WorldWideScience

Sample records for increased intestinal permeability

  1. Bovine Colostrum Supplementation During Running Training Increases Intestinal Permeability

    Directory of Open Access Journals (Sweden)

    Grant D. Brinkworth

    2009-12-01

    Full Text Available Endurance exercise training can increase intestinal permeability which may contribute to the development of gastrointestinal symptoms in some athletes. Bovine colostrum (BC supplementation reduces intestinal permeability induced by non-steroidal anti-inflammatory drugs. This study aimed to determine whether BC could also reduce intestinal permeability induced by endurance exercise. Thirty healthy adult males (25.0 ± 4.7 yr; mean ± SD completed eight weeks of running three times per week for 45 minutes at their lactate threshold while consuming 60 g/day of BC, whey protein (WP or control (CON. Intestinal permeability was assessed at baseline and after eight weeks by measuring the ratio of urinary lactulose (L and rhamnose (R excretion. After eight weeks the L/R ratio increased significantly more in volunteers consuming BC (251 ± 140% compared with WP (21 ± 35%, P < 0.05 and CON (−7 ± 13%, P < 0.02. The increase in intestinal permeability with BC may have been due to BC inducing greater leakiness of tight junctions between enterocytes or by increasing macromolecular transport as it does in neonatal gut. Further research should investigate the potential for BC to increase intestinal macromolecular transport in adults.

  2. Intestinal Permeability: The Basics

    Directory of Open Access Journals (Sweden)

    Ingvar Bjarnason

    1995-01-01

    Full Text Available The authors review some of the more fundamental principles underlying the noninvasive assessment of intestinal permeability in humans, the choice of test markers and their analyses, and the practical aspects of test dose composition and how these can be changed to allow the specific assessment of regional permeability changes and other intestinal functions. The implications of increased intestinal permeability in the pathogenesis of human disease is discussed in relation to findings in patients with Crohn’s disease. A common feature of increased intestinal permeability is the development of a low grade enteropathy, and while quantitatively similar changes may be found in Crohn’s disease these seem to predict relapse of disease. Moreover, factors associated with relapse of Crohn’s disease have in common an action to increase intestinal permeability. While increased intestinal permeability does not seem to be important in the etiology of Crohn’s disease it may be a central mechanism in the clinical relapse of disease.

  3. Pathophysiology of increased intestinal permeability in obstructive jaundice

    Science.gov (United States)

    Assimakopoulos, Stelios F; Scopa, Chrisoula D; Vagianos, Constantine E

    2007-01-01

    Despite advances in preoperative evaluation and postoperative care, intervention, especially surgery, for relief of obstructive jaundice still carries high morbidity and mortality rates, mainly due to sepsis and renal dysfunction. The key event in the pathophysiology of obstructive jaundice-associated complications is endotoxemia of gut origin because of intestinal barrier failure. This breakage of the gut barrier in obstructive jaundice is multi-factorial, involving disruption of the immunologic, biological and mechanical barrier. Experimental and clinical studies have shown that obstructive jaundice results in increased intestinal permeability. The mechanisms implicated in this phenomenon remain unresolved, but growing research interest during the last decade has shed light in our knowledge in the field. This review summarizes the current concepts in the pathophysiology of obstructive jaundice-induced gut barrier dysfunction, analyzing pivotal factors, such as altered intestinal tight junctions expression, oxidative stress and imbalance of enterocyte proliferation and apoptosis. Clinicians handling patients with obstructive jaundice should not neglect protecting the intestinal barrier function before, during and after intervention for the relief of this condition, which may improve their patients’ outcome. PMID:18161914

  4. Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3.

    Science.gov (United States)

    Lammers, Karen M; Lu, Ruliang; Brownley, Julie; Lu, Bao; Gerard, Craig; Thomas, Karen; Rallabhandi, Prasad; Shea-Donohue, Terez; Tamiz, Amir; Alkan, Sefik; Netzel-Arnett, Sarah; Antalis, Toni; Vogel, Stefanie N; Fasano, Alessio

    2008-07-01

    Celiac disease is an immune-mediated enteropathy triggered by gliadin, a component of the grain protein gluten. Gliadin induces an MyD88-dependent zonulin release that leads to increased intestinal permeability, a postulated early element in the pathogenesis of celiac disease. We aimed to establish the molecular basis of gliadin interaction with intestinal mucosa leading to intestinal barrier impairment. Alpha-gliadin affinity column was loaded with intestinal mucosal membrane lysates to identify the putative gliadin-binding moiety. In vitro experiments with chemokine receptor CXCR3 transfectants were performed to confirm binding of gliadin and/or 26 overlapping 20mer alpha-gliadin synthetic peptides to the receptor. CXCR3 protein and gene expression were studied in intestinal epithelial cell lines and human biopsy specimens. Gliadin-CXCR3 interaction was further analyzed by immunofluorescence microscopy, laser capture microscopy, real-time reverse-transcription polymerase chain reaction, and immunoprecipitation/Western blot analysis. Ex vivo experiments were performed using C57BL/6 wild-type and CXCR3(-/-) mouse small intestines to measure intestinal permeability and zonulin release. Affinity column and colocalization experiments showed that gliadin binds to CXCR3 and that at least 2 alpha-gliadin 20mer synthetic peptides are involved in this binding. CXCR3 is expressed in mouse and human intestinal epithelia and lamina propria. Mucosal CXCR3 expression was elevated in active celiac disease but returned to baseline levels following implementation of a gluten-free diet. Gliadin induced physical association between CXCR3 and MyD88 in enterocytes. Gliadin increased zonulin release and intestinal permeability in wild-type but not CXCR3(-/-) mouse small intestine. Gliadin binds to CXCR3 and leads to MyD88-dependent zonulin release and increased intestinal permeability.

  5. Fecal markers of intestinal inflammation and intestinal permeability are elevated in Parkinson's disease.

    Science.gov (United States)

    Schwiertz, Andreas; Spiegel, Jörg; Dillmann, Ulrich; Grundmann, David; Bürmann, Jan; Faßbender, Klaus; Schäfer, Karl-Herbert; Unger, Marcus M

    2018-02-12

    Intestinal inflammation and increased intestinal permeability (both possibly fueled by dysbiosis) have been suggested to be implicated in the multifactorial pathogenesis of Parkinson's disease (PD). The objective of the current study was to investigate whether fecal markers of inflammation and impaired intestinal barrier function corroborate this pathogenic aspect of PD. In a case-control study, we quantitatively analyzed established fecal markers of intestinal inflammation (calprotectin and lactoferrin) and fecal markers of intestinal permeability (alpha-1-antitrypsin and zonulin) in PD patients (n = 34) and controls (n = 28, group-matched for age) by enzyme-linked immunosorbent assay. The study design controlled for potential confounding factors. Calprotectin, a fecal marker of intestinal inflammation, and two fecal markers of increased intestinal permeability (alpha-1-antitrypsin and zonulin) were significantly elevated in PD patients compared to age-matched controls. Lactoferrin, as a second fecal marker of intestinal inflammation, showed a non-significant trend towards elevated concentrations in PD patients. None of the four fecal markers correlated with disease severity, PD subtype, dopaminergic therapy, or presence of constipation. Fecal markers reflecting intestinal inflammation and increased intestinal permeability have been primarily investigated in inflammatory bowel disease so far. Our data indicate that calprotectin, alpha-1-antitrypsin and zonulin could be useful non-invasive markers in PD as well. Even though these markers are not disease-specific, they corroborate the hypothesis of an intestinal inflammation as contributing factor in the pathogenesis of PD. Further investigations are needed to determine whether calprotectin, alpha-1-antitrypsin and zonulin can be used to define PD subgroups and to monitor the effect of interventions in PD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Increased intestinal permeability, measured by serum zonulin, is associated with metabolic risk markers in overweight pregnant women.

    Science.gov (United States)

    Mokkala, Kati; Pellonperä, Outi; Röytiö, Henna; Pussinen, Pirkko; Rönnemaa, Tapani; Laitinen, Kirsi

    2017-04-01

    Increased intestinal permeability with subsequent metabolic endotoxemia, i.e., elevated circulating levels of bacterial lipopolysaccharide, LPS, has been introduced as a novel initiator of obesity related metabolic disturbances in non-pregnant individuals. The objective was to investigate the extent to which intestinal permeability, measured by serum zonulin concentration, is related to metabolic endotoxemia and metabolic risk markers in overweight pregnant women. This was a cross-sectional study including 100 pregnant overweight women in early pregnancy. Serum zonulin was analyzed using ELISA, and markers for metabolic endotoxemia (LPS), inflammation (high-sensitive C-reactive protein and glycoprotein acetylation GlyA), glucose metabolism (fasting glucose and insulin), and lipid metabolism were measured. Higher serum zonulin concentration associated positively with LPS (P=0.02), inflammatory markers (Pzonulin quartiles). All the observed associations were confirmed (Pzonulin concentration, i.e., increased intestinal permeability, contributes to metabolic endotoxemia, systemic inflammation, and insulin resistance in overweight pregnant women. By reinforcing intestinal barrier, it may be possible to manipulate maternal metabolism during pregnancy with subsequent health benefits. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Rebamipide suppresses diclofenac-induced intestinal permeability via mitochondrial protection in mice.

    Science.gov (United States)

    Diao, Lei; Mei, Qiao; Xu, Jian-Ming; Liu, Xiao-Chang; Hu, Jing; Jin, Juan; Yao, Qiang; Chen, Mo-Li

    2012-03-14

    To investigate the protective effect and mechanism of rebamipide on small intestinal permeability induced by diclofenac in mice. Diclofenac (2.5 mg/kg) was administered once daily for 3 d orally. A control group received the vehicle by gavage. Rebamipide (100 mg/kg, 200 mg/kg, 400 mg/kg) was administered intragastrically once a day for 3 d 4 h after diclofenac administration. Intestinal permeability was evaluated by Evans blue and the FITC-dextran method. The ultrastructure of the mucosal barrier was evaluated by transmission electron microscopy (TEM). Mitochondrial function including mitochondrial swelling, mitochondrial membrane potential, mitochondrial nicotinamide adenine dinucleotide-reduced (NADH) levels, succinate dehydrogenase (SDH) and ATPase activities were measured. Small intestinal mucosa was collected for assessment of malondialdehyde (MDA) content and myeloperoxidase (MPO) activity. Compared with the control group, intestinal permeability was significantly increased in the diclofenac group, which was accompanied by broken tight junctions, and significant increases in MDA content and MPO activity. Rebamipide significantly reduced intestinal permeability, improved inter-cellular tight junctions, and was associated with decreases in intestinal MDA content and MPO activity. At the mitochondrial level, rebamipide increased SDH and ATPase activities, NADH level and decreased mitochondrial swelling. Increased intestinal permeability induced by diclofenac can be attenuated by rebamipide, which partially contributed to the protection of mitochondrial function.

  8. Gliadin, zonulin and gut permeability: Effects on celiac and non-celiac intestinal mucosa and intestinal cell lines.

    Science.gov (United States)

    Drago, Sandro; El Asmar, Ramzi; Di Pierro, Mariarosaria; Grazia Clemente, Maria; Tripathi, Amit; Sapone, Anna; Thakar, Manjusha; Iacono, Giuseppe; Carroccio, Antonio; D'Agate, Cinzia; Not, Tarcisio; Zampini, Lucia; Catassi, Carlo; Fasano, Alessio

    2006-04-01

    Little is known about the interaction of gliadin with intestinal epithelial cells and the mechanism(s) through which gliadin crosses the intestinal epithelial barrier. We investigated whether gliadin has any immediate effect on zonulin release and signaling. Both ex vivo human small intestines and intestinal cell monolayers were exposed to gliadin, and zonulin release and changes in paracellular permeability were monitored in the presence and absence of zonulin antagonism. Zonulin binding, cytoskeletal rearrangement, and zonula occludens-1 (ZO-1) redistribution were evaluated by immunofluorescence microscopy. Tight junction occludin and ZO-1 gene expression was evaluated by real-time polymerase chain reaction (PCR). When exposed to gliadin, zonulin receptor-positive IEC6 and Caco2 cells released zonulin in the cell medium with subsequent zonulin binding to the cell surface, rearrangement of the cell cytoskeleton, loss of occludin-ZO1 protein-protein interaction, and increased monolayer permeability. Pretreatment with the zonulin antagonist FZI/0 blocked these changes without affecting zonulin release. When exposed to luminal gliadin, intestinal biopsies from celiac patients in remission expressed a sustained luminal zonulin release and increase in intestinal permeability that was blocked by FZI/0 pretreatment. Conversely, biopsies from non-celiac patients demonstrated a limited, transient zonulin release which was paralleled by an increase in intestinal permeability that never reached the level of permeability seen in celiac disease (CD) tissues. Chronic gliadin exposure caused down-regulation of both ZO-1 and occludin gene expression. Based on our results, we concluded that gliadin activates zonulin signaling irrespective of the genetic expression of autoimmunity, leading to increased intestinal permeability to macromolecules.

  9. Subchronic mild noise stress increases HRP permeability in rat small intestine in vitro

    NARCIS (Netherlands)

    Bijlsma, P. B.; van Raaij, M. T.; Dobbe, C. J.; Timmerman, A.; Kiliaan, A. J.; Taminiau, J. A.; Groot, J. A.

    2001-01-01

    Recently we reported an increased trans- and paracellular protein permeability in rat small intestine after acute cold restraint stress. In the present study, we applied randomized 95- or 105-dB white noise pulses during 45 min/h, 12 h/day, duration 8 days, as a milder, but more chronic stressor to

  10. Epithelial Cell Damage Activates Bactericidal/Permeability Increasing-Protein (BPI Expression in Intestinal Epithelium

    Directory of Open Access Journals (Sweden)

    Arjun Balakrishnan

    2017-08-01

    Full Text Available As the first line of defense against invading pathogen, intestinal epithelium produces various antimicrobial proteins (AMP that help in clearance of pathogen. Bactericidal/permeability-increasing protein (BPI is a 55 kDa AMP that is expressed in intestinal epithelium. Dysregulation of BPI in intestinal epithelium is associated with various inflammatory diseases like Crohn’s Disease, Ulcerative colitis, and Infectious enteritis’s. In this paper, we report a direct correlation between intestinal damage and BPI expression. In Caco-2 cells, we see a significant increase in BPI levels upon membrane damage mediated by S. aureus infection and pore-forming toxins (Streptolysin and Listeriolysin. Cells detect changes in potassium level as a Danger-associated molecular pattern associated with cell damage and induce BPI expression in a p38 dependent manner. These results are further supported by in vivo findings that the BPI expression in murine intestinal epithelium is induced upon infection with bacteria which cause intestinal damage (Salmonella Typhimurium and Shigella flexneri whereas mutants that do not cause intestinal damage (STM ΔfliC and STM ΔinvC did not induce BPI expression. Our results suggest that epithelial damage associated with infection act as a signal to induce BPI expression.

  11. Are self-reported gastrointestinal symptoms among older adults associated with increased intestinal permeability and psychological distress?

    Science.gov (United States)

    Ganda Mall, John-Peter; Östlund-Lagerström, Lina; Lindqvist, Carl Mårten; Algilani, Samal; Rasoal, Dara; Repsilber, Dirk; Brummer, Robert J; V Keita, Åsa; Schoultz, Ida

    2018-03-20

    Despite the substantial number of older adults suffering from gastrointestinal (GI) symptoms little is known regarding the character of these complaints and whether they are associated with an altered intestinal barrier function and psychological distress. Our aim was to explore the relationship between self-reported gut health, intestinal permeability and psychological distress among older adults. Three study populations were included: 1) older adults with GI symptoms (n = 24), 2) a group of older adults representing the general elderly population in Sweden (n = 22) and 3) senior orienteering athletes as a potential model of healthy ageing (n = 27). Questionnaire data on gut-health, psychological distress and level of physical activity were collected. Intestinal permeability was measured by quantifying zonulin in plasma. The level of systemic and local inflammation was monitored by measuring C-reactive protein (CRP), hydrogen peroxide in plasma and calprotectin in stool samples. The relationship between biomarkers and questionnaire data in the different study populations was illustrated using a Principal Component Analysis (PCA). Older adults with GI symptoms displayed significantly higher levels of both zonulin and psychological distress than both general older adults and senior orienteering athletes. The PCA analysis revealed a separation between senior orienteering athletes and older adults with GI symptoms and showed an association between GI symptoms, psychological distress and zonulin. Older adults with GI symptoms express increased plasma levels of zonulin, which might reflect an augmented intestinal permeability. In addition, this group suffer from higher psychological distress compared to general older adults and senior orienteering athletes. This relationship was further confirmed by a PCA plot, which illustrated an association between GI symptoms, psychological distress and intestinal permeability.

  12. Dietary fat and bile juice, but not obesity, are responsible for the increase in small intestinal permeability induced through the suppression of tight junction protein expression in LETO and OLETF rats

    Directory of Open Access Journals (Sweden)

    Suzuki Takuya

    2010-03-01

    Full Text Available Abstract Background An increase in the intestinal permeability is considered to be associated with the inflammatory tone and development in the obesity and diabetes, however, the pathogenesis of the increase in the intestinal permeability is poorly understood. The present study was performed to determine the influence of obesity itself as well as dietary fat on the increase in intestinal permeability. Methods An obese rat strain, Otsuka Long Evans Tokushima Fatty (OLETF, and the lean counter strain, Long Evans Tokushima Otsuka (LETO, were fed standard or high fat diets for 16 weeks. Glucose tolerance, intestinal permeability, intestinal tight junction (TJ proteins expression, plasma bile acids concentration were evaluated. In addition, the effects of rat bile juice and dietary fat, possible mediators of the increase in the intestinal permeability in the obesity, on TJ permeability were explored in human intestinal Caco-2 cells. Results The OLETF rats showed higher glucose intolerance than did the LETO rats, which became more marked with the prolonged feeding of the high fat diet. Intestinal permeability in the OLETF rats evaluated by the urinary excretion of intestinal permeability markers (Cr-EDTA and phenolsulfonphthalein was comparable to that in the LETO rats. Feeding the high fat diet increased intestinal permeability in both the OLETF and LETO rats, and the increases correlated with decreases in TJ proteins (claudin-1, claudin-3, occludin and junctional adhesion molecule-1 expression in the small, but not in the large intestine (cecum or colon. The plasma bile acids concentration was higher in rats fed the high fat diet. Exposure to bile juice and the fat emulsion increased TJ permeability with concomitant reductions in TJ protein expression (claudin-1, claudin-3, and junctional adhesion molecule-1 in the Caco-2 cell monolayers. Conclusion Excessive dietary fat and/or increased levels of luminal bile juice, but not genetic obesity, are

  13. Circulating Zonulin, a Marker of Intestinal Permeability, Is Increased in Association with Obesity-Associated Insulin Resistance

    OpenAIRE

    Moreno-Navarrete, José María; Sabater, Mònica; Ortega, Francisco; Ricart, Wifredo; Fernández-Real, José Manuel

    2012-01-01

    Zonulin is the only physiological mediator known to regulate intestinal permeability reversibly by modulating intercellular tight junctions. To investigate the relationship between intestinal permeability and obesity-associated metabolic disturbances in humans, we aimed to study circulating zonulin according to obesity and insulin resistance. Circulating zonulin (ELISA) was measured in 123 caucasian men in association with inflammatory and metabolic parameters (including minimal model-measure...

  14. Subchronic mild noise stress increases HRP permeability in rat small intestine in vitro.

    Science.gov (United States)

    Bijlsma, P B; van Raaij, M T; Dobbe, C J; Timmerman, A; Kiliaan, A J; Taminiau, J A; Groot, J A

    2001-05-01

    Recently we reported an increased trans- and paracellular protein permeability in rat small intestine after acute cold restraint stress. In the present study, we applied randomized 95- or 105-dB white noise pulses during 45 min/h, 12 h/day, duration 8 days, as a milder, but more chronic stressor to male rats. At 8 days before the noise experiments, 50% of the animals were cannulated in the vena cava for blood sampling during the experimental period. The other 50% of the animals were sacrificed at Day 9, segments of ileum were mounted in Ussing chambers and perfused at 37 degrees C. Horseradish peroxidase (HRP) was added mucosally, serosal appearance was detected enzymatically and tissues were fixed for electron microscopy. In the animals exposed to 95-dB noise, plasma corticosterone levels were enhanced twofold compared to controls, and ileal HRP flux was enhanced twofold. Electron micrographs of tissue from stressed or control animals showed no detectable paracellular staining of HRP. Quantification of HRP-containing endosomes in enterocytes revealed a twofold increase in endosome number in the animals exposed to 95-db noise indicating that the increased HRP permeability was primarily due to increased endocytosis. In contrast to the animals exposed to 95-dB noise, rats exposed to 105-dB noise showed no increase in corticosterone levels and ileal HRP fluxes were not significantly different from controls. We conclude that mild subchronic noise stress may cause a decrease in intestinal barrier function by increased transcytosis of luminal antigens.

  15. Permeability of the small intestine after intra-arterial injection of histamine-type mediators and irradiation

    International Nuclear Information System (INIS)

    Kingham, J.G.C.; Loehry, C.A.

    1976-01-01

    Permeability and selectivity of rabbit small intestine were estimated by a perfusion technique after intra-arterial injection of histamine-type mediators and an intestinal dose of 1.5 Mr gamma irradiation. It was shown that the histamine-type mediators caused an increase in capillary permeability which produced an overall moderate increase in transmucosal permeability with a moderate loss of selectivity. Local intestinal irradiation caused a very marked increase in permeability and a profound loss of selectivity. It was felt that this was produced partly by an increase in capillary permeability but largely by damage to the epithelial basement membrane. It is concluded that the intestinal capillary endothelium is both rate-limiting and selective, though not to a major degree in either case. The epithelial basement membrane, however, appears to be both rate-limiting and markedly selective. (author)

  16. Circulating zonulin, a marker of intestinal permeability, is increased in association with obesity-associated insulin resistance.

    Science.gov (United States)

    Moreno-Navarrete, José María; Sabater, Mònica; Ortega, Francisco; Ricart, Wifredo; Fernández-Real, José Manuel

    2012-01-01

    Zonulin is the only physiological mediator known to regulate intestinal permeability reversibly by modulating intercellular tight junctions. To investigate the relationship between intestinal permeability and obesity-associated metabolic disturbances in humans, we aimed to study circulating zonulin according to obesity and insulin resistance. Circulating zonulin (ELISA) was measured in 123 caucasian men in association with inflammatory and metabolic parameters (including minimal model-measured insulin sensitivity). Circulating zonulin increased with body mass index (BMI), waist to hip ratio (WHR), fasting insulin, fasting triglycerides, uric acid and IL-6, and negatively correlated with HDL-cholesterol and insulin sensitivity. In multiple regression analysis, insulin sensitivity (p = 0.002) contributed independently to circulating zonulin variance, after controlling for the effects of BMI, fasting triglycerides and age. When circulating IL-6 was added to this model, only BMI (p = 0.01) contributed independently to circulating zonulin variance. In conclusion, the relationship between insulin sensitivity and circulating zonulin might be mediated through the obesity-related circulating IL-6 increase.

  17. Increased Serum Zonulin Levels as an Intestinal Permeability Marker in Autistic Subjects.

    Science.gov (United States)

    Esnafoglu, Erman; Cırrık, Selma; Ayyıldız, Sema Nur; Erdil, Abdullah; Ertürk, Emine Yurdakul; Daglı, Abdullah; Noyan, Tevfik

    2017-09-01

    To evaluate the serum levels of zonulin, which regulates tight junctions between enterocytes and is a physiological modulator controlling intestinal permeability, in patients with autism spectrum disorders (ASDs). Serum zonulin levels were determined in 32 patients with ASD and 33 healthy controls using an enzyme-linked immunosorbent assay. The severity of ASD symptoms was assessed with the Childhood Autism Rating Scale. Serum zonulin levels were significantly higher in the patients with ASD (122.3 ± 98.46 ng/mL) compared with the healthy controls (41.89 ± 45.83 ng/mL). There was a positive correlation between zonulin levels and Childhood Autism Rating Scale score when all subjects were assessed (r = 0.523; P zonulin, which regulates intestinal permeability, plays a role in the development of symptoms of ASD. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease.

    Science.gov (United States)

    Fasano, A; Not, T; Wang, W; Uzzau, S; Berti, I; Tommasini, A; Goldblum, S E

    2000-04-29

    We identified zonulin, a novel human protein analogue to the Vibrio cholerae derived Zonula occludens toxin, which induces tight junction disassembly and a subsequent increase in intestinal permeability in non-human primate intestinal epithelia. Zonulin expression was raised in intestinal tissues during the acute phase of coeliac disease, a clinical condition in which tight junctions are opened and permeability is increased.

  19. Reducing small intestinal permeability attenuates colitis in the IL10 gene-deficient mouse

    Science.gov (United States)

    Arrieta, M C; Madsen, K; Doyle, J; Meddings, J

    2008-01-01

    Background: Defects in the small intestinal epithelial barrier have been associated with inflammatory bowel disease but their role in the causation of disease is still a matter of debate. In some models of disease increased permeability appears to be a very early event. The interleukin 10 (IL10) gene-deficient mouse spontaneously develops colitis after 12 weeks of age. These mice have been shown to have increased small intestinal permeability that appears early in life. Furthermore, the development of colitis is dependent upon luminal agents, as animals do not develop disease if raised under germ-free conditions. Aims: To determine if the elevated small bowel permeability can be prevented, and if by doing so colonic disease is prevented or attenuated. Methods: IL10 gene-deficient (IL10−/−) mice) were treated with AT-1001 (a zonulin peptide inhibitor), a small peptide previously demonstrated to reduce small intestinal permeability. Small intestinal permeability was measured, in vivo, weekly from 4 to 17 weeks of age. Colonic disease was assessed at 8 weeks in Ussing chambers, and at 17 weeks of age inflammatory cytokines and myeloperoxidase were measured in the colon. Colonic permeability and histology were also endpoints. Results: Treated animals showed a marked reduction in small intestinal permeability. Average area under the lactulose/mannitol time curve: 5.36 (SE 0.08) in controls vs 3.97 (SE 0.07) in the high-dose AT-1001 group, p<0.05. At 8 weeks of age there was a significant reduction of colonic mucosal permeability and increased electrical resistance. By 17 weeks of age, secretion of tumour necrosis factor α (TNFα) from a colonic explant was significantly lower in the treated group (25.33 (SE 4.30) pg/mg vs 106.93 (SE 17.51) pg/ml in controls, p<0.01). All other markers also demonstrated a clear reduction of colitis in the treated animals. Additional experiments were performed which demonstrated that AT-1001 was functionally active only in the small

  20. The Effect of DA-6034 on Intestinal Permeability in an Indomethacin-Induced Small Intestinal Injury Model.

    Science.gov (United States)

    Kwak, Dong Shin; Lee, Oh Young; Lee, Kang Nyeong; Jun, Dae Won; Lee, Hang Lak; Yoon, Byung Chul; Choi, Ho Soon

    2016-05-23

    DA-6034 has anti-inflammatory activities and exhibits cytoprotective effects in acute gastric injury models. However, explanations for the protective effects of DA-6034 on intestinal permeability are limited. This study sought to investigate the effect of DA-6034 on intestinal permeability in an indomethacin-induced small intestinal injury model and its protective effect against small intestinal injury. Rats in the treatment group received DA-6034 from days 0 to 2 and indomethacin from days 1 to 2. Rats in the control group received indomethacin from days 1 to 2. On the fourth day, the small intestines were examined to compare the severity of inflammation. Intestinal permeability was evaluated by using fluorescein isothiocyanate-labeled dextran. Western blotting was performed to confirm the association between DA-6034 and the extracellular signal-regulated kinase (ERK) pathway. The inflammation scores in the treatment group were lower than those in the control group, but the difference was statistically insignificant. Hemorrhagic lesions in the treatment group were broader than those in the control group, but the difference was statistically insignificant. Intestinal permeability was lower in the treatment group than in the control group. DA-6034 enhanced extracellular signal-regulated kinase expression, and intestinal permeability was negatively correlated with ERK expression. DA-6034 may decrease intestinal permeability in an indomethacin-induced intestinal injury model via the ERK pathway.

  1. Circulating zonulin, a marker of intestinal permeability, is increased in association with obesity-associated insulin resistance.

    Directory of Open Access Journals (Sweden)

    José María Moreno-Navarrete

    Full Text Available Zonulin is the only physiological mediator known to regulate intestinal permeability reversibly by modulating intercellular tight junctions. To investigate the relationship between intestinal permeability and obesity-associated metabolic disturbances in humans, we aimed to study circulating zonulin according to obesity and insulin resistance. Circulating zonulin (ELISA was measured in 123 caucasian men in association with inflammatory and metabolic parameters (including minimal model-measured insulin sensitivity. Circulating zonulin increased with body mass index (BMI, waist to hip ratio (WHR, fasting insulin, fasting triglycerides, uric acid and IL-6, and negatively correlated with HDL-cholesterol and insulin sensitivity. In multiple regression analysis, insulin sensitivity (p = 0.002 contributed independently to circulating zonulin variance, after controlling for the effects of BMI, fasting triglycerides and age. When circulating IL-6 was added to this model, only BMI (p = 0.01 contributed independently to circulating zonulin variance. In conclusion, the relationship between insulin sensitivity and circulating zonulin might be mediated through the obesity-related circulating IL-6 increase.

  2. Acylation of salmon calcitonin modulates in vitro intestinal peptide flux through membrane permeability enhancement

    DEFF Research Database (Denmark)

    Trier, Sofie; Linderoth, Lars; Bjerregaard, Simon

    2015-01-01

    hypothesize that tailoring the acylation may be used to optimize intestinal translocation. This work aims to characterize acylated analogues of the therapeutic peptide salmon calcitonin (sCT), which lowers blood calcium, by systematically increasing acyl chain length at two positions, in order to elucidate...... to be optimal, as elongating the chain causes greater binding to the cell membrane but similar permeability, and we speculate that increasing the chain length further may decrease the permeability. In conclusion, acylated sCT acts as its own in vitro intestinal permeation enhancer, with reversible effects...... on Caco-2 cells, indicating that acylation of sCT may represent a promising tool to increase intestinal permeability without adding oral permeation enhancers....

  3. Sodium butyrate attenuates soybean oil-based lipid emulsion-induced increase in intestinal permeability of lipopolysaccharide by modulation of P-glycoprotein in Caco-2 cells

    International Nuclear Information System (INIS)

    Yan, Jun-Kai; Gong, Zi-Zhen; Zhang, Tian; Cai, Wei

    2017-01-01

    Down-regulation of intestinal P-glycoprotein (P-gp) by soybean oil-based lipid emulsion (SOLE) may cause elevated intestinal permeability of lipopolysaccharide (LPS) in patients with total parenteral nutrition, but the appropriate preventative treatment is currently limited. Recently, sodium butyrate (NaBut) has been demonstrated to regulate the expression of P-gp. Therefore, this study aimed to address whether treatment with NaBut could attenuate SOLE-induced increase in intestinal permeability of LPS by modulation of P-gp in vitro. Caco-2 cells were exposed to SOLE with or without NaBut. SOLE-induced down-regulation of P-gp was significantly attenuated by co-incubation with NaBut. Nuclear recruitment of FOXO 3a in response to NaBut was involved in P-gp regulation. Transport studies revealed that SOLE-induced increase in permeability of LPS was significantly attenuated by co-incubation with NaBut. Collectively, our results suggested that NaBut may be a potentially useful medication to prevent SOLE-induced increase in intestinal permeability of LPS. - Highlights: • Caco-2 cells were used as models for studying parenteral nutrition in vitro. • NaBut restored SOLE-induced down-regulation of P-gp in Caco-2 cells. • Regulation of P-gp by NaBut was mediated via nuclear recruitment of FOXO 3a. • NaBut modulated the permeability of LPS by P-gp function, not barrier function.

  4. Oral Supplementation with Bovine Colostrum Decreases Intestinal Permeability and Stool Concentrations of Zonulin in Athletes

    Directory of Open Access Journals (Sweden)

    Maciej Hałasa

    2017-04-01

    Full Text Available Increased intestinal permeability has been implicated in various pathologies, has various causes, and can develop during vigorous athletic training. Colostrum bovinum is a natural supplement with a wide range of supposed positive health effects, including reduction of intestine permeability. We assessed influence of colostrum supplementation on intestinal permeability related parameters in a group of 16 athletes during peak training for competition. This double-blind placebo-controlled study compared supplementation for 20 days with 500 mg of colostrum bovinum or placebo (whey. Gut permeability status was assayed by differential absorption of lactulose and mannitol (L/M test and stool zonulin concentration. Baseline L/M tests found that six of the participants (75% in the colostrum group had increased intestinal permeability. After supplementation, the test values were within the normal range and were significantly lower than at baseline. The colostrum group Δ values produced by comparing the post-intervention and baseline results were also significantly lower than the placebo group Δ values. The differences in stool zonulin concentration were smaller than those in the L/M test, but were significant when the Δ values due to intervention were compared between the colostrum group and the placebo group. Colostrum bovinum supplementation was safe and effective in decreasing of intestinal permeability in this series of athletes at increased risk of its elevation.

  5. Oral Supplementation with Bovine Colostrum Decreases Intestinal Permeability and Stool Concentrations of Zonulin in Athletes.

    Science.gov (United States)

    Hałasa, Maciej; Maciejewska, Dominika; Baśkiewicz-Hałasa, Magdalena; Machaliński, Bogusław; Safranow, Krzysztof; Stachowska, Ewa

    2017-04-08

    Increased intestinal permeability has been implicated in various pathologies, has various causes, and can develop during vigorous athletic training. Colostrum bovinum is a natural supplement with a wide range of supposed positive health effects, including reduction of intestine permeability. We assessed influence of colostrum supplementation on intestinal permeability related parameters in a group of 16 athletes during peak training for competition. This double-blind placebo-controlled study compared supplementation for 20 days with 500 mg of colostrum bovinum or placebo (whey). Gut permeability status was assayed by differential absorption of lactulose and mannitol (L/M test) and stool zonulin concentration. Baseline L/M tests found that six of the participants (75%) in the colostrum group had increased intestinal permeability. After supplementation, the test values were within the normal range and were significantly lower than at baseline. The colostrum group Δ values produced by comparing the post-intervention and baseline results were also significantly lower than the placebo group Δ values. The differences in stool zonulin concentration were smaller than those in the L/M test, but were significant when the Δ values due to intervention were compared between the colostrum group and the placebo group. Colostrum bovinum supplementation was safe and effective in decreasing of intestinal permeability in this series of athletes at increased risk of its elevation.

  6. Artificial neural network models for prediction of intestinal permeability of oligopeptides

    Directory of Open Access Journals (Sweden)

    Kim Min-Kook

    2007-07-01

    Full Text Available Abstract Background Oral delivery is a highly desirable property for candidate drugs under development. Computational modeling could provide a quick and inexpensive way to assess the intestinal permeability of a molecule. Although there have been several studies aimed at predicting the intestinal absorption of chemical compounds, there have been no attempts to predict intestinal permeability on the basis of peptide sequence information. To develop models for predicting the intestinal permeability of peptides, we adopted an artificial neural network as a machine-learning algorithm. The positive control data consisted of intestinal barrier-permeable peptides obtained by the peroral phage display technique, and the negative control data were prepared from random sequences. Results The capacity of our models to make appropriate predictions was validated by statistical indicators including sensitivity, specificity, enrichment curve, and the area under the receiver operating characteristic (ROC curve (the ROC score. The training and test set statistics indicated that our models were of strikingly good quality and could discriminate between permeable and random sequences with a high level of confidence. Conclusion We developed artificial neural network models to predict the intestinal permeabilities of oligopeptides on the basis of peptide sequence information. Both binary and VHSE (principal components score Vectors of Hydrophobic, Steric and Electronic properties descriptors produced statistically significant training models; the models with simple neural network architectures showed slightly greater predictive power than those with complex ones. We anticipate that our models will be applicable to the selection of intestinal barrier-permeable peptides for generating peptide drugs or peptidomimetics.

  7. Quantitation of small intestinal permeability during normal human drug absorption

    OpenAIRE

    Levitt, David G

    2013-01-01

    Background Understanding the quantitative relationship between a drug?s physical chemical properties and its rate of intestinal absorption (QSAR) is critical for selecting candidate drugs. Because of limited experimental human small intestinal permeability data, approximate surrogates such as the fraction absorbed or Caco-2 permeability are used, both of which have limitations. Methods Given the blood concentration following an oral and intravenous dose, the time course of intestinal absorpti...

  8. Intestinal permeability of 51Cr-labelled ethylenediaminetetraacetic acid in patients with Crohn's disease and their healthy relatives

    International Nuclear Information System (INIS)

    Ainsworth, M.; Eriksen, J.; Rasmussen, J.W.; Muckadell, O.B.S. de

    1989-01-01

    An increased intestinal permeability has been proposed as an aetiologic factor in Crohn's disease. The 24-h urinary excretion of 100 μCi 51 Cr-labelled ethylenediaminetetraacetic acid (EDTA) was used to test the permeability in 15 patients with Crohn's disease and in 20 healthy first-degree relatives, who were known to have a genetic predisposition to inflammatory bowel disease. Twenty-eight healthy persons not related to patients with inflammatory bowel disease served as control material. The 51 Cr-EDTA excretion of the relatives was not significantly higher than that of the controls, whereas patients with Crohn's disease had a significantly higher excretion than both the relatives and the controls. Among patients the increased excretion was found only if the small intestine was involved. It is concluded that 1) as a group, patient with Crohn's disease in the small intestine have an increased intestinal permeability, in contrast to their healthy relatives, who have a normal permeability; 2) a considerable overlap of the results of the 51 Cr-EDTA test was found between the groups studied, and the test is not suitable for evaluating individual patients; 3) the results do not support the hypothesis of an increase in intestinal permeability as an aetiologic factor in Crohn's disease. 29 refs

  9. Possible links between intestinal permeablity and food processing: a potential therapeutic niche for glutamine

    Directory of Open Access Journals (Sweden)

    Jean Robert Rapin

    2010-01-01

    Full Text Available Increased intestinal permeability is a likely cause of various pathologies, such as allergies and metabolic or even cardiovascular disturbances. Intestinal permeability is found in many severe clinical situations and in common disorders such as irritable bowel syndrome. In these conditions, substances that are normally unable to cross the epithelial barrier gain access to the systemic circulation. To illustrate the potential harmfulness of leaky gut, we present an argument based on examples linked to protein or lipid glycation induced by modern food processing. Increased intestinal permeability should be largely improved by dietary addition of compounds, such as glutamine or curcumin, which both have the mechanistic potential to inhibit the inflammation and oxidative stress linked to tight junction opening. This brief review aims to increase physician awareness of this common, albeit largely unrecognized, pathology, which may be easily prevented or improved by means of simple nutritional changes.

  10. Possible Links between Intestinal Permeablity and Food Processing: A Potential Therapeutic Niche for Glutamine

    Science.gov (United States)

    Rapin, Jean Robert; Wiernsperger, Nicolas

    2010-01-01

    Increased intestinal permeability is a likely cause of various pathologies, such as allergies and metabolic or even cardiovascular disturbances. Intestinal permeability is found in many severe clinical situations and in common disorders such as irritable bowel syndrome. In these conditions, substances that are normally unable to cross the epithelial barrier gain access to the systemic circulation. To illustrate the potential harmfulness of leaky gut, we present an argument based on examples linked to protein or lipid glycation induced by modern food processing. Increased intestinal permeability should be largely improved by dietary addition of compounds, such as glutamine or curcumin, which both have the mechanistic potential to inhibit the inflammation and oxidative stress linked to tight junction opening. This brief review aims to increase physician awareness of this common, albeit largely unrecognized, pathology, which may be easily prevented or improved by means of simple nutritional changes. PMID:20613941

  11. Reversibility of increased intestinal permeability to 51Cr-EDTA in patients with gastrointestinal inflammatory diseases

    International Nuclear Information System (INIS)

    Jenkins, R.T.; Jones, D.B.; Goodacre, R.L.; Collins, S.M.; Coates, G.; Hunt, R.H.; Bienenstock, J.

    1987-01-01

    Intestinal permeability in adults with inflammatory gastrointestinal diseases was investigated by measuring the 24-h urinary excretion of orally administered 51 Cr-EDTA. Eighty controls along with 100 patients with Crohn's disease, 46 patients with ulcerative colitis, 20 patients with gluten-sensitive enteropathy, and 18 patients with other diseases were studied. In controls, the median 24-h excretion was 1.34%/24 h of the oral dose. Patients with Crohn's disease (median 2.96%/24 h), ulcerative colitis (median 2.12%/24 h), and untreated gluten-sensitive enteropathy (median 3.56%/24 h) had significantly elevated urinary excretion of the probe compared to controls (p less than 0.0001). Increased 24-h urinary excretion of 51 Cr-EDTA had a high association with intestinal inflammation (p less than 0.0001). Test specificity and sensitivity were 96% and 57%, respectively. A positive test has a 96% probability of correctly diagnosing the presence of intestinal inflammation, whereas a negative test has a 50% probability of predicting the absence of disease

  12. Intestinal permeability study of minoxidil: assessment of minoxidil as a high permeability reference drug for biopharmaceutics classification.

    Science.gov (United States)

    Ozawa, Makoto; Tsume, Yasuhiro; Zur, Moran; Dahan, Arik; Amidon, Gordon L

    2015-01-05

    The purpose of this study was to evaluate minoxidil as a high permeability reference drug for Biopharmaceutics Classification System (BCS). The permeability of minoxidil was determined in in situ intestinal perfusion studies in rodents and permeability studies across Caco-2 cell monolayers. The permeability of minoxidil was compared with that of metoprolol, an FDA reference drug for BCS classification. In rat perfusion studies, the permeability of minoxidil was somewhat higher than that of metoprolol in the jejunum, while minoxidil showed lower permeability than metoprolol in the ileum. The permeability of minoxidil was independent of intestinal segment, while the permeability of metoprolol was region-dependent. Similarly, in mouse perfusion study, the jejunal permeability of minoxidil was 2.5-fold higher than that of metoprolol. Minoxidil and metoprolol showed similar permeability in Caco-2 study at apical pH of 6.5 and basolateral pH of 7.4. The permeability of minoxidil was independent of pH, while metoprolol showed pH-dependent transport in Caco-2 study. Minoxidil exhibited similar permeability in the absorptive direction (AP-BL) in comparison with secretory direction (BL-AP), while metoprolol had higher efflux ratio (ER > 2) at apical pH of 6.5 and basolateral pH of 7.4. No concentration-dependent transport was observed for either minoxidil or metoprolol transport in Caco-2 study. Verapamil did not alter the transport of either compounds across Caco-2 cell monolayers. The permeability of minoxidil was independent of both pH and intestinal segment in intestinal perfusion studies and Caco-2 studies. Caco-2 studies also showed no involvement of carrier mediated transport in the absorption process of minoxidil. These results suggest that minoxidil may be an acceptable reference drug for BCS high permeability classification. However, minoxidil exhibited higher jejunal permeability than metoprolol and thus to use minoxidil as a reference drug would raise the

  13. Effect of acute, slightly increased intra-abdominal pressure on intestinal permeability and oxidative stress in a rat model.

    Directory of Open Access Journals (Sweden)

    Yuxin Leng

    Full Text Available INTRODUCTION: Intra-abdominal hypertension (IAH is known as a common, serious complication in critically ill patients. Bacterial translocation and permeability changes are considered the pathophysiological bases for IAH-induced enterogenic endotoxemia and subsequent multiorgan failure. Nevertheless, the effects of slightly elevated intra-abdominal pressures (IAPs on the intestinal mucosa and the associated mechanisms remain unclear. METHODS: To investigate the acute effects of different nitrogen pneumoperitoneum grades on colonic mucosa, male Sprague-Dawley rats were assigned to six groups with different IAPs (0 [control], 4, 8, 12, 16, and 20 mmHg, n = 6/group. During 90 min of exposure, we dynamically monitored the heart rate and noninvasive hemodynamic parameters. After gradual decompression, arterial blood gas analyses were conducted. Thereafter, structural injuries to the colonic mucosa were identified using light microscopy. Colon permeability was determined using the expression of tight junction proteins, combined with fluorescein isothiocyanate dextran (FD-4 absorption. The pro-oxidant-antioxidant balance was determined based on the levels of malondialdehyde (MDA and antioxidant enzymes. RESULTS: IAH significantly affected the histological scores of the colonic mucosa, tight junction protein expression, mucosal permeability, and pro-oxidant-antioxidant balance. Interestingly, elevations of IAP that were lower than the threshold for IAH also showed a similar, undesirable effect. In the 8 mmHg group, mild hyponatremia, hypocalcemia, and hypoxemia occurred, accompanied by reduced blood and abdominal perfusion pressures. Mild microscopic inflammatory infiltration and increased MDA levels were also detected. Moreover, an 8-mm Hg IAP markedly inhibited the expression of tight junction proteins, although no significant differences in FD-4 permeability were observed between the 0- and 8-mmHg groups. CONCLUSIONS: Acute exposure to slightly

  14. Small intestinal efflux mediated by MRP2 and BCRP shifts sulfasalazine intestinal permeability from high to low, enabling its colonic targeting.

    Science.gov (United States)

    Dahan, Arik; Amidon, Gordon L

    2009-08-01

    Sulfasalazine is characterized by low intestinal absorption, which essentially enables its colonic targeting and therapeutic action. The mechanisms behind this low absorption have not yet been elucidated. The purpose of this study was to investigate the role of efflux transporters in the intestinal absorption of sulfasalazine as a potential mechanism for its low small-intestinal absorption and colonic targeting following oral administration. The effects of P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP) inhibitors on sulfasalazine bidirectional permeability were studied across Caco-2 cell monolayers, including dose-response analysis. Sulfasalazine in vivo permeability was then investigated in the rat jejunum by single-pass perfusion, in the presence vs. absence of inhibitors. Sulfasalazine exhibited 19-fold higher basolateral-to-apical (BL-AP) than apical-to-basolateral (AP-BL) Caco-2 permeability, indicative of net mucosal secretion. MRP2 inhibitors (MK-571 and indomethacin) and BCRP inhibitors [fumitremorgin C (FTC) and pantoprazole] significantly increased AP-BL and decreased BL-AP sulfasalazine Caco-2 transport in a concentration-dependent manner. No effect was observed with the P-gp inhibitors verapamil and quinidine. The IC50 values of the specific MRP2 and BCRP inhibitors MK-571 and FTC on sulfasalazine secretion were 21.5 and 2.0 microM, respectively. Simultaneous inhibition of MRP2 and BCRP completely abolished sulfasalazine Caco-2 efflux. Without inhibitors, sulfasalazine displayed low (vs. metoprolol) in vivo intestinal permeability in the rat model. MK-571 or FTC significantly increased sulfasalazine permeability, bringing it to the low-high permeability boundary. With both MK-571 and FTC present, sulfasalazine displayed high permeability. In conclusion, efflux transport mediated by MRP2 and BCRP, but not P-gp, shifts sulfasalazine permeability from high to low, thereby enabling its

  15. Stress induces endotoxemia and low-grade inflammation by increasing barrier permeability

    Directory of Open Access Journals (Sweden)

    Karin ede Punder

    2015-05-01

    Full Text Available Chronic non-communicable diseases (NCDs are the leading causes of work absence, disability and mortality worldwide. Most of these diseases are associated with low-grade inflammation. Here we hypothesize that stresses (defined as homeostatic disturbances can induce low-grade inflammation by increasing the availability of water, sodium and energy-rich substances to meet the increased metabolic demand induced by the stressor. One way of triggering low-grade inflammation is by increasing intestinal barrier permeability through activation of various components of the stress system. Although beneficial to meet the demands necessary during stress, increased intestinal barrier permeability also raises the possibility of the translocation of bacteria and their toxins across the intestinal lumen into the blood circulation. In combination with modern life-style factors, the increase in bacteria/bacterial toxin translocation arising from a more permeable intestinal wall causes a low-grade inflammatory state. We support this hypothesis with numerous studies finding associations with NCDs and markers of endotoxemia, suggesting that this process plays a pivotal and perhaps even a causal role in the development of low-grade inflammation and its related diseases.

  16. Interactions Between Diet and the Intestinal Microbiota Alter Intestinal Permeability and Colitis Severity in Mice.

    Science.gov (United States)

    Llewellyn, Sean R; Britton, Graham J; Contijoch, Eduardo J; Vennaro, Olivia H; Mortha, Arthur; Colombel, Jean-Frederic; Grinspan, Ari; Clemente, Jose C; Merad, Miriam; Faith, Jeremiah J

    2018-03-01

    It is not clear how the complex interactions between diet and the intestinal microbiota affect development of mucosal inflammation or inflammatory bowel disease. We investigated interactions between dietary ingredients, nutrients, and the microbiota in specific pathogen-free (SPF) and germ-free (GF) mice given more than 40 unique diets; we quantified individual and synergistic effects of dietary macronutrients and the microbiota on intestinal health and development of colitis. C56BL/6J SPF and GF mice were placed on custom diets containing different concentrations and sources of protein, fat, digestible carbohydrates, and indigestible carbohydrates (fiber). After 1 week, SPF and GF mice were given dextran sulfate sodium (DSS) to induce colitis. Disease severity was determined based on the percent weight change from baseline, and modeled as a function of the concentration of each macronutrient in the diet. In unchallenged mice, we measured intestinal permeability by feeding mice labeled dextran and measuring levels in blood. Feces were collected and microbiota were analyzed by 16S rDNA sequencing. We collected colons from mice and performed transcriptome analyses. Fecal microbiota varied with diet; the concentration of protein and fiber had the strongest effect on colitis development. Among 9 fiber sources tested, psyllium, pectin, and cellulose fiber reduced the severity of colitis in SPF mice, whereas methylcellulose increased severity. Increasing dietary protein increased the density of the fecal microbiota and the severity of colitis in SPF mice, but not in GF mice or mice given antibiotics. Psyllium fiber reduced the severity of colitis through microbiota-dependent and microbiota-independent mechanisms. Combinatorial perturbations to dietary casein protein and psyllium fiber in parallel accounted for most variation in gut microbial density and intestinal permeability in unchallenged mice, as well as the severity of DSS-induced colitis; changes in 1 ingredient

  17. Novel sulpiride-loaded solid lipid nanoparticles with enhanced intestinal permeability

    Directory of Open Access Journals (Sweden)

    Ibrahim WM

    2013-12-01

    Full Text Available Waheed M Ibrahim,1 Abdullah H AlOmrani,2 Alaa Eldeen B Yassin31Drug Sector, Saudi Food and Drug Authority, 2Department of Pharmaceutics, College of Pharmacy, King Saud University, 3Department of Pharmaceutical Sciences, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, National Guard Health Affairs, Riyadh, Saudi ArabiaBackground: Solid lipid nanoparticles (SLN, novel drug delivery carriers, can be utilized in enhancing both intestinal permeability and dissolution of poorly absorbed drugs. The aim of this work was to enhance the intestinal permeability of sulpiride by loading into SLN.Methods: A unique ultrasonic melt-emulsification method with minimum stress conditions was used for the preparation of SLN. The mixture of the drug and the melted lipids was simply dispersed in an aqueous solution of a surfactant at a temperature that was 10°C higher than the melting points of the lipids using probe sonication, and was then simultaneously dispersed in cold water. Several formulation parameters were optimized, including the drug-to-lipid ratio, and the types of lipids and surfactants used. The produced SLN were evaluated for their particle size and shape, surface charge, entrapment efficiency, crystallinity of the drug and lipids, and the drug release profile. The rat everted sac intestine model was utilized to evaluate the change in intestinal permeability of sulpiride by loading into SLN.Results: The method adopted allowed successful preparation of SLN with a monodispersed particle size of 147.8–298.8 nm. Both scanning electron microscopic and atomic force microscopic images showed uniform spherical particles and confirmed the sizes determined by the light scattering technique. Combination of triglycerides with stearic acid resulted in a marked increase in zeta potential, entrapment efficiency, and drug loading; however, the particle size was increased. The type of surfactant used was critical for particle size

  18. The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression

    International Nuclear Information System (INIS)

    Pinton, Philippe; Nougayrede, Jean-Philippe; Del Rio, Juan-Carlos; Moreno, Carolina; Marin, Daniela E.; Ferrier, Laurent; Bracarense, Ana-Paula; Kolf-Clauw, Martine; Oswald, Isabelle P.

    2009-01-01

    'The gastrointestinal tract represents the first barrier against food contaminants as well as the first target for these toxicants. Deoxynivalenol (DON) is a mycotoxin that commonly contaminates cereals and causes various toxicological effects. Through consumption of contaminated cereals and cereal products, human and pigs are exposed to this mycotoxin. Using in vitro, ex vivo and in vivo approaches, we investigated the effects of DON on the intestinal epithelium. We demonstrated that, in intestinal epithelial cell lines from porcine (IPEC-1) or human (Caco-2) origin, DON decreases trans-epithelial electrical resistance (TEER) and increases in a time and dose-dependent manner the paracellular permeability to 4 kDa dextran and to pathogenic Escherichia coli across intestinal cell monolayers. In pig explants treated with DON, we also observed an increased permeability of intestinal tissue. These alterations of barrier function were associated with a specific reduction in the expression of claudins, which was also seen in vivo in the jejunum of piglets exposed to DON-contaminated feed. In conclusion, DON alters claudin expression and decreases the barrier function of the intestinal epithelium. Considering that high levels of DON may be present in food or feed, consumption of DON-contaminated food/feed may induce intestinal damage and has consequences for human and animal health.

  19. Intestinal permeability of forskolin by in situ single pass perfusion in rats.

    Science.gov (United States)

    Liu, Zhen-Jun; Jiang, Dong-bo; Tian, Lu-Lu; Yin, Jia-Jun; Huang, Jian-Ming; Weng, Wei-Yu

    2012-05-01

    The intestinal permeability of forskolin was investigated using a single pass intestinal perfusion (SPIP) technique in rats. SPIP was performed in different intestinal segments (duodenum, jejunum, ileum, and colon) with three concentrations of forskolin (11.90, 29.75, and 59.90 µg/mL). The investigations of adsorption and stability were performed to ensure that the disappearance of forskolin from the perfusate was due to intestinal absorption. The results of the SPIP study indicated that forskolin could be absorbed in all segments of the intestine. The effective permeability (P (eff)) of forskolin was in the range of drugs with high intestinal permeability. The P (eff) was highest in the duodenum as compared to other intestinal segments. The decreases of P (eff) in the duodenum and ileum at the highest forskolin concentration suggested a saturable transport process. The addition of verapamil, a P-glycoprotein inhibitor, significantly enhanced the permeability of forskolin across the rat jejunum. The absorbed fraction of dissolved forskolin after oral administration in humans was estimated to be 100 % calculated from rat P (eff). In conclusion, dissolved forskolin can be absorbed readily in the intestine. The low aqueous solubility of forskolin might be a crucial factor for its poor oral bioavailability. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Effect of Gliadin on Permeability of Intestinal Biopsy Explants from Celiac Disease Patients and Patients with Non-Celiac Gluten Sensitivity

    Science.gov (United States)

    Hollon, Justin; Leonard Puppa, Elaine; Greenwald, Bruce; Goldberg, Eric; Guerrerio, Anthony; Fasano, Alessio

    2015-01-01

    Background: Intestinal exposure to gliadin leads to zonulin upregulation and consequent disassembly of intercellular tight junctions and increased intestinal permeability. We aimed to study response to gliadin exposure, in terms of barrier function and cytokine secretion, using intestinal biopsies obtained from four groups: celiac patients with active disease (ACD), celiac patients in remission (RCD), non-celiac patients with gluten sensitivity (GS) and non-celiac controls (NC). Methods: Ex-vivo human duodenal biopsies were mounted in microsnapwells and luminally incubated with either gliadin or media alone. Changes in transepithelial electrical resistance were monitored over 120 min. Media was subsequently collected and cytokines quantified. Results: Intestinal explants from all groups (ACD (n = 6), RCD (n = 6), GS (n = 6), and NC (n = 5)) demonstrated a greater increase in permeability when exposed to gliadin vs. media alone. The increase in permeability in the ACD group was greater than in the RCD and NC groups. There was a greater increase in permeability in the GS group compared to the RCD group. There was no difference in permeability between the ACD and GS groups, between the RCD and NC groups, or between the NC and GS groups. IL-10 was significantly greater in the media of the NC group compared to the RCD and GS groups. Conclusions: Increased intestinal permeability after gliadin exposure occurs in all individuals. Following gliadin exposure, both patients with gluten sensitivity and those with active celiac disease demonstrate a greater increase in intestinal permeability than celiacs in disease remission. A higher concentration of IL-10 was measured in the media exposed to control explants compared to celiac disease in remission or gluten sensitivity. PMID:25734566

  1. Effect of Gliadin on Permeability of Intestinal Biopsy Explants from Celiac Disease Patients and Patients with Non-Celiac Gluten Sensitivity

    Directory of Open Access Journals (Sweden)

    Justin Hollon

    2015-02-01

    Full Text Available Background: Intestinal exposure to gliadin leads to zonulin upregulation and consequent disassembly of intercellular tight junctions and increased intestinal permeability. We aimed to study response to gliadin exposure, in terms of barrier function and cytokine secretion, using intestinal biopsies obtained from four groups: celiac patients with active disease (ACD, celiac patients in remission (RCD, non-celiac patients with gluten sensitivity (GS and non-celiac controls (NC. Methods: Ex-vivo human duodenal biopsies were mounted in microsnapwells and luminally incubated with either gliadin or media alone. Changes in transepithelial electrical resistance were monitored over 120 min. Media was subsequently collected and cytokines quantified. Results: Intestinal explants from all groups (ACD (n = 6, RCD (n = 6, GS (n = 6, and NC (n = 5 demonstrated a greater increase in permeability when exposed to gliadin vs. media alone. The increase in permeability in the ACD group was greater than in the RCD and NC groups. There was a greater increase in permeability in the GS group compared to the RCD group. There was no difference in permeability between the ACD and GS groups, between the RCD and NC groups, or between the NC and GS groups. IL-10 was significantly greater in the media of the NC group compared to the RCD and GS groups. Conclusions: Increased intestinal permeability after gliadin exposure occurs in all individuals. Following gliadin exposure, both patients with gluten sensitivity and those with active celiac disease demonstrate a greater increase in intestinal permeability than celiacs in disease remission. A higher concentration of IL-10 was measured in the media exposed to control explants compared to celiac disease in remission or gluten sensitivity.

  2. Bacterial infections in cirrhosis: Role of proton pump inhibitors and intestinal permeability

    NARCIS (Netherlands)

    L.G. van Vlerken (Lotte); E.J. Huisman (Ellen); B. van Hoek (Bart); W. Renooij (W.); F.W.M. de Rooij (Felix); P.D. Siersema (Peter); K.J. van Erpecum (Karel)

    2012-01-01

    textabstractBackground Cirrhotic patients are at considerable risk for bacterial infections, possibly through increased intestinal permeability and bacterial overgrowth. Proton pump inhibitors (PPIs) may increase infection risk. We aimed to explore the potential association between PPI use and

  3. Comparison of Mass Transfer Models for Determination of the Intestinal Permeability

    Directory of Open Access Journals (Sweden)

    P Zakeri-Milani

    2008-09-01

    Full Text Available Background and the purpose of the study: In determination of the permeability of the intestinal wall by external perfusion techniques, several models have been proposed. In the present study three models were used for experimental results that differ in their convection and diffusion assumptions. Material and Methods: Permeability coefficients for 13 compounds (metoprolol, propranolol, naproxen, ketoprofen, furosemide, hydrochlorothiazide, cimetidine, ranitidine, atenolol, piroxicam, antipyrine, ibuprofen and carbamazepine with known human intestinal permeability values were determined in anaesthetized rats by different mass transfer models and plotted versus the observed human intestinal permeabilities. Results: The calculated dimensionless wall permeability values were in the range of 0.37 - 4.85, 0.38-6.54 and 0.41-16.59 for complete radial mixing, mixing tank and laminar flow models respectively. The results indicated that all of the models work relatively well for our data despite fundamentally different assumptions. The wall permeabilities were in the order laminar flow > mixing tank > complete radial mixing. Conclusion: Although laminar flow model provides the most direct measure of the intrinsic wall permeability, it has limitations for highly permeable drugs such as ibuprofen. The normal physiological hydrodynamics is more complex and more investigation is required to find out the real hydrodynamics.

  4. Increased intestinal permeability to macromolecules and endotoxemia in patients with chronic alcohol abuse in different stages of alcohol-induced liver disease

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Schäfer, C.; Schütz, Tanja

    2000-01-01

    BACKGROUND/AIMS: No information is yet available about the influence of alcohol abuse on the translocation of larger molecules (Mr>1200) through the intestinal mucosa in man. The present study aimed to determine the intestinal permeability to macromolecules in patients with chronic alcohol abuse...... and mild to more advanced stages of liver disease, and to measure the concentration of endotoxins in the plasma, as these compounds derive from the intestinal flora and are suspected to contribute to the development of alcoholic liver disease (ALD). METHODS: The permeability to polyethylene glycol Mr 400......, Mr 1500, Mr 4000, and Mr 10,000 and endotoxin plasma concentrations were measured in 54 patients with alcoholic liver disease, 19 of them with cirrhosis, and in 30 non-alcoholic healthy controls. RESULTS: Permeability to polyethylene glycol Mr 400 was found to be unchanged in patients with ALD...

  5. In vivo analysis of intestinal permeability following hemorrhagic shock

    Science.gov (United States)

    Alsaigh, Tom; Chang, Marisol; Richter, Michael; Mazor, Rafi; Kistler, Erik B

    2015-01-01

    AIM: To determine the time course of intestinal permeability changes to proteolytically-derived bowel peptides in experimental hemorrhagic shock. METHODS: We injected fluorescently-conjugated casein protein into the small bowel of anesthetized Wistar rats prior to induction of experimental hemorrhagic shock. These molecules, which fluoresce when proteolytically cleaved, were used as markers for the ability of proteolytically cleaved intestinal products to access the central circulation. Blood was serially sampled to quantify the relative change in concentration of proteolytically-cleaved particles in the systemic circulation. To provide spatial resolution of their location, particles in the mesenteric microvasculature were imaged using in vivo intravital fluorescent microscopy. The experiments were then repeated using an alternate measurement technique, fluorescein isothiocyanate (FITC)-labeled dextrans 20, to semi-quantitatively verify the ability of bowel-derived low-molecular weight molecules (< 20 kD) to access the central circulation. RESULTS: Results demonstrate a significant increase in systemic permeability to gut-derived peptides within 20 min after induction of hemorrhage (1.11 ± 0.19 vs 0.86 ± 0.07, P < 0.05) compared to control animals. Reperfusion resulted in a second, sustained increase in systemic permeability to gut-derived peptides in hemorrhaged animals compared to controls (1.2 ± 0.18 vs 0.97 ± 0.1, P < 0.05). Intravital microscopy of the mesentery also showed marked accumulation of fluorescent particles in the microcirculation of hemorrhaged animals compared to controls. These results were replicated using FITC dextrans 20 [10.85 ± 6.52 vs 3.38 ± 1.11 fluorescent intensity units (× 105, P < 0.05, hemorrhagic shock vs controls)], confirming that small bowel ischemia in response to experimental hemorrhagic shock results in marked and early increases in gut membrane permeability. CONCLUSION: Increased small bowel permeability in hemorrhagic

  6. Regional-dependent intestinal permeability and BCS classification: elucidation of pH-related complexity in rats using pseudoephedrine.

    Science.gov (United States)

    Fairstein, Moran; Swissa, Rotem; Dahan, Arik

    2013-04-01

    Based on its lower Log P value relative to metoprolol, a marker for the low/high-permeability (P(eff)) class boundary, pseudoephedrine was provisionally classified as BCS low-permeability compound. On the other hand, following oral administration, pseudoephedrine fraction dose absorbed (F(abs)) and systemic bioavailability approaches 100%. This represents a challenge to the generally recognized P(eff)-F(abs) correlation. The purpose of this study was to elucidate the underlying mechanisms behind the confusion in pseudoephedrine's BCS classification. Pseudoephedrine's BCS solubility class was determined, and its physicochemical properties and intestinal permeability were thoroughly investigated, both in vitro and in vivo in rats, considering the complexity of the whole of the small intestine. Pseudoephedrine was found to be unequivocally a high-solubility compound. All of the permeability studies revealed similar phenomenon; at any given intestinal segment/pH, the permeability of metoprolol was higher than that of pseudoephedrine, however, as the intestinal region becomes progressively distal, and the pH gradually increases, pseudoephedrine's permeability rises above that of metoprolol in the former segment. This unique permeability pattern likely explains pseudoephedrine's complete absorption. In conclusion, pseudoephedrine is a BCS Class I compound; no discrepancy between P(eff) and F(abs) is involved in its absorption. Rather, it reflects the complexity behind P(eff) when considering the whole of the intestine. We propose to allow high-permeability classification to drugs with P(eff) that matches/exceeds the low/high class benchmark anywhere throughout the intestinal tract and not restricted necessarily to the jejunum.

  7. The effects of a multispecies probiotic on migraine and markers of intestinal permeability-results of a randomized placebo-controlled study

    NARCIS (Netherlands)

    Roos, De N.M.; Hemert, Van S.; Rovers, J.M.P.; Smits, M.G.; Witteman, B.J.M.

    2017-01-01

    Background/Objectives:Migraine, associated with several gastrointestinal disorders, may result from increased intestinal permeability, allowing endotoxins to enter the bloodstream. We tested whether probiotics could reduce migraine through an effect on intestinal permeability and

  8. Self-Microemulsifying Drug Delivery System: Formulation and Study Intestinal Permeability of Ibuprofen in Rats

    Directory of Open Access Journals (Sweden)

    Bharat Bhushan Subudhi

    2013-01-01

    Full Text Available The study was aimed at developing a self-microemulsifying drug delivery system (SMEDDS of Ibuprofen for investigating its intestinal transport behavior using the single-pass intestinal perfusion (SPIP method in rat. Methods. Ibuprofen loaded SMEDDS (ISMEDDS was developed and was characterized. The permeability behavior of Ibuprofen over three different concentrations (20, 30, and 40 µg/mL was studied in each isolated region of rat intestine by SPIP method at a flow rate of 0.2 mL/min. The human intestinal permeability was predicted using the Lawrence compartment absorption and transit (CAT model since effective permeability coefficients (Peff values for rat are highly correlated with those of human, and comparative intestinal permeability of Ibuprofen was carried out with plain drug suspension (PDS and marketed formulation (MF. Results. The developed ISMEDDS was stable, emulsified upon mild agitation with 44.4 nm ± 2.13 and 98.86% ± 1.21 as globule size and drug content, respectively. Higher Peff in colon with no significant Peff difference in jejunum, duodenum, and ileum was observed. The estimated human absorption of Ibuprofen for the SMEDDS was higher than that for PDS and MF (P<0.01. Conclusion. Developed ISMEDDS would possibly be advantageous in terms of minimized side effect, increased bioavailability, and hence the patient compliance.

  9. Intestinal Permeability of β-Lapachone and Its Cyclodextrin Complexes and Physical Mixtures.

    Science.gov (United States)

    Mangas-Sanjuan, Victor; Gutiérrez-Nieto, Jorge; Echezarreta-López, Magdalena; González-Álvarez, Isabel; González-Álvarez, Marta; Casabó, Vicente-Germán; Bermejo, Marival; Landin, Mariana

    2016-12-01

    β-Lapachone (βLAP) is a promising, poorly soluble, antitumoral drug. βLAP combination with cyclodextrins (CDs) improves its solubility and dissolution but there is not enough information about the impact of cyclodextrins on βLAP intestinal permeability. The objectives of this work were to characterize βLAP intestinal permeability and to elucidate cyclodextrins effect on the dissolution properties and on the intestinal permeability. The final goal was to evaluate CDs influence on the oral absorption of βLAP. Binary systems (physical mixtures and inclusion complexes) including βLAP and CDs (β-cyclodextrin: βCD, random-methyl-β-cyclodextrin: RMβCD and sulfobutylether-β-cyclodextrin: SBEβCD) have been prepared and analysed by differential scanning calorimetry. βLAP (and its combinations with CDs) absorption rate coefficients and effective permeability values have been determined in vitro in MDCK or MDCK-Mdr1 monolayers and in situ in rat by a closed loop perfusion technique. DSC results confirmed the formation of the inclusion complexes. βLAP-CDs inclusion complexes improve drug solubility and dissolution rate in comparison with physical mixtures. βLAP presented a high permeability value which can provide complete oral absorption. Its oral absorption is limited by its low solubility and dissolution rate. Cyclodextrin (both as physical mixtures and inclusion complexes) showed a positive effect on the intestinal permeability of βLAP. Complexation with CDs does not reduce βLAP intestinal permeability in spite of the potential negative effect of the reduction in free fraction of the drug. The use of RMβCD or SBEβCD inclusion complexes could benefit βLAP oral absorption by enhancing its solubility, dissolution rate and permeability.

  10. Phosphatidylcholine reverses ethanol-induced increase in transepithelial endotoxin permeability and abolishes transepithelial leukocyte activation

    DEFF Research Database (Denmark)

    Mitscherling, K.; Volynets, V.; Parlesak, Alexandr

    2009-01-01

    BACKGROUND: Chronic alcohol abuse increases both intestinal bacterial overgrowth and intestinal permeability to macromolecules. Intestinal permeability of endotoxin, a component of the outer cell membrane of Gram-negative bacteria, plays a crucial role in the development of alcohol-induced liver...... disease (ALD). As impaired bile flow leads to endotoxemia and the bile component phosphatidylcholine (PC) is therapeutically active in ALD, we tested the hypothesis that conjugated primary bile salts (CPBS) and PC inhibit ethanol-enhanced transepithelial permeability of endotoxin and the subsequent...... transepithelial activation of human leukocytes. METHODS: For this purpose, we used a model in which intestinal epithelial cells (Caco-2) were basolaterally cocultivated with mononuclear leukocytes. Cells were challenged apically with endotoxin from Escherichia coli K12 and were incubated with or without...

  11. Acrolein Disrupts Tight Junction Proteins and Causes Endoplasmic Reticulum Stress-Mediated Epithelial Cell Death Leading to Intestinal Barrier Dysfunction and Permeability.

    Science.gov (United States)

    Chen, Wei-Yang; Wang, Min; Zhang, Jingwen; Barve, Shirish S; McClain, Craig J; Joshi-Barve, Swati

    2017-12-01

    Increasing evidence suggests that environmental and dietary factors can affect intestinal epithelial integrity leading to gut permeability and bacterial translocation. Intestinal barrier dysfunction is a pathogenic process associated with many chronic disorders. Acrolein is an environmental and dietary pollutant and a lipid-derived endogenous metabolite. The impact of acrolein on the intestine has not been investigated before and is evaluated in this study, both in vitro and in vivo. Our data demonstrate that oral acrolein exposure in mice caused damage to the intestinal epithelial barrier, resulting in increased permeability and subsequently translocation of bacterial endotoxin-lipopolysaccharide into the blood. Similar results were seen in vitro using established Caco-2 cell monolayers wherein acrolein decreased barrier function and increased permeability. Acrolein also caused the down-regulation and/or redistribution of three representative tight junction proteins (ie, zonula occludens-1, Occludin, Claudin-1) that critically regulate epithelial paracellular permeability. In addition, acrolein induced endoplasmic reticulum stress-mediated death of epithelial cells, which is an important mechanism contributing to intestinal barrier damage/dysfunction, and gut permeability. Overall, we demonstrate that exposure to acrolein affects the intestinal epithelium by decrease/redistribution of tight junction proteins and endoplasmic reticulum stress-mediated epithelial cell death, thereby resulting in loss of barrier integrity and function. Our findings highlight the adverse consequences of environmental and dietary pollutants on intestinal barrier integrity/function with relevance to gut permeability and the development of disease. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. Intestinal permeability and nutritional status in developmental disorders.

    Science.gov (United States)

    Souza, Nilian Carla Silva; Mendonca, Jacqueline Nakau; Portari, Guilherme Vannucchi; Jordao Junior, Alceu Afonso; Marchini, Julio Sergio; Chiarello, Paula Garcia

    2012-01-01

    Autism is a developmental disorder with a possible connection between dietary components and triggering or worsening of symptoms. An altered intestinal permeability might allow absorption of incompletely digested peptides (gluten and casein) that could produce opioid-like activity on the brain, causing significant changes in behavior. To assess the intestinal permeability and nutritional status of participants with developmental disorders to determine if changes in the intestinal mucosal barrier and/or injury to the intercellular junctions have occurred that might justify application of further dietary modifications. To assess intestinal permeability, the research team analyzed participants urine under fasting conditions, using gas chromatography to determine chromatographic peaks. To assess nutritional status, the team determined participants heights and weights and performed a bioelectric bioimpedance examination at least 4 hours after their most recent meal. In addition, the team determined food intake using three diet diaries. They asked participants and caregivers to register each food consumed during 2 nonconsecutive weekdays and 1 weekend day. The study occurred at the Ribeirao Preto School of Medicine, Sao Paulo University. Seven participants aged 9 to 23 years with developmental disorders (the developmental group, DG) completed the study. The research team recruited them through the Association of Friends of the Autistic Persons of Ribeirao Preto in Ribeirao Preto, Brazil. The control group (CG) consisted of nonsmoking healthy volunteers in the general population who were similar in age to the experimental group and did not suffer from diseases that potentially could influence nutritional status and intestinal function. To assess intestinal permeability, participants ingested 150 mL of an isosmolar solution of the sugars mannitol (2 g) and lactulose (7.5 g) under fasting conditions and the researchers collected all voided urine over a period of 5 hours

  13. Enhancing the intestinal membrane permeability of zanamivir: a carrier mediated prodrug approach.

    Science.gov (United States)

    Gupta, Sheeba Varghese; Gupta, Deepak; Sun, Jing; Dahan, Arik; Tsume, Yasuhiro; Hilfinger, John; Lee, Kyung-Dall; Amidon, Gordon L

    2011-12-05

    The purpose of this study was to improve the membrane permeability and oral absorption of the poorly permeable anti-influenza agent, zanamivir. The poor oral bioavailability is attributed to the high polarity (cLogP ∼ -5) resulting from the polar and zwitterionic nature of zanamivir. In order to improve the permeability of zanamivir, prodrugs with amino acids were developed to target the intestinal membrane transporter, hPepT1. Several acyloxy ester prodrugs of zanamivir conjugated with amino acids were synthesized and characterized. The prodrugs were evaluated for their chemical stability in buffers at various pHs and for their transport and tissue activation by enzymes. The acyloxy ester prodrugs of zanamivir were shown to competitively inhibit [(3)H]Gly-Sar uptake in Caco-2 cells (IC(50): 1.19 ± 0.33 mM for L-valyl prodrug of zanamivir). The L-valyl prodrug of zanamivir exhibited ∼3-fold higher uptake in transfected HeLa/hPepT1 cells compared to wild type HeLa cells, suggesting, at least in part, carrier mediated transport by the hPepT1 transporter. Further, enhanced transcellular permeability of prodrugs across Caco-2 monolayer compared to the parent drug (P(app) = 2.24 × 10(-6) ± 1.33 × 10(-7) cm/s for L-valyl prodrug of zanamivir), with only parent zanamivir appearing in the receiver compartment, indicates that the prodrugs exhibited both enhanced transport and activation in intestinal mucosal cells. Most significantly, several of these prodrugs exhibited high intestinal jejunal membrane permeability, similar to metoprolol, in the in situ rat intestinal perfusion system, a system highly correlated with human jejunal permeability. In summary, this mechanistic targeted prodrug strategy, to enhance oral absorption via intestinal membrane carriers such as hPepT1, followed by activation to parent drug (active pharmaceutical ingredient or API) in the mucosal cell, significantly improves the intestinal epithelial cell permeability of zanamivir and has the

  14. Phosphatidylcholine Reverses Ethanol-Induced Increase in Transepithelial Endotoxin Permeability and Abolishes Transepithelial Leukocyte Activation

    DEFF Research Database (Denmark)

    Mitzscherling, Katja; Volynets, Valentina; Parlesak, Alexandr

    2009-01-01

    Chronic alcohol abuse increases both intestinal bacterial overgrowth and intestinal permeability to macromolecules. Intestinal permeability of endotoxin, a component of the outer cell membrane of Gram-negative bacteria, plays a crucial role in the development of alcohol-induced liver disease (ALD......). As impaired bile flow leads to endotoxemia and the bile component phosphatidylcholine (PC) is therapeutically active in ALD, we tested the hypothesis that conjugated primary bile salts (CPBS) and PC inhibit ethanol-enhanced transepithelial permeability of endotoxin and the subsequent transepithelial...... activation of human leukocytes. For this purpose, we used a model in which intestinal epithelial cells (Caco-2) were basolaterally cocultivated with mononuclear leukocytes. Cells were challenged apically with endotoxin from Escherichia coli K12 and were incubated with or without the addition of CPBS (1.5 m...

  15. Intestinal permeability - a new target for disease prevention and therapy

    NARCIS (Netherlands)

    Bischoff, S.C.; Barbara, G.; Buurman, W.; Ockhuizen, T.; Schulzke, J.D.; Serino, M.; Tilg, H.; Watson, A.; Wells, J.M.

    2014-01-01

    Data are accumulating that emphasize the important role of the intestinal barrier and intestinal permeability for health and disease. However, these terms are poorly defined, their assessment is a matter of debate, and their clinical significance is not clearly established. In the present review,

  16. [51Cr]EDTA intestinal permeability in children with cow's milk intolerance

    International Nuclear Information System (INIS)

    Schrander, J.J.; Unsalan-Hooyen, R.W.; Forget, P.P.; Jansen, J.

    1990-01-01

    Making use of [ 51 Cr]EDTA as a permeability marker, we measured intestinal permeability in a group of 20 children with proven cow's milk intolerance (CMI), a group of 17 children with similar complaints where CMI was excluded (sick controls), and a group of 12 control children. [ 51 Cr]EDTA test results (mean +/- SD) were 6.85 +/- 3.64%, 3.42 +/- 0.94%, and 2.61 +/- 0.67% in the group with CMI, the sick control, and the control group, respectively. When compared to both control groups, patients with cow's milk intolerance (CMI) showed a significantly increased small bowel permeability. We conclude that the [ 51 Cr]EDTA test can be helpful for the diagnosis of cow's milk intolerance

  17. Zonulin Regulates Intestinal Permeability and Facilitates Enteric Bacteria Permeation in Coronary Artery Disease

    OpenAIRE

    Li, Chuanwei; Gao, Min; Zhang, Wen; Chen, Caiyu; Zhou, Faying; Hu, Zhangxu; Zeng, Chunyu

    2016-01-01

    Several studies have reported an association between enteric bacteria and atherosclerosis. Bacterial 16S ribosomal RNA (rRNA) gene belong to Enterobacteriaceae have been detected in atherosclerotic plaques. How intestinal bacteria go into blood is not known. Zonulin reversibly modulate intestinal permeability (IP), the circulating zonulin levels were increased in diabetes, obesity, all of which are risk factors for atherosclerosis. It is unclear whether the circulating zonulin levels were cha...

  18. Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives.

    Science.gov (United States)

    Sapone, Anna; de Magistris, Laura; Pietzak, Michelle; Clemente, Maria G; Tripathi, Amit; Cucca, Francesco; Lampis, Rosanna; Kryszak, Deborah; Cartenì, Maria; Generoso, Maddalena; Iafusco, Dario; Prisco, Francesco; Laghi, Francesca; Riegler, Gabriele; Carratu, Romano; Counts, Debra; Fasano, Alessio

    2006-05-01

    Zonulin, a protein that modulates intestinal permeability, is upregulated in several autoimmune diseases and is involved in the pathogenesis of autoimmune diabetes in the BB/Wor animal model of the disease. To verify the association between serum zonulin levels and in vivo intestinal permeability in patients with type 1 diabetes, both parameters were investigated in different stages of the autoimmune process. Forty-two percent (141 of 339) of the patients had abnormal serum zonulin levels, as compared with age-matched control subjects. The increased zonulin levels correlated with increased intestinal permeability in vivo and changes in claudin-1, claudin-2, and myosin IXB genes expression, while no changes were detected in ZO1 and occludin genes expression. When tested in serum samples collected during the pre-type 1 diabetes phase, elevated serum zonulin was detected in 70% of subjects and preceded by 3.5 +/- 0.9 years the onset of the disease in those patients who went on to develop type 1 diabetes. Combined, these results suggest that zonulin upregulation is associated with increased intestinal permeability in a subgroup of type 1 diabetic patients. Zonulin upregulation seems to precede the onset of the disease, providing a possible link between increased intestinal permeability, environmental exposure to non-self antigens, and the development of autoimmunity in genetically susceptible individuals.

  19. Segmental-dependent membrane permeability along the intestine following oral drug administration: Evaluation of a triple single-pass intestinal perfusion (TSPIP) approach in the rat.

    Science.gov (United States)

    Dahan, Arik; West, Brady T; Amidon, Gordon L

    2009-02-15

    In this paper we evaluate a modified approach to the traditional single-pass intestinal perfusion (SPIP) rat model in investigating segmental-dependent permeability along the intestine following oral drug administration. Whereas in the traditional model one single segment of the intestine is perfused, we have simultaneously perfused three individual segments of each rat intestine: proximal jejunum, mid-small intestine and distal ileum, enabling to obtain tripled data from each rat compared to the traditional model. Three drugs, with different permeabilities, were utilized to evaluate the model: metoprolol, propranolol and cimetidine. Data was evaluated in comparison to the traditional method. Metoprolol and propranolol showed similar P(eff) values in the modified model in all segments. Segmental-dependent permeability was obtained for cimetidine, with lower P(eff) in the distal parts. Similar P(eff) values for all drugs were obtained in the traditional method, illustrating that the modified model is as accurate as the traditional, throughout a wide range of permeability characteristics, whether the permeability is constant or segment-dependent along the intestine. Three-fold higher statistical power to detect segmental-dependency was obtained in the modified approach, as each subject serves as his own control. In conclusion, the Triple SPIP model can reduce the number of animals utilized in segmental-dependent permeability research without compromising the quality of the data obtained.

  20. Acute high-intensity interval running increases markers of gastrointestinal damage and permeability but not gastrointestinal symptoms.

    Science.gov (United States)

    Pugh, Jamie N; Impey, Samuel G; Doran, Dominic A; Fleming, Simon C; Morton, James P; Close, Graeme L

    2017-09-01

    The purpose of this study was to investigate the effects of high-intensity interval running on markers of gastrointestinal (GI) damage and permeability alongside subjective symptoms of GI discomfort. Eleven male runners completed an acute bout of high-intensity interval training (HIIT) (eighteen 400-m runs at 120% maximal oxygen uptake) where markers of GI permeability, intestinal damage, and GI discomfort symptoms were assessed and compared with resting conditions. Compared with rest, HIIT significantly increased serum lactulose/rhamnose ratio (0.051 ± 0.016 vs. 0.031 ± 0.021, p = 0.0047; 95% confidence interval (CI) = 0.006 to 0.036) and sucrose concentrations (0.388 ± 0.217 vs. 0.137 ± 0.148 mg·L -1 ; p HIIT and resting conditions. Plasma intestinal-fatty acid binding protein (I-FABP) was significantly increased (p HIIT whereas no changes were observed during rest. Mild symptoms of GI discomfort were reported immediately and at 24 h post-HIIT, although these symptoms did not correlate to GI permeability or I-FABP. In conclusion, acute HIIT increased GI permeability and intestinal I-FABP release, although these do not correlate with symptoms of GI discomfort. Furthermore, by using serum sampling, we provide data showing that it is possible to detect changes in intestinal permeability that is not observed using urinary sampling over a shorter time-period.

  1. The complexity of intestinal permeability: Assigning the correct BCS classification through careful data interpretation.

    Science.gov (United States)

    Zur, Moran; Hanson, Allison S; Dahan, Arik

    2014-09-30

    While the solubility parameter is fairly straightforward when assigning BCS classification, the intestinal permeability (Peff) is more complex than generally recognized. In this paper we emphasize this complexity through the analysis of codeine, a commonly used antitussive/analgesic drug. Codeine was previously classified as a low-permeability compound, based on its lower LogP compared to metoprolol, a marker for the low-high permeability class boundary. In contrast, high fraction of dose absorbed (Fabs) was reported for codeine, which challenges the generally recognized Peff-Fabs correlation. The purpose of this study was to clarify this ambiguity through elucidation of codeine's BCS solubility/permeability class membership. Codeine's BCS solubility class was determined, and its intestinal permeability throughout the small intestine was investigated, both in vitro and in vivo in rats. Codeine was found to be unequivocally a high-solubility compound. All in vitro studies indicated that codeine's permeability is higher than metoprolol's. In vivo studies in rats showed similar permeability for both drugs throughout the entire small-intestine. In conclusion, codeine was found to be a BCS Class I compound. No Peff-Fabs discrepancy is involved in its absorption; rather, it reflects the risk of assigning BCS classification based on merely limited physicochemical characteristics. A thorough investigation using multiple experimental methods is prudent before assigning a BCS classification, to avoid misjudgment in various settings, e.g., drug discovery, formulation design, drug development and regulation. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Gliadin stimulation of murine macrophage inflammatory gene expression and intestinal permeability are MyD88-dependent: role of the innate immune response in Celiac disease.

    Science.gov (United States)

    Thomas, Karen E; Sapone, Anna; Fasano, Alessio; Vogel, Stefanie N

    2006-02-15

    Recent studies have demonstrated the importance of TLR signaling in intestinal homeostasis. Celiac disease (CD) is an autoimmune enteropathy triggered in susceptible individuals by the ingestion of gliadin-containing grains. In this study, we sought to test the hypothesis that gliadin initiates this response by stimulating the innate immune response to increase intestinal permeability and by up-regulating macrophage proinflammatory gene expression and cytokine production. To this end, intestinal permeability and the release of zonulin (an endogenous mediator of gut permeability) in vitro, as well as proinflammatory gene expression and cytokine release by primary murine macrophage cultures, were measured. Gliadin and its peptide derivatives, 33-mer and p31-43, were found to be potent inducers of both a zonulin-dependent increase in intestinal permeability and macrophage proinflammatory gene expression and cytokine secretion. Gliadin-induced zonulin release, increased intestinal permeability, and cytokine production were dependent on myeloid differentiation factor 88 (MyD88), a key adapter molecule in the TLR/IL-1R signaling pathways, but were neither TLR2- nor TLR4-dependent. Our data support the following model for the innate immune response to gliadin in the initiation of CD. Gliadin interaction with the intestinal epithelium increases intestinal permeability through the MyD88-dependent release of zonulin that, in turn, enables paracellular translocation of gliadin and its subsequent interaction with macrophages within the intestinal submucosa. There, the interaction of gliadin with macrophages elicits a MyD88-dependent proinflammatory cytokine milieu that facilitates the interaction of T cells with APCs, leading ultimately to the Ag-specific adaptive immune response seen in patients with CD.

  3. Limited Nesting Stress Alters Maternal Behavior and In Vivo Intestinal Permeability in Male Wistar Pup Rats.

    Directory of Open Access Journals (Sweden)

    Nabila Moussaoui

    Full Text Available A few studies indicate that limited nesting stress (LNS alters maternal behavior and the hypothalamic pituitary adrenal (HPA axis of dams and offspring in male Sprague Dawley rats. In the present study, we evaluated the impact of LNS on maternal behavior in Wistar rats, and on the HPA axis, glycemia and in vivo intestinal permeability of male and female offspring. Intestinal permeability is known to be elevated during the first week postnatally and influenced by glucocorticoids. Dams and neonatal litters were subjected to LNS or normal nesting conditions (control from days 2 to 10 postnatally. At day 10, blood was collected from pups for determination of glucose and plasma corticosterone by enzyme immunoassay and in vivo intestinal permeability by oral gavage of fluorescein isothiocyanate-dextran 4kDa. Dams exposed to LNS compared to control showed an increase in the percentage of time spent building a nest (118%, self-grooming (69%, and putting the pups back to the nest (167%. LNS male and female pups exhibited a reduction of body weight by 5% and 4%, adrenal weights/100g body weight by 17% and 18%, corticosterone plasma levels by 64% and 62% and blood glucose by 11% and 12% respectively compared to same sex control pups. In male LNS pups, intestinal permeability was increased by 2.7-fold while no change was observed in females compared to same sex control. There was no sex difference in any of the parameters in control pups except the body weight. These data indicate that Wistar dams subjected to LNS during the first postnatal week have an altered repertoire of maternal behaviors which affects the development of the HPA axis in both sexes and intestinal barrier function in male offspring.

  4. MiR-144 Increases Intestinal Permeability in IBS-D Rats by Targeting OCLN and ZO1

    Directory of Open Access Journals (Sweden)

    Qiuke Hou

    2017-12-01

    Full Text Available Background/Aims: Irritable bowel syndrome with diarrhoea (IBS-D is a chronic, functional bowel disorder characterized by abdominal pain or diarrhoea and altered bowel habits, which correlate with intestinal hyperpermeability. MicroRNAs (miRNAs are involved in regulating intestinal permeability in IBS-D. However, the role of miRNAs in regulating intestinal permeability and protecting the epithelial barrier remains unclear. Our goals were to (i identify differential expression of miRNAs and their targets in the distal colon of IBS-D rats; (ii verify in vitro whether occludin (OCLN and zonula occludens 1 (ZO1/TJP1 were direct targets of miR-144 and were down-regulated in IBS-D rats; and (iii determine whether down-regulation of miR-144 in vitro could reverse the pathological hallmarks of intestinal hyperpermeability via targeting OCLN and ZO1. Methods: The IBS-D rat model was established using 4% acetic acid and evaluated by haematoxylin-eosin (HE staining. The distal colon was obtained in order to perform miRNA microarray analysis and to isolate and culture colonic epithelial cells. When differential expression of miRNA was found, the results were verified by qRT-PCR, and the target genes were further explored by bioinformatics analysis. Correlation analyses were carried out to compare the expression of miRNA and target genes. Then, mutants, miRNA mimics and inhibitors of the target genes were constructed and transfected to colonic epithelial cells. qRT-PCR, western blotting, enzyme-linked immunosorbent assays (ELISAs and dual-luciferase assays were used to investigate the expression of miR-144 and OCLN, ZO1 in IBS-D rats. Results: There were 8 up-regulated and 18 down-regulated miRNAs identified in the IBS-D rat model. Of these, miR-144 was markedly up-regulated and resulted in the down-regulation of OCLN and ZO1 expression. Overexpression of miR-144 by transfection of miR-144 precursor markedly inhibited the expression of OCLN and ZO1. Further

  5. Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease.

    Science.gov (United States)

    Lerner, Aaron; Matthias, Torsten

    2015-06-01

    The incidence of autoimmune diseases is increasing along with the expansion of industrial food processing and food additive consumption. The intestinal epithelial barrier, with its intercellular tight junction, controls the equilibrium between tolerance and immunity to non-self-antigens. As a result, particular attention is being placed on the role of tight junction dysfunction in the pathogenesis of AD. Tight junction leakage is enhanced by many luminal components, commonly used industrial food additives being some of them. Glucose, salt, emulsifiers, organic solvents, gluten, microbial transglutaminase, and nanoparticles are extensively and increasingly used by the food industry, claim the manufacturers, to improve the qualities of food. However, all of the aforementioned additives increase intestinal permeability by breaching the integrity of tight junction paracellular transfer. In fact, tight junction dysfunction is common in multiple autoimmune diseases and the central part played by the tight junction in autoimmune diseases pathogenesis is extensively described. It is hypothesized that commonly used industrial food additives abrogate human epithelial barrier function, thus, increasing intestinal permeability through the opened tight junction, resulting in entry of foreign immunogenic antigens and activation of the autoimmune cascade. Future research on food additives exposure-intestinal permeability-autoimmunity interplay will enhance our knowledge of the common mechanisms associated with autoimmune progression. Copyright © 2015. Published by Elsevier B.V.

  6. [Effect of multicomponent environment on intestinal permeability of puerarin in biopharmaceutics classification system of Chinese materia medica].

    Science.gov (United States)

    Liu, Yang; Wang, Gang; Dong, Ling; Tang, Ming-Min; Zhu, Mei-Ling; Dong, Hong-Huant; Hou, Cheng-Bo

    2014-12-01

    The evaluation of permeability in biopharmaceutics classification system of Chinese materia medica (CMMBCS) requires multicomponent as a whole in order to conduct research, even in the study of a specific component, should also be put in the multicomponent environment. Based on this principle, the high content components in Gegen Qinlian decoction were used as multicomponent environmental impact factors in the experiment, and the relevant parameters of intestinal permeability about puerarin were measured with using in situ single-pass intestinal perfusion model, to investigate and evaluate the intestinal permeability of puerarin with other high content components. The experimental results showed that different proportions of baicalin, glycyrrhizic acid and berberine had certain influence on intestinal permeability of puerarin, and glycyrrhizic acid could significantly inhibit the intestinal absorption of puerarin, moreover, high concentration of berberine could promote the absorption of puerarin. The research results indicated that the important research ideas of permeability evaluation in biopharmaceutics classification system of Chinese materia medica with fully considering the effects of other ingredients in multicomponent environment.

  7. Plasma endocannabinoid levels in lean, overweight and obese humans: relationships with intestinal permeability markers, inflammation and incretin secretion.

    Science.gov (United States)

    Little, Tanya J; Cvijanovic, Nada; DiPatrizio, Nicholas V; Argueta, Donovan A; Rayner, Christopher K; Feinle-Bisset, Christine; Young, Richard L

    2018-02-13

    Intestinal production of endocannabinoid and oleoylethanolamide (OEA) is impaired in high-fat diet/obese rodents, leading to reduced satiety. Such diets also alter the intestinal microbiome in association with enhanced intestinal permeability and inflammation, however little is known of these effects in humans. This study aimed to: (i) evaluate effects of lipid on plasma anandamide (AEA), 2-arachidonyl-sn-glycerol (2-AG) and OEA in humans, and (ii) examine relationships with intestinal permeability, inflammation markers and incretin hormone secretion. 20 lean, 18 overweight and 19 obese participants underwent intraduodenal Intralipid® infusion (2 kcal/min) with collection of endoscopic duodenal biopsies and blood. Plasma AEA, 2-AG, and OEA (HPLC/tandem mass spectrometry), tumour necrosis factor-α (TNF-α), glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) (multiplex), and duodenal expression of occludin, zona-occludin-1 (ZO-1), intestinal-alkaline-phosphatase (IAP), and toll-like receptor-4 (TLR4) (RT-PCR), were assessed. Fasting plasma AEA was increased in obese, compared with lean and overweight (Plean (Plean and overweight. The relationships between plasma AEA with duodenal ZO-1 and IAP, and GIP, suggest that altered endocannabinoid signalling may contribute to changes in intestinal permeability, inflammation and incretin release in human obesity.

  8. The biopharmaceutics of successful controlled release drug product: Segmental-dependent permeability of glipizide vs. metoprolol throughout the intestinal tract.

    Science.gov (United States)

    Zur, Moran; Cohen, Noa; Agbaria, Riad; Dahan, Arik

    2015-07-15

    The purpose of this work was to study the challenges and prospects of regional-dependent absorption in a controlled-release scenario, through the oral biopharmaceutics of the sulfonylurea antidiabetic drug glipizide. The BCS solubility class of glipizide was determined, and its physicochemical properties and intestinal permeability were thoroughly investigated, both in-vitro (PAMPA and Caco-2) and in-vivo in rats. Metoprolol was used as the low/high permeability class boundary marker. Glipizide was found to be a low-solubility compound. All intestinal permeability experimental methods revealed similar trend; a mirror image small intestinal permeability with opposite regional/pH-dependency was obtained, a downward trend for glipizide, and an upward trend for metoprolol. Yet the lowest permeability of glipizide (terminal Ileum) was comparable to the lowest permeability of metoprolol (proximal jejunum). At the colon, similar permeability was evident for glipizide and metoprolol, that was higher than metoprolol's jejunal permeability. We present an analysis that identifies metoprolol's jejunal permeability as the low/high permeability class benchmark anywhere throughout the intestinal tract; we show that the permeability of both glipizide and metoprolol matches/exceeds this threshold throughout the entire intestinal tract, accounting for their success as controlled-release dosage form. This represents a key biopharmaceutical characteristic for a successful controlled-release dosage form. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. [Alteration of intestinal permeability: the missing link between gut microbiota modifications and inflammation in obesity?].

    Science.gov (United States)

    Genser, Laurent; Poitou, Christine; Brot-Laroche, Édith; Rousset, Monique; Vaillant, Jean-Christophe; Clément, Karine; Thenet, Sophie; Leturque, Armelle

    2016-05-01

    The increasing incidence of obesity and associated metabolic complications is a worldwide public health issue. The role of the gut in the pathophysiology of obesity, with an important part for microbiota, is becoming obvious. In rodent models of diet-induced obesity, the modifications of gut microbiota are associated with an alteration of the intestinal permeability increasing the passage of food or bacterial antigens, which contribute to low-grade inflammation and insulin resistance. In human obesity, intestinal permeability modification, and its role in the crosstalk between gut microbiota changes and inflammation at systemic and tissular levels, are still poorly documented. Hence, further characterization of the triggering mechanisms of such inflammatory responses in obese subjects could enable the development of personalized intervention strategies that will help to reduce the risk of obesity-associated diseases. © 2016 médecine/sciences – Inserm.

  10. Intestinal permeability to [51Cr]EDTA in children with Crohn's disease and celiac disease

    International Nuclear Information System (INIS)

    Turck, D.; Ythier, H.; Maquet, E.; Deveaux, M.; Marchandise, X.; Farriaux, J.P.; Fontaine, G.

    1987-01-01

    [ 51 Cr]EDTA was used as a probe molecule to assess intestinal permeability in 7 healthy control adults, 11 control children, 17 children with Crohn's disease, and 6 children with untreated celiac disease. After subjects fasted overnight, 75 kBq/kg (= 2 microCi/kg) 51 Cr-labeled EDTA was given by mouth; 24-h urinary excretion of [ 51 Cr]EDTA was measured and expressed as a percentage of the total oral dose. Mean and SD were as follows: control adults 1.47 +/- 0.62, control children 1.59 +/- 0.55, and patients with Crohn's disease or celiac disease 5.35 +/- 1.94. The difference between control children and patients was statistically significant (p less than 0.001). These results show that intestinal permeability to [ 51 Cr]EDTA is increased among children with active or inactive Crohn's disease affecting small bowel only or small bowel and colon, and with untreated celiac disease. The [ 51 Cr]EDTA permeability test could facilitate the decision to perform more extensive investigations in children suspected of small bowel disease who have atypical or poor clinical and biological symptomatology

  11. Effect of permeability enhancers on paracellular permeability of acyclovir.

    Science.gov (United States)

    Ates, Muge; Kaynak, Mustafa Sinan; Sahin, Selma

    2016-06-01

    According to Biopharmaceutics Classification System (BCS), acyclovir is a class III (high solubility, low permeability) compound, and it is transported through paracellular route by passive diffusion. The aim of this study was to investigate the effect of various pharmaceutical excipients on the intestinal permeability of acyclovir. The single-pass in-situ intestinal perfusion (SPIP) method was used to estimate the permeability values of acyclovir and metoprolol across different intestinal segments (jejunum, ileum and colon). Permeability coefficient (Peff ) of acyclovir was determined in the absence and presence of a permeation enhancer such as dimethyl β-cyclodextrin (DM-β-CD), sodium lauryl sulfate (SLS), sodium caprate (Cap-Na) and chitosan chloride. All enhancers increased the permeability of paracellularly transported acyclovir. Although Cap-Na has the highest permeability-enhancing effect in all segments, permeation-enhancing effect of chitosan and SLS was only significant in ileum. On the other hand, DM-β-CD slightly decreased the permeability in all intestinal segments. These findings have potential implication concerning the enhancement of absorption of paracellularly transported compounds with limited oral bioavailability. In the case of acyclovir, Cap-Na either alone or in combination with SLS or chitosan has the potential to improve its absorption and bioavailability and has yet to be explored. © 2016 Royal Pharmaceutical Society.

  12. Knockout of MIMP protein in lactobacillus plantarum lost its regulation of intestinal permeability on NCM460 epithelial cells through the zonulin pathway.

    Science.gov (United States)

    Liu, Zhihua; Kang, Liang; Li, Chao; Tong, Chao; Huang, Meijin; Zhang, Xingwei; Huang, Nanqi; Moyer, Mary Pat; Qin, Huanlong; Wang, Jianping

    2014-10-03

    Previous studies indicated that the micro integral membrane protein located within the media place of the integral membrane protein of Lactobacillus plantarum CGMCC 1258 had protective effects against the intestinal epithelial injury. In our study, we mean to establish micro integral membrane protein -knockout Lactobacillus plantarum (LPKM) to investigate the change of its protective effects and verify the role of micro integral membrane protein on protection of normal intestinal barrier function. Binding assay and intestinal permeability were performed to verify the protective effects of micro integral membrane protein on intestinal permeability in vitro and in vivo. Molecular mechanism was also determined as the zonulin pathway. Clinical data were also collected for further verification of relationship between zonulin level and postoperative septicemia. LPKM got decreased inhibition of EPEC adhesion to NCM460 cells. LPKM had lower ability to alleviate the decrease of intestinal permeability induced by enteropathogenic-e.coli, and prevent enteropathogenic-e.coli -induced increase of zonulin expression. Overexpression of zonulin lowered the intestinal permeability regulated by Lactobacillus plantarum. There was a positive correlation between zonulin level and postoperative septicemia. Therefore, micro integral membrane protein could be necessary for the protective effects of Lactobacillus plantarum on intestinal barrier. MIMP might be a positive factor for Lactobacillus plantarum to protect the intestinal epithelial cells from injury, which could be related to the zonulin pathway.

  13. (51Cr)EDTA intestinal permeability in children with cow's milk intolerance

    Energy Technology Data Exchange (ETDEWEB)

    Schrander, J.J.; Unsalan-Hooyen, R.W.; Forget, P.P.; Jansen, J. (Academic Hospital Maastricht (Netherlands))

    1990-02-01

    Making use of ({sup 51}Cr)EDTA as a permeability marker, we measured intestinal permeability in a group of 20 children with proven cow's milk intolerance (CMI), a group of 17 children with similar complaints where CMI was excluded (sick controls), and a group of 12 control children. ({sup 51}Cr)EDTA test results (mean +/- SD) were 6.85 +/- 3.64%, 3.42 +/- 0.94%, and 2.61 +/- 0.67% in the group with CMI, the sick control, and the control group, respectively. When compared to both control groups, patients with cow's milk intolerance (CMI) showed a significantly increased small bowel permeability. We conclude that the ({sup 51}Cr)EDTA test can be helpful for the diagnosis of cow's milk intolerance.

  14. Assessment of canine intestinal permeability, using 51Cr-labeled ethylenediaminetetraacetate

    International Nuclear Information System (INIS)

    Hall, E.J.; Batt, R.M.; Brown, A.

    1989-01-01

    The 51 Cr-labeled EDTA was validated as a suitable permeability probe in dogs for measurement of passive, unmediated diffusion across intestinal mucosa via intercellular pathways. The 51 Cr-labeled EDTA was stable in aqueous solution and did not bind to biologic tissue and fluids. After incubation of 51 Cr-labeled EDTA in isolated jejunal loops, analytic subcellular fractionation of jejunal mucosa on reorientating sucrose-density gradients was performed, and no association of 51 Cr-labeled EDTA with particulate intracellular organelles was detected. Intravenously administered 51 Cr-labeled EDTA was rapidly and completely excreted in urine. Intestinal permeability to 51 Cr-labeled EDTA after oral administration was assessed in healthy dogs. The percentage of the administered dose of 51 Cr-labeled EDTA excreted in the urine in 24 hours ranged from 2.3 to 17.6% (median, 13%)

  15. Glutathione metabolism in Bangladeshi children with increased small bowel permeability and impaired growth

    International Nuclear Information System (INIS)

    Kumar Roy, Swapan; Tomkins, A.; Johnson, A.

    2000-01-01

    Objectives: To determine whether intestinal permeability during diarrhoea is associated with increased requirement of Sulphur Containing Amino Acid (SCAA); Changes in SCAA metabolism are associated with decreased urinary sulphate and increased excretion of proline from collagen; Rates of turnover SCAA would change as intestinal permeability improves during different dietary levels of SCAA in nutritional regimes. Hypothesis: Supplementation of a standard diet with sulphur containing amino acids is necessary to meet requirements for sulphur under conditions of growth faltering, diarrhoea and increased intestinal permeability. Subjects: Children with persistent diarrhoea aged between 4 months to 18 months and height for age less than 95%. Study site: International Centre for Diarrhoeal Disease Research Bangladesh. Methods: At the baseline, children will be classified into low and normal ISE (Inorganic Sulphar excretion) then each group will be divided into two subgroups. A total of 40 children will be studied (20 in each group). One group will receive a dietary supplement of SCAA and another group will receive an isonitrogenous standard diet for six weeks. Children will be assessed for intestinal permeability at baseline and after two weeks of admission. Before and at six weeks of admission the children will receive a regular drink containing 15 N Glyceine at the rate of 2ml/kg/hr. Blood and urine samples will be collected at baseline and at the end of the supplementation i.e. at 6 weeks. Incorporation of 15 N Glyceine, plasma and red cell glutathione will be assessed by isotope rationing. Urine will be assessed for 15 N enrichment of urea and ammonia, which will used as an assessment of body protein turnover Folate status of these patients will be determined before and after supplementation with SCAA. Benefit of the study: The results of the study will provide specific information on the requirement of Sulphur containing amino acid during malnutrition and persistent

  16. Relationship between intestinal permeability to [51Cr]EDTA and inflammatory activity in asymptomatic patients with Crohn's disease

    International Nuclear Information System (INIS)

    Pironi, L.; Miglioli, M.; Ruggeri, E.; Levorato, M.; Dallasta, M.A.; Corbelli, C.; Nibali, M.G.; Barbara, L.

    1990-01-01

    The relationship between intestinal permeability to an oral dose (100 mu Ci) of [51CR]EDTA and the inflammatory activity of Crohn's disease was studied in 63 adult patients (32 unresected and 31 resected) who underwent 162 evaluations. The results of the [51CR]EDTA test were compared with the serum levels of the acute-phase reactant proteins (APRP) and with the result of the [111In]leukocyte scanning, respectively, as an indirect and direct method to assess intestinal inflammation. In a group of healthy adult controls, the upper normal value for the 24-hr urinary [51CR]EDTA excretion was 3.61 (97.5% percentile) and the mean coefficient of variation was 21%. Sensitivity and specificity of the [51CR]EDTA test in identifying active inflammation expressed by increased serum levels of APRP were, respectively, 97% and 54% in the unresected group and 68% and 52% in the resected group of patients. The low specificity of the test was due to the presence of increased [51CR]EDTA urinary excretion in about half the cases with normal serum levels of APRP. The [111In]leukocyte scanning was performed in a subgroup of 11 patients (three unresected and eight resected) with normal serum levels of APRP, six with increased and five with normal [51CR]EDTA urinary excretion. All six patients with increased intestinal permeability had a positive 111In image of mild to moderate degree of activity. A positive 111In scan was present in two of the five patients with normal permeability; these were two resected patients

  17. Antibiotic Treatment Affects Intestinal Permeability and Gut Microbial Composition in Wistar Rats Dependent on Antibiotic Class.

    Directory of Open Access Journals (Sweden)

    Monica Vera-Lise Tulstrup

    Full Text Available Antibiotics are frequently administered orally to treat bacterial infections not necessarily related to the gastrointestinal system. This has adverse effects on the commensal gut microbial community, as it disrupts the intricate balance between specific bacterial groups within this ecosystem, potentially leading to dysbiosis. We hypothesized that modulation of community composition and function induced by antibiotics affects intestinal integrity depending on the antibiotic administered. To address this a total of 60 Wistar rats (housed in pairs with 6 cages per group were dosed by oral gavage with either amoxicillin (AMX, cefotaxime (CTX, vancomycin (VAN, metronidazole (MTZ, or water (CON daily for 10-11 days. Bacterial composition, alpha diversity and caecum short chain fatty acid levels were significantly affected by AMX, CTX and VAN, and varied among antibiotic treatments. A general decrease in diversity and an increase in the relative abundance of Proteobacteria was observed for all three antibiotics. Additionally, the relative abundance of Bifidobacteriaceae was increased in the CTX group and both Lactobacillaceae and Verrucomicrobiaceae were increased in the VAN group compared to the CON group. No changes in microbiota composition or function were observed following MTZ treatment. Intestinal permeability to 4 kDa FITC-dextran decreased after CTX and VAN treatment and increased following MTZ treatment. Plasma haptoglobin levels were increased by both AMX and CTX but no changes in expression of host tight junction genes were found in any treatment group. A strong correlation between the level of caecal succinate, the relative abundance of Clostridiaceae 1 family in the caecum, and the level of acute phase protein haptoglobin in blood plasma was observed. In conclusion, antibiotic-induced changes in microbiota may be linked to alterations in intestinal permeability, although the specific interactions remain to be elucidated as changes in

  18. Endurance Exercise Increases Intestinal Uptake of the Peanut Allergen Ara h 6 after Peanut Consumption in Humans

    Directory of Open Access Journals (Sweden)

    Lonneke M. JanssenDuijghuijsen

    2017-01-01

    Full Text Available Controlled studies on the effect of exercise on intestinal uptake of protein are scarce and underlying mechanisms largely unclear. We studied the uptake of the major allergen Ara h 6 following peanut consumption in an exercise model and compared this with changes in markers of intestinal permeability and integrity. Ten overnight-fasted healthy non-allergic men (n = 4 and women (n = 6 (23 ± 4 years ingested 100 g of peanuts together with a lactulose/rhamnose (L/R solution, followed by rest or by 60 min cycling at 70% of their maximal workload. Significantly higher, though variable, levels of Ara h 6 in serum were found during exercise compared to rest (Peak p = 0.03; area under the curve p = 0.006, with individual fold changes ranging from no increase to an increase of over 150-fold in the uptake of Ara h 6. Similarly, uptake of lactulose (2–18 fold change, p = 0.0009 and L/R ratios (0.4–7.9 fold change, p = 0.04 were significantly increased which indicates an increase in intestinal permeability. Intestinal permeability and uptake of Ara h 6 were strongly correlated (r = 0.77, p < 0.0001 for lactulose and Ara h 6. Endurance exercise after consumption may lead to increased paracellular intestinal uptake of food proteins.

  19. c-Kit mutation reduce intestinal epithelial cell proliferation and migration, but not influence intestinal permeability stimulated by lipopolysaccharide.

    Science.gov (United States)

    Xue, Hong; Wang, Feng Yun; Kang, Qian; Tang, Xu Dong

    2018-06-20

    The proto-oncogene c-kit, as a marker of interstitial cells of Cajal (ICCs) in the gastrointestinal tract, plays an important role in the ICCs. Although limited evidences showed c-kit is present in the colonic epithelium but its roles remain unclear. In the present study, we aimed to investigate the expression, location and function of c-kit in the intestinal epithelium. Immunofluorescence, western blotting, and RT-PCR were performed to detect the expression and location of c-kit in the intestinal mucosa of WT mice. We investigated intestinal epithelial proliferation and migration in vivo by performing 5-Bromodeoxyuridine (BrdU) incorporation and Ki-67 staining in WT and Wads m/m mice. An Ussing chamber with fluorescein-isothiocyanate dextran 4000 was used to detect the transepithelial electric resistance (TER), short circuit current (ISC) and permeability across ex vivo colon segments under control and endotoxaemia conditions. We demonstrated that c-kit was located and expressed in the gut crypt compartment in WT mice, which was demonstrated in the c-kit mutant mice (Wads m/m ). In addition, both the number of proliferating cells and the percentage of the distance migrated were lower in the Wads m/m mice than those in the WT mice. Moreover, the intestinal permeability, TER and tight junction were unaltered in the Wads m/m mice under endotoxic conditions compared with those in both the control condition and the WT mice. Altogether, these observations imply that the expression of c-kit in the colonic epithelium is involved in the proliferation and permeability of the colonic epithelium. Copyright © 2018. Published by Elsevier GmbH.

  20. The effect of elemental diet on intestinal permeability and inflammation in Crohn's disease

    International Nuclear Information System (INIS)

    Teahon, K.; Smethurst, P.; Pearson, M.; Levi, A.J.; Bjarnason, I.

    1991-01-01

    This study examines whether treatment of acute Crohn's disease with an elemental diet improves intestinal integrity and inflammation as assessed by a 51Cr-labeled ethylenediaminetetraacetatic acid (EDTA) permeability test and the fecal excretion of 111In-labeled autologous leukocytes, respectively. Thirty-four patients with active Crohn's disease completed a 4-week treatment course with an elemental diet. Active disease was characterized by increased intestinal permeability [24-hour urine excretion of orally administered 51Cr-EDTA, 6.4% ± 0.6% (mean ± SE); normal, less than 3.0%] and by high fecal excretion of 111In-labeled leukocytes (14.2% ± 1.1%; normal, less than 1.0%). Twenty-seven (80%) went into clinical remission, usually within a week of starting treatment. After 4 weeks of treatment, there was a significant decrease in both the urine excretion of 51Cr-EDTA (to 3.4% ± 0.5%; P less than 0.01) and the fecal excretion of 111In (to 5.7% ± 1.0%; P less than 0.001), indicating that such treatment is not just symptomatic. A framework for the mechanism by which elemental diet works, centering around the importance of the integrity of the intestinal barrier function, is proposed, and also appears to provide a logical explanation for some relapses of the disease

  1. Bovine colostrum increases pore-forming claudin-2 protein expression but paradoxically not ion permeability possibly by a change of the intestinal cytokine milieu.

    Directory of Open Access Journals (Sweden)

    Peggy Bodammer

    Full Text Available An impaired intestinal barrier function is involved in the pathogenesis of inflammatory bowel disease (IBD. Several nutritional factors are supposed to be effective in IBD treatment but scientific data about the effects on the intestinal integrity remain scarce. Bovine colostrum was shown to exert beneficial effects in DSS-induced murine colitis, and the present study was undertaken to explore the underlying molecular mechanisms. Western blot revealed increased claudin-2 expression in the distal ileum of healthy mice after feeding with colostrum for 14 days, whereas other tight junction proteins (claudin-3, 4, 10, 15 remained unchanged. The colostrum-induced claudin-2 induction was confirmed in differentiated Caco-2 cells after culture with colostrum for 48 h. Paradoxically, the elevation of claudin-2, which forms a cation-selective pore, was neither accompanied by increased ion permeability nor impaired barrier function. In an in situ perfusion model, 1 h exposure of the colonic mucosa to colostrum induced significantly increased mRNA levels of barrier-strengthening cytokine transforming growth factor-β, while interleukine-2, interleukine-6, interleukine-10, interleukine-13, and tumor-necrosis factor-α remained unchanged. Thus, modulation of the intestinal transforming growth factor-β expression might have compensated the claudin-2 increase and contributed to the observed barrier strengthening effects of colostrum in vivo and in vitro.

  2. Permeability, zonulin production, and enteropathy in dermatitis herpetiformis.

    Science.gov (United States)

    Smecuol, Edgardo; Sugai, Emilia; Niveloni, Sonia; Vázquez, Horacio; Pedreira, Silvia; Mazure, Roberto; Moreno, María Laura; Label, Marcelo; Mauriño, Eduardo; Fasano, Alessio; Meddings, Jon; Bai, Julio César

    2005-04-01

    Dermatitis herpetiformis (DH) is characterized by variable degrees of enteropathy and increased intestinal permeability. Zonulin, a regulator of tight junctions, seems to play a key role in the altered intestinal permeability that characterizes the early phase of celiac disease. Our aim was to assess both intestinal permeability and serum zonulin levels in a group of patients with DH having variable grades of enteropathy. We studied 18 DH patients diagnosed on the basis of characteristic immunoglobulin (Ig)A granular deposits in the dermal papillae of noninvolved skin. Results were compared with those of classic celiac patients, patients with linear IgA dermatosis, and healthy controls. According to Marsh's classification, 5 patients had no evidence of enteropathy (type 0), 4 patients had type II, 2 patients had type IIIb damage, and 7 patients had a more severe lesion (type IIIc). Intestinal permeability (lactulose/mannitol ratio [lac/man]) was abnormal in all patients with DH. Patients with more severe enteropathy had significantly greater permeability ( P zonulin concentration (enzyme-linked immunosorbent assay) for patients with DH was 2.1 +/- .3 ng/mg with 14 of 16 (87.5%) patients having abnormally increased values. In contrast, patients with linear IgA dermatosis had normal histology, normal intestinal permeability, and negative celiac serology. Increased intestinal permeability and zonulin up-regulation are common and concomitant findings among patients with DH, likely involved in pathogenesis. Increased permeability can be observed even in patients with no evidence of histologic damage in biopsy specimens. Patients with linear IgA dermatosis appear to be a distinct population with no evidence of gluten sensitivity.

  3. Intestinal mucosal permeability of severely underweight and nonmalnourished Bangladeshi children and effects of nutritional rehabilitation.

    Science.gov (United States)

    Hossain, Md Iqbal; Nahar, Baitun; Hamadani, Jena D; Ahmed, Tahmeed; Roy, Anjan Kumar; Brown, Kenneth H

    2010-11-01

    Lactulose/mannitol (L/M) intestinal permeability tests were completed to compare the intestinal function of severely underweight children recovering from diarrhea and other illnesses and of nonmalnourished children from the same communities, and to evaluate the effects of food supplementation, with or without psychosocial stimulation, on the changes in intestinal function among the underweight children. Seventy-seven malnourished children completed intestinal permeability studies at baseline and 3 months after receiving 1 of the following randomly assigned treatment regimens: group-C--fortnightly follow-up at community-based follow-up units, including growth monitoring and promotion, health education, and micronutrient supplementation, n = 17; group-SF--same as group-C plus supplementary food (SF) to provide 150 to 300 kcal/day, n = 23; group-PS--same as group-C plus psychosocial stimulation (PS), n = 17; or group-SF + PS--same as group-C plus SF and PS, n = 20. Seventeen nonmalnourished children were included as comparison subjects. The malnourished children's mean ± SD initial age was 13.1 ± 4.0 months, their mean weight-for-age z score was -3.82 ± 0.61, and their median (interquartile range) urinary L/M recovery ratio was 0.16 (0.10-0.28). Eighty-four percent of the children had L/M ≥ 0.07, suggestive of impaired intestinal function. The median L/M of the malnourished children was significantly greater than that of 17 relatively well-nourished children (median 0.09; interquartile range 0.05-0.12; P = 0.001). There were no significant differences in baseline characteristics of the severely malnourished children by treatment group. Following treatment, the L/M ratio improved in all of the groups (P sugar permeability, is impaired among severely underweight children. Intestinal permeability improves in relation to weight gain, but intestinal mucosal recovery is not specifically related to the types or amount of food supplementation or PS provided in this trial.

  4. In vitro solubility, dissolution and permeability studies combined with semi-mechanistic modeling to investigate the intestinal absorption of desvenlafaxine from an immediate- and extended release formulation.

    Science.gov (United States)

    Franek, F; Jarlfors, A; Larsen, F; Holm, P; Steffansen, B

    2015-09-18

    Desvenlafaxine is a biopharmaceutics classification system (BCS) class 1 (high solubility, high permeability) and biopharmaceutical drug disposition classification system (BDDCS) class 3, (high solubility, poor metabolism; implying low permeability) compound. Thus the rate-limiting step for desvenlafaxine absorption (i.e. intestinal dissolution or permeation) is not fully clarified. The aim of this study was to investigate whether dissolution and/or intestinal permeability rate-limit desvenlafaxine absorption from an immediate-release formulation (IRF) and Pristiq(®), an extended release formulation (ERF). Semi-mechanistic models of desvenlafaxine were built (using SimCyp(®)) by combining in vitro data on dissolution and permeation (mechanistic part of model) with clinical data (obtained from literature) on distribution and clearance (non-mechanistic part of model). The model predictions of desvenlafaxine pharmacokinetics after IRF and ERF administration were compared with published clinical data from 14 trials. Desvenlafaxine in vivo dissolution from the IRF and ERF was predicted from in vitro solubility studies and biorelevant dissolution studies (using the USP3 dissolution apparatus), respectively. Desvenlafaxine apparent permeability (Papp) at varying apical pH was investigated using the Caco-2 cell line and extrapolated to effective intestinal permeability (Peff) in human duodenum, jejunum, ileum and colon. Desvenlafaxine pKa-values and octanol-water partition coefficients (Do:w) were determined experimentally. Due to predicted rapid dissolution after IRF administration, desvenlafaxine was predicted to be available for permeation in the duodenum. Desvenlafaxine Do:w and Papp increased approximately 13-fold when increasing apical pH from 5.5 to 7.4. Desvenlafaxine Peff thus increased with pH down the small intestine. Consequently, desvenlafaxine absorption from an IRF appears rate-limited by low Peff in the upper small intestine, which "delays" the predicted

  5. Association of enteric parasitic infections with intestinal inflammation and permeability in asymptomatic infants of São Tomé Island.

    Science.gov (United States)

    Garzón, Marisol; Pereira-da-Silva, Luis; Seixas, Jorge; Papoila, Ana Luísa; Alves, Marta; Ferreira, Filipa; Reis, Ana

    2017-05-01

    The cumulative effect of repeated asymptomatic enteric infections on intestinal barrier is not fully understood in infants. We aimed to evaluate the association between previous enteric parasitic infections and intestinal inflammation and permeability at 24-months of age, in asymptomatic infants of São Tomé Island. A subset of infants from a birth cohort, with intestinal parasite evaluations in at least four points of assessment, was eligible. Intestinal inflammatory response and permeability were assessed using fecal S100A12 and alpha-1-antitrypsin (A1AT), respectively. The cutoff parasitic infections explained variability of fecal biomarkers, after adjusting for potential confounders. Eighty infants were included. Giardia duodenalis and soil-transmitted helminths (STH) were the most frequent parasites. The median (interquartile range) levels were 2.87 μg/g (2.41-3.92) for S100A12 and 165.1 μg/g (66.0-275.6) for A1AT. Weak evidence of association was found between S100A12 levels and G. duodenalis (p = 0.080) and STH infections (p = 0.089), and between A1AT levels and parasitic infection of any etiology (p = 0.089), at 24-months of age. Significant associations between A1AT levels and wasting (p = 0.006) and stunting (p = 0.044) were found. Previous parasitic infections were not associated with fecal biomarkers at 24 months of age. To summarize, previous asymptomatic parasitic infections showed no association with intestinal barrier dysfunction. Notwithstanding, a tendency toward increased levels of the inflammatory biomarker was observed for current G. duodenalis and STH infections, and increased levels of the permeability biomarker were significantly associated with stunting and wasting.

  6. Assessment of intestinal permeability and bacterial translocation employing nuclear methods in murine mucositis

    International Nuclear Information System (INIS)

    Pessoa, Rafaela M.; Takenaka, Isabella K.T.M.; Barros, Patricia A.V.; Moura, Livia P.; Contarini, Sara M.L.; Amorim, Juliana M.; Castilho, Raquel O.; Leite, Camila M.A.; Cardoso, Valbert N.; Diniz, Simone Odilia F.

    2017-01-01

    Full text: Introduction: Mucositis affects approximately 80% of patients who receive chemotherapy combinations. The lesions are painful, restrict food intake and make patients more susceptible to systemic infections. Some agents and strategies are being studied for controlling mucositis, none of them is used in clinical practice. In Minas Gerais, many studies have addressed the popular use of the plant Arrabidaea chica in the form of tea, to treat intestinal cramps and diarrhea, the main symptoms of mucositis. Objective: To evaluate the potential of Arrabidaea chica extract in the management of the integrity of the intestinal mucosa, using the experimental model of gut mucositis induced by 5-Fluorouracila (5-FU). Methods: The UFMG Ethics Committee for Animal Experimentation (CETEA/UFMG) approved this study (nº 411/2015). Male BALB/c mice between 6-8 weeks of age were randomly divided into four groups (n=9) as follows: 1. Control (CTL) - oral administration of saline solution (10 days); 2. A. chica (AC) - oral administration of A. chica extract (10 days); 3. Mucositis (MUC) - underwent mucositis (5-FU) (10 days); 4. Mucositis + A. chica (MUC+ AC) - underwent mucositis and received oral administration of A. chica extract (10 days). At the 7 th day, mice in the MUC and MUC + AC groups received an intraperitoneal (IP) injection containing 300 mg/kg 5-FU, whereas the animals of the CTL and AC groups received a saline IP injection. After 72 hours (10 th experimental day), intestinal permeability was determined by measuring the radioactivity diffusion in the blood after oral administration of diethylenetriaminepentaacetic acid (DTPA) labelled with technetium-99m ( 99m Tc) and bacterial translocation was determined by measuring the radioactivity diffusion in the blood after oral administration of E. coli labelled with technetium-99m ( 99m Tc). After 4 hours, the mice were euthanized and assessed for intestinal permeability, bacterial translocation and intestinal histology

  7. Assessment of intestinal permeability and bacterial translocation employing nuclear methods in murine mucositis

    Energy Technology Data Exchange (ETDEWEB)

    Pessoa, Rafaela M.; Takenaka, Isabella K.T.M.; Barros, Patricia A.V.; Moura, Livia P.; Contarini, Sara M.L.; Amorim, Juliana M.; Castilho, Raquel O.; Leite, Camila M.A.; Cardoso, Valbert N.; Diniz, Simone Odilia F. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Mg (Brazil)

    2017-07-01

    Full text: Introduction: Mucositis affects approximately 80% of patients who receive chemotherapy combinations. The lesions are painful, restrict food intake and make patients more susceptible to systemic infections. Some agents and strategies are being studied for controlling mucositis, none of them is used in clinical practice. In Minas Gerais, many studies have addressed the popular use of the plant Arrabidaea chica in the form of tea, to treat intestinal cramps and diarrhea, the main symptoms of mucositis. Objective: To evaluate the potential of Arrabidaea chica extract in the management of the integrity of the intestinal mucosa, using the experimental model of gut mucositis induced by 5-Fluorouracila (5-FU). Methods: The UFMG Ethics Committee for Animal Experimentation (CETEA/UFMG) approved this study (nº 411/2015). Male BALB/c mice between 6-8 weeks of age were randomly divided into four groups (n=9) as follows: 1. Control (CTL) - oral administration of saline solution (10 days); 2. A. chica (AC) - oral administration of A. chica extract (10 days); 3. Mucositis (MUC) - underwent mucositis (5-FU) (10 days); 4. Mucositis + A. chica (MUC+ AC) - underwent mucositis and received oral administration of A. chica extract (10 days). At the 7{sup th} day, mice in the MUC and MUC + AC groups received an intraperitoneal (IP) injection containing 300 mg/kg 5-FU, whereas the animals of the CTL and AC groups received a saline IP injection. After 72 hours (10{sup th} experimental day), intestinal permeability was determined by measuring the radioactivity diffusion in the blood after oral administration of diethylenetriaminepentaacetic acid (DTPA) labelled with technetium-99m ({sup 99m}Tc) and bacterial translocation was determined by measuring the radioactivity diffusion in the blood after oral administration of E. coli labelled with technetium-99m ({sup 99m}Tc). After 4 hours, the mice were euthanized and assessed for intestinal permeability, bacterial translocation and

  8. New biomarkers for increased intestinal permeability induced by dextran sodium sulphate and fasting in chickens.

    Science.gov (United States)

    Gilani, S; Howarth, G S; Kitessa, S M; Tran, C D; Forder, R E A; Hughes, R J

    2017-10-01

    Increased intestinal permeability (IP) can lead to compromised health in chickens. As there is limited literature on in vivo biomarkers to assess increased IP in chickens, the objective of this study was to identify a reliable biomarker of IP using DSS ingestion and fasting models. Male Ross chickens (n = 48) were reared until day 14 on the floor pen in an animal care facility, randomized into the following groups: control, DSS and fasting (each with n = 16), and then placed in metabolism cages. DSS was administered in drinking water at 0.75% from days 16 to 21, while controls and fasted groups received water. All birds had free access to feed and water except the birds in the fasting group that were denied feed for 19.5 h on day 20. On day 21, all chickens were given two separate oral gavages comprising fluorescein isothiocyanate dextran (FITC-d, 2.2 mg in 1 ml/bird) at time zero and lactulose, mannitol and rhamnose (LMR) sugars (0.25 g L, 0.05 g M and 0.05 g R in 2 ml/bird) at 60 min. Whole blood was collected from the brachial vein in a syringe 90 min post-LMR sugar gavage. Serum FITC-d and plasma LMR sugar concentrations were measured by spectrophotometry and high-performance ion chromatography respectively. Plasma concentrations of intestinal fatty acid binding protein, diamine oxidase, tight junction protein (TJP), d-lactate and faecal α-antitrypsin inhibitor concentration were also analysed by ELISA. FITC-d increased significantly (p fasting compared with control. L/M and L/R ratios for fasting and L/M ratio for DSS increased compared with control chickens (p fasting but not DSS treatment, compared with controls. Other tests did not indicate changes in IP (p > 0.05). We concluded that FITC-d and LMR sugar tests can be used in chickens to assess changes in IP. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  9. Intestinal permeability and glucagon-like peptide-2 in children with autism

    DEFF Research Database (Denmark)

    Robertson, Marli A; Sigalet, David L; Holst, Jens Juul

    2008-01-01

    We measured small intestinal permeability using a lactulose:mannitol sugar permeability test in a group of children with autism, with current or previous gastrointestinal complaints. Secondly, we examined whether children with autism had an abnormal glucagon-like peptide-2 (GLP-2) response...... to feeding. Results were compared with sibling controls and children without developmental disabilities. We enrolled 14 children with autism, 7 developmentally normal siblings of these children and 8 healthy, developmentally normal, unrelated children. Our study did not detect differences in these measures...... of gastrointestinal function in a group of children with autism....

  10. Expressions of tight junction proteins Occludin and Claudin-1 are under the circadian control in the mouse large intestine: implications in intestinal permeability and susceptibility to colitis.

    Directory of Open Access Journals (Sweden)

    Oh-oka Kyoko

    Full Text Available BACKGROUND & AIMS: The circadian clock drives daily rhythms in behavior and physiology. A recent study suggests that intestinal permeability is also under control of the circadian clock. However, the precise mechanisms remain largely unknown. Because intestinal permeability depends on tight junction (TJ that regulates the epithelial paracellular pathway, this study investigated whether the circadian clock regulates the expression levels of TJ proteins in the intestine. METHODS: The expression levels of TJ proteins in the large intestinal epithelium and colonic permeability were analyzed every 4, 6, or 12 hours between wild-type mice and mice with a mutation of a key clock gene Period2 (Per2; mPer2(m/m. In addition, the susceptibility to dextran sodium sulfate (DSS-induced colitis was compared between wild-type mice and mPer2(m/m mice. RESULTS: The mRNA and protein expression levels of Occludin and Claudin-1 exhibited daily variations in the colonic epithelium in wild-type mice, whereas they were constitutively high in mPer2(m/m mice. Colonic permeability in wild-type mice exhibited daily variations, which was inversely associated with the expression levels of Occludin and Claudin-1 proteins, whereas it was constitutively low in mPer2(m/m mice. mPer2(m/m mice were more resistant to the colonic injury induced by DSS than wild-type mice. CONCLUSIONS: Occludin and Claudin-1 expressions in the large intestine are under the circadian control, which is associated with temporal regulation of colonic permeability and also susceptibility to colitis.

  11. Segmental dependent transport of low permeability compounds along the small intestine due to P-glycoprotein: the role of efflux transport in the oral absorption of BCS class III drugs.

    Science.gov (United States)

    Dahan, Arik; Amidon, Gordon L

    2009-01-01

    The purpose of this study was to investigate the role of P-gp efflux in the in vivo intestinal absorption process of BCS class III P-gp substrates, i.e. high-solubility low-permeability drugs. The in vivo permeability of two H (2)-antagonists, cimetidine and famotidine, was determined by the single-pass intestinal perfusion model in different regions of the rat small intestine, in the presence or absence of the P-gp inhibitor verapamil. The apical to basolateral (AP-BL) and the BL-AP transport of the compounds in the presence or absence of various efflux transporters inhibitors (verapamil, erythromycin, quinidine, MK-571 and fumitremorgin C) was investigated across Caco-2 cell monolayers. P-gp expression levels in the different intestinal segments were confirmed by immunoblotting. Cimetidine and famotidine exhibited segmental dependent permeability through the gut wall, with decreased P(eff) in the distal ileum in comparison to the proximal regions of the intestine. Coperfusion of verapamil with the drugs significantly increased the permeability in the ileum, while no significant change in the jejunal permeability was observed. Both drugs exhibited significantly greater BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion. Concentration dependent decrease of this secretion was obtained by the P-gp inhibitors verapamil, erythromycin and quinidine, while no effect was evident by the MRP2 inhibitor MK-571 and the BCRP inhibitor FTC, indicating that P-gp is the transporter mediates the intestinal efflux of cimetidine and famotidine. P-gp levels throughout the intestine were inversely related to the in vivo permeability of the drugs from the different segments. The data demonstrate that for these high-solubility low-permeability P-gp substrates, P-gp limits in vivo intestinal absorption in the distal segments of the small intestine; however P-gp plays a minimal role in the proximal intestinal segments due to significant lower P-gp expression levels

  12. FROG INTESTINAL PERFUSION TO EVALUATE DRUG PERMEABILITY: APPLICATION TO P-gp AND CYP3A4 SUBSTRATES

    Directory of Open Access Journals (Sweden)

    Neelima eYerasi

    2015-07-01

    Full Text Available AbstractTo evaluate the reliability of using in situ frog intestinal perfusion technique for permeability assessment of carrier transported drugs which are also substrates for CYP enzymes. Single Pass Intestinal Perfusion (SPIP studies were performed in frogs of the species Rana tigrina using established method for rats with some modifications after inducing anesthesia. Effective permeability coefficient (Peff of losartan and midazolam was calculated in the presence and absence of inhibitors using the parallel-tube model. Peff of losartan when perfused alone was found to be 0.427 ± 0.27×10-4cm/s and when it was co-perfused with inhibitors, significant change in Peff was observed. Peff of midazolam when perfused alone was found to be 2.03 ± 0.07 × 10-4cm/s and when it was co-perfused with inhibitors, no significant change in Peff was observed. Comparison of Peff calculated in frog with that of other available models and also humans suggested that the Peff values are comparable and reflected well with human intestinal permeability. It is possible to determine the Peff value for compounds which are dual substrates of P-gp and CYP3A4 using in situ frog intestinal perfusion technique. The calculated Peff values correlated well with reported Peff values of probe drugs. comparison of the Peff value of losartan obtained with that of reported human’s Peff and Caco 2 cell data, and comparison of the Peff value of midazolam with that of reported rat’s Peff, we could conclude that SPIP from model can be reliably used in preclinical studies for permeability estimation. This model may represent a valuable alternative to the low speed and high cost of conventional animal models (typically rodents for the assessment of intestinal permeability.

  13. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells

    International Nuclear Information System (INIS)

    Artursson, P.; Karlsson, J.

    1991-01-01

    Monolayers of a well differentiated human intestinal epithelial cell line, Caco-2, were used as a model to study passive drug absorption across the intestinal epithelium. Absorption rate constants (expressed as apparent permeability coefficients) were determined for 20 drugs and peptides with different structural properties. The permeability coefficients ranged from approximately 5 x 10 - 8 to 5 x 10 - 5 cm/s. A good correlation was obtained between data on oral absorption in humans and the results in the Caco-2 model. Drugs that are completely absorbed in humans had permeability coefficients greater than 1 x 10 - 6 cm/s. Drugs that are absorbed to greater than 1% but less than 100% had permeability coefficients of 0.1-1.0 x 10 - 6 cm/s while drugs and peptides that are absorbed to less than 1% had permeability coefficients of less than or equal to 1 x 10 - 7 cm/s. The results indicate that Caco-2 monolayers can be used as a model for studies on intestinal drug absorption

  14. Advantageous Solubility-Permeability Interplay When Using Amorphous Solid Dispersion (ASD) Formulation for the BCS Class IV P-gp Substrate Rifaximin: Simultaneous Increase of Both the Solubility and the Permeability.

    Science.gov (United States)

    Beig, Avital; Fine-Shamir, Noa; Lindley, David; Miller, Jonathan M; Dahan, Arik

    2017-05-01

    Rifaximin is a BCS class IV (low-solubility, low-permeability) drug and also a P-gp substrate. The aims of this work were to assess the efficiency of different rifaximin amorphous solid dispersion (ASDs) formulations in achieving and maintaining supersaturation and to investigate the consequent solubility-permeability interplay. Spray-dried rifaximin ASDs were prepared with different hydrophilic polymers and their ability to achieve and maintain supersaturation was assessed. Then, rifaximin's apparent intestinal permeability was investigated as a function of increasing supersaturation both in vitro using the parallel artificial membrane permeability assay (PAMPA) and in vivo using the single-pass rat intestinal perfusion (SPIP) model. The efficiency of the different ASDs to achieve and maintain supersaturation of rifaximin was found to be highly polymer dependent, and the copovidone/HPC-SL formulation was found to be superior to the other two, allowing supersaturation of 200× that of the crystalline solubility for 20 h. In vitro, rifaximin flux was increased and the apparent permeability was constant as a function of increasing supersaturation level. In vivo, on the other hand, absorption rate coefficient (k a ) was first constant as a function of increasing supersaturation, but at 250×, the crystalline solubility k a was doubled, similar to the k a in the presence of the strong P-gp inhibitor GF120918. In conclusion, a new and favorable nature of solubility-permeability interplay was revealed in this work: delivering high supersaturation level of the BCS class IV drug rifaximin via ASD, thereby saturating the drugs' P-gp-mediated efflux transport, led to the favorable unique win-win situation, where both the solubility and the permeability increased simultaneously.

  15. Evaluation of a Solid Dispersion of Curcumin With Polyvinylpyrrolidone and Boric Acid Against Salmonella Enteritidis Infection and Intestinal Permeability in Broiler Chickens: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Daniel Hernandez-Patlan

    2018-06-01

    Full Text Available In the present study, in vitro assays were conducted to evaluate the solubility of curcumin (CUR alone or with polyvinylpyrrolidone (PVP at different pH, as well as its permeability in Caco-2 cells. Results confirmed that the solid dispersion of CUR with PVP (CUR/PVP at a 1:9 ratio, significantly increased (P < 0.05 solubility and permeability compared to CUR alone. Then, the antimicrobial activity of CUR/PVP, boric acid (BA, and a combination of 0.5% CUR/PVP and 0.5% BA (CUR/PVP-BA against Salmonella Enteritidis (SE was determined using an in vitro digestion model that simulates crop, proventriculus, and intestine. The results revealed that in the proventriculus and intestinal compartments significant reductions of SE were observed in all the experimental treatments, but 1% BA eliminated SE in the intestinal compartment and CUR/PVP-BA showed a synergistic effect on antimicrobial activity against SE. To complement these findings, two independent in vivo trials were conducted to determine the effect of 0.1% CUR/PVP; 0.1% BA; or the combination of 0.05% CUR/PVP (1:9 ratio and 0.05% BA (CUR/PVP-BA on the antimicrobial activity against SE, intestinal permeability and inflammatory responses in broiler chickens. BA at 0.1% had no significant in vivo effects against SE. However, the combination of 0.05% BA and 0.05% CUR/PVP and 0.05% BA was sufficient to reduce crop and intestinal SE colonization in broiler chickens in two independent trials, confirming the synergic effect between them. A similar antimicrobial impact against SE intestinal colonization was observed in chickens treated with 0.1% CUR/PVP at a 1:9 ratio, which could be due to the increase in solubility of CUR by PVP. Furthermore, 0.1% CUR/PVP reduced the intestinal permeability of FITC-d and total intestinal IgA, as well as increase the activity of SOD when compared to control, while, CUR/PVP-BA only decreased SOD activity. Further studies to confirm and expand the in vivo results obtained

  16. Intestinal permeability to (/sup 51/Cr)EDTA in children with Crohn's disease and celiac disease

    Energy Technology Data Exchange (ETDEWEB)

    Turck, D.; Ythier, H.; Maquet, E.; Deveaux, M.; Marchandise, X.; Farriaux, J.P.; Fontaine, G.

    1987-07-01

    (/sup 51/Cr)EDTA was used as a probe molecule to assess intestinal permeability in 7 healthy control adults, 11 control children, 17 children with Crohn's disease, and 6 children with untreated celiac disease. After subjects fasted overnight, 75 kBq/kg (= 2 microCi/kg) /sup 51/Cr-labeled EDTA was given by mouth; 24-h urinary excretion of (/sup 51/Cr)EDTA was measured and expressed as a percentage of the total oral dose. Mean and SD were as follows: control adults 1.47 +/- 0.62, control children 1.59 +/- 0.55, and patients with Crohn's disease or celiac disease 5.35 +/- 1.94. The difference between control children and patients was statistically significant (p less than 0.001). These results show that intestinal permeability to (/sup 51/Cr)EDTA is increased among children with active or inactive Crohn's disease affecting small bowel only or small bowel and colon, and with untreated celiac disease. The (/sup 51/Cr)EDTA permeability test could facilitate the decision to perform more extensive investigations in children suspected of small bowel disease who have atypical or poor clinical and biological symptomatology.

  17. Autophagy and tight junction proteins in the intestine and intestinal diseases

    Directory of Open Access Journals (Sweden)

    Chien-An A. Hu

    2015-09-01

    Full Text Available The intestinal epithelium (IE forms an indispensible barrier and interface between the intestinal interstitium and the luminal environment. The IE regulates water, ion and nutrient transport while providing a barrier against toxins, pathogens (bacteria, fungi and virus and antigens. The apical intercellular tight junctions (TJ are responsible for the paracellular barrier function and regulate trans-epithelial flux of ions and solutes between adjacent cells. Increased intestinal permeability caused by defects in the IE TJ barrier is considered an important pathogenic factor for the development of intestinal inflammation, diarrhea and malnutrition in humans and animals. In fact, defects in the IE TJ barrier allow increased antigenic penetration, resulting in an amplified inflammatory response in inflammatory bowel disease (IBD, necrotizing enterocolitis and ischemia-reperfusion injury. Conversely, the beneficial enhancement of the intestinal TJ barrier has been shown to resolve intestinal inflammation and apoptosis in both animal models of IBD and human IBD. Autophagy (self-eating mechanism is an intracellular lysosome-dependent degradation and recycling pathway essential for cell survival and homeostasis. Dysregulated autophagy has been shown to be directly associated with many pathological processes, including IBD. Importantly, the crosstalk between IE TJ and autophagy has been revealed recently. We showed that autophagy enhanced IE TJ barrier function by increasing transepithelial resistance and reducing the paracellular permeability of small solutes and ions, which is, in part, by targeting claudin-2, a cation-selective, pore-forming, transmembrane TJ protein, for lysosome (autophagy-mediated degradation. Interestingly, previous studies have shown that the inflamed intestinal mucosa in patients with active IBD has increased claudin-2 expression. In addition, inflammatory cytokines (for example, tumor necrosis factor-α, interleukin-6

  18. Chitosan-modified porous silicon microparticles for enhanced permeability of insulin across intestinal cell monolayers.

    Science.gov (United States)

    Shrestha, Neha; Shahbazi, Mohammad-Ali; Araújo, Francisca; Zhang, Hongbo; Mäkilä, Ermei M; Kauppila, Jussi; Sarmento, Bruno; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A

    2014-08-01

    Porous silicon (PSi) based particulate systems are emerging as an important drug delivery system due to its advantageous properties such as biocompatibility, biodegradability and ability to tailor the particles' physicochemical properties. Here, annealed thermally hydrocarbonized PSi (AnnTHCPSi) and undecylenic acid modified AnnTHCPSi (AnnUnTHCPSi) microparticles were developed as a PSi-based platform for oral delivery of insulin. Chitosan (CS) was used to modify the AnnUnTHCPSi microparticles to enhance the intestinal permeation of insulin. Surface modification with CS led to significant increase in the interaction of PSi microparticles with Caco-2/HT-29 cell co-culture monolayers. Compared to pure insulin, the CS-conjugated microparticles significantly improved the permeation of insulin across the Caco-2/HT-29 cell monolayers, with ca. 20-fold increase in the amount of insulin permeated and ca. 7-fold increase in the apparent permeability (P(app)) value. Moreover, among all the investigated particles, the CS-conjugated microparticles also showed the highest amount of insulin associated with the mucus layer and the intestinal Caco-2 cells and mucus secreting HT-29 cells. Our results demonstrate that CS-conjugated AnnUnTHCPSi microparticles can efficiently enhance the insulin absorption across intestinal cells, and thus, they are promising microsystems for the oral delivery of proteins and peptides across the intestinal cell membrane. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Intestinal permeability to [51Cr]EDTA in children with cystic fibrosis

    International Nuclear Information System (INIS)

    Leclercq-Foucart, J.; Forget, P.; Sodoyez-Goffaux, F.; Zappitelli, A.

    1986-01-01

    Intestinal permeability was investigated in 14 children with cystic fibrosis making use of [ 51 Cr]EDTA as probe molecule. Ten normal young adults and 11 children served as controls. After oral administration of [ 51 Cr]EDTA, 24 h urine was collected. Urinary radioactivity was calculated and results expressed as percentage of oral dose excreted in 24 h urine. Mean and SEM were as follows: 2.51 +/- 0.21, 2.35 +/- 0.24, and 13.19 +/- 1.72 for control children, normal adults, and cystic fibrosis patients, respectively. The permeability differences between cystic fibrosis patients and either control children or control adults are significant (p less than 0.001)

  20. In vitro solubility, dissolution and permeability studies combined with semi-mechanistic modeling to investigate the intestinal absorption of desvenlafaxine from an immediate- and extended release formulation

    DEFF Research Database (Denmark)

    Franek, F; Jarlfors, A; Larsen, F.

    2015-01-01

    Desvenlafaxine is a biopharmaceutics classification system (BCS) class 1 (high solubility, high permeability) and biopharmaceutical drug disposition classification system (BDDCS) class 3, (high solubility, poor metabolism; implying low permeability) compound. Thus the rate-limiting step...... not imply low intestinal permeability, as indicated by the BDDCS, merely low duodenal/jejunal permeability....... for desvenlafaxine absorption (i.e. intestinal dissolution or permeation) is not fully clarified. The aim of this study was to investigate whether dissolution and/or intestinal permeability rate-limit desvenlafaxine absorption from an immediate-release formulation (IRF) and Pristiq®, an extended release formulation...

  1. Dietary soya saponins increase gut permeability and play a key role in the onset of soyabean-induced enteritis in Atlantic salmon ( Salmo salar L.).

    Science.gov (United States)

    Knudsen, David; Jutfelt, Fredrik; Sundh, Henrik; Sundell, Kristina; Koppe, Wolfgang; Frøkiaer, Hanne

    2008-07-01

    Saponins are naturally occurring amphiphilic molecules and have been associated with many biological activities. The aim of the present study was to investigate whether soya saponins trigger the onset of soyabean-induced enteritis in Atlantic salmon (Salmo salar L.), and to examine if dietary soya saponins increase the epithelial permeability of the distal intestine in Atlantic salmon. Seven experimental diets containing different levels of soya saponins were fed to seawater-adapted Atlantic salmon for 53 d. The diets included a fishmeal-based control diet, two fishmeal-based diets with different levels of added soya saponins, one diet containing 25% lupin kernel meal, two diets based on 25% lupin kernel meal with different levels of added soya saponins, and one diet containing 25% defatted soyabean meal. The effect on intestinal morphology, intestinal epithelial permeability and faecal DM content was examined. Fish fed 25% defatted soyabean meal displayed severe enteritis, whereas fish fed 25% lupin kernel meal had normal intestinal morphology. The combination of soya saponins and fishmeal did not induce morphological changes but fish fed soya saponins in combination with lupin kernel meal displayed significant enteritis. Increased epithelial permeability was observed in fish fed 25% defatted soyabean meal and in fish fed soya saponin concentrate independent of the protein source in the feed. The study demonstrates that soya saponins, in combination with one or several unidentified components present in legumes, induce an inflammatory reaction in the distal intestine of Atlantic salmon. Soya saponins increase the intestinal epithelial permeability but do not, per se, induce enteritis.

  2. Pulmonary and intestinal permeabilities in alcoholic hepatic cirrhosis

    International Nuclear Information System (INIS)

    De Botton, S.; Huglo, B.; Canva-Delacambre, V.; Colombel, J.F.; Beauchat, V.; Ziegels, P.; Prangere, T.; Steinling, M.; Machandise, X.; Wallaert, B.

    1997-01-01

    The aim of this prospective study was to evaluate simultaneously the intestinal permeability (IP), usually normal, and the pulmonary permeability, (PP) rather rarely studied, in patients afflicted with hepatic cirrhosis of alcoholic (HCA) origin. Thirty five non-smoker patients, afflicted with HCA, proved by biopsy, without pulmonary pathology and with normal pulmonary scanography were subject to our investigation. The pre-graft hepatic examination contained also respiratory functional explorations as well as bronchi-alveolar clearance (BAC) explorations. After inhalation of the DTPA- 99m Tc aerosols, a 20 min dynamical study in posterior-front condition was achieved. After exponential matching on the activity/time curve of the right lung, the half life (T 1/2 in min) and the Residual Activity at 10 min (RA in %) were calculated. The PI were than estimated and on the basis of urinary activity of EDTA- 51 Cr obtained on 24 h and expressed in % of the uptake activity, according to the Bjarnasson's technique. The results were compared (significant non-parametric tests if p 1/2 and 87.1% ± 6.7 vs 92.8% ± 2.6 (p < 0.002) for RA. It is significantly correlated with the total number of cells (r = -0.379) and with the number of lymphocytes (r = 0.351) in the BAC. For the first time an enhanced PP was observed in HCA, correlated with the increase in the number of cells at BAC

  3. MRP2 mediated drug-drug interaction: indomethacin increases sulfasalazine absorption in the small intestine, potentially decreasing its colonic targeting.

    Science.gov (United States)

    Dahan, Arik; Amidon, Gordon L

    2010-02-15

    We have recently shown that efflux transport, mediated by multidrug resistance-associated protein 2 (MRP2) and breast cancer resistance protein (BCRP), is responsible for sulfasalazine low-permeability in the small intestine, thereby enabling its colonic targeting and therapeutic action. The purpose of the present study was to evaluate the potential pharmacokinetic interaction between indomethacin and sulfasalazine, in the mechanism of efflux transporter competition. The concentration-dependent effects of indomethacin on sulfasalazine intestinal epithelial transport were investigated across Caco-2 cell monolayers, in both apical to basolateral (AP-BL) and BL-AP directions. The interaction was then investigated in the in situ single-pass rat jejunal perfusion model. Sulfasalazine displayed 30-fold higher BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion. Indomethacin significantly increased AP-BL and decreased BL-AP sulfasalazine Caco-2 transport, in a concentration-dependent manner, with IC(50) values of 75 and 196 microM respectively. In the rat model, higher sulfasalazine concentrations resulted in higher intestinal permeability, consistent with saturation of efflux transporter. Without indomethacin, sulfasalazine demonstrated low rat jejunal permeability (vs. metoprolol). Indomethacin significantly increased sulfasalazine P(eff), effectively shifting it from BCS (biopharmaceutics classification system) Class IV to II. In conclusion, the data indicate that concomitant intake of indomethacin and sulfasalazine may lead to increased absorption of sulfasalazine in the small intestine, thereby reducing its colonic concentration and potentially altering its therapeutic effect. Copyright 2009 Elsevier B.V. All rights reserved.

  4. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders

    Science.gov (United States)

    Kelly, John R.; Kennedy, Paul J.; Cryan, John F.; Dinan, Timothy G.; Clarke, Gerard; Hyland, Niall P.

    2015-01-01

    The emerging links between our gut microbiome and the central nervous system (CNS) are regarded as a paradigm shift in neuroscience with possible implications for not only understanding the pathophysiology of stress-related psychiatric disorders, but also their treatment. Thus the gut microbiome and its influence on host barrier function is positioned to be a critical node within the brain-gut axis. Mounting preclinical evidence broadly suggests that the gut microbiota can modulate brain development, function and behavior by immune, endocrine and neural pathways of the brain-gut-microbiota axis. Detailed mechanistic insights explaining these specific interactions are currently underdeveloped. However, the concept that a “leaky gut” may facilitate communication between the microbiota and these key signaling pathways has gained traction. Deficits in intestinal permeability may underpin the chronic low-grade inflammation observed in disorders such as depression and the gut microbiome plays a critical role in regulating intestinal permeability. In this review we will discuss the possible role played by the gut microbiota in maintaining intestinal barrier function and the CNS consequences when it becomes disrupted. We will draw on both clinical and preclinical evidence to support this concept as well as the key features of the gut microbiota which are necessary for normal intestinal barrier function. PMID:26528128

  5. Biorelevant media resistant co-culture model mimicking permeability of human intestine.

    Science.gov (United States)

    Antoine, Delphine; Pellequer, Yann; Tempesta, Camille; Lorscheidt, Stefan; Kettel, Bernadette; Tamaddon, Lana; Jannin, Vincent; Demarne, Frédéric; Lamprecht, Alf; Béduneau, Arnaud

    2015-03-15

    Cell culture models are currently used to predict absorption pattern of new compounds and formulations in the human gastro-intestinal tract (GIT). One major drawback is the lack of relevant apical incubation fluids allowing mimicking luminal conditions in the GIT. Here, we suggest a culture model compatible with biorelevant media, namely Fasted State Simulated Intestinal Fluid (FaSSIF) and Fed State Simulated Intestinal Fluid (FeSSIF). Co-culture was set up from Caco-2 and mucus-secreting HT29-MTX cells using an original seeding procedure. Viability and cytotoxicity assays were performed following incubation of FeSSIF and FaSSIF with co-culture. Influence of biorelevant fluids on paracellular permeability or transporter proteins were also evaluated. Results were compared with Caco-2 and HT29-MTX monocultures. While Caco-2 viability was strongly affected with FeSSIF, no toxic effect was detected for the co-cultures in terms of viability and lactate dehydrogenase release. The addition of FeSSIF to the basolateral compartment of the co-culture induced cytotoxic effects which suggested the apical mucus barrier being cell protective. In contrast to FeSSIF, FaSSIF induced a slight increase of the paracellular transport and both tested media inhibited partially the P-gp-mediated efflux in the co-culture. Additionally, the absorptive transport of propranolol hydrochloride, a lipophilic β-blocker, was strongly affected by biorelevant fluids. This study demonstrated the compatibility of the Caco-2/HT29-MTX model with some of the current biorelevant media. Combining biorelevant intestinal fluids with features such as mucus secretion, adjustable paracellular and P-gp mediated transports, is a step forward to more realistic in-vitro models of the human intestine. Copyright © 2015. Published by Elsevier B.V.

  6. Actin-interacting protein 1 controls assembly and permeability of intestinal epithelial apical junctions.

    Science.gov (United States)

    Lechuga, Susana; Baranwal, Somesh; Ivanov, Andrei I

    2015-05-01

    Adherens junctions (AJs) and tight junctions (TJs) are crucial regulators of the integrity and restitution of the intestinal epithelial barrier. The structure and function of epithelial junctions depend on their association with the cortical actin cytoskeleton that, in polarized epithelial cells, is represented by a prominent perijunctional actomyosin belt. The assembly and stability of the perijunctional cytoskeleton is controlled by constant turnover (disassembly and reassembly) of actin filaments. Actin-interacting protein (Aip) 1 is an emerging regulator of the actin cytoskeleton, playing a critical role in filament disassembly. In this study, we examined the roles of Aip1 in regulating the structure and remodeling of AJs and TJs in human intestinal epithelium. Aip1 was enriched at apical junctions in polarized human intestinal epithelial cells and normal mouse colonic mucosa. Knockdown of Aip1 by RNA interference increased the paracellular permeability of epithelial cell monolayers, decreased recruitment of AJ/TJ proteins to steady-state intercellular contacts, and attenuated junctional reassembly in a calcium-switch model. The observed defects of AJ/TJ structure and functions were accompanied by abnormal organization and dynamics of the perijunctional F-actin cytoskeleton. Moreover, loss of Aip1 impaired the apico-basal polarity of intestinal epithelial cell monolayers and inhibited formation of polarized epithelial cysts in 3-D Matrigel. Our findings demonstrate a previously unanticipated role of Aip1 in regulating the structure and remodeling of intestinal epithelial junctions and early steps of epithelial morphogenesis. Copyright © 2015 the American Physiological Society.

  7. Active intestinal drug absorption and the solubility-permeability interplay.

    Science.gov (United States)

    Porat, Daniel; Dahan, Arik

    2018-02-15

    The solubility-permeability interplay deals with the question: what is the concomitant effect on the drug's apparent permeability when increasing the apparent solubility with a solubility-enabling formulation? The solubility and the permeability are closely related, exhibit certain interplay between them, and ongoing research throughout the past decade shows that treating the one irrespectively of the other may be insufficient. The aim of this article is to provide an overview of the current knowledge on the solubility-permeability interplay when using solubility-enabling formulations for oral lipophilic drugs, highlighting active permeability aspects. A solubility-enabling formulation may affect the permeability in opposite directions; the passive permeability may decrease as a result of the apparent solubility increase, according to the solubility-permeability tradeoff, but at the same time, certain components of the formulation may inhibit/saturate efflux transporters (when relevant), resulting in significant apparent permeability increase. In these cases, excipients with both solubilizing and e.g. P-gp inhibitory properties may lead to concomitant increase of both the solubility and the permeability. Intelligent development of such formulation will account for the simultaneous effects of the excipients' nature/concentrations on the two arms composing the overall permeability: the passive and the active arms. Overall, thorough mechanistic understanding of the various factors involved in the solubility-permeability interplay may allow developing better solubility-enabling formulations, thereby exploiting the advantages analyzed in this article, offering oral delivery solution even for BCS class IV drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Role of non-steroidal anti-inflammatory drugs on intestinal permeability and nonalcoholic fatty liver disease.

    Science.gov (United States)

    Utzeri, Erika; Usai, Paolo

    2017-06-14

    The use of non-steroidal anti-inflammatory drugs (NSAIDs) is widespread worldwide thanks to their analgesic, anti-inflammatory and antipyretic effects. However, even more attention is placed upon the recurrence of digestive system complications in the course of their use. Recent data suggests that the complications of the lower gastro-intestinal tract may be as frequent and severe as those of the upper tract. NSAIDs enteropathy is due to enterohepatic recycling of the drugs resulting in a prolonged and repeated exposure of the intestinal mucosa to the compound and its metabolites. Thus leading to so-called topical effects, which, in turn, lead to an impairment of the intestinal barrier. This process determines bacterial translocation and toxic substances of intestinal origin in the portal circulation, leading to an endotoxaemia. This condition could determine a liver inflammatory response and might promote the development of non-alcoholic steatohepatitis, mostly in patients with risk factors such as obesity, metabolic syndrome and a high fat diet, which may induce a small intestinal bacterial overgrowth and dysbiosis. This alteration of gut microbiota may contribute to nonalcoholic fatty liver disease and its related disorders in two ways: firstly causing a malfunction of the tight junctions that play a critical role in the increase of intestinal permeability, and then secondly leading to the development of insulin resistance, body weight gain, lipogenesis, fibrogenesis and hepatic oxidative stress.

  9. INTESTINAL PERMEABILITY IN PATIENTS WITH CELIAC-DISEASE AND RELATIVES OF PATIENTS WITH CELIAC-DISEASE

    NARCIS (Netherlands)

    van Elburg, R. M.; Uil, J. J.; Mulder, C. J.; Heymans, H. S.

    1993-01-01

    The functional integrity of the small bowel is impaired in coeliac disease. Intestinal permeability, as measured by the sugar absorption test probably reflects this phenomenon. In the sugar absorption test a solution of lactulose and mannitol was given to the fasting patient and the

  10. INTESTINAL PERMEABILITY IN PATIENTS WITH CELIAC-DISEASE AND RELATIVES OF PATIENTS WITH CELIAC-DISEASE

    NARCIS (Netherlands)

    VANELBURG, RM; UIL, JJ; MULDER, CJJ; HEYMANS, HSA

    The functional integrity of the small bowel is impaired in coeliac disease. Intestinal permeability, as measured by the sugar absorption test probably reflects this phenomenon. In the sugar absorption test a solution of lactulose and mannitol was given to the fasting patient and the

  11. Lactic Acid Bacteria Protects Caenorhabditis elegans from Toxicity of Graphene Oxide by Maintaining Normal Intestinal Permeability under different Genetic Backgrounds

    Science.gov (United States)

    Zhao, Yunli; Yu, Xiaoming; Jia, Ruhan; Yang, Ruilong; Rui, Qi; Wang, Dayong

    2015-11-01

    Lactic acid bacteria (LAB) is safe and useful for food and feed fermentation. We employed Caenorhabditis elegans to investigate the possible beneficial effect of LAB (Lactobacillus bulgaricus) pretreatment against toxicity of graphene oxide (GO) and the underlying mechanisms. LAB prevented GO toxicity on the functions of both primary and secondary targeted organs in wild-type nematodes. LAB blocked translocation of GO into secondary targeted organs through intestinal barrier by maintaining normal intestinal permeability in wild-type nematodes. Moreover, LAB prevented GO damage on the functions of both primary and secondary targeted organs in exposed nematodes with mutations of susceptible genes (sod-2, sod-3, gas-1, and aak-2) to GO toxicity by sustaining normal intestinal permeability. LAB also sustained the normal defecation behavior in both wild-type nematodes and nematodes with mutations of susceptible genes. Therefore, the beneficial role of LAB against GO toxicity under different genetic backgrounds may be due to the combinational effects on intestinal permeability and defecation behavior. Moreover, the beneficial effects of LAB against GO toxicity was dependent on the function of ACS-22, homologous to mammalian FATP4 to mammalian FATP4. Our study provides highlight on establishment of pharmacological strategy to protect intestinal barrier from toxicity of GO.

  12. Measurement of intestinal permeability using 51Cr-EDTA

    International Nuclear Information System (INIS)

    Peled, Y.; Watz, C.; Gilat, T.

    1985-01-01

    Intestinal permeability tests are a new class of tests of which the 51 Cr-EDTA seemed the easiest to perform. The authors have evaluated the 8- and 24-h urinary excretion of ingested 51 Cr-EDTA in 38 subjects. Twenty-seven patients with diseases not affecting the integrity of the small bowel served as controls. The test group consisted of two patients with celiac, six with Crohn's disease, and three with ulcerative colitis. Nineteen (70.37%) of the control patients had an abnormal test (more than 2.6% in 24 h). The patients with ulcerative colitis had normal excretion (mean 1.95% in 24 h). The patients with celiac disease had an elevated excretion (mean 3.62% in 24 h) and five out of six patients with Crohn's disease also had an increased excretion (mean 6.2% in 24 h). The elevated 51 Cr-EDTA excretion in the control patients casts serious doubts on the validity of the test. Possible causes for abnormal excretion in the controls include various medications used by the patients as well as changes in the chromatographic mobility of 51 Cr-EDTA, demonstrated after incubation with gastric juice

  13. Cell permeability beyond the rule of 5.

    Science.gov (United States)

    Matsson, Pär; Doak, Bradley C; Over, Björn; Kihlberg, Jan

    2016-06-01

    Drug discovery for difficult targets that have large and flat binding sites is often better suited to compounds beyond the "rule of 5" (bRo5). However, such compounds carry higher pharmacokinetic risks, such as low solubility and permeability, and increased efflux and metabolism. Interestingly, recent drug approvals and studies suggest that cell permeable and orally bioavailable drugs can be discovered far into bRo5 space. Tactics such as reduction or shielding of polarity by N-methylation, bulky side chains and intramolecular hydrogen bonds may be used to increase cell permeability in this space, but often results in decreased solubility. Conformationally flexible compounds can, however, combine high permeability and solubility, properties that are keys for cell permeability and intestinal absorption. Recent developments in computational conformational analysis will aid design of such compounds and hence prediction of cell permeability. Transporter mediated efflux occurs for most investigated drugs in bRo5 space, however it is commonly overcome by high local intestinal concentrations on oral administration. In contrast, there is little data to support significant impact of transporter-mediated intestinal absorption in bRo5 space. Current knowledge of compound properties that govern transporter effects of bRo5 drugs is limited and requires further fundamental and comprehensive studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Tumor necrosis factor alpha increases epithelial barrier permeability by disrupting tight junctions in Caco-2 cells

    Directory of Open Access Journals (Sweden)

    W. Cui

    2010-04-01

    Full Text Available The objectives of this study were to determine the effect of tumor necrosis factor alpha (TNF-α on intestinal epithelial cell permeability and the expression of tight junction proteins. Caco-2 cells were plated onto Transwell® microporous filters and treated with TNF-α (10 or 100 ng/mL for 0, 4, 8, 16, or 24 h. The transepithelial electrical resistance and the mucosal-to-serosal flux rates of the established paracellular marker Lucifer yellow were measured in filter-grown monolayers of Caco-2 intestinal cells. The localization and expression of the tight junction protein occludin were detected by immunofluorescence and Western blot analysis, respectively. SYBR-Green-based real-time PCR was used to measure the expression of occludin mRNA. TNF-α treatment produced concentration- and time-dependent decreases in Caco-2 transepithelial resistance and increases in transepithelial permeability to the paracellular marker Lucifer yellow. Western blot results indicated that TNF-α decreased the expression of phosphorylated occludin in detergent-insoluble fractions but did not affect the expression of non-phosphorylated occludin protein. Real-time RT-PCR data showed that TNF-α did not affect the expression of occludin mRNA. Taken together, our data demonstrate that TNF-α increases Caco-2 monolayer permeability, decreases occludin protein expression and disturbs intercellular junctions.

  15. Water absorption enhances the uptake of mannitol and decreases Cr-EDTA/mannitol permeability ratios in cat small intestine in situ

    NARCIS (Netherlands)

    Bijlsma, P. B.; Fihn, B. M.; Sjöqvist, A.; Groot, J. A.; Taminiau, J. A. J. M.; Jodal, M.

    2002-01-01

    Background: Recently, we hypothesized that mannitol absorption in human intestinal permeability tests is a reflection of small intestinal water absorption and is dependent mainly on the efficiency of the countercurrent multiplier in the villi. This may affect the outcome of clinical double-sugar

  16. Polyethylene glycol versus dual sugar assay for gastrointestinal permeability analysis: is it time to choose?

    Science.gov (United States)

    van Wijck, Kim; Bessems, Babs Afm; van Eijk, Hans Mh; Buurman, Wim A; Dejong, Cornelis Hc; Lenaerts, Kaatje

    2012-01-01

    Increased intestinal permeability is an important measure of disease activity and prognosis. Currently, many permeability tests are available and no consensus has been reached as to which test is most suitable. The aim of this study was to compare urinary probe excretion and accuracy of a polyethylene glycol (PEG) assay and dual sugar assay in a double-blinded crossover study to evaluate probe excretion and the accuracy of both tests. Gastrointestinal permeability was measured in nine volunteers using PEG 400, PEG 1500, and PEG 3350 or lactulose-rhamnose. On 4 separate days, permeability was analyzed after oral intake of placebo or indomethacin, a drug known to increase intestinal permeability. Plasma intestinal fatty acid binding protein and calprotectin levels were determined to verify compromised intestinal integrity after indomethacin consumption. Urinary samples were collected at baseline, hourly up to 5 hours after probe intake, and between 5 and 24 hours. Urinary excretion of PEG and sugars was determined using high-pressure liquid chromatography-evaporative light scattering detection and liquid chromatography-mass spectrometry, respectively. Intake of indomethacin increased plasma intestinal fatty acid-binding protein and calprotectin levels, reflecting loss of intestinal integrity and inflammation. In this state of indomethacin-induced gastrointestinal compromise, urinary excretion of the three PEG probes and lactulose increased compared with placebo. Urinary PEG 400 excretion, the PEG 3350/PEG 400 ratio, and the lactulose/rhamnose ratio could accurately detect indomethacin-induced increases in gastrointestinal permeability, especially within 2 hours of probe intake. Hourly urinary excretion and diagnostic accuracy of PEG and sugar probes show high concordance for detection of indomethacin-induced increases in gastrointestinal permeability. This comparative study improves our knowledge of permeability analysis in man by providing a clear overview of both

  17. /sup 51/Cr-EDTA//sup 14/C-mannitol intestinal permeability test. Clinical use in screening for coeliac disease

    Energy Technology Data Exchange (ETDEWEB)

    Fotherby, K.J.; Wraight, E.P.; Neale, G.

    1988-01-01

    An intestinal permeability test with a combination of /sup 51/Cr-EDTA and /sup 14/C-mannitol was performed under routine conditions on 176 occasions in 161 adult patients. Of these patients, 116 were under investigation for possible coeliac disease, 33 were known to have coeliac disease, and 12 had inflammatory bowel disease. Small-bowel biopsies were performed in 61 patients. Expressing the results as the ratio of the 6-h urinary recoveries of the two probes was as sensitive as 95%, but more specific for histological mucosal abnormality (62% versus 46%) than measuring the urinary recovery of /sup 51/Cr-EDTA alone. All but two of the patients with active inflammatory bowel disease, whether Crohn's disease or ulcerative colitis, had an abnormal ratio. The /sup 51/Cr-EDTA//sup 14/C-mannitol intestinal permeablity test with a 6-h urine collection is a rapid and simple test of small-intestinal function suitable for routine use. 19 refs.

  18. Zonulin Regulates Intestinal Permeability and Facilitates Enteric Bacteria Permeation in Coronary Artery Disease.

    Science.gov (United States)

    Li, Chuanwei; Gao, Min; Zhang, Wen; Chen, Caiyu; Zhou, Faying; Hu, Zhangxu; Zeng, Chunyu

    2016-06-29

    Several studies have reported an association between enteric bacteria and atherosclerosis. Bacterial 16S ribosomal RNA (rRNA) gene belong to Enterobacteriaceae have been detected in atherosclerotic plaques. How intestinal bacteria go into blood is not known. Zonulin reversibly modulate intestinal permeability (IP), the circulating zonulin levels were increased in diabetes, obesity, all of which are risk factors for atherosclerosis. It is unclear whether the circulating zonulin levels were changed in coronary artery disease (CAD) patients and modulate IP. The 16S rRNA gene of bacteria in blood sample was checked by 454 pyrosequencing. The zonulin levels were determined by enzyme-linked immunosorbent assay (ELISA) methods. The distribution of zonulin was detected by confocal immunofluorescence microscopy. Bacteria and Caco-2 cell surface micro-structure were checked by transmission electron microscopy. A high diversity of bacterial 16S rRNA gene can be detected in samples from CAD patients, most of them (99.4%) belong to Enterobacteriaceaes, eg. Rahnella. The plasma zonulin levels were significantly higher in CAD patients. Pseudomonas fluorescens exposure significantly increased zonulin expression and decreased IP in a time dependent manner. The elevated zonulin increase IP and may facilitate enteric translocation by disassembling the tight junctions, which might explain the observed high diversity of bacterial 16S rRNA genes in blood samples.

  19. Increased gut permeability in cancer cachexia: mechanisms and clinical relevance.

    Science.gov (United States)

    Bindels, Laure B; Neyrinck, Audrey M; Loumaye, Audrey; Catry, Emilie; Walgrave, Hannah; Cherbuy, Claire; Leclercq, Sophie; Van Hul, Matthias; Plovier, Hubert; Pachikian, Barbara; Bermúdez-Humarán, Luis G; Langella, Philippe; Cani, Patrice D; Thissen, Jean-Paul; Delzenne, Nathalie M

    2018-04-06

    Intestinal disorders often occur in cancer patients, in association with body weight loss, and this alteration is commonly attributed to the chemotherapy. Here, using a mouse model of cancer cachexia induced by ectopic transplantation of C26 cancer cells, we discovered a profound alteration in the gut functions (gut permeability, epithelial turnover, gut immunity, microbial dysbiosis) independently of any chemotherapy. These alterations occurred independently of anorexia and were driven by interleukin 6. Gut dysfunction was found to be resistant to treatments with an anti-inflammatory bacterium ( Faecalibacterium prausnitzii ) or with gut peptides involved in intestinal cell renewal (teduglutide, a glucagon-like peptide 2 analogue). The translational value of our findings was evaluated in 152 colorectal and lung cancer patients with or without cachexia. The serum level of the lipopolysaccharide-binding protein, often presented as a reflection of the bacterial antigen load, was not only increased in cachectic mice and cancer patients, but also strongly correlated with the serum IL-6 level and predictive of death and cachexia occurrence in these patients. Altogether, our data highlight profound alterations of the intestinal homeostasis in cancer cachexia occurring independently of any chemotherapy and food intake reduction, with potential relevance in humans. In addition, we point out the lipopolysaccharide-binding protein as a new biomarker of cancer cachexia related to gut dysbiosis.

  20. Small-bowel permeability in collagenous colitis

    DEFF Research Database (Denmark)

    Wildt, Signe; Madsen, Jan L; Rumessen, Jüri J

    2006-01-01

    Collagenous colitis (CC) is a chronic inflammatory bowel disease that affects the colon. However, some patients with CC present with accompanying pathologic small-bowel manifestations such as coeliac disease, defects in bile acid absorption and histopathologic changes in small-intestinal biopsies......, indicating that CC is a pan-intestinal disease. In small-intestinal disease, the intestinal barrier function may be impaired, and the permeability of the small intestine altered. The purpose of this research was to study small-bowel function in patients with CC as expressed by intestinal permeability....

  1. Zonulin level, a marker of intestinal permeability, is increased in association with liver enzymes in young adolescents.

    Science.gov (United States)

    Kim, Ji Hee; Heo, Ju Sun; Baek, Kyung Suk; Kim, Soo-Yeon; Kim, Jung Hyun; Baek, Kwang-Hyun; Kim, Ki Eun; Sheen, Youn Ho

    2018-06-01

    Zonulin is acknowledged as the only physiological mediator established to reversibly regulate intestinal permeability through modulation of intercellular tight junctions. We aimed to determine whether there are differences in zonulin levels between 74 subjects with overweight or obesity and 76 with normal-weight and to assess correlations of circulating zonulin levels with anthropometric measures and obesity-related biomarkers. We assessed anthropometric and laboratory measures, including body mass index (BMI) z-score, blood pressure, liver enzymes, lipid profiles, and insulin resistance. Serum zonulin levels were measured using an enzyme-linked immunosorbent assay. The mean age of the participants was 12.8 ± 1.5 years. Circulating serum zonulin levels were significantly increased in subjects with overweight/obesity compared with those of normal-weight (P = 0.03). Zonulin levels were significantly and positively associated with BMI z-score, alanine aminotransferase levels, triglyceride, fasting insulin, and insulin resistance as indicated by the homeostatic model assessment of insulin resistance (HOMA-IR) (all P zonulin levels in adolescents with overweight or obesity (P zonulin levels in this subgroup analysis (P = 0.06). Serum zonulin is a biomarker associated with hepatic metabolic disturbances in young adolescents with overweight or obesity. The positive relationship suggests a potentially relevant pathophysiological mechanism linking zonulin to hepatic metabolism in this age group of young adolescents with overweight or obesity. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Measurement of intestinal permeability using mannitol and lactulose in children with diarrheal diseases

    Directory of Open Access Journals (Sweden)

    M.S. Barboza Jr.

    1999-12-01

    Full Text Available The excretion ratio of lactulose/mannitol in urine has been used to assess the extension of malabsorption and impairment of intestinal permeability. The recovery of lactulose and mannitol in urine was employed to evaluate intestinal permeability in children with and without diarrhea. Lactulose and mannitol probes were measured using high-performance liquid chromatography with pulsed amperometric detection (HPLC-PAD. Two groups of solutions containing 60 µM sugars were prepared. Group I consisted of glucosamine, mannitol, melibiose and lactulose, and group II of inositol, sorbitol, glucose and lactose. In the study of intra-experiment variation, a sample of 50 µl from each group was submitted to 4 successive determinations. The recovered amounts and retention times of each sugar showed a variation 97%. In the study of inter-experiment variation, we prepared 4 independent samples from groups I and II at the following concentrations: 1.0, 0.3, 0.1, 0.03 and 0.01 mM. The amounts of the sugars recovered varied by 99%. Retention (k', selectivity (a and efficiency (N were used to assess the chromatographic conditions. All three parameters were in the normal range. Children with diarrhea presented a greater lactulose/mannitol ratio compared to children without diarrhea.

  3. Effects of casein glycomacropeptide supplementation on growth performance, intestinal morphology, intestinal barrier permeability and inflammatory responses in Escherichia coli K88 challenged piglets

    Directory of Open Access Journals (Sweden)

    Yili Rong

    2015-06-01

    Full Text Available Casein glycomacropeptide (CGMP is a bioactive peptide derived from milk with multiple functions. This study was aimed at evaluating the effects of CGMP as a potential feed additive on growth performance, intestinal morphology, intestinal barrier permeability and inflammatory responses of Escherichia coli K88 (E. coli K88 challenged piglets. Eighteen weaning piglets were randomly assigned to three groups. Control group and K88 challenged group received a basal diet, and CGMP treated group received the basal diet supplemented with 1% of CGMP powder. The trail lasted for 12 days, K88 was orally administered to the piglets of K88 challenged group and CGMP treated group on days 8–10. The results showed that the diet containing 1% CGMP significantly alleviated the decrease in average daily gain (P  0.05 and barrier permeability damage (P < 0.05, and acute inflammatory response (P < 0.05 induced by E. coli K88 infection. In conclusion, CGMP supplementation in the diet protected the weaning piglets against E. coli K88 infection.

  4. Gut Microbiota Richness and Composition and Dietary Intake of Overweight Pregnant Women Are Related to Serum Zonulin Concentration, a Marker for Intestinal Permeability.

    Science.gov (United States)

    Mokkala, Kati; Röytiö, Henna; Munukka, Eveliina; Pietilä, Sami; Ekblad, Ulla; Rönnemaa, Tapani; Eerola, Erkki; Laiho, Asta; Laitinen, Kirsi

    2016-09-01

    Increased intestinal permeability may precede adverse metabolic conditions. The extent to which the composition of the gut microbiota and diet contribute to intestinal permeability during pregnancy is unknown. The aim was to investigate whether the gut microbiota and diet differ according to serum zonulin concentration, a marker of intestinal permeability, in overweight pregnant women. This cross-sectional study included 100 overweight women [mean age: 29 y; median body mass index (in kg/m(2)): 30] in early pregnancy (zonulin (primary outcome) was determined by using ELISA, gut microbiota by 16S ribosomal RNA sequencing, and dietary intake of macro- and micronutrients from 3-d food diaries. The Mann-Whitney U test was used for pairwise comparisons and linear regression and Spearman's nonparametric correlations for relations between serum zonulin and other outcome variables. Women were divided into "low" (zonulin groups on the basis of the median concentration of zonulin (46.4 ng/mL). The richness of the gut microbiota (Chao 1, observed species and phylogenetic diversity) was higher in the low zonulin group than in the high zonulin group (P = 0.01). The abundances of Bacteroidaceae and Veillonellaceae, Bacteroides and Blautia, and Blautia sp. were lower and of Faecalibacterium and Faecalibacterium prausnitzii higher (P zonulin group than in the high zonulin group. Dietary quantitative intakes of n-3 (ω-3) polyunsaturated fatty acids (PUFAs), fiber, and a range of vitamins and minerals were higher (P zonulin group than those in the high zonulin group. The richness and composition of the gut microbiota and the intake of n-3 PUFAs, fiber, and a range of vitamins and minerals in overweight pregnant women are associated with serum zonulin concentration. Modification of the gut microbiota and diet may beneficially affect intestinal permeability, leading to improved metabolic health of both the mother and fetus. This trial was registered at clinicaltrials.gov as NCT

  5. Polyethylene glycol versus dual sugar assay for gastrointestinal permeability analysis: is it time to choose?

    Directory of Open Access Journals (Sweden)

    van Wijck K

    2012-07-01

    Full Text Available Kim van Wijck,1,2 Babs AFM Bessems,2 Hans MH van Eijk,2 Wim A Buurman,2 Cornelis HC Dejong,1,2 Kaatje Lenaerts1,21Top Institute Food and Nutrition, Wageningen, The Netherlands; 2Department of Surgery, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, NetherlandsBackground: Increased intestinal permeability is an important measure of disease activity and prognosis. Currently, many permeability tests are available and no consensus has been reached as to which test is most suitable. The aim of this study was to compare urinary probe excretion and accuracy of a polyethylene glycol (PEG assay and dual sugar assay in a double-blinded crossover study to evaluate probe excretion and the accuracy of both tests.Methods: Gastrointestinal permeability was measured in nine volunteers using PEG 400, PEG 1500, and PEG 3350 or lactulose-rhamnose. On 4 separate days, permeability was analyzed after oral intake of placebo or indomethacin, a drug known to increase intestinal permeability. Plasma intestinal fatty acid binding protein and calprotectin levels were determined to verify compromised intestinal integrity after indomethacin consumption. Urinary samples were collected at baseline, hourly up to 5 hours after probe intake, and between 5 and 24 hours. Urinary excretion of PEG and sugars was determined using high-pressure liquid chromatography-evaporative light scattering detection and liquid chromatography-mass spectrometry, respectively.Results: Intake of indomethacin increased plasma intestinal fatty acid-binding protein and calprotectin levels, reflecting loss of intestinal integrity and inflammation. In this state of indomethacin-induced gastrointestinal compromise, urinary excretion of the three PEG probes and lactulose increased compared with placebo. Urinary PEG 400 excretion, the PEG 3350/PEG 400 ratio, and the lactulose/rhamnose ratio could accurately detect indomethacin-induced increases in

  6. Mechanisms of Intestinal Barrier Dysfunction in Sepsis.

    Science.gov (United States)

    Yoseph, Benyam P; Klingensmith, Nathan J; Liang, Zhe; Breed, Elise R; Burd, Eileen M; Mittal, Rohit; Dominguez, Jessica A; Petrie, Benjamin; Ford, Mandy L; Coopersmith, Craig M

    2016-07-01

    Intestinal barrier dysfunction is thought to contribute to the development of multiple organ dysfunction syndrome in sepsis. Although there are similarities in clinical course following sepsis, there are significant differences in the host response depending on the initiating organism and time course of the disease, and pathways of gut injury vary widely in different preclinical models of sepsis. The purpose of this study was to determine whether the timecourse and mechanisms of intestinal barrier dysfunction are similar in disparate mouse models of sepsis with similar mortalities. FVB/N mice were randomized to receive cecal ligation and puncture (CLP) or sham laparotomy, and permeability was measured to fluoresceinisothiocyanate conjugated-dextran (FD-4) six to 48 h later. Intestinal permeability was elevated following CLP at all timepoints measured, peaking at 6 to 12 h. Tight junction proteins claudin 1, 2, 3, 4, 5, 7, 8, 13, and 15, Junctional Adhesion Molecule-A (JAM-A), occludin, and ZO-1 were than assayed by Western blot, real-time polymerase chain reaction, and immunohistochemistry 12 h after CLP to determine potential mechanisms underlying increases in intestinal permeability. Claudin 2 and JAM-A were increased by sepsis, whereas claudin-5 and occludin were decreased by sepsis. All other tight junction proteins were unchanged. A further timecourse experiment demonstrated that alterations in claudin-2 and occludin were detectable as early as 1 h after the onset of sepsis. Similar experiments were then performed in a different group of mice subjected to Pseudomonas aeruginosa pneumonia. Mice with pneumonia had an increase in intestinal permeability similar in timecourse and magnitude to that seen in CLP. Similar changes in tight junction proteins were seen in both models of sepsis although mice subjected to pneumonia also had a marked decrease in ZO-1 not seen in CLP. These results indicate that two disparate, clinically relevant models of sepsis

  7. Dietary soya saponins increase gut permeability and play a key role in the onset of soyabean-induced enteritis in Atlantic salmon (Salmo salar L.)

    DEFF Research Database (Denmark)

    Knudsen, Sven David Lausten; Jutfelt, Fredrik; Sundh, Henrik

    2008-01-01

    are naturally occurring amphiphilic molecules and have been associated with many biological activities. The aim of the present study was to investigate whether soya saponins trigger the onset of soyabean-induced enteritis in Atlantic salmon (Salmo salar L.), and to examine if dietary soya saponins...... increase the epithelial permeability of the distal intestine in Atlantic salmon. Seven experimental diets containing different levels of soya saponins were fed to seawater-adapted Atlantic salmon for 53 d. The diets included a fishmeal-based control diet, two fishmeal-based diets with different levels...... of added soya saponins, one diet containing 25 % lupin kernel meal, two diets based on 25 % lupin kernel meal with different levels of added soya saponins, and one diet containing 25 % defatted soyabean meal. The effect on intestinal morphology, intestinal epithelial permeability and faecal DM content...

  8. Effect of vitamin A deficiency on permeability of the small intestinal mucosa for macromolecules in adult rats

    International Nuclear Information System (INIS)

    Gmoshinskii, I.V.; Khvylya, S.I.; Kon', I.Ya.

    1987-01-01

    The authors study the effect of experimental vitamin A deficiency on absorption of macromolecules of hen's ovalbumin in the intestine. An electron-microscopic study of permeability of small intestine enterocytes for particles of colloidal lanthanum hydroxide La(OH) 3 was carried out at the same time. The concentration of unsplit hen's ovalbumin in the blood of the rats used in the experiment was determined by competitive radioimmunoassay. Samples of serum were incubated with indicator doses of 125 I-OA. Radioactivity of the precipitates was measured

  9. Increased oral AUC of baicalin in streptozotocin-induced diabetic rats due to the increased activity of intestinal beta-glucuronidase.

    Science.gov (United States)

    Liu, Li; Deng, Yuan-Xiong; Liang, Yan; Pang, Xiao-Yan; Liu, Xiao-Dong; Liu, Yao-Wu; Yang, Jian-Song; Xie, Lin; Wang, Guang-Ji

    2010-01-01

    The purpose of the study was to investigate the pharmacokinetics of baicalin, a major bioactive component of Scutellariae radix, in diabetic conditions. The 4-week diabetic rats were induced by intraperitoneal administration of streptozotocin. Plasma concentrations of baicalin were measured following oral (200 mg/kg) or intravenous (12 mg/kg) administration. Everted intestinal transport, intestinal mucosal metabolism of baicalin and intestinal beta-glucuronidase activity were also investigated. It was found that the diabetic condition significantly increased the exposure of baicalin following oral doses (AUC 100.77 +/- 4.16 microg x h/mL in diabetic rats vs. 48.48 +/- 7.94 microg x h/mL in normal rats). In contrast, the diabetic condition significantly decreased the exposure of baicalin following intravenous doses (AUC 11.20 +/- 2.28 microg x h/mL in diabetic rats vs. 18.02 +/- 3.45 microg x h/mL in normal rats). We also found lower apparent permeability coefficients of baicalin in the ileum of diabetic rats (8.43 x 10 (-6) +/- 2.40 x 10 (-6) cm/s in diabetic rats vs. 5.21 x 10 (-5) +/- 1.55 x 10 (-5) cm/s in normal rats). Further studies showed that the diabetic condition enhanced the hydrolysis of baicalin to baicalein in intestinal mucosal, accompanied by an increase of beta-glucuronidase activity. All these results suggested that the higher oral exposure of baicalin in diabetic rats did not result from the decreased hepatic metabolism or increased intestinal absorption of baicalin. The enhancement of intestinal beta-glucuronidase activity may partly account for the higher exposure of baicalin in diabetic rats after oral administration. Copyright Georg Thieme Verlag KG Stuttgart . New York.

  10. Comparison between lactulose/mannitol and 51Cr-ethylenediaminetetraacetic acid/14C-mannitol methods for intestinal permeability

    International Nuclear Information System (INIS)

    Blomquist, L.; Bark, T.; Hedenborg, G.; Svenberg, T.; Norman, A.

    1993-01-01

    Urinary excretion of lactulose and mannitol, determined by gas-liquid chromatography, was compared with that of 51 Cr-ethylenediaminetetraacetic acid (EDTA) and 14 C-mannitol for measurement of intestinal permeability in 28 healthy humans. The 0- to 6-h excretion values for unlabelled and labelled mannitol (marker of transcellular permeability) were normally distributed, whereas excretion values for lactulose and 51 Cr-EDTA (markers of paracellular permeability) were shewly distributed, as were the lactulose to mannitol and 51 Cr-EDTA to 14 C-mannitol ratios. Excretion of the transcellular markers, but not of the paracullular markers was significantly correlated to urinary volume; correction for urinary volume resulted in decreased test variability. Significant correlation was found between lactulose and 51 Cr-EDTA excretion and between mannitol and 14 C-mannitol excretion, but not between the lactulose to mannitol and 51 Cr-EDTA to 14 C-mannitol ratios. Inter- and intraindividual test variability was greater for each chemically determined marker than for the corresponding isotope-labelled marker. Similarly, variability was greater for each paracellular marker than for the corresponding transcellular marker and for each paracellular/transcellular marker ratio, than for the transcellular marker alone. Variability of mannitol excretion was increased by the frequent presence of food-derived mannitol in the urine. 23 refs., 5 figs., 2 tabs

  11. Particulate matter air pollution causes oxidant-mediated increase in gut permeability in mice

    Directory of Open Access Journals (Sweden)

    Keshavarzian Ali

    2011-06-01

    Full Text Available Abstract Background Exposure to particulate matter (PM air pollution may be an important environmental factor leading to exacerbations of inflammatory illnesses in the GI tract. PM can gain access to the gastrointestinal (GI tract via swallowing of air or secretions from the upper airways or mucociliary clearance of inhaled particles. Methods We measured PM-induced cell death and mitochondrial ROS generation in Caco-2 cells stably expressing oxidant sensitive GFP localized to mitochondria in the absence or presence of an antioxidant. C57BL/6 mice were exposed to a very high dose of urban PM from Washington, DC (200 μg/mouse or saline via gastric gavage and small bowel and colonic tissue were harvested for histologic evaluation, and RNA isolation up to 48 hours. Permeability to 4kD dextran was measured at 48 hours. Results PM induced mitochondrial ROS generation and cell death in Caco-2 cells. PM also caused oxidant-dependent NF-κB activation, disruption of tight junctions and increased permeability of Caco-2 monolayers. Mice exposed to PM had increased intestinal permeability compared with PBS treated mice. In the small bowel, colocalization of the tight junction protein, ZO-1 was lower in the PM treated animals. In the small bowel and colon, PM exposed mice had higher levels of IL-6 mRNA and reduced levels of ZO-1 mRNA. Increased apoptosis was observed in the colon of PM exposed mice. Conclusions Exposure to high doses of urban PM causes oxidant dependent GI epithelial cell death, disruption of tight junction proteins, inflammation and increased permeability in the gut in vitro and in vivo. These PM-induced changes may contribute to exacerbations of inflammatory disorders of the gut.

  12. High-permeability criterion for BCS classification: segmental/pH dependent permeability considerations.

    Science.gov (United States)

    Dahan, Arik; Miller, Jonathan M; Hilfinger, John M; Yamashita, Shinji; Yu, Lawrence X; Lennernäs, Hans; Amidon, Gordon L

    2010-10-04

    The FDA classifies a drug substance as high-permeability when the fraction of dose absorbed (F(abs)) in humans is 90% or higher. This direct correlation between human permeability and F(abs) has been recently controversial, since the β-blocker sotalol showed high F(abs) (90%) and low Caco-2 permeability. The purpose of this study was to investigate the scientific basis for this disparity between permeability and F(abs). The effective permeabilities (P(eff)) of sotalol and metoprolol, a FDA standard for the low/high P(eff) class boundary, were investigated in the rat perfusion model, in three different intestinal segments with pHs corresponding to the physiological pH in each region: (1) proximal jejunum, pH 6.5; (2) mid small intestine, pH 7.0; and (3) distal ileum, pH 7.5. Both metoprolol and sotalol showed pH-dependent permeability, with higher P(eff) at higher pH. At any given pH, sotalol showed lower permeability than metoprolol; however, the permeability of sotalol determined at pH 7.5 exceeded/matched metoprolol's at pH 6.5 and 7.0, respectively. Physicochemical analysis based on ionization, pK(a) and partitioning of these drugs predicted the same trend and clarified the mechanism behind these observed results. Experimental octanol-buffer partitioning experiments confirmed the theoretical curves. An oral dose of metoprolol has been reported to be completely absorbed in the upper small intestine; it follows, hence, that metoprolol's P(eff) value at pH 7.5 is not likely physiologically relevant for an immediate release dosage form, and the permeability at pH 6.5 represents the actual relevant value for the low/high permeability class boundary. Although sotalol's permeability is low at pH 6.5 and 7.0, at pH 7.5 it exceeds/matches the threshold of metoprolol at pH 6.5 and 7.0, most likely responsible for its high F(abs). In conclusion, we have shown that, in fact, there is no discrepancy between P(eff) and F(abs) in sotalol's absorption; the data emphasize that

  13. Intestinal permeability and malabsorption of rifampin and isoniazid in active pulmonary tuberculosis

    Directory of Open Access Journals (Sweden)

    Valéria G. F. Pinheiro

    Full Text Available Low antimycobacterial drug concentrations have been observed in tuberculosis (TB patients under treatment. The lactulose/mannitol urinary excretion test (L/M, normally used to measure intestinal permeability, may be useful to assess drug absorption. The objective of this research was to study intestinal absorptive function and bioavailability of rifampin and isoniazid in TB patients. A cross sectional study was done with 41 patients and 28 healthy controls, using the L/M test. The bioavailabilities of rifampin (R and isoniazid (H were evaluated in 18 patients receiving full doses. Urinary excretion of mannitol and lactulose, measured by HPLC, was significantly lower in TB patients. The serum concentrations of the drugs were below the expected range for R (8-24 mcg/mL or H (3-6 mcg/mL in 16/18 patients. Analyzing the drugs individually, 12/18 patients had low serum concentrations of R, 13/18 for H and 8/18 for both drugs. We suggest that there is a decrease in the functional absorptive area of the intestine in TB patients, which would explain the reduced serum concentrations of antituberculosis drugs. There is a need for new approaches to improve drug bioavailability in TB patients.

  14. Chenodeoxycholic acid reduces intestinal permeability in newly weaned piglets

    DEFF Research Database (Denmark)

    van der Meer, Y; Gerrits, W J J; van den Bosch, M

    2012-01-01

    weaned (21 d) piglets offered a diet with or without 60 mg CDCA/kg feed (n = 24/treatment). Upon weaning, piglets were fasted for 16 h and then intragastrically dosed with 20 g test feed in 40 g water. Subsequently, a jugular blood sample was taken on 45, 90, 135, or 180 min for analysis of GLP-2......, peptide YY (PYY), and glucose. Afterwards, piglets were offered the experimental diets ad libitum. On days 3.5, 7.5, and 10.5 after weaning, serum responses to an intragastric dose of lactulose and Co-EDTA were tested at 2 h after dosing in 8 piglets per treatment. Immediately thereafter, piglets were...... to newly weaned piglets, implying that CDCA deserves further study as a means for improving intestinal health. The positive correlation found between Co-EDTA and lactulose indicates that both marker molecules measure similar change in permeability....

  15. Rapid small intestinal permeability assay based on riboflavin and lactulose detected by bis-boronic acid appended benzyl viologens.

    Science.gov (United States)

    Resendez, Angel; Abdul Halim, Md; Landhage, Caroline M; Hellström, Per M; Singaram, Bakthan; Webb, Dominic-Luc

    2015-01-15

    Although organoboronic acids are efficient high-throughput sugar sensors, they have not been pursued for gut permeability studies. A modification of the lactulose/mannitol assay is described by which small intestinal permeability is assessed at the time of urine collection using a lactulose/riboflavin ratio. Volunteers ingested 50mg riboflavin and either 5 g mannitol or 10 g lactulose. Urine was collected for 6 hrs. Riboflavin was assayed by autofluorescence. Riboflavin was removed by C18 solid phase extraction. Lactulose and mannitol were then assayed using 1,1'-bis(2-boronobenzyl)-4,4'-bipyridinium (4,4'oBBV) coupled to the fluorophore HPTS. The temporal profile over 6 hrs for riboflavin paralleled mannitol. Riboflavin recovery in urine was 11.1 ± 1.9 % (mean ± SEM, n=7), similar to mannitol. There was selective binding of 4,4'oBBV to lactulose, likely involving cooperativity between the fructose and galactose moieties. Lower limits of detection and quantification were 90 and 364 μM. The lactulose assay was insensitive to other permeability probes (e.g., sucrose, sucralose) while tolerating glucose or lactose. This assay can be adapted to automated systems. Stability of 4,4'oBBV exceeds 4 years. Riboflavin measured by autofluorescence combined with lactulose measured with 4,4'oBBV represents a useful new chemistry for rapid measurement of intestinal permeability with excellent stability, cost and throughput benefits. Copyright © 2014. Published by Elsevier B.V.

  16. Small intestine in lymphocytic and collagenous colitis: mucosal morphology, permeability, and secretory immunity to gliadin.

    OpenAIRE

    Moayyedi, P; O'Mahony, S; Jackson, P; Lynch, D A; Dixon, M F; Axon, A T

    1997-01-01

    There is a recognised association between the "microscopic" forms of colitis and coeliac disease. There are a variety of subtle small intestinal changes in patients with "latent" gluten sensitivity, namely high intraepithelial lymphocyte (IEL) counts, abnormal mucosal permeability, and high levels of secretory IgA and IgM antibody to gliadin. These changes have hitherto not been investigated in microscopic colitis. Nine patients (four collagenous, five lymphocytic colitis) with normal villous...

  17. Myosin Light Chain Kinase Mediates Intestinal Barrier Disruption following Burn Injury

    Science.gov (United States)

    Chen, Chuanli; Wang, Pei; Su, Qin; Wang, Shiliang; Wang, Fengjun

    2012-01-01

    Background Severe burn injury results in the loss of intestinal barrier function, however, the underlying mechanism remains unclear. Myosin light chain (MLC) phosphorylation mediated by MLC kinase (MLCK) is critical to the pathophysiological regulation of intestinal barrier function. We hypothesized that the MLCK-dependent MLC phosphorylation mediates the regulation of intestinal barrier function following burn injury, and that MLCK inhibition attenuates the burn-induced intestinal barrier disfunction. Methodology/Principal Findings Male balb/c mice were assigned randomly to either sham burn (control) or 30% total body surface area (TBSA) full thickness burn without or with intraperitoneal injection of ML-9 (2 mg/kg), an MLCK inhibitor. In vivo intestinal permeability to fluorescein isothiocyanate (FITC)-dextran was measured. Intestinal mucosa injury was assessed histologically. Tight junction proteins ZO-1, occludin and claudin-1 was analyzed by immunofluorescent assay. Expression of MLCK and phosphorylated MLC in ileal mucosa was assessed by Western blot. Intestinal permeability was increased significantly after burn injury, which was accompanied by mucosa injury, tight junction protein alterations, and increase of both MLCK and MLC phosphorylation. Treatment with ML-9 attenuated the burn-caused increase of intestinal permeability, mucosa injury, tight junction protein alterations, and decreased MLC phosphorylation, but not MLCK expression. Conclusions/Significance The MLCK-dependent MLC phosphorylation mediates intestinal epithelial barrier dysfunction after severe burn injury. It is suggested that MLCK-dependent MLC phosphorylation may be a critical target for the therapeutic treatment of intestinal epithelial barrier disruption after severe burn injury. PMID:22529961

  18. Modulation of Intestinal Epithelial Permeability in Differentiated Caco-2 Cells Exposed to Aflatoxin M1 and Ochratoxin A Individually or Collectively

    Directory of Open Access Journals (Sweden)

    Yanan Gao

    2017-12-01

    Full Text Available Aflatoxin M1 (AFM1 and ochratoxin A (OTA are mycotoxins commonly found in milk; however, their effects on intestinal epithelial cells have not been reported. In the present study, we show that AFM1 (0.12 and 12 μM and OTA (0.2 and 20 μM individually or collectively increased the paracellular flux of lucifer yellow and fluorescein isothiocyanate (FITC-dextrans (4 and 40 kDa and decreased transepithelial electrical resistance values in differentiated Caco-2 cells after 48 h of exposure, indicating increased epithelial permeability. Immunoblotting and immunofluorescent analysis revealed that AFM1, OTA, and their combination decreased the expression levels of tight junction (TJ proteins and disrupted their structures, namely, claudin-3, claudin-4, occludin, and zonula occludens-1 (ZO-1, and p44/42 mitogen-activated protein kinase (MAPK partially involved in the mycotoxins-induced disruption of intestinal barrier. The effects of a combination of AFM1 and OTA on intestinal barrier function were more significant (p < 0.05 than those of AFM1 and OTA alone, yielding additive or synergistic effects. The additive or synergistic effects of AFM1 and OTA on intestinal barrier function might affect human health, especially in children, and toxin risks should be considered.

  19. Tight Junctions, Intestinal Permeability, and Autoimmunity Celiac Disease and Type 1 Diabetes Paradigms

    Science.gov (United States)

    Visser, Jeroen; Rozing, Jan; Sapone, Anna; Lammers, Karen; Fasano, Alessio

    2010-01-01

    Autoimmune diseases are characterized by tissue damage and loss of function due to an immune response that is directed against specific organs. This review is focused on celiac disease (CD), an autoimmune enteropathy, and type 1 diabetes (T1D), a hyperglycosaemia caused by a destructive autoimmune process targeting the insulin-producing pancreatic islet cells. Even if environmental factors and genetic susceptibility are clearly involved in the pathogenesis of autoimmunity, for most autoimmune disorders there is no or little knowledge about the causing agent or genetic makeup underlying the disease. In this respect, CD represents a unique autoimmune disorder because a close genetic association with HLA-DQ2 or HLA-DQ8 haplotypes and, more importantly, the environmental trigger (the gliadin fraction of gluten-containing grains wheat, barley, and rye) are known. Conversely, the trigger for autoimmune destruction of pancreatic ß cells in T1D is unclear. Interestingly, recent data suggest that gliadin is also involved in the pathogenesis of T1D. There is growing evidence that increased intestinal permeability plays a pathogenic role in various autoimmune diseases including CD and T1D. Therefore, we hypothesize that besides genetic and environmental factors, loss of intestinal barrier function is necessary to develop autoimmunity. In this review, each of these components will be briefly reviewed. PMID:19538307

  20. Enhanced Intestinal Permeability of Bufalin by a Novel Bufalin-Peptide-Dendrimer Inclusion through Caco-2 Cell Monolayer

    Directory of Open Access Journals (Sweden)

    Chi-on Chan

    2017-11-01

    Full Text Available Bufalin (BFL has excellent physiological activities such as defending tumors, improving cardiac function, and so on. However, due to its poor water-solubility and bioavailability, the clinical application of BFL remains limited. In order to improve bioavailability of BFL, in our previous research, a novel peptide-dendrimer (PD was synthesized and applied to encapsulate BFL. In the present study, we investigate the absorption property and mechanism of BFL in free form and BFL-peptide-dendrimer inclusion (BPDI delivery system by using the Caco-2 cell monolayer model in vitro. The apparent permeability coefficient (Papp values of BFL in free or BPDI form were over 1.0 × 10−6 cm/s. Meanwhile, their almost equal bi-directional transport and linear transport percentage with time and concentration course indicated that BFL in both forms was absorbed mainly through passive diffusion. The most important result is that the Papp values of BFL increased about three-fold more BPDI than those of its free form, which indicated the intestinal permeability of BFL could be improved while BFL was encapsulated in BPDI form. Therefore, PD encapsulation may be a potential delivery system to increase the bioavailability of BFL.

  1. Loss of guanylyl cyclase C (GCC signaling leads to dysfunctional intestinal barrier.

    Directory of Open Access Journals (Sweden)

    Xiaonan Han

    2011-01-01

    Full Text Available Guanylyl Cyclase C (GCC signaling via uroguanylin (UGN and guanylin activation is a critical mediator of intestinal fluid homeostasis, intestinal cell proliferation/apoptosis, and tumorigenesis. As a mechanism for some of these effects, we hypothesized that GCC signaling mediates regulation of intestinal barrier function.Paracellular permeability of intestinal segments was assessed in wild type (WT and GCC deficient (GCC-/- mice with and without lipopolysaccharide (LPS challenge, as well as in UGN deficient (UGN-/- mice. IFNγ and myosin light chain kinase (MLCK levels were determined by real time PCR. Expression of tight junction proteins (TJPs, phosphorylation of myosin II regulatory light chain (MLC, and STAT1 activation were examined in intestinal epithelial cells (IECs and intestinal mucosa. The permeability of Caco-2 and HT-29 IEC monolayers, grown on Transwell filters was determined in the absence and presence of GCC RNA interference (RNAi. We found that intestinal permeability was increased in GCC-/- and UGN-/- mice compared to WT, accompanied by increased IFNγ levels, MLCK and STAT1 activation in IECs. LPS challenge promotes greater IFNγ and STAT1 activation in IECs of GCC-/- mice compared to WT mice. Claudin-2 and JAM-A expression were reduced in GCC deficient intestine; the level of phosphorylated MLC in IECs was significantly increased in GCC-/- and UGN-/- mice compared to WT. GCC knockdown induced MLC phosphorylation, increased permeability in IEC monolayers under basal conditions, and enhanced TNFα and IFNγ-induced monolayer hyperpermeability.GCC signaling plays a protective role in the integrity of the intestinal mucosal barrier by regulating MLCK activation and TJ disassembly. GCC signaling activation may therefore represent a novel mechanism in maintaining the small bowel barrier in response to injury.

  2. Crosstalk between Inflammation and ROCK/MLCK Signaling Pathways in Gastrointestinal Disorders with Intestinal Hyperpermeability

    Directory of Open Access Journals (Sweden)

    Lijun Du

    2016-01-01

    Full Text Available The barrier function of the intestine is essential for maintaining the normal homeostasis of the gut and mucosal immune system. Abnormalities in intestinal barrier function expressed by increased intestinal permeability have long been observed in various gastrointestinal disorders such as Crohn’s disease (CD, ulcerative colitis (UC, celiac disease, and irritable bowel syndrome (IBS. Imbalance of metabolizing junction proteins and mucosal inflammation contributes to intestinal hyperpermeability. Emerging studies exploring in vitro and in vivo model system demonstrate that Rho-associated coiled-coil containing protein kinase- (ROCK- and myosin light chain kinase- (MLCK- mediated pathways are involved in the regulation of intestinal permeability. With this perspective, we aim to summarize the current state of knowledge regarding the role of inflammation and ROCK-/MLCK-mediated pathways leading to intestinal hyperpermeability in gastrointestinal disorders. In the near future, it may be possible to specifically target these specific pathways to develop novel therapies for gastrointestinal disorders associated with increased gut permeability.

  3. Myosin light chain kinase mediates intestinal barrier disruption following burn injury.

    Directory of Open Access Journals (Sweden)

    Chuanli Chen

    Full Text Available BACKGROUND: Severe burn injury results in the loss of intestinal barrier function, however, the underlying mechanism remains unclear. Myosin light chain (MLC phosphorylation mediated by MLC kinase (MLCK is critical to the pathophysiological regulation of intestinal barrier function. We hypothesized that the MLCK-dependent MLC phosphorylation mediates the regulation of intestinal barrier function following burn injury, and that MLCK inhibition attenuates the burn-induced intestinal barrier disfunction. METHODOLOGY/PRINCIPAL FINDINGS: Male balb/c mice were assigned randomly to either sham burn (control or 30% total body surface area (TBSA full thickness burn without or with intraperitoneal injection of ML-9 (2 mg/kg, an MLCK inhibitor. In vivo intestinal permeability to fluorescein isothiocyanate (FITC-dextran was measured. Intestinal mucosa injury was assessed histologically. Tight junction proteins ZO-1, occludin and claudin-1 was analyzed by immunofluorescent assay. Expression of MLCK and phosphorylated MLC in ileal mucosa was assessed by Western blot. Intestinal permeability was increased significantly after burn injury, which was accompanied by mucosa injury, tight junction protein alterations, and increase of both MLCK and MLC phosphorylation. Treatment with ML-9 attenuated the burn-caused increase of intestinal permeability, mucosa injury, tight junction protein alterations, and decreased MLC phosphorylation, but not MLCK expression. CONCLUSIONS/SIGNIFICANCE: The MLCK-dependent MLC phosphorylation mediates intestinal epithelial barrier dysfunction after severe burn injury. It is suggested that MLCK-dependent MLC phosphorylation may be a critical target for the therapeutic treatment of intestinal epithelial barrier disruption after severe burn injury.

  4. Transepithelial Transport of PAMAM Dendrimers Across Isolated Human Intestinal Tissue.

    Science.gov (United States)

    Hubbard, Dallin; Enda, Michael; Bond, Tanner; Moghaddam, Seyyed Pouya Hadipour; Conarton, Josh; Scaife, Courtney; Volckmann, Eric; Ghandehari, Hamidreza

    2015-11-02

    Poly(amido amine) (PAMAM) dendrimers have shown transepithelial transport across intestinal epithelial barrier in rats and across Caco-2 cell monolayers. Caco-2 models innately lack mucous barriers, and rat isolated intestinal tissue has been shown to overestimate human permeability. This study is the first report of transport of PAMAM dendrimers across isolated human intestinal epithelium. It was observed that FITC labeled G4-NH2 and G3.5-COOH PAMAM dendrimers at 1 mM concentration do not have a statistically higher permeability compared to free FITC controls in isolated human jejunum and colonic tissues. Mannitol permeability was increased at 10 mM concentrations of G3.5-COOH and G4-NH2 dendrimers. Significant histological changes in human colonic and jejunal tissues were observed at G3.5-COOH and G4-NH2 concentrations of 10 mM implying that dose limiting toxicity may occur at similar concentrations in vivo. The permeability through human isolated intestinal tissue in this study was compared to previous rat and Caco-2 permeability data. This study implicates that PAMAM dendrimer oral drug delivery may be feasible, but it may be limited to highly potent drugs.

  5. Atrial natriuretic factor increases vascular permeability

    International Nuclear Information System (INIS)

    Lockette, W.; Brennaman, B.

    1990-01-01

    An increase in central blood volume in microgravity may result in increased plasma levels of atrial natriuretic factor (ANF). Since elevations in plasma ANF are found in clinical syndromes associated with edema, and since space motion sickness induced by microgravity is associated with an increase in central blood volume and facial edema, we determined whether ANF increases capillary permeability to plasma protein. Conscious, bilaterally nephrectomized male rats were infused with either saline, ANF + saline, or hexamethonium + saline over 2 h following bolus injections of 125I-albumin and 14C-dextran of similar molecular size. Blood pressure was monitored and serial determinations of hematocrits were made. Animals infused with 1.0 micrograms.kg-1.min-1 ANF had significantly higher hematocrits than animals infused with saline vehicle. Infusion of ANF increased the extravasation of 125I-albumin, but not 14C-dextran from the intravascular compartment. ANF also induced a depressor response in rats, but the change in blood pressure did not account for changes in capillary permeability to albumin; similar depressor responses induced by hexamethonium were not accompanied by increased extravasation of albumin from the intravascular compartment. ANF may decrease plasma volume by increasing permeability to albumin, and this effect of ANF may account for some of the signs and symptoms of space motion sickness

  6. Artificial Lipid Membrane Permeability Method for Predicting Intestinal Drug Transport: Probing the Determining Step in the Oral Absorption of Sulfadiazine; Influence of the Formation of Binary and Ternary Complexes with Cyclodextrins.

    Science.gov (United States)

    Delrivo, Alicia; Aloisio, Carolina; Longhi, Marcela R; Granero, Gladys

    2018-04-01

    We propose an in vitro permeability assay by using a modified lipid membrane to predict the in vivo intestinal passive permeability of drugs. Two conditions were tested, one with a gradient pH (pH 5.5 donor/pH 7.4 receptor) and the other with an iso-pH 7.4. The predictability of the method was established by correlating the obtained apparent intestinal permeability coefficients (P app ) and the oral dose fraction absorbed in humans (f a ) of 16 drugs with different absorption properties. The P app values correlated well with the absorption rates under the two conditions, and the method showed high predictability and good reproducibility. On the other hand, with this method, we successfully predicted the transport characteristics of oral sulfadiazine (SDZ). Also, the tradeoff between the increase in the solubility of SDZ by its complex formation with cyclodextrins and/or aminoacids and its oral permeability was assessed. Results suggest that SDZ is transported through the gastrointestinal epithelium by passive diffusion in a pH-dependent manner. These results support the classification of SDZ as a high/low borderline permeability compound and are in agreement with the Biopharmaceutics Classification Systems (BCS). This conclusion is consistent with the in vivo pharmacokinetic properties of SDZ.

  7. Bioaccessibility, Intestinal Permeability and Plasma Stability of Isorhamnetin Glycosides from Opuntia ficus-indica (L.).

    Science.gov (United States)

    Antunes-Ricardo, Marilena; Rodríguez-Rodríguez, César; Gutiérrez-Uribe, Janet A; Cepeda-Cañedo, Eduardo; Serna-Saldívar, Sergio O

    2017-08-22

    Isorhamnetin glycosides are representative compounds of Opuntia ficus-indica that possess different biological activities. There is slight information about the changes in bioaccessibility induced by the glycosylation pattern of flavonoids, particularly for isorhamnetin. In this study, the bioaccessibility and permeability of isorhamnetin glycosides extracted from O. ficus-indica were contrasted with an isorhamnetin standard. Also, the plasma stability of these isorhamnetin glycosides after intravenous administration in rats was evaluated. Recoveries of isorhamnetin after oral and gastric digestion were lower than that observed for its glycosides. After intestinal digestion, isorhamnetin glycosides recoveries were reduced to less than 81.0%. The apparent permeability coefficient from apical (AP) to basolateral (BL) direction (Papp (AP-BL) ) of isorhamnetin was 2.6 to 4.6-fold higher than those obtained for its glycosides. Isorhamnetin diglycosides showed higher Papp (AP-BL) values than triglycosides. Sugar substituents affected the Papp (AP-BL) of the triglycosides. Isorhamnetin glycosides were better retained in the circulatory system than the aglycone. After intravenous dose of the isorhamnetin standard, the elimination half-life was 0.64 h but increased to 1.08 h when the O. ficus-indica extract was administered. These results suggest that isorhamnetin glycosides naturally found in O. ficus-indica could be a controlled delivery system to maintain a constant plasmatic concentration of this important flavonoid to exert its biological effects in vivo.

  8. Prebiotic milk oligosaccharides prevent development of obese phenotype, impairment of gut permeability, and microbial dysbiosis in high fat-fed mice.

    Science.gov (United States)

    Hamilton, M Kristina; Ronveaux, Charlotte C; Rust, Bret M; Newman, John W; Hawley, Melissa; Barile, Daniela; Mills, David A; Raybould, Helen E

    2017-05-01

    Microbial dysbiosis and increased intestinal permeability are targets for prevention or reversal of weight gain in high-fat (HF) diet-induced obesity (DIO). Prebiotic milk oligosaccharides (MO) have been shown to benefit the host intestine but have not been used in DIO. We hypothesized that supplementation with bovine MO would prevent the deleterious effect of HF diet on the gut microbiota and intestinal permeability and attenuate development of the obese phenotype. C57BL/6 mice were fed a control diet, HF (40% fat/kcal), or HF + prebiotic [6%/kg bovine milk oligosaccharides (BMO) or inulin] for 1, 3, or 6 wk. Gut microbiota and intestinal permeability were assessed in the ileum, cecum, and colon. Addition of BMO to the HF diet significantly attenuated weight gain, decreased adiposity, and decreased caloric intake; inulin supplementation also lowered weight gain and adiposity, but this did not reach significance. BMO and inulin completely abolished the HF diet-induced increase in paracellular and transcellular permeability in the small and large intestine. Both BMO and inulin increased abundance of beneficial microbes Bifidobacterium and Lactobacillus in the ileum. However, inulin supplementation altered phylogenetic diversity and decreased species richness. We conclude that addition of BMO to the HF diet completely prevented increases in intestinal permeability and microbial dysbiosis and was partially effective to prevent weight gain in DIO. NEW & NOTEWORTHY This study provides the first report of the effects of prebiotic bovine milk oligosaccharides on the host phenotype of high-fat diet-induced obesity in mice. Copyright © 2017 the American Physiological Society.

  9. (--Epicatechin protects the intestinal barrier from high fat diet-induced permeabilization: Implications for steatosis and insulin resistance

    Directory of Open Access Journals (Sweden)

    Eleonora Cremonini

    2018-04-01

    Full Text Available Increased permeability of the intestinal barrier is proposed as an underlying factor for obesity-associated pathologies. Consumption of high fat diets (HFD is associated with increased intestinal permeabilization and increased paracellular transport of endotoxins which can promote steatosis and insulin resistance. This study investigated whether dietary (--epicatechin (EC supplementation can protect the intestinal barrier against HFD-induced permeabilization and endotoxemia, and mitigate liver damage and insulin resistance. Mechanisms leading to loss of integrity and function of the tight junction (TJ were characterized. Consumption of a HFD for 15 weeks caused obesity, steatosis, and insulin resistance in male C57BL/6J mice. This was associated with increased intestinal permeability, decreased expression of ileal TJ proteins, and endotoxemia. Supplementation with EC (2–20 mg/kg body weight mitigated all these adverse effects. EC acted modulating cell signals and the gut hormone GLP-2, which are central to the regulation of intestinal permeability. Thus, EC prevented HFD-induced ileum NOX1/NOX4 upregulation, protein oxidation, and the activation of the redox-sensitive NF-κB and ERK1/2 pathways. Supporting NADPH oxidase as a target of EC actions, in Caco-2 cells EC and apocynin inhibited tumor necrosis alpha (TNFα-induced NOX1/NOX4 overexpression, protein oxidation and monolayer permeabilization. Together, our findings demonstrate protective effects of EC against HFD-induced increased intestinal permeability and endotoxemia. This can in part underlie EC capacity to prevent steatosis and insulin resistance occurring as a consequence of HFD consumption. Keywords: Intestinal permeability, (--Epicatechin, Steatosis, Insulin resistance, Endotoxemia, NADPH oxidase

  10. Intestinal epithelium in inflammatory bowel disease

    Directory of Open Access Journals (Sweden)

    Mehmet eCoskun

    2014-08-01

    Full Text Available The intestinal epithelium has a strategic position as a protective physical barrier to luminal microbiota and actively contributes to the mucosal immune system. This barrier is mainly formed by a monolayer of specialized intestinal epithelial cells (IECs that are crucial in maintaining intestinal homeostasis. Therefore, dysregulation within the epithelial layer can increase intestinal permeability, lead to abnormalities in interactions between IECs and immune cells in underlying lamina propria, and disturb the intestinal immune homeostasis, all of which are linked to the clinical disease course of inflammatory bowel disease (IBD. Understanding the role of the intestinal epithelium in IBD pathogenesis might contribute to an improved knowledge of the inflammatory processes and the identification of potential therapeutic targets.

  11. Multiple efflux pumps are involved in the transepithelial transport of colchicine: combined effect of p-glycoprotein and multidrug resistance-associated protein 2 leads to decreased intestinal absorption throughout the entire small intestine.

    Science.gov (United States)

    Dahan, Arik; Sabit, Hairat; Amidon, Gordon L

    2009-10-01

    The purpose of this study was to thoroughly characterize the efflux transporters involved in the intestinal permeability of the oral microtubule polymerization inhibitor colchicine and to evaluate the role of these transporters in limiting its oral absorption. The effects of P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP) inhibitors on colchicine bidirectional permeability were studied across Caco-2 cell monolayers, inhibiting one versus multiple transporters simultaneously. Colchicine permeability was then investigated in different regions of the rat small intestine by in situ single-pass perfusion. Correlation with the P-gp/MRP2 expression level throughout different intestinal segments was investigated by immunoblotting. P-gp inhibitors [N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918), verapamil, and quinidine], and MRP2 inhibitors [3-[[3-[2-(7-chloroquinolin-2-yl)vinyl]phenyl]-(2-dimethylcarbamoylethylsulfanyl)methylsulfanyl] propionic acid (MK571), indomethacin, and p-aminohippuric acid (p-AH)] significantly increased apical (AP)-basolateral (BL) and decreased BL-AP Caco-2 transport in a concentration-dependent manner. No effect was obtained by the BCRP inhibitors fumitremorgin C (FTC) and pantoprazole. P-gp/MRP2 inhibitors combinations greatly reduced colchicine mucosal secretion, including complete abolishment of efflux (GF120918/MK571). Colchicine displayed low (versus metoprolol) and constant permeability along the rat small-intestine. GF120918 significantly increased colchicine permeability in the ileum with no effect in the jejunum, whereas MK571 augmented jejunal permeability without changing the ileal transport. The GF120918/MK571 combination caused an effect similar to that of MK571 alone in the jejunum and to that of GF120918 alone in the ileum. P-gp expression followed a gradient increasing from

  12. Heat stress and reduced plane of nutrition decreases intestinal integrity and function in pigs.

    Science.gov (United States)

    Pearce, S C; Mani, V; Weber, T E; Rhoads, R P; Patience, J F; Baumgard, L H; Gabler, N K

    2013-11-01

    Heat stress can compromise intestinal integrity and induce leaky gut in a variety of species. Therefore, the objectives of this study were to determine if heat stress (HS) directly or indirectly (via reduced feed intake) increases intestinal permeability in growing pigs. We hypothesized that an increased heat-load causes physiological alterations to the intestinal epithelium, resulting in compromised barrier integrity and altered intestinal function that contributes to the overall severity of HS-related illness. Crossbred gilts (n=48, 43±4 kg BW) were housed in constant climate controlled rooms in individual pens and exposed to 1) thermal neutral (TN) conditions (20°C, 35-50% humidity) with ad libitum intake, 2) HS conditions (35°C, 20-35% humidity) with ad libitum feed intake, or 3) pair-fed in TN conditions (PFTN) to eliminate confounding effects of dissimilar feed intake. Pigs were sacrificed at 1, 3, or 7 d of environmental exposure and jejunum samples were mounted into modified Ussing chambers for assessment of transepithelial electrical resistance (TER) and intestinal fluorescein isothiocyanate (FITC)-labeled lipopolysaccharide (LPS) permeability (expressed as apparent permeability coefficient, APP). Further, gene and protein markers of intestinal integrity and stress were assessed. Irrespective of d of HS exposure, plasma endotoxin levels increased 45% (Pwarm summer months.

  13. Intestinal infection with Giardia spp. reduces epithelial barrier function in a myosin light chain kinase-dependent fashion.

    Science.gov (United States)

    Scott, Kevin G-E; Meddings, Jonathon B; Kirk, David R; Lees-Miller, Susan P; Buret, André G

    2002-10-01

    Giardiasis causes malabsorptive diarrhea, and symptoms can be present in the absence of any significant morphologic injury to the intestinal mucosa. The effects of giardiasis on epithelial permeability in vivo remain unknown, and the role of T cells and myosin light chain kinase (MLCK) in altered intestinal barrier function is unclear. This study was conducted to determine whether Giardia spp. alters intestinal permeability in vivo, to assess whether these abnormalities are dependent on T cells, and to assess the role of MLCK in altered epithelial barrier function. Immunocompetent and isogenic athymic mice were inoculated with axenic Giardia muris trophozoites or sterile vehicle (control), then assessed for trophozoite colonization and gastrointestinal permeability. Mechanistic studies using nontransformed human duodenal epithelial monolayers (SCBN) determined the effects of Giardia on myosin light chain (MLC) phosphorylation, transepithelial fluorescein isothiocyanate-dextran fluxes, cytoskeletal F-actin, tight junctional zonula occludens-1 (ZO-1), and MLCK. Giardia infection caused a significant increase in small intestinal, but not gastric or colonic, permeability that correlated with trophozoite colonization in both immunocompetent and athymic mice. In vitro, Giardia increased permeability and phosphorylation of MLC and reorganized F-actin and ZO-1. These alterations were abolished with an MLCK inhibitor. Disruption of small intestinal barrier function is T cell independent, disappears on parasite clearance, and correlates with reorganization of cytoskeletal F-actin and tight junctional ZO-1 in an MLCK-dependent fashion.

  14. Early effects of gliadin on enterocyte intracellular signalling involved in intestinal barrier function.

    Science.gov (United States)

    Clemente, M G; De Virgiliis, S; Kang, J S; Macatagney, R; Musu, M P; Di Pierro, M R; Drago, S; Congia, M; Fasano, A

    2003-02-01

    Despite the progress made in understanding the immunological aspects of the pathogenesis of coeliac disease (CD), the early steps that allow gliadin to cross the intestinal barrier are still largely unknown. The aim of this study was to establish whether gliadin activates a zonulin dependent enterocyte intracellular signalling pathway(s) leading to increased intestinal permeability. The effect of gliadin on the enterocyte actin cytoskeleton was studied on rat intestinal epithelial (IEC-6) cell cultures by fluorescence microscopy and spectrofluorimetry. Zonulin concentration was measured on cell culture supernatants by enzyme linked immunosorbent assay. Transepithelial intestinal resistance (Rt) was measured on ex vivo intestinal tissues mounted in Ussing chambers. Incubation of cells with gliadin led to a reversible protein kinase C (PKC) mediated actin polymerisation temporarily coincident with zonulin release. A significant reduction in Rt was observed after gliadin addition on rabbit intestinal mucosa mounted in Ussing chambers. Pretreatment with the zonulin inhibitor FZI/0 abolished the gliadin induced actin polymerisation and Rt reduction but not zonulin release. Gliadin induces zonulin release in intestinal epithelial cells in vitro. Activation of the zonulin pathway by PKC mediated cytoskeleton reorganisation and tight junction opening leads to a rapid increase in intestinal permeability.

  15. The fraction dose absorbed, in humans, and high jejunal human permeability relationship.

    Science.gov (United States)

    Dahan, Arik; Lennernäs, Hans; Amidon, Gordon L

    2012-06-04

    The drug intestinal permeability (P(eff)) measure has been widely used as one of the main factors governing both the rate and/or extent of drug absorption (F(abs)) in humans following oral administration. In this communication we emphasize the complexity behind and the care that must be taken with this in vivo P(eff) measurement. Intestinal permeability, considering the whole of the human intestine, is more complex than generally recognized, and this can lead to misjudgment regarding F(abs) and P(eff) in various settings, e.g. drug discovery, formulation design, drug development and regulation. Setting the adequate standard for the low/high permeability class boundary, the different experimental methods for the permeability measurement, and segmental-dependent permeability throughout the human intestine due to different mechanisms are some of the main points that are discussed. Overall, the use of jejunal P(eff) as a surrogate for extent of absorption is sound and scientifically justified; a compound with high jejunal P(eff) will have high F(abs), eliminating the risk for misclassification as a BCS class I drug. Much more care should be taken, however, when jejunal P(eff) does not support a high-permeability classification; a thorough examination may reveal high-permeability after all, attributable to e.g. segmental-dependent permeability due to degree of ionization or transporter expression. In this situation, the use of multiple permeability experimental methods, including the use of metabolism, which except for luminal degradation requires absorption, is prudent and encouraged.

  16. Zonulin transgenic mice show altered gut permeability and increased morbidity/mortality in the DSS colitis model.

    Science.gov (United States)

    Sturgeon, Craig; Lan, Jinggang; Fasano, Alessio

    2017-06-01

    Increased small intestinal permeability (IP) has been proposed to be an integral element, along with genetic makeup and environmental triggers, in the pathogenies of chronic inflammatory diseases (CIDs). We identified zonulin as a master regular of intercellular tight junctions linked to the development of several CIDs. We aim to study the role of zonulin-mediated IP in the pathogenesis of CIDs. Zonulin transgenic Hp2 mice (Ztm) were subjected to dextran sodium sulfate (DSS) treatment for 7 days, followed by 4-7 days' recovery and compared to C57Bl/6 (wild-type (WT)) mice. IP was measured in vivo and ex vivo, and weight, histology, and survival were monitored. To mechanistically link zonulin-dependent impairment of small intestinal barrier function with clinical outcome, Ztm were treated with the zonulin inhibitor AT1001 added to drinking water in addition to DSS. We observed increased morbidity (more pronounced weight loss and colitis) and mortality (40-70% compared with 0% in WT) at 11 days post-DSS treatment in Ztm compared with WT mice. Both in vivo and ex vivo measurements showed an increased IP at baseline in Ztm compared to WT mice, which was exacerbated by DSS treatment and was associated with upregulation of zonulin gene expression (fourfold in the duodenum, sixfold in the jejunum). Treatment with AT1001 prevented the DSS-induced increased IP both in vivo and ex vivo without changing zonulin gene expression and completely reverted morbidity and mortality in Ztm. Our data show that zonulin-dependent small intestinal barrier impairment is an early step leading to the break of tolerance with subsequent development of CIDs. © 2017 New York Academy of Sciences.

  17. INTESTINAL PERMEABILITY IN PEDIATRIC GASTROENTEROLOGY

    NARCIS (Netherlands)

    VANELBURG, RM; UIL, JJ; DEMONCHY, JGR; HEYMANS, HSA

    1992-01-01

    The role of the physiologic barrier function of the small bowel and its possible role in health and disease has attracted much attention over the past decade. The intestinal mucosal barrier for luminal macromolecules and microorganism is the result of non-immunologic and immunologic defense

  18. Orally administered indomethacin acutely reduces cellular prion protein in the small intestine and modestly increases survival of mice exposed to infectious prions.

    Science.gov (United States)

    Martin, Gary R; Sharkey, Keith A; Jirik, Frank R

    2015-05-01

    The oral uptake of infectious prions represents a common way to acquire a prion disease; thus, host factors, such as gut inflammation and intestinal "leakiness", have the potential to influence infectivity. For example, the ingestion of nonsteroidal anti-inflammatory drugs (NSAIDs) is known to induce intestinal inflammation and increase intestinal permeability. Previously, we reported that normal cellular prion protein (PrP(C)) expression was increased in experimental colitis, and since the level of PrP(C) expressed is a determinant of prion disease propagation, we hypothesized that NSAID administration prior to the oral inoculation of mice with infectious prions would increase intestinal PrP(C) expression and accelerate the onset of neurological disease. In the long-term experiments, one group of mice was gavaged with indomethacin, followed by a second gavage with brain homogenate containing mouse-adapted scrapie (ME7). Control mice received ME7 brain homogenate alone. Brain and splenic tissues were harvested at several time points for immunoblotting, including at the onset of clinical signs of disease. In a second series of experiments, mice were gavaged with indomethacin to assess the acute effects of this treatment on intestinal PrP(C) expression. Acutely, NSAID treatment reduced intestinal PrP(C) expression, and chronically, there was a modest delay in the onset of neurological disease. In contrast to our hypothesis, brief exposure to an NSAID decreased intestinal PrP(C) expression and led to a modest survival advantage following oral ingestion of infectious prions.

  19. Tween 20 increases intestinal transport of doxorubicin in vitro but not in vivo

    DEFF Research Database (Denmark)

    Al-Sharaf, Amal; Holm, Rene; Nielsen, Carsten Uhd

    2016-01-01

    co-administered with P-gp inhibitors (non-ionic surfactants) in vitro and in vivo . The aim of the present study was thus to investigate if different non-ionic surfactants would have a similar effect on the in vitro and in vivo absorption of doxorubicin. This was investigated in vitro in Caco-2 cells...... and by oral co-administration of doxorubicin together with tween 20 to male Sprague Dawley rats. 200 μM (0.025%) tween 20 increased the intestinal absorptive permeability of doxorubicin in vitro by 48 ± 4% from 8.8 × 10(-6)cm/s to 13.0 × 10(-6)cm/s. Further, the efflux ratio was reduced from 2.2 ± 0.06 to 1.2...

  20. Gluten-induced symptoms in diarrhea-predominant irritable bowel syndrome are associated with increased myosin light chain kinase activity and claudin-15 expression.

    Science.gov (United States)

    Wu, Richard L; Vazquez-Roque, Maria I; Carlson, Paula; Burton, Duane; Grover, Madhusudan; Camilleri, Michael; Turner, Jerrold R

    2017-01-01

    The mechanisms underlying diarrhea-predominant irritable bowel syndrome (IBS-D) are poorly understood, but increased intestinal permeability is thought to contribute to symptoms. A recent clinical trial of gluten-free diet (GFD) demonstrated symptomatic improvement, relative to gluten-containing diet (GCD), which was associated with reduced intestinal permeability in non-celiac disease IBS-D patients. The aim of this study was to characterize intestinal epithelial tight junction composition in IBS-D before and after dietary gluten challenge. Biopsies from 27 IBS-D patients (13 GFD and 14 GCD) were examined by H&E staining and semiquantitative immunohistochemistry for phosphorylated myosin II regulatory light chain (MLC), MLC kinase, claudin-2, claudin-8 and claudin-15. Diet-induced changes were assessed and correlated with urinary mannitol excretion (after oral administration). In the small intestine, epithelial MLC phosphorylation was increased or decreased by GCD or GFD, respectively, and this correlated with increased intestinal permeability (Pintestinal permeability (Pintestinal permeability changes in IBS-D. The results provide new insight into IBS-D mechanisms and can explain permeability responses to gluten challenge in these patients.

  1. Optimizing solubility and permeability of a biopharmaceutics classification system (BCS) class 4 antibiotic drug using lipophilic fragments disturbing the crystal lattice.

    Science.gov (United States)

    Tehler, Ulrika; Fagerberg, Jonas H; Svensson, Richard; Larhed, Mats; Artursson, Per; Bergström, Christel A S

    2013-03-28

    Esterification was used to simultaneously increase solubility and permeability of ciprofloxacin, a biopharmaceutics classification system (BCS) class 4 drug (low solubility/low permeability) with solid-state limited solubility. Molecular flexibility was increased to disturb the crystal lattice, lower the melting point, and thereby improve the solubility, whereas lipophilicity was increased to enhance the intestinal permeability. These structural changes resulted in BCS class 1 analogues (high solubility/high permeability) emphasizing that simple medicinal chemistry may improve both these properties.

  2. Tacrolimus is a class II low-solubility high-permeability drug: the effect of P-glycoprotein efflux on regional permeability of tacrolimus in rats.

    Science.gov (United States)

    Tamura, Shigeki; Ohike, Atsuo; Ibuki, Rinta; Amidon, Gordon L; Yamashita, Shinji

    2002-03-01

    The objective of this study is to investigate the role of P-glycoprotein (P-gp), a membrane efflux pump associated with multidrug resistance (MDR) and a known substrate for tacrolimus, in determining the regional intestinal permeability of tacrolimus in rats. Thus, isolated segments of rat jejunum, ileum, or colon were perfused with tacrolimus solutions containing polyethoxylated hydrogenated castor oil 60 surfactant, and with or without verapamil, a P-gp substrate used to reverse the MDR phenotype. The results indicated that the intrinsic permeability of tacrolimus in the jejunum, calculated on the basis of the concentration of non-micellized free tacrolimus, was quite high ( approximately 1.4 x 10(-4) cm/s). The apparent permeability (P(app)) in the jejunum was unaffected by the presence of verapamil; however, the P(app) in the ileum and the colon increased significantly in the presence of verapamil and were similar to the values observed in the jejunum. The results suggest that systemic absorption of tacrolimus from the gastrointestinal tract could be significantly affected by P-gp efflux mechanisms. It is also possible that differences in P-gp function at various intestinal sites in a subject or at a given intestinal site in various subjects could lead to large intra- and interindividual variability in bioavailability of tacrolimus following oral administration. Copyright 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association .

  3. Decision trees to characterise the roles of permeability and solubility on the prediction of oral absorption.

    Science.gov (United States)

    Newby, Danielle; Freitas, Alex A; Ghafourian, Taravat

    2015-01-27

    Oral absorption of compounds depends on many physiological, physiochemical and formulation factors. Two important properties that govern oral absorption are in vitro permeability and solubility, which are commonly used as indicators of human intestinal absorption. Despite this, the nature and exact characteristics of the relationship between these parameters are not well understood. In this study a large dataset of human intestinal absorption was collated along with in vitro permeability, aqueous solubility, melting point, and maximum dose for the same compounds. The dataset allowed a permeability threshold to be established objectively to predict high or low intestinal absorption. Using this permeability threshold, classification decision trees incorporating a solubility-related parameter such as experimental or predicted solubility, or the melting point based absorption potential (MPbAP), along with structural molecular descriptors were developed and validated to predict oral absorption class. The decision trees were able to determine the individual roles of permeability and solubility in oral absorption process. Poorly permeable compounds with high solubility show low intestinal absorption, whereas poorly water soluble compounds with high or low permeability may have high intestinal absorption provided that they have certain molecular characteristics such as a small polar surface or specific topology. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  4. Intestinal permeability to chromium-51 ethylenediamine tetraacetic acid in children with chronic obstructive respiratory disease: relationship with clinical and duodenal biopsy findings

    International Nuclear Information System (INIS)

    Hoyoux, C.; Forget, P.P.; Borlee-Hermans, G.; Geubelle, F.

    1988-01-01

    Intestinal permeability (IP) to 51 Cr ethylenediamine tetraacetic acid was investigated in 47 children with chronic obstructive respiratory disease (CORD). Endoscopic duodenal biopsies were performed in 22 of these patients. IP was significantly increased in CORD patients when compared to either control children or adults (P less than 0.001). Mean +/- 1 SD were 4.3 +/- 1.71%, 2.5 +/- 0.78%, and 2.3 +/- 0.77% in the three groups, respectively. IP was not related to the presence of atopy. Significant differences in IP results were found between CORD children with abdominal pain (4.5 +/- 1.4%) and both control children and CORD patients without abdominal pain (2.5 +/- 0.78% and 3.2 +/- 1.49%, respectively). A significant correlation was found between small bowel injury on the one hand and IP on the other hand (P less than 0.02). Furthermore, small bowel injury was significantly related to the presence of abdominal pain (P less than 0.05). We speculate that in CORD patients with abdominal pain, a factor exists that causes small bowel injury responsible for both abdominal pain and increased small bowel permeability. Food intolerance could, presumably, play a role in the mucosal damage-linked IP increase found in the subset of CORD patients who complain of abdominal pain

  5. Assessment of the Effect of Intestinal Permeability Probes (Lactulose And Mannitol) and Other Liquids on Digesta Residence Times in Various Segments of the Gut Determined by Wireless Motility Capsule: A Randomised Controlled Trial.

    Science.gov (United States)

    Sequeira, Ivana R; Lentle, Roger G; Kruger, Marlena C; Hurst, Roger D

    2015-01-01

    Whilst the use of the mannitol/lactulose test for intestinal permeability has been long established it is not known whether the doses of these sugars modify transit time Similarly it is not known whether substances such as aspirin that are known to increase intestinal permeability to lactulose and mannitol and those such as ascorbic acid which are stated to be beneficial to gastrointestinal health also influence intestinal transit time. Gastric and intestinal transit times were determined with a SmartPill following consumption of either a lactulose mannitol solution, a solution containing 600 mg aspirin, a solution containing 500 mg of ascorbic acid or an extract of blackcurrant, and compared by doubly repeated measures ANOVA with those following consumption of the same volume of a control in a cross-over study in six healthy female volunteers. The dominant frequencies of cyclic variations in gastric pressure recorded by the Smartpill were determined by fast Fourier transforms. The gastric transit times of lactulose mannitol solutions, of aspirin solutions and of blackcurrant juice did not differ from those of the control. The gastric transit times of the ascorbic acid solutions were significantly shorter than those of the other solutions. There were no significant differences between the various solutions either in the total small intestinal or colonic transit times. The intraluminal pHs during the initial quartiles of the small intestinal transit times were lower than those in the succeeding quartiles. This pattern did not vary with the solution that was consumed. The power of the frequencies of cyclic variation in intragastric pressure recorded by the Smartpill declined exponentially with increase in frequency and did not peak at the reported physiological frequencies of gastric contractile activity. Whilst the segmental residence times were broadly similar to those using other methods, the high degree of variation between subjects generally precluded the

  6. Assessment of the Effect of Intestinal Permeability Probes (Lactulose And Mannitol and Other Liquids on Digesta Residence Times in Various Segments of the Gut Determined by Wireless Motility Capsule: A Randomised Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Ivana R Sequeira

    Full Text Available Whilst the use of the mannitol/lactulose test for intestinal permeability has been long established it is not known whether the doses of these sugars modify transit time Similarly it is not known whether substances such as aspirin that are known to increase intestinal permeability to lactulose and mannitol and those such as ascorbic acid which are stated to be beneficial to gastrointestinal health also influence intestinal transit time.Gastric and intestinal transit times were determined with a SmartPill following consumption of either a lactulose mannitol solution, a solution containing 600 mg aspirin, a solution containing 500 mg of ascorbic acid or an extract of blackcurrant, and compared by doubly repeated measures ANOVA with those following consumption of the same volume of a control in a cross-over study in six healthy female volunteers. The dominant frequencies of cyclic variations in gastric pressure recorded by the Smartpill were determined by fast Fourier transforms.The gastric transit times of lactulose mannitol solutions, of aspirin solutions and of blackcurrant juice did not differ from those of the control. The gastric transit times of the ascorbic acid solutions were significantly shorter than those of the other solutions. There were no significant differences between the various solutions either in the total small intestinal or colonic transit times. The intraluminal pHs during the initial quartiles of the small intestinal transit times were lower than those in the succeeding quartiles. This pattern did not vary with the solution that was consumed. The power of the frequencies of cyclic variation in intragastric pressure recorded by the Smartpill declined exponentially with increase in frequency and did not peak at the reported physiological frequencies of gastric contractile activity.Whilst the segmental residence times were broadly similar to those using other methods, the high degree of variation between subjects generally

  7. Probiotic yogurt in the elderly with intestinal bacterial overgrowth: endotoxaemia and innate immune functions

    DEFF Research Database (Denmark)

    Schiffrin, E.J.; Parlesak, Alexandr; Bode, C.

    2009-01-01

    and after a period of 4 weeks of probiotic yoghurt administration. Intestinal permeability, plasma endotoxin levels, phagocytic activity of leucocytes, cytokine production by monocytes and free radical response of neutrophils were determined. Intestinal permeability was similar for the two groups...... and was unaffected by probiotic treatment. Both plasma endotoxin levels and the basal phagocytic activity of leucocytes decreased after yoghurt intake in the two groups. Exposure of monocytes and neutrophils ex vivo led to an increased cytokine response and free radical response, respectively. The normalisation...

  8. Vascular permeability-increasing effect of the leaf essential oil of ...

    African Journals Online (AJOL)

    African Journal of Traditional, Complementary and Alternative Medicines ... Analysis of the differences in vascular permeability between treatment groups showed that, Ocimum oil, in intensity and duration, was significantly (p < 0.05) more effective in increasing cutaneous capillary permeability over a 24h period after ...

  9. The low/high BCS permeability class boundary: physicochemical comparison of metoprolol and labetalol.

    Science.gov (United States)

    Zur, Moran; Gasparini, Marisa; Wolk, Omri; Amidon, Gordon L; Dahan, Arik

    2014-05-05

    Although recognized as overly conservative, metoprolol is currently the common low/high BCS permeability class boundary reference compound, while labetalol was suggested as a potential alternative. The purpose of this study was to identify the various characteristics that the optimal marker should exhibit, and to investigate the suitability of labetalol as the permeability class reference drug. Labetalol's BCS solubility class was determined, and its physicochemical properties and intestinal permeability were thoroughly investigated, both in vitro and in vivo in rats, considering the complexity of the whole of the small intestine. Labetalol was found to be unequivocally a high-solubility compound. In the pH range throughout the small intestine (6.5-7.5), labetalol exhibited pH-dependent permeability, with higher permeability at higher pH values. While in vitro octanol-buffer partitioning (Log D) values of labetalol were significantly higher than those of metoprolol, the opposite was evident in the in vitro PAMPA permeability assay. The results of the in vivo perfusion studies in rats lay between the two contradictory in vitro studies; metoprolol was shown to have moderately higher rat intestinal permeability than labetalol. Theoretical distribution of the ionic species of the drugs was in corroboration with the experimental in vitro and the in vivo data. We propose three characteristics that the optimal permeability class reference drug should exhibit: (1) fraction dose absorbed in the range of 90%; (2) the optimal marker drug should be absorbed largely via passive transcellular permeability, with no/negligible carrier-mediated active intestinal transport (influx or efflux); and (3) the optimal marker drug should preferably be nonionizable. The data presented in this paper demonstrate that neither metoprolol nor labetalol can be regarded as optimal low/high-permeability class boundary standard. While metoprolol is too conservative due to its complete absorption

  10. HDAC1 and HDAC2 restrain the intestinal inflammatory response by regulating intestinal epithelial cell differentiation.

    Directory of Open Access Journals (Sweden)

    Naomie Turgeon

    Full Text Available Acetylation and deacetylation of histones and other proteins depends on histone acetyltransferases and histone deacetylases (HDACs activities, leading to either positive or negative gene expression. HDAC inhibitors have uncovered a role for HDACs in proliferation, apoptosis and inflammation. However, little is known of the roles of specific HDACs in intestinal epithelial cells (IEC. We investigated the consequences of ablating both HDAC1 and HDAC2 in murine IECs. Floxed Hdac1 and Hdac2 homozygous mice were crossed with villin-Cre mice. Mice deficient in both IEC HDAC1 and HDAC2 weighed less and survived more than a year. Colon and small intestinal sections were stained with hematoxylin and eosin, or with Alcian blue and Periodic Acid Schiff for goblet cell identification. Tissue sections from mice injected with BrdU for 2 h, 14 h and 48 h were stained with anti-BrdU. To determine intestinal permeability, 4-kDa FITC-labeled dextran was given by gavage for 3 h. Microarray analysis was performed on total colon RNAs. Inflammatory and IEC-specific gene expression was assessed by Western blot or semi-quantitative RT-PCR and qPCR with respectively total colon protein and total colon RNAs. HDAC1 and HDAC2-deficient mice displayed: 1 increased migration and proliferation, with elevated cyclin D1 expression and phosphorylated S6 ribosomal protein, a downstream mTOR target; 2 tissue architecture defects with cell differentiation alterations, correlating with reduction of secretory Paneth and goblet cells in jejunum and goblet cells in colon, increased expression of enterocytic markers such as sucrase-isomaltase in the colon, increased expression of cleaved Notch1 and augmented intestinal permeability; 3 loss of tissue homeostasis, as evidenced by modifications of claudin 3 expression, caspase-3 cleavage and Stat3 phosphorylation; 4 chronic inflammation, as determined by inflammatory molecular expression signatures and altered inflammatory gene expression

  11. Intestinal metabolism of PAH: in vitro demonstration and study of its impact on PAH transfer through the intestinal epithelium

    International Nuclear Information System (INIS)

    Cavret, Severine; Feidt, Cyril

    2005-01-01

    Food would seem to be one of the main ways of animal and human contamination with polycyclic aromatic hydrocarbons (PAHs). In vivo studies suggest a transfer in intestinal epithelium by diffusion, which appears extensively governed by the physicochemical properties of PAHs, particularly lipophilicity. However, other mechanisms, such as metabolism, are considered to intervene. Our work aimed at testing in vitro intestinal metabolism and defining its impact on transepithelial transport of PAHs. Caco-2 cells were cultivated on permeable filters and incubated with 14 C-labeled benzo[a]pyrene (BaP), pyrene (Pyr), and phenanthrene (Phe), which differ in their physicochemical properties. The results showed that the cells were able to metabolize the compounds. In basal media, Phe appeared to be the least hydroxylated molecule (45% after a 6-h exposure), followed by Pyr (65%) and finally BaP (96%). Inhibition of PAH metabolism showed a determinant effect on kinetics profiles. Transfer in the basal compartment of BaP, Pyr, and Phe radioactivities was, respectively, 26, 4, and 2 times lower with inhibitors, corroborating that intestinal metabolism of PAHs would have a positive impact on their transfer, an impact that increased with their lipophilicity. Furthermore, after a 6-h incubation, metabolites were also detected in apical medium. These findings suggested that intestinal metabolism might play a key role in intestinal barrier permeability and thus in the bioavailability of tested micropollutants

  12. Drug-permeability and transporter assays in Caco-2 and MDCK cell lines.

    Science.gov (United States)

    Volpe, Donna A

    2011-12-01

    The human colon adenocarcinoma Caco-2 and Madin-Darby canine kidney epithelial cell lines provide in vitro tools to assess a drug's permeability and transporter interactions during discovery and development. The cells, when cultured on semiporous filters, form confluent monolayers that model the intestinal epithelial barrier for permeability, transporter and drug-interaction assays. The applications of these assays in pharmaceutical research include qualitative prediction and ranking of absorption, determining mechanism(s) of permeability, formulation effects on drug permeability, and the potential for transporter-mediated drug-drug interactions. This review focuses on recent examples of Caco-2 and Madin-Darby canine kidney cells assays for drug permeability including transfected and knock-down cells, miniaturization and automation, and assay combinations to better understand and predict intestinal drug absorption.

  13. Conjugated primary bile salts reduce permeability of endotoxin through bacteria-stimulated intestinal epithelial cells and synergize with lecithin in suppression of inflammatory cytokine production

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Schaeckeler, Simone; Moser, Lydia

    2007-01-01

    : The effect of CPBS (0.5 mM and 1.5 mM), phosphatidylcholine(0.38 mM), and human bile (0.5% vol/vol) on the barrier function was assessed by the measurement of transepithelial electrical resistance, by endotoxin permeability through the intestinal epithelial cell layer, and by basolateral cytokine enzyme...

  14. Cell-permeable intrinsic cellular inhibitors of apoptosis protect and rescue intestinal epithelial cells from radiation-induced cell death

    International Nuclear Information System (INIS)

    Matsuzaki-Horibuchi, Shiori; Yasuda, Takeshi; Sakaguchi, Nagako; Yamaguchi, Yoshihiro; Akashi, Makoto

    2015-01-01

    One of the important mechanisms for gastrointestinal (GI) injury following high-dose radiation exposure is apoptosis of epithelial cells. X-linked inhibitor of apoptosis (XIAP) and cellular IAP2 (cIAP2) are intrinsic cellular inhibitors of apoptosis. In order to study the effects of exogenously added IAPs on apoptosis in intestinal epithelial cells, we constructed bacterial expression plasmids containing genes of XIAP (full-length, BIR2 domain and BIR3-RING domain with and without mutations of auto-ubiquitylation sites) and cIAP2 proteins fused to a protein-transduction domain (PTD) derived from HIV-1 Tat protein (TAT) and purified these cell-permeable recombinant proteins. When the TAT-conjugated IAPs were added to rat intestinal epithelial cells IEC6, these proteins were effectively delivered into the cells and inhibited apoptosis, even when added after irradiation. Our results suggest that PTD-mediated delivery of IAPs may have clinical potential, not only for radioprotection but also for rescuing the GI system from radiation injuries. (author)

  15. Intestinal fluid absorption in anadromous salmonids: importance of tight junctions and aquaporins

    Directory of Open Access Journals (Sweden)

    Kristina eSundell

    2012-09-01

    Full Text Available The anadromous salmonid life cycle includes both fresh water (FW and seawater (SW stages. The parr-smolt transformation (smoltification pre–adapt the fish to SW while still in FW. The osmoregulatory organs change their mode of action from a role of preventing water inflow in FW, to absorb ions to replace water lost by osmosis in SW. During smoltification, the drinking rate increases, in the intestine the ion and fluid transport increases and is further elevated after SW entry. In SW, the intestine absorbs ions to create an inwardly directed water flow which is accomplished by increased Na+,K+-ATPase (NKA activity in the basolateral membrane, driving ion absorption via ion channels and/or co-transporters. This review will aim at discussing the expression patterns of the ion transporting proteins involved in intestinal fluid absorption in the FW stage, during smoltification and after SW entry. Of equal importance for intestinal fluid absorption as the active absorption of ions, is the permeability of the epithelium to ions and water. During the smoltification the increase in NKA activity and water uptake in SW is accompanied by decreased paracellular permeability suggesting a redirection of the fluid movement from a paracellular route in FW, to a transcellular route in SW. Increased transcellular fluid absorption could be achieved by incorporation of aquaporins (AQPs into the enterocyte membranes and/or by a change in fatty acid profile of the enterocyte lipid bilayer. An increased incorporation of unsaturated fatty acids into the membrane phospholipids will increase water permeability by enhancing the fluidity of the membrane. A second aim of the present review is therefore to discuss the presence and regulation of expression of AQPs in the enterocyte membrane as well as to discuss the profile of fatty acids present in the membrane phospholipids during different stages of the salmonid lifecycle.

  16. Bifidobacterium animalis ssp. lactis CNCM-I2494 Restores Gut Barrier Permeability in Chronically Low-Grade Inflamed Mice.

    Science.gov (United States)

    Martín, Rebeca; Laval, Laure; Chain, Florian; Miquel, Sylvie; Natividad, Jane; Cherbuy, Claire; Sokol, Harry; Verdu, Elena F; van Hylckama Vlieg, Johan; Bermudez-Humaran, Luis G; Smokvina, Tamara; Langella, Philippe

    2016-01-01

    Growing evidence supports the efficacy of many probiotic strains in the management of gastrointestinal disorders associated with deregulated intestinal barrier function and/or structure. In particular, bifidobacteria have been studied for their efficacy to both prevent and treat a broad spectrum of animal and/or human gut disorders. The aim of the current work was thus to evaluate effects on intestinal barrier function of Bifidobacterium animalis ssp. lactis CNCM-I2494, a strain used in fermented dairy products. A chronic dinitrobenzene sulfonic acid (DNBS)-induced low-grade inflammation model causing gut dysfunction in mice was used in order to study markers of inflammation, intestinal permeability, and immune function in the presence of the bacterial strain. In this chronic low-grade inflammation mice model several parameters pointed out the absence of an over active inflammation process. However, gut permeability, lymphocyte populations, and colonic cytokines were found to be altered. B. animalis ssp. lactis CNCM-I2494 was able to protect barrier functions by restoring intestinal permeability, colonic goblet cell populations, and cytokine levels. Furthermore, tight junction (TJ) proteins levels were also measured by qRT-PCR showing the ability of this strain to specifically normalize the level of several TJ proteins, in particular for claudin-4. Finally, B. lactis strain counterbalanced CD4(+) lymphocyte alterations in both spleen and mesenteric lymphoid nodes. It restores the Th1/Th2 ratio altered by the DNBS challenge (which locally augments CD4(+) Th1 cells) by increasing the Th2 response as measured by the increase in the production of major representative Th2 cytokines (IL-4, IL-5, and IL-10). Altogether, these data suggest that B. animalis ssp. lactis CNCM-I2494 may efficiently prevent disorders associated with increased barrier permeability.

  17. Arctigenin from Fructus Arctii (Seed of Burdock) Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers

    Science.gov (United States)

    Shin, Hee Soon; Jung, Sun Young; Back, Su Yeon; Do, Jeong-Ryong; Shon, Dong-Hwa

    2015-01-01

    Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER) value (as an index of barrier function) and ovalbumin (OVA) permeation (as an index of permeability) to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function. PMID:26550018

  18. Arctigenin from Fructus Arctii (Seed of Burdock Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers

    Directory of Open Access Journals (Sweden)

    Hee Soon Shin

    2015-01-01

    Full Text Available Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER value (as an index of barrier function and ovalbumin (OVA permeation (as an index of permeability to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function.

  19. Oral Administration of Probiotics Increases Paneth Cells and Intestinal Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Silvia I. Cazorla

    2018-04-01

    Full Text Available The huge amount of intestinal bacteria represents a continuing threat to the intestinal barrier. To meet this challenge, gut epithelial cells produce antimicrobial peptides (AMP that act at the forefront of innate immunity. We explore whether this antimicrobial activity and Paneth cells, the main intestinal cell responsible of AMP production, are influenced by probiotics administration, to avoid the imbalance of intestinal microbiota and preserve intestinal barrier. Administration of Lactobacillus casei CRL 431 (Lc 431 and L. paracasei CNCM I-1518 (Lp 1518 to 42 days old mice, increases the number of Paneth cells on small intestine, and the antimicrobial activity against the pathogens Staphylococcus aureus and Salmonella Typhimurium in the intestinal fluids. Specifically, strong damage of the bacterial cell with leakage of cytoplasmic content, and cellular fragmentation were observed in S. Typhimurium and S. aureus. Even more important, probiotics increase the antimicrobial activity of the intestinal fluids at the different ages, from weaning (21 days old to old age (180 days old. Intestinal antimicrobial activity stimulated by oral probiotics, do not influence significantly the composition of total anaerobic bacteria, lactobacilli and enterobacteria in the large intestine, at any age analyzed. This result, together with the antimicrobial activity observed against the same probiotic bacteria; endorse the regular consumption of probiotics without adverse effect on the intestinal homeostasis in healthy individuals. We demonstrate that oral probiotics increase intestinal antimicrobial activity and Paneth cells in order to strengthen epithelial barrier against pathogens. This effect would be another important mechanism by which probiotics protect the host mainly against infectious diseases.

  20. Autoradiographic study of the permeability characteristics of the small intestine

    Energy Technology Data Exchange (ETDEWEB)

    Kingham, J G.C.; Baker, J H; Loehry, C A [Royal Victoria Hospital, Bournemouth (UK)

    1978-02-01

    This autoradiographic study demonstrates the distribution of a range of small solutes and macromolecules in the mucosa of the guinea-pig small intestine after intracardiac injection. The substances investigated were: /sup 14/C-urea, /sup 3/H-mannose, /sup 3/H-inulin, and /sup 125/I polyvinylpyrrolidone (PVP). Small bowel biopsies were taken at intervals from one to 60 minutes after injection and the tissues processed for autoradiography. Light microscopic examination of the autoradiographs showed that the compartmental distribution depended on the molecular size of the substances being studied. Urea and mannose, as small solutes, were uniformly distributed throughout the intravascular, extravascular, and epithelial compartments. Inulin was evenly distributed in the vessel lumen and extravascular space but there was a considerable drop in concentration in the epithelium. PVP exhibited the most marked gradients, the concentration being greatest in the vascular lumina, lower in the extravascular space, least in the epithelium. Thus there appear to be two barriers to macromolecular passage which are freely permeable to small solutes: the capillary wall and the epithelium. At a light microscopical level it was not possible to observe whether the limiting membrane of each of these barriers is the cell plasmalemmal membrane or the basement membrane. The selectivity of the epithelial barrier was greater than that of the capillary barrier.

  1. Protective effect of salvianolic acid B against intestinal ischemia ...

    African Journals Online (AJOL)

    Conclusion: The results of this study demonstrate that SAB may protect the intestine by attenuating oxidative stress and inflammatory response and hence, may be potentially for treating IIRI. Keywords: Salvianolic acid B, Intestinal Ischemia-reperfusion, Antioxidants, Inflammation, Intestinal permeability ...

  2. Curcumin and Chronic Kidney Disease (CKD: Major Mode of Action through Stimulating Endogenous Intestinal Alkaline Phosphatase

    Directory of Open Access Journals (Sweden)

    Siddhartha S. Ghosh

    2014-12-01

    Full Text Available Curcumin, an active ingredient in the traditional herbal remedy and dietary spice turmeric (Curcuma longa, has significant anti-inflammatory properties. Chronic kidney disease (CKD, an inflammatory disease, can lead to end stage renal disease resulting in dialysis and transplant. Furthermore, it is frequently associated with other inflammatory disease such as diabetes and cardiovascular disorders. This review will focus on the clinically relevant inflammatory molecules that play a role in CKD and associated diseases. Various enzymes, transcription factors, growth factors modulate production and action of inflammatory molecules; curcumin can blunt the generation and action of these inflammatory molecules and ameliorate CKD as well as associated inflammatory disorders. Recent studies have shown that increased intestinal permeability results in the leakage of pro-inflammatory molecules (cytokines and lipopolysaccharides from gut into the circulation in diseases such as CKD, diabetes and atherosclerosis. This change in intestinal permeability is due to decreased expression of tight junction proteins and intestinal alkaline phosphatase (IAP. Curcumin increases the expression of IAP and tight junction proteins and corrects gut permeability. This action reduces the levels of circulatory inflammatory biomolecules. This effect of curcumin on intestine can explain why, despite poor bioavailability, curcumin has potential anti-inflammatory effects in vivo and beneficial effects on CKD.

  3. Starved Guts: Morphologic and Functional Intestinal Changes in Malnutrition.

    Science.gov (United States)

    Attia, Suzanna; Feenstra, Marjon; Swain, Nathan; Cuesta, Melina; Bandsma, Robert H J

    2017-11-01

    Malnutrition contributes significantly to death and illness worldwide and especially to the deaths of children younger than 5 years. The relation between intestinal changes in malnutrition and morbidity and mortality has not been well characterized; however, recent research indicates that the functional and morphologic changes of the intestine secondary to malnutrition itself contribute significantly to these negative clinical outcomes and may be potent targets of intervention. The aim of this review was to summarize current knowledge of experimental and clinically observed changes in the intestine from malnutrition preclinical models and human studies. Limited clinical studies have shown villous blunting, intestinal inflammation, and changes in the intestinal microbiome of malnourished children. In addition to these findings, experimental data using various animal models of malnutrition have found evidence of increased intestinal permeability, upregulated intestinal inflammation, and loss of goblet cells. More mechanistic studies are urgently needed to improve our understanding of malnutrition-related intestinal dysfunction and to identify potential novel targets for intervention.

  4. Lactobacillus rhamnosus GG treatment improves intestinal permeability and modulates inflammatory response and homeostasis of spleen and colon in experimental model of Pseudomonas aeruginosa pneumonia.

    Science.gov (United States)

    Khailova, Ludmila; Baird, Christine H; Rush, Aubri A; Barnes, Christopher; Wischmeyer, Paul E

    2017-12-01

    Recent clinical trials and in vivo models demonstrate probiotic administration can reduce occurrence and improve outcome of pneumonia and sepsis, both major clinical challenges worldwide. Potential probiotic benefits include maintenance of gut epithelial barrier homeostasis and prevention of downstream organ dysfunction due to systemic inflammation. However, mechanism(s) of probiotic-mediated protection against pneumonia remain poorly understood. This study evaluated potential mechanistic targets in the maintenance of gut barrier homeostasis following Lactobacillus rhamnosus GG (LGG) treatment in a mouse model of pneumonia. Studies were performed in 6-8 week old FVB/N mice treated (o.g.) with or without LGG (10 9  CFU/ml) and intratracheally injected with Pseudomonas aeruginosa or saline. At 4, 12, and 24 h post-bacterial treatment spleen and colonic tissue were collected for analysis. Pneumonia significantly increased intestinal permeability and gut claudin-2. LGG significantly attenuated increased gut permeability and claudin-2 following pneumonia back to sham control levels. As mucin expression is key to gut barrier homeostasis we demonstrate that LGG can enhance goblet cell expression and mucin barrier formation versus control pneumonia animals. Further as Muc2 is a key gut mucin, we show LGG corrected deficient Muc2 expression post-pneumonia. Apoptosis increased in both colon and spleen post-pneumonia, and this increase was significantly attenuated by LGG. Concomitantly, LGG corrected pneumonia-mediated loss of cell proliferation in colon and significantly enhanced cell proliferation in spleen. Finally, LGG significantly reduced pro-inflammatory cytokine gene expression in colon and spleen post-pneumonia. These data demonstrate LGG can maintain intestinal barrier homeostasis by enhancing gut mucin expression/barrier formation, reducing apoptosis, and improving cell proliferation. This was accompanied by reduced pro-inflammatory cytokine expression in the

  5. Glutamine supplementation of parenteral nutrition does not improve intestinal permeability, nitrogen balance, or outcome in newborns and infants undergoing digestive-tract surgery: results from a double-blind, randomized, controlled trial

    NARCIS (Netherlands)

    E.W. Steyerberg (Ewout); F.W.J. Hazebroek (Frans); M. Mourik; G.J.J.M. Borsboom (Gerard); T. Rietveld (Trinet); J.G.M. Huijmans (Jan); D. Tibboel (Dick); M.J.I.J. Albers (Marcel)

    2005-01-01

    textabstractOBJECTIVE: To assess the effect of isocaloric isonitrogenous parenteral glutamine supplementation on intestinal permeability and nitrogen loss in newborns and infants after major digestive-tract surgery. SUMMARY BACKGROUND DATA: Glutamine supplementation in critically

  6. Claudins, dietary milk proteins, and intestinal barrier regulation.

    Science.gov (United States)

    Kotler, Belinda M; Kerstetter, Jane E; Insogna, Karl L

    2013-01-01

    The family of claudin proteins plays an important role in regulating the intestinal barrier by modulating the permeability of tight junctions. The impact of dietary protein on claudin biology has not been studied extensively. Whey proteins have been reported to improve intestinal barrier function, but their mechanism of action is not clear. Recent studies, however, have demonstrated increased intestinal claudin expression in response to milk protein components. Reviewed here are new findings suggesting that whey-protein-derived transforming growth factor β transcriptionally upregulates claudin-4 expression via a Smad-4-dependent pathway. These and other data, including limited clinical studies, are summarized below and, in the aggregate, suggest a therapeutic role for whey protein in diseases of intestinal barrier dysfunction, perhaps, in part, by regulating claudin expression. © 2013 International Life Sciences Institute.

  7. Host-dependent zonulin secretion causes the impairment of the small intestine barrier function after bacterial exposure.

    Science.gov (United States)

    El Asmar, Ramzi; Panigrahi, Pinaki; Bamford, Penelope; Berti, Irene; Not, Tarcisio; Coppa, Giovanni V; Catassi, Carlo; Fasano, Alessio; El Asmar, Rahzi

    2002-11-01

    Enteric infections have been implicated in the pathogenesis of both food intolerance and autoimmune diseases secondary to the impairment of the intestinal barrier. On the basis of our recent discovery of zonulin, a modulator of small-intestinal tight junctions, we asked whether microorganisms might induce zonulin secretion and increased small-intestinal permeability. Both ex vivo mammalian small intestines and intestinal cell monolayers were exposed to either pathogenic or nonpathogenic enterobacteria. Zonulin production and changes in paracellular permeability were monitored in Ussing chambers and micro-snapwells. Zonula occludens 1 protein redistribution after bacteria colonization was evaluated on cell monolayers. Small intestines exposed to enteric bacteria secreted zonulin. This secretion was independent of either the species of the small intestines or the virulence of the microorganisms tested, occurred only on the luminal aspect of the bacteria-exposed small-intestinal mucosa, and was followed by a decrease in small-intestinal tissue resistance (transepithelial electrical resistance). The transepithelial electrical resistance decrement was secondary to the zonulin-induced tight junction disassembly, as also shown by the disengagement of the protein zonula occludens 1 protein from the tight junctional complex. This zonulin-driven opening of the paracellular pathway may represent a defensive mechanism, which flushes out microorganisms and contributes to the host response against bacterial colonization of the small intestine.

  8. Small bowel permeability to 51Cr-EDTA in children with recurrent abdominal pain

    International Nuclear Information System (INIS)

    Meer, S.B. van der.; Forget, P.P.

    1990-01-01

    Small bowel permeability was investigated in 87 children with recurrent abdominal pain by measuring the 24-h urinary excretion of orally administered 51 Cr-EDTA. The mean excreation was 3.64% ± 1.49% per 24 h. The difference between the mean urinary excretion in children with recurrent abdominal pain and control children (2.51% ± 0.70%), was significant (p<0.01, two sample t-test). The increased small permeability in children with recurrent abdominal pain might indicate an intestinal etiology for the patients complaints

  9. INTESTINAL MICROBIOTA IN DIGESTIVE DISEASES

    Directory of Open Access Journals (Sweden)

    Maria do Carmo Friche PASSOS

    2017-07-01

    Full Text Available ABSTRACT BACKGROUND In recent years, especially after the development of sophisticated metagenomic studies, research on the intestinal microbiota has increased, radically transforming our knowledge about the microbiome and its association with health maintenance and disease development in humans. Increasing evidence has shown that a permanent alteration in microbiota composition or function (dysbiosis can alter immune responses, metabolism, intestinal permeability, and digestive motility, thereby promoting a proinflammatory state. Such alterations can mainly impair the host’s immune and metabolic functions, thus favoring the onset of diseases such as diabetes, obesity, digestive, neurological, autoimmune, and neoplastic diseases. This comprehensive review is a compilation of the available literature on the formation of the complex intestinal ecosystem and its impact on the incidence of diseases such as obesity, non-alcoholic steatohepatitis, irritable bowel syndrome, inflammatory bowel disease, celiac disease, and digestive neoplasms. CONCLUSION: Alterations in the composition and function of the gastrointestinal microbiota (dysbiosis have a direct impact on human health and seem to have an important role in the pathogenesis of several gastrointestinal diseases, whether inflammatory, metabolic, or neoplastic ones.

  10. Breakdown of mucin as barrier to digestive enzymes in the ischemic rat small intestine.

    Directory of Open Access Journals (Sweden)

    Marisol Chang

    Full Text Available Loss of integrity of the epithelial/mucosal barrier in the small intestine has been associated with different pathologies that originate and/or develop in the gastrointestinal tract. We showed recently that mucin, the main protein in the mucus layer, is disrupted during early periods of intestinal ischemia. This event is accompanied by entry of pancreatic digestive enzymes into the intestinal wall. We hypothesize that the mucin-containing mucus layer is the main barrier preventing digestive enzymes from contacting the epithelium. Mucin breakdown may render the epithelium accessible to pancreatic enzymes, causing its disruption and increased permeability. The objective of this study was to investigate the role of mucin as a protection for epithelial integrity and function. A rat model of 30 min splanchnic arterial occlusion (SAO was used to study the degradation of two mucin isoforms (mucin 2 and 13 and two epithelial membrane proteins (E-cadherin and toll-like receptor 4, TLR4. In addition, the role of digestive enzymes in mucin breakdown was assessed in this model by luminal inhibition with acarbose, tranexamic acid, or nafamostat mesilate. Furthermore, the protective effect of the mucin layer against trypsin-mediated disruption of the intestinal epithelium was studied in vitro. Rats after SAO showed degradation of mucin 2 and fragmentation of mucin 13, which was not prevented by protease inhibition. Mucin breakdown was accompanied by increased intestinal permeability to FITC-dextran as well as degradation of E-cadherin and TLR4. Addition of mucin to intestinal epithelial cells in vitro protected against trypsin-mediated degradation of E-cadherin and TLR4 and reduced permeability of FITC-dextran across the monolayer. These results indicate that mucin plays an important role in the preservation of the mucosal barrier and that ischemia but not digestive enzymes disturbs mucin integrity, while digestive enzymes actively mediate epithelial cell

  11. The relation between molecular properties of drugs and their transport across the intestinal membrane

    Directory of Open Access Journals (Sweden)

    Zakeri-Milani P.

    2006-07-01

    Full Text Available The aim of this study was to investigate the relationship between the intestinal absorption of structurally diverse model drugs across the rat intestinal mucosa and their molecular properties. Permeability coefficients for 13 compounds were determined in anaesthetized rats. Drug solution in phosphate buffered saline (PBS was perfused through the intestinal segment with flow rate of 0.21 ml/min and samples were taken from outlet tubing at different time points up to 90 min. The permeability values ranged from 1.6×10-5 to 2 ×10-4 cm/sec for atenolol and ibuprofen respectively. Molecular properties of drugs including the number of hydrogen bond donors and acceptors, log P, logD, topological polar surface area and number of rotatable bonds were considered. The results indicated that compounds which meet 10 or fewer number of rotatable bonds and topological surface area equal to or less than 140 A◦ have a high probability of good intestinal permeability and fraction of dose which is absorbed in human. Moreover the results indicated that lower number of hydrogen bond counts and higher logD and logP values are associated with higher permeability and bioavailabilty of drugs. Therefore the experimental and computational methods could be used for the prediction of intestinal drug permeability.

  12. The bacterial metabolism of carbohydrates used in tests of intestinal permeability

    OpenAIRE

    Qureishy, Gulzar A.

    1984-01-01

    Carbohydrates have been used for tests of intestinal function for many years and the impaired absorption of carbohydrates in the intestinal lumen is either due to the damaged intestinal absorptive surface, as in coeliac disease etc., in some types of acute gastroenteritis , when the absorptive area is reduced by villous atrophy , or due to the bacterial overgrowth in the small intestinal lumen as in blind loop syndrome , some types of malabsorption , which possibly produce alteration in the m...

  13. Deoxynivalenol affects in vitro intestinal epithelial cell barrier integrity through inhibition of protein synthesis

    International Nuclear Information System (INIS)

    Van De Walle, Jacqueline; Sergent, Therese; Piront, Neil; Toussaint, Olivier; Schneider, Yves-Jacques; Larondelle, Yvan

    2010-01-01

    Deoxynivalenol (DON), one of the most common mycotoxin contaminants of raw and processed cereal food, adversely affects the gastrointestinal tract. Since DON acts as a protein synthesis inhibitor, the constantly renewing intestinal epithelium could be particularly sensitive to DON. We analyzed the toxicological effects of DON on intestinal epithelial protein synthesis and barrier integrity. Differentiated Caco-2 cells, as a widely used model of the human intestinal barrier, were exposed to realistic intestinal concentrations of DON (50, 500 and 5000 ng/ml) during 24 h. DON caused a concentration-dependent decrease in total protein content associated with a reduction in the incorporation of [ 3 H]-leucine, demonstrating its inhibitory effect on protein synthesis. DON simultaneously increased the paracellular permeability of the monolayer as reflected through a decreased transepithelial electrical resistance associated with an increased paracellular flux of the tracer [ 3 H]-mannitol. A concentration-dependent reduction in the expression level of the tight junction constituent claudin-4 was demonstrated by Western blot, which was not due to diminished transcription, increased degradation, or NF-κB, ERK or JNK activation, and was also observed for a tight junction independent protein, i.e. intestinal alkaline phosphatase. These results demonstrate a dual toxicological effect of DON on differentiated Caco-2 cells consisting in an inhibition of protein synthesis as well as an increase in monolayer permeability, and moreover suggest a possible link between them through diminished synthesis of the tight junction constituent claudin-4.

  14. A comparison of antibody testing, permeability testing, and zonulin levels with small-bowel biopsy in celiac disease patients on a gluten-free diet.

    Science.gov (United States)

    Duerksen, D R; Wilhelm-Boyles, C; Veitch, R; Kryszak, D; Parry, D M

    2010-04-01

    Active celiac disease is associated with positive endomysial (EMA) and tissue transglutaminase (TTG) antibodies, elevated zonulin levels, and increased intestinal permeability. There is little known about what happens to these immunologic and structural abnormalities in patients on a gluten-free diet and their correlation with small-bowel biopsy changes. Adult patients previously diagnosed with celiac disease and on a gluten-free diet for greater than 1 year were considered for the study. All patients underwent the following: measurement of EMA and TTG antibodies, serum zonulin levels, intestinal permeability (IP) testing with lactulose/mannitol ratios, food diary analysis for gluten ingestion and small- bowel biopsy. A total of 21 patients on a gluten-free diet for a mean of 9.7 years completed the study. There were ten patients who had normalization of intestinal biopsies, IP and TTG, and EM antibodies. Six patients had Marsh type 2 or 3 lesions and all had either abnormal IP (5/6) or TTG antibody (4/6). In patients with Marsh type 3 lesions, there was a correlation between IP and zonulin levels. A subgroup of patients with celiac disease on a gluten-free diet has complete normalization of intestinal biopsies, intestinal permeability defects, and antibody levels. Patients with Marsh type 3 lesions have abnormal TTG antibodies and intestinal permeability with zonulin levels that correlate with IP. These abnormalities may be due to continued gluten ingestion. Further study is needed to determine the clinical utility of TTG antibodies and IP testing in following patients with celiac disease.

  15. Thrombin-induced increase in albumin permeability across the endothelium

    International Nuclear Information System (INIS)

    Garcia, J.G.; Siflinger-Birnboim, A.; Bizios, R.; Del Vecchio, P.J.; Fenton, J.W. II; Malik, A.B.

    1986-01-01

    We studied the effect of thrombin on albumin permeability across the endothelial monolayer in vitro. Bovine pulmonary artery endothelial cells were grown on micropore membranes. Morphologic analysis confirmed the presence of a confluent monolayer with interendothelial junctions. Albumin permeability was measured by the clearance of 125I-albumin across the endothelial monolayer. The control 125I-albumin clearance was 0.273 +/- 0.02 microliter/min. The native enzyme, alpha-thrombin (10(-6) to 10(-10) M), added to the luminal side of the endothelium produced concentration-dependent increases in albumin clearance (maximum clearance of 0.586 +/- 0.08 microliter/min at 10(-6) M). Gamma (gamma) thrombin (10(-6) M and 10(-8) M), which lacks the fibrinogen recognition site, also produced a concentration-dependent increase in albumin clearance similar to that observed with alpha-thrombin. Moreover, the two proteolytically inactive forms of the native enzyme, i-Pr2 P-alpha-thrombin and D-Phe-Pro-Arg-CH2-alpha-thrombin, increased the 125I-albumin clearance (0.610 +/- 0.09 microliter/min and 0.609 +/- 0.02 microliter/min for i-Pr2 P-alpha-thrombin and D-Phe-Pro-Arg-CH2-alpha-thrombin at 10(-6) M, respectively). Since the modified forms of thrombin lack the fibrinogen recognition and active serine protease sites, the results indicate that neither site is required for increased albumin permeability. The increase in albumin clearance with alpha-thrombin was not secondary to endothelial cell lysis because lactate dehydrogenase concentration in the medium following thrombin was not significantly different from baseline values. There was also no morphological evidence of cell lysis. Moreover, the increase in 125I-albumin clearance induced by alpha-thrombin was reversible by washing thrombin from the endothelium

  16. Intestinal lymphangiectasia in adults.

    Science.gov (United States)

    Freeman, Hugh James; Nimmo, Michael

    2011-02-15

    Intestinal lymphangiectasia in the adult may be characterized as a disorder with dilated intestinal lacteals causing loss of lymph into the lumen of the small intestine and resultant hypoproteinemia, hypogammaglobulinemia, hypoalbuminemia and reduced number of circulating lymphocytes or lymphopenia. Most often, intestinal lymphangiectasia has been recorded in children, often in neonates, usually with other congenital abnormalities but initial definition in adults including the elderly has become increasingly more common. Shared clinical features with the pediatric population such as bilateral lower limb edema, sometimes with lymphedema, pleural effusion and chylous ascites may occur but these reflect the severe end of the clinical spectrum. In some, diarrhea occurs with steatorrhea along with increased fecal loss of protein, reflected in increased fecal alpha-1-antitrypsin levels, while others may present with iron deficiency anemia, sometimes associated with occult small intestinal bleeding. Most lymphangiectasia in adults detected in recent years, however, appears to have few or no clinical features of malabsorption. Diagnosis remains dependent on endoscopic changes confirmed by small bowel biopsy showing histological evidence of intestinal lymphangiectasia. In some, video capsule endoscopy and enteroscopy have revealed more extensive changes along the length of the small intestine. A critical diagnostic element in adults with lymphangiectasia is the exclusion of entities (e.g. malignancies including lymphoma) that might lead to obstruction of the lymphatic system and "secondary" changes in the small bowel biopsy. In addition, occult infectious (e.g. Whipple's disease from Tropheryma whipplei) or inflammatory disorders (e.g. Crohn's disease) may also present with profound changes in intestinal permeability and protein-losing enteropathy that also require exclusion. Conversely, rare B-cell type lymphomas have also been described even decades following initial

  17. Intestinal CYP2E1: A mediator of alcohol-induced gut leakiness

    Directory of Open Access Journals (Sweden)

    Christopher B. Forsyth

    2014-01-01

    Full Text Available Chronic alcohol use can result in many pathological effects including alcoholic liver disease (ALD. While alcohol is necessary for the development of ALD, only 20–30% of alcoholics develop alcoholic steatohepatitis (ASH with progressive liver disease leading to cirrhosis and liver failure (ALD. This suggests that while chronic alcohol consumption is necessary it is not sufficient to induce clinically relevant liver damage in the absence of a secondary risk factor. Studies in rodent models and alcoholic patients show that increased intestinal permeability to microbial products like endotoxin play a critical role in promoting liver inflammation in ALD pathogenesis. Therefore identifying mechanisms of alcohol-induced intestinal permeability is important in identifying mechanisms of ALD and for designing new avenues for therapy. Cyp2e1 is a cytochrome P450 enzyme that metabolizes alcohol has been shown to be upregulated by chronic alcohol use and to be a major source of oxidative stress and liver injury in alcoholics and in animal and in vitro models of chronic alcohol use. Because Cyp2e1 is also expressed in the intestine and is upregulated by chronic alcohol use, we hypothesized it could play a role in alcohol-induced intestinal hyperpermeability. Our in vitro studies with intestinal Caco-2 cells and in mice fed alcohol showed that circadian clock proteins CLOCK and PER2 are required for alcohol-induced permeability. We also showed that alcohol increases Cyp2e1 protein and activity but not mRNA in Caco-2 cells and that an inhibitor of oxidative stress or siRNA knockdown of Cyp2e1 prevents the increase in CLOCK or PER2 proteins and prevents alcohol-induced hyperpermeability. With our collaborators we have also shown that Cyp2e1 knockout mice are resistant to alcohol-induced gut leakiness and liver inflammation. Taken together our data support a novel Cyp2e1-circadian clock protein mechanism for alcohol-induced gut leakiness that could provide new

  18. Activated STAT5 Confers Resistance to Intestinal Injury by Increasing Intestinal Stem Cell Proliferation and Regeneration

    Directory of Open Access Journals (Sweden)

    Shila Gilbert

    2015-02-01

    Full Text Available Intestinal epithelial stem cells (IESCs control the intestinal homeostatic response to inflammation and regeneration. The underlying mechanisms are unclear. Cytokine-STAT5 signaling regulates intestinal epithelial homeostasis and responses to injury. We link STAT5 signaling to IESC replenishment upon injury by depletion or activation of Stat5 transcription factor. We found that depletion of Stat5 led to deregulation of IESC marker expression and decreased LGR5+ IESC proliferation. STAT5-deficient mice exhibited worse intestinal histology and impaired crypt regeneration after γ-irradiation. We generated a transgenic mouse model with inducible expression of constitutively active Stat5. In contrast to Stat5 depletion, activation of STAT5 increased IESC proliferation, accelerated crypt regeneration, and conferred resistance to intestinal injury. Furthermore, ectopic activation of STAT5 in mouse or human stem cells promoted LGR5+ IESC self-renewal. Accordingly, STAT5 promotes IESC proliferation and regeneration to mitigate intestinal inflammation. STAT5 is a functional therapeutic target to improve the IESC regenerative response to gut injury.

  19. Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability.

    Science.gov (United States)

    Salmon, Andrew H J; Satchell, Simon C

    2012-03-01

    Appreciation of the glomerular microcirculation as a specialized microcirculatory bed, rather than as an entirely separate entity, affords important insights into both glomerular and systemic microvascular pathophysiology. In this review we compare regulation of permeability in systemic and glomerular microcirculations, focusing particularly on the role of the endothelial glycocalyx, and consider the implications for disease processes. The luminal surface of vascular endothelium throughout the body is covered with endothelial glycocalyx, comprising surface-anchored proteoglycans, supplemented with adsorbed soluble proteoglycans, glycosaminoglycans and plasma constituents. In both continuous and fenestrated microvessels, this endothelial glycocalyx provides resistance to the transcapillary escape of water and macromolecules, acting as an integral component of the multilayered barrier provided by the walls of these microvessels (ie acting in concert with clefts or fenestrae across endothelial cell layers, basement membranes and pericytes). Dysfunction of any of these capillary wall components, including the endothelial glycocalyx, can disrupt normal microvascular permeability. Because of its ubiquitous nature, damage to the endothelial glycocalyx alters the permeability of multiple capillary beds: in the glomerulus this is clinically apparent as albuminuria. Generalized damage to the endothelial glycocalyx can therefore manifest as both albuminuria and increased systemic microvascular permeability. This triad of altered endothelial glycocalyx, albuminuria and increased systemic microvascular permeability occurs in a number of important diseases, such as diabetes, with accumulating evidence for a similar phenomenon in ischaemia-reperfusion injury and infectious disease. The detection of albuminuria therefore has implications for the function of the microcirculation as a whole. The importance of the endothelial glycocalyx for other aspects of vascular function

  20. Disruption of the epithelial barrier during intestinal inflammation: Quest for new molecules and mechanisms.

    Science.gov (United States)

    Lechuga, Susana; Ivanov, Andrei I

    2017-07-01

    The intestinal epithelium forms a key protective barrier that separates internal organs from the harmful environment of the gut lumen. Increased permeability of the gut barrier is a common manifestation of different inflammatory disorders contributing to the severity of disease. Barrier permeability is controlled by epithelial adherens junctions and tight junctions. Junctional assembly and integrity depend on fundamental homeostatic processes such as cell differentiation, rearrangements of the cytoskeleton, and vesicle trafficking. Alterations of intestinal epithelial homeostasis during mucosal inflammation may impair structure and remodeling of apical junctions, resulting in increased permeability of the gut barrier. In this review, we summarize recent advances in our understanding of how altered epithelial homeostasis affects the structure and function of adherens junctions and tight junctions in the inflamed gut. Specifically, we focus on the transcription reprogramming of the cell, alterations in the actin cytoskeleton, and junctional endocytosis and exocytosis. We pay special attention to knockout mouse model studies and discuss the relevance of these mechanisms to human gastrointestinal disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Beneficial Effects of Anti-Interleukin-6 Antibodies on Impaired Gastrointestinal Motility, Inflammation and Increased Colonic Permeability in a Murine Model of Sepsis Are Most Pronounced When Administered in a Preventive Setup.

    Directory of Open Access Journals (Sweden)

    Sara Nullens

    Full Text Available During sepsis, gastrointestinal ileus, mucosal barrier dysfunction and bacterial translocation are accepted to be important triggers that can maintain or exacerbate the septic state. In the caecal ligation and puncture animal model of sepsis, we demonstrated that systemic and colonic interleukin-6 levels are significantly increased coinciding with an impaired colonic barrier function. We therefore aimed to study the effect of therapeutic or curative administration of anti-IL6 antibodies on overall GI motility, colonic permeability and translocation of intestinal bacteria in blood and mesenteric lymph nodes in the mouse caecal ligation and puncture model.OF-1 mice were randomized to either the preventive or curative protocol, in which they received 1 mg/kg of antibodies to interleukin-6, or its IgG isotype control solution. They subsequently underwent either the caecal ligation and puncture procedure, or sham-surgery. GI motility was assessed 48 h following the procedure, as well as colonic permeability, serum and colon cytokines, colonic tight junction proteins at the mRNA level; cultures of blood and mesenteric lymph nodes were performed.Preventive administration of anti-interleukin-6 antibodies successfully counteracted the gastrointestinal motility disturbances and impaired colonic barrier function that could be observed in vehicle-treated septic animals. Serum and colonic levels of proinflammatory cytokines were significantly lower when animals were preventively treated with anti-interleukin-6 antibodies. A repetitive injection 24 h later resulted in the most pronounced effects. Curative treatment significantly lowered systemic and colonic inflammation markers while the effects on transit and permeability were unfortunately no longer significant.Caecal ligation and puncture resulted in septic ileus with an increased colonic permeability. Antibodies to interleukin-6 were able to ameliorate gastro-intestinal motility, suppress inflammation and

  2. Regulation of intestinal health by branched-chain amino acids.

    Science.gov (United States)

    Zhou, Hua; Yu, Bing; Gao, Jun; Htoo, John Khun; Chen, Daiwen

    2018-01-01

    Besides its primary role in the digestion and absorption of nutrients, the intestine also interacts with a complex external milieu, and is the first defense line against noxious pathogens and antigens. Dysfunction of the intestinal barrier is associated with enhanced intestinal permeability and development of various gastrointestinal diseases. The branched-chain amino acids (BCAAs) are important nutrients, which are the essential substrates for protein biosynthesis. Recently, emerging evidence showed that BCAAs are involved in maintaining intestinal barrier function. It has been reported that dietary supplementation with BCAAs promotes intestinal development, enhances enterocyte proliferation, increases intestinal absorption of amino acids (AA) and glucose, and improves the immune defenses of piglets. The underlying mechanism of these effects is mediated by regulating expression of genes and proteins associate with various signaling pathways. In addition, BCAAs promote the production of beneficial bacteria in the intestine of mice. Compelling evidence supports the notion that BCAAs play important roles in both nutrition and intestinal health. Therefore, as functional amino acids with various physiological effects, BCAAs hold key roles in promoting intestinal development and health in animals and humans. © 2017 Japanese Society of Animal Science.

  3. Determination of Regional Intestinal Permeability of Diclofenac and ...

    African Journals Online (AJOL)

    Keywords: Biopharmaceutics classification system, Diclofenac, Metoprolol tartrate, ... intestinal transit of drug formulations is about 3 - ... delivery of perfusion medium to the excised ..... of diclofenac in transdermal therapeutic preparations.

  4. Farnesoid X Receptor Activation Attenuates Intestinal Ischemia Reperfusion Injury in Rats.

    Directory of Open Access Journals (Sweden)

    Laurens J Ceulemans

    Full Text Available The farnesoid X receptor (FXR is abundantly expressed in the ileum, where it exerts an enteroprotective role as a key regulator of intestinal innate immunity and homeostasis, as shown in pre-clinical models of inflammatory bowel disease. Since intestinal ischemia reperfusion injury (IRI is characterized by hyperpermeability, bacterial translocation and inflammation, we aimed to investigate, for the first time, if the FXR-agonist obeticholic acid (OCA could attenuate intestinal ischemia reperfusion injury.In a validated rat model of intestinal IRI (laparotomy + temporary mesenteric artery clamping, 3 conditions were tested (n = 16/group: laparotomy only (sham group; ischemia 60min+ reperfusion 60min + vehicle pretreatment (IR group; ischemia 60min + reperfusion 60min + OCA pretreatment (IR+OCA group. Vehicle or OCA (INT-747, 2*30mg/kg was administered by gavage 24h and 4h prior to IRI. The following end-points were analyzed: 7-day survival; biomarkers of enterocyte viability (L-lactate, I-FABP; histology (morphologic injury to villi/crypts and villus length; intestinal permeability (Ussing chamber; endotoxin translocation (Lipopolysaccharide assay; cytokines (IL-6, IL-1-β, TNFα, IFN-γ IL-10, IL-13; apoptosis (cleaved caspase-3; and autophagy (LC3, p62.It was found that intestinal IRI was associated with high mortality (90%; loss of intestinal integrity (structurally and functionally; increased endotoxin translocation and pro-inflammatory cytokine production; and inhibition of autophagy. Conversely, OCA-pretreatment improved 7-day survival up to 50% which was associated with prevention of epithelial injury, preserved intestinal architecture and permeability. Additionally, FXR-agonism led to decreased pro-inflammatory cytokine release and alleviated autophagy inhibition.Pretreatment with OCA, an FXR-agonist, improves survival in a rodent model of intestinal IRI, preserves the gut barrier function and suppresses inflammation. These results turn

  5. The impact of probiotics and n-3 long-chain polyunsaturated fatty acids on intestinal permeability in pregnancy: a randomised clinical trial.

    Science.gov (United States)

    Mokkala, K; Pussinen, P; Houttu, N; Koivuniemi, E; Vahlberg, T; Laitinen, K

    2018-02-27

    A disruption in intestinal barrier integrity may predispose individuals to metabolic aberrations, particularly during the vulnerable period of pregnancy. We investigated whether intestinal permeability, as measured by serum zonulin concentration, changes over the duration of pregnancy and whether this change is reflected in lipopolysaccharide (LPS) activity. Second, we tested in a randomised double-blind placebo controlled clinical trial the impact of consuming dietary probiotics and/or long chain polyunsaturated fatty acid (LC-PUFA) supplements in lowering serum zonulin concentration and LPS activity. The probiotic supplement was a combination of two bacteria, Bifidobacterium animalis ssp. lactis 420 and Lactobacillus rhamnosus HN001. This study included 200 overweight pregnant women participating in an on-going study; participants were randomised to consume either (1) probiotics, (2) LC-PUFA, (3) probiotics and LC-PUFA, or (4) placebo for each supplement. Blood samples were obtained at early, the baseline, and late pregnancy (mean 14 and 35 weeks of gestation, respectively). Serum zonulin concentration increased from early (mean (standard deviation): 62.7 (12.9) ng/ml) to late pregnancy by 5.3 (95%CI 3.7-6.9) ng/ml, and LPS activity increased from (0.16 (0.04) EU/ml) by 0.04 (95%CI 0.03-0.05) EU/ml. No differences among the intervention groups were detected in the change from early to late pregnancy in serum zonulin concentration (P=0.8) or LPS activity (P=0.2). The change in serum zonulin concentration during the pregnancy was associated with the weeks of follow up (r=0.25, Pzonulin concentration or LPS activity.

  6. Bile acid receptor TGR5 overexpression is associated with decreased intestinal mucosal injury and epithelial cell proliferation in obstructive jaundice.

    Science.gov (United States)

    Ji, Chen-Guang; Xie, Xiao-Li; Yin, Jie; Qi, Wei; Chen, Lei; Bai, Yun; Wang, Na; Zhao, Dong-Qiang; Jiang, Xiao-Yu; Jiang, Hui-Qing

    2017-04-01

    Bile acids stimulate intestinal epithelial proliferation in vitro. We sought to investigate the role of the bile acid receptor TGR5 in the protection of intestinal epithelial proliferation in obstructive jaundice. Intestinal tissues and serum samples were obtained from patients with malignant obstructive jaundice and from bile duct ligation (BDL) rats. Intestinal permeability and morphological changes in the intestinal mucosa were observed. The functions of TGR5 in cell proliferation in intestinal epithelial injury were determined by overexpression or knockdown studies in Caco-2 and FHs 74 Int cells pretreated with lipopolysaccharide (LPS). Internal biliary drainage was superior to external biliary drainage in recovering intestinal permeability and mucosal histology in patients with obstructive jaundice. In BDL rats, feeding of chenodeoxycholic acid (CDCA) decreased intestinal mucosa injury. The levels of PCNA, a marker of proliferation, increased in response to CDCA feeding and were paralleled by elevated TGR5 expression. CDCA upregulated TGR5 expression and promoted proliferation in Caco-2 and FHs 74 Int cells pretreated with LPS. Overexpression of TGR5 resulted in increased PCNA, cell viability, EdU incorporation, and the proportion of cells in S phase, whereas knockdown of TGR5 had the opposite effect. Our data indicate that bile acids promote intestinal epithelial cell proliferation and decrease mucosal injury by upregulating TGR5 expression in obstructive jaundice. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Simple clinical means of documenting increased pulmonary endothelial permeability to protein

    Energy Technology Data Exchange (ETDEWEB)

    Mishkin, F.S.; Niden, A.; Kumar, A.; Thomas, A.; Reese, I.C.; Vasinrapee, P.

    1987-02-20

    The authors investigated a simple method that can be used at the bedside for documenting the net accumulation of albumin in the lung. The technique employs measurement with a computer-linked gamma camera of the activity ratio in an area of the right lung compared with the same-sized area in the heart at 20 minutes and three hours following intravenous injection of technetium Tc 99m albumin. They applied this measurement to three groups of patients: a control group and patients with roentgenographic evidence of edema classified according to clinically available criteria as either hydrostatic edema or permeability edema to see if they could document differences among these groups. In control patients this ratio did not increase by more than seven units between the 20-minute and three-hour measurements. Of 18 patients classified by other routine clinical means as having hydrostatic pulmonary edema, 89% showed no increase in lung albumin accumulation. In 29 patients with permeability edema associated with the so-called adult respiratory distress syndrome, 31% showed evidence of net pulmonary albumin accumulation. These findings suggest that some patients otherwise classified as having hydrostatic edema have concomitant permeability changes in the microvasculature and that permeability edema represents a spectrum of endothelial damage.

  8. Simple clinical means of documenting increased pulmonary endothelial permeability to protein

    International Nuclear Information System (INIS)

    Mishkin, F.S.; Niden, A.; Kumar, A.; Thomas, A.; Reese, I.C.; Vasinrapee, P.

    1987-01-01

    The authors investigated a simple method that can be used at the bedside for documenting the net accumulation of albumin in the lung. The technique employs measurement with a computer-linked gamma camera of the activity ratio in an area of the right lung compared with the same-sized area in the heart at 20 minutes and three hours following intravenous injection of technetium Tc 99m albumin. They applied this measurement to three groups of patients: a control group and patients with roentgenographic evidence of edema classified according to clinically available criteria as either hydrostatic edema or permeability edema to see if they could document differences among these groups. In control patients this ratio did not increase by more than seven units between the 20-minute and three-hour measurements. Of 18 patients classified by other routine clinical means as having hydrostatic pulmonary edema, 89% showed no increase in lung albumin accumulation. In 29 patients with permeability edema associated with the so-called adult respiratory distress syndrome, 31% showed evidence of net pulmonary albumin accumulation. These findings suggest that some patients otherwise classified as having hydrostatic edema have concomitant permeability changes in the microvasculature and that permeability edema represents a spectrum of endothelial damage

  9. Fluorescently labeled methyl-beta-cyclodextrin enters intestinal epithelial Caco-2 cells by fluid-phase endocytosis.

    Directory of Open Access Journals (Sweden)

    Ferenc Fenyvesi

    Full Text Available Cyclodextrins are widely used excipients for increasing the bioavailability of poorly water-soluble drugs. Their effect on drug absorption in the gastrointestinal tract is explained by their solubility- and permeability-enhancement. The aims of this study were to investigate penetration properties of fluorescently labeled randomly methylated-beta-cyclodextrin (FITC-RAMEB on Caco-2 cell layer and examine the cellular entry of cyclodextrins on intestinal cells. The permeability of FITC-RAMEB through Caco-2 monolayers was very limited. Using this compound in 0.05 mM concentration the permeability coefficient was 3.35±1.29×10(-8 cm/s and its permeability did not change in the presence of 5 mM randomly methylated-beta-cyclodextrin. Despite of the low permeability, cellular accumulation of FITC-RAMEB in cytoplasmic vesicles was significant and showed strong time and concentration dependence, similar to the characteristics of the macropinocytosis marker Lucifer Yellow. The internalization process was fully inhibited at 0°C and it was drastically reduced at 37°C applying rottlerin, an inhibitor of macropinocytosis. Notably, FITC-RAMEB colocalized with the early endosome organizer Rab5a. These results have revealed that FITC-RAMEB is able to enter intestinal epithelial cells by fluid-phase endocytosis from the apical side. This mechanism can be an additional process which helps to overcome the intestinal barrier and contributes to the bioavailability enhancement of cyclodextrins.

  10. A modified physiological BCS for prediction of intestinal absorption in drug discovery.

    Science.gov (United States)

    Zaki, Noha M; Artursson, Per; Bergström, Christel A S

    2010-10-04

    In this study, the influence of physiologically relevant media on the compound position in a biopharmaceutical classification system (BCS) which resembled the intestinal absorption was investigated. Both solubility and permeability limited compounds (n = 22) were included to analyze the importance of each of these on the final absorption. Solubility was determined in three different dissolution media, phosphate buffer pH 6.5 (PhB 6.5), fasted state simulated intestinal fluid (FaSSIF), and fed state simulated intestinal fluid (FeSSIF) at 37 °C, and permeability values were determined using the 2/4/A1 cell line. The solubility data and membrane permeability values were used for sorting the compounds into a BCS modified to reflect the fasted and fed state. Three of the seven compounds sorted as BCS II in PhB 6.5 (high permeability, low solubility) changed their position to BCS I when dissolved in FaSSIF and/or FeSSIF (high permeability, high solubility). These were low dosed (20 mg or less) lipophilic molecules displaying solvation limited solubility. In contrast, compounds having solid-state limited solubility had a minor increase in solubility when dissolved in FaSSIF and/or FeSSIF. Although further studies are needed to enable general cutoff values, our study indicates that low dosed BCS Class II compounds which have solubility normally restricted by poor solvation may behave as BCS Class I compounds in vivo. The large series of compounds investigated herein reveals the importance of investigating solubility and dissolution under physiologically relevant conditions in all stages of the drug discovery process to push suitable compounds forward, to select proper formulations, and to reduce the risk of food effects.

  11. Dietary non-digestible carbohydrates and the resistance to intestinal infections

    NARCIS (Netherlands)

    Bruggencate, ten S.J.M.

    2004-01-01

    Keywords: Non-digestible carbohydrates, prebiotics, inulin, FOS, calcium, microflora, short-chain fatty acids, mucin, intestinal permeability, salmonella, infection, rat, humanDietary non-digestible carbohydrates and the resistance to intestinal infectionsNon-digestible carbohydrates (NDC) stimulate

  12. Ozone exposure increases respiratory epithelial permeability in humans

    International Nuclear Information System (INIS)

    Kehrl, H.R.; Vincent, L.M.; Kowalsky, R.J.; Horstman, D.H.; O'Neil, J.J.; McCartney, W.H.; Bromberg, P.A.

    1987-01-01

    Ozone is a respiratory irritant that has been shown to cause an increase in the permeability of the respiratory epithelium in animals. We used inhaled aerosolized /sup 99m/Tc-labeled diethylene triamine pentacetic acid (/sup 99m/Tc-DTPA) to investigate whether human respiratory epithelial permeability is similarly affected by exposure to ozone. In a randomized, crossover double-blinded study, 8 healthy, nonsmoking young men were exposed for 2 h to purified air and 0.4 ppm ozone while performing intermittent high intensity treadmill exercise (minute ventilation = 66.8 L/min). SRaw and FVC were measured before and at the end of exposures. Seventy-five minutes after the exposures, the pulmonary clearance of /sup 99m/Tc-DTPA was measured by sequential posterior lung imaging with a computer-assisted gamma camera. Ozone exposure caused respiratory symptoms in all 8 subjects and was associated with a 14 +/- 2.8% (mean +/- SEM) decrement in FVC (p less than 0.001) and a 71 +/- 22% increase in SRaw (p = 0.04). Compared with the air exposure day, 7 of the 8 subjects showed increased /sup 99m/Tc-DTPA clearance after the ozone exposure, with the mean value increasing from 0.59 +/- 0.08 to 1.75 +/- 0.43%/min (p = 0.03). These data show that ozone exposure sufficient to produce decrements in the pulmonary function of human subjects also causes an increase in /sup 99m/Tc-DTPA clearance

  13. Intestinal exposure to PCB 153 induces inflammation via the ATM/NEMO pathway.

    Science.gov (United States)

    Phillips, Matthew C; Dheer, Rishu; Santaolalla, Rebeca; Davies, Julie M; Burgueño, Juan; Lang, Jessica K; Toborek, Michal; Abreu, Maria T

    2018-01-15

    Polychlorinated biphenyls (PCBs) are persistent organic pollutants that adversely affect human health. PCBs bio-accumulate in organisms important for human consumption. PCBs accumulation in the body leads to activation of the transcription factor NF-κB, a major driver of inflammation. Despite dietary exposure being one of the main routes of exposure to PCBs, the gut has been widely ignored when studying the effects of PCBs. We investigated the effects of PCB 153 on the intestine and addressed whether PCB 153 affected intestinal permeability or inflammation and the mechanism by which this occurred. Mice were orally exposed to PCB 153 and gut permeability was assessed. Intestinal epithelial cells (IECs) were collected and evaluated for evidence of genotoxicity and inflammation. A human IEC line (SW480) was used to examine the direct effects of PCB 153 on epithelial function. NF-кB activation was measured using a reporter assay, DNA damage was assessed, and cytokine expression was ascertained with real-time PCR. Mice orally exposed to PCB 153 had an increase in intestinal permeability and inflammatory cytokine expression in their IECs; inhibition of NF-кB ameliorated both these effects. This inflammation was associated with genotoxic damage and NF-кB activation. Exposure of SW480 cells to PCB 153 led to similar effects as seen in vivo. We found that activation of the ATM/NEMO pathway by genotoxic stress was upstream of NF-kB activation. These results demonstrate that oral exposure to PCB 153 is genotoxic to IECs and induces downstream inflammation and barrier dysfunction in the intestinal epithelium. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Leaky gut and mycotoxins: Aflatoxin B1 does not increase gut permeability in broiler chickens

    Directory of Open Access Journals (Sweden)

    Rosario eGalarza-Seeber

    2016-02-01

    Full Text Available Previous studies conducted in our laboratory have demonstrated that intestinal barrier function can be adversely affected by diet ingredients or feed restriction, resulting in increased intestinal inflammation-associated permeability. Two experiments were conducted in broilers to evaluate the effect of 3 concentrations of Aflatoxin B1 (AFB1; 2, 1.5 or 1 ppm on gastrointestinal leakage and liver bacterial translocation (BT. In Exp 1, 240 day-of-hatch male broilers were allocated in two groups, each group had six replicates of 20 chickens (n = 120/group: Control feed or feed + 2 ppm AFB1. In Exp 2, 240 day-of-hatch male broilers were allocated in three groups, each group had 5 replicates of 16 chickens (n = 80/group: Control feed; feed + 1 ppm AFB1; or feed + 1.5 ppm AFB1. In both experiments, chickens were fed starter (d1-d7 and grower diets (d8-d21 ad libitum and performance parameters were evaluated every week. At day 21, all chicks received an oral gavage dose of FITC-d (4.16 mg/kg 2.5h before collecting blood samples to evaluate gastrointestinal leakage of FITC-d. In Exp 2 a hematologic analysis was also performed. Liver sections were aseptically collected and cultured using TSA plates to determine BT. Cecal contents were collected to determine total cfu/g of Gram-negative bacteria; lactic acid bacteria (LAB or anaerobes by plating on selective media. In Exp 2, liver, spleen and bursa of Fabricius were removed to determine organ weight ratio, and also intestinal samples were obtained for morphometric analysis. Performance parameters, organ weight ratio and morphometric measurements were significantly different between control and AFB1 groups in both experiments. Gut leakage of FITC-d was not affected by the three concentrations of AFB1 evaluated (P > 0.05. Interestingly, a significant reduction in BT was observed in chickens that received 2 and 1 ppm AFB1. An increase (P < 0.05 in total aerobic bacteria, total Gram negatives, and total LAB

  15. Do the recommended standards for in vitro biopharmaceutic classification of drug permeability meet the "passive transport" criterion for biowaivers?

    Science.gov (United States)

    Žakelj, Simon; Berginc, Katja; Roškar, Robert; Kraljič, Bor; Kristl, Albin

    2013-01-01

    BCS based biowaivers are recognized by major regulatory agencies. An application for a biowaiver can be supported by or even based on "in vitro" measurements of drug permeability. However, guidelines limit the application of biowaivers to drug substances that are transported only by passive mechanisms. Regarding published permeability data as well as measurements obtained in our institution, one can rarely observe drug substances that conform to this very strict criterion. Therefore, we measured the apparent permeability coefficients of 13 drugs recommended by FDA's Guidance to be used as standards for "in vitro" permeability classification. The asymmetry of permeability data determined for both directions (mucosal-to-serosal and serosalto- mucosal) through the rat small intestine revealed significant active transport for four out of the nine high-permeability standards and for all four low-permeability standard drugs. As could be expected, this asymmetry was abolished at 4°C on rat intestine. The permeability of all nine high-permeability, but none of the low permeability standards, was also much lower when measured with intestinal tissue, Caco-2 cell monolayers or artificial membranes at 4°C compared to standard conditions (37°C). Additionally, concurrent testing of several standard drugs revealed that membrane transport can be affected by the use of internal permeability standards. The implications of the results are discussed regarding the regulatory aspects of biopharmaceutical classification, good practice in drug permeability evaluation and regarding the general relevance of transport proteins with broad specificity in drug absorption.

  16. Application of fluorescent tracer agent technology to point-of-care gastrointestinal permeability measurement

    Science.gov (United States)

    Dorshow, Richard B.; Shieh, Jeng-Jong; Rogers, Thomas E.; Hall-Moore, Carla; Shaikh, Nurmohammad; Talcott, Michael; Tarr, Phillip I.

    2016-03-01

    Gut dysfunction, often accompanied by increased mucosal permeability to gut contents, frequently accompanies a variety of human intestinal inflammatory conditions. These disorders include inflammatory bowel diseases (e.g., Crohn's Disease) and environmental enteropathy and enteric dysfunction, a condition strongly associated with childhood malnutrition and stunting in resource poor areas of the world. The most widely used diagnostic assay for gastrointestinal permeability is the lactulose to mannitol ratio (L:M) measurement. These sugars are administered orally, differentially absorbed by the gut, and then cleared from the body by glomerular filtration in the kidney. The amount of each sugar excreted in the urine is measured. The larger sugar, lactulose, is minimally absorbed through a healthy gut. The smaller sugar, mannitol, in contrast, is readily absorbed through both a healthy and injured gut. Thus a higher ratio of lactulose to mannitol reflects increased intestinal permeability. However, several issues prevent widespread use of the L:M ratio in clinical practice. Urine needs to be collected over time intervals of several hours, the specimen then needs to be transported to an analytical laboratory, and sophisticated equipment is required to measure the concentration of each sugar in the urine. In this presentation we show that fluorescent tracer agents with molecular weights similar to those of the sugars, selected from our portfolio of biocompatible renally cleared fluorophores, mimic the L:M ratio test for gut permeability. This fluorescent tracer agent detection technology can be used to overcome the limitations of the L:M assay, and is amenable to point-of-care clinical use.

  17. Exposure to seawater increases intestinal motility in euryhaline rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Brijs, Jeroen; Hennig, Grant W; Gräns, Albin; Dekens, Esmée; Axelsson, Michael; Olsson, Catharina

    2017-07-01

    Upon exposure to seawater, euryhaline teleosts need to imbibe and desalinate seawater to allow for intestinal ion and water absorption, as this is essential for maintaining osmotic homeostasis. Despite the potential benefits of increased mixing and transport of imbibed water for increasing the efficiency of absorptive processes, the effect of water salinity on intestinal motility in teleosts remains unexplored. By qualitatively and quantitatively describing in vivo intestinal motility of euryhaline rainbow trout ( Oncorhynchus mykiss ), this study demonstrates that, in freshwater, the most common motility pattern consisted of clusters of rhythmic, posteriorly propagating contractions that lasted ∼1-2 min followed by a period of quiescence lasting ∼4-5 min. This pattern closely resembles mammalian migrating motor complexes (MMCs). Following a transition to seawater, imbibed seawater resulted in a significant distension of the intestine and the frequency of MMCs increased twofold to threefold with a concomitant reduction in the periods of quiescence. The increased frequency of MMCs was also accompanied by ripple-type contractions occurring every 12-60 s. These findings demonstrate that intestinal contractile activity of euryhaline teleosts is dramatically increased upon exposure to seawater, which is likely part of the overall response for maintaining osmotic homeostasis as increased drinking and mechanical perturbation of fluids is necessary to optimise intestinal ion and water absorption. Finally, the temporal response of intestinal motility in rainbow trout transitioning from freshwater to seawater coincides with previously documented physiological modifications associated with osmoregulation and may provide further insight into the underlying reasons shaping the migration patterns of salmonids. © 2017. Published by The Company of Biologists Ltd.

  18. The effects of fluorouracil, epirubicin, and cyclophosphamide (FEC60 on the intestinal barrier function and gut peptides in breast cancer patients: an observational study

    Directory of Open Access Journals (Sweden)

    Russo Francesco

    2013-02-01

    Full Text Available Abstract Background Several GI peptides linked to intestinal barrier function could be involved in the modification of intestinal permeability and the onset of diarrhea during adjuvant chemotherapy. The aim of the study was to evaluate the circulating levels of zonulin, glucagon-like peptide-2 (GLP-2, epidermal growth factor (EGF and ghrelin and their relationship with intestinal permeability and chemotherapy induced diarrhea (CTD. Methods Sixty breast cancer patients undergoing an FEC60 regimen were enrolled, 37 patients completed the study. CTD(+ patients were discriminated by appropriate questionnaire and criteria. During chemotherapy, intestinal permeability was assessed by lactulose/mannitol urinary test on day 0 and day 14. Zonulin, GLP-2, EGF and ghrelin circulating levels were evaluated by ELISA tests at five time-points (days 0, 3, 10, 14, and 21. Results During FEC60 administration, the lactulose/mannitol ratio was significantly higher on day 14 than at baseline. Zonulin levels were not affected by chemotherapy, whereas GLP-2 and EGF levels decreased significantly. GLP-2 levels on day 14 were significantly lower than those on day 0 and day 3, while EGF values were significantly lower on day 10 than at the baseline. In contrast, the total concentrations of ghrelin increased significantly at day 3 compared to days 0 and 21, respectively. Ten patients (27% suffered from diarrhea. On day 14 of chemotherapy, a significant increase of the La/Ma ratio occurred in CTD(+ patients compared to CTD(− patients. With regards to circulating gut peptides, the AUCg of GLP-2 and ghrelin were significantly lower and higher in CTD(+ patients than CTD(− ones, respectively. Finally in CTD(+ patients a significant and inverse correlation between GLP-2 and La/Ma ratio was found on day 14. Conclusions Breast cancer patients undergoing FEC60 showed alterations in the intestinal permeability, which was associated with modifications in the levels of GLP-2

  19. The effects of fluorouracil, epirubicin, and cyclophosphamide (FEC60) on the intestinal barrier function and gut peptides in breast cancer patients: an observational study.

    Science.gov (United States)

    Russo, Francesco; Linsalata, Michele; Clemente, Caterina; D'Attoma, Benedetta; Orlando, Antonella; Campanella, Giovanna; Giotta, Francesco; Riezzo, Giuseppe

    2013-02-04

    Several GI peptides linked to intestinal barrier function could be involved in the modification of intestinal permeability and the onset of diarrhea during adjuvant chemotherapy. The aim of the study was to evaluate the circulating levels of zonulin, glucagon-like peptide-2 (GLP-2), epidermal growth factor (EGF) and ghrelin and their relationship with intestinal permeability and chemotherapy induced diarrhea (CTD). Sixty breast cancer patients undergoing an FEC60 regimen were enrolled, 37 patients completed the study. CTD(+) patients were discriminated by appropriate questionnaire and criteria. During chemotherapy, intestinal permeability was assessed by lactulose/mannitol urinary test on day 0 and day 14. Zonulin, GLP-2, EGF and ghrelin circulating levels were evaluated by ELISA tests at five time-points (days 0, 3, 10, 14, and 21). During FEC60 administration, the lactulose/mannitol ratio was significantly higher on day 14 than at baseline. Zonulin levels were not affected by chemotherapy, whereas GLP-2 and EGF levels decreased significantly. GLP-2 levels on day 14 were significantly lower than those on day 0 and day 3, while EGF values were significantly lower on day 10 than at the baseline. In contrast, the total concentrations of ghrelin increased significantly at day 3 compared to days 0 and 21, respectively. Ten patients (27%) suffered from diarrhea. On day 14 of chemotherapy, a significant increase of the La/Ma ratio occurred in CTD(+) patients compared to CTD(-) patients. With regards to circulating gut peptides, the AUCg of GLP-2 and ghrelin were significantly lower and higher in CTD(+) patients than CTD(-) ones, respectively. Finally in CTD(+) patients a significant and inverse correlation between GLP-2 and La/Ma ratio was found on day 14. Breast cancer patients undergoing FEC60 showed alterations in the intestinal permeability, which was associated with modifications in the levels of GLP-2, ghrelin and EGF. In CTD(+) patients, a different GI peptide

  20. Comparison of the permeability of metoprolol and labetalol in rat, mouse, and Caco-2 cells: use as a reference standard for BCS classification.

    Science.gov (United States)

    Incecayir, Tuba; Tsume, Yasuhiro; Amidon, Gordon L

    2013-03-04

    The purpose of this study was to investigate labetalol as a potential high permeability reference standard for the application of Biopharmaceutics Classification Systems (BCS). Permeabilities of labetalol and metoprolol were investigated in animal intestinal perfusion models and Caco-2 cell monolayers. After isolating specific intestinal segments, in situ single-pass intestinal perfusions (SPIP) were performed in rats and mice. The effective permeabilities (Peff) of labetalol and metoprolol, an FDA standard for the low/high Peff class boundary, were investigated in two different segments of rat intestine (proximal jejunum and distal ileum) and in the proximal jejunum of mouse. No significant difference was found between Peff of metoprolol and labetalol in the jejunum and ileum of rat (0.33 ± 0.11 × 10(-4) vs 0.38 ± 0.06 × 10(-4) and 0.57 ± 0.17 × 10(-4) vs 0.64 ± 0.30 × 10(-4) cm/s, respectively) and in the jejunum of mouse (0.55 ± 0.05 × 10(-4) vs 0.59 ± 0.13 × 10(-4) cm/s). However, Peff of metoprolol and labetalol were 1.7 and 1.6 times higher in the jejunum of mouse, compared to the jejunum of rat, respectively. Metoprolol and labetalol showed segmental-dependent permeability through the rat intestine, with increased Peff in the distal ileum in comparison to the proximal jejunum. Most significantly, Peff of labetalol was found to be concentration-dependent. Decreasing concentrations of labetalol in the perfusate resulted in decreased Peff compared to Peff of metoprolol. The intestinal epithelial permeability of labetalol was lower than that of metoprolol in Caco-2 cells at both apical pH 6.5 and 7.5 (5.96 ± 1.96 × 10(-6) vs 9.44 ± 3.44 × 10(-6) and 15.9 ± 2.2 × 10(-6) vs 23.2 ± 7.1 × 10(-6) cm/s, respectively). Labetalol exhibited higher permeability in basolateral to apical (BL-AP) compared to AP-BL direction in Caco-2 cells at 0.1 times the highest dose strength (HDS) (46.7 ± 6.5 × 10(-6) vs 14.2 ± 1.5 × 10(-6) cm/s). The P

  1. Decision trees to characterise the roles of permeability and solubility on the prediction of oral absorption

    OpenAIRE

    Newby, Danielle; Freitas, Alex. A.; Ghafourian, Taravat

    2015-01-01

    Oral absorption of compounds depends on many physiological, physiochemical and formulation factors. Two important properties that govern oral absorption are in vitro permeability and solubility, which are commonly used as indicators of human intestinal absorption. Despite this, the nature and exact characteristics of the relationship between these parameters are not well understood. In this study a large dataset of human intestinal absorption was collated along with in vitro permeability, aqu...

  2. Stress, Nutrition, and Intestinal Immune Responses in Pigs — A Review

    Directory of Open Access Journals (Sweden)

    In Kyu Lee

    2016-08-01

    Full Text Available Modern livestock production became highly intensive and large scaled to increase production efficiency. This production environment could add stressors affecting the health and growth of animals. Major stressors can include environment (air quality and temperature, nutrition, and infection. These stressors can reduce growth performance and alter immune systems at systemic and local levels including the gastrointestinal tract. Heat stress increases the permeability, oxidative stress, and inflammatory responses in the gut. Nutritional stress from fasting, antinutritional compounds, and toxins induces the leakage and destruction of the tight junction proteins in the gut. Fasting is shown to suppress pro-inflammatory cytokines, whereas deoxynivalenol increases the recruitment of intestinal pro-inflammatory cytokines and the level of lymphocytes in the gut. Pathogenic and viral infections such as Enterotoxigenic E. coli (ETEC and porcine epidemic diarrhea virus can lead to loosening the intestinal epithelial barrier. On the other hand, supplementation of Lactobacillus or Saccharaomyces reduced infectious stress by ETEC. It was noted that major stressors altered the permeability of intestinal barriers and profiles of genes and proteins of pro-inflammatory cytokines and chemokines in mucosal system in pigs. However, it is not sufficient to fully explain the mechanism of the gut immune system in pigs under stress conditions. Correlation and interaction of gut and systemic immune system under major stressors should be better defined to overcome aforementioned obstacles.

  3. Thromboxane A2 increases endothelial permeability through upregulation of interleukin-8

    International Nuclear Information System (INIS)

    Kim, Su-Ryun; Bae, Soo-Kyung; Park, Hyun-Joo; Kim, Mi-Kyoung; Kim, Koanhoi; Park, Shi-Young; Jang, Hye-Ock; Yun, Il; Kim, Yung-Jin; Yoo, Mi-Ae; Bae, Moon-Kyoung

    2010-01-01

    Thromboxane A 2 (TXA 2 ), a major prostanoid formed from prostaglandin H 2 by thromboxane synthase, is involved in the pathogenesis of a variety of vascular diseases. In this study, we report that TXA 2 mimetic U46619 significantly increases the endothelial permeability both in vitro and in vivo. U46619 enhanced the expression and secretion of interleukin-8 (IL-8), a major inducer of vascular permeability, in endothelial cells. Promoter analysis showed that the U46619-induced expression of IL-8 was mainly regulated by nuclear factor-κB (NF-κB). U46619 induced the activation of NF-κB through IκB kinase (IKK) activation, IκB phosphorylation and NF-κB nuclear translocation. Furthermore, the inhibition of IL-8 or blockade of the IL-8 receptor attenuated the U46619-induced endothelial cell permeability by modulating the cell-cell junctions. Overall, these results suggest that U46619 promotes vascular permeability through the production of IL-8 via NF-κB activation in endothelial cells.

  4. Oral administration of Saccharomyces boulardii ameliorates carbon tetrachloride-induced liver fibrosis in rats via reducing intestinal permeability and modulating gut microbial composition.

    Science.gov (United States)

    Li, Ming; Zhu, Lin; Xie, Ao; Yuan, Jieli

    2015-02-01

    To investigate the effects of orally administrated Saccharomyces boulardii (S. boulardii) on the progress of carbon tetrachloride (CCl4)-induced liver fibrosis, 34 male Wistar rats were randomly divided into four experimental groups including the control group (n = 8), the cirrhotic group (n = 10), the preventive group (n = 8), and the treatment group (n = 8). Results showed that the liver expression levels of collagen, type I, alpha 1 (Col1A1), alpha smooth muscle actin (αSMA), transforming growth factor beta (TGF-β) and the serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and malondialdehyde (MDA) increased significantly in cirrhotic rats compared with control and decreased by S. boulardii administration. Treatment of S. boulardii also attenuated the increased endotoxin levels and pro-inflammatory cytokines in CCl4-treated rats. And, these were associated with the changes of intestinal permeability and fecal microbial composition. Our study suggested that oral administration of S. boulardii can promote the liver function of CCl4-treated rats, and the preventive treatment of this probiotic yeast may decelerate the progress of liver fibrosis.

  5. Simultaneous determination of intestinal permeability and potential drug interactions of complex mixtures using Caco-2 cells and high-resolution mass spectrometry: Studies with Rauwolfia serpentina extract.

    Science.gov (United States)

    Flynn, Thomas J; Vohra, Sanah N

    2018-06-25

    Caco-2 cells are a commonly used model for estimating the intestinal bioavailability of single chemical entity pharmaceuticals. Caco-2 cells, when induced with calcitriol, also express other biological functions such as phase I (CYP) and phase II (glucuronosyltransferases) drug metabolizing enzymes which are relevant to drug-supplement interactions. Intestinal bioavailability is an important factor in the overall safety assessment of products consumed orally. Foods, including herbal dietary supplements, are complex substances with multiple chemical components. Because of potential interactions between components of complex mixtures, more reliable safety assessments can be obtained by studying the commercial products "as consumed" rather than by testing individual chemical components one at a time. The present study evaluated the apparent intestinal permeability (P app ) of a model herbal extract, Rauwolfia serpentina, using both whole plant extracts and the individual purified Rauwolfia alkaloids. All test compounds, endpoint substrates, and their metabolites were quantified using liquid chromatography and high-resolution mass spectrometry. The P app values for individual Rauwolfia alkaloids were comparable whether measured individually or as components of the complete extract. Both Rauwolfia extract and all individual Rauwolfia alkaloids except yohimbine inhibited CYP3A4 activity (midazolam 1'-hydroxylation). Both Rauwolfia extract and all individual Rauwolfia alkaloids except corynanthine and reserpic acid significantly increased glucuronosyltransferase activity (glucuronidation of 4-methylumbelliferone). The positive control, ketoconazole, significantly inhibited both CYP3A4 and glucuronosyltransferase activities. These findings suggest that the Caco-2 assay is capable of simultaneously identifying both bioavailability and potentially hazardous intestinal drug-supplement interactions in complex mixtures. Published by Elsevier B.V.

  6. Inulin-enriched pasta improves intestinal permeability and modifies the circulating levels of zonulin and glucagon-like peptide 2 in healthy young volunteers.

    Science.gov (United States)

    Russo, Francesco; Linsalata, Michele; Clemente, Caterina; Chiloiro, Marisa; Orlando, Antonella; Marconi, Emanuele; Chimienti, Guglielmina; Riezzo, Giuseppe

    2012-12-01

    Apart from the intestinal environment, inulin induces physiological effects, which includes a reduction in glucose and lipid concentrations and modulation of gastrointestinal motility through the release of different peptides. We hypothesized that inulin-enriched pasta may also improve small intestine permeability in relation to zonulin and glucagon-like peptide 2 (GLP-2) levels in healthy young subjects. Twenty healthy, young male volunteers completed a randomized, double-blind crossover study consisting of a 2-week run-in period and two 5-week study periods (11% inulin-enriched or control pasta), with an 8-week washout period in between. The intestinal barrier function was assessed by lactulose-mannitol excretion in urine. Zonulin values and GLP-2 release were evaluated by enzyme-linked immunosorbent assay. In the inulin group, the urinary lactulose recovery was significantly lower than the other 2 groups. There were no significant differences in urinary mannitol levels between groups. Accordingly, the lactulose-mannitol excretion ratio was significantly decreased in the inulin-enriched pasta group compared with the other 2 groups. The inulin-enriched pasta group had significantly lower zonulin serum values and significantly higher GLP-2 basal values when compared with the baseline and control pasta groups. The dietary use of inulin-enriched pasta preserves intestinal mucosal barrier functioning and modulates circulating levels of zonulin and GLP-2, suggesting that prebiotics could be used in the prevention of gastrointestinal diseases and metabolic disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Influence of fentanyl and morphine on intestinal circulation

    International Nuclear Information System (INIS)

    Tverskoy, M.; Gelman, S.; Fowler, K.C.; Bradley, E.L.

    1985-01-01

    The influence of fentanyl and morphine on the intestinal circulation was evaluated in an isolated loop preparation in 37 dogs anesthetized with pentobarbital intravenously. Selected intestinal segments were pumped with aortic blood at a constant pressure of 100 mm Hg. A mixture of 86 Rb and 9-micron spheres labeled with 141 Ce was injected into the arterial cannula supplying the intestinal loop, while mesenteric venous blood was collected for activity counting. A strong correlation was found between the clearances of rubidium and microspheres (r = 0.97, P less than 0.0001), suggesting that the shunting of 9-micron spheres through the intestines reflects the shunting of blood through nonnutritive vessels. Intravenous fentanyl decreased oxygen uptake (O 2 up), and vascular resistance (VR), and increased blood flow (BF), rubidium and microsphere clearances (Cl-Rb, Cl-Sph, respectively), and permeability--surface area product (PS) in a dose-related fashion. Intravenous morphine in a dose of 1 mg X kg-1 increased Cl-Rb (nutritive BF) without changes in total (nutritive and nonnutritive) BF. This increase in nutritive BF is probably related to morphine-induced histamine release. Morphine in a dose of 5 mg X kg-1 was accompanied by vasoconstriction that was completely abolished by alpha-adrenoceptor blockade. The data suggest that morphine-induced intestinal vasoconstriction is mediated via a release of epinephrine, apparently from the adrenal medulla. It is concluded that changes in the intestinal circulation during anesthesia with narcotics might play a certain role in the cardiovascular homeostasis during anesthesia and surgery. An increase in oxygen content in portal venous blood, resulting from a decrease in intestinal oxygen uptake, should facilitate hepatic oxygenation

  8. Influence of fentanyl and morphine on intestinal circulation

    Energy Technology Data Exchange (ETDEWEB)

    Tverskoy, M.; Gelman, S.; Fowler, K.C.; Bradley, E.L.

    1985-06-01

    The influence of fentanyl and morphine on the intestinal circulation was evaluated in an isolated loop preparation in 37 dogs anesthetized with pentobarbital intravenously. Selected intestinal segments were pumped with aortic blood at a constant pressure of 100 mm Hg. A mixture of /sup 86/Rb and 9-micron spheres labeled with /sup 141/Ce was injected into the arterial cannula supplying the intestinal loop, while mesenteric venous blood was collected for activity counting. A strong correlation was found between the clearances of rubidium and microspheres (r = 0.97, P less than 0.0001), suggesting that the shunting of 9-micron spheres through the intestines reflects the shunting of blood through nonnutritive vessels. Intravenous fentanyl decreased oxygen uptake (O/sub 2/up), and vascular resistance (VR), and increased blood flow (BF), rubidium and microsphere clearances (Cl-Rb, Cl-Sph, respectively), and permeability--surface area product (PS) in a dose-related fashion. Intravenous morphine in a dose of 1 mg X kg-1 increased Cl-Rb (nutritive BF) without changes in total (nutritive and nonnutritive) BF. This increase in nutritive BF is probably related to morphine-induced histamine release. Morphine in a dose of 5 mg X kg-1 was accompanied by vasoconstriction that was completely abolished by alpha-adrenoceptor blockade. The data suggest that morphine-induced intestinal vasoconstriction is mediated via a release of epinephrine, apparently from the adrenal medulla. It is concluded that changes in the intestinal circulation during anesthesia with narcotics might play a certain role in the cardiovascular homeostasis during anesthesia and surgery. An increase in oxygen content in portal venous blood, resulting from a decrease in intestinal oxygen uptake, should facilitate hepatic oxygenation.

  9. Gastrointestinal permeability in ovarian cancer and breast cancer patients treated with paclitaxel and platinum

    International Nuclear Information System (INIS)

    Melichar, Bohuslav; Hyšpler, Radomír; Dragounová, Emanuela; Dvořák, Josef; Kalábová, Hana; Tichá, Alena

    2007-01-01

    Combination of platinum derivatives with paclitaxel is currently the standard front line regimen for patients with epithelial ovarian carcinoma, and represents also an active regimen in patients with metastatic breast or unknown primary carcinomas. Measurement of intestinal permeability represents one of the potential methods of noninvasive laboratory assessment of gastrointestinal mucositis induced by chemotherapy, but little is known about intestinal permeability in patients treated with paclitaxel or platinum. Intestinal permeability was assessed in 36 breast and ovarian cancer patients treated with paclitaxel/platinum combination by measuring, using capillary gas chromatography, urinary sucrose, lactulose, xylose and mannitol after oral challenge. The significance of differences during the therapy compared to pre-treatment values was studied by Wilcoxon paired test. The differences between groups of patient were studied by Mann-Whitney U test. Fisher exact test was used to compare the frequency in different subgroups. After administration of the first dose, a significant (p < 0.05) decrease in xylose absorption and increased lactulose/mannitol, sucrose/mannitol, lactulose/xylose and sucrose/xylose ratios were observed, but these parameters returned subsequently to pre-treatment levels. Patients who experienced serious (grade 3 or 4) toxicity had at baseline significantly lower percentages of xylose, mannitol and sucrose, and higher lactulose/mannitol ratio. Nine of 13 (69%) patients with baseline lactulose/mannitol ratio 0.070 or above experienced serious toxicity compared to 4 out of 23 patients (17%) with the ratio below 0.070 (p = 0.002). Post-treatment lactulose, lactulose/mannitol, sucrose/mannitol and lactulose/xylose ratios were significantly increased in patients with serious toxicity. A transient significant increase in lactulose/monosaccharide and sucrose/monosaccharide ratios was observed in ovarian and breast cancer patients treated with paclitaxel

  10. Review article: Associations between immune activation, intestinal permeability and the irritable bowel syndrome.

    Science.gov (United States)

    Matricon, J; Meleine, M; Gelot, A; Piche, T; Dapoigny, M; Muller, E; Ardid, D

    2012-12-01

    Irritable bowel syndrome (IBS), one of the most common gastrointestinal disorders, markedly impairing patients' quality of life. Drug development for IBS treatment has been hampered by the lack of understanding of IBS aetiology. In recent years, numerous data have emerged that suggest the involvement of immune activation in IBS, at least in a subset of patients. To determine whether immune activation and intestinal permeabilisation are more frequently observed in IBS patients compared with healthy controls. The scientific bibliography was searched using the following keywords: irritable bowel syndrome, inflammation, immune activation, permeabilisation, intestine, assay, histology and human. The retrieved studies, including blood, faecal and histological studies, were analysed to provide a comprehensive and structured overview of the available data including the type of assay, type of inflammatory marker investigated or intestinal segment studied. Immune activation was more frequently observed in IBS patients than in healthy controls. An increase in the number of mast cells and lymphocytes, an alteration in cytokine levels and intestinal permeabilisation were reported in IBS patients. No consistent changes in the numbers of B cells or enterochromaffin cells or in mucosal serotonin production were demonstrated. The changes observed were modest and often heterogeneous among the studied population. Only appropriate interventions improving irritable bowel syndrome symptoms could highlight and confirm the role of immune activation in this pathophysiology. © 2012 Blackwell Publishing Ltd.

  11. Intestinal glucose transport and salinity adaptation in a euryhaline teleost

    International Nuclear Information System (INIS)

    Reshkin, S.J.; Ahearn, G.A.

    1987-01-01

    Glucose transport by upper and lower intestinal brush-border membrane vesicles of the African tilapia (Oreochromis mossambicus) was characterized in fish acclimated to either freshwater of full-strength sea water. D-[ 3 H]-glucose uptake by vesicles was stimulated by a transmembrane Na gradient, was electrogenic, and was enhanced by countertransport of either D-glucose or D-galactose. Glucose transport was greater in the upper intestine than in the lower intestine and in sea water animals rather than in fish acclimated to freshwater. Glucose influx (10-s uptake) involved both saturable and nonsaturable transport components. Sea water adaptation increased apparent glucose influx K/sub t/, J/sub max/, apparent diffusional permeability (P), and the apparent Na affinity of the cotransport system in both intestinal segments, but the stoichiometry of Na-glucose transfer (1:1) was unaffected by differential saline conditions or gut region. It is suggested that increased sugar transport in sea water animals is due to the combination of enhanced Na-binding properties and an increase in number or transfer rate of the transport proteins. Freshwater animals compensate for reduced Na affinity of the coupled process by markedly increasing the protein affinity for glucose

  12. Increased paracellular permeability in intrahepatic cholestasis induced by carmustine (BCNU) in rats

    International Nuclear Information System (INIS)

    Krell, H.; Fromm, H.; Larson, R.E.

    1991-01-01

    Carmustine [i.e., 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU)] is a drug with cholestatic potency both in experimental animals and in humans. To study the mechanisms involved in the development of the hepatic lesions, early changes in liver function in rats pretreated with the drug were investigated. Dosages and sampling times that did not result in hepatocellular injury, as indicated by release of marker enzymes, were applied. In isolated perfused livers from pretreated rats, bile flow and maximal secretion rate of taurocholate were decreased. An increase in biliary 14 Csucrose clearance suggested enhanced permeability of the bile tract and was correlated with increased inorganic phosphate concentration in bile. To assess the contribution of paracellular and transcellular pathways of sucrose, 14 Csucrose access into bile was analyzed by biliary off-kinetics after omission of the radioactive marker from the perfusion medium. An improved method was developed to quantitate the permeability of the bile tract by applying the classical flow equation to the paracellular portion of biliary sucrose clearance. With this method it was shown that pretreatment of rats with BCNU resulted in an increase in both diffusion and convection of paracellular sucrose from perfusate into bile. Accordingly, the fast access of horseradish peroxidase from perfusate into bile was facilitated in isolated perfused livers of BCNU-treated rats. The results indicate that an increase in paracellular permeability is an early alteration that may contribute to the development of hepatotoxic lesions caused by BCNU. It is shown that inert solute clearance can be used to assess paracellular permeability if the paracellular fraction is determined

  13. Alternative Functional In Vitro Models of Human Intestinal Epithelia

    Directory of Open Access Journals (Sweden)

    Amanda L Kauffman

    2013-07-01

    Full Text Available Physiologically relevant sources of absorptive intestinal epithelial cells are crucial for human drug transport studies. Human adenocarcinoma-derived intestinal cell lines, such as Caco-2, offer conveniences of easy culture maintenance and scalability, but do not fully recapitulate in vivo intestinal phenotypes. Additional sources of renewable physiologically relevant human intestinal cells would provide a much needed tool for drug discovery and intestinal physiology. We sought to evaluate and compare two alternative sources of human intestinal cells, commercially available primary human intestinal epithelial cells (hInEpCs and induced pluripotent stem cell (iPSC-derived intestinal cells to Caco-2, for use in in vitro transwell monolayer intestinal transport assays. To achieve this for iPSC-derived cells, our previously described 3-dimensional intestinal organogenesis method was adapted to transwell differentiation. Intestinal cells were assessed by marker expression through immunocytochemical and mRNA expression analyses, monolayer integrity through Transepithelial Electrical Resistance (TEER measurements and molecule permeability, and functionality by taking advantage the well-characterized intestinal transport mechanisms. In most cases, marker expression for primary hInEpCs and iPSC-derived cells appeared to be as good as or better than Caco-2. Furthermore, transwell monolayers exhibited high TEER with low permeability. Primary hInEpCs showed molecule efflux indicative of P-glycoprotein transport. Primary hInEpCs and iPSC-derived cells also showed neonatal Fc receptor-dependent binding of immunoglobulin G variants. Primary hInEpCs and iPSC-derived intestinal cells exhibit expected marker expression and demonstrate basic functional monolayer formation, similar to or better than Caco-2. These cells could offer an alternative source of human intestinal cells for understanding normal intestinal epithelial physiology and drug transport.

  14. Determination of Regional Intestinal Permeability of Diclofenac and ...

    African Journals Online (AJOL)

    Purpose: To develop a simple and rapid reversed-phase high performance liquid chromatographic (HPLC) method with UV detection for the simultaneous determination of diclofenac, metoprolol tartrate, phenol red and propyl paraben in intestinal segments. Methods: The mobile phase consisted of 55 % methanol, 45 % of ...

  15. Liquid chromatography-tandem mass spectrometry for analysis of intestinal permeability of loperamide in physiological buffer.

    Directory of Open Access Journals (Sweden)

    Miriam S Rubelt

    Full Text Available Analysis of in vitro samples with high salt concentrations represents a major challenge for fast and specific quantification with liquid chromatography-tandem mass spectrometry (LC-MS/MS. To investigate the intestinal permeability of opioids in vitro employing the Ussing chamber technique, we developed and validated a fast, sensitive and selective method based on LC-MS/MS for the determination of loperamide in HEPES-buffered Ringer's solution. Chromatographic separation was achieved with an Atlantis dC18 column, 2.1 mm×20 mm, 3 µm particle size and a gradient consisting of methanol/0.1% formic acid and ammonium acetate. The flow rate was 0.7 ml/min, and the total run time was 3 min. For quantification, two mass transitions for loperamide and a deuterated internal standard (methadone-d(3 were used. The lower limit of loperamide quantification was 0.2 ng/ml. This new LC-MS/MS method can be used for the detection of loperamide in any experimental setup using HEPES-buffered Ringer's solution as a matrix compound.

  16. Standardising the lactulose mannitol test of gut permeability to minimise error and promote comparability.

    Directory of Open Access Journals (Sweden)

    Ivana R Sequeira

    Full Text Available BACKGROUND: Lactulose mannitol ratio tests are clinically useful for assessing disorders characterised by changes in gut permeability and for assessing mixing in the intestinal lumen. Variations between currently used test protocols preclude meaningful comparisons between studies. We determined the optimal sampling period and related this to intestinal residence. METHODS: Half-hourly lactulose and mannitol urinary excretions were determined over 6 hours in 40 healthy female volunteers after administration of either 600 mg aspirin or placebo, in randomised order at weekly intervals. Gastric and small intestinal transit times were assessed by the SmartPill in 6 subjects from the same population. Half-hourly percentage recoveries of lactulose and mannitol were grouped on a basis of compartment transit time. The rate of increase or decrease of each sugar within each group was explored by simple linear regression to assess the optimal period of sampling. KEY RESULTS: The between subject standard errors for each half-hourly lactulose and mannitol excretion were lowest, the correlation of the quantity of each sugar excreted with time was optimal and the difference between the two sugars in this temporal relationship maximal during the period from 2½-4 h after ingestion. Half-hourly lactulose excretions were generally increased after dosage with aspirin whilst those of mannitol were unchanged as was the temporal pattern and period of lowest between subject standard error for both sugars. CONCLUSION: The results indicate that between subject variation in the percentage excretion of the two sugars would be minimised and the differences in the temporal patterns of excretion would be maximised if the period of collection of urine used in clinical tests of small intestinal permeability were restricted to 2½-4 h post dosage. This period corresponds to a period when the column of digesta column containing the probes is passing from the small to the large

  17. Intestinal toxicity of deoxynivalenol is limited by Lactobacillus rhamnosus RC007 in pig jejunum explants.

    Science.gov (United States)

    García, Gisela Romina; Payros, Delphine; Pinton, Philippe; Dogi, Cecilia Ana; Laffitte, Joëlle; Neves, Manon; González Pereyra, María Laura; Cavaglieri, Lilia Renée; Oswald, Isabelle P

    2018-02-01

    Probiotics have been explored to stimulate gut health in weaned pigs, when they started to consume solid diet where mycotoxins could be present. The aim of this study was to evaluate the effect of Lactobacillus rhamnosus RC007 on the intestinal toxicity of deoxynivalenol (DON) in an ex vivo model. Jejunal explants, obtained from 5-week-old crossbred castrated male piglets, were kept as control, exposed for 3 h to 10 μM DON, incubated for 4 h with 10 9 CFU/mL L. rhamnosus, or pre-incubated 1 h with 10 9 L. rhamnosus and exposed to DON. Histological lesions were observed, para- and transcellular intestinal permeability was measured in Ussing chambers. The expression levels of mRNA encoding six inflammatory cytokines (CCL20, IL-10, IL-1β, TNFα, IL-8 and IL-22) were determined by RT-PCR. The expressions of the phosphorylated MAP kinases p42/p44 and p38 were assessed by immunoblotting. Exposure to DON induced histological changes, significantly increased the expression of CCL20, IL-1β, TNFα, IL-8, IL-22 and IL-10, increased the intestinal paracellular permeability and activated MAP kinases. Incubation with L. rhamnosus alone did not have any significant effect. By contrast, the pre-incubation with L. rhamnosus reduced all the effects of DON: the histological alterations, the pro-inflammatory response, the paracellular permeability and the phosphorylation of MAP kinases. Of note, L. rhamnosus did not adsorb DON and only slightly degrade the toxin. In conclusion, L. rhamnosus RC007 is a promising probiotic which, included as feed additive, can decrease the intestinal toxicity of DON.

  18. Role of intestinal mucosal barrier in the development and progression of nonalcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    ZHANG Yuanyuan

    2016-12-01

    Full Text Available The incidence of non-alcoholic fatty liver disease (NAFLD has been increasing year by year in China. Intestinal mucosa is the largest organ for bacterial storage, and intestinal mucosal barrier includes biological barrier, mechanical barrier, immunological barrier, and chemical barrier. This article investigates the important role of intestinal mucosal barrier function in the pathogenesis of NAFLD. As for the intestinal biological barrier, abnormalities in gut microbiota occur earlier than obesity and other metabolic disorders; small intestinal bacterial overgrowth may affect energy metabolism, promote insulin resistance, and get involved in the pathogenesis of NAFLD; regulation of gut microbiota has a certain clinical effect in the treatment of NAFLD. Intestinal mechanical barrier impairment increases the mucosal permeability and is associated with intestinal dysbacteriosis. The changes in intestinal immunological barrier may be associated with obesity, metabolic disorders, and liver inflammation. The changes in intestinal chemical barrier can inhibit the synthesis and secretion of very low-density lipoprotein and low-density lipoprotein in hepatocytes and may result in triglyceride deposition in the liver. It is pointed out that the research on intestinal mucosal barrier function provides promising prospects for the prevention and treatment of NAFLD.

  19. Permeability of the small intestine to [51Cr]EDTA in children with acute gastroenteritis or eczema

    International Nuclear Information System (INIS)

    Forget, P.; Sodoyez-Goffaux, F.; Zappitelli, A.

    1985-01-01

    Increased gut permeability to macromolecules is thought to be an important factor in the development of food hypersensitivity. The latter can develop in the course of acute gastroenteritis and could play a role in infantile eczema. The authors studied gut permeability in 10 normal adults, 11 control children, 7 children with acute gastroenteritis, and 8 patients with infantile eczema, making use of [ 51 Cr]EDTA as probe molecule. [ 51 Cr]EDTA was given orally (50-100 microCi); 24-h urinary excretion of [ 51 Cr]EDTA was measured and expressed as a percentage of the oral dose. Mean and standard error were 2.35 +/- 0.24, 2.51 +/- 0.21, 9.96 +/- 3.44, and 10.90 +/- 2.05 in normal adults, control children, and gastroenteritis and eczema patients, respectively. Differences between controls and either gastroenteritis (p less than 0.001) or eczema (p less than 0.001) patients are significant. The results support the hypothesis that increased gut permeability could play a role in food hypersensitivity

  20. Hydrotropic solubilization of lipophilic drugs for oral delivery: The effects of urea and nicotinamide on carbamazepine solubility-permeability interplay

    Directory of Open Access Journals (Sweden)

    Avital Beig

    2016-10-01

    Full Text Available Hydrotropy refers to increasing the water solubility of otherwise poorly soluble compound by the presence of small organic molecules. While it can certainly increase the apparent solubility of a lipophilic drug, the effect of hydrotropy on the drugs' permeation through the intestinal membrane has not been studied. The purpose of this work was to investigate the solubility-permeability interplay when using hydrotropic drug solubilization. The concentration-dependent effects of the commonly used hydrotropes urea and nicotinamide, on the solubility and the permeability of the lipophilic antiepileptic drug carbamazepine were studied. Then, the solubility-permeability interplay was mathematically modeled, and was compared to the experimental data. Both hydrotropes allowed significant concentration-dependent carbamazepine solubility increase (up to ~30-fold. A concomitant permeability decrease was evident both in-vitro and in-vivo (~17-fold for nicotinamide and ~9-fold for urea, revealing a solubility-permeability tradeoff when using hydrotropic drug solubilization. A relatively simplified simulation approach based on proportional opposite correlation between the solubility increase and the permeability decrease at a given hydrotrope concentration allowed excellent prediction of the overall solubility-permeability tradeoff. In conclusion, when using hydrotropic drug solubilization it is prudent to not focus solely on solubility, but to account for the permeability as well; achieving optimal solubility-permeability balance may promote the overall goal of the formulation to maximize oral drug exposure.

  1. Hydrotropic Solubilization of Lipophilic Drugs for Oral Delivery: The Effects of Urea and Nicotinamide on Carbamazepine Solubility–Permeability Interplay

    Science.gov (United States)

    Beig, Avital; Lindley, David; Miller, Jonathan M.; Agbaria, Riad; Dahan, Arik

    2016-01-01

    Hydrotropy refers to increasing the water solubility of otherwise poorly soluble compound by the presence of small organic molecules. While it can certainly increase the apparent solubility of a lipophilic drug, the effect of hydrotropy on the drugs’ permeation through the intestinal membrane has not been studied. The purpose of this work was to investigate the solubility–permeability interplay when using hydrotropic drug solubilization. The concentration-dependent effects of the commonly used hydrotropes urea and nicotinamide, on the solubility and the permeability of the lipophilic antiepileptic drug carbamazepine were studied. Then, the solubility–permeability interplay was mathematically modeled, and was compared to the experimental data. Both hydrotropes allowed significant concentration-dependent carbamazepine solubility increase (up to ∼30-fold). A concomitant permeability decrease was evident both in vitro and in vivo (∼17-fold for nicotinamide and ∼9-fold for urea), revealing a solubility–permeability tradeoff when using hydrotropic drug solubilization. A relatively simplified simulation approach based on proportional opposite correlation between the solubility increase and the permeability decrease at a given hydrotrope concentration allowed excellent prediction of the overall solubility–permeability tradeoff. In conclusion, when using hydrotropic drug solubilization it is prudent to not focus solely on solubility, but to account for the permeability as well; achieving optimal solubility–permeability balance may promote the overall goal of the formulation to maximize oral drug exposure. PMID:27826241

  2. Sicilian pistachio (Pistacia vera L.) nut inhibits expression and release of inflammatory mediators and reverts the increase of paracellular permeability in IL-1β-exposed human intestinal epithelial cells.

    Science.gov (United States)

    Gentile, C; Perrone, A; Attanzio, A; Tesoriere, L; Livrea, M A

    2015-08-01

    Dietary approaches to control inflammatory bowel diseases (IBD) may include proanthocyanidin-rich foods. Our previous research showed that a hydrophilic extract from Sicilian pistachio nut (HPE) contains substantial amounts of proanthocyanidins and possesses anti-inflammatory activities. We studied the effects of HPE and of its polymeric proanthocyanidin fraction (PPF) in a cell model that simulated some conditions of IBD, consisting of interleukin (IL)-1β-stimulated Caco-2 cells. HPE was prepared by Pistacia vera L. nuts, and PPF was isolated from HPE by adsorbance chromatography. Proanthocyanidins were quantified as anthocyanidins after acidic hydrolysis. Differentiated Caco-2 cells were pre-incubated with HPE or PPF and then were exposed to IL-1β. Cell viability and parameters associated with nuclear factor-κB (NF-κB) activation were assayed. Adsorption of polymeric proanthocyanidins to the cell membrane was investigated by transepithelial electrical resistance (TEER) measurements. HPE decreased prostaglandin (PG)E2 production, IL-6 and IL-8 release, and cyclooxygenase (COX)-2 expression. HPE also inhibited the increase in paracellular permeability and reduced NF-κB activation. Polymeric proanthocyanidins, tested at a concentration comparable with their content in HPE, produced effects comparable to HPE. Finally, cell exposure to PPF increases TEER of the epithelial monolayers. Our results provide evidence that pistachio nut components inhibit inflammatory response of intestinal epithelial cells in vitro and indicate polymeric proanthocyanidins as the major bioactive nut components. The protection implies inhibition of NF-κB activation and occurs in parallel with the adsorption of polymeric proanthocyanidins to cell membrane. Our findings suggest that intake of small amounts of pistachio nut can exert beneficial effects to gastrointestinal pathophysiology.

  3. Protective Effects of Bifidobacterium on Intestinal Barrier Function in LPS-Induced Enterocyte Barrier Injury of Caco-2 Monolayers and in a Rat NEC Model.

    Science.gov (United States)

    Ling, Xiang; Linglong, Peng; Weixia, Du; Hong, Wei

    2016-01-01

    Zonulin protein is a newly discovered modulator which modulates the permeability of the intestinal epithelial barrier by disassembling intercellular tight junctions (TJ). Disruption of TJ is associated with neonatal necrotizing enterocolitis (NEC). It has been shown bifidobacterium could protect the intestinal barrier function and prophylactical administration of bifidobacterium has beneficial effects in NEC patients and animals. However, it is still unknown whether the zonulin is involved in the gut barrier dysfunction of NEC, and the protective mechanisms of bifidobacterium on intestinal barrier function are also not well understood. The present study aims to investigate the effects of bifidobacterium on intestinal barrier function, zonulin regulation, and TJ integrity both in LPS-induced enterocyte barrier injury of Caco-2 monolayers and in a rat NEC model. Our results showed bifidobacterium markedly attenuated the decrease in transepithelial electrical resistance and the increase in paracellular permeability in the Caco-2 monolayers treated with LPS (P zonulin release (P zonulin (P zonulin protein release and improvement of intestinal TJ integrity.

  4. The extent of intestinal failure-associated liver disease in patients referred for intestinal rehabilitation is associated with increased mortality: an analysis of the pediatric intestinal failure consortium database.

    Science.gov (United States)

    Javid, Patrick J; Oron, Assaf P; Duggan, Christopher; Squires, Robert H; Horslen, Simon P

    2017-09-05

    The advent of regional multidisciplinary intestinal rehabilitation programs has been associated with improved survival in pediatric intestinal failure. Yet, the optimal timing of referral for intestinal rehabilitation remains unknown. We hypothesized that the degree of intestinal failure-associated liver disease (IFALD) at initiation of intestinal rehabilitation would be associated with overall outcome. The multicenter, retrospective Pediatric Intestinal Failure Consortium (PIFCon) database was used to identify all subjects with baseline bilirubin data. Conjugated bilirubin (CBili) was used as a marker for IFALD, and we stratified baseline bilirubin values as CBili4 mg/dL. The association between baseline CBili and mortality was examined using Cox proportional hazards regression. Of 272 subjects in the database, 191 (70%) children had baseline bilirubin data collected. 38% and 28% of patients had CBili >4 mg/dL and CBili 4 mg/dL, prematurity, race, and small bowel atresia. On regression analysis controlling for age, prematurity, and diagnosis, the risk of mortality was increased by 3-fold for baseline CBili 2-4 mg/dL (HR 3.25 [1.07-9.92], p=0.04) and 4-fold for baseline CBili >4 mg/dL (HR 4.24 [1.51-11.92], p=0.006). On secondary analysis, CBili >4 mg/dL at baseline was associated with a lower chance of attaining enteral autonomy. In children with intestinal failure treated at intestinal rehabilitation programs, more advanced IFALD at referral is associated with increased mortality and decreased prospect of attaining enteral autonomy. Early referral of children with intestinal failure to intestinal rehabilitation programs should be strongly encouraged. Treatment Study, Level III. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The tripeptide feG ameliorates systemic inflammatory responses to rat intestinal anaphylaxis

    Directory of Open Access Journals (Sweden)

    Davison Joseph S

    2002-08-01

    Full Text Available Abstract Background Food allergies are generally associated with gastrointestinal upset, but in many patients systemic reactions occur. However, the systemic effects of food allergies are poorly understood in experimental animals, which also offer the opportunity to explore the actions of anti-allergic drugs. The tripeptide D-phenylalanine-D-glutamate-Glycine (feG, which potentially alleviates the symptoms of systemic anaphylactic reactions, was tested to determine if it also reduced systemic inflammatory responses provoked by a gastric allergic reaction. Results Optimal inhibition of intestinal anaphylaxis was obtained when 100 μg/kg of feG was given 20 min before the rats were challenged with antigen. The increase in total circulating neutrophils and accumulation of neutrophils in the heart, developing 3 h and 24 h, respectively, after antigen challenge were reduced by both feG and dexamethasone. Both anti-inflammatory agents reduced the increase in vascular permeability induced by antigen in the intestine and the peripheral skin (pinna, albeit with different time courses. Dexamethasone prevented increases in vascular permeability when given 12 h before antigen challenge, whereas feG was effective when given 20 min before ingestion of antigen. The tripeptide prevented the anaphylaxis induced up regulation of specific antibody binding of a cell adhesion molecule related to neutrophil activation, namely CD49d (α4 integrin. Conclusions Aside from showing that intestinal anaphylaxis produces significant systemic inflammatory responses in non-intestinal tissues, our results indicate that the tripeptide feG is a potent inhibitor of extra-gastrointestinal allergic reactions preventing both acute (30 min and chronic (3 h or greater inflammatory responses.

  6. Increased plasma zonulin in patients with sepsis.

    Science.gov (United States)

    Klaus, Daniel A; Motal, Michael C; Burger-Klepp, Ursula; Marschalek, Corinna; Schmidt, Elisabeth M; Lebherz-Eichinger, Diana; Krenn, Claus G; Roth, Georg A

    2013-01-01

    Zonulin is a eukaryotic protein structurally similar to Vibrio cholerae's zonula occludens toxin. It plays an important role in the opening of small intestine tight junctions. The loss of gut wall integrity during sepsis might be pivotal and has been described in various experimental as well as human studies. Increased levels of zonulin could be demonstrated in diseases associated with increased intestinal inflammation, such as celiac disease and type 1 diabetes. We therefore investigated the role of plasma levels of zonulin in patients with sepsis as a non-invasive marker of gut wall integrity. Plasma level of zonulin was measured in 25 patients with sepsis, severe sepsis or septic shock according to ACCP/SCCM criteria at the first day of diagnosed sepsis. 18 non-septic post-surgical ICU-patients and 20 healthy volunteers served as control. Plasma levels were determined by using commercially available ELISA kit. Data are given as median and interquartile range (IQR). Significantly higher plasma concentration of zonulin were found in the sepsis group: 6.61 ng/mL (IQR 3.51-9.46), as compared to the to the post-surgical control group: 3.40 ng/mL (IQR 2.14-5.70) (P = 0.025), as well as to the healthy group: 3.55 ng/mL (IQR 3.14-4.14) (P = 0.008). We were able demonstrate elevated levels of plasma zonulin, a potential marker of intestinal permeability in septic patients. Increased zonulin may serve as an additional mechanism for the observed increased intestinal permeability during sepsis and SIRS.

  7. The solubility-permeability interplay and its implications in formulation design and development for poorly soluble drugs.

    Science.gov (United States)

    Dahan, Arik; Miller, Jonathan M

    2012-06-01

    While each of the two key parameters of oral drug absorption, the solubility and the permeability, has been comprehensively studied separately, the relationship and interplay between the two have been largely ignored. For instance, when formulating a low-solubility drug using various solubilization techniques: what are we doing to the apparent permeability when we increase the solubility? Permeability is equal to the drug's diffusion coefficient through the membrane times the membrane/aqueous partition coefficient divided by the membrane thickness. The direct correlation between the intestinal permeability and the membrane/aqueous partitioning, which in turn is dependent on the drug's apparent solubility in the GI milieu, suggests that the solubility and the permeability are closely associated, exhibiting a certain interplay between them, and the current view of treating the one irrespectively of the other may not be sufficient. In this paper, we describe the research that has been done thus far, and present new data, to shed light on this solubility-permeability interplay. It has been shown that decreased apparent permeability accompanies the solubility increase when using different solubilization methods. Overall, the weight of the evidence indicates that the solubility-permeability interplay cannot be ignored when using solubility-enabling formulations; looking solely at the solubility enhancement that the formulation enables may be misleading with regards to predicting the resulting absorption, and hence, the solubility-permeability interplay must be taken into account to strike the optimal solubility-permeability balance, in order to maximize the overall absorption.

  8. Gadolinium prevents high airway pressure-induced permeability increases in isolated rat lungs.

    Science.gov (United States)

    Parker, J C; Ivey, C L; Tucker, J A

    1998-04-01

    To determine the initial signaling event in the vascular permeability increase after high airway pressure injury, we compared groups of lungs ventilated at different peak inflation pressures (PIPs) with (gadolinium group) and without (control group) infusion of 20 microM gadolinium chloride, an inhibitor of endothelial stretch-activated cation channels. Microvascular permeability was assessed by using the capillary filtration coefficient (Kfc), a measure of capillary hydraulic conductivity. Kfc was measured after ventilation for 30-min periods with 7, 20, and 30 cmH2O PIP with 3 cmH2O positive end-expiratory pressure and with 35 cmH2O PIP with 8 cmH2O positive end-expiratory pressure. In control lungs, Kfc increased significantly to 1.8 and 3.7 times baseline after 30 and 35 cmH2O PIP, respectively. In the gadolinium group, Kfc was unchanged from baseline (0.060 +/- 0.010 ml . min-1 . cmH2O-1 . 100 g-1) after any PIP ventilation period. Pulmonary vascular resistance increased significantly from baseline in both groups before the last Kfc measurement but was not different between groups. These results suggest that microvascular permeability is actively modulated by a cellular response to mechanical injury and that stretch-activated cation channels may initiate this response through increases in intracellular calcium concentration.

  9. Intestinal microbiota in pathophysiology and management of irritable bowel syndrome

    Science.gov (United States)

    Lee, Kang Nyeong; Lee, Oh Young

    2014-01-01

    Irritable bowel syndrome (IBS) is a functional bowel disorder without any structural or metabolic abnormalities that sufficiently explain the symptoms, which include abdominal pain and discomfort, and bowel habit changes such as diarrhea and constipation. Its pathogenesis is multifactorial: visceral hypersensitivity, dysmotility, psychosocial factors, genetic or environmental factors, dysregulation of the brain-gut axis, and altered intestinal microbiota have all been proposed as possible causes. The human intestinal microbiota are composed of more than 1000 different bacterial species and 1014 cells, and are essential for the development, function, and homeostasis of the intestine, and for individual health. The putative mechanisms that explain the role of microbiota in the development of IBS include altered composition or metabolic activity of the microbiota, mucosal immune activation and inflammation, increased intestinal permeability and impaired mucosal barrier function, sensory-motor disturbances provoked by the microbiota, and a disturbed gut-microbiota-brain axis. Therefore, modulation of the intestinal microbiota through dietary changes, and use of antibiotics, probiotics, and anti-inflammatory agents has been suggested as strategies for managing IBS symptoms. This review summarizes and discusses the accumulating evidence that intestinal microbiota play a role in the pathophysiology and management of IBS. PMID:25083061

  10. Intestinal microbiota in pathophysiology and management of irritable bowel syndrome.

    Science.gov (United States)

    Lee, Kang Nyeong; Lee, Oh Young

    2014-07-21

    Irritable bowel syndrome (IBS) is a functional bowel disorder without any structural or metabolic abnormalities that sufficiently explain the symptoms, which include abdominal pain and discomfort, and bowel habit changes such as diarrhea and constipation. Its pathogenesis is multifactorial: visceral hypersensitivity, dysmotility, psychosocial factors, genetic or environmental factors, dysregulation of the brain-gut axis, and altered intestinal microbiota have all been proposed as possible causes. The human intestinal microbiota are composed of more than 1000 different bacterial species and 10(14) cells, and are essential for the development, function, and homeostasis of the intestine, and for individual health. The putative mechanisms that explain the role of microbiota in the development of IBS include altered composition or metabolic activity of the microbiota, mucosal immune activation and inflammation, increased intestinal permeability and impaired mucosal barrier function, sensory-motor disturbances provoked by the microbiota, and a disturbed gut-microbiota-brain axis. Therefore, modulation of the intestinal microbiota through dietary changes, and use of antibiotics, probiotics, and anti-inflammatory agents has been suggested as strategies for managing IBS symptoms. This review summarizes and discusses the accumulating evidence that intestinal microbiota play a role in the pathophysiology and management of IBS.

  11. Does measurement of small intestinal diameter increase diagnostic accuracy of radiography in dogs with suspected intestinal obstruction?

    Science.gov (United States)

    Ciasca, Taízha C; David, Frederic H; Lamb, Christopher R

    2013-01-01

    The ratio between maximal small intestinal (SI) diameter and the height of the body of the fifth lumbar vertebra (L5) in radiographs has been reported as a diagnostic test in dogs with suspected intestinal obstruction. In order to assess the effect of the SI/L5 ratio on the accuracy of radiographic diagnosis of intestinal obstruction, lateral abdominal radiographs of 37 dogs with small intestinal obstruction and 48 nonobstructed dogs were mixed and examined independently by six observers who were unaware of the final diagnosis and who represented a range of experience. Observers first examined radiographs subjectively and stated the likelihood of obstruction (definitely not, probably not, equivocal, probably, definitely). Observers subsequently reexamined the radiographs, determined the SI/L5 ratio, and again stated the likelihood of obstruction. The most frequent cause of obstruction was foreign body (29/37, 78%). Dogs with SI obstruction had a significantly larger median SI/L5 ratio than nonobstructed dogs (P = 0.0002). Using an SI/L5 ratio of 1.7 for diagnosis of intestinal obstruction, sensitivity and specificity were 66%. Use of the SI/L5 ratio was not associated with increased accuracy of diagnosis for any observer, regardless of experience, hence this test may have no diagnostic impact. © 2013 Veterinary Radiology & Ultrasound.

  12. Dopamine enhances duodenal epithelial permeability via the dopamine D5 receptor in rodent.

    Science.gov (United States)

    Feng, X-Y; Zhang, D-N; Wang, Y-A; Fan, R-F; Hong, F; Zhang, Y; Li, Y; Zhu, J-X

    2017-05-01

    The intestinal barrier is made up of epithelial cells and intercellular junctional complexes to regulate epithelial ion transport and permeability. Dopamine (DA) is able to promote duodenal epithelial ion transport through D1-like receptors, which includes subtypes of D 1 (D 1 R) and D 5 (D 5 R), but whether D1-like receptors influence the duodenal permeability is unclear. FITC-dextran permeability, short-circuit current (I SC ), Western blot, immunohistochemistry and ELISA were used in human D 5 R transgenic mice and hyperendogenous enteric DA (HEnD) rats in this study. Dopamine induced a downward deflection in I SC and an increase in FITC-dextran permeability of control rat duodenum, which were inhibited by the D1-like receptor antagonist, SCH-23390. However, DA decreased duodenal transepithelial resistance (TER), an effect also reversed by SCH-23390. A strong immunofluorescence signal for D 5 R, but not D 1 R, was observed in the duodenum of control rat. In human D 5 R knock-in transgenic mice, duodenal mucosa displayed an increased basal I SC with high FITC-dextran permeability and decreased TER with a lowered expression of tight junction proteins, suggesting attenuated duodenal barrier function in these transgenic mice. D 5 R knock-down transgenic mice manifested a decreased basal I SC with lowered FITC-dextran permeability. Moreover, an increased FITC-dextran permeability combined with decreased TER and tight junction protein expression in duodenal mucosa were also observed in HEnD rats. This study demonstrates, for the first time, that DA enhances duodenal permeability of control rat via D 5 R, which provides new experimental and theoretical evidence for the influence of DA on duodenal epithelial barrier function. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  13. Role of intestinal bacteria in gliadin-induced changes in intestinal mucosa: study in germ-free rats.

    Directory of Open Access Journals (Sweden)

    Jana Cinova

    Full Text Available BACKGROUND AND AIMS: Celiac disease (CD is a chronic inflammatory disorder of the small intestine that is induced by dietary wheat gluten proteins (gliadins in genetically predisposed individuals. The overgrowth of potentially pathogenic bacteria and infections has been suggested to contribute to CD pathogenesis. We aimed to study the effects of gliadin and various intestinal bacterial strains on mucosal barrier integrity, gliadin translocation, and cytokine production. METHODOLOGY/PRINCIPAL FINDINGS: Changes in gut mucosa were assessed in the intestinal loops of inbred Wistar-AVN rats that were reared under germ-free conditions in the presence of various intestinal bacteria (enterobacteria and bifidobacteria isolated from CD patients and healthy children, respectively and CD-triggering agents (gliadin and IFN-γ by histology, scanning electron microscopy, immunofluorescence, and a rat cytokine antibody array. Adhesion of the bacterial strains to the IEC-6 rat cell line was evaluated in vitro. Gliadin fragments alone or together with the proinflammatory cytokine interferon (IFN-γ significantly decreased the number of goblet cells in the small intestine; this effect was more pronounced in the presence of Escherichia coli CBL2 and Shigella CBD8. Shigella CBD8 and IFN-γ induced the highest mucin secretion and greatest impairment in tight junctions and, consequently, translocation of gliadin fragments into the lamina propria. Shigella CBD8 and E. coli CBL2 strongly adhered to IEC-6 epithelial cells. The number of goblet cells in small intestine increased by the simultaneous incubation of Bifidobacterium bifidum IATA-ES2 with gliadin, IFN-γ and enterobacteria. B. bifidum IATA-ES2 also enhanced the production of chemotactic factors and inhibitors of metalloproteinases, which can contribute to gut mucosal protection. CONCLUSIONS: Our results suggest that the composition of the intestinal microbiota affects the permeability of the intestinal mucosa

  14. Inhibition of IKKβ in enterocytes exacerbates sepsis-induced intestinal injury and worsens mortality.

    Science.gov (United States)

    Dominguez, Jessica A; Samocha, Alexandr J; Liang, Zhe; Burd, Eileen M; Farris, Alton B; Coopersmith, Craig M

    2013-10-01

    Nuclear factor-κB is a critical regulator of cell-survival genes and the host inflammatory response. The purpose of this study was to investigate the role of enterocyte-specific NF-kB in sepsis through selective ablation of IkB kinase. Prospective, randomized controlled study. Animal laboratories in university medical centers. Mice lacking functional NF-kB in their intestinal epithelium (Vil-Cre/Ikkβ) and wild-type mice were subjected to sham laparotomy or cecal ligation and puncture. Animals were killed at 24 hours or followed 7 days for survival. Septic wild-type mice had decreased villus length compared with sham mice, whereas villus atrophy was further exacerbated in septic Vil-Cre/Ikkβ mice. Sepsis induced an increase in intestinal epithelial apoptosis compared with sham mice, which was further exacerbated in Vil-Cre/Ikkβ mice. Sepsis induced intestinal hyperpermeability in wild-type mice compared with sham mice, which was further exacerbated in septic Vil-Cre/Ikkβ mice. This was associated with increased intestinal expression of claudin-2 in septic wild-type mice, which was further increased in septic Vil-Cre/Ikkβ mice. Both, pro-inflammatory and anti-inflammatory cytokines were increased in serum following cecal ligation and puncture, and interleukin 10 and monocyte chemoattractant protein-1 levels were higher in septic Vil-Cre/Ikkβ mice than in septic wild-type mice. All septic mice were bacteremic, but no differences in bacterial load were identified between wild-type and Vil-Cre/Ikkβ mice. To determine the functional significance of these results, animals were followed for survival. Septic wild-type mice had lower mortality than septic Vil-Cre/Ikkβ mice (47% vs 80%, p<0.05). Antitumor necrosis factor administration decreased intestinal apoptosis, permeability, and mortality in wild-type septic mice, and a similar improvement in intestinal integrity and survival were seen when antitumor necrosis factor was given to Vil-Cre/Ikkβ mice. Enterocyte

  15. Inhibition of IKKß in enterocytes exacerbates sepsis-induced intestinal injury and worsens mortality

    Science.gov (United States)

    Dominguez, Jessica A.; Samocha, Alexandr J.; Liang, Zhe; Burd, Eileen M.; Farris, Alton B.; Coopersmith, Craig M.

    2013-01-01

    Objective NF-kB is a critical regulator of cell survival genes and the host inflammatory response. The purpose of this study was to investigate the role of enterocyte-specific NF-kB in sepsis through selective ablation of IkB kinase (IKK)-ß. Design Prospective, randomized, controlled study. Setting Animal laboratories in university medical centers. Subjects and Interventions Mice lacking functional NF-kB in their intestinal epithelium (Vil-Cre/Ikkßf/Δ) and wild type (WT) mice were subjected to sham laparotomy or cecal ligation and puncture (CLP). Animals were sacrified at 24 hours or followed seven days for survival. Measurements and Main Results Septic WT mice had decreased villus length compared to sham mice while villus atrophy was further exacerbated in septic Vil-Cre/Ikkßf/Δ mice. Sepsis induced an increase in intestinal epithelial apoptosis compared to sham mice which was further exacerbated in Vil-Cre/Ikkßf/Δ mice. Sepsis induced intestinal hyperpermeability in WT mice compared to sham mice, which was further exacerbated in septic Vil-Cre/Ikkßf/Δ mice. This was associated with increased intestinal expression of claudin-2 in septic WT mice, which was further increased in septic Vil-Cre/Ikkßf/Δ mice. Both, pro-inflammatory and anti-inflammatory cytokines were increased in serum following CLP, and IL-10 and MCP-1 levels were higher in septic Vil-Cre/Ikkßf/Δ mice than septic WT mice. All septic mice were bacteremic, but no differences in bacterial load were identified between WT and Vil-Cre/Ikkßf/Δ mice. To determine the functional significance of these results, animals were followed for survival. Septic WT mice had lower mortality than septic Vil-Cre/Ikkßf/Δ mice (47% vs. 80%, p<0.05). Anti-TNF administration decreased intestinal apoptosis, permeability and mortality in WT septic mice and a similar improvement in intestinal integrity and survival were seen when anti-TNF was given to Vil-Cre/Ikkßf/Δ mice. Conclusions Enterocyte-specific NF

  16. Validation of UHPLC-MS/MS methods for the determination of kaempferol and its metabolite 4-hydroxyphenyl acetic acid, and application to in vitro blood-brain barrier and intestinal drug permeability studies.

    Science.gov (United States)

    Moradi-Afrapoli, Fahimeh; Oufir, Mouhssin; Walter, Fruzsina R; Deli, Maria A; Smiesko, Martin; Zabela, Volha; Butterweck, Veronika; Hamburger, Matthias

    2016-09-05

    Sedative and anxiolytic-like properties of flavonoids such as kaempferol and quercetin, and of some of their intestinal metabolites, have been demonstrated in pharmacological studies. However, routes of administration were shown to be critical for observing in vivo activity. Therefore, the ability to cross intestinal and blood-brain barriers was assessed in cell-based models for kaempferol (KMF), and for the major intestinal metabolite of KMF, 4-hydroxyphenylacetic acid (4-HPAA). Intestinal transport studies were performed with Caco-2 cells, and blood-brain barrier transport studies with an immortalized monoculture human model and a primary triple-co-culture rat model. UHPLC-MS/MS methods for KMF and 4-HPAA in Ringer-HEPES buffer and in Hank's balanced salt solution were validated according to industry guidelines. For all methods, calibration curves were fitted by least-squares quadratic regression with 1/X(2) as weighing factor, and mean coefficients of determination (R(2)) were >0.99. Data obtained with all barrier models showed high intestinal and blood-brain barrier permeation of KMF, and no permeability of 4-HPAA, when compared to barrier integrity markers. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Increasing the permeability of Escherichia coli using MAC13243

    DEFF Research Database (Denmark)

    Muheim, Claudio; Götzke, Hansjörg; Eriksson, Anna U.

    2017-01-01

    molecules that make the outer membrane of Escherichia coli more permeable. We identified MAC13243, an inhibitor of the periplasmic chaperone LolA that traffics lipoproteins from the inner to the outer membrane. We observed that cells were (1) more permeable to the fluorescent probe 1-N...

  18. An alternative explanation for the occurrence of short circuit current increases in the small intestine following challenge by bacterial enterotoxins.

    Science.gov (United States)

    Lucas, M L

    2013-10-01

    Secretory diarrhoeal disease due to enterotoxins is thought to arise from the enhancement to pathologically high rates of normally occurring chloride ion and therefore fluid secretion from enterocytes. In support of this concept, many enterotoxins increase intestinal short-circuit current, regarded now as faithfully reflecting the increased chloride ion secretion. Contradicting this assumption, STa reduces absorption but does not cause secretion in vivo although short-circuit current is increased in vitro. There is therefore a mismatch between an assumed enterocyte mediated secretory event that should but does not cause net fluid secretion and an undoubtedly increased short-circuit current. It is proposed here that short-circuit current increases are not themselves secretory events but result from interrupted fluid absorption. A noteworthy feature of compounds that inhibit the increase in short-circuit current is that the majority are vasoactive, neuroactive or both. In general, vasodilator substances increase current. An alternative hypothesis for the origin of short-circuit current increases is that these result from reflex induction of electrogenic fluid absorption. This reflex enhances a compensatory response that is also present at a cellular level. An intestinal reflex is therefore proposed by which decreases in interstitial and intravascular volume or pressure within the intestine initiate an electrogenic fluid absorption mechanism that compensates for the loss of electrically neutral fluid absorption. This hypothesis would explain the apparently complex pharmacology of short-circuit current increases since many depressor substances have receptors in common with enterocytes and enteric nerves. The proposed alternative view of the origin of short-circuit current increases assumes that these do not represent chloride secretion from the enterocytes. This view may therefore aid the successful development of anti-diarrhoeal drugs to overcome a major cause of

  19. Use of a combination of in vitro models to investigate the impact of chlorpyrifos and inulin on the intestinal microbiota and the permeability of the intestinal mucosa.

    Science.gov (United States)

    Réquilé, Marina; Gonzàlez Alvarez, Dubàn O; Delanaud, Stéphane; Rhazi, Larbi; Bach, Véronique; Depeint, Flore; Khorsi-Cauet, Hafida

    2018-05-28

    Dietary exposure to the organophosphorothionate pesticide chlorpyrifos (CPF) has been linked to dysbiosis of the gut microbiota. We therefore sought to investigate whether (i) CPF's impact extends to the intestinal barrier and (ii) the prebiotic inulin could prevent such an effect. In vitro models mimicking the intestinal environment (the SHIME®) and the intestinal mucosa (Caco-2/TC7 cells) were exposed to CPF. After the SHIME® had been exposed to CPF and/or inulin, we assessed the system's bacterial and metabolic profiles. Extracts from the SHIME®'s colon reactors were then transferred to Caco-2/TC7 cultures, and epithelial barrier integrity and function were assessed. We found that inulin co-treatment partially reversed CPF-induced dysbiosis and increased short-chain fatty acid production in the SHIME®. Furthermore, co-treatment impacted tight junction gene expression and inhibited pro-inflammatory signaling in the Caco-2/TC7 intestinal cell line. Whereas, an isolated in vitro assessment of CPF and inulin effects provides useful information on the mechanism of dysbiosis, combining two in vitro models increases the in vivo relevance.

  20. Role of different biodegradable polymers on the permeability of ciprofloxacin

    Directory of Open Access Journals (Sweden)

    Chandra Kanti Chakraborti

    2014-01-01

    Full Text Available Since permeability across biological membranes is a key factor in the absorption and distribution of drugs, drug permeation characteristics of three oral suspensions of ciprofloxacin were designed and compared. The three suspensions of ciprofloxacin were prepared by taking biodegradable polymers such as carbopol 934, carbopol 940, and hydroxypropyl methylcellulose (HPMC. The permeability study was performed by using a Franz diffusion cell through both synthetic cellulose acetate membrane and excised goat gastrointestinal membranes in acidic as well as alkaline pH. To know the permeability of drug from control/formulations through different membranes in acidic/alkaline pH, cumulative percentage drug permeation, apparent permeability (Papp, flux, and enhancement ratio (ER were calculated. Considering Papp and flux values of all formulations, it is evident that formulation containing HPMC was the most beneficial for improving permeation and diffusivity of ciprofloxacin even after 16 h. Hence, this preparation may be considered as the most suitable formulation to obtain prolonged release action of the drug. The ER values of all formulations, through excised goat intestinal mucosal membrane in alkaline pH, were higher than those formulations through goat stomach mucosal membrane in acidic pH. Enhancement ratio values of those formulations indicate that the permeability of the drug was more enhanced by the polymers in the intestinal part, leading to more bioavailability and prolonged action in that portion of the gastrointestinal tract. It may also be concluded from our results that HPMC containing formulation was the best suspension, which may show effective controlled release action. Even carbopol containing formulations might also produce controlled release action.

  1. Role of the intestinal tight junction modulator zonulin in the pathogenesis of type I diabetes in BB diabetic-prone rats.

    Science.gov (United States)

    Watts, Tammara; Berti, Irene; Sapone, Anna; Gerarduzzi, Tania; Not, Tarcisio; Zielke, Ronald; Fasano, Alessio

    2005-02-22

    Increased intestinal permeability has been observed in numerous human autoimmune diseases, including type-1 diabetes (T1D) and its' animal model, the BB-wor diabetic prone rat. We have recently described zonulin, a protein that regulates intercellular tight junctions. The objective of this study was to establish whether zonulin-dependent increased intestinal permeability plays a role in the pathogenesis of T1D. In the BB diabetic-prone rat model of T1D, intestinal intraluminal zonulin levels were elevated 35-fold compared to control BB diabetic-resistant rats. Zonulin up-regulation was coincident with decreased small intestinal transepithelial electrical resistance, and was followed by the production of autoantibodies against pancreatic beta cells, which preceded the onset of clinically evident T1D by approximately 25 days. In those diabetic prone rats that did not progress to diabetes, both intraluminal zonulin and transepithelial electrical resistance were similar to those detected in diabetic-resistant animal controls. Blockade of the zonulin receptor reduced the cumulative incidence of T1D by 70%, despite the persistence of intraluminal zonulin up-regulation. Moreover, treatment responders did not seroconvert to islet cell antibodies. Combined together, these findings suggest that the zonulin-induced loss in small intestinal barrier function is involved in the pathogenesis of T1D in the BB diabetic-prone animal model.

  2. Hemodynamic and permeability characteristics of acute experimental necrotizing enterocolitis

    International Nuclear Information System (INIS)

    Miller, M.J.; Adams, J.; Gu, X.A.; Zhang, X.J.; Clark, D.A.

    1990-01-01

    We examined the local hemodynamic response of intestinal loops during acute necrotizing enterocolitis (NEC) in anesthetized rabbits. NEC was induced in ileal loops by transmural injection of a solution containing casein (10 mg/ml) and calcium gluconate (50 mg/ml) acidified to pH 4.0 with propionic or acetic acid. Control loops received casein only (pH 5.0). Mucosal damage was quantified by the blood-to-lumen movement of [51Cr]EDTA, fluid shifts into the lumen, and histology. Mean arterial pressure and loop blood flow were steady over the 3-hr period, loop fluid volume decreased, and there was no evidence of necrosis or epithelial damage. In loops receiving acidified casein and calcium gluconate, there was an immediate dramatic increase in loop blood flow that returned to baseline by 50 min. In addition, loop fluid volume was dramatically increased, necrosis was noted in the form of blunting and loss of villi, and sevenfold increase in [51Cr]EDTA permeability was evident. Administration of CV 1808 (30 mg/kg/hr), a selective adenosine2 agonist, which maintained and elevated loop blood flow throughout the 3 hr protocol, failed to alter the changes in loop fluid volume or prevent necrosis. Histamine levels in loop fluid levels were significantly elevated 20-30 min after NEC induction when compared to saline controls, indicating an early activation of mucosal defenses with this luminal insult. Thus, this model of NEC is characterized by a transient, acute hyperemia, increased intestinal permeability, and histamine release. As mucosal damage was independent of ischemia and could not be prevented by vasodilatory therapy, this model supports the clinical findings that NEC is correlated with luminal factors related to feeding and independent of cardiovascular stress

  3. Silver nanoparticles interact with the cell membrane and increase endothelial permeability by promoting VE-cadherin internalization

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xia; Shi, Junpeng; Zou, Xiaoyan; Wang, Chengcheng; Yang, Yi; Zhang, Hongwu, E-mail: hwzhang@iue.ac.cn

    2016-11-05

    Highlights: • Short-term exposure to AgNPs at low doses induces increase HUVECs monolayer permeability. • AgNPs interact with the cell membrane and increase endothelial permeability by promoting VE-Cadherin internalization. • Particle effect is a major factor leading to endothelial dysfunction. - Abstract: The toxicological risks of silver nanoparticles (AgNPs) have attracted widespread attention, and many studies have been published that have contributed to understanding AgNPs-induced toxicity. However, little attention has been paid to the low-dose effects of AgNPs and the related toxicological mechanism is still unclear. Here, we show that short-term exposure to AgNPs at low doses induces a substantial increase in human umbilical vein endothelial cells (HUVECs) monolayer permeability, whereas Ag ions at low doses do not induce an observable increase in monolayer permeability. This effect is independent of oxidative stress and apoptosis. Scanning electron microscopy confirms that AgNPs adhere to the cell membrane after 1 h exposure. Furthermore, adhesion of AgNPs to the cell membrane can trigger vascular endothelial (VE)-cadherin phosphorylation at Y658 followed by VE-cadherin internalization, which lead to the increase in endothelial monolayer permeability. Our data show that surface interactions of AgNPs with the cell membrane, in other words, the particle effect, is a major factor leading to endothelial dysfunction following low-dose and short-term exposure. Our findings will contribute to understanding the health effects and the toxicological mechanisms of AgNPs.

  4. Protective Effects of Bifidobacterium on Intestinal Barrier Function in LPS-Induced Enterocyte Barrier Injury of Caco-2 Monolayers and in a Rat NEC Model.

    Directory of Open Access Journals (Sweden)

    Xiang Ling

    Full Text Available Zonulin protein is a newly discovered modulator which modulates the permeability of the intestinal epithelial barrier by disassembling intercellular tight junctions (TJ. Disruption of TJ is associated with neonatal necrotizing enterocolitis (NEC. It has been shown bifidobacterium could protect the intestinal barrier function and prophylactical administration of bifidobacterium has beneficial effects in NEC patients and animals. However, it is still unknown whether the zonulin is involved in the gut barrier dysfunction of NEC, and the protective mechanisms of bifidobacterium on intestinal barrier function are also not well understood. The present study aims to investigate the effects of bifidobacterium on intestinal barrier function, zonulin regulation, and TJ integrity both in LPS-induced enterocyte barrier injury of Caco-2 monolayers and in a rat NEC model. Our results showed bifidobacterium markedly attenuated the decrease in transepithelial electrical resistance and the increase in paracellular permeability in the Caco-2 monolayers treated with LPS (P < 0.01. Compared with the LPS group, bifidobacterium significantly decreased the production of IL-6 and TNF-α (P < 0.01 and suppressed zonulin release (P < 0.05. In addition, bifidobacterium pretreatment up-regulated occludin, claudin-3 and ZO-1 expression (P < 0.01 and also preserved these proteins localization at TJ compared with the LPS group. In the in vivo study, bifidobacterium decreased the incidence of NEC from 88 to 47% (P < 0.05 and reduced the severity in the NEC model. Increased levels of IL-6 and TNF-α in the ileum of NEC rats were normalized in bifidobacterium treated rats (P < 0.05. Moreover, administration of bifidobacterium attenuated the increase in intestinal permeability (P < 0.01, decreased the levels of serum zonulin (P < 0.05, normalized the expression and localization of TJ proteins in the ileum compared with animals with NEC. We concluded that bifidobacterium may

  5. A vegetable oil feeding history affects digestibility and intestinal fatty acid uptake in juvenile rainbow trout Oncorhynchus mykiss.

    Science.gov (United States)

    Geurden, Inge; Jutfelt, Fredrik; Olsen, Rolf-Erik; Sundell, Kristina S

    2009-04-01

    Future expansion of aquaculture relies on the use of alternatives to fish oil in fish feed. This study examined to what extent the nature of the feed oil affects intestinal lipid uptake properties in rainbow trout. The fish were fed a diet containing fish (FO), rapeseed (RO) or linseed (LO) oil for 8 weeks after which absorptive properties were assessed. Differences in digestibility due to feed oil history were measured using diet FO with an indigestible marker. Intestinal integrity, paracellular permeability, in vitro transepithelial fatty acid transport (3H-18:3n-3 and 14C-16:0) and their incorporation into intestinal epithelia were compared using Ussing chambers. Feed oil history did not affect the triacylglycerol/phosphatidylcholine ratio (TAG/PC) of the newly synthesized lipids in the segments. The lower TAG/PC ratio with 16:0 (2:1) than with 18:3 (10:1) showed the preferential incorporation of 16:0 into polar lipids. The FO-feeding history decreased permeability and increased transepithelial resistance of the intestinal segments. Transepithelial passage rates of 18:3n-3 were higher when pre-fed LO compared to RO or FO. Similarly, pre-feeding LO increased apparent lipid and fatty acid digestibilities compared to RO or FO. These results demonstrate that the absorptive intestinal functions in fish can be altered by the feed oil history and that the effect remains after a return to a standard fish oil diet.

  6. Intestinal surfactant permeation enhancers and their interaction with enterocyte cell membranes in a mucosal explant system

    DEFF Research Database (Denmark)

    Danielsen, E Michael; Hansen, Gert H

    2017-01-01

    Intestinal permeation enhancers (PEs) are agents aimed to improve oral delivery of therapeutic drugs with poor bioavailability. The main permeability barrier for oral delivery is the intestinal epithelium, and PEs act to increase the paracellular and/or transcellular passage of drugs. Transcellular...... for the fluorescent polar tracer lucifer yellow, but surprisingly, they all also blocked both constitutive -and receptor-mediated pathways of endocytosis from the brush border, indicating a complete arrest of apical membrane trafficking. At the ultrastructural level, the PEs caused longitudinal fusion of brush border...

  7. Multi scale impacts of a (Mg,Ca)-Pb exchange on the permeability increase of a bentonite

    International Nuclear Information System (INIS)

    Jozja, N.; Baillif, P.; Touray, J.C.; Pons, Ch.H.; Muller, F.; Burgevin, C.

    2003-01-01

    The article addresses the structural effects of solutions of lead nitrate on a suspended or compacted bentonite. A permeability increase is observed on compacted clay. Investigating the composition of output solution, using X-Rays Diffusion at Small Angles and Scanning Electron Microscopy, this permeability increase is explained from structural variations at nano-metric (reduction of particle size) and micrometric scales (micro-fissuration of aggregates). (authors)

  8. Suppressions of Serotonin-Induced Increased Vascular Permeability and Leukocyte Infiltration by Bixa orellana Leaf Extract

    Directory of Open Access Journals (Sweden)

    Yoke Keong Yong

    2013-01-01

    Full Text Available The aim of the present study was to evaluate the anti-inflammatory activities of aqueous extract of Bixa orellana (AEBO leaves and its possible mechanisms in animal models. The anti-inflammatory activity of the extract was evaluated using serotonin-induced rat paw edema, increased peritoneal vascular permeability, and leukocyte infiltrations in an air-pouch model. Nitric oxide (NO, indicated by the sum of nitrites and nitrates, and vascular growth endothelial growth factor (VEGF were measured in paw tissues of rats to determine their involvement in the regulation of increased permeability. Pretreatments with AEBO (50 and 150 mg kg−1 prior to serotonin inductions resulted in maximum inhibitions of 56.2% of paw volume, 45.7% of Evans blue dye leakage in the peritoneal vascular permeability model, and 83.9% of leukocyte infiltration in the air-pouch model. 57.2% maximum inhibition of NO and 27% of VEGF formations in rats’ paws were observed with AEBO at the dose of 150 mg kg−1. Pharmacological screening of the extract showed significant (P<0.05 anti-inflammatory activity, indicated by the suppressions of increased vascular permeability and leukocyte infiltration. The inhibitions of these inflammatory events are probably mediated via inhibition of NO and VEGF formation and release.

  9. Glycoprotein A33 deficiency: a new mouse model of impaired intestinal epithelial barrier function and inflammatory disease

    Directory of Open Access Journals (Sweden)

    Benjamin B. Williams

    2015-08-01

    Full Text Available The cells of the intestinal epithelium provide a selectively permeable barrier between the external environment and internal tissues. The integrity of this barrier is maintained by tight junctions, specialised cell-cell contacts that permit the absorption of water and nutrients while excluding microbes, toxins and dietary antigens. Impairment of intestinal barrier function contributes to multiple gastrointestinal disorders, including food hypersensitivity, inflammatory bowel disease (IBD and colitis-associated cancer (CAC. Glycoprotein A33 (GPA33 is an intestinal epithelium-specific cell surface marker and member of the CTX group of transmembrane proteins. Roles in cell-cell adhesion have been demonstrated for multiple CTX family members, suggesting a similar function for GPA33 within the gastrointestinal tract. To test a potential requirement for GPA33 in intestinal barrier function, we generated Gpa33−/− mice and subjected them to experimental regimens designed to produce food hypersensitivity, colitis and CAC. Gpa33−/− mice exhibited impaired intestinal barrier function. This was shown by elevated steady-state immunosurveillance in the colonic mucosa and leakiness to oral TRITC-labelled dextran after short-term exposure to dextran sodium sulphate (DSS to injure the intestinal epithelium. Gpa33−/− mice also exhibited rapid onset and reduced resolution of DSS-induced colitis, and a striking increase in the number of colitis-associated tumours produced by treatment with the colon-specific mutagen azoxymethane (AOM followed by two cycles of DSS. In contrast, Gpa33−/− mice treated with AOM alone showed no increase in sporadic tumour formation, indicating that their increased tumour susceptibility is dependent on inflammatory stimuli. Finally, Gpa33−/− mice displayed hypersensitivity to food allergens, a common co-morbidity in humans with IBD. We propose that Gpa33−/− mice provide a valuable model to study the mechanisms

  10. Model prodrugs for the intestinal oligopeptide transporter

    DEFF Research Database (Denmark)

    Nielsen, C U; Andersen, R; Brodin, Birger

    2001-01-01

    The human intestinal di/tri-peptide carrier, hPepT1, has been suggested as a target for increasing intestinal transport of low permeability compounds by creating prodrugs designed for the transporter. Model ester prodrugs using the stabilized dipeptides D-Glu-Ala and D-Asp-Ala as pro...... with a pH of approximately 6.0, but still release the model drug at the intercellular and blood pH of approximately 7.4. Even though benzyl alcohol is not a low molecular weight drug molecule, these results indicate that the dipeptide prodrug principle is a promising drug delivery concept. However......, the physico-chemical properties such as electronegativity, solubility, and log P of the drug molecule may also have an influence on the potential of these kinds of prodrugs. The purpose of the present study is to investigate whether the model drug electronegativity, estimated as Taft substitution parameter...

  11. Acute cigarette smoke exposure increases alveolar permeability in rabbits

    International Nuclear Information System (INIS)

    Witten, M.L.; Lemen, R.J.; Quan, S.F.; Sobonya, R.E.; Roseberry, H.; Stevenson, J.L.; Clayton, J.

    1985-01-01

    The authors measured lung clearance of aerosolized technetium-labeled diethylenetriamine pentaacetic acid (/sup 99m/TcDTPA) as an index of alveolar epithelial permeability in rabbits exposed to cigarette smoke. Eighteen rabbits were randomly assigned to 3 equal-size groups: control, all smoke exposure (ASE), and limited smoke exposure (LSE). Cigarette or sham smoke was delivered by syringe in a series of 5, 10, 20, and 30 tidal volume breaths with a 20-min counting period between each subset of breaths to determine /sup 99m/TcDTPA biologic half-life (T 1 / 2 ). Mean T 1 / 2 minimum was significantly lower for ASE and LSE rabbits than by control rabbits. They observed a significant difference at 20 and 30 breath exposures between the control and ASE group mean values for T 1 / 2 , arterial blood pressure, and peak airway pressure. A combination of light and electron microscopy showed focal alveolar edema and hemorrhage in the ASE and LSE groups but no alveolar-capillary membrane damage. In summary, acute cigarette smoke exposure increases alveolar permeability as measured by /sup 99m/TcDTPA clearance, but there was no detectable ultrastructural alteration of the alveolar-capillary membrane

  12. Grapefruit juice and its constituents augment colchicine intestinal absorption: potential hazardous interaction and the role of p-glycoprotein.

    Science.gov (United States)

    Dahan, Arik; Amidon, Gordon L

    2009-04-01

    To investigate the potential interaction between grapefruit juice (GFJ) and the oral microtubule polymerization inhibitor colchicine, a P-gp and CYP3A4 substrate. Colchicine intestinal epithelial transport was investigated across Caco-2 cell monolayers in both AP-BL and BL-AP directions, in the absence/presence of known P-gp inhibitors (verapamil and quinidine). The concentration-dependent effects of GFJ and its major constituents (6'-7'-dihydroxybergamottin, naringin and naringenin) on colchicine Caco-2 mucosal secretion were examined. The effect of GFJ on colchicine intestinal-permeability was then investigated in-situ in the rat perfusion model, in both jejunum and ileum. Colchicine exhibited 20-fold higher BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion, which was reduced by verapamil/quinidine. Colchicine AP-BL permeability was increased and BL-AP was decreased by GFJ in a concentration-dependent manner (IC(50) values of 0.75% and 0.46% respectively), suggesting inhibition of efflux transport, rather than metabolizing enzyme. Similar effects obtained following pre-experiment incubation with GFJ, even though the juice was not present throughout the transepithelial study. 6'-7'-Dihydroxybergamottin, naringin and naringenin displayed concentration-dependent inhibition on colchicine BL-AP secretion (IC(50) values of 90, 592 and 11.6 microM respectively). Ten percent GFJ doubled colchicine rat in-situ ileal permeability, and increased 1.5-fold jejunal permeability. The data suggest that GFJ may augment colchicine oral bioavailability. Due to colchicine narrow therapeutic-index and severely toxic side-effects, awareness of this interaction is prudent.

  13. Probiotic Mixture Golden Bifido Prevents Neonatal Escherichia coli K1 Translocation via Enhancing Intestinal Defense

    Directory of Open Access Journals (Sweden)

    Qing Zeng

    2017-09-01

    Full Text Available Escherichia coli (E. coli K1 sepsis and meningitis is a severe infection characterized by high mortality in neonates. Successful colonization and translocation across the intestinal mucosa have been regarded as the critical steps for E. coli K1 sepsis and meningitis. We recently reported that the probiotic mixture, Golden Bifido (containing live Lactobacillus bulgaricus, Bifidobacterium, and Streptococcus thermophilus, LBS has a preventive role against neonatal E. coli K1 bacteremia and meningitis. However, the interaction between the neonatal gut barrier, probiotics and E. coli K1 is still not elucidated. The present study aims to investigate how LBS exerts its protective effects on neonatal gut barrier during E. coli K1 infection. The beneficial effects of LBS were explored in vitro and in vivo using human colon carcinoma cell lines HT-29 and rat model of neonatal E. coli K1 infection, respectively. Our results showed that stimulation with E. coli K1 was able to cause intestinal barrier dysfunction, which were reflected by E. coli K1-induced intestinal damage and apoptosis of intestinal epithelial cells, reduction of mucin, immunoglobulin A (IgA and tight junction proteins expression, as well as increase in intestinal permeability, all these changes facilitate E. coli K1 intestinal translocation. However, these changes were alleviated when HT-29 cells were treated with LBS before E. coli K1 infection. Furthermore, we found that LBS-treated neonatal rats (without E. coli K1 infection have showed higher production of mucin, ZO-1, IgA, Ki67 in intestinal mucosa as well as lower intestinal permeability than that of non-treated rats, indicating that LBS could accelerate the development of neonatal intestinal defense. Taken together, our results suggest that enhancement of the neonatal intestinal defense to fight against E. coli K1 translocation could be the potential mechanism to elucidate how LBS confers a protective effect against neonatal E

  14. The role of CDX2 in intestinal homeostasis and inflammation

    DEFF Research Database (Denmark)

    Coskun, Mehmet; Troelsen, Jesper Thorvald; Nielsen, Ole Haagen

    2011-01-01

    a causal role in a large number of diseases and developmental disorders. Inflammatory bowel disease (IBD) is characterized by a chronically inflamed mucosa caused by dysregulation of the intestinal immune homeostasis. The aetiology of IBD is thought to be a combination of genetic and environmental factors......, including luminal bacteria. The Caudal-related homeobox transcription factor 2 (CDX2) is critical in early intestinal differentiation and has been implicated as a master regulator of the intestinal homeostasis and permeability in adults. When expressed, CDX2 modulates a diverse set of processes including...... of the intestinal homeostasis and further to reveal its potential role in inflammation....

  15. Simulating kinetic parameters in transporter mediated permeability across Caco-2 cells. A case study on estrange-3-sulphate

    DEFF Research Database (Denmark)

    Rolsted, Kamilla; Rapin, Nicolas; Steffansen, Bente

    2011-01-01

    Substances that compete for the same saturable intestinal transporters may when dosed together lead to altered permeability and hence influence bioavailability. The aim was to simulate kinetic parameters, i.e. K(m) and J(max), for transporter mediated E(1)S permeability across Caco-2 cells...

  16. Boswellia serrata Preserves Intestinal Epithelial Barrier from Oxidative and Inflammatory Damage.

    Directory of Open Access Journals (Sweden)

    Daniela Catanzaro

    Full Text Available Aminosalicylates, corticosteroids and immunosuppressants are currently the therapeutic choices in inflammatory bowel diseases (IBD, however, with limited remission and often serious side effects. Meanwhile complementary and alternative medicine (CAM use is increasing, particularly herbal medicine. Boswellia serrata is a traditional Ayurvedic remedy with anti-inflammatory properties, of interest for its usefulness in IBDs. The mechanism of this pharmacological potential of Boswellia serrata was investigated in colonic epithelial cell monolayers exposed to H2O2 or INF-γ+TNF-α, chosen as in vitro experimental model of intestinal inflammation. The barrier function was evaluated by the transepithelial electrical resistance (TEER and paracellular permeability assay, and by the tight junction proteins (zonula occludens-1, ZO-1 and occludin immunofluorescence. The expression of phosphorylated NF-κB and reactive oxygen species (ROS generation were determined by immunoblot and cytofluorimetric assay, respectively. Boswellia serrata oleo-gum extract (BSE and its pure derivative acetyl-11-keto-β-boswellic acid (AKBA, were tested at 0.1-10 μg/ml and 0.027 μg/ml, respectively. BSE and AKBA safety was demonstrated by no alteration of intestinal cell viability and barrier function and integrity biomarkers. H2O2 or INF-γ+TNF-α treatment of Caco-2 cell monolayers significantly reduced TEER, increased paracellular permeability and caused the disassembly of tight junction proteins occludin and ZO-1. BSE and AKBA pretreatment significantly prevented functional and morphological alterations and also the NF-κB phosphorylation induced by the inflammatory stimuli. At the same concentrations BSE and AKBA counteracted the increase of ROS caused by H2O2 exposure. Data showed the positive correlation of the antioxidant activity with the mechanism involved in the physiologic maintenance of the integrity and function of the intestinal epithelium. This study

  17. The intestinal barrier in irritable bowel syndrome: subtype-specific effects of the systemic compartment in an in vitro model.

    Directory of Open Access Journals (Sweden)

    Samefko Ludidi

    Full Text Available Irritable bowel syndrome (IBS is a disorder with multifactorial pathophysiology. Intestinal barrier may be altered, especially in diarrhea-predominant IBS (IBS-D. Several mediators may contribute to increased intestinal permeability in IBS.We aimed to assess effects of tryptase and LPS on in vitro permeability using a 3-dimensional cell model after basolateral cell exposure. Furthermore, we assessed the extent to which these mediators in IBS plasma play a role in intestinal barrier function.Caco-2 cells were grown in extracellular matrix to develop into polarized spheroids and were exposed to tryptase (10 - 50 mU, LPS (1 - 50 ng/mL and two-fold diluted plasma samples of 7 patients with IBS-D, 7 with constipation-predominant IBS (IBS-C and 7 healthy controls (HC. Barrier function was assessed by the flux of FITC-dextran (FD4 using live cell imaging. Furthermore, plasma tryptase and LPS were determined.Tryptase (20 and 50 mU and LPS (6.25 - 50 ng/mL significantly increased Caco-2 permeability versus control (all P< 0.05. Plasma of IBS-D only showed significantly elevated median tryptase concentrations (7.1 [3.9 - 11.0] vs. 4.2 [2.2 - 7.0] vs. 4.2 [2.5 - 5.9] μg/mL; P<0.05 and LPS concentrations (3.65 [3.00 - 6.10] vs. 3.10 [2.60-3.80] vs. 2.65 [2.40 - 3.40] EU/ml; P< 0.05 vs. IBS-C and HC. Also, plasma of IBS-D increased Caco-2 permeability versus HC (0.14450 ± 0.00472 vs. 0.00021 ± 0.00003; P < 0.001, which was attenuated by selective inhibition of tryptase and LPS (P< 0.05.Basolateral exposure of spheroids to plasma of IBS-D patients resulted in a significantly increased FD4 permeation, which was partially abolished by selective inhibition of tryptase and LPS. These findings point to a role of systemic tryptase and LPS in the epithelial barrier alterations observed in patients with IBS-D.

  18. Optimizing Fluorescein Isothiocyanate Dextran Measurement As a Biomarker in a 24-h Feed Restriction Model to Induce Gut Permeability in Broiler Chickens

    Science.gov (United States)

    Baxter, Mikayla F. A.; Merino-Guzman, Ruben; Latorre, Juan D.; Mahaffey, Brittany D.; Yang, Yichao; Teague, Kyle D.; Graham, Lucas E.; Wolfenden, Amanda D.; Hernandez-Velasco, Xochitl; Bielke, Lisa R.; Hargis, Billy M.; Tellez, Guillermo

    2017-01-01

    Fluorescein isothiocyanate dextran (FITC-d) is a 3–5 kDa marker used to measure tight junction permeability. We have previously shown that intestinal barrier function can be adversely affected by stress, poorly digested diets, or feed restriction (FR), resulting in increased intestinal inflammation-associated permeability. However, further optimization adjustments of the current FITC-d methodology are possible to enhance precision and efficacy of results in future. The objective of the present study was to optimize our current model to obtain a larger difference between control and treated groups, by optimizing the FITC-d measurement as a biomarker in a 24-h FR model to induce gut permeability in broiler chickens. One in vitro and four in vivo independent experiments were conducted. The results of the present study suggest that by increasing the dose of FITC-d (8.32 versus 4.16 mg/kg); shortening the collection time of blood samples (1 versus 2.5 h); using a pool of non-FITC-d serum as a blank, compared to previously used PBS; adding a standard curve to set a limit of detection and modifying the software’s optimal sensitivity value, it was possible to obtain more consistent and reliable results. PMID:28470003

  19. Optimizing Fluorescein Isothiocyanate Dextran Measurement As a Biomarker in a 24-h Feed Restriction Model to Induce Gut Permeability in Broiler Chickens

    Directory of Open Access Journals (Sweden)

    Guillermo Tellez

    2017-04-01

    Full Text Available Fluorescein isothiocyanate dextran (FITC-d is a 3–5 kDa marker used to measure tight junction permeability. We have previously shown that intestinal barrier function can be adversely affected by stress, poorly digested diets, or feed restriction (FR, resulting in increased intestinal inflammation-associated permeability. However, further optimization adjustments of the current FITC-d methodology are possible to enhance precision and efficacy of results in future. The objective of the present study was to optimize our current model to obtain a larger difference between control and treated groups, by optimizing the FITC-d measurement as a biomarker in a 24-h FR model to induce gut permeability in broiler chickens. One in vitro and four in vivo independent experiments were conducted. The results of the present study suggest that by increasing the dose of FITC-d (8.32 versus 4.16 mg/kg; shortening the collection time of blood samples (1 versus 2.5 h; using a pool of non-FITC-d serum as a blank, compared to previously used PBS; adding a standard curve to set a limit of detection and modifying the software’s optimal sensitivity value, it was possible to obtain more consistent and reliable results.

  20. Antioxidant and antiapoptotic properties of melatonin restore intestinal calcium absorption altered by menadione.

    Science.gov (United States)

    Carpentieri, A; Marchionatti, A; Areco, V; Perez, A; Centeno, V; Tolosa de Talamoni, N

    2014-02-01

    The intestinal Ca²⁺ absorption is inhibited by menadione (MEN) through oxidative stress and apoptosis. The aim of this study was to elucidate whether the antioxidant and antiapoptotic properties of melatonin (MEL) could protect the gut against the oxidant MEN. For this purpose, 4-week-old chicks were divided into four groups: (1) controls, (2) treated i.p. with MEN (2.5 μmol/kg of b.w.), (3) treated i.p. with MEL (10 mg/kg of b.w.), and (4) treated with 10 mg MEL/kg of b.w after 2.5 μmol MEN/kg of b.w. Oxidative stress was assessed by determination of glutathione (GSH) and protein carbonyl contents as well as antioxidant enzyme activities. Apoptosis was assayed by the TUNEL technique, protein expression, and activity of caspase 3. The data show that MEL restores the intestinal Ca²⁺ absorption altered by MEN. In addition, MEL reversed the effects caused by MEN such as decrease in GSH levels, increase in the carbonyl content, alteration in mitochondrial membrane permeability, and enhancement of superoxide dismutase and catalase activities. Apoptosis triggered by MEN in the intestinal cells was arrested by MEL, as indicated by normalization of the mitochondrial membrane permeability, caspase 3 activity, and DNA fragmentation. In conclusion, MEL reverses the inhibition of intestinal Ca²⁺ absorption produced by MEN counteracting oxidative stress and apoptosis. These findings suggest that MEL could be a potential drug of choice for the reversal of impaired intestinal Ca²⁺ absorption in certain gut disorders that occur with oxidative stress and apoptosis.

  1. Impaired barrier function by dietary fructo-oligosaccharides (FOS in rats is accompanied by increased colonic mitochondrial gene expression

    Directory of Open Access Journals (Sweden)

    Kramer Evelien

    2008-03-01

    Full Text Available Abstract Background Dietary non-digestible carbohydrates stimulate the gut microflora and are therefore presumed to improve host resistance to intestinal infections. However, several strictly controlled rat infection studies showed that non-digestible fructo-oligosaccharides (FOS increase, rather than decrease, translocation of Salmonella towards extra-intestinal sites. In addition, it was shown that FOS increases intestinal permeability already before infection. The mechanism responsible for this adverse effect of FOS is unclear. Possible explanations are altered mucosal integrity due to changes in tight junctions or changes in expression of defense molecules such as antimicrobials and mucins. To examine the mechanisms underlying weakening of the intestinal barrier by FOS, a controlled dietary intervention study was performed. Two groups of 12 rats were adapted to a diet with or without FOS. mRNA was collected from colonic mucosa and changes in gene expression were assessed for each individual rat using Agilent rat whole genome microarrays. Results Among the 997 FOS induced genes we observed less mucosal integrity related genes than expected with the clear permeability changes. FOS did not induce changes in tight junction genes and only 8 genes related to mucosal defense were induced by FOS. These small effects are unlikely the cause for the clear increase in intestinal permeability that is observed. FOS significantly increased expression of 177 mitochondria-related genes. More specifically, induced expression of genes involved in all five OXPHOS complexes and the TCA cycle was observed. These results indicate that dietary FOS influences intestinal mucosal energy metabolism. Furthermore, increased expression of 113 genes related to protein turnover, including proteasome genes, ribosomal genes and protein maturation related genes, was seen. FOS upregulated expression of the peptide hormone proglucagon gene, in agreement with previous studies, as

  2. Resistance of essential fatty acid-deficient rats to endotoxin-induced increases in vascular permeability

    International Nuclear Information System (INIS)

    Li, E.J.; Cook, J.A.; Spicer, K.M.; Wise, W.C.; Rokach, J.; Halushka, P.V.

    1990-01-01

    Resistance to endotoxin in essential fatty acid-deficient (EFAD) rats is associated with reduced synthesis of certain arachidonic acid metabolites. It was hypothesized that EFAD rats would manifest decreased vascular permeability changes during endotoxemia as a consequence of reduced arachidonic acid metabolism. To test this hypothesis, changes in hematocrit (HCT) and mesenteric localization rate of technetium-labeled human serum albumin (99mTc-HSA) and red blood cells (99mTc-RBC) were assessed in EFAD and normal rats using gamma-camera imaging. Thirty minutes after Salmonella enteritidis endotoxin, EFAD rats exhibited less hemoconcentration as determined by % HCT than normal rats. Endotoxin caused a less severe change in permeability index in the splanchnic region in EFAD rats than in normal rats (1.2 +/- 0.6 x 10(-3)min-1 vs. 4.9 +/- 1.7 x 10(-3)min-1 respectively, P less than 0.05). In contrast to 99mTc-HSA, mesenteric localization of 99mTc-RBC was not changed by endotoxin in control or EFAD rats. Supplementation with ethyl-arachidonic acid did not enhance susceptibility of EFAD rats to endotoxin-induced splanchnic permeability to 99mTc-HSA. Leukotrienes have been implicated as mediators of increased vascular permeability in endotoxin shock. Since LTC3 formation has been reported to be increased in EFA deficiency, we hypothesized that LTC3 may be less potent than LTC4. Thus the effect of LTC3 on mean arterial pressure and permeability was compared to LTC4 in normal rats. LTC3-induced increases in peak mean arterial pressure were less than LTC4 at 10 micrograms/kg (39 +/- 5 mm Hg vs. 58 +/- 4 mm Hg respectively, P less than 0.05) and at 20 micrograms/kg (56 +/- 4 mm Hg vs. 75 +/- 2 mm Hg respectively, P less than 0.05). LY171883 (30 mg/kg), an LTD4/E4 receptor antagonist, attenuated the pressor effect of LTC4, LTD4, and LTC3

  3. Perioperative Alanyl-Glutamine-Supplemented Parenteral Nutrition in Chronic Radiation Enteritis Patients With Surgical Intestinal Obstruction: A Prospective, Randomized, Controlled Study.

    Science.gov (United States)

    Yao, Danhua; Zheng, Lei; Wang, Jian; Guo, Mingxiao; Yin, Jianyi; Li, Yousheng

    2016-04-01

    A prospective, randomized, controlled study was performed to evaluate the effects of perioperative alanyl-glutamine-supplemented parenteral nutrition (PN) support on the immunologic function, intestinal permeability, and nutrition status of surgical patients with chronic radiation enteritis (CRE)-induced intestinal obstruction. Patients who received 0.4 g/kg/d alanyl-glutamine and isonitrogenous PN were assigned to an alanyl-glutamine-supplemented PN (Gln-PN) group and a control group, respectively. Serum levels of alanine aminotransferase and glutamine, body fat mass (FM), immunologic function, and intestinal permeability were measured before and after surgery. Serum glutamine levels of the Gln-PN group significantly exceeded that of the control group (P nutrition state and intestinal motility of surgical patients with CRE-induced intestinal obstruction. © 2015 American Society for Parenteral and Enteral Nutrition.

  4. Effect of leukotriene receptor antagonists on vascular permeability during endotoxic shock

    International Nuclear Information System (INIS)

    Cook, J.A.; Li, E.J.; Spicer, K.M.; Wise, W.C.; Halushka, P.V.

    1990-01-01

    Evidence has accumulated that sulfidopeptide leukotrienes are significant pathogenic mediators of certain hematologic and hemodynamic sequelae of endotoxic shock. In the present study, the effects of a selective LTD4/E4 receptor antagonist, LY171883 (LY), or a selective LTD4 receptor antagonist, SKF-104353 (SKF), were assessed on splanchnic and pulmonary localization of 99mTechnetium-labeled human serum albumin (99mTc-HSA) in acute endotoxic shock in the rat. Dynamic gamma camera imaging of heart (H), midabdominal (GI), and lung regions of interest generated time activity curves for baseline and at 5-35 min after Salmonella enteritidis endotoxin (10 mg/kg, i.v.). Slopes of GI/H and lung/H activity (permeability index, GI/H or lung/H X 10(-3)/min) provided indices of intestinal and lung localization. Rats received LY (30 mg/kg, i.v.), LY vehicle (LY Veh), SKF (10 mg/kg), or SKF vehicle (SK Veh) 10 min prior to endotoxin or endotoxin vehicle. In rats receiving the LY Veh and endotoxin (n = 8) or SKF Veh and endotoxin (n = 12), the splanchnic permeability indices to 99mTc-HSA were increased 11.2-fold and 5.1-fold, respectively (P less than 0.05) compared to vehicle control groups not given endotoxin (n = 5). Pulmonary permeability index for 99mTc-HSA was increased (P less than 0.05) to a lesser extent (3.2-fold) by endotoxin compared to vehicle controls. Pretreatment with SKF reduced the mesenteric permeability index to control levels (P less than 0.05) during the 5-35 min time interval post-endotoxin. LY reduced the mesenteric permeability index by 70%. Pulmonary relative permeability to 99mTc-HSA was not affected by LY pretreatment. Both splanchnic and lung relative permeability to the isotope was transient; at 135-225 min post-endotoxin, splanchnic localization of 99mTc-HSA (n = 4) was not significantly different from vehicle controls in these vascular beds

  5. Increased pulmonary vascular permeability as a cause of re-expansion edema in rabbits

    International Nuclear Information System (INIS)

    Pavlin, D.J.; Nessly, M.L.; Cheney, F.W.

    1981-01-01

    In order to study the mechanism(s) underlying re-expansion edema, we measured the concentration of labeled albumin (RISA) in the extravascular, extracellular water (EVECW) of the lung as a measure of pulmonary vascular permeability. Re-expansion edema was first induced by rapid re-expansion of rabbit lungs that had been collapsed for 1 wk by pneumothorax. The RISA in EVECW was expressed as a fraction of its plasma concentration: (RISA)L/(RISA)PL. The volume of EVECW (ml/gm dry lung) was measured using a 24 Na indicator. Results in re-expansion edema were compared with normal control lungs and with oleic acid edema as a model of permeability edema. In re-expanded lungs, EVECW (3.41 +/- SD 1.24 ml/g) and (RISA)L/(RISA)PL 0.84 +/- SD 0.15) were significantly increased when compared with normal control lungs (2.25 +/- 0.41 ml/g and 0.51 +/- 0.20, respectively). Results in oleic acid edema (5.66 +/- 2.23 ml/g and 0.84 +/- 0.23) were similar to re-expansion edema. This suggested that re-expansion edema is due to increased pulmonary vascular permeability caused by mechanical stresses applied to the lung during re-expansion

  6. Milk diets influence doxorubicin-induced intestinal toxicity in piglets

    DEFF Research Database (Denmark)

    Shen, R. L.; Pontoppidan, P. E.; Rathe, M.

    2016-01-01

    Chemotherapy-induced gastrointestinal (GI) toxicity is a common adverse effect of cancer treatment. We used preweaned piglets as models to test our hypothesis that the immunomodulatory and GI trophic effects of bovine colostrum would reduce the severity of GI complications associated with doxorub......Chemotherapy-induced gastrointestinal (GI) toxicity is a common adverse effect of cancer treatment. We used preweaned piglets as models to test our hypothesis that the immunomodulatory and GI trophic effects of bovine colostrum would reduce the severity of GI complications associated...... to assess markers of small intestinal function and inflammation. All DOX-treated animals developed diarrhea, growth deficits, and leukopenia. However, the intestines of DOX-Colos pigs had lower intestinal permeability, longer intestinal villi with higher activities of brush border enzymes, and lower tissue...

  7. Persistent Salmonella enterica serovar Typhimurium Infection Increases the Susceptibility of Mice to Develop Intestinal Inflammation

    Directory of Open Access Journals (Sweden)

    Bárbara M. Schultz

    2018-05-01

    Full Text Available Chronic intestinal inflammations are triggered by genetic and environmental components. However, it remains unclear how specific changes in the microbiota, host immunity, or pathogen exposure could promote the onset and exacerbation of these diseases. Here, we evaluated whether Salmonella enterica serovar Typhimurium (S. Typhimurium infection increases the susceptibility to develop intestinal inflammation in mice. Two mouse models were used to evaluate the impact of S. Typhimurium infection: the chemical induction of colitis by dextran sulfate sodium (DSS and interleukin (IL-10−/− mice, which develop spontaneous intestinal inflammation. We observed that S. Typhimurium infection makes DSS-treated and IL-10−/− mice more susceptible to develop intestinal inflammation. Importantly, this increased susceptibility is associated to the ability of S. Typhimurium to persist in liver and spleen of infected mice, which depends on the virulence proteins secreted by Salmonella Pathogenicity Island 2-encoded type three secretion system (TTSS-2. Although immunization with a live attenuated vaccine resulted in a moderate reduction of the IL-10−/− mice susceptibility to develop intestinal inflammation due to previous S. Typhimurium infection, it did not prevent bacterial persistence. Our results suggest that persistent S. Typhimurium infection may increase the susceptibility of mice to develop inflammation in the intestine, which could be associated with virulence proteins secreted by TTSS-2.

  8. Erlotinib promotes endoplasmic reticulum stress-mediated injury in the intestinal epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Lu; Hu, Lingna; Yang, Baofang; Fang, Xianying; Gao, Zhe; Li, Wanshuai; Sun, Yang; Shen, Yan; Wu, Xuefeng [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Shu, Yongqian [Department of Clinical Oncology, The First Affiliated Hospital of Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029 (China); Gu, Yanhong, E-mail: guluer@163.com [Department of Clinical Oncology, The First Affiliated Hospital of Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029 (China); Wu, Xudong, E-mail: xudongwu@nju.edu.cn [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Xu, Qiang, E-mail: molpharm@163.com [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093 (China)

    2014-07-01

    Erlotinib, a popular drug for treating non-small cell lung cancer (NSCLC), causes diarrhea in approximately 55% of patients receiving this drug. In the present study, we found that erlotinib induced barrier dysfunction in rat small intestine epithelial cells (IEC-6) by increasing epithelial permeability and down-regulating E-cadherin. The mRNA levels of various pro-inflammatory cytokines (Il-6, Il-25 and Il-17f) were increased after erlotinib treatment in IEC-6 cells. Erlotinib concentration- and time-dependently induced apoptosis and endoplasmic reticulum (ER) stress in both IEC-6 and human colon epithelial cells (CCD 841 CoN). Intestinal epithelial injury was also observed in male C57BL/6J mice administrated with erlotinib. Knockdown of C/EBP homologous protein (CHOP) with small interference RNA partially reversed erlotinib-induced apoptosis, production of IL-6 and down-regulation of E-cadherin in cultured intestinal epithelial cells. In conclusion, erlotinib caused ER stress-mediated injury in the intestinal epithelium, contributing to its side effects of diarrhea in patients. - Highlights: • Erlotinib destroyed barrier integrity both in vitro and in vivo. • Erlotinib induced inflammation both in vitro and in vivo. • Erlotinib induced apoptosis both in vitro and in vivo. • ER stress contributed to erlotinib-induced barrier dysfunction.

  9. Erlotinib promotes endoplasmic reticulum stress-mediated injury in the intestinal epithelium

    International Nuclear Information System (INIS)

    Fan, Lu; Hu, Lingna; Yang, Baofang; Fang, Xianying; Gao, Zhe; Li, Wanshuai; Sun, Yang; Shen, Yan; Wu, Xuefeng; Shu, Yongqian; Gu, Yanhong; Wu, Xudong; Xu, Qiang

    2014-01-01

    Erlotinib, a popular drug for treating non-small cell lung cancer (NSCLC), causes diarrhea in approximately 55% of patients receiving this drug. In the present study, we found that erlotinib induced barrier dysfunction in rat small intestine epithelial cells (IEC-6) by increasing epithelial permeability and down-regulating E-cadherin. The mRNA levels of various pro-inflammatory cytokines (Il-6, Il-25 and Il-17f) were increased after erlotinib treatment in IEC-6 cells. Erlotinib concentration- and time-dependently induced apoptosis and endoplasmic reticulum (ER) stress in both IEC-6 and human colon epithelial cells (CCD 841 CoN). Intestinal epithelial injury was also observed in male C57BL/6J mice administrated with erlotinib. Knockdown of C/EBP homologous protein (CHOP) with small interference RNA partially reversed erlotinib-induced apoptosis, production of IL-6 and down-regulation of E-cadherin in cultured intestinal epithelial cells. In conclusion, erlotinib caused ER stress-mediated injury in the intestinal epithelium, contributing to its side effects of diarrhea in patients. - Highlights: • Erlotinib destroyed barrier integrity both in vitro and in vivo. • Erlotinib induced inflammation both in vitro and in vivo. • Erlotinib induced apoptosis both in vitro and in vivo. • ER stress contributed to erlotinib-induced barrier dysfunction

  10. Symbiotic formulation in experimentally induced liver fibrosis in rats: intestinal microbiota as a key point to treat liver damage?

    Science.gov (United States)

    D'Argenio, Giuseppe; Cariello, Rita; Tuccillo, Concetta; Mazzone, Giovanna; Federico, Alessandro; Funaro, Annalisa; De Magistris, Laura; Grossi, Enzo; Callegari, Maria L; Chirico, Marilena; Caporaso, Nicola; Romano, Marco; Morelli, Lorenzo; Loguercio, Carmela

    2013-05-01

    Evidence indicates that intestinal microbiota may participate in both the induction and the progression of liver damage. The aim of our research was the detection and evaluation of the effects of chronic treatment with a symbiotic formulation on CCl4 -induced rat liver fibrosis. CCl4 significantly increased gastric permeability in respect to basal values, and the treatment with symbiotic significantly decreased it. CCl4 per se induced a decrease in intestinal permeability. This effect was also seen in fibrotic rats treated with symbiotic and was still evident when normal rats were treated with symbiotic alone (P symbiotic treatment normalized the plasma levels of TNF-α and significantly enhanced anti-inflammatory cytokine IL 10. TNF-α, TGF-β, TLR4, TLR2, iNOS and α-SMA mRNA expression in the liver were up-regulated in rats with CCl4 -induced liver fibrosis and down-regulated by symbiotic treatment. Moreover, IL-10 and eNOS mRNA levels were increased in the CCL4 (+) symbiotic group. Symbiotic treatment of fibrotic rats normalized serum ALT, AST and improved histology and liver collagen deposition. DGGE analysis of faecal samples revealed that CCl4 administration and symbiotic treatment either alone or in combination produced modifications in faecal profiles vs controls. Our results provide evidence that in CCl4 -induced liver fibrosis, significant changes in gastro-intestinal permeability and in faecal flora occur. Treatment with a specific symbiotic formulation significantly affects these changes, leading to improvement in both liver inflammation and fibrosis. © 2013 John Wiley & Sons A/S.

  11. Effects of Supplementation of the Synbiotic Ecologic® 825/FOS P6 on Intestinal Barrier Function in Healthy Humans: A Randomized Controlled Trial.

    Science.gov (United States)

    Wilms, E; Gerritsen, J; Smidt, H; Besseling-van der Vaart, I; Rijkers, G T; Garcia Fuentes, A R; Masclee, A A M; Troost, F J

    2016-01-01

    Probiotics, prebiotics and synbiotics have been suggested as dietary strategies to improve intestinal barrier function. This study aimed to assess the effect of two weeks synbiotic supplementation on intestinal permeability under basal and stressed conditions. Secondary aims were the assessment of two weeks synbiotic supplementation on systemic immune function and gastrointestinal symptoms including defecation pattern. Twenty healthy adults completed a double-blind, controlled, randomized, parallel design study. Groups either received synbiotic (1.5 × 1010 CFU Ecologic® 825 + 10 g fructo-oligosaccharides (FOS P6) per day) or control supplements for two weeks. Intestinal segment specific permeability was assessed non-invasively by oral administration of multiple sugar probes and, subsequently, assessing the excretion of these probes in urine. This test was conducted at baseline and at the end of intervention, in the absence and in the presence of an indomethacin challenge. Indomethacin was applied to induce a compromised gut state. Plasma zonulin, cytokines and chemokines were measured at baseline and at the end of intervention. Gastrointestinal symptoms and stool frequency were recorded at baseline and daily during intervention. Significantly more male subjects were in the synbiotic group compared to the control group (P = 0.025). Indomethacin significantly increased urinary lactulose/rhamnose ratio versus without indomethacin, both in the control group (P = 0.005) and in the synbiotic group (P = 0.017). Urinary sugar recoveries and ratios, plasma levels of zonulin, cytokines and chemokines, and gastrointestinal symptom scores were not significantly different after control or synbiotic intervention. Stool frequency within the synbiotic group was significantly increased during synbiotic intervention compared to baseline (P = 0.039) and higher compared to control intervention (P = 0.045). Two weeks Ecologic® 825/FOS P6 supplementation increased stool frequency

  12. Effect of trefoil factor 3 on intestinal mucous barrier in rats with nonalcoholic steatohepatitis

    Directory of Open Access Journals (Sweden)

    LIANG Kai

    2017-08-01

    Full Text Available ObjectiveTo investigate the change in intestinal mucous barrier in rats with nonalcoholic steatohepatitis (NASH, the effect of trefoil factor 3 (TFF3 on intestinal mucous barrier in NASH rats, and the therapeutic effect of TFF3 on NASH. MethodsA total of 60 clean male Sprague-Dawley rats were randomly divided into normal group, model group, and treatment group, with 20 rats in each group. The rats in the normal group were given normal diet, and those in the model group and the treatment group were given high-fat diet to induce NASH. The rats in the treatment group were given intraperitoneal injection of rhTFF3 at a dose of 1 ml/kg/d (a concentration of 0.1 mg/ml, and those in the normal group and the model group were given normal saline at a dose of 1 ml/kg/d; the course of treatment was 3 weeks for all groups. At the end of week 15, fluorescein isothiocyanate-labeled dextran was given by gavage to evaluate intestinal permeability, and after the rats were sacrificed, serum levels of aspartate aminotransferase (AST, alanine aminotransferase (ALT, total cholesterol (TC, triglyceride (TG, and endotoxin (ET and diamine oxidase (DAO activity were measured. HE staining was performed to observe the histopathological changes of the liver and the terminal ileum, PAS staining was performed to observe and count the goblet cells of the terminal ileum, immunohistochemistry was used to measure the expression of the tight junction protein Occludin and TFF3 in the terminal ileum, and quantitative real-time PCR was used to measure the mRNA transcription level of TFF3. A one-way analysis of variance was used for comparison between multiple groups, and the least significant difference t-test was used for further comparison between any two groups. ResultsThe model group had significant increases in serum levels of AST, ALT, TC, TG, and ET and DAO activity, and the treatment group had significant reductions compared with the model group (all P<0.01. The model

  13. Consumption of Oxidized Soybean Oil Increased Intestinal Oxidative Stress and Affected Intestinal Immune Variables in Yellow-feathered Broilers

    Directory of Open Access Journals (Sweden)

    Fangfang Liang

    2015-08-01

    Full Text Available This study investigated the effect of oxidized soybean oil in the diet of young chickens on growth performance and intestinal oxidative stress, and indices of intestinal immune function. Corn-soybean-based diets containing 2% mixtures of fresh and oxidized soybean oil provided 6 levels (0.15, 1.01, 3.14, 4.95, 7.05, and 8.97 meqO2/kg of peroxide value (POV in the diets. Each dietary treatment, fed for 22 d, had 6 replicates, each containing 30 birds (n = 1,080. Increasing POV levels reduced average daily feed intake (ADFI of the broilers during d 1 to 10, body weight and average daily gain at d 22 but did not affect overall ADFI. Concentrations of malondialdehyde (MDA increased in plasma and jejunum as POV increased but total antioxidative capacity (T-AOC declined in plasma and jejunum. Catalase (CAT activity declined in plasma and jejunum as did plasma glutathione S-transferase (GST. Effects were apparent at POV exceeding 3.14 meqO2/kg for early ADFI and MDA in jejunum, and POV exceeding 1.01 meqO2/kg for CAT in plasma and jejunum, GST in plasma and T-AOC in jejunum. Relative jejunal abundance of nuclear factor kappa B (NF-κB P50 and NF-κB P65 increased as dietary POV increased. Increasing POV levels reduced the jejunal concentrations of secretory immunoglobulin A and cluster of differentiation (CD 4 and CD8 molecules with differences from controls apparent at dietary POV of 3.14 to 4.95 meqO2/kg. These findings indicated that growth performance, feed intake, and the local immune system of the small intestine were compromised by oxidative stress when young broilers were fed moderately oxidized soybean oil.

  14. Effect of probiotics on gastrointestinal symptoms and small intestinal permeability in children with atopic dermatitis

    DEFF Research Database (Denmark)

    Rosenfeldt, Vibeke; Benfeldt, Eva; Valerius, Niels Henrik

    2004-01-01

    OBJECTIVE: To determine whether probiotic lactobacilli may alleviate small intestinal inflammation and strengthen the intestinal barrier function in children with atopic dermatitis. STUDY DESIGN: In a double-blinded, placebo-controlled, cross-over study, probiotic lactobacilli (Lactobacillus...... placebo and r=0.53, P=.05 after active treatment). After probiotic treatment, the lactulose to mannitol ratio was lower (0.073) than after placebo (0.110, P=.001). CONCLUSIONS: Impairment of the intestinal mucosal barrier appears to be involved in the pathogenesis of atopic dermatitis. The study suggests...... that probiotic supplementation may stabilize the intestinal barrier function and decrease gastrointestinal symptoms in children with atopic dermatitis....

  15. Defects in small intestinal epithelial barrier function and morphology associated with peri-weaning failure to thrive syndrome (PFTS) in swine.

    Science.gov (United States)

    Moeser, Adam J; Borst, Luke B; Overman, Beth L; Pittman, Jeremy S

    2012-10-01

    The objective of this study was to investigate intestinal function and morphology associated with peri-weaning failure to thrive syndrome (PFTS) in swine. Jejunum and distal ileum from control and pigs exhibiting PFTS was harvested at weaning, 4 and 11 days post-weaning (PW) for intestinal barrier function studies and histological analyses (n=6 pigs per group). Marked disturbances in intestinal barrier function was observed in PFTS pigs, compared with controls, indicated by lower (p<0.05) TER and increased (p<0.01) permeability to FITC dextran (4 kDa). Intestines from weaned pigs, subjected to a 4-day fast, exhibited minor disturbances in intestinal barrier function. Villus atrophy and crypt hyperplasia were observed in the PFTS intestine compared with control and fasted pigs. These data demonstrate that PFTS is associated with profound disturbances in intestinal epithelial barrier function and alterations in mucosal and epithelial morphology in which anorexia is not the sole factor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Evidence for Enhanced Intestinal Absorption of Digoxin by P ...

    African Journals Online (AJOL)

    Purpose: To investigate the influence of macrolides as P-glycoprotein inhibitors on the level of intestinal ... The effective permeability of the drug was calculated after analyzing the ... associated with oral formulation factors such ... high performance liquid chromatography ..... pharmacokinetics of intravenous digoxin in.

  17. The Effect of Excipients on the Permeability of BCS Class III Compounds and Implications for Biowaivers.

    Science.gov (United States)

    Parr, Alan; Hidalgo, Ismael J; Bode, Chris; Brown, William; Yazdanian, Mehran; Gonzalez, Mario A; Sagawa, Kazuko; Miller, Kevin; Jiang, Wenlei; Stippler, Erika S

    2016-01-01

    Currently, the FDA allows biowaivers for Class I (high solubility and high permeability) and Class III (high solubility and low permeability) compounds of the Biopharmaceutics Classification System (BCS). Scientific evidence should be provided to support biowaivers for BCS Class I and Class III (high solubility and low permeability) compounds. Data on the effects of excipients on drug permeability are needed to demonstrate that commonly used excipients do not affect the permeability of BCS Class III compounds, which would support the application of biowaivers to Class III compounds. This study was designed to generate such data by assessing the permeability of four BCS Class III compounds and one Class I compound in the presence and absence of five commonly used excipients. The permeability of each of the compounds was assessed, at three to five concentrations, with each excipient in two different models: Caco-2 cell monolayers, and in situ rat intestinal perfusion. No substantial increases in the permeability of any of the compounds were observed in the presence of any of the tested excipients in either of the models, with the exception of disruption of Caco-2 cell monolayer integrity by sodium lauryl sulfate at 0.1 mg/ml and higher. The results suggest that the absorption of these four BCS Class III compounds would not be greatly affected by the tested excipients. This may have implications in supporting biowaivers for BCS Class III compounds in general.

  18. Bile salt-induced increases in duodenal brush-border membrane proton permeability, fluidity, and fragility

    International Nuclear Information System (INIS)

    Zhao, D.L.; Hirst, B.H.

    1990-01-01

    Rabbit duodenal brush-border membrane vesicles were treated in vitro with deoxycholate, glycodeoxycholate, or taurodeoxycholate. Intravesicular [14C]glucose space at equilibrium, 0.54 microliters/mg protein, was reduced by exposure to the three bile salts in a concentration (0.1-5.0 mM)-dependent manner, equatable with increased membrane fragility. Net proton permeability (Pnet), determined by acridine orange fluorescence quenching, was increased from 6.3 x 10(-4) cm/sec in untreated vesicles, by approximately 120, 150, and 170%, by treatment with bile salts at 0.1, 0.5 and 1.0 mM, respectively. The three bile salts were equipotent. The increases in membrane fragility and Pnet were not accompanied by significant increases in membrane fluidity, as assessed from steady-state and time-resolved diphenylhexatriene fluorescence anisotropy. The data demonstrate direct effects of bile salts on duodenal apical membrane fragility and proton permeability that are likely to be early events in bile salt-induced mucosal damage

  19. Intraluminal polyethylene glycol stabilizes tight junctions and improves intestinal preservation in the rat.

    Science.gov (United States)

    Oltean, M; Joshi, M; Björkman, E; Oltean, S; Casselbrant, A; Herlenius, G; Olausson, M

    2012-08-01

    Rapidly progressing mucosal breakdown limits the intestinal preservation time below 10 h. Recent studies indicate that intraluminal solutions containing polyethylene glycol (PEG) alleviate preservation injury of intestines stored in UW-Viaspan. We investigated whether a low-sodium PEG solution is beneficial for intestines stored in histidine-tryptophane-ketoglutarate (HTK) preservation solution. Rat intestines used as control tissue (group 1) were perfused with HTK, groups 2 and 3 received either a customized PEG-3350 (group 2) or an electrolyte solution (group 3) intraluminally before cold storage. Tissue injury, brush-border maltase activity, zonula occludens-1 (ZO-1) and claudin-3 expression in the tight junctions (TJ) were analyzed after 8, 14 and 20 h. We measured epithelial resistance and permeability (Ussing chamber) after 8 and 14 h. Group 2 had superior morphology while maltase activity was similar in all groups. TJ proteins rapidly decreased and decolocalized in groups 1 3; these negative events were delayed in group 2, where colocalization persisted for about 14 h. Intestines in group 2 had higher epithelial resistance and lower permeability than the other groups. These results suggest that a customized PEG solution intraluminally reduces the intestinal preservation injury by improving several major epithelial characteristics without negatively affecting the brush-border enzymes or promoting edema. © Copyright 2012 The American Society of Transplantation and the American Society of Transplant Surgeons.

  20. Effect of wild-type Shigella species and attenuated Shigella vaccine candidates on small intestinal barrier function, antigen trafficking, and cytokine release.

    Directory of Open Access Journals (Sweden)

    Maria Fiorentino

    Full Text Available Bacterial dysentery due to Shigella species is a major cause of morbidity and mortality worldwide. The pathogenesis of Shigella is based on the bacteria's ability to invade and replicate within the colonic epithelium, resulting in severe intestinal inflammatory response and epithelial destruction. Although the mechanisms of pathogenesis of Shigella in the colon have been extensively studied, little is known on the effect of wild-type Shigella on the small intestine and the role of the host response in the development of the disease. Moreover, to the best of our knowledge no studies have described the effects of apically administered Shigella flexneri 2a and S. dysenteriae 1 vaccine strains on human small intestinal enterocytes. The aim of this study was to assess the coordinated functional and immunological human epithelial responses evoked by strains of Shigella and candidate vaccines on small intestinal enterocytes. To model the interactions of Shigella with the intestinal mucosa, we apically exposed monolayers of human intestinal Caco2 cells to increasing bacterial inocula. We monitored changes in paracellular permeability, examined the organization of tight-junctions and the pro-inflammatory response of epithelial cells. Shigella infection of Caco2 monolayers caused severe mucosal damage, apparent as a drastic increase in paracellular permeability and disruption of tight junctions at the cell-cell boundary. Secretion of pro-inflammatory IL-8 was independent of epithelial barrier dysfunction. Shigella vaccine strains elicited a pro-inflammatory response without affecting the intestinal barrier integrity. Our data show that wild-type Shigella infection causes a severe alteration of the barrier function of a small intestinal cell monolayer (a proxy for mucosa and might contribute (along with enterotoxins to the induction of watery diarrhea. Diarrhea may be a mechanism by which the host attempts to eliminate harmful bacteria and transport them

  1. Endocytic trafficking from the small intestinal brush border probed with FM dye

    DEFF Research Database (Denmark)

    Hansen, Gert H; Rasmussen, Karina; Niels-Christiansen, Lise-Lotte

    2009-01-01

    -linking galectins/intelectin, but little is known about the dynamic properties of this highly specialized membrane. Here, we probed the endocytic membrane trafficking from the brush border of organ cultured pig intestinal mucosal explants by use of a fixable, lipophilic FM dye. The fluorescent dye readily......, contributes to the overall permeability barrier of the gut. Key words: FM dye, small intestine, brush border, endocytosis....

  2. Timing of developmental reduction in epithelial glutathione redox potential is associated with increased epithelial proliferation in the immature murine intestine.

    Science.gov (United States)

    Reid, Graham K; Berardinelli, Andrew J; Ray, Laurie; Jackson, Arena R; Neish, Andrew S; Hansen, Jason M; Denning, Patricia W

    2017-08-01

    BackgroundThe intracellular redox potential of the glutathione (GSH)/glutathione disulfide (GSSG) couple regulates cellular processes. In vitro studies indicate that a reduced GSH/GSSG redox potential favors proliferation, whereas a more oxidized redox potential favors differentiation. Intestinal growth depends upon an appropriate balance between the two. However, how the ontogeny of intestinal epithelial cellular (IEC) GSH/GSSG redox regulates these processes in the developing intestine has not been fully characterized in vivo.MethodsOntogeny of intestinal GSH redox potential and growth were measured in neonatal mice.ResultsWe show that IEC GSH/GSSG redox potential becomes increasingly reduced (primarily driven by increased GSH concentration) over the first 3 weeks of life. Increased intracellular GSH has been shown to drive proliferation through increased poly-ADP-ribose polymerase (PARP) activity. We show that increasing IEC poly-ADP-ribose chains can be measured over the first 3 weeks of life, indicating an increase in IEC PARP activity. These changes are accompanied by increased intestinal growth and IEC proliferation as assessed by villus height/crypt depth, intestinal length, and Ki67 staining.ConclusionUnderstanding how IEC GSH/GSSG redox potential is developmentally regulated may provide insight into how premature human intestinal redox states can be manipulated to optimize intestinal growth and adaptation.

  3. Endoscopic biopsies in Ussing chambers evaluated for studies of macromolecular permeability in the human colon.

    Science.gov (United States)

    Wallon, Conny; Braaf, Ylva; Wolving, Mats; Olaison, Gunnar; Söderholm, Johan D

    2005-05-01

    Studies of mucosal permeability to protein antigens in humans are limited to in vitro techniques. The use of surgical specimens for such studies has major shortcomings. Endoscopic biopsies in Ussing chambers have been introduced as a means of studying secretion and transepithelial permeability, but have not been evaluated for studies of protein antigen uptake in human intestine. Standard forceps biopsies from the sigmoid colon of 24 healthy volunteers were mounted in Ussing chambers with an exposed tissue area of 1.76 mm2. 51Cr-EDTA (paracellular probe) and horseradish peroxidase (HRP; 45 kDa protein antigen) were used as permeability markers. Mucosal permeability, electrophysiology, histology and energy contents of the biopsies were studied over time. To evaluate the ability of the technique to detect permeability changes, the mucosa was modulated with capric acid, a medium-chain fatty acid, known to affect tight junctions. In the Ussing chamber the mucosal biopsies were viable for 160 min with stable levels of ATP and lactate, and only minor changes in morphology. Steady-state permeability with low variability was seen for both markers during the 30-90 min period. Exposure to capric acid induced a rapid decrease in short-circuit current (Isc) and a slower reversible decrease in transepithelial resistance (TER), as well as an increased permeability to 51Cr-EDTA and HRP. Endoscopic biopsies of human colon are viable in Ussing chambers and are reliable tools for studies of mucosal permeability to protein antigens. The technique offers a broad potential for studies of mucosal function in the pathophysiology of human gastrointestinal diseases.

  4. Increased intestinal mucosal turnover and radiosensitivity to supralethal whole-body irradiation resulting from cholic acid-induced alterations of the intestinal microecology of germfree CFW mice

    International Nuclear Information System (INIS)

    Mastromarino, A.J.; Wilson, R.

    1976-01-01

    The prolonged mean survival time of germfree mice, compared to conventional mice, after exposure to 1000-10,000 rad whole-body irradiation has been postulated to be a function of an increased turnover time of the intestinal mucosal cells caused by the absence of free bile acids. To test this hypothesis, the diet of germ-free CFW mice was supplemented with 0.15 percent cholic acid for 2 weeks. The turnover of thymidine-labeled intestinal mucosal cells and the radiosensitivity to supralethal whole-body irradiation were significantly increased compared to germfree controls. There was a positive correlation between increased survivial time after supralethal whole-body irradiation and slower intestinal mucosal turnover time. Germfree mice supplemented with cholic acid had intestinal mucosal turnover times comparable to those of conventionalized controls. Although cholic acid reduces the mean survival time of germfree mice after suppralethal whole-body irradiation, the mean survival value is significantly greater than the conventionalized controls. Supplementing the diet of conventionalized CFW mice with cholic acid did not significantly decrease the intestinal mucosal turnover time nor did it significantly alter their radiosensitivity to supralethal whole-body irradiation. The data suggest that cholic acid is one of the microecological factors responsible for controlling the mucosal renewal rate and the mean survival time after whole-body irradiation

  5. MicroRNA-122a Regulates Zonulin by Targeting EGFR in Intestinal Epithelial Dysfunction.

    Science.gov (United States)

    Zhang, Bin; Tian, Yinghai; Jiang, Ping; Jiang, Yanqiong; Li, Chao; Liu, Ting; Zhou, Rujian; Yang, Ning; Zhou, Xinke; Liu, Zhihua

    2017-01-01

    This study aimed to investigate the role of microRNA (miR)-122a in regulating zonulin during the modulation of intestinal barrier. Zonulin proteins and their target gene expression were analyzed in miR-122a-overexpressing cell lines and in the target gene of epidermal growth factor receptor (EGFR). An mmu-miR-122a intestinal epithelial conditional transgenic (miR-122a-TG) mouse model was established to investigate EGFR and zonulin expression. MiR-122a was also detected in the clinical specimens of inflammatory bowel disease. EGFR was identified as a target gene of miR-122a. The expression level of miR-122a was positively correlated with that of zonulin. The expression level of zonulin was significantly increased, whereas the expression level of EGFR was significantly decreased in the miR-122a-TG mice and in the corresponding primary epithelial culture (P zonulin by targeting EGFR, which increased the intestinal epithelial permeability in vivo and in vitro. © 2017 The Author(s). Published by S. Karger AG, Basel.

  6. Persistently increased intestinal fraction of alkaline phosphatase

    DEFF Research Database (Denmark)

    Nathan, E; Baatrup, G; Berg, H

    1984-01-01

    Persistent elevation of the intestinal fraction of the alkaline phosphatase (API) as an isolated finding has to our knowledge not been reported previously. It was found in a boy followed during a period of 5.5 years. The only symptom was transient periodic fatigue observed at home, but not apparent...... during hospitalization. His blood type was O, RH+, Le (a-, b+) and he was a secretor of H-substance, which may be associated with rising API activity after fat-loading. In this case API was unchanged after fat-loading. Neither intestinal nor liver diseases were found, and no other cause for the elevated...

  7. [Bacterial Translocation from Intestine: Microbiological, Immunological and Pathophysiological Aspects].

    Science.gov (United States)

    Podoprigora, G I; Kafarskaya, L I; Bainov, N A; Shkoporov, A N

    2015-01-01

    Bacterial translocation (BT) is both pathology and physiology phenomenon. In healthy newborns it accompanies the process of establishing the autochthonous intestinal microbiota and the host microbiome. In immunodeficiency it can be an aethio-pathogenetic link and a manifestation of infection or septic complications. The host colonization resistance to exogenous microbic colonizers is provided by gastrointestinal microbiota in concert with complex constitutional and adaptive defense mechanisms. BT may be result of barrier dysfunction and self-purification mechanisms involving the host myeloid cell phagocytic system and opsonins. Dynamic cell humoral response to microbial molecular patterns that occurs on the mucous membranes initiates receptorsignalingpathways and cascade ofreactions. Their vector and results are largely determined by cross-reactivity between microbiome and the host genome. Enterocyte barriers interacting with microbiota play leading role in providing adaptive, homeostatic and stress host reactivity. Microcirculatory ischemic tissue alterations and inflammatory reactions increase the intestinal barrier permeability and BT These processes a well as mechanisms for apoptotic cells and bacteria clearance are justified to be of prospective research interest. The inflammatory and related diseases caused by alteration and dysfunction of the intestinal barrier are reasonably considered as diseases of single origin. Maternal microbiota affects theformation of the innate immune system and the microbiota of the newborn, including intestinal commensal translocation during lactation. Deeper understanding of intestinal barrier mechanisms needs complex microbiological, immunological, pathophysiological, etc. investigations using adequate biomodels, including gnotobiotic animals.

  8. Intestinal permeability and its regulation by zonulin: diagnostic and therapeutic implications.

    Science.gov (United States)

    Fasano, Alessio

    2012-10-01

    One of the most important and overlooked functions of the gastrointestinal tract is to provide a dynamic barrier to tightly controlled antigen trafficking through both the transcellular and paracellular pathways. Intercellular tight junctions (TJ) are the key structures regulating paracellular trafficking of macromolecules. Although steady progress has been made in understanding TJ ultrastructure, relatively little is known about their pathophysiological regulation. Our discovery of zonulin, the only known physiological modulator of intercellular TJ described so far, increased understanding of the intricate mechanisms that regulate gut permeability and led us to appreciate that its up-regulation in genetically susceptible individuals may lead to immune-mediated diseases. This information has translational implications, because the zonulin pathway is currently exploited to develop both diagnostic and therapeutic applications pertinent to a variety of immune-mediated diseases. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.

  9. Visceral Congestion in Heart Failure: Right Ventricular Dysfunction, Splanchnic Hemodynamics, and the Intestinal Microenvironment.

    Science.gov (United States)

    Polsinelli, Vincenzo B; Sinha, Arjun; Shah, Sanjiv J

    2017-12-01

    Visceral venous congestion of the gut may play a key role in the pathogenesis of right-sided heart failure (HF) and cardiorenal syndromes. Here, we review the role of right ventricular (RV) dysfunction, visceral congestion, splanchnic hemodynamics, and the intestinal microenvironment in the setting of right-sided HF. We review recent literature on this topic, outline possible mechanisms of disease pathogenesis, and discuss potential therapeutics. There are several mechanisms linking RV-gut interactions via visceral venous congestion which could result in (1) hypoxia and acidosis in enterocytes, which may lead to enhanced sodium-hydrogen exchanger 3 (NHE3) expression with increased sodium and fluid retention; (2) decreased luminal pH in the intestines, which could lead to alteration of the gut microbiome which could increase gut permeability and inflammation; (3) alteration of renal hemodynamics with triggering of the cardiorenal syndrome; and (4) altered phosphate metabolism resulting in increased pulmonary artery stiffening, thereby increasing RV afterload. A wide variety of therapeutic interventions that act on the RV, pulmonary vasculature, intestinal microenvironment, and the kidney could alter these pathways and should be tested in patients with right-sided HF. The RV-gut axis is an important aspect of HF pathogenesis that deserves more attention. Modulation of the pathways interconnecting the right heart, visceral congestion, and the intestinal microenvironment could be a novel avenue of intervention for right-sided HF.

  10. Plasma intestinal fatty acid binding protein (I-FABP) concentrations increase following intestinal ischemia in pigs

    NARCIS (Netherlands)

    Niewold, T.A.; Meinen, M.; Meulen, van der J.

    2004-01-01

    Intestinal fatty acid binding protein (I-FABP) is an intracellular epithelial protein in the intestinal mucosa of many animals. IFABP appears in the circulation following epithelial damage, and in humans, is proven to be a parameter for damage to the mucosa. In this paper, an ELISA test designed for

  11. Cytokine Tuning of Intestinal Epithelial Function

    Directory of Open Access Journals (Sweden)

    Caroline Andrews

    2018-06-01

    Full Text Available The intestine serves as both our largest single barrier to the external environment and the host of more immune cells than any other location in our bodies. Separating these potential combatants is a single layer of dynamic epithelium composed of heterogeneous epithelial subtypes, each uniquely adapted to carry out a subset of the intestine’s diverse functions. In addition to its obvious role in digestion, the intestinal epithelium is responsible for a wide array of critical tasks, including maintaining barrier integrity, preventing invasion by microbial commensals and pathogens, and modulating the intestinal immune system. Communication between these epithelial cells and resident immune cells is crucial for maintaining homeostasis and coordinating appropriate responses to disease and can occur through cell-to-cell contact or by the release or recognition of soluble mediators. The objective of this review is to highlight recent literature illuminating how cytokines and chemokines, both those made by and acting on the intestinal epithelium, orchestrate many of the diverse functions of the intestinal epithelium and its interactions with immune cells in health and disease. Areas of focus include cytokine control of intestinal epithelial proliferation, cell death, and barrier permeability. In addition, the modulation of epithelial-derived cytokines and chemokines by factors such as interactions with stromal and immune cells, pathogen and commensal exposure, and diet will be discussed.

  12. Enabling the intestinal absorption of highly polar antiviral agents: ion-pair facilitated membrane permeation of zanamivir heptyl ester and guanidino oseltamivir.

    Science.gov (United States)

    Miller, Jonathan M; Dahan, Arik; Gupta, Deepak; Varghese, Sheeba; Amidon, Gordon L

    2010-08-02

    Antiviral drugs often suffer from poor intestinal permeability, preventing their delivery via the oral route. The goal of this work was to enhance the intestinal absorption of the low-permeability antiviral agents zanamivir heptyl ester (ZHE) and guanidino oseltamivir (GO) utilizing an ion-pairing approach, as a critical step toward making them oral drugs. The counterion 1-hydroxy-2-naphthoic acid (HNAP) was utilized to enhance the lipophilicity and permeability of the highly polar drugs. HNAP substantially increased the log P of the drugs by up to 3.7 log units. Binding constants (K(11(aq))) of 388 M(-1) for ZHE-HNAP and 2.91 M(-1) for GO-HNAP were obtained by applying a quasi-equilibrium transport model to double-reciprocal plots of apparent octanol-buffer distribution coefficients versus HNAP concentration. HNAP enhanced the apparent permeability (P(app)) of both compounds across Caco-2 cell monolayers in a concentration-dependent manner, as substantial P(app) (0.8-3.0 x 10(-6) cm/s) was observed in the presence of 6-24 mM HNAP, whereas no detectable transport was observed without counterion. Consistent with a quasi-equilibrium transport model, a linear relationship with slope near 1 was obtained from a log-log plot of Caco-2 P(app) versus HNAP concentration, supporting the ion-pair mechanism behind the permeability enhancement. In the rat jejunal perfusion assay, the addition of HNAP failed to increase the effective permeability (P(eff)) of GO. However, the rat jejunal permeability of ZHE was significantly enhanced by the addition of HNAP in a concentration-dependent manner, from essentially zero without HNAP to 4.0 x 10(-5) cm/s with 10 mM HNAP, matching the P(eff) of the high-permeability standard metoprolol. The success of ZHE-HNAP was explained by its >100-fold stronger K(11(aq)) versus GO-HNAP, making ZHE-HNAP less prone to dissociation and ion-exchange with competing endogenous anions and able to remain intact during membrane permeation. Overall, this

  13. Critical determinant of intestinal permeability and oral bioavailability of pegylated all trans-retinoic acid prodrug-based nanomicelles: Chain length of poly (ethylene glycol) corona.

    Science.gov (United States)

    Li, Zhenbao; Han, Xiaopeng; Zhai, Yinglei; Lian, He; Zhang, Dong; Zhang, Wenjuan; Wang, Yongjun; He, Zhonggui; Liu, Zheng; Sun, Jin

    2015-06-01

    Pegylation method is widely used to prolong the blood circulation time of proteins and nanoparticles after intravenous administration, but the effect of surface poly (ethylene glycol) (PEG) chain length on oral absorption of the pegylated nanoparticles is poorly reported. The aim of our study was to investigate the influence of PEG corona chain length on membrane permeability and oral bioavailability of the amphiphilic pegylated prodrug-based nanomicelles, taking all trans-retinoic acid (ATRA) as a model drug. The amphiphilic ATRA-PEG conjugates were synthesized by esterification reaction between all trans-retinoic acid and mPEGs (mPEG500, mPEG1000, mPEG2000, and mPEG5000). The conjugates could self-assemble in aqueous medium to form nanomicelles by emulsion-solvent evaporation method. The resultant nanomicelles were in spherical shape with an average diameter of 13-20 nm. The drug loading efficiency of ATRA-PEG500, ATRA-PEG1000, ATRA-PEG2000, and ATRA-PEG5000 was about 38.4, 26.6, 13.1, and 5.68 wt%, respectively. With PEG chain length ranging from 500 to 5000, ATRA-PEG nanomicelles exhibited a bell shape of chemical stability in different pH buffers, intestinal homogenate and plasma. More importantly, they were all rapidly hydrolyzed into the parent drug in hepatic homogenate, with the half-time values being 0.3-0.4h. In comparison to ATRA solution and ATRA prodrug-based nanomicelles, ATRA-PEG1000 showed the highest intestinal permeability. After oral administration, ATRA-PEG2000 and ATRA-PEG5000 nanomicelles were not nearly absorbed, while the oral bioavailability of ATRA-PEG500 and ATRA-PEG1000 demonstrated about 1.2- and 2.0-fold higher than ATRA solution. Our results indicated that PEG1000 chain length of ATRA-PEG prodrug nanomicelles has the optimal oral bioavailability probably due to improved stability and balanced mucus penetration capability and cell binding, and that the PEG chain length on a surface of nanoparticles cannot exceed a key threshold with

  14. Relationship of pleural effusions to increased permeability pulmonary edema in anesthetized sheep.

    OpenAIRE

    Wiener-Kronish, J P; Broaddus, V C; Albertine, K H; Gropper, M A; Matthay, M A; Staub, N C

    1988-01-01

    We studied anesthetized sheep to determine the relationship between increased permeability pulmonary edema and the development and mechanism of pleural effusion formation. In 12 sheep with intact, closed thoraces, we studied the time course of pleural liquid formation after 0.12 ml/kg i.v. oleic acid. After 1 h, there were no pleural effusions, even though extravascular lung water increased 50% to 6.0 +/- 0.7 g/g dry lung. By 3 h pleural effusions had formed, they reached a maximum at 5 h (48...

  15. Severe Burn-Induced Intestinal Epithelial Barrier Dysfunction Is Associated With Endoplasmic Reticulum Stress and Autophagy in Mice

    Science.gov (United States)

    Huang, Yalan; Feng, Yanhai; Wang, Yu; Wang, Pei; Wang, Fengjun; Ren, Hui

    2018-01-01

    The disruption of intestinal barrier plays a vital role in the pathophysiological changes after severe burn injury, however, the underlying mechanisms are poorly understood. Severe burn causes the disruption of intestinal tight junction (TJ) barrier. Previous studies have shown that endoplasmic reticulum (ER) stress and autophagy are closely associated with the impairment of intestinal mucosa. Thus, we hypothesize that ER stress and autophagy are likely involved in burn injury-induced intestinal epithelial barrier dysfunction. Mice received a 30% total body surface area (TBSA) full-thickness burn, and were sacrificed at 0, 1, 2, 6, 12 and 24 h postburn. The results showed that intestinal permeability was increased significantly after burn injury, accompanied by the damage of mucosa and the alteration of TJ proteins. Severe burn induced ER stress, as indicated by increased intraluminal chaperone binding protein (BIP), CCAAT/enhancer-binding protein homologous protein (CHOP) and inositol-requiring enzyme 1(IRE1)/X-box binding protein 1 splicing (XBP1). Autophagy was activated after burn injury, as evidenced by the increase of autophagy related protein 5 (ATG5), Beclin 1 and LC3II/LC3I ratio and the decrease of p62. Besides, the number of autophagosomes was also increased after burn injury. The levels of p-PI3K(Ser191), p-PI3K(Ser262), p-AKT(Ser473), and p-mTOR were decreased postburn, suggesting that autophagy-related PI3K/AKT/mTOR pathway is involved in the intestinal epithelial barrier dysfunction following severe burn. In summary, severe burn injury induces the ER stress and autophagy in intestinal epithelia, leading to the disruption of intestinal barrier. PMID:29740349

  16. Hummingbirds rely on both paracellular and carrier-mediated intestinal glucose absorption to fuel high metabolism

    Science.gov (United States)

    McWhorter, Todd J; Bakken, Bradley Hartman; Karasov, William H; del Rio, Carlos Martínez

    2005-01-01

    Twenty years ago, the highest active glucose transport rate and lowest passive glucose permeability in vertebrates were reported in Rufous and Anna's hummingbirds (Selasphorus rufus, Calypte anna). These first measurements of intestinal nutrient absorption in nectarivores provided an unprecedented physiological foundation for understanding their foraging ecology. They showed that physiological processes are determinants of feeding behaviour. The conclusion that active, mediated transport accounts for essentially all glucose absorption in hummingbirds influenced two decades of subsequent research on the digestive physiology and nutritional ecology of nectarivores. Here, we report new findings demonstrating that the passive permeability of hummingbird intestines to glucose is much higher than previously reported, suggesting that not all sugar uptake is mediated. Even while possessing the highest active glucose transport rates measured in vertebrates, hummingbirds must rely partially on passive non-mediated intestinal nutrient absorption to meet their high mass-specific metabolic demands. PMID:17148346

  17. Connexin 26-mediated gap junctional intercellular communication suppresses paracellular permeability of human intestinal epithelial cell monolayers

    International Nuclear Information System (INIS)

    Morita, Hidekazu; Katsuno, Tatsuro; Hoshimoto, Aihiro; Hirano, Noriaki; Saito, Yasushi; Suzuki, Yasuo

    2004-01-01

    In some cell types, gap junctional intercellular communication (GJIC) is associated with tight junctions. The present study was performed to determine the roles of GJIC in regulation of the barrier function of tight junctions. Caco-2 human colonic cells were used as a monolayer model, and barrier function was monitored by measuring mannitol permeability and transepithelial electrical resistance (TER). The monolayers were chemically disrupted by treatment with oleic acid and taurocholic acid. Western blotting analyses were performed to evaluate the protein levels of connexins, which are components of gap junctional intercellular channels. Cx26 expression was detected in preconfluent Caco-2 cells, and its level increased gradually after the monolayer reached confluency. These results prompted us to examine whether overexpression of Cx26 affects barrier function. Monolayers of Caco-2 cells stably expressing Cx26 showed significantly lower mannitol permeability and higher TER than mock transfectants when the monolayers were chemically disrupted. The levels of claudin-4, an important component of tight junctions, were significantly increased in the stable Cx26 transfectant. These results suggest that Cx26-mediated GJIC may play a crucial role in enhancing the barrier function of Caco-2 cell monolayers

  18. Zonulin: A Potential Marker of Intestine Injury in Newborns.

    Science.gov (United States)

    Tarko, Anna; Suchojad, Anna; Michalec, Marta; Majcherczyk, Małgorzata; Brzozowska, Aniceta; Maruniak-Chudek, Iwona

    2017-01-01

    Zonulin (ZO), a new diagnostic biomarker of intestinal permeability, was tested in newborns presenting symptoms of infection and/or inflammation of the gut or being at risk of intestinal pathology. Serum ZO was assessed in 81 newborns diagnosed with sepsis, necrotizing enterocolitis (NEC), rotavirus infection, and gastroschisis, also in extremely low gestational age babies, and in controls (healthy newborns). ZO concentration was compared to C-reactive protein (CRP) and procalcitonin (PCT) values, leucocyte and platelet count, basic demographic data, and the value of the Neonatal Therapeutic Intervention Scoring System (NTISS). Median values of ZO were markedly higher in groups with rotavirus infection and gastroschisis (36.0 (1-3Q: 26.0-43.2) and 20.3 (1-3Q: 17.7-28.2) ng/ml, resp.) versus controls (3.5 (1-3Q: 2.7-4.8) ng/ml). Its concentration in the NEC group was twice as high as in controls but did not reach statistical significance. ZO levels were not related to NTISS, CRP, and PCT. Zonulin is a promising biomarker of intestinal condition, markedly elevated in rotavirus infections. Its role in defining the severity of necrotizing enterocolitis and the risk for perforation is not well described and needs further evaluation. An increase in zonulin may not be parallel to the release of inflammatory markers, and low CRP should not exclude an injury to neonatal intestine.

  19. Irgm1-deficient mice exhibit Paneth cell abnormalities and increased susceptibility to acute intestinal inflammation.

    Science.gov (United States)

    Liu, Bo; Gulati, Ajay S; Cantillana, Viviana; Henry, Stanley C; Schmidt, Elyse A; Daniell, Xiaoju; Grossniklaus, Emily; Schoenborn, Alexi A; Sartor, R Balfour; Taylor, Gregory A

    2013-10-15

    Crohn's disease (CD) is a chronic, immune-mediated, inflammatory disorder of the intestine that has been linked to numerous susceptibility genes, including the immunity-related GTPase (IRG) M (IRGM). IRGs comprise a family of proteins known to confer resistance to intracellular infections through various mechanisms, including regulation of phagosome processing, cell motility, and autophagy. However, despite its association with CD, the role of IRGM and other IRGs in regulating intestinal inflammation is unclear. We investigated the involvement of Irgm1, an ortholog of IRGM, in the genesis of murine intestinal inflammation. After dextran sodium sulfate exposure, Irgm1-deficient [Irgm1 knockout (KO)] mice showed increased acute inflammation in the colon and ileum, with worsened clinical responses. Marked alterations of Paneth cell location and granule morphology were present in Irgm1 KO mice, even without dextran sodium sulfate exposure, and were associated with impaired mitophagy and autophagy in Irgm1 KO intestinal cells (including Paneth cells). This was manifested by frequent tubular and swollen mitochondria and increased LC3-positive autophagic structures. Interestingly, these LC3-positive structures often contained Paneth cell granules. These results suggest that Irgm1 modulates acute inflammatory responses in the mouse intestine, putatively through the regulation of gut autophagic processes, that may be pivotal for proper Paneth cell functioning.

  20. Splenectomy attenuates severe thermal trauma-induced intestinal barrier breakdown in rats.

    Science.gov (United States)

    Liu, Xiang-dong; Chen, Zhen-yong; Yang, Peng; Huang, Wen-guang; Jiang, Chun-fang

    2015-12-01

    The severe local thermal trauma activates a number of systemic inflammatory mediators, such as TNF-α, NF-κB, resulting in a disruption of gut barrier. The gastrointestinal tight junction (TJ) is highly regulated by membrane-associated proteins including zonula occludens protein-1 (ZO-1) and occludin, which can be modulated by inflammatory cytokines. As splenectomy has been shown to reduce secretion of cytokines, we hypothesized that (1) severe scald injury up-regulates TNF-α and NF-κB, meanwhile down-regulates expression of ZO-1 and occludin, leading to the increased intestinal permeability, and (2) splenectomy can prevent the burn-induced decrease in ZO-1 and occludin expression, resulting in improved intestinal barrier. Wistar rats undergoing a 30% total body surface area (TBSA) thermal trauma were randomized to receive an accessorial splenectomy meanwhile or not. Intestinal injury was assessed by histological morphological analysis, and serum endotoxin levels, TNF-α, NF-κB, ZO-1 and occludin levels were detected by Western blotting in the terminal ileum mucosal tissue. 30% TBSA burn caused a significant increase in serum endotoxin levels, but NF-κB, and TNF-α, and the average intestinal villus height and mucosal thickness were decreased significantly. Burn injury could also markedly decrease the levels of ZO-1 and occludin in terminal ileum mucosal tissue (all PSplenectomy at 7th day after burn significantly reversed the burn-induced breakdown of ZO-1 and occludin (all PSplenectomy may provide a therapeutic benefit in restoring burn-induced intestinal barrier by decreasing the release of inflammatory cytokines and recovering TJ proteins.

  1. Rapid increases in permeability and porosity of bentonite-sand mixtures due to alteration by water vapor

    International Nuclear Information System (INIS)

    Couture, R.A.

    1984-01-01

    Packed columns of canister packing material containing 25% bentonite and 75% quartz or basalt sand, were exposed to water vapor at temperatures up t 260 0 C. The permeabilities of the columns were subsequently measured after complete saturation with liquid water in a pressurized system. Exposure to water vapor caused irreversible increases in permeability by factors of up to 10 5 . After saturation with liquid water, the permeability was nearly independent of temperature. The increases in permeability were due to a large decrease in the ability of the bentonite to swell in water. Calculations suggest that swelling of bentonite altered at 250 0 C was not sufficient to fill the pore spaces. If the pore spaces are filled, the mixture will form an effective barrier against flow, diffusion, and transport of colloids. The results suggest that if bentonite-based canister packing material is exposed even briefly to water vapor at high temperatures in a high-level nuclear waste repository, its performance will be seriously impaired. The problem is less severe if the proportion of bentonite is high and the material is highly compacted. Previous results show significant degradation of bentonite by water vapor at temperatures as low as 150 0 C. This suggests that in some repositories, backfill in tunnels and drifts may also be affected. 9 references, 5 figures, 1 table

  2. Cell Survival in irradiation mouse intestine is increased by DNA-Binding radioprotectors

    International Nuclear Information System (INIS)

    Coultas, P.; Martin, R.

    1996-01-01

    Crypt survival in the mouse intestine has been used to examine effects of bisbenzimide radioprotectors. Intravenous delivery has been used for the present study in which the effects of methyl proamine (MP), a second generation Hoechst 33342 analogue have been examined. Recent results using the lung model suggest that MP is both more potent as a protector and less toxic than H 33342. The rapid nature of the crypt microcolony survival assay in mouse intestine provides an efficient way to examining factors which could impinge on the extent of radioprotection, for example, the interval between protector administration and radiation exposure. The data clearly show that for MP at 100 mg/kg, there is substantially increased crypt survival equivalent to a dose modification of about 1.33. The crypt scoring methods used indicate that protection is throughout the small intestine and preliminary data indicate that colon is also protected to a similar or slightly greater extent

  3. Effects of Supplementation of the Synbiotic Ecologic® 825/FOS P6 on Intestinal Barrier Function in Healthy Humans: A Randomized Controlled Trial

    Science.gov (United States)

    Wilms, E.; Gerritsen, J.; Smidt, H.; Besseling-van der Vaart, I.; Rijkers, G. T.; Garcia Fuentes, A. R.; Masclee, A. A. M.; Troost, F. J.

    2016-01-01

    Background and Aims Probiotics, prebiotics and synbiotics have been suggested as dietary strategies to improve intestinal barrier function. This study aimed to assess the effect of two weeks synbiotic supplementation on intestinal permeability under basal and stressed conditions. Secondary aims were the assessment of two weeks synbiotic supplementation on systemic immune function and gastrointestinal symptoms including defecation pattern. Design Twenty healthy adults completed a double-blind, controlled, randomized, parallel design study. Intervention Groups either received synbiotic (1.5 × 1010 CFU Ecologic® 825 + 10 g fructo-oligosaccharides (FOS P6) per day) or control supplements for two weeks. Outcomes Intestinal segment specific permeability was assessed non-invasively by oral administration of multiple sugar probes and, subsequently, assessing the excretion of these probes in urine. This test was conducted at baseline and at the end of intervention, in the absence and in the presence of an indomethacin challenge. Indomethacin was applied to induce a compromised gut state. Plasma zonulin, cytokines and chemokines were measured at baseline and at the end of intervention. Gastrointestinal symptoms and stool frequency were recorded at baseline and daily during intervention. Results Significantly more male subjects were in the synbiotic group compared to the control group (P = 0.025). Indomethacin significantly increased urinary lactulose/rhamnose ratio versus without indomethacin, both in the control group (P = 0.005) and in the synbiotic group (P = 0.017). Urinary sugar recoveries and ratios, plasma levels of zonulin, cytokines and chemokines, and gastrointestinal symptom scores were not significantly different after control or synbiotic intervention. Stool frequency within the synbiotic group was significantly increased during synbiotic intervention compared to baseline (P = 0.039) and higher compared to control intervention (P = 0.045). Conclusion Two weeks

  4. Effects of Supplementation of the Synbiotic Ecologic® 825/FOS P6 on Intestinal Barrier Function in Healthy Humans: A Randomized Controlled Trial.

    Directory of Open Access Journals (Sweden)

    E Wilms

    Full Text Available Probiotics, prebiotics and synbiotics have been suggested as dietary strategies to improve intestinal barrier function. This study aimed to assess the effect of two weeks synbiotic supplementation on intestinal permeability under basal and stressed conditions. Secondary aims were the assessment of two weeks synbiotic supplementation on systemic immune function and gastrointestinal symptoms including defecation pattern.Twenty healthy adults completed a double-blind, controlled, randomized, parallel design study.Groups either received synbiotic (1.5 × 1010 CFU Ecologic® 825 + 10 g fructo-oligosaccharides (FOS P6 per day or control supplements for two weeks.Intestinal segment specific permeability was assessed non-invasively by oral administration of multiple sugar probes and, subsequently, assessing the excretion of these probes in urine. This test was conducted at baseline and at the end of intervention, in the absence and in the presence of an indomethacin challenge. Indomethacin was applied to induce a compromised gut state. Plasma zonulin, cytokines and chemokines were measured at baseline and at the end of intervention. Gastrointestinal symptoms and stool frequency were recorded at baseline and daily during intervention.Significantly more male subjects were in the synbiotic group compared to the control group (P = 0.025. Indomethacin significantly increased urinary lactulose/rhamnose ratio versus without indomethacin, both in the control group (P = 0.005 and in the synbiotic group (P = 0.017. Urinary sugar recoveries and ratios, plasma levels of zonulin, cytokines and chemokines, and gastrointestinal symptom scores were not significantly different after control or synbiotic intervention. Stool frequency within the synbiotic group was significantly increased during synbiotic intervention compared to baseline (P = 0.039 and higher compared to control intervention (P = 0.045.Two weeks Ecologic® 825/FOS P6 supplementation increased stool

  5. Mitochondrial dysfunction is responsible for the intestinal calcium absorption inhibition induced by menadione.

    Science.gov (United States)

    Marchionatti, Ana M; Perez, Adriana V; Diaz de Barboza, Gabriela E; Pereira, Beatriz M; Tolosa de Talamoni, Nori G

    2008-02-01

    Menadione (MEN) inhibits intestinal calcium absorption by a mechanism not completely understood. The aim of this work was to find out the role of mitochondria in this inhibitory mechanism. Hence, normal chicks treated with one i.p. dose of MEN were studied in comparison with controls. Intestinal calcium absorption was measured by the in situ ligated intestinal segment technique. GSH, oxidoreductase activities from the Krebs cycle and enzymes of the antioxidant system were measured in isolated mitochondria. Mitochondrial membrane potential was measured by a flow cytometer technique. DNA fragmentation and cytochrome c localization were determined by immunocytochemistry. Data indicate that in 30 min, MEN decreases intestinal Ca(2+) absorption, which returns to the control values after 10 h. GSH was only decreased for half an hour, while the activity of malate dehydrogenase and alpha-ketoglutarate dehydrogenase was diminished for 48 h. Mn(2+)-superoxide dismutase activity was increased in 30 min, whereas the activity of catalase and glutathione peroxidase remained unaltered. DNA fragmentation and cytochrome c release were maximal in 30 min, but were recovered after 15 h. In conclusion, MEN inhibits intestinal Ca(2+) absorption by mitochondrial dysfunction as revealed by GSH depletion and alteration of the permeability triggering the release of cytochrome c and DNA fragmentation.

  6. Biomimetic carriers mimicking leukocyte plasma membrane to increase tumor vasculature permeability

    Science.gov (United States)

    Palomba, R.; Parodi, A.; Evangelopoulos, M.; Acciardo, S.; Corbo, C.; De Rosa, E.; Yazdi, I. K.; Scaria, S.; Molinaro, R.; Furman, N. E. Toledano; You, J.; Ferrari, M.; Salvatore, F.; Tasciotti, E.

    2016-10-01

    Recent advances in the field of nanomedicine have demonstrated that biomimicry can further improve targeting properties of current nanotechnologies while simultaneously enable carriers with a biological identity to better interact with the biological environment. Immune cells for example employ membrane proteins to target inflamed vasculature, locally increase vascular permeability, and extravasate across inflamed endothelium. Inspired by the physiology of immune cells, we recently developed a procedure to transfer leukocyte membranes onto nanoporous silicon particles (NPS), yielding Leukolike Vectors (LLV). LLV are composed of a surface coating containing multiple receptors that are critical in the cross-talk with the endothelium, mediating cellular accumulation in the tumor microenvironment while decreasing vascular barrier function. We previously demonstrated that lymphocyte function-associated antigen (LFA-1) transferred onto LLV was able to trigger the clustering of intercellular adhesion molecule 1 (ICAM-1) on endothelial cells. Herein, we provide a more comprehensive analysis of the working mechanism of LLV in vitro in activating this pathway and in vivo in enhancing vascular permeability. Our results suggest the biological activity of the leukocyte membrane can be retained upon transplant onto NPS and is critical in providing the particles with complex biological functions towards tumor vasculature.

  7. Mitochondrial permeability transition pore (MPTP) desensitization increases sea urchin spermatozoa fertilization rate.

    Science.gov (United States)

    Torrezan-Nitao, Elis; Boni, Raianna; Marques-Santos, Luis Fernando

    2016-10-01

    Mitochondrial permeability transition pore (MPTP) is a protein complex whose opening promotes an abrupt increase in mitochondrial inner membrane permeability. Calcium signaling pathways are described in gametes and are involved in the fertilization process. Although mitochondria may act as Ca(2+) store and have a fast calcium-releasing mechanism through MPTP, its contribution to fertilization remains unclear. The work aimed to investigate the MPTP phenomenon in sea urchin spermatozoa and its role on the fertilization. Several pharmacological tools were used to evaluate the MPTP's physiology. Our results demonstrated that MPTP occurs in male gametes in a Ca(2+) - and voltage-dependent manner and it is sensitive to cyclosporine A. Additionally, our data show that MPTP opening does not alter ROS generation in sperm cells. Inhibition of MPTP in spermatozoa strongly improved the fertilization rate, which may involve mechanisms that increase the spermatozoa lifespan. The present work is the first report of the presence of a voltage- and Ca(2+) -dependent MPTP in gametes of invertebrates and indicates MPTP opening as another evolutionary feature shared by sea urchins and mammals. Studies about MPTP in sea urchin male gametes may contribute to the elucidation of several mechanisms involved in sperm infertility. © 2016 International Federation for Cell Biology.

  8. Intestine-specific deletion of microsomal triglyceride transfer protein increases mortality in aged mice.

    Science.gov (United States)

    Liang, Zhe; Xie, Yan; Dominguez, Jessica A; Breed, Elise R; Yoseph, Benyam P; Burd, Eileen M; Farris, Alton B; Davidson, Nicholas O; Coopersmith, Craig M

    2014-01-01

    Mice with conditional, intestine-specific deletion of microsomal triglyceride transfer protein (Mttp-IKO) exhibit a complete block in chylomicron assembly together with lipid malabsorption. Young (8-10 week) Mttp-IKO mice have improved survival when subjected to a murine model of Pseudomonas aeruginosa-induced sepsis. However, 80% of deaths in sepsis occur in patients over age 65. The purpose of this study was to determine whether age impacts outcome in Mttp-IKO mice subjected to sepsis. Aged (20-24 months) Mttp-IKO mice and WT mice underwent intratracheal injection with P. aeruginosa. Mice were either sacrificed 24 hours post-operatively for mechanistic studies or followed seven days for survival. In contrast to young septic Mttp-IKO mice, aged septic Mttp-IKO mice had a significantly higher mortality than aged septic WT mice (80% vs. 39%, p = 0.005). Aged septic Mttp-IKO mice exhibited increased gut epithelial apoptosis, increased jejunal Bax/Bcl-2 and Bax/Bcl-XL ratios yet simultaneously demonstrated increased crypt proliferation and villus length. Aged septic Mttp-IKO mice also manifested increased pulmonary myeloperoxidase levels, suggesting increased neutrophil infiltration, as well as decreased systemic TNFα compared to aged septic WT mice. Blocking intestinal chylomicron secretion alters mortality following sepsis in an age-dependent manner. Increases in gut apoptosis and pulmonary neutrophil infiltration, and decreased systemic TNFα represent potential mechanisms for why intestine-specific Mttp deletion is beneficial in young septic mice but harmful in aged mice as each of these parameters are altered differently in young and aged septic WT and Mttp-IKO mice.

  9. Intestine-specific deletion of microsomal triglyceride transfer protein increases mortality in aged mice.

    Directory of Open Access Journals (Sweden)

    Zhe Liang

    Full Text Available Mice with conditional, intestine-specific deletion of microsomal triglyceride transfer protein (Mttp-IKO exhibit a complete block in chylomicron assembly together with lipid malabsorption. Young (8-10 week Mttp-IKO mice have improved survival when subjected to a murine model of Pseudomonas aeruginosa-induced sepsis. However, 80% of deaths in sepsis occur in patients over age 65. The purpose of this study was to determine whether age impacts outcome in Mttp-IKO mice subjected to sepsis.Aged (20-24 months Mttp-IKO mice and WT mice underwent intratracheal injection with P. aeruginosa. Mice were either sacrificed 24 hours post-operatively for mechanistic studies or followed seven days for survival.In contrast to young septic Mttp-IKO mice, aged septic Mttp-IKO mice had a significantly higher mortality than aged septic WT mice (80% vs. 39%, p = 0.005. Aged septic Mttp-IKO mice exhibited increased gut epithelial apoptosis, increased jejunal Bax/Bcl-2 and Bax/Bcl-XL ratios yet simultaneously demonstrated increased crypt proliferation and villus length. Aged septic Mttp-IKO mice also manifested increased pulmonary myeloperoxidase levels, suggesting increased neutrophil infiltration, as well as decreased systemic TNFα compared to aged septic WT mice.Blocking intestinal chylomicron secretion alters mortality following sepsis in an age-dependent manner. Increases in gut apoptosis and pulmonary neutrophil infiltration, and decreased systemic TNFα represent potential mechanisms for why intestine-specific Mttp deletion is beneficial in young septic mice but harmful in aged mice as each of these parameters are altered differently in young and aged septic WT and Mttp-IKO mice.

  10. Evaluation of the Membrane Permeability (PAMPA and Skin) of Benzimidazoles with Potential Cannabinoid Activity and their Relation with the Biopharmaceutics Classification System (BCS)

    OpenAIRE

    Alvarez-Figueroa, M. Javiera; Pessoa-Mahana, C. David; Palavecino-González, M. Elisa; Mella-Raipán, Jaime; Espinosa-Bustos, Cristián; Lagos-Muñoz, Manuel E.

    2011-01-01

    The permeability of five benzimidazole derivates with potential cannabinoid activity was determined in two models of membranes, parallel artificial membrane permeability assay (PAMPA) and skin, in order to study the relationship of the physicochemical properties of the molecules and characteristics of the membranes with the permeability defined by the Biopharmaceutics Classification System. It was established that the PAMPA intestinal absorption method is a good predictor for classifying thes...

  11. Intestinal Cancer

    Science.gov (United States)

    ... connects your stomach to your large intestine. Intestinal cancer is rare, but eating a high-fat diet ... increase your risk. Possible signs of small intestine cancer include Abdominal pain Weight loss for no reason ...

  12. Live Faecalibacterium prausnitzii in an apical anaerobic model of the intestinal epithelial barrier.

    Science.gov (United States)

    Ulluwishewa, Dulantha; Anderson, Rachel C; Young, Wayne; McNabb, Warren C; van Baarlen, Peter; Moughan, Paul J; Wells, Jerry M; Roy, Nicole C

    2015-02-01

    Faecalibacterium prausnitzii, an abundant member of the human commensal microbiota, has been proposed to have a protective role in the intestine. However, it is an obligate anaerobe, difficult to co-culture in viable form with oxygen-requiring intestinal cells. To overcome this limitation, a unique apical anaerobic model of the intestinal barrier, which enabled co-culture of live obligate anaerobes with the human intestinal cell line Caco-2, was developed. Caco-2 cells remained viable and maintained an intact barrier for at least 12 h, consistent with gene expression data, which suggested Caco-2 cells had adapted to survive in an oxygen-reduced atmosphere. Live F. prausnitzii cells, but not ultraviolet (UV)-killed F. prausnitzii, increased the permeability of mannitol across the epithelial barrier. Gene expression analysis showed inflammatory mediators to be expressed at lower amounts in Caco-2 cells exposed to live F. prausnitzii than UV-killed F. prausnitzii, This, consistent with previous reports, implies that live F. prausnitzii produces an anti-inflammatory compound in the culture supernatant, demonstrating the value of a physiologically relevant co-culture system that allows obligate anaerobic bacteria to remain viable. © 2014 John Wiley & Sons Ltd.

  13. MicroRNA-122a Regulates Zonulin by Targeting EGFR in Intestinal Epithelial Dysfunction

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2017-06-01

    Full Text Available Background/Aims: This study aimed to investigate the role of microRNA (miR-122a in regulating zonulin during the modulation of intestinal barrier. Methods: Zonulin proteins and their target gene expression were analyzed in miR-122a-overexpressing cell lines and in the target gene of epidermal growth factor receptor (EGFR. An mmu-miR-122a intestinal epithelial conditional transgenic (miR-122a-TG mouse model was established to investigate EGFR and zonulin expression. MiR-122a was also detected in the clinical specimens of inflammatory bowel disease. Results: EGFR was identified as a target gene of miR-122a. The expression level of miR-122a was positively correlated with that of zonulin. The expression level of zonulin was significantly increased, whereas the expression level of EGFR was significantly decreased in the miR-122a-TG mice and in the corresponding primary epithelial culture (P < 0.05. These results were consistent with the data of the clinical specimens. Conclusions: miR-122a could be a positive factor of zonulin by targeting EGFR, which increased the intestinal epithelial permeability in vivo and in vitro.

  14. Gas and Water Permeability of Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.; Martin, P. L.; Romero, F. J.; Gutierrez-Rodirgo, V.; Barcala, J. M.

    2012-11-01

    The gas pressure of concrete samples was measured in an unsteady-state equipment working under low injection pressures and in a newly fine tuned steady-state setup working under different pressures. These measurements allowed the estimation of the intrinsic and relative gas permeability of the concrete and of the effect of boundary conditions on them. Permeability decreased with water content, but it was also greatly affected by the hydraulic history of concrete, i.e. if it had been previously dried or wetted. In particular, and for a given degree of saturation, the gas permeability of concrete previously saturated was lower than if the concrete had been just air dried or saturated after air drying. In any case, the gas permeability was about two orders of magnitude higher than the liquid water permeability (10-16 vs. 10-18 m2), probably due to the chemical reactions taking place during saturation (carbonation). The relative gas permeability of concrete increased sharply for water degrees of saturation smaller than 50%. The boundary conditions also affected the gas permeability, which seemed to be mostly conditioned by the back pressure and the confining pressure, increasing as the former increased and decreasing as the latter increased, i.e. decreasing as the effective pressure increased. Overall the increase of pressure head or injection pressure implied a decrease in gas permeability. External,microcracking during air-drying could not be ruled out as responsible for the decrease of permeability with confining pressure. The apparent permeability obtained applying the Klinkenberg method for a given effective pressure was only slightly smaller than the average of all the values measured for the same confining pressure range. For this reason it is considered that the Klinkenberg effect was not relevant in the range of pressures applied. (Author) 37 refs.

  15. Current and evolving approaches for improving the oral permeability of BCS Class III or analogous molecules.

    Science.gov (United States)

    Dave, Vivek S; Gupta, Deepak; Yu, Monica; Nguyen, Phuong; Varghese Gupta, Sheeba

    2017-02-01

    The Biopharmaceutics Classification System (BCS) classifies pharmaceutical compounds based on their aqueous solubility and intestinal permeability. The BCS Class III compounds are hydrophilic molecules (high aqueous solubility) with low permeability across the biological membranes. While these compounds are pharmacologically effective, poor absorption due to low permeability becomes the rate-limiting step in achieving adequate bioavailability. Several approaches have been explored and utilized for improving the permeability profiles of these compounds. The approaches include traditional methods such as prodrugs, permeation enhancers, ion-pairing, etc., as well as relatively modern approaches such as nanoencapsulation and nanosizing. The most recent approaches include a combination/hybridization of one or more traditional approaches to improve drug permeability. While some of these approaches have been extremely successful, i.e. drug products utilizing the approach have progressed through the USFDA approval for marketing; others require further investigation to be applicable. This article discusses the commonly studied approaches for improving the permeability of BCS Class III compounds.

  16. Mucosal pathobiology and molecular signature of epithelial barrier dysfunction in the small intestine in irritable bowel syndrome.

    Science.gov (United States)

    González-Castro, Ana M; Martínez, Cristina; Salvo-Romero, Eloísa; Fortea, Marina; Pardo-Camacho, Cristina; Pérez-Berezo, Teresa; Alonso-Cotoner, Carmen; Santos, Javier; Vicario, María

    2017-01-01

    Irritable bowel syndrome (IBS) is one of the most prevalent gastrointestinal disorders in developed countries. Its etiology remains unknown; however, a common finding, regardless of IBS subtype, is the presence of altered intestinal barrier. In fact, signaling and location of cell-to-cell adhesion proteins, in connection with increased immune activity, seem abnormal in the intestinal epithelium of IBS patients. Despite that most research is performed on distal segments of the intestine, altered permeability has been reported in both, the small and the large bowel of all IBS subtypes. The small intestine carries out digestion and nutrient absorption and is also the site where the majority of immune responses to luminal antigens takes place. In fact, the upper intestine is more exposed to environmental antigens than the colon and is also a site of symptom generation. Recent studies have revealed small intestinal structural alterations of the epithelial barrier and mucosal immune activation in association with intestinal dysfunction, suggesting the commitment of the intestine as a whole in the pathogenesis of IBS. This review summarizes the most recent findings on mucosal barrier alterations and its relationship to symptoms arising from the small intestine in IBS, including epithelial structural abnormalities, mucosal immune activation, and microbial dysbiosis, further supporting the hypothesis of an organic origin of IBS. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  17. Human zonulin, a potential modulator of intestinal tight junctions.

    Science.gov (United States)

    Wang, W; Uzzau, S; Goldblum, S E; Fasano, A

    2000-12-01

    Intercellular tight junctions are dynamic structures involved in vectorial transport of water and electrolytes across the intestinal epithelium. Zonula occludens toxin derived from Vibrio cholerae interacts with a specific intestinal epithelial surface receptor, with subsequent activation of a complex intracellular cascade of events that regulate tight junction permeability. We postulated that this toxin may mimic the effect of a functionally and immunologically related endogenous modulator of intestinal tight junctions. Affinity-purified anti-zonula occludens toxin antibodies and the Ussing chamber assay were used to screen for one or more mammalian zonula occludens toxin analogues in both fetal and adult human intestine. A novel protein, zonulin, was identified that induces tight junction disassembly in non-human primate intestinal epithelia mounted in Ussing chambers. Comparison of amino acids in the active zonula occludens toxin fragment and zonulin permitted the identification of the putative receptor binding domain within the N-terminal region of the two proteins. Zonulin likely plays a pivotal role in tight junction regulation during developmental, physiological, and pathological processes, including tissue morphogenesis, movement of fluid, macromolecules and leukocytes between the intestinal lumen and the interstitium, and inflammatory/autoimmune disorders.

  18. Divergence of gut permeability and mucosal immune gene expression in two gluten-associated conditions: celiac disease and gluten sensitivity

    Directory of Open Access Journals (Sweden)

    Esposito Pasquale

    2011-03-01

    Full Text Available Abstract Background Celiac disease (CD is an autoimmune enteropathy triggered by the ingestion of gluten. Gluten-sensitive individuals (GS cannot tolerate gluten and may develop gastrointestinal symptoms similar to those in CD, but the overall clinical picture is generally less severe and is not accompanied by the concurrence of tissue transglutaminase autoantibodies or autoimmune comorbidities. By studying and comparing mucosal expression of genes associated with intestinal barrier function, as well as innate and adaptive immunity in CD compared with GS, we sought to better understand the similarities and differences between these two gluten-associated disorders. Methods CD, GS and healthy, gluten-tolerant individuals were enrolled in this study. Intestinal permeability was evaluated using a lactulose and mannitol probe, and mucosal biopsy specimens were collected to study the expression of genes involved in barrier function and immunity. Results Unlike CD, GS is not associated with increased intestinal permeability. In fact, this was significantly reduced in GS compared with controls (P = 0.0308, paralleled by significantly increased expression of claudin (CLDN 4 (P = 0.0286. Relative to controls, adaptive immunity markers interleukin (IL-6 (P = 0.0124 and IL-21 (P = 0.0572 were expressed at higher levels in CD but not in GS, while expression of the innate immunity marker Toll-like receptor (TLR 2 was increased in GS but not in CD (P = 0.0295. Finally, expression of the T-regulatory cell marker FOXP3 was significantly reduced in GS relative to controls (P = 0.0325 and CD patients (P = 0.0293. Conclusions This study shows that the two gluten-associated disorders, CD and GS, are different clinical entities, and it contributes to the characterization of GS as a condition associated with prevalent gluten-induced activation of innate, rather than adaptive, immune responses in the absence of detectable changes in mucosal barrier function.

  19. Enhancing the intestinal absorption of molecules containing the polar guanidino functionality: a double-targeted prodrug approach.

    Science.gov (United States)

    Sun, Jing; Dahan, Arik; Amidon, Gordon L

    2010-01-28

    A prodrug strategy was applied to guanidino-containing analogues to increase oral absorption via hPEPT1 and hVACVase. l-Valine, l-isoleucine, and l-phenylalanine esters of [3-(hydroxymethyl)phenyl]guanidine (3-HPG) were synthesized and evaluated for transport and activation. In HeLa/hPEPT1 cells, Val-3-HPG and Ile-3-HPG exhibited high affinity to hPEPT1 (IC(50): 0.65 and 0.63 mM, respectively), and all three l-amino acid esters showed higher uptake (2.6- to 9-fold) than the parent compound 3-HPG. Val-3-HPG and Ile-3-HPG demonstrated remarkable Caco-2 permeability enhancement, and Val-3-HPG exhibited comparable permeability to valacyclovir. In rat perfusion studies, Val-3-HPG and Ile-3-HPG permeabilities were significantly higher than 3-HPG and exceeded/matched the high-permeability standard metoprolol, respectively. All the l-amino acid 3-HPG esters were effectively activated in HeLa and Caco-2 cell homogenates and were found to be good substrates of hVACVase (k(cat)/K(m) in mM(-1) x s(-1): Val-3-HPG, 3370; Ile-3-HPG, 1580; Phe-3-HPG, 1660). In conclusion, a prodrug strategy is effective at increasing the intestinal permeability of polar guanidino analogues via targeting hPEPT1 for transport and hVACVase for activation.

  20. Factoring the intestinal microbiome into the pathogenesis of autoimmune hepatitis.

    Science.gov (United States)

    Czaja, Albert J

    2016-11-14

    The intestinal microbiome is a reservoir of microbial antigens and activated immune cells. The aims of this review were to describe the role of the intestinal microbiome in generating innate and adaptive immune responses, indicate how these responses contribute to the development of systemic immune-mediated diseases, and encourage investigations that improve the understanding and management of autoimmune hepatitis. Alterations in the composition of the intestinal microflora (dysbiosis) can disrupt intestinal and systemic immune tolerances for commensal bacteria. Toll-like receptors within the intestine can recognize microbe-associated molecular patterns and shape subsets of T helper lymphocytes that may cross-react with host antigens (molecular mimicry). Activated gut-derived lymphocytes can migrate to lymph nodes, and gut-derived microbial antigens can translocate to extra-intestinal sites. Inflammasomes can form within hepatocytes and hepatic stellate cells, and they can drive the pro-inflammatory, immune-mediated, and fibrotic responses. Diet, designer probiotics, vitamin supplements, re-colonization methods, antibiotics, drugs that decrease intestinal permeability, and molecular interventions that block signaling pathways may emerge as adjunctive regimens that complement conventional immunosuppressive management. In conclusion, investigations of the intestinal microbiome are warranted in autoimmune hepatitis and promise to clarify pathogenic mechanisms and suggest alternative management strategies.

  1. [Multiple analysis of the difference in intestinal absorption between the main components and the extract of Glycyrrhiza uralensis].

    Science.gov (United States)

    Wu, Qing-Qing; Chen, Yan; Xin, Ran; Wang, Jin-Yan; Zhou, Lei; Yuan, Ling; Jia, Xiao-Bin

    2012-05-01

    The aim of this study is to investigate the rat intestinal absorption behavior of two main active components, liquiritin, glycyrrhizin and the extract of Glycyrrhiza uralensis. The rat intestinal perfusion model was employed. Concentrations of the compounds of the interest in the intestinal perfusate, bile and plasma samples were determined by HPLC and UPLC. At the same time, the intestinal enzymes incubation test and the partition coefficient determination, the absorption of liquiritin and glycyrrhizin alone and the extract were multiple analyzed. The results showed that the P(eff) (effective permeability) of liquiritin or glycyrrhizin alone or the extract was less than 0.3, which suggested their poor absorption in the intestine. The P(eff) of the two main active components or the extract was not significantly different in duodenum, jejunum, colon and ileum segment. The P(eff) of the glycyrrhizin in the extract had no significant difference in the four intestinal segments compared with the glycyrrhizin alone. The absorption of the liquiritin displayed significant difference (P components might not increase the amount of liquiritin and glycyrrhizin in the bile and plasma within the duration of the test.

  2. Interleukin-15 promotes intestinal dysbiosis with butyrate deficiency associated with increased susceptibility to colitis

    Energy Technology Data Exchange (ETDEWEB)

    Meisel, Marlies; Mayassi, Toufic; Fehlner-Peach, Hannah; Koval, Jason C.; O' Brien, Sarah L.; Hinterleitner, Reinhard; Lesko, Kathryn; Kim, Sangman; Bouziat, Romain; Chen, Li; Weber, Christopher R.; Mazmanian, Sarkis K.; Jabri, Bana; Antonopoulos, Dionysios A.

    2016-09-20

    Dysbiosis resulting in gut-microbiome alterations with reduced butyrate production are thought to disrupt intestinal immune homeostasis and promote complex immune disorders. However, whether and how dysbiosis develops before the onset of overt pathology remains poorly defined. Interleukin 15 (IL-15) is upregulated in distressed tissue and its overexpression is thought to predispose susceptible individuals to and play a role in the pathogenesis of celiac disease and inflammatory bowel disease (IBD). While the immunological roles of IL-15 have been largely studied, its potential impact on the microbiota remains unexplored. Analysis of 16S rRNA-based inventories of bacterial communities in mice overexpressing IL-15 in the intestinal epithelium (v-IL-15tg mice) shows distinct changes in the composition of the intestinal bacteria. While some alterations are specific to individual intestinal compartments, others are found across the ileum, cecum, and feces. In particular, IL-15 overexpression restructures the composition of the microbiota with a decrease in butyrate producing bacteria that is associated with a reduction in luminal butyrate levels across all intestinal compartments. Fecal microbiota transplant experiments of wild-type and v-IL-15tg microbiota into germ-free mice further indicate that diminishing butyrate concentration observed in the intestinal lumen of v-IL-15tg mice is the result of intrinsic alterations in the microbiota induced by IL-15. This reconfiguration of the microbiota is associated with increased susceptibility to dextran sodium sulfate induced colitis. Altogether, this study reveals that IL-15 impacts butyrate-producing bacteria and lowers butyrate levels in the absence of overt pathology, which represent events that precede and promote intestinal inflammatory diseases.

  3. Subacute stress and chronic stress interact to decrease intestinal barrier function in rats.

    Science.gov (United States)

    Lauffer, Adriana; Vanuytsel, Tim; Vanormelingen, Christophe; Vanheel, Hanne; Salim Rasoel, Shadea; Tóth, Joran; Tack, Jan; Fornari, Fernando; Farré, Ricard

    2016-01-01

    Psychological stress increases intestinal permeability, potentially leading to low-grade inflammation and symptoms in functional gastrointestinal disorders. We assessed the effect of subacute, chronic and combined stress on intestinal barrier function and mast cell density. Male Wistar rats were allocated to four experimental groups (n = 8/group): 1/sham; 2/subacute stress (isolation and limited movement for 24 h); 3/chronic crowding stress for 14 days and 4/combined subacute and chronic stress. Jejunum and colon were collected to measure: transepithelial electrical resistance (TEER; a measure of epithelial barrier function); gene expression of tight junction molecules; mast cell density. Plasma corticosterone concentration was increased in all three stress conditions versus sham, with highest concentrations in the combined stress condition. TEER in the jejunum was decreased in all stress conditions, but was significantly lower in the combined stress condition than in the other groups. TEER in the jejunum correlated negatively with corticosterone concentration. Increased expression of claudin 1, 5 and 8, occludin and zonula occludens 1 mRNAs was detected after subacute stress in the jejunum. In contrast, colonic TEER was decreased only after combined stress, and the expression of tight junction molecules was unaltered. Increased mast cell density was observed in the chronic and combined stress condition in the colon only. In conclusion, our data show that chronic stress sensitizes the gastrointestinal tract to the effects of subacute stress on intestinal barrier function; different underlying cellular and molecular alterations are indicated in the small intestine versus the colon.

  4. Zonulin: A Potential Marker of Intestine Injury in Newborns

    Directory of Open Access Journals (Sweden)

    Anna Tarko

    2017-01-01

    Full Text Available Introduction. Zonulin (ZO, a new diagnostic biomarker of intestinal permeability, was tested in newborns presenting symptoms of infection and/or inflammation of the gut or being at risk of intestinal pathology. Material and Methods. Serum ZO was assessed in 81 newborns diagnosed with sepsis, necrotizing enterocolitis (NEC, rotavirus infection, and gastroschisis, also in extremely low gestational age babies, and in controls (healthy newborns. ZO concentration was compared to C-reactive protein (CRP and procalcitonin (PCT values, leucocyte and platelet count, basic demographic data, and the value of the Neonatal Therapeutic Intervention Scoring System (NTISS. Results. Median values of ZO were markedly higher in groups with rotavirus infection and gastroschisis (36.0 (1-3Q: 26.0–43.2 and 20.3 (1-3Q: 17.7–28.2 ng/ml, resp. versus controls (3.5 (1-3Q: 2.7–4.8 ng/ml. Its concentration in the NEC group was twice as high as in controls but did not reach statistical significance. ZO levels were not related to NTISS, CRP, and PCT. Conclusions. Zonulin is a promising biomarker of intestinal condition, markedly elevated in rotavirus infections. Its role in defining the severity of necrotizing enterocolitis and the risk for perforation is not well described and needs further evaluation. An increase in zonulin may not be parallel to the release of inflammatory markers, and low CRP should not exclude an injury to neonatal intestine.

  5. Co-treatment with grapefruit juice inhibits while chronic administration activates intestinal P-glycoprotein-mediated drug efflux.

    Science.gov (United States)

    Panchagnula, R; Bansal, T; Varma, M V S; Kaul, C L

    2005-12-01

    P-Glycoprotein (P-gp) mediated efflux is recognized as a significant biochemical barrier affecting oral absorption for a number of drugs. Various conflicting reports have been published regarding the effects of grapefruit juice (GFJ) on P-gp-mediated drug efflux, in which GFJ has been shown both to inhibit and activate it. Hence, the present study adopted a two-way approach, involving both co-treatment and chronic administration. Bi-directional transport of paclitaxel (PCL) was carried out in the absence and presence of GFJ extract, in rat everted ileum sac. Further, the effect of chronic administration of GFJ to rats was characterized by permeability studies with indinavir (INDI). Co-treatment of GFJ extract at 100% concentration reduced the asymmetric transport of PCL (efflux ratio = 20.8) by increasing absorptive (A --> B) transport by 921% and reducing secretory (B --> A) transport by 41%. Further, GFJ showed a concentration dependent effect on PCL permeability. Imipramine, a passive permeability marker with absorptive permeability of 15.33 +/- 4.26 x 10(-6) cm/s showed no asymmetric transport and also no significant (P extract inhibited P-gp-mediated efflux in co-treatment, whereas chronic administration led to increased levels of P-gp expression, thus having a profound effect on intestinal absorption and GFJ-drug interactions in vivo.

  6. Fructose-induced increases in expression of intestinal fructolytic and gluconeogenic genes are regulated by GLUT5 and KHK

    Science.gov (United States)

    Patel, Chirag; Douard, Veronique; Yu, Shiyan; Tharabenjasin, Phuntila; Gao, Nan

    2015-01-01

    Marked increases in fructose consumption have been tightly linked to metabolic diseases. One-third of ingested fructose is metabolized in the small intestine, but the underlying mechanisms regulating expression of fructose-metabolizing enzymes are not known. We used genetic mouse models to test the hypothesis that fructose absorption via glucose transporter protein, member 5 (GLUT5), metabolism via ketohexokinase (KHK), as well as GLUT5 trafficking to the apical membrane via the Ras-related protein in brain 11a (Rab11a)-dependent endosomes are required for the regulation of intestinal fructolytic and gluconeogenic enzymes. Fructose feeding increased the intestinal mRNA and protein expression of these enzymes in the small intestine of adult wild-type (WT) mice compared with those gavage fed with lysine or glucose. Fructose did not increase expression of these enzymes in the GLUT5 knockout (KO) mice. Blocking intracellular fructose metabolism by KHK ablation also prevented fructose-induced upregulation. Glycolytic hexokinase I expression was similar between WT and GLUT5- or KHK-KO mice and did not vary with feeding solution. Gavage feeding with the fructose-specific metabolite glyceraldehyde did not increase enzyme expression, suggesting that signaling occurs before the hydrolysis of fructose to three-carbon compounds. Impeding GLUT5 trafficking to the apical membrane using intestinal epithelial cell-specific Rab11a-KO mice impaired fructose-induced upregulation. KHK expression was uniformly distributed along the villus but was localized mainly in the basal region of the cytosol of enterocytes. The feedforward upregulation of fructolytic and gluconeogenic enzymes specifically requires GLUT5 and KHK and may proactively enhance the intestine's ability to process anticipated increases in dietary fructose concentrations. PMID:26084694

  7. Translocation of differently sized and charged polystyrene nanoparticles in in vitro intestinal cell models of increasing complexity

    NARCIS (Netherlands)

    Walczak, A.P.; Kramer, E.; Hendriksen, P.J.M.; Tromp, P.; Helsper, J.P.F.G.; Zande, M. van der; Rietjens, I.M.C.M.; Bouwmeester, H.

    2015-01-01

    Intestinal translocation is a key factor for determining bioavailability of nanoparticles (NPs) after oral uptake. Therefore, we evaluated three in vitro intestinal cell models of increasing complexity which might affect the translocation of NPs: a mono-culture (Caco-2 cells), a co-culture with

  8. Magnetic resonance imaging-guided focused ultrasound to increase localized blood-spinal cord barrier permeability.

    Science.gov (United States)

    Payne, Allison H; Hawryluk, Gregory W; Anzai, Yoshimi; Odéen, Henrik; Ostlie, Megan A; Reichert, Ethan C; Stump, Amanda J; Minoshima, Satoshi; Cross, Donna J

    2017-12-01

    Spinal cord injury (SCI) affects thousands of people every year in the USA, and most patients are left with some permanent paralysis. Therapeutic options are limited and only modestly affect outcome. To address this issue, we used magnetic resonance imaging-guided focused ultrasound (MRgFUS) as a non-invasive approach to increase permeability in the blood-spinal cord barrier (BSCB). We hypothesize that localized, controlled sonoporation of the BSCB by MRgFUS will aid delivery of therapeutics to the injury. Here, we report our preliminary findings for the ability of MRgFUS to increase BSCB permeability in the thoracic spinal cord of a normal rat model. First, an excised portion of normal rat spinal column was used to characterize the acoustic field and to estimate the insertion losses that could be expected in an MRgFUS blood spinal cord barrier opening. Then, in normal rats, MRgFUS was applied in combination with intravenously administered microbubbles to the spinal cord region. Permeability of the BSCB was indicated as signal enhancement by contrast administered prior to T1-weighted magnetic resonance imaging and verified by Evans blue dye. Neurological testing using the Basso, Beattie, and Breshnahan scale and the ladder walk was normal in 8 of 10 rats tested. Two rats showed minor impairment indicating need for further refinement of parameters. No gross tissue damage was evident by histology. In this study, we have opened successfully the blood spinal cord barrier in the thoracic region of the normal rat spine using magnetic resonance-guided focused ultrasound combined with microbubbles.

  9. Evaluation of the membrane permeability (PAMPA and skin) of benzimidazoles with potential cannabinoid activity and their relation with the Biopharmaceutics Classification System (BCS).

    Science.gov (United States)

    Alvarez-Figueroa, M Javiera; Pessoa-Mahana, C David; Palavecino-González, M Elisa; Mella-Raipán, Jaime; Espinosa-Bustos, Cristián; Lagos-Muñoz, Manuel E

    2011-06-01

    The permeability of five benzimidazole derivates with potential cannabinoid activity was determined in two models of membranes, parallel artificial membrane permeability assay (PAMPA) and skin, in order to study the relationship of the physicochemical properties of the molecules and characteristics of the membranes with the permeability defined by the Biopharmaceutics Classification System. It was established that the PAMPA intestinal absorption method is a good predictor for classifying these molecules as very permeable, independent of their thermodynamic solubility, if and only if these have a Log P(oct) value permeability is conditioned on the solubility of the molecule so that it can only serve as a model for classifying the permeability of molecules that possess high solubility (class I: high solubility, high permeability; class III: high solubility, low permeability).

  10. Reversible effect of dextran sodium sulfate on mucus secreting intestinal epithelial cells

    DEFF Research Database (Denmark)

    Nielsen, Ditte Søvsø Gundelund; Fredborg, Marlene; Andersen, V

    2016-01-01

    provide valuable insight into a possible mechanism for dextran sodium sulfate (DSS)–induced colitis of importance for the design of subsequent in vivo studies. To develop a new in vitro IBD model with DSS-induced inflammation in human mucus-secreting intestinal epithelial cells (HT29-MTX-E12), we first...... differentiated in trans-well inserts and DSS solutions were added for 6 d before measuring integrity by transepithelial electrical resistance (TEER) and the permeability to fluorescein isothiocyanate (FITC)–dextran. Then, medium with 10% fetal calf serum (FCS) was added and TEER and FITC-dextran permeability...... were measured after 8 d of treatment. A biphasic response in cell viability was observed with increased viability at low doses and decreased viability at high doses of DSS. Viability was decreased to 29% at the highest dose of DSS (10% vol/wt) for 48 h (P Dextran sodium sulfate significantly...

  11. Can lipid nanoparticles improve intestinal absorption?

    Science.gov (United States)

    Mendes, M; Soares, H T; Arnaut, L G; Sousa, J J; Pais, A A C C; Vitorino, C

    2016-12-30

    Lipid nanoparticles and their multiple designs have been considered appealing nanocarrier systems. Bringing the benefits of these nanosystems together with conventional coating technology clearly results in product differentiation. This work aimed at developing an innovative solid dosage form for oral administration based on tableting nanostructured lipid carriers (NLC), coated with conventional polymer agents. NLC dispersions co-encapsulating olanzapine and simvastatin (Combo-NLC) were produced by high pressure homogenization, and evaluated in terms of scalability, drying procedure, tableting and performance from in vitro release, cytotoxicity and intestinal permeability stand points. Factorial design indicated that the scaling-up of the NLC production is clearly feasible. Spray-drying was the method selected to obtain dry particles, not only because it consists of a single step procedure, but also because it facilitates the coating process of NLC with different polymers. Modified NLC formulations with the polymers allowed obtaining distinct release mechanisms, comprising immediate, delayed and prolonged release. Sureteric:Combo-NLC provided a low cytotoxicity profile, along with a ca. 12-fold OL/3-fold SV higher intestinal permeability, compared to those obtained with commercial tablets. Such findings can be ascribed to drug protection and control over release promoted by NLC, supporting them as a versatile platform able to be modified according to the intended needs. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Permeability of porour rhyolite

    Science.gov (United States)

    Cashman, K.; Rust, A.; Wright, H.; Roberge, J.

    2003-04-01

    The development of permeability in bubble-bearing magmas determines the efficiency of volatile escape during their ascent through volcanic conduits, which, in turn, controls their explosive potential. As permeability requires bubble connectivity, relationships between permeability and porosity in silicic magmas must be controlled by the formation, growth, deformation and coalescence of their constituent bubbles. Although permeability data on porous volcanic pyroclasts are limited, the database can be greatly extended by including data for ceramic and metallic foams1. Several studies indicate that a single number does not adequately describe the permeability of a foam because inertial effects, which predominate at high flow rates, cause deviations from Darcy's law. These studies suggest that permeability is best modeled using the Forschheimer equation to determine both the Darcy permeability (k1) and the non-Darcian (k2) permeability. Importantly, at the high porosities of ceramic foams (75-95%), both k1 and k2 are strongly dependent on pore size and geometry, suggesting that measurement of these parameters provides important information on foam structure. We determined both the connected porosity (by He-pycnometry) and the permeability (k1 and k2) of rhyolitic samples having a wide range in porosity (22-85%) and vesicle textures. In general, these data support previous observations of a power law relationship between connected porosity and Darcy permeability2. In detail, variations in k1 increase at higher porosities. Similarly, k2 generally increases in both mean and standard deviation with increasing porosity. Measurements made on three mutually perpendicular cores from individual pumice clasts suggest that some of the variability can be explained by anisotropy in the vesicle structure. By comparison with ceramic foams, we suggest that the remaining variability results from differences either in average vesicle size or, more likely, in the size of apertures

  13. Bactericidal Permeability-Increasing Proteins Shape Host-Microbe Interactions

    Directory of Open Access Journals (Sweden)

    Fangmin Chen

    2017-04-01

    Full Text Available We characterized bactericidal permeability-increasing proteins (BPIs of the squid Euprymna scolopes, EsBPI2 and EsBPI4. They have molecular characteristics typical of other animal BPIs, are closely related to one another, and nest phylogenetically among invertebrate BPIs. Purified EsBPIs had antimicrobial activity against the squid’s symbiont, Vibrio fischeri, which colonizes light organ crypt epithelia. Activity of both proteins was abrogated by heat treatment and coincubation with specific antibodies. Pretreatment under acidic conditions similar to those during symbiosis initiation rendered V. fischeri more resistant to the antimicrobial activity of the proteins. Immunocytochemistry localized EsBPIs to the symbiotic organ and other epithelial surfaces interacting with ambient seawater. The proteins differed in intracellular distribution. Further, whereas EsBPI4 was restricted to epithelia, EsBPI2 also occurred in blood and in a transient juvenile organ that mediates hatching. The data provide evidence that these BPIs play different defensive roles early in the life of E. scolopes, modulating interactions with the symbiont.

  14. Free Total Rhubarb Anthraquinones Protect Intestinal Injury via Regulation of the Intestinal Immune Response in a Rat Model of Severe Acute Pancreatitis

    Directory of Open Access Journals (Sweden)

    Yuxia Xiong

    2018-02-01

    Full Text Available Intestinal mucosal immune barrier dysfunction plays a key role in the pathogenesis of severe acute pancreatitis (SAP. Rhubarb is a commonly used traditional Chinese medicine as a laxative in China. It markedly protects pancreatic acinar cells from trypsin-induced injury in rats. Free total rhubarb anthraquinones (FTRAs isolated and extracted from rhubarb display the beneficial effects of antibacteria, anti-inflammation, antivirus, and anticancer. The principal aim of the present study was to investigate the effects of FTRAs on the protection of intestinal injury and modification of the intestinal barrier function through regulation of intestinal immune function in rats with SAP. We established a rat model of SAP by injecting 3.5% sodium taurocholate (STC, 350 mg/kg into the biliopancreatic duct via retrograde injection and treated the rats with FTRAs (36 or 72 mg/kg or normal saline (control immediately and 12 h after STC injection. Then, we evaluated the protective effect of FTRAs on intestinal injury by pathological analysis and determined the levels of endotoxin (ET, interleukin 1β (IL-1β, tumor necrosis factor α (TNF-α, nitric oxide (NO, myeloperoxidase (MPO, capillary permeability, nucleotide-binding oligomerization domain-like receptors 3 (NLRP3, apoptosis-associated speck-like protein containing a CARD domain (ASC, casepase-1, secretary immunoglobulin A (SIgA, regulatory T cells (Tregs, and the ratio of Th1/Th2 in the blood and/or small intestinal tissues or mesenteric lymph node (MLN cells. Moreover, the chemical profile of FTRAs was analyzed by HPLC-UV chromatogram. The results showed that FTRAs significantly protected intestinal damage and decreased the levels of ET, IL-1β, TNF-α, and NO in the blood and TNF-α, IL-1β, and protein extravasation in the intestinal tissues in SAP rats. Furthermore, FTRAs significantly decreased the expressions of NLRP3, ASC, and caspase-1, the number of Tregs and the ratio of Th1/Th2, while

  15. A pilot study examining the relationship among Crohn disease activity, glucagon-like peptide-2 signalling and intestinal function in pediatric patients

    DEFF Research Database (Denmark)

    Sigalet, David L; Kravarusic, Dragan; Butzner, Decker

    2013-01-01

    [± SD] age 15.3 ± 1.3 years) and 10 controls (10.3 ± 1.6 years) were studied. In patients with active disease, fasting levels of GLP-2 remained stable but postprandial levels were reduced. Patients with active disease exhibited reduced glucose absorption and increased lactulose⁄mannitol recovery; all......  BACKGROUND⁄/OBJECTIVES: The relationship between the enteroendocrine hormone glucagon-like peptide 2 (GLP-2) and intestinal inflammation is unclear. GLP-2 promotes mucosal growth, decreases permeability and reduces inflammation in the intestine; physiological stimulation of GLP-2 release...... of the small intestine) with a disease activity index >150. Fasting and postprandial GLP-2 levels and quantitative urinary recovery of orally administered 3-O-methyl-glucose (active transport) and lactulose⁄mannitol (passive) were quantified during the acute and remission phases. RESULTS: Seven patients (mean...

  16. Proteomic analysis of rainbow trout (Oncorhynchus mykiss) intestinal epithelia: physiological acclimation to short-term starvation.

    Science.gov (United States)

    Baumgarner, Bradley L; Bharadwaj, Anant S; Inerowicz, Dorota; Goodman, Angela S; Brown, Paul B

    2013-03-01

    The intestinal epithelia form the first line of defense against harmful agents in the gut lumen of most monogastric vertebrates, including teleost fishes. Previous investigations into the effect of starvation on the intestinal epithelia of teleost fishes have focused primarily on changes in morphological characteristics and targeted molecular analysis of specific enzymes. The goal of this study was to use a comprehensive approach to help reveal how the intestinal epithelia of carnivorous teleost fishes acclimate to short-term nutrient deprivation. We utilized two-dimensional gel electrophoresis (2-DE) to conduct the proteomic analysis of the mucosal and epithelial layer of the anterior gut intestinal tract (GIT) from satiation fed vs. 4 week starved rainbow trout (Oncorhynchus mykiss). A total of 40 proteins were determined to be differentially expressed and were subsequently picked for in-gel trypsin digestion. Peptide mass fingerprint analysis was conducted using matrix assisted laser desorption time-of-flight/time-of-flight. Nine of the 11 positively identified proteins were directly related to innate immunity. The expression of α-1 proteinase inhibitor decreased in starved vs. fed fish. Also, the concentration of one leukocyte elastase inhibitor (LEI) isomer decreased in starved fish, though the concentration of another LEI isomer increased in due to starvation. In addition, starvation promoted an increased concentration of the important xenobiotic-transporter p-glycoprotein. Finally, starvation resulted in a significant increase in type II keratin E2. Overall, our results indicate that starvation promoted a reduced capacity to inhibit enzymatic stress but increased xenobiotic resistance and paracellular permeability of epithelial cells in the anterior intestine of rainbow trout. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Unsaturated fatty acids lactose esters: cytotoxicity, permeability enhancement and antimicrobial activity.

    Science.gov (United States)

    Lucarini, Simone; Fagioli, Laura; Campana, Raffaella; Cole, Hannah; Duranti, Andrea; Baffone, Wally; Vllasaliu, Driton; Casettari, Luca

    2016-10-01

    Sugar based surfactants conjugated with fatty acid chains are an emerging broad group of highly biocompatible and biodegradable compounds with established and potential future applications in the pharmaceutical, cosmetic and food industries. In this work, we investigated absorption enhancing and antimicrobial properties of disaccharide lactose, monoesterified with unsaturated fatty acids through an enzymatic synthetic approach. After chemical and cytotoxicity characterizations, their permeability enhancing activity was demonstrated using intestinal Caco-2 monolayers through transepithelial electrical resistance (TEER) and permeability studies. The synthesized compounds, namely lactose palmitoleate (URB1076) and lactose nervonate (URB1077), were shown to exhibit antimicrobial activity versus eight pathogenic species belonging to Gram-positive, Gram-negative microorganisms and fungi. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Exogenous HIV-1 Nef upsets the IFN-γ-induced impairment of human intestinal epithelial integrity.

    Directory of Open Access Journals (Sweden)

    Maria Giovanna Quaranta

    Full Text Available The mucosal tissues play a central role in the transmission of HIV-1 infection as well as in the pathogenesis of AIDS. Despite several clinical studies reported intestinal dysfunction during HIV infection, the mechanisms underlying HIV-induced impairments of mucosal epithelial barrier are still unclear. It has been postulated that HIV-1 alters enterocytic function and HIV-1 proteins have been detected in several cell types of the intestinal mucosa. In the present study, we analyzed the effect of the accessory HIV-1 Nef protein on human epithelial cell line.We used unstimulated or IFN-γ-stimulated Caco-2 cells, as a model for homeostatic and inflamed gastrointestinal tracts, respectively. We investigated the effect of exogenous recombinant Nef on monolayer integrity analyzing its uptake, transepithelial electrical resistance, permeability to FITC-dextran and the expression of tight junction proteins. Moreover, we measured the induction of proinflammatory mediators. Exogenous Nef was taken up by Caco-2 cells, increased intestinal epithelial permeability and upset the IFN-γ-induced reduction of transepithelial resistance, interfering with tight junction protein expression. Moreover, Nef inhibited IFN-γ-induced apoptosis and up-regulated TNF-α, IL-6 and MIP-3α production by Caco-2 cells while down-regulated IL-10 production. The simultaneous exposure of Caco-2 cells to Nef and IFN-γ did not affect cytokine secretion respect to untreated cells. Finally, we found that Nef counteracted the IFN-γ induced arachidonic acid cascade.Our findings suggest that exogenous Nef, perturbing the IFN-γ-induced impairment of intestinal epithelial cells, could prolong cell survival, thus allowing for accumulation of viral particles. Our results may improve the understanding of AIDS pathogenesis, supporting the discovery of new therapeutic interventions.

  19. Mesenchymal stem cells increase antioxidant capacity in intestinal ischemia/reperfusion damage.

    Science.gov (United States)

    Inan, M; Bakar, E; Cerkezkayabekir, A; Sanal, F; Ulucam, E; Subaşı, C; Karaöz, E

    2017-07-01

    Mesenchymal stem cells (MSCs) may have beneficial effects in reversing intestinal damage resulting from circulatory disorders. The hypothesis of this study is that MSCs increase antioxidant capacity of small bowel tissue following intestinal ischemia reperfusion (I/R) damage. A total of 100 rats were used for the control group and three experimental groups, as follows: the sham control, local MSC, and systemic MSC groups. Each group consisted of 10 animals on days 1, 4, and 7 of the experiment. Ischemia was established by clamping the superior mesenteric artery (SMA) for 45min; following this, reperfusion was carried out for 1, 4, and 7days in all groups. In the local and systemic groups, MSCs were administered intravenously and locally just after the ischemia, and they were investigated after 1, 4, and 7days. The superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (Gpx) activities, as well as malondialdehyde (MDA) and total protein levels, were measured. Histopathological analysis was performed using light and electron microscopy. The indicators of proliferation from the effects of anti- and pro-inflammatory cytokines were evaluated using immunohistochemistry. MDA was increased (Pcytokines interleukin-1β (IL1β), transforming growth factor-β1 (TGFβ1), tumor necrosis factor-α (TNFα), IL6, MIP2, and MPO decreased (Pcytokines EP3 and IL1ra increased (poxygen radicals, suppression of pro-inflammatory cytokines, and increasing the expression of anti-inflammatory cytokines. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Drug absorption from the irradiated rat small intestine in situ

    International Nuclear Information System (INIS)

    Venho, V.M.K.

    1976-01-01

    The absorption of acidic drugs phenobarbitone and sulphafurazole, basic drugs mecamylamine and quinidine, and a neutral drug isoniazid was studied in situ. Rats were irradiated 750 rad whole-body with 60 Co and the absorption experiment was done three and six days thereafter using the cannulated small intestine of urethane-anaesthetized rats. Drug disappearance from the intestinal lumen and drug levels in the whole blood and intestinal wall were measured. In control rats phenobarbitone showed the most rapid absorption and mecamylamine the slowest. Irradiation retarded the disappearance of all drugs from the intestinal lumen on the third postirradiation day. Fluid absorption was also diminished. On the sixth postirradiation day the absorption of phenobarbitone, sulphafurazole and mecamylamine had returned to the control level, but the absorption of quinidine and isoniazid was still retarded. After i.v. administration of drugs they were not significantly excreted into the intestinal contents and irradiation did not modify excretion. The distribution of drugs between the intestinal fluid and the intestinal wall was complete in the first 10 min of experiment. Mecamylamine and quinidine were lowered in the whole blood by irradiation. Blood levels of drugs did not correlate well to the rate of disappearance of drugs from the intestinal lumen. The reversible changes in absorption induced by irradiation are probably secondary effects of irradiation on intestinal morphology, permeability and transport capacity, composition, and possibly blood flow. (orig.) [de

  1. Campylobacter jejuni induces transcytosis of commensal bacteria across the intestinal epithelium through M-like cells

    Science.gov (United States)

    2010-01-01

    Background Recent epidemiological analyses have implicated acute Campylobacter enteritis as a factor that may incite or exacerbate inflammatory bowel disease (IBD) in susceptible individuals. We have demonstrated previously that C. jejuni disrupts the intestinal barrier function by rapidly inducing epithelial translocation of non-invasive commensal bacteria via a transcellular lipid raft-mediated mechanism ('transcytosis'). To further characterize this mechanism, the aim of this current study was to elucidate whether C. jejuni utilizes M cells to facilitate transcytosis of commensal intestinal bacteria. Results C. jejuni induced translocation of non-invasive E. coli across confluent Caco-2 epithelial monolayers in the absence of disrupted transepithelial electrical resistance or increased permeability to a 3 kDa dextran probe. C. jejuni-infected monolayers displayed increased numbers of cells expressing the M cell-specific marker, galectin-9, reduced numbers of enterocytes that stained with the absorptive enterocyte marker, Ulex europaeus agglutinin-1, and reduced activities of enzymes typically associated with absorptive enterocytes (namely alkaline phosphatase, lactase, and sucrase). Furthermore, in Campylobacter-infected monolayers, E. coli were observed to be internalized specifically within epithelial cells displaying M-like cell characteristics. Conclusion These data indicate that C. jejuni may utilize M cells to promote transcytosis of non-invasive bacteria across the intact intestinal epithelial barrier. This mechanism may contribute to the inflammatory immune responses against commensal intestinal bacteria commonly observed in IBD patients. PMID:21040540

  2. Campylobacter jejuni induces transcytosis of commensal bacteria across the intestinal epithelium through M-like cells

    Directory of Open Access Journals (Sweden)

    Kalischuk Lisa D

    2010-11-01

    Full Text Available Abstract Background Recent epidemiological analyses have implicated acute Campylobacter enteritis as a factor that may incite or exacerbate inflammatory bowel disease (IBD in susceptible individuals. We have demonstrated previously that C. jejuni disrupts the intestinal barrier function by rapidly inducing epithelial translocation of non-invasive commensal bacteria via a transcellular lipid raft-mediated mechanism ('transcytosis'. To further characterize this mechanism, the aim of this current study was to elucidate whether C. jejuni utilizes M cells to facilitate transcytosis of commensal intestinal bacteria. Results C. jejuni induced translocation of non-invasive E. coli across confluent Caco-2 epithelial monolayers in the absence of disrupted transepithelial electrical resistance or increased permeability to a 3 kDa dextran probe. C. jejuni-infected monolayers displayed increased numbers of cells expressing the M cell-specific marker, galectin-9, reduced numbers of enterocytes that stained with the absorptive enterocyte marker, Ulex europaeus agglutinin-1, and reduced activities of enzymes typically associated with absorptive enterocytes (namely alkaline phosphatase, lactase, and sucrase. Furthermore, in Campylobacter-infected monolayers, E. coli were observed to be internalized specifically within epithelial cells displaying M-like cell characteristics. Conclusion These data indicate that C. jejuni may utilize M cells to promote transcytosis of non-invasive bacteria across the intact intestinal epithelial barrier. This mechanism may contribute to the inflammatory immune responses against commensal intestinal bacteria commonly observed in IBD patients.

  3. Effects of Streptomycin Administration on Increases in Skeletal Muscle Fiber Permeability and Size Following Eccentric Muscle Contractions.

    Science.gov (United States)

    Hayao, Keishi; Tamaki, Hiroyuki; Nakagawa, Kouki; Tamakoshi, Keigo; Takahashi, Hideaki; Yotani, Kengo; Ogita, Futoshi; Yamamoto, Noriaki; Onishi, Hideaki

    2018-06-01

    The purpose of this study was to investigate the preventive effect of streptomycin (Str) administration on changes in membrane permeability and the histomorphological characteristics of damaged muscle fibers following eccentric contraction (ECC ). Eighteen 7-week-old male Fischer 344 rats were randomly assigned to three groups: control (Cont), ECC, and ECC with Str (ECC + Str). The tibialis anterior (TA) muscles in both ECC groups were stimulated electrically and exhibited ECC. Evans blue dye (EBD), a marker of muscle fiber damage associated with increased membrane permeability, was injected 24 hr before TA muscle sampling. The number of EBD-positive fibers, muscle fiber cross-sectional area (CSA), and roundness were determined via histomorphological analysis. The ECC intervention resulted in an increased fraction of EBD-positive fibers, a larger CSA, and decreased roundness. The fraction of EBD-positive fibers was 79% lower in the ECC + Str group than in the ECC group. However, there was no difference in the CSA and roundness of the EBD-positive fibers between the two ECC groups. These results suggest that Str administration can reduce the number of myofibers that increase membrane permeability following ECC, but does not ameliorate the extent of fiber swelling in extant EBD-positive fibers. Anat Rec, 301:1096-1102, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  4. Hypoxia/reoxygenation increases the permeability of endothelial cell monolayers: Role of oxygen radicals

    International Nuclear Information System (INIS)

    Inauen, W.; Payne, D.K.; Kvietys, P.R.; Granger, D.N.

    1990-01-01

    We assessed the effect of hypoxia/reoxygenation on 14C-albumin flux across endothelial monolayers. Cultured bovine pulmonary artery endothelial cells were grown to confluence on nitrocellulose filters (pore size 12 microns). The endothelialized filters were mounted in Ussing-type chambers which were filled with cell culture medium (M 199). Equimolar amounts (33 nM) of 14C-labeled and unlabeled albumin were added to the hot and cold chambers, respectively. The monolayers were then exposed to successive periods (90 min) of normoxia (pO2 145 mmHg), hypoxia (pO2 20 mmHg), and reoxygenation (pO2 145 mmHg). A gas bubbling system was used to control media pO2 and to ensure adequate mixing. Four aliquots of culture media were taken during each period in order to calculate the 14C-albumin permeability across the endothelialized filter. In some experiments, either the xanthine oxidase inhibitor, oxypurinol (10 microM), or superoxide dismutase (600 U/mL), was added to the media immediately prior to the experiments. As compared to the normoxic control period, albumin permeability was 1.5 times higher during hypoxia (p less than 0.01) and 2.3 times higher during reoxygenation (p less than 0.01). The reoxygenation-induced increase in albumin permeability was prevented by either oxypurinol or superoxide dismutase. These data indicate that xanthine oxidase-derived oxygen radicals contribute to the hypoxia/reoxygenation-induced endothelial cell dysfunction. The altered endothelial barrier function induced by hypoxia/reoxygenation is consistent with the microvascular dysfunction observed following reperfusion of ischemic tissues

  5. Effect of temperature on sandstone permeability

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Kjøller, Claus

    Hot water injection in geothermal sandstone aquifers is considered for seasonal energy storage in Denmark. However, an increase in the aquifer temperature might reduce permeability, and thereby increase production costs. An understanding of the factors that control permeability is required in order...... and the Klinkenberg procedure showed the expected correlation between the two measures, however, differences could be around one order of magnitude. In tight gas sandstones, permeability is often sensitive to net stress, which might change due to the pore pressure change in the Klinkenberg procedure. Besides...... affecting the Klinkenberg procedure, the combined effect of slip and changes in permeability would affect production during pressure depletion in tight gas sandstone reservoirs; therefore effects of gas slip and net stress on permeability were combined in a model based on the Klinkenberg equation. A lower...

  6. Lipopolysaccharide precipitates hepatic encephalopathy and increases blood-brain barrier permeability in mice with acute liver failure.

    Science.gov (United States)

    Chastre, Anne; Bélanger, Mireille; Nguyen, Bich N; Butterworth, Roger F

    2014-03-01

    Acute liver failure (ALF) is frequently complicated by infection leading to precipitation of central nervous system complications such as hepatic encephalopathy (HE) and increased mortality. There is evidence to suggest that when infection occurs in ALF patients, the resulting pro-inflammatory mechanisms may be amplified that could, in turn, have a major impact on blood-brain barrier (BBB) function. The aim of this study was to investigate the role of endotoxemia on the progression of encephalopathy in relation to BBB permeability during ALF. Adult male C57-BL6 mice with ALF resulting from azoxymethane-induced toxic liver injury were administered trace amounts of the endotoxin component lipopolysaccharide (LPS). Effects on the magnitude of the systemic inflammatory response, liver pathology and BBB integrity were measured as a function of progression of HE, defined as time to loss of corneal reflex (coma). Lipopolysaccharide caused additional two- to seven-fold (P liver pathology and associated increases of circulating transaminases as well as increased hyperammonaemia consistent with a further loss of viable hepatocytes. LPS treatment of ALF mice led to a rapid precipitation of hepatic coma and the BBB became permeable to the 25-kDa protein immunoglobulin G (IgG). This extravasation of IgG was accompanied by ignificant up-regulation of matrix metalloproteinase-9 (MMP-9), an endopeptidase known to modulate opening of the BBB in a wide range of neurological disorders. These findings represent the first direct evidence of inflammation-related BBB permeability changes in ALF. © 2013 John Wiley & Sons A/S. Publishing by John Wiley & Sons Ltd.

  7. Expression of transcellular and paracellular calcium and magnesium transport proteins in renal and intestinal epithelia during lactation.

    Science.gov (United States)

    Beggs, Megan R; Appel, Ida; Svenningsen, Per; Skjødt, Karsten; Alexander, R Todd; Dimke, Henrik

    2017-09-01

    Significant alterations in maternal calcium (Ca 2+ ) and magnesium (Mg 2+ ) balance occur during lactation. Ca 2+ is the primary divalent cation mobilized into breast milk by demineralization of the skeleton and alterations in intestinal and renal Ca 2+ transport. Mg 2+ is also concentrated in breast milk, but the underlying mechanisms are not well understood. To determine the molecular alterations in Ca 2+ and Mg 2+ transport in the intestine and kidney during lactation, three groups of female mice consisting of either nonpregnant controls, lactating mice, or mice undergoing involution were examined. The fractional excretion of Ca 2+ , but not Mg 2+ , rose significantly during lactation. Renal 1-α hydroxylase and 24-OHase mRNA levels increased markedly, as did plasma 1,25 dihydroxyvitamin D levels. This was accompanied by significant increases in intestinal expression of Trpv6 and S100g in lactating mice. However, no alterations in the expression of cation-permeable claudin-2, claudin-12, or claudins-15 were found in the intestine. In the kidney, increased expression of Trpv5 and Calb1 was observed during lactation, while no changes in claudins involved in Ca 2+ and Mg 2+ transport (claudin-2, claudin-14, claudin-16, or claudin-19) were found. Consistent with the mRNA expression, expression of both calbindin-D 28K and transient receptor potential vanilloid 5 (TRPV5) proteins increased. Colonic Trpm6 expression increased during lactation, while renal Trpm6 remained unaltered. In conclusion, proteins involved in transcellular Ca 2+ and Mg 2+ transport pathways increase during lactation, while expression of paracellular transport proteins remained unchanged. Increased fractional Ca 2+ excretion can be explained by vitamin D-dependent intestinal hyperabsorption and bone demineralization, despite enhanced transcellular Ca 2+ uptake by the kidney. Copyright © 2017 the American Physiological Society.

  8. Isoproterenol attenuates high vascular pressure-induced permeability increases in isolated rat lungs.

    Science.gov (United States)

    Parker, J C; Ivey, C L

    1997-12-01

    To separate the contributions of cellular and basement membrane components of the alveolar capillary barrier to the increased microvascular permeability induced by high pulmonary venous pressures (Ppv), we subjected isolated rat lungs to increases in Ppv, which increased capillary filtration coefficient (Kfc) without significant hemorrhage (31 cmH2O) and with obvious extravasation of red blood cells (43 cmH2O). Isoproterenol (20 microM) was infused in one group (Iso) to identify a reversible cellular component of injury, and residual blood volumes were measured to assess extravasation of red blood cells through ruptured basement membranes. In untreated lungs (High Ppv group), Kfc increased 6.2 +/- 1.3 and 38.3 +/- 15.2 times baseline during the 31 and 43 cmH2O Ppv states. In Iso lungs, Kfc was 36.2% (P Kfc increases at moderate Ppv, possibly because of an endothelial effect, but it did not affect red cell extravasation at higher vascular pressures.

  9. Intestinal barrier: A gentlemen's agreement between microbiota and immunity.

    Science.gov (United States)

    Caricilli, Andrea Moro; Castoldi, Angela; Câmara, Niels Olsen Saraiva

    2014-02-15

    Our body is colonized by more than a hundred trillion commensals, represented by viruses, bacteria and fungi. This complex interaction has shown that the microbiome system contributes to the host's adaptation to its environment, providing genes and functionality that give flexibility of diet and modulate the immune system in order not to reject these symbionts. In the intestine, specifically, the microbiota helps developing organ structures, participates of the metabolism of nutrients and induces immunity. Certain components of the microbiota have been shown to trigger inflammatory responses, whereas others, anti-inflammatory responses. The diversity and the composition of the microbiota, thus, play a key role in the maintenance of intestinal homeostasis and explain partially the link between intestinal microbiota changes and gut-related disorders in humans. Tight junction proteins are key molecules for determination of the paracellular permeability. In the context of intestinal inflammatory diseases, the intestinal barrier is compromised, and decreased expression and differential distribution of tight junction proteins is observed. It is still unclear what is the nature of the luminal or mucosal factors that affect the tight junction proteins function, but the modulation of the immune cells found in the intestinal lamina propria is hypothesized as having a role in this modulation. In this review, we provide an overview of the current understanding of the interaction of the gut microbiota with the immune system in the development and maintenance of the intestinal barrier.

  10. The Intestinal Microbiome and the Liver Transplant Recipient: What We Know and What We Need to Know.

    Science.gov (United States)

    Doycheva, Iliana; Leise, Michael D; Watt, Kymberly D

    2016-01-01

    The intestinal microbiome and immune system are in close symbiotic relationship in health. Gut microbiota plays a role in many chronic liver diseases and cirrhosis. However, alterations in the gut microbiome after liver transplantation and the implications for liver transplant recipients are not well understood and rely mainly on experimental animal studies. Recent advances in molecular techniques have identified that increased intestinal permeability, decreased beneficial bacteria, and increased pathogenic species may play important roles in the early posttransplant period. The associations between microbiota perturbation and postliver transplant infections and acute rejection are evolving. The link with metabolic syndrome, obesity, and cardiac disease in the general population require translation into the transplant recipient. This review focuses on our current knowledge of the known and potential interaction of the microbiome in the liver transplant recipient. Future human studies focused on microbiota changes in liver transplant patients are warranted and expected.

  11. Intestinal Permeability Biomarker Zonulin is Elevated in Healthy Aging.

    Science.gov (United States)

    Qi, YanFei; Goel, Ruby; Kim, Seungbum; Richards, Elaine M; Carter, Christy S; Pepine, Carl J; Raizada, Mohan K; Buford, Thomas W

    2017-09-01

    Increased gut permeability ("leaky gut") has been proposed as a potential contributor to age-related inflammation and gut dysbiosis. However, information on the relationship between a leaky gut and inflammation and physical frailty during aging are limited. To investigate the hypothesis that an aging-associated leaky gut is linked to the age-related inflammation and frailty. Two cohorts of healthy adults were studied: young (18-30 years old, n = 19) and older (≥70 years old, n = 18). Serum concentrations of the tumor necrosis factor (TNF)-α and interleukin (IL)-6, zonulin (a marker for leaky gut), and high-mobility group box protein (HMGB1, a nuclear protein triggering inflammation) were measured. Correlations of serum levels of zonulin and HMGB1 with strength of plantar flexor muscles and number of steps taken per day were analyzed. Serum concentration of zonulin and HMGB1 were 22% (P = .005) and 16% (P = .010) higher in the older versus young adults. Serum zonulin was positively associated with concentrations of TNF-α (r = 0.357, P = .032) and IL-6 (r = 0.345, P = .043). Importantly, both zonulin and HMGB1 were negatively correlated with skeletal muscle strength (zonulin: r = -0.332, P = .048; HMGB1: r = -0.383, P = .023), and habitual physical activity (zonulin: r = -0.410, P = .016; HMGB1: r = -0.483, P = .004). Serum zonulin was associated with both systemic inflammation and 2 key indices of physical frailty. These data suggest that a leaky gut may play a critical role in the development of age-related inflammation and frailty. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  12. Alpha-Melanocyte Stimulating Hormone Protects against Cytokine-Induced Barrier Damage in Caco-2 Intestinal Epithelial Monolayers.

    Directory of Open Access Journals (Sweden)

    Judit Váradi

    Full Text Available Alpha-melanocyte-stimulating hormone (α-MSH is a potent anti-inflammatory peptide with cytoprotective effect in various tissues. The present investigation demonstrates the ability of α-MSH to interact with intestinal epithelial cell monolayers and mitigate inflammatory processes of the epithelial barrier. The protective effect of α-MSH was studied on Caco-2 human intestinal epithelial monolayers, which were disrupted by exposure to tumor necrosis factor-α and interleukin-1β. The barrier integrity was assessed by measuring transepithelial electric resistance (TEER and permeability for marker molecules. Caco-2 monolayers were evaluated by immunohistochemistry for expression of melanocortin-1 receptor and tight junction proteins ZO-1 and claudin-4. The activation of nuclear factor kappa beta (NF-κB was detected by fluorescence microscopy and inflammatory cytokine expression was assessed by flow cytometric bead array cytokine assay. Exposure of Caco-2 monolayers to proinflammatory cytokines lowered TEER and increased permeability for fluorescein and albumin, which was accompanied by changes in ZO-1 and claudin-4 immunostaining. α-MSH was able to prevent inflammation-associated decrease of TEER in a dose-dependent manner and reduce the increased permeability for paracellular marker fluorescein. Further immunohistochemistry analysis revealed proinflammatory cytokine induced translocation of the NF-κB p65 subunit into Caco-2 cell nuclei, which was inhibited by α-MSH. As a result the IL-6 and IL-8 production of Caco-2 monolayers were also decreased with different patterns by the addition of α-MSH to the culture medium. In conclusion, Caco-2 cells showed a positive immunostaining for melanocortin-1 receptor and α-MSH protected Caco-2 cells against inflammatory barrier dysfunction and inflammatory activation induced by tumor necrosis factor-α and interleukin-1β cytokines.

  13. Intestinal barrier dysfunction develops at the onset of experimental autoimmune encephalomyelitis, and can be induced by adoptive transfer of auto-reactive T cells.

    Directory of Open Access Journals (Sweden)

    Mehrnaz Nouri

    Full Text Available Multiple sclerosis (MS is a chronic inflammatory demyelinating disease of the central nervous system with a pathogenesis involving a dysfunctional blood-brain barrier and myelin-specific, autoreactive T cells. Although the commensal microbiota seems to affect its pathogenesis, regulation of the interactions between luminal antigens and mucosal immune elements remains unclear. Herein, we investigated whether the intestinal mucosal barrier is also targeted in this disease. Experimental autoimmune encephalomyelitis (EAE, the prototypic animal model of MS, was induced either by active immunization or by adoptive transfer of autoreactive T cells isolated from these mice. We show increased intestinal permeability, overexpression of the tight junction protein zonulin and alterations in intestinal morphology (increased crypt depth and thickness of the submucosa and muscularis layers. These intestinal manifestations were seen at 7 days (i.e., preceding the onset of neurological symptoms and at 14 days (i.e., at the stage of paralysis after immunization. We also demonstrate an increased infiltration of proinflammatory Th1/Th17 cells and a reduced regulatory T cell number in the gut lamina propria, Peyer's patches and mesenteric lymph nodes. Adoptive transfer to healthy mice of encephalitogenic T cells, isolated from EAE-diseased animals, led to intestinal changes similar to those resulting from the immunization procedure. Our findings show that disruption of intestinal homeostasis is an early and immune-mediated event in EAE. We propose that this intestinal dysfunction may act to support disease progression, and thus represent a potential therapeutic target in MS. In particular, an increased understanding of the regulation of tight junctions at the blood-brain barrier and in the intestinal wall may be crucial for design of future innovative therapies.

  14. Intestinal Barrier Dysfunction Develops at the Onset of Experimental Autoimmune Encephalomyelitis, and Can Be Induced by Adoptive Transfer of Auto-Reactive T Cells

    Science.gov (United States)

    Nouri, Mehrnaz; Bredberg, Anders; Weström, Björn; Lavasani, Shahram

    2014-01-01

    Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system with a pathogenesis involving a dysfunctional blood-brain barrier and myelin-specific, autoreactive T cells. Although the commensal microbiota seems to affect its pathogenesis, regulation of the interactions between luminal antigens and mucosal immune elements remains unclear. Herein, we investigated whether the intestinal mucosal barrier is also targeted in this disease. Experimental autoimmune encephalomyelitis (EAE), the prototypic animal model of MS, was induced either by active immunization or by adoptive transfer of autoreactive T cells isolated from these mice. We show increased intestinal permeability, overexpression of the tight junction protein zonulin and alterations in intestinal morphology (increased crypt depth and thickness of the submucosa and muscularis layers). These intestinal manifestations were seen at 7 days (i.e., preceding the onset of neurological symptoms) and at 14 days (i.e., at the stage of paralysis) after immunization. We also demonstrate an increased infiltration of proinflammatory Th1/Th17 cells and a reduced regulatory T cell number in the gut lamina propria, Peyer's patches and mesenteric lymph nodes. Adoptive transfer to healthy mice of encephalitogenic T cells, isolated from EAE-diseased animals, led to intestinal changes similar to those resulting from the immunization procedure. Our findings show that disruption of intestinal homeostasis is an early and immune-mediated event in EAE. We propose that this intestinal dysfunction may act to support disease progression, and thus represent a potential therapeutic target in MS. In particular, an increased understanding of the regulation of tight junctions at the blood-brain barrier and in the intestinal wall may be crucial for design of future innovative therapies. PMID:25184418

  15. The Occurrence of Antibodies Against Gluten in Children with Autism Spectrum Disorders Does Not Correlate with Serological Markers of Impaired Intestinal Permeability.

    Science.gov (United States)

    Józefczuk, Jan; Konopka, Ewa; Bierła, Joanna Beata; Trojanowska, Ilona; Sowińska, Agnieszka; Czarnecki, Rafał; Sobol, Lucjan; Józefczuk, Paweł; Surdy, Weronika; Cukrowska, Bożena

    2018-02-01

    There is evidence that children with autism spectrum disorders (ASDs) display an increased immune reactivity against gluten, which is supposed to be the effect of intestinal barrier abnormalities. The aim of study was to evaluate the relation of antibody induced by gluten to zonulin and intestinal fatty acid binding proteins (I-FABP), that is, serological markers of an impaired gut barrier. The study included 77 patients with ASDs. Zonulin, I-FABP, celiac-specific antibodies, anti-gliadin antibodies (AGA), and antibodies against neural transglutaminase 6 (TG6) of immunoglobulin (Ig) A and IgG classes were detected in sera. Celiac-specific antibodies were negative in all ASD children, four children (5.2%) had positive anti-TG6 antibodies, and increased AGA-IgG production was found in 21 patients (27.3%). Mean levels of zonulin and I-FABP in ASD patients were similar to those found in healthy controls and revealed a negative correlation with age, whereas regression analysis revealed a significant positive relationship between antibody production and the age. Serum concentrations of zonulin and I-FABP showed no statistically significant association with antibody positivity. An increased production of antibodies related to gliadin and neural TG6 in ASD children is not related to serological markers of an impaired intestinal barrier.

  16. Regulators of Intestinal Epithelial Migration in Sepsis.

    Science.gov (United States)

    Meng, Mei; Klingensmith, Nathan J; Liang, Zhe; Lyons, John D; Fay, Katherine T; Chen, Ching-Wen; Ford, Mandy L; Coopersmith, Craig M

    2018-02-08

    The gut is a continuously renewing organ, with cell proliferation, migration and death occurring rapidly under basal conditions. Since the impact of critical illness on cell movement from crypt base to villus tip is poorly understood, the purpose of this study was to determine how sepsis alters enterocyte migration. Wild type, transgenic and knockout mice were injected with 5-bromo-2'deoxyuridine (BrdU) to label cells in S phase before and after the onset of cecal ligation and puncture and were sacrificed at pre-determined endpoints to determine distance proliferating cells migrated up the crypt-villus unit. Enterocyte migration rate was decreased from 24-96 hours following sepsis. BrdU was not detectable on villi 6 days after sham laparotomy, meaning all cells had migrated the length of the gut and been exfoliated into its lumen. However, BrdU positive cells were detectable on villi 10 days after sepsis. Multiple components of gut integrity altered enterocyte migration. Sepsis decreased crypt proliferation, which further slowed enterocyte transit as mice injected with BrdU after the onset of sepsis (decreased proliferation) had slower migration than mice injected with BrdU prior to the onset of sepsis (normal proliferation). Decreasing intestinal apoptosis via gut-specific overexpression of Bcl-2 prevented sepsis-induced slowing of enterocyte migration. In contrast, worsened intestinal hyperpermeability by genetic deletion of JAM-A increased enterocyte migration. Sepsis therefore significantly slows enterocyte migration, and intestinal proliferation, apoptosis and permeability all affect migration time, which can potentially be targeted both genetically and pharmacologically.

  17. Effects of ethanol and acetaldehyde on tight junction integrity: in vitro study in a three dimensional intestinal epithelial cell culture model.

    Directory of Open Access Journals (Sweden)

    Elhaseen Elamin

    Full Text Available BACKGROUND: Intestinal barrier dysfunction and translocation of endotoxins are involved in the pathogenesis of alcoholic liver disease. Exposure to ethanol and its metabolite, acetaldehyde at relatively high concentrations have been shown to disrupt intestinal epithelial tight junctions in the conventional two dimensional cell culture models. The present study investigated quantitatively and qualitatively the effects of ethanol at concentrations detected in the blood after moderate ethanol consumption, of its metabolite acetaldehyde and of the combination of both compounds on intestinal barrier function in a three-dimensional cell culture model. METHODS AND FINDINGS: Caco-2 cells were grown in a basement membrane matrix (Matrigel™ to induce spheroid formation and were then exposed to the compounds at the basolateral side. Morphological differentiation of the spheroids was assessed by immunocytochemistry and transmission electron microscopy. The barrier function was assessed by the flux of FITC-labeled dextran from the basal side into the spheroids' luminal compartment using confocal microscopy. Caco-2 cells grown on Matrigel assembled into fully differentiated and polarized spheroids with a central lumen, closely resembling enterocytes in vivo and provide an excellent model to study epithelial barrier functionality. Exposure to ethanol (10-40 mM or acetaldehyde (25-200 µM for 3 h, dose-dependently and additively increased the paracellular permeability and induced redistribution of ZO-1 and occludin without affecting cell viability or tight junction-encoding gene expression. Furthermore, ethanol and acetaldehyde induced lysine residue and microtubules hyperacetylation. CONCLUSIONS: These results indicate that ethanol at concentrations found in the blood after moderate drinking and acetaldehyde, alone and in combination, can increase the intestinal epithelial permeability. The data also point to the involvement of protein hyperacetylation in

  18. Epidermal Growth Factor Improves Intestinal Integrity and Survival in Murine Sepsis Following Chronic Alcohol Ingestion.

    Science.gov (United States)

    Klingensmith, Nathan J; Yoseph, Benyam P; Liang, Zhe; Lyons, John D; Burd, Eileen M; Margoles, Lindsay M; Koval, Michael; Ford, Mandy L; Coopersmith, Craig M

    2017-02-01

    Epidermal growth factor (EGF) is a cytoprotective protein that improves survival in preclinical models of sepsis through its beneficial effects on intestinal integrity. Alcohol use disorder worsens intestinal integrity and is associated with increased morbidity and mortality in critical illness. We sought to determine whether chronic alcohol ingestion alters the host response to systemic administration of EGF in sepsis. Six-week-old FVB/N mice were randomized to receive 20% alcohol or water for 12 weeks. All mice then underwent cecal ligation and puncture to induce polymicrobial sepsis. Mice were then randomized to receive either intraperitoneal injection of EGF (150 μg/kg/day) or normal saline. Water-fed mice given EGF had decreased 7-day mortality compared with water-fed mice (18% vs. 55%). Alcohol-fed mice given EGF also had decreased 7-day mortality compared with alcohol-fed mice (48% vs. 79%). Notably, while systemic EGF improved absolute survival to a similar degree in both water-fed and alcohol-fed mice, mortality was significantly higher in alcohol+EGF mice compared with water+EGF mice. Compared with water-fed septic mice, alcohol-fed septic mice had worsened intestinal integrity with intestinal hyperpermeability, increased intestinal epithelial apoptosis, decreased proliferation and shorter villus length. Systemic administration of EGF to septic alcohol-fed mice decreased intestinal permeability compared with septic alcohol-fed mice given vehicle, with increased levels of the tight junction mediators claudin-5 and JAM-A. Systemic administration of EGF to septic alcohol-fed mice also decreased intestinal apoptosis with an improvement in the Bax/Bcl-2 ratio. EGF also improved both crypt proliferation and villus length in septic alcohol-fed mice. EGF administration resulted in lower levels of both pro- and anti-inflammatory cytokines monocyte chemoattractant protein-1, tumor necrosis factor, and interleukin 10 in alcohol-fed mice. EGF is therefore

  19. Intestinal Fluid Permeability in Atlantic Salmon (Salmo salar L. Is Affected by Dietary Protein Source.

    Directory of Open Access Journals (Sweden)

    Haibin Hu

    Full Text Available In Atlantic salmon (Salmo salar L., and also in other fish species, certain plant protein ingredients can increase fecal water content creating a diarrhea-like condition which may impair gut function and reduce fish growth. The present study aimed to strengthen understanding of the underlying mechanisms by observing effects of various alternative plant protein sources when replacing fish meal on expression of genes encoding proteins playing key roles in regulation of water transport across the mucosa of the distal intestine (DI. A 48-day feeding trial was conducted with five diets: A reference diet (FM in which fish meal (72% was the only protein source; Diet SBMWG with a mix of soybean meal (30% and wheat gluten (22%; Diet SPCPM with a mix of soy protein concentrate (30% and poultry meal (6%; Diet GMWG with guar meal (30% and wheat gluten (14.5%; Diet PM with 58% poultry meal. Compared to fish fed the FM reference diet, fish fed the soybean meal containing diet (SBMWG showed signs of enteritis in the DI, increased fecal water content of DI chyme and higher plasma osmolality. Altered DI expression of a battery of genes encoding aquaporins, ion transporters, tight junction and adherens junction proteins suggested reduced transcellular transport of water as well as a tightening of the junction barrier in fish fed the SBMWG diet, which may explain the observed higher fecal water content and plasma osmolality. DI structure was not altered for fish fed the other experimental diets but alterations in target gene expression and fecal water content were observed, indicating that alterations in water transport components may take place without clear effects on intestinal structure.

  20. Restoration of impaired intestinal barrier function by the hydrolysed casein diet contributes to the prevention of type 1 diabetes in the diabetes-prone BioBreeding rat.

    Science.gov (United States)

    Visser, J T J; Lammers, K; Hoogendijk, A; Boer, M W; Brugman, S; Beijer-Liefers, S; Zandvoort, A; Harmsen, H; Welling, G; Stellaard, F; Bos, N A; Fasano, A; Rozing, J

    2010-12-01

    Impaired intestinal barrier function is observed in type 1 diabetes patients and animal models of the disease. Exposure to diabetogenic antigens from the intestinal milieu due to a compromised intestinal barrier is considered essential for induction of the autoimmune process leading to type 1 diabetes. Since a hydrolysed casein (HC) diet prevents autoimmune diabetes onset in diabetes-prone (DP)-BioBreeding (BB) rats, we studied the role of the HC diet on intestinal barrier function and, therefore, prevention of autoimmune diabetes onset in this animal model. DP-BB rats were fed the HC diet from weaning onwards and monitored for autoimmune diabetes development. Intestinal permeability was assessed in vivo by lactulose-mannitol test and ex vivo by measuring transepithelial electrical resistance (TEER). Levels of serum zonulin, a physiological tight junction modulator, were measured by ELISA. Ileal mRNA expression of Myo9b, Cldn1, Cldn2 and Ocln (which encode the tight junction-related proteins myosin IXb, claudin-1, claudin-2 and occludin) and Il-10, Tgf-ß (also known as Il10 and Tgfb, respectively, which encode regulatory cytokines) was analysed by quantitative PCR. The HC diet reduced autoimmune diabetes by 50% in DP-BB rats. In DP-BB rats, prediabetic gut permeability negatively correlated with the moment of autoimmune diabetes onset. The improved intestinal barrier function that was induced by HC diet in DP-BB rats was visualised by decreasing lactulose:mannitol ratio, decreasing serum zonulin levels and increasing ileal TEER. The HC diet modified ileal mRNA expression of Myo9b, and Cldn1 and Cldn2, but left Ocln expression unaltered. Improved intestinal barrier function might be an important intermediate in the prevention of autoimmune diabetes by the HC diet in DP-BB rats. Effects on tight junctions, ileal cytokines and zonulin production might be important mechanisms for this effect.

  1. Permeability During Magma Expansion and Compaction

    Science.gov (United States)

    Gonnermann, Helge. M.; Giachetti, Thomas; Fliedner, Céline; Nguyen, Chinh T.; Houghton, Bruce F.; Crozier, Joshua A.; Carey, Rebecca J.

    2017-12-01

    Plinian lapilli from the 1060 Common Era Glass Mountain rhyolitic eruption of Medicine Lake Volcano, California, were collected and analyzed for vesicularity and permeability. A subset of the samples were deformed at a temperature of 975°, under shear and normal stress, and postdeformation porosities and permeabilities were measured. Almost all undeformed samples fall within a narrow range of vesicularity (0.7-0.9), encompassing permeabilities between approximately 10-15 m2 and 10-10 m2. A percolation threshold of approximately 0.7 is required to fit the data by a power law, whereas a percolation threshold of approximately 0.5 is estimated by fitting connected and total vesicularity using percolation modeling. The Glass Mountain samples completely overlap with a range of explosively erupted silicic samples, and it remains unclear whether the erupting magmas became permeable at porosities of approximately 0.7 or at lower values. Sample deformation resulted in compaction and vesicle connectivity either increased or decreased. At small strains permeability of some samples increased, but at higher strains permeability decreased. Samples remain permeable down to vesicularities of less than 0.2, consistent with a potential hysteresis in permeability-porosity between expansion (vesiculation) and compaction (outgassing). We attribute this to retention of vesicle interconnectivity, albeit at reduced vesicle size, as well as bubble coalescence during shear deformation. We provide an equation that approximates the change in permeability during compaction. Based on a comparison with data from effusively erupted silicic samples, we propose that this equation can be used to model the change in permeability during compaction of effusively erupting magmas.

  2. Clostridium sordellii lethal toxin kills mice by inducing a major increase in lung vascular permeability.

    Science.gov (United States)

    Geny, Blandine; Khun, Huot; Fitting, Catherine; Zarantonelli, Leticia; Mazuet, Christelle; Cayet, Nadège; Szatanik, Marek; Prevost, Marie-Christine; Cavaillon, Jean-Marc; Huerre, Michel; Popoff, Michel R

    2007-03-01

    When intraperitoneally injected into Swiss mice, Clostridium sordellii lethal toxin reproduces the fatal toxic shock syndrome observed in humans and animals after natural infection. This animal model was used to study the mechanism of lethal toxin-induced death. Histopathological and biochemical analyses identified lung and heart as preferential organs targeted by lethal toxin. Massive extravasation of blood fluid in the thoracic cage, resulting from an increase in lung vascular permeability, generated profound modifications such as animal dehydration, increase in hematocrit, hypoxia, and finally, cardiorespiratory failure. Vascular permeability increase induced by lethal toxin resulted from modifications of lung endothelial cells as evidenced by electron microscopy. Immunohistochemical analysis demonstrated that VE-cadherin, a protein participating in intercellular adherens junctions, was redistributed from membrane to cytosol in lung endothelial cells. No major sign of lethal toxin-induced inflammation was observed that could participate in the toxic shock syndrome. The main effect of the lethal toxin is the glucosylation-dependent inactivation of small GTPases, in particular Rac, which is involved in actin polymerization occurring in vivo in lungs leading to E-cadherin junction destabilization. We conclude that the cells most susceptible to lethal toxin are lung vascular endothelial cells, the adherens junctions of which were altered after intoxication.

  3. The joint power of sex and stress to modulate brain-gut-microbiota axis and intestinal barrier homeostasis: implications for irritable bowel syndrome.

    Science.gov (United States)

    Pigrau, M; Rodiño-Janeiro, B K; Casado-Bedmar, M; Lobo, B; Vicario, M; Santos, J; Alonso-Cotoner, C

    2016-04-01

    Intestinal homeostasis is a dynamic process that takes place at the interface between the lumen and the mucosa of the gastrointestinal tract, where a constant scrutiny for antigens and toxins derived from food and microorganisms is carried out by the vast gut-associated immune system. Intestinal homeostasis is preserved by the ability of the mucus layer and the mucosal barrier to keep the passage of small-sized and antigenic molecules across the epithelium highly selective. When combined and preserved, immune surveillance and barrier's selective permeability, the host capacity of preventing the development of intestinal inflammation is optimized, and viceversa. In addition, the brain-gut-microbiome axis, a multidirectional communication system that integrates distant and local regulatory networks through neural, immunological, metabolic, and hormonal signaling pathways, also regulates intestinal function. Dysfunction of the brain-gut-microbiome axis may induce the loss of gut mucosal homeostasis, leading to uncontrolled permeation of toxins and immunogenic particles, increasing the risk of appearance of intestinal inflammation, mucosal damage, and gut disorders. Irritable bowel syndrome is prevalent stress-sensitive gastrointestinal disorder that shows a female predominance. Interestingly, the role of stress, sex and gonadal hormones in the regulation of intestinal mucosal and the brain-gut-microbiome axis functioning is being increasingly recognized. We aim to critically review the evidence linking sex, and stress to intestinal barrier and brain-gut-microbiome axis dysfunction and the implications for irritable bowel syndrome. © 2015 John Wiley & Sons Ltd.

  4. Regional Morphology and Transport of PAMAM Dendrimers Across Isolated Rat Intestinal Tissue.

    Science.gov (United States)

    Hubbard, Dallin; Bond, Tanner; Ghandehari, Hamidreza

    2015-12-01

    Intestinal permeability of PAMAM dendrimers has been observed, giving rationale for their use in oral drug delivery as potential carriers of associated molecules. This study assessed the apparent permeability coefficients (Papp) of dendrimers across isolated rat intestinal regional mucosae, along with estimation of the maximum non-toxic concentration. Caco-2 monolayers were also used to assess the comparative Papp values between isolated mucosae and cell culture models. Concentrations from 0.1 to 10 mM of anionic and cationic dendrimers were tested in mucosae to assess their Papp, membrane TEER, [(14)C]-mannitol Papp, and histology. 0.1 mM concentrations of dendrimers were assessed over 120 min in Caco-2 cell monolayers as concentrations above that were cytotoxic. Jejunal transport of dendrimers was higher than transport in colonic epithelium. Monolayer Papp values of dendrimers were comparable to those of jejunal mucosae. Mucosae exposed to dendrimer concentrations of 10 mM for 120 min caused significant reduction in TEER and changes in tissue morphology; however, G3.5 was the only analogue that caused significant TEER reduction and morphological changes at 1 mM concentrations. Transport in jejunal mucosae appears to be the greatest indicating that the small intestinal will be the most likely region to target for oral drug delivery using PAMAM dendrimers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effects of Clostridium perfringens iota toxin in the small intestine of mice.

    Science.gov (United States)

    Redondo, Leandro M; Redondo, Enzo A; Dailoff, Gabriela C; Leiva, Carlos L; Díaz-Carrasco, Juan M; Bruzzone, Octavio A; Cangelosi, Adriana; Geoghegan, Patricia; Fernandez-Miyakawa, Mariano E

    2017-12-01

    Iota toxin is a binary toxin solely produced by Clostridium perfringens type E strains, and is structurally related to CDT from C. difficile and CST from C. spiroforme. As type E causes hemorrhagic enteritis in cattle, it is usually assumed that associated diseases are mediated by iota toxin, although evidence in this regard has not been provided. In the present report, iota toxin intestinal effects were evaluated in vivo using a mouse model. Histological damage was observed in ileal loops treated with purified iota toxin after 4 h of incubation. Luminal iota toxin induced fluid accumulation in the small intestine in a dose dependent manner, as determined by the enteropooling and the intestinal loop assays. None of these changes were observed in the large intestine. These results suggest that C. perfringens iota toxin alters intestinal permeability, predominantly by inducing necrosis and degenerative changes in the mucosal epithelium of the small intestine, as well as changes in intestinal motility. The obtained results suggest a central role for iota toxin in the pathogenesis of C. perfringens type E hemorrhagic enteritis, and contribute to remark the importance of clostridial binary toxins in digestive diseases. Published by Elsevier Ltd.

  6. Minoxidil sulfate induced the increase in blood-brain tumor barrier permeability through ROS/RhoA/PI3K/PKB signaling pathway.

    Science.gov (United States)

    Gu, Yan-ting; Xue, Yi-xue; Wang, Yan-feng; Wang, Jin-hui; Chen, Xia; ShangGuan, Qian-ru; Lian, Yan; Zhong, Lei; Meng, Ying-nan

    2013-12-01

    Adenosine 5'-triphosphate-sensitive potassium channel (KATP channel) activator, minoxidil sulfate (MS), can selectively increase the permeability of the blood-tumor barrier (BTB); however, the mechanism by which this occurs is still under investigation. Using a rat brain glioma (C6) model, we first examined the expression levels of occludin and claudin-5 at different time points after intracarotid infusion of MS (30 μg/kg/min) by western blotting. Compared to MS treatment for 0 min group, the protein expression levels of occludin and claudin-5 in brain tumor tissue of rats showed no changes within 1 h and began to decrease significantly after 2 h of MS infusion. Based on these findings, we then used an in vitro BTB model and selective inhibitors of diverse signaling pathways to investigate whether reactive oxygen species (ROS)/RhoA/PI3K/PKB pathway play a key role in the process of the increase of BTB permeability induced by MS. The inhibitor of ROS or RhoA or PI3K or PKB significantly attenuated the expression of tight junction (TJ) protein and the increase of the BTB permeability after 2 h of MS treatment. In addition, the significant increases in RhoA activity and PKB phosphorylation after MS administration were observed, which were partly inhibited by N-2-mercaptopropionyl glycine (MPG) or C3 exoenzyme or LY294002 pretreatment. The present study indicates that the activation of signaling cascades involving ROS/RhoA/PI3K/PKB in BTB was required for the increase of BTB permeability induced by MS. Taken together, all of these results suggested that MS might increase BTB permeability in a time-dependent manner by down-regulating TJ protein expression and this effect could be related to ROS/RhoA/PI3K/PKB signal pathway. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Intestinal transport and metabolism of acrylamide

    International Nuclear Information System (INIS)

    Zoedl, Bettina; Schmid, Diethart; Wassler, Georg; Gundacker, Claudia; Leibetseder, Valentin; Thalhammer, Theresia; Ekmekcioglu, Cem

    2007-01-01

    There has been an intensive debate whether dietary exposure to acrylamide could increase the risk of human cancer since the first description of the presence of acrylamide in food in 2002. As the intestinal mechanisms of acrylamide absorption are poorly investigated we studied the transport of acrylamide in differentiated Caco-2 cells and its effects on biotransformation enzymes (CYP2E1 and glutathione S-transferase) and glutathione levels. We found that the apparent permeability of [1- 14 C] acrylamide from the basal to the apical compartment was approximately 20% higher compared to that in the opposite direction. No differences were detected for apical-basal transport against a basal gradient. Transport rates from the apical to the basal chamber at 4 deg. C were about 50% lower than at 37 deg. C. Concentration dependent transport from apical to basal was linear. Predominantly, basal to apical transport was decreased when energy metabolism of the cells was inhibited by application of sodium azide and 2-deoxy-D-glucose. Finally, more acrylamide was transported at luminal pH 6 compared to pH 7.4 from basal to the apical direction. Increasing levels of acrylamide showed no effects on the activity of glutathione S-transferase but resulted in a depletion of total glutathione concentrations. In conclusion transport of acrylamide in the intestine is mediated primarily by passive processes possibly combined with a modest energy- and pH-dependent active secretory component. Depletion of cellular glutathione levels may be one potential mechanism for acrylamide (geno)toxicity

  8. The effects of three absorption-modifying critical excipients on the in vivo intestinal absorption of six model compounds in rats and dogs.

    Science.gov (United States)

    David, Dahlgren; Carl, Roos; Pernilla, Johansson; Christer, Tannergren; Anders, Lundqvist; Peter, Langguth; Markus, Sjöblom; Erik, Sjögren; Hans, Lennernäs

    2018-05-11

    Pharmaceutical excipients that may affect gastrointestinal (GI) drug absorption are called critical pharmaceutical excipients (CPEs), or absorption-modifying excipients (AMEs) if they act by altering the integrity of the intestinal epithelial cell membrane. Some of these excipients increase intestinal permeability, and subsequently the absorption and bioavailability of the drug. This could have implications for both the assessment of bioequivalence and the efficacy of the absorption-enhancing drug delivery system. The absorption-enhancing effects of AMEs/CPEs with different mechanisms (chitosan, sodium caprate, sodium dodecyl sulfate (SDS)) have previously been evaluated in the rat single-pass intestinal perfusion (SPIP) model. However, it remains unclear whether these SPIP data are predictive in a more in vivo like model. The same excipients were in this study evaluated in rat and dog intraintestinal bolus models. SDS and chitosan did exert an absorption-enhancing effect in both bolus models, but the effect was substantially lower than those observed in the rat SPIP model. This illustrates the complexity of the AME/CPE effects, and indicates that additional GI physiological factors need to be considered in their evaluation. We therefore recommend that AME/CPE evaluations obtained in transit-independent, preclinical permeability models (e.g. Ussing, SPIP) should be verified in animal models better able to predict in vivo relevant GI effects, at multiple excipient concentrations. Copyright © 2018. Published by Elsevier B.V.

  9. Endothelial cell permeability during hantavirus infection involves factor XII-dependent increased activation of the kallikrein-kinin system.

    Directory of Open Access Journals (Sweden)

    Shannon L Taylor

    Full Text Available Hemorrhagic fever with renal syndrome (HFRS and hantavirus pulmonary syndrome (HPS are diseases caused by hantavirus infections and are characterized by vascular leakage due to alterations of the endothelial barrier. Hantavirus-infected endothelial cells (EC display no overt cytopathology; consequently, pathogenesis models have focused either on the influx of immune cells and release of cytokines or on increased degradation of the adherens junction protein, vascular endothelial (VE-cadherin, due to hantavirus-mediated hypersensitization of EC to vascular endothelial growth factor (VEGF. To examine endothelial leakage in a relevant in vitro system, we co-cultured endothelial and vascular smooth muscle cells (vSMC to generate capillary blood vessel-like structures. In contrast to results obtained in monolayers of cultured EC, we found that despite viral replication in both cell types as well as the presence of VEGF, infected in vitro vessels neither lost integrity nor displayed evidence of VE-cadherin degradation. Here, we present evidence for a novel mechanism of hantavirus-induced vascular leakage involving activation of the plasma kallikrein-kinin system (KKS. We show that incubation of factor XII (FXII, prekallikrein (PK, and high molecular weight kininogen (HK plasma proteins with hantavirus-infected EC results in increased cleavage of HK, higher enzymatic activities of FXIIa/kallikrein (KAL and increased liberation of bradykinin (BK. Measuring cell permeability in real-time using electric cell-substrate impedance sensing (ECIS, we identified dramatic increases in endothelial cell permeability after KKS activation and liberation of BK. Furthermore, the alterations in permeability could be prevented using inhibitors that directly block BK binding, the activity of FXIIa, or the activity of KAL. Lastly, FXII binding and autoactivation is increased on the surface of hantavirus-infected EC. These data are the first to demonstrate KKS activation

  10. Sugars increase non-heme iron bioavailability in human epithelial intestinal and liver cells.

    Directory of Open Access Journals (Sweden)

    Tatiana Christides

    Full Text Available Previous studies have suggested that sugars enhance iron bioavailability, possibly through either chelation or altering the oxidation state of the metal, however, results have been inconclusive. Sugar intake in the last 20 years has increased dramatically, and iron status disorders are significant public health problems worldwide; therefore understanding the nutritional implications of iron-sugar interactions is particularly relevant. In this study we measured the effects of sugars on non-heme iron bioavailability in human intestinal Caco-2 cells and HepG2 hepatoma cells using ferritin formation as a surrogate marker for iron uptake. The effect of sugars on iron oxidation state was examined by measuring ferrous iron formation in different sugar-iron solutions with a ferrozine-based assay. Fructose significantly increased iron-induced ferritin formation in both Caco-2 and HepG2 cells. In addition, high-fructose corn syrup (HFCS-55 increased Caco-2 cell iron-induced ferritin; these effects were negated by the addition of either tannic acid or phytic acid. Fructose combined with FeCl3 increased ferrozine-chelatable ferrous iron levels by approximately 300%. In conclusion, fructose increases iron bioavailability in human intestinal Caco-2 and HepG2 cells. Given the large amount of simple and rapidly digestible sugars in the modern diet their effects on iron bioavailability may have important patho-physiological consequences. Further studies are warranted to characterize these interactions.

  11. Silver ions increase plasma membrane permeability through modulation of intracellular calcium levels in tobacco BY-2 cells.

    Science.gov (United States)

    Klíma, Petr; Laňková, Martina; Vandenbussche, Filip; Van Der Straeten, Dominique; Petrášek, Jan

    2018-05-01

    Silver ions increase plasma membrane permeability for water and small organic compounds through their stimulatory effect on plasma membrane calcium channels, with subsequent modulation of intracellular calcium levels and ion homeostasis. The action of silver ions at the plant plasma membrane is largely connected with the inhibition of ethylene signalling thanks to the ability of silver ion to replace the copper cofactor in the ethylene receptor. A link coupling the action of silver ions and cellular auxin efflux has been suggested earlier by their possible direct interaction with auxin efflux carriers or by influencing plasma membrane permeability. Using tobacco BY-2 cells, we demonstrate here that besides a dramatic increase of efflux of synthetic auxins 2,4-dichlorophenoxyacetic acid (2,4-D) and 1-naphthalene acetic acid (NAA), treatment with AgNO 3 resulted in enhanced efflux of the cytokinin trans-zeatin (tZ) as well as the auxin structural analogues tryptophan (Trp) and benzoic acid (BA). The application of AgNO 3 was accompanied by gradual water loss and plasmolysis. The observed effects were dependent on the availability of extracellular calcium ions (Ca 2+ ) as shown by comparison of transport assays in Ca 2+ -rich and Ca 2+ -free buffers and upon treatment with inhibitors of plasma membrane Ca 2+ -permeable channels Al 3+ and ruthenium red, both abolishing the effect of AgNO 3 . Confocal microscopy of Ca 2+ -sensitive fluorescence indicator Fluo-4FF, acetoxymethyl (AM) ester suggested that the extracellular Ca 2+ availability is necessary to trigger the response to silver ions and that the intracellular Ca 2+ pool alone is not sufficient for this effect. Altogether, our data suggest that in plant cells the effects of silver ions originate from the primal modification of the internal calcium levels, possibly by their interaction with Ca 2+ -permeable channels at the plasma membrane.

  12. Regional-Dependent Intestinal Permeability and BCS Classification: Elucidation of pH-Related Complexity in Rats Using Pseudoephedrine

    OpenAIRE

    Fairstein, Moran; Swissa, Rotem; Dahan, Arik

    2013-01-01

    Based on its lower Log P value relative to metoprolol, a marker for the low/high-permeability (Peff) class boundary, pseudoephedrine was provisionally classified as BCS low-permeability compound. On the other hand, following oral administration, pseudoephedrine fraction dose absorbed (Fabs) and systemic bioavailability approaches 100%. This represents a challenge to the generally recognized Peff–Fabs correlation. The purpose of this study was to elucidate the underlying mechanisms behind the ...

  13. Scientific perspectives on extending the provision for waivers of in vivo bioavailability and bioequivalence studies for drug products containing high solubility-low permeability drugs (BCS-Class 3).

    Science.gov (United States)

    Stavchansky, Salomon

    2008-06-01

    Recently, there has been increased interest in extending the provision for waivers of in vivo bioavailability and bioequivalence (BA-BE) studies that appeared in the guidance published by the Food and Drug Administration (FDA) (1) to pharmaceutical products containing Class 3 drugs (High solubility-Low Permeability). The extension of the Biopharmaceutics Classification System (BCS) to Class 3 drugs is meritorious because of its impact on public health policy considerations. The rate limiting step in the absorption of Class 3 drugs is the permeability through the intestinal membrane. This commentary will focus its attention on the scientific considerations which need to be examined to assess the risk and the benefit prior to granting a waiver of in vivo bioavailability and/or bioequivalence studies for Class 3 drugs. It will examine the forces affecting the interconnectivity of the neuronal, immunological and hormonal systems in the gastrointestinal tract that may affect its permeability and functionality. It will also challenge the assumption that in vitro dissolution and in vitro permeability studies in tissue cultures in the presence and absence of excipients are good predictors for in vivo dissolution and in vivo permeability which are at the heart of the BCS.

  14. P-glycoprotein is responsible for the poor intestinal absorption and low toxicity of oral aconitine: In vitro, in situ, in vivo and in silico studies

    International Nuclear Information System (INIS)

    Yang, Cuiping; Zhang, Tianhong; Li, Zheng; Xu, Liang; Liu, Fei; Ruan, Jinxiu; Liu, Keliang; Zhang, Zhenqing

    2013-01-01

    Aconitine (AC) is a highly toxic alkaloid from bioactive plants of the genus Aconitum, some of which have been widely used as medicinal herbs for thousands of years. In this study, we systematically evaluated the potential role of P-glycoprotein (P-gp) in the mechanisms underlying the low and variable bioavailability of oral AC. First, the bidirectional transport of AC across Caco-2 and MDCKII-MDR1 cells was investigated. The efflux of AC across monolayers of these two cell lines was greater than its influx. Additionally, the P-gp inhibitors, verapamil and cyclosporin A, significantly decreased the efflux of AC. An in situ intestinal perfusion study in rats showed that verapamil co-perfusion caused a significant increase in the intestinal permeability of AC, from 0.22 × 10 −5 to 2.85 × 10 −5 cm/s. Then, the pharmacokinetic profile of orally administered AC with or without pre-treatment with verapamil was determined in rats. With pre-treatment of verapamil, the maximum plasma concentration (C max ) of AC increased sharply, from 39.43 to 1490.7 ng/ml. Accordingly, a 6.7-fold increase in the area under the plasma concentration–time curve (AUC 0–12 h ) of AC was observed when co-administered with verapamil. In silico docking analyses suggested that AC and verapamil possess similar P-gp recognition mechanisms. This work demonstrated that P-gp is involved in limiting the intestinal absorption of AC and attenuating its toxicity to humans. Our data indicate that potential P-gp-mediated drug–drug interactions should be considered carefully in the clinical application of aconite and formulations containing AC. - Highlights: • Verapamil and cyclosporin A decreased the efflux of aconitine across Caco-2 cells. • Both inhibitors decreased the efflux of aconitine across MDCKII-MDR1 cells. • Co-perfusion with verapamil increased the intestinal permeability of aconitine. • Co-administration with verapamil sharply increased the C max and AUC of aconitine. • P

  15. Glutamate prevents intestinal atrophy via luminal nutrient sensing in a mouse model of total parenteral nutrition

    DEFF Research Database (Denmark)

    Xiao, Weidong; Feng, Yongjia; Holst, Jens Juul

    2014-01-01

    significantly changed the amount of T1Rs, GLM receptors, and transporters, and GLM prevented these changes. GLM significantly prevented TPN-associated intestinal atrophy (2.5-fold increase in IEC proliferation) and was dependent on up-regulation of the protein kinase pAkt, but independent of T1R3 and mGluR5...... signaling. GLM led to a loss of EBF with TPN (60% increase in FITC-dextran permeability, 40% decline in transepithelial resistance); via T1R3, it protected EBF, whereas mGluR5 was associated with EBF loss. GLM led to a decline in circulating glucagon-like peptide 2 (GLP-2) during TPN. The decline...

  16. Controlling DC permeability in cast steels

    Energy Technology Data Exchange (ETDEWEB)

    Sumner, Aaran, E-mail: aaran.sumner@nottingham.ac.uk [University of Nottingham, Nottingham University Park Campus, Nottingham NG7 2RD, England (United Kingdom); Gerada, Chris, E-mail: chris.gerada@nottingham.ac.uk [Electrical Machines, University of Nottingham, Tower Building, Nottingham NG7 2RD, England (United Kingdom); Brown, Neil, E-mail: neil.brown@cummins.com [Advanced Electrical Machines Research and Technology at Cummins Power Generation, Peterborough PE2 6FZ, England (United Kingdom); Clare, Adam, E-mail: adam.clare@nottingham.ac.uk [Advanced Manufacturing, University of Nottingham, University Park Campus, Nottingham NG7 2RD, England (United Kingdom)

    2017-05-01

    Annealing (at multiple cooling rates) and quenching (with tempering) was performed on specimens of cast steel of varying composition. The aim was to devise a method for selecting the steel with the highest permeability, from any given range of steels, and then increasing the permeability by heat treatment. Metallographic samples were imaged using optical microscopy to show the effect of the applied heat treatments on the microstructure. Commonly cast steels can have DC permeability altered by the careful selection of a heat treatment. Increases of up to 381% were achieved by annealing using a cooling rate of 6.0 °C/min. Annealing was found to cause the carbon present in the steel to migrate from grain boundaries and from within ferrite crystals into adjacent pearlite crystals. The migration of the carbon resulted in less carbon at grain boundaries and within ferrite crystals reducing the number of pinning sites between magnetic domains. This gives rise to a higher permeability. Quenching then tempering was found to cause the formation of small ferrite crystals with the carbon content of the steel predominately held in the martensitic crystal structures. The results show that with any given range of steel compositions the highest baseline DC permeability will be found with the steel that has the highest iron content and the lowest carbon content. For the samples tested in this paper a cooling rate of 4.5 °C/min resulted in the relative permeability of the sample with the highest baseline permeability, AS4, increasing from 783 to 1479 at 0.5 T. This paper shows how heat treatments commonly applied to hypoeutectoid cast steels, to improve their mechanical performance, can be used to also enhance electromagnetic properties of these alloys. The use of cast steels allows the creation of DC components for electrical machines not possible by the widely used method of stacking of electrical grade sheet steels. - Highlights: • A range of structural steels had their

  17. Controlling DC permeability in cast steels

    International Nuclear Information System (INIS)

    Sumner, Aaran; Gerada, Chris; Brown, Neil; Clare, Adam

    2017-01-01

    Annealing (at multiple cooling rates) and quenching (with tempering) was performed on specimens of cast steel of varying composition. The aim was to devise a method for selecting the steel with the highest permeability, from any given range of steels, and then increasing the permeability by heat treatment. Metallographic samples were imaged using optical microscopy to show the effect of the applied heat treatments on the microstructure. Commonly cast steels can have DC permeability altered by the careful selection of a heat treatment. Increases of up to 381% were achieved by annealing using a cooling rate of 6.0 °C/min. Annealing was found to cause the carbon present in the steel to migrate from grain boundaries and from within ferrite crystals into adjacent pearlite crystals. The migration of the carbon resulted in less carbon at grain boundaries and within ferrite crystals reducing the number of pinning sites between magnetic domains. This gives rise to a higher permeability. Quenching then tempering was found to cause the formation of small ferrite crystals with the carbon content of the steel predominately held in the martensitic crystal structures. The results show that with any given range of steel compositions the highest baseline DC permeability will be found with the steel that has the highest iron content and the lowest carbon content. For the samples tested in this paper a cooling rate of 4.5 °C/min resulted in the relative permeability of the sample with the highest baseline permeability, AS4, increasing from 783 to 1479 at 0.5 T. This paper shows how heat treatments commonly applied to hypoeutectoid cast steels, to improve their mechanical performance, can be used to also enhance electromagnetic properties of these alloys. The use of cast steels allows the creation of DC components for electrical machines not possible by the widely used method of stacking of electrical grade sheet steels. - Highlights: • A range of structural steels had their

  18. Cytokine gene expression in intestine of rat during the postnatal developmental period: increased IL-1 expression at weaning.

    Science.gov (United States)

    Mengheri, E; Ciapponi, L; Vignolini, F; Nobili, F

    1996-01-01

    In the present study we have investigate whether cytokines are constitutively and differently expressed in intestine during the differentiative processes that take place at weaning. We have analyzed the expression of IL-1 beta, IL-2, IL-4 and IFN gamma by polymerase chain reaction in Peyer's patches (PP) and in intestine deprived of PP (I-PP) of rats from 16 to 30 days of age. The results showed a constitutive and marked expression of the cytokines already before weaning, with the exception of IL-2 in PP and IFN gamma in I-PP. IL-beta was the only cytokine to show a different expression at various ages with an initial increase at 19 days and a further elevation at 21 days when intestinal epithelium passes through major differentiative stages, suggesting an involvement of this cytokine in intestinal development. We have also tested whether treatment of rats with the immunosuppressor cyclosporin A (CsA) could affect intestinal differentiation. The results showed that only some markers of differentiation were affected (proliferation of staminal crypt cells and length of crypts). This was probably due to a direct effect rather than an immunomediated effect of CsA, since treatment of three intestinal cell lines (Caco-2, HT-29, FRIC) with CsA indicated that this drug can exert a cytostatic activity on intestinal cells.

  19. Effects of Sub-lethal Concentrations of Silver Nanoparticles on a Simulated Intestinal Prokaryotic–Eukaryotic Interface

    Directory of Open Access Journals (Sweden)

    Elisa Garuglieri

    2018-01-01

    Full Text Available Nanotechnology applications are expected to bring a range of benefits to the food sector, aiming to provide better quality and conservation. In this research, the physiological response of both an Escherichia coli mono-species biofilm and Caco-2 intestinal cells to sub-lethal concentrations of silver nanoparticles (AgNPs has been investigated. In order to simulate the anaerobic and aerobic compartments required for bacteria and intestinal cells growth, a simplified semi-batch model based on a transwell permeable support was developed. Interaction between the two compartments was obtained by exposing Caco-2 intestinal cells to the metabolites secreted by E. coli biofilm after its exposure to AgNPs. To the best of the authors’ knowledge, this study is the first to investigate the effect of AgNPs on Caco-2 cells that takes into consideration previous AgNP-intestinal biofilm interactions, and at concentrations mimicking real human exposure. Our data show that 1 μg/mL AgNPs in anaerobic conditions (i promote biofilm formation up to 2.3 ± 0.3 fold in the first 72 h of treatment; (ii increase reactive oxygen species (ROS production to 84 ± 21% and change the physiological status of microbial cells after 96 h of treatment; (iii seriously affect a 72-h old established biofilm, increasing the level of oxidative stress to 86 ± 21%. Moreover, the results indicate that oxygen renders the biofilm more adequate to counteract AgNP effects. Comet assays on Caco-2 cells demonstrated a protective role of biofilm against the genotoxic effect of 1 μg/mL AgNPs on intestinal epithelial cells.

  20. In Inflamed Intestinal Tissues and Epithelial Cells, Interleukin 22 Signaling Increases Expression of H19 Long Noncoding RNA, Which Promotes Mucosal Regeneration.

    Science.gov (United States)

    Geng, Hua; Bu, Heng-Fu; Liu, Fangyi; Wu, Longtao; Pfeifer, Karl; Chou, Pauline M; Wang, Xiao; Sun, Jiaren; Lu, Lu; Pandey, Ashutosh; Bartolomei, Marisa S; De Plaen, Isabelle G; Wang, Peng; Yu, Jindan; Qian, Jiaming; Tan, Xiao-Di

    2018-04-03

    Inflammation affects regeneration of the intestinal epithelia; long non-coding RNAs (lncRNAs) regulate cell functions, such as proliferation, differentiation, and migration. We investigated the mechanisms by which the lncRNA H19, imprinted maternally expressed transcript (H19) regulates regeneration of intestinal epithelium using cell cultures and mouse models of inflammation. We performed RNA-sequencing transcriptome analyses of intestinal tissues from mice with lipopolysaccharide (LPS)-induced sepsis to identify lncRNAs associated with inflammation; findings were confirmed by quantitative real-time polymerase chain reaction and in situ hybridization analyses of intestinal tissues from mice with sepsis or dextran sulfate sodium (DSS)-induced mucosal wound healing and patients with ulcerative colitis compared to healthy individuals (controls). We screened cytokines for their ability to induce expression of H19 in HT-29 cells and intestinal epithelial cells (IECs), and confirmed findings in crypt epithelial organoids derived from mouse small intestine. IECs were incubated with different signal transduction inhibitors and effects on H19 lncRNA levels were measured. We assessed intestinal epithelial proliferation or regeneration in H19 ΔEx1/+ mice given LPS or DSS vs wild-type littermates (control mice). H19 was overexpressed in IECs using lentiviral vectors and cell proliferation was measured. We performed RNA antisense purification, RNA immunoprecipitation, and luciferase reporter assays to study functions of H19 in IECs. In RNA-sequencing transcriptome analysis of lncRNA expression in intestinal tissues from mice, we found levels of H19 only changed significantly with LPS exposure. Levels of H19 lncRNA increased in intestinal tissues of patients with ulcerative colitis, mice with LPS-induced sepsis, or mice with DSS-induced colitis, compared with controls. Increased H19 lncRNA localized to epithelial cells in the intestine, regardless of Lgr5 messenger RNA

  1. Intestinal cytochromes P450 regulating the intestinal microbiota and its probiotic profile

    Directory of Open Access Journals (Sweden)

    Eugenia Elefterios Venizelos Bezirtzoglou

    2012-09-01

    Full Text Available Cytochromes P450 (CYPs enzymes metabolize a large variety of xenobiotic substances. In this vein, a plethora of studies were conducted to investigate their role, as cytochromes are located in both liver and intestinal tissues. The P450 profile of the human intestine has not been fully characterized. Human intestine serves primarily as an absorptive organ for nutrients, although it has also the ability to metabolize drugs. CYPs are responsible for the majority of phase I drug metabolism reactions. CYP3A represents the major intestinal CYP (80% followed by CYP2C9. CYP1A is expressed at high level in the duodenum, together with less abundant levels of CYP2C8-10 and CYP2D6. Cytochromes present a genetic polymorphism intra- or interindividual and intra- or interethnic. Changes in the pharmacokinetic profile of the drug are associated with increased toxicity due to reduced metabolism, altered efficacy of the drug, increased production of toxic metabolites, and adverse drug interaction. The high metabolic capacity of the intestinal flora is due to its enormous pool of enzymes, which catalyzes reactions in phase I and phase II drug metabolism. Compromised intestinal barrier conditions, when rupture of the intestinal integrity occurs, could increase passive paracellular absorption. It is clear that high microbial intestinal charge following intestinal disturbances, ageing, environment, or food-associated ailments leads to the microbial metabolism of a drug before absorption. The effect of certain bacteria having a benefic action on the intestinal ecosystem has been largely discussed during the past few years by many authors. The aim of the probiotic approach is to repair the deficiencies in the gut flora and establish a protective effect. There is a tentative multifactorial association of the CYP (P450 cytochrome role in the different diseases states, environmental toxic effects or chemical exposures and nutritional status.

  2. "Green" synthesized and coated nanaosilver alters the membrance permeability of barrier (intestinal, brain, endothelial) cells and stimulates oxidative stress pathways in neurons.

    Science.gov (United States)

    Nanosilver's (nanoAg) use in medical applications and consumer products is increasing. Because of this, its "green" synthesis and surface modification with beneficial coatings are desirable. Given nanoAg's potential exposure routes (e.g., dermal, intestin...

  3. Intestinal uptake of bile acids: effect of external abdominal irradiation

    International Nuclear Information System (INIS)

    Thomson, A.B.R.; Cheeseman, C.I.; Walker, K.

    1984-01-01

    Abdominal irradiation has recently been shown to influence the uptake of hexoses, amino acids, fatty acids and cholesterol into the jejunum of rats. The present studies were undertaken with a previously validated in vitro technique to determine the effect of abdominal irradiation from a cesium source on the rates of uptake of six bile acids into the jejunum, ileum, and colon. The results show that: 1) there likely are multiple ileal carriers for bile acids: 2) abdominal irradiation has a variable effect on these carriers; 3) the passive permeability to bile acids varies with the bile acid and with the site along the intestine; and 4) abdominal irradiation is associated with a rise in the colonic permeability to only some bile acids

  4. Permeability, storage and hydraulic diffusivity controlled by earthquakes

    Science.gov (United States)

    Brodsky, E. E.; Fulton, P. M.; Xue, L.

    2016-12-01

    Earthquakes can increase permeability in fractured rocks. In the farfield, such permeability increases are attributed to seismic waves and can last for months after the initial earthquake. Laboratory studies suggest that unclogging of fractures by the transient flow driven by seismic waves is a viable mechanism. These dynamic permeability increases may contribute to permeability enhancement in the seismic clouds accompanying hydraulic fracking. Permeability enhancement by seismic waves could potentially be engineered and the experiments suggest the process will be most effective at a preferred frequency. We have recently observed similar processes inside active fault zones after major earthquakes. A borehole observatory in the fault that generated the M9.0 2011 Tohoku earthquake reveals a sequence of temperature pulses during the secondary aftershock sequence of an M7.3 aftershock. The pulses are attributed to fluid advection by a flow through a zone of transiently increased permeability. Directly after the M7.3 earthquake, the newly damaged fault zone is highly susceptible to further permeability enhancement, but ultimately heals within a month and becomes no longer as sensitive. The observation suggests that the newly damaged fault zone is more prone to fluid pulsing than would be expected based on the long-term permeability structure. Even longer term healing is seen inside the fault zone of the 2008 M7.9 Wenchuan earthquake. The competition between damage and healing (or clogging and unclogging) results in dynamically controlled permeability, storage and hydraulic diffusivity. Recent measurements of in situ fault zone architecture at the 1-10 meter scale suggest that active fault zones often have hydraulic diffusivities near 10-2 m2/s. This uniformity is true even within the damage zone of the San Andreas fault where permeability and storage increases balance each other to achieve this value of diffusivity over a 400 m wide region. We speculate that fault zones

  5. Problems of increasing of thermostability of highly permeable Ni-Zn ferrites and relative materials for telecommunications

    Energy Technology Data Exchange (ETDEWEB)

    Gonchar, A. E-mail: letyuk@mail.ru; Andreev, V.; Letyuk, L.; Shishkanov, A.; Maiorov, V

    2003-01-01

    The work considers ways of increasing of thermostability of ferrites of the basic systems NiO-ZnO-Fe{sub 2}O{sub 3} and MgO-ZnO-Fe{sub 2}O{sub 3} and relative materials for telecommunication. Sufficient results in increasing of the thermostability were achieved by doping Cu ions and controlling rejection of Fe{sub 2}O{sub 3} content from equimolar composition. These results allow to increase the Curie temperature to 130-140 deg. C for Ni-Zn ferrites with initial permeability 2000.

  6. Chronic air-flow limitation does not increase respiratory epithelial permeability assessed by aerosolized solute, but smoking does

    International Nuclear Information System (INIS)

    Huchon, G.J.; Russell, J.A.; Barritault, L.G.; Lipavsky, A.; Murray, J.F.

    1984-01-01

    To determine the separate influences of smoking and severe air-flow limitation on aerosol deposition and respiratory epithelial permeability, we studied 26 normal nonsmokers, 12 smokers without airway obstruction, 12 nonsmokers with chronic obstructive pulmonary disease (COPD), and 11 smokers with COPD. We aerosolized 99mTc-labeled diethylene triamine pentaacetic acid to particles approximately 1 micron activity median aerodynamic diameter. Levels of radioactivity were plotted semilogarithmically against time to calculate clearance as percent per minute. The distribution of radioactivity was homogeneous in control subjects and in smokers, but patchy in both groups with COPD. No difference was found between clearances of the control group (1.18 +/- 0.31% min-1), and nonsmoker COPD group (1.37 +/- 0.82% min-1), whereas values in smokers without COPD (4.00 +/- 1.70% min-1) and smokers with COPD (3.62 +/- 2.88% min-1) were significantly greater than in both nonsmoking groups. We conclude that (1) small particles appear to deposit peripherally, even with severe COPD; (2) respiratory epithelial permeability is normal in nonsmokers with COPD; (3) smoking increases permeability by a mechanism unrelated to air-flow limitation

  7. Developments in permeable and low permeability barriers

    International Nuclear Information System (INIS)

    Jefferis, S.A.; Norris, G.H.; Thomas, A.O.

    1997-01-01

    The concept of the reactive treatment zone whereby pollutants are attenuated as they move along a pathway in the ground has enabled a re-thinking of many of the concepts of containment. In particular it offers the potential for the control of the flux from a contaminated area by controlling the contaminant concentration in the pathway(s) as well as or instead of using a low permeability barrier. The paper outlines the basic concepts of the reactive treatment zone and the use of permeable and low permeability reactive systems. The paper then gives a case history of the installation of a permeable barrier using an in-situ reaction chamber

  8. Study of Absorption Characteristics of the Total Saponins from Radix Ilicis Pubescentis in an In Situ Single-Pass Intestinal Perfusion (SPIP Rat Model by Using Ultra Performance Liquid Chromatography (UPLC

    Directory of Open Access Journals (Sweden)

    Guojun Kuang

    2017-11-01

    Full Text Available In contrast to the extensively reported therapeutic activities, far less attention has been paid to the intestinal absorption of the total saponins from Radix Ilicis Pubescentis (in Chinese Mao-Dong-Qing, MDQ. This study aimed to investigate the intestinal absorption characteristics of ilexgenin A (C1, ilexsaponin A1 (C2, ilexsaponin B1 (C3, ilexsaponin B2 (C4, ilexsaponin B3 (DC1, and ilexoside O (DC2 when administrated with the total saponins from MDQ (MDQ-TS. An UPLC method for simultaneous determination of C1, C2, C3, C4, DC1, and DC2 in intestinal outflow perfusate was developed and validated. The absorption characteristics of MDQ-TS were investigated by evaluating the effects of intestinal segments, drug concentration, P-glycoprotein (P-gp inhibitor (verapomil, endocytosis inhibitor (amantadine and ethylene diamine tetraacetic acid (EDTA, tight junction modulator on the intestinal transportation of MDQ-TS by using a single-pass intestinal perfusion (SPIP rat model, and the influence of co-existing components on the intestinal transport of the six saponins was discussed. The results showed that effective apparent permeability (Papp of C1, C2, C3, C4, and DC2 administrated in MDQ-TS form had no segment-dependent changes at low and middle dosage levels. C1, C2, C3, D4, DC1, and DC2 administrated in MDQ-TS form all exhibited excellent transmembrane permeability with Papp > 0.12 × 10−2 cm·min−1. Meanwhile, Papp and effective absorption rate constant (Ka values for the most saponins showed concentration dependence and saturation characteristics. After combining with P-gp inhibitor of verapamil, Papp of C2, C3, and DC1 in MDQ-TS group was significantly increased up to about 2.3-fold, 1.4-fold, and 3.4-fold, respectively in comparison to that of non-verapamil added group. Verapamil was found to improve the absorption of C2, C3, and DC1, indicating the involvement of an active transport mechanism in the absorption process. Compared with the

  9. Caco-2 Permeability Studies and In Vitro hERG Liability Assessment of Tryptanthrin and Indolinone.

    Science.gov (United States)

    Jähne, Evelyn A; Eigenmann, Daniela E; Moradi-Afrapoli, Fahimeh; Verjee, Sheela; Butterweck, Veronika; Hebeisen, Simon; Hettich, Timm; Schlotterbeck, Götz; Smieško, Martin; Hamburger, Matthias; Oufir, Mouhssin

    2016-08-01

    Tryptanthrin and (E,Z)-3-(4-hydroxy-3,5-dimethoxybenzylidene)indolinone (indolinone) were recently isolated from Isatis tinctoria as potent anti-inflammatory and antiallergic alkaloids, and shown to inhibit COX-2, 5-LOX catalyzed leukotriene synthesis, and mast cell degranulation at low µM to nM concentrations. To assess their suitability for oral administration, we screened the compounds in an in vitro intestinal permeability assay using human colonic adenocarcinoma cells. For exact quantification of the compounds, validated UPLC-MS/MS methods were used. Tryptanthrin displayed high permeability (apparent permeability coefficient > 32.0 × 10(-6) cm/s) across the cell monolayer. The efflux ratio below 2 ( 10 µM) and indolinone (IC50 of 24.96 µM). The analysis of compounds using various in silico methods confirmed favorable pharmacokinetic properties, as well as a slight inhibition of the human ether-a-go-go-related gene potassium channel at micromolar concentrations. Georg Thieme Verlag KG Stuttgart · New York.

  10. Synthesis and Physicochemical Evaluation of Entecavir-Fatty Acid Conjugates in Reducing Food Effect on Intestinal Absorption

    Directory of Open Access Journals (Sweden)

    Hyuck Jun Jung

    2018-03-01

    Full Text Available The oral bioavailability of entecavir (EV, an anti-viral agent commonly prescribed to treat hepatitis B infections, is drastically reduced under a post-prandial state. This is primarily due to its low permeability in the gastrointestinal tract. To reduce the food effect on the intestinal absorption of the nucleotide analogue, four lipidic prodrugs were synthesized via the esterification of the primary alcohol of EV with fatty acids (hexanoic acid, octanoic acid, decanoic acid, and dodecanoic acid. EV-3-dodecanoate (or EV-C12 exhibited high solubility in a fed state simulated intestinal fluid (78.8 μg/mL, with the acceptable calculated logP value (3.62 and the lowest hydrolysis rate (22.5% for 12 h in simulated gastric fluid, pH 1.2. Therefore, it was chosen as a candidate to improve intestinal absorption of EV, especially under a fed state condition. Physical characterization using scanning electron microscopy, a differential scanning calorimeter, and X-ray powder diffraction revealed that EV-C12 had a rectangular-shaped crystalline form, with a melting point of about 170 °C. In a release test in biorelevant media, such as fasted and fed state-simulated intestinal and/or gastric fluid, more than 90% of the prodrug was released within 2 h in all media tested. These data suggest that this lipidic prodrug might have the potential to alleviate the negative food effect on the intestinal absorption of EV with increased therapeutic efficacy and patient compliance.

  11. Comparative field permeability measurement of permeable pavements using ASTM C1701 and NCAT permeameter methods.

    Science.gov (United States)

    Li, Hui; Kayhanian, Masoud; Harvey, John T

    2013-03-30

    Fully permeable pavement is gradually gaining support as an alternative best management practice (BMP) for stormwater runoff management. As the use of these pavements increases, a definitive test method is needed to measure hydraulic performance and to evaluate clogging, both for performance studies and for assessment of permeability for construction quality assurance and maintenance needs assessment. Two of the most commonly used permeability measurement tests for porous asphalt and pervious concrete are the National Center for Asphalt Technology (NCAT) permeameter and ASTM C1701, respectively. This study was undertaken to compare measured values for both methods in the field on a variety of permeable pavements used in current practice. The field measurements were performed using six experimental section designs with different permeable pavement surface types including pervious concrete, porous asphalt and permeable interlocking concrete pavers. Multiple measurements were performed at five locations on each pavement test section. The results showed that: (i) silicone gel is a superior sealing material to prevent water leakage compared with conventional plumbing putty; (ii) both methods (NCAT and ASTM) can effectively be used to measure the permeability of all pavement types and the surface material type will not impact the measurement precision; (iii) the permeability values measured with the ASTM method were 50-90% (75% on average) lower than those measured with the NCAT method; (iv) the larger permeameter cylinder diameter used in the ASTM method improved the reliability and reduced the variability of the measured permeability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Vibrio cholerae cytolysin causes an inflammatory response in human intestinal epithelial cells that is modulated by the PrtV protease.

    Directory of Open Access Journals (Sweden)

    Gangwei Ou

    Full Text Available BACKGROUND: Vibrio cholerae is the causal intestinal pathogen of the diarrheal disease cholera. It secretes the protease PrtV, which protects the bacterium from invertebrate predators but reduces the ability of Vibrio-secreted factor(s to induce interleukin-8 (IL-8 production by human intestinal epithelial cells. The aim was to identify the secreted component(s of V. cholerae that induces an epithelial inflammatory response and to define whether it is a substrate for PrtV. METHODOLOGY/PRINCIPAL FINDINGS: Culture supernatants of wild type V. cholerae O1 strain C6706, its derivatives and pure V. cholerae cytolysin (VCC were analyzed for the capacity to induce changes in cytokine mRNA expression levels, IL-8 and tumor necrosis factor-alpha (TNF-alpha secretion, permeability and cell viability when added to the apical side of polarized tight monolayer T84 cells used as an in vitro model for human intestinal epithelium. Culture supernatants were also analyzed for hemolytic activity and for the presence of PrtV and VCC by immunoblot analysis. CONCLUSIONS/SIGNIFICANCE: We suggest that VCC is capable of causing an inflammatory response characterized by increased permeability and production of IL-8 and TNF-alpha in tight monolayers. Pure VCC at a concentration of 160 ng/ml caused an inflammatory response that reached the magnitude of that caused by Vibrio-secreted factors, while higher concentrations caused epithelial cell death. The inflammatory response was totally abolished by treatment with PrtV. The findings suggest that low doses of VCC initiate a local immune defense reaction while high doses lead to intestinal epithelial lesions. Furthermore, VCC is indeed a substrate for PrtV and PrtV seems to execute an environment-dependent modulation of the activity of VCC that may be the cause of V. cholerae reactogenicity.

  13. Clogging in permeable concrete: A review.

    Science.gov (United States)

    Kia, Alalea; Wong, Hong S; Cheeseman, Christopher R

    2017-05-15

    Permeable concrete (or "pervious concrete" in North America) is used to reduce local flooding in urban areas and is an important sustainable urban drainage system. However, permeable concrete exhibits reduction in permeability due to clogging by particulates, which severely limits service life. This paper reviews the clogging mechanism and current mitigating strategies in order to inform future research needs. The pore structure of permeable concrete and characteristics of flowing particulates influence clogging, which occurs when particles build-up and block connected porosity. Permeable concrete requires regular maintenance by vacuum sweeping and pressure washing, but the effectiveness and viability of these methods is questionable. The potential for clogging is related to the tortuosity of the connected porosity, with greater tortuosity resulting in increased potential for clogging. Research is required to develop permeable concrete that can be poured on-site, which produces a pore structure with significantly reduced tortuosity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Crustal permeability

    Science.gov (United States)

    Gleeson, Tom; Ingebritsen, Steven E.

    2016-01-01

    Permeability is the primary control on fluid flow in the Earth’s crust and is key to a surprisingly wide range of geological processes, because it controls the advection of heat and solutes and the generation of anomalous pore pressures.  The practical importance of permeability – and the potential for large, dynamic changes in permeability – is highlighted by ongoing issues associated with hydraulic fracturing for hydrocarbon production (“fracking”), enhanced geothermal systems, and geologic carbon sequestration.  Although there are thousands of research papers on crustal permeability, this is the first book-length treatment.  This book bridges the historical dichotomy between the hydrogeologic perspective of permeability as a static material property and the perspective of other Earth scientists who have long recognized permeability as a dynamic parameter that changes in response to tectonism, fluid production, and geochemical reactions. 

  15. Transverse Chemotactic Migration of Bacteria from High to Low Permeability Regions in a Dual Permeability Porous Microfluidic Device

    Science.gov (United States)

    Singh, R.; Olson, M. S.

    2011-12-01

    to decrease at 9.8 mm and 19.6 mm cross-sections in low permeability regions due to dilution with the injectate from the non-porous channel (Figure 1). However, relative bacterial counts increased in the low permeability region at both downstream cross-sections under chemotactic conditions. A large increase in relative bacterial count in the pore throats just outside the low permeability region was also observed at both cross-sections (Figure 1). The bacterial chemotactic response was observed to decrease linearly with increasing Darcy velocity and at flow rate 0.220 mm/s the chemotactic effect was offset by the advective flow in the porous channel.

  16. Intestinal Permeability and Cellular Antioxidant Activity of Phenolic Compounds from Mango (Mangifera indica cv. Ataulfo) Peels.

    Science.gov (United States)

    Pacheco-Ordaz, Ramón; Antunes-Ricardo, Marilena; Gutiérrez-Uribe, Janet A; González-Aguilar, Gustavo A

    2018-02-08

    Mango ( Mangifera indica cv. Ataulfo) peel contains bound phenolics that may be released by alkaline or acid hydrolysis and may be converted into less complex molecules. Free phenolics from mango cv. Ataulfo peel were obtained using a methanolic extraction, and their cellular antioxidant activity (CAA) and permeability were compared to those obtained for bound phenolics released by alkaline or acid hydrolysis. Gallic acid was found as a simple phenolic acid after alkaline hydrolysis along with mangiferin isomers and quercetin as aglycone and glycosides. Only gallic acid, ethyl gallate, mangiferin, and quercetin were identified in the acid fraction. The acid and alkaline fractions showed the highest CAA (60.5% and 51.5%) when tested at 125 µg/mL. The value of the apparent permeability coefficient (Papp) across the Caco-2/HT-29 monolayer of gallic acid from the alkaline fraction was higher (2.61 × 10 -6 cm/s) than in the other fractions and similar to that obtained when tested pure (2.48 × 10 -6 cm/s). In conclusion, mango peels contain bound phenolic compounds that, after their release, have permeability similar to pure compounds and exert an important CAA. This finding can be applied in the development of nutraceuticals using this important by-product from the mango processing industry.

  17. Saccharomyces boulardii CNCM I-745 Restores intestinal Barrier Integrity by Regulation of E-cadherin Recycling.

    Science.gov (United States)

    Terciolo, Chloé; Dobric, Aurélie; Ouaissi, Mehdi; Siret, Carole; Breuzard, Gilles; Silvy, Françoise; Marchiori, Bastien; Germain, Sébastien; Bonier, Renaté; Hama, Adel; Owens, Roisin; Lombardo, Dominique; Rigot, Véronique; André, Frédéric

    2017-08-01

    Alteration in intestinal permeability is the main factor underlying the pathogenesis of many diseases affecting the gut, such as inflammatory bowel disease [IBD]. Characterization of molecules targeting the restoration of intestinal barrier integrity is therefore vital for the development of alternative therapies. The yeast Saccharomyces boulardii CNCM I-745 [Sb], used to prevent and treat antibiotic-associated infectious and functional diarrhea, may have a beneficial effect in the treatment of IBD. We analyzed the impact of Sb supernatant on tissue integrity and components of adherens junctions using cultured explants of colon from both IBD and healthy patients. To evaluate the pathways by which Sb regulates the expression of E-cadherin at the cell surface, we developed in vitro assays using human colonic cell lines, including cell aggregation, a calcium switch assay, real-time measurement of transepithelial electrical resistance [TEER] and pulse-chase experiments. We showed that Sb supernatant treatment of colonic explants protects the epithelial morphology and maintains E-cadherin expression at the cell surface. In vitro experiments revealed that Sb supernatant enhances E-cadherin delivery to the cell surface by re-routing endocytosed E-cadherin back to the plasma membrane. This process, involving Rab11A-dependent recycling endosome, leads to restoration of enterocyte adherens junctions, in addition to the overall restoration and strengthening of intestinal barrier function. These findings open new possibilities of discovering novel options for prevention and therapy of diseases that affect intestinal permeability. Copyright © 2017 European Crohn's and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com

  18. Intestinal ischemia-reperfusion injury augments intestinal mucosal injury and bacterial translocation in jaundiced rats.

    Science.gov (United States)

    Yüksek, Yunus Nadi; Kologlu, Murat; Daglar, Gül; Doganay, Mutlu; Dolapci, Istar; Bilgihan, Ayse; Dolapçi, Mete; Kama, Nuri Aydin

    2004-01-01

    The aim of this study was to evaluate local effects and degree of bacterial translocation related with intestinal ischemia-reperfusion injury in a rat obstructive jaundice model. Thirty adult Sprague-Dawley rats (200-250 g) were divided into three groups; including Group 1 (jaundice group), Group 2 (jaundice-ischemia group) and Group 3 (ischemia group). All rats had 2 laparotomies. After experimental interventions, tissue samples for translocation; liver and ileum samples for histopathological examination, 25 cm of small intestine for mucosal myeloperoxidase and malondialdehyde levels and blood samples for biochemical analysis were obtained. Jaundiced rats had increased liver enzyme levels and total and direct bilirubin levels (p<0.05). Intestinal mucosal myeloperoxidase and malondialdehyde levels were found to be high in intestinal ischemia-reperfusion groups (p<0.05). Intestinal mucosal damage was more severe in rats with intestinal ischemia-reperfusion after bile duct ligation (p<0.05). Degree of bacterial translocation was also found to be significantly high in these rats (p<0.05). Intestinal mucosa is disturbed more severely in obstructive jaundice with the development of ischemia and reperfusion. Development of intestinal ischemia-reperfusion in obstructive jaundice increases bacterial translocation.

  19. The Effects of Deoxynivalenol and Zearalenone on the Pig Large Intestine. A Light and Electron Microscopy Study

    Directory of Open Access Journals (Sweden)

    Barbara Przybylska-Gornowicz

    2018-04-01

    Full Text Available The contamination of feed with mycotoxins results in reduced growth, feed refusal, immunosuppression, and health problems. Deoxynivalenol (DON and zearalenone (ZEN are among the most important mycotoxins. The aim of the study was to examine the effects of low doses of these mycotoxins on the histological structure and ultrastructure of the large intestine in the pig. The study was performed on 36 immature gilts of mixed breed (White Polish Big × Polish White Earhanging, which were divided into four groups administrated per os with ZEN at 40 µg/kg BW, DON at 12 µg/kg BW, a mixture of ZEN (40 µg/kg BW and DON (12 µg/kg BW or a placebo. The pigs were killed by intravenous overdose of pentobarbital after one, three, and six weeks of treatment. The cecum, ascending and descending colon samples were prepared for light and electron microscopy. Administration of toxins did not influence the architecture of the mucosa and submucosa in the large intestine. ZEN and ZEN + DON significantly decreased the number of goblet cells in the cecum and descending colon. The mycotoxins changed the number of lymphocytes and plasma cells in the large intestine, which usually increased in number. However, this effect differed between the intestine segments and toxins. Mycotoxins induced some changes in the ultrastructure of the mucosal epithelium. They did not affect the expression of proliferative cell nuclear antigen and the intestinal barrier permeability. The obtained results indicate that mycotoxins especially ZEN may influence the defense mechanisms of the large intestine.

  20. Permeability After Impact Testing of Composite Laminates

    Science.gov (United States)

    Nettles, Alan T.

    2003-01-01

    Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, an understanding of their permeance is needed. A foreign object impact event can cause a localized area of permeability (leakage) in a polymer matrix composite and it is the aim of this study to assess a method of quantifying permeability-after-impact results. A simple test apparatus is presented and variables that could affect the measured values of permeability-after-impact were assessed. Once it was determined that valid numbers were being measured, a fiber/resin system was impacted at various impact levels and the resulting permeability measured, first with a leak check solution (qualitative) then using the new apparatus (quantitative). The results showed that as the impact level increased, so did the measured leakage. As the pressure to the specimen was increased, the leak rate was seen to increase in a non-linear fashion for almost all of the specimens tested.

  1. Permeability-Porosity Relationships of Subduction Zone Sediments

    Science.gov (United States)

    Gamage, K.; Screaton, E.; Bekins, B.; Aiello, I.

    2008-12-01

    Permeability-porosity relationships for sediments from Northern Barbados, Costa Rica, Nankai, and Peru subduction zones were examined based on their sediment type and grain size distribution. Greater correlation was observed between permeability and porosity for siliciclastic sediments, diatom oozes, and nannofossil chalk than for nannofossil oozes. For siliciclastic sediments, grouping of sediments by clay content yields relationships that are generally consistent with results from other marine settings and suggest decreasing permeability for a given porosity as clay content increases. Correction of measured porosities for smectite content generally improves the quality of permeability-porosity relationships. The relationship between permeability and porosity for diatom oozes may be controlled by the amount of clay present in the ooze, causing diatom oozes to behave similarly to siliciclastic sediments. For a given porosity the nannofossil oozes have higher permeability values by 1.5 orders of magnitude than the siliciclastic sediments. However, the use of a permeability-porosity relation may not be appropriate for unconsolidated carbonates such as nannofossil oozes. This study provided insight to the effects of porosity correction for smectite, variations in lithology and grain size in permeability-porosity relationships. However, further progress in delineating controls on permeability will require more careful and better documented permeability tests on characterized samples.

  2. Modulation of inflammatory mediators by Opuntia ficus-indica and Prunus avium bioproducts using an in vitro cell-based model of intestinal inflammation

    OpenAIRE

    Nunes, Sara Alexandra Luis

    2011-01-01

    Dissertation to obtain a Master Degree in Biotechnology Inflammatory Bowel Diseases, namely Ulcerative colitis and Crohn’s disease, are chronic intestinal inflammatory disorders characterized by an excessive release of pro-inflammatory mediators, intestinal barrier dysfunction and altered permeability and excessive activation of NF-κB cascade that can lead to development of colon cancer. IBD conventional therapy involves multiple medications and long-term up to life-long treatments. Furthe...

  3. Different Methods of Predicting Permeability in Shale

    DEFF Research Database (Denmark)

    Mbia, Ernest Ncha; Fabricius, Ida Lykke; Krogsbøll, Anette

    by two to five orders of magnitudes at lower vertical effective stress below 40 MPa as the content of clay minerals increases causing heterogeneity in shale material. Indirect permeability from consolidation can give maximum and minimum values of shale permeability needed in simulating fluid flow......Permeability is often very difficult to measure or predict in shale lithology. In this work we are determining shale permeability from consolidation tests data using Wissa et al., (1971) approach and comparing the results with predicted permeability from Kozeny’s model. Core and cuttings materials...... effective stress to 9 μD at high vertical effective stress of 100 MPa. The indirect permeability calculated from consolidation tests falls in the same magnitude at higher vertical effective stress, above 40 MPa, as that of the Kozeny model for shale samples with high non-clay content ≥ 70% but are higher...

  4. Synthetic Rock Analogue for Permeability Studies of Rock Salt with Mudstone

    Directory of Open Access Journals (Sweden)

    Hongwu Yin

    2017-09-01

    Full Text Available Knowledge about the permeability of surrounding rock (salt rock and mudstone interlayer is an important topic, which acts as a key parameter to characterize the tightness of gas storage. The goal of experiments that test the permeability of gas storage facilities in rock salt is to develop a synthetic analogue to use as a permeability model. To address the permeability of a mudstone/salt layered and mixed rock mass in Jintan, Jiangsu Province, synthetic mixed and layered specimens using the mudstone and the salt were fabricated for permeability testing. Because of the gas “slippage effect”, test results are corrected by the Klinkenberg method, and the permeability of specimens is obtained by regression fitting. The results show that the permeability of synthetic pure rock salt is 6.9 × 10−20 m2, and its porosity is 3.8%. The permeability of synthetic mudstone rock is 2.97 × 10−18 m2, with a porosity 17.8%. These results are close to those obtained from intact natural specimens. We also find that with the same mudstone content, the permeability of mixed specimens is about 40% higher than for the layered specimens, and with an increase in the mudstone content, the Klinkenberg permeability increases for both types of specimens. The permeability and mudstone content have a strong exponential relationship. When the mudstone content is below 40%, the permeability increases only slightly with mudstone content, whereas above this threshold, the permeability increases rapidly with mudstone content. The results of the study are of use in the assessment of the tightness of natural gas storage facilities in mudstone-rich rock salt formations in China.

  5. Permeability testing of biomaterial membranes

    Energy Technology Data Exchange (ETDEWEB)

    Dreesmann, L; Hajosch, R; Nuernberger, J Vaz; Schlosshauer, B [NMI Natural and Medical Sciences Institute at University Tuebingen, Markwiesenstr. 55, D-72770 Reutlingen (Germany); Ahlers, M [GELITA AG, Gammelsbacher Str. 2, D-69412 Eberbach (Germany)], E-mail: schlosshauer@nmi.de

    2008-09-01

    The permeability characteristics of biomaterials are critical parameters for a variety of implants. To analyse the permeability of membranes made from crosslinked ultrathin gelatin membranes and the transmigration of cells across the membranes, we combined three technical approaches: (1) a two-chamber-based permeability assay, (2) cell culturing with cytochemical analysis and (3) biochemical enzyme electrophoresis (zymography). Based on the diffusion of a coloured marker molecule in conjunction with photometric quantification, permeability data for a gelatin membrane were determined in the presence or absence of gelatin degrading fibroblasts. Cytochemical evaluation after cryosectioning of the membranes was used to ascertain whether fibroblasts had infiltrated the membrane inside. Zymography was used to investigate the potential release of proteases from fibroblasts, which are known to degrade collagen derivatives such as gelatin. Our data show that the diffusion equilibrium of a low molecular weight dye across the selected gelatin membrane is approached after about 6-8 h. Fibroblasts increase the permeability due to cavity formation in the membrane inside without penetrating the membrane for an extended time period (>21 days in vitro). Zymography indicates that cavity formation is most likely due to the secretion of matrix metalloproteinases. In summary, the combination of the depicted methods promises to facilitate a more rational development of biomaterials, because it provides a rapid means of determining permeability characteristics and bridges the gap between descriptive methodology and the mechanistic understanding of permeability alterations due to biological degradation.

  6. Permeability testing of biomaterial membranes

    International Nuclear Information System (INIS)

    Dreesmann, L; Hajosch, R; Nuernberger, J Vaz; Schlosshauer, B; Ahlers, M

    2008-01-01

    The permeability characteristics of biomaterials are critical parameters for a variety of implants. To analyse the permeability of membranes made from crosslinked ultrathin gelatin membranes and the transmigration of cells across the membranes, we combined three technical approaches: (1) a two-chamber-based permeability assay, (2) cell culturing with cytochemical analysis and (3) biochemical enzyme electrophoresis (zymography). Based on the diffusion of a coloured marker molecule in conjunction with photometric quantification, permeability data for a gelatin membrane were determined in the presence or absence of gelatin degrading fibroblasts. Cytochemical evaluation after cryosectioning of the membranes was used to ascertain whether fibroblasts had infiltrated the membrane inside. Zymography was used to investigate the potential release of proteases from fibroblasts, which are known to degrade collagen derivatives such as gelatin. Our data show that the diffusion equilibrium of a low molecular weight dye across the selected gelatin membrane is approached after about 6-8 h. Fibroblasts increase the permeability due to cavity formation in the membrane inside without penetrating the membrane for an extended time period (>21 days in vitro). Zymography indicates that cavity formation is most likely due to the secretion of matrix metalloproteinases. In summary, the combination of the depicted methods promises to facilitate a more rational development of biomaterials, because it provides a rapid means of determining permeability characteristics and bridges the gap between descriptive methodology and the mechanistic understanding of permeability alterations due to biological degradation

  7. In vivo human buccal permeability of nicotine

    DEFF Research Database (Denmark)

    Adrian, Charlotte L; Olin, Helle B D; Dalhoff, Kim

    2006-01-01

    The aim was to examine the in vivo buccal pH-dependent permeability of nicotine in humans and furthermore compare the in vivo permeability of nicotine to previous in vitro permeability data. The buccal permeability of nicotine was examined in a three-way cross-over study in eight healthy non......-smokers using a buccal perfusion cell. The disappearance of nicotine from perfusion solutions with pH 6.0, 7.4, and 8.1 was studied for 3h. The apparent permeability of nicotine (P(app)) was determined at each pH value. Parotid saliva was collected in an attempt to assess systemic levels of nicotine....... The disappearance rate of nicotine increased significantly as the pH increased, which resulted in P(app) values of 0.57+/-0.55 x 10(-4), 2.10+/-0.23 x 10(-4), and 3.96+/-0.54 x 10(-4)cms(-1) (mean+/-S.D.) at pH 6.0, 7.4, and 8.1, respectively. A linear relationship (R(2)=0.993) was obtained between the P...

  8. Borehole stoneley waves and permeability: Laboratory results

    International Nuclear Information System (INIS)

    Winkler, K.W.; Plona, T.J.; Froelich, B.; Liu, H.L.

    1987-01-01

    Recent interest in full waveform sonic logging has created the need for full waveform laboratory experiments on model boreholes. Of particular interest is the investigation of Stoneley waves and their interaction with permeable formations. The authors describe experimental results that show how Stoneley wave slowness and attenuation are affected by formation permeability. Both slowness and attenuation (1/Q) are observed to increase with formation permeability. This increase is frequency dependent, being greatest at low frequencies. The presence of simulated mudcakes on the borehole wall reduces the permeability effect on Stoneley waves, but does not eliminate it. The mudcake effect is frequency dependent, being greatest at low frequencies. In our experiments on rocks, the laboratory data is in qualitative agreement with theoretical predictions. In a very well characterized synthetic porous material, theory and experiment are in good quantitative agreement

  9. Long-term bioventing performance in low-permeability soils

    International Nuclear Information System (INIS)

    Phelps, M.B.; Stanin, F.T.; Downey, D.C.

    1995-01-01

    Short-term and long-term bioventing treatability testing has shown that in situ air injection and extraction is a practical method for sustaining increased oxygen levels and enhancing aerobic biodegradation of petroleum hydrocarbons in low-permeability soils. At several test sites, initial physical parameter analysis of soils and air permeability tests indicated that impacted soils (fine sandy silts and clays) had low air permeabilities. Measurements of depleted soil-gas oxygen levels and increased soil-gas carbon dioxide levels indicated that the natural process of aerobic biodegradation of petroleum hydrocarbons was oxygen-limited. Initial treatability testing consisted of air permeability tests to measure the permeability of the soils to air and in situ respiration tests to measure the rates at which native microorganisms could biodegrade the contaminants when provided with sufficient oxygen. During the long-term treatment period, active air injection or extraction systems were operated for 1 year or longer. Soil gas was periodically monitored within the treatment zone to evaluate the success of the bioventing systems in increasing soil-gas oxygen levels in the low-permeability soils. Follow-up respiration tests and soil and soil-gas sampling were conducted to evaluate changes in respiration rates and contaminant concentrations with time

  10. Intestinal Permeability and Cellular Antioxidant Activity of Phenolic Compounds from Mango (Mangifera indica cv. Ataulfo Peels

    Directory of Open Access Journals (Sweden)

    Ramón Pacheco-Ordaz

    2018-02-01

    Full Text Available Mango (Mangifera indica cv. Ataulfo peel contains bound phenolics that may be released by alkaline or acid hydrolysis and may be converted into less complex molecules. Free phenolics from mango cv. Ataulfo peel were obtained using a methanolic extraction, and their cellular antioxidant activity (CAA and permeability were compared to those obtained for bound phenolics released by alkaline or acid hydrolysis. Gallic acid was found as a simple phenolic acid after alkaline hydrolysis along with mangiferin isomers and quercetin as aglycone and glycosides. Only gallic acid, ethyl gallate, mangiferin, and quercetin were identified in the acid fraction. The acid and alkaline fractions showed the highest CAA (60.5% and 51.5% when tested at 125 µg/mL. The value of the apparent permeability coefficient (Papp across the Caco-2/HT-29 monolayer of gallic acid from the alkaline fraction was higher (2.61 × 10−6 cm/s than in the other fractions and similar to that obtained when tested pure (2.48 × 10−6 cm/s. In conclusion, mango peels contain bound phenolic compounds that, after their release, have permeability similar to pure compounds and exert an important CAA. This finding can be applied in the development of nutraceuticals using this important by-product from the mango processing industry.

  11. Intestinal Permeability and Cellular Antioxidant Activity of Phenolic Compounds from Mango (Mangifera indica cv. Ataulfo) Peels

    Science.gov (United States)

    Pacheco-Ordaz, Ramón; González-Aguilar, Gustavo A.

    2018-01-01

    Mango (Mangifera indica cv. Ataulfo) peel contains bound phenolics that may be released by alkaline or acid hydrolysis and may be converted into less complex molecules. Free phenolics from mango cv. Ataulfo peel were obtained using a methanolic extraction, and their cellular antioxidant activity (CAA) and permeability were compared to those obtained for bound phenolics released by alkaline or acid hydrolysis. Gallic acid was found as a simple phenolic acid after alkaline hydrolysis along with mangiferin isomers and quercetin as aglycone and glycosides. Only gallic acid, ethyl gallate, mangiferin, and quercetin were identified in the acid fraction. The acid and alkaline fractions showed the highest CAA (60.5% and 51.5%) when tested at 125 µg/mL. The value of the apparent permeability coefficient (Papp) across the Caco-2/HT-29 monolayer of gallic acid from the alkaline fraction was higher (2.61 × 10−6 cm/s) than in the other fractions and similar to that obtained when tested pure (2.48 × 10−6 cm/s). In conclusion, mango peels contain bound phenolic compounds that, after their release, have permeability similar to pure compounds and exert an important CAA. This finding can be applied in the development of nutraceuticals using this important by-product from the mango processing industry. PMID:29419800

  12. A Possible Role of Intestinal Microbiota in the Pathogenesis of Ankylosing Spondylitis

    Directory of Open Access Journals (Sweden)

    Lianjun Yang

    2016-12-01

    Full Text Available Ankylosing spondylitis (AS is a chronic inflammatory disease primarily affecting the sacroiliac joints and the spine, for which the pathogenesis is thought to be a result of the combination of host genetic factors and environmental triggers. However, the precise factors that determine one’s susceptibility to AS remain to be unraveled. With 100 trillion bacteria residing in the mammalian gut having established a symbiotic relation with their host influencing many aspects of host metabolism, physiology, and immunity, a growing body of evidence suggests that intestinal microbiota may play an important role in AS. Several mechanisms have been suggested to explain the potential role of the microbiome in the etiology of AS, such as alterations of intestinal permeability, stimulation of immune responses, and molecular mimicry. In this review, the existing evidence for the involvement of the microbiome in AS pathogenesis was discussed and the potential of intestinal microbiome-targeting strategies in the prevention and treatment of AS was evaluated.

  13. P-glycoprotein is responsible for the poor intestinal absorption and low toxicity of oral aconitine: In vitro, in situ, in vivo and in silico studies

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Cuiping, E-mail: yangsophia76@hotmail.com; Zhang, Tianhong, E-mail: wdzth@sina.com; Li, Zheng, E-mail: lizh2524@126.com; Xu, Liang, E-mail: wj24998@163.com; Liu, Fei, E-mail: liufeipharm@163.com; Ruan, Jinxiu, E-mail: ruanjx1936@yahoo.com.cn; Liu, Keliang, E-mail: keliangliu55@126.com; Zhang, Zhenqing, E-mail: zhangzhenqingpharm@163.com

    2013-12-15

    Aconitine (AC) is a highly toxic alkaloid from bioactive plants of the genus Aconitum, some of which have been widely used as medicinal herbs for thousands of years. In this study, we systematically evaluated the potential role of P-glycoprotein (P-gp) in the mechanisms underlying the low and variable bioavailability of oral AC. First, the bidirectional transport of AC across Caco-2 and MDCKII-MDR1 cells was investigated. The efflux of AC across monolayers of these two cell lines was greater than its influx. Additionally, the P-gp inhibitors, verapamil and cyclosporin A, significantly decreased the efflux of AC. An in situ intestinal perfusion study in rats showed that verapamil co-perfusion caused a significant increase in the intestinal permeability of AC, from 0.22 × 10{sup −5} to 2.85 × 10{sup −5} cm/s. Then, the pharmacokinetic profile of orally administered AC with or without pre-treatment with verapamil was determined in rats. With pre-treatment of verapamil, the maximum plasma concentration (C{sub max}) of AC increased sharply, from 39.43 to 1490.7 ng/ml. Accordingly, a 6.7-fold increase in the area under the plasma concentration–time curve (AUC{sub 0–12} {sub h}) of AC was observed when co-administered with verapamil. In silico docking analyses suggested that AC and verapamil possess similar P-gp recognition mechanisms. This work demonstrated that P-gp is involved in limiting the intestinal absorption of AC and attenuating its toxicity to humans. Our data indicate that potential P-gp-mediated drug–drug interactions should be considered carefully in the clinical application of aconite and formulations containing AC. - Highlights: • Verapamil and cyclosporin A decreased the efflux of aconitine across Caco-2 cells. • Both inhibitors decreased the efflux of aconitine across MDCKII-MDR1 cells. • Co-perfusion with verapamil increased the intestinal permeability of aconitine. • Co-administration with verapamil sharply increased the C{sub max

  14. Diagnosis of hydrostatic versus increased permeability pulmonary edema with chest radiographic criteria in critically ILL patients

    International Nuclear Information System (INIS)

    Aberle, D.R.; Wiener-Kronish, J.P.; Webb, W.R.; Matthay, M.A.

    1987-01-01

    To evaluate chest radiographic criteria in distinguishing mechanisms of pulmonary edema, the authors studied 45 intubated patients with extensive edema. Edema type was clinically classified by the ratio of alveolar edema-to-plasma protein concentration in association with compatible clinical/hemodynamic parameters. Chest films were scored as hydrostatic, permeability, or mixed by three readers in blinded fashion based on cardiac size, vascular pedicle width, distribution of edema, effusions, peribronchial cuffs, septal lines, or air bronchograms. Overall radiographic score accurately identified 87% of patients with hydrostatic edema but only 60% of those with permeability edema. Edema distribution was most discriminating, with a patchy peripheral pattern relatively specific for clinical permeability edema. Hydrostatic features on chest radiograph were common with permeability edema, including effusions (36%), widened pedicle (56%), cuffs (72%), or septa (40%). The authors conclude that the chest radiograph is limited in distinguishing edema mechanism in the face of extensive pulmonary edema

  15. Permeability enhancement by shock cooling

    Science.gov (United States)

    Griffiths, Luke; Heap, Michael; Reuschlé, Thierry; Baud, Patrick; Schmittbuhl, Jean

    2015-04-01

    The permeability of an efficient reservoir, e.g. a geothermal reservoir, should be sufficient to permit the circulation of fluids. Generally speaking, permeability decreases over the life cycle of the geothermal system. As a result, is usually necessary to artificially maintain and enhance the natural permeability of these systems. One of the methods of enhancement -- studied here -- is thermal stimulation (injecting cold water at low pressure). This goal of this method is to encourage new thermal cracks within the reservoir host rocks, thereby increasing reservoir permeability. To investigate the development of thermal microcracking in the laboratory we selected two granites: a fine-grained (Garibaldi Grey granite, grain size = 0.5 mm) and a course-grained granite (Lanhelin granite, grain size = 2 mm). Both granites have an initial porosity of about 1%. Our samples were heated to a range of temperatures (100-1000 °C) and were either cooled slowly (1 °C/min) or shock cooled (100 °C/s). A systematic microstructural (2D crack area density, using standard stereological techniques, and 3D BET specific surface area measurements) and rock physical property (porosity, P-wave velocity, uniaxial compressive strength, and permeability) analysis was undertaken to understand the influence of slow and shock cooling on our reservoir granites. Microstructurally, we observe that the 2D crack surface area per unit volume and the specific surface area increase as a result of thermal stressing, and, for the same maximum temperature, crack surface area is higher in the shock cooled samples. This observation is echoed by our rock physical property measurements: we see greater changes for the shock cooled samples. We can conclude that shock cooling is an extremely efficient method of generating thermal microcracks and modifying rock physical properties. Our study highlights that thermal treatments are likely to be an efficient method for the "matrix" permeability enhancement of

  16. Mechanisms of transepithelial ammonia excretion and luminal alkalinization in the gut of an intestinal air-breathing fish, Misgurnus anguilliacaudatus.

    Science.gov (United States)

    Wilson, Jonathan M; Moreira-Silva, Joana; Delgado, Inês L S; Ebanks, Sue C; Vijayan, Mathilakath M; Coimbra, João; Grosell, Martin

    2013-02-15

    The weatherloach, Misgurnus angulliacaudatus, is an intestinal air-breathing, freshwater fish that has the unique ability to excrete ammonia through gut volatilization when branchial and cutaneous routes are compromised during high environmental ammonia or air exposure. We hypothesized that transepithelial gut NH(4)(+) transport is facilitated by an apical Na(+)/H(+) (NH(4)(+)) exchanger (NHE) and a basolateral Na(+)/K(+)(NH(4)(+))-ATPase, and that gut boundary layer alkalinization (NH(4)(+) → NH(3) + H(+)) is facilitated by apical HCO(3)(-) secretion through a Cl(-)/HCO(3)(-) anion exchanger. This was tested using a pharmacological approach with anterior (digestive) and posterior (respiratory) intestine preparations mounted in pH-stat-equipped Ussing chambers. The anterior intestine had a markedly higher conductance, increased short-circuit current, and greater net base (J(base)) and ammonia excretion rates (J(amm)) than the posterior intestine. In the anterior intestine, HCO(3)(-) accounted for 70% of J(base). In the presence of an imposed serosal-mucosal ammonia gradient, inhibitors of both NHE (EIPA, 0.1 mmol l(-1)) and Na(+)/K(+)-ATPase (ouabain, 0.1 mmol l(-1)) significantly inhibited J(amm) in the anterior intestine, although only EIPA had an effect in the posterior intestine. In addition, the anion exchange inhibitor DIDS significantly reduced J(base) in the anterior intestine although only at a high dose (1 mmol l(-1)). Carbonic anhydrase does not appear to be associated with gut alkalinization under these conditions as ethoxzolamide was without effect on J(base). Membrane fluidity of the posterior intestine was low, suggesting low permeability, which was also reflected in a lower mucosal-serosal J(amm) in the presence of an imposed gradient, in contrast to that in the anterior intestine. To conclude, although the posterior intestine is highly modified for gas exchange, it is the anterior intestine that is the likely site of ammonia excretion and

  17. Frequency of Celiac Disease in Patients with Increased Intestinal Gas (Flatulence)

    Science.gov (United States)

    Masoodi, Mohsen; Mokhtare, Marjan; Agah, Shahram; Sina, Mohammad; Soltani-Kermanshahi, Mojtaba

    2016-01-01

    Excessive flatulence which impairs social performance in patients is one of the common reasons for referrals to gastroenterology clinics. Celiac Disease is a rare but important cause of increased intestinal gas (bloating) and if not diagnosed, patients face complications such as malabsorption, anemia, osteoporosis and even intestinal lymphoma. This study aimed to determine the frequency of Celiac Disease in patients with excessive flatulence. One hundred and fifty patients with a chief complaint of experiencing flatulence more than 15 times a day and lasting for three months were referred to the gastroenterology clinic of Rasoul-e-Akram Teaching Hospital. Serological tests for Celiac Disease, Anti TTG Ab (IgA-IgG) were requested and the patients with positive tests underwent upper GI endoscopy. Biopsies of the second part of the duodenum were then sent to the laboratory. From one hundred and thirty patients who completed the study, 92 (70.7%) were female. Mean age of the patients was 32 ± 13 years. Anti TTG Ab was found in 5 patients (3.85%). Only 2 patients (1.5%) had a documented positive pathology for Celiac Disease. According to the results of this study and other studies, we conclude that Celiac Disease is an uncommon etiology for excessive flatulence but it is of importance to investigate it in excessive flatulence patients. PMID:26755470

  18. Postprandial increase of oleoylethanolamide mobilization in small intestine of the Burmese python (Python molurus)

    DEFF Research Database (Denmark)

    Astarita, Giuseppe; Rourke, Bryan C; Andersen, Johnnie Bremholm

    2006-01-01

    to the induction of between-meal satiety. Here we examined whether feeding-induced OEA mobilization also occurs in Burmese pythons (Python molurus), a species of ambush-hunting snakes that consumes huge meals after months of fasting and undergoes massive feeding-dependent changes in gastrointestinal hormonal...... release and gut morphology. Using liquid-chromatography/mass-spectrometry (LC/MS), we measured OEA levels in the gastrointestinal tract of fasted (28 days) and fed (48h after feeding) pythons. We observed a nearly 300-fold increase in OEA levels in the small intestine of fed compared to fasted animals......-unsaturated, but not polyunsaturated fatty-acid ethanolamides (FAE) in the small intestine of fed pythons. The identification of OEA and other FAEs in the gastrointestinal tract of Python molurus suggests that this class of lipid messengers may be widespread among vertebrate groups and may represent an evolutionarily ancient means...

  19. Soya-saponins induce intestinal inflammation and barrier dysfunction in juvenile turbot (Scophthalmus maximus).

    Science.gov (United States)

    Gu, Min; Jia, Qian; Zhang, Zhiyu; Bai, Nan; Xu, Xiaojie; Xu, Bingying

    2018-06-01

    Soybean meal-induced enteritis (SBMIE) is a well-described condition in the distal intestine (DI) of several cultured fish species, but the exact cause is still unclear. The work on Atlantic salmon and zebrafish suggested soya-saponins, as heat-stable anti-nutritional factors in soybean meal, are the major causal agents. However, this conclusion was not supported by the research on some other fish, such as gilthead sea bream and European sea bass. Our previous work proved that soybean could induce SBMIE on turbot and the present work aimed to investigate whether soya-saponins alone could cause SBMIE and the effects of soya-saponins on the intestinal barrier function in juvenile turbot. Turbots with initial weight 11.4 ± 0.02 g were fed one of four fishmeal-based diets containing graded levels of soya-saponins (0, 2.5, 7.5, 15 g kg -1 ) for 8 weeks. At the end of the trial, all fish were weighed and plasma was obtained for diamine oxidase (DAO) activity and d-lactate level analysis and DI was sampled for histological evaluation and quantification of antioxidant parameters and inflammatory marker genes. The activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and intestinal glutathione level were selected to evaluated intestinal antioxidant system. The distal intestinal epithelial cell (IEC) proliferation and apoptosis were investigated by proliferating cell nuclear antigen (PCNA) labelling and TdT-mediated dUTP nick end labeling (TUNEL), respectively. The results showed that soya-saponins caused significantly dose-dependent decrease in the growth performance and nutrient utilization (p soya-saponins. Significantly dose-dependent increases in severity of the inflammation concomitant with up-regulated expression of il-1β, il-8, and tnf-α, increased IEC proliferation and apoptosis, and decreases in selected antioxidant parameters were detected (p soya-saponins (p soya-saponins induced enteritis and compromised

  20. Oral absorption of peptides and nanoparticles across the human intestine: Opportunities, limitations and studies in human tissues.

    Science.gov (United States)

    Lundquist, P; Artursson, P

    2016-11-15

    In this contribution, we review the molecular and physiological barriers to oral delivery of peptides and nanoparticles. We discuss the opportunities and predictivity of various in vitro systems with special emphasis on human intestine in Ussing chambers. First, the molecular constraints to peptide absorption are discussed. Then the physiological barriers to peptide delivery are examined. These include the gastric and intestinal environment, the mucus barrier, tight junctions between epithelial cells, the enterocytes of the intestinal epithelium, and the subepithelial tissue. Recent data from human proteome studies are used to provide information about the protein expression profiles of the different physiological barriers to peptide and nanoparticle absorption. Strategies that have been employed to increase peptide absorption across each of the barriers are discussed. Special consideration is given to attempts at utilizing endogenous transcytotic pathways. To reliably translate in vitro data on peptide or nanoparticle permeability to the in vivo situation in a human subject, the in vitro experimental system needs to realistically capture the central aspects of the mentioned barriers. Therefore, characteristics of common in vitro cell culture systems are discussed and compared to those of human intestinal tissues. Attempts to use the cell and tissue models for in vitro-in vivo extrapolation are reviewed. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Evolution of permeability in diatomaceous rocks mediated by pressure solution

    International Nuclear Information System (INIS)

    Yasuhara, Hideaki; Kinoshita, Naoki; Kurikami, Hiroshi; Kishida, Kiyoshi

    2007-01-01

    A conceptual model is presented to follow the evolution of permeability in diatomaceous rocks mediated by pressure solution. The progress of compaction and the evolution of permeability may be followed with time. Specifically, the main minerals of diatomaceous rocks that are quartz, cristobalite, and amorphous silica, are focused to examine differences of the permeability evolutions among them at effective stresses of 5, and 10 MPa, and temperatures of 20 and 90degC. The rates and magnitudes of permeability reduction increase with increase of the dissolution rate constants. Ultimate permeabilities reduce to the order of 90% at the completion of dissolution-mediated compaction. (author)

  2. Diagenetic effect on permeabilities of geothermal sandstone reservoirs

    DEFF Research Database (Denmark)

    Weibel, Rikke; Olivarius, Mette; Kristensen, Lars

    The Danish subsurface contains abundant sedimentary deposits, which can be utilized for geothermal heating. The Upper Triassic – Lower Jurassic continental-marine sandstones of the Gassum Formation has been utilised as a geothermal reservoir for the Thisted Geothermal Plant since 1984 extracting...... and permeability is caused by increased diagenetic changes of the sandstones due to increased burial depth and temperatures. Therefore, the highest water temperatures typically correspond with the lowest porosities and permeabilities. Especially the permeability is crucial for the performance of the geothermal......-line fractures. Continuous thin chlorite coatings results in less porosity- and permeability-reduction with burial than the general reduction with burial, unless carbonate cemented. Therefore, localities of sandstones characterized by these continuous chlorite coatings may represent fine geothermal reservoirs...

  3. Preliminary study of the irradiation-induced modification of skin permeability

    International Nuclear Information System (INIS)

    Coelho, R.; Istin, M.

    1978-01-01

    Irradiation of the skin of an animal leads immediately to a strong increase in vascular permeability. If a dye is at once injected intraveinously it diffuses very rapidly in the irradiated zone, this becomes highly coloured and the colour intensity measurement gives a clue to the severity of the lesions produced. This phenomenon has been used in the past as a pharmacological test to study vascular permeability and is employed in this work to observe the effect of diosmine-titrated flavonoids on vascular permeability in inflammatory diseases. The capillary permeability increase due to local γ irradiation of rabbit skin has been accurately determined by measurement of the colouration observed after injection of Geigy Blue. Diosmine, injected intraperitoneally, protects the vascular system against increased permeability due to ionising radiations [fr

  4. Permeable pavement study (Edison)

    Data.gov (United States)

    U.S. Environmental Protection Agency — While permeable pavement is increasingly being used to control stormwater runoff, field-based, side-by-side investigations on the effects different pavement types...

  5. The effect of glutamine-enriched enteral nutrition on intestinal permeability in very-low-birth-weight infants : A randomized controlled trial

    NARCIS (Netherlands)

    van den Berg, Anemone; Fetter, Willem P. F.; Westerbeek, Elisabeth A. M.; van der Vegt, Ina M.; van der Molen, Hilda R. A.; van Elburg, Ruurd M.

    2006-01-01

    Background: Very-low-birth-weight (VLBW) infants are susceptible to glutamine depletion. Glutamine depletion has negative effects on intestinal integrity. The lower infection rate in VLBW infants receiving glutamine-enriched enteral nutrition may originate from improved intestinal integrity, as

  6. The effect of glutamine-enriched enteral nutrition on intestinal permeability in very-low-birth-weight infants: A randomized controlled trial

    NARCIS (Netherlands)

    van den Berg, Anemone; Fetter, Willem P. F.; Westerbeek, Elisabeth A. M.; van der Vegt, Ina M.; van der Molen, Hilda R. A.; van Elburg, Ruurd M.

    2006-01-01

    Background: Very-low-birth-weight (VLBW) infants are susceptible to glutamine depletion. Glutamine depletion has negative effects on intestinal integrity. The lower infection rate in VLBW infants receiving glutamine-enriched enteral nutrition may originate from improved intestinal integrity, as

  7. Roux-en-Y Gastric Bypass Surgery Suppresses Hepatic Gluconeogenesis and Increases Intestinal Gluconeogenesis in a T2DM Rat Model.

    Science.gov (United States)

    Yan, Yong; Zhou, Zhou; Kong, Fanzhi; Feng, Suibin; Li, Xuzhong; Sha, Yanhua; Zhang, Guangjun; Liu, Haijun; Zhang, Haiqing; Wang, Shiguang; Hu, Cheng; Zhang, Xueli

    2016-11-01

    Roux-en-Y gastric bypass (RYGB) is an effective surgical treatment for type 2 diabetes mellitus (T2DM). The present study aimed to investigate the effects of RYGB on glucose homeostasis, lipid metabolism, and intestinal morphological adaption, as well as hepatic and intestinal gluconeogenesis. Twenty adult male T2DM rats induced by high-fat diet and low dose of streptozotocin were randomly divided into sham and RYGB groups. The parameters of body weight, food intake, glucose tolerance, insulin sensitivity, and serum lipid profiles were assessed to evaluate metabolic changes. Intestinal sections were stained with hematoxylin and eosin (H&E) for light microscopy examination. The messenger RNA (mRNA) and protein expression levels of key regulatory enzymes of gluconeogenesis [phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase (G6Pase)] were determined through reverse-transcription PCR (RT-PCR) and Western blotting, respectively. RYGB induced significant improvements in glucose tolerance and insulin sensitivity, along with weight loss and decreased food intake. RYGB also decreased serum triglyceride (TG) and free fatty acid (FFA) levels. The jejunum and ileum exhibited a marked increase in the length and number of intestinal villi after RYGB. The RYGB group exhibited downregulated mRNA and protein expression levels of PEPCK and G6Pase in the liver and upregulated expression of these enzymes in the jejunum and ileum tissues. RYGB ameliorates glucose and lipid metabolism accompanied by weight loss and calorie restriction. The small intestine shows hyperplasia and hypertrophy after RYGB. Meanwhile, our study demonstrated that the reduced hepatic gluconeogenesis and increased intestinal gluconeogenesis may contribute to improved glucose homeostasis after RYGB.

  8. A pharmacologic increase in activity of plasma transaminase derived from small intestine in animals receiving an acyl CoA: diacylglycerol transferase (DGAT) 1 inhibitor.

    Science.gov (United States)

    Yokoyama, Hideaki; Kobayashi, Akio; Kondo, Kazuma; Oshida, Shin-Ichi; Takahashi, Tadakazu; Masuyama, Taku; Shoda, Toshiyuki; Sugai, Shoichiro

    2018-01-01

    Acyl CoA: diacylglycerol acyltransferase (DGAT) 1 is an enzyme that catalyzes the re-synthesis of triglycerides (TG) from free fatty acids and diacylglycerol. JTT-553 is a DGAT1 inhibitor and exhibits its pharmacological action (inhibition of re-synthesis of TG) in the enterocytes of the small intestine leading to suppression of a postprandial elevation of plasma lipids. After repeated oral dosing JTT-553 in rats and monkeys, plasma transaminase levels were increased but there were neither changes in other hepatic function parameters nor histopathological findings suggestive of hepatotoxicity. Based on the results of exploratory studies for investigation of the mechanism of the increase in transaminase levels, plasma transaminase levels were increased after dosing JTT-553 only when animals were fed after dosing and a main factor in the diet contributing to the increase in plasma transaminase levels was lipids. After dosing JTT-553, transaminase levels were increased in the small intestine but not in the liver, indicating that the origin of transaminase increased in the plasma was not the liver but the small intestine where JTT-553 exhibits its pharmacological action. The increase in small intestinal transaminase levels was due to increased enzyme protein synthesis and was suppressed by inhibiting fatty acid-transport to the enterocytes. In conclusion, the JTT-553-related increase in plasma transaminase levels is considered not to be due to release of the enzymes from injured cells into the circulation but to be phenomena resulting from enhancement of enzyme protein synthesis in the small intestine due to the pharmacological action of JTT-553 in this organ.

  9. The Role of miR-330-3p/PKC-α Signaling Pathway in Low-Dose Endothelial-Monocyte Activating Polypeptide-II Increasing the Permeability of Blood-Tumor Barrier

    Directory of Open Access Journals (Sweden)

    Jiahui Liu

    2017-12-01

    Full Text Available This study was performed to determine whether EMAP II increases the permeability of the blood-tumor barrier (BTB by affecting the expression of miR-330-3p as well as its possible mechanisms. We determined the over-expression of miR-330-3p in glioma microvascular endothelial cells (GECs by Real-time PCR. Endothelial monocyte-activating polypeptide-II (EMAP-II significantly decreased the expression of miR-330-3p in GECs. Pre-miR-330-3p markedly decreased the permeability of BTB and increased the expression of tight junction (TJ related proteins ZO-1, occludin and claudin-5, however, anti-miR-330-3p had the opposite effects. Anti-miR-330-3p could enhance the effect of EMAP-II on increasing the permeability of BTB, however, pre-miR-330-3p partly reversed the effect of EMAP-II on that. Similarly, anti-miR-330-3p improved the effects of EMAP-II on increasing the expression levels of PKC-α and p-PKC-α in GECs and pre-miR-330-3p partly reversed the effects. MiR-330-3p could target bind to the 3′UTR of PKC-α. The results of in vivo experiments were similar to those of in vitro experiments. These suggested that EMAP-II could increase the permeability of BTB through inhibiting miR-330-3p which target negative regulation of PKC-α. Pre-miR-330-3p and PKC-α inhibitor decreased the BTB permeability and up-regulated the expression levels of ZO-1, occludin and claudin-5 while anti-miR-330-3p and PKC-α activator brought the reverse effects. Compared with EMAP-II, anti-miR-330-3p and PKC-α activator alone, the combination of the three combinations significantly increased the BTB permeability. EMAP-II combined with anti-miR-330-3p and PKCα activator could enhance the DOX’s effects on inhibiting the cell viabilities and increasing the apoptosis of U87 glioma cells. Our studies suggest that low-dose EMAP-II up-regulates the expression of PKC-α and increases the activity of PKC-α by inhibiting the expression of miR-330-3p, reduces the expression of ZO-1

  10. A Lactobacillus mutant capable of accumulating long-chain polyphosphates that enhance intestinal barrier function.

    Science.gov (United States)

    Saiki, Asako; Ishida, Yasuaki; Segawa, Shuichi; Hirota, Ryuichi; Nakamura, Takeshi; Kuroda, Akio

    2016-05-01

    Inorganic polyphosphate (polyP) was previously identified as a probiotic-derived substance that enhances intestinal barrier function. PolyP-accumulating bacteria are expected to have beneficial effects on the human gastrointestinal tract. In this study, we selected Lactobacillus paracasei JCM 1163 as a strain with the potential to accumulate polyP, because among the probiotic bacteria stored in our laboratory, it had the largest amount of polyP. The chain length of polyP accumulated in L. paracasei JCM 1163 was approximately 700 phosphate (Pi) residues. L. paracasei JCM 1163 accumulated polyP when Pi was added to Pi-starved cells. We further improved the ability of L. paracasei JCM 1163 to accumulate polyP by nitrosoguanidine mutagenesis. The mutant accumulated polyP at a level of 1500 nmol/mg protein-approximately 190 times that of the wild-type strain. PolyP extracted from the L. paracasei JCM 1163 significantly suppressed the oxidant-induced intestinal permeability in mouse small intestine. In conclusion, we have succeeded in breeding the polyP-accumulating Lactobacillus mutant that is expected to enhance intestinal barrier function.

  11. Gut permeability is related to body weight, fatty liver disease, and insulin resistance in obese individuals undergoing weight reduction.

    Science.gov (United States)

    Damms-Machado, Antje; Louis, Sandrine; Schnitzer, Anna; Volynets, Valentina; Rings, Andreas; Basrai, Maryam; Bischoff, Stephan C

    2017-01-01

    Obesity and associated metabolic disorders are related to impairments of the intestinal barrier. We examined lactulose:mannitol (Lac:Man) permeability in obese individuals with and without liver steatosis undergoing a weight-reduction program to test whether an effective weight-loss program improves gut barrier function and whether obese patients with or without liver steatosis differ in this function. Twenty-seven adult, nondiabetic individuals [mean ± SD body mass index (BMI; in kg/m 2 ): 43.7 ± 5.2; 78% with moderate or severe liver steatosis] were included in the follow-up intervention study (n = 13 by month 12). All patients reduced their weight to a mean ± SD BMI of 36.4 ± 5.1 within 12 mo. We assessed barrier functions by the oral Lac:Man and the fecal zonulin tests. Insulin resistance was assessed by the homeostatic model assessment index (HOMA), and liver steatosis by sonography and the fatty liver index (FLI). The Lac:Man ratio and circulating interleukin (IL) 6 concentration decreased during intervention from 0.080 (95% CI: 0.073, 0.093) to 0.027 (95% CI: 0.024, 0.034; P < 0.001) and from 4.2 ± 1.4 to 2.8 ± 1.6 pg/mL (P < 0.01), respectively. At study start, the Lac:Man ratio was higher in patients with moderate or severe steatosis than in those without any steatosis (P < 0.001). The Lac:Man ratio tended to correlate with HOMA (ρ = 0.55, P = 0.052), which correlated with FLI (ρ = 0.75, P < 0.01). A multiple-regression analysis led to a final model explaining FLI best through BMI, waist circumference, and the Lac:Man ratio. Intestinal permeability is increased in obese patients with steatosis compared with obese patients without. The increased permeability fell to within the previously reported normal range after weight reduction. The data suggest that a leaky gut barrier is linked with liver steatosis and could be a new target for future steatosis therapies. This trial was registered at clinicaltrials.gov as NCT01344525. © 2017 American Society

  12. Protective Effects of Let-7b on the Expression of Occludin by Targeting P38 MAPK in Preventing Intestinal Barrier Dysfunction

    Directory of Open Access Journals (Sweden)

    Zhihua Liu

    2018-01-01

    Full Text Available Background/Aims: Let-7b was dramatically reduced after a dicer knockout of mice with intestinal barrier function injuries. This paper aims to investigate the molecular mechanism of let-7b by targeting p38 MAPK in preventing intestinal barrier dysfunction. Methods: A total of 186 patients were enrolled, with 93 in the control group and 93 in the PRO group. Only 158 patients completed the entire study, whereas the others either did not meet the inclusion criteria or refused to participate. To further verify the role of let-7b, intestinal epithelial conditional knockout (IKO mice of mmu-let-7b model were established. Serum let-7b, zonulin, IL-6, and TNF-α concentrations were measured by ELISA or quantitative RT-PCR. Permeability assay was done by ussing chamber. The apoptotic cells were identified using an In Situ Cell Death Detection Kit. Protein was detected by western blot. Results: Probiotics can lower infection-related complications, as well as increase the serum and tissue let-7b levels. P38 MAPK was identified as the target of let-7b, as verified by NCM460 cells. P38 MAPK expression was increased, whereas tight-junction (TJ proteins were significantly decreased in let-7b IKO mice (both P<0.05. Negative regulation of p38 MAPK molecular signaling pathways was involved in the protective effects of let-7b on intestinal barrier function. Conclusion: Let-7b was identified as a novel diagnosis biomarker or a potential treatment target for preventing intestinal barrier dysfunction.

  13. Protective Effects of Let-7b on the Expression of Occludin by Targeting P38 MAPK in Preventing Intestinal Barrier Dysfunction.

    Science.gov (United States)

    Liu, Zhihua; Tian, Yinghai; Jiang, Yanqiong; Chen, Shihua; Liu, Ting; Moyer, Mary Pat; Qin, Huanlong; Zhou, Xinke

    2018-01-01

    Let-7b was dramatically reduced after a dicer knockout of mice with intestinal barrier function injuries. This paper aims to investigate the molecular mechanism of let-7b by targeting p38 MAPK in preventing intestinal barrier dysfunction. A total of 186 patients were enrolled, with 93 in the control group and 93 in the PRO group. Only 158 patients completed the entire study, whereas the others either did not meet the inclusion criteria or refused to participate. To further verify the role of let-7b, intestinal epithelial conditional knockout (IKO) mice of mmu-let-7b model were established. Serum let-7b, zonulin, IL-6, and TNF-α concentrations were measured by ELISA or quantitative RT-PCR. Permeability assay was done by ussing chamber. The apoptotic cells were identified using an In Situ Cell Death Detection Kit. Protein was detected by western blot. Probiotics can lower infection-related complications, as well as increase the serum and tissue let-7b levels. P38 MAPK was identified as the target of let-7b, as verified by NCM460 cells. P38 MAPK expression was increased, whereas tight-junction (TJ) proteins were significantly decreased in let-7b IKO mice (both P<0.05). Negative regulation of p38 MAPK molecular signaling pathways was involved in the protective effects of let-7b on intestinal barrier function. Let-7b was identified as a novel diagnosis biomarker or a potential treatment target for preventing intestinal barrier dysfunction. © 2018 The Author(s). Published by S. Karger AG, Basel.

  14. potentially pathogenic gastro-intestinal microorganisms (ID 1030, 2956, 2958, 2961, 2963, 2966, 2970), improved lactose digestion (ID 1030, 2956, 2958, 2961, 2963, 2966, 2970), “intestinal flora/digestive health” (ID 4231), defence against vaginal pathogens (ID 2950, 2957, 2967) and increasing IL-10

    DEFF Research Database (Denmark)

    Tetens, Inge

    and reduction of gastro-intestinal discomfort, decreasing potentially pathogenic gastro-intestinal microorganisms, improved lactose digestion, “intestinal flora/digestive health”, defence against vaginal pathogens and increasing IL-10 production and/or enhancing the activity of natural killer cells. The food...

  15. Transcranial direct current stimulation transiently increases the blood-brain barrier solute permeability in vivo

    Science.gov (United States)

    Shin, Da Wi; Khadka, Niranjan; Fan, Jie; Bikson, Marom; Fu, Bingmei M.

    2016-03-01

    Transcranial Direct Current Stimulation (tDCS) is a non-invasive electrical stimulation technique investigated for a broad range of medical and performance indications. Whereas prior studies have focused exclusively on direct neuron polarization, our hypothesis is that tDCS directly modulates endothelial cells leading to transient changes in blood-brain-barrier (BBB) permeability (P) that are highly meaningful for neuronal activity. For this, we developed state-of-the-art imaging and animal models to quantify P to various sized solutes after tDCS treatment. tDCS was administered using a constant current stimulator to deliver a 1mA current to the right frontal cortex of rat (approximately 2 mm posterior to bregma and 2 mm right to sagittal suture) to obtain similar physiological outcome as that in the human tDCS application studies. Sodium fluorescein (MW=376), or FITC-dextrans (20K and 70K), in 1% BSA mammalian Ringer was injected into the rat (SD, 250-300g) cerebral circulation via the ipsilateral carotid artery by a syringe pump at a constant rate of ~3 ml/min. To determine P, multiphoton microscopy with 800-850 nm wavelength laser was applied to take the images from the region of interest (ROI) with proper microvessels, which are 100-200 micron below the pia mater. It shows that the relative increase in P is about 8-fold for small solute, sodium fluorescein, ~35-fold for both intermediate sized (Dex-20k) and large (Dex-70k) solutes, 10 min after 20 min tDCS pretreatment. All of the increased permeability returns to the control after 20 min post treatment. The results confirmed our hypothesis.

  16. Permeability of gypsum samples dehydrated in air

    Science.gov (United States)

    Milsch, Harald; Priegnitz, Mike; Blöcher, Guido

    2011-09-01

    We report on changes in rock permeability induced by devolatilization reactions using gypsum as a reference analog material. Cylindrical samples of natural alabaster were dehydrated in air (dry) for up to 800 h at ambient pressure and temperatures between 378 and 423 K. Subsequently, the reaction kinetics, so induced changes in porosity, and the concurrent evolution of sample permeability were constrained. Weighing the heated samples in predefined time intervals yielded the reaction progress where the stoichiometric mass balance indicated an ultimate and complete dehydration to anhydrite regardless of temperature. Porosity showed to continuously increase with reaction progress from approximately 2% to 30%, whilst the initial bulk volume remained unchanged. Within these limits permeability significantly increased with porosity by almost three orders of magnitude from approximately 7 × 10-19 m2 to 3 × 10-16 m2. We show that - when mechanical and hydraulic feedbacks can be excluded - permeability, reaction progress, and porosity are related unequivocally.

  17. Adult zebrafish intestine resection: a novel model of short bowel syndrome, adaptation, and intestinal stem cell regeneration.

    Science.gov (United States)

    Schall, K A; Holoyda, K A; Grant, C N; Levin, D E; Torres, E R; Maxwell, A; Pollack, H A; Moats, R A; Frey, M R; Darehzereshki, A; Al Alam, D; Lien, C; Grikscheit, T C

    2015-08-01

    Loss of significant intestinal length from congenital anomaly or disease may lead to short bowel syndrome (SBS); intestinal failure may be partially offset by a gain in epithelial surface area, termed adaptation. Current in vivo models of SBS are costly and technically challenging. Operative times and survival rates have slowed extension to transgenic models. We created a new reproducible in vivo model of SBS in zebrafish, a tractable vertebrate model, to facilitate investigation of the mechanisms of intestinal adaptation. Proximal intestinal diversion at segment 1 (S1, equivalent to jejunum) was performed in adult male zebrafish. SBS fish emptied distal intestinal contents via stoma as in the human disease. After 2 wk, S1 was dilated compared with controls and villus ridges had increased complexity, contributing to greater villus epithelial perimeter. The number of intervillus pockets, the intestinal stem cell zone of the zebrafish increased and contained a higher number of bromodeoxyuridine (BrdU)-labeled cells after 2 wk of SBS. Egf receptor and a subset of its ligands, also drivers of adaptation, were upregulated in SBS fish. Igf has been reported as a driver of intestinal adaptation in other animal models, and SBS fish exposed to a pharmacological inhibitor of the Igf receptor failed to demonstrate signs of intestinal adaptation, such as increased inner epithelial perimeter and BrdU incorporation. We describe a technically feasible model of human SBS in the zebrafish, a faster and less expensive tool to investigate intestinal stem cell plasticity as well as the mechanisms that drive intestinal adaptation. Copyright © 2015 the American Physiological Society.

  18. Study on the Permeability Characteristics of Polyurethane Soil Stabilizer Reinforced Sand

    Directory of Open Access Journals (Sweden)

    Jin Liu

    2017-01-01

    Full Text Available A polymer material of polyurethane soil stabilizer (PSS is used to reinforce the sand. To understand the permeability characteristics of PSS reinforced sand, a series of reinforcement layer form test, single-hole permeability test, and porous permeability test of sand reinforced with PSS have been performed. Reinforcement mechanism is discussed with scanning electron microscope images. The results indicated that the permeability resistance of sand reinforced with polyurethane soil stabilizer is improved through the formation of reinforcement layer on the sand surface. The thickness and complete degree of the reinforcement layer increase with the increasing of curing time and PSS concentration. The water flow rate decreases with the increasing of curing time or PSS concentration. The permeability coefficient decreases with the increasing of curing time and PSS concentration and increases with the increasing of depth in specimen. PSS fills up the voids of sand and adsorbs on the surface of sand particle to reduce or block the flowing channels of water to improve the permeability resistance of sand. The results can be applied as the reference for chemical reinforcement sandy soil engineering, especially for surface protection of embankment, slope, and landfill.

  19. Sorbitol increases muscle glucose uptake ex vivo and inhibits intestinal glucose absorption ex vivo and in normal and type 2 diabetic rats.

    Science.gov (United States)

    Chukwuma, Chika Ifeanyi; Islam, Md Shahidul

    2017-04-01

    Previous studies have suggested that sorbitol, a known polyol sweetener, possesses glycemic control potentials. However, the effect of sorbitol on intestinal glucose absorption and muscle glucose uptake still remains elusive. The present study investigated the effects of sorbitol on intestinal glucose absorption and muscle glucose uptake as possible anti-hyperglycemic or glycemic control potentials using ex vivo and in vivo experimental models. Sorbitol (2.5% to 20%) inhibited glucose absorption in isolated rat jejuna (IC 50 = 14.6% ± 4.6%) and increased glucose uptake in isolated rat psoas muscle with (GU 50 = 3.5% ± 1.6%) or without insulin (GU 50 = 7.0% ± 0.5%) in a concentration-dependent manner. Furthermore, sorbitol significantly delayed gastric emptying, accelerated digesta transit, inhibited intestinal glucose absorption, and reduced blood glucose increase in both normoglycemic and type 2 diabetic rats after 1 h of coingestion with glucose. Data of this study suggest that sorbitol exhibited anti-hyperglycemic potentials, possibly via increasing muscle glucose uptake ex vivo and reducing intestinal glucose absorption in normal and type 2 diabetic rats. Hence, sorbitol may be further investigated as a possible anti-hyperglycemic sweetener.

  20. Suitability of Torrent Permeability Tester to measure air-permeability of covercrete

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, C.; Gonzales-Gasca, C. [Institute of Construction Sciences ' Eduardo Torroja' , Madrid (Spain); Torrent, R. [Portland Cement Institute, (Argentina)

    2000-07-01

    Suitability of the Torrent Permeability Tester (TPT) to measure the permeability of covercrete to air, both in the laboratory and the field, is investigated, and test results obtained in laboratory studies are discussed. The tests performed included the determination of air permeability (TPT method), oxygen permeability (Cembureau method) and capillary suction, rapid chloride permeability test (ASTM C 1202), as well as a one-year carbonation depth test. Concrete specimens of various compositions and curing regimes were used in the tests; the gas-permeability tests were repeated on the same specimens after 28 days, than again at 6 months and 12 months. Test results confirmed the suitability of the TPT as a useful tool in the characterization of the quality the of concrete cover. It was found to be sensitive to changes in concrete quality; repeatable for sensitive properties such as gas permeability ; also, it was found to correlate well with other durability-related properties. 10 refs., 8 tabs., 8 figs.

  1. Studies on the increase of capillary permeability in rat skin under the action of pyridoxal 5' phosphate

    International Nuclear Information System (INIS)

    Garcia Agudo, N.L. del M. de.

    1979-01-01

    The activity of pyridoxal 5'-phosphate (PLP) is described on the vascular permeability response, measured in the abdominal wall of rats from the amount of extravased Evans blue labelled with radioactive iodine 125 or 131. The PLP effect is related to histamine release as it has been showed by tha use of antihistaminics. An attempt has been made in order to correlate structure and biological activity by using PLP analogs. The intact molecule of PLP seems to be the proper active substance. The critical role of calcium in histamine release is discussed in relation to our observations. In the presence of high concentrations of calcium and lantanium, PLP fails to increase the vascular permeability; magnesium does not show any influence. The calcium mobilization produced by theophylline results in inhibition of the response. The course of the reaction between PLP and histamine in vitro was followed; the synthetic cyclic product is deprived of activity and does not interfere with the intrinsic effects of PLP and histamine. (Author) [pt

  2. Intestinal alkaline phosphatase administration in newborns decreases systemic inflammatory cytokine expression in a neonatal necrotizing enterocolitis rat model.

    Science.gov (United States)

    Rentea, Rebecca M; Liedel, Jennifer L; Fredrich, Katherine; Welak, Scott R; Pritchard, Kirkwood A; Oldham, Keith T; Simpson, Pippa M; Gourlay, David M

    2012-10-01

    Supplementation of intestinal alkaline phosphatase (IAP), an endogenous protein expressed in the intestines, decreases the severity of necrotizing enterocolitis (NEC)-associated intestinal injury and permeability. We hypothesized that IAP administration is protective in a dose-dependent manner of the inflammatory response in a neonatal rat model. Pre- and full-term newborn Sprague-Dawley rat pups were sacrificed on day of life 3. Control pups were vaginally delivered and dam fed. Preterm pups were delivered via cesarean section and exposed to intermittent hypoxia and formula feeds containing lipopolysaccharide (NEC) with and without IAP. Three different standardized doses were administered to a group of pups treated with 40, 4, and 0.4U/kg of bovine IAP (NEC+IAP40, IAP4, or IAP0.4U). Reverse transcription-real-time polymerase chain reaction (RT-PCR) for inducible nitric oxide synthase (iNOS) and tumor necrosis factor (TNF)-α on liver and lung tissues and serum cytokine analysis for interleukin (IL)-1β, IL-6, IL-10, and TNF-α were performed. Data were analyzed by Kruskal-Wallis and Mann-Whitney tests, expressed as mean±standard error of the mean and P≤0.05 considered significant. Levels of cytokines IL-1β, IL-6, and TNF-α increased significantly in NEC versus control, returning to control levels with increasing doses of supplemental enteral IAP. Hepatic and pulmonary TNF-α and iNOS messenger ribonucleic acid expressions increased in NEC, and the remaining elevated despite IAP supplementation. Proinflammatory cytokine expression is increased systemically with intestinal NEC injury. Administration of IAP significantly reduces systemic proinflammatory cytokine expression in a dose-dependent manner. Early supplemental enteral IAP may reduce NEC-related injury and be useful for reducing effects caused by a proinflammatory cascade. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Permeability of salt-crystal interfaces to brine

    International Nuclear Information System (INIS)

    Gilpatrick, L.O.; Baes, C.F. Jr.; Shor, A.J.; Canonico, C.M.

    1982-06-01

    To investigate the movement of brine along grain boundaries in polycrystalline salt, measurements have been made of the radial flow of brine through the interface between cylindrical salt crystals under axial stresses to 140 bar and temperatures to 80 0 C. For constant conditions, the total flow of brine showed a linear dependence on the logarithm of time, and the reciprocal permeability increased linearly with time. Loss of salt from the interface by pressure solution effects was more than enough to account for the decrease in the apparent thickness of the interface (i.e., that which may be estimated for an interface of the same permeability formed by plane parallel surfaces). This apparent thickness, initially as large as 10 μm, decreased to as little as 0.2 μm with exposure to stress and flowing brine. It decreased quickly with sudden increases in axial stress and usually increased, though not reversibly, with decreases in stress. The rate of increase in the reciprocal permeability with time was roughly proportional to the stress and to the square of the hydraulic pressure drop. Assuming similar apparent thicknesses for the grain boundaries in polycrystalline salt, permeabilities are predicted that are quite consistent with the low values reported for stressed core specimens

  4. Mast Cell Tryptase Reduces Junctional Adhesion Molecule-A (JAM-A) Expression in Intestinal Epithelial Cells: Implications for the Mechanisms of Barrier Dysfunction in Irritable Bowel Syndrome.

    LENUS (Irish Health Repository)

    Wilcz-Villega, Ewa M

    2013-07-01

    The objective of this study was to investigate how mast cell tryptase may influence intestinal permeability and tight junction (TJ) proteins in vitro and explore translation to irritable bowel syndrome (IBS).

  5. Increased IGF-IEc expression and mechano-growth factor production in intestinal muscle of fibrostenotic Crohn's disease and smooth muscle hypertrophy.

    Science.gov (United States)

    Li, Chao; Vu, Kent; Hazelgrove, Krystina; Kuemmerle, John F

    2015-12-01

    The igf1 gene is alternatively spliced as IGF-IEa and IGF-IEc variants in humans. In fibrostenotic Crohn's disease, the fibrogenic cytokine TGF-β1 induces IGF-IEa expression and IGF-I production in intestinal smooth muscle and results in muscle hyperplasia and collagen I production that contribute to stricture formation. Mechano-growth factor (MGF) derived from IGF-IEc induces skeletal and cardiac muscle hypertrophy following stress. We hypothesized that increased IGF-IEc expression and MGF production mediated smooth muscle hypertrophy also characteristic of fibrostenotic Crohn's disease. IGF-IEc transcripts and MGF protein were increased in muscle cells isolated from fibrostenotic intestine under regulation by endogenous TGF-β1. Erk5 and MEF2C were phosphorylated in vivo in fibrostenotic muscle; both were phosphorylated and colocalized to nucleus in response to synthetic MGF in vitro. Smooth muscle-specific protein expression of α-smooth muscle actin, γ-smooth muscle actin, and smoothelin was increased in affected intestine. Erk5 inhibition or MEF2C siRNA blocked smooth muscle-specific gene expression and hypertrophy induced by synthetic MGF. Conditioned media of cultured fibrostenotic muscle induced muscle hypertrophy that was inhibited by immunoneutralization of endogenous MGF or pro-IGF-IEc. The results indicate that TGF-β1-dependent IGF-IEc expression and MGF production in patients with fibrostenotic Crohn's disease regulates smooth muscle cell hypertrophy a critical factor that contributes to intestinal stricture formation. Copyright © 2015 the American Physiological Society.

  6. Computational Studies of Drug Release, Transport and Absorption in the Human Intestines

    Science.gov (United States)

    Behafarid, Farhad; Brasseur, J. G.; Vijayakumar, G.; Jayaraman, B.; Wang, Y.

    2016-11-01

    Following disintegration of a drug tablet, a cloud of particles 10-200 μm in diameter enters the small intestine where drug molecules are absorbed into the blood. Drug release rate depends on particle size, solubility and hydrodynamic enhancements driven by gut motility. To quantify the interrelationships among dissolution, transport and wall permeability, we apply lattice Boltzmann method to simulate the drug concentration field in the 3D gut released from polydisperse distributions of drug particles in the "fasting" vs. "fed" motility states. Generalized boundary conditions allow for both solubility and gut wall permeability to be systematically varied. We apply a local 'quasi-steady state' approximation for drug dissolution using a mathematical model generalized for hydrodynamic enhancements and heterogeneity in drug release rate. We observe fundamental differences resulting from the interplay among release, transport and absorption in relationship to particle size distribution, luminal volume, motility, solubility and permeability. For example, whereas smaller volume encourages higher bulk concentrations and reduced release rate, it also encourages higher absorption rate, making it difficult to generalize predictions. Supported by FDA.

  7. Apparent permeability of electrical steel under PWM magnetisation

    International Nuclear Information System (INIS)

    Moses, A.J.; Leicht, J.; Anderson, P.

    2006-01-01

    In recent years much attention has been paid to material performance under pulse width modulation (PWM) excitation conditions, which is of increasing importance to motor applications particularly in energy efficient variable speed drive systems. It is well known that in general, losses increase significantly with reducing modulation index, the increase depending on parameters such as silicon contents, thickness and grain size. The effect of the PWM waveform on permeability has attracted little attention until now. So in this paper its influence on the permeability of electrical steel is analysed and characterised. A prediction approach based on the permeability under sine wave excitation and total harmonic distortion is introduced which results in errors below 10% for non-electrical steel at 1.5 T

  8. Effect of ionising radiation exposure on structure and permeability of epithelial junctions in rat ileum

    International Nuclear Information System (INIS)

    Lebrum, F.; Dublineau, I.; Grison, S.; Strup, C.; Griffiths, N.M.

    2002-01-01

    Exposure of the digestive tract to ionising radiation results in both morphological and functional alterations of the small intestine. However little is known about the effect of irradiation on the junctions playing a major role in the maintenance of epithelial barrier integrity. Thus the aim of this study was to investigate, in rat ileum, the effect of radiation exposure on the permeability of the epithelial barrier in parallel with the localization of certain inter- and intra-cellular proteins of tight and adherent junctions

  9. Necrotizing Enterocolitis in Preterm Pigs Is Associated with Increased Density of Intestinal Mucosa-Associated Bacteria Including Clostridium perfringens

    DEFF Research Database (Denmark)

    Støy, Ann Cathrine Findal; Mølbak, Lars; Delègue, Camilla Lindholm

    2015-01-01

    correlates with NEC severity in preterm pigs and that in vitro infection with increasing densities of Clostridium perfringens, which has been associated with NEC in preterm infants, would lead to a transcriptional response related to the inflammatory conditions of NEC. Methods: First, we determined...... the density of total bacteria and C. perfringens in the distal small intestinal mucosa of 58 NEC and healthy preterm pigs using quantitative PCR. Next, we analyzed in IPEC-J2 cells the effect of different infection densities of C. perfringens type A on the expression of genes related to intestinal function...

  10. Ascorbic acid attenuates endothelial permeability triggered by cell-free hemoglobin.

    Science.gov (United States)

    Kuck, Jamie L; Bastarache, Julie A; Shaver, Ciara M; Fessel, Joshua P; Dikalov, Sergey I; May, James M; Ware, Lorraine B

    2018-01-01

    Increased endothelial permeability is central to shock and organ dysfunction in sepsis but therapeutics targeted to known mediators of increased endothelial permeability have been unsuccessful in patient studies. We previously reported that cell-free hemoglobin (CFH) is elevated in the majority of patients with sepsis and is associated with organ dysfunction, poor clinical outcomes and elevated markers of oxidant injury. Others have shown that Vitamin C (ascorbate) may have endothelial protective effects in sepsis. In this study, we tested the hypothesis that high levels of CFH, as seen in the circulation of patients with sepsis, disrupt endothelial barrier integrity. Human umbilical vein endothelial cells (HUVEC) were grown to confluence and treated with CFH with or without ascorbate. Monolayer permeability was measured by Electric Cell-substrate Impedance Sensing (ECIS) or transfer of 14 C-inulin. Viability was measured by trypan blue exclusion. Intracellular ascorbate was measured by HPLC. CFH increased permeability in a dose- and time-dependent manner with 1 mg/ml of CFH increasing inulin transfer by 50% without affecting cell viability. CFH (1 mg/ml) also caused a dramatic reduction in intracellular ascorbate in the same time frame (1.4 mM without CFH, 0.23 mM 18 h after 1 mg/ml CFH, p < 0.05). Pre-treatment of HUVECs with ascorbate attenuated CFH induced permeability. CFH increases endothelial permeability in part through depletion of intracellular ascorbate. Supplementation of ascorbate can attenuate increases in permeability mediated by CFH suggesting a possible therapeutic approach in sepsis. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Increasing oral absorption of polar neuraminidase inhibitors: a prodrug transporter approach applied to oseltamivir analogue.

    Science.gov (United States)

    Gupta, Deepak; Varghese Gupta, Sheeba; Dahan, Arik; Tsume, Yasuhiro; Hilfinger, John; Lee, Kyung-Dall; Amidon, Gordon L

    2013-02-04

    Poor oral absorption is one of the limiting factors in utilizing the full potential of polar antiviral agents. The neuraminidase target site requires a polar chemical structure for high affinity binding, thus limiting oral efficacy of many high affinity ligands. The aim of this study was to overcome this poor oral absorption barrier, utilizing prodrug to target the apical brush border peptide transporter 1 (PEPT1). Guanidine oseltamivir carboxylate (GOCarb) is a highly active polar antiviral agent with insufficient oral bioavailability (4%) to be an effective therapeutic agent. In this report we utilize a carrier-mediated targeted prodrug approach to improve the oral absorption of GOCarb. Acyloxy(alkyl) ester based amino acid linked prodrugs were synthesized and evaluated as potential substrates of mucosal transporters, e.g., PEPT1. Prodrugs were also evaluated for their chemical and enzymatic stability. PEPT1 transport studies included [(3)H]Gly-Sar uptake inhibition in Caco-2 cells and cellular uptake experiments using HeLa cells overexpressing PEPT1. The intestinal membrane permeabilities of the selected prodrugs and the parent drug were then evaluated for epithelial cell transport across Caco-2 monolayers, and in the in situ rat intestinal jejunal perfusion model. Prodrugs exhibited a pH dependent stability with higher stability at acidic pHs. Significant inhibition of uptake (IC(50) 30-fold increase in affinity compared to GOCarb. The l-valyl prodrug exhibited significant enhancement of uptake in PEPT1/HeLa cells and compared favorably with the well-absorbed valacyclovir. Transepithelial permeability across Caco-2 monolayers showed that these amino acid prodrugs have a 2-5-fold increase in permeability as compared to the parent drug and showed that the l-valyl prodrug (P(app) = 1.7 × 10(-6) cm/s) has the potential to be rapidly transported across the epithelial cell apical membrane. Significantly, only the parent drug (GOCarb) appeared in the basolateral

  12. Frictional stability-permeability relationships for fractures in shales

    Science.gov (United States)

    Fang, Yi; Elsworth, Derek; Wang, Chaoyi; Ishibashi, Takuya; Fitts, Jeffrey P.

    2017-03-01

    There is wide concern that fluid injection in the subsurface, such as for the stimulation of shale reservoirs or for geological CO2 sequestration (GCS), has the potential to induce seismicity that may change reservoir permeability due to fault slip. However, the impact of induced seismicity on fracture permeability evolution remains unclear due to the spectrum of modes of fault reactivation (e.g., stable versus unstable). As seismicity is controlled by the frictional response of fractures, we explore friction-stability-permeability relationships through the concurrent measurement of frictional and hydraulic properties of artificial fractures in Green River shale (GRS) and Opalinus shale (OPS). We observe that carbonate-rich GRS shows higher frictional strength but weak neutral frictional stability. The GRS fracture permeability declines during shearing while an increased sliding velocity reduces the rate of permeability decline. By comparison, the phyllosilicate-rich OPS has lower friction and strong stability while the fracture permeability is reduced due to the swelling behavior that dominates over the shearing induced permeability reduction. Hence, we conclude that the friction-stability-permeability relationship of a fracture is largely controlled by mineral composition and that shale mineral compositions with strong frictional stability may be particularly subject to permanent permeability reduction during fluid infiltration.

  13. Kaiso overexpression promotes intestinal inflammation and potentiates intestinal tumorigenesis in Apc(Min/+) mice.

    Science.gov (United States)

    Pierre, Christina C; Longo, Joseph; Mavor, Meaghan; Milosavljevic, Snezana B; Chaudhary, Roopali; Gilbreath, Ebony; Yates, Clayton; Daniel, Juliet M

    2015-09-01

    Constitutive Wnt/β-catenin signaling is a key contributor to colorectal cancer (CRC). Although inactivation of the tumor suppressor adenomatous polyposis coli (APC) is recognized as an early event in CRC development, it is the accumulation of multiple subsequent oncogenic insults facilitates malignant transformation. One potential contributor to colorectal carcinogenesis is the POZ-ZF transcription factor Kaiso, whose depletion extends lifespan and delays polyp onset in the widely used Apc(Min/+) mouse model of intestinal cancer. These findings suggested that Kaiso potentiates intestinal tumorigenesis, but this was paradoxical as Kaiso was previously implicated as a negative regulator of Wnt/β-catenin signaling. To resolve Kaiso's role in intestinal tumorigenesis and canonical Wnt signaling, we generated a transgenic mouse model (Kaiso(Tg/+)) expressing an intestinal-specific myc-tagged Kaiso transgene. We then mated Kaiso(Tg/+) and Apc(Min/+) mice to generate Kaiso(Tg/+):Apc(Min/+) mice for further characterization. Kaiso(Tg/+):Apc(Min/+) mice exhibited reduced lifespan and increased polyp multiplicity compared to Apc(Min/+) mice. Consistent with this murine phenotype, we found increased Kaiso expression in human CRC tissue, supporting a role for Kaiso in human CRC. Interestingly, Wnt target gene expression was increased in Kaiso(Tg/+):Apc(Min/+) mice, suggesting that Kaiso's function as a negative regulator of canonical Wnt signaling, as seen in Xenopus, is not maintained in this context. Notably, Kaiso(Tg/+):Apc(Min/+) mice exhibited increased inflammation and activation of NFκB signaling compared to their Apc(Min/+) counterparts. This phenotype was consistent with our previous report that Kaiso(Tg/+) mice exhibit chronic intestinal inflammation. Together our findings highlight a role for Kaiso in promoting Wnt signaling, inflammation and tumorigenesis in the mammalian intestine. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Polarity of fatty acid uptake and metabolism in a human intestinal cell line (CACO-2)

    International Nuclear Information System (INIS)

    Trotter, P.J.; Storch, J.

    1990-01-01

    Free fatty acids (ffa) can enter the intestinal cell via the apical (AP) or basolateral (BL) membrane. The authors are using the Caco-2 intestinal cell line to examine the polarity of ffa uptake and metabolism in the enterocyte. Cells are grown on permeable polycarbonate Transwell filters in order to obtain access to both AP and BL compartments. Differentiated Caco-2 cells form tight polarized monolayers which express small intestine-specific enzymes and are impermeable to the fluid phase marker Lucifer Yellow. Submicellar concentrations of 3 H-palmitic acid (2uM) were added to AP or BL sides of Caco-2 monolayers at 37 degrees C and cells were incubated for various times between 2 and 120 minutes. Total AP and BL uptake is similar; however, when relative membrane surface areas are accounted for, AP uptake is about 2-fold higher. The metabolism of AP and BL ffa is not significantly different: triacylglycerol and phosphatidylcholine account for most of the metabolites (32±4 and 24±2% respectively at 5 minutes). Little ffa oxidation is observed. Preincubation with albumin-bound 2-monoolein (100uM) and palmitate (50uM) increases the level of TG metabolites. The results suggest that in this cell line the uptake of AP ffa may be greater than BL ffa, but that AP (dietary) ffa and BL (plasma) ffa are metabolized similarly

  15. Increased Intestinal Inflammation and Digestive Dysfunction in Preterm Pigs with Severe Necrotizing Enterocolitis

    DEFF Research Database (Denmark)

    Støy, Ann Cathrine Findal; Heegaard, Peter M. H.; Skovgaard, Kerstin

    2017-01-01

    The risk factors for necrotizing enterocolitis (NEC) are well known, but the factors involved in the different NEC presentations remain unclear. We hypothesized that digestive dysfunction and intestinal inflammation are mainly affected by severe NEC lesions. In 48 preterm pigs, the association...... between the macroscopic NEC score (range 1-6) and the expression of 48 genes related to inflammation, morphological, and digestive parameters in the distal small intestine was investigated. Only severe NEC cases (score of 5-6) were associated with the upregulation of genes involved in inflammation (CCL2...... and decreased hydrolase activity. A severe inflammatory response and digestive dysfunction are associated mainly with severe NEC. Still, it remains difficult to separate the initial causes of NEC and the later intestinal consequences of NEC in both infants and experimental models....

  16. Evaluation of the intestinal permeability of rosemary (Rosmarinus officinalis L. extract polyphenols and terpenoids in Caco-2 cell monolayers.

    Directory of Open Access Journals (Sweden)

    Almudena Pérez-Sánchez

    Full Text Available Rosemary (Rosmarinus officinalis is grown throughout the world and is widely used as a medicinal herb and to season and preserve food. Rosemary polyphenols and terpenoids have attracted great interest due to their potential health benefits. However, complete information regarding their absorption and bioavailability in Caco-2 cell model is scarce. The permeation properties of the bioactive compounds (flavonoids, diterpenes, triterpenes and phenylpropanoids of a rosemary extract (RE, obtained by supercritical fluid extraction, was studied in Caco-2 cell monolayer model, both in a free form or liposomed. Compounds were identified and quantitated by liquid chromatography coupled to quadrupole time-of-flight with electrospray ionization mass spectrometry analysis (HPLC-ESI-QTOF-MS, and the apparent permeability values (Papp were determined, for the first time in the extract, for 24 compounds in both directions across cell monolayer. For some compounds, such as triterpenoids and some flavonoids, Papp values found were reported for the first time in Caco-2 cells.Our results indicate that most compounds are scarcely absorbed, and passive diffusion is suggested to be the primary mechanism of absorption. The use of liposomes to vehiculize the extract resulted in reduced permeability for most compounds. Finally, the biopharmaceutical classification (BCS of all the compounds was achieved according to their permeability and solubility data for bioequivalence purposes. BCS study reveal that most of the RE compounds could be classified as classes III and IV (low permeability; therefore, RE itself should also be classified into this category.

  17. Evaluation of the intestinal permeability of rosemary (Rosmarinus officinalis L.) extract polyphenols and terpenoids in Caco-2 cell monolayers

    Science.gov (United States)

    Arráez-Román, David; González-Álvarez, Isabel; Ibáñez, Elena; Segura-Carretero, Antonio; Bermejo, Marival; Micol, Vicente

    2017-01-01

    Rosemary (Rosmarinus officinalis) is grown throughout the world and is widely used as a medicinal herb and to season and preserve food. Rosemary polyphenols and terpenoids have attracted great interest due to their potential health benefits. However, complete information regarding their absorption and bioavailability in Caco-2 cell model is scarce. The permeation properties of the bioactive compounds (flavonoids, diterpenes, triterpenes and phenylpropanoids) of a rosemary extract (RE), obtained by supercritical fluid extraction, was studied in Caco-2 cell monolayer model, both in a free form or liposomed. Compounds were identified and quantitated by liquid chromatography coupled to quadrupole time-of-flight with electrospray ionization mass spectrometry analysis (HPLC-ESI-QTOF-MS), and the apparent permeability values (Papp) were determined, for the first time in the extract, for 24 compounds in both directions across cell monolayer. For some compounds, such as triterpenoids and some flavonoids, Papp values found were reported for the first time in Caco-2 cells.Our results indicate that most compounds are scarcely absorbed, and passive diffusion is suggested to be the primary mechanism of absorption. The use of liposomes to vehiculize the extract resulted in reduced permeability for most compounds. Finally, the biopharmaceutical classification (BCS) of all the compounds was achieved according to their permeability and solubility data for bioequivalence purposes. BCS study reveal that most of the RE compounds could be classified as classes III and IV (low permeability); therefore, RE itself should also be classified into this category. PMID:28234919

  18. Study on road surface source pollution controlled by permeable pavement

    Science.gov (United States)

    Zheng, Chaocheng

    2018-06-01

    The increase of impermeable pavement in urban construction not only increases the runoff of the pavement, but also produces a large number of Non-Point Source Pollution. In the process of controlling road surface runoff by permeable pavement, a large number of particulate matter will be withheld when rainwater is being infiltrated, so as to control the source pollution at the source. In this experiment, we determined the effect of permeable road surface to remove heavy pollutants in the laboratory and discussed the related factors that affect the non-point pollution of permeable pavement, so as to provide a theoretical basis for the application of permeable pavement.

  19. Calculation of Permeability inside the Basket including one Fuel Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Seung Hwan; Bang, Kyung Sik; Lee, Ju an; Choi, Woo Seok [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In general, the porous media model and the effective thermal conductivity were used to simply the fuel assembly. The methods of calculating permeability were compared considering the flow inside a basket which includes a nuclear fuel. Detailed fuel assembly was a computational modeling and the flow characteristics were investigated. The flow inside the basket which included a fuel assembly is analyzed by CFD. As the height of the fuel assembly increases, the pressure drop linearly increased. The inertia resistance could be neglected. Three methods to calculate the permeability were compared. The permeability by the friction factor is 50% less than the permeability by wall shear stress and pressure drop.

  20. The effect of fucoidan on intestinal flora and intestinal barrier function in rats with breast cancer.

    Science.gov (United States)

    Xue, Meilan; Ji, Xinqiang; Liang, Hui; Liu, Ying; Wang, Bing; Sun, Lingling; Li, Weiwei

    2018-02-21

    Recent research studies have shown that the intestinal flora are related to the occurrence and progress of breast cancer. This study investigates the effect of fucoidan on intestinal flora and intestinal barrier function in rats with 7,12-dimethylbenz[a]anthracene (DMBA)-induced breast cancers. Sixty female Sprague-Dawley rats were randomly assigned to the control group, the model group, and the F1 and F2 groups, which were fed fucoidan at concentrations of 200 and 400 mg per kg bw (body weight), respectively. Intestinal histopathological analysis was performed and 16S rDNA high-throughput sequencing was used to provide an overview of the intestinal flora composition. The contents of d-lactic acid (d-LA), diamine oxidase (DAO) and endotoxin in plasma were detected by ELISA. Expression levels of the tight junction (TJ) proteins, phosphorylated p38 MAPK and ERK1/2 were measured using western blotting. Our results suggested that the intestinal wall of the model group was damaged. However, after fucoidan intervention, the villi were gradually restored. ELISA showed that the levels of plasma endotoxin, d-LA and DAO decreased in the F1 and F2 groups compared to those in the model group. Fucoidan treatment also increased the expressions of ZO-1, occludin, claudin-1 and claudin-8. Furthermore, the expression levels of phosphorylated p38 MAPK and ERK1/2 were upregulated in fucoidan treatment groups. The results of 16S rDNA high-throughput sequencing indicated that fucoidan increased the diversity of the intestinal microbiota and induced changes in microbial composition, with the increased Bacteroidetes/Firmicutes phylum ratio. In conclusion, the supplement of fucoidan could improve the fecal microbiota composition and repair the intestinal barrier function. The study suggested the use of fucoidan as an intestinal flora modulator for potential prevention of breast cancer.

  1. Methamphetamine transiently increases the blood-brain barrier permeability in the hippocampus: role of tight junction proteins and matrix metalloproteinase-9.

    Science.gov (United States)

    Martins, Tânia; Baptista, Sofia; Gonçalves, Joana; Leal, Ermelindo; Milhazes, Nuno; Borges, Fernanda; Ribeiro, Carlos F; Quintela, Oscar; Lendoiro, Elena; López-Rivadulla, Manuel; Ambrósio, António F; Silva, Ana P

    2011-09-09

    Methamphetamine (METH) is a powerful stimulant drug of abuse that has steadily gained popularity worldwide. It is known that METH is highly neurotoxic and causes irreversible damage of brain cells leading to neurological and psychiatric abnormalities. Recent studies suggested that METH-induced neurotoxicity might also result from its ability to compromise blood-brain barrier (BBB) function. Due to the crucial role of BBB in the maintenance of brain homeostasis and protection against toxic molecules and pathogenic organisms, its dysfunction could have severe consequences. In this study, we investigated the effect of an acute high dose of METH (30mg/kg) on BBB permeability after different time points and in different brain regions. For that, young adult mice were sacrificed 1h, 24h or 72h post-METH administration. METH increased BBB permeability, but this effect was detected only at 24h after administration, being therefore a transitory effect. Interestingly, we also found that the hippocampus was the most susceptible brain region to METH, comparing to frontal cortex and striatum. Moreover, in an attempt to identify the key players in METH-induced BBB dysfunction we further investigated potential alterations in tight junction (TJ) proteins and matrix metalloproteinase-9 (MMP-9). METH was able to decrease the protein levels of zonula occludens (ZO)-1, claudin-5 and occludin in the hippocampus 24h post-injection, and increased the activity and immunoreactivity of MMP-9. The pre-treatment with BB-94 (30mg/kg), a matrix metalloproteinase inhibitor, prevented the METH-induced increase in MMP-9 immunoreactivity in the hippocampus. Overall, the present data demonstrate that METH transiently increases the BBB permeability in the hippocampus, which can be explained by alterations on TJ proteins and MMP-9. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Bentonite Permeability at Elevated Temperature

    Directory of Open Access Journals (Sweden)

    Katherine A. Daniels

    2017-01-01

    Full Text Available Repository designs frequently favour geological disposal of radioactive waste with a backfill material occupying void space around the waste. The backfill material must tolerate the high temperatures produced by decaying radioactive waste to prevent its failure or degradation, leading to increased hydraulic conductivity and reduced sealing performance. The results of four experiments investigating the effect of temperature on the permeability of a bentonite backfill are presented. Bentonite is a clay commonly proposed as the backfill in repository designs because of its high swelling capacity and very low permeability. The experiments were conducted in two sets of purpose-built, temperature controlled apparatus, designed to simulate isotropic pressure and constant volume conditions within the testing range of 4–6 MPa average effective stress. The response of bentonite during thermal loading at temperatures up to 200 °C was investigated, extending the previously considered temperature range. The results provide details of bentonite’s intrinsic permeability, total stress, swelling pressure and porewater pressure during thermal cycles. We find that bentonite’s hydraulic properties are sensitive to thermal loading and the type of imposed boundary condition. However, the permeability change is not large and can mostly be accounted for by water viscosity changes. Thus, under 150 °C, temperature has a minimal impact on bentonite’s hydraulic permeability.

  3. A Systematic Procedure to Describe Shale Gas Permeability Evolution during the Production Process

    Science.gov (United States)

    Jia, B.; Tsau, J. S.; Barati, R.

    2017-12-01

    Gas flow behavior in shales is complex due to the multi-physics nature of the process. Pore size reduces as the in-situ stress increases during the production process, which will reduce intrinsic permeability of the porous media. Slip flow/pore diffusion enhances gas apparent permeability, especially under low reservoir pressures. Adsorption not only increases original gas in place but also influences gas flow behavior because of the adsorption layer. Surface diffusion between free gas and adsorption phase enhances gas permeability. Pore size reduction and the adsorption layer both have complex impacts on gas apparent permeability and non-Darcy flow might be a major component in nanopores. Previously published literature is generally incomplete in terms of coupling of all these four physics with fluid flow during gas production. This work proposes a methodology to simultaneously take them into account to describe a permeability evolution process. Our results show that to fully describe shale gas permeability evolution during gas production, three sets of experimental data are needed initially: 1) intrinsic permeability under different in-situ stress, 2) adsorption isotherm under reservoir conditions and 3) surface diffusivity measurement by the pulse-decay method. Geomechanical effects, slip flow/pore diffusion, adsorption layer and surface diffusion all play roles affecting gas permeability. Neglecting any of them might lead to misleading results. The increasing in-situ stress during shale gas production is unfavorable to shale gas flow process. Slip flow/pore diffusion is important for gas permeability under low pressures in the tight porous media. They might overwhelm the geomechanical effect and enhance gas permeability at low pressures. Adsorption layer reduces the gas permeability by reducing the effective pore size, but the effect is limited. Surface diffusion increases gas permeability more under lower pressures. The total gas apparent permeability might

  4. Highly permeable, cement-bounded backfilling mortars for SMA repositories

    International Nuclear Information System (INIS)

    Jacobs, F.; Mayer, G.; Wittmann, F.H.

    1994-03-01

    In low- and intermediate-level waste repositories, gas is produced due e.g. to corrosion. This gas must be able to escape from the repository in order to prevent damage to the repository structure. A cement-based backfill should take over this function. For this purpose, the composition of cement-based materials was varied to study their influence on porosity and permeability. In parallel to this study the behaviour of fresh concrete, the liberation of the heat of hydration and the hardened concrete properties were investigated. To characterize the permeability of cement-based materials the following parameters are important: 1) composition of the material (pore fabric), 2) storage conditions (degree of saturation), 3) degree of hydration (age), 4) measuring fluid. A change in the composition of cement-based materials can vary the permeability by ten orders of magnitude. It is shown that, by using dense aggregates, the transport of the fluid takes place through the matrix and along the aggregate/matrix interface. By using porous aggregates the permeability can be increased by two orders of magnitude. In the case of a dense matrix, porous aggregates do not alter the permeability. Increasing the matrix content or interface content increases permeability. Hence light weight mortars are an obvious choice. Like-grained mixes showed higher permeabilities in combination with better mechanical properties but, in comparison to normal mixes, they showed worse flow properties. With the composition cement-: water-: aggregate content 1:0.4:5.33 the likegrained mix with aggregates ranging from 2 to 3 mm proved to be a suitable material. With a low compaction after 28 days this mix reaches a permeability of 4.10 -12 m 2 and an uniaxial cylinder compressive strength of 16 N/mm 2 . (author) 58 figs., 23 tabs., refs

  5. A hypermorphic epithelial β-catenin mutation facilitates intestinal tumorigenesis in mice in response to compounding WNT-pathway mutations

    Directory of Open Access Journals (Sweden)

    Michael Buchert

    2015-11-01

    Full Text Available Activation of the Wnt/β-catenin pathway occurs in the vast majority of colorectal cancers. However, the outcome of the disease varies markedly from individual to individual, even within the same tumor stage. This heterogeneity is governed to a great extent by the genetic make-up of individual tumors and the combination of oncogenic mutations. In order to express throughout the intestinal epithelium a degradation-resistant β-catenin (Ctnnb1, which lacks the first 131 amino acids, we inserted an epitope-tagged ΔN(1-131-β-catenin-encoding cDNA as a knock-in transgene into the endogenous gpA33 gene locus in mice. The resulting gpA33ΔN-Bcat mice showed an increase in the constitutive Wnt/β-catenin pathway activation that shifts the cell fate towards the Paneth cell lineage in pre-malignant intestinal epithelium. Furthermore, 19% of all heterozygous and 37% of all homozygous gpA33ΔN-Bcat mice spontaneously developed aberrant crypt foci and adenomatous polyps, at frequencies and latencies akin to those observed in sporadic colon cancer in humans. Consistent with this, the Wnt target genes, MMP7  and Tenascin-C, which are most highly expressed in benign human adenomas and early tumor stages, were upregulated in pre-malignant tissue of gpA33ΔN-Bcat mice, but those Wnt target genes associated with excessive proliferation (i.e. Cdnn1, myc were not. We also detected diminished expression of membrane-associated α-catenin and increased intestinal permeability in gpA33ΔN-Bcat mice in challenge conditions, providing a potential explanation for the observed mild chronic intestinal inflammation and increased susceptibility to azoxymethane and mutant Apc-dependent tumorigenesis. Collectively, our data indicate that epithelial expression of ΔN(1-131-β-catenin in the intestine creates an inflammatory microenvironment and co-operates with other mutations in the Wnt/β-catenin pathway to facilitate and promote tumorigenesis.

  6. Damage-induced permeability changes around underground excavations

    International Nuclear Information System (INIS)

    Coll, C.

    2005-07-01

    The storage of nuclear waste in deep geological formations is now considered more and more as a potential solution. During excavation, a disturbed zone develops in which damaging can be important and which can lead eventually to the failure of the rock. Fluid flow and permeability in the rock mass can be significantly modified producing a possible security risk. Our work consisted in an experimental study of the hydro-mechanical coupling of two argillaceous rocks: Boom clay (Mol, Belgium) and Opalinus clay (Mont-Terri, Switzerland). Triaxial tests were performed in a saturated state to study the permeability evolution of both clays with isotropic and deviatoric stresses. Argillaceous rocks are geo-materials with complex behaviour governed by numerous coupled processes. Strong physico-chemical interactions between the fluid and the solid particles and their very low permeability required the modification of the experimental set up. Moreover, specific procedures were developed to measure permeability and to detect strain localisation in shear bands. We show that for Boom Clay, permeability is not significantly influenced by strain localisation. For Opalinus clay, fracturing can induce an increase of the permeability at low confining pressure. (author)

  7. Prophylactic Ozone Administration Reduces Intestinal Mucosa Injury Induced by Intestinal Ischemia-Reperfusion in the Rat

    Directory of Open Access Journals (Sweden)

    Ozkan Onal

    2015-01-01

    Full Text Available Objectives. Intestinal ischemia-reperfusion injury is associated with mucosal damage and has a high rate of mortality. Various beneficial effects of ozone have been shown. The aim of the present study was to show the effects of ozone in ischemia reperfusion model in intestine. Material and Method. Twenty eight Wistar rats were randomized into four groups with seven rats in each group. Control group was administered serum physiologic (SF intraperitoneally (ip for five days. Ozone group was administered 1 mg/kg ozone ip for five days. Ischemia Reperfusion (IR group underwent superior mesenteric artery occlusion for one hour and then reperfusion for two hours. Ozone + IR group was administered 1 mg/kg ozone ip for five days and at sixth day IR model was applied. Rats were anesthetized with ketamine∖xyzlazine and their intracardiac blood was drawn completely and they were sacrificed. Intestinal tissue samples were examined under light microscope. Levels of superoxide dismutase (SOD, catalase (CAT, glutathioneperoxidase (GSH-Px, malondyaldehide (MDA, and protein carbonyl (PCO were analyzed in tissue samples. Total oxidant status (TOS, and total antioxidant capacity (TAC were analyzed in blood samples. Data were evaluated statistically by Kruskal Wallis test. Results. In the ozone administered group, degree of intestinal injury was not different from the control group. IR caused an increase in intestinal injury score. The intestinal epithelium maintained its integrity and decrease in intestinal injury score was detected in Ozone + IR group. SOD, GSH-Px, and CAT values were high in ozone group and low in IR. TOS parameter was highest in the IR group and the TAC parameter was highest in the ozone group and lowest in the IR group. Conclusion. In the present study, IR model caused an increase in intestinal injury.In the present study, ozone administration had an effect improving IR associated tissue injury. In the present study, ozone therapy

  8. The jagged-2/notch-1/hes-1 pathway is involved in intestinal epithelium regeneration after intestinal ischemia-reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Guoqing Chen

    Full Text Available Notch signaling plays a critical role in the maintenance of intestinal crypt epithelial cell proliferation. The aim of this study was to investigate the role of Notch signaling in the proliferation and regeneration of intestinal epithelium after intestinal ischemia reperfusion (I/R injury.Male Sprague-Dawley rats were subjected to sham operation or I/R by occlusion of the superior mesenteric artery (SMA for 20 min. Intestinal tissue samples were collected at 0, 1, 2, 4, and 6 h after reperfusion. Proliferation of the intestinal epithelium was evaluated by immunohistochemical staining of proliferating nuclear antigen (PCNA. The mRNA and protein expression levels of Notch signaling components were examined using Real-time PCR and Western blot analyses. Immunofluorescence was also performed to detect the expression and location of Jagged-2, cleaved Notch-1, and Hes-1 in the intestine. Finally, the γ-secretase inhibitor DAPT and the siRNA for Jagged-2 and Hes-1 were applied to investigate the functional role of Notch signaling in the proliferation of intestinal epithelial cells in an in vitro IEC-6 culture system.I/R injury caused increased intestinal crypt epithelial cell proliferation and increased mRNA and protein expression of Jagged-2, Notch-1, and Hes-1. The immunofluorescence results further confirmed increased protein expression of Jagged-2, cleaved Notch-1, and Hes-1 in the intestinal crypts. The inhibition of Notch signaling with DAPT and the suppression of Jagged-2 and Hes-1 expression using siRNA both significantly inhibited the proliferation of IEC-6 cells.The Jagged-2/Notch-1/Hes-1 signaling pathway is involved in intestinal epithelium regeneration early after I/R injury by increasing crypt epithelial cell proliferation.

  9. Polysulfone - CNT composite membrane with enhanced water permeability

    Science.gov (United States)

    Hirani, Bhakti; Kar, Soumitra; Aswal, V. K.; Bindal, R. C.; Goyal, P. S.

    2018-04-01

    Polymeric membranes are routinely used for water purification. The performance of these conventional membranes can be improved by incorporating nanomaterials, such as metal oxide nanoparticle and carbon nanotubes (CNTs). This manuscript reports the synthesis and characterization of polysulfone (Psf) based nanocomposite membranes where multi wall carbon nanotubes (MWCNTs) and oleic acid coated Fe3O4 nanoparticles have been impregnated onto the polymeric host matrix. The performance of the membranes was evaluated by water permeability and solute rejection measurements. It was observed that the permeability of Psf membrane increases three times at 0.1% loading of MWCNT without compromise in selectivity. It was further observed that the increase in permeability is not affected upon addition of Fe3O4 nanoparticles into the membrane. In order to get a better insight into the membrane microstructure, small angle neutron scattering (SANS) studies were carried out. There is a good correlation between the water permeability and the pore sizes of the membranes as measured using SANS.

  10. Compression characteristics and permeability of saturated Gaomiaozi ca-bentonite

    International Nuclear Information System (INIS)

    Sun Wenjing; Sun De'an; Fang Lei

    2012-01-01

    The compression characteristics and permeability of compacted Gaomiaozi Ca-bentonite saturated by the water uptake tests are studied by conducting a series of one-dimension compression tests. The permeability coefficient can be calculated by the Terzaghi's one-dimensional consolidation theory after the consolidation coefficient is obtained by the square root of time method. It is found that the compression curves of compacted specimens saturated by the water uptake tests tend to be consistent in the relatively high stress range. The compression indexes show a linear decrease with increasing dry density and the swelling index is a constant. The permeability coefficient decreases with increasing compression stress, and they show the linear relationship in double logarithmic coordinates. Meanwhile, the permeability coefficient shows a linear decrease with decreasing void ratio, which has no relationship with initial states, stress states and stress paths. The permeability coefficient k of GMZ Ca-bentonite at dry density Pd of 1.75 g/cm 3 can be calculated as 2.0 × 10 -11 cm/s by the linear relationship between Pd and log k. It is closed to the permeability coefficient of GMZ Ca-bentonite with the same dry density published in literature, which testifies that the method calculating the permeability coefficient is feasible from the consolidation coefficient obtained by the consolidation test. (authors)

  11. The effect of gastric inhibitory polypeptide on intestinal glucose absorption and intestinal motility in mice

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Eiichi [Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University (Japan); Hosokawa, Masaya [Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University (Japan); Faculty of Human Sciences, Tezukayama Gakuin University, Osaka (Japan); Harada, Norio; Yamane, Shunsuke; Hamasaki, Akihiro; Toyoda, Kentaro; Fujimoto, Shimpei; Fujita, Yoshihito; Fukuda, Kazuhito [Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University (Japan); Tsukiyama, Katsushi; Yamada, Yuichiro [Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University (Japan); Department of Internal Medicine, Division of Endocrinology, Diabetes and Geriatric Medicine, Akita University School of Medicine, Akita (Japan); Seino, Yutaka [Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University (Japan); Kansai Electric Power Hospital, Osaka (Japan); Inagaki, Nobuya, E-mail: inagaki@metab.kuhp.kyoto-u.ac.jp [Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University (Japan); CREST of Japan Science and Technology Cooperation (JST), Kyoto (Japan)

    2011-01-07

    Research highlights: {yields} Exogenous GIP inhibits intestinal motility through a somatostatin-mediated pathway. {yields} Exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility. {yields} The GIP-receptor-mediated action in intestine does not involve in GLP-1-mediated pathway. -- Abstract: Gastric inhibitory polypeptide (GIP) is released from the small intestine upon meal ingestion and increases insulin secretion from pancreatic {beta} cells. Although the GIP receptor is known to be expressed in small intestine, the effects of GIP in small intestine are not fully understood. This study was designed to clarify the effect of GIP on intestinal glucose absorption and intestinal motility. Intestinal glucose absorption in vivo was measured by single-pass perfusion method. Incorporation of [{sup 14}C]-glucose into everted jejunal rings in vitro was used to evaluate the effect of GIP on sodium-glucose co-transporter (SGLT). Motility of small intestine was measured by intestinal transit after oral administration of a non-absorbed marker. Intraperitoneal administration of GIP inhibited glucose absorption in wild-type mice in a concentration-dependent manner, showing maximum decrease at the dosage of 50 nmol/kg body weight. In glucagon-like-peptide-1 (GLP-1) receptor-deficient mice, GIP inhibited glucose absorption as in wild-type mice. In vitro examination of [{sup 14}C]-glucose uptake revealed that 100 nM GIP did not change SGLT-dependent glucose uptake in wild-type mice. After intraperitoneal administration of GIP (50 nmol/kg body weight), small intestinal transit was inhibited to 40% in both wild-type and GLP-1 receptor-deficient mice. Furthermore, a somatostatin receptor antagonist, cyclosomatostatin, reduced the inhibitory effect of GIP on both intestinal transit and glucose absorption in wild-type mice. These results demonstrate that exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility through a somatostatin

  12. The effect of gastric inhibitory polypeptide on intestinal glucose absorption and intestinal motility in mice

    International Nuclear Information System (INIS)

    Ogawa, Eiichi; Hosokawa, Masaya; Harada, Norio; Yamane, Shunsuke; Hamasaki, Akihiro; Toyoda, Kentaro; Fujimoto, Shimpei; Fujita, Yoshihito; Fukuda, Kazuhito; Tsukiyama, Katsushi; Yamada, Yuichiro; Seino, Yutaka; Inagaki, Nobuya

    2011-01-01

    Research highlights: → Exogenous GIP inhibits intestinal motility through a somatostatin-mediated pathway. → Exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility. → The GIP-receptor-mediated action in intestine does not involve in GLP-1-mediated pathway. -- Abstract: Gastric inhibitory polypeptide (GIP) is released from the small intestine upon meal ingestion and increases insulin secretion from pancreatic β cells. Although the GIP receptor is known to be expressed in small intestine, the effects of GIP in small intestine are not fully understood. This study was designed to clarify the effect of GIP on intestinal glucose absorption and intestinal motility. Intestinal glucose absorption in vivo was measured by single-pass perfusion method. Incorporation of [ 14 C]-glucose into everted jejunal rings in vitro was used to evaluate the effect of GIP on sodium-glucose co-transporter (SGLT). Motility of small intestine was measured by intestinal transit after oral administration of a non-absorbed marker. Intraperitoneal administration of GIP inhibited glucose absorption in wild-type mice in a concentration-dependent manner, showing maximum decrease at the dosage of 50 nmol/kg body weight. In glucagon-like-peptide-1 (GLP-1) receptor-deficient mice, GIP inhibited glucose absorption as in wild-type mice. In vitro examination of [ 14 C]-glucose uptake revealed that 100 nM GIP did not change SGLT-dependent glucose uptake in wild-type mice. After intraperitoneal administration of GIP (50 nmol/kg body weight), small intestinal transit was inhibited to 40% in both wild-type and GLP-1 receptor-deficient mice. Furthermore, a somatostatin receptor antagonist, cyclosomatostatin, reduced the inhibitory effect of GIP on both intestinal transit and glucose absorption in wild-type mice. These results demonstrate that exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility through a somatostatin-mediated pathway rather

  13. Gut microbiota in chronic kidney disease.

    Science.gov (United States)

    Cigarran Guldris, Secundino; González Parra, Emilio; Cases Amenós, Aleix

    The intestinal microflora maintains a symbiotic relationship with the host under normal conditions, but its imbalance has recently been associated with several diseases. In chronic kidney disease (CKD), dysbiotic intestinal microflora has been reported with an increase in pathogenic flora compared to symbiotic flora. An enhanced permeability of the intestinal barrier, allowing the passage of endotoxins and other bacterial products to the blood, has also been shown in CKD. By fermenting undigested products that reach the colon, the intestinal microflora produce indoles, phenols and amines, among others, that are absorbed by the host, accumulate in CKD and have harmful effects on the body. These gut-derived uraemic toxins and the increased permeability of the intestinal barrier in CKD have been associated with increased inflammation and oxidative stress and have been involved in various CKD-related complications, including cardiovascular disease, anaemia, mineral metabolism disorders or the progression of CKD. The use of prebiotics, probiotics or synbiotics, among other approaches, could improve the dysbiosis and/or the increased permeability of the intestinal barrier in CKD. This article describes the situation of the intestinal microflora in CKD, the alteration of the intestinal barrier and its clinical consequences, the harmful effects of intestinal flora-derived uraemic toxins, and possible therapeutic options to improve this dysbiosis and reduce CKD-related complications. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  14. Acamprosate has no impact on the permeability of paracellular markers across Caco-2 cells

    DEFF Research Database (Denmark)

    Antonescu, Irina; Steffansen, Bente; Neuhoff, Sibylle

    of the paracellular markers, mannitol and Lucifer Yellow (LY), was investigated. Methods: Ppara of LY and [14C]-mannitol was investigated across filter grown human epithelial colorectal adenocarcinoma (Caco-2) cell monolayers. Changes in the transepithelial electrical resistance (TEER) across the monolayers were...... the [14C]-mannitol, Papp values of 0.71±0.2x10-6 and 0.51±0.17x10-6 cm/s were obtained. TEER values at the end of all experiments were in the range of 426-444 ohm*cm2. Summary/Conclusion: Acamprosate has no impact on the paracellular pathway across Caco-2 cell monolayers of LY and mannitol, or on the TEER......Backgrounds: The oral bioavailability of poorly permeable and non-metabolised acamprosate (BCS III) is 11%. It is controversial whether the intestinal effective permeability of the fully an-ionized acamprosate (pKa 1.83; MW 181.2 g/mol) is predominantly paracellular (Ppara) or transcellular...

  15. Therapeutic benefits of enhancing permeability barrier for atopic eczema

    Directory of Open Access Journals (Sweden)

    George Man

    2015-06-01

    Full Text Available The regulatory role of epidermal permeability barrier function in cutaneous inflammation has been well appreciated. While barrier disruption induces cutaneous inflammation, improvement of permeability barrier function alleviates inflammation. Studies have demonstrated that improvement of epidermal permeability barrier function not only prevents the development of atopic eczema, but also delays the relapse of these diseases. Moreover, enhancing the epidermal permeability barrier also alleviates atopic eczema. Furthermore, co-applications of barrier enhancing products with glucocorticoids can increase the therapeutic efficacy and reduce the adverse effects of glucocorticoids in the treatment of atopic eczema. Therefore, utilization of permeability barrier enhancing products alone or in combination with glucocorticoids could be a valuable approach in the treatment of atopic eczema. In this review, we discuss the benefits of improving the epidermal permeability barrier in the management of atopic eczema.

  16. Permeability of crust is key to crispness retention

    NARCIS (Netherlands)

    Hirte, A.; Hamer, R.J.; Meinders, M.B.J.; Primo-Martin, C.

    2010-01-01

    Bread loses crispness rapidly after baking because water originating from the wet crumb accumulates in the dry crust. This water accumulation might be increased by the dense and low permeable character of the bread crust. Our objective was to investigate the influence of permeability of the crust on

  17. Potential of Lactobacillus plantarum CCFM639 in Protecting against Aluminum Toxicity Mediated by Intestinal Barrier Function and Oxidative Stress.

    Science.gov (United States)

    Yu, Leilei; Zhai, Qixiao; Tian, Fengwei; Liu, Xiaoming; Wang, Gang; Zhao, Jianxin; Zhang, Hao; Narbad, Arjan; Chen, Wei

    2016-12-02

    Aluminum (Al) is a ubiquitous metal that can seriously harm the health of animals and humans. In our previous study, we demonstrated that Lactobacillus plantarum CCFM639 can decrease Al burden in the tissues of mice by inhibiting intestinal Al absorption. The main aim of the present research was to investigate whether the protection by the strain is also associated with enhancement of the intestinal barrier, alleviation of oxidative stress and modulation of the inflammatory response. In an in vitro cell model, two protection modes (intervention and therapy) were examined and the results indicated that L. plantarum CCFM639 alleviated Al-induced cytotoxicity. In a mouse model, L. plantarum CCFM639 treatment was found to significantly alleviate oxidative stress in the intestinal tract, regulate the function of the intestinal mucosal immune system, restore the integrity of tight junction proteins and maintain intestinal permeability. These results suggest that in addition to Al sequestration, L. plantarum CCFM639 can also inhibit Al absorption by protecting the intestinal barrier, alleviating Al-induced oxidative stress and inflammatory response. Therefore, L. plantarum CCFM639 has the potential to be a dietary supplement ingredient that provides protection against Al-induced gut injury.

  18. Potential of Lactobacillus plantarum CCFM639 in Protecting against Aluminum Toxicity Mediated by Intestinal Barrier Function and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Leilei Yu

    2016-12-01

    Full Text Available Aluminum (Al is a ubiquitous metal that can seriously harm the health of animals and humans. In our previous study, we demonstrated that Lactobacillus plantarum CCFM639 can decrease Al burden in the tissues of mice by inhibiting intestinal Al absorption. The main aim of the present research was to investigate whether the protection by the strain is also associated with enhancement of the intestinal barrier, alleviation of oxidative stress and modulation of the inflammatory response. In an in vitro cell model, two protection modes (intervention and therapy were examined and the results indicated that L. plantarum CCFM639 alleviated Al-induced cytotoxicity. In a mouse model, L. plantarum CCFM639 treatment was found to significantly alleviate oxidative stress in the intestinal tract, regulate the function of the intestinal mucosal immune system, restore the integrity of tight junction proteins and maintain intestinal permeability. These results suggest that in addition to Al sequestration, L. plantarum CCFM639 can also inhibit Al absorption by protecting the intestinal barrier, alleviating Al-induced oxidative stress and inflammatory response. Therefore, L. plantarum CCFM639 has the potential to be a dietary supplement ingredient that provides protection against Al-induced gut injury.

  19. Modification of permeability of frog perineurium to [14C]-sucrose by stretch and hypertonicity

    International Nuclear Information System (INIS)

    Weerasuriya, A.; Rapoport, S.I.; Taylor, R.E.

    1979-01-01

    An in vitro method has been developed to determine quantitatively the permeability of the perineurium to radiotracers at room temperature. The permeability to [ 14 C]sucrose of the isolated perineurium of the sciatic nerve of the frog, Rana pipiens, was measured at rest length, when the perineurium was stretched and after the perineurium had been subjected to hypertonic treatment. Mean permeability at rest length was calculated to be 5.6 +- 0.27 (S.E.M., n=45)x10 -7 cm/sec, and both stretch and hypertonic treatment increased the permeability. A 10% stretch increased permeability reversibly, whereas a 20% stretch or immersion of the perineurium in a hypertonic bath increased permeability irreversibly. Altered permeability under these conditions might be related to changes in the ultrastructure of tight junctions in the perineurium. (Auth.)

  20. Intestinal Stem Cell Markers in the Intestinal Metaplasia of Stomach and Barrett's Esophagus.

    Directory of Open Access Journals (Sweden)

    Bo Gun Jang

    Full Text Available Gastric intestinal metaplasia (IM is a highly prevalent preneoplastic lesion; however, the molecular mechanisms regulating its development remain unclear. We have previously shown that a population of cells expressing the intestinal stem cell (ISC marker LGR5 increases remarkably in IM. In this study, we further investigated the molecular characteristics of these LGR5+ cells in IM by examining the expression profile of several ISC markers. Notably, we found that ISC markers-including OLFM4 and EPHB2-are positively associated with the CDX2 expression in non-tumorous gastric tissues. This finding was confirmed in stomach lesions with or without metaplasia, which demonstrated that OLFM4 and EPHB2 expression gradually increased with metaplastic progression. Moreover, RNA in situ hybridization revealed that LGR5+ cells coexpress several ISC markers and remained confined to the base of metaplastic glands, reminiscent to that of normal intestinal crypts, whereas those in normal antral glands expressed none of these markers. Furthermore, a large number of ISC marker-expressing cells were diffusely distributed in gastric adenomas, suggesting that these markers may facilitate gastric tumorigenesis. In addition, Barrett's esophagus (BE-which is histologically similar to intestinal metaplasia-exhibited a similar distribution of ISC markers, indicating the presence of a stem cell population with intestinal differentiation potential. In conclusion, we identified that LGR5+ cells in gastric IM and BE coexpress ISC markers, and exhibit the same expression profile as those found in normal intestinal crypts. Taken together, these results implicate an intestinal-like stem cell population in the pathogenesis of IM, and provide an important basis for understanding the development and maintenance of this disease.