel diagnostic and therapeutic tools. We used real-time RT-PCR to measure the abundance of 176 miRNAs in serum of a cohort of 92 control and prediabetic individuals with either impaired fasting glucose or impaired glucose tolerance, as well as newly diagnosed diabetic patients. We validated the results in a second cohort of control and prediabetic subjects undergoing a therapeutic exercise intervention, as well as in a mouse model of glucose intolerance. We identified two miRNAs, miR-192 and miR-193b, whose abundance is significantly increased in the prediabetic state but not in diabetic patients. Strikingly, these miRNAs are also increased in plasma of glucose-intolerant mice. Moreover, circulating levels of miR-192 and miR-193b return to baseline in both prediabetic humans and glucose-intolerant mice undergoing a therapeutic intervention consisting in chronic exercise, which succeeded in normalizing metabolic parameters. Our data show that the pattern of circulating miRNAs is modified by defects in glucose metabolism in a similar manner in mice and humans. This circulating miRNA signature for prediabetes could be used as a new diagnostic tool, as well as to monitor response to intervention.

  15. miR482 and Its Isoforms in Plants

    Directory of Open Access Journals (Sweden)

    Abdil Hakan EREN

    2016-09-01

    Full Text Available In plants, miR482 family members are generally 22-nucleotide long, distinguishing from other microRNA (miRNA families by their extraordinary and diverse sequence structures. Studies showed that miRNA482 is related to NBLRR (Nucleotide binding-site leucine-rich repeat genes conferring resistance to disease in plants. There are different coded NB-LRR genes which are considered as the part immune response assisting the recognition of pathogens in plant genomes. NB-LRR proteins are mostly related to effector – triggering immune system against pathogens. The main immune receptors in plants are PRR (Pattern recoginition receptor and R (Resistance proteins. R proteins code for immune system proteins by NB-LRR activity. miR482, miR1448, slmiR2118 and ath-miR472 are disease resistance related miRNAs. In several studies, miR482 was found to be a homolog of miR1448 and phylogenetic analyses showed that miR1448 is formed by tandem duplication of miR482. While suppression of miR482 results in plant susceptibility to pathogens, miR482 was considered to play role in nodulation and mycorrhizal processes of soya roots. Increasing evidences exhibit that miR482 is critical in disease resistance against pathogen attacks.

  16. About miRNAs, miRNA seeds, target genes and target pathways.

    Science.gov (United States)

    Kehl, Tim; Backes, Christina; Kern, Fabian; Fehlmann, Tobias; Ludwig, Nicole; Meese, Eckart; Lenhof, Hans-Peter; Keller, Andreas

    2017-12-05

    miRNAs are typically repressing gene expression by binding to the 3' UTR, leading to degradation of the mRNA. This process is dominated by the eight-base seed region of the miRNA. Further, miRNAs are known not only to target genes but also to target significant parts of pathways. A logical line of thoughts is: miRNAs with similar (seed) sequence target similar sets of genes and thus similar sets of pathways. By calculating similarity scores for all 3.25 million pairs of 2,550 human miRNAs, we found that this pattern frequently holds, while we also observed exceptions. Respective results were obtained for both, predicted target genes as well as experimentally validated targets. We note that miRNAs target gene set similarity follows a bimodal distribution, pointing at a set of 282 miRNAs that seems to target genes with very high specificity. Further, we discuss miRNAs with different (seed) sequences that nonetheless regulate similar gene sets or pathways. Most intriguingly, we found miRNA pairs that regulate different gene sets but similar pathways such as miR-6886-5p and miR-3529-5p. These are jointly targeting different parts of the MAPK signaling cascade. The main goal of this study is to provide a general overview on the results, to highlight a selection of relevant results on miRNAs, miRNA seeds, target genes and target pathways and to raise awareness for artifacts in respective comparisons. The full set of information that allows to infer detailed results on each miRNA has been included in miRPathDB, the miRNA target pathway database (https://mpd.bioinf.uni-sb.de).

  17. miRiadne: a web tool for consistent integration of miRNA nomenclature.

    Science.gov (United States)

    Bonnal, Raoul J P; Rossi, Riccardo L; Carpi, Donatella; Ranzani, Valeria; Abrignani, Sergio; Pagani, Massimiliano

    2015-07-01

    The miRBase is the official miRNA repository which keeps the annotation updated on newly discovered miRNAs: it is also used as a reference for the design of miRNA profiling platforms. Nomenclature ambiguities generated by loosely updated platforms and design errors lead to incompatibilities among platforms, even from the same vendor. Published miRNA lists are thus generated with different profiling platforms that refer to diverse and not updated annotations. This greatly compromises searches, comparisons and analyses that rely on miRNA names only without taking into account the mature sequences, which is particularly critic when such analyses are carried over automatically. In this paper we introduce miRiadne, a web tool to harmonize miRNA nomenclature, which takes into account the original miRBase versions from 10 up to 21, and annotations of 40 common profiling platforms from nine brands that we manually curated. miRiadne uses the miRNA mature sequence to link miRBase versions and/or platforms to prevent nomenclature ambiguities. miRiadne was designed to simplify and support biologists and bioinformaticians in re-annotating their own miRNA lists and/or data sets. As Ariadne helped Theseus in escaping the mythological maze, miRiadne will help the miRNA researcher in escaping the nomenclature maze. miRiadne is freely accessible from the URL http://www.miriadne.org. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. The distinct role of strand-specific miR-514b-3p and miR-514b-5p in colorectal cancer metastasis.

    Science.gov (United States)

    Ren, Lin-Lin; Yan, Ting-Ting; Shen, Chao-Qin; Tang, Jia-Yin; Kong, Xuan; Wang, Ying-Chao; Chen, Jinxian; Liu, Qiang; He, Jie; Zhong, Ming; Chen, Hao-Yan; Hong, Jie; Fang, Jing-Yuan

    2018-06-07

    The abnormal expression of microRNAs (miRNAs) in colorectal cancer (CRC) progression has been widely investigated. It was reported that the same hairpin RNA structure could generate mature products from each strand, termed 5p and 3p, which binds different target mRNAs. Here, we explored the expression, functions, and mechanisms of miR-514b-3p and miR-514b-5p in CRC cells and tissues. We found that miR-514b-3p was significantly down-regulated in CRC samples, and the ratio of miR-514b-3p/miR-514b-5p increased from advanced CRC, early CRC to matched normal colorectal tissues. Follow-up functional experiments illustrated that miR-514b-3p and miR-514b-5p had distinct effects through interacting with different target genes: MiR-514b-3p reduced CRC cell migration, invasion and drug resistance through increasing epithelial marker and decreasing mesenchymal marker expressions, conversely, miR-514b-5p exerted its pro-metastatic properties in CRC by promoting EMT progression. MiR-514b-3p overexpressing CRC cells developed tumors more slowly in mice compared with control cells, however, miR-514b-5p accelerated tumor metastasis. Overall, our data indicated that though miR-514b-3p and miR-514b-5p were transcribed from the same RNA hairpin, each microRNA has distinct effect on CRC metastasis.

  19. Pharmaco-miR

    DEFF Research Database (Denmark)

    Rukov, Jakob Lewin; Wilentzik, Roni; Jaffe, Ishai

    2014-01-01

    MicroRNAs (miRNAs) are short regulatory RNAs that down-regulate gene expression. They are essential for cell homeostasis and active in many disease states. A major discovery is the ability of miRNAs to determine the efficacy of drugs, which has given rise to the field of 'miRNA pharmacogenomics......' through 'Pharmaco-miRs'. miRNAs play a significant role in pharmacogenomics by down-regulating genes that are important for drug function. These interactions can be described as triplet sets consisting of a miRNA, a target gene and a drug associated with the gene. We have developed a web server which...... links miRNA expression and drug function by combining data on miRNA targeting and protein-drug interactions. miRNA targeting information derive from both experimental data and computational predictions, and protein-drug interactions are annotated by the Pharmacogenomics Knowledge base (Pharm...

  20. The prognostic importance of miR-21 in stage II colon cancer: a population-based study

    DEFF Research Database (Denmark)

    Kjaer-Frifeldt, S.; Hansen, T. F.; Nielsen, B. S.

    2012-01-01

    that increasing miR-21 expression levels were significantly correlated to decreasing RF-CSS. Further investigations of the clinical importance of miR-21 in the selection of high-risk stage II colon cancer patients are merited. British Journal of Cancer (2012) 107, 1169-1174. doi:10.1038/bjc.2012.365 www......BACKGROUND: Despite several years of research and attempts to develop prognostic models a considerable fraction of stage II colon cancer patients will experience relapse within few years from their operation. The aim of the present study was to investigate the prognostic importance of miRNA-21 (mi......-free cancer-specific survival (RF-CSS): HR = 1.26; 95% CI: 1.15-1.60; P importance and was found to be significantly related to poor RF-CSS: HR 1.41; 95% CI: 1.19-1.67; P

  1. Circular RNA and miR-7 in Cancer

    DEFF Research Database (Denmark)

    Hansen, Thomas Birkballe; Kjems, Jørgen; Damgaard, Christian Kroun

    2013-01-01

    MicroRNAs (miRNA) play important roles in fine-tuning gene expression and are often deregulated in cancer. The identification of competing endogenous RNA and circular RNA (circRNA) as important regulators of miRNA activity underscores the increasing complexity of ncRNA-mediated regulatory networks....... Particularly, the recently identified circular RNA, ciRS-7, which acts as a designated miR-7 inhibitor/sponge, has conceptually changed the mechanistic understanding of miRNA networks. As miR-7 modulates the expression of several oncogenes, disclosing the regulation of miR-7 activity will likely advance...... the understanding of various cancer etiologies. Here, we review the current knowledge about the ciRS-7/miR-7 axis in cancer-related pathways and discuss possible models explaining the relevance of coexpressing miR-7 along with a circRNA inhibitor....

  2. Identification of an enhancer that increases miR-200b~200a~429 gene expression in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Joanne L Attema

    Full Text Available The miR-200b~200a~429 gene cluster is a key regulator of EMT and cancer metastasis, however the transcription-based mechanisms controlling its expression during this process are not well understood. We have analyzed the miR-200b~200a~429 locus for epigenetic modifications in breast epithelial and mesenchymal cell lines using chromatin immunoprecipitation assays and DNA methylation analysis. We discovered a novel enhancer located approximately 5.1kb upstream of the miR-200b~200a~429 transcriptional start site. This region was associated with the active enhancer chromatin signature comprising H3K4me1, H3K27ac, RNA polymerase II and CpG dinucleotide hypomethylation. Luciferase reporter assays revealed the upstream enhancer stimulated the transcription of the miR-200b~200a~429 minimal promoter region approximately 27-fold in breast epithelial cells. Furthermore, we found that a region of the enhancer was transcribed, producing a short, GC-rich, mainly nuclear, non-polyadenylated RNA transcript designated miR-200b eRNA. Over-expression of miR-200b eRNA had little effect on miR-200b~200a~429 promoter activity and its production did not correlate with miR-200b~200a~429 gene expression. While additional investigations of miR-200b eRNA function will be necessary, it is possible that miR-200b eRNA may be involved in the regulation of miR-200b~200a~429 gene expression and silencing. Taken together, these findings reveal the presence of a novel enhancer, which contributes to miR-200b~200a~429 transcriptional regulation in epithelial cells.

  3. Base Composition Characteristics of Mammalian miRNAs

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2013-01-01

    Full Text Available MicroRNAs (miRNAs are short RNA sequences that repress protein synthesis by either inhibiting the translation of messenger RNA (mRNA or increasing mRNA degradation. Endogenous miRNAs have been found in various organisms, including animals, plants, and viruses. Mammalian miRNAs are evolutionarily conserved, are scattered throughout chromosomes, and play an important role in the immune response and the onset of cancer. For this study, the author explored the base composition characteristics of miRNA genes from the six mammalian species that contain the largest number of known miRNAs. It was found that mammalian miRNAs are evolutionarily conserved and GU-rich. Interestingly, in the miRNA sequences investigated, A residues are clearly the most frequent occupants of positions 2 and 3 of the 5′ end of miRNAs. Unlike G and U residues that may pair with C/U and A/G, respectively, A residues can only pair with U residues of target mRNAs, which may augment the recognition specificity of the 5′ seed region.

  4. Evolutionary relationships between miRNA genes and their activity.

    Science.gov (United States)

    Zhu, Yan; Skogerbø, Geir; Ning, Qianqian; Wang, Zhen; Li, Biqing; Yang, Shuang; Sun, Hong; Li, Yixue

    2012-12-22

    The emergence of vertebrates is characterized by a strong increase in miRNA families. MicroRNAs interact broadly with many transcripts, and the evolution of such a system is intriguing. However, evolutionary questions concerning the origin of miRNA genes and their subsequent evolution remain unexplained. In order to systematically understand the evolutionary relationship between miRNAs gene and their function, we classified human known miRNAs into eight groups based on their evolutionary ages estimated by maximum parsimony method. New miRNA genes with new functional sequences accumulated more dynamically in vertebrates than that observed in Drosophila. Different levels of evolutionary selection were observed over miRNA gene sequences with different time of origin. Most genic miRNAs differ from their host genes in time of origin, there is no particular relationship between the age of a miRNA and the age of its host genes, genic miRNAs are mostly younger than the corresponding host genes. MicroRNAs originated over different time-scales are often predicted/verified to target the same or overlapping sets of genes, opening the possibility of substantial functional redundancy among miRNAs of different ages. Higher degree of tissue specificity and lower expression level was found in young miRNAs. Our data showed that compared with protein coding genes, miRNA genes are more dynamic in terms of emergence and decay. Evolution patterns are quite different between miRNAs of different ages. MicroRNAs activity is under tight control with well-regulated expression increased and targeting decreased over time. Our work calls attention to the study of miRNA activity with a consideration of their origin time.

  5. 34A, miRNA-944, miRNA-101 and miRNA-218 in cervical cancer

    African Journals Online (AJOL)

    RNAs (21 - 24 nucleotides in length) that are critical for many important processes such as development, ... RNA extraction and reverse transcription. Total RNA was extracted from each of the experimental groups using ... used as an endogenous control to normalize the expression of miRNA-143, miRNA-34A, miRNA-.

  6. Single-living is associated with increased risk of long-term mortality among employed patients with acute myocardial infarction

    Directory of Open Access Journals (Sweden)

    Finn Erl

    2010-05-01

    Full Text Available Finn Erland Nielsen, Shan MardDepartment of Cardiology S, Herlev University Hospital, DenmarkObjective: There is conflicting evidence about the impact of social support on adverse outcome after acute myocardial infarction (MI. We examined the relation between single-living and long-term all-cause mortality after MI.Design: A prospective cohort study of 242 employed patients with MI followed up to 16 years after MI.Results: A total of 106 (43.8% patients died during the follow-up. Single-living nearly doubled the risk of death; after adjusting for potential confounding factors, single-living was an independent predictor of death, with a hazard ratio of 2.55 (95% confidence interval: 1.52–4.30. Other predictors of death were diabetes mellitus, atrial fibrillation, age, and ejection fraction less than 35%.Conclusion: Single-living is a prognostic determinant of long-term all-cause mortality after MI.Keywords: acute myocardial infarction, social support, single-living, prognosis.

  7. Expression profiling of miR-96, miR-584 and miR-422a in colon ...

    African Journals Online (AJOL)

    . Lower miRNA ... Thus, the ratio of miR-96/miR-638 in plasma is a potential non- ... leading cause of cancer related deaths. ... breast cancer cells have revealed a total of 51 ... Corresponding negative control ..... The American Joint Committee.

  8. Regulation of turkey myogenic satellite cell migration by MicroRNAs miR-128 and miR-24.

    Science.gov (United States)

    Velleman, S G; Harding, R L

    2017-06-01

    Myogenic satellite cells are an adult stem cell responsible for all post-hatch muscle growth in poultry. As a stem cell population, satellite cells are highly heterogeneous, but the origin of this heterogeneity remains unclear. Heterogeneity is, in part, regulated by gene expression. One method of endogenous gene regulation that may contribute to heterogeneity is microRNAs (miRNAs). Two miRNAs previously shown to regulate poultry myogenic satellite cell proliferation and differentiation, miR-128 and miR-24, were studied to determine if they also affected satellite cell migration. Satellite cell migration is an essential step for both proliferation and differentiation. During proliferation, satellite cells will migrate and align to form new myofibers or donate their nuclei to existing myofibers leading to muscle fiber hypertrophy or regeneration. Transient transfection of miRNA specific mimics to each miRNA reduced migration of satellite cells following a cell culture scratch at 72 h of proliferation when the cultures were 90 to 100% confluent. However, only the migration in cells transfected with miR-24 mimics at 24 and 30 h following the scratch was significantly reduced (P ≤ 0.05) to around 70% of the distance migrated by controls. Alternately, transfection with inhibitors specific to miR-128 or miR-24 significantly (P ≤ 0.05) increased migration between 147 and 252% compared to their controls between 24 and 48 h following the scratch. These data demonstrate that miR-128 and miR-24 play a role in myogenic satellite cell migration, which will impact muscle development and growth. © 2016 Poultry Science Association Inc.

  9. Micromanagement of Immune System: Role of miRNAs in Helminthic Infections.

    Science.gov (United States)

    Arora, Naina; Tripathi, Shweta; Singh, Aloukick K; Mondal, Prosenjit; Mishra, Amit; Prasad, Amit

    2017-01-01

    Helminthic infections fall under neglected tropical diseases, although they inflict severe morbidity to human and causes major economic burden on health care system in many developing countries. There is increased effort to understand their immunopathology in recent days due to their immuno-modulatory capabilities. Immune response is primarily controlled at the transcriptional level, however, microRNA-mediated RNA interference is emerging as important regulatory machinery that works at the translation level. In the past decade, microRNA (miRNA/miR) research has advanced with significant momentum. The result is ever increasing list of curated sequences from a broad panel of organisms including helminths. Several miRNAs had been discovered from trematodes, nematodes and cestodes like let-7, miR155, miR-199, miR-134, miR-223, miR-146, and fhe-mir-125a etc., with potential role in immune modulation. These miRs had been associated with TGF-β, MAPK, Toll-like receptor, PI3K/AKT signaling pathways and insulin growth factor regulation. Thus, controlling the immune cells development, survival, proliferation and death. Apart from micromanagement of immune system, they also express certain unique miRNA also like cis- miR-001, cis- miR-2, cis- miR-6, cis- miR-10, cis- miR-18, cis- miR-19, trs-mir-0001, fhe-miR-01, fhe-miR-07, fhe-miR-08, egr-miR-4988, egr-miR-4989 etc. The specific role played by most of these species specific unique miRs are yet to be discovered. However, these newly discovered miRNAs might serve as novel targets for therapeutic intervention or biomarkers for parasitic infections.

  10. Clinical significance of miR-140-5p and miR-193b expression in patients with breast cancer and relationship to IGFBP5

    Directory of Open Access Journals (Sweden)

    Gökçe Güllü

    2015-03-01

    Full Text Available The functional role of IGFBP5 in breast cancer is complicated. Experimental and bioinformatics studies have shown that IGFBP5 is targeted by miR-140-5p and miR-193b, although this has not yet been proven in clinical samples. The aim of this study was to evaluate the expression of miR-140-5p and miR-193b in breast cancer and adjacent normal tissue and assess its correlation with IGFBP5 and the clinicopathological characteristics of the tumors. IGFBP5 protein expression was analyzed immunohistochemically and IGFBP5, miR-140 and miR-193b mRNA expression levels were analyzed with real-time RT-PCR. Tumor tissue had higher miR-140-5p expression than adjacent normal tissue (p = 0.015. Samples with no immunohistochemical staining for IGFBP5 showed increased miR-140-5p expression (p = 0.009. miR-140-5p expression was elevated in invasive ductal carcinomas (p = 0.002, whereas basal-like tumors had decreased expression of miR-140-5p compared to other tumors (p = 0.008. Lymph node-positive samples showed an approximately 13-fold increase in miR-140-5p expression compared to lymph node-negative tissue (p = 0.049. These findings suggest that miR-140-5p, but not miR-193b, could be an important determinant of IGFBP5 expression and clinical phenotype in breast cancer patients. Further studies are needed to clarify the expressional regulation of IGFBP5 by miR-140-5p.

  11. Role of serum miRNAs in the prediction of ovarian hyperstimulation syndrome in polycystic ovarian syndrome patients.

    Science.gov (United States)

    Zhao, Chun; Liu, Xiaoguang; Shi, Zhonghua; Zhang, Jing; Zhang, Junqiang; Jia, Xuemei; Ling, Xiufeng

    2015-01-01

    Polycystic ovarian syndrome (PCOS) causes a significantly increased risk of ovarian hyperstimulation syndrome (OHSS). Here, we focused on the altered expression of serum miRNAs and their predictive value for OHSS in PCOS patients. We used the TaqMan low density array followed by individual quantitative reverse transcription-polymerase chain reaction to identify and validate the expression of serum miRNAs in PCOS patients likely to develop severe OHSS. The miR-16 and miR-223 expression levels were significantly reduced in the patients who were likely to develop severe OHSS than in the control subjects who were likely to develop mild or no OHSS. The sensitivity and specificity of the basal LH, basal LH/FSH, and body mass index (BMI) as OHSS predictors were also evaluated. miR-16 was the most efficient for OHSS prediction as it yielded the highest AUC. Logistic binary regression analyses revealed a positive association of miR-223 and BMI. Serum miRNAs are differentially expressed in PCOS patients likely to suffer from severe OHSS. We identified and validated two serum miRNAs that have potential for use as novel noninvasive biomarkers to accurately predict OHSS before controlled ovarian hyperstimulation (COH) for PCOS patients. © 2015 S. Karger AG, Basel.

  12. The Involvement of miR-29b-3p in Arterial Calcification by Targeting Matrix Metalloproteinase-2

    Directory of Open Access Journals (Sweden)

    Wenhong Jiang

    2017-01-01

    Full Text Available Vascular calcification is a risk predictor and common pathological change in cardiovascular diseases that are associated with elastin degradation and phenotypic transformation of vascular smooth muscle cells via gelatinase matrix metalloproteinase-2 (MMP2. However, the mechanisms involved in this process remain unclear. In this study, we investigated the relationships between miR-29b-3p and MMP2, to confirm miR-29b-3p-mediated MMP2 expression at the posttranscriptional level in arterial calcification. In male Sprague Dawley rats, arterial calcification was induced by subcutaneous injection of a toxic dose of cholecalciferol. In vivo, the quantitative real-time polymerase chain reaction (qRT-PCR showed that MMP2 expression was upregulated in calcified arterial tissues, and miR-29b-3p expression was downregulated. There was a negative correlation between MMP2 mRNA expression and miR-29b-3p levels (P=0.0014, R2=0.481. Western blotting showed that MMP2 expression was significantly increased in rats treated with cholecalciferol. In vitro, overexpression of miR-29b-3p led to decreased MMP2 expression in rat vascular smooth muscle cells, while downregulation of miR-29b-3p expression led to increased MMP2 expression. Moreover, the luciferase reporter assay confirmed that MMP2 is the direct target of miR-29b-3p. Together, our results demonstrated that a role of miR-29b-3p in vascular calcification involves targeting MMP2.

  13. miR-184 and miR-150 promote renal glomerular mesangial cell aging by targeting Rab1a and Rab31.

    Science.gov (United States)

    Liu, Xiujuan; Fu, Bo; Chen, Dapeng; Hong, Quan; Cui, Jing; Li, Jin; Bai, Xueyuan; Chen, Xiangmei

    2015-08-15

    The molecular mechanism of kidney aging is not well understood, but the abnormal expression of miRNAs with aging is considered to be an important contributor. miR-184 and miR-150 were screened using a miRNA microarray and qRT-PCR and found to be significantly upregulated in 24-month-old rats. Rat renal primary glomerular mesangial cells (GMCs) were isolated from 3-month and 24-month-old rats for the in vitro analysis of the roles of miR-184 and miR-150 in kidney aging. Bioinformatics analyses suggested that Rab1a and Rab31, which are associated with cell autophagy, were targeted by both miR-184 and miR-150. miR-184 and miR-150 were increased significantly in aging GMCs versus young cells, while Rab1a and Rab31 were significantly lower in aging cells. Furthermore, dual luciferase reporter assays revealed that miR-184 and miR-150 bound to the 3'-UTR of Rab1a and Rab31 mRNAs. Transfection of miR-184 and miR-150 mimics into young GMCs suppressed the expression of Rab1a and Rab31. Transfected cells showed lower autophagy activities and higher levels of cellular oxidative products, leading to the aging of young GMCs. However, miR-184 and miR-150 inhibitors promoted autophagy and reduced oxidative damage by upregulating Rab1a and Rab31 in old GMCs. In conclusion, miR-184 and miR-150 inhibited autophagy, promoting GMC aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. miR-29b, miR-205 and miR-221 enhance chemosensitivity to gemcitabine in HuH28 human cholangiocarcinoma cells.

    Directory of Open Access Journals (Sweden)

    Kinya Okamoto

    Full Text Available BACKGROUND AND AIMS: Cholangiocarcinoma (CCA is highly resistant to chemotherapy, including gemcitabine (Gem treatment. MicroRNAs (miRNAs are endogenous, non-coding, short RNAs that can regulate multiple genes expression. Some miRNAs play important roles in the chemosensitivity of tumors. Here, we examined the relationship between miRNA expression and the sensitivity of CCA cells to Gem. METHODS: Microarray analysis was used to determine the miRNA expression profiles of two CCA cell lines, HuH28 and HuCCT1. To determine the effect of candidate miRNAs on Gem sensitivity, expression of each candidate miRNA was modified via either transfection of a miRNA mimic or transfection of an anti-oligonucleotide. Ontology-based programs were used to identify potential target genes of candidate miRNAs that were confirmed to affect the Gem sensitivity of CCA cells. RESULTS: HuCCT1 cells were more sensitive to Gem than were HuH28 cells, and 18 miRNAs were differentially expressed whose ratios over ± 2log2 between HuH28 and HuCCT1. Among these 18 miRNAs, ectopic overexpression of each of three downregulated miRNAs in HuH28 (miR-29b, miR-205, miR-221 restored Gem sensitivity to HuH28. Suppression of one upregulated miRNA in HuH28, miR-125a-5p, inhibited HuH28 cell proliferation independently to Gem treatment. Selective siRNA-mediated downregulation of either of two software-predicted targets, PIK3R1 (target of miR-29b and miR-221 or MMP-2 (target of miR-29b, also conferred Gem sensitivity to HuH28. CONCLUSIONS: miRNA expression profiling was used to identify key miRNAs that regulate Gem sensitivity in CCA cells, and software that predicts miRNA targets was used to identify promising target genes for anti-tumor therapies.

  15. miR319, miR390, and miR393 Are Involved in Aluminum Response in Flax (Linum usitatissimum L.).

    Science.gov (United States)

    Dmitriev, Alexey A; Kudryavtseva, Anna V; Bolsheva, Nadezhda L; Zyablitsin, Alexander V; Rozhmina, Tatiana A; Kishlyan, Natalya V; Krasnov, George S; Speranskaya, Anna S; Krinitsina, Anastasia A; Sadritdinova, Asiya F; Snezhkina, Anastasiya V; Fedorova, Maria S; Yurkevich, Olga Yu; Muravenko, Olga V; Belenikin, Maxim S; Melnikova, Nataliya V

    2017-01-01

    Acid soils limit agricultural production worldwide. Major reason of crop losses in acid soils is the toxicity of aluminum (Al). In the present work, we investigated expression alterations of microRNAs in flax ( Linum usitatissimum L.) plants under Al stress. Flax seedlings of resistant (TMP1919 and G1071/4_k) and sensitive (Lira and G1071/4_o) to Al cultivars and lines were exposed to AlCl 3 solution for 4 and 24 hours. Twelve small RNA libraries were constructed and sequenced using Illumina platform. In total, 97 microRNAs from 18 conserved families were identified. miR319, miR390, and miR393 revealed expression alterations associated with Al treatment of flax plants. Moreover, for miR390 and miR393, the alterations were distinct in sensitive and resistant to Al genotypes. Expression level changes of miR319 and miR390 were confirmed using qPCR analysis. In flax, potential targets of miR319 are TCPs, miR390-TAS3 and GRF5, and miR393-AFB2-coding transcripts. TCPs, TAS3, GRF5, and AFB2 participate in regulation of plant growth and development. The involvement of miR319, miR390, and miR393 in response to Al stress in flax was shown here for the first time. We speculate that these microRNAs play an important role in Al response via regulation of growth processes in flax plants.

  16. Circulating microRNA (miRNA Expression Profiling in Plasma of Patients with Gestational Diabetes Mellitus Reveals Upregulation of miRNA miR-330-3p

    Directory of Open Access Journals (Sweden)

    Guido Sebastiani

    2017-12-01

    Full Text Available Gestational diabetes mellitus (GDM is characterized by insulin resistance accompanied by low/absent beta-cell compensatory adaptation to the increased insulin demand. Although the molecular mechanisms and factors acting on beta-cell compensatory response during pregnancy have been partially elucidated and reported, those inducing an impaired beta-cell compensation and function, thus evolving in GDM, have yet to be fully addressed. MicroRNAs (miRNAs are a class of small endogenous non-coding RNAs, which negatively modulate gene expression through their sequence-specific binding to 3′UTR of mRNA target. They have been described as potent modulators of cell survival and proliferation and, furthermore, as orchestrating molecules of beta-cell compensatory response and function in diabetes. Moreover, it has been reported that miRNAs can be actively secreted by cells and found in many biological fluids (e.g., serum/plasma, thus representing both optimal candidate disease biomarkers and mediators of tissues crosstalk(s. Here, we analyzed the expression profiles of circulating miRNAs in plasma samples obtained from n = 21 GDM patients and from n = 10 non-diabetic control pregnant women (24–33 weeks of gestation using TaqMan array microfluidics cards followed by RT-real-time PCR single assay validation. The results highlighted the upregulation of miR-330-3p in plasma of GDM vs non-diabetics. Furthermore, the analysis of miR-330-3p expression levels revealed a bimodally distributed GDM patients group characterized by high or low circulating miR-330 expression and identified as GDM-miR-330high and GDM-miR-330low. Interestingly, GDM-miR-330high subgroup retained lower levels of insulinemia, inversely correlated to miR-330-3p expression levels, and a significant higher rate of primary cesarean sections. Finally, miR-330-3p target genes analysis revealed major modulators of beta-cell proliferation and of insulin secretion, such as the

  17. Delineating miRNA profile induced by chewing tobacco in oral keratinocytes

    Directory of Open Access Journals (Sweden)

    Mohd Younis Bhat

    2017-10-01

    Full Text Available The major established etiologic risk factor for oral cancer is tobacco (chewed, smoked and snuffed forms. Chewing form of tobacco is predominantly used in India making it the leading cause of oral cancer. Despite being one of the leading causes of oral cancer, the molecular alterations induced by chewing tobacco remains largely unclear. Carcinogenic effect of chewing tobacco is through chronic and not acute exposure. To understand the molecular alterations induced by chewing tobacco, we developed a cell line model where non-neoplastic oral keratinocytes were chronically exposed to chewing tobacco for a period of 6 months. This resulted in increased cellular proliferation and invasive ability of normal oral keratinocytes. Using this cellular model we studied the differential expression of miRNAs associated with chewing tobacco and the altered signaling pathways through which the aberrantly expressed miRNAs affect tumorigenesis. miRNA sequencing  was carried out using Illumina HiSeq 2500 platform  which resulted in the identification of 427 annotated miRNAs of which 10 were significantly dysregulated (≥ 4 fold; p-value ≤ 0.05 in tobacco exposed cells compared to untreated parental cells. To study the altered signaling in oral keratinocytes chronically exposed to chewing tobacco, we employed quantitative proteomics to characterize the dysregulated proteins. Integration of miRNA sequencing data with proteomic data resulted in identification of 36 proven protein targets which (≥1.5 fold; p-value ≤ 0.05 showed expression correlation with the 10 significantly dysregulated miRNAs. Pathway analysis of the dysregulated targets revealed enrichment of interferon signaling and mRNA processing related pathways in the chewing tobacco exposed cells. In addition, we also identified 6 novel miRNA in oral keratinocytes chronically exposed to chewing tobacco extract. Our study provides a framework to understand the oncogenic transformation induced by

  18. Characterization and Functional Analysis of Extracellular Vesicles and Muscle-Abundant miRNAs (miR-1, miR-133a, and miR-206 in C2C12 Myocytes and mdx Mice.

    Directory of Open Access Journals (Sweden)

    Yasunari Matsuzaka

    Full Text Available Duchenne muscular dystrophy (DMD is a progressive neuromuscular disorder. Here, we show that the CD63 antigen, which is located on the surface of extracellular vesicles (EVs, is associated with increased levels of muscle-abundant miRNAs, namely myomiRs miR-1, miR-133a, and miR-206, in the sera of DMD patients and mdx mice. Furthermore, the release of EVs from the murine myoblast C2C12 cell line was found to be modulated by intracellular ceramide levels in a Ca2+-dependent manner. Next, to investigate the effects of EVs on cell survival, C2C12 myoblasts and myotubes were cultured with EVs from the sera of mdx mice or C2C12 cells overexpressing myomiRs in presence of cellular stresses. Both the exposure of C2C12 myoblasts and myotubes to EVs from the serum of mdx mice, and the overexpression of miR-133a in C2C12 cells in presence of cellular stress resulted in a significant decrease in cell death. Finally, to assess whether miRNAs regulate skeletal muscle regeneration in vivo, we intraperitoneally injected GW4869 (an inhibitor of exosome secretion into mdx mice for 5 and 10 days. Levels of miRNAs and creatine kinase in the serum of GW4869-treated mdx mice were significantly downregulated compared with those of controls. The tibialis anterior muscles of the GW4869-treated mdx mice showed a robust decrease in Evans blue dye uptake. Collectively, these results indicate that EVs and myomiRs might protect the skeletal muscle of mdx mice from degeneration.

  19. Occupations at risk of developing contact allergy to isothiazolinones in Danish contact dermatitis patients

    DEFF Research Database (Denmark)

    Schwensen, Jakob F; Menné, Torkil; Andersen, Klaus E

    2014-01-01

    , MCI/MI and BIT between 2009 and 2013 were included. RESULTS: MI contact allergy showed a significantly increased trend in prevalence from 1.8% in 2009 to 4.2% in 2012 (p dermatitis mainly drove the increase in 2012. Adjusted logistic regression analysis showed that MI...... sensitization was significantly associated with occupational exposures, hand and facial dermatitis, age > 40 years, and the occupational groups of tile setters/terrazzo workers, machine operators, and painters. MCI/MI contact allergy was significantly associated with the following high-risk occupations......BACKGROUND: In recent years, the prevalence of contact allergy to isothiazolinones has reached epidemic levels. Few studies have presented data on occupations at risk of developing contact allergy to isothiazolinones. OBJECTIVES: To present demographics and examine risk factors for sensitization...

  20. Design and baseline characteristics of the PerfectFit study: a multicenter cluster-randomized trial of a lifestyle intervention in employees with increased cardiovascular risk.

    Science.gov (United States)

    Kouwenhoven-Pasmooij, Tessa A; Djikanovic, Bosiljka; Robroek, Suzan J W; Helmhout, Pieter; Burdorf, Alex; Hunink, M G Myriam

    2015-07-28

    , physical activity, stress management) and body mass index. Furthermore, a process evaluation and an economic analysis will be performed. Additional coaching using MI is expected to be a key factor for success of the web-based HRA in employees with increased cardiovascular risk. This "blended care"-approach may be an essential strategy for effective health promotion activities. Dutch Trial Register by registration number NTR4894 , 14/11/2014.

  1. Risk of incident cardiovascular events amongst individuals with anxiety and depression: A prospective cohort study in the east London primary care database.

    Science.gov (United States)

    Mathur, R; Pérez-Pinar, M; Foguet-Boreu, Q; Ayis, S; Ayerbe, L

    2016-12-01

    It is unknown how risk of myocardial infarction and stroke differ for patients with and without anxiety or depression, and whether this risk can be explained by demographics, medication use, cardiovascular risk factors. The aim of this study is to quantify differences in risk of non-fatal MI or stroke among patients with anxiety or depression. Prospective cohort study examining risk of incident MI and stroke between March 2005 and March 2015 for 524,952 patients aged 30 and over from the east London primary care database for patients with anxiety or depression. Amongst 21,811 individuals with depression at baseline, 1.2% had MI and 0.4% had stroke. Of 22,128 individuals with anxiety at baseline, 1.1% had MI and 0.3% had stroke. Depression was independently associated with both MI and stroke, whereas anxiety was associated with MI only before adjustment for cardiovascular risk factors. Antidepressant use increased risk for MI but not stroke. Mean age at first MI was lower in those with anxiety, while mean age at first stroke was lower in those with depression. The study was limited to patients currently registered in the database and thus we did not have any patients that died during the course of follow-up. Patients with depression have increased risk of cardiovascular events. The finding of no increased cardiovascular risk in those with anxiety after adjusting for cardiovascular risk factors is of clinical importance and highlights that the adequate control of traditional risk factors is the cornerstone of cardiovascular disease prevention. Targeting management of classical cardiovascular risk factors and evaluating the risks of antidepressant prescribing should be prioritized. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Lack of association between miR-218 rs11134527 A>G and Kawasaki disease susceptibility.

    Science.gov (United States)

    Pi, Lei; Fu, Lanyan; Xu, Yufen; Che, Di; Deng, Qiulian; Huang, Xijing; Li, Meiai; Zhang, Li; Huang, Ping; Gu, Xiaoqiong

    2018-05-01

    Abstract Kawasaki disease (KD) is a type of disease that includes the development of a fever that lasts at least five days and involves the clinical manifestation of multicellular vasculitis. KD has become one of the most common pediatric cardiovascular diseases. Previous studies have reported that miR-218 rs11134527 A>G is associated with susceptibility to various cancer risks. However, there is a lack of evidence regarding the relationship between this polymorphism and KD risk. This study explored the correlation between the miR-218 rs11134527 A>G polymorphism and the risk of KD. We recruited 532 patients with KD and 623 controls to genotype the miR-218 rs11134527 A>G polymorphism with a TaqMan allelic discrimination assay. Our results illustrated that the miR-218 rs11134527 A>G polymorphism was not associated with KD risk. In an analysis stratified by age, sex, and coronary artery lesions, we found only that the risk of KD was significantly decreased for children older than 5 years (GG vs. AA/AG: adjusted OR=0.26, 95% CI=0.07-0.94, P =0.041). This study demonstrated that the miR-218 rs1113452 A>G polymorphism may have an age-related relationship with KD susceptibility that has not previously been revealed. ©2018 The Author(s).

  3. -5p and -3p strands of miR-145 and miR-140 during mesenchymal stem cell chondrogenic differentiation.

    Science.gov (United States)

    Kenyon, Jonathan D; Sergeeva, Olga; Somoza, Rodrigo A; Li, Ming; Caplan, Arnold I; Khalil, Ahmad M; Lee, Zhenghong

    2018-04-20

    The chondrogenic differentiation of mesenchymal stem cells (MSCs) is mediated by transcription factors and small non-coding RNAs such as micro-RNAs (miRNAs). Each miRNA is initially transcribed as a long transcript, which matures to produce -5p and -3p strands. It is widely believed that the mature and functional miRNA from any given pre-miRNA, usually the -5p strand, is functional, while the opposing -3p strand is degraded. However, recent cartilage literature started to show functional -3p stands for a few miRNAs. This study aimed at examining both -5p and -3p strands of two key miRNAs miR-140 and miR-145 that are known to be involved in the chondrogenic differentiation of MSCs. The level (copy number) of both -5p and -3p strands of miR-145 and miR-140 along the timeline of MSC chondrogenic differentiation was determined by PCR. The gene expression profiles of several genes related to MSC chondrogenesis were compared with these miRNA profiles along the same timeline. While miR-145-3p is declining in step with miR-145-5p in pellet cultures during the process, the -3p strand is only 1% - 2% of the total miR-145 products. In contrast, the mature -3p and -5p products of miR-140 are found to increase with near equal molar expression throughout chondrogenic differentiation. Numerous genes are expressed by cartilage progenitor cells during development. One such target gene, Sox9 is a regulatory target of the dominant miR-145-5p, consistent with the data. Further experimental validations are warranted to confirm that ACAN, FOXO1 and RUNX3 as direct targets of miR-145-5p in the context of MSC chondrogenesis. Similarly, TRSP1 and ACAN are worth further validation as direct targets of miR-145-3p. For miR-140, SOX4 shall be further validated as a direct target of miR-140-5p while KLF4, PTHLH, and WNT5A can be validated as direct targets of miR-140-3p.

  4. MiR-2964a-5p binding site SNP regulates ATM expression contributing to age-related cataract risk.

    Science.gov (United States)

    Rong, Han; Gu, Shanshan; Zhang, Guowei; Kang, Lihua; Yang, Mei; Zhang, Junfang; Shen, Xinyue; Guan, Huaijin

    2017-10-17

    This study was to explore the involvement of DNA repair genes in the pathogenesis of age-related cataract (ARC). We genotyped nine single nucleotide polymorphisms (SNPs) of genes responsible to DNA double strand breaks (DSBs) in 804 ARC cases and 804 controls in a cohort of eye diseases in Chinese population and found that the ataxia telangiectasia mutated ( ATM ) gene-rs4585:G>T was significantly associated with ARC risk. An in vitro functional test found that miR-2964a-5p specifically down-regulated luciferase reporter expression and ATM expression in the cell lines transfected with rs4585 T allele compared to rs4585 G allele. The molecular assay on human tissue samples discovered that ATM expression was down-regulated in majority of ARC tissues and correlated with ATM genotypes. In addition, the Comet assay of cellular DNA damage of peripheral lymphocytes indicated that individuals carrying the G allele (GG/GT) of ATM -rs4585 had lower DNA breaks compared to individuals with TT genotype. These findings suggested that the SNP rs4585 in ATM might affect ARC risk through modulating the regulatory affinity of miR-2964a-5p. The reduced DSBs repair might be involved in ARC pathogenesis.

  5. miR-192, miR-194 and miR-215: a convergent microRNA network suppressing tumor progression in renal cell carcinoma.

    Science.gov (United States)

    Khella, H W Z; Bakhet, M; Allo, G; Jewett, M A S; Girgis, A H; Latif, A; Girgis, H; Von Both, I; Bjarnason, G A; Yousef, G M

    2013-10-01

    MicroRNAs (miRNAs) play a crucial role in tumor progression and metastasis. We, and others, recently identified a number of miRNAs that are dysregulated in metastatic renal cell carcinoma compared with primary renal cell carcinoma. Here, we investigated three miRNAs that are significantly downregulated in metastatic tumors: miR-192, miR-194 and miR-215. Gain-of-function analyses showed that restoration of their expression decreases cell migration and invasion in renal cell carcinoma cell line models, whereas knockdown of these miRNAs resulted in enhancing cellular migration and invasion abilities. We identified three targets of these miRNAs with potential role in tumor aggressiveness: murine double minute 2, thymidylate synthase, and Smad Interacting protein 1/zinc finger E-box binding homeobox 2. We observed a convergent effect (the same molecule can be targeted by all three miRNAs) and a divergent effect (the same miRNA can control multiple targets) for these miRNAs. We experimentally validated these miRNA-target interactions using three independent approaches. First, we observed that miRNA overexpression significantly reduces the mRNA and protein levels of their targets. In the second, we observed significant reduction of the luciferase signal of a vector containing the 3'UTR of the target upon miRNA overexpression. Finally, we show the presence of inverse correlation between miRNA changes and the expression levels of their targets in patient specimens. We also examined the prognostic significance of miR-215 in renal cell carcinoma. Lower expression of miR-215 is associated with significantly reduced disease-free survival time. These findings were validated on an independent data set from The Cancer Genome Atlas. These results can pave the way to the clinical use of miRNAs as prognostic markers and therapeutic targets.

  6. MiRNA Profiles in Lymphoblastoid Cell Lines of Finnish Prostate Cancer Families.

    Directory of Open Access Journals (Sweden)

    Daniel Fischer

    Full Text Available Heritable factors are evidently involved in prostate cancer (PrCa carcinogenesis, but currently, genetic markers are not routinely used in screening or diagnostics of the disease. More precise information is needed for making treatment decisions to distinguish aggressive cases from indolent disease, for which heritable factors could be a useful tool. The genetic makeup of PrCa has only recently begun to be unravelled through large-scale genome-wide association studies (GWAS. The thus far identified Single Nucleotide Polymorphisms (SNPs explain, however, only a fraction of familial clustering. Moreover, the known risk SNPs are not associated with the clinical outcome of the disease, such as aggressive or metastasised disease, and therefore cannot be used to predict the prognosis. Annotating the SNPs with deep clinical data together with miRNA expression profiles can improve the understanding of the underlying mechanisms of different phenotypes of prostate cancer.In this study microRNA (miRNA profiles were studied as potential biomarkers to predict the disease outcome. The study subjects were from Finnish high risk prostate cancer families. To identify potential biomarkers we combined a novel non-parametrical test with an importance measure provided from a Random Forest classifier. This combination delivered a set of nine miRNAs that was able to separate cases from controls. The detected miRNA expression profiles could predict the development of the disease years before the actual PrCa diagnosis or detect the existence of other cancers in the studied individuals. Furthermore, using an expression Quantitative Trait Loci (eQTL analysis, regulatory SNPs for miRNA miR-483-3p that were also directly associated with PrCa were found.Based on our findings, we suggest that blood-based miRNA expression profiling can be used in the diagnosis and maybe even prognosis of the disease. In the future, miRNA profiling could possibly be used in targeted screening

  7. Circulating miR-765 and miR-149: Potential Noninvasive Diagnostic Biomarkers for Geriatric Coronary Artery Disease Patients

    Directory of Open Access Journals (Sweden)

    Md Sayed Ali Sheikh

    2015-01-01

    Full Text Available The purpose of this study was to evaluate the diagnostic value of circulating miR-765 and miR-149 as noninvasive early biomarkers for geriatric coronary artery disease (CAD patients. A total of 69 angiographically documented CAD patients including 37 stable CAD (72.9 ± 4.2 years and 32 unstable CAD (72.03 ± 4.3 years and 20 healthy subjects (71.7 ± 5.2 years, matched for age, sex, smoking habit, hypertension, and diabetes, were enrolled in this study. Compared with healthy subjects, circulating miR-765 levels were increased by 2.9-fold in stable CAD and 5.8-fold in unstable CAD patients, respectively, while circulating miR-149 levels were downregulated by 3.5-fold in stable CAD and 4.2-fold in unstable CAD patients, respectively. Furthermore, plasma levels of miR-765 were found to be positively correlated with ages within control, stable, and unstable groups. The ROC curves of miR-765 and miR-149 represented significant diagnostic values with an area under curve (AUC of 0.959, 0.972 and 0.938, 0.977 in stable CAD patients and unstable CAD patients as compared with healthy subjects, respectively. Plasma levels of miR-765 and miR-149 might be used as noninvasive biomarkers for the diagnosis of CAD in geriatric people.

  8. Risk of anxiety and depressive disorders in patients with myocardial infarction: A nationwide population-based cohort study.

    Science.gov (United States)

    Feng, Hsin-Pei; Chien, Wu-Chien; Cheng, Wei-Tung; Chung, Chi-Hsiang; Cheng, Shu-Meng; Tzeng, Wen-Chii

    2016-08-01

    Anxiety and depressive symptoms are associated with adverse cardiovascular events after an acute myocardial infarction (MI). However, most studies focusing on anxiety or depression have used rating scales or self-report methods rather than clinical diagnosis. This study aimed to investigate the association between psychiatrist-diagnosed psychiatric disorders and cardiovascular prognosis.We sampled data from the National Health Insurance Research Database; 1396 patients with MI were recruited as the study cohort and 13,960 patients without MI were recruited as the comparison cohort. Cox proportional hazard regression models were used to examine the effect of MI on the risk of anxiety and depressive disorders.During the first 2 years of follow-up, patients with MI exhibited a significantly higher risk of anxiety disorders (adjusted hazard ratio [HR] = 5.06, 95% confidence interval [CI]: 4.61-5.54) and depressive disorders (adjusted HR = 7.23, 95% CI: 4.88-10.88) than those without MI did. Greater risk for anxiety and depressive disorders was observed among women and patients aged 45 to 64 years following an acute MI. Patients with post-MI anxiety had a 9.37-fold (95% CI: 4.45-19.70) higher risk of recurrent MI than those without MI did after adjustment for age, sex, socioeconomic status, and comorbidities.This nationwide population-based cohort study provides evidence that MI increases the risk of anxiety and depressive disorders during the first 2 years post-MI, and post-MI anxiety disorders are associated with a higher risk of recurrent MI.

  9. Circulating exosomal miR-27a and miR-130a act as novel diagnostic and prognostic biomarkers of colorectal cancer.

    Science.gov (United States)

    Wang, Shukui; Liu, Xiangxiang; Pan, Bei; Sun, Li; Chen, Xiaoxiang; Zeng, Kaixuan; Hu, Xiuxiu; Xu, Tao; Xu, Mu

    2018-05-08

    Colorectal cancer (CRC) is one of the most common cancers worldwide usually with poor prognosis due to the advanced stage when diagnosed. This study aimed to investigate whether specific circulating exosomal miRNAs could act as biomarkers for early diagnosis of CRC. A total of 369 peripheral blood samples were included in this study. In the discovery phase, circulating exosomal miR-27a and miR-130a were selected after synthetical analysis of two GEO datasets and TCGA database. The differential expression and diagnostic utility of miR-27a and miR-130a panel were validated using quantitative reverse-transcriptase PCR (qRT-PCR) and Receiver operating characteristic (ROC) curve analysis in subsequent training phase, validation phase and external validation phase. The prognosis of circulating exosomal miR-27a and miR-130a were investigated using the Kaplan-Meier method. The expression of exosomal miR-27a and miR-130a in plasma significantly increased in CRC. The area under ROC curves (AUCs) of miR-27a (miR-130a) were 0.773 (0.742) in the training phase, 0.82 (0.787) in the validation phase, and 0.746 (0.697) in the external validation phase. The combination of two miRNAs presented higher diagnostic utility for CRC (AUCs = 0.846, 0.898 and 0.801 for the training, validation, and external validation phases, respectively). CRC patients with high expression of circulating exosomal miR-27a or miR-130a underwent poorer prognosis. We identified a circulating exosomal miRNAs panel for the detection of CRC. The exosomal miR-27a and miR-130a panel in plasma may act as a non-invasive biomarker for early detection and predicting prognosis of CRC. Copyright ©2018, American Association for Cancer Research.

  10. miRNAtools: Advanced Training Using the miRNA Web of Knowledge.

    Science.gov (United States)

    Stępień, Ewa Ł; Costa, Marina C; Enguita, Francisco J

    2018-02-16

    Micro-RNAs (miRNAs) are small non-coding RNAs that act as negative regulators of the genomic output. Their intrinsic importance within cell biology and human disease is well known. Their mechanism of action based on the base pairing binding to their cognate targets have helped the development not only of many computer applications for the prediction of miRNA target recognition but also of specific applications for functional assessment and analysis. Learning about miRNA function requires practical training in the use of specific computer and web-based applications that are complementary to wet-lab studies. In order to guide the learning process about miRNAs, we have created miRNAtools (http://mirnatools.eu), a web repository of miRNA tools and tutorials. This article compiles tools with which miRNAs and their regulatory action can be analyzed and that function to collect and organize information dispersed on the web. The miRNAtools website contains a collection of tutorials that can be used by students and tutors engaged in advanced training courses. The tutorials engage in analyses of the functions of selected miRNAs, starting with their nomenclature and genomic localization and finishing with their involvement in specific cellular functions.

  11. Valproate attenuates the risk of myocardial infarction in patients with epilepsy: a nationwide cohort study

    DEFF Research Database (Denmark)

    Olesen, J. B.; Hansen, P. R.; Abildstrom, S. Z.

    2011-01-01

    Purpose Patients with epilepsy have increased risk of myocardial infarction (MI). Valproate can exert anti-atherosclerotic effects. We therefore examined the risk of MI in patients with epilepsy receiving valproate. Methods Two cohorts of patients with valproate-treated epilepsy and sex- and age-...

  12. miR-371, miR-138, miR-544, miR-145, and miR-214 could modulate Th1/Th2 balance in asthma through the combinatorial regulation of Runx3.

    Science.gov (United States)

    Qiu, Yu-Ying; Zhang, Ying-Wei; Qian, Xiu-Fen; Bian, Tao

    2017-01-01

    Asthma is tightly related to the imbalance of Th1/Th2 cells, and Runx3 plays a pivotal role in the differentiation of T helper cells. The present study aimed to investigate dysregulated microRNAs that may target Runx3 in CD4 + T cells from asthmatic patients and reveal Runx3 function in Th1/Th2 balance regulation. We detected the levels of Th1- and Th2-related cytokines by ELISA and analyzed the differentiation marker gene of T helper cells by qRT-PCR. Results indicated that an imbalance of Th1/Th2 cells was present in our asthmatic subject. Runx3 expression was reduced in the CD4 + T cells from asthmatic patients. Overexpression of Runx3 could restore the Th1/Th2 balance. After performing microRNA microarray assay, we found a series of microRNAs that were considerably altered in the CD4 + T cells from asthmatic patients. Among these upregulated microRNAs, eight microRNAs that may target Runx3 were selected by bioinformatics prediction. Five microRNAs, namely miR-371, miR-138, miR-544, miR-145, and miR-214, were confirmed by qRT-PCR and selected as candidate microRNAs. Luciferase reporter assay showed that these five microRNAs could directly target the 3'-UTR of Runx3. However, only simultaneous inhibition of these five microRNAs could alter the expression of Runx3. Most importantly, only simultaneous inhibition could improve the Th1/Th2 balance. Thus, we suggest that miR-371, miR-138, miR-544, miR-145, and miR-214 can modulate the Th1/Th2 balance in asthma by regulating Runx3 in a combinatorial manner.

  13. Stress-activated miR-21/miR-21* in hepatocytes promotes lipid and glucose metabolic disorders associated with high-fat diet consumption.

    Science.gov (United States)

    Calo, Nicolas; Ramadori, Pierluigi; Sobolewski, Cyril; Romero, Yannick; Maeder, Christine; Fournier, Margot; Rantakari, Pia; Zhang, Fu-Ping; Poutanen, Matti; Dufour, Jean-François; Humar, Bostjan; Nef, Serge; Foti, Michelangelo

    2016-11-01

    miR-21 is an oncomir highly upregulated in hepatocellular carcinoma and in early stages of liver diseases characterised by the presence of steatosis. Whether upregulation of miR-21 contributes to hepatic metabolic disorders and their progression towards cancer is unknown. This study aims at investigating the role of miR-21/miR-21* in early stages of metabolic liver disorders associated with diet-induced obesity (DIO). Constitutive miR-21/miR-21* knockout (miR21KO) and liver-specific miR-21/miR-21* knockout (LImiR21KO) mice were generated. Mice were then fed with high-fat diet (HFD) and alterations of the lipid and glucose metabolism were investigated. Serum and ex vivo explanted liver tissue were analysed. Under normal breeding conditions and standard diet, miR-21/miR-21* deletion in mice was not associated with any detectable phenotypic alterations. However, when mice were challenged with an obesogenic diet, glucose intolerance, steatosis and adiposity were improved in mice lacking miR-21/miR-21* . Deletion of miR-21/miR-21* specifically in hepatocytes led to similar improvements in mice fed an HFD, indicating a crucial role for hepatic miR-21/miR-21* in metabolic disorders associated with DIO. Further molecular analyses demonstrated that miR-21/miR-21* deletion in hepatocytes increases insulin sensitivity and modulates the expression of multiple key metabolic transcription factors involved in fatty acid uptake, de novo lipogenesis, gluconeogenesis and glucose output. Hepatic miR-21/miR-21* deficiency prevents glucose intolerance and steatosis in mice fed an obesogenic diet by altering the expression of several master metabolic regulators. This study points out miR-21/miR-21 * as a potential therapeutic target for non-alcoholic fatty liver disease and the metabolic syndrome. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. Potential role of miR-9 and miR-223 in recurrent ovarian cancer

    Directory of Open Access Journals (Sweden)

    McGuinness Eamonn

    2008-04-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are small, noncoding RNAs that negatively regulate gene expression by binding to target mRNAs. miRNAs have not been comprehensively studied in recurrent ovarian cancer, yet an incurable disease. Results Using real-time RT-PCR, we obtained distinct miRNA expression profiles between primary and recurrent serous papillary ovarian adenocarcinomas (n = 6 in a subset of samples previously used in a transcriptome approach. Expression levels of top dysregulated miRNA genes, miR-223 and miR-9, were examined using TaqMan PCR in independent cohorts of fresh frozen (n = 18 and FFPE serous ovarian tumours (n = 22. Concordance was observed on TaqMan analysis for miR-223 and miR-9 between the training cohort and the independent test cohorts. Target prediction analysis for the above miRNA "recurrent metastatic signature" identified genes previously validated in our transcriptome study. Common biological pathways well characterised in ovarian cancer were shared by miR-9 and miR-223 lists of predicted target genes. We provide strong evidence that miR-9 acts as a putative tumour suppressor gene in recurrent ovarian cancer. Components of the miRNA processing machinery, such as Dicer and Drosha are not responsible for miRNA deregulation in recurrent ovarian cancer, as deluded by TaqMan and immunohistochemistry. Conclusion We propose a miRNA model for the molecular pathogenesis of recurrent ovarian cancer. Some of the differentially deregulated miRNAs identified correlate with our previous transcriptome findings. Based on integrated transcriptome and miRNA analysis, miR-9 and miR-223 can be of potential importance as biomarkers in recurrent ovarian cancer.

  15. Heterogeneity of miRNA expression in localized prostate cancer with clinicopathological correlations.

    Directory of Open Access Journals (Sweden)

    Ahmed Hussein Zedan

    Full Text Available In the last decade microRNAs (miRNAs have been widely investigated in prostate cancer (PCa and have shown to be promising biomarkers in diagnostic, prognostic and predictive settings. However, tumor heterogeneity may influence miRNA expression. The aims of this study were to assess the impact of tumor heterogeneity, as demonstrated by a panel of selected miRNAs in PCa, and to correlate miRNA expression with risk profile and patient outcome.Prostatectomy specimens and matched, preoperative needle biopsies from a retrospective cohort of 49 patients, who underwent curatively intended surgery for localized PCa, were investigated with a panel of 6 miRNAs (miRNA-21, miRNA-34a, miRNA-125b, miRNA-126, miRNA-143, and miRNA-145 using tissue micro-array (TMA and in situ hybridization (ISH. Inter- and intra-patient variation was assessed using intra-class correlation (ICC.Four miRNAs (miRNA-21, miRNA-34a, miRNA-125, and miRNA-126 were significantly upregulated in PCa compared to benign prostatic hyperplasia (BPH, and except for miRNA-21 these miRNAs documented a positive correlation between the expression level in PCa cores and their matched BPH cores, (r > 0.72. The ICC varied from 0.451 to 0.764, with miRNA-34a showing an intra-tumoral heterogeneity accounting for less than 50% of the total variation. Regarding clinicopathological outcomes, only miRNA-143 showed potential as a prognostic marker with a higher expression correlating with longer relapse-free survival (p = 0.016.The present study documents significant upregulation of the expression of miRNA-21, miRNA-34a, miRNA-125, and miRNA-126 in PCa compared to BPH and suggests a possible prognostic value associated with the expression of miRNA-143. The results, however, document intra-tumoral heterogeneity in the expression of various miRNAs calling for caution when using these tumor tissue biomarkers in prognostic and predictive settings.

  16. Altered expression of four miRNA (miR-1238-3p, miR-202-3p, miR-630 and miR-766-3p) and their potential targets in peripheral blood from vitiligo patients.

    Science.gov (United States)

    Shang, Zhiwei; Li, Hongwen

    2017-10-01

    Vitiligo is an acquired skin disease with pigmentary disorder. Autoimmune destruction of melanocytes is thought to be major factor in the etiology of vitiligo. miRNA-based regulators of gene expression have been reported to play crucial roles in autoimmune disease. Therefore, we attempt to profile the miRNA expressions and predict their potential targets, assessing the biological functions of differentially expressed miRNA. Total RNA was extracted from peripheral blood of vitiligo (experimental group, n = 5) and non-vitiligo (control group, n = 5) age-matched patients. Samples were hybridized to a miRNA array. Box, scatter and principal component analysis plots were performed, followed by unsupervised hierarchical clustering analysis to classify the samples. Quantitative reverse transcription polymerase chain reaction (RT-PCR) was conducted for validation of microarray data. Three different databases, TargetScan, PITA and microRNA.org, were used to predict the potential target genes. Gene ontology (GO) annotation and pathway analysis were performed to assess the potential functions of predicted genes of identified miRNA. A total of 100 (29 upregulated and 71 downregulated) miRNA were filtered by volcano plot analysis. Four miRNA were validated by quantitative RT-PCR as significantly downregulated in the vitiligo group. The functions of predicted target genes associated with differentially expressed miRNA were assessed by GO analysis, showing that the GO term with most significantly enriched target genes was axon guidance, and that the axon guidance pathway was most significantly correlated with these miRNA. In conclusion, we identified four downregulated miRNA in vitiligo and assessed the potential functions of target genes related to these differentially expressed miRNA. © 2017 Japanese Dermatological Association.

  17. The Generation of Insulin Producing Cells from Human Mesenchymal Stem Cells by MiR-375 and Anti-MiR-9.

    Science.gov (United States)

    Jafarian, Arefeh; Taghikani, Mohammad; Abroun, Saeid; Allahverdi, Amir; Lamei, Maryam; Lakpour, Niknam; Soleimani, Masoud

    2015-01-01

    MicroRNAs (miRNAs) are a group of endogenous small non-coding RNAs that regulate gene expression at the post-transcriptional level. A number of studies have led to the notion that some miRNAs have key roles in control of pancreatic islet development and insulin secretion. Based on some studies on miRNAs pattern, the researchers in this paper investigated the pancreatic differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs) by up-regulation of miR-375 and down-regulation of miR-9 by lentiviruses containing miR-375 and anti-miR-9. After 21 days of induction, islet-like clusters containing insulin producing cells (IPCs) were confirmed by dithizone (DTZ) staining. The IPCs and β cell specific related genes and proteins were detected using qRT-PCR and immunofluorescence on days 7, 14 and 21 of differentiation. Glucose challenge test was performed at different concentrations of glucose so extracellular and intracellular insulin and C-peptide were assayed using ELISA kit. Although derived IPCs by miR-375 alone were capable to express insulin and other endocrine specific transcription factors, the cells lacked the machinery to respond to glucose. It was found that over-expression of miR-375 led to a reduction in levels of Mtpn protein in derived IPCs, while treatment with anti-miR-9 following miR-375 over-expression had synergistic effects on MSCs differentiation and insulin secretion in a glucose-regulated manner. The researchers reported that silencing of miR-9 increased OC-2 protein in IPCs that may contribute to the observed glucose-regulated insulin secretion. Although the roles of miR-375 and miR-9 are well known in pancreatic development and insulin secretion, the use of these miRNAs in transdifferentiation was never demonstrated. These findings highlight miRNAs functions in stem cells differentiation and suggest that they could be used as therapeutic tools for gene-based therapy in diabetes mellitus.

  18. A meta-analytic review of the association between two common SNPs in miRNAs and lung cancer susceptibility

    Directory of Open Access Journals (Sweden)

    Xiao S

    2018-04-01

    Full Text Available Sha Xiao,1 Songzan Sun,1 Wenfang Long,1 Shicheng Kuang,2 Yunru Liu,1 Hairong Huang,1 Jing Zhou,1 Yongjiang Zhou,1 Xiaobo Lu3 1Department of Environmental and Occupational Health, School of Public Health, Hainan Medical University, Haikou, People’s Republic of China; 2Department of Pharmacy, Hainan General Hospital, Haikou, People’s Republic of China; 3Department of Toxicology, School of Public Health, China Medical University, Shenyang, People’s Republic of China Background: MicroRNAs (miRNAs are involved in many biological processes, including tumor suppression. Multiple studies have shown an association between the miRNA-196a2 rs11614913 and miRNA-146a rs2910164 polymorphisms and cancer risk. However, the implications of the reported data are debatable and inconclusive.Materials and methods: Relevant articles were retrieved from the PubMed, EMBASE, China National Knowledge Infrastructure, and WanFang databases from January 1, 2007, to April 30, 2017. Studies were assessed based on designated inclusion and exclusion criteria, and data were manually extracted from relevant studies by two investigators. Pooled odds ratios (ORs and 95% confidence intervals (CIs were calculated to explore the association between two single-nucleotide polymorphisms (SNPs in miRNAs and lung cancer susceptibility.Results: Nine eligible articles were included, consisting of 3,101 cancer cases and 3,234 controls for miRNA-196a2 rs11614913, and 3,483 cases and 3,578 controls for miRNA-146a rs2910164. For studies evaluating miRNA-196a2 rs11614913, significant associations with lung cancer risk were discovered. Overall, the pooled analysis showed that miRNA-196a2 rs11614913 was associated with a decreased cancer risk (CC vs TT: OR = 1.25, 95% CI: 1.09–1.44; CT vs TT: OR = 1.26, 95% CI: 1.03–1.53. For miRNA-146a rs2910164, only the CC genotype was found to be associated with high lung cancer risk (OR = 1.30, 95% CI: 1.13–1.49. Subgroup analyses based on

  19. Validation of expression patterns for nine miRNAs in 204 lymph-node negative breast cancers.

    Directory of Open Access Journals (Sweden)

    Kristin Jonsdottir

    Full Text Available INTRODUCTION: Although lymph node negative (LN- breast cancer patients have a good 10-years survival (∼85%, most of them still receive adjuvant therapy, while only some benefit from this. More accurate prognostication of LN- breast cancer patient may reduce over- and under-treatment. Until now proliferation is the strongest prognostic factor for LN- breast cancer patients. The small molecule microRNA (miRNA has opened a new window for prognostic markers, therapeutic targets and/or therapeutic components. Previously it has been shown that miR-18a/b, miR-25, miR-29c and miR-106b correlate to high proliferation. METHODS: The current study validates nine miRNAs (miR-18a/b miR-25, miR-29c, miR-106b, miR375, miR-424, miR-505 and let-7b significantly correlated with established prognostic breast cancer biomarkers. Total RNA was isolated from 204 formaldehyde-fixed paraffin embedded (FFPE LN- breast cancers and analyzed with quantitative real-time Polymerase Chain Reaction (qPCR. Independent T-test was used to detect significant correlation between miRNA expression level and the different clinicopathological features for breast cancer. RESULTS: Strong and significant associations were observed for high expression of miR-18a/b, miR-106b, miR-25 and miR-505 to high proliferation, oestrogen receptor negativity and cytokeratin 5/6 positivity. High expression of let-7b, miR-29c and miR-375 was detected in more differentiated tumours. Kaplan-Meier survival analysis showed that patients with high miR-106b expression had an 81% survival rate vs. 95% (P = 0.004 for patients with low expression. CONCLUSION: High expression of miR-18a/b are strongly associated with basal-like breast cancer features, while miR-106b can identify a group with higher risk for developing distant metastases in the subgroup of Her2 negatives. Furthermore miR-106b can identify a group of patients with 100% survival within the otherwise considered high risk group of patients with

  20. MicroRNA (miR)-203 and miR-205 expression patterns identify subgroups of prognosis in cutaneous squamous cell carcinoma.

    Science.gov (United States)

    Cañueto, J; Cardeñoso-Álvarez, E; García-Hernández, J L; Galindo-Villardón, P; Vicente-Galindo, P; Vicente-Villardón, J L; Alonso-López, D; De Las Rivas, J; Valero, J; Moyano-Sanz, E; Fernández-López, E; Mao, J H; Castellanos-Martín, A; Román-Curto, C; Pérez-Losada, J

    2017-07-01

    Cutaneous squamous cell carcinoma (CSCC) is the second most widespread cancer in humans and its incidence is rising. These tumours can evolve as diseases of poor prognosis, and therefore it is important to identify new markers to better predict its clinical evolution. We aimed to identify the expression pattern of microRNAs (miRNAs or miRs) at different stages of skin cancer progression in a panel of murine skin cancer cell lines. Owing to the increasing importance of miRNAs in the pathogenesis of cancer, we considered the possibility that miRNAs could help to define the prognosis of CSCC and aimed to evaluate the potential use of miR-203 and miR-205 as biomarkers of prognosis in human tumours. Seventy-nine human primary CSCCs were collected at the University Hospital of Salamanca in Spain. We identified differential miRNA expression patterns at different stages of CSCC progression in a well-established panel of murine skin cancer cell lines, and then selected miR-205 and miR-203 to evaluate their association with the clinical prognosis and evolution of human CSCC. miR-205 was expressed in tumours with pathological features recognized as indicators of poor prognosis such as desmoplasia, perineural invasion and infiltrative growth pattern. miR-205 was mainly expressed in undifferentiated areas and in the invasion front, and was associated with both local recurrence and the development of general clinical events of poor evolution. miR-205 expression was an independent variable selected to predict events of poor clinical evolution using the multinomial logistic regression model described in this study. In contrast, miR-203 was mainly expressed in tumours exhibiting the characteristics associated with a good prognosis, was mainly present in well-differentiated zones, and rarely expressed in the invasion front. Therefore, the expression and associations of miR-205 and miR-203 were mostly mutually exclusive. Finally, using a logistic biplot we identified three clusters

  1. MiR-21/PTEN Axis Promotes Skin Wound Healing by Dendritic Cells Enhancement.

    Science.gov (United States)

    Han, Zhaofeng; Chen, Ya; Zhang, Yile; Wei, Aizhou; Zhou, Jian; Li, Qian; Guo, Lili

    2017-10-01

    A number of miRNAs associated with wound repair have been identified and characterized, but the mechanism has not been fully clarified. MiR-21 is one of wound-related lncRNAs, and the study aimed to explore the functional involvement of miR-21 and its concrete mechanism in wound healing. In this study, the rat model of skin wounds was established. The expression of miR-21, PTEN and related molecules of wound tissues or cells was determined by quantitative real-time PCR and Western blot, respectively. The regulatory role of miR-21 on PTEN was examined by luciferase reporter gene assay. Flow cytometry assay was applied to measure cell number changes. MiR-21 was upregulated at 6, 24, 48, 72 h after model establishment, and the increase reached a maximum at 24 h in wound tissues. MMP-9 expression presented the same tread as miR-21 and was significantly enhanced within 6 h of wound formation, and then remained to be increased to the maximum at 24 h. The increase of miR-21 was accompanied by the increase of cell total number and DCs ratio in wound fluids. MiR-21 overexpression significantly improved the healing of skin wounds and increased the ratio of DCs in rats. The results of using FL confirmed that miR-21 overexpression obviously promoted DCs differentiation. Additionally, miR-21 could activate AKT/PI3K signaling pathway via inhibition of PTEN. MiR-21 contributes to wound healing via inhibition of PTEN that activated AKT/PI3K signaling pathway to increase DCs. J. Cell. Biochem. 118: 3511-3519, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. p16(INK4a translation suppressed by miR-24.

    Directory of Open Access Journals (Sweden)

    Ashish Lal

    2008-03-01

    Full Text Available Expression of the tumor suppressor p16(INK4a increases during aging and replicative senescence.Here, we report that the microRNA miR-24 suppresses p16 expression in human diploid fibroblasts and cervical carcinoma cells. Increased p16 expression with replicative senescence was associated with decreased levels of miR-24, a microRNA that was predicted to associate with the p16 mRNA coding and 3'-untranslated regions. Ectopic miR-24 overexpression reduced p16 protein but not p16 mRNA levels. Conversely, introduction of antisense (AS-miR-24 blocked miR-24 expression and markedly enhanced p16 protein levels, p16 translation, and the production of EGFP-p16 reporter bearing the miR-24 target recognition sites.Together, our results suggest that miR-24 represses the initiation and elongation phases of p16 translation.

  3. Myostatin genotype regulates muscle-specific miRNA expression in mouse pectoralis muscle

    Directory of Open Access Journals (Sweden)

    Cheng Ye

    2010-11-01

    Full Text Available Abstract Background Loss of functional Myostatin results in a dramatic increase in skeletal muscle mass. It is unknown what role miRNAs play in Myostatin mediated repression of skeletal muscle mass. We hypothesized that Myostatin genotype would be associated with the differential expression of miRNAs in skeletal muscle. Findings Loss of functional Myostatin resulted in a significant increase (p .2 on miR-24 expression level. Myostatin genotype did not affect the expression level of MyoD or Myogenin (P > 0.5. Conclusions Myostatin may regulates the expression of miRNAs such as miR-133a, miR-133b, miR-1, and miR-206 in skeletal muscle as it has been observed that the expression of those miRNAs are significantly higher in myostatin null mice compared to wild type and heterozygous mice. In contrast, expression of myogenic factors such as MyoD or Myogenin has not been affected by myostatin in the muscle tissue.

  4. MicroRNA and cellular targets profiling reveal miR-217 and miR-576-3p as proviral factors during Oropouche infection.

    Directory of Open Access Journals (Sweden)

    Victor Emmanuel Viana Geddes

    2018-05-01

    Full Text Available Oropouche Virus is the etiological agent of an arbovirus febrile disease that affects thousands of people and is widespread throughout Central and South American countries. Although isolated in 1950's, still there is scarce information regarding the virus biology and its prevalence is likely underestimated. In order to identify and elucidate interactions with host cells factors and increase the understanding about the Oropouche Virus biology, we performed microRNA (miRNA and target genes screening in human hepatocarcinoma cell line HuH-7. Cellular miRNAs are short non-coding RNAs that regulates gene expression post-transcriptionally and play key roles in several steps of viral infections. The large scale RT-qPCR based screening found 13 differentially expressed miRNAs in Oropouche infected cells. Further validation confirmed that miR-217 and miR-576-3p were 5.5 fold up-regulated at early stages of virus infection (6 hours post-infection. Using bioinformatics and pathway enrichment analysis, we predicted the cellular targets genes for miR-217 and miR-576-3p. Differential expression analysis of RNA from 95 selected targets revealed genes involved in innate immunity modulation, viral release and neurological disorder outcomes. Further analysis revealed the gene of decapping protein 2 (DCP2, a previous known restriction factor for bunyaviruses transcription, as a miR-217 candidate target that is progressively down-regulated during Oropouche infection. Our analysis also showed that activators genes involved in innate immune response through IFN-β pathway, as STING (Stimulator of Interferon Genes and TRAF3 (TNF-Receptor Associated Factor 3, were down-regulated as the infection progress. Inhibition of miR-217 or miR-576-3p restricts OROV replication, decreasing viral RNA (up to 8.3 fold and virus titer (3 fold. Finally, we showed that virus escape IFN-β mediated immune response increasing the levels of cellular miR-576-3p resulting in a decreasing of

  5. Risk of Stroke/Transient Ischemic Attack or Myocardial Infarction with Herpes Zoster: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Zhang, Yanting; Luo, Ganfeng; Huang, Yuanwei; Yu, Qiuyan; Wang, Li; Li, Ke

    2017-08-01

    Accumulating evidence indicates that herpes zoster (HZ) may increase the risk of stroke/transient ischemic attack (TIA) or myocardial infarction (MI), but the results are inconsistent. We aim to explore the relationship between HZ and risk of stroke/TIA or MI and between herpes zoster ophthalmicus (HZO) and stroke. We estimated the relative risk (RR) and 95% confidence intervals (CIs) with the meta-analysis. Cochran's Q test and Higgins I 2 statistic were used to check for heterogeneity. HZ infection was significantly associated with increased risk of stroke/TIA (RR = 1.30, 95% CI: 1.17-1.46) or MI (RR = 1.18, 95% CI: 1.07-1.30). The risk of stroke after HZO was 1.91 (95% CI 1.32-2.76), higher than that after HZ. Subgroup analyses revealed increased risk of ischemic stroke after HZ infection but not hemorrhagic stroke. The risk of stroke was increased more at 1 month after HZ infection than at 1-3 months, with a gradual reduced risk with time. The risk of stroke after HZ infection was greater with age less than 40 years than 40-59 years and more than 60 years. Risk of stroke with HZ infection was greater without treatment than with treatment and was greater in Asia than Europe and America but did not differ by sex. Our study indicated that HZ infection was associated with increased risk of stroke/TIA or MI, and HZO infection was the most marked risk factor for stroke. Further studies are needed to explore whether zoster vaccination could reduce the risk of stoke/TIA or MI. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  6. Managing health habits for myocardial infarction (MI) patients.

    Science.gov (United States)

    Song, R; Lee, H

    2001-08-01

    The study examined effects of the heart camp as a motivation enhancement program on cardiac risk reduction and behavioral modification in myocardial infarction (MI) patients. A total of 86 outpatients participated at the first heart camp and 45 returned to the second one in 8 weeks. The first and second heart camps were daylong programs consisted of health assessment, education classes, and Q&A session with interdisciplinary team approach. At the completion of the heart camp, the participants showed significantly lower scores in cardiac risk factors, and significant improvements in motivational variables, especially, perceived benefits and perceived barriers as well as in the performance of diet and exercise behaviors. The study results confirm that it is possible to enhance motivation for chronic patients like MI patients by even short period of comprehensive educational program.

  7. Characterization of susceptible chiasma configurations that increase the risk for maternal nondisjunction of chromosome 21.

    Science.gov (United States)

    Lamb, N E; Feingold, E; Savage, A; Avramopoulos, D; Freeman, S; Gu, Y; Hallberg, A; Hersey, J; Karadima, G; Pettay, D; Saker, D; Shen, J; Taft, L; Mikkelsen, M; Petersen, M B; Hassold, T; Sherman, S L

    1997-09-01

    Recent studies of trisomy 21 have shown that altered levels of recombination are associated with maternal non-disjunction occurring at both meiosis I (MI) and meiosis II (MII). To comprehend better the association of recombination with nondisjunction, an understanding of the pattern of meiotic exchange, i.e. the exchange of genetic material at the four-strand stage during prophase, is required. We examined this underlying exchange pattern to determine if specific meiotic configurations are associated with a higher risk of non-disjunction than others. We examined the crossover frequencies of chromosome 21 for three populations: (i) normal female meiotic events; (ii) meiotic events leading to MI non-disjunction; and (iii) those leading to MII non-disjunction. From these crossover frequencies, we estimated the array of meiotic tetrads that produced the observed crossovers. Using this approach, we found that nearly one-half of MI errors were estimated to be achiasmate. The majority of the remaining MI bivalents had exchanges that clustered at the telomere. In contrast, exchanges occurring among MII cases clustered at the pericentromeric region of the chromosome. Unlike the single exchange distributions, double exchanges from the non-disjoined populations seemed to approximate the distribution in the normal population. These data suggest that the location of certain exchanges makes a tetrad susceptible to non-disjunction. Specifically, this susceptibility is associated with the distance between the centromere and closest exchange. This result challenges the widely held concept that events occurring at MII are largely independent of events occurring at MI, and suggests that all non-disjunction events may be initiated during MI and simply resolved at either of the two meiotic stages.

  8. Prognostic significance of miR-23b in combination with P-gp, MRP and LRP/MVP expression in non-small cell lung cancer.

    Science.gov (United States)

    Janikova, M; Zizkova, V; Skarda, J; Kharaishvili, G; Radova, L; Kolar, Z

    2016-01-01

    Recently, miR-23b has emerged as a promising new cancer biomarker but its role in lung cancer has not been established yet. Patients still do not respond well to available treatments, probably due to expression of multidrug resistance (MDR) proteins, such as P-gp, MRP and LRP/MVP. The aim of this study was to determine the role of miR-23b in non-small cell lung cancer (NSCLC) and its relationship to the patient outcome together with MDR transporter proteins. We immunohistochemically evaluated expression of P-gp, MRP and LRP/MVP and quantified the relative levels of miR-23b in 62 NSCLC patients´ samples. The prognostic significance of miR-23b and MDR proteins was tested by Kaplan-Meier and Cox-regression analysis. Our results showed that miR-23b is mostly downregulated in NSCLC samples (57/62) and that its upregulation in tumors is connected with longer progression-free survival (PFS; P = 0.065) and overall survival (OS; P = 0.048). The Cox proportional hazard model revealed that the risk of death or relapse in NSCLC patients with miR-23b downregulation increases together with LRP/MVP expression and both risks decrease with miR-23b upregulation (HRPFS = 4.342, PPFS = 0.022; HROS = 4.408, POS = 0.015). Our findings indicate that miR-23b, especially in combination with LRP/MVP expression, might serve as a suitable prognostic biomarker for NSCLC patients.

  9. MiR-29-mediated elastin down-regulation contributes to inorganic phosphorus-induced osteoblastic differentiation in vascular smooth muscle cells.

    Science.gov (United States)

    Sudo, Ryo; Sato, Fumiaki; Azechi, Takuya; Wachi, Hiroshi

    2015-12-01

    Vascular calcification increases the risk of cardiovascular mortality. We previously reported that expression of elastin decreases with progression of inorganic phosphorus (Pi)-induced vascular smooth muscle cell (VSMC) calcification. However, the regulatory mechanisms of elastin mRNA expression during vascular calcification remain unclear. MicroRNA-29 family members (miR-29a, b and c) are reported to mediate elastin mRNA expression. Therefore, we aimed to determine the effect of miR-29 on elastin expression and Pi-induced vascular calcification. Calcification of human VSMCs was induced by Pi and evaluated measuring calcium deposition. Pi stimulation promoted Ca deposition and suppressed elastin expression in VSMCs. Knockdown of elastin expression by shRNA also promoted Pi-induced VSMC calcification. Elastin pre-mRNA measurements indicated that Pi stimulation suppressed elastin expression without changing transcriptional activity. Conversely, Pi stimulation increased miR-29a and miR-29b expression. Inhibition of miR-29 recovered elastin expression and suppressed calcification in Pi-treated VSMCs. Furthermore, over-expression of miR-29b promoted Pi-induced VSMC calcification. RT-qPCR analysis showed knockdown of elastin expression in VSMCs induced expression of osteoblast-related genes, similar to Pi stimulation, and recovery of elastin expression by miR-29 inhibition reduced their expression. Our study shows that miR-29-mediated suppression of elastin expression in VSMCs plays a pivotal role in osteoblastic differentiation leading to vascular calcification. © 2015 The Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  10. Risk of myocardial infarction in parents of HIV-infected individuals: a population-based cohort study

    DEFF Research Database (Denmark)

    Rasmussen, Line D; Omland, Lars H; Pedersen, Court

    2010-01-01

    associated with the HIV disease and HAART or whether life-style related or genetic factors also increase the risk in this population. To establish whether the increased risk of myocardial infarction in HIV patients partly reflects an increased risk of MI in their families, we estimated the relative risk...... of MI in parents of HIV-infected individuals METHODS: From the Danish HIV Cohort Study and the Danish Civil Registration System we identified the parents of all HIV-infected patients born in Denmark after 1952 in whom a Danish born mother was identifiable. For each HIV patient, 4 matched population...... controls and their parents were identified. Cumulative incidence functions were constructed to illustrate time to first MI of the parents as registered in the Danish National Hospital Registry. Incidence rate ratios (IRR) were estimated by Cox's regression analyses. Due to the confidential type...

  11. Evaluation of miR-21 and miR-375 as prognostic biomarkers in esophageal cancer

    DEFF Research Database (Denmark)

    Winther, Mette; Alsner, Jan; Tramm, Trine

    2015-01-01

    analyses identified miR-21 as an independent prognostic marker for DSS in EAC [HR 3.52 (95% CI 1.06-11.69)]. High miR-375 was not correlated with improved prognosis in either histology. However, Forest plots demonstrated that both miR-21 and miR-375 were of prognostic impact in ESCC. CONCLUSION...... chemotherapy were analyzed. Expression levels of miR-21 and miR-375 were quantified using Affymetrix GeneChip miRNA 1.0 Array. The Cox proportional hazards model was used to assess the correlation of miR-21 and miR-375 with disease-specific survival (DSS) and overall survival (OS). Forest plots were performed...... to evaluate the prognostic impact of miR-21 and miR-375 in the present study and previously published reports. RESULTS: In ESCC, patients with miR-21 expression levels above median showed a trend towards poorer DSS and OS. When dividing miR-21 expression by tertiles, high levels of miR-21 significantly...

  12. Cause-specific cardiovascular risk associated with nonsteroidal anti-inflammatory drugs among myocardial infarction patients--a nationwide study.

    Directory of Open Access Journals (Sweden)

    Anne-Marie Schjerning Olsen

    Full Text Available BACKGROUND: Non steroidal anti-inflammatory drugs (NSAIDs increase mortality and morbidity after myocardial infarction (MI. We examined cause-specific mortality and morbidity associated with NSAIDs in a nationwide cohort of MI patients. METHODS AND RESULTS: By individual-level linkage of nationwide registries of hospitalization and drug dispensing from pharmacies in Denmark, patients aged >30 years admitted with first-time MI during 1997-2009 and their subsequent NSAID use were identified. The risk of three cardiovascular specific endpoints: cardiovascular death, the composite of coronary death and nonfatal MI, and the composite of fatal and nonfatal stroke, associated with NSAID use was analyzed by Cox proportional hazard analyses. Of 97,698 patients included 44.0% received NSAIDs during follow-up. Overall use of NSAIDs was associated with an increased risk of cardiovascular death (hazard ratio [HR] 1.42, 95% confidence interval [CI] 1.36-1.49. In particular use of the nonselective NSAID diclofenac and the selective cyclooxygenase-2 inhibitor rofecoxib was associated with increased risk of cardiovascular death (HR 1.96 [1.79-2.15] and HR1.66 [1.44-1.91], respectively with a dose dependent increase in risk. Use of ibuprofen was associated with increased risk of cardiovascular death (HR 1.34[1.26-1.44], whereas naproxen was associated with the lowest risk of (e.g., HR 1.27[1.01-1.59]. CONCLUSION: Use of individual NSAIDs is associated with different cause-specific cardiovascular risk and in particular rofecoxib and diclofenac were associated with increased cardiovascular morbidity and mortality. These results support caution with use of all NSAIDs in patients with prior MI.

  13. Early Sámi visual artists - Western fine art meets Sámi culture

    Directory of Open Access Journals (Sweden)

    Tuija Hautala-Hirvioja

    2014-04-01

    Full Text Available Johan Turi (1854–1936, Nils Nilsson Skum (1872–1951 and John Savio (1902–1938 were among the first Sámi visual artists. The production of their art work occurred between the 1910s and the early 1950s. Sámi aesthetics had its basis in folklore, i.e., handicraft or duodji, which did not follow the principle of art for art’s sake but combined beauty and practicality. Art was part of community life. Not until the 1970s was the word daidda, which is Finnish in origin and which means “art”, adopted into the Sámi language. Turi and Skum became famous through their books. They drew and wrote in order to pass the traditional knowledge of their people on to succeeding generations. They also wanted to introduce Sámi life and culture to non-Sámi people. One typical feature of their work is that they depicted Sáminess in a realistic way and sought to strengthen and preserve the Sámi identity through their art. In Turi and Skum’s work, both the documentation of community life and their own personal expression were strongly present and equally important; for this reason their pictures and texts have both practical and aesthetic dimensions. They did not attend school and were self-taught artists. The third pioneer of Sámi visual arts was John Savio, who, unlike the other two, attended secondary school and studied visual arts both independently and under the guidance of a mentor. He expressively combined Western ways of depiction with Sámi subjects. My article examines what made these early Sámi artists change over from Sámi handicraft, duodji, to Western visual arts, how they used Western pictorial conventions in dealing with their Sámi subjects, and the significance of their art for Sámi identity and culture. They lived and worked under cross pressure: the first few decades of the 20th century were characterized by racial theories that denigrated Sámi people, and the period following World War II was marked by demands for

  14. Diagnostic potential of miR-126, miR-143, miR-145, and miR-652 in malignant pleural mesothelioma

    DEFF Research Database (Denmark)

    Andersen, Morten; Grauslund, Morten; Ravn, Jesper

    2014-01-01

    Malignant pleural mesothelioma (MPM) is difficult to distinguish from reactive mesothelial proliferations (RMPs). It is uncertain whether miRNAs are useful biomarkers for differentiating MPM from RMPs. Thus, we screened with a quantitative RT-PCR (RT-qPCR)-based platform the expression of 742 miR...

  15. Overexpression of microRNAs from the miR-17-92 paralog clusters in AIDS-related non-Hodgkin's lymphomas.

    Directory of Open Access Journals (Sweden)

    Dharma R Thapa

    Full Text Available Individuals infected by HIV are at an increased risk for developing non-Hodgkin's lymphomas (AIDS-NHL. In the highly active antiretroviral therapy (HAART era, there has been a significant decline in the incidence of AIDS-associated primary central nervous system lymphoma (PCNSL. However, only a modest decrease in incidence has been reported for other AIDS-NHL subtypes. Thus, AIDS-NHLs remain a significant cause of morbidity and mortality in HIV infected individuals. Recently, much attention has been directed toward the role of miRNAs in cancer, including NHL. Several miRNAs, including those encoded by the miR-17-92 polycistron, have been shown to play significant roles in B cell tumorigenesis. However, the role of miRNAs in NHL in the setting of HIV infection has not been defined.We used quantitative realtime PCR to assess the expression of miRNAs from three different paralog clusters, miR-17-92, miR-106a-363, and miR-106b-25 in 24 cases of AIDS-NHLs representing four tumor types, Burkitt's lymphoma (BL, n = 6, diffuse large B-cell lymphoma (DLBCL, n = 8, primary central nervous system lymphoma (PCNSL, n = 5, and primary effusion lymphoma (PEL, n = 5. We also used microarray analysis to identify a differentiation specific miRNA signature of naïve, germinal center, and memory B cell subsets from tonsils (n = 4. miRNAs from the miR-17-92 paralog clusters were upregulated by B cells, specifically during the GC differentiation stage. We also found overexpression of these miRNA clusters in all four AIDS-NHL subtypes. Finally, we also show that select miRNAs from these clusters (miR-17, miR-106a, and miR-106b inhibited p21 in AIDS-BL and DLBCL cases, thus providing a mechanistic role for these miRNAs in AIDS-NHL pathogenesis.Dysregulation of miR-17-92 paralog clusters is a common feature of AIDS-associated NHLs.

  16. miRTrail - a comprehensive webserver for analyzing gene and miRNA patterns to enhance the understanding of regulatory mechanisms in diseases

    Directory of Open Access Journals (Sweden)

    Laczny Cedric

    2012-02-01

    Full Text Available Abstract Background Expression profiling provides new insights into regulatory and metabolic processes and in particular into pathogenic mechanisms associated with diseases. Besides genes, non-coding transcripts as microRNAs (miRNAs gained increasing relevance in the last decade. To understand the regulatory processes of miRNAs on genes, integrative computer-aided approaches are essential, especially in the light of complex human diseases as cancer. Results Here, we present miRTrail, an integrative tool that allows for performing comprehensive analyses of interactions of genes and miRNAs based on expression profiles. The integrated analysis of mRNA and miRNA data should generate more robust and reliable results on deregulated pathogenic processes and may also offer novel insights into the regulatory interactions between miRNAs and genes. Our web-server excels in carrying out gene sets analysis, analysis of miRNA sets as well as the combination of both in a systems biology approach. To this end, miRTrail integrates information on 20.000 genes, almost 1.000 miRNAs, and roughly 280.000 putative interactions, for Homo sapiens and accordingly for Mus musculus and Danio rerio. The well-established, classical Chi-squared test is one of the central techniques of our tool for the joint consideration of miRNAs and their targets. For interactively visualizing obtained results, it relies on the network analyzers and viewers BiNA or Cytoscape-web, also enabling direct access to relevant literature. We demonstrated the potential of miRTrail by applying our tool to mRNA and miRNA data of malignant melanoma. MiRTrail identified several deregulated miRNAs that target deregulated mRNAs including miRNAs hsa-miR-23b and hsa-miR-223, which target the highest numbers of deregulated mRNAs and regulate the pathway "basal cell carcinoma". In addition, both miRNAs target genes like PTCH1 and RASA1 that are involved in many oncogenic processes. Conclusions The application

  17. Altered regulation of miR-34a and miR-483-3p in alcoholic hepatitis and DDC fed mice.

    Science.gov (United States)

    Liu, Hui; French, Barbara A; Li, Jun; Tillman, Brittany; French, Samuel W

    2015-12-01

    MicroRNAs are small noncoding RNAs that negatively regulate gene expression by binding to the untranslated regions of their target mRNAs. Deregulation of miRNAs is shown to play pivotal roles in tumorigenesis and progression. Mallory-Denk Bodies (MDBs) are prevalent in various liver diseases including alcoholic hepatitis (AH) and are formed in mice livers by feeding DDC. By comparing AH livers where MDBs had formed with normal livers, there were significant changes of miR-34a and miR-483-3p by RNA sequencing (RNA-Seq) analyses. Real-time PCR further shows a 3- and 6-fold upregulation (respectively) of miR-34a in the AH livers and in the livers of DDC re-fed mice, while miR-483-3p was significantly downregulated in AH and DDC re-fed mice livers. This indicates that miR-34a and miR-483-3p may be crucial for liver MDB formation. P53 mRNA was found to be significantly downregulated both in the AH livers and in the livers of DDC re-fed mice, indicating that the upregulation of miR-34a is permitted by the decrease of p53 in AH since miR-34a is a main target of p53. Overexpression of miR-34a leads to an increase of p53 targets such as p27, which inhibits the cell cycle leading to cell cycle arrest. Importantly, BRCA1 is a target gene of miR-483-3p by RNA-Seq analyses and the downregulation of miR-483-3p may be the mechanism for liver MDB formation since the BRCA1 signal was markedly upregulated in AH livers. These results constitute a demonstration of the altered regulation of miR-34a and miR-483-3p in the livers of AH and mice fed DDC where MDBs formed, providing further insight into the mechanism of MDB formation mediated by miR-34a and miR-483-3p in AH. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Towards Clinical Applications of Blood-Borne miRNA Signatures: The Influence of the Anticoagulant EDTA on miRNA Abundance.

    Directory of Open Access Journals (Sweden)

    Petra Leidinger

    Full Text Available Circulating microRNAs (miRNAs from blood are increasingly recognized as biomarker candidates for human diseases. Clinical routine settings frequently include blood sampling in tubes with EDTA as anticoagulant without considering the influence of phlebotomy on the overall miRNA expression pattern. We collected blood samples from six healthy individuals each in an EDTA blood collection tube. Subsequently, the blood was transferred into PAXgeneTM tubes at three different time points, i.e. directly (0 min, 10 min, and 2 h after phlebotomy. As control blood was also directly collected in PAXgeneTM blood RNA tubes that contain a reagent to directly lyse blood cells and stabilize their content. For all six blood donors at the four conditions (24 samples we analyzed the abundance of 1,205 miRNAs by human Agilent miRNA V16 microarrays.While we found generally a homogenous pattern of the miRNA abundance in all 24 samples, the duration of the EDTA treatment appears to influence the miRNA abundance of specific miRNAs. The most significant changes are observed after longer EDTA exposition. Overall, the impact of the different blood sample conditions on the miRNA pattern was substantially lower than intra-individual variations. While samples belonging to one of the six individuals mostly cluster together, there was no comparable clustering for any of the four tested blood sampling conditions. The most affected miRNA was miR-769-3p that was not detected in any of the six PAXgene blood samples, but in all EDTA 2h samples. Accordingly, hsa-miR-769-3p was also the only miRNA that showed a significantly different abundance between the 4 blood sample conditions by an ANOVA analysis (Benjamini-Hochberg adjusted p-value of 0.003. Validation by qRT-PCR confirmed this finding.The pattern of blood-borne miRNA abundance is rather homogenous between the four tested blood sample conditions of six blood donors. There was a clustering between the miRNA profiles that belong

  19. MicroRNA miR-125b induces senescence in human melanoma cells.

    Science.gov (United States)

    Glud, Martin; Manfé, Valentina; Biskup, Edyta; Holst, Line; Dirksen, Anne Marie Ahlburg; Hastrup, Nina; Nielsen, Finn C; Drzewiecki, Krzysztof T; Gniadecki, Robert

    2011-06-01

    MicroRNAs (miRNAs) are small noncoding RNA molecules involved in gene regulation. Aberrant expression of miRNA has been associated with the development or progression of several diseases, including cancer. In a previous study, we found that the expression of miRNA-125b (miR-125b) was two-fold lower in malignant melanoma producing lymph node micrometastases than in nonmetastasizing tumors. To get further insight into the functional role of miR-125b, we assessed whether its overexpression or silencing affects apoptosis, proliferation, or senescence in melanoma cell lines. We showed that overexpression of miR-125b induced typical senescent cell morphology, including increased cytoplasmatic/nucleus ratio and intensive cytoplasmatic β-galactosidase expression. In contrast, inhibition of miR-125b resulted in 30-35% decreased levels of spontaneous apoptosis. We propose that downregulation of miR-125b in an early cutaneous malignant melanoma can contribute to the increased metastatic capability of this tumor.

  20. Hypoxia-induced aggressiveness of pancreatic cancer cells is due to increased expression of VEGF, IL-6 and miR-21, which can be attenuated by CDF treatment.

    Directory of Open Access Journals (Sweden)

    Bin Bao

    Full Text Available Hypoxia is known to play critical roles in cell survival, angiogenesis, tumor invasion, and metastasis. Hypoxia mediated over-expression of hypoxia-inducible factor (HIF has been shown to be associated with therapeutic resistance, and contributes to poor prognosis of cancer patients. Emerging evidence suggest that hypoxia and HIF pathways contributes to the acquisition of epithelial-to-mesenchymal transition (EMT, maintenance of cancer stem cell (CSC functions, and also maintains the vicious cycle of inflammation-all which lead to therapeutic resistance. However, the precise molecular mechanism(s by which hypoxia/HIF drives these events are not fully understood. Here, we show, for the first time, that hypoxia leads to increased expression of VEGF, IL-6, and CSC signature genes Nanog, Oct4 and EZH2 consistent with increased cell migration/invasion and angiogenesis, and the formation of pancreatospheres, concomitant with increased expression of miR-21 and miR-210 in human pancreatic cancer (PC cells. The treatment of PC cells with CDF, a novel synthetic compound inhibited the production of VEGF and IL-6, and down-regulated the expression of Nanog, Oct4, EZH2 mRNAs, as well as miR-21 and miR-210 under hypoxia. CDF also led to decreased cell migration/invasion, angiogenesis, and formation of pancreatospheres under hypoxia. Moreover, CDF decreased gene expression of miR-21, miR-210, IL-6, HIF-1α, VEGF, and CSC signatures in vivo in a mouse orthotopic model of human PC. Collectively, these results suggest that the anti-tumor activity of CDF is in part mediated through deregulation of tumor hypoxic pathways, and thus CDF could become a novel, and effective anti-tumor agent for PC therapy.

  1. Upregulation of miR-150* and miR-630 induces apoptosis in pancreatic cancer cells by targeting IGF-1R.

    Directory of Open Access Journals (Sweden)

    Lulu Farhana

    Full Text Available MicroRNAs have been implicated in many critical cellular processes including apoptosis. We have previously found that apoptosis in pancreatic cancer cells was induced by adamantyl retinoid-related (ARR molecule 3-Cl-AHPC. Here we report that 3-Cl-AHPC-dependent apoptosis involves regulating a number of microRNAs including miR-150* and miR-630. 3-Cl-AHPC stimulated miR-150* expression and caused decreased expression of c-Myb and IGF-1R in the pancreatic cancer cells. 3-Cl-AHPC-mediated reduction of c-Myb resulted in diminished binding of c-Myb with IGF-1R and Bcl-2 promoters, thereby causing repression of their transcription and protein expression. Over-expression of miR-150* also resulted in diminished levels of c-Myb and Bcl-2 proteins. Furthermore, the addition of the miRNA inhibitor 2'-O-methylated miR-150 blocked 3-Cl-AHPC-mediated increase in miR-150* levels and abrogated loss of c-Myb protein. Knockdown of c-Myb in PANC-1 cells resulted in enhanced apoptosis both in the presence or absence of 3-Cl-AHPC confirming the anti-apoptotic property of c-Myb. Overexpression of miR-630 also induced apoptosis in the pancreatic cancer cells and inhibited target protein IGF-1R mRNA and protein expression. Together these results implicate key roles for miR-150* and miR-630 and their targeting of IGF-1R to promote apoptosis in pancreatic cancer cells.

  2. Therapeutic Hypothermia for the Treatment of Acute Myocardial Infarction-Combined Analysis of the RAPID MI-ICE and the CHILL-MI Trials

    DEFF Research Database (Denmark)

    Erlinge, David; Götberg, Matthias; Noc, Marko

    2015-01-01

    infarction CHILL-MI studies, hypothermia was rapidly induced in conscious patients with ST-elevation myocardial infarction (STEMI) by a combination of cold saline and endovascular cooling. Twenty patients in RAPID MI-ICE and 120 in CHILL-MI with large STEMIs, scheduled for primary percutaneous coronary...... intervention (PCI) within hypothermia induced by rapid infusion of 600-2000 mL cold saline combined with endovascular cooling or standard of care. Hypothermia was initiated before PCI and continued for 1-3 hours after reperfusion aiming at a target temperature...... of 33°C. The primary endpoint was myocardial infarct size (IS) as a percentage of myocardium at risk (IS/MaR) assessed by cardiac magnetic resonance imaging at 4±2 days. Patients randomized to hypothermia treatment achieved a mean core body temperature of 34.7°C before reperfusion. Although significance...

  3. Measurement of the Single Top Quark Production Cross Section and |<mi>Vtb>| in Events with One Charged Lepton, Large Missing Transverse Energy, and Jets at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d’Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D’Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D’Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hirschbuehl, D.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W. -M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.

    2014-12-31

    We report a measurement of single top quark production in proton-antiproton collisions at a center-of-mass energy of mi>s>=1.96 mi>TeV> using a data set corresponding to 7.5 mi>fb>-1 of integrated luminosity collected by the Collider Detector at Fermilab. We select events consistent with the single top quark decay process mi>t>mi>Wb>mi>νb> by requiring the presence of an electron or muon, a large imbalance of transverse momentum indicating the presence of a neutrino, and two or three jets including at least one originating from a bottom quark. An artificial neural network is used to discriminate the signal from backgrounds. We measure a single top quark production cross section of 3.04-0.53+0.57 mi>pb> and set a lower limit on the magnitude of the coupling between the top quark and bottom quark |mi>V

  4. Pre-miR-146a (rs2910164 G>C single nucleotide polymorphism is genetically and functionally associated with leprosy.

    Directory of Open Access Journals (Sweden)

    Paula F T Cezar-de-Mello

    2014-09-01

    Full Text Available Mycobacterium leprae infects macrophages and Schwann cells inducing a gene expression program to facilitate its replication and progression to disease. MicroRNAs (miRNAs are key regulators of gene expression and could be involved during the infection. To address the genetic influence of miRNAs in leprosy, we enrolled 1,098 individuals and conducted a case-control analysis in order to study four miRNAs genes containing single nucleotide polymorphism (miRSNP. We tested miRSNP-125a (rs12975333 G>T, miRSNP-223 (rs34952329 *>T, miRSNP-196a-2 (rs11614913 C>T and miRSNP-146a (rs2910164 G>C. Amongst them, miRSNP-146a was the unique gene associated with risk to leprosy per se (GC OR = 1.44, p = 0.04; CC OR = 2.18, p = 0.0091. We replicated this finding showing that the C-allele was over-transmitted (p = 0.003 using a transmission-disequilibrium test. A functional analysis revealed that live M. leprae (MOI 100:1 was able to induce miR-146a expression in THP-1 (p<0.05. Furthermore, pure neural leprosy biopsies expressed augmented levels of that miRNA as compared to biopsy samples from neuropathies not related with leprosy (p = 0.001. Interestingly, carriers of the risk variant (C-allele produce higher levels of mature miR-146a in nerves (p = 0.04. From skin biopsies, although we observed augmented levels of miR-146a, we were not able to correlate it with a particular clinical form or neither host genotype. MiR-146a is known to modulate TNF levels, thus we assessed TNF expression (nerve biopsies and released by peripheral blood mononuclear cells infected with BCG Moreau. In both cases lower TNF levels correlates with subjects carrying the risk C-allele, (p = 0.0453 and p = 0.0352; respectively, which is consistent with an immunomodulatory role of this miRNA in leprosy.

  5. Clot lysis time and the risk of myocardial infarction and ischaemic stroke in young women; results from the RATIO case-control study

    NARCIS (Netherlands)

    Siegerink, Bob; Meltzer, Mirjam E.; de Groot, Philip G.; Algra, Ale; Lisman, Ton; Rosendaal, Frits R.

    Reduced overall fibrinolytic capacity increases the risk of myocardial infarction (MI), as demonstrated in studies with predominantly male participants. We determined the influence of altered fibrinolysis on the risk of MI and ischaemic stroke (IS) in young women. The RATIO (Risk of Arterial

  6. Declining Physical Performance Associates with Serum FasL, miR-21, and miR-146a in Aging Sprinters

    Directory of Open Access Journals (Sweden)

    Reeta Kangas

    2017-01-01

    Full Text Available Aging is associated with systemic inflammation and cellular apoptosis accelerating physiological dysfunctions. Whether physically active way of life affects these associations is unclear. This study measured the levels of serum inflammatory and apoptotic molecules, their change over 10 years, and their associations with physical performance in sprint-trained male athletes. HsCRP, cell counts, HGB, FasL, miR-21, and miR-146a were measured cross-sectionally (n=67, 18–90 yrs and serum FasL, miR-21, and miR-146a and their aging-related associations with physical performance were assessed over a 10-year follow-up (n=49, 50–90 yrs. The cross-sectional study showed positive age correlations for neutrophils and negative for lymphocytes, red blood cells, HGB, FasL, and miR-146a. During the 10-year follow-up, FasL decreased (P=0.017 and miR-21 (P<0.001 and miR-146a (P=0.005 levels increased. When combining the molecule levels, aging, and physical performance, FasL associated with countermovement jump and bench press (P<0.001, miR-21 and miR-146a with knee flexion (P=0.023; P<0.001, and bench press (P=0.004; P<0.001 and miR-146a with sprint performance (P<0.001. The studied serum molecules changed in an age-dependent manner and were associated with declining physical performance. They have potential as biomarkers of aging-related processes influencing the development of physiological dysfunctions. Further research is needed focusing on the origins and targets of circulating microRNAs to clarify their function in various tissues with aging.

  7. Developmental Decline in the MicroRNA 199a (miR-199a)/miR-214 Cluster in Human Fetal Lung Promotes Type II Cell Differentiation by Upregulating Key Transcription Factors.

    Science.gov (United States)

    Mishra, Ritu; Benlhabib, Houda; Guo, Wei; Lerma Cervantes, Connie B; Mendelson, Carole R

    2018-06-01

    The major surfactant protein, SP-A (a product of the SFTPA gene), serves as a marker of type II pneumocyte differentiation and surfactant synthesis. SFTPA expression in cultured human fetal lung (HFL) epithelial cells is upregulated by hormones that increase cyclic AMP (cAMP) and activate TTF-1/NKX2.1 and NF-κB. To further define mechanisms for type II cell differentiation and induction of SP-A, we investigated roles of microRNAs (miRNAs). Using microarray to identify differentially expressed miRNAs in HFL epithelial cells during type II cell differentiation in culture, we observed that members of the miRNA 199a (miR-199a)/miR-214 cluster were significantly downregulated during differentiation. Validated and predicted targets of miR-199a-3p/miR-199a-5p and miR-214, which serve roles in type II cell differentiation (COX-2, NF-κB p50/p65, and CREB1), and the CREB1 target, C/EBPβ, were coordinately upregulated. Accordingly, overexpression of miR-199a-5p, miR-199a-3p, or miR-214 mimics in cultured HFL epithelial cells decreased COX-2, NF-κB p50/p65, CREB1, and C/EBPβ proteins, with an associated inhibition of SP-A expression. Interestingly, overexpression of the EMT factor, ZEB1, which declines during cAMP-induced type II cell differentiation, increased pri-miR-199a and reduced the expression of the targets NF-κB/p50 and COX-2. Collectively, these findings suggest that the developmental decline in miR-199a/miR-214 in HFL causes increased expression of critical targets that enhance type II cell differentiation and SP-A expression. Copyright © 2018 American Society for Microbiology.

  8. Prognostic significance of miR-205 in endometrial cancer.

    Directory of Open Access Journals (Sweden)

    Mihriban Karaayvaz

    Full Text Available microRNAs have emerged as key regulators of gene expression, and their altered expression has been associated with tumorigenesis and tumor progression. Thus, microRNAs have potential as both cancer biomarkers and/or potential novel therapeutic targets. Although accumulating evidence suggests the role of aberrant microRNA expression in endometrial carcinogenesis, there are still limited data available about the prognostic significance of microRNAs in endometrial cancer. The goal of this study is to investigate the prognostic value of selected key microRNAs in endometrial cancer by the analysis of archival formalin-fixed paraffin-embedded tissues.Total RNAs were extracted from 48 paired normal and endometrial tumor specimens using Trizol based approach. The expression of miR-26a, let-7g, miR-21, miR-181b, miR-200c, miR-192, miR-215, miR-200c, and miR-205 were quantified by real time qRT-PCR expression analysis. Targets of the differentially expressed miRNAs were quantified using immunohistochemistry. Statistical analysis was performed by GraphPad Prism 5.0.The expression levels of miR-200c (P<0.0001 and miR-205 (P<0.0001 were significantly increased in endometrial tumors compared to normal tissues. Kaplan-Meier survival analysis revealed that high levels of miR-205 expression were associated with poor patient overall survival (hazard ratio, 0.377; Logrank test, P = 0.028. Furthermore, decreased expression of a miR-205 target PTEN was detected in endometrial cancer tissues compared to normal tissues.miR-205 holds a unique potential as a prognostic biomarker in endometrial cancer.

  9. Association Study of MiR-34b/c Genetic Variation and Ulcerative Colitis in Guilan Province

    Directory of Open Access Journals (Sweden)

    Zeynab Hosseinpour

    2017-04-01

    Full Text Available Abstract Background: Ulcerative colitis (UC is a chronic disease that specifically affects the mucosa of the rectum and colon. The pathogenesis of UC is not well defined, but it is proposed that genetic and environmental factors result in an aberrant immune response to a subset of commensal enteric bacteria.The aim of this study was to investigate whether miR-34b/c rs4938723 T/C polymorphism is associated with UC risk. Materials and Methods: Blood samples were collected from 50 patients diagnosed with UC and 100 healthy control subjects. Genomic DNA was extracted from peripheral blood. Genetic variation of miR34b/c was determined by tetra-primers ARMS-PCR (amplification refractory mutation system-polymerase chain reaction. All statistical analyses were conducted using the MedCalc version 12.1. Results: There was a significant difference in genotype and allele distributions between cases and controls. It was observed that the CT heterozygotes had a 2.29-fold increase in risk of UC (OR=2.29, 95%CI=1.08-4.82, p=0.02. Conclusion: It is suggested that the miR34b/c (rs4938723 T>C polymorphism may be associated with the risk of UC. However, larger studies with more patients and controls are needed to confirm this result.

  10. Cell type-specific deficiency of c-kit gene expression in mutant mice of mi/mi genotype.

    Science.gov (United States)

    Isozaki, K.; Tsujimura, T.; Nomura, S.; Morii, E.; Koshimizu, U.; Nishimune, Y.; Kitamura, Y.

    1994-01-01

    The mi locus of mice encodes a novel member of the basic-helix-loop-helix-leucine zipper protein family of transcription factors (hereafter called mi factor). In addition to microphthalmus, osteopetrosis, and lack of melanocytes, mice of mi/mi genotype are deficient in mast cells. Since the c-kit receptor tyrosine kinase plays an important role in the development of mast cells, and since the c-kit expression by cultured mast cells from mi/mi mice is deficient in both mRNA and protein levels, the mast cell deficiency of mi/mi mice has been attributed at least in part to the deficient expression of c-kit. However, it remained to be examined whether the c-kit expression was also deficient in tissues of mi/mi mice. In the present study, we examined the c-kit expression by mi/mi skin mast cells using in situ hybridization and immunohistochemistry. Moreover, we examined the c-kit expression by various cells other than mast cells in tissues of mi/mi mice. We found that the c-kit expression was deficient in mast cells but not in erythroid precursors, testicular germ cells, and neurons of mi/mi mice. This suggested that the regulation of the c-kit transcription by the mi factor was dependent on cell types. Mice of mi/mi genotype appeared to be a useful model to analyze the function of transcription factors in the whole-animal level. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7524330

  11. DoReMi workshop on multidisciplinary approaches to evaluating cancer risks associated with low-dose internal contamination

    International Nuclear Information System (INIS)

    Laurier, D.; Guseva Canu, I.; Bertho, J.M.; Blanchardon, E.; Rage, E.; Baatout, S.; Bouffler, S.; Cardis, E.; Gomolka, M.; Kreuzer, M.; Hall, J.; Kesminiene, A.

    2012-01-01

    A workshop dedicated to cancer risks associated with low-dose internal contamination was organised in March 2011, in Paris, in the framework of the DoReMi (Low Dose Research towards Multidisciplinary Integration) European Network of Excellence. The aim was to identify the best epidemiological studies that provide an opportunity to develop a multidisciplinary approach to improve the evaluation of the cancer risk associated with internal contamination. This workshop provided an opportunity for in-depth discussions between researchers working in different fields including (but not limited to) epidemiology, dosimetry, biology and toxicology. Discussions confirmed the importance of research on the health effects of internal contamination. Several existing epidemiological studies provide a real possibility to improve the quantification of cancer risk associated with internal emitters. Areas for future multidisciplinary collaborations were identified, that should allow feasibility studies to be carried out in the near future. The goal of this paper is to present an overview of the presentations and discussions that took place during this workshop. (authors)

  12. Longer Work/Rest Intervals During High-Intensity Interval Training (HIIT Lead to Elevated Levels of miR-222 and miR-29c

    Directory of Open Access Journals (Sweden)

    Boris Schmitz

    2018-04-01

    Full Text Available Aim: MicroRNA-222 (miR-222 and miR-29c have been identified as important modulators of cardiac growth and may protect against pathological cardiac remodeling. miR-222 and -29c may thus serve as functional biomarkers for exercise-induced cardiac adaptations. This investigation compared the effect of two workload-matched high-intensity interval training (HIIT protocols with different recovery periods on miR-222 and -29c levels.Methods: Sixty-three moderately trained females and males (22.0 ± 1.7 years fulfilled the eligibility criteria and were randomized into two HIIT groups using sex and exercise capacity. During a controlled 4-week intervention (two sessions/week a 4 × 30 HIIT group performed 4 × 30 s runs (all-out, 30 s active recovery and a 8 × 15 HIIT group performed 8 × 15 s runs (all-out, 15 s active recovery. miR-222 and -29c as well as transforming growth factor-beta1 (TGF-beta1 mRNA levels were determined during high-intensity running as well as aerobic exercise using capillary blood from earlobes. Performance parameters were assessed using an incremental continuous running test (ICRT protocol with blood lactate diagnostic and heart rate (HR monitoring to determine HR recovery and power output at individual anaerobic threshold (IAT.Results: At baseline, acute exercise miR-222 and -29c levels were increased only in the 4 × 30 HIIT group (both p < 0.01, pre- vs. post-exercise. After the intervention, acute exercise miR-222 levels were still increased in the 4 × 30 HIIT group (p < 0.01, pre- vs. post-exercise while in the 8 × 15 HIIT group again no acute effect was observed. However, both HIIT interventions resulted in elevated resting miR-222 and -29c levels (all p < 0.001, pre- vs. post-intervention. Neither of the two miRNAs were elevated at any ICRT speed level at baseline nor follow-up. While HR recovery was improved by >24% in both HIIT groups (both p ≤ 0.0002 speed at IAT was improved by 3.6% only in the 4 × 30 HIIT group

  13. Mechanism research of miR-181 regulating human lens epithelial cell apoptosis

    Directory of Open Access Journals (Sweden)

    Yu Qin

    2015-05-01

    Full Text Available AIM: To investigate the expression of miR-181 in the lens tissue of cataract and the regulating mechanism of miR-181 on apoptosis of human lens epithelial cell.METHODS:Real time q-PCR was used to measure the expression of miR-181 in the anterior lens capsules of age-related cataract and human lens epithelial cell apoptosis model. miR-181 mimic and inhibitor were transfected using Lipofectamine 2 000 to regulate the expression of miR-181, and then Real time q-PCR was used to verify transfection efficiency. Flow cytometry was used to detect the change of cell apoptosis rate. RESULTS: Compared with control group, the expression of miR-181 was significantly higher in both the anterior lens capsules of age-related cataract and human lens epithelial cell apoptosis model; the relative expression of miR-181 in lens epithelial cells transfected with miR-181 mimic was increased, whereas decreased in cells transfected with miR-181 inhibitor; the apoptosis rate of cells transfected with miR-181 mimic was increased, while reduced in miR-181 inhibitor group. Each result was statistically significant(PCONCLUSION: High expression of miR-181 is detected in anterior lens capsule of age-related cataract. miR-181 might play a certain role in the pathogenesis of cataract via promoting human lens epithelial cell apoptosis. miR-181 probably becomes a new approach for the nonoperative treatment of cataract, but the concrete mechanism still needs to be further studied.

  14. miR-434-3p and DNA hypomethylation co-regulate eIF5A1 to increase AChRs and to improve plasticity in SCT rat skeletal muscle.

    Science.gov (United States)

    Shang, Fei-Fei; Xia, Qing-Jie; Liu, Wei; Xia, Lei; Qian, Bao-Jiang; You, Ling; He, Mu; Yang, Jin-Liang; Wang, Ting-Hua

    2016-03-11

    Acetylcholine receptors (AChRs) serve as connections between motor neurons and skeletal muscle and are essential for recovery from spinal cord transection (SCT). Recently, microRNAs have emerged as important potential biotherapeutics for several diseases; however, whether miRNAs operate in the modulation of AChRs remains unknown. We found increased AChRs numbers and function scores in rats with SCT; these increases were reduced following the injection of a eukaryotic translation initiation factor 5A1 (eIF5A1) shRNA lentivirus into the hindlimb muscle. Then, high-throughput screening for microRNAs targeting eIF5A1 was performed, and miR-434-3p was found to be robustly depleted in SCT rat skeletal muscle. Furthermore, a highly conserved miR-434-3p binding site was identified within the mRNA encoding eIF5A1 through bioinformatics analysis and dual-luciferase assay. Overexpression or knockdown of miR-434-3p in vivo demonstrated it was a negative post-transcriptional regulator of eIF5A1 expression and influenced AChRs expression. The microarray-enriched Gene Ontology (GO) terms regulated by miR-434-3p were muscle development terms. Using a lentivirus, one functional gene (map2k6) was confirmed to have a similar function to that of miR-434-3p in GO terms. Finally, HRM and MeDIP-PCR analyses revealed that DNA demethylation also up-regulated eIF5A1 after SCT. Consequently, miR-434-3p/eIF5A1 in muscle is a promising potential biotherapy for SCI repair.

  15. Small RNA sequencing reveals a comprehensive miRNA signature of BRCA1-associated high-grade serous ovarian cancer

    NARCIS (Netherlands)

    Brouwer, Jan; Kluiver, Joost; de Almeida, Rodrigo C.; Modderman, Rutger; Terpstra, Martijn; Kok, Klaas; Withoff, Sebo; Hollema, Harry; Reitsma, Welmoed; de Bock, Geertruida H.; Mourits, Marian J. E.; van den Berg, Anke

    2016-01-01

    AimsBRCA1 mutation carriers are at increased risk of developing high-grade serous ovarian cancer (HGSOC), a malignancy that originates from fallopian tube epithelium. We aimed to identify differentially expressed known and novel miRNAs in BRCA1-associated HGSOC. Methods Small RNA sequencing was

  16. The Adequate Corpus Luteum: miR-96 Promotes Luteal Cell Survival and Progesterone Production.

    Science.gov (United States)

    Mohammed, Bushra T; Sontakke, Sadanand D; Ioannidis, Jason; Duncan, W Colin; Donadeu, F Xavier

    2017-07-01

    Inadequate progesterone production from the corpus luteum is associated with pregnancy loss. Data available in model species suggest important roles of microRNAs (miRNAs) in luteal development and maintenance. To comprehensively investigate the involvement of miRNAs during the ovarian follicle-luteal transition. The effects of specific miRNAs on survival and steroid production by human luteinized granulosa cells (hLGCs) were tested using specific miRNA inhibitors. Candidate miRNAs were identified through microarray analyses of follicular and luteal tissues in a bovine model. An academic institution in the United Kingdom associated with a teaching hospital. hLGCs were obtained by standard transvaginal follicular-fluid aspiration from 35 women undergoing assisted conception. Inhibition of candidate miRNAs in vitro. Levels of miRNAs, mRNAs, FOXO1 protein, apoptosis, and steroids were measured in tissues and/or cultured cells. Two specific miRNA clusters, miR-183-96-182 and miR-212-132, were dramatically increased in luteal relative to follicular tissues. miR-96 and miR-132 were the most upregulated miRNAs within each cluster. Database analyses identified FOXO1 as a putative target of both these miRNAs. In cultured hLGCs, inhibition of miR-96 increased apoptosis and FOXO1 protein levels, and decreased progesterone production. These effects were prevented by small interfering RNA-mediated downregulation of FOXO1. In bovine luteal cells, miR-96 inhibition also led to increases in apoptosis and FOXO1 protein levels. miR-96 targets FOXO1 to regulate luteal development through effects on cell survival and steroid production. The miR-183-96-182 cluster could provide a novel target for the manipulation of luteal function. Copyright © 2017 Endocrine Society

  17. MicroRNAs regulate human adipocyte lipolysis: effects of miR-145 are linked to TNF-α.

    Directory of Open Access Journals (Sweden)

    Silvia Lorente-Cebrián

    Full Text Available MicroRNAs (miRNAs are small non-coding RNAs that regulate gene expression and have multiple effects in various tissues including adipose inflammation, a condition characterized by increased local release of the pro-lipolytic cytokine tumor necrosis factor-alpha (TNF-α. Whether miRNAs regulate adipocyte lipolysis is unknown. We set out to determine whether miRNAs affect adipocyte lipolysis in human fat cells. To this end, eleven miRNAs known to be present in human adipose tissue were over-expressed in human in vitro differentiated adipocytes followed by assessments of TNF-α and glycerol levels in conditioned media after 48 h. Three miRNAs (miR-145, -26a and let-7d modulated both parameters in parallel. However, while miR-26a and let-7d decreased, miR-145 increased both glycerol release and TNF-α secretion. Further studies were focused therefore on miR-145 since this was the only stimulator of lipolysis and TNF-α secretion. Time-course analysis demonstrated that miR-145 over-expression up-regulated TNF-α expression/secretion followed by increased glycerol release. Increase in TNF-α production by miR-145 was mediated via activation of p65, a member of the NF-κB complex. In addition, miR-145 down-regulated the expression of the protease ADAM17, resulting in an increased fraction of membrane bound TNF-α, which is the more biologically active form of TNF-α. MiR-145 overexpression also increased the phosphorylation of activating serine residues in hormone sensitive lipase and decreased the mRNA expression of phosphodiesterase 3B, effects which are also observed upon TNF-α treatment in human adipocytes. We conclude that miR-145 regulates adipocyte lipolysis via multiple mechanisms involving increased production and processing of TNF-α in fat cells.

  18. Genetic variants in regulatory regions of microRNAs are associated with lung cancer risk.

    Science.gov (United States)

    Xie, Kaipeng; Wang, Cheng; Qin, Na; Yang, Jianshui; Zhu, Meng; Dai, Juncheng; Jin, Guangfu; Shen, Hongbing; Ma, Hongxia; Hu, Zhibin

    2016-07-26

    Genetic variants in regulatory regions of some miRNAs might be associated with lung cancer risk and survival. We performed a case-control study including 1341 non-small cell lung cancer (NSCLC) cases and 1982 controls to evaluate the associations of 7 potentially functional polymorphisms in several differently expressed miRNAs with NSCLC risk. Each SNP was also tested for the association with overall survival of 1001 NSCLC patients. We identified that rs9660710 in miR-200b/200a/429 cluster and rs763354 in miR-30a were significantly associated with NSCLC risk [odds ratio (OR) = 1.17, 95% confidence interval (CI) = 1.06-1.30, P = 0.002; OR = 0.88, 95% CI = 0.80-0.98, P = 0.017; respectively]. However, no significant association between variants and NSCLC death risk was observed in survival analysis. Functional annotation showed that both rs9660710 and rs763354 were located in regulatory elements in lung cancer cells. Compared to normal tissues, miR-200a-3p, miR-200a-5p, miR-200b-3p, miR-200b-5p and miR-429 were significantly increased in The Cancer Genome Atlas (TCGA) Lung Adenocarcinoma (LUAD) tumors, whereas miR-30a-3p and miR-30a-5p were significantly decreased in tumors (all P < 0.05). Furthermore, we observed that rs9660710 is an expression quantitative trait locus (eQTL) or methylation eQTL for miR-429 expression in TCGA normal tissues. Our results indicated that rs9660710 in miR-200b/200a/429 cluster and rs763354 in miR-30a might modify the susceptibility to NSCLC.

  19. miRNAs as therapeutic targets in ischemic heart disease.

    Science.gov (United States)

    Frost, Robert J A; van Rooij, Eva

    2010-06-01

    Ischemic heart disease is a form of congestive heart failure that is caused by insufficient blood supply to the heart, resulting in a loss of viable tissue. In response to the injury, the non-ischemic myocardium displays signs of secondary remodeling, like interstitial fibrosis and hypertrophy of cardiac myocytes. This remodeling process further deteriorates pump function and increases susceptibility to arrhythmias. MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression in a sequence-dependent manner. Recently, several groups identified miRNAs as crucial gene regulators in response to myocardial infarction (MI) and during post-MI remodeling. In this review, we discuss how modulation of these miRNAs represents a promising new therapeutic strategy to improve the clinical outcome in ischemic heart disease.

  20. Involvement of miR160/miR393 and their targets in cassava responses to anthracnose disease.

    Science.gov (United States)

    Pinweha, Nattaya; Asvarak, Thipa; Viboonjun, Unchera; Narangajavana, Jarunya

    2015-02-01

    Cassava is a starchy root crop for food and industrial applications in many countries around the world. Among the factors that affect cassava production, diseases remain the major cause of yield loss. Cassava anthracnose disease is caused by the fungus Colletotrichum gloeosporioides. Severe anthracnose attacks can cause tip die-backs and stem cankers, which can affect the availability of planting materials especially in large-scale production systems. Recent studies indicate that plants over- or under-express certain microRNAs (miRNAs) to cope with various stresses. Understanding how a disease-resistant plant protects itself from pathogens should help to uncover the role of miRNAs in the plant immune system. In this study, the disease severity assay revealed different response to C. gloeosporioides infection in two cassava cultivars. Quantitative RT-PCR analysis uncovered the differential expression of the two miRNAs and their target genes in the two cassava cultivars that were subjected to fungal infection. The more resistant cultivar revealed the up-regulation of miR160 and miR393, and consequently led to low transcript levels in their targets, ARF10 and TIR1, respectively. The more susceptible cultivar exhibited the opposite pattern. The cis-regulatory elements relevant to defense and stress responsiveness, fungal elicitor responsiveness and hormonal responses were the most prevalent present in the miRNAs gene promoter regions. The possible dual role of these specific miRNAs and their target genes associated with cassava responses to C. gloeosporioides is discussed. This is the first study to address the molecular events by which miRNAs which might play a role in fungal-infected cassava. A better understanding of the functions of miRNAs target genes should greatly increase our knowledge of the mechanism underlying susceptibility and lead to new strategies to enhance disease tolerance in this economically important crop. Copyright © 2014 Elsevier GmbH. All

  1. The miR-449b polymorphism, rs10061133 A>G, is associated with premature ovarian insufficiency.

    Science.gov (United States)

    Pan, Hong; Chen, Beili; Wang, Jing; Wang, Xi; Hu, Ping; Wu, Shinan; Liu, Yunyun; Xu, Zuying; Zhang, Wei; Wang, Binbin; Cao, Yunxia

    2016-09-01

    To determine if the miR-449b polymorphism, rs10061133 A>G, is associated with premature ovarian insufficiency (POI) pathogenesis. From January 2011 to December 2014, a total of 148 individuals with POI and 225 age-matched controls were collected from the Center for Reproductive Medicine, 1st Affiliated Hospital of Anhui Medical University (Hefei, China). Genotyping of miR-449b rs1006113 was performed using matrix-assisted laser desorption ionization time-of-flight-based mass spectrometry. Rs10061133 A>G is a highly conserved SNP locus in the mature area of miR-449b. Association analysis shows that the rs10061133 AA genotype is a risk factor for POI. Our study provides the first evidence that the miR-449b rs10061133 AA genotype is associated with POI risk.

  2. miRNAFold: a web server for fast miRNA precursor prediction in genomes.

    Science.gov (United States)

    Tav, Christophe; Tempel, Sébastien; Poligny, Laurent; Tahi, Fariza

    2016-07-08

    Computational methods are required for prediction of non-coding RNAs (ncRNAs), which are involved in many biological processes, especially at post-transcriptional level. Among these ncRNAs, miRNAs have been largely studied and biologists need efficient and fast tools for their identification. In particular, ab initio methods are usually required when predicting novel miRNAs. Here we present a web server dedicated for miRNA precursors identification at a large scale in genomes. It is based on an algorithm called miRNAFold that allows predicting miRNA hairpin structures quickly with high sensitivity. miRNAFold is implemented as a web server with an intuitive and user-friendly interface, as well as a standalone version. The web server is freely available at: http://EvryRNA.ibisc.univ-evry.fr/miRNAFold. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. miR-134: A Human Cancer Suppressor?

    Directory of Open Access Journals (Sweden)

    Jing-Yu Pan

    2017-03-01

    Full Text Available MicroRNAs (miRNAs are small noncoding RNAs approximately 20–25 nt in length, which play crucial roles through directly binding to corresponding 3′ UTR of targeted mRNAs. It has been reported that miRNAs are involved in numerous of diseases, including cancers. Recently, miR-134 has been identified to dysregulate in handles of human cancers, such as lung cancer, glioma, breast cancer, colorectal cancer, and so on. Increasing evidence indicates that miR-134 is essential for human carcinoma and participates in tumor cell proliferation, apoptosis, invasion and metastasis, drug resistance, as well as cancer diagnosis, treatment, and prognosis. Nevertheless, its roles in human cancer are still ambiguous, and its mechanisms are sophisticated as well, referring to a variety of targets and signal pathways, such as STAT5B, KRAS, MAPK/ERK signal pathway, Notch pathway, etc. Herein, we review the crucial roles of miR-134 in scores of human cancers via analyzing latest investigations, which might provide evidence for cancer diagnose, treatment, prognosis, or further investigations.

  4. MiR-17-92 cluster and immunity.

    Science.gov (United States)

    Kuo, George; Wu, Chao-Yi; Yang, Huang-Yu

    2018-05-29

    MicroRNAs (MiR, MiRNA) are small single-stranded non-coding RNAs that play an important role in the regulation of gene expression. MircoRNAs exert their effect by binding to complementary nucleotide sequences of the targeted messenger RNA, thus forming an RNA-induced silencing complex. The mircoRNA-17-92 cluster encoded by the miR-17-92 host gene is first found in malignant B-cell lymphoma. Recent research identifies the miR-17-92 cluster as a crucial player in the development of the immune system, the heart, the lung, and oncogenic events. In light of the miR-17-92 cluster's increasing role in regulating the immune system, our review will discuss the latest knowledge regarding its involvement in cells of both innate and adaptive immunity, including B cells, subsets of T cells such as Th1, Th2, T follicular helper cells, regulatory T cells, monocytes/macrophages, NK cells, and dendritic cells, and the possible targets that are regulated by its members. Copyright © 2018. Published by Elsevier B.V.

  5. Impact of depression on risk of myocardial infarction, stroke and cardiovascular death in patients with psoriasis

    DEFF Research Database (Denmark)

    Egeberg, Alexander; Khalid, Usman; Gislason, Gunnar Hilmar

    2016-01-01

    Psoriasis is associated with depression, myocardial infarction (MI) and stroke. Patients with depression have increased cardiovascular risk. However, the link between psoriasis, depression and cardiovascular disease is unclear. This link was investigated in a nationwide Danish cohort of patients.......43–2.66), and cardiovascular death (IRR 2.24, 95% CI 1.53–3.26) were increased significantly during acute depression, and risk of stroke (IRR 1.51, 95% CI 1.19–1.90) was increased significantly in chronic depression. During remission from depression, only the risk of stroke was increased. In conclusion, in patients...... with psoriasis, depression is associated with increased risk of MI, stroke and cardiovascular death, especially during acute depression....

  6. Mi-DISCOVERER: A bioinformatics tool for the detection of mi-RNA in human genome.

    Science.gov (United States)

    Arshad, Saadia; Mumtaz, Asia; Ahmad, Freed; Liaquat, Sadia; Nadeem, Shahid; Mehboob, Shahid; Afzal, Muhammad

    2010-11-27

    MicroRNAs (miRNAs) are 22 nucleotides non-coding RNAs that play pivotal regulatory roles in diverse organisms including the humans and are difficult to be identified due to lack of either sequence features or robust algorithms to efficiently identify. Therefore, we made a tool that is Mi-Discoverer for the detection of miRNAs in human genome. The tools used for the development of software are Microsoft Office Access 2003, the JDK version 1.6.0, BioJava version 1.0, and the NetBeans IDE version 6.0. All already made miRNAs softwares were web based; so the advantage of our project was to make a desktop facility to the user for sequence alignment search with already identified miRNAs of human genome present in the database. The user can also insert and update the newly discovered human miRNA in the database. Mi-Discoverer, a bioinformatics tool successfully identifies human miRNAs based on multiple sequence alignment searches. It's a non redundant database containing a large collection of publicly available human miRNAs.

  7. Perspectives on Sámi historiography

    Directory of Open Access Journals (Sweden)

    Lars Ivar Hansen

    2017-09-01

    Full Text Available The article focuses on Sámi history and historical methods. The main results and central aspects of Sámi history, in its relational context, are gone through. What effects and consequences — regarding both methodology and narrative styles — these aspects have had, and ought to have, for the processes of doing research on and writing Sámi history? The focus is on the politics of Sámi history and research. The issues, who is “allowed” to write Sámi history and the way Sámi research is demanded to stand in the service of different societal-cultural needs of the Sámi is dealt with. This expectation of applicability concerns Sámi history in general, and the more delimited efforts of presenting situated accounts of Sámi cultural practices, traditions and experience with relations to other folk groups. Finally, methodological considerations and recommendations of Sámi history are presented, in which a number of methodological competences and in-depth usage of numerous source categories are called for.

  8. Radiosensitizing Effects of Ectopic miR-101 on Non–Small-Cell Lung Cancer Cells Depend on the Endogenous miR-101 Level

    International Nuclear Information System (INIS)

    Chen, Susie; Wang Hongyan; Ng, Wooi Loon; Curran, Walter J.; Wang Ya

    2011-01-01

    Purpose: Previously, we showed that ectopic miR-101 could sensitize human tumor cells to radiation by targeting ATM and DNA-PK catalytic subunit (DNA-PKcs) to inhibit DNA repair, as the endogenous miR-101 levels are low in tumors in general. However, the heterogeneity of human cancers may result in an exception. The purpose of this study was to test the hypothesis that a few tumor cell lines with a high level of endogenous miR-101 would prove less response to ectopic miR-101. Methods and Materials: Fourteeen non–small-cell lung cancer (NSCLC) cell lines and one immortalized non-malignant lung epithelial cell line (NL20) were used for comparing endogenous miR-101 levels by real-time reverse transcription–polymerase chain reaction. Based on the different miR-101 levels, four cell lines with different miR-101 levels were chosen for transfection with a green fluorescent protein–lentiviral plasmid encoding miR-101. The target protein levels were measured by using Western blotting. The radiosensitizing effects of ectopic miR-101 on these NSCLC cell lines were determined by a clonogenic assay and xenograft mouse model. Results: The endogenous miR-101 level was similar or lower in 13 NSCLC cell lines but was 11-fold higher in one cell line (H157) than in NL20 cells. Although ectopic miR-101 efficiently decreased the ATM and DNA-PKcs levels and increased the radiosensitization level in H1299, H1975, and A549 cells, it did not change the levels of the miR-101 targets or radiosensitivity in H157 cells. Similar results were observed in xenograft mice. Conclusions: A small number of NSCLC cell lines could have a high level of endogenous miR-101. The ectopic miR-101 was able to radiosensitize most NSCLC cells, except for the NSCLC cell lines that had a much higher endogenous miR-101 level. These results suggest that when we choose one miRNA as a therapeutic tool, the endogenous level of the miRNA in each tumor should be considered.

  9. Radiosensitizing Effects of Ectopic miR-101 on Non-Small-Cell Lung Cancer Cells Depend on the Endogenous miR-101 Level

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Susie; Wang Hongyan; Ng, Wooi Loon; Curran, Walter J. [Department of Radiation Oncology, School of Medicine and the Winship Cancer Institute, Emory University, Atlanta, GA (United States); Wang Ya, E-mail: ywang94@emory.edu [Department of Radiation Oncology, School of Medicine and the Winship Cancer Institute, Emory University, Atlanta, GA (United States)

    2011-12-01

    Purpose: Previously, we showed that ectopic miR-101 could sensitize human tumor cells to radiation by targeting ATM and DNA-PK catalytic subunit (DNA-PKcs) to inhibit DNA repair, as the endogenous miR-101 levels are low in tumors in general. However, the heterogeneity of human cancers may result in an exception. The purpose of this study was to test the hypothesis that a few tumor cell lines with a high level of endogenous miR-101 would prove less response to ectopic miR-101. Methods and Materials: Fourteeen non-small-cell lung cancer (NSCLC) cell lines and one immortalized non-malignant lung epithelial cell line (NL20) were used for comparing endogenous miR-101 levels by real-time reverse transcription-polymerase chain reaction. Based on the different miR-101 levels, four cell lines with different miR-101 levels were chosen for transfection with a green fluorescent protein-lentiviral plasmid encoding miR-101. The target protein levels were measured by using Western blotting. The radiosensitizing effects of ectopic miR-101 on these NSCLC cell lines were determined by a clonogenic assay and xenograft mouse model. Results: The endogenous miR-101 level was similar or lower in 13 NSCLC cell lines but was 11-fold higher in one cell line (H157) than in NL20 cells. Although ectopic miR-101 efficiently decreased the ATM and DNA-PKcs levels and increased the radiosensitization level in H1299, H1975, and A549 cells, it did not change the levels of the miR-101 targets or radiosensitivity in H157 cells. Similar results were observed in xenograft mice. Conclusions: A small number of NSCLC cell lines could have a high level of endogenous miR-101. The ectopic miR-101 was able to radiosensitize most NSCLC cells, except for the NSCLC cell lines that had a much higher endogenous miR-101 level. These results suggest that when we choose one miRNA as a therapeutic tool, the endogenous level of the miRNA in each tumor should be considered.

  10. Assay reproducibility in clinical studies of plasma miRNA.

    Directory of Open Access Journals (Sweden)

    Jonathan Rice

    Full Text Available There are increasing reports of plasma miRNAs as biomarkers of human disease but few standards in methodologic reporting, leading to inconsistent data. We systematically reviewed plasma miRNA studies published between July 2013-June 2014 to assess methodology. Six parameters were investigated: time to plasma extraction, methods of RNA extraction, type of miRNA, quantification, cycle threshold (Ct setting, and methods of statistical analysis. We compared these data with a proposed standard methodologic technique. Beginning with initial screening for 380 miRNAs using microfluidic array technology and validation in an additional cohort of patients, we compared 11 miRNAs that exhibited differential expression between 16 patients with benign colorectal neoplasms (advanced adenomas and 16 patients without any neoplasm (controls. Plasma was isolated immediately, 12, 24, 48, or 72 h following phlebotomy. miRNA was extracted using two different techniques (Trizol LS with pre-amplification or modified miRNeasy. We performed Taqman-based RT-PCR assays for the 11 miRNAs with subsequent analyses using a variable Ct setting or a fixed Ct set at 0.01, 0.03, 0.05, or 0.5. Assays were performed in duplicate by two different operators. RNU6 was the internal reference. Systematic review yielded 74 manuscripts meeting inclusion criteria. One manuscript (1.4% documented all 6 methodological parameters, while < 5% of studies listed Ct setting. In our proposed standard technique, plasma extraction ≤12 h provided consistent ΔCt. miRNeasy extraction yielded higher miRNA concentrations and fewer non-expressed miRNAs compared to Trizol LS (1/704 miRNAs [0.14%] vs 109/704 miRNAs [15%], not expressed, respectively. A fixed Ct bar setting of 0.03 yielded the most reproducible data, provided that <10% miRNA were non-expressed. There was no significant intra-operator variability. There was significant inter-operator variation using Trizol LS extraction, while this was

  11. Shrimp miR-10a Is Co-opted by White Spot Syndrome Virus to Increase Viral Gene Expression and Viral Replication

    Directory of Open Access Journals (Sweden)

    Jiun-Yan Huang

    2017-09-01

    Full Text Available Members of the microRNA miR-10 family are highly conserved and play many important roles in diverse biological mechanisms, including immune-related responses and cancer-related processes in certain types of cancer. In this study, we found the most highly upregulated shrimp microRNA from Penaeus vannamei during white spot syndrome virus (WSSV infection was miR-10a. After confirming the expression level of miR-10a by northern blot and quantitative RT-PCR, an in vivo experiment showed that the viral copy number was decreased in miR-10a-inhibited shrimp. We found that miR-10a targeted the 5′ untranslated region (UTR of at least three viral genes (vp26, vp28, and wssv102, and plasmids that were controlled by the 5′ UTR of these genes produced enhanced luciferase signals in transfected SF9 cells. These results suggest a previously unreported role for shrimp miR-10a and even a new type of host–virus interaction, whereby a co-opts the key cellular regulator miR-10a to globally enhance the translation of viral proteins.

  12. Shrimp miR-10a Is Co-opted by White Spot Syndrome Virus to Increase Viral Gene Expression and Viral Replication.

    Science.gov (United States)

    Huang, Jiun-Yan; Kang, Shih-Ting; Chen, I-Tung; Chang, Li-Kwan; Lin, Shih-Shun; Kou, Guang-Hsiung; Chu, Chia-Ying; Lo, Chu-Fang

    2017-01-01

    Members of the microRNA miR-10 family are highly conserved and play many important roles in diverse biological mechanisms, including immune-related responses and cancer-related processes in certain types of cancer. In this study, we found the most highly upregulated shrimp microRNA from Penaeus vannamei during white spot syndrome virus (WSSV) infection was miR-10a. After confirming the expression level of miR-10a by northern blot and quantitative RT-PCR, an in vivo experiment showed that the viral copy number was decreased in miR-10a-inhibited shrimp. We found that miR-10a targeted the 5' untranslated region (UTR) of at least three viral genes ( vp26, vp28 , and wssv102 ), and plasmids that were controlled by the 5' UTR of these genes produced enhanced luciferase signals in transfected SF9 cells. These results suggest a previously unreported role for shrimp miR-10a and even a new type of host-virus interaction, whereby a co-opts the key cellular regulator miR-10a to globally enhance the translation of viral proteins.

  13. Knock-down of miR-221 and miR-222 in the radiosensitization of breast cancer cells

    International Nuclear Information System (INIS)

    Zhang Chunzhi; Kang Chunsheng; Cao Yongzhen; Pu Peiyu; Lu Zhonghong; Du Yue

    2009-01-01

    Objective: To investigate the radiosensitizing effect of knock-down of miR-221 miR-222 on MCF-7 human breast cancer cells and explore the possible mechanism. Methods: Antisense oligonucleotides of miR-221 and miR-222 (AS-miR-221 and AS-miR-222), mediated by lipofectamine, were transfected to MCF-7 cells to knock down miR-221 and miR-222, Northern blotting was conducted to detect the expression of miR-221 and miR-222 in transfected cells. The cell apoptosis was detected by flow cytometry and Caspase-3 and Caspase-7 activity assay. Clonogenic assay was used to measure the sensitizing enhancement ratio. Target genes of miR-221 and miR-222 relevant to radio-sensitivity were searched using bioinformatics analysis. The targeted protein expression was determined by Western blot analysis. Results: The expression of miR-221 and miR-222 in the AS-miR-221/222 cells determined by Northern blotting was significantly reduced. Compared with the control group, the cell apoptosis and mitotic cell death after the radiation were significantly higher in AS-miR-221/222 cells. The sensitizing enhancement ratio was 1.87. Based on bioinformatics analysis, PTEN was a target gene of miR-221 and miR-222 which could enhance the radiosensitivity of MCF-7 cells. In AS-miR-221/222 cells, the expression of PTEN was up-regulated while pAkt down-regulated. Conclusions: AS-miR-221 and AS-miR-222 may enhance the radiosensitivity of MCF-7 breast cancer cells by up-regulating the expression of PTEN. (authors)

  14. Mechanisms underlying aberrant expression of miR-29c in uterine leiomyoma.

    Science.gov (United States)

    Chuang, Tsai-Der; Khorram, Omid

    2016-01-01

    To determine the expression of miR-29c and its target genes in leiomyoma and the role of NF-κB, specific protein 1 (SP1), and DNA methylation in its regulation. Experimental study. Academic research laboratory. Women undergoing hysterectomy for leiomyoma. Over- and underexpression of miR-29c; blockade of transcription factors. MiR-29c and its target gene levels in leiomyoma and the effects of blockade of transcription factors on miR-29c expression. Leiomyoma as compared with myometrium expressed significantly lower levels of miR-29c, with an inverse relationship with expression of its targets, COL3A1 and DNMT3A. Gain of function of miR-29c inhibited the expression of COL3A1 and DNMT3A at protein and mRNA levels, secreted COL3A1, and rate of cell proliferation. Loss of function of miR-29c had the opposite effect. E2, P, and their combination inhibited miR-29c in leiomyoma smooth muscle cells (LSMC). Phosphorylated NF-κB (p65) and SP1 protein expression were significantly increased in leiomyoma. SiRNA knockdown of SP1 and DNMT3A or their specific inhibitors significantly increased the expression of miR-29c, accompanied by the inhibition of cellular and secreted COL3A1 in siRNA-treated cells. Knockdown of p65 also induced miR-29c expression but had no effect on COL3A1 expression. MiR-29c expression is suppressed in leiomyoma, resulting in an increase in expression of its targets COL3A1 and DNMT3A. The suppression of miR-29c in LSMC is primarily mediated by SP1, NF-κB signaling, and epigenetic modification. Collectively, these results indicate a significant role for miR-29c in leiomyoma pathogenesis. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  15. miRNA-205 affects infiltration and metastasis of breast cancer

    International Nuclear Information System (INIS)

    Wang, Zhouquan; Liao, Hehe; Deng, Zhiping; Yang, Po; Du, Ning; Zhanng, Yunfeng; Ren, Hong

    2013-01-01

    Highlights: •We detected expression of miR-205 in breast cancer cell lines and tissue samples. •We suggest miR-205 is downregulated in human breast cancer tissues and MCF7 cells. •We suggest the lower expression of miR-205 play a role in breast cancer onset. •These data suggest that miR-205 directly targets HER3 in human breast cancer. -- Abstract: Background: An increasing number of studies have shown that miRNAs are commonly deregulated in human malignancies, but little is known about the function of miRNA-205 (miR-205) in human breast cancer. The present study investigated the influence of miR-205 on breast cancer malignancy. Methods: The expression level of miR-205 in the MCF7 breast cancer cell line was determined by quantitative (q)RT-PCR. We then analyzed the expression of miR-205 in breast cancer and paired non-tumor tissues. Finally, the roles of miR-205 in regulating tumor proliferation, apoptosis, migration, and target gene expression were studied by MTT assay, flow cytometry, qRT-PCR, Western blotting and luciferase assay. Results: miR-205 was downregulated in breast cancer cells or tissues compared with normal breast cell lines or non-tumor tissues. Overexpression of miR-205 reduced the growth and colony-formation capacity of MCF7 cells by inducing apoptosis. Overexpression of miR-205 inhibited MCF7 cell migration and invasiveness. By bioinformation analysis, miR-205 was predicted to bind to the 3′ untranslated regions of human epidermal growth factor receptor (HER)3 mRNA, and upregulation of miR-205 reduced HER3 protein expression. Conclusion: miR-205 is a tumor suppressor in human breast cancer by post-transcriptional inhibition of HER3 expression

  16. Perfluorooctane sulfonate disturbs Nanog expression through miR-490-3p in mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Bo Xu

    Full Text Available Perfluorooctane sulfonate (PFOS poses potential risks to reproduction and development. Mouse embryonic stem cells (mESCs are ideal models for developmental toxicity testing of environmental contaminants in vitro. However, the mechanism by which PFOS affects early embryonic development is still unclear. In this study, mESCs were exposed to PFOS for 24 h, and then general cytotoxicity and pluripotency were evaluated. MTT assay showed that neither PFOS (0.2 µM, 2 µM, 20 µM, and 200 µM nor control medium (0.1% DMSO treatments affected cell viability. Furthermore, there were no significant differences in cell cycle and apoptosis between the PFOS treatment and control groups. However, we found that the mRNA and protein levels of pluripotency markers (Sox2, Nanog in mESCs were significantly decreased following exposure to PFOS for 24 h, while there were no significant changes in the mRNA and protein levels of Oct4. Accordingly, the expression levels of miR-145 and miR-490-3p, which can regulate Sox2 and Nanog expressions were significantly increased. Chrm2, the host gene of miR-490-3p, was positively associated with miR-490-3p expression after PFOS exposure. Dual luciferase reporter assay suggests that miR-490-3p directly targets Nanog. These results suggest that PFOS can disturb the expression of pluripotency factors in mESCs, while miR-145 and miR-490-3p play key roles in modulating this effect.

  17. Longer Work/Rest Intervals During High-Intensity Interval Training (HIIT) Lead to Elevated Levels of miR-222 and miR-29c

    Science.gov (United States)

    Schmitz, Boris; Rolfes, Florian; Schelleckes, Katrin; Mewes, Mirja; Thorwesten, Lothar; Krüger, Michael; Klose, Andreas; Brand, Stefan-Martin

    2018-01-01

    Aim: MicroRNA-222 (miR-222) and miR-29c have been identified as important modulators of cardiac growth and may protect against pathological cardiac remodeling. miR-222 and -29c may thus serve as functional biomarkers for exercise-induced cardiac adaptations. This investigation compared the effect of two workload-matched high-intensity interval training (HIIT) protocols with different recovery periods on miR-222 and -29c levels. Methods: Sixty-three moderately trained females and males (22.0 ± 1.7 years) fulfilled the eligibility criteria and were randomized into two HIIT groups using sex and exercise capacity. During a controlled 4-week intervention (two sessions/week) a 4 × 30 HIIT group performed 4 × 30 s runs (all-out, 30 s active recovery) and a 8 × 15 HIIT group performed 8 × 15 s runs (all-out, 15 s active recovery). miR-222 and -29c as well as transforming growth factor-beta1 (TGF-beta1) mRNA levels were determined during high-intensity running as well as aerobic exercise using capillary blood from earlobes. Performance parameters were assessed using an incremental continuous running test (ICRT) protocol with blood lactate diagnostic and heart rate (HR) monitoring to determine HR recovery and power output at individual anaerobic threshold (IAT). Results: At baseline, acute exercise miR-222 and -29c levels were increased only in the 4 × 30 HIIT group (both p HIIT group (p HIIT group again no acute effect was observed. However, both HIIT interventions resulted in elevated resting miR-222 and -29c levels (all p 24% in both HIIT groups (both p ≤ 0.0002) speed at IAT was improved by 3.6% only in the 4 × 30 HIIT group (p HIIT can induce increased circulating levels of cardiac growth-associated miR-222 and -29c. miR-222 and miR-29c could be useful markers to monitor HIIT response in general and to identify optimal work/rest combinations. PMID:29719514

  18. Longer Work/Rest Intervals During High-Intensity Interval Training (HIIT) Lead to Elevated Levels of miR-222 and miR-29c.

    Science.gov (United States)

    Schmitz, Boris; Rolfes, Florian; Schelleckes, Katrin; Mewes, Mirja; Thorwesten, Lothar; Krüger, Michael; Klose, Andreas; Brand, Stefan-Martin

    2018-01-01

    Aim: MicroRNA-222 (miR-222) and miR-29c have been identified as important modulators of cardiac growth and may protect against pathological cardiac remodeling. miR-222 and -29c may thus serve as functional biomarkers for exercise-induced cardiac adaptations. This investigation compared the effect of two workload-matched high-intensity interval training (HIIT) protocols with different recovery periods on miR-222 and -29c levels. Methods: Sixty-three moderately trained females and males (22.0 ± 1.7 years) fulfilled the eligibility criteria and were randomized into two HIIT groups using sex and exercise capacity. During a controlled 4-week intervention (two sessions/week) a 4 × 30 HIIT group performed 4 × 30 s runs (all-out, 30 s active recovery) and a 8 × 15 HIIT group performed 8 × 15 s runs (all-out, 15 s active recovery). miR-222 and -29c as well as transforming growth factor-beta1 (TGF-beta1) mRNA levels were determined during high-intensity running as well as aerobic exercise using capillary blood from earlobes. Performance parameters were assessed using an incremental continuous running test (ICRT) protocol with blood lactate diagnostic and heart rate (HR) monitoring to determine HR recovery and power output at individual anaerobic threshold (IAT). Results: At baseline, acute exercise miR-222 and -29c levels were increased only in the 4 × 30 HIIT group (both p HIIT group ( p HIIT group again no acute effect was observed. However, both HIIT interventions resulted in elevated resting miR-222 and -29c levels (all p 24% in both HIIT groups (both p ≤ 0.0002) speed at IAT was improved by 3.6% only in the 4 × 30 HIIT group ( p HIIT can induce increased circulating levels of cardiac growth-associated miR-222 and -29c. miR-222 and miR-29c could be useful markers to monitor HIIT response in general and to identify optimal work/rest combinations.

  19. MDRL lncRNA regulates the processing of miR-484 primary transcript by targeting miR-361.

    Directory of Open Access Journals (Sweden)

    Kun Wang

    2014-07-01

    Full Text Available Long noncoding RNAs (lncRNAs are emerging as new players in gene regulation, but whether lncRNAs operate in the processing of miRNA primary transcript is unclear. Also, whether lncRNAs are involved in the regulation of the mitochondrial network remains to be elucidated. Here, we report that a long noncoding RNA, named mitochondrial dynamic related lncRNA (MDRL, affects the processing of miR-484 primary transcript in nucleus and regulates the mitochondrial network by targeting miR-361 and miR-484. The results showed that miR-361 that predominantly located in nucleus can directly bind to primary transcript of miR-484 (pri-miR-484 and prevent its processing by Drosha into pre-miR-484. miR-361 is able to regulate mitochondrial fission and apoptosis by regulating miR-484 levels. In exploring the underlying molecular mechanism by which miR-361 is regulated, we identified MDRL and demonstrated that it could directly bind to miR-361 and downregulate its expression levels, which promotes the processing of pri-miR-484. MDRL inhibits mitochondrial fission and apoptosis by downregulating miR-361, which in turn relieves inhibition of miR-484 processing by miR-361. Our present study reveals a novel regulating model of mitochondrial fission program which is composed of MDRL, miR-361 and miR-484. Our work not only expands the function of the lncRNA pathway in gene regulation but also establishes a new mechanism for controlling miRNA expression.

  20. Md-miR156ab and Md-miR395 Target WRKY Transcription Factors to Influence Apple Resistance to Leaf Spot Disease.

    Science.gov (United States)

    Zhang, Qiulei; Li, Yang; Zhang, Yi; Wu, Chuanbao; Wang, Shengnan; Hao, Li; Wang, Shengyuan; Li, Tianzhong

    2017-01-01

    MicroRNAs (miRNAs) are key regulators of gene expression that post-transcriptionally regulate transcription factors involved in plant physiological activities. Little is known about the effects of miRNAs in disease resistance in apple ( Malus × domestica ). We globally profiled miRNAs in the apple cultivar Golden Delicious (GD) infected or not with the apple leaf spot fungus Alternaria alternaria f. sp. mali (ALT1), and identified 58 miRNAs that exhibited more than a 2-fold upregulation upon ALT1 infection. We identified a pair of miRNAs that target protein-coding genes involved in the defense response against fungal pathogens; Md-miR156ab targets a novel WRKY transcription factor, MdWRKYN1, which harbors a TIR and a WRKY domain. Md-miR395 targets another transcription factor, MdWRKY26, which contains two WRKY domains. Real-time PCR analysis showed that Md-miR156ab and Md-miR395 levels increased, while MdWRKYN1 and MdWRKY26 expression decreased in ALT1-inoculated GD leaves; furthermore, the overexpression of Md-miR156ab and Md-miR395 resulted in a significant reduction in MdWRKYN1 and MdWRKY26 expression. To investigate whether these miRNAs and their targets play a crucial role in plant defense, we overexpressed MdWRKYN1 or knocked down Md-miR156ab activity, which in both cases enhanced the disease resistance of the plants by upregulating the expression of the WRKY-regulated pathogenesis-related (PR) protein-encoding genes MdPR3-1, MdPR3-2, MdPR4, MdPR5, MdPR10-1 , and MdPR10-2 . In a similar analysis, we overexpressed MdWRKY26 or suppressed Md-miR395 activity, and found that many PR protein-encoding genes were also regulated by MdWRKY26 . In GD, ALT-induced Md-miR156ab and Md-miR395 suppress MdWRKYN1 and MdWRKY26 expression, thereby decreasing the expression of some PR genes, and resulting in susceptibility to ALT1.

  1. Global miRNA expression analysis of serous and clear cell ovarian carcinomas identifies differentially expressed miRNAs including miR-200c-3p as a prognostic marker

    International Nuclear Information System (INIS)

    Vilming Elgaaen, Bente; Olstad, Ole Kristoffer; Haug, Kari Bente Foss; Brusletto, Berit; Sandvik, Leiv; Staff, Anne Cathrine; Gautvik, Kaare M; Davidson, Ben

    2014-01-01

    Improved insight into the molecular characteristics of the different ovarian cancer subgroups is needed for developing a more individualized and optimized treatment regimen. The aim of this study was to a) identify differentially expressed miRNAs in high-grade serous ovarian carcinoma (HGSC), clear cell ovarian carcinoma (CCC) and ovarian surface epithelium (OSE), b) evaluate selected miRNAs for association with clinical parameters including survival and c) map miRNA-mRNA interactions. Differences in miRNA expression between HGSC, CCC and OSE were analyzed by global miRNA expression profiling (Affymetrix GeneChip miRNA 2.0 Arrays, n = 12, 9 and 9, respectively), validated by RT-qPCR (n = 35, 19 and 9, respectively), and evaluated for associations with clinical parameters. For HGSC, differentially expressed miRNAs were linked to differentially expressed mRNAs identified previously. Differentially expressed miRNAs (n = 78) between HGSC, CCC and OSE were identified (FDR < 0.01%), of which 18 were validated (p < 0.01) using RT-qPCR in an extended cohort. Compared with OSE, miR-205-5p was the most overexpressed miRNA in HGSC. miR-200 family members and miR-182-5p were the most overexpressed in HGSC and CCC compared with OSE, whereas miR-383 was the most underexpressed. miR-205-5p and miR-200 members target epithelial-mesenchymal transition (EMT) regulators, apparently being important in tumor progression. miR-509-3-5p, miR-509-5p, miR-509-3p and miR-510 were among the strongest differentiators between HGSC and CCC, all being significantly overexpressed in CCC compared with HGSC. High miR-200c-3p expression was associated with poor progression-free (p = 0.031) and overall (p = 0.026) survival in HGSC patients. Interacting miRNA and mRNA targets, including those of a TP53-related pathway presented previously, were identified in HGSC. Several miRNAs differentially expressed between HGSC, CCC and OSE have been identified, suggesting a carcinogenetic role for these mi

  2. Cisplatin-resistant lung cancer cell-derived exosomes increase cisplatin resistance of recipient cells in exosomal miR-100-5p-dependent manner.

    Science.gov (United States)

    Qin, Xiaobing; Yu, Shaorong; Zhou, Leilei; Shi, Meiqi; Hu, Yong; Xu, Xiaoyue; Shen, Bo; Liu, Siwen; Yan, Dali; Feng, Jifeng

    2017-01-01

    Exosomes derived from lung cancer cells confer cisplatin (DDP) resistance to other cancer cells. However, the underlying mechanism is still unknown. A549 resistance to DDP (A549/DDP) was established. Microarray was used to analyze microRNA (miRNA) expression profiles of A549 cells, A549/DDP cells, A549 exosomes, and A549/DDP exosomes. There was a strong correlation of miRNA profiles between exosomes and their maternal cells. A total of 11 miRNAs were significantly upregulated both in A549/DDP cells compared with A549 cells and in exosomes derived from A549/DDP cells in contrast to exosomes from A549 cells. A total of 31 downregulated miRNAs were also observed. miR-100-5p was the most prominent decreased miRNA in DDP-resistant exosomes compared with the corresponding sensitive ones. Downregulated miR-100-5p was proved to be involved in DDP resistance in A549 cells, and mammalian target of rapamycin (mTOR) expression was reverse regulated by miR-100-5p. Exosomes confer recipient cells' resistance to DDP in an exosomal miR-100-5p-dependent manner with mTOR as its potential target both in vitro and in vivo. Exosomes from DDP-resistant lung cancer cells A549 can alter other lung cancer cells' sensitivity to DDP in exosomal miR-100-5p-dependent manner. Our study provides new insights into the molecular mechanism of DDP resistance in lung cancer.

  3. Dose-Response of High-Intensity Training (HIT on Atheroprotective miRNA-126 Levels

    Directory of Open Access Journals (Sweden)

    Boris Schmitz

    2017-05-01

    Full Text Available Aim: MicroRNA-126 (miR-126 exerts beneficial effects on vascular integrity, angiogenesis, and atherosclerotic plaque stability. The purpose of this investigation was to analyze the dose-response relationship of high-intensity interval training (HIIT on miR-126-3p and -5p levels.Methods: Sixty-one moderately trained individuals (females = 31 [50.8%]; 22.0 ± 1.84 years were consecutively recruited and allocated into three matched groups using exercise capacity. During a 4-week intervention a HIIT group performed three exercise sessions/week of 4 × 30 s at maximum speed (all-out, a progressive HIIT (proHIIT group performed three exercise sessions/week of 4 × 30 s at maximum speed (all-out with one extra session every week (up to 7 × 30 s and a low-intensity training (LIT control group performed three exercise sessions/week for 25 min <75% of maximum heart rate. Exercise miR-126-3p/-5p plasma levels were determined using capillary blood from earlobes.Results: No exercise-induced increase in miR-126 levels was detected at baseline, neither in the LIT (after 25 min low-intensity running nor the HIIT groups (after 4 min of high-intensity running. After the intervention, the LIT group presented an increase in miR-126-3p, while in the HIIT group, miR-126-3p levels were still reduced (all p < 0.05. An increase for both, miR-126-3p and -5p levels (all p < 0.05, pre- vs. during and post-exercise was detected in the proHIIT group. Between group analysis revealed that miR-126-3p levels after LIT and proHIIT increased by 2.12 ± 2.55 and 1.24 ± 2.46 units (all p < 0.01, respectively, compared to HIIT (−1.05 ± 2.6 units.Conclusions: LIT and proHIIT may be performed to increase individual miR-126 levels. HIIT without progression was less effective in increasing miR-126.

  4. MiMiR: a comprehensive solution for storage, annotation and exchange of microarray data

    Directory of Open Access Journals (Sweden)

    Rahman Fatimah

    2005-11-01

    Full Text Available Abstract Background The generation of large amounts of microarray data presents challenges for data collection, annotation, exchange and analysis. Although there are now widely accepted formats, minimum standards for data content and ontologies for microarray data, only a few groups are using them together to build and populate large-scale databases. Structured environments for data management are crucial for making full use of these data. Description The MiMiR database provides a comprehensive infrastructure for microarray data annotation, storage and exchange and is based on the MAGE format. MiMiR is MIAME-supportive, customised for use with data generated on the Affymetrix platform and includes a tool for data annotation using ontologies. Detailed information on the experiment, methods, reagents and signal intensity data can be captured in a systematic format. Reports screens permit the user to query the database, to view annotation on individual experiments and provide summary statistics. MiMiR has tools for automatic upload of the data from the microarray scanner and export to databases using MAGE-ML. Conclusion MiMiR facilitates microarray data management, annotation and exchange, in line with international guidelines. The database is valuable for underpinning research activities and promotes a systematic approach to data handling. Copies of MiMiR are freely available to academic groups under licence.

  5. miR-99 inhibits cervical carcinoma cell proliferation by targeting TRIB2.

    Science.gov (United States)

    Xin, Jia-Xuan; Yue, Zhen; Zhang, Shuai; Jiang, Zhong-Hua; Wang, Ping-Yu; Li, You-Jie; Pang, Min; Xie, Shu-Yang

    2013-10-01

    MicroRNAs (miRNAs) have significant roles in cell processes, including proliferation, apoptosis and stress responses. To investigate the involvement of miR-99 in the inhibition of HeLa cell proliferation, an miR-99 gene expression vector (pU6.1/miR-99), which overexpressed miR-99 in HeLa cells after transient transfection, was constructed. The expression of miR-99 was detected by qPCR. Cell proliferation and apoptosis were analyzed by cell viability, proliferation and apoptosis assays, as well as by electron microscopy. The results showed that overexpression of miR-99 in HeLa cells increased the HeLa cell mortality rate. Moreover, miR-99 overexpression was able to markedly inhibit HeLa cell proliferation according to the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The cell apoptosis rate was significantly higher in pU6.1/miR-99-treated cells compared with that in the control cultures. Increases in intracellular electron density, as well as the proportion of nuclear plasma, blebbing phenomena and apoptotic bodies were observed in pU6.1/miR-99-treated cells compared with control cultures according to electron microscopy analysis. The Tribbles 2 (TRIB2) 3'-untranslated region was also observed to be targeted by miR-99 and the results further demonstrated that miR-99 was able to negatively regulate TRIB2 expression in HeLa cells The results indicate that miR-99 acts as a tumor suppressor gene in HeLa cells, establishing a theoretical basis for its application in cancer therapeutics.

  6. miR-11 regulates pupal size of Drosophila melanogaster via directly targeting Ras85D.

    Science.gov (United States)

    Li, Yao; Li, Shengjie; Jin, Ping; Chen, Liming; Ma, Fei

    2017-01-01

    MicroRNAs play diverse roles in various physiological processes during Drosophila development. In the present study, we reported that miR-11 regulates pupal size during Drosophila metamorphosis via targeting Ras85D with the following evidences: pupal size was increased in the miR-11 deletion mutant; restoration of miR-11 in the miR-11 deletion mutant rescued the increased pupal size phenotype observed in the miR-11 deletion mutant; ectopic expression of miR-11 in brain insulin-producing cells (IPCs) and whole body shows consistent alteration of pupal size; Dilps and Ras85D expressions were negatively regulated by miR-11 in vivo; miR-11 targets Ras85D through directly binding to Ras85D 3'-untranslated region in vitro; removal of one copy of Ras85D in the miR-11 deletion mutant rescued the increased pupal size phenotype observed in the miR-11 deletion mutant. Thus, our current work provides a novel mechanism of pupal size determination by microRNAs during Drosophila melanogaster metamorphosis. Copyright © 2017 the American Physiological Society.

  7. Diet and lifestyle factors associated with miRNA expression in colorectal tissue

    Directory of Open Access Journals (Sweden)

    Slattery ML

    2016-12-01

    Full Text Available Martha L Slattery,1 Jennifer S Herrick,1 Lila E Mullany,1 John R Stevens,2 Roger K Wolff1 1Department of Internal Medicine, The University of Utah, Salt Lake City, 2Department of Mathematics and Statistics, Utah State University, Logan, UT, USA Abstract: MicroRNAs (miRNAs are small non-protein-coding RNA molecules that regulate gene expression. Diet and lifestyle factors have been hypothesized to be involved in the regulation of miRNA expression. In this study it was hypothesized that diet and lifestyle factors are associated with miRNA expression. Data from 1,447 cases of colorectal cancer to evaluate 34 diet and lifestyle variables using miRNA expression in normal colorectal mucosa as well as for differential expression between paired carcinoma and normal tissue were used. miRNA data were obtained using an Agilent platform. Multiple comparisons were adjusted for using the false discovery rate q-value. There were 250 miRNAs differentially expressed between carcinoma and normal colonic tissue by level of carbohydrate intake and 198 miRNAs differentially expressed by the level of sucrose intake. Of these miRNAs, 166 miRNAs were differentially expressed for both carbohydrate intake and sucrose intake. Ninety-nine miRNAs were differentially expressed by the level of whole grain intake in normal colonic mucosa. Level of oxidative balance score was associated with 137 differentially expressed miRNAs between carcinoma and paired normal rectal mucosa. Additionally, 135 miRNAs were differentially expressed in colon tissue based on recent NSAID use. Other dietary factors, body mass index, waist and hip circumference, and long-term physical activity levels did not alter miRNA expression after adjustment for multiple comparisons. These results suggest that diet and lifestyle factors regulate miRNA level. They provide additional support for the influence of carbohydrate, sucrose, whole grains, NSAIDs, and oxidative balance score on colorectal cancer risk

  8. miR-24 and miR-205 expression is dependent on HPV onco-protein expression in keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    McKenna, Declan J., E-mail: dj.mckenna@ulster.ac.uk [Biomedical Sciences Research Institute, University of Ulster, Coleraine, Co. Derry BT52 1SA (United Kingdom); Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen' s University Belfast, Belfast BT9 7BL (United Kingdom); Patel, Daksha, E-mail: d.patel@qub.ac.uk [Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen' s University Belfast, Belfast BT9 7BL (United Kingdom); McCance, Dennis J., E-mail: d.mccance@qub.ac.uk [Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen' s University Belfast, Belfast BT9 7BL (United Kingdom)

    2014-01-05

    A screen of microRNA (miRNA) expression following differentiation in human foreskin keratinocytes (HFKs) identified changes in several miRNAs, including miR-24 and miR-205. We investigated how expression of Human Papilloma Virus Type-16 (HPV16) onco-proteins E6 and E7 affected expression of miR-24 and miR-205 during proliferation and differentiation of HFKs. We show that the induction of both miR-24 and miR-205 observed during differentiation of HFKs is lost in HFKs expressing E6 and E7. We demonstrate that the effect on miR-205 is due to E7 activity, as miR-205 expression is dependent on pRb expression. Finally, we provide evidence that miR-24 effects in the cell may be due to targeting of cyclin dependent kinase inhibitor p27. In summary, these results indicate that expression of both miR-24 and miR-205 are impacted by E6 and/or E7 expression, which may be one mechanism by which HPV onco-proteins can disrupt the balance between proliferation and differentiation in keratinocytes. - Highlights: • miR-24 and miR-205 are induced during keratinocyte differentiation. • This induction is lost in keratinocytes expressing HPV onco-proteins E6 and E7. • miR-205 is dependent upon pRb expression. • miR-24 targets p27 in cycling keratinocytes.

  9. miR-24 and miR-205 expression is dependent on HPV onco-protein expression in keratinocytes

    International Nuclear Information System (INIS)

    McKenna, Declan J.; Patel, Daksha; McCance, Dennis J.

    2014-01-01

    A screen of microRNA (miRNA) expression following differentiation in human foreskin keratinocytes (HFKs) identified changes in several miRNAs, including miR-24 and miR-205. We investigated how expression of Human Papilloma Virus Type-16 (HPV16) onco-proteins E6 and E7 affected expression of miR-24 and miR-205 during proliferation and differentiation of HFKs. We show that the induction of both miR-24 and miR-205 observed during differentiation of HFKs is lost in HFKs expressing E6 and E7. We demonstrate that the effect on miR-205 is due to E7 activity, as miR-205 expression is dependent on pRb expression. Finally, we provide evidence that miR-24 effects in the cell may be due to targeting of cyclin dependent kinase inhibitor p27. In summary, these results indicate that expression of both miR-24 and miR-205 are impacted by E6 and/or E7 expression, which may be one mechanism by which HPV onco-proteins can disrupt the balance between proliferation and differentiation in keratinocytes. - Highlights: • miR-24 and miR-205 are induced during keratinocyte differentiation. • This induction is lost in keratinocytes expressing HPV onco-proteins E6 and E7. • miR-205 is dependent upon pRb expression. • miR-24 targets p27 in cycling keratinocytes

  10. Occupations at risk of developing contact allergy to isothiazolinones in Danish contact dermatitis patients: results from a Danish multicentre study (2009-2012).

    Science.gov (United States)

    Schwensen, Jakob F; Menné, Torkil; Andersen, Klaus E; Sommerlund, Mette; Johansen, Jeanne D

    2014-11-01

    In recent years, the prevalence of contact allergy to isothiazolinones has reached epidemic levels. Few studies have presented data on occupations at risk of developing contact allergy to isothiazolinones. To present demographics and examine risk factors for sensitization to methylisothiazolinone (MI), methylchloroisothiazolinone (MCI) in combination with MI and benzisothiazolinone (BIT) in Danish dermatitis patients. A retrospective epidemiological analysis of data from three Danish hospitals departments was conducted. All patients consecutively patch tested with MI, MCI/MI and BIT between 2009 and 2013 were included. MI contact allergy showed a significantly increased trend in prevalence from 1.8% in 2009 to 4.2% in 2012 (p dermatitis mainly drove the increase in 2012. Adjusted logistic regression analysis showed that MI sensitization was significantly associated with occupational exposures, hand and facial dermatitis, age > 40 years, and the occupational groups of tile setters/terrazzo workers, machine operators, and painters. MCI/MI contact allergy was significantly associated with the following high-risk occupations: painting, welding (blacksmiths), machine operating, and cosmetology. The occupational group of painting was frequent in the group of patients with BIT contact allergy. Several high-risk occupations for sensitization to isothiazolinones exist. Regulation on the allowed concentration of isothiazolinones, and especially MI, in both consumer products and industrial products is needed. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. GPC1 Regulated by miR-96-5p, Rather than miR-182-5p, in Inhibition of Pancreatic Carcinoma Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Chunlong Li

    2014-04-01

    Full Text Available To determine the relationships between miR-96-5p/-182-5p and GPC1 in pancreatic cancer (PC, we conducted the population and in vitro studies. We followed 38 pancreatic cancer patients, measured and compared the expression of miR-96-5p/-182-5p, GPC1, characteristics and patients’ survival time of different miR-96-5p/-182-5p expression levels in PC tissues. In an in vitro study, we investigated the proliferation, cycle and apotosis in cells transfected with mimics/inhibitors of the two miRNAs, and determine their effects on GPC1 by dual-luciferase assay. In the follow-up study, we found that the expressions of miR-96-5p/-182-5p were lower/higher in PC tissues; patients with lower/higher levels of miR-96-5p/-182-5p suffered poorer characteristics and decreased survival time. In the in vitro study, the expressions of miR-96-5p/-182-5p were different in cells. Proliferation of cells transfected with miR-96-5p mimics/inhibitors was lower/higher in Panc-1/BxPC-3; when transfected with miR-182-5p mimics/inhibitors, proliferation of cells were higher/lower in AsPC-1/Panc-1. In a cell cycle study, panc-1 cells transfected with miR-96-5p mimics was arrested at G0/G1; BxPC-3 cells transfected with miR-96-5p inhibitors showed a significantly decrease at G0/G1; AsPC-1 cells transfected with miR-182-5p mimics was arrested at S; Panc-1 cells transfected with miR-182-5p inhibitors showed a decrease at S. MiR-96-5p mimics increased the apoptosis rate in Panc-1 cells, and its inhibitors decreased the apoptosis rate in BxPC-3. Dual luciferase assay revealed that GPC1 was regulated by miR-96-5p, not -182-5p. We found that miR-96-5p/-182-5p as good markers for PC; miR-96-5p, rather than -182-5p, inhibits GPC1 to suppress proliferation of PC cells.

  12. miRNA and Degradome Sequencing Reveal miRNA and Their Target Genes That May Mediate Shoot Growth in Spur Type Mutant “Yanfu 6”

    Science.gov (United States)

    Song, Chunhui; Zhang, Dong; Zheng, Liwei; Zhang, Jie; Zhang, Baojuan; Luo, Wenwen; Li, Youmei; Li, Guangfang; Ma, Juanjuan; Han, Mingyu

    2017-01-01

    The spur-type growth habit in apple trees is characterized by short internodes, increased number of fruiting spurs, and compact growth that promotes flowering and facilitates management practices, such as pruning. The molecular mechanisms responsible for regulating spur-type growth have not been elucidated. In the present study, miRNAs and the expression of their potential target genes were evaluated in shoot tips of “Nagafu 2” (CF) and spur-type bud mutation “Yanfu 6” (YF). A total of 700 mature miRNAs were identified, including 202 known apple miRNAs and 498 potential novel miRNA candidates. A comparison of miRNA expression in CF and YF revealed 135 differentially expressed genes, most of which were downregulated in YF. YF also had lower levels of GA, ZR, IAA, and ABA hormones, relative to CF. Exogenous applications of GA promoted YF shoot growth. Based on the obtained results, a regulatory network involving plant hormones, miRNA, and their potential target genes is proposed for the molecular mechanism regulating the growth of YF. miRNA164, miRNA166, miRNA171, and their potential targets, and associated plant hormones, appear to regulate shoot apical meristem (SAM) growth. miRNA159, miRNA167, miRNA396, and their potential targets, and associated plant hormones appear to regulate cell division and internode length. This study provides a foundation for further studies designed to elucidate the mechanism underlying spur-type apple architecture. PMID:28424721

  13. miR-20b, miR-98, miR-125b-1*, and let-7e* as new potential diagnostic biomarkers in ulcerative colitis

    DEFF Research Database (Denmark)

    Coskun, Mehmet; Bjerrum, Jacob Tveiten; Seidelin, Jakob Benedict

    2013-01-01

    were obtained endoscopically from patients with active UC or CD, quiescent UC or CD, as well as healthy controls. Total RNA was isolated and miRNA expression assessed using the miRNA microarray Geniom Biochip miRNA Homo sapiens (Febit GmbH, Heidelberg, Germany). Data analysis was carried out...... genes involved in various pathways, such as mitogen-activated protein kinase and cytokine signaling, which are both key signaling pathways in UC. CONCLUSION: The present study provides the first evidence that miR-20b, miR-98, miR-125b-1*, and let-7e* are deregulated in patients with UC. The level...

  14. Expression of miR-15a, miR-145, and miR-182 in granulosa-lutein cells, follicular fluid, and serum of women with polycystic ovary syndrome (PCOS).

    Science.gov (United States)

    Naji, Mohammad; Nekoonam, Saeid; Aleyasin, Ashraf; Arefian, Ehsan; Mahdian, Reza; Azizi, Elham; Shabani Nashtaei, Maryam; Amidi, Fardin

    2018-01-01

    Polycystic ovary syndrome (PCOS) is one of the most common endocrinopathies that affects women in reproductive age. MicroRNAs (miRNAs) play crucial roles in normal function of female reproductive system and folliculogenesis. Deregulated expression of miRNAs in PCOS condition may be significantly implicated in the pathogenesis of PCOS. We determined relative expression of miR-15a, miR-145, and miR-182 in granulosa-lutein cells (GLCs), follicular fluid (FF), and serum of PCOS patients. Human subjects were divided into PCOS (n = 20) and control (n = 21) groups. GLCs, FF, and serum were isolated and stored. RNA isolation was performed and cDNA was reversely transcribed using specific stem-loop RT primers. Relative expression of miRNAs was calculated after normalization against U6 expression. Correlation of miRNAs' expression level with basic clinical features and predictive value of miRNAs in FF and serum were appraised. Relative expression of miR-145 and miR-182 in GLCs was significantly decreased in PCOS, but miR-182 in FF of PCOS patients revealed up-regulated levels. Significant correlations between level of miRNAs in FF and serum and hormonal profile of subjects were observed. MiR-182 in FF showed a significant predictive value with AUC of 0.73, 76.4% sensitivity, and 70.5% specificity which was improved after combination of miR-182 and miR-145. A significant dysregulation of miR-145 and miR-182 in GLCs of PCOS may indicate their involvement in pathogenesis of PCOS. Differential up-regulation of miR-182 in FF of PCOS patients with its promising predictive values for discrimination of PCOS reinforced the importance of studying miRNAs' profile in FF.

  15. Investigation of miRNA Biology by Bioinformatic Tools and Impact of miRNAs in Colorectal Cancer: Regulatory Relationship of c-Myc and p53 with miRNAs

    Directory of Open Access Journals (Sweden)

    Yaguang Xi

    2007-01-01

    Full Text Available MicroRNAs (miRNAs are a class of small non-coding RNAs that mediate gene expression at the posttranscriptional and translational levels and have been demonstrated to be involved in diverse biological functions. Mounting evidence in recent years has shown that miRNAs play key roles in tumorigenesis due to abnormal expression of and mutations in miRNAs. High throughput miRNA expression profiling of several major tumor types has identified miRNAs associated with clinical diagnosis and prognosis of cancer treatment. Previously our group has discovered a novel regulatory relationship between tumor suppressor gene p53 with miRNAs expression and a number of miRNA promoters contain putative p53 binding sites. In addition, others have reported that c-myc can mediate a large number of miRNAs expression. In this review, we will emphasize algorithms to identify mRNA targets of miRNAs and the roles of miRNAs in colorectal cancer. In particular, we will discuss a novel regulatory relationship of miRNAs with tumor suppressor p53 and c-myc. miRNAs are becoming promising novel targets and biomarkers for future cancer therapeutic development and clinical molecular diagnosis.

  16. Cointegrating MiDaS Regressions and a MiDaS Test

    OpenAIRE

    J. Isaac Miller

    2011-01-01

    This paper introduces cointegrating mixed data sampling (CoMiDaS) regressions, generalizing nonlinear MiDaS regressions in the extant literature. Under a linear mixed-frequency data-generating process, MiDaS regressions provide a parsimoniously parameterized nonlinear alternative when the linear forecasting model is over-parameterized and may be infeasible. In spite of potential correlation of the error term both serially and with the regressors, I find that nonlinear least squares consistent...

  17. "Seed-Milarity" confers to hsa-miR-210 and hsa-miR-147b similar functional activity.

    Directory of Open Access Journals (Sweden)

    Thomas Bertero

    Full Text Available Specificity of interaction between a microRNA (miRNA and its targets crucially depends on the seed region located in its 5'-end. It is often implicitly considered that two miRNAs sharing the same biological activity should display similarity beyond the strict six nucleotide region that forms the seed, in order to form specific complexes with the same mRNA targets. We have found that expression of hsa-miR-147b and hsa-miR-210, though triggered by different stimuli (i.e. lipopolysaccharides and hypoxia, respectively, induce very similar cellular effects in term of proliferation, migration and apoptosis. Hsa-miR-147b only shares a "minimal" 6-nucleotides seed sequence with hsa-miR-210, but is identical with hsa-miR-147a over 20 nucleotides, except for one base located in the seed region. Phenotypic changes induced after heterologous expression of miR-147a strikingly differ from those induced by miR-147b or miR-210. In particular, miR-147a behaves as a potent inhibitor of cell proliferation and migration. These data fit well with the gene expression profiles observed for miR-147b and miR-210, which are very similar, and the gene expression profile of miR-147a, which is distinct from the two others. Bioinformatics analysis of all human miRNA sequences indicates multiple cases of miRNAs from distinct families exhibiting the same kind of similarity that would need to be further characterized in terms of putative functional redundancy. Besides, it implies that functional impact of some miRNAs can be masked by robust expression of miRNAs belonging to distinct families.

  18. Inositol-Requiring Enzyme 1-Mediated Downregulation of MicroRNA (miR)-146a and miR-155 in Primary Dermal Fibroblasts across Three TNFRSF1A Mutations Results in Hyperresponsiveness to Lipopolysaccharide.

    Science.gov (United States)

    Harrison, Stephanie R; Scambler, Thomas; Oubussad, Lylia; Wong, Chi; Wittmann, Miriam; McDermott, Michael F; Savic, Sinisa

    2018-01-01

    Tumor necrosis factor (TNF)-receptor-associated periodic fever syndrome (TRAPS) is a rare monogenic autoinflammatory disorder characterized by mutations in the TNFRSF1A gene, causing TNF-receptor 1 (TNFR1) misfolding, increased cellular stress, activation of the unfolded protein response (UPR), and hyperresponsiveness to lipopolysaccharide (LPS). Both microRNA (miR)-146a and miR-155 provide negative feedback for LPS-toll-like receptor 2/4 signaling and cytokine production, through regulation of nuclear factor kappa B (NF-κB). In this study, we hypothesized that proinflammatory cytokine signaling in TRAPS downregulates these two miRs, resulting in LPS-induced hyperresponsiveness in TRAPS dermal fibroblasts (DFs), irrespective of the underlying genetic mutation. Primary DF were isolated from skin biopsies of TRAPS patients and healthy controls (HC). TNFR1 cell surface expression was measured using immunofluorescence. DF were stimulated with LPS, interleukin (IL)-1β, thapsigargin, or TNF, with and without inositol-requiring enzyme 1 (IRE1) inhibitor (4u8C), following which miR-146a and miR-155 expression was measured by RT-qPCR. IL-1β, IL-6, and TNF secretion was measured by enzyme-linked immunosorbent assays, and baseline expression of 384 different miRs was assessed using microfluidics assays. TNFR1 was found to be expressed on the surface of HC DF but expression was deficient in all samples with TRAPS-associated mutations. HC DF showed significant dose-dependent increases in both miR-146a and miR-155 expression levels in response to LPS; however, TRAPS DF failed to upregulate either miR-146a or miR-155 under the same conditions. This lack of miR-146a and miR-155 upregulation was associated with increased proinflammatory cytokine production in TRAPS DF in response to LPS challenge, which was abrogated by 4u8C. Incubation of HC DF with IL-1β led to downregulation of miR-146a and miR-155 expression, which was dependent on IRE1 enzyme. We observed global

  19. Risk Associated With Surgery Within 12 Months After Coronary Drug-Eluting Stent Implantation

    DEFF Research Database (Denmark)

    Egholm, Gro; Kristensen, Steen Dalby; Thim, Troels

    2016-01-01

    and compared them with a control group of patients without previous IHD undergoing similar surgical procedures (n = 20,232). Events of interest were myocardial infarction (MI), cardiac death, and all-cause mortality within 30 days after surgery. RESULTS Surgery in DES-PCI-treated patients was associated...... with an increased risk of MI (1.6% vs. 0.2%; odds ratio [ OR]: 4.82; 95% confidence interval [CI]: 3.25 to 7.16) and cardiac death (1.0% vs. 0.2%; OR: 5.87; 95% CI: 3.60 to 9.58) but not all-cause mortality (3.1% vs. 2.7%; OR: 1.12; 95% CI: 0.91 to 1.38). When stratified for time from PCI to surgery, only surgery...... within the first month was associated with a significant increased risk of events. CONCLUSIONS Patients requiring surgery within 12 months after DES-PCI had an increased risk of MI and cardiac death compared with patients without IHD. The increased risk was only present within the first month after DES...

  20. Identification of a robust subpathway-based signature for acute myeloid leukemia prognosis using an miRNA integrated strategy.

    Science.gov (United States)

    Chang, Huijuan; Gao, Qiuying; Ding, Wei; Qing, Xueqin

    2018-01-01

    Acute myeloid leukemia (AML) is a heterogeneous disease, and survival signatures are urgently needed to better monitor treatment. MiRNAs displayed vital regulatory roles on target genes, which was necessary involved in the complex disease. We therefore examined the expression levels of miRNAs and genes to identify robust signatures for survival benefit analyses. First, we reconstructed subpathway graphs by embedding miRNA components that were derived from low-throughput miRNA-gene interactions. Then, we randomly divided the data sets from The Cancer Genome Atlas (TCGA) into training and testing sets, and further formed 100 subsets based on the training set. Using each subset, we identified survival-related miRNAs and genes, and identified survival subpathways based on the reconstructed subpathway graphs. After statistical analyses of these survival subpathways, the most robust subpathways with the top three ranks were identified, and risk scores were calculated based on these robust subpathways for AML patient prognoses. Among these robust subpathways, three representative subpathways, path: 05200_10 from Pathways in cancer, path: 04110_20 from Cell cycle, and path: 04510_8 from Focal adhesion, were significantly associated with patient survival in the TCGA training and testing sets based on subpathway risk scores. In conclusion, we performed integrated analyses of miRNAs and genes to identify robust prognostic subpathways, and calculated subpathway risk scores to characterize AML patient survival.

  1. Oligoasthenoteratozoospermia and infertility in mice deficient for miR-34b/c and miR-449 loci.

    Directory of Open Access Journals (Sweden)

    Stefano Comazzetto

    2014-10-01

    Full Text Available Male fertility requires the continuous production of high quality motile spermatozoa in abundance. Alterations in all three metrics cause oligoasthenoteratozoospermia, the leading cause of human sub/infertility. Post-mitotic spermatogenesis inclusive of several meiotic stages and spermiogenesis (terminal spermatozoa differentiation are transcriptionally inert, indicating the potential importance for the post-transcriptional microRNA (miRNA gene-silencing pathway therein. We found the expression of miRNA generating enzyme Dicer within spermatogenesis peaks in meiosis with critical functions in spermatogenesis. In an expression screen we identified two miRNA loci of the miR-34 family (miR-34b/c and miR-449 that are specifically and highly expressed in post-mitotic male germ cells. A reduction in several miRNAs inclusive of miR-34b/c in spermatozoa has been causally associated with reduced fertility in humans. We found that deletion of both miR34b/c and miR-449 loci resulted in oligoasthenoteratozoospermia in mice. MiR-34bc/449-deficiency impairs both meiosis and the final stages of spermatozoa maturation. Analysis of miR-34bc-/-;449-/- pachytene spermatocytes revealed a small cohort of genes deregulated that were highly enriched for miR-34 family target genes. Our results identify the miR-34 family as the first functionally important miRNAs for spermatogenesis whose deregulation is causal to oligoasthenoteratozoospermia and infertility.

  2. Effects of epilepsy and selected antiepileptic drugs on risk of myocardial infarction, stroke, and death in patients with or without previous stroke: a nationwide cohort study

    DEFF Research Database (Denmark)

    Olesen, Jonas Bjerring; Abildstrøm, Steen Zabell; Erdal, Jesper

    2011-01-01

    Patients with epilepsy have increased morbidity and mortality. We evaluated the risk of myocardial infarction (MI), stroke, and death associated with epilepsy and examined if this risk was modified by treatment with antiepileptic drugs (AEDs).......Patients with epilepsy have increased morbidity and mortality. We evaluated the risk of myocardial infarction (MI), stroke, and death associated with epilepsy and examined if this risk was modified by treatment with antiepileptic drugs (AEDs)....

  3. MiRNA-155 and miRNA-132 as potential diagnostic biomarkers for pulmonary tuberculosis: A preliminary study.

    Science.gov (United States)

    Zheng, Meng-Li; Zhou, Nai-Kang; Luo, Cheng-Hua

    2016-11-01

    In our study, we aimed to profile a panel microRNAs (miRNAs) as potential biomarkers for the early diagnosis of pulmonary tuberculosis (PTB) and to illuminate the molecular mechanisms in the development of PTB. Firstly, gene expression profile of E-GEOD-49951 was downloaded from ArrayExpress database, and quantile-adjusted conditional maximum likelihood method was utilized to identify statistical difference between miRNAs of Mycobacterium tuberculosis (MTB)-infected individuals and healthy subjects. Furthermore, in order to assess the performance of our methodology, random forest (RF) classification model was utilized to identify the top 10 miRNAs with better Area Under The Curve (AUC) using 10-fold cross-validation method. Additionally, Monte Carlo Cross-Validation was repeated 50 times to explore the best miRNAs. In order to learn more about the differentially-expressed miRNAs, the target genes of differentially-expressed miRNAs were retrieved from TargetScan database and Ingenuity Pathways Analysis (IPA) was used to screen out biological pathways where target genes were involved. After normalization, a total of 478 miRNAs with higher than 0.25-fold quantile average across all samples were required. Based on the differential expression analysis, 38 differentially expressed miRNAs were identified when the significance was set as false discovery rate (FDR) < 0.01. Among the top 10 differentially expressed miRNAs, miRNA-155 obtained a highest AUC value 0.976, showing a good performance between PTB and control groups. Similarly, miRNA-449a, miRNA-212 and miRNA-132 revealed also a good performance with AUC values 0.947, 0.931 and 0.930, respectively. Moreover, miRNA-155, miRNA-449a, miRNA-29b-1* and miRNA-132 appeared in 50, 49, 49 and 48 bootstraps. Thus, miRNA-155 and miRNA-132 might be important in the progression of PTB and thereby, might present potential signatures for diagnosis of PTB. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. miR-17-92 expression in differentiated T cells - implications for cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Martinson Jeremy

    2010-02-01

    Full Text Available Abstract Background Type-1 T cells are critical for effective anti-tumor immune responses. The recently discovered microRNAs (miRs are a large family of small regulatory RNAs that control diverse aspects of cell function, including immune regulation. We identified miRs differentially regulated between type-1 and type-2 T cells, and determined how the expression of such miRs is regulated. Methods We performed miR microarray analyses on in vitro differentiated murine T helper type-1 (Th1 and T helper type-2 (Th2 cells to identify differentially expressed miRs. We used quantitative RT-PCR to confirm the differential expression levels. We also used WST-1, ELISA, and flow cytometry to evaluate the survival, function and phenotype of cells, respectively. We employed mice transgenic for the identified miRs to determine the biological impact of miR-17-92 expression in T cells. Results Our initial miR microarray analyses revealed that the miR-17-92 cluster is one of the most significantly over-expressed miR in murine Th1 cells when compared with Th2 cells. RT-PCR confirmed that the miR-17-92 cluster expression was consistently higher in Th1 cells than Th2 cells. Disruption of the IL-4 signaling through either IL-4 neutralizing antibody or knockout of signal transducer and activator of transcription (STAT6 reversed the miR-17-92 cluster suppression in Th2 cells. Furthermore, T cells from tumor bearing mice and glioma patients had decreased levels of miR-17-92 when compared with cells from non-tumor bearing counterparts. CD4+ T cells derived from miR-17-92 transgenic mice demonstrated superior type-1 phenotype with increased IFN-γ production and very late antigen (VLA-4 expression when compared with counterparts derived from wild type mice. Human Jurkat T cells ectopically expressing increased levels of miR-17-92 cluster members demonstrated increased IL-2 production and resistance to activation-induced cell death (AICD. Conclusion The type-2-skewing

  5. Early diagnostic evaluation of miR-122 and miR-224 as biomarkers for hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Khalda S. Amr

    2017-12-01

    Full Text Available Hepatocellular carcinoma (HCC is one of the common lethal types of tumor all over the world. The lethality of HCC accounts for many reasons. One of them, the lack of reliable diagnostic markers at the early stage, in this context, serum miRNAs became promising diagnostic biomarkers. Herein, we aimed to identify the predictive value of two miRNAs (miR-122 and miR-224 in plasma of patients with HCC preceded by chronic HCV infection. Taqman miRNA assays specific for hsa-miR-122 and hsa-miR-224 were used to assess the expression levels of the chosen miRNAs in plasma samples collected from three groups; 40 patients with HCC related to HCV, 40 with CHC patients and 20 healthy volunteers. This study revealed that the mean plasma values of miRNA-122 were significantly lower among HCC group when compared to CHC and control groups (P 1.2 (RQ and (AUC = 0.93, P < 0.001, while the accuracy of AFP to diagnose HCC was (AUC: 0.619; P = 0.06. In conclusion, the expression plasma of miR-122 and miR-224 could be used as noninvasive biomarkers for the early prediction of developing HCC at the early stage.

  6. Altering β-cell number through stable alteration of miR-21 and miR-34a expression

    DEFF Research Database (Denmark)

    Backe, Marie Balslev; Novotny, Guy Wayne; Christensen, Dan Ploug

    2014-01-01

    RNAs, miR-21 and miR-34a, may be involved in mediating cytokine-induced β-cell dysfunction. Therefore, manipulation of miR-21 and miR-34a levels may potentially be beneficial to β cells. To study the effect of long-term alterations of miR-21 or miR-34a levels upon net β-cell number, we stably overexpressed...

  7. Data of expression status of miR- 29a and its putative target mitochondrial apoptosis regulatory gene DRP1 upon miR-15a and miR-214 inhibition

    Directory of Open Access Journals (Sweden)

    Muhammad Ishtiaq Jan

    2018-02-01

    Full Text Available Data is about the mitochondrial apoptosis regulatory framework genes PUMA, DRP1 (apoptotic, and ARC (anti-apoptotic analysis after the employment of their controlling miRNAs inhibitors. The data represents putative conserved targeting of seed regions of miR-15a, miR-29a, and miR-214 with respective target genes PUMA, DRP1, and ARC. Data is of cross interference in expression levels of one miRNA family, miR-29a and its putative target DRP1 upon the inhibitory treatment of other miRNAs 15a and 214. Keywords: DRP1, miR-15a, Apoptosis, miRNAs inhibition

  8. Expression and evolutionary analyses of three acetylcholinesterase genes (Mi-ace-1, Mi-ace-2, Mi-ace-3) in the root-knot nematode Meloidogyne incognita.

    Science.gov (United States)

    Cui, Ruqiang; Zhang, Lei; Chen, Yuyan; Huang, Wenkun; Fan, Chengming; Wu, Qingsong; Peng, Deliang; da Silva, Washington; Sun, Xiaotang

    2017-05-01

    The full cDNA of Mi-ace-3 encoding an acetylcholinesterase (AChE) in Meloidogyne incognita was cloned and characterized. Mi-ace-3 had an open reading frame of 1875 bp encoding 624 amino acid residues. Key residues essential to AChE structure and function were conserved. The deduced Mi-ACE-3 protein sequence had 72% amino acid similarity with that of Ditylenchus destructor Dd-AChE-3. Phylogenetic analyses using 41 AChEs from 24 species showed that Mi-ACE-3 formed a cluster with 4 other nematode AChEs. Our results revealed that the Mi-ace-3 cloned in this study, which is orthologous to Caenorhabditis elegans AChE, belongs to the nematode ACE-3/4 subgroup. There was a significant reduction in the number of galls in transgenic tobacco roots when Mi-ace-1, Mi-ace-2, and Mi-ace-3 were knocked down simultaneously, whereas little or no effect were observed when only one or two of these genes were knocked down. This is an indication that the functions of these three genes are redundant. Copyright © 2017. Published by Elsevier Inc.

  9. Integrating miRNA and mRNA Expression Profiling Uncovers miRNAs Underlying Fat Deposition in Sheep

    Directory of Open Access Journals (Sweden)

    Guangxian Zhou

    2017-01-01

    Full Text Available MicroRNAs (miRNAs are endogenous, noncoding RNAs that regulate various biological processes including adipogenesis and fat metabolism. Here, we adopted a deep sequencing approach to determine the identity and abundance of miRNAs involved in fat deposition in adipose tissues from fat-tailed (Kazakhstan sheep, KS and thin-tailed (Tibetan sheep, TS sheep breeds. By comparing HiSeq data of these two breeds, 539 miRNAs were shared in both breeds, whereas 179 and 97 miRNAs were uniquely expressed in KS and TS, respectively. We also identified 35 miRNAs that are considered to be putative novel miRNAs. The integration of miRNA-mRNA analysis revealed that miRNA-associated targets were mainly involved in the gene ontology (GO biological processes concerning cellular process and metabolic process, and miRNAs play critical roles in fat deposition through their ability to regulate fundamental pathways. These pathways included the MAPK signaling pathway, FoxO and Wnt signaling pathway, and focal adhesion. Taken together, our results define miRNA expression signatures that may contribute to fat deposition and lipid metabolism in sheep.

  10. The inhibition of the highly expressed miR-221 and miR-222 impairs the growth of prostate carcinoma xenografts in mice.

    Directory of Open Access Journals (Sweden)

    Neri Mercatelli

    Full Text Available BACKGROUND: MiR-221 and miR-222 are two highly homologous microRNAs whose upregulation has been recently described in several types of human tumors, for some of which their oncogenic role was explained by the discovery of their target p27, a key cell cycle regulator. We previously showed this regulatory relationship in prostate carcinoma cell lines in vitro, underlying the role of miR-221/222 as inducers of proliferation and tumorigenicity. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe a number of in vivo approaches confirming our previous data. The ectopic overexpression of miR-221 is able, per se, to confer a high growth advantage to LNCaP-derived tumors in SCID mice. Consistently, the anti-miR-221/222 antagomir treatment of established subcutaneous tumors derived from the highly aggressive PC3 cell line, naturally expressing high levels of miR-221/222, reduces tumor growth by increasing intratumoral p27 amount; this effect is long lasting, as it is detectable as long as 25 days after the treatment. Furthermore, we provide evidence in favour of a clinical relevance of the role of miR-221/222 in prostate carcinoma, by showing their general upregulation in patient-derived primary cell lines, where we find a significant inverse correlation with p27 expression. CONCLUSIONS/SIGNIFICANCE: These findings suggest that modulating miR-221/222 levels may have a therapeutic potential in prostate carcinoma.

  11. Identification of novel miRNAs and miRNA dependent developmental shifts of gene expression in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Shuhua Zhan

    Full Text Available microRNAs (miRNAs are small, endogenous RNAs of 20 approximately 25 nucleotides, processed from stem-loop regions of longer RNA precursors. Plant miRNAs act as negative regulators of target mRNAs predominately by slicing target transcripts, and a number of miRNAs play important roles in development. We analyzed a number of published datasets from Arabidopsis thaliana to characterize novel miRNAs, novel miRNA targets, and miRNA-regulated developmental changes in gene expression. These data include microarray profiling data and small RNA (sRNA deep sequencing data derived from miRNA biogenesis/transport mutants, microarray profiling data of mRNAs in a developmental series, and computational predictions of conserved genomic stem-loop structures. Our conservative analyses identified five novel mature miRNAs and seven miRNA targets, including one novel target gene. Two complementary miRNAs that target distinct mRNAs were encoded by one gene. We found that genes targeted by known miRNAs, and genes up-regulated or down-regulated in miRNA mutant inflorescences, are highly expressed in the wild type inflorescence. In addition, transcripts upregulated within the mutant inflorescences were abundant in wild type leaves and shoot meristems and low in pollen and seed. Downregulated transcripts were abundant in wild type pollen and seed and low in shoot meristems, roots and leaves. Thus, disrupting miRNA function causes the inflorescence transcriptome to resemble the leaf and meristem and to differ from pollen and seed. Applications of our computational approach to other species and the use of more liberal criteria than reported here will further expand the number of identified miRNAs and miRNA targets. Our findings suggest that miRNAs have a global role in promoting vegetative to reproductive transitions in A. thaliana.

  12. Clinical value and potential pathways of miR-183-5p in bladder cancer: A study based on miRNA-seq data and bioinformatics analysis.

    Science.gov (United States)

    Gao, Jia-Min; Huang, Lin-Zhen; Huang, Zhi-Guang; He, Rong-Quan

    2018-04-01

    The clinicopathological value and exploration of the potential molecular mechanism of microRNA-183-5p (miR-183-5p) have been investigated in various cancers; however, to the best of the author's knowledge, no similar research has been reported for bladder cancer. In the present study, it was revealed that the expression level of miR-183-5p was notably increased in bladder cancer tissues compared with adjacent non-cancerous tissues (P=0.001) and was markedly increased in the tissue samples of papillary, pathological T stage (T0-T2) and pathological stage (I-II) compared with tissue samples of their counterparts (P=0.05), according to data from The Cancer Genome Atlas. Receiver operating characteristic analysis revealed the robust diagnostic value of miR-183-5p for distinguishing bladder cancer from non-cancerous bladder tissues (area under curve=0.948; 95% confidence interval: 0.919-0.977). Amplification and deep deletion of miR-183-5p were indicated by cBioPortal, accounting for 1% (4/412) of bladder cancer cases. Data from YM500v3 demonstrated that compared with other cancers, bladder cancer exhibited high expression levels of miR-183-5p, and miR-183-5p expression in primary solid tumors was much higher compared with solid normal tissues. A meta-analysis indicated that miR-183-5p was more highly expressed in bladder cancer samples compared with normal counterparts. A total of 88 potential target genes of miR-183-5p were identified, 13 of which were discerned as hub genes by protein-protein interaction. The epithelial-to-mesenchymal transition pathway was the most significantly enriched pathway by FunRich (P=0.0001). In summary, miR-183-5p may participate in the tumorigenesis and development of bladder cancer via certain signaling pathways, particularly the epithelial-to-mesenchymal transition pathway. However, the exact molecular mechanism of miR-183-5p in bladder cancer must be validated by in vitro and in vivo experiments.

  13. MiR-34a deficiency accelerates medulloblastoma formation in vivo.

    Science.gov (United States)

    Thor, Theresa; Künkele, Annette; Pajtler, Kristian W; Wefers, Annika K; Stephan, Harald; Mestdagh, Pieter; Heukamp, Lukas; Hartmann, Wolfgang; Vandesompele, Jo; Sadowski, Natalie; Becker, Lore; Garrett, Lillian; Hölter, Sabine M; Horsch, Marion; Calzada-Wack, Julia; Klein-Rodewald, Tanja; Racz, Ildiko; Zimmer, Andreas; Beckers, Johannes; Neff, Frauke; Klopstock, Thomas; De Antonellis, Pasqualino; Zollo, Massimo; Wurst, Wolfgang; Fuchs, Helmut; Gailus-Durner, Valérie; Schüller, Ulrich; de Angelis, Martin Hrabě; Eggert, Angelika; Schramm, Alexander; Schulte, Johannes H

    2015-05-15

    Previous studies have evaluated the role of miRNAs in cancer initiation and progression. MiR-34a was found to be downregulated in several tumors, including medulloblastomas. Here we employed targeted transgenesis to analyze the function of miR-34a in vivo. We generated mice with a constitutive deletion of the miR-34a gene. These mice were devoid of mir-34a expression in all analyzed tissues, but were viable and fertile. A comprehensive standardized phenotypic analysis including more than 300 single parameters revealed no apparent phenotype. Analysis of miR-34a expression in human medulloblastomas and medulloblastoma cell lines revealed significantly lower levels than in normal human cerebellum. Re-expression of miR-34a in human medulloblastoma cells reduced cell viability and proliferation, induced apoptosis and downregulated the miR-34a target genes, MYCN and SIRT1. Activation of the Shh pathway by targeting SmoA1 transgene overexpression causes medulloblastoma in mice, which is dependent on the presence and upregulation of Mycn. Analysis of miR-34a in medulloblastomas derived from ND2:SmoA1(tg) mice revealed significant suppression of miR-34a compared to normal cerebellum. Tumor incidence was significantly increased and tumor formation was significantly accelerated in mice transgenic for SmoA1 and lacking miR-34a. Interestingly, Mycn and Sirt1 were strongly expressed in medulloblastomas derived from these mice. We here demonstrate that miR-34a is dispensable for normal development, but that its loss accelerates medulloblastomagenesis. Strategies aiming to re-express miR-34a in tumors could, therefore, represent an efficient therapeutic option. © 2014 UICC.

  14. Depression and the Risk of Myocardial Infarction and Coronary Death: A Meta-Analysis of Prospective Cohort Studies.

    Science.gov (United States)

    Wu, Qing; Kling, Juliana M

    2016-02-01

    Findings regarding the association between depression and risk of coronary heart disease are inconsistent. We aimed to assess the association between depression and risk of myocardial infarction (MI) and coronary death through a meta-analysis.We performed an electronic literature search of MEDLINE, EMBASE, PsycINFO, ISI Web of Science, and Scopus databases through August 1, 2015, and manual search of the references of the eligible papers and related review articles. Two investigators independently conducted study selection and data abstraction. Disagreement was resolved by consensus. Confounder-adjusted hazard ratios (HRs) were pooled using a random-effects model. Heterogeneity was evaluated using the Cochran Q statistic and Higgins index. Publication bias was assessed by funnel plot and Egger test. Study quality was appraised with the Newcastle-Ottawa Scale.Among 19 eligible cohort studies including 323,709 participants, 8447 cases of MI and coronary death were reported during follow-up ranging from 4 to 37 years. The pooled adjusted HRs for patients with depression (vs those without) were 1.22 (95% CI, 1.13-1.32) for combined MI and coronary death, 1.31 (95% CI, 1.09-1.57) for MI alone (9 studies), and 1.36 (95% CI, 1.14-1.63) for coronary death alone (8 studies). The increased risk of MI and coronary death associated with depression was consistent using modified inclusion criteria, across most subgroups, and after adjusting for possible publication bias.Depression is associated with a significantly increased risk of MI and coronary death. Effective prevention and treatment of depression may decrease such risk.

  15. STAT5 induces miR-21 expression in cutaneous T cell lymphoma

    DEFF Research Database (Denmark)

    Lindahl, Lise M; Fredholm, Simon; Joseph, Claudine

    2016-01-01

    was inhibited by Tofacitinib (CP-690550), a clinical-grade JAK3 inhibitor. Chromatin immunoprecipitation (ChIP) analysis showed direct binding of STAT5 to the miR-21 promoter. Cytokine starvation ex vivo triggered a decrease in miR-21 expression, whereas IL-2 induced an increased miR-21 expression in primary SS...

  16. Identification of a new target of miR-16, Vacuolar Protein Sorting 4a.

    Directory of Open Access Journals (Sweden)

    Neeta Adhikari

    Full Text Available The rationale was to utilize a bioinformatics approach to identify miRNA binding sites in genes with single nucleotide mutations (SNPs to discover pathways in heart failure (HF.The objective was to focus on the genes containing miRNA binding sites with miRNAs that were significantly altered in end-stage HF and in response to a left ventricular assist device (LVAD.BEDTools v2.14.3 was used to discriminate SNPs within predicted 3'UTR miRNA binding sites. A member of the miR-15/107 family, miR-16, was decreased in the circulation of end-stage HF patients and increased in response to a LVAD (p<0.001. MiR-16 decreased Vacuolar Protein Sorting 4a (VPS4a expression in HEK 293T cells (p<0.01. The SNP rs16958754 was identified in the miR-15/107 family binding site of VPS4a which abolished direct binding of miR-16 to the 3'UTR of VPS4a (p<0.05. VPS4a was increased in the circulation of end-stage HF patients (p<0.001, and led to a decrease in the number of HEK 293T cells in vitro (p<0.001.We provide evidence that miR-16 decreases in the circulation of end-stage HF patients and increases with a LVAD. Modeling studies suggest that miR-16 binds to and decreases expression of VPS4a. Overexpression of VPS4a decreases cell number. Together, these experiments suggest that miR-16 and VPS4a expression are altered in end-stage HF and in response to unloading with a LVAD. This signaling pathway may lead to reduced circulating cell number in HF.

  17. Bioinformatics of cardiovascular miRNA biology.

    Science.gov (United States)

    Kunz, Meik; Xiao, Ke; Liang, Chunguang; Viereck, Janika; Pachel, Christina; Frantz, Stefan; Thum, Thomas; Dandekar, Thomas

    2015-12-01

    MicroRNAs (miRNAs) are small ~22 nucleotide non-coding RNAs and are highly conserved among species. Moreover, miRNAs regulate gene expression of a large number of genes associated with important biological functions and signaling pathways. Recently, several miRNAs have been found to be associated with cardiovascular diseases. Thus, investigating the complex regulatory effect of miRNAs may lead to a better understanding of their functional role in the heart. To achieve this, bioinformatics approaches have to be coupled with validation and screening experiments to understand the complex interactions of miRNAs with the genome. This will boost the subsequent development of diagnostic markers and our understanding of the physiological and therapeutic role of miRNAs in cardiac remodeling. In this review, we focus on and explain different bioinformatics strategies and algorithms for the identification and analysis of miRNAs and their regulatory elements to better understand cardiac miRNA biology. Starting with the biogenesis of miRNAs, we present approaches such as LocARNA and miRBase for combining sequence and structure analysis including phylogenetic comparisons as well as detailed analysis of RNA folding patterns, functional target prediction, signaling pathway as well as functional analysis. We also show how far bioinformatics helps to tackle the unprecedented level of complexity and systemic effects by miRNA, underlining the strong therapeutic potential of miRNA and miRNA target structures in cardiovascular disease. In addition, we discuss drawbacks and limitations of bioinformatics algorithms and the necessity of experimental approaches for miRNA target identification. This article is part of a Special Issue entitled 'Non-coding RNAs'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Interrelation of androgen receptor and miR-30a and miR-30a function in ER-, PR-, AR+ MDA-MB-453 breast cancer cells.

    Science.gov (United States)

    Lyu, Shuhua; Liu, Han; Liu, Xia; Liu, Shan; Wang, Yahong; Yu, Qi; Niu, Yun

    2017-10-01

    The association between androgen-induced androgen receptor (AR) activating signal and microRNA (miR)-30a was investigated, as well as the function of miR-30a in estrogen receptor-negative (ER - ), progesterone receptor-negative (PR - ), and AR-positive (AR + ) MDA-MB-453 breast cancer cells. Androgen-induced AR activating signal upregulated the expression of AR, and downregulated the expression of miR-30a, b and c. Bioinformatics analysis indicated a putative miR-30a, b and c binding site in the 3'-untranslated region of AR mRNA. It was confirmed that the AR gene is a direct target of miR-30a, whereas AR does not target the miR-30a promoter, and AR activating signal may indirectly downregulate miR-30a through other cell signaling pathways. In this positive feedback mechanism AR is then upregulated through miR-30a. Overexpression of miR-30a inhibited cell proliferation, whereas inhibition of miR-30a expression by specific antisense oligonucleotides, increased cell growth. Previously, androgen-induced AR activating signal was demonstrated to inhibit cell proliferation in ER - , PR - and AR + MDA-MB-453 breast cancer cells, but AR activating signal downregulated the expression of miR-30a, relieving the inhibition of MDA-MB-453 cell growth. Therefore, in MDA-MB-453 breast cancer cells, miR-30a has two different functions regarding cell growth: Inhibition of cell proliferation through a positive feedback signaling pathway; and the relative promotion of cell proliferation through downregulation of miR-30a. Thus, the association between AR activating signal and microRNAs is complex, and microRNAs may possess different functions due to different signaling pathways. Although the results of the present study were obtained in one cell line, they contribute to subsequent studies on ER - , PR - and AR + breast cancer.

  19. The Role of miRNA in Papillary Thyroid Cancer in the Context of miRNA Let-7 Family

    Directory of Open Access Journals (Sweden)

    Ewelina Perdas

    2016-06-01

    Full Text Available Papillary thyroid carcinoma (PTC is the most common endocrine malignancy. RET/PTC rearrangement is the most common genetic modification identified in this category of cancer, increasing proliferation and dedifferentiation by the activation of the RET/PTC-RAS-BRAF-MAPK-ERK signaling pathway. Recently, let-7 miRNA was found to reduce RAS levels, acting as a tumor suppressor gene. Circulating miRNA profiles of the let-7 family may be used as novel noninvasive diagnostic, prognostic, treatment and surveillance markers for PTC.

  20. Long-term use of non-steroidal anti-inflammatory drugs and the risk of myocardial infarction in the general population

    Directory of Open Access Journals (Sweden)

    González-Pérez Antonio

    2005-11-01

    Full Text Available Abstract Background Recent data indicate that chronic use of coxibs leads to an increased occurrence of thrombotic cardiovascular events. This raises the question as to whether traditional non-steroidal anti-inflammatory drugs (tNSAIDs might also produce similar hazards. Our aim has been to evaluate the association between the chronic use of tNSAIDs and the risk of myocardial infarction (MI in patients. Methods We performed a nested case-control analysis with 4,975 cases of acute MI and 20,000 controls, frequency matched to cases by age, sex, and calendar year. Results Overall, current use of tNSAID was not associated with an increased risk of MI (RR:1.07;95%CI: 0.95–1.21. However, we found that the relative risk (RR of MI for durations of tNSAID treatment of >1 year was 1.21 (95% CI, 1.00–1.48. The corresponding RR was 1.34 (95% CI, 1.06–1.70 for non-fatal MI. The effect was independent from dose. The small risk associated with long-term use of tNSAIDs was observed among patients not taking low-dose aspirin (RR: 1.29; 95% CI, 1.01–1.65. The effect of long-term use for individual tNSAIDs ranged from a RR of 0.87 (95% CI, 0.47–1.62 with naproxen to 1.38 (95% CI, 1.00–1.90 with diclofenac. Conclusion This study adds support to the hypothesis that chronic treatment with some tNSAIDs is associated with a small increased risk of non-fatal MI. Our data are consistent with a substantial variability in cardiovascular risks between individual tNSAIDs.

  1. Aptamer-miRNA-212 Conjugate Sensitizes NSCLC Cells to TRAIL

    Directory of Open Access Journals (Sweden)

    Margherita Iaboni

    2016-01-01

    Full Text Available TNF-related apoptosis-inducing ligand (TRAIL is a promising antitumor agent for its remarkable ability to selectively induce apoptosis in cancer cells, without affecting the viability of healthy bystander cells. The TRAIL tumor suppressor pathway is deregulated in many human malignancies including lung cancer. In human non-small cell lung cancer (NSCLC cells, sensitization to TRAIL therapy can be restored by increasing the expression levels of the tumor suppressor microRNA-212 (miR-212 leading to inhibition of the anti-apoptotic protein PED/PEA-15 implicated in treatment resistance. In this study, we exploited a previously described RNA aptamer inhibitor of the tyrosine kinase receptor Axl (GL21.T expressed on lung cancer cells, as a means to deliver miR-212 into human NSCLC cells expressing Axl. We demonstrate efficient delivery of miR-212 following conjugation of the miR to GL21.T (GL21.T-miR212 chimera. We show that the chimera downregulates PED and restores TRAIL-mediate cytotoxicity in cancer cells. Importantly, treatment of Axl+ lung cancer cells with the chimera resulted in (i an increase in caspase activation and (ii a reduction of cell viability in combination with TRAIL therapy. In conclusion, we demonstrate that the GL21.T-miR212 chimera can be employed as an adjuvant to TRAIL therapy for the treatment of lung cancer.

  2. Mutations Inactivating Herpes Simplex Virus 1 MicroRNA miR-H2 Do Not Detectably Increase ICP0 Gene Expression in Infected Cultured Cells or Mouse Trigeminal Ganglia.

    Science.gov (United States)

    Pan, Dongli; Pesola, Jean M; Li, Gang; McCarron, Seamus; Coen, Donald M

    2017-01-15

    Herpes simplex virus 1 (HSV-1) latency entails the repression of productive ("lytic") gene expression. An attractive hypothesis to explain some of this repression involves inhibition of the expression of ICP0, a lytic gene activator, by a viral microRNA, miR-H2, which is completely complementary to ICP0 mRNA. To test this hypothesis, we engineered mutations that disrupt miR-H2 without affecting ICP0 in HSV-1. The mutant virus exhibited drastically reduced expression of miR-H2 but showed wild-type levels of infectious virus production and no increase in ICP0 expression in lytically infected cells, which is consistent with the weak expression of miR-H2 relative to the level of ICP0 mRNA in that setting. Following corneal inoculation of mice, the mutant was not significantly different from wild-type virus in terms of infectious virus production in the trigeminal ganglia during acute infection, mouse mortality, or the rate of reactivation from explanted latently infected ganglia. Critically, the mutant was indistinguishable from wild-type virus for the expression of ICP0 and other lytic genes in acutely and latently infected mouse trigeminal ganglia. The latter result may be related to miR-H2 being less effective in inhibiting ICP0 expression in transfection assays than a host microRNA, miR-138, which has previously been shown to inhibit lytic gene expression in infected ganglia by targeting ICP0 mRNA. Additionally, transfected miR-138 reduced lytic gene expression in infected cells more effectively than miR-H2. While this study provides little support for the hypothesis that miR-H2 promotes latency by inhibiting ICP0 expression, the possibility remains that miR-H2 might target other genes during latency. Herpes simplex virus 1 (HSV-1), which causes a variety of diseases, can establish lifelong latent infections from which virus can reactivate to cause recurrent disease. Latency is the most biologically interesting and clinically vexing feature of the virus. Ever since

  3. Cortical Morphogenesis during Embryonic Development Is Regulated by miR-34c and miR-204

    DEFF Research Database (Denmark)

    Veno, Morten T.; Veno, Susanne T.; Rehberg, Kati

    2017-01-01

    The porcine brain closely resembles the human brain in aspects such as development and morphology. Temporal miRNA profiling in the developing embryonic porcine cortex revealed a distinct set of miRNAs, including miR-34c and miR-204, which exhibited a highly specific expression profile across...

  4. Analysis of miRNA and mRNA Expression Profiles Highlights Alterations in Ionizing Radiation Response of Human Lymphocytes under Modeled Microgravity

    Science.gov (United States)

    Casara, Silvia; Sales, Gabriele; Lanfranchi, Gerolamo; Celotti, Lucia; Mognato, Maddalena

    2012-01-01

    Background Ionizing radiation (IR) can be extremely harmful for human cells since an improper DNA-damage response (DDR) to IR can contribute to carcinogenesis initiation. Perturbations in DDR pathway can originate from alteration in the functionality of the microRNA-mediated gene regulation, being microRNAs (miRNAs) small noncoding RNA that act as post-transcriptional regulators of gene expression. In this study we gained insight into the role of miRNAs in the regulation of DDR to IR under microgravity, a condition of weightlessness experienced by astronauts during space missions, which could have a synergistic action on cells, increasing the risk of radiation exposure. Methodology/Principal Findings We analyzed miRNA expression profile of human peripheral blood lymphocytes (PBL) incubated for 4 and 24 h in normal gravity (1 g) and in modeled microgravity (MMG) during the repair time after irradiation with 0.2 and 2Gy of γ-rays. Our results show that MMG alters miRNA expression signature of irradiated PBL by decreasing the number of radio-responsive miRNAs. Moreover, let-7i*, miR-7, miR-7-1*, miR-27a, miR-144, miR-200a, miR-598, miR-650 are deregulated by the combined action of radiation and MMG. Integrated analyses of miRNA and mRNA expression profiles, carried out on PBL of the same donors, identified significant miRNA-mRNA anti-correlations of DDR pathway. Gene Ontology analysis reports that the biological category of “Response to DNA damage” is enriched when PBL are incubated in 1 g but not in MMG. Moreover, some anti-correlated genes of p53-pathway show a different expression level between 1 g and MMG. Functional validation assays using luciferase reporter constructs confirmed miRNA-mRNA interactions derived from target prediction analyses. Conclusions/Significance On the whole, by integrating the transcriptome and microRNome, we provide evidence that modeled microgravity can affects the DNA-damage response to IR in human PBL. PMID:22347458

  5. Introduction of hsa-miR-103a and hsa-miR-1827 and hsa-miR-137 as new regulators of Wnt signaling pathway and their relation to colorectal carcinoma.

    Science.gov (United States)

    Fasihi, Ali; M Soltani, Bahram; Atashi, Amir; Nasiri, Shirzad

    2018-07-01

    Wnt signaling is hyper-activated in most of human cancers including colorectal carcinoma (CRC). Therefore, the introduction of new regulators for Wnt pathway possesses promising diagnostic and therapeutic applications in cancer medicine. Bioinformatics analysis introduced hsa-miR-103a, hsa-miR-1827, and hsa-miR-137 as potential regulators of Wnt signaling pathway. Here, we intended to examine the effect of these human miRNAs on Wnt signaling pathway components, on the cell cycle progression in CRC originated cell lines and their expression in CRC tissues. RT-qPCR results indicated upregulation of hsa-miR-103a, hsa-miR-1827, and downregulation of hsa-miR-137 in CRC tissues. Overexpression of hsa-miR-103a and hsa-miR-1827 in SW480 cells resulted in elevated Wnt activity, detected by both Top/Flash assay and RT-qPCR analysis. Inhibition of Wnt signaling by using PNU-74654 or IWP-2 small molecules suggested that these miRNAs exerts their effect at the β-catenin degradation complex level. Then, RT-qPCR, dual luciferase assay, and western blotting analysis indicated that APC and APC2 transcripts were targeted by hsa-miR-103a, hsa-miR-1827 while, Wnt3a and β-catenin genes were upregulated. However, hsa-miR-137 downregulated Wnt3a and β-catenin genes. Further, hsa-miR-103a and hsa-miR-1827 overexpression resulted in cell cycle progression and reduced apoptotic rate in SW480 cells, unlike hsa-miR-137 overexpression which resulted in cell cycle suppression, detected by flowcytometry and Anexin analysis. Overall, our data introduced hsa-miR-103a, hsa-miR-1827 as onco-miRNAs and hsa-miR-137 as tumor suppressor which exert their effect through regulation of Wnt signaling pathway in CRC and introduced them as potential target for therapy. © 2017 Wiley Periodicals, Inc.

  6. CID-miRNA: A web server for prediction of novel miRNA precursors in human genome

    International Nuclear Information System (INIS)

    Tyagi, Sonika; Vaz, Candida; Gupta, Vipin; Bhatia, Rohit; Maheshwari, Sachin; Srinivasan, Ashwin; Bhattacharya, Alok

    2008-01-01

    microRNAs (miRNA) are a class of non-protein coding functional RNAs that are thought to regulate expression of target genes by direct interaction with mRNAs. miRNAs have been identified through both experimental and computational methods in a variety of eukaryotic organisms. Though these approaches have been partially successful, there is a need to develop more tools for detection of these RNAs as they are also thought to be present in abundance in many genomes. In this report we describe a tool and a web server, named CID-miRNA, for identification of miRNA precursors in a given DNA sequence, utilising secondary structure-based filtering systems and an algorithm based on stochastic context free grammar trained on human miRNAs. CID-miRNA analyses a given sequence using a web interface, for presence of putative miRNA precursors and the generated output lists all the potential regions that can form miRNA-like structures. It can also scan large genomic sequences for the presence of potential miRNA precursors in its stand-alone form. The web server can be accessed at (http://mirna.jnu.ac.in/cidmirna/)

  7. Herpes zoster as a risk factor for stroke and TIA: a retrospective cohort study in the UK.

    Science.gov (United States)

    Breuer, Judith; Pacou, Maud; Gautier, Aline; Brown, Martin M

    2014-07-08

    Stroke and TIA are recognized complications of acute herpes zoster (HZ). Herein, we evaluate HZ as a risk factor for cerebrovascular disease (stroke and TIA) and myocardial infarction (MI) in a UK population cohort. A retrospective cohort of 106,601 HZ cases and 213,202 controls, matched for age, sex, and general practice, was identified from the THIN (The Health Improvement Network) general practice database. Cox proportional hazard models were used to examine the risks of stroke, TIA, and MI in cases and controls, adjusted for vascular risk factors, including body mass index >30 kg/m(2), smoking, cholesterol >6.2 mmol/L, hypertension, diabetes, ischemic heart disease, atrial fibrillation, intermittent arterial claudication, carotid stenosis, and valvular heart disease, over 24 (median 6.3) years after HZ infection. Risk factors for vascular disease were significantly increased in cases of HZ compared with controls. Adjusted hazard ratios for TIA and MI but not stroke were increased in all patients with HZ (adjusted hazard ratios [95% confidence intervals]: 1.15 [1.09-1.21] and 1.10 [1.05-1.16], respectively). However, stroke, TIA, and MI were increased in cases whose HZ occurred when they were younger than 40 years (adjusted hazard ratios [95% confidence intervals]: 1.74 [1.13-2.66], 2.42 [1.34-4.36], and 1.49 [1.04-2.15], respectively). Subjects younger than 40 years were significantly less likely to be asked about vascular risk factors compared with older patients (p TIA, and MI in subjects affected before the age of 40 years. In older subjects, better ascertainment of vascular risk factors and earlier intervention may explain the reduction in risk of stroke after HZ infection. © 2014 American Academy of Neurology.

  8. miRNA-mRNA integrative analysis in primary myelofibrosis CD34+ cells: role of miR-155/JARID2 axis in abnormal megakaryopoiesis

    Science.gov (United States)

    Norfo, Ruggiero; Zini, Roberta; Pennucci, Valentina; Bianchi, Elisa; Salati, Simona; Guglielmelli, Paola; Bogani, Costanza; Fanelli, Tiziana; Mannarelli, Carmela; Rosti, Vittorio; Pietra, Daniela; Salmoiraghi, Silvia; Bisognin, Andrea; Ruberti, Samantha; Rontauroli, Sebastiano; Sacchi, Giorgia; Prudente, Zelia; Barosi, Giovanni; Cazzola, Mario; Rambaldi, Alessandro; Bortoluzzi, Stefania; Ferrari, Sergio; Tagliafico, Enrico; Vannucchi, Alessandro M.

    2014-01-01

    Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by megakaryocyte (MK) hyperplasia, bone marrow fibrosis, and abnormal stem cell trafficking. PMF may be associated with somatic mutations in JAK2, MPL, or CALR. Previous studies have shown that abnormal MKs play a central role in the pathophysiology of PMF. In this work, we studied both gene and microRNA (miRNA) expression profiles in CD34+ cells from PMF patients. We identified several biomarkers and putative molecular targets such as FGR, LCN2, and OLFM4. By means of miRNA-gene expression integrative analysis, we found different regulatory networks involved in the dysregulation of transcriptional control and chromatin remodeling. In particular, we identified a network gathering several miRNAs with oncogenic potential (eg, miR-155-5p) and targeted genes whose abnormal function has been previously associated with myeloid neoplasms, including JARID2, NR4A3, CDC42, and HMGB3. Because the validation of miRNA-target interactions unveiled JARID2/miR-155-5p as the strongest relationship in the network, we studied the function of this axis in normal and PMF CD34+ cells. We showed that JARID2 downregulation mediated by miR-155-5p overexpression leads to increased in vitro formation of CD41+ MK precursors. These findings suggest that overexpression of miR-155-5p and the resulting downregulation of JARID2 may contribute to MK hyperplasia in PMF. PMID:25097177

  9. Association of miR-548c-5p, miR-7-5p, miR-210-3p, miR-128-3p with recurrence in systemically untreated breast cancer

    DEFF Research Database (Denmark)

    Block, Ines; Burton, Mark; Sørensen, Kristina Pilekær

    2018-01-01

    . To validate their prognostic potential, we analyzed microRNA expression in an independent cohort (n = 110) using a pairmatched study design minimizing dependence of classical markers. The expression of hsa-miR-548c-5p was significantly associated with abridged disease-free survival (hazard ratio [HR]:1.96, p...... = 0.027). Contradicting published results, high hsa-miR516-3p expression was associated with favorable outcome (HR:0.29, p = 0.0068). The association is probably time-dependent indicating later relapse. Additionally, re-analysis of previously published expression data of two matching cohorts (n = 100......, n = 255) supports an association of hsa-miR-128-3p with shortened diseasefree survival (HR:2.48, p = 0.0033) and an upregulation of miR-7-5p (p = 0.0038; p = 0.039) and miR-210-3p (p = 0.031) in primary tumors of patients who experienced metastases. Further analysis may verify the prognostic...

  10. miRBase: annotating high confidence microRNAs using deep sequencing data.

    Science.gov (United States)

    Kozomara, Ana; Griffiths-Jones, Sam

    2014-01-01

    We describe an update of the miRBase database (http://www.mirbase.org/), the primary microRNA sequence repository. The latest miRBase release (v20, June 2013) contains 24 521 microRNA loci from 206 species, processed to produce 30 424 mature microRNA products. The rate of deposition of novel microRNAs and the number of researchers involved in their discovery continue to increase, driven largely by small RNA deep sequencing experiments. In the face of these increases, and a range of microRNA annotation methods and criteria, maintaining the quality of the microRNA sequence data set is a significant challenge. Here, we describe recent developments of the miRBase database to address this issue. In particular, we describe the collation and use of deep sequencing data sets to assign levels of confidence to miRBase entries. We now provide a high confidence subset of miRBase entries, based on the pattern of mapped reads. The high confidence microRNA data set is available alongside the complete microRNA collection at http://www.mirbase.org/. We also describe embedding microRNA-specific Wikipedia pages on the miRBase website to encourage the microRNA community to contribute and share textual and functional information.

  11. MicroRNA-related genetic variants in iron regulatory genes, dietary iron intake, microRNAs and lung cancer risk.

    Science.gov (United States)

    Zhang, L; Ye, Y; Tu, H; Hildebrandt, M A; Zhao, L; Heymach, J V; Roth, J A; Wu, X

    2017-05-01

    Genetic variations in MicroRNA (miRNA) binding sites may alter structural accessibility of miRNA binding sites to modulate risk of cancer. This large-scale integrative multistage study was aimed to evaluate the interplay of genetic variations in miRNA binding sites of iron regulatory pathway, dietary iron intake and lung cancer (LC) risk. The interplay of genetic variant, dietary iron intake and LC risk was assessed in large-scale case-control study. Functional characterization of the validated SNP and analysis of target miRNAs were performed. We found that the miRNA binding site SNP rs1062980 in 3' UTR of Iron-Responsive Element Binding protein 2 gene (IREB2) was associated with a 14% reduced LC risk (P value = 4.9×10 - 9). Comparing to AA genotype, GG genotype was associated with a 27% reduced LC risk. This association was evident in males and ever-smokers but not in females and never-smokers. Higher level of dietary iron intake was significantly associated with 39% reduced LC risk (P value = 2.0×10 - 8). This association was only present in individuals with AG + AA genotypes with a 46% reduced risk (P value = 1.0×10 - 10), but not in GG genotype. The eQTL-analysis showed that rs1062980 significantly alters IREB2 expression level. Rs1062980 is predicted to alter a miR-29 binding site on IREB2 and indeed the expression of miR-29 is inversely correlated with IREB2 expression. Further, we found that higher circulating miR-29a level was significantly associated with 78% increased LC risk. The miRNA binding site SNP rs1062980 in iron regulatory pathway, which may alter the expression of IREB2 potentially through modulating the binding of miR-29a, together with dietary iron intake may modify risk of LC both individually and jointly. These discoveries reveal novel pathway for understanding lung cancer tumorigenesis and risk stratification. © The Author 2017. Published by Oxford University Press on behalf of the European Society for

  12. Is 300 Seconds ACT Safe and Efficient during MiECC Procedures?

    Science.gov (United States)

    Bauer, Adrian; Hausmann, Harald; Schaarschmidt, Jan; Szlapka, Michal; Scharpenberg, Martin; Eberle, Thomas; Hasenkam, J Michael

    2017-12-31

     The recommended minimum activated clotting time (ACT) level for cardiopulmonary bypass (CPB) of 480 seconds originated from investigations with bubble oxygenators and uncoated extracorporeal circulation (ECC) systems. Modern minimal invasive ECC (MiECC) systems are completely closed circuits containing a membrane oxygenator and a tip-to-tip surface coating. We hypothesized that surface coating and the "closed-loop" design allow the MiECC to safely run with lower ACT levels and that an ACT level of 300 seconds can be safely applied without thromboembolic complications. The aim of this study was to investigate the potential risks during application of reduced heparin levels in patients undergoing coronary surgery.  In this study, 68 patients undergoing coronary artery bypass grafting with MiECC were randomized to either the study group with an ACT target of 300 seconds or the control group with an ACT of 450 seconds. All other factors of MiECC remained unchanged.  The study group received significantly less heparin and protamine (heparin [international units] median [min-max], Red_AC: 32,800 [23,000-51,500] vs. Full_AC: 50,000 [35,000-65,000] p  ACT in the study group was significantly lower at the start of MiECC (mean ± standard deviation: study group 400 ± 112 vs. control group 633 ± 177; p  ACT levels were: study group 344 ± 60 versus control group 506 ± 80. In both groups, the values of the endogenous thrombin potential (ETP) decreased simultaneously. None of the study participants experienced thromboembolic complications.  Since no evidence of increased thrombin formation (ETP) was found from a laboratory standpoint, we concluded that the use of MiECC with a reduced anticoagulation strategy seems possible. This alternative anticoagulation strategy leads to significant reduction in dosages of both heparin and protamine. We can confidently move forward with investigating this anticoagulation concept. However, to

  13. TargetCompare: A web interface to compare simultaneous miRNAs targets.

    Science.gov (United States)

    Moreira, Fabiano Cordeiro; Dustan, Bruno; Hamoy, Igor G; Ribeiro-Dos-Santos, André M; Dos Santos, Andrea Ribeiro

    2014-01-01

    MicroRNAs (miRNAs) are small non-coding nucleotide sequences between 17 and 25 nucleotides in length that primarily function in the regulation of gene expression. A since miRNA has thousand of predict targets in a complex, regulatory cell signaling network. Therefore, it is of interest to study multiple target genes simultaneously. Hence, we describe a web tool (developed using Java programming language and MySQL database server) to analyse multiple targets of pre-selected miRNAs. We cross validated the tool in eight most highly expressed miRNAs in the antrum region of stomach. This helped to identify 43 potential genes that are target of at least six of the referred miRNAs. The developed tool aims to reduce the randomness and increase the chance of selecting strong candidate target genes and miRNAs responsible for playing important roles in the studied tissue. http://lghm.ufpa.br/targetcompare.

  14. Leptin and insulin up-regulate miR-4443 to suppress NCOA1 and TRAF4, and decrease the invasiveness of human colon cancer cells

    International Nuclear Information System (INIS)

    Meerson, Ari; Yehuda, Hila

    2016-01-01

    Obesity is a risk factor for colorectal cancer (CRC). Normal and tumor cells respond to metabolic hormones, such as leptin and insulin. Thus, obesity-associated resistance to these hormones likely leads to changes in gene expression and behavior of tumor cells. However, the mechanisms affected by leptin and insulin signaling in CRC cells remain mostly unknown. We hypothesized that microRNAs (miRNAs) are involved in the regulation of tumorigenesis-related gene expression in CRC cells by leptin and insulin. To test this hypothesis, miRNA levels in the CRC-derived cell lines HCT-116, HT-29 and DLD-1 were profiled, following leptin and insulin treatment. Candidate miRNAs were validated by RT-qPCR. Predicted miRNA targets with known roles in cancer, were validated by immunoblots and reporter assays in HCT-116 cells. Transfection of HCT-116 cells with candidate miRNA mimic was used to test in vitro effects on proliferation and invasion. Of ~800 miRNAs profiled, miR-4443 was consistently up-regulated by leptin and insulin in HCT-116 and HT-29, but not in DLD-1, which lacked normal leptin receptor expression. Dose response experiments showed that leptin at 100 ng/ml consistently up-regulated miR-4443 in HCT-116 cells, concomitantly with a significant decrease in cell invasion ability. Transfection with miR-4443 mimic decreased invasion and proliferation of HCT-116 cells. Moreover, leptin and miR-4443 transfection significantly down-regulated endogenous NCOA1 and TRAF4, both predicted targets of miR-4443 with known roles in cancer metastasis. miR-4443 was found to directly regulate TRAF4 and NCOA1, as validated by a reporter assay. The up-regulation of miR-4443 by leptin or insulin was attenuated by the inhibition of MEK1/2. Our findings suggest that miR-4443 acts in a tumor-suppressive manner by down-regulating TRAF4 and NCOA1 downstream of MEK-C/EBP-mediated leptin and insulin signaling, and that insulin and/or leptin resistance (e.g. in obesity) may suppress this pathway

  15. MiRNA Biogenesis and Intersecting Pathways

    DEFF Research Database (Denmark)

    Ben Chaabane, Samir

    MicroRNAs (miRNAs) are small non-coding RNAs that function as guide molecules in RNA silencing. Plant miRNAs are critical for plant growth, development and stress response, and are processed in Arabidopsis from primary miRNA transcripts (pri-miRNAs) by the endonuclease activity of the DICER-LIKE1...... questions need to be addressed to establish a valid link, we provide encouraging evidence of the involvement of chromatin remodeling factors FAS1 and FAS2 in miRNA biogenesis. Together, we have expanded our understanding of the intersections between miRNA biogenesis and other pathways....

  16. Simultaneous inhibition of multiple oncogenic miRNAs by a multi-potent microRNA sponge.

    Science.gov (United States)

    Jung, Jaeyun; Yeom, Chanjoo; Choi, Yeon-Sook; Kim, Sinae; Lee, EunJi; Park, Min Ji; Kang, Sang Wook; Kim, Sung Bae; Chang, Suhwan

    2015-08-21

    The roles of oncogenic miRNAs are widely recognized in many cancers. Inhibition of single miRNA using antagomiR can efficiently knock-down a specific miRNA. However, the effect is transient and often results in subtle phenotype, as there are other miRNAs contribute to tumorigenesis. Here we report a multi-potent miRNA sponge inhibiting multiple miRNAs simultaneously. As a model system, we targeted miR-21, miR-155 and miR-221/222, known as oncogenic miRNAs in multiple tumors including breast and pancreatic cancers. To achieve efficient knockdown, we generated perfect and bulged-matched miRNA binding sites (MBS) and introduced multiple copies of MBS, ranging from one to five, in the multi-potent miRNA sponge. Luciferase reporter assay showed the multi-potent miRNA sponge efficiently inhibited 4 miRNAs in breast and pancreatic cancer cells. Furthermore, a stable and inducible version of the multi-potent miRNA sponge cell line showed the miRNA sponge efficiently reduces the level of 4 target miRNAs and increase target protein level of these oncogenic miRNAs. Finally, we showed the miRNA sponge sensitize cells to cancer drug and attenuate cell migratory activity. Altogether, our study demonstrates the multi-potent miRNA sponge is a useful tool to examine the functional impact of simultaneous inhibition of multiple miRNAs and proposes a therapeutic potential.

  17. miR-181a Targets RGS16 to Promote Chondrosarcoma Growth, Angiogenesis, and Metastasis.

    Science.gov (United States)

    Sun, Xiaojuan; Charbonneau, Cherie; Wei, Lei; Chen, Qian; Terek, Richard M

    2015-09-01

    Chondrosarcoma is the most common primary malignant bone tumor in adults, has no effective systemic treatment, and patients with this disease have poor survival. Altered expression of microRNA (miR) is involved in tumorigenesis; however, its role in chondrosarcoma is undetermined. miR-181a is overexpressed in high-grade chondrosarcoma, is upregulated by hypoxia, and increases VEGF expression. Here, the purpose was to determine the mechanism of miR-181a regulation of VEGF, determine whether miR-181a overexpression promotes tumor progression, and to evaluate an antagomir-based approach for chondrosarcoma treatment. Therapeutic inhibition of miR-181a decreased expression of VEGF and MMP1 in vitro, and angiogenesis, MMP1 activity, tumor growth, and lung metastasis, all by more than 50%, in a xenograft mouse model. A target of miR-181a is a regulator of G-protein signaling 16 (RGS16), a negative regulator of CXC chemokine receptor 4 (CXCR4) signaling. CXCR4 signaling is increased in chondrosarcoma, its expression is also increased by hypoxia, and is associated with angiogenesis and metastasis; however, receptor blockade is only partially effective. RGS16 expression is restored after miR-181a inhibition and partially accounts for the antiangiogenic and antimetastatic effects of miR-181a inhibition. These data establish miR-181a as an oncomiR that promotes chondrosarcoma progression through a new mechanism involving enhancement of CXCR4 signaling by inhibition of RGS16. Targeting miR-181a can inhibit tumor angiogenesis, growth, and metastasis, thus suggesting the possibility of antagomir-based therapy in chondrosarcoma. ©2015 American Association for Cancer Research.

  18. MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia.

    Directory of Open Access Journals (Sweden)

    Zhong Hua

    Full Text Available MicroRNAs (miRNAs are a class of 20-24 nt non-coding RNAs that regulate gene expression primarily through post-transcriptional repression or mRNA degradation in a sequence-specific manner. The roles of miRNAs are just beginning to be understood, but the study of miRNA function has been limited by poor understanding of the general principles of gene regulation by miRNAs. Here we used CNE cells from a human nasopharyngeal carcinoma cell line as a cellular system to investigate miRNA-directed regulation of VEGF and other angiogenic factors under hypoxia, and to explore the principles of gene regulation by miRNAs. Through computational analysis, 96 miRNAs were predicted as putative regulators of VEGF. But when we analyzed the miRNA expression profile of CNE and four other VEGF-expressing cell lines, we found that only some of these miRNAs could be involved in VEGF regulation, and that VEGF may be regulated by different miRNAs that were differentially chosen from 96 putative regulatory miRNAs of VEGF in different cells. Some of these miRNAs also co-regulate other angiogenic factors (differential regulation and co-regulation principle. We also found that VEGF was regulated by multiple miRNAs using different combinations, including both coordinate and competitive interactions. The coordinate principle states that miRNAs with independent binding sites in a gene can produce coordinate action to increase the repressive effect of miRNAs on this gene. By contrast, the competitive principle states when multiple miRNAs compete with each other for a common binding site, or when a functional miRNA competes with a false positive miRNA for the same binding site, the repressive effects of miRNAs may be decreased. Through the competitive principle, false positive miRNAs, which cannot directly repress gene expression, can sometimes play a role in miRNA-mediated gene regulation. The competitive principle, differential regulation, multi-miRNA binding sites, and false

  19. MiRroring the Multiple Potentials of MicroRNAs in Acute Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Solenne Paiva

    2017-11-01

    Full Text Available At present, cardiovascular diseases are depicted to be the leading cause of death worldwide according to the World Health Organization. In the future, projections predict that ischemic heart disease will persist in the top main causes of illness. Within this alarming context, some tiny master regulators of gene expression programs, namely, microRNAs (miRNAs carry three promising potentials. In fact, miRNAs can prove to be useful not only in terms of biomarkers allowing heart injury detection but also in terms of therapeutics to overcome limitations of past strategies and treat the lesions. In a more creative approach, they can even be used in the area of human engineered cardiac tissues as maturation tools for cardiomyocytes (CMs derived from pluripotent stem cell. Very promising not only for patient-specific cell-based therapies but also to develop biomimetic microsystems for disease modeling and drug screening, these cells greatly contribute to personalized medicine. To get into the heart of the matter, the focus of this review lies primarily on miRNAs as acute myocardial infarction (AMI biomarkers. Only large cohort studies comprising over 100 individuals to reach a potent statistical value were considered. Certain miRNAs appeared to possibly complement protein-based biomarkers and classical risk factors. Some were even described to bear potential in the discrimination of similar symptomatic pathologies. However, differences between pre-analytical and analytical approaches substantially influenced miRNA data. Further supported by meta-analysis studies, this problem had to be addressed. A detailed critical analysis of each step to define miRNAs biomarker potential is provided to inspire a future improved universal strategy. Interestingly, a recurrent set of cardiomyocyte-enriched miRNAs was found, namely, miR-1; miR-133; miR-208a/b; and miR-499a. Each member of this myomiRs group displayed promising roles either individually or in combination

  20. Characterization of novel precursor miRNAs using next generation sequencing and prediction of miRNA targets in Atlantic halibut.

    Directory of Open Access Journals (Sweden)

    Teshome Tilahun Bizuayehu

    Full Text Available BACKGROUND: microRNAs (miRNAs are implicated in regulation of many cellular processes. miRNAs are processed to their mature functional form in a step-wise manner by multiple proteins and cofactors in the nucleus and cytoplasm. Many miRNAs are conserved across vertebrates. Mature miRNAs have recently been characterized in Atlantic halibut (Hippoglossus hippoglossus L.. The aim of this study was to identify and characterize precursor miRNA (pre-miRNAs and miRNA targets in this non-model flatfish. Discovery of miRNA precursor forms and targets in non-model organisms is difficult because of limited source information available. Therefore, we have developed a methodology to overcome this limitation. METHODS: Genomic DNA and small transcriptome of Atlantic halibut were sequenced using Roche 454 pyrosequencing and SOLiD next generation sequencing (NGS, respectively. Identified pre- miRNAs were further validated with reverse-transcription PCR. miRNA targets were identified using miRanda and RNAhybrid target prediction tools using sequences from public databases. Some of miRNA targets were also identified using RACE-PCR. miRNA binding sites were validated with luciferase assay using the RTS34st cell line. RESULTS: We obtained more than 1.3 M and 92 M sequence reads from 454 genomic DNA sequencing and SOLiD small RNA sequencing, respectively. We identified 34 known and 9 novel pre-miRNAs. We predicted a number of miRNA target genes involved in various biological pathways. miR-24 binding to kisspeptin 1 receptor-2 (kiss1-r2 was confirmed using luciferase assay. CONCLUSION: This study demonstrates that identification of conserved and novel pre-miRNAs in a non-model vertebrate lacking substantial genomic resources can be performed by combining different next generation sequencing technologies. Our results indicate a wide conservation of miRNA precursors and involvement of miRNA in multiple regulatory pathways, and provide resources for further research on mi

  1. MicroRNA gene polymorphisms and environmental factors increase patient susceptibility to hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Yin-Hung Chu

    Full Text Available BACKGROUND: Micro RNAs (miRNAs are small RNA fragments that naturally exist in the human body. Through various physiological mechanisms, miRNAs can generate different functions for regulating RNA protein levels and balancing abnormalities. Abnormal miRNA expression has been reported to be highly related to several diseases and cancers. Single-nucleotide polymorphisms (SNPs in miRNAs have been reported to increase patient susceptibility and affect patient prognosis and survival. We adopted a case-control research design to verify the relationship between miRNAs and hepatocellular carcinoma. METHODOLOGY/PRINCIPAL FINDINGS: A total of 525 subjects, including 377 controls and 188 hepatocellular carcinoma patients, were selected. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP and real-time PCR were used to analyze miRNA146a (rs2910164, miRNA149 (rs2292832, miRNA196 (rs11614913, and miRNA499 (rs3746444 genetic polymorphisms between the control group and the case group. The results indicate that people who carry the rs3746444 CT or CC genotypes may have a significantly increased susceptibility to hepatocellular carcinoma (adjusted odds ratio [AOR] = 2.84, 95% confidence interval [CI] = 1.88-4.30. In addition, when combined with environmental risk factors, such as smoking and alcohol consumption, interaction effects were observed between gene polymorphisms and environmental factors (odds ratio [OR] = 4.69, 95% CI = 2.52-8.70; AOR = 3.38, 95% CI = 1.68-6.80. CONCLUSIONS: These results suggest that a significant association exists between miRNA499 SNPs and hepatocellular carcinoma. Gene-environment interactions of miRNA499 polymorphisms, smoking, and alcohol consumption might alter hepatocellular carcinoma susceptibility.

  2. miR-613 inhibits proliferation and invasion of breast cancer cell via VEGFA

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Junzhao; Yuan, Peng; Mao, Qixin [Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan (China); Lu, Peng [Gastrointestinal Surgery Department, People' s Hospital of Zhengzhou, Henan (China); Xie, Tian; Yang, Hanzhao [Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan (China); Wang, Chengzheng, E-mail: wangchengzheng@126.com [Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan (China)

    2016-09-09

    MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in breast cancer, has remained elusive. Here, we identified that miR-613 inhibits breast cancer cell proliferation by negatively regulates its target gene VEGFA. In breast cancer cell lines, CCK-8 proliferation assay indicated that the cell proliferation was inhibited by miR-613, while miR-613 inhibitor significantly promoted the cell proliferation. Transwell assay showed that miR-613 mimics significantly inhibited the migration and invasion of breast cancer cells, whereas miR-613 inhibitors significantly increased cell migration and invasion. Luciferase assays confirmed that miR-613 directly bound to the 3′ untranslated region of VEGFA, and western blotting showed that miR-613 suppressed the expression of VEGFA at the protein levels. This study indicated that miR-613 negatively regulates VEGFA and inhibits proliferation and invasion of breast cancer cell lines. Thus, miR-613 may represent a potential therapeutic molecule for breast cancer intervention.

  3. Long-term cardiovascular risk of nonsteroidal anti-inflammatory drug use according to time passed after first-time myocardial infarction: a nationwide cohort study.

    Science.gov (United States)

    Olsen, Anne-Marie Schjerning; Fosbøl, Emil L; Lindhardsen, Jesper; Folke, Fredrik; Charlot, Mette; Selmer, Christian; Bjerring Olesen, Jonas; Lamberts, Morten; Ruwald, Martin H; Køber, Lars; Hansen, Peter R; Torp-Pedersen, Christian; Gislason, Gunnar H

    2012-10-16

    The cardiovascular risk after the first myocardial infarction (MI) declines rapidly during the first year. We analyzed whether the cardiovascular risk associated with using nonsteroidal anti-inflammatory drugs (NSAIDs) was associated with the time elapsed following first-time MI. We identified patients aged 30 years or older admitted with first-time MI in 1997 to 2009 and subsequent NSAID use by individual-level linkage of nationwide registries of hospitalization and drug dispensing from pharmacies in Denmark. We calculated the incidence rates of death and a composite end point of coronary death or nonfatal recurrent MIs associated with NSAID use in 1-year time intervals up to 5 years after inclusion and analyzed risk by using multivariable adjusted time-dependent Cox proportional hazards models. Of the 99 187 patients included, 43 608 (44%) were prescribed NSAIDs after the index MI. There were 36 747 deaths and 28 693 coronary deaths or nonfatal recurrent MIs during the 5 years of follow-up. Relative to noncurrent treatment with NSAIDs, the use of any NSAID in the years following MI was persistently associated with an increased risk of death (hazard ratio 1.59 [95% confidence interval, 1.49-1.69]) after 1 year and hazard ratio 1.63 [95% confidence interval, 1.52-1.74] after 5 years) and coronary death or nonfatal recurrent MI (hazard ratio, 1.30 [95% confidence interval,l 1.22-1.39] and hazard ratio, 1.41 [95% confidence interval, 1.28-1.55]). The use of NSAIDs is associated with persistently increased coronary risk regardless of time elapsed after first-time MI. We advise long-term caution in the use of NSAIDs for patients after MI.

  4. Salivary extracellular vesicle-associated miRNAs as potential biomarkers in oral squamous cell carcinoma.

    Science.gov (United States)

    Gai, Chiara; Camussi, Francesco; Broccoletti, Roberto; Gambino, Alessio; Cabras, Marco; Molinaro, Luca; Carossa, Stefano; Camussi, Giovanni; Arduino, Paolo G

    2018-04-18

    Several studies in the past have investigated the expression of micro RNAs (miRNAs) in saliva as potential biomarkers. Since miRNAs associated with extracellular vesicles (EVs) are known to be protected from enzymatic degradation, we evaluated whether salivary EVs from patients with oral squamous cell carcinoma (OSCC) were enriched with specific subsets of miRNAs. OSCC patients and controls were matched with regards to age, gender and risk factors. Total RNA was extracted from salivary EVs and the differential expression of miRNAs was evaluated by qRT-PCR array and qRT-PCR. The discrimination power of up-regulated miRNAs as biomarkers in OSCC patients versus controls was evaluated by the Receiver Operating Characteristic (ROC) curves. A preliminary qRT-PCR array was performed on samples from 5 OSCC patients and 5 healthy controls whereby a subset of miRNAs were identified that were differentially expressed. On the basis of these results, a cohort of additional 16 patients and 6 controls were analyzed to further confirm the miRNAs that were up-regulated or selectively expressed in the previous pilot study. The following miRNAs: miR-302b-3p and miR-517b-3p were expressed only in EVs from OSCC patients and miR-512-3p and miR-412-3p were up-regulated in salivary EVs from OSCC patients compared to controls with the ROC curve showing a good discrimination power for OSCC diagnosis. The Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway analysis suggested the possible involvement of the miRNAs identified in pathways activated in OSCC. In this work, we suggest that salivary EVs isolated by a simple charge-based precipitation technique can be exploited as a non-invasive source of miRNAs for OSCC diagnosis. Moreover, we have identified a subset of miRNAs selectively enriched in EVs of OSCC patients that could be potential biomarkers.

  5. miR-4443 Participates in the Malignancy of Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Xiu Chen

    Full Text Available Chemo-resistance is the leading cause of failure in cancer therapy, however, much remains to be understood about the intrinsic mechanisms. In the present study, we discovered the novel miR-4443 that regulated malignancy of breast cancer both in vitro and in vivo.We examined the expression of miR-4443 in MDA-MB-231/S and MDA-MB-231 Epirubicin-resistant cell lines with 76 breast cancer formalin-fixed paraffin-embedded tissues by real-time PCR. Also, we investigated the loss- and gain-functions of miR-4443 by MTT assay and flow cytometry. Furthermore, we detected miR-4443 mediated tissue inhibitor of metalloproteinase 2 expression in cells by TargetScan, RT-qPCR and western blot.We identified the up-regulated expression of miR-4443 in Epi-resistant cell lines versus MDA-MB-231/S cell(Epi versus S and in post-chemotherapy FFPE tissues, along with statistically differential expressions in PR(partial response versus SD(stable disease/PD(progressive disease patients. Overexpression of miR-4443 increased the IC50 value of Epi for the target cells transfected, while inhibition of miR-4443 could restored sensitivity of the target cells to Epi. Besides, down-regulation of endogenous miR-4443 by miRNA-inhibitors significantly enhanced Epi-induced apoptosis while up-regulation of miR-4443 by miRNA-mimics lead to less Epi-induced apoptotic cells. Consequently, changes in TIMP2 mRNA and protein expression revealed that miR-4443 mimics suppressed expression of TIMP2 and induced migration in breast cancer cells. Furthermore, TIMP2 expression associated with better prognosis(HR = 0.721, 95%CI: 0.529-0.983.We revealed that miR-4443 induced malignancy of breast cancer mainly in chemo-resistance aspect for the very first time, providing a novel biomarker in breast cancer diagnosis and therapy.

  6. Neurotrophin-3 mRNA a putative target of miR21 following status epilepticus.

    Science.gov (United States)

    Risbud, Rashmi M; Lee, Carolyn; Porter, Brenda E

    2011-11-18

    Status epilepticus induces a cascade of protein expression changes contributing to the subsequent development of epilepsy. By identifying the cascade of molecular changes that contribute to the development of epilepsy we hope to be able to design therapeutics for preventing epilepsy. MicroRNAs influence gene expression by altering mRNA stability and/or translation and have been implicated in the pathology of multiple diseases. MiR21 and its co-transcript miR21, microRNAs produced from either the 5' or 3' ends of the same precursor RNA strand, are increased in the hippocampus following status epilepticus. We have identified a miR21 binding site, in the 3' UTR of neurotrophin-3 that inhibits translation. Neurotrophin-3 mRNA levels decrease in the hippocampus following SE concurrent with the increase in miR21. MiR21 levels in cultured hippocampal neurons inversely correlate with neurotrophin-3 mRNA levels. Treatment of hippocampal neuronal cultures with excess K(+)Cl(-), a depolarizing agent mimicking the episode of status epilepticus, also results in an increase in miR21 and a decrease in neurotrophin-3 mRNA. MiR21 is a candidate for regulating neurotrophin-3 signaling in the hippocampus following status epilepticus. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Dramatic changes in 67 miRNAs during initiation of first wave of spermatogenesis in Mus musculus testis: global regulatory insights generated by miRNA-mRNA network analysis.

    Science.gov (United States)

    Sree, Sreesha; Radhakrishnan, Karthika; Indu, Sivankutty; Kumar, Pradeep G

    2014-09-01

    We mapped global changes in miRNA and mRNA profiles spanning the first wave of spermatogenesis using prepubertal (Postnatal Day 8 [P8]), pubertal (P16), and adolescent (P24) Mus musculus testes and identified the differential expression of 67 miRNAs and 8226 mRNAs. These two data sets were integrated into miRNA-dependent regulatory networks based on miRWalk predictions. In a network representing the P8 to P16 transition, downregulation of four miRNAs and upregulation of 19 miRNAs were linked with 81 upregulated target mRNAs and 228 downregulated target mRNAs, respectively. Furthermore, during the P16 to P24 transition, two miRNAs were downregulated, and eight miRNAs were upregulated, which linked with 64 upregulated mRNAs and 389 downregulated mRNAs, respectively. Only three of the miRNAs present in the network (miR-34b-5p, miR-34c, and miR-449a) showed a progressive increase from P8 through P16 to P24, while the remaining miRNAs in the network showed statistically significant changes in their levels either during the P8 to P16 transition or during the P16 to P24 transition. Analysis of the chromosomal location of these differentially expressed miRNAs showed that 14 out of 25 miRNAs upregulated from P8 to P16, and 18 out of 40 miRNAs upregulated from P8 to P24 were X-linked. This is suggestive of their escape from meiotic sex chromosome inactivation and postmeiotic sex chromatin. This integrated network of miRNA-level and mRNA-level changes in mouse testis during the first wave of spermatogenesis is expected to build a base for evaluating the role of miRNA-mediated gene expression regulation in maturing mammalian testis. © 2014 by the Society for the Study of Reproduction, Inc.

  8. Time-perspective in cardiovascular risk of NSAID use after first-time myocardial infarction

    DEFF Research Database (Denmark)

    Olsen, Anne-Marie Schjerning; Gislason, Gunnar H; Fosbøl, Emil L

    2013-01-01

    PURPOSE OF REVIEW: Despite the fact that NSAIDs are not recommended among patients with established cardiovascular disease, many patients receive NSAID treatment for a short period of time. However, up until recently, data on the relationship between treatment duration and associated cardiovascular...... furthermore demonstrated that NSAID use among patients with first-time MI was associated with persistently increased risk of all-cause mortality and of a composite of coronary death or nonfatal recurrent MI for at least 5 years thereafter. SUMMARY: The present review indicates that there is no apparent well......-tolerated therapeutic window for associated cardiovascular risk and NSAID use in patients with prior MI. Further randomized studies are warranted to evaluate the cardiovascular safety of NSAIDs, but, at this point, the overall evidence suggests advising caution in using NSAIDs at all times after MI. Legislation bodies...

  9. Transcriptome association analysis identifies miR-375 as a major determinant of variable acetaminophen glucuronidation by human liver.

    Science.gov (United States)

    Papageorgiou, Ioannis; Freytsis, Marina; Court, Michael H

    2016-10-01

    Acetaminophen is the leading cause of acute liver failure (ALF) in many countries including the United States. Hepatic glucuronidation by UDP-glucuronosyltransferase (UGT) 1A subfamily enzymes is the major route of acetaminophen elimination. Reduced glucuronidation may predispose some individuals to acetaminophen-induced ALF, but mechanisms underlying reduced glucuronidation are poorly understood. We hypothesized that specific microRNAs (miRNAs) may reduce UGT1A activity by direct effects on the UGT1A 3'-UTR shared by all UGT1A enzyme transcripts, or by indirect effects on transcription factors regulating UGT1A expression. We performed an unbiased miRNA whole transcriptome association analysis using a bank of human livers with known acetaminophen glucuronidation activities. Of 754 miRNAs evaluated, 9 miRNAs were identified that were significantly overexpressed (p2-fold) in livers with low acetaminophen glucuronidation activities compared with those with high activities. miR-375 showed the highest difference (>10-fold), and was chosen for further mechanistic validation. We demonstrated using in silico analysis and luciferase reporter assays that miR-375 has a unique functional binding site in the 3'-UTR of the aryl hydrocarbon receptor (AhR) gene. Furthermore overexpression of miR-375 in LS180 cells demonstrated significant repression of endogenous AhR protein (by 40%) and mRNA (by 10%), as well as enzyme activity and/or mRNA of AhR regulated enzymes including UGT1A1, UGT1A6, and CYP1A2, without affecting UGT2B7, which is not regulated by AhR. Thus miR-375 is identified as a novel repressor of UGT1A-mediated hepatic acetaminophen glucuronidation through reduced AhR expression, which could predispose some individuals to increased risk for acetaminophen-induced ALF. Published by Elsevier Inc.

  10. Long non-coding RNA TUG1 promotes progression of oral squamous cell carcinoma through upregulating FMNL2 by sponging miR-219.

    Science.gov (United States)

    Yan, Guangqi; Wang, Xue; Yang, Mingliang; Lu, Li; Zhou, Qing

    2017-01-01

    Oral squamous cell carcinoma (OSCC) is a prevalent oral disease with a high morbidity and mortality rate. Several long non-coding RNAs (lncRNAs) were identified as important regulators of carcinogenesis. However, the pathogenic implications of TUG1 in OSCC are still unclear. In the present study, the expression of TUG1 was increased in OSCC cells. Knockdown of TUG1 inhibited cell proliferation, migration, and invasion, and induced cell cycle arrest at G0/G1 phase, whereas overexpression of TUG1 exerted the opposite effect on OSCC cells. A reciprocal repressive interaction between TUG1 and miR-219 was found, and miR-219 inhibition abolished the tumor-suppressive effect of TUG1 knockdown on cell growth and motility. Furthermore, bioinformatics analysis and luciferase reporter assay showed that FMNL2 was a direct target of miR-219. Restoration of FMNL2 abrogated the miR-219-induced inhibition of cell proliferation, cell cycle progression, migration, and invasion. Besides, overexpression of TUG1 promoted tumor growth and metastasis in vivo . Clinically, the expression of TUG1 and FMNL2 were increased, but miR-219 was decreased in primary tumors compared to non-tumor tissues. Both the upregulated TUG1, and FMNL2 and the downregulated miR-219 was associated with advanced stage of OSCC and poor overall survival. Notably, multivariate analyses confirmed that FMNL2 was an independent risk factor for OSCC. In conclusion, our data revealed that TUG1 confers oncogenic function in OSCC and TUG1/miR-219/FMNL2 axis may be a novel therapeutic strategy in this disease.

  11. MiDAS

    DEFF Research Database (Denmark)

    McIlroy, Simon Jon; Saunders, Aaron Marc; Albertsen, Mads

    2015-01-01

    The Microbial Database for Activated Sludge (MiDAS) field guide is a freely available online resource linking the identity of abundant and process critical microorganisms in activated sludge wastewater treatment systems to available data related to their functional importance. Phenotypic properties...... of some of these genera are described, but most are known only from sequence data. The MiDAS taxonomy is a manual curation of the SILVA taxonomy that proposes a name for all genus-level taxa observed to be abundant by large-scale 16 S rRNA gene amplicon sequencing of full-scale activated sludge...... communities. The taxonomy can be used to classify unknown sequences, and the online MiDAS field guide links the identity to the available information about their morphology, diversity, physiology and distribution. The use of a common taxonomy across the field will provide a solid foundation for the study...

  12. A Functional Variant at the miR-214 Binding Site in the Methylenetetrahydrofolatereductase Gene Alters Susceptibility to Gastric Cancer in a Chinese Han Population

    Directory of Open Access Journals (Sweden)

    Qiaoyun Chen

    2015-05-01

    Full Text Available Background and Aims: Single nucleotide polymorphisms in miRNA binding sites, which are located in mRNA 3' untranslated regions (3'-UTRs, were recently found to influence microRNA-target interactions. Specifically, such polymorphisms can modulatebinding affinity or create or destroy miRNA-binding sites; such variants have also been found to be associated with cancer risk. In this study, we explored the effect of a functional variant at the miR-214 binding site in the methylenetetrahydrofolate reductase gene (rs114673809 on gastric cancer (GC risk in a hospital-based case-control study in a Chinese Han population. Methods and Results: We genotyped the rs114673809 polymorphism in 345 gastric cancer patients and 376 cancer-free controls using the polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP technique. The functions of rs114673809 were investigated using a luciferase activity assay and validated by immunoblotting. We found that participants carrying the rs114673809 AA genotype or A allele had a significantly increased risk of gastric cancer (OR = 1.667, 95% CI = 1.044-2.660, P = 0.034; OR = 1.261, 95% CI = 1.017-1.563, P = 0.037, respectively compared to those carrying the GG genotype and G allele. In addition, rs114673809 modified the binding of hsa-miR-214 to MTHFR as well as MTHFR protein levels in gastric cancer patients. Conclusion: Our data suggested that rs114673809, which is located at the miR-214 binding site in the 3'-UTR of MTHFR, may play an important role in the development of gastric cancer in a Chinese Han population.

  13. Web-based NGS data analysis using miRMaster: a large-scale meta-analysis of human miRNAs.

    Science.gov (United States)

    Fehlmann, Tobias; Backes, Christina; Kahraman, Mustafa; Haas, Jan; Ludwig, Nicole; Posch, Andreas E; Würstle, Maximilian L; Hübenthal, Matthias; Franke, Andre; Meder, Benjamin; Meese, Eckart; Keller, Andreas

    2017-09-06

    The analysis of small RNA NGS data together with the discovery of new small RNAs is among the foremost challenges in life science. For the analysis of raw high-throughput sequencing data we implemented the fast, accurate and comprehensive web-based tool miRMaster. Our toolbox provides a wide range of modules for quantification of miRNAs and other non-coding RNAs, discovering new miRNAs, isomiRs, mutations, exogenous RNAs and motifs. Use-cases comprising hundreds of samples are processed in less than 5 h with an accuracy of 99.4%. An integrative analysis of small RNAs from 1836 data sets (20 billion reads) indicated that context-specific miRNAs (e.g. miRNAs present only in one or few different tissues / cell types) still remain to be discovered while broadly expressed miRNAs appear to be largely known. In total, our analysis of known and novel miRNAs indicated nearly 22 000 candidates of precursors with one or two mature forms. Based on these, we designed a custom microarray comprising 11 872 potential mature miRNAs to assess the quality of our prediction. MiRMaster is a convenient-to-use tool for the comprehensive and fast analysis of miRNA NGS data. In addition, our predicted miRNA candidates provided as custom array will allow researchers to perform in depth validation of candidates interesting to them. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Common miR-590 Variant rs6971711 Present Only in African Americans Reduces miR-590 Biogenesis.

    Directory of Open Access Journals (Sweden)

    Xiaoping Lin

    Full Text Available MicroRNAs (miRNAs are recognized as important regulators of cardiac development, hypertrophy and fibrosis. Recent studies have demonstrated that genetic variations which cause alterations in miRNA:target interactions can lead to disease. We hypothesized that genetic variations in miRNAs that regulate cardiac hypertrophy/fibrosis might be involved in generation of the cardiac phenotype in patients diagnosed with hypertrophic cardiomyopathy (HCM. To investigate this question, we Sanger sequenced 18 miRNA genes previously implicated in myocyte hypertrophy/fibrosis and apoptosis, using genomic DNA isolated from the leukocytes of 199 HCM patients. We identified a single nucleotide polymorphism (rs6971711, C57T SNP at the 17th position of mature miR-590-3p (= 57th position of pre-miR-590 that is common in individuals of African ancestry. SNP frequency was higher in African American HCM patients (n = 55 than ethnically-matched controls (n = 100, but the difference was not statistically significant (8.2% vs. 6.5%; p = 0.5. Using a cell culture system, we discovered that presence of this SNP resulted in markedly lower levels of mature miR-590-5p (39 ± 16%, p<0.003 and miR-590-3p (20 ± 2%, p<0.003, when compared with wild-type (WT miR-590, without affecting levels of pri-miR-590 and pre-miR-590. Consistent with this finding, the SNP resulted in reduced target suppression when compared to WT miR-590 (71% suppression by WT vs 60% suppression by SNP, p<0.03. Since miR-590 can regulate TGF-β, Activin A and Akt signaling, SNP-induced reduction in miR-590 biogenesis could influence cardiac phenotype by de-repression of these signaling pathways. Since the SNP is only present in African Americans, population studies in this patient population would be valuable to investigate effects of this SNP on myocyte function and cardiac physiology.

  15. Measurement of the forward-backward asymmetry in top quark-antiquark production in <mi>p><mi>p>¯ collisions using the <mi>lepton>+<mi>jets> channel

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Askew, A.; Atkins, S.; Augsten, K.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Borysova, M.; Brandt, A.; Brandt, O.; Brock, R.; Bross, A.; Brown, D.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M. -C.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duperrin, A.; Dutt, S.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, V. N.; Falkowski, A.; Fauré, A.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garbincius, P. H.; Garcia-Bellido, A.; García-González, J. A.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Gogota, O.; Golovanov, G.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J. -F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J. L.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jeong, M. S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kajfasz, E.; Karmanov, D.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin, V. A.; Lammers, S.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Mansour, J.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nguyen, H. T.; Nunnemann, T.; Orbaker, D.; Orduna, J.; Osman, N.; Osta, J.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M. -A.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Ratoff, P. N.; Razumov, I.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Savitskyi, M.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Simak, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Titov, M.; Tokmenin, V. V.; Tsai, Y. -T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Verkheev, A. Y.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.; Vokac, P.; Wahl, H. D.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Williams, M. R. J.; Wilson, G. W.; Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yang, S.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yin, H.; Yip, K.; Youn, S. W.; Yu, J. M.; Zennamo, J.; Zhao, T. G.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.

    2014-10-01

    We present a measurement of the forward–backward asymmetry in top quark–antiquark production using the full Tevatron Run II data set collected by the D0 experiment at Fermilab. The measurement is performed in lepton+mi>jets> final states using a new kinematic fitting algorithm for events with four or more jets and a new partial reconstruction algorithm for events with only three jets. Corrected for detector acceptance and resolution effects, the asymmetry is evaluated to be mi>AFB>=(10.6±3.0)%. Results are consistent with the standard model predictions which range from 5.0% to 8.8%. We also present the dependence of the asymmetry on the invariant mass of the top quark–antiquark system and the difference in rapidities of the top quark and antiquark.

  16. miR-217 regulates ethanol-induced hepatic inflammation by disrupting sirtuin 1-lipin-1 signaling.

    Science.gov (United States)

    Yin, Huquan; Liang, Xiaomei; Jogasuria, Alvin; Davidson, Nicholas O; You, Min

    2015-05-01

    Ethanol-mediated injury, combined with gut-derived lipopolysaccharide (LPS), provokes generation of proinflammatory cytokines in Kupffer cells, causing hepatic inflammation. Among the mediators of these effects, miR-217 aggravates ethanol-induced steatosis in hepatocytes. However, the role of miR-217 in ethanol-induced liver inflammation process is unknown. Here, we examined the role of miR-217 in the responses to ethanol, LPS, or a combination of ethanol and LPS in RAW 264.7 macrophages and in primary Kupffer cells. In macrophages, ethanol substantially exacerbated LPS-mediated induction of miR-217 and production of proinflammatory cytokines compared with LPS or ethanol alone. Consistently, ethanol administration to mice led to increases in miR-217 abundance and increased production of inflammatory cytokines in isolated primary Kupffer cells exposed to the combination of ethanol and LPS. miR-217 promoted combined ethanol and LPS-mediated inhibition of sirtuin 1 expression and activity in macrophages. Moreover, miR-217-mediated sirtuin 1 inhibition was accompanied by increased activities of two vital inflammatory regulators, NF-κB and the nuclear factor of activated T cells c4. Finally, adenovirus-mediated overexpression of miR-217 led to steatosis and inflammation in mice. These findings suggest that miR-217 is a pivotal regulator involved in ethanol-induced hepatic inflammation. Strategies to inhibit hepatic miR-217 could be a viable approach in attenuating alcoholic hepatitis. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  17. miR-758-3p: a blood-based biomarker that's influence on the expression of CERP/ABCA1 may contribute to the progression of obesity to metabolic syndrome.

    Science.gov (United States)

    O'Neill, Sadhbh; Larsen, Mette Bohl; Gregersen, Søren; Hermansen, Kjeld; O'Driscoll, Lorraine

    2018-02-06

    Due to increasing prevalence of obesity, a simple method or methods for the diagnosis of metabolic syndrome are urgently required to reduce the risk of associated cardiovascular disease, diabetes and cancer. This study aimed to identify a miRNA biomarker that may distinguish metabolic syndrome from obesity and to investigate if such a miRNA may have functional relevance for metabolic syndrome. 52 adults with clinical obesity (n=26) or metabolic syndrome (n=26) were recruited. Plasma specimens were procured from all and were randomly designated to discovery and validation cohorts. miRNA discovery profiling was performed, using array technology, on plasma RNA. Validation was performed by quantitative polymerase chain reaction. The functional effect of miR-758-3p on its predicted target, cholesterol efflux regulatory protein/ATP-binding cassette transporter, was investigated using HepG2 liver cells. Custom miRNA profiling of 25 miRNAs in the discovery cohort found miR-758-3p to be detected in the obese cohort but undetected in the metabolic syndrome cohort. miR-758-3p was subsequently validated as a potential biomarker for metabolic syndrome by quantitative polymerase chain reaction. Bioinformatics analysis identified cholesterol efflux regulatory protein/ATP-binding cassette transporter as miR-758-3p's predicted target. Specifically, mimicking miR-758-3p in HepG2 cells suppressed cholesterol efflux regulatory protein/ATP-binding cassette transporter protein expression; conversely, inhibiting miR-758-3p increased cholesterol efflux regulatory protein/ATP-binding cassette transporter protein expression. miR-758-3p holds potential as a blood-based biomarker for distinguishing progression from obesity to metabolic syndrome and as a driver in controlling cholesterol efflux regulatory protein/ATP-binding cassette transporter expression, indicating it potential role in cholesterol control in metabolic syndrome.

  18. Reclaiming Sámi languages

    DEFF Research Database (Denmark)

    Rasmussen, Torkel; Nolan, John Shaun

    2011-01-01

    , this paper investigates what subsequently happens at the grassroots or micro level. This investigation shows that despite more positive policies, there is a strong sentiment of defeatism with regard to Sámi. Sámi speakers face problems because of the lack of implementation of nationally decided laws...... and for the sake of cultural maintenance, but also for instrumental reasons, i.e. to give their children better opportunities in the labor market where knowledge of Sámi is necessary....

  19. Repertoire of bovine miRNA and miRNA-like small regulatory RNAs expressed upon viral infection.

    Directory of Open Access Journals (Sweden)

    Evgeny A Glazov

    Full Text Available MicroRNA (miRNA and other types of small regulatory RNAs play a crucial role in the regulation of gene expression in eukaryotes. Several distinct classes of small regulatory RNAs have been discovered in recent years. To extend the repertoire of small RNAs characterized in mammals and to examine relationship between host miRNA expression and viral infection we used Illumina's ultrahigh throughput sequencing approach. We sequenced three small RNA libraries prepared from cell line derived from the adult bovine kidney under normal conditions and upon infection of the cell line with Bovine herpesvirus 1. We used a bioinformatics approach to distinguish authentic mature miRNA sequences from other classes of small RNAs and short RNA fragments represented in the sequencing data. Using this approach we detected 219 out of 356 known bovine miRNAs and 115 respective miRNA* sequences. In addition we identified five new bovine orthologs of known mammalian miRNAs and discovered 268 new cow miRNAs many of which are not identifiable in other mammalian genomes and thus might be specific to the ruminant lineage. In addition we found seven new bovine mirtron candidates. We also discovered 10 small nucleolar RNA (snoRNA loci that give rise to small RNA with possible miRNA-like function. Results presented in this study extend our knowledge of the biology and evolution of small regulatory RNAs in mammals and illuminate mechanisms of small RNA biogenesis and function. New miRNA sequences and the original sequencing data have been submitted to miRNA repository (miRBase and NCBI GEO archive respectively. We envisage that these resources will facilitate functional annotation of the bovine genome and promote further functional and comparative genomics studies of small regulatory RNA in mammals.

  20. Arctigenin Confers Neuroprotection Against Mechanical Trauma Injury in Human Neuroblastoma SH-SY5Y Cells by Regulating miRNA-16 and miRNA-199a Expression to Alleviate Inflammation.

    Science.gov (United States)

    Song, Jie; Li, Na; Xia, Yang; Gao, Zhong; Zou, Sa-Feng; Yan, Yu-Hui; Li, Shao-Heng; Wang, Yue; Meng, Ya-Kun; Yang, Jing-Xian; Kang, Ting-Guo

    2016-09-01

    Mechanical trauma injury is a severe insult to neural cells. Subsequent secondary injury involves the release of inflammatory factors that have dramatic consequences for undamaged cells, leading to normal cell death after the initial injury. The present study investigated the capacity for arctigenin (ARC) to prevent secondary effects and evaluated the mechanism underlying the action of microRNA (miRNA)-199a and miRNA-16 in a mechanical trauma injury (MTI) model using SH-SY5Y cells in vitro. SH-SY5Y cells are often applied to in vitro models of neuronal function and differentiation. Recently, miRNAs have been demonstrated to play a crucial role in NF-κB and cholinergic signaling, which can regulate inflammation. The cell model was established by scratch-induced injury of human SH-SY5Y cells, which mimics the characteristics of MTI. A cell counting kit-8 (CCK-8), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and immunocytochemistry were used to measure cell viability. Enzyme-linked immunosorbent assay (ELISA) was used to evaluate the inflammatory cytokine and cholinesterase (CHE) content. The lactate dehydrogenase (LDH) content was measured to assess the degree of cell injury. The mRNA levels were measured by RT-PCR to analyze ARC's mechanism of action. miRNA inhibitors and mimics were used to inhibit and strengthen the expression of miRNAs. Protein expression was detected by western blotting analysis. ARC treatment reduced the TNF-α and IL-6 levels as well as the number of TUNEL+ apoptotic SH-SY5Y cells surrounding the scratch and increased the IL-10 level compared to the controls. ARC attenuated the increase of the cell damage degree and LDH content induced by scratching, indicating increased cell survival. Mechanistic studies showed that ARC upregulated the miRNA-16 and miRNA-199a levels to reduce upstream protein (IKKα and IKKβ) expression and inhibit NF-κB signaling pathway activity; moreover, the increased miRNA-199a suppresses

  1. miRNA Signatures of Insulin Resistance in Obesity.

    Science.gov (United States)

    Jones, Angela; Danielson, Kirsty M; Benton, Miles C; Ziegler, Olivia; Shah, Ravi; Stubbs, Richard S; Das, Saumya; Macartney-Coxson, Donia

    2017-10-01

    Extracellular microRNAs (miRNAs) represent functional biomarkers for obesity and related disorders; this study investigated plasma miRNAs in insulin resistance phenotypes in obesity. One hundred seventy-five miRNAs were analyzed in females with obesity (insulin sensitivity, n = 11; insulin resistance, n = 19; type 2 diabetes, n = 15) and without obesity (n = 12). Correlations between miRNA level and clinical parameters and levels of 15 miRNAs in a murine obesity model were investigated. One hundred six miRNAs were significantly (adjusted P ≤ 0.05) different between controls and at least one obesity phenotype, including miRNAs with the following attributes: previously reported roles in obesity and altered circulating levels (e.g., miR-122, miR-192); known roles in obesity but no reported changes in circulating levels (e.g., miR-378a); and no current reported role in, or association with, obesity (e.g., miR-28-5p, miR-374b, miR-32). The miRNAs in the latter group were found to be associated with extracellular vesicles. Forty-eight miRNAs showed significant correlations with clinical parameters; stepwise regression retained let-7b, miR-144-5p, miR-34a, and miR-532-5p in a model predictive of insulin resistance (R 2  = 0.57, P = 7.5 × 10 -8 ). Both miR-378a and miR-122 were perturbed in metabolically relevant tissues in a murine model of obesity. This study expands on the role of extracellular miRNAs in insulin-resistant phenotypes of obesity and identifies candidate miRNAs not previously associated with obesity. © 2017 The Obesity Society.

  2. Generation of miRNA sponge constructs

    NARCIS (Netherlands)

    Kluiver, Joost; Slezak-Prochazka, Izabella; Smigielska-Czepiel, Katarzyna; Halsema, Nancy; Kroesen, Bart-Jan; van den Berg, Anke

    2012-01-01

    MicroRNA (miRNA) sponges are RNA molecules with repeated miRNA antisense sequences that can sequester miRNAs from their endogenous targets and thus serve as a decoy. Stably expressed miRNA sponges are especially valuable for long-term loss-of-function studies and can be used in vitro and in vivo. We

  3. Analysis of Biobanked Serum from a Mycobacterium avium subsp paratuberculosis Bovine Infection Model Confirms the Remarkable Stability of Circulating miRNA Profiles and Defines a Bovine Serum miRNA Repertoire.

    Directory of Open Access Journals (Sweden)

    Ronan G Shaughnessy

    Full Text Available Johne's Disease (JD is a chronic enteritis of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP. Current disease control strategies are hampered by the lack of sensitive and specific diagnostic modalities. Therefore, novel diagnostic and prognostic tools are needed, and circulating microRNAs (miRNAs may hold potential in this area. The aims of this study were twofold: (i to address the stability of miRNA in bovine sera from biobanked samples, and (ii to assess the potential of miRNAs as biomarkers for JD disease progression. To address these aims we used bovine sera from an experimental MAP infection model that had been stored at -20°C for over a decade, allowing us to also assess the stability of miRNA profiles in biobanked serum samples through comparison with fresh sera. Approximately 100-200 intact miRNAs were identified in each sample with 83 of these being consistently detected across all 57 samples. The miRNA profile of the biobanked sera stored at -20°C for over 10 years was highly similar to the profile of <1 year-old sera stored at -80°C, with an overlap of 73 shared miRNAs. IsomiR analysis also indicated a distinct bovine serum-specific isomiR profile as compared to previously reported bovine macrophage miRNA profiles. To explore the prognostic potential of miRNA profiles cattle defined as seropositive for anti-MAP antibodies (n = 5 were compared against seronegative cattle (n = 7. No significant differential expressed miRNAs were detected at either the early (6 months or late (43, 46 and 49 months intervals (FDR≤0.05, fold-change≥1.5 across seropositive or seronegative animals. However, comparing pre-infection sera to the early and late time-points identified increased miR-29a and miR-92b abundance (2-fold that may be due to blood-cell population changes over time (P<0.001. In conclusion our study has demonstrated that bovine circulating miRNAs retain their integrity under long-term sub-optimal storage

  4. Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity.

    Science.gov (United States)

    Wyman, Stacia K; Knouf, Emily C; Parkin, Rachael K; Fritz, Brian R; Lin, Daniel W; Dennis, Lucas M; Krouse, Michael A; Webster, Philippa J; Tewari, Muneesh

    2011-09-01

    Modification of microRNA sequences by the 3' addition of nucleotides to generate so-called "isomiRs" adds to the complexity of miRNA function, with recent reports showing that 3' modifications can influence miRNA stability and efficiency of target repression. Here, we show that the 3' modification of miRNAs is a physiological and common post-transcriptional event that shows selectivity for specific miRNAs and is observed across species ranging from C. elegans to human. The modifications result predominantly from adenylation and uridylation and are seen across tissue types, disease states, and developmental stages. To quantitatively profile 3' nucleotide additions, we developed and validated a novel assay based on NanoString Technologies' nCounter platform. For certain miRNAs, the frequency of modification was altered by processes such as cell differentiation, indicating that 3' modification is a biologically regulated process. To investigate the mechanism of 3' nucleotide additions, we used RNA interference to screen a panel of eight candidate miRNA nucleotidyl transferases for 3' miRNA modification activity in human cells. Multiple enzymes, including MTPAP, PAPD4, PAPD5, ZCCHC6, ZCCHC11, and TUT1, were found to govern 3' nucleotide addition to miRNAs in a miRNA-specific manner. Three of these enzymes-MTPAP, ZCCHC6, and TUT1-have not previously been known to modify miRNAs. Collectively, our results indicate that 3' modification observed in next-generation small RNA sequencing data is a biologically relevant process, and identify enzymatic mechanisms that may lead to new approaches for modulating miRNA activity in vivo.

  5. miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1.

    Science.gov (United States)

    Galardi, Silvia; Mercatelli, Neri; Giorda, Ezio; Massalini, Simone; Frajese, Giovanni Vanni; Ciafrè, Silvia Anna; Farace, Maria Giulia

    2007-08-10

    MicroRNAs are short regulatory RNAs that negatively modulate protein expression at a post-transcriptional level and are deeply involved in the pathogenesis of several types of cancers. Here we show that miR-221 and miR-222, encoded in tandem on chromosome X, are overexpressed in the PC3 cellular model of aggressive prostate carcinoma, as compared with LNCaP and 22Rv1 cell line models of slowly growing carcinomas. In all cell lines tested, we show an inverse relationship between the expression of miR-221 and miR-222 and the cell cycle inhibitor p27(Kip1). We recognize two target sites for the microRNAs in the 3' untranslated region of p27 mRNA, and we show that miR-221/222 ectopic overexpression directly results in p27 down-regulation in LNCaP cells. In those cells, we demonstrate that the ectopic overexpression of miR-221/222 strongly affects their growth potential by inducing a G(1) to S shift in the cell cycle and is sufficient to induce a powerful enhancement of their colony-forming potential in soft agar. Consistently, miR-221 and miR-222 knock-down through antisense LNA oligonucleotides increases p27(Kip1) in PC3 cells and strongly reduces their clonogenicity in vitro. Our results suggest that miR-221/222 can be regarded as a new family of oncogenes, directly targeting the tumor suppressor p27(Kip1), and that their overexpression might be one of the factors contributing to the oncogenesis and progression of prostate carcinoma through p27(Kip1) down-regulation.

  6. Selective inhibition of miR-92 in hippocampal neurons alters contextual fear memory.

    Science.gov (United States)

    Vetere, Gisella; Barbato, Christian; Pezzola, Silvia; Frisone, Paola; Aceti, Massimiliano; Ciotti, MariaTeresa; Cogoni, Carlo; Ammassari-Teule, Martine; Ruberti, Francesca

    2014-12-01

    Post-transcriptional gene regulation mediated by microRNAs (miRNAs) is implicated in memory formation; however, the function of miR-92 in this regulation is uncharacterized. The present study shows that training mice in contextual fear conditioning produces a transient increase in miR-92 levels in the hippocampus and decreases several miR-92 gene targets, including: (i) the neuronal Cl(-) extruding K(+) Cl(-) co-transporter 2 (KCC2) protein; (ii) the cytoplasmic polyadenylation protein (CPEB3), an RNA-binding protein regulator of protein synthesis in neurons; and (iii) the transcription factor myocyte enhancer factor 2D (MEF2D), one of the MEF2 genes which negatively regulates memory-induced structural plasticity. Selective inhibition of endogenous miR-92 in CA1 hippocampal neurons, by a sponge lentiviral vector expressing multiple sequences imperfectly complementary to mature miR-92 under the control of the neuronal specific synapsin promoter, leads to up-regulation of KCC2, CPEB3 and MEF2D, impairs contextual fear conditioning, and prevents a memory-induced increase in the spine density. Taken together, the results indicate that neuronal-expressed miR-92 is an endogenous fine regulator of contextual fear memory in mice. © 2014 Wiley Periodicals, Inc.

  7. miRvestigator: web application to identify miRNAs responsible for co-regulated gene expression patterns discovered through transcriptome profiling.

    Science.gov (United States)

    Plaisier, Christopher L; Bare, J Christopher; Baliga, Nitin S

    2011-07-01

    Transcriptome profiling studies have produced staggering numbers of gene co-expression signatures for a variety of biological systems. A significant fraction of these signatures will be partially or fully explained by miRNA-mediated targeted transcript degradation. miRvestigator takes as input lists of co-expressed genes from Caenorhabditis elegans, Drosophila melanogaster, G. gallus, Homo sapiens, Mus musculus or Rattus norvegicus and identifies the specific miRNAs that are likely to bind to 3' un-translated region (UTR) sequences to mediate the observed co-regulation. The novelty of our approach is the miRvestigator hidden Markov model (HMM) algorithm which systematically computes a similarity P-value for each unique miRNA seed sequence from the miRNA database miRBase to an overrepresented sequence motif identified within the 3'-UTR of the query genes. We have made this miRNA discovery tool accessible to the community by integrating our HMM algorithm with a proven algorithm for de novo discovery of miRNA seed sequences and wrapping these algorithms into a user-friendly interface. Additionally, the miRvestigator web server also produces a list of putative miRNA binding sites within 3'-UTRs of the query transcripts to facilitate the design of validation experiments. The miRvestigator is freely available at http://mirvestigator.systemsbiology.net.

  8. Early diagnostic role of PSA combined miR-155 detection in prostate cancer.

    Science.gov (United States)

    Guo, T; Wang, X-X; Fu, H; Tang, Y-C; Meng, B-Q; Chen, C-H

    2018-03-01

    As a kind of malignant tumor in the male genitourinary system, prostate cancer exhibits significantly increased occurrence. Prostate-specific antigen (PSA) expression can be seen in the prostate cancer, prostatitis, and other diseases, therefore, lack of diagnostic specificity. The miR-155 expression is abnormally increased in the tumors. Therefore, this study aims to explore the clinical significance of PSA combined miR-155 detection in the early diagnosis of prostate cancer. A total of 86 patients diagnosed with prostate cancer were enrolled in this study. PSA and miR-155 gene expression in tumor tissue were detected by using Real-time PCR. The serum levels of PSA were measured by using enzyme-linked immunosorbent assay (ELISA). The correlation of PSA and miR-155 expression with age, body mass index (BMI), tumor volume, tumor-node-metastasis (TNM) stage, lymph node metastasis (LNM), and other clinicopathological features were analyzed, respectively. Serum PSA expression and PSA gene in tumor tissue were significantly higher compared to that in adjacent tissues (pPSA gene and protein increased significantly with the clinical stage of TNM and decreased following the increase of grade (pPSA and miR-155 expressions were positively correlated with TNM stage, tumor volume, and LNM, and negatively correlated with grade (pPSA and miR-155 were closely related to the clinicopathological features of prostate cancer. Combined detection is helpful for the early diagnosis of prostate cancer.

  9. Exploring the miRNA regulatory network using evolutionary correlations.

    Directory of Open Access Journals (Sweden)

    Benedikt Obermayer

    2014-10-01

    Full Text Available Post-transcriptional regulation by miRNAs is a widespread and highly conserved phenomenon in metazoans, with several hundreds to thousands of conserved binding sites for each miRNA, and up to two thirds of all genes under miRNA regulation. At the same time, the effect of miRNA regulation on mRNA and protein levels is usually quite modest and associated phenotypes are often weak or subtle. This has given rise to the notion that the highly interconnected miRNA regulatory network exerts its function less through any individual link and more via collective effects that lead to a functional interdependence of network links. We present a Bayesian framework to quantify conservation of miRNA target sites using vertebrate whole-genome alignments. The increased statistical power of our phylogenetic model allows detection of evolutionary correlation in the conservation patterns of site pairs. Such correlations could result from collective functions in the regulatory network. For instance, co-conservation of target site pairs supports a selective benefit of combinatorial regulation by multiple miRNAs. We find that some miRNA families are under pronounced co-targeting constraints, indicating a high connectivity in the regulatory network, while others appear to function in a more isolated way. By analyzing coordinated targeting of different curated gene sets, we observe distinct evolutionary signatures for protein complexes and signaling pathways that could reflect differences in control strategies. Our method is easily scalable to analyze upcoming larger data sets, and readily adaptable to detect high-level selective constraints between other genomic loci. We thus provide a proof-of-principle method to understand regulatory networks from an evolutionary perspective.

  10. Change in circulating microRNA profile of obese children indicates future risk of adult diabetes.

    Science.gov (United States)

    Cui, Xianwei; You, Lianghui; Zhu, Lijun; Wang, Xing; Zhou, Yahui; Li, Yun; Wen, Juan; Xia, Yankai; Wang, Xinru; Ji, Chenbo; Guo, Xirong

    2018-01-01

    Childhood obesity increases susceptibility to type 2 diabetes (T2D) in adults. Circulating microRNAs (miRNAs) in serum have been proposed as potential diagnostic biomarkers, and they may contribute to the progression toward T2D. Here, we investigated the possibility of predicting the future risk of adult T2D in obese children by using circulating miRNAs. We performed miRNA high-throughput sequencing to screen relevant circulating miRNAs in obese children. The expression patterns of targeted miRNAs were further explored in obese children and adults with T2D. To investigate the underlying contributions of these miRNAs to the development of T2D, we detected the impacts of the candidate miRNAs on preadipocyte proliferation, insulin secretion by pancreatic β-cell, and glucose uptake by skeletal muscle cells. Three miRNAs (miR-486, miR-146b and miR-15b), whose expression in the circulation was most dramatically augmented in obese children and adult T2D patients, were selected for further investigation. Of these 3 miRNAs, miR-486 was implicated in accelerating preadipocyte proliferation and myotube glucose intolerance, miR-146b and miR-15b were engaged in the suppression of high concentration glucose-induced pancreatic insulin secretion, and they all contributed to the pathological processes of obesity and T2D. Our results provide a better understanding of the role of circulating miRNAs, particularly miR-486, miR-146b and miR-15b, in predicting the future risk of T2D in obese children. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Cisplatin-resistant lung cancer cell–derived exosomes increase cisplatin resistance of recipient cells in exosomal miR-100–5p-dependent manner

    Directory of Open Access Journals (Sweden)

    Qin X

    2017-05-01

    Full Text Available Xiaobing Qin,1,2,* Shaorong Yu,1,3,* Leilei Zhou,1,4 Meiqi Shi,3 Yong Hu,1 Xiaoyue Xu,1 Bo Shen,1 Siwen Liu,1 Dali Yan,1 Jifeng Feng1,3 1Research Center for Clinical Oncology, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, 2Department of Oncology, Xuzhou First People’s Hospital, Xuzhou, 3Department of Oncology, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, 4Department of Oncology, Affiliated Huai’an Hospital of Nanjing Medical University, Huai’an, Jiangsu, China *These authors have contributed equally to this work Abstract: Exosomes derived from lung cancer cells confer cisplatin (DDP resistance to other cancer cells. However, the underlying mechanism is still unknown. A549 resistance to DDP (A549/DDP was established. Microarray was used to analyze microRNA (miRNA expression profiles of A549 cells, A549/DDP cells, A549 exosomes, and A549/DDP exosomes. There was a strong correlation of miRNA profiles between exosomes and their maternal cells. A total of 11 miRNAs were significantly upregulated both in A549/DDP cells compared with A549 cells and in exosomes derived from A549/DDP cells in contrast to exosomes from A549 cells. A total of 31 downregulated miRNAs were also observed. miR-100–5p was the most prominent decreased miRNA in DDP-resistant exosomes compared with the corresponding sensitive ones. Downregulated miR-100–5p was proved to be involved in DDP resistance in A549 cells, and mammalian target of rapamycin (mTOR expression was reverse regulated by miR-100–5p. Exosomes confer recipient cells’ resistance to DDP in an exosomal miR-100–5p-dependent manner with mTOR as its potential target both in vitro and in vivo. Exosomes from DDP-resistant lung cancer cells A549 can alter other lung cancer cells’ sensitivity to DDP in exosomal miR-100–5p

  12. miR-758-3p: a blood-based biomarker that’s influence on the expression of CERP/ABCA1 may contribute to the progression of obesity to metabolic syndrome

    Science.gov (United States)

    O’Neill, Sadhbh; Larsen, Mette Bohl; Gregersen, Søren; Hermansen, Kjeld; O’Driscoll, Lorraine

    2018-01-01

    Due to increasing prevalence of obesity, a simple method or methods for the diagnosis of metabolic syndrome are urgently required to reduce the risk of associated cardiovascular disease, diabetes and cancer. This study aimed to identify a miRNA biomarker that may distinguish metabolic syndrome from obesity and to investigate if such a miRNA may have functional relevance for metabolic syndrome. 52 adults with clinical obesity (n=26) or metabolic syndrome (n=26) were recruited. Plasma specimens were procured from all and were randomly designated to discovery and validation cohorts. miRNA discovery profiling was performed, using array technology, on plasma RNA. Validation was performed by quantitative polymerase chain reaction. The functional effect of miR-758-3p on its predicted target, cholesterol efflux regulatory protein/ATP-binding cassette transporter, was investigated using HepG2 liver cells. Custom miRNA profiling of 25 miRNAs in the discovery cohort found miR-758-3p to be detected in the obese cohort but undetected in the metabolic syndrome cohort. miR-758-3p was subsequently validated as a potential biomarker for metabolic syndrome by quantitative polymerase chain reaction. Bioinformatics analysis identified cholesterol efflux regulatory protein/ATP-binding cassette transporter as miR-758-3p’s predicted target. Specifically, mimicking miR-758-3p in HepG2 cells suppressed cholesterol efflux regulatory protein/ATP-binding cassette transporter protein expression; conversely, inhibiting miR-758-3p increased cholesterol efflux regulatory protein/ATP-binding cassette transporter protein expression. miR-758-3p holds potential as a blood-based biomarker for distinguishing progression from obesity to metabolic syndrome and as a driver in controlling cholesterol efflux regulatory protein/ATP-binding cassette transporter expression, indicating it potential role in cholesterol control in metabolic syndrome. PMID:29507696

  13. Characterization of the Merkel Cell Carcinoma miRNome

    Directory of Open Access Journals (Sweden)

    Matthew S. Ning

    2014-01-01

    Full Text Available MicroRNAs have been implicated in various skin cancers, including melanoma, squamous cell carcinoma, and basal cell carcinoma; however, the expression of microRNAs and their role in Merkel cell carcinoma (MCC have yet to be explored in depth. To identify microRNAs specific to MCC (MCC-miRs, next-generation sequencing (NGS of small RNA libraries was performed on different tissue samples including MCCs, other cutaneous tumors, and normal skin. Comparison of the profiles identified several microRNAs upregulated and downregulated in MCC. For validation, their expression was measured via qRT-PCR in a larger group of MCC and in a comparison group of non-MCC cutaneous tumors and normal skin. Eight microRNAs were upregulated in MCC: miR-502-3p, miR-9, miR-7, miR-340, miR-182, miR-190b, miR-873, and miR-183. Three microRNAs were downregulated: miR-3170, miR-125b, and miR-374c. Many of these MCC-miRs, the miR-183/182/96a cistron in particular, have connections to tumorigenic pathways implicated in MCC pathogenesis. In situ hybridization confirmed that the highly expressed MCC-miR, miR-182, is localized within tumor cells. Furthermore, NGS and qRT-PCR reveal that several of these MCC-miRs are highly expressed in the patient-derived MCC cell line, MS-1. These data indicate that we have identified a set of MCC-miRs with important implications for MCC research.

  14. miR-34 and p53: New Insights into a Complex Functional Relationship.

    Directory of Open Access Journals (Sweden)

    Francisco Navarro

    Full Text Available miR-34, a tumor suppressor miRNA family transcriptionally activated by p53, is considered a critical mediator of p53 function. However, knockout of the mouse miR-34 family has little or no effect on the p53 response. The relative contribution of different miR-34 family members to p53 function or how much p53 relies on miR-34 in human cells is unclear. Here we show that miR-34a has a complex effect on the p53 response in human cells. In HCT116 cells miR-34a overexpression enhances p53 transcriptional activity, but the closely related family members, miR-34b and miR-34c, even when over-expressed, have little effect. Both TP53 itself and MDM4, a strong p53 transactivation inhibitor, are direct targets of miR-34a. The genes regulated by miR-34a also include four other post-translational inhibitors of p53. miR-34a overexpression leads to variable effects on p53 levels in p53-sufficient human cancer cell lines. In HCT116, miR-34a overexpression increases p53 protein levels and stability. About a quarter of all mRNAs that participate in the human p53 network bind to biotinylated miR-34a, suggesting that many are direct miR-34a targets. However, only about a fifth of the mRNAs that bind to miR-34a also bind to miR-34b or miR-34c. Two human cell lines knocked out for miR-34a have unimpaired p53-mediated responses to genotoxic stress, like mouse cells. The complex positive and negative effects of miR-34 on the p53 network suggest that rather than simply promoting the p53 response, miR-34a might act at a systems level to stabilize the robustness of the p53 response to genotoxic stress.

  15. Optimizing prognosis-related key miRNA-target interactions responsible for cancer metastasis.

    Science.gov (United States)

    Zhao, Hongying; Yuan, Huating; Hu, Jing; Xu, Chaohan; Liao, Gaoming; Yin, Wenkang; Xu, Liwen; Wang, Li; Zhang, Xinxin; Shi, Aiai; Li, Jing; Xiao, Yun

    2017-12-12

    Increasing evidence suggests that the abnormality of microRNAs (miRNAs) and their downstream targets is frequently implicated in the pathogenesis of human cancers, however, the clinical benefit of causal miRNA-target interactions has been seldom studied. Here, we proposed a computational method to optimize prognosis-related key miRNA-target interactions by combining transcriptome and clinical data from thousands of TCGA tumors across 16 cancer types. We obtained a total of 1,956 prognosis-related key miRNA-target interactions between 112 miRNAs and 1,443 their targets. Interestingly, these key target genes are specifically involved in tumor progression-related functions, such as 'cell adhesion' and 'cell migration'. Furthermore, they are most significantly correlated with 'tissue invasion and metastasis', a hallmark of metastasis, in ten distinct types of cancer through the hallmark analysis. These results implicated that the prognosis-related key miRNA-target interactions were highly associated with cancer metastasis. Finally, we observed that the combination of these key miRNA-target interactions allowed to distinguish patients with good prognosis from those with poor prognosis both in most TCGA cancer types and independent validation sets, highlighting their roles in cancer metastasis. We provided a user-friendly database named miRNATarget (freely available at http://biocc.hrbmu.edu.cn/miRNATar/), which provides an overview of the prognosis-related key miRNA-target interactions across 16 cancer types.

  16. miR-34a expands myeloid-derived suppressor cells via apoptosis inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Anfei, E-mail: huang_anfei@163.com [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Zhang, Haitao, E-mail: zhanghtjp@126.com [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215021, Jiangsu Province (China); Chen, Si, E-mail: chensisdyxb@126.com [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Xia, Fei, E-mail: xiafei87@gmail.com [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Yang, Yi, E-mail: 602744364@qq.com [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Dong, Fulu, E-mail: adiok0903@126.com [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Sun, Di, E-mail: dongfl@suda.edu.cn [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Xiong, Sidong, E-mail: sdxiong@suda.edu.cn [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Zhang, Jinping, E-mail: j_pzhang@suda.edu.cn [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China)

    2014-08-15

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population and show significant expansion under pathological conditions. microRNA plays important roles in many biological processes, whether microRNAs have a function in the expansion of MDSCs is still not very clear. In this study, miR-34a overexpression can induce the expansion of MDSCs in bone marrow chimera and transgenic mice model. The experimental results suggest that miR-34a inhibited the apoptosis of MDSCs but did not affect the proliferation of MDSCs. The distinct mRNA microarray profiles of MDSCs of wild type and miR-34a over-expressing MDSCs combined with the target prediction of miR-34a suggest that miR-34a may target genes such as p2rx7, Tia1, and plekhf1 to inhibit the apoptosis of MDSCs. Taken together, miR-34a contributes to the expansion of MDSCs by inhibiting the apoptosis of MDSCs. - Highlights: • Over-expression of miR-34a increases the number of MDSCs. • miR-34a inhibits the apoptosis of MDSCs, but does not affects their proliferation. • miR-34a may inhibit the apoptosis of MDSCs via targeting the p2rx7, Tia1 and plekhf1.

  17. A values-based Motivational Interviewing (MI) intervention for pediatric obesity: study design and methods for MI Values.

    Science.gov (United States)

    Bean, Melanie K; Mazzeo, Suzanne E; Stern, Marilyn; Bowen, Deborah; Ingersoll, Karen

    2011-09-01

    To reduce pediatric obesity in clinical settings, multidisciplinary behaviorally-based treatment programs are recommended. High attrition and poor compliance are two difficulties frequently encountered in such programs. A brief, empathic and directive clinical intervention, Motivational Interviewing (MI), might help address these motivational and behavioral issues, ultimately resulting in more positive health outcomes. The efficacy of MI as an adjunct in the treatment of pediatric obesity remains relatively understudied. MI Values was developed to implement within an existing multidisciplinary treatment program for obese, ethnically diverse adolescents, the T.E.E.N.S. Program (Teaching, Encouragement, Exercise, Nutrition, Support). T.E.E.N.S. participants who consent to MI Values are randomized to either MI or an education control condition. At weeks 1 and 10 of T.E.E.N.S. participation, the subset of participants assigned to the MI condition engages in individual MI sessions and control participants view health education videos. All MI sessions are audiotaped and coded to monitor treatment fidelity, which has been satisfactory thus far. Participants complete comprehensive assessments at baseline, 3- and 6-month follow-ups. We hypothesize that MI participants will demonstrate greater reductions in Body Mass Index (BMI) percentile, improved diet and physical activity behaviors, better compliance with T.E.E.N.S., and lower attrition than participants in the control group. We present study design and methods for MI Values as well as data on feasibility of recruitment methods and treatment integrity. At study completion, findings will contribute to the emerging literature examining the efficacy of MI in the treatment of pediatric obesity. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Effects of epilepsy and selected antiepileptic drugs on risk of myocardial infarction, stroke, and death in patients with or without previous stroke: a nationwide cohort study

    DEFF Research Database (Denmark)

    Olesen, J. B.; Abildstrom, S. Z.; Erdal, Jesper

    2011-01-01

    .64; 95%CI, 1.57-1.72), and all-cause death (HR, 1.92; 95%CI, 1.86-1.97). Compared with carbamazepine monotherapy, valproate was associated with a decreased risk of MI (HR, 0.72; 95%CI, 0.59-0.87) and stroke (HR, 0.86; 95%CI, 0.76-0.96), oxcarbazepine and phenobarbital with increased risk...... Patients with epilepsy exhibit increased risk of MI, stroke, cardiovascular death, and all-cause death. Compared with carbamazepine monotherapy, valproate may decrease, and oxcarbazepine and phenobarbital may increase, the risk of adverse cardiovascular events in these patients. Copyright (C) 2011 John...

  19. Association of serum microRNAs with islet autoimmunity, disease progression and metabolic impairment in relatives at risk of type 1 diabetes.

    Science.gov (United States)

    Snowhite, Isaac V; Allende, Gloria; Sosenko, Jay; Pastori, Ricardo L; Messinger Cayetano, Shari; Pugliese, Alberto

    2017-08-01

    MicroRNAs (miRNAs) are key regulators of gene expression and novel biomarkers for many diseases. We investigated the hypothesis that serum levels of some miRNAs would be associated with islet autoimmunity and/or progression to type 1 diabetes. We measured levels of 93 miRNAs most commonly detected in serum. This retrospective cohort study included 150 autoantibody-positive and 150 autoantibody-negative family-matched siblings enrolled in the TrialNet Pathway to Prevention Study. This was a young cohort (mean age = 11 years), and most autoantibody-positive relatives were at high risk because they had multiple autoantibodies, with 39/150 (26%, progressors) developing type 1 diabetes within an average 8.7 months of follow-up. We analysed miRNA levels in relation to autoantibody status, future development of diabetes and OGTT C-peptide and glucose indices of disease progression. Fifteen miRNAs were differentially expressed when comparing autoantibody-positive/negative siblings (range -2.5 to 1.3-fold). But receiver operating characteristic (ROC) analysis indicated low specificity and sensitivity. Seven additional miRNAs were differentially expressed among autoantibody-positive relatives according to disease progression; ROC returned significant AUC values and identified miRNA cut-off levels associated with an increased risk of disease in both cross-sectional and survival analyses. Levels of several miRNAs showed significant correlations (r values range 0.22-0.55) with OGTT outcomes. miR-21-3p, miR-29a-3p and miR-424-5p had the most robust associations. Serum levels of selected miRNAs are associated with disease progression and confer additional risk of the development of type 1 diabetes in young autoantibody-positive relatives. Further studies, including longitudinal assessments, are warranted to further define miRNA biomarkers for prediction of disease risk and progression.

  20. Gene polymorphisms of micrornas in Helicobacter pylori-induced high risk atrophic gastritis and gastric cancer.

    Directory of Open Access Journals (Sweden)

    Juozas Kupcinskas

    Full Text Available BACKGROUND AND AIMS: MicroRNAs (miRNAs are known for their function as translational regulators of tumor suppressor or oncogenes. Single nucleotide polymorphisms (SNPs in miRNAs related genes have been shown to affect the regulatory capacity of miRNAs and were linked with gastric cancer (GC and premalignant gastric conditions. The purpose of this study was to evaluate potential associations between miRNA-related gene polymorphisms (miR-27a, miR-146a, miR-196a-2, miR-492 and miR-608 and the presence of GC or high risk atrophic gastritis (HRAG in European population. METHODS: Gene polymorphisms were analyzed in 995 subjects (controls: n = 351; GC: n = 363; HRAG: n = 281 of European descent. MiR-27a T>C (rs895819, miR-146a G>C (rs2910164, miR-196a-2 C>T (rs11614913, miR-492 G>C (rs2289030 and miR-608 C>G (rs4919510 SNPs were genotyped by RT-PCR. RESULTS: Overall, SNPs of miRNAs were not associated with the presence of GC or HRAG. We observed a tendency for miR-196a-2 CT genotype to be associated with higher risk of GC when compared to CC genotype, however, the difference did not reach the adjusted P-value (odds ratio (OR - 1.46, 95% confidence interval (CI 1.03-2.07, P = 0.032. MiR-608 GG genotype was more frequent in GC when compared to controls (OR -2.34, 95% CI 1.08-5.04, but significance remained marginal (P = 0.029. A similar tendency was observed in a recessive model for miR-608, where CC + CG vs GG genotype comparison showed a tendency for increased risk of GC with OR of 2.44 (95% CI 1.14-5.22, P = 0.021. The genotypes and alleles of miR-27a, miR-146a, miR-196a-2, miR-492 and miR-608 SNPs had similar distribution between histological subtypes of GC and were not linked with the presence of diffuse or intestinal-type GC. CONCLUSIONS: Gene polymorphisms of miR-27a, miR-146a, miR-196a-2, miR-492, miR-492a and miR-608 were not associated with the presence of HRAG, GC or different histological subtypes of GC in European

  1. miR-21 Is Linked to Glioma Angiogenesis

    DEFF Research Database (Denmark)

    Hermansen, Simon Kjær; Nielsen, Boye Schnack; Aaberg-Jessen, Charlotte

    2016-01-01

    MicroRNA-21 (miR-21) is the most consistently over-expressed microRNA (miRNA) in malignant gliomas. We have previously reported that miR-21 is upregulated in glioma vessels and subsets of glioma cells. To better understand the role of miR-21 in glioma angiogenesis and to characterize miR-21......-localized with the hypoxia- and angiogenesis-associated markers HIF-1α (p=0.0020) and VEGF (p=0.0096), whereas the putative miR-21 target, PTEN, was expressed independently of miR-21. Expression of stem cell markers Oct4, Sox2 and CD133 was not associated with miR-21. In six glioblastoma cultures, miR-21 did not correlate...... with the six markers. These findings suggest that miR-21 is linked to glioma angiogenesis, that miR-21 is unlikely to regulate PTEN, and that miR-21-positive tumor cells do not possess stem cell characteristics....

  2. miR-543 promotes gastric cancer cell proliferation by targeting SIRT1

    International Nuclear Information System (INIS)

    Li, Juan; Dong, Guoying; Wang, Bo; Gao, Wei; Yang, Qing

    2016-01-01

    SIRT1, a class III histone deacetylase, exerts inhibitory effects on tumorigenesis and is downregulated in gastric cancer. However, the role of microRNAs in the regulation of SIRT1 in gastric cancer is still largely unknown. Here, we identified miR-543 as a predicted upstream regulator of SIRT1 using 3 different bioinformatics databases. Mimics of miR-543 significantly inhibited the expression of SIRT1, whereas an inhibitor of miR-543 increased SIRT1 expression. MiR-543 directly targeted the 3′-UTR of SIRT1, and both of the two binding sites contributed to the inhibitory effects. In gastric epithelium-derived cell lines, miR-543 promoted cell proliferation and cell cycle progression, and overexpression of SIRT1 rescued the above effects of miR-543. The inhibitory effects of miR-543 on SIRT1 were also validated using clinical gastric cancer samples. Moreover, we found that miR-543 expression was positively associated with tumor size, clinical grade, TNM stage and lymph node metastasis in gastric cancer patients. Our results identify a new regulatory mechanism of miR-543 on SIRT1 expression in gastric cancer, and raise the possibility that the miR-543/SIRT1 pathway may serve as a potential target for the treatment of gastric cancer. - Highlights: • SIRT1 is a novel target of miR-543. • miR-543 promotes gastric cancer cell proliferation and cell cycle progression by targeting SIRT1. • miR-543 is upregulated in GC and positively associated with tumor size, clinical grade, TNM stage and lymph node metastasis. • miR-543 is negatively correlated with SIRT1 expression in gastric cancer tissues.

  3. Overexpression of microRNA miR-30a or miR-191 in A549 lung cancer or BEAS-2B normal lung cell lines does not alter phenotype.

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Patnaik

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are small, noncoding RNAs (ribonucleic acids that regulate translation. Several miRNAs have been shown to be altered in whole cancer tissue compared to normal tissue when quantified by microarray. Based on previous such evidence of differential expression, we chose to study the functional significance of miRNAs miR-30a and -191 alterations in human lung cancer. METHODOLOGY/PRINCIPAL FINDINGS: The functional significance of miRNAs miR-30a and -191 was studied by creating stable transfectants of the lung adenocarcinoma cell line A549 and the immortalized bronchial epithelial cell line BEAS-2B with modest overexpression of miR-30a or -191 using a lentiviral system. When compared to the corresponding controls, both cell lines overexpressing miR-30a or -191 do not demonstrate any significant changes in cell cycle distribution, cell proliferation, adherent colony formation, soft agar colony formation, xenograft formation in a subcutaneous SCID mouse model, and drug sensitivity to doxorubicin and cisplatin. There is a modest increase in cell migration in cell lines overexpressing miR-30a compared to their controls. CONCLUSIONS/SIGNIFICANCE: Overexpression of miR-30a or -191 does not lead to an alteration in cell cycle, proliferation, xenograft formation, and chemosensitivity of A549 and BEAS-2B cell lines. Using microarray data from whole tumors to select specific miRNAs for functional study may be a suboptimal strategy.

  4. Dose-Response of High-Intensity Training (HIT) on Atheroprotective miRNA-126 Levels

    Science.gov (United States)

    Schmitz, Boris; Schelleckes, Katrin; Nedele, Johanna; Thorwesten, Lothar; Klose, Andreas; Lenders, Malte; Krüger, Michael; Brand, Eva; Brand, Stefan-Martin

    2017-01-01

    Aim: MicroRNA-126 (miR-126) exerts beneficial effects on vascular integrity, angiogenesis, and atherosclerotic plaque stability. The purpose of this investigation was to analyze the dose-response relationship of high-intensity interval training (HIIT) on miR-126-3p and -5p levels. Methods: Sixty-one moderately trained individuals (females = 31 [50.8%]; 22.0 ± 1.84 years) were consecutively recruited and allocated into three matched groups using exercise capacity. During a 4-week intervention a HIIT group performed three exercise sessions/week of 4 × 30 s at maximum speed (all-out), a progressive HIIT (proHIIT) group performed three exercise sessions/week of 4 × 30 s at maximum speed (all-out) with one extra session every week (up to 7 × 30 s) and a low-intensity training (LIT) control group performed three exercise sessions/week for 25 min HIIT groups (after 4 min of high-intensity running). After the intervention, the LIT group presented an increase in miR-126-3p, while in the HIIT group, miR-126-3p levels were still reduced (all p HIIT (−1.05 ± 2.6 units). Conclusions: LIT and proHIIT may be performed to increase individual miR-126 levels. HIIT without progression was less effective in increasing miR-126. PMID:28611681

  5. Meta-analysis using a novel database, miRStress, reveals miRNAs that are frequently associated with the radiation and hypoxia stress-responses.

    Directory of Open Access Journals (Sweden)

    Laura Ann Jacobs

    Full Text Available Organisms are often exposed to environmental pressures that affect homeostasis, so it is important to understand the biological basis of stress-response. Various biological mechanisms have evolved to help cells cope with potentially cytotoxic changes in their environment. miRNAs are small non-coding RNAs which are able to regulate mRNA stability. It has been suggested that miRNAs may tip the balance between continued cytorepair and induction of apoptosis in response to stress. There is a wealth of data in the literature showing the effect of environmental stress on miRNAs, but it is scattered in a large number of disparate publications. Meta-analyses of this data would produce added insight into the molecular mechanisms of stress-response. To facilitate this we created and manually curated the miRStress database, which describes the changes in miRNA levels following an array of stress types in eukaryotic cells. Here we describe this database and validate the miRStress tool for analysing miRNAs that are regulated by stress. To validate the database we performed a cross-species analysis to identify miRNAs that respond to radiation. The analysis tool confirms miR-21 and miR-34a as frequently deregulated in response to radiation, but also identifies novel candidates as potentially important players in this stress response, including miR-15b, miR-19b, and miR-106a. Similarly, we used the miRStress tool to analyse hypoxia-responsive miRNAs. The most frequently deregulated miRNAs were miR-210 and miR-21, as expected. Several other miRNAs were also found to be associated with hypoxia, including miR-181b, miR-26a/b, miR-106a, miR-213 and miR-192. Therefore the miRStress tool has identified miRNAs with hitherto unknown or under-appreciated roles in the response to specific stress types. The miRStress tool, which can be used to uncover new insight into the biological roles of miRNAs, and also has the potential to unearth potential biomarkers for

  6. REDUKSI PEMBOROSAN UNTUK PERBAIKAN VALUE STREAM PRODUKSI “MI LETHEK” MENGGUNAKAN PENDEKATAN LEAN MANUFACTURING (Waste Reduction to Improve Value Stream of “Mi Lethek” Production Using Lean Manufacturing Approach

    Directory of Open Access Journals (Sweden)

    Aditya Nugroho

    2015-09-01

    of raw materials. These recommendations could increase PCE score  to 15,68 %. Keywords: Waste, value stream, “Mi Lethek”, lean manufacturing   ABSTRAK Industri “Mi Lethek” merupakan industri yang menghasilkan produk berupa mi kering berbahan baku tepung tapioka. Pada proses pengolahan mi di industri “Mi Lethek”, terdapat berbagai pemborosan ( yang dapat merugikan industri. Diantara pemborosan yang terjadi berupa persediaan bahan baku yang belum diperlukan dan transportasi berlebih. Untuk mereduksi pemborosan tersebut diperlukan suatu perbaikan pada   menggunakan pendekatan . Pendekatan aktivitas yang ada pada industri “Mi Lethek”. Aktivitas-aktivitas tersebut kemudian digolongkan menjadi dua jenis aktivitas, yaitu aktivitas yang memberikan nilai tambah dan aktivitas yang tidak memberikan nilai tambah. Waktu dari masing-masing aktivitas tersebut yang selanjutnya digunakan untuk menghitung nilai (PCE. nilai pada produk dibandingkan total waktu yang digunakan produk selama dalam proses. Berdasarkan penelitian yang telah dilakukan, didapatkan nilai PCE awal dari industri “Mi Lethek” sebesar 12,05 %Perbaikan yang dilakukan ialah dengan mengubah tata letak pabrik dan melakukan perbaikan penjadwalan pemesanan bahan baku. Hasil perbaikan tersebut berhasil meningkatkan nilai PCE menjadi  15,68 %. Kata kunci: Pemborosan, “Mi Lethek”

  7. Cloning and characterization of pre-miR159a and pre-miR1123 from ...

    African Journals Online (AJOL)

    Although many miRNA genes are conserved across the plant species, the same gene family varies significantly in size and genomic organization in different species. ... Sequence identity matrix suggests 43-82% variation in precursor of Tae AL pre-miR159a (Tae Agra local pre-miR159a) across the species. On the other ...

  8. Polycomb repressive complex 2 regulates MiR-200b in retinal endothelial cells: potential relevance in diabetic retinopathy.

    Directory of Open Access Journals (Sweden)

    Michael Anthony Ruiz

    Full Text Available Glucose-induced augmented vascular endothelial growth factor (VEGF production is a key event in diabetic retinopathy. We have previously demonstrated that downregulation of miR-200b increases VEGF, mediating structural and functional changes in the retina in diabetes. However, mechanisms regulating miR-200b in diabetes are not known. Histone methyltransferase complex, Polycomb Repressive Complex 2 (PRC2, has been shown to repress miRNAs in neoplastic process. We hypothesized that, in diabetes, PRC2 represses miR-200b through its histone H3 lysine-27 trimethylation mark. We show that human retinal microvascular endothelial cells exposed to high levels of glucose regulate miR-200b repression through histone methylation and that inhibition of PRC2 increases miR-200b while reducing VEGF. Furthermore, retinal tissue from animal models of diabetes showed increased expression of major PRC2 components, demonstrating in vivo relevance. This research established a repressive relationship between PRC2 and miR-200b, providing evidence of a novel mechanism of miRNA regulation through histone methylation.

  9. Rapid Detection of miRNA Using Nucleic Acids-templated AgNCs

    DEFF Research Database (Denmark)

    Shah, Pratik

    . In the case of plants, the levels of certain miRNAs can be used as biomarkers to evaluate the physiological status. Specific miRNA levels are influenced by stresses such as drought, salt, cold, heat and pathogenic infestations. In humans, the dysregulation of miRNAs have been highlighted in many diseases...... such as cancer, diabetes, cardiovascular disease and Alzheimer’s disease. MiRNAs, thus, can be useful markers for disease diagnosis, prognosis, and treatment. Because of its attractive optical properties such as brightness, tuneable emission wavelengths and photo-stability, DNA stabilized silver nano......-clusters (AgNCs) has increasingly been used to create nanoscale bio-sensing systems for selective and specific detection of bio-molecules. During the course of my Ph.D., I have focused on developing a novel diagnostic tool for miRNA detection using the fluorescent properties of DNA encapsulated AgNCs (DNA...

  10. Economic inequality increases risk taking.

    Science.gov (United States)

    Payne, B Keith; Brown-Iannuzzi, Jazmin L; Hannay, Jason W

    2017-05-02

    Rising income inequality is a global trend. Increased income inequality has been associated with higher rates of crime, greater consumer debt, and poorer health outcomes. The mechanisms linking inequality to poor outcomes among individuals are poorly understood. This research tested a behavioral account linking inequality to individual decision making. In three experiments ( n = 811), we found that higher inequality in the outcomes of an economic game led participants to take greater risks to try to achieve higher outcomes. This effect of unequal distributions on risk taking was driven by upward social comparisons. Next, we estimated economic risk taking in daily life using large-scale data from internet searches. Risk taking was higher in states with greater income inequality, an effect driven by inequality at the upper end of the income distribution. Results suggest that inequality may promote poor outcomes, in part, by increasing risky behavior.

  11. Hepatitis A virus-encoded miRNAs attenuate the accumulation of viral genomic RNAs in infected cells.

    Science.gov (United States)

    Shi, Jiandong; Sun, Jing; Wu, Meini; Hu, Ningzhu; Hu, Yunzhang

    2016-06-01

    The establishment of persistent infection with hepatitis A virus (HAV) is the common result of most HAV/cell culture systems. Previous observations show that the synthesis of viral RNAs is reduced during infection. However, the underlying mechanism is poorly understood. We characterized three HAV-encoded miRNAs in our previous study. In this study, we aim to investigate the impact of these miRNAs on the accumulation of viral RNAs. The results indicated that the synthesis of viral genomic RNAs was dramatically reduced (more than 75 % reduction, P viral miRNA mimics. Conversely, they were significantly increased (more than 3.3-fold addition, P viral miRNA inhibitors. The luciferase reporter assay of miRNA targets showed that viral miRNAs were fully complementary to specific sites of the viral plus or minus strand RNA and strongly inhibited their expressions. Further data showed that the relative abundance of viral genomic RNA fragments that contain miRNA targets was also dramatically reduced (more than 80 % reduction, P viral miRNAs were overexpressed with miRNA mimics. In contrast, they were significantly increased (approximately 2-fold addition, P viral miRNAs were inhibited with miRNA inhibitors. In conclusion, these data suggest a possible mechanism for the reduction of viral RNA synthesis during HAV infection. Thus, we propose that it is likely that RNA virus-derived miRNA could serve as a self-mediated feedback regulator during infection.

  12. Exosomal miRNAs from Peritoneum Lavage Fluid as Potential Prognostic Biomarkers of Peritoneal Metastasis in Gastric Cancer.

    Directory of Open Access Journals (Sweden)

    Motohiko Tokuhisa

    Full Text Available Peritoneal metastasis is the most frequent type of recurrence in patients with gastric cancer (GC and is associated with poor prognosis. Peritoneal lavage cytology, used to evaluate the risk of peritoneal metastasis, has low sensitivity. Here, we assessed the diagnostic potential of exosomal miRNA profiles in peritoneal fluid for the prediction of peritoneal dissemination in GC. Total RNA was extracted from exosomes isolated from six gastric malignant ascites (MA samples, 24 peritoneal lavage fluid (PLF samples, and culture supernatants (CM of two human gastric carcinoma cell lines that differ in their potential for peritoneal metastasis. Expression of exosomal miRNAs was evaluated with Agilent Human miRNA microarrays and quantitative reverse transcription polymerase chain reaction (qRT-PCR. The microarray analysis indicated a low variability in the number and signal intensity of miRNAs detected among the samples. In the six MA fluids, miR-21 showed the highest signal intensity. We identified five miRNAs (miR-1225-5p, miR-320c, miR-1202, miR-1207-5p, and miR-4270 with high expression in MA samples, the PLF of serosa-invasive GC, and the CM of a highly metastatic GC cell line; these candidate miRNA species appear to be related to peritoneal dissemination. Differential expression of miR-21, miR-320c, and miR-1225-5p was validated in the PLF of serosa-invasive and non-invasive GC by qRT-PCR and miR-21 and miR-1225-5p were confirmed to be associated with serosal invasion in GC. PLF can be used to profile the expression of exosomal miRNAs. Our findings suggest that miR-21 and miR-1225-5p may serve as biomarkers of peritoneal recurrence after curative GC resection, thus providing a novel approach to early diagnosis of peritoneal dissemination of GC.

  13. Preoperative dehydration increases risk of postoperative acute renal failure in colon and rectal surgery.

    Science.gov (United States)

    Moghadamyeghaneh, Zhobin; Phelan, Michael J; Carmichael, Joseph C; Mills, Steven D; Pigazzi, Alessio; Nguyen, Ninh T; Stamos, Michael J

    2014-12-01

    There is limited data regarding the effects of preoperative dehydration on postoperative renal function. We sought to identify associations between hydration status before operation and postoperative acute renal failure (ARF) in patients undergoing colorectal resection. The NSQIP database was used to examine the data of patients undergoing colorectal resection from 2005 to 2011. We used preoperative blood urea nitrogen (BUN)/creatinine ratio >20 as a marker of relative dehydration. Multivariate analysis using logistic regression was performed to quantify the association of BUN/Cr ratio with ARF. We sampled 27,860 patients who underwent colorectal resection. Patients with dehydration had higher risk of ARF compared to patients with BUN/Cr Dehydration was associated with an increase in mortality of the affected patients (AOR, 2.19; P dehydrated patients. Open colorectal procedures (AOR, 2.67; P = 0.01) and total colectomy procedure (AOR, 1.62; P Dehydration before operation is a common condition in colorectal surgery (incidence of 27.7 %). Preoperative dehydration is associated with increased rates of postoperative ARF, MI, and cardiac arrest. Hydrotherapy of patients with dehydration may decrease postoperative complications in colorectal surgery.

  14. Is there continued evidence for an association between abacavir usage and myocardial infarction risk in individuals with HIV?

    DEFF Research Database (Denmark)

    Sabin, Caroline A; Reiss, Peter; Ryom, Lene

    2016-01-01

    BACKGROUND: In March 2008, the D:A:D study published results demonstrating an increased risk of myocardial infarction (MI) for patients on abacavir (ABC). We describe changes to the use of ABC since this date, and investigate changes to the association between ABC and MI with subsequent follow......-up. METHODS: A total of 49,717 D:A:D participants were followed from study entry until the first of an MI, death, 1 February 2013 or 6 months after last visit. Associations between a person's 10-year cardiovascular disease (CVD) risk and the likelihood of initiating or discontinuing ABC were assessed using...... multivariable logistic/Poisson regression. Poisson regression was used to assess the association between current ABC use and MI risk, adjusting for potential confounders, and a test of interaction was performed to assess whether the association had changed in the post-March 2008 period. RESULTS: Use of ABC...

  15. miRNAs in Alzheimer Disease - A Therapeutic Perspective.

    Science.gov (United States)

    Gupta, Priya; Bhattacharjee, Surajit; Sharma, Ashish Ranjan; Sharma, Garima; Lee, Sang-Soo; Chakraborty, Chiranjib

    2017-01-01

    Alzheimer's disease is a neurodegenerative disorder which generally affects people who are more than 60 years of age. The disease is clinically characterised by dementia, loss of cognitive functions and massive neurodegeneration. The presence of neurofibrilary tangles and amyloid plaques in the hippocampal region of the brain are the hallmarks of the disease. Current therapeutic approaches for the treatment of Alzheimer's disease are symptomatic and disease modifying, none of which provide any permanent solution or cure for the disease. Dysregulation of miRNAs is one of the major causes of neurodegeneration. In the present review, the roles of different miRNAs such as miR-9, miR-107, miR-29, miR-34, miR-181, miR-106, miR-146a, miR132, miR124a, miR153 has been discussed in detail in the pathogenesis of various neurodegenerative diseases with special focus on AD. The probability of miRNAs as an alternative and more sensitive approach for detection and management of the AD has also been discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Physical activity levels, ownership of goods promoting sedentary behaviour and risk of myocardial infarction: results of the INTERHEART study.

    Science.gov (United States)

    Held, Claes; Iqbal, Romaina; Lear, Scott A; Rosengren, Annika; Islam, Shofiqul; Mathew, James; Yusuf, Salim

    2012-02-01

    To evaluate the association between occupational and leisure-time physical activity (PA), ownership of goods promoting sedentary behaviour, and the risk of myocardial infarction (MI) in different socio-economic populations of the world. Studies in developed countries have found low PA as a risk factor for cardiovascular disease; however, the protective effect of occupational PA is less certain. Moreover, ownership of goods promoting sedentary behaviour may be associated with an increased risk. In INTERHEART, a case-control study of 10 043 cases of first MI and 14 217 controls who did not report previous angina or physical disability completed a questionnaire on work and leisure-time PA. Subjects whose occupation involved either light [multivariable-adjusted odds ratio (OR) 0.78, confidence interval (CI) 0.71-0.86] or moderate (OR 0.89, CI 0.80-0.99) PA were at a lower risk of MI, whereas those who did heavy physical labour were not (OR 1.02, CI 0.88-1.19), compared with sedentary subjects. Mild exercise (OR 0.87, CI 0.81-0.93) as well as moderate or strenuous exercise (OR 0.76, CI 0.69-0.82) was protective. The effect of PA was observed across countries with low, middle, and high income. Subjects who owned both a car and a television (TV) (multivariable-adjusted OR 1.27, CI 1.05-1.54) were at higher risk of MI compared with those who owned neither. Leisure-time PA and mild-to-moderate occupational PA, but not heavy physical labour, were associated with a reduced risk, while ownership of a car and TV was associated with an increased risk of MI across all economic regions.

  17. The expression of miR-181a-5p and miR-371b-5p in chondrosarcoma.

    Science.gov (United States)

    Mutlu, S; Mutlu, H; Kirkbes, S; Eroglu, S; Kabukcuoglu, Y S; Kabukcuoglu, F; Duymus, T M; ISık, M; Ulasli, M

    2015-07-01

    Chondrosarcomas are malignant tumors of chondrocytes that affect bones and joints, and it represents the third most common type of primary bone tumors. Chondrosarcoma is difficult to treat because it is relatively resistant to both chemotherapy and radiation. Thus, surgery remains the best available treatment. It is important to find new diagnostic markers and improve treatment options. miRNAs are small non-coding transcripts (19-25 nucleotides) that regulate gene expression via targeting complementary sequences within messenger RNAs (mRNAs). miRNAs have been shown to be involved in regulation of many biochemical pathways. Dysregulated expression of many miRNAs has also been associated with multiple human diseases, such as cancer. 18 surgical chondrosarcoma specimens were obtained from patients. RNA extractions were performed from decalcified paraffin embedded tissues. The aim of this study was to investigate the expression levels of miR-181a and miR-371b in patients with chondrosarcoma by using RT-PCR and to evaluate the relationship between these miRNAs and chondrosarcoma. miR-181a was found to be upregulated in chondrosarcoma specimens whereas no significant alteration was found for miR-371b expression. It has been proposed that miRNA expression studies might be used as diagnostic, prognostic marker in cancer. miRNA expression data produced in our study may contribute future chondrosarcoma diagnosis and therapy.

  18. MicroRNA Related Polymorphisms and Breast Cancer Risk

    DEFF Research Database (Denmark)

    Khan, Sofia; Greco, Dario; Michailidou, Kyriaki

    2014-01-01

    Genetic variations, such as single nucleotide polymorphisms (SNPs) in microRNAs (miRNA) or in the miRNA binding sites may affect the miRNA dependent gene expression regulation, which has been implicated in various cancers, including breast cancer, and may alter individual susceptibility to cancer....... We investigated associations between miRNA related SNPs and breast cancer risk. First we evaluated 2,196 SNPs in a case-control study combining nine genome wide association studies (GWAS). Second, we further investigated 42 SNPs with suggestive evidence for association using 41,785 cases and 41......,880 controls from 41 studies included in the Breast Cancer Association Consortium (BCAC). Combining the GWAS and BCAC data within a meta-analysis, we estimated main effects on breast cancer risk as well as risks for estrogen receptor (ER) and age defined subgroups. Five miRNA binding site SNPs associated...

  19. Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: New trends in the development of miRNA therapeutic strategies in oncology (Review)

    Science.gov (United States)

    GAMBARI, ROBERTO; BROGNARA, ELEONORA; SPANDIDOS, DEMETRIOS A.; FABBRI, ENRICA

    2016-01-01

    MicroRNA (miRNA or miR) therapeutics in cancer are based on targeting or mimicking miRNAs involved in cancer onset, progression, angiogenesis, epithelial-mesenchymal transition and metastasis. Several studies conclusively have demonstrated that miRNAs are deeply involved in tumor onset and progression, either behaving as tumor-promoting miRNAs (oncomiRNAs and metastamiRNAs) or as tumor suppressor miRNAs. This review focuses on the most promising examples potentially leading to the development of anticancer, miRNA-based therapeutic protocols. The inhibition of miRNA activity can be readily achieved by the use of miRNA inhibitors and oligomers, including RNA, DNA and DNA analogues (miRNA antisense therapy), small molecule inhibitors, miRNA sponges or through miRNA masking. On the contrary, the enhancement of miRNA function (miRNA replacement therapy) can be achieved by the use of modified miRNA mimetics, such as plasmid or lentiviral vectors carrying miRNA sequences. Combination strategies have been recently developed based on the observation that i) the combined administration of different antagomiR molecules induces greater antitumor effects and ii) some anti-miR molecules can sensitize drug-resistant tumor cell lines to therapeutic drugs. In this review, we discuss two additional issues: i) the combination of miRNA replacement therapy with drug administration and ii) the combination of antagomiR and miRNA replacement therapy. One of the solid results emerging from different independent studies is that miRNA replacement therapy can enhance the antitumor effects of the antitumor drugs. The second important conclusion of the reviewed studies is that the combination of anti-miRNA and miRNA replacement strategies may lead to excellent results, in terms of antitumor effects. PMID:27175518

  20. Methylation of miRNA genes and oncogenesis.

    Science.gov (United States)

    Loginov, V I; Rykov, S V; Fridman, M V; Braga, E A

    2015-02-01

    Interaction between microRNA (miRNA) and messenger RNA of target genes at the posttranscriptional level provides fine-tuned dynamic regulation of cell signaling pathways. Each miRNA can be involved in regulating hundreds of protein-coding genes, and, conversely, a number of different miRNAs usually target a structural gene. Epigenetic gene inactivation associated with methylation of promoter CpG-islands is common to both protein-coding genes and miRNA genes. Here, data on functions of miRNAs in development of tumor-cell phenotype are reviewed. Genomic organization of promoter CpG-islands of the miRNA genes located in inter- and intragenic areas is discussed. The literature and our own results on frequency of CpG-island methylation in miRNA genes from tumors are summarized, and data regarding a link between such modification and changed activity of miRNA genes and, consequently, protein-coding target genes are presented. Moreover, the impact of miRNA gene methylation on key oncogenetic processes as well as affected signaling pathways is discussed.

  1. Sustained miRNA-mediated knockdown of mutant AAT with simultaneous augmentation of wild-type AAT has minimal effect on global liver miRNA profiles.

    Science.gov (United States)

    Mueller, Christian; Tang, Qiushi; Gruntman, Alisha; Blomenkamp, Keith; Teckman, Jeffery; Song, Lina; Zamore, Phillip D; Flotte, Terence R

    2012-03-01

    α-1 antitrypsin (AAT) deficiency can exhibit two pathologic states: a lung disease that is primarily due to the loss of AAT's antiprotease function, and a liver disease resulting from a toxic gain-of-function of the PiZ-AAT (Z-AAT) mutant protein. We have developed several recombinant adeno-associated virus (rAAV) vectors that incorporate microRNA (miRNA) sequences targeting the AAT gene while also driving the expression of miRNA-resistant wild-type AAT-PiM (M-AAT) gene, thus achieving concomitant Z-AAT knockdown in the liver and increased expression of M-AAT. Transgenic mice expressing the human PiZ allele treated with dual-function rAAV9 vectors showed that serum PiZ was stably and persistently reduced by an average of 80%. Treated animals showed knockdown of Z-AAT in liver and serum with concomitant increased serum M-AAT as determined by allele-specific enzyme-linked immunosorbent assays (ELISAs). In addition, decreased globular accumulation of misfolded Z-AAT in hepatocytes and a reduction in inflammatory infiltrates in the liver was observed. Results from microarray studies demonstrate that endogenous miRNAs were minimally affected by this treatment. These data suggests that miRNA mediated knockdown does not saturate the miRNA pathway as has been seen with viral vector expression of short hairpin RNAs (shRNAs). This safe dual-therapy approach can be applied to other disorders such as amyotrophic lateral sclerosis, Huntington disease, cerebral ataxia, and optic atrophies.

  2. MiR-181b regulates steatosis in nonalcoholic fatty liver disease via targeting SIRT1.

    Science.gov (United States)

    Wang, Yunxia; Zhu, Kongxi; Yu, Weihua; Wang, Hongjuan; Liu, Lan; Wu, Qiong; Li, Shuai; Guo, Jianqiang

    2017-11-04

    Non-alcoholic fatty liver diseases (NAFLD) is one of the leading cause of chronic liver diseases in the world. However, the pathogenesis of NAFLD is still unclear. Emerging studies have demonstrated that microRNAs (miRs) are profoundly involved in NAFLD and related metabolic diseases. Here, we investigated the mechanisms by which miR-181b influences NAFLD via direct targeting SIRT1. The expression of miR181b was up-regulated while SIRT1 was down-regulated in both human NAFLD patients and high fat diet (HFD) induced NAFDL mice model. And palmitic acid (PA) treatment increased the miR-181b expression while decreased SIRT1 expression in HepG2 cells. Further, we identified that SIRT1 is a direct downstream target of miR-181b. Ectopic expression of miR-181b significantly repressed the 3'-UTR reporter activities of SIRT1 in a dose-dependent manner, while the effect of miR-181b was interrupted when the binding site of miR-181b within the SIRT1 3'-UTR was mutated. And overexpression of miR-181b reduced both the mRNA and protein levels of SIRT1 in HepG2 cells. We also found that inhibition of miR-181b expression alleviates hepatic steatosis both in vitro and in vivo. And the effect of miR-181b on steatosis was blocked by SIRT1 overexpression. Taken together, our data indicated that increased expression of miR-181b potentially contributes to altered lipid metabolism in NAFLD. Downregulation of miR-34a may be a therapeutic strategy against NAFLD by regulating its target SIRT1. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Prediction of miRNA-mRNA associations in Alzheimer's disease mice using network topology.

    Science.gov (United States)

    Noh, Haneul; Park, Charny; Park, Soojun; Lee, Young Seek; Cho, Soo Young; Seo, Hyemyung

    2014-08-03

    Little is known about the relationship between miRNA and mRNA expression in Alzheimer's disease (AD) at early- or late-symptomatic stages. Sequence-based target prediction algorithms and anti-correlation profiles have been applied to predict miRNA targets using omics data, but this approach often leads to false positive predictions. Here, we applied the joint profiling analysis of mRNA and miRNA expression levels to Tg6799 AD model mice at 4 and 8 months of age using a network topology-based method. We constructed gene regulatory networks and used the PageRank algorithm to predict significant interactions between miRNA and mRNA. In total, 8 cluster modules were predicted by the transcriptome data for co-expression networks of AD pathology. In total, 54 miRNAs were identified as being differentially expressed in AD. Among these, 50 significant miRNA-mRNA interactions were predicted by integrating sequence target prediction, expression analysis, and the PageRank algorithm. We identified a set of miRNA-mRNA interactions that were changed in the hippocampus of Tg6799 AD model mice. We determined the expression levels of several candidate genes and miRNA. For functional validation in primary cultured neurons from Tg6799 mice (MT) and littermate (LM) controls, the overexpression of ARRDC3 enhanced PPP1R3C expression. ARRDC3 overexpression showed the tendency to decrease the expression of miR139-5p and miR3470a in both LM and MT primary cells. Pathological environment created by Aβ treatment increased the gene expression of PPP1R3C and Sfpq but did not significantly alter the expression of miR139-5p or miR3470a. Aβ treatment increased the promoter activity of ARRDC3 gene in LM primary cells but not in MT primary cells. Our results demonstrate AD-specific changes in the miRNA regulatory system as well as the relationship between the expression levels of miRNAs and their targets in the hippocampus of Tg6799 mice. These data help further our understanding of the function

  4. Methamphetamine inhibits HIV-1 replication in CD4+ T cells by modulating anti-HIV-1 miRNA expression.

    Science.gov (United States)

    Mantri, Chinmay K; Mantri, Jyoti V; Pandhare, Jui; Dash, Chandravanu

    2014-01-01

    Methamphetamine is the second most frequently used illicit drug in the United States. Methamphetamine abuse is associated with increased risk of HIV-1 acquisition, higher viral loads, and enhanced HIV-1 pathogenesis. Although a direct link between methamphetamine abuse and HIV-1 pathogenesis remains to be established in patients, methamphetamine has been shown to increase HIV-1 replication in macrophages, dendritic cells, and cells of HIV transgenic mice. Intriguingly, the effects of methamphetamine on HIV-1 replication in human CD4(+) T cells that serve as the primary targets of infection in vivo are not clearly understood. Therefore, we examined HIV-1 replication in primary CD4(+) T cells in the presence of methamphetamine in a dose-dependent manner. Our results demonstrate that methamphetamine had a minimal effect on HIV-1 replication at concentrations of 1 to 50 μmol/L. However, at concentrations >100 μmol/L, it inhibited HIV-1 replication in a dose-dependent manner. We also discovered that methamphetamine up-regulated the cellular anti-HIV-1 microRNAs (miR-125b, miR-150, and miR-28-5p) in CD4(+) T cells. Knockdown experiments illustrated that up-regulation of the anti-HIV miRNAs inhibited HIV-1 replication. These results are contrary to the paradigm that methamphetamine accentuates HIV-1 pathogenesis by increasing HIV-1 replication. Therefore, our findings underline the complex interaction between drug use and HIV-1 and necessitate comprehensive understanding of the effects of methamphetamine on HIV-1 pathogenesis. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  5. Epigenetic silencing of miR-218 by the lncRNA CCAT1, acting via BMI1, promotes an altered cell cycle transition in the malignant transformation of HBE cells induced by cigarette smoke extract

    International Nuclear Information System (INIS)

    Lu, Lu; Xu, Hui; Luo, Fei; Liu, Xinlu; Lu, Xiaolin; Yang, Qianlei; Xue, Junchao; Chen, Chao; Shi, Le; Liu, Qizhan

    2016-01-01

    Cigarette smoking is the strongest risk factor for the development of lung cancer, the leading cause of cancer-related deaths. However, the molecular mechanisms leading to lung cancer are largely unknown. A long-noncoding RNA (lncRNA), CCAT1, regarded as cancer-associated, has been investigated extensively. Moreover, the molecular mechanisms of lncRNAs in regulation of microRNAs (miRNAs) induced by cigarette smoke remain unclear. In the present investigation, cigarette smoke extract (CSE) caused an altered cell cycle and increased CCAT1 levels and decreased miR-218 levels in human bronchial epithelial (HBE) cells. Depletion of CCAT1 attenuated the CSE-induced decreases of miR-218 levels, suggesting that miR-218 is negatively regulated by CCAT1 in HBE cells exposed to CSE. The CSE-induced increases of BMI1 levels and blocked by CCAT1 siRNA were attenuated by an miR-218 inhibitor. Moreover, in CSE-transformed HBE cells, the CSE-induced cell cycle changes and elevated neoplastic capacity were reversed by CCAT1 siRNA or BMI1 siRNA. This epigenetic silencing of miR-218 by CCAT1 induces an altered cell cycle transition through BMI1 and provides a new mechanism for CSE-induced lung carcinogenesis. - Highlights: • CSE exposure induces increases of CCAT1 levels and decreases of miR-218 levels. • CCAT1 negatively regulates miR-218 expression. • CCAT1, regulated by miR-218, via BMI1, is involved in the CSE-induced altered cell cycle transition.

  6. Epigenetic silencing of miR-218 by the lncRNA CCAT1, acting via BMI1, promotes an altered cell cycle transition in the malignant transformation of HBE cells induced by cigarette smoke extract

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Lu; Xu, Hui; Luo, Fei; Liu, Xinlu; Lu, Xiaolin; Yang, Qianlei; Xue, Junchao; Chen, Chao; Shi, Le; Liu, Qizhan, E-mail: drqzliu@hotmail.com

    2016-08-01

    Cigarette smoking is the strongest risk factor for the development of lung cancer, the leading cause of cancer-related deaths. However, the molecular mechanisms leading to lung cancer are largely unknown. A long-noncoding RNA (lncRNA), CCAT1, regarded as cancer-associated, has been investigated extensively. Moreover, the molecular mechanisms of lncRNAs in regulation of microRNAs (miRNAs) induced by cigarette smoke remain unclear. In the present investigation, cigarette smoke extract (CSE) caused an altered cell cycle and increased CCAT1 levels and decreased miR-218 levels in human bronchial epithelial (HBE) cells. Depletion of CCAT1 attenuated the CSE-induced decreases of miR-218 levels, suggesting that miR-218 is negatively regulated by CCAT1 in HBE cells exposed to CSE. The CSE-induced increases of BMI1 levels and blocked by CCAT1 siRNA were attenuated by an miR-218 inhibitor. Moreover, in CSE-transformed HBE cells, the CSE-induced cell cycle changes and elevated neoplastic capacity were reversed by CCAT1 siRNA or BMI1 siRNA. This epigenetic silencing of miR-218 by CCAT1 induces an altered cell cycle transition through BMI1 and provides a new mechanism for CSE-induced lung carcinogenesis. - Highlights: • CSE exposure induces increases of CCAT1 levels and decreases of miR-218 levels. • CCAT1 negatively regulates miR-218 expression. • CCAT1, regulated by miR-218, via BMI1, is involved in the CSE-induced altered cell cycle transition.

  7. MiR-338-3p regulates neuronal maturation and suppresses glioblastoma proliferation.

    Directory of Open Access Journals (Sweden)

    James R Howe

    Full Text Available Neurogenesis is a highly-regulated process occurring in the dentate gyrus that has been linked to learning, memory, and antidepressant efficacy. MicroRNAs (miRNAs have been previously shown to play an important role in the regulation of neuronal development and neurogenesis in the dentate gyrus via modulation of gene expression. However, this mode of regulation is both incompletely described in the literature thus far and highly multifactorial. In this study, we designed sensors and detected relative levels of expression of 10 different miRNAs and found miR-338-3p was most highly expressed in the dentate gyrus. Comparison of miR-338-3p expression with neuronal markers of maturity indicates miR-338-3p is expressed most highly in the mature neuron. We also designed a viral "sponge" to knock down in vivo expression of miR-338-3p. When miR-338-3p is knocked down, neurons sprout multiple primary dendrites that branch off of the soma in a disorganized manner, cellular proliferation is upregulated, and neoplasms form spontaneously in vivo. Additionally, miR-338-3p overexpression in glioblastoma cell lines slows their proliferation in vitro. Further, low miR-338-3p expression is associated with increased mortality and disease progression in patients with glioblastoma. These data identify miR-338-3p as a clinically relevant tumor suppressor in glioblastoma.

  8. miR-132/212 knockout mice reveal roles for these miRNAs in regulating cortical synaptic transmission and plasticity.

    Directory of Open Access Journals (Sweden)

    Judit Remenyi

    Full Text Available miR-132 and miR-212 are two closely related miRNAs encoded in the same intron of a small non-coding gene, which have been suggested to play roles in both immune and neuronal function. We describe here the generation and initial characterisation of a miR-132/212 double knockout mouse. These mice were viable and fertile with no overt adverse phenotype. Analysis of innate immune responses, including TLR-induced cytokine production and IFNβ induction in response to viral infection of primary fibroblasts did not reveal any phenotype in the knockouts. In contrast, the loss of miR-132 and miR-212, while not overtly affecting neuronal morphology, did affect synaptic function. In both hippocampal and neocortical slices miR-132/212 knockout reduced basal synaptic transmission, without affecting paired-pulse facilitation. Hippocampal long-term potentiation (LTP induced by tetanic stimulation was not affected by miR-132/212 deletion, whilst theta burst LTP was enhanced. In contrast, neocortical theta burst-induced LTP was inhibited by loss of miR-132/212. Together these results indicate that miR-132 and/or miR-212 play a significant role in synaptic function, possibly by regulating the number of postsynaptic AMPA receptors under basal conditions and during activity-dependent synaptic plasticity.

  9. Noninvasive risk stratification of lethal ventricular arrhythmias and sudden cardiac death after myocardial infarction

    Directory of Open Access Journals (Sweden)

    Kenji Yodogawa, MD

    2014-08-01

    Full Text Available Prediction of lethal ventricular arrhythmias leading to sudden cardiac death is one of the most important and challenging problems after myocardial infarction (MI. Identification of MI patients who are prone to ventricular tachyarrhythmias allows for an indication of implantable cardioverter-defibrillator placement. To date, noninvasive techniques such as microvolt T-wave alternans (MTWA, signal-averaged electrocardiography (SAECG, heart rate variability (HRV, and heart rate turbulence (HRT have been developed for this purpose. MTWA is an indicator of repolarization abnormality and is currently the most promising risk-stratification tool for predicting malignant ventricular arrhythmias. Similarly, late potentials detected by SAECG are indices of depolarization abnormality and are useful in risk stratification. However, the role of SAECG is limited because of its low predictive accuracy. Abnormal HRV and HRT patterns reflect autonomic disturbances, which may increase the risk of lethal ventricular arrhythmias, but the existing evidence is insufficient. Further studies of noninvasive assessment may provide a new insight into risk stratification in post-MI patients.

  10. Age- and sex-specific prevalence and ten-year risk for cardiovascular disease of all 16 risk factor combinations of the metabolic syndrome - A cross-sectional study

    Directory of Open Access Journals (Sweden)

    Moebus Susanne

    2010-08-01

    Full Text Available Abstract Background Based on the AHA/NHLBI-definition three out of five cardiometabolic traits must be present for the diagnosis of the metabolic syndrome (MetS, resulting in 16 different combination types. The associated cardiovascular risk may however be different and specific combination may be indicative of an increased risk, furthermore little is known to which extent these 16 combinations contribute to the overall prevalence of MetS. Here we assessed the prevalence of all 16 combination types of MetS, analyzed the impact of age and gender on prevalence rates, and estimated the 10-year risk of fatal and non-fatal myocardial infarction (MI of each MetS combination type. Methods We used data of the German Metabolic and Cardiovascular Risk Project (GEMCAS, a cross-sectional study, performed during October 2005, including 35,869 participants (aged 18-99 years, 61% women. Age-standardized prevalence and 10-year PROCAM and ESC risk scores for MI were calculated. Results In both men and women the combination with elevated waist-circumference, blood pressure and glucose (WC-BP-GL was the most frequent combination (28%, however a distinct unequal distribution was observed regarding age and sex. Any combination with GL was common in the elderly, whereas any combination with dyslipidemia and without GL was frequent in the younger. Men without MetS had an estimated mean 10-year risk of 4.7% (95%-CI: 4.5%-4.8% for MI (PROCAM, whereas the mean 10-year risk of men with MetS was clearly higher (age-standardized 7.9%; 7.8-8.0%. In women without MetS the mean 10-year risk for MI was 1.1%, in those with MetS 2.3%. The highest impact on an estimated 10-year risk for MI (PROCAM was observed with TG-HDL-GL-BP in both sexes (men 14.7%, women 3.9%. However, we could identify combinations with equal risks of non-fatal and fatal MI compared to participants without MetS. Conclusions We observed large variations in the prevalence of all 16 combination types and their

  11. Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Vrba, Lukas; Jensen, Taylor J.; Garbe, James C.; Heimark, Ronald L.; Cress, Anne E.; Dickinson, Sally; Stampfer, Martha R.; Futscher, Bernard W.

    2009-12-23

    BACKGROUND: The microRNA-200 family participates in the maintenance of an epithelial phenotype and loss of its expression can result in epithelial to mesenchymal transition (EMT). Furthermore, the loss of expression of miR-200 family members is linked to an aggressive cancer phenotype. Regulation of the miR-200 family expression in normal and cancer cells is not fully understood. METHODOLOGY/ PRINCIPAL FINDINGS: Epigenetic mechanisms participate in the control of miR-200c and miR-141 expression in both normal and cancer cells. A CpG island near the predicted mir-200c/mir-141 transcription start site shows a striking correlation between miR-200c and miR-141 expression and DNA methylation in both normal and cancer cells, as determined by MassARRAY technology. The CpG island is unmethylated in human miR-200/miR-141 expressing epithelial cells and in miR-200c/miR-141 positive tumor cells. The CpG island is heavily methylated in human miR-200c/miR-141 negative fibroblasts and miR-200c/miR-141 negative tumor cells. Mouse cells show a similar inverse correlation between DNA methylation and miR-200c expression. Enrichment of permissive histone modifications, H3 acetylation and H3K4 trimethylation, is seen in normal miR-200c/miR-141-positive epithelial cells, as determined by chromatin immunoprecipitation coupled to real-time PCR. In contrast, repressive H3K9 dimethylation marks are present in normal miR-200c/miR-141-negative fibroblasts and miR-200c/miR-141 negative cancer cells and the permissive histone modifications are absent. The epigenetic modifier drug, 5-aza-2'-deoxycytidine, reactivates miR-200c/miR-141 expression showing that epigenetic mechanisms play a functional role in their transcriptional control. CONCLUSIONS/ SIGNIFICANCE: We report that DNA methylation plays a role in the normal cell type-specific expression of miR-200c and miR-141 and this role appears evolutionarily conserved, since similar results were obtained in mouse. Aberrant DNA methylation

  12. Differentiation of human induced pluripotent stem cells into insulin-like cell clusters with miR-186 and miR-375 by using chemical transfection.

    Science.gov (United States)

    Shaer, Anahita; Azarpira, Negar; Karimi, Mohammad Hosein

    2014-09-01

    Diabetes mellitus is characterized by either the inability to produce insulin or insensitivity to insulin secreted by the body. Islet cell replacement is an effective approach for diabetes treatment; however, it is not sufficient for all the diabetic patients. MicroRNAs (miRNAs) are a class of small noncoding RNAs that play an important role in mediating a broad and expanding range of biological activities, such as pancreas development. The present study aimed to develop a protocol to efficiently differentiate human induced pluripotent stem (iPS) cells into islet-like cell clusters (ILCs) in vitro by using miR-186 and miR-375. The human iPS colonies were transfected with hsa-miR-186 and hsa-miR-375 by using siPORT™ NeoFX™ Transfection Agent, and the differentiation was compared to controls. Total RNA was extracted 24 and 48 h after transfection. The gene expressions of insulin, NGN3, GLUT2, PAX4, PAX6, KIR6.2, NKX6.1, PDX1, Glucagon, and OCT4 were then evaluated through real-time qPCR. On the third day, the potency of the clusters was assessed in response to high glucose levels. Dithizone (DTZ) was used to identify the existence of the β-cells. Besides, the presence of insulin and NGN3 proteins was investigated by immunocytochemistry. Morphological changes were observed on the first day after the chemical transfection, and cell clusters were formed on the third day. The expression of pancreatic specific transcription factors was increased on the first day and significantly increased on the second day. The ILCs were positive for insulin and NGN3 proteins in the immunocytochemistry. Besides, the clusters were stained with DTZ and secreted insulin in glucose challenge test. Overexpression of miR-186 and miR-375 can be an alternative strategy for producing ILCs from the iPS cells in a short time. This work provides a new approach by using patient-specific iPSCs for β-cell replacement therapy in diabetic patients.

  13. MiR-107 and MiR-185 can induce cell cycle arrest in human non small cell lung cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Yukari Takahashi

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are short single stranded noncoding RNAs that suppress gene expression through either translational repression or degradation of target mRNAs. The annealing between messenger RNAs and 5' seed region of miRNAs is believed to be essential for the specific suppression of target gene expression. One miRNA can have several hundred different targets in a cell. Rapidly accumulating evidence suggests that many miRNAs are involved in cell cycle regulation and consequentially play critical roles in carcinogenesis. METHODOLOGY/PRINCIPAL FINDINGS: Introduction of synthetic miR-107 or miR-185 suppressed growth of the human non-small cell lung cancer cell lines. Flow cytometry analysis revealed these miRNAs induce a G1 cell cycle arrest in H1299 cells and the suppression of cell cycle progression is stronger than that by Let-7 miRNA. By the gene expression analyses with oligonucleotide microarrays, we find hundreds of genes are affected by transfection of these miRNAs. Using miRNA-target prediction analyses and the array data, we listed up a set of likely targets of miR-107 and miR-185 for G1 cell cycle arrest and validate a subset of them using real-time RT-PCR and immunoblotting for CDK6. CONCLUSIONS/SIGNIFICANCE: We identified new cell cycle regulating miRNAs, miR-107 and miR-185, localized in frequently altered chromosomal regions in human lung cancers. Especially for miR-107, a large number of down-regulated genes are annotated with the gene ontology term 'cell cycle'. Our results suggest that these miRNAs may contribute to regulate cell cycle in human malignant tumors.

  14. Muscle specific miRNAs are induced by testosterone and independently upregulated by age

    DEFF Research Database (Denmark)

    Nielsen, Søren; Hvid, Thine; Kelly, Meghan

    2014-01-01

    Age dependent decline in skeletal muscle function leads to impaired metabolic flexibility in elderly individuals. Physical activity and testosterone treatment have proven efficient strategies for delaying this condition. However, a common molecular pathway has not been identified. Muscle specific...... miRNAs (myomiRs) regulate metabolic pathways in skeletal muscle, are regulated by physical activity, and have response elements for testosterone in their promoter region. We therefore hypothesized that myomiRs would be regulated in skeletal muscle during aging. We further investigated any potential...... gender-dependent regulation of these miRNAs. We found that the myomiRs miR-1, miR-133a, and miR-133b were increased in skeletal muscle of elderly men compared to younger men. In addition, miR-133a/133b expression was markedly higher in women compared to men. Elimination of circulating testosterone in men...

  15. Higher relative, but lower absolute risks of myocardial infarction in women than in men

    DEFF Research Database (Denmark)

    Reuterwall, C; Hallqvist, J; Ahlbom, A

    1999-01-01

    Middle-aged men have often been the subjects of multifactorial studies of myocardial infarction (MI) risk factors. One major objective of the SHEEP study was to compare the effects of different MI risk factors in women and men.......Middle-aged men have often been the subjects of multifactorial studies of myocardial infarction (MI) risk factors. One major objective of the SHEEP study was to compare the effects of different MI risk factors in women and men....

  16. Evaluation of the miRNA-146a and miRNA-155 Expression Levels in Patients with Oral Lichen Planus.

    Science.gov (United States)

    Ahmadi-Motamayel, Fatemeh; Bayat, Zeynab; Hajilooi, Mehrdad; Shahryar-Hesami, Soroosh; Mahdavinezhad, Ali; Samie, Lida; Solgi, Ghasem

    2017-12-01

    Oral Lichen Planus (OLP) is a chronic autoimmune disease that could be considered as a potential premalignant status. To evaluate the miRNA-146a and miRNA-155 expression levels in patients with oral Lichen planus lesions compared to healthy subjects with normal oral mucosa. Forty patients with oral lichen planus and 18 healthy age and gender-matched controls were recruited in this case-control study. Oral lichen planus was diagnosed clinically and pathologically. The expression levels of two miRNAs in peripheral blood samples were determined using commercial TaqMan MicroRNA Assays. Relative quantification of gene expression was calculated by the 2-ΔΔct method. The expression levels of miRNA-146a and miRNA-155 in patients with oral Lichen planus were significantly higher than those of healthy controls. Also, a direct but insignificant correlation was found between miRNA-155 and miRNA-146a expression levels among the patient group. Our findings indicate that miRNA-146a and miRNA-155 could be potential biomarkers for the immunopathogenesis of oral lichen planus.

  17. MicroRNA related polymorphisms and breast cancer risk.

    Science.gov (United States)

    Khan, Sofia; Greco, Dario; Michailidou, Kyriaki; Milne, Roger L; Muranen, Taru A; Heikkinen, Tuomas; Aaltonen, Kirsimari; Dennis, Joe; Bolla, Manjeet K; Liu, Jianjun; Hall, Per; Irwanto, Astrid; Humphreys, Keith; Li, Jingmei; Czene, Kamila; Chang-Claude, Jenny; Hein, Rebecca; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Fletcher, Olivia; Peto, Julian; dos Santos Silva, Isabel; Johnson, Nichola; Gibson, Lorna; Aitken, Zoe; Hopper, John L; Tsimiklis, Helen; Bui, Minh; Makalic, Enes; Schmidt, Daniel F; Southey, Melissa C; Apicella, Carmel; Stone, Jennifer; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel A; van der Luijt, Rob B; Meindl, Alfons; Schmutzler, Rita K; Müller-Myhsok, Bertram; Lichtner, Peter; Turnbull, Clare; Rahman, Nazneen; Chanock, Stephen J; Hunter, David J; Cox, Angela; Cross, Simon S; Reed, Malcolm W R; Schmidt, Marjanka K; Broeks, Annegien; Van't Veer, Laura J; Hogervorst, Frans B; Fasching, Peter A; Schrauder, Michael G; Ekici, Arif B; Beckmann, Matthias W; Bojesen, Stig E; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Benitez, Javier; Zamora, Pilar M; Perez, Jose I A; Haiman, Christopher A; Henderson, Brian E; Schumacher, Fredrick; Le Marchand, Loic; Pharoah, Paul D P; Dunning, Alison M; Shah, Mitul; Luben, Robert; Brown, Judith; Couch, Fergus J; Wang, Xianshu; Vachon, Celine; Olson, Janet E; Lambrechts, Diether; Moisse, Matthieu; Paridaens, Robert; Christiaens, Marie-Rose; Guénel, Pascal; Truong, Thérèse; Laurent-Puig, Pierre; Mulot, Claire; Marme, Frederick; Burwinkel, Barbara; Schneeweiss, Andreas; Sohn, Christof; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Andrulis, Irene L; Knight, Julia A; Tchatchou, Sandrine; Mulligan, Anna Marie; Dörk, Thilo; Bogdanova, Natalia V; Antonenkova, Natalia N; Anton-Culver, Hoda; Darabi, Hatef; Eriksson, Mikael; Garcia-Closas, Montserrat; Figueroa, Jonine; Lissowska, Jolanta; Brinton, Louise; Devilee, Peter; Tollenaar, Robert A E M; Seynaeve, Caroline; van Asperen, Christi J; Kristensen, Vessela N; Slager, Susan; Toland, Amanda E; Ambrosone, Christine B; Yannoukakos, Drakoulis; Lindblom, Annika; Margolin, Sara; Radice, Paolo; Peterlongo, Paolo; Barile, Monica; Mariani, Paolo; Hooning, Maartje J; Martens, John W M; Collée, J Margriet; Jager, Agnes; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Giles, Graham G; McLean, Catriona; Brauch, Hiltrud; Brüning, Thomas; Ko, Yon-Dschun; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Jones, Michael; Simard, Jacques; Goldberg, Mark S; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Mannermaa, Arto; Hamann, Ute; Chenevix-Trench, Georgia; Blomqvist, Carl; Aittomäki, Kristiina; Easton, Douglas F; Nevanlinna, Heli

    2014-01-01

    Genetic variations, such as single nucleotide polymorphisms (SNPs) in microRNAs (miRNA) or in the miRNA binding sites may affect the miRNA dependent gene expression regulation, which has been implicated in various cancers, including breast cancer, and may alter individual susceptibility to cancer. We investigated associations between miRNA related SNPs and breast cancer risk. First we evaluated 2,196 SNPs in a case-control study combining nine genome wide association studies (GWAS). Second, we further investigated 42 SNPs with suggestive evidence for association using 41,785 cases and 41,880 controls from 41 studies included in the Breast Cancer Association Consortium (BCAC). Combining the GWAS and BCAC data within a meta-analysis, we estimated main effects on breast cancer risk as well as risks for estrogen receptor (ER) and age defined subgroups. Five miRNA binding site SNPs associated significantly with breast cancer risk: rs1045494 (odds ratio (OR) 0.92; 95% confidence interval (CI): 0.88-0.96), rs1052532 (OR 0.97; 95% CI: 0.95-0.99), rs10719 (OR 0.97; 95% CI: 0.94-0.99), rs4687554 (OR 0.97; 95% CI: 0.95-0.99, and rs3134615 (OR 1.03; 95% CI: 1.01-1.05) located in the 3' UTR of CASP8, HDDC3, DROSHA, MUSTN1, and MYCL1, respectively. DROSHA belongs to miRNA machinery genes and has a central role in initial miRNA processing. The remaining genes are involved in different molecular functions, including apoptosis and gene expression regulation. Further studies are warranted to elucidate whether the miRNA binding site SNPs are the causative variants for the observed risk effects.

  18. miRNA array analysis determines miR-205 is overexpressed in head and neck squamous cell carcinoma and enhances cellular proliferation

    Directory of Open Access Journals (Sweden)

    Howard JD

    2013-08-01

    Full Text Available MicroRNAs (miRNAs play a critical role in cell cycle and pro-survival signal regulation. Consequently, their deregulation can enhance tumorigenesis and cancer progression. In the current investigation, we determined whether cancer- or human papillomavirus (HPV-specific miRNA deregulation could further elucidate signal transduction events unique to head and neck squamous cell carcinoma (HNSCC. Twenty-nine newly diagnosed HNSCC tumors (HPV-positive: 14, HPV-negative: 15 and four normal mucosa samples were analyzed for global miRNA expression. Differential miRNA expression analysis concluded HNSCC is characterized by a general upregulation of miRNAs compared to normal mucosa. Additionally, miR-449a and miR-129-3p were statistically significant miRNAs differentially expressed between HPV-positive and HPV-negative HNSCC. The upregulation of miR-449a was also validated within an independent dataset obtained from TCGA containing 279 HNSCCs and 39 normal adjacent mucosa samples. To gain a better understanding of miRNA-mediated cell cycle deregulation in HNSCC, we functionally evaluated miR-205, a transcript upregulated in our cancer-specific analysis and a putative regulator of E2F1. Modulation of miR-205 with a miRNA mimic and inhibitor revealed miR-205 is capable of regulating E2F1 expression in HNSCC and overexpression of this transcript enhances proliferation. This study demonstrates miRNA expression is highly deregulated in HNSCC and functional evaluations of these miRNAs may reveal novel HPV context dependent mechanisms in this disease.

  19. Serum miRNAs miR-23a, 206, and 499 as Potential Biomarkers for Skeletal Muscle Atrophy

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2017-01-01

    Full Text Available Muscle biopsy has long been expected to be replaced by noninvasive biomarkers with diagnostic value and prognostic applications for muscle atrophy. Growing evidence suggests that circulating microRNAs (miRNAs could act as biomarkers for numerous pathophysiological statuses. In the present study, our results showed that the serum levels of six muscle-specific miRNAs (miR-1/23a/133/206/208b/499 were all elevated in unloading induced mice. The medium levels of these six muscle-specific miRNAs were all elevated in starvation induced atrophic C2C12 myotubes. Moreover, the serum levels of miR-23a/206/499 were induced in participants after 45 days of head-down bed rest (HDBR. The levels of miR-23a/206/499 were positively correlated with the ratio of soleus volume loss in HDBR participants, indicating that they might represent the process of muscle loss. In conclusion, our results demonstrated that circulating miRNAs could serve as useful biochemical and molecular indicators for muscle atrophy diagnosis and disease progression.

  20. 77 FR 50593 - Safety Zone; Seafood Festival Fireworks Display, Marquette, MI

    Science.gov (United States)

    2012-08-22

    ...-AA00 Safety Zone; Seafood Festival Fireworks Display, Marquette, MI AGENCY: Coast Guard, DHS. ACTION... the Annual Marquette Seafood Festival. The Captain of the Port, Sector Sault Sainte Marie, has determined that the Marquette Seafood Festival Fireworks Display will pose significant risks to the public...

  1. MiR-2 family regulates insect metamorphosis by controlling the juvenile hormone signaling pathway.

    Science.gov (United States)

    Lozano, Jesus; Montañez, Raúl; Belles, Xavier

    2015-03-24

    In 2009 we reported that depletion of Dicer-1, the enzyme that catalyzes the final step of miRNA biosynthesis, prevents metamorphosis in Blattella germanica. However, the precise regulatory roles of miRNAs in the process have remained elusive. In the present work, we have observed that Dicer-1 depletion results in an increase of mRNA levels of Krüppel homolog 1 (Kr-h1), a juvenile hormone-dependent transcription factor that represses metamorphosis, and that depletion of Kr-h1 expression in Dicer-1 knockdown individuals rescues metamorphosis. We have also found that the 3'UTR of Kr-h1 mRNA contains a functional binding site for miR-2 family miRNAs (for miR-2, miR-13a, and miR-13b). These data suggest that metamorphosis impairment caused by Dicer-1 and miRNA depletion is due to a deregulation of Kr-h1 expression and that this deregulation is derived from a deficiency of miR-2 miRNAs. We corroborated this by treating the last nymphal instar of B. germanica with an miR-2 inhibitor, which impaired metamorphosis, and by treating Dicer-1-depleted individuals with an miR-2 mimic to allow nymphal-to-adult metamorphosis to proceed. Taken together, the data indicate that miR-2 miRNAs scavenge Kr-h1 transcripts when the transition from nymph to adult should be taking place, thus crucially contributing to the correct culmination of metamorphosis.

  2. MiRNA-21 Expression Decreases from Primary Tumors to Liver Metastases in Colorectal Carcinoma.

    Directory of Open Access Journals (Sweden)

    Fabian Feiersinger

    Full Text Available Metastasis is the major cause of death in colorectal cancer patients. Expression of certain miRNAs in the primary tumors has been shown to be associated with progression of colorectal cancer and the initiation of metastasis. In this study, we compared miRNA expression in primary colorectal cancer and corresponding liver metastases in order to get an idea of the oncogenic importance of the miRNAs in established metastases.We analyzed the expression of miRNA-21, miRNA-31 and miRNA-373 in corresponding formalin-fixed paraffin-embedded (FFPE tissue samples of primary colorectal cancer, liver metastasis and healthy tissues of 29 patients by quantitative real-time PCR.All three miRNAs were significantly up-regulated in the primary tumor tissues as compared to healthy colon mucosa of the respective patients (p < 0.01. MiRNA-21 and miRNA-31 were also higher expressed in liver metastases as compared to healthy liver tissues (p < 0.01. No significant difference of expression of miRNA-31 and miRNA-373 was observed between primary tumors and metastases. Of note, miRNA-21 expression was significantly reduced in liver metastases as compared to the primary colorectal tumors (p < 0.01.In the context of previous studies demonstrating increased miRNA-21 expression in metastatic primary tumors, our findings raise the question whether miRNA-21 might be involved in the initiation but not in the perpetuation and growth of metastases.

  3. miR-326 targets antiapoptotic Bcl-xL and mediates apoptosis in human platelets.

    Directory of Open Access Journals (Sweden)

    Shifang Yu

    Full Text Available Platelets play crucial roles in hemostasis, thrombosis, wound healing, inflammation, angiogenesis, and tumor metastases. Because they are anucleated blood cells, platelets lack nuclear DNA, but they do contain mitochondrial DNA, which plays a key role in regulating apoptosis. Recent evidence has suggested that miRNAs are also involved in regulating gene expression and apoptosis in platelets. Our previous study showed that the expression of miR-326 increased visibly when apheresis platelets were stored in vitro. The antiapoptotic Bcl-2 family regulator Bcl-xL has been identified as a putative target of miR-326. In the present study, dual reporter luciferase assays were used to characterize the function of miR-326 in the regulation of the apoptosis of platelet cells. These assays demonstrated that miR-326 bound to the 3'-translated region of Bcl-xL. To directly assess the functional effects of miR-326 expression, levels of Bcl-xL and the apoptotic status of stored apheresis platelets were measured after transfection of miR-326 mimic or inhibitor. Results indicated that miR-326 inhibited Bcl-xL expression and induced apoptosis in stored platelets. Additionally, miR-326 inhibited Bcl-2 protein expression and enhanced Bak expression, possibly through an indirect mechanism, though there was no effect on the expression of Bax. The effect of miR-326 appeared to be limited to apoptosis, with no significant effect on platelet activation. These results provide new insight into the molecular mechanisms affecting differential platelet gene regulation, which may increase understanding of the role of platelet apoptosis in multiple diseases.

  4. Conserved microRNA miR-8 in fat body regulates innate immune homeostasis in Drosophila.

    Science.gov (United States)

    Choi, In Kyou; Hyun, Seogang

    2012-05-01

    Antimicrobial peptides (AMPs) constitute a major arm of the innate immune system across diverse organisms. In Drosophila, septic injury by microbial pathogens rapidly induces the production of the AMPs in fat body via well elucidated pathways such as Toll and IMD. However, several epithelial tissues were reported to locally express AMPs without septic injury via poorly characterized ways. Here, we report that microRNA miR-8 regulates the levels of AMPs basally expressed in Drosophila. The levels of AMPs such as Drosomycin and Diptericin are significantly increased in miR-8 null animals in non-pathogen stimulated conditions. Analysis of various larval tissues revealed that the increase of Drosomycin is fat body specific. Supporting this observation, re-introduction of miR-8 only in the fat body restored the altered AMP expression in miR-8 null flies. Although loss of miR-8 impedes PI3K in the fat body, inhibition of PI3K does not phenocopy the AMP expression of miR-8 null flies, indicating that miR-8 regulates AMP independently of PI3K. Together, our findings suggest a role of miR-8 in systemic immune homeostasis in generally non-pathogenic conditions in flies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. miR-486-3p, miR-139-5p, and miR-21 as Biomarkers for the Detection of Oral Tongue Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Zujian Chen

    2017-01-01

    Full Text Available Oral tongue squamous cell carcinoma (TSCC is a complex disease with extensive genetic and epigenetic defects, including microRNA deregulation. The aims of the present study were to test the feasibility of performing the microRNA profiling analysis on archived TSCC specimens and to assess the potential diagnostic utility of the identified microRNA biomarkers for the detection of TSCC. TaqMan array-based microRNA profiling analysis was performed on 10 archived TSCC samples and their matching normal tissues. A panel of 12 differentially expressed microRNAs was identified. Eight of these differentially expressed microRNAs were validated in an independent sample set. A random forest (RF classification model was built with miR-486-3p, miR-139-5p, and miR-21, and it was able to detect TSCC with a sensitivity of 100% and a specificity of 86.7% (overall error rate = 6.7%. As such, this study demonstrated the utility of the archived clinical specimens for microRNA biomarker discovery. The feasibility of using microRNA biomarkers (miR-486-3p, miR-139-5p, and miR-21 for the detection of TSCC was confirmed.

  6. miRNA oligonucleotide and sponge for miRNA-21 inhibition mediated by PEI-PLL in breast cancer therapy.

    Science.gov (United States)

    Gao, Shiqian; Tian, Huayu; Guo, Ye; Li, Yuce; Guo, Zhaopei; Zhu, Xiaojuan; Chen, Xuesi

    2015-10-01

    MicroRNA-21 (miR-21) inhibition is a promising biological strategy for breast cancer therapy. However its application is limited by the lack of efficient miRNA inhibitor delivery systems. As a cationic polymer transfection material for nucleic acids, the poly (l-lysine)-modified polyethylenimine (PEI-PLL) copolymer combines the high transfection efficiency of polyethylenimine (PEI) and the good biodegradability of polyllysine (PLL). In this work, PEI-PLL was successfully synthesized and confirmed to transfect plasmid and oligonucleotide more effectively than PEI in MCF-7 cells (human breast cancer cells). In this regard, two kinds of miR-21 inhibitors, miR-21 sponge plasmid DNA (Sponge) and anti-miR-21 oligonucleotide (AMO), were transported into MCF-7 cells by PEI-PLL respectively. The miR-21 expression and the cellular physiology were determined post transfection. Compared with the negative control, PEI-PLL/Sponge or PEI-PLL/AMO groups exhibited lower miR-21 expression and cell viability. The anti-tumor mechanism of PEI-PLL/miR-21 inhibitors was further studied by cell cycle and western blot analyses. The results indicated that the miR-21 inhibition could induce the cell cycle arrest in G1 phase, upregulate the expression of Programmed Cell Death Protein 4 (PDCD4) and thus active the caspase-3 apoptosis pathway. Interestingly, the PEI-PLL/Sponge and PEI-PLL/AMO also sensitized the MCF-7 cells to anti-tumor drugs, doxorubicin (DOX) and cisplatin (CDDP). These results demonstrated that PEI-PLL/Sponge and PEI-PLL/AMO complexes would be two novel and promising gene delivery systems for breast cancer gene therapy based on miR-21 inhibition. This work was a combination of the high transfection efficiency of polyethylenimine (PEI), the good biodegradability of polyllysine (PLL) and the breast cancer-killing effect of miR-21 inhibitors. The poly (l-lysine)-modified polyethylenimine (PEI-PLL) copolymer was employed as the vector of miR-21 sponge plasmid DNA (Sponge) or

  7. The Role of MicroRNAs in Environmental Risk Factors, Noise-Induced Hearing Loss, and Mental Stress.

    Science.gov (United States)

    Miguel, Verónica; Cui, Julia Yue; Daimiel, Lidia; Espinosa-Díez, Cristina; Fernández-Hernando, Carlos; Kavanagh, Terrance J; Lamas, Santiago

    2018-03-20

    MicroRNAs (miRNAs) are important regulators of gene expression and define part of the epigenetic signature. Their influence on every realm of biomedicine is established and progressively increasing. The impact of environment on human health is enormous. Among environmental risk factors impinging on quality of life are those of chemical nature (toxic chemicals, heavy metals, pollutants, and pesticides) as well as those related to everyday life such as exposure to noise or mental and psychosocial stress. Recent Advances: This review elaborates on the relationship between miRNAs and these environmental risk factors. The most relevant facts underlying the role of miRNAs in the response to these environmental stressors, including redox regulatory changes and oxidative stress, are highlighted and discussed. In the cases wherein miRNA mutations are relevant for this response, the pertinent literature is also reviewed. We conclude that, even though in some cases important advances have been made regarding close correlations between specific miRNAs and biological responses to environmental risk factors, a need for prospective large-cohort studies is likely necessary to establish causative roles. Antioxid. Redox Signal. 28, 773-796.

  8. Identification of Viscum album L. miRNAs and prediction of their medicinal values.

    Directory of Open Access Journals (Sweden)

    Wenyan Xie

    Full Text Available MicroRNAs (miRNAs are a class of approximately 22 nucleotides single-stranded non-coding RNA molecules that play crucial roles in gene expression. It has been reported that the plant miRNAs might enter mammalian bloodstream and have a functional role in human metabolism, indicating that miRNAs might be one of the hidden bioactive ingredients in medicinal plants. Viscum album L. (Loranthaceae, European mistletoe has been widely used for the treatment of cancer and cardiovascular diseases, but its functional compounds have not been well characterized. We considered that miRNAs might be involved in the pharmacological activities of V. album. High-throughput Illumina sequencing was performed to identify the novel and conserved miRNAs of V. album. The putative human targets were predicted. In total, 699 conserved miRNAs and 1373 novel miRNAs have been identified from V. album. Based on the combined use of TargetScan, miRanda, PITA, and RNAhybrid methods, the intersection of 30697 potential human genes have been predicted as putative targets of 29 novel miRNAs, while 14559 putative targets were highly enriched in 33 KEGG pathways. Interestingly, these highly enriched KEGG pathways were associated with some human diseases, especially cancer, cardiovascular diseases and neurological disorders, which might explain the clinical use as well as folk medicine use of mistletoe. However, further experimental validation is necessary to confirm these human targets of mistletoe miRNAs. Additionally, target genes involved in bioactive components synthesis in V. album were predicted as well. A total of 68 miRNAs were predicted to be involved in terpenoid biosynthesis, while two miRNAs including val-miR152 and miR9738 were predicted to target viscotoxins and lectins, respectively, which increased the knowledge regarding miRNA-based regulation of terpenoid biosynthesis, lectin and viscotoxin expressions in V. album.

  9. Genome-wide miRNA screening reveals miR-310 family members negatively regulate the immune response in Drosophila melanogaster via co-targeting Drosomycin.

    Science.gov (United States)

    Li, Yao; Li, Shengjie; Li, Ruimin; Xu, Jiao; Jin, Ping; Chen, Liming; Ma, Fei

    2017-03-01

    Although innate immunity mediated by Toll signaling has been extensively studied in Drosophila melanogaster, the role of miRNAs in regulating the Toll-mediated immune response remains largely unknown. In this study, following Gram-positive bacterial challenge, we identified 93 differentially expressed miRNAs via genome-wide miRNA screening. These miRNAs were regarded as immune response related (IRR). Eight miRNAs were confirmed to be involved in the Toll-mediated immune response upon Gram-positive bacterial infection through genetic screening of 41 UAS-miRNA lines covering 60 miRNAs of the 93 IRR miRNAs. Interestingly, four out of these eight miRNAs, miR-310, miR-311, miR-312 and miR-313, are clustered miRNAs and belong to the miR-310 family. These miR-310 family members were shown to target and regulate the expression of Drosomycin, an antimicrobial peptide produced by Toll signaling. Taken together, our study implies important regulatory roles of miRNAs in the Toll-mediated innate immune response of Drosophila upon Gram-positive bacterial infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. miR-10 in development and cancer

    DEFF Research Database (Denmark)

    Lund, Anders Henrik

    2010-01-01

    The microRNA (miRNA) miR-10 family has attracted attention because of its conservation and the position of the miR-10 genes within the Hox clusters of developmental regulators. In several species, miR-10 is coexpressed with a set of Hox genes and has been found to regulate the translation of Hox ...... function to the miRNA repertoire.Cell Death and Differentiation advance online publication, 22 May 2009; doi:10.1038/cdd.2009.58....

  11. The Role of Circulating MicroRNA-126 (miR-126: A Novel Biomarker for Screening Prediabetes and Newly Diagnosed Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2014-06-01

    Full Text Available Recent studies suggested an association of endothelial microRNA-126 (miR-126 with type 2 diabetes mellitus (T2DM. In the current study, we examined whether circulating miR-126 is associated with T2DM and pre-diabetic syndrome. The study included 82 subjects with impaired glucose tolerance (IGT, 75 subjects with impaired fasting glucose (IFG, 160 patients with newly diagnosed T2DM, and 138 healthy individuals. Quantitative polymerase chain reaction (qPCR was used to examine serum miR-126. Serum miR-126 was significantly lower in IGT/IFG subjects and T2DM patients than in healthy controls (p < 0.05. After six months of treatment (diet control and exercise in IGT/IFG subjects, insulin plus diet control and exercise in T2DM patients, serum miR-126 increased significantly (p < 0.05. An analysis based on serum miR-126 in the sample revealed a significantly higher odds ratio (OR for the subjects with the lowest 1/3 of serum miR-126 for T2DM (OR: 3.500, 95% confidence interval: 1.901–6.445, p < 0.05 than subjects within the highest 1/3 of serum miR-126. Such an association was still apparent after adjusting for other major risk factors. The area under the curve (AUC for the receiver-operating characteristic (ROC analysis was 0.792 (95% confidence interval: 0.707–0.877, p < 0.001. These results encourage the use of serum miR-126 as a biomarker for pre-diabetes and diabetes mellitus, as well as therapeutic response.

  12. MicroRNA transfection and AGO-bound CLIP-seq data sets reveal distinct determinants of miRNA action

    DEFF Research Database (Denmark)

    Wen, Jiayu; Parker, Brian J; Jacobsen, Anders

    2011-01-01

    the predictive effect of target flanking features. We observe distinct target determinants between expression-based and CLIP-based data. Target flanking features such as flanking region conservation are an important AGO-binding determinant-we hypothesize that CLIP experiments have a preference for strongly bound......Microarray expression analyses following miRNA transfection/inhibition and, more recently, Argonaute cross-linked immunoprecipitation (CLIP)-seq assays have been used to detect miRNA target sites. CLIP and expression approaches measure differing stages of miRNA functioning-initial binding of the mi...... miRNP-target interactions involving adjacent RNA-binding proteins that increase the strength of cross-linking. In contrast, seed-related features are major determinants in expression-based studies, but less so for CLIP-seq studies, and increased miRNA concentrations typical of transfection studies...

  13. The metabolic syndrome and risk of myocardial infarction in familial hypertension (hypertension heredity in Malmö evaluation study).

    Science.gov (United States)

    Fedorowski, Artur; Burri, Philippe; Hulthén, Lennart; Melander, Olle

    2009-01-01

    The aim of this study was to examine whether three main definitions of the metabolic syndrome (MetS)--WHO, National Cholesterol Education Program--Adult Treatment Panel III and International Diabetes Federation--identify the same individuals and are able to predict incident myocardial infarction (MI) in families with essential hypertension. The tested definitions were prospectively related to data on MI in a cohort of approximately 1700 individuals with overt essential hypertension and their normotensive first-degree relatives. At baseline, 616 participants had MetS, yet only 209 of them (33.9%) were identified by all definitions, and compatibility rate for each pair of definitions was approximately 50%. During follow-up (Tmean approximately 6.6 years) 53 participants developed MI and they were generally older and more dysmetabolic than the rest of the cohort. There were also more men, smokers and diabetic individuals in this group. After adjustment for all conventional cardiovascular risk factors, including hypertension and diabetes, only the National Cholesterol Education Program definition could predict the increased risk of MI [odds ratio (OR) = 2.2, confidence interval (CI) = 1.2-4.0, P = 0.01]. Among individual MetS components, incident MI was independently associated with three of them: low high-density lipoprotein-cholesterol (OR = 2.03, CI = 1.09-3.78, P = 0.025) insulin resistance (OR = 2.02, CI = 1.08-3.78, P = 0.028) and increased albumin excretion rate (OR = 1.24, CI = 0.99-1.55, P = 0.060). The presence of MetS in hypertensive and genetically hypertension prone individuals may signal the increased risk of future MI. However, only the National Cholesterol Education Program criteria appear to have a sufficient predictive accuracy.

  14. The Impact of Fasting on the Interpretation of Triglyceride Levels for Predicting Myocardial Infarction Risk in HIV-Positive Individuals

    DEFF Research Database (Denmark)

    Lundgren, Jens

    2011-01-01

    We assessed whether fasting modifies the prognostic value of these measurements for the risk of myocardial infarction (MI). Analyses used mixed effect models and Poisson regression. After confounders were controlled for, fasting triglyceride levels were, on average, 0.122 mmol/L lower than...... nonfasting levels. Each 2-fold increase in the latest triglyceride level was associated with a 38% increase in MI risk (relative rate, 1.38; 95% confidence interval, 1.26-1.51); fasting status did not modify this association. Our results suggest that it may not be necessary to restrict analyses to fasting...

  15. miR-29b and miR-125a Regulate Podoplanin and Suppress Invasion in Glioblastoma

    Science.gov (United States)

    Cortez, Maria Angelica; Nicoloso, Milena Sabrina; Shimizu, Masayoshi; Rossi, Simona; Gopisetty, Gopal; Molina, Jennifer R.; Carlotti, Carlos; Tirapelli, Daniela; Neder, Luciano; Brassesco, Maria Sol; Scrideli, Carlos Alberto; Tone, Luiz Gonzaga; Georgescu, Maria-Magdalena; Zhang, Wei; Puduvalli, Vinay; Calin, George Adrian

    2017-01-01

    Glioblastoma is the most frequent and malignant brain tumor, characterized by an elevated capacity for cellular proliferation and invasion. Recently, it was demonstrated that podoplanin membrane sialo-glycoprotein encoded by PDPN gene is over-expressed and related to cellular invasion in astrocytic tumors; however the mechanisms of regulation are still unknown. MicroRNAs are noncoding RNAs that regulate gene expression and several biological processes and diseases, including cancer. Nevertheless, their roles in invasion, proliferation, and apoptosis of glioblastoma are not completely understood. In this study, we focused on miR-29b and miR-125a, which were predicted to regulate PDPN, and demonstrated that these microRNAs directly target the 3′ untranslated region of PDPN and inhibit invasion, apoptosis, and proliferation of glioblastomas. Furthermore, we report that miR-29b and miR-125a are downregulated in glioblastomas and also in CD133-positive cells. Taken together, these results suggest that miR-29b and miR-125a represent potential therapeutic targets in glioblastoma. PMID:20665731

  16. Epigenetic modification of miR-10a regulates renal damage by targeting CREB1 in type 2 diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Qun, E-mail: shanp@jsnu.edu.cn; Zheng, Guihong, E-mail: ghzhengsd@jsnu.edu.cn; Zhu, Aihua, E-mail: ahzhu@jsnu.edu.cn; Cao, Li, E-mail: 948113717@qq.com; Lu, Jun, E-mail: lu-jun75@163.com; Wu, Dongmei, E-mail: wdm8610@jsnu.edu.cn; Zhang, ZiFeng, E-mail: zhangzifengsuper@jsnu.edu.cn; Fan, Shaohua, E-mail: fshfly@126.com; Sun, Chunhui, E-mail: 306484866@qq.com; Hu, Bin, E-mail: hubin@jsnu.edu.cn; Zheng, Yuanlin, E-mail: ylzheng@jsnu.edu.cn

    2016-09-01

    Emerging evidence has shown that microRNA-mediated gene expression modulation plays a crucial role in the pathogenesis of type 2 diabetes mellitus, but the novel miRNAs involved in type 2 diabetes and its functional regulatory mechanisms still need to be determined. In this study, we assessed the role of miR-10a in extracellular matrix accumulation in the kidney of diabetic mellitus induced by combining administration of chronic high fat diet (HFD) and low dosage of streptozotocin (STZ, 35 mg/kg). Here, we found that HFD/STZ administration decreased the level of microRNA (miR-10a) expression in ICR strain mice. Overexpression of miR-10a alleviated the increased ratio of urine albumin-to-creatinine (ACR) ratio of HFD/STZ mice. In contrast, knockdown of miR-10a increased the ratio of kidney ACR in naïve mice. Furthermore, cAMP response element binding protein 1 (CREB1) was validated as a target of miR-10a in vitro and in vivo. CREB1 and its downstream fibronectin (FN, extracellular matrix) were increased in HFD/STZ-treated mice, which was reversed by kidney miR-10a overexpression. The content of CREB1 and FN was increased by miR-10a knockdown in kidney of naïve mice. Furthermore, histone deacetylase 3 (HDAC3) was revealed to be increased in kidney of HFD/STZ mice, accompanied with the augmentation of ACR ratio and FN level. Knockdown of HDAC3 with siRNA significantly caused the increase of miR-10a, resulting in the decrease in CREB1 and FN expression in kidney of HFD/STZ mice. Contrarily, HDAC3 overexpression mediated by lentivirus decreased miR-10a content, and enhanced ACR value, CREB1 and FN formation in naïve mice. Collectively, these results elucidate that HDAC3/miR-10a/CREB1 serves as a new mechanism underlying kidney injury, providing potential therapeutic targets in type 2 diabetes. - Highlights: • Diabetes induces the decrease of miR-10a level in the kidney. • MiR-10a overexpression improves kidney damage of diabetes. • MiR-10a targeting CREB1/FN

  17. Epigenetic modification of miR-10a regulates renal damage by targeting CREB1 in type 2 diabetes mellitus

    International Nuclear Information System (INIS)

    Shan, Qun; Zheng, Guihong; Zhu, Aihua; Cao, Li; Lu, Jun; Wu, Dongmei; Zhang, ZiFeng; Fan, Shaohua; Sun, Chunhui; Hu, Bin; Zheng, Yuanlin

    2016-01-01

    Emerging evidence has shown that microRNA-mediated gene expression modulation plays a crucial role in the pathogenesis of type 2 diabetes mellitus, but the novel miRNAs involved in type 2 diabetes and its functional regulatory mechanisms still need to be determined. In this study, we assessed the role of miR-10a in extracellular matrix accumulation in the kidney of diabetic mellitus induced by combining administration of chronic high fat diet (HFD) and low dosage of streptozotocin (STZ, 35 mg/kg). Here, we found that HFD/STZ administration decreased the level of microRNA (miR-10a) expression in ICR strain mice. Overexpression of miR-10a alleviated the increased ratio of urine albumin-to-creatinine (ACR) ratio of HFD/STZ mice. In contrast, knockdown of miR-10a increased the ratio of kidney ACR in naïve mice. Furthermore, cAMP response element binding protein 1 (CREB1) was validated as a target of miR-10a in vitro and in vivo. CREB1 and its downstream fibronectin (FN, extracellular matrix) were increased in HFD/STZ-treated mice, which was reversed by kidney miR-10a overexpression. The content of CREB1 and FN was increased by miR-10a knockdown in kidney of naïve mice. Furthermore, histone deacetylase 3 (HDAC3) was revealed to be increased in kidney of HFD/STZ mice, accompanied with the augmentation of ACR ratio and FN level. Knockdown of HDAC3 with siRNA significantly caused the increase of miR-10a, resulting in the decrease in CREB1 and FN expression in kidney of HFD/STZ mice. Contrarily, HDAC3 overexpression mediated by lentivirus decreased miR-10a content, and enhanced ACR value, CREB1 and FN formation in naïve mice. Collectively, these results elucidate that HDAC3/miR-10a/CREB1 serves as a new mechanism underlying kidney injury, providing potential therapeutic targets in type 2 diabetes. - Highlights: • Diabetes induces the decrease of miR-10a level in the kidney. • MiR-10a overexpression improves kidney damage of diabetes. • MiR-10a targeting CREB1/FN

  18. Concentration of circulating miRNA-containing particles in serum enhances miRNA detection and reflects CRC tissue-related deregulations.

    Science.gov (United States)

    ElSharawy, Abdou; Röder, Christian; Becker, Thomas; Habermann, Jens K; Schreiber, Stefan; Rosenstiel, Philip; Kalthoff, Holger

    2016-11-15

    The emerging potential of miRNAs as biomarkers for cancer detection demands parallel evaluation of strategies for reliable identification of disease-related signatures from easily accessible and pertinent body compartments. Here, we addressed whether efficient concentration of circulating miRNA-carrying particles is a rationale for miRNA biomarker discovery. We systematically compared miRNA signatures in 93 RNA preparations from three serum entities (whole serum, particle-concentrated, and particle-depleted fractions) and corresponding tissue samples from patients with colorectal cancer (CRC) as a model disease. Significant differences between whole sera and particle-concentrated serum fractions of CRC patients emerged for 45 of 742 tested miRNAs. Twenty-eight of these 45 miRNAs were differentially expressed between particle-concentrated serum fractions of metastatic CRC- and healthy individuals. Over half of these candidates (15 of 28) showed deregulations only in concentrated serum fractions, but not in whole sera, compared to the respective controls.Our results also provided evidence of a consistent downregulation of miR-486 and miR-92a, and further showed a possible "strand-specific" deregulation of extracellular miRNAs in CRC. More importantly, most of the identified miRNAs in the enriched sera reflected the patterns of the corresponding tumor tissues and showed links to cancer-related inflammation. Further investigation of seven serum pools revealed a subset of potential extracellular miRNA candidates to be implicated in both neoplastic and inflammatory bowel disease.Our findings demonstrate that enrichment and sensitive detection of miRNA carriers is a promising approach to detect CRC-related pathological changes in liquid biopsies, and has potential for clinical diagnostics.

  19. Aneurysm-Specific miR-221 and miR-146a Participates in Human Thoracic and Abdominal Aortic Aneurysms

    Directory of Open Access Journals (Sweden)

    Premakumari Venkatesh

    2017-04-01

    Full Text Available Altered microRNA expression is implicated in cardiovascular diseases. Our objective was to determine microRNA signatures in thoracic aortic aneurysms (TAAs and abdominal aortic aneurysms (AAAs compared with control non-aneurysmal aortic specimens. We evaluated the expression of fifteen selected microRNA in human TAA and AAA operative specimens compared to controls. We observed significant upregulation of miR-221 and downregulation of miR-1 and -133 in TAA specimens. In contrast, upregulation of miR-146a and downregulation of miR-145 and -331-3p were found only for AAA specimens. Upregulation of miR-126 and -486-5p and downregulation of miR-30c-2*, -155, and -204 were observed in specimens of TAAs and AAAs. The data reveal microRNA expression signatures unique to aneurysm location and common to both thoracic and abdominal pathologies. Thus, changes in miR-1, -29a, -133a, and -221 are involved in TAAs and miR-145, -146, and -331-3p impact AAAs. This work validates prior studies on microRNA expression in aneurysmal diseases.

  20. The development of form two mathematics i-Think module (Mi-T2)

    Science.gov (United States)

    Yao, Foo Jing; Abdullah, Mohd Faizal Nizam Lee; Tien, Lee Tien

    2017-05-01

    This study aims to develop a training module i-THINK Mathematics Form Two (Mi-T2) to increase the higher-order thinking skills of students. The Mi-T2 training module was built based on the Sidek Module Development Model (2001). Constructivist learning theory, cognitive learning theory, i-THINK map and higher order thinking skills were the building blocks of the module development. In this study, researcher determined the validity and reliability of Mi-T2 module. The design being used in this study was descriptive study. To determine the needs of Mi-T2 module, questionnaires and literature review were used to collect data. When the need of the module was determined, the module was built and a pilot study was conducted to test the reliability of the Mi-T2 module. The pilot study was conducted at a secondary school in North Kinta, Perak. A Form Two class was selected to be the sample study through clustered random sampling. The pilot study was conducted for two months and one topic had been studied. The Mi-T2 module was evaluated by five expert panels to determine the content validity of the module. The instruments being used in the study were questionnaires about the necessity of the Mi-T2 module for guidance, questionnaires about the validity of the module and questionnaires concerning the reliability of the module. Statistical analysis was conducted to determine the validity and reliability coefficients of the Mi-T2 module. The content validity of Mi-T2 module was determined by Cohen's Kappa's (1968) agreement coefficient and the reliability of Mi-T2 module was determined by Cronbach Alpha's value scale. The content validity of Mi-T2 module was 0.89 and the Cronbach Alpha's value of Mi-T2 module was 0.911.

  1. The Roles of Two miRNAs in Regulating the Immune Response of Sea Cucumber.

    Science.gov (United States)

    Zhang, Pengjuan; Li, Chenghua; Zhang, Ran; Zhang, Weiwei; Jin, Chunhua; Wang, Lingling; Song, Linsheng

    2015-12-01

    MicroRNAs (miRNAs) have emerged as key regulators in many pathological processes by suppressing the transcriptional and post-transcriptional expression of target genes. MiR-2008 was previously found to be significantly up-regulated in diseased sea cucumber Apostichopus japonicus by high-through sequencing, whereas the reads of miR-137, a well-documented tumor repressor, displayed no significant change. In the present study, we found that miR-137 expression was slightly attenuated and miR-2008 was significantly enhanced after Vibrio splendidus infection or Lipopolysaccharides application. Further target screening and dual-luciferase reporter assay revealed that the two important miRNAs shared a common target gene of betaine-homocysteine S-methyltransferase (AjBHMT), which exhibited noncorrelated messenger RNA and protein expression patterns after bacterial challenge. In order to fully understand their regulatory mechanisms, we conducted the functional experiments in vitro and in vivo. The overexpression of miR-137 in sea cucumber or primary coelomocytes significantly decreased, whereas the inhibition of miR-137 increased the mRNA and protein expression levels of AjBHMT. In contrast, miR-2008 overexpression and inhibition showed no effect on AjBHMT mRNA levels, but the concentration of AjBHMT protein displayed significant changes both in vitro and in vivo. Consistently, the homocysteine (Hcy) contents were also accordingly altered in the aberrant expression analysis of both miRNAs, consistent with the results of the AjBHMT silencing assay in vitro and in vivo. More importantly, small interfering RNA mediated AjBHMT knockdown and Hcy exposure analyses both significantly increased reactive oxygen species (ROS) production and decreased the number of surviving invasive pathogen in sea cucumber coelomocytes. Taken together, these findings confirmed the differential roles of sea cucumber miR-137 and miR-2008 in regulating the common target AjBHMT to promote ROS production

  2. Dysregulated miR-103 and miR-143 expression in peripheral blood mononuclear cells from induced prediabetes and type 2 diabetes rats.

    Science.gov (United States)

    Vatandoost, Nasimeh; Amini, Masoud; Iraj, Bijan; Momenzadeh, Sedigheh; Salehi, Rasoul

    2015-11-01

    The progression from normal glucose tolerance (NGT) to type 2 diabetes (T2D) occurs through an intermediate state of glucose intolerance known as pre-diabetes. This transition is usually a gradual phenomenon that occurs over 5-10 years. Among the routinely practiced T2D screening criteria, like, FPG, IFG, IGT or HbA1c, still the issue of a preferable one is debated. The newly emerged microRNAs are created much hope to act as a class of suitable diabetes gene signature detectable at an early stage of the disease development. Although T2D related miRNA fluctuations are reported from the main insulin target organs, sampling of these organs for the sake of screening due to its invasive nature is not practicable. Peripheral blood mononuclear cells (PBMCs) are in constant touch with all body organs hence may exhibit the trace of miRNA changes which take place in insulin target organs. In this study we have evaluated miR-103 and miR-143 expression in three groups of rats namely; normal control, high fat diet (HFD) which is corresponding to prediabetes state, and high fat diet/streptozotocin (STZ) induced T2D. Quantitative real time PCR was used for profiling the selected miRNA expression at various time intervals of the three defined groups of rats. In prediabetes and overt diabetes stages, miR-103 showed significantly elevated expression in PBMC specimens compared to the normal healthy control group. Overexpression pattern of mir-143 was statistically significant in T2D compared to non-diabetic controls. However in HFD (prediabetic) rats also we observed an increasing pattern of miR-143 compared to the normal controls but it was not statistically significant. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Epstein-Barr virus miR-BART20-5p regulates cell proliferation and apoptosis by targeting BAD.

    Science.gov (United States)

    Kim, Hyoji; Choi, Hoyun; Lee, Suk Kyeong

    2015-01-28

    Although Epstein-Barr virus (EBV) BamHI A rightward transcript (BART) microRNAs (miRNAs) are ubiquitously expressed in EBV-associated tumors, the role of most BART miRNAs is unclear. In this study, we showed that Bcl-2-associated death promoter (BAD) expression was significantly lower in EBV-infected AGS-EBV cells than in EBV-negative AGS cells and investigated whether BART miRNAs target BAD. Using bioinformatics analysis, five BART miRNAs showing seed match with the 3' untranslated region (3'-UTR) of BAD were selected. Of these, only miR-BART20-5p reduced BAD expression when individually transfected into AGS cells. A luciferase assay revealed that miR-BART20-5p directly targets BAD. The expression of BAD mRNA and protein was decreased by miR-BART20-5p and increased by an inhibitor of miR-BART20-5p. PE-Annexin V staining and cell proliferation assays showed that miR-BART20-5p reduced apoptosis and enhanced cell growth. Furthermore, miR-BART20-5p increased chemoresistance to 5-fluorouracil and docetaxel. Our data suggest that miR-BART20-5p contributes to tumorigenesis of EBV-associated gastric carcinoma by directly targeting the 3'-UTR of BAD. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. 77 FR 47522 - Special Local Regulation; Port Huron Offshore Gran Prix, St. Clair River; Port Huron, MI

    Science.gov (United States)

    2012-08-09

    ... 13045, Protection of Children from Environmental Health Risks and Safety Risks. This rule is not an economically significant rule and does not create an environmental risk to health or risk to safety that may...-AA08 Special Local Regulation; Port Huron Offshore Gran Prix, St. Clair River; Port Huron, MI AGENCY...

  5. Curcumin sensitizes prostate cancer cells to radiation partly via epigenetic activation of miR-143 and miR-143 mediated autophagy inhibition.

    Science.gov (United States)

    Liu, Jianbo; Li, Min; Wang, Yuewei; Luo, Jianchao

    2017-08-01

    Curcumin has been reported as a radiosensitizer in prostate cancer. But the underlying mechanism is not well understood. In this study, we firstly assessed how curcumin affects the expression of miR-143/miR-145 cluster. Then, we investigated whether miR-143 is involved in regulation of radiosensitivity and its association with autophagy in prostate cancer cells. Our data showed that PC3, DU145 and LNCaP cells treated with curcumin had significantly restored miR-143 and miR-145 expression. Curcumin showed similar effect as 5-AZA-dC on reducing methylation of CpG dinucleotides in miR-143 promoter. In addition, curcumin treatment reduced the expression of DNMT1 and DNMT3B, which contribute to promoter hypermethylation of the miR-143/miR-145 cluster. Therefore, we infer that curcumin can restore miR-143 and miR-145 expression via hypomethylation. MiR-143 overexpression and curcumin pretreatment enhanced radiation induced cancer cell growth inhibition and apoptosis. MiR-143 and curcumin remarkably reduced radiation-induced autophagy in PC3 and DU145 cells. MiR-143 overexpression alone also reduced the basal level of autophagy in DU145 cells. Mechanistically, miR-143 can suppress autophagy in prostate cancer cells at least via downregulating ATG2B. Based on these findings, we infer that curcumin sensitizes prostate cancer cells to radiation partly via epigenetic activation of miR-143 and miR-143 mediated autophagy inhibition.

  6. miR-376c promotes carcinogenesis and serves as a plasma marker for gastric carcinoma.

    Directory of Open Access Journals (Sweden)

    Pei-Shih Hung

    Full Text Available Gastric carcinoma is highly prevalent throughout the world. Understanding the pathogenesis of this disease will benefit diagnosis and resolution. Studies show that miRNAs are involved in the tumorigenesis of gastric carcinoma. An initial screening followed by subsequent validation identified that miR-376c is up-regulated in gastric carcinoma tissue and the plasma of patients with the disease. In addition, the urinary level of miR-376c is also significantly increased in gastric carcinoma patients. The plasma miR-376c level was validated as a biomarker for gastric carcinoma, including early stage tumors. The induction of miR-376c was found to enrich the proliferation, migration and anchorage-independent growth of carcinoma cells and, furthermore, the repression of the expression of endogenous miR-376c was able to reduce such oncogenic phenotypes. ARID4A gene is a direct target of miR-376c. Knockdown of endogenous ARID4A increased the oncogenicity of carcinoma cells, while ARID4A was found to be drastically down-regulated in tumor tissue. Thus, expression levels of miR-376c and ARID4A mRNA tended to be opposing in tumor tissue. Our results demonstrate that miR-376c functions by suppressing ARID4A expression, which in turn enhances the oncogenicity of gastric carcinoma cells. It seems likely that the level of miR-376c in plasma and urine could act as invaluable markers for the detection of gastric carcinoma.

  7. Effects of blue light on flavonoid accumulation linked to the expression of miR393, miR394 and miR395 in longan embryogenic calli.

    Science.gov (United States)

    Li, Hansheng; Lin, Yuling; Chen, Xiaohui; Bai, Yu; Wang, Congqiao; Xu, Xiaoping; Wang, Yun; Lai, Zhongxiong

    2018-01-01

    While flavonoid metabolism's regulation under light conditions by structural genes and transcription factors is understood, the roles of microRNAs (miRNAs) in this pathway have been rarely reported. In this paper, the accurate control of light was firstly enabled through the specially designed plant growth chamber which ensures consistency and accuracy of the cultivation of longan ECs and the repeatability of the experiments. Then, longan ECs were cultured in this chamber for 25 days. The change of growth rate of longan ECs was compared under different light qualities (dark, blue, green, white, green), intensities (16, 32, 64, 128, 256 μmol ·m-2 ·s-1), and durations (8 h, 12 h, 16 h, 20h, 24h). Results indicated that longan ECs had a high growth rate in the condition of blue or green light, at intensity ranged from 16 μmol·m-2·s-1 to 64 μmol·m-2·s-1, and duration from 8 h to 16 h. In addition, the contents of total flavonoids, rutin, and epicatechin were determined. Results indicated that flavonoid contents of longan ECs reached the highest value under blue light, at 32 μmol·m-2·s-1 and 12h/d. Blue light promoted the accumulation of epicatechin, but inhibited the synthesis of rutin. Finally, the expressions of flavonoid pathway genes, miRNAs and target genes were analyzed by qPCR. These results indicated that miR393 and its target gene DlTIR1-3, miR394 and its target gene DlAlMT12, and miR395 and its target gene DlAPS1 had a negative regulating relationship under blue light in longan ECs. Furthermore, miR393, miR394, and miR395 acted on target genes, which negatively regulated flavonoid key genes DlFLS and positively regulated key genes DlCHS, DlCHI, DlF3'H, DlDFR, DlLAR, and finally affected the accumulation of flavonoids. The treatment of longan ECs under the blue light at the intensity of 32 μmol·m-2·s-1 for 12 h/d inhibited the expression of miR393, miR394 and miR395, which promoted the expression of target genes and the accumulation of

  8. Identifying potential functional impact of mutations and polymorphisms: Linking heart failure, increased risk of arrhythmias and sudden cardiac death.

    Directory of Open Access Journals (Sweden)

    BENOIT eJAGU

    2013-09-01

    Full Text Available Researchers and clinicians have discovered several important concepts regarding the mechanisms responsible for increased risk of arrhythmias, heart failure and sudden cardiac death. One major step in defining the molecular basis of normal and abnormal cardiac electrical behaviour has been the identification of single mutations that greatly increase the risk for arrhythmias and sudden cardiac death by changing channel-gating characteristics. Indeed, mutations in several genes encoding ion channels, such as SCN5A, which encodes the major cardiac Na+ channel, have emerged as the basis for a variety of inherited cardiac arrhythmias such as long QT syndrome, Brugada syndrome, progressive cardiac conduction disorder, sinus node dysfunction or sudden infant death syndrome. In addition, genes encoding ion channel accessory proteins, like anchoring or chaperone proteins, which modify the expression, the regulation of endocytosis and the degradation of ion channel α-subunits have also been reported as susceptibility genes for arrhythmic syndromes. The regulation of ion channel protein expression also depends on a fine-tuned balance among different other mechanisms, such as gene transcription, RNA processing, post-transcriptional control of gene expression by miRNA, protein synthesis, assembly and post-translational modification and trafficking.

  9. miR2Pathway: A Novel Analytical Method to Discover MicroRNA-mediated Dysregulated Pathways Involved in Hepatocellular Carcinoma.

    Science.gov (United States)

    Li, Chaoxing; Dinu, Valentin

    2018-03-22

    MicroRNAs (miRNAs) are small, non-coding RNAs involved in the regulation of gene expression at a post-transcriptional level. Recent studies have shown miRNAs as key regulators of a variety of biological processes, such as proliferation, differentiation, apoptosis, metabolism, etc. Aberrantly expressed miRNAs influence individual gene expression level, but rewired miRNA-mRNA connections can influence the activity of biological pathways. Here, we define rewired miRNA-mRNA connections as the differential (rewiring) effects on the activity of biological pathways between hepatocellular carcinoma (HCC) and normal phenotypes. Our work presented here uses a PageRank-based approach to measure the degree of miRNA-mediated dysregulation of biological pathways between HCC and normal samples based on rewired miRNA-mRNA connections. In our study, we regard the degree of miRNA-mediated dysregulation of biological pathways as disease risk of biological pathways. Therefore, we propose a new method, miR2Pathway, to measure and rank the degree of miRNA-mediated dysregulation of biological pathways by measuring the total differential influence of miRNAs on the activity of pathways between HCC and normal states. miR2Pathway proposed here systematically shows the first evidence for a mechanism of biological pathways being dysregulated by rewired miRNA-mRNA connections, and provides new insight into exploring mechanisms behind HCC. Thus, miR2Pathway is a novel method to identify and rank miRNA-dysregulated pathways in HCC. Copyright © 2018. Published by Elsevier Inc.

  10. miR-1297 mediates PTEN expression and contributes to cell progression in LSCC

    International Nuclear Information System (INIS)

    Li, Xin; Wang, Hong-liang; Peng, Xin; Zhou, Hui-fang; Wang, Xin

    2012-01-01

    Highlights: ► miR-1297 was found to be overexpressed in LSCC and contribute to the cell progression. ► PTEN was confirmed to be a target gene of miR-1297. ► Downregulation of PTEN can rescue the proliferation and invasion ability of miR-1297 downregulated Hep-2 cells. ► Downregulation of miR-1297 inhibits tumor growth in vivo. -- Abstract: MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression after transcription, and are involved in cancer development. Laryngeal squamous cell carcinoma (LSCC) is one of the most common malignant neoplasms with increasing incidence in recent years. In this paper, we report the overexpression of miR-1297 in LSCC and Hep-2 cells. In addition, PTEN was identified to be directly regulated by miR-1297 through western blot and luciferase activity assay. Furthermore, downregulation of miR-1297 in Hep-2 cells was shown to inhibit cancer cell proliferation, migration, and tumor genesis. Our results document a new epigenetic mechanism for PTEN regulation in LSCC, which is crucial for the development of these tumors.

  11. Methylation Status of miR-182 Promoter in Lung Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Yongwen LI

    2015-05-01

    Full Text Available Background and objective It has been proven that the abnormal expression of miR-182 was related to the occurrence and development of tumors. The aim of this study is to explore the relationship between the methylation of miR-182 promoter and its expression in lung cancer cell lines. Methods Real-time quantitative PCR and methylation-specific PCR were used to detect the expression level of miR-182 and its promoter methylation status in five lung cancer cell lines (A549, L9981, NL9980, 95C and 95D. DNA sequencing was used to confirm the methylation results. Results The level of miR-182 expression significantly differs among these lung cancer cell lines. The highly metastatic human lung cancer cell lines, namely, A549 and L9981, demonstrate a relatively lower expression level of miR-182 compared with the lowly metastatic human lung cancer cell line 95C. Methylation-specific PCR and DNA sequencing assay results indicate that these lung cancer cell lines present different levels of miR-182 promoter methylation, and the highest methylation level is observed in A549 cells. Furthermore, the expression of miR-182 in these cell lines significantly increases when treated with 10 μM 5’-Aza-dC. Conclusion DNA methylation occurs in the miR-182 promoter region in lung cancer cell lines. This methylation can regulate the expression level of miR-182. Further study must be conducted to explore the function of miR-182 promoter methylation in lung cancer occurrence and development.

  12. Uncovering Direct Targets of MiR-19a Involved in Lung Cancer Progression.

    Directory of Open Access Journals (Sweden)

    Kumiko Yamamoto

    Full Text Available Micro RNAs (miRNAs regulate the expression of target genes posttranscriptionally by pairing incompletely with mRNA in a sequence-specific manner. About 30% of human genes are regulated by miRNAs, and a single miRNA is capable of reducing the production of hundreds of proteins by means of incomplete pairing upon miRNA-mRNA binding. Lately, evidence implicating miRNAs in the development of lung cancers has been emerging. In particular, miR-19a, which is highly expressed in malignant lung cancer cells, is considered the key miRNA for tumorigenesis. However, its direct targets remain underreported. In the present study, we focused on six potential miR-19a target genes selected by miRNA target prediction software. To evaluate these genes as direct miR-19a target genes, we performed luciferase, pull-down, and western blot assays. The luciferase activity of plasmids with each miR-19a-binding site was observed to decrease, while increased luciferase activity was observed in the presence of anti-miR-19a locked nucleic acid (LNA. The pull-down assay showed biotinylated miR-19a to bind to AGO2 protein and to four of six potential target mRNAs. Western blot analysis showed that the expression levels of the four genes changed depending on treatment with miR-19a mimic or anti-miR-19a-LNA. Finally, FOXP1, TP53INP1, TNFAIP3, and TUSC2 were identified as miR-19a targets. To examine the function of these four target genes in lung cancer cells, LK79 (which has high miR-19a expression and A549 (which has low miR-19a expression were used. The expression of the four target proteins was higher in A549 than in LK79 cells. The four miR-19a target cDNA expression vectors suppressed cell viability, colony formation, migration, and invasion of A549 and LK79 cells, but LK79 cells transfected with FOXP1 and TP53INP1 cDNAs showed no difference compared to the control cells in the invasion assay.

  13. miR-133a Enhances the Protective Capacity of Cardiac Progenitors Cells after Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Alberto Izarra

    2014-12-01

    Full Text Available miR-133a and miR-1 are known as muscle-specific microRNAs that are involved in cardiac development and pathophysiology. We have shown that both miR-1 and miR-133a are early and progressively upregulated during in vitro cardiac differentiation of adult cardiac progenitor cells (CPCs, but only miR-133a expression was enhanced under in vitro oxidative stress. miR-1 was demonstrated to favor differentiation of CPCs, whereas miR-133a overexpression protected CPCs against cell death, targeting, among others, the proapoptotic genes Bim and Bmf. miR-133a-CPCs clearly improved cardiac function in a rat myocardial infarction model by reducing fibrosis and hypertrophy and increasing vascularization and cardiomyocyte proliferation. The beneficial effects of miR-133a-CPCs seem to correlate with the upregulated expression of several relevant paracrine factors and the plausible cooperative secretion of miR-133a via exosomal transport. Finally, an in vitro heart muscle model confirmed the antiapoptotic effects of miR-133a-CPCs, favoring the structuration and contractile functionality of the artificial tissue.

  14. Downregulation of miRNA-30c and miR-203a is associated with hepatitis C virus core protein-induced epithelial–mesenchymal transition in normal hepatocytes and hepatocellular carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dongjing [Hepatobiliary and Enteric Surgery Research Center, Xiangya Hospital, Central South University, Changsha 410008 (China); Wu, Jilin, E-mail: 6296082@qq.com [Hepatobiliary and Enteric Surgery Research Center, Xiangya Hospital, Central South University, Changsha 410008 (China); Liu, Meizhou [Department of Medical Service, Shenzhen Second People' s Hospital, Shenzhen, Guangdong 518035 (China); Yin, Hui [Staff' s Hospital, Central South University, Changsha, Hunan 410078 (China); He, Jiantai [Hepatobiliary and Enteric Surgery Research Center, Xiangya Hospital, Central South University, Changsha 410008 (China); Zhang, Bo, E-mail: zhangbo8095@126.com [Department of Ultrasonography, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China)

    2015-09-04

    Hepatitis C virus (HCV) Core protein has been demonstrated to induce epithelial–mesenchymal transition (EMT) and is associated with cancer progression of hepatocellular carcinoma (HCC). However, how the Core protein regulates EMT is still unclear. In this study, HCV Core protein was overexpressed by an adenovirus. The protein levels of EMT markers were measured by Western blot. The xenograft animal model was established by inoculation of HepG2 cells. Results showed that ectopic expression of HCV core protein induced EMT in L02 hepatocytes and HepG2 tumor cells by upregulating vimentin, Sanl1, and Snal2 expression and downregulating E-cadherin expression. Moreover, Core protein downregulated miR-30c and miR-203a levels in L02 and HepG2 cells, but artificial expression of miR-30c and miR-203a reversed Core protein-induced EMT. Further analysis showed that ectopic expression of HCV core protein stimulated cell proliferation, inhibited apoptosis, and increased cell migration, whereas artificial expression of miR-30c and miR-203a significantly reversed the role of Core protein in these cell functions in L02 and HepG2 cells. In the HepG2 xenograft tumor models, artificial expression of miR-30c and miR-203a inhibited EMT and tumor growth. Moreover, L02 cells overexpressing Core protein can form tumors in nude mice. In HCC patients, HCV infection significantly shortened patients' survival time, and loss of miR-30c and miR-203 expression correlated with poor survival. In conclusion, HCV core protein downregulates miR-30c and miR-203a expression, which results in activation of EMT in normal hepatocytes and HCC tumor cells. The Core protein-activated-EMT is involved in the carcinogenesis and progression of HCC. Loss of miR-30c and miR-203a expression is a marker for the poor prognosis of HCC. - Highlights: • HCV core protein downregulates miR-30c and miR-203a expression. • Downregulation of miR-30c and miR-203a activates EMT. • Activated-EMT is involved in the

  15. A construct with fluorescent indicators for conditional expression of miRNA

    Directory of Open Access Journals (Sweden)

    Xia Xugang

    2008-10-01

    -mediated induction of the miRNA expression. This construct can be used to increase the efficiency of making cell lines or transgenic animals that stably express miRNA targeting specific genes.

  16. A Distinct Inhibitory Function for miR-18a in Th17 Cell Differentiation.

    Science.gov (United States)

    Montoya, Misty M; Maul, Julia; Singh, Priti B; Pua, Heather H; Dahlström, Frank; Wu, Nanyan; Huang, Xiaozhu; Ansel, K Mark; Baumjohann, Dirk

    2017-07-15

    Th17 cell responses orchestrate immunity against extracellular pathogens but also underlie autoimmune disease pathogenesis. In this study, we uncovered a distinct and critical role for miR-18a in limiting Th17 cell differentiation. miR-18a was the most dynamically upregulated microRNA of the miR-17-92 cluster in activated T cells. miR-18a deficiency enhanced CCR6 + RAR-related orphan receptor (ROR)γt + Th17 cell differentiation in vitro and increased the number of tissue Th17 cells expressing CCR6, RORγt, and IL-17A in airway inflammation models in vivo. Sequence-specific miR-18 inhibitors increased CCR6 and RORγt expression in mouse and human CD4 + T cells, revealing functional conservation. miR-18a directly targeted Smad4 , Hif1a , and Rora , all key transcription factors in the Th17 cell gene-expression program. These findings indicate that activating signals influence the outcome of Th cell differentiation via differential regulation of mature microRNAs within a common cluster. Copyright © 2017 by The American Association of Immunologists, Inc.

  17. Usefulness of Desirable Lifestyle Factors to Attenuate the Risk of Heart Failure Among Offspring whose Parents had Myocardial Infarction before Age 55 Years

    Science.gov (United States)

    Khawaja, Owais; Kotler, Gregory; Gaziano, John Michael; Djoussé, Luc

    2012-01-01

    Heart failure (HF) is one of the leading causes of hospitalization and death in United States and throughout Europe. While a higher risk of HF with antecedent myocardial infarction (MI) has been reported in offspring whose parents had MI before age 55, it is unclear whether adherence to healthful behaviors could mitigate that risk. The aim of the current study was therefore to prospectively examine if adherence to healthy weight, regular exercise, moderate alcohol consumption, and abstinence from smoking can attenuate such increased HF risk. The information on parental history of MI and lifestyle factors was collected using questionnaires. Subjects adhering to at least three healthy lifestyle factors were classified as having good vs. poor lifestyle score. Incident HF was assessed via yearly follow-up questionnaires and validated in a subsample. During an average follow up of 21.7 (6.5) years, 1,323 new HF cases (6.6%) of which 190 (14.4%) were preceded by MI occurred. Compared to subjects with good lifestyle score and no parental history of premature MI, multivariable adjusted hazard ratios (95% CI) for incident HF with antecedent MI was 3.21 (1.74–5.91) for people with good lifestyle score and parental history of premature MI; 1.52 (1.12–2.07) for individuals with poor lifestyle score and no parental history of premature MI; and 4.60 (2.55–8.30) for people with poor lifestyle score and parental history of premature MI. In conclusion, our data suggest that even in people at higher risk of HF due to genetic predisposition, adherence to healthful lifestyle factors may attenuate such an elevated HF risk. PMID:22516528

  18. c-Myc Represses Tumor-Suppressive microRNAs, let-7a, miR-16 and miR-29b, and Induces Cyclin D2-Mediated Cell Proliferation in Ewing's Sarcoma Cell Line.

    Directory of Open Access Journals (Sweden)

    Masanori Kawano

    Full Text Available Myc oncogenic transcription factor is known to inhibit tumor suppressive microRNAs (miRNAs, resulting in greater expression of their target protein related to cell cycle, invasion or anti-apoptotic factors in human cancer cells. To explore possible oncogenic factors in Ewing's sarcoma (ES, we conducted microarray-based approach to profile the changes in the expression of miRNAs and its downstream mRNAs in five ES cell lines and human mesenchymal stem cells (hMSCs. Three miRNAs, let-7a, miR-16 and miR-29b were significantly down-regulated, whereas c-Myc and cyclin D2 (CCND2 were significantly up-regulated in all tested ES cells compared with hMSCs. To verify that let-7a, miR-16 and miR-29b were the targets of c-Myc in ES cell lines, we transfected siRNA against c-Myc and confirmed the coordinate up-regulation of let-7a, miR-16 and miR-29b through the repression of c-Myc. The ES cells transfected with c-Myc-siRNA and let-7a, miR-16 and miR-29b exhibited the inhibition of the cell cycle progression. The increased expression of let-7a, miR-16 and miR-29b resulted in the reduction of CCND2 protein expression. We also demonstrated that c-Myc-siRNA treatment of ES cells was associated with the decreased expression of CCND2 as a down-stream of three miRNAs. Furthermore, the introduction of let-7a, miR-16 and miR-29b in ES cells could inhibit the c-Myc-mediated up-regulation of CCND2 resulted in the prevention of cell cycle progression. In addition, the transfection of let-7a, miR-16 and miR-29b in ES cells suppressed tumor growth ex vivo treatment. These findings suggests that the up-regulation of c-Myc inhibited the expression of let-7a, miR-16 and miR-29b subsequently induced CCND2 expression in ES cells. The present study might identify a novel oncogenic axis that c-Myc regulates the expression of CCND2 via let-7a, miR-16 and miR-29b, leading to the development new therapeutic targets for ES.

  19. Transcriptional regulation of miR-146b by C/EBPβ LAP2 in esophageal cancer cells

    International Nuclear Information System (INIS)

    Li, Junxia; Shan, Fabo; Xiong, Gang; Wang, Ju-Ming; Wang, Wen-Lin; Xu, Xueqing; Bai, Yun

    2014-01-01

    Highlights: • MiR-146b promotes esophageal cancer cell proliferation. • MiR-146b inhibits esophageal cancer cell apoptosis. • C/EBPβ directly binds to miR-146b promoter conserved region. • MiR-146b is up-regulated by C/EBPβ LAP2 transcriptional activation. - Abstract: Recent clinical study indicated that up-regulation of miR-146b was associated with poor overall survival of patients in esophageal squamous cell carcinoma. However, the underlying mechanism of miR-146b dysregulation remains to be explored. Here we report that miR-146b promotes cell proliferation and inhibits cell apoptosis in esophageal cancer cell lines. Mechanismly, two C/EBPβ binding motifs are located in the miR-146b promoter conserved region. Among the three isoforms of C/EBPβ, C/EBPβ LAP2 positively regulated miR-146b expression and increases miR-146b levels in a dose-dependent manner through transcription activation of miR-146b gene. Together, these results suggest a miR-146b regulatory mechanism involving C/EBPβ, which may contribute to the up-regulation of miR-146b in esophageal squamous cell carcinoma

  20. MiR-34a/miR-93 target c-Ski to modulate the proliferaton of rat cardiac fibroblasts and extracellular matrix deposition in vivo and in vitro.

    Science.gov (United States)

    Zhang, Chengliang; Zhang, Yanfeng; Zhu, Hong; Hu, Jiajia; Xie, Zhongshang

    2018-06-01

    Cardiac fibrosis is associated with diverse heart diseases. In response to different pathological irritants, cardiac fibroblasts may be induced to proliferate and differentiate into cardiac myofibroblasts, thus contributing to cardiac fibrosis. TGF-β signaling is implicated in the development of heart failure through the induction of cardiac fibrosis. C-Ski, an inhibitory regulator of TGF-β signaling, has been reported to suppress TGF-β1-induced human cardiac fibroblasts' proliferation and ECM protein increase; however, the underlying molecular mechanism needs further investigation. In the present study, we demonstrated that c-Ski could ameliorate isoproterenol (ISO)-induced rat myocardial fibrosis model and TGF-β1-induced primary rat cardiac fibroblasts' proliferation, as well as extracellular matrix (ECM) deposition. The protein level of c-Ski was dramatically decreased in cardiac fibrosis and TGF-β1-stimulated primary rat cardiac fibroblasts. In recent decades, a family of small non-coding RNA, namely miRNAs, has been reported to regulate gene expression by interacting with diverse mRNAs and inducing either translational suppression or mRNA degradation. Herein, we selected miR-34a and miR-93 as candidate miRNAs that might target to regulate c-Ski expression. After confirming that miR-34a/miR-93 targeted c-Ski to inhibit its expression, we also revealed that miR-34a/miR-93 affected TGF-β1-induced fibroblasts' proliferation and ECM deposition through c-Ski. Taken together, we demonstrated a miR-34a/miR-93-c-Ski axis which modulates TGF-β1- and ISO-induced cardiac fibrosis in vitro and in vivo; targeting the inhibitory factors of c-Ski to rescue its expression may be a promising strategy for the treatment of cardiac fibrosis. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. MicroRNA related polymorphisms and breast cancer risk.

    Directory of Open Access Journals (Sweden)

    Sofia Khan

    Full Text Available Genetic variations, such as single nucleotide polymorphisms (SNPs in microRNAs (miRNA or in the miRNA binding sites may affect the miRNA dependent gene expression regulation, which has been implicated in various cancers, including breast cancer, and may alter individual susceptibility to cancer. We investigated associations between miRNA related SNPs and breast cancer risk. First we evaluated 2,196 SNPs in a case-control study combining nine genome wide association studies (GWAS. Second, we further investigated 42 SNPs with suggestive evidence for association using 41,785 cases and 41,880 controls from 41 studies included in the Breast Cancer Association Consortium (BCAC. Combining the GWAS and BCAC data within a meta-analysis, we estimated main effects on breast cancer risk as well as risks for estrogen receptor (ER and age defined subgroups. Five miRNA binding site SNPs associated significantly with breast cancer risk: rs1045494 (odds ratio (OR 0.92; 95% confidence interval (CI: 0.88-0.96, rs1052532 (OR 0.97; 95% CI: 0.95-0.99, rs10719 (OR 0.97; 95% CI: 0.94-0.99, rs4687554 (OR 0.97; 95% CI: 0.95-0.99, and rs3134615 (OR 1.03; 95% CI: 1.01-1.05 located in the 3' UTR of CASP8, HDDC3, DROSHA, MUSTN1, and MYCL1, respectively. DROSHA belongs to miRNA machinery genes and has a central role in initial miRNA processing. The remaining genes are involved in different molecular functions, including apoptosis and gene expression regulation. Further studies are warranted to elucidate whether the miRNA binding site SNPs are the causative variants for the observed risk effects.

  2. MicroRNA Related Polymorphisms and Breast Cancer Risk

    Science.gov (United States)

    Khan, Sofia; Greco, Dario; Michailidou, Kyriaki; Milne, Roger L.; Muranen, Taru A.; Heikkinen, Tuomas; Aaltonen, Kirsimari; Dennis, Joe; Bolla, Manjeet K.; Liu, Jianjun; Hall, Per; Irwanto, Astrid; Humphreys, Keith; Li, Jingmei; Czene, Kamila; Chang-Claude, Jenny; Hein, Rebecca; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Fletcher, Olivia; Peto, Julian; dos Santos Silva, Isabel; Johnson, Nichola; Gibson, Lorna; Aitken, Zoe; Hopper, John L.; Tsimiklis, Helen; Bui, Minh; Makalic, Enes; Schmidt, Daniel F.; Southey, Melissa C.; Apicella, Carmel; Stone, Jennifer; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel A.; van der Luijt, Rob B.; Meindl, Alfons; Schmutzler, Rita K.; Müller-Myhsok, Bertram; Lichtner, Peter; Turnbull, Clare; Rahman, Nazneen; Chanock, Stephen J.; Hunter, David J.; Cox, Angela; Cross, Simon S.; Reed, Malcolm W. R.; Schmidt, Marjanka K.; Broeks, Annegien; Veer, Laura J. V. a. n't.; Hogervorst, Frans B.; Fasching, Peter A.; Schrauder, Michael G.; Ekici, Arif B.; Beckmann, Matthias W.; Bojesen, Stig E.; Nordestgaard, Børge G.; Nielsen, Sune F.; Flyger, Henrik; Benitez, Javier; Zamora, Pilar M.; Perez, Jose I. A.; Haiman, Christopher A.; Henderson, Brian E.; Schumacher, Fredrick; Le Marchand, Loic; Pharoah, Paul D. P.; Dunning, Alison M.; Shah, Mitul; Luben, Robert; Brown, Judith; Couch, Fergus J.; Wang, Xianshu; Vachon, Celine; Olson, Janet E.; Lambrechts, Diether; Moisse, Matthieu; Paridaens, Robert; Christiaens, Marie-Rose; Guénel, Pascal; Truong, Thérèse; Laurent-Puig, Pierre; Mulot, Claire; Marme, Frederick; Burwinkel, Barbara; Schneeweiss, Andreas; Sohn, Christof; Sawyer, Elinor J.; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Andrulis, Irene L.; Knight, Julia A.; Tchatchou, Sandrine; Mulligan, Anna Marie; Dörk, Thilo; Bogdanova, Natalia V.; Antonenkova, Natalia N.; Anton-Culver, Hoda; Darabi, Hatef; Eriksson, Mikael; Garcia-Closas, Montserrat; Figueroa, Jonine; Lissowska, Jolanta; Brinton, Louise; Devilee, Peter; Tollenaar, Robert A. E. M.; Seynaeve, Caroline; van Asperen, Christi J.; Kristensen, Vessela N.; Slager, Susan; Toland, Amanda E.; Ambrosone, Christine B.; Yannoukakos, Drakoulis; Lindblom, Annika; Margolin, Sara; Radice, Paolo; Peterlongo, Paolo; Barile, Monica; Mariani, Paolo; Hooning, Maartje J.; Martens, John W. M.; Collée, J. Margriet; Jager, Agnes; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Giles, Graham G.; McLean, Catriona; Brauch, Hiltrud; Brüning, Thomas; Ko, Yon-Dschun; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Jones, Michael; Simard, Jacques; Goldberg, Mark S.; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Mannermaa, Arto; Hamann, Ute; Chenevix-Trench, Georgia; Blomqvist, Carl; Aittomäki, Kristiina; Easton, Douglas F.; Nevanlinna, Heli

    2014-01-01

    Genetic variations, such as single nucleotide polymorphisms (SNPs) in microRNAs (miRNA) or in the miRNA binding sites may affect the miRNA dependent gene expression regulation, which has been implicated in various cancers, including breast cancer, and may alter individual susceptibility to cancer. We investigated associations between miRNA related SNPs and breast cancer risk. First we evaluated 2,196 SNPs in a case-control study combining nine genome wide association studies (GWAS). Second, we further investigated 42 SNPs with suggestive evidence for association using 41,785 cases and 41,880 controls from 41 studies included in the Breast Cancer Association Consortium (BCAC). Combining the GWAS and BCAC data within a meta-analysis, we estimated main effects on breast cancer risk as well as risks for estrogen receptor (ER) and age defined subgroups. Five miRNA binding site SNPs associated significantly with breast cancer risk: rs1045494 (odds ratio (OR) 0.92; 95% confidence interval (CI): 0.88–0.96), rs1052532 (OR 0.97; 95% CI: 0.95–0.99), rs10719 (OR 0.97; 95% CI: 0.94–0.99), rs4687554 (OR 0.97; 95% CI: 0.95–0.99, and rs3134615 (OR 1.03; 95% CI: 1.01–1.05) located in the 3′ UTR of CASP8, HDDC3, DROSHA, MUSTN1, and MYCL1, respectively. DROSHA belongs to miRNA machinery genes and has a central role in initial miRNA processing. The remaining genes are involved in different molecular functions, including apoptosis and gene expression regulation. Further studies are warranted to elucidate whether the miRNA binding site SNPs are the causative variants for the observed risk effects. PMID:25390939

  3. Conservation and diversification of the miR166 family in soybean and potential roles of newly identified miR166s.

    Science.gov (United States)

    Li, Xuyan; Xie, Xin; Li, Ji; Cui, Yuhai; Hou, Yanming; Zhai, Lulu; Wang, Xiao; Fu, Yanli; Liu, Ranran; Bian, Shaomin

    2017-02-01

    microRNA166 (miR166) is a highly conserved family of miRNAs implicated in a wide range of cellular and physiological processes in plants. miR166 family generally comprises multiple miR166 members in plants, which might exhibit functional redundancy and specificity. The soybean miR166 family consists of 21 members according to the miRBase database. However, the evolutionary conservation and functional diversification of miR166 family members in soybean remain poorly understood. We identified five novel miR166s in soybean by data mining approach, thus enlarging the size of miR166 family from 21 to 26 members. Phylogenetic analyses of the 26 miR166s and their precursors indicated that soybean miR166 family exhibited both evolutionary conservation and diversification, and ten pairs of miR166 precursors with high sequence identity were individually grouped into a discrete clade in the phylogenetic tree. The analysis of genomic organization and evolution of MIR166 gene family revealed that eight segmental duplications and four tandem duplications might occur during evolution of the miR166 family in soybean. The cis-elements in promoters of MIR166 family genes and their putative targets pointed to their possible contributions to the functional conservation and diversification. The targets of soybean miR166s were predicted, and the cleavage of ATHB14-LIKE transcript was experimentally validated by RACE PCR. Further, the expression patterns of the five newly identified MIR166s and 12 target genes were examined during seed development and in response to abiotic stresses, which provided important clues for dissecting their functions and isoform specificity. This study enlarged the size of soybean miR166 family from 21 to 26 members, and the 26 soybean miR166s exhibited evolutionary conservation and diversification. These findings have laid a foundation for elucidating functional conservation and diversification of miR166 family members, especially during seed development or

  4. The association between miR-499 polymorphism and cancer susceptibility: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Xu Z

    2015-08-01

    Full Text Available Zhongfei Xu, Enjiao Zhang, Weiyi Duan, Changfu Sun, Shuang Bai, Xuexin Tan Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, People’s Republic of China Background: MicroRNAs are a class of new noncoding RNA that play important roles in the pathogenesis of tumor. Rs3746444 in miR-499 is suggested to be associated with cancer susceptibility. In the present study, we assess the association between miR-499 rs3746444 polymorphism and cancer susceptibility through a meta-analysis. Methods: We searched relevant articles from the PubMed and Embase databases. We screened all the resulting articles for adherence to the inclusion and exclusion criteria. The associations between miR-499 polymorphism and cancer susceptibility were estimated by computing the odds ratios (ORs and 95% confidence intervals (CIs. All analyses were performed using Stata software. Results: There are 18 datasets included in the analysis. Statistically significant associations were found between the miR-499 rs3746444 polymorphism and susceptibility to cancer (GG versus AA: OR =1.24, 95% CI: 1.01–1.52; G versus A: OR =1.11, 95% CI: 1.01–1.23. A subsequent analysis, on the basis of ethnicity for the population characteristic, showed that Asians had increased susceptibility to cancer (GG versus AA: OR =1.32, 95% CI: 1.09–1.59; GG + AG versus AA: OR = 1.17, 95% CI: 1.01–1.37. In the subgroup analysis of tumor type, none of the genetic models had statistically significant results. The meta-regression suggested that race and cancer types are not the source of heterogeneity in the present meta-analysis. No publication bias was detected by either the inverted funnel plot or Egger’s test. Conclusion: Rs3746444 in miR-499 might be related to susceptibility to cancer. Keywords: microRNA, single-nucleotide polymorphism, tumor, risk factor

  5. miR-15a/miR-16 cluster inhibits invasion of prostate cancer cells by suppressing TGF-β signaling pathway.

    Science.gov (United States)

    Jin, Wei; Chen, Fangjie; Wang, Kefeng; Song, Yan; Fei, Xiang; Wu, Bin

    2018-05-23

    To determine whether and how miR15a/16 regulate TGF-β signaling pathways during the progression of prostate cancer. We used bioinformatics prediction, reporter gene assay, real-time PCR, Matrigel invasion assay and Western blot to dissect the molecular mechanism of how miR-15a/miR-16 may cause metastasis in prostate tumor. MiR-15a/16 targeted and inhibited the expression of endogenous Smad3 and ACVR2A proteins. The overexpression of miR15a/16 down-regulated p-smad3 expression, affected the expression of both MMP2 and E-cadherin, and down-regulated the expression of the EMT-mediated factors Snail and Twist in LNCaP prostate cancer cells. The overexpression of miR15a/16 decreased the invasion of LNCaP cells. MiR-15a/miR-16 cluster could reverse the invasion of activin A-mediated prostate cancer cells. After the inhibition of the activin/smad signaling pathway, the inhibitory effect of invasion in prostate cancer cells by miR-15a/miR-16 cluster disappeared. Our data indicated that miR15a/16 inhibited the components of TGF-β signaling pathways in LNCaP cell line, which might relate to the progression and metastasis of prostate cancer. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  6. Phenotypic characterization of miR-92a-/- mice reveals an important function of miR-92a in skeletal development.

    Directory of Open Access Journals (Sweden)

    Daniela Penzkofer

    Full Text Available MicroRNAs (miRNAs, miRs emerged as key regulators of gene expression. Germline hemizygous deletion of the gene that encodes the miR-17∼92 miRNA cluster was associated with microcephaly, short stature and digital abnormalities in humans. Mice deficient for the miR-17∼92 cluster phenocopy several features such as growth and skeletal development defects and exhibit impaired B cell development. However, the individual contribution of miR-17∼92 cluster members to this phenotype is unknown. Here we show that germline deletion of miR-92a in mice is not affecting heart development and does not reduce circulating or bone marrow-derived hematopoietic cells, but induces skeletal defects. MiR-92a-/- mice are born at a reduced Mendelian ratio, but surviving mice are viable and fertile. However, body weight of miR-92a-/- mice was reduced during embryonic and postnatal development and adulthood. A significantly reduced body and skull length was observed in miR-92a-/- mice compared to wild type littermates. µCT analysis revealed that the length of the 5th mesophalanx to 5th metacarpal bone of the forelimbs was significantly reduced, but bones of the hindlimbs were not altered. Bone density was not affected. These findings demonstrate that deletion of miR-92a is sufficient to induce a developmental skeletal defect.

  7. Circulating Serum miRNAs as Diagnostic Markers for Colorectal Cancer.

    Directory of Open Access Journals (Sweden)

    Abdel-Rahman N Zekri

    Full Text Available The study was designed to assess the possibility of using circulating miRNAs (serum miRNAs as diagnostic biomarkers in colorectal cancer (CRC and to identify their possibility as candidates for targeted therapy.The study involved two sample sets: 1- a training set which included 90 patients with colorectal related disease (30 with CRC, 18 with inflammatory bowel disease (IBD, 18 with colonic polyps (CP and 24 with different colonic symptoms but without any colonoscopic abnormality who were enrolled as control group and 2- a validation set which included 100 CRC patients. Serum miRNAs were extracted from all subjects to assess the expression profiles for the following miRNAs (miR-17, miR-18a, miR-19a, miR-19b, miR-20a, miR-21, miR-146a, miR-223, miR-24, miR-454, miR-183, miR-135a, miR- 135b and miR- 92a using the custom miScript miRNA PCR-based sybergreen array. The area under the receiver operating characteristic curve (AUC was used to evaluate the diagnostic performance of the studied miRNAs for colorectal cancer diagnosis.Data analysis of miRNA from the training set showed that; compared to control group, only miR-19b was significantly up-regulated in patients with IBD group (fold change = 5.24, p = 0.016, whereas in patients with colonic polyps, miR-18a was significantly up-regulated (fold change = 3.49, p-value = 0.018. On the other hand, miR-17, miR-19a, miR-20a and miR-223 were significantly up-regulated (fold change = 2.35, 3.07, 2.38 and 10.35; respectively and p-value = 0.02, 0.015, 0.017 and 0.016; respectively in CRC patients. However, the validation set showed that only miR-223 was significantly up-regulated in CRC patients (fold change = 4.06, p-value = 0.04.Aberrant miRNA expressions are highly involved in the cascade of colorectal carcinogenesis. We have found that (miR-17, miR-19a, miR-20a and miR-223 could be used as diagnostic biomarkers for CRC. On the other hand, miR-19b and miR-18a could be used as diagnostic biomarkers for

  8. Lifespan and reproduction in brain-specific miR-29-knockdown mouse.

    Science.gov (United States)

    Takeda, Toru; Tanabe, Hiroyuki

    2016-03-18

    The microRNA miR-29 is widely distributed and highly expressed in adult mouse brain during the mouse's lifetime. We recently created conditional mutant mice whose miR-29 was brain-specifically knocked down through overexpression of an antisense RNA transgene against miR-29. To explore a role for brain miR-29 in maximizing organismal fitness, we assessed somatic growth, reproduction, and lifespan in the miR-29-knockdown (KD) mice and their wild-type (WT) littermates. The KD mice were developmentally indistinguishable from WT mice with respect to gross morphology and physical activity. Fertility testing revealed that KD males were subfertile, whereas KD females were hyperfertile, only in terms of reproductive success, when compared to their gender-matched WT correspondents. Another phenotypic difference between KD and WT animals appeared in their lifespan data; KD males displayed an overall increasing tendency in post-reproductive survival relative to WT males. In contrast, KD females were prone to shorter lifespans than WT females. These results clarify that brain-targeted miR-29 knockdown affects both lifespan and reproduction in a gender-dependent manner, and moreover that the reciprocal responsiveness to the miR-29 knockdown between these two phenotypes in both genders closely follow life-course models based on the classical trade-off prediction wherein elaborate early-life energetic investment in reproduction entails accelerated late-life declines in survival, and vice versa. Thus, this study identified miR-29 as the first mammalian miRNA that is directly implicated in the lifetime trade-off between the two major fitness components, lifespan and reproduction. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. What Is New in the miRNA World Regarding Osteosarcoma and Chondrosarcoma?

    Science.gov (United States)

    Palmini, Gaia; Marini, Francesca; Brandi, Maria Luisa

    2017-03-07

    Despite the availability of multimodal and aggressive therapies, currently patients with skeletal sarcomas, including osteosarcoma and chondrosarcoma, often have a poor prognosis. In recent decades, advances in sequencing technology have revealed the presence of RNAs without coding potential known as non-coding RNAs (ncRNAs), which provides evidence that protein-coding genes account for only a small percentage of the entire genome. This has suggested the influence of ncRNAs during development, apoptosis and cell proliferation. The discovery of microRNAs (miRNAs) in 1993 underscored the importance of these molecules in pathological diseases such as cancer. Increasing interest in this field has allowed researchers to study the role of miRNAs in cancer progression. Regarding skeletal sarcomas, the research surrounding which miRNAs are involved in the tumourigenesis of osteosarcoma and chondrosarcoma has rapidly gained traction, including the identification of which miRNAs act as tumour suppressors and which act as oncogenes. In this review, we will summarize what is new regarding the roles of miRNAs in chondrosarcoma as well as the latest discoveries of identified miRNAs in osteosarcoma.

  10. Downregulation of miR-205 modulates cell susceptibility to oxidative and endoplasmic reticulum stresses in renal tubular cells.

    Directory of Open Access Journals (Sweden)

    Shiyo Muratsu-Ikeda

    Full Text Available BACKGROUND: Oxidative stress and endoplasmic reticulum (ER stress play a crucial role in tubular damage in both acute kidney injury (AKI and chronic kidney disease (CKD. While the pathophysiological contribution of microRNAs (miRNA to renal damage has also been highlighted, the effect of miRNA on renal damage under oxidative and ER stresses conditions remains elusive. METHODS: We assessed changes in miRNA expression in the cultured renal tubular cell line HK-2 under hypoxia-reoxygenation-induced oxidative stress or ER stress using miRNA microarray assay and real-time RT-PCR. The pathophysiological effect of miRNA was evaluated by cell survival rate, intracellular reactive oxygen species (ROS level, and anti-oxidant enzyme expression in miRNA-inhibited HK-2 or miRNA-overexpressed HK-2 under these stress conditions. The target gene of miRNA was identified by 3'-UTR-luciferase assay. RESULTS: We identified 8 and 10 miRNAs whose expression was significantly altered by oxidative and ER stresses, respectively. Among these, expression of miR-205 was markedly decreased in both stress conditions. Functional analysis revealed that decreased miR-205 led to an increase in cell susceptibility to oxidative and ER stresses, and that this increase was associated with the induction of intracellular ROS and suppression of anti-oxidant enzymes. While increased miR-205 by itself made no change in cell growth or morphology, cell viability under oxidative or ER stress conditions was partially restored. Further, miR-205 bound to the 3'-UTR of the prolyl hydroxylase 1 (PHD1/EGLN2 gene and suppressed the transcription level of EGLN2, which modulates both intracellular ROS level and ER stress state. CONCLUSIONS: miR-205 serves a protective role against both oxidative and ER stresses via the suppression of EGLN2 and subsequent decrease in intracellular ROS. miR-205 may represent a novel therapeutic target in AKI and CKD associated with oxidative or ER stress in tubules.

  11. Methylation of the miR-126 gene associated with glioma progression.

    Science.gov (United States)

    Cui, Hongwei; Mu, Yongping; Yu, Lei; Xi, Ya-guang; Matthiesen, Rune; Su, Xiulan; Sun, Wenjie

    2016-04-01

    Gliomas are the most common and the most malignant brain tumors, accouting for 45-55% of all intracranial tumors. The incidence of glioma worldwide is about 6-12 per 100,000. Recently, several studies showed that the activation of the oncogenes and the inactivation and/or loss of the tumor suppressor genes, especially for miRNA-21, let-7 and so on, are the most primary molecule event in gliomas. MicroRNAs (miRNAs) are a class of endogenously expressed small noncoding RNAs which are usually 21-23 nucleotides long. miRNAs regulate gene expression and play important roles in a variety of physiological and pathological processes, such as cell proliferation, differentiation and apoptosis. To date, Growing evidence has shown that mi RNAs are frequently dysregulated in human cancers and can act as both tumor suppressors and oncogenes. Along with the discovery of micro RNA, more and more research focusing on its relationship with glioma was carried out to investigate the biological features of glioma and to provide experimental evidence for glioma mechanism. In the present study, we aimed to verify the miRNA-126 down-regulation which showed in the results of glioma tissue miRNAs chip and discuss the miRNA-126 methylation in patients with glioma. A total of 50 samples from patients with glioma and 20 control samples from patients with cerebral trauma were included in this study. The expression levels of the miR-126 gene were detected using quantitative polymerase chain reaction (PCR), and the methylation status of miR-126 was examined using methylation-specific PCR-denaturing high-performance liquid chromatography (MSP-DHPLC). The expression level of miRNA-126 was found to be significantly higher in the control group (0.6134 ± 0.1214) than in the glioma group (0.2771 ± 0.1529; P < 0.05). The expression was also significantly elevated in low-grade gliomas (0.3117 ± 0.1474) compared with high-grade gliomas (0.1582 ± 0.1345; P < 0.05). In addition, increased methylation of

  12. Socioeconomic differences in risk of myocardial infarction 1971-1994 in Sweden

    DEFF Research Database (Denmark)

    Hallqvist, J; Lundberg, Mats; Diderichsen, Finn

    1998-01-01

    The general trend in incidence of myocardial infarction (MI) in the Stockholm area changed from increasing to decreasing around 1980. The objective of this study is to examine time trends in incidence in major socioeconomic strata, relative risk between socioeconomic groups and population risk...... attributable to socioeconomic differences during this period....

  13. Antiphospholipid antibody-induced miR-146a-3p drives trophoblast interleukin-8 secretion through activation of Toll-like receptor 8.

    Science.gov (United States)

    Gysler, Stefan M; Mulla, Melissa J; Guerra, Marta; Brosens, Jan J; Salmon, Jane E; Chamley, Lawrence W; Abrahams, Vikki M

    2016-07-01

    What is the role of microRNAs (miRs) in antiphospholipid antibody (aPL)-induced trophoblast inflammation? aPL-induced up-regulation of trophoblast miR-146a-3p is mediated by Toll-like receptor 4 (TLR4), and miR-146a-3p in turn drives the cells to secrete interleukin (IL)-8 by activating the RNA sensor, TLR8. Obstetric antiphospholipid syndrome (APS) is an autoimmune disorder characterized by circulating aPL and an increased risk of pregnancy complications. We previously showed that aPL recognizing beta2 glycoprotein I (β2GPI) elicit human first trimester trophoblast secretion of IL-8 by activating TLR4. Since some miRs control TLR responses, their regulation in trophoblast cells by aPL and functional role in the aPL-mediated inflammatory response was investigated. miRs can be released from cells via exosomes, and therefore, miR exosome expression was also examined. A panel of miRs was selected based on their involvement with TLR signaling: miR-9; miR-146a-5p and its isomiR, miR-146a-3p; miR-155, miR-210; and Let-7c. Since certain miRs can activate the RNA sensor, TLR8, this was also investigated. For in vitro studies, the human first trimester extravillous trophoblast cell line, HTR8 was studied. HTR8 cells transfected to express a TLR8 dominant negative (DN) were also used. Plasma was evaluated from pregnant women who have aPL, either with or without systemic lupus erythematous (SLE) (n = 39); SLE patients without aPL (n = 30); and healthy pregnant controls (n = 20). Trophoblast HTR8 wildtype and TLR8-DN cells were incubated with or without aPL (mouse anti-human β2GPI mAb) for 48-72 h. HTR8 cells were also treated with or without aPL in the presence and the absence of a TLR4 antagonist (lipopolysaccharide from Rhodobacter sphaeroides; LPS-RS), specific miR inhibitors or specific miR mimics. miR expression levels in trophoblast cells, trophoblast-derived exosomes and exosomes isolated from patient plasma were measured by qPCR. Trophoblast IL-8 secretion was

  14. Epigenetic architecture and miRNA: reciprocal regulators

    DEFF Research Database (Denmark)

    Wiklund, Erik D; Kjems, Jørgen; Clark, Susan J

    2010-01-01

    Deregulation of epigenetic and microRNA (miRNA) pathways are emerging as key events in carcinogenesis. miRNA genes can be epigenetically regulated and miRNAs can themselves repress key enzymes that drive epigenetic remodeling. Epigenetic and miRNA functions are thus tightly interconnected......RNAs) are considered especially promising in clinical applications, and their biogenesis and function is a subject of active research. In this review, the current status of epigenetic miRNA regulation is summarized and future therapeutic prospects in the field are discussed with a focus on cancer....

  15. Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity

    OpenAIRE

    Wyman, Stacia K.; Knouf, Emily C.; Parkin, Rachael K.; Fritz, Brian R.; Lin, Daniel W.; Dennis, Lucas M.; Krouse, Michael A.; Webster, Philippa J.; Tewari, Muneesh

    2011-01-01

    Modification of microRNA sequences by the 3′ addition of nucleotides to generate so-called “isomiRs” adds to the complexity of miRNA function, with recent reports showing that 3′ modifications can influence miRNA stability and efficiency of target repression. Here, we show that the 3′ modification of miRNAs is a physiological and common post-transcriptional event that shows selectivity for specific miRNAs and is observed across species ranging from C. elegans to human. The modifications resul...

  16. Circulating miRNAs as Putative Biomarkers of Exercise Adaptation in Endurance Horses

    Directory of Open Access Journals (Sweden)

    Katia Cappelli

    2018-04-01

    Full Text Available Endurance exercise induces metabolic adaptations and has recently been reported associated with the modulation of a particular class of small noncoding RNAs, microRNAs, that act as post-transcriptional regulators of gene expression. Released into body fluids, they termed circulating miRNAs, and they have been recognized as more effective and accurate biomarkers than classical serum markers. This study examined serum profile of miRNAs through massive parallel sequencing in response to prolonged endurance exercise in samples obtained from four competitive Arabian horses before and 2 h after the end of competition. MicroRNA identification, differential gene expression (DGE analysis and a protein-protein interaction (PPI network showing significantly enriched pathways of target gene clusters, were assessed and explored. Our results show modulation of more than 100 miRNAs probably arising from tissues involved in exercise responses and indicating the modulation of correlated processes as muscle remodeling, immune and inflammatory responses. Circulating miRNA high-throughput sequencing is a promising approach for sports medicine for the discovery of putative biomarkers for predicting risks related to prolonged activity and monitoring metabolic adaptations.

  17. MiR302 regulates SNAI1 expression to control mesangial cell plasticity

    DEFF Research Database (Denmark)

    De Chiara, L.; Andrews, D.; Watson, A.

    2017-01-01

    Cell fate decisions are controlled by the interplay of transcription factors and epigenetic modifiers, which together determine cellular identity. Here we elaborate on the role of miR302 in the regulation of cell plasticity. Overexpression of miR302 effected silencing of the TGFβ type II receptor...... and facilitated plasticity in a manner distinct from pluripotency, characterized by increased expression of Snail. miR302 overexpressing mesangial cells also exhibited enhanced expression of EZH2 coincident with Snail upregulation. esiRNA silencing of each component suggest that Smad3 and EZH2 are part...... of a complex that regulates plasticity and that miR302 regulates EZH2 and Snail independently. Subsequent manipulation of miR302 overexpressing cells demonstrated the potential of using this approach for reprogramming as evidenced by de novo expression of the tight junction components ZO-1 and E...

  18. miR-21 modulates resistance of HR-HPV positive cervical cancer cells to radiation through targeting LATS1

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shikai; Song, Lili, E-mail: commasll@163.com; Zhang, Liang; Zeng, Saitian; Gao, Fangyuan

    2015-04-17

    Although multiple miRNAs are found involved in radioresistance development in HR-HPV positive (+) cervical cancer, only limited studies explored the regulative mechanism of the miRNAs. miR-21 is one of the miRNAs significantly upregulated in HR-HPV (+) cervical cancer is also significantly associated with radioresistance. However, the detailed regulative network of miR-21 in radioresistance is still not clear. In this study, we confirmed that miR-21 overexpression was associated with higher level of radioresistance in HR-HPV (+) cervical cancer patients and thus decided to further explore its role. Findings of this study found miR-21 can negatively affect radiosensitivity of HR-HPV (+) cervical cancer cells and decrease radiation induced G2/M block and increase S phase accumulation. By using dual luciferase assay, we verified a binding site between miR-21 and 3′-UTR of large tumor suppressor kinase 1 (LATS1). Through direct binding, miR-21 can regulate LATS1 expression in cervical cancer cells. LATS1 overexpression can reverse miR-21 induced higher colony formation rate and also reduced miR-21 induced S phase accumulation and G2/M phase block reduction under radiation treatment. These results suggested that miR-21-LATS1 axis plays an important role in regulating radiosensitivity. - Highlights: • miR-21 is highly expressed in HR-HPV (+) radioresistant cervical cancer patients. • miR-21 can negatively affect radiosensitivity of HR-HPV (+) cervical cancer cells. • miR-21 can decrease radiation induced G2/M block and increase S phase accumulation. • miR-21 modulates radiosensitivity cervical cancer cell by directly targeting LATS1.

  19. miR-21 modulates resistance of HR-HPV positive cervical cancer cells to radiation through targeting LATS1

    International Nuclear Information System (INIS)

    Liu, Shikai; Song, Lili; Zhang, Liang; Zeng, Saitian; Gao, Fangyuan

    2015-01-01

    Although multiple miRNAs are found involved in radioresistance development in HR-HPV positive (+) cervical cancer, only limited studies explored the regulative mechanism of the miRNAs. miR-21 is one of the miRNAs significantly upregulated in HR-HPV (+) cervical cancer is also significantly associated with radioresistance. However, the detailed regulative network of miR-21 in radioresistance is still not clear. In this study, we confirmed that miR-21 overexpression was associated with higher level of radioresistance in HR-HPV (+) cervical cancer patients and thus decided to further explore its role. Findings of this study found miR-21 can negatively affect radiosensitivity of HR-HPV (+) cervical cancer cells and decrease radiation induced G2/M block and increase S phase accumulation. By using dual luciferase assay, we verified a binding site between miR-21 and 3′-UTR of large tumor suppressor kinase 1 (LATS1). Through direct binding, miR-21 can regulate LATS1 expression in cervical cancer cells. LATS1 overexpression can reverse miR-21 induced higher colony formation rate and also reduced miR-21 induced S phase accumulation and G2/M phase block reduction under radiation treatment. These results suggested that miR-21-LATS1 axis plays an important role in regulating radiosensitivity. - Highlights: • miR-21 is highly expressed in HR-HPV (+) radioresistant cervical cancer patients. • miR-21 can negatively affect radiosensitivity of HR-HPV (+) cervical cancer cells. • miR-21 can decrease radiation induced G2/M block and increase S phase accumulation. • miR-21 modulates radiosensitivity cervical cancer cell by directly targeting LATS1

  20. miR-203a is involved in HBx-induced inflammation by targeting Rap1a

    Energy Technology Data Exchange (ETDEWEB)

    Wu, AiRong [Department of gastroenterology, The First affiliated Hospital of Soochow University, Suzhou 215006 (China); Chen, Huo [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123 (China); Xu, ChunFang [Department of gastroenterology, The First affiliated Hospital of Soochow University, Suzhou 215006 (China); Zhou, Ji; Chen, Si [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123 (China); Shi, YuQi [Department of gastroenterology, The First affiliated Hospital of Soochow University, Suzhou 215006 (China); Xu, Jie [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123 (China); Gan, JianHe, E-mail: j_pzhang@suda.edu.cn [Department of gastroenterology, The First affiliated Hospital of Soochow University, Suzhou 215006 (China); Zhang, JinPing, E-mail: ganjianhe@aliyun.com [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123 (China)

    2016-11-15

    Hepatitis B virus (HBV) causes acute and chronic hepatitis, and is one of the major causes of cirrhosis and hepatocellular carcinoma. Accumulating evidence suggests that inflammation is the key factor for liver cirrhosis and hepatocellular carcinoma. MicroRNAs play important roles in many biological processes. Here, we aim to explore the function of microRNAs in the HBX-induced inflammation. First, microarray experiment showed that HBV{sup +} liver samples expressed higher level of miR-203a compared to HBV{sup -} liver samples. To verify these alterations, HBx-coding plasmid was transfected into HepG2 cells to overexpress HBx protein. The real-time PCR results suggested that over-expression of HBx could induce up-regulation of miR-203a. To define how up-regulation of miR-203a can induce liver cells inflammation, we over-expressed miR-203a in HepG2 cells. Annexin V staining and BrdU staining suggested that overexpression of miR-203a significantly increased the cell apoptosis and proliferation, meanwhile, over-expression of miR-203a could lead to a decrease in G0/G1 phase cells and an increase in G2/M phase cells. Some cytokines production including IL-6 and IL-8 were significantly increased, but TGFβ and IFNγ were decreased in miR-203a over-expressed HepG2 cells. Luciferase reporter assay experiments, protein mass-spectrum assay and real-time PCR all together demonstrated that Rap1a was the target gene of miR-203a. Further experiments showed that these alterations were modulated through PI3K/ERK/p38/NFκB pathways. These data suggested that HBV-infection could up-regulate the expression of miR-203a, thus down regulated the expression of Rap1a and affected the PI3K/ERK/p38/NFκB pathways, finally induced the hepatitis inflammation. - Highlights: • HBX induces the over-expression of miR-203a in HepG2 cells. • miR-203a targets Rap1a to induce the inflammation in HepG2 cells. • miR-203a regulates the apoptosis and cell cycles of HepG2 cells. • miR-203a alters

  1. Mi-spillet

    DEFF Research Database (Denmark)

    Larsen, Lea Lund; Hejlesen, Stine

    2003-01-01

    MI-spillet er et undervisningsspil til folkeskolens mellemtrin og udskolingen. Spillet omformer Howard Gardners teori om de mange intelligenser til et praktisk og håndgribeligt værktøj til brug i folkeskolen. Spillet indeholder et undervisningsmateriale bestående af lærervejledning og kopimappe...... emnebaseret eller tværfagligt arbejde. Alt materialet ligger samlet på en cd-rom, hvorfra materialet printes. Skolen kan derfor ved køb af én cd-rom printe og producere et ubegrænset antal spil. Cd-rommen indeholder: 1. Lærervejledning 2. MI-spillet * Gulvpladerne * Spørgsmål til spillet * Bilag til...

  2. The influence of social support on risk of acute cardiovascular diseases in female population aged 25–64 in Russia

    Directory of Open Access Journals (Sweden)

    Valery V. Gafarov

    2013-08-01

    Full Text Available Objective. To study the prevalence of social support (SS and its influence on the relative risk (RR of myocardial infarction (MI and stroke in the female population aged 25–64 in Russia. Materials and methods. Under the third screening of the WHO “MONICA-psychosocial” programme, a random representative sample of women aged 25–64 (n=870 were surveyed in Novosibirsk. SS was measured according to the methods of the Berkman–Sym test [indices of close contacts (ICC and index of social network (SNI]. From 1995 to 2010, women were followed for 16 years to observe the incidence of MI and stroke. Results. The prevalence of low levels of ICC and SNI in women aged 25–64 was 57.1 and 77.7%, respectively. Low levels of ICC and SNI were associated with poor self-rated health and awareness about their health, adverse behavioural habits, high job strain and family stress. Rates of MI and stroke development were higher in married women with low ICC and SNI who were being in class “hard manual work”. Over a 16-year study period, the RR of MI in women with low ICC compared to those with high ICC was 4.9 times higher, and the risk of stroke was 4.1 times higher. Low level of SNI increased MI risk in 2.9 times, risk of stroke in 2.7 times. Conclusions. Majority of women aged 25–64 years in Russia have low social support which is associated with poor self-rated health, low awareness about the health that increases the risk of MI and stroke in 2.7–4.9 times in groups of “married” and “hard physical work”.

  3. IL-4 Up-Regulates MiR-21 and the MiRNAs Hosted in the CLCN5 Gene in Chronic Lymphocytic Leukemia.

    Directory of Open Access Journals (Sweden)

    Natalia Ruiz-Lafuente

    Full Text Available Interleukin 4 (IL-4 induces B-cell differentiation and survival of chronic lymphocytic leukemia (CLL cells. MicroRNAs (miRNAs regulate mRNA and protein expression, and several miRNAs, deregulated in CLL, might play roles as oncogenes or tumor suppressors. We have studied the miRNA profile of CLL, and its response to IL-4, by oligonucleotide microarrays, resulting in the detection of a set of 129 mature miRNAs consistently expressed in CLL, which included 41 differentially expressed compared to normal B cells (NBC, and 6 significantly underexpressed in ZAP-70 positive patients. IL-4 stimulation brought about up-regulation of the 5p and 3p mature variants of the miR-21 gene, which maps immediately downstream to the VMP1 gene, and of the mature forms generated from the miR-362 (3p and 5p, miR-500a (3p, miR-502 (3p, and miR-532 (3p and 5p genes, which map within the third intron of the CLCN5 gene. Both genes are in turn regulated by IL-4, suggesting that these miRNAs were regulated by IL-4 as passengers from their carrier genes. Their levels of up-regulation by IL-4 significantly correlated with cytoprotection. MiR-21 has been reported to be leukemogenic, associated to bad prognosis in CLL, and the miRNA more frequently overexpressed in human cancer. Up-regulation by IL-4 of miR-21 and the miRNAs hosted in the CLCN5 locus may contribute to evasion of apoptosis of CLL cells. These findings indicate that the IL-4 pathway and the miRNAs induced by IL-4 are promising targets for the development of novel therapies in CLL.

  4. Monitoring the Spatiotemporal Activities of miRNAs in Small Animal Models Using Molecular Imaging Modalities

    Directory of Open Access Journals (Sweden)

    Patrick Baril

    2015-03-01

    Full Text Available MicroRNAs (miRNAs are a class of small non-coding RNAs that regulate gene expression by binding mRNA targets via sequence complementary inducing translational repression and/or mRNA degradation. A current challenge in the field of miRNA biology is to understand the functionality of miRNAs under physiopathological conditions. Recent evidence indicates that miRNA expression is more complex than simple regulation at the transcriptional level. MiRNAs undergo complex post-transcriptional regulations such miRNA processing, editing, accumulation and re-cycling within P-bodies. They are dynamically regulated and have a well-orchestrated spatiotemporal localization pattern. Real-time and spatio-temporal analyses of miRNA expression are difficult to evaluate and often underestimated. Therefore, important information connecting miRNA expression and function can be lost. Conventional miRNA profiling methods such as Northern blot, real-time PCR, microarray, in situ hybridization and deep sequencing continue to contribute to our knowledge of miRNA biology. However, these methods can seldom shed light on the spatiotemporal organization and function of miRNAs in real-time. Non-invasive molecular imaging methods have the potential to address these issues and are thus attracting increasing attention. This paper reviews the state-of-the-art of methods used to detect miRNAs and discusses their contribution in the emerging field of miRNA biology and therapy.

  5. Monitoring the spatiotemporal activities of miRNAs in small animal models using molecular imaging modalities.

    Science.gov (United States)

    Baril, Patrick; Ezzine, Safia; Pichon, Chantal

    2015-03-04

    MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression by binding mRNA targets via sequence complementary inducing translational repression and/or mRNA degradation. A current challenge in the field of miRNA biology is to understand the functionality of miRNAs under physiopathological conditions. Recent evidence indicates that miRNA expression is more complex than simple regulation at the transcriptional level. MiRNAs undergo complex post-transcriptional regulations such miRNA processing, editing, accumulation and re-cycling within P-bodies. They are dynamically regulated and have a well-orchestrated spatiotemporal localization pattern. Real-time and spatio-temporal analyses of miRNA expression are difficult to evaluate and often underestimated. Therefore, important information connecting miRNA expression and function can be lost. Conventional miRNA profiling methods such as Northern blot, real-time PCR, microarray, in situ hybridization and deep sequencing continue to contribute to our knowledge of miRNA biology. However, these methods can seldom shed light on the spatiotemporal organization and function of miRNAs in real-time. Non-invasive molecular imaging methods have the potential to address these issues and are thus attracting increasing attention. This paper reviews the state-of-the-art of methods used to detect miRNAs and discusses their contribution in the emerging field of miRNA biology and therapy.

  6. miR-122 targets pyruvate kinase M2 and affects metabolism of hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Angela M Liu

    Full Text Available In contrast to normal differentiated cells that depend on mitochondrial oxidative phosphorylation for energy production, cancer cells have evolved to utilize aerobic glycolysis (Warburg's effect, with benefit of providing intermediates for biomass production. MicroRNA-122 (miR-122 is highly expressed in normal liver tissue regulating a wide variety of biological processes including cellular metabolism, but is reduced in hepatocellular carcinoma (HCC. Overexpression of miR-122 was shown to inhibit cancer cell proliferation, metastasis, and increase chemosensitivity, but its functions in cancer metabolism remains unknown. The present study aims to identify the miR-122 targeted genes and to investigate the associated regulatory mechanisms in HCC metabolism. We found the ectopic overexpression of miR-122 affected metabolic activities of HCC cells, evidenced by the reduced lactate production and increased oxygen consumption. Integrated gene expression analysis in a cohort of 94 HCC tissues revealed miR-122 level tightly associated with a battery of glycolytic genes, in which pyruvate kinase (PK gene showed the strongest anti-correlation coefficient (Pearson r = -0.6938, p = <0.0001. In addition, reduced PK level was significantly associated with poor clinical outcomes of HCC patients. We found isoform M2 (PKM2 is the dominant form highly expressed in HCC and is a direct target of miR-122, as overexpression of miR-122 reduced both the mRNA and protein levels of PKM2, whereas PKM2 re-expression abrogated the miR-122-mediated glycolytic activities. The present study demonstrated the regulatory role of miR-122 on PKM2 in HCC, having an implication of therapeutic intervention targeting cancer metabolic pathways.

  7. Epigenetic modification of miR-10a regulates renal damage by targeting CREB1 in type 2 diabetes mellitus.

    Science.gov (United States)

    Shan, Qun; Zheng, Guihong; Zhu, Aihua; Cao, Li; Lu, Jun; Wu, Dongmei; Zhang, ZiFeng; Fan, Shaohua; Sun, Chunhui; Hu, Bin; Zheng, Yuanlin

    2016-09-01

    Emerging evidence has shown that microRNA-mediated gene expression modulation plays a crucial role in the pathogenesis of type 2 diabetes mellitus, but the novel miRNAs involved in type 2 diabetes and its functional regulatory mechanisms still need to be determined. In this study, we assessed the role of miR-10a in extracellular matrix accumulation in the kidney of diabetic mellitus induced by combining administration of chronic high fat diet (HFD) and low dosage of streptozotocin (STZ, 35mg/kg). Here, we found that HFD/STZ administration decreased the level of microRNA (miR-10a) expression in ICR strain mice. Overexpression of miR-10a alleviated the increased ratio of urine albumin-to-creatinine (ACR) ratio of HFD/STZ mice. In contrast, knockdown of miR-10a increased the ratio of kidney ACR in naïve mice. Furthermore, cAMP response element binding protein 1 (CREB1) was validated as a target of miR-10a in vitro and in vivo. CREB1 and its downstream fibronectin (FN, extracellular matrix) were increased in HFD/STZ-treated mice, which was reversed by kidney miR-10a overexpression. The content of CREB1 and FN was increased by miR-10a knockdown in kidney of naïve mice. Furthermore, histone deacetylase 3 (HDAC3) was revealed to be increased in kidney of HFD/STZ mice, accompanied with the augmentation of ACR ratio and FN level. Knockdown of HDAC3 with siRNA significantly caused the increase of miR-10a, resulting in the decrease in CREB1 and FN expression in kidney of HFD/STZ mice. Contrarily, HDAC3 overexpression mediated by lentivirus decreased miR-10a content, and enhanced ACR value, CREB1 and FN formation in naïve mice. Collectively, these results elucidate that HDAC3/miR-10a/CREB1 serves as a new mechanism underlying kidney injury, providing potential therapeutic targets in type 2 diabetes. Copyright © 2016. Published by Elsevier Inc.

  8. Entropy-based model for miRNA isoform analysis.

    Directory of Open Access Journals (Sweden)

    Shengqin Wang

    Full Text Available MiRNAs have been widely studied due to their important post-transcriptional regulatory roles in gene expression. Many reports have demonstrated the evidence of miRNA isoform products (isomiRs in high-throughput small RNA sequencing data. However, the biological function involved in these molecules is still not well investigated. Here, we developed a Shannon entropy-based model to estimate isomiR expression profiles of high-throughput small RNA sequencing data extracted from miRBase webserver. By using the Kolmogorov-Smirnov statistical test (KS test, we demonstrated that the 5p and 3p miRNAs present more variants than the single arm miRNAs. We also found that the isomiR variant, except the 3' isomiR variant, is strongly correlated with Minimum Free Energy (MFE of pre-miRNA, suggesting the intrinsic feature of pre-miRNA should be one of the important factors for the miRNA regulation. The functional enrichment analysis showed that the miRNAs with high variation, particularly the 5' end variation, are enriched in a set of critical functions, supporting these molecules should not be randomly produced. Our results provide a probabilistic framework for miRNA isoforms analysis, and give functional insights into pre-miRNA processing.

  9. Vaginal dysbiosis increases risk of preterm fetal membrane rupture, neonatal sepsis and is exacerbated by erythromycin.

    Science.gov (United States)

    Brown, Richard G; Marchesi, Julian R; Lee, Yun S; Smith, Ann; Lehne, Benjamin; Kindinger, Lindsay M; Terzidou, Vasso; Holmes, Elaine; Nicholson, Jeremy K; Bennett, Phillip R; MacIntyre, David A

    2018-01-24

    Preterm prelabour rupture of the fetal membranes (PPROM) precedes 30% of preterm births and is a risk factor for early onset neonatal sepsis. As PPROM is strongly associated with ascending vaginal infection, prophylactic antibiotics are widely used. The evolution of vaginal microbiota compositions associated with PPROM and the impact of antibiotics on bacterial compositions are unknown. We prospectively assessed vaginal microbiota prior to and following PPROM using MiSeq-based sequencing of 16S rRNA gene amplicons and examined the impact of erythromycin prophylaxis on bacterial load and community structures. In contrast to pregnancies delivering at term, vaginal dysbiosis characterised by Lactobacillus spp. depletion was present prior to the rupture of fetal membranes in approximately a third of cases (0% vs. 27%, P = 0.026) and persisted following membrane rupture (31%, P = 0.005). Vaginal dysbiosis was exacerbated by erythromycin treatment (47%, P = 0.00009) particularly in women initially colonised by Lactobacillus spp. Lactobacillus depletion and increased relative abundance of Sneathia spp. were associated with subsequent funisitis and early onset neonatal sepsis. Our data show that vaginal microbiota composition is a risk factor for subsequent PPROM and is associated with adverse short-term maternal and neonatal outcomes. This highlights vaginal microbiota as a potentially modifiable antenatal risk factor for PPROM and suggests that routine use of erythromycin for PPROM be re-examined.

  10. Overexpression of miR529a confers enhanced resistance to oxidative stress in rice (Oryza sativa L.).

    Science.gov (United States)

    Yue, Erkui; Liu, Zhen; Li, Chao; Li, Yu; Liu, Qiuxiang; Xu, Jian-Hong

    2017-07-01

    Overexpressing miR529a can enhance oxidative stress resistance by targeting OsSPL2 and OsSPL14 genes that can regulate the expression of their downstream SOD and POD related genes. MicroRNAs are involved in the regulation of plant developmental and physiological processes, and their expression can be altered when plants suffered environment stresses, including salt, oxidative, drought and Cadmium. The expression of microRNA529 (miR529) can be induced under oxidative stress. However, its biological function under abiotic stress responses is still unclear. In this study, miR529a was overexpressed to investigate the function of miR529a under oxidative stress in rice. Our results demonstrated that the expression of miR529a can be induced by exogenous H 2 O 2 , and overexpressing miR529a can increase plant tolerance to high level of H 2 O 2 , resulting in increased seed germination rate, root tip cell viability, reduced leaf rolling rate and chlorophyll retention. The expression of oxidative stress responsive genes and the activities of superoxide dismutase (SOD) and peroxidase (POD) were increased in miR529a overexpression plant, which could help to reduce redundant reactive oxygen species (ROS). Furthermore, only OsSPL2 and OsSPL14 were targeted by miR529a in rice seedlings, repressing their expression in miR529aOE plants could lead to strengthen plant tolerance to oxidation stress. Our study provided the evidence that overexpression of miR529a could strengthen oxidation resistance, and its target genes OsSPL2 and OsSPL14 were responsible for oxidative tolerance, implied the manipulation of miR529a and its target genes regulation on H 2 O 2 related response genes could improve oxidative stress tolerance in rice.

  11. Serum MiRNA Biomarkers serve as a Fingerprint for Proliferative Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Shao Qing

    2014-11-01

    Full Text Available Background: Diabetic retinopathy (DR is a retinopathy resulting from diabetes mellitus (DM which was classified into non-proliferative DR (NPDR and proliferative DR (PDR. Without an early screening and effective diagnosis, patients with PDR will develop serious complications. Therefore, we sought to identify special serum microRNAs (miRNAs that can serve as a novel non-invasive screening signature of PDR and test its specificity and sensitivity in the early diagnosis of PDR. Methods: In total, we obtained serum samples from 90 PDR cases, 90 matched NPDR patients and 20 controls. An initial screening of miRNA expression was performed through TaqMan Low Density Array (TLDA. The candidate miRNAs were validated by individual reverse transcription quantitative real-time PCR (RT-qPCR arranged in an initial and a two-stage validation sets. Moreover, additional double-blind testing was performed in 20 patients clinically suspected of having DR to evaluate the diagnostic value and accuracy of the serum miRNA profiling system in predicting PDR. Results: Three miRNAs were significantly increased in patients with PDR compared with NPDR after the multiple stages. The areas under the receiver operating characteristic (ROC curves of the validated three-serum miRNAs signature were 0.830, 0.803 and 0.873 in the initial and two validation sets, respectively. Combination of miR-21, miR-181c, and miR-1179 possessed a moderate ability to discrimination between PDR and NPDR with an area under ROC value of 0.89. The accuracy rate of the three-miRNA profile as PDR signature was 82.6%. Conclusions: These data provide evidence that serum miRNAs have the potential to be sensitive, cost-effective biomarkers for the early detection of PDR. These biomarkers could serve as a dynamic monitoring factor for detecting the progression of PDR from NPDR.

  12. miR-125b induces cellular senescence in malignant melanoma

    DEFF Research Database (Denmark)

    Nyholm, Anne Marie; Lerche, Catharina M; Manfé, Valentina

    2014-01-01

    transfected melanoma cell line Mel-Juso and then investigated the effect of the presence of a stable overexpression of miR-125b on growth by western blotting, flow cytometry and β-galactosidase staining. The tumourogenicity of the transfected cells was tested using a murine model and the tumours were further...... examined with in-situ-hybridization. RESULTS: In primary human tumours and in lymph node metastases increased expression of miR-125b was found in single, large tumour cells with abundant cytoplasm. A stable overexpression of miR-125b in human melanoma cell line Mel-Juso resulted in a G0/G1 cell cycle block...... and emergence of large cells expressing senescence markers: senescence-associated beta-galactosidase, p21, p27 and p53. Mel-Juso cells overexpressing miR-125b were tumourigenic in mice, but the tumours exhibited higher level of cell senescence and decreased expression of proliferation markers, cyclin D1 and Ki...

  13. Treasury Offset Program (TOP) MI

    Data.gov (United States)

    Social Security Administration — The TOP MI helps OPSOS coordinate TOP case processing in the regions. The MI also helped communicate our progress and findings to BFQM and ORDP, as well as the ACOSS.

  14. miR-322 stabilizes MEK1 expression to inhibit RAF/MEK/ERK pathway activation in cartilage.

    Science.gov (United States)

    Bluhm, Björn; Ehlen, Harald W A; Holzer, Tatjana; Georgieva, Veronika S; Heilig, Juliane; Pitzler, Lena; Etich, Julia; Bortecen, Toman; Frie, Christian; Probst, Kristina; Niehoff, Anja; Belluoccio, Daniele; Van den Bergen, Jocelyn; Brachvogel, Bent

    2017-10-01

    Cartilage originates from mesenchymal cell condensations that differentiate into chondrocytes of transient growth plate cartilage or permanent cartilage of the articular joint surface and trachea. MicroRNAs fine-tune the activation of entire signaling networks and thereby modulate complex cellular responses, but so far only limited data are available on miRNAs that regulate cartilage development. Here, we characterize a miRNA that promotes the biosynthesis of a key component in the RAF/MEK/ERK pathway in cartilage. Specifically, by transcriptome profiling we identified miR-322 to be upregulated during chondrocyte differentiation. Among the various miR-322 target genes in the RAF/MEK/ERK pathway, only Mek1 was identified as a regulated target in chondrocytes. Surprisingly, an increased concentration of miR-322 stabilizes Mek1 mRNA to raise protein levels and dampen ERK1/2 phosphorylation, while cartilage-specific inactivation of miR322 in mice linked the loss of miR-322 to decreased MEK1 levels and to increased RAF/MEK/ERK pathway activation. Such mice died perinatally due to tracheal growth restriction and respiratory failure. Hence, a single miRNA can stimulate the production of an inhibitory component of a central signaling pathway to impair cartilage development. © 2017. Published by The Company of Biologists Ltd.

  15. Posttranscriptional silencing of the lncRNA MALAT1 by miR-217 inhibits the epithelial–mesenchymal transition via enhancer of zeste homolog 2 in the malignant transformation of HBE cells induced by cigarette smoke extract

    International Nuclear Information System (INIS)

    Lu, Lu; Luo, Fei; Liu, Yi; Liu, Xinlu; Shi, Le; Lu, Xiaolin; Liu, Qizhan

    2015-01-01

    Lung cancer is regarded as the leading cause of cancer-related deaths, and cigarette smoking is one of the strongest risk factors for the development of lung cancer. However, the mechanisms for cigarette smoke-induced lung carcinogenesis remain unclear. The present study investigated the effects of an miRNA (miR-217) on levels of an lncRNA (MALAT1) and examined the role of these factors in the epithelial–mesenchymal transition (EMT) induced by cigarette smoke extract (CSE) in human bronchial epithelial (HBE) cells. In these cells, CSE caused decreases of miR-217 levels and increases in lncRNA MALAT1 levels. Over-expression of miR-217 with a mimic attenuated the CSE-induced increase of MALAT1 levels, and reduction of miR-217 levels by an inhibitor enhanced expression of MALAT1. Moreover, the CSE-induced increase of MALAT1 expression was blocked by an miR-217 mimic, indicating that miR-217 negatively regulates MALAT1 expression. Knockdown of MALAT1 reversed CSE-induced increases of EZH2 (enhancer of zeste homolog 2) and H3K27me3 levels. In addition to the alteration from epithelial to spindle-like mesenchymal morphology, chronic exposure of HBE cells to CSE increased the levels of EZH2, H3K27me3, vimentin, and N-cadherin and decreased E-cadherin levels, effects that were reversed by MALAT1 siRNA or EZH2 siRNA. The results indicate that miR-217 regulation of EZH2/H3K27me3 via MALAT1 is involved in CSE-induced EMT and malignant transformation of HBE cells. The posttranscriptional silencing of MALAT1 by miR-217 provides a link, through EZH2, between ncRNAs and the EMT and establishes a mechanism for CSE-induced lung carcinogenesis. - Highlights: • CSE exposure decreases miR-217 levels and increases MALAT1 levels. • miR-217 negatively regulates MALAT1 expression. • MALAT1, via EZH2, is involved in the EMT of CSE-transformed HBE cells.

  16. American College of Cardiology/American Heart Association/European Society of Cardiology/World Heart Federation universal definition of myocardial infarction classification system and the risk of cardiovascular death: observations from the TRITON-TIMI 38 trial (Trial to Assess Improvement in Therapeutic Outcomes by Optimizing Platelet Inhibition With Prasugrel-Thrombolysis in Myocardial Infarction 38).

    Science.gov (United States)

    Bonaca, Marc P; Wiviott, Stephen D; Braunwald, Eugene; Murphy, Sabina A; Ruff, Christian T; Antman, Elliott M; Morrow, David A

    2012-01-31

    The availability of more sensitive biomarkers of myonecrosis and a new classification system from the universal definition of myocardial infarction (MI) have led to evolution of the classification of MI. The prognostic implications of MI defined in the current era have not been well described. We investigated the association between new or recurrent MI by subtype according to the European Society of Cardiology/American College of Cardiology/American Heart Association/World Health Federation Task Force for the Redefinition of MI Classification System and the risk of cardiovascular death among 13 608 patients with acute coronary syndrome in the Trial to Assess Improvement in Therapeutic Outcomes by Optimizing Platelet Inhibition with Prasugrel-Thrombolysis in Myocardial Infarction 38 (TRITON-TIMI 38). The adjusted risk of cardiovascular death was evaluated by landmark analysis starting at the time of the MI through 180 days after the event. Patients who experienced an MI during follow-up had a higher risk of cardiovascular death at 6 months than patients without an MI (6.5% versus 1.3%, P<0.001). This higher risk was present across all subtypes of MI, including type 4a (peri-percutaneous coronary intervention, 3.2%; P<0.001) and type 4b (stent thrombosis, 15.4%; P<0.001). After adjustment for important clinical covariates, the occurrence of any MI was associated with a 5-fold higher risk of death at 6 months (95% confidence interval 3.8-7.1), with similarly increased risk across subtypes. MI is associated with a significantly increased risk of cardiovascular death, with a consistent relationship across all types as defined by the universal classification system. These findings underscore the clinical relevance of these events and the importance of therapies aimed at preventing MI.

  17. Role of miRNA-9 in Brain Development

    Directory of Open Access Journals (Sweden)

    Balachandar Radhakrishnan

    2016-01-01

    Full Text Available MicroRNAs (miRNAs are a class of small regulatory RNAs involved in gene regulation. The regulation is effected by either translational inhibition or transcriptional silencing. In vertebrates, the importance of miRNA in development was discovered from mice and zebrafish dicer knockouts. The miRNA-9 (miR-9 is one of the most highly expressed miRNAs in the early and adult vertebrate brain. It has diverse functions within the developing vertebrate brain. In this article, the role of miR-9 in the developing forebrain (telencephalon and diencephalon, midbrain, hindbrain, and spinal cord of vertebrate species is highlighted. In the forebrain, miR-9 is necessary for the proper development of dorsoventral telencephalon by targeting marker genes expressed in the telencephalon. It regulates proliferation in telencephalon by regulating Foxg1, Pax6, Gsh2 , and Meis2 genes. The feedback loop regulation between miR-9 and Nr2e1/Tlx helps in neuronal migration and differentiation. Targeting Foxp1 and Foxp2 , and Map1b by miR-9 regulates the radial migration of neurons and axonal development. In the organizers, miR-9 is inversely regulated by hairy1 and Fgf8 to maintain zona limitans interthalamica and midbrain-hindbrain boundary (MHB. It maintains the MHB by inhibiting Fgf signaling genes and is involved in the neurogenesis of the midbrain-hindbrain by regulating Her genes. In the hindbrain, miR-9 modulates progenitor proliferation and differentiation by regulating Her genes and Elav3. In the spinal cord, miR-9 modulates the regulation of Foxp1 and Onecut1 for motor neuron development. In the forebrain, midbrain, and hindbrain, miR-9 is necessary for proper neuronal progenitor maintenance, neurogenesis, and differentiation. In vertebrate brain development, miR-9 is involved in regulating several region-specific genes in a spatiotemporal pattern.

  18. Radiation Therapy, Cardiac Risk Factors, and Cardiac Toxicity in Early-Stage Breast Cancer Patients

    International Nuclear Information System (INIS)

    Doyle, John J.; Neugut, Alfred I.; Jacobson, Judith S.; Wang Jian; McBride, Russell; Grann, Alison; Grann, Victor R.; Hershman, Dawn

    2007-01-01

    Purpose: The benefits of adjuvant radiation therapy (RT) for breast cancer may be counterbalanced by the risk of cardiac toxicity. We studied the cardiac effects of RT and the impact of pre-existing cardiac risk factors (CRFs) in a population-based sample of older patients with breast cancer. Methods and Materials: In the Surveillance, Epidemiology and End-Results (SEER)-Medicare database of women ≥65 years diagnosed with Stages I to III breast cancer from January 1, 1992 to December 31, 2000, we used multivariable logistic regression to model the associations of demographic and clinical variables with postmastectomy and postlumpectomy RT. Using Cox proportional hazards regression, we then modeled the association between treatment and myocardial infarction (MI) and ischemia in the 10 or more years after diagnosis, taking the predictors of treatment into account. Results: Among 48,353 women with breast cancer; 19,897 (42%) were treated with lumpectomy and 26,534 (55%) with mastectomy; the remainder had unknown surgery type (3%). Receipt of RT was associated with later year of diagnosis, younger age, fewer comorbidities, nonrural residence, and chemotherapy. Postlumpectomy RT was also associated with white ethnicity and no prior history of heart disease (HD). The RT did not increase the risk of MI. Presence of MI was associated with age, African American ethnicity, advanced stage, nonrural residence, more than one comorbid condition, a hormone receptor-negative tumor, CRFs and HD. Among patients who received RT, tumor laterality was not associated with MI outcome. The effect of RT on the heart was not influenced by HD or CRFs. Conclusion: It appears unlikely that RT would increase the risk of MI in elderly women with breast cancer, regardless of type of surgery, tumor laterality, or history of CRFs or HD, for at least 10 years

  19. Analysis of miRNAs Involved in Mouse Brain Damage upon Enterovirus 71 Infection.

    Science.gov (United States)

    Yang, Xiaoxia; Xie, Jing; Jia, Leili; Liu, Nan; Liang, Yuan; Wu, Fuli; Liang, Beibei; Li, Yongrui; Wang, Jinyan; Sheng, Chunyu; Li, Hao; Liu, Hongbo; Ma, Qiuxia; Yang, Chaojie; Du, Xinying; Qiu, Shaofu; Song, Hongbin

    2017-01-01

    Enterovirus 71 (EV71) infects the central nervous system (CNS) and causes brainstem encephalitis in children. MiRNAs have been found to play various functions in EV71 infection in human cell lines. To identify potential miRNAs involved in the inflammatory injury in CNS, our study, for the first time, performed a miRNA microarray assay in vivo using EV71 infected mice brains. Twenty differentially expressed miRNAs were identified (four up- and 16 down-regulated) and confirmed by qRT-PCR. The target genes of these miRNAs were analyzed using KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis, revealing that the miRNAs were mainly involved in the regulation of inflammation and neural system function. MiR-150-5p, -3082-5p, -3473a, -468-3p, -669n, -721, -709, and -5107-5p that regulate MAPK and chemokine signaling were all down-regulated, which might result in increased cytokine production. In addition, miR-3473a could also regulate focal adhesion and leukocyte trans-endothelial migration, suggesting a role in virus-induced blood-brain barrier disruption. The miRNAs and pathways identified in this study could help to understand the intricate interactions between EV71 and the brain injury, offering new insight for the future research of the molecular mechanism of EV71 induced brainstem encephalitis.

  20. miRNAs in Normal and Malignant Hematopoiesis

    Directory of Open Access Journals (Sweden)

    Ryutaro Kotaki

    2017-07-01

    Full Text Available Lineage specification is primarily regulated at the transcriptional level and lineage-specific transcription factors determine cell fates. MicroRNAs (miRNAs are 18–24 nucleotide-long non-coding RNAs that post-transcriptionally decrease the translation of target mRNAs and are essential for many cellular functions. miRNAs also regulate lineage specification during hematopoiesis. This review highlights the roles of miRNAs in B-cell development and malignancies, and discusses how miRNA expression profiles correlate with disease prognoses and phenotypes. We also discuss the potential for miRNAs as therapeutic targets and diagnostic tools for B-cell malignancies.

  1. Elevated triglycerides and risk of myocardial infarction in HIV-positive persons

    DEFF Research Database (Denmark)

    Worm, Signe W; Kamara, David Alim; Reiss, Peter

    2011-01-01

    Objectives: To explore the relationship between elevated triglyceride levels and the risk of myocardial infarction (MI) in HIV-positive persons after adjustment for total cholesterol (TC), high-density lipoprotein–cholesterol (HDL-C) and nonlipid risk factors. Background: Although elevated...... triglyceride levels are commonly noted in HIV-positive individuals, it is unclear whether they represent an independent risk factor for MI. Methods: The incidence of MI during follow-up was stratified according to the latest triglyceride level. Multivariable Poisson regression models were used to describe...... the independent association between the latest triglyceride level and MI risk after adjusting for TC and HDL-C, nonlipids cardiovascular disease (CVD) risk factors, HIV and treatment-related factors. Results: The 33 308 persons included in the study from 1999 to 2008 experienced 580 MIs over 178 835 person...

  2. miReg: a resource for microRNA regulation

    Directory of Open Access Journals (Sweden)

    Barh Debmalya

    2010-03-01

    Full Text Available MicroRNAs (miRNAs/miRs are important cellular components that regulate gene expression at posttranscriptional level. Various upstream components regulate miR expression and any deregulation causes disease conditions. Therefore, understanding of miR regulatory network both at upstream and downstream level is crucial and a resource on this aspect will be helpful. Currently available miR databases are mostly related to downstream targets, sequences, or diseases. But as of now, no database is available that provides a complete picture of miR regulation in a specific condition.

  3. Inhibition of Mef2a Enhances Neovascularization via Post-transcriptional Regulation of 14q32 MicroRNAs miR-329 and miR-494

    Directory of Open Access Journals (Sweden)

    Sabine M.J. Welten

    2017-06-01

    Full Text Available Improving the efficacy of neovascularization is a promising strategy to restore perfusion of ischemic tissues in patients with peripheral arterial disease. The 14q32 microRNA cluster is highly involved in neovascularization. The Mef2a transcription factor has been shown to induce transcription of the microRNAs within this cluster. We inhibited expression of Mef2a using gene-silencing oligonucleotides (GSOs in an in vivo hind limb ischemia model. Treatment with GSO-Mef2a clearly improved blood flow recovery within 3 days (44% recovery versus 25% recovery in control and persisted until 14 days after ischemia induction (80% recovery versus 60% recovery in control. Animals treated with GSO-Mef2a showed increased arteriogenesis and angiogenesis in the relevant muscle tissues. Inhibition of Mef2a decreased expression of 14q32 microRNAs miR-329 (p = 0.026 and miR-494 (trend, p = 0.06, but not of other 14q32 microRNAs, nor of 14q32 microRNA precursors. Because Mef2a did not influence 14q32 microRNA transcription, we hypothesized it functions as an RNA-binding protein that influences processing of 14q32 microRNA miR-329 and miR-494. Mef2A immunoprecipitation followed by RNA isolation and rt/qPCR confirmed direct binding of MEF2A to pri-miR-494, supporting this hypothesis. Our study demonstrates a novel function for Mef2a in post-ischemic neovascularization via post-transcriptional regulation of 14q32 microRNAs miR-329 and miR-494.

  4. Multistep Model of Cervical Cancer: Participation of miRNAs and Coding Genes

    Directory of Open Access Journals (Sweden)

    Angelica Judith Granados López

    2014-09-01

    Full Text Available Aberrant miRNA expression is well recognized as an important step in the development of cancer. Close to 70 microRNAs (miRNAs have been implicated in cervical cancer up to now, nevertheless it is unknown if aberrant miRNA expression causes the onset of cervical cancer. One of the best ways to address this issue is through a multistep model of carcinogenesis. In the progression of cervical cancer there are three well-established steps to reach cancer that we used in the model proposed here. The first step of the model comprises the gene changes that occur in normal cells to be transformed into immortal cells (CIN 1, the second comprises immortal cell changes to tumorigenic cells (CIN 2, the third step includes cell changes to increase tumorigenic capacity (CIN 3, and the final step covers tumorigenic changes to carcinogenic cells. Altered miRNAs and their target genes are located in each one of the four steps of the multistep model of carcinogenesis. miRNA expression has shown discrepancies in different works; therefore, in this model we include miRNAs recording similar results in at least two studies. The present model is a useful insight into studying potential prognostic, diagnostic, and therapeutic miRNAs.

  5. miR-200–containing extracellular vesicles promote breast cancer cell metastasis

    Science.gov (United States)

    Le, Minh T.N.; Hamar, Peter; Guo, Changying; Basar, Emre; Perdigão-Henriques, Ricardo; Balaj, Leonora; Lieberman, Judy

    2014-01-01

    Metastasis is associated with poor prognosis in breast cancer patients. Not all cancer cells within a tumor are capable of metastasizing. The microRNA-200 (miR-200) family, which regulates the mesenchymal-to-epithelial transition, is enriched in the serum of patients with metastatic cancers. Ectopic expression of miR-200 can confer metastatic ability to poorly metastatic tumor cells in some settings. Here, we investigated whether metastatic capability could be transferred between metastatic and nonmetastatic cancer cells via extracellular vesicles. miR-200 was secreted in extracellular vesicles from metastatic murine and human breast cancer cell lines, and miR-200 levels were increased in sera of mice bearing metastatic tumors. In culture, murine and human metastatic breast cancer cell extracellular vesicles transferred miR-200 microRNAs to nonmetastatic cells, altering gene expression and promoting mesenchymal-to-epithelial transition. In murine cancer and human xenograft models, miR-200–expressing tumors and extracellular vesicles from these tumors promoted metastasis of otherwise weakly metastatic cells either nearby or at distant sites and conferred to these cells the ability to colonize distant tissues in a miR-200–dependent manner. Together, our results demonstrate that metastatic capability can be transferred by the uptake of extracellular vesicles. PMID:25401471

  6. Clinical and pathological implications of miRNA in bladder cancer

    Directory of Open Access Journals (Sweden)

    Braicu C

    2015-01-01

    important practical applications, taking into account that they modulate essential biological processes such as epithelial to mesenchymal transition, which is a mechanism relevant in bladder cancer. miRNAs collected from biological specimens can furnish valuable evidence with regard to bladder cancer oncogenesis, as they also have been linked to clinical outcomes in urothelial carcinoma. Therefore, a single miRNA or a signature of multiple miRNAs may improve risk stratification of patients and may supplement the histological diagnosis of urological tumors, particularly for bladder cancer.Keywords: bladder cancer, miRNA, prognostic, diagnostic

  7. Identification and expression analysis of miR-144-5p and miR-130b-5p in dairy cattle

    Directory of Open Access Journals (Sweden)

    Z. Li

    2017-07-01

    Full Text Available MicroRNAs (miRNAs can coordinate the main pathways involved in innate and adaptive immune responses by regulating gene expression. To explore the resistance to mastitis in cows, miR-144-5p and miR-130b-5p were identified in bovine mammary gland tissue and 14 potential target genes belonging to the chemokine signaling pathway, the arginine and proline metabolism pathway and the mRNA surveillance pathway were predicted. Subsequently, we estimated the relative expression of miR-144-5p and miR-130b-5p in cow mammary tissues by using stem-loop quantitative real-time polymerase chain reaction. The results showed that the relative expression of miR-144-5p and miR-130b-5p in the mastitis-infected mammary tissues (n = 5 was significantly downregulated 0.14-fold (p < 0. 01 and upregulated 3.34-fold (p < 0. 01, respectively, compared to healthy tissues (n = 5. Our findings reveal that miR-144-5p and miR-130b-5p may have important roles in resistance to mastitis in dairy cattle.

  8. Cardiovascular Risk is not Increased in Patients with Chronic Urticaria

    DEFF Research Database (Denmark)

    Egeberg, Alexander; Gislason, Gunnar H; Vestergaard, Christian

    2016-01-01

    in an Italian cohort as between 0.02% and 0.38%, whereas a German study showed a lifetime prevalence of CU at 1.8% (2, 3). While an association between CU and certain autoimmune diseases is well-established (3), CSU was surprisingly associated with obesity in a recent Italian study (4). Moreover, in a South...... was significantly associated with having received a prior diagnosis of hyperlipidaemia (6). Despite the above observations, no study has examined a possible association between CU and cardiovascular (CV) disease. We therefore investigated the risk of myocardial infarction (MI), ischaemic stroke, CV death, and major...... Korean cohort of 131 patients with CU, metabolic syndrome was present in 30% of patients, and these individuals had particularly poor clinical outcomes and a more severe disease course (5). Finally, a population-based Taiwanese study of 9798 adults with CU recently showed that the condition...

  9. Valsartan ameliorates KIR2.1 in rats with myocardial infarction via the NF-κB-miR-16 pathway.

    Science.gov (United States)

    Li, Xinran; Hu, Hesheng; Wang, Ye; Xue, Mei; Li, Xiaolu; Cheng, Wenjuan; Xuan, Yongli; Yin, Jie; Yang, Na; Yan, Suhua

    2016-09-30

    MicroRNAs have an important role in regulating arrhythmogenesis. MicroRNA-16 (miR-16) is predicted to target KCNJ2. The regulation of miR-16 is primarily due to NF-κB. Whether valsartan could downregulate miR-16 via the inhibition of NF-κB after MI and whether miR-16 targets KCNJ2 remain unclear. MI rats received valsartan or saline for 7days. The protein levels of NF-κB p65, inhibitor κBα (IκBα), and Kir2.1 were detected by Western blot analysis. The mRNA levels of Kir2.1 and miR-16 were examined by quantitative real-time PCR. Whole cell patch-clamp techniques were applied to record IK1. MiR-16 expression was higher in the infarct border, and was accompanied by a depressed IK1/KIR2.1 level. Additionally, miR-16 overexpression suppressed KCNJ2/KIR2.1 expression. In contrast, miR-16 inhibition or binding-site mutation enhanced KCNJ2/KIR2.1 expression, establishing KCNJ2 as a miR-16 target. In the MI rats, compared to saline treatment, valsartan reduced NF-κB p65 and miR-16 expression and increased IκBα and Kir2.1 expression. In vitro, angiotensin II increased miR-16 expression and valsartan inhibited it. Overexpressing miR-16 in cells treated with valsartan abrogated its beneficial effect on KCNJ2/Kir2.1. NF-κB activation directly upregulates miR-16 expression. miR-16 controls KCNJ2 expression, and valsartan ameliorates Kir2.1 after MI partly depending on the NF-κB-miR-16 pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Deregulation of MiR-34b/Sox2 Predicts Prostate Cancer Progression.

    Directory of Open Access Journals (Sweden)

    Irene Forno

    Full Text Available Most men diagnosed with prostate cancer will have an indolent and curable disease, whereas approximately 15% of these patients will rapidly progress to a castrate-resistant and metastatic stage with high morbidity and mortality. Therefore, the identification of molecular signature(s that detect men at risk of progressing disease remains a pressing and still unmet need for these patients. Here, we used an integrated discovery platform combining prostate cancer cell lines, a Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP model and clinically-annotated human tissue samples to identify loss of expression of microRNA-34b as consistently associated with prostate cancer relapse. Mechanistically, this was associated with epigenetics silencing of the MIR34B/C locus and increased DNA copy number loss, selectively in androgen-dependent prostate cancer. In turn, loss of miR-34b resulted in downstream deregulation and overexpression of the "stemness" marker, Sox2. These findings identify loss of miR-34b as a robust biomarker for prostate cancer progression in androgen-sensitive tumors, and anticipate a potential role of progenitor/stem cell signaling in this stage of disease.

  11. Deregulation of MiR-34b/Sox2 Predicts Prostate Cancer Progression.

    Science.gov (United States)

    Forno, Irene; Ferrero, Stefano; Russo, Maria Veronica; Gazzano, Giacomo; Giangiobbe, Sara; Montanari, Emanuele; Del Nero, Alberto; Rocco, Bernardo; Albo, Giancarlo; Languino, Lucia R; Altieri, Dario C; Vaira, Valentina; Bosari, Silvano

    2015-01-01

    Most men diagnosed with prostate cancer will have an indolent and curable disease, whereas approximately 15% of these patients will rapidly progress to a castrate-resistant and metastatic stage with high morbidity and mortality. Therefore, the identification of molecular signature(s) that detect men at risk of progressing disease remains a pressing and still unmet need for these patients. Here, we used an integrated discovery platform combining prostate cancer cell lines, a Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model and clinically-annotated human tissue samples to identify loss of expression of microRNA-34b as consistently associated with prostate cancer relapse. Mechanistically, this was associated with epigenetics silencing of the MIR34B/C locus and increased DNA copy number loss, selectively in androgen-dependent prostate cancer. In turn, loss of miR-34b resulted in downstream deregulation and overexpression of the "stemness" marker, Sox2. These findings identify loss of miR-34b as a robust biomarker for prostate cancer progression in androgen-sensitive tumors, and anticipate a potential role of progenitor/stem cell signaling in this stage of disease.

  12. MicroRNA Dysregulation, Gene Networks, and Risk for Schizophrenia in 22q11.2 Deletion Syndrome

    OpenAIRE

    Merico, Daniele; Costain, Gregory; Butcher, Nancy J.; Warnica, William; Ogura, Lucas; Alfred, Simon E.; Brzustowicz, Linda M.; Bassett, Anne S.

    2014-01-01

    The role of microRNAs (miRNAs) in the etiology of schizophrenia is increasingly recognized. Microdeletions at chromosome 22q11.2 are recurrent structural variants that impart a high risk for schizophrenia and are found in up to 1% of all patients with schizophrenia. The 22q11.2 deletion region overlaps gene DGCR8, encoding a subunit of the miRNA microprocessor complex. We identified miRNAs overlapped by the 22q11.2 microdeletion and for the first time investigated their predicted target genes...

  13. miR-182 integrates apoptosis, growth, and differentiation programs in glioblastoma.

    Science.gov (United States)

    Kouri, Fotini M; Hurley, Lisa A; Daniel, Weston L; Day, Emily S; Hua, Youjia; Hao, Liangliang; Peng, Chian-Yu; Merkel, Timothy J; Queisser, Markus A; Ritner, Carissa; Zhang, Hailei; James, C David; Sznajder, Jacob I; Chin, Lynda; Giljohann, David A; Kessler, John A; Peter, Marcus E; Mirkin, Chad A; Stegh, Alexander H

    2015-04-01

    Glioblastoma multiforme (GBM) is a lethal, therapy-resistant brain cancer consisting of numerous tumor cell subpopulations, including stem-like glioma-initiating cells (GICs), which contribute to tumor recurrence following initial response to therapy. Here, we identified miR-182 as a regulator of apoptosis, growth, and differentiation programs whose expression level is correlated with GBM patient survival. Repression of Bcl2-like12 (Bcl2L12), c-Met, and hypoxia-inducible factor 2α (HIF2A) is of central importance to miR-182 anti-tumor activity, as it results in enhanced therapy susceptibility, decreased GIC sphere size, expansion, and stemness in vitro. To evaluate the tumor-suppressive function of miR-182 in vivo, we synthesized miR-182-based spherical nucleic acids (182-SNAs); i.e., gold nanoparticles covalently functionalized with mature miR-182 duplexes. Intravenously administered 182-SNAs penetrated the blood-brain/blood-tumor barriers (BBB/BTB) in orthotopic GBM xenografts and selectively disseminated throughout extravascular glioma parenchyma, causing reduced tumor burden and increased animal survival. Our results indicate that harnessing the anti-tumor activities of miR-182 via safe and robust delivery of 182-SNAs represents a novel strategy for therapeutic intervention in GBM. © 2015 Kouri et al.; Published by Cold Spring Harbor Laboratory Press.

  14. How do physicians weigh benefits and risks associated with treatments in patients with osteoarthritis in the United Kingdom?

    Science.gov (United States)

    Arden, Nigel K; Hauber, A Brett; Mohamed, Ateesha F; Johnson, F Reed; Peloso, Paul M; Watson, Douglas J; Mavros, Panagiotis; Gammaitoni, Arnold; Sen, Shuvayu S; Taylor, Stephanie D

    2012-05-01

    To quantify the relative importance that UK physicians attach to the benefits and risks of current drugs when making treatment decisions for patients with osteoarthritis (OA). Physicians treating at least 10 patients with OA per month completed an online discrete-choice experiment survey and answered 12 treatment-choice questions comparing medication profiles. Medication profiles were defined by 4 benefits (reduction in ambulatory pain, resting pain, stiffness, and difficulty doing daily activities) and 3 treatment-related risks [bleeding ulcer, stroke, and myocardial infarction (MI)]. Each physician made medication choices for 3 of 9 hypothetical patients (varied by age, history of MI, hypertension, and history of gastrointestinal bleeding). Importance weights were estimated using a random-parameters logit model. Treatment-related risks physicians were willing to accept in exchange for various reductions in ambulatory and resting pain also were calculated. The final sample was 475. A reduction in ambulatory pain from 75 mm to 25 mm (1.6 units) was 1.1 times as important as an increase in MI risk from 0% to 1.5% (1.5 units). The greatest importance was for eliminating a 3% treatment-related risk of MI or stroke. On average, physicians were willing to accept an increase in bleeding ulcer risk of 0.7% (95% CI 0.4%-1.7%) for a reduction in ambulatory pain of 75 mm to 50 mm. When presented with well-known benefits and risks of OA treatments, physicians placed greater importance on the risks than on the analgesic properties of the drug. This has implications for the reporting of the results of clinical research to physicians.

  15. GPER mediated estradiol reduces miR-148a to promote HLA-G expression in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Sifeng, E-mail: taosifeng@aliyun.com; He, Haifei; Chen, Qiang; Yue, Wenjie

    2014-08-15

    Highlights: • E2 induces the level of miR-148a in MCF-7 and MDA-MB-231 cells. • GPER mediates the E2-induced increase of miR-148a in MCF-7 and MDA-MB-231 cells. • E2-GPER regulates the expression of HLA-G by miR-148a. - Abstract: Breast cancer is the most common malignant diseases in women. miR-148a plays an important role in regulation of cancer cell proliferation and cancer invasion and down-regulation of miR-148a has been reported in both estrogen receptor (ER) positive and triple-negative (TN) breast cancer. However, the regulation mechanism of miR-148a is unclear. The role of estrogen signaling, a signaling pathway is important in development and progression of breast cancer. Therefore, we speculated that E2 may regulate miR-148a through G-protein-coupled estrogen receptor-1 (GPER). To test our hypothesis, we checked the effects of E2 on miR-148a expression in ER positive breast cancer cell MCF-7 and TN cancer cell MDA-MB-231. Then we used GPER inhibitor G15 to investigate whether GPER is involved in regulation of E2 on miR-148a. Furthermore, we analyzed whether E2 affects the expression of HLA-G, which is a miR-148a target gene through GPER. The results showed that E2 induces the level of miR-148a in MCF-7 and MDA-MB-231 cells, GPER mediates the E2-induced increase in miR-148a expression in MCF-7 and MDA-MB-231 cells and E2-GPER regulates the expression of HLA-G by miR-148a. In conclusion, our findings offer important new insights into the ability of estrogenic GPER signaling to trigger HLA-G expression through inhibiting miR-148a that supports immune evasion in breast cancer.

  16. Viruses and miRNAs: More Friends than Foes.

    Science.gov (United States)

    Bruscella, Patrice; Bottini, Silvia; Baudesson, Camille; Pawlotsky, Jean-Michel; Feray, Cyrille; Trabucchi, Michele

    2017-01-01

    There is evidence that eukaryotic miRNAs (hereafter called host miRNAs) play a role in the replication and propagation of viruses. Expression or targeting of host miRNAs can be involved in cellular antiviral responses. Most times host miRNAs play a role in viral life-cycles and promote infection through complex regulatory pathways. miRNAs can also be encoded by a viral genome and be expressed in the host cell. Viral miRNAs can share common sequences with host miRNAs or have totally different sequences. They can regulate a variety of biological processes involved in viral infection, including apoptosis, evasion of the immune response, or modulation of viral life-cycle phases. Overall, virus/miRNA pathway interaction is defined by a plethora of complex mechanisms, though not yet fully understood. This article review summarizes recent advances and novel biological concepts related to the understanding of miRNA expression, control and function during viral infections. The article also discusses potential therapeutic applications of this particular host-pathogen interaction.

  17. MiR-145 functions as a tumor suppressor targeting NUAK1 in human intrahepatic cholangiocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Xinkui; Sun, Daoyi; Chai, Hao; Shan, Wengang [Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province (China); Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province (China); Yu, Yue [Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province (China); Pu, Liyong [Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province (China); Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province (China); Cheng, Feng, E-mail: docchengfeng@njmu.edu.cn [Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province (China); Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province (China)

    2015-09-18

    The dysregulation of micro (mi)RNAs is associated with cancer development. The miRNA miR-145 is downregulated in intrahepatic cholangiocarcinoma (ICC); however, its precise role in tumor progression has not yet been elucidated. Novel (nua) kinase family (NUAK)1 functions as an oncogene in various cancers and is a putative target of miR-145 regulation. In this study, we investigated the regulation of NUAK1 by miR-145 in ICC. We found that miR-145 level was significantly decreased in ICC tissue and cell lines, which corresponded with an increase in NUAK1 expression. NUAK1 was found to be a direct target of miR-145 regulation. The overexpression of miR-145 in ICC cell lines inhibited proliferation, growth, and invasion by suppressing NUAK1 expression, which was associated with a decrease in Akt signaling and matrix metalloproteinase protein expression. Similar results were observed by inhibiting NUAK1 expression. These results demonstrate that miR-145 can prevent ICC progression by targeting NUAK1 and its downstream effectors, and can therefore be useful for clinical diagnosis and targeted therapy of ICC. - Highlights: • MiR-145 suppresses ICC proliferation and invasion abilities. • We demonstrated that miR-145 directly targets NUAK1 in ICC. • MiR-145 expression in ICC was associated with Akt signaling and MMPs expression.

  18. Altered expression of miRNAs in the uterus from a letrozole-induced rat PCOS model.

    Science.gov (United States)

    Li, Chunjin; Chen, Lu; Zhao, Yun; Chen, Shuxiong; Fu, Lulu; Jiang, Yanwen; Gao, Shan; Liu, Zhuo; Wang, Fengge; Zhu, Xiaoling; Rao, Jiahui; Zhang, Jing; Zhou, Xu

    2017-01-20

    Polycystic ovary syndrome (PCOS) causes female subfertility with ovarian disorders and may be associated with increased rate of early-pregnancy failure. Rat PCOS models were established using letrozole to understand the uterine pathogenesis of PCOS. The differential expression of microRNAs (miRNAs) was observed in rat uterus with PCOS. After estrous cycles were disrupted, significantly abnormal ovarian morphology and hormone level were observed in rats with PCOS. A total of 148 miRNAs differentially expressed were identified in the uterus from the letrozole-induced rat model compared with the control. These miRNAs included 111 upregulated miRNAs and 37 downregulated miRNAs. The differential expression of miR-484, miR-375-3p, miR-324-5p, and miR-223-3p was further confirmed by quantitative reverse transcription polymerase chain reaction. Bioinformatic analysis showed that these four miRNAs were predicted to regulate a large number of genes with different functions. Pathway analysis supported that target genes of miRNAs were involved in insulin secretion and signaling pathways, such as wnt, AMPK, PI3K-Akt, and Ras. These data indicated that miRNAs differentially expressed in rat uterus with PCOS may be associated with PCOS pathogenesis in the uterus. Our findings can help clarify the mechanism of uterine defects in PCOS. Copyright © 2016. Published by Elsevier B.V.

  19. Placental miR-340 mediates vulnerability to activity based anorexia in mice.

    Science.gov (United States)

    Schroeder, Mariana; Jakovcevski, Mira; Polacheck, Tamar; Drori, Yonat; Luoni, Alessia; Röh, Simone; Zaugg, Jonas; Ben-Dor, Shifra; Albrecht, Christiane; Chen, Alon

    2018-04-23

    Anorexia nervosa (AN) is a devastating eating disorder characterized by self-starvation that mainly affects women. Its etiology is unknown, which impedes successful treatment options leading to a limited chance of full recovery. Here, we show that gestation is a vulnerable window that can influence the predisposition to AN. By screening placental microRNA expression of naive and prenatally stressed (PNS) fetuses and assessing vulnerability to activity-based anorexia (ABA), we identify miR-340 as a sexually dimorphic regulator involved in prenatal programming of ABA. PNS caused gene-body hypermethylation of placental miR-340, which is associated with reduced miR-340 expression and increased protein levels of several target transcripts, GR, Cry2 and H3F3b. MiR-340 is linked to the expression of several nutrient transporters both in mice and human placentas. Using placenta-specific lentiviral transgenes and embryo transfer, we demonstrate the key role miR-340 plays in the mechanism involved in early life programming of ABA.

  20. Evaluation of miR-362 Expression in Astrocytoma of Human Brain Tumors

    Directory of Open Access Journals (Sweden)

    Majid Kheirollahi

    2017-01-01

    Full Text Available Background: Patients affected by gliomas have a poor prognosis. Astrocytoma is a subtype of glioma. Identification of biomarkers could be an effective way to an early diagnosis of tumor or to distinguish more aggressive tumors that need more intensive therapy. In this study, we investigated whether the expression of miR-362 was increased or decreased in patients with different grades of astrocytoma. Materials and Methods: miR-362 expression was compared in 25 patients with astrocytoma with that of 4 normal nonneoplastic brain tissues. Results: In all tumor tissues, the expression of miR-362 was significantly decreased relative to its expression in normal brain tissues. However, there was no significant difference between miR-362 expressions in high and low grades of astrocytoma. Conclusions: In conclusion, miR-362 showed a down-regulation pattern in astrocytoma tissues that was different from the pattern obtained from previously published microarray studies.