WorldWideScience

Sample records for increased ectomycorrhizal fungal

  1. Vertical distribution of ectomycorrhizal fungal taxa in a podzol profile

    NARCIS (Netherlands)

    Rosling, A.; Landeweert, R.; Lindahl, B.D.; Larsson, K.H.; Kuyper, T.W.; Taylor, A.F.S.; Finlay, R.F.

    2003-01-01

    Studies of ectomycorrhizal fungal communities in forest soils are usually restricted to the uppermost organic horizons. Boreal forest podzols are highly stratified and little is known about the vertical distribution of ectomycorrhizal communities in the underlying mineral horizons. Ectomycorrhizal

  2. Increased ectomycorrhizal fungal abundance after long-term fertilization and warming of two arctic tundra ecosystems

    DEFF Research Database (Denmark)

    Clemmensen, Karina Engelbrecht; Michelsen, Anders; Jonasson, Sven Evert

    2006-01-01

    . This was caused partly by increased dominance of EM plants and partly by stimulation of EM mycelial growth. •  We conclude that cycling of carbon and nitrogen through EM fungi will increase when strongly nutrient-limited arctic ecosystems are exposed to a warmer and more nutrient-rich environment. This has...... the response in EM fungal abundance to long-term warming and fertilization in two arctic ecosystems with contrasting responses of the EM shrub Betula nana. •  Ergosterol was used as a biomarker for living fungal biomass in roots and organic soil and ingrowth bags were used to estimate EM mycelial production...

  3. A single ectomycorrhizal fungal species can enable a Pinus invasion.

    Science.gov (United States)

    Hayward, Jeremy; Horton, Thomas R; Pauchard, Aníbal; Nuñnez, Martin A

    2015-05-01

    Like all obligately ectomycorrhizal plants, pines require ectomycorrhizal fungal symbionts to complete their life cycle. Pines introduced into regions far from their native range are typically incompatible with local ectomycorrhizal fungi, and, when they invade, coinvade with fungi from their native range. While the identities and distributions of coinvasive fungal symbionts of pine invasions are poorly known, communities that have been studied are notably depauperate. However, it is not yet clear whether any number of fungal coinvaders is able to support a Pinaceae invasion, or whether very depauperate communities are unable to invade. Here, we ask whether there is evidence for a minimum species richness of fungal symbionts necessary to support a pine/ectomycorrhizal fungus coinvasion. We sampled a Pinus contorta invasion front near Coyhaique, Chile, using molecular barcoding to identify ectomycorrhizal fungi. We report that the site has a total richness of four species, and that many invasive trees appear to be supported by only a single ectomycorrhizal fungus, Suillus luteus. We conclude that a single ectomycorrhizal (ECM) fungus can suffice to enable a pine invasion.

  4. Ectomycorrhizal fungal diversity: seperating the wheat from the chaff

    NARCIS (Netherlands)

    Rinaldi, A.C.; Comandini, O.; Kuyper, T.W.

    2008-01-01

    Thousands of ectomycorrhizal (ECM) fungal species exist, but estimates of global species richness of ECM fungi differ widely. Many genera have been proposed as being ECM, but ill a number of studies evidence for the hypothesized ECM habit is lacking. Progress in estimating ECM species richness is

  5. Contributions of ectomycorrhizal fungal mats to forest soil respiration

    Science.gov (United States)

    C. Phillips; L.A. Kluber; J.P. Martin; B.A. Caldwell; B.J. Bond

    2012-01-01

    Distinct aggregations of fungal hyphae and rhizomorphs, or “mats”, formed by some genera of ectomycorrhizal (EcM) fungi are common features of soils in coniferous forests of the Pacific Northwest. We measured in situ respiration rates of Piloderma mats and neighboring non-mat soils in an old-growth Douglas-fir forest in western Oregon to investigate whether there was...

  6. Contributions of Ectomycorrhizal Fungal Mats to Forest Soil Carbon Cycles

    Science.gov (United States)

    Kluber, L. A.; Phillips, C. L.; Myrold, D. D.; Bond, B. J.

    2008-12-01

    Ectomycorrhizal (EM) fungi are a prominent and ubiquitous feature of forest soils, forming symbioses with most tree species, yet little is known about the magnitude of their impact on forest carbon cycles. A subset of EM fungi form dense, perennial aggregations of hyphae, which have elevated respiration rates compared with neighboring non-mat soils. These mats are a foci of EM activity and thereby a natural laboratory for examining how EM fungi impact forest soils. In order to constrain the contributions of EM fungi to forest soil respiration, we quantified the proportion of respiration derived from EM mat soils in an old-growth Douglas-fir stand in western Oregon. One dominant genus of mat-forming fungi, Piloderma, covered 56% of the soil surface area. Piloderma mats were monitored for respiration rates over 15 months and found to have on average 10% higher respiration than non-mat soil. At the stand level, this amounts to roughly 6% of soil respiration due to the presence of Piloderma mats. We calculate that these mats may constitute 27% of autotrophic respiration, based on respiration rates from trenched plots in a neighboring forest stand. Furthermore, enzyme activity and microbial community profiles in mat and non-mat soil provide evidence that specialized communities utilizing chitin contribute to this increased efflux. With 60% higher chitinase activity in mats, the breakdown of chitin is likely an important carbon flux while providing carbon and nitrogen to the microbial communities associated with mats. Quantitative PCR showed similar populations of fungi and bacteria in mat and non-mat soils; however, community analysis revealed distinct fungal and bacterial communities in the two soil types. The higher respiration associated with EM mats does not appear to be due only to a proliferation of EM fungi, but to a shift in overall community composition to organisms that efficiently utilize the unique resources available within the mat, including plant and

  7. Ectomycorrhizal fungal diversity in orchards of cultivated pecan (Carya illinoinensis; Juglandaceae).

    Science.gov (United States)

    Bonito, Gregory; Brenneman, Timothy; Vilgalys, Rytas

    2011-10-01

    Carya illinoinensis (pecan) belongs to the Juglandaceae (walnut family) and is a major economic nut crop in the southern USA. Although evidence suggests that some species in the Juglandaceae are ectomycorrhizal, investigations on their ectomycorrhizal fungal symbionts are quite limited. Here we assessed the ectomycorrhizal fungal diversity in cultivated orchards of C. illinoinensis. Five pecan orchards in southern Georgia, USA, were studied, three of which were known to fruit the native edible truffle species Tuber lyonii. We sequenced rDNA from single ectomycorrhizal root tips sampled from a total of 50 individual trees. Mycorrhizae were identified by ITS and LSU rDNA sequence-based methods. Forty-four distinct ectomycorrhizal taxa were detected. Sequestrate taxa including Tuber and Scleroderma were particularly abundant. The two most abundant sequence types belonged to T. lyonii (17%) and an undescribed Tuber species (~20%). Because of our interest in the ecology of T. lyonii, we also conducted greenhouse studies to determine whether this species would colonize and form ectomycorrhizae on roots of pecan, oak, or pine species endemic to the region. T. lyonii ectomycorrhizae were formed on pecan and oak seedlings, but not pine, when these were inoculated with spores. That oak and pecan seedling roots were receptive to truffle spores indicates that spore slurry inoculation could be a suitable method for commercial use and that, ecologically, T. lyonii may function as a pioneer ectomycorrhizal species for these hosts. © Springer-Verlag 2011

  8. Effects of Different Ectomycorrhizal Fungal Inoculates on the Growth of Pinus tabulaeformis Seedlings under Greenhouse Conditions

    Directory of Open Access Journals (Sweden)

    Nan Lu

    2016-12-01

    Full Text Available The tree species Pinus tabulaeformis Carr. (P. tabulaeformis is commonly planted in China due to its economic and ecological value. In order to identify one or more ectomycorrhizal (ECM fungal species for future P. tabulaeformis afforestation, we investigated the effects of five ECM fungal species: Laccaria laccata, Boletus edulis, Gomphidius viscidus, Suillus grevillei, and Suillus luteus on the growth of P. tabulaeformis seedlings under greenhouse conditions. The growth parameters of P. tabulaeformis seedlings were evaluated 90 days following fungal colonisation. The majority of seedlings were significantly affected by ECM inoculation. Mycorrhizal inoculated seedlings were taller, had more lateral roots, and a greater biomass compared with the non-mycorrhizal (CK seedlings. With the exception of G. viscidus, inoculated seedlings exhibited higher phosphorus, potassium, and nitrogen content compared with the CK seedlings. In addition, ECM colonisation increased the enzymatic activity of catalase, acidic phosphatase, protease, and the urease content in the rhizosphere soil. Our study showed that Laccaria laccata, Suillus grevillei, and Suillus luteus may be useful for improving the growth and cultivation of P. tabulaeformis seedlings. Furthermore, we observed that S. luteus inoculation increased the gas exchange parameters of P. tabulaeformis seedlings under field conditions.

  9. A nonnative and a native fungal plant pathogen similarly stimulate ectomycorrhizal development but are perceived differently by a fungal symbiont.

    Science.gov (United States)

    Zampieri, Elisa; Giordano, Luana; Lione, Guglielmo; Vizzini, Alfredo; Sillo, Fabiano; Balestrini, Raffaella; Gonthier, Paolo

    2017-03-01

    The effects of plant symbionts on host defence responses against pathogens have been extensively documented, but little is known about the impact of pathogens on the symbiosis and if such an impact may differ for nonnative and native pathogens. Here, this issue was addressed in a study of the model system comprising Pinus pinea, its ectomycorrhizal symbiont Tuber borchii, and the nonnative and native pathogens Heterobasidion irregulare and Heterobasidion annosum, respectively. In a 6-month inoculation experiment and using both in planta and gene expression analyses, we tested the hypothesis that H. irregulare has greater effects on the symbiosis than H. annosum. Although the two pathogens induced the same morphological reaction in the plant-symbiont complex, with mycorrhizal density increasing exponentially with pathogen colonization of the host, the number of target genes regulated in T. borchii in plants inoculated with the native pathogen (i.e. 67% of tested genes) was more than twice that in plants inoculated with the nonnative pathogen (i.e. 27% of genes). Although the two fungal pathogens did not differentially affect the amount of ectomycorrhizas, the fungal symbiont perceived their presence differently. The results may suggest that the symbiont has the ability to recognize a self/native and a nonself/nonnative pathogen, probably through host plant-mediated signal transduction. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  10. Retention of seed trees fails to lifeboat ectomycorrhizal fungal diversity in harvested Scots pine forests.

    Science.gov (United States)

    Varenius, Kerstin; Lindahl, Björn D; Dahlberg, Anders

    2017-09-01

    Fennoscandian forestry has in the past decades changed from natural regeneration of forests towards replantation of clear-cuts, which negatively impacts ectomycorrhizal fungal (EMF) diversity. Retention of trees during harvesting enables EMF survival, and we therefore expected EMF communities to be more similar to those in old natural stands after forest regeneration using seed trees compared to full clear-cutting and replanting. We sequenced fungal internal transcribed spacer 2 (ITS2) amplicons to assess EMF communities in 10- to 60-year-old Scots pine stands regenerated either using seed trees or through replanting of clear-cuts with old natural stands as reference. We also investigated local EMF communities around retained old trees. We found that retention of seed trees failed to mitigate the impact of harvesting on EMF community composition and diversity. With increasing stand age, EMF communities became increasingly similar to those in old natural stands and permanently retained trees maintained EMF locally. From our observations, we conclude that EMF communities, at least common species, post-harvest are more influenced by environmental filtering, resulting from environmental changes induced by harvest, than by the continuity of trees. These results suggest that retention of intact forest patches is a more efficient way to conserve EMF diversity than retaining dispersed single trees. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Ectomycorrhizal fungal spore bank recovery after a severe forest fire: some like it hot.

    Science.gov (United States)

    Glassman, Sydney I; Levine, Carrie R; DiRocco, Angela M; Battles, John J; Bruns, Thomas D

    2016-05-01

    After severe wildfires, pine recovery depends on ectomycorrhizal (ECM) fungal spores surviving and serving as partners for regenerating forest trees. We took advantage of a large, severe natural forest fire that burned our long-term study plots to test the response of ECM fungi to fire. We sampled the ECM spore bank using pine seedling bioassays and high-throughput sequencing before and after the California Rim Fire. We found that ECM spore bank fungi survived the fire and dominated the colonization of in situ and bioassay seedlings, but there were specific fire adapted fungi such as Rhizopogon olivaceotinctus that increased in abundance after the fire. The frequency of ECM fungal species colonizing pre-fire bioassay seedlings, post-fire bioassay seedlings and in situ seedlings were strongly positively correlated. However, fire reduced the ECM spore bank richness by eliminating some of the rare species, and the density of the spore bank was reduced as evidenced by a larger number of soil samples that yielded uncolonized seedlings. Our results show that although there is a reduction in ECM inoculum, the ECM spore bank community largely remains intact, even after a high-intensity fire. We used advanced techniques for data quality control with Illumina and found consistent results among varying methods. Furthermore, simple greenhouse bioassays can be used to determine which fungi will colonize after fires. Similar to plant seed banks, a specific suite of ruderal, spore bank fungi take advantage of open niche space after fires.

  12. Belowground ectomycorrhizal fungal communities respond to liming in three southern Swedish coniferous forest stands

    DEFF Research Database (Denmark)

    Kjøller, Rasmus; Clemmensen, Karina

    2009-01-01

    In this study we report on changes in the belowground ectomycorrhizal fungal communities in southern Swedish coniferous forests as a consequence of liming with 3-7 ton limestone per hectare 16 years prior to the study. A total of 107 ectomycorrhizal fungi were identified from 969 independently...... sampled root tips by sequencing the internal transcribed spacer region of the ribosomal DNA. Forty, 59 and 51 species were identified in three pine and spruce forests. Within all sites only about 25% of the species overlapped between the limed and the reference areas. However, the most abundant species...... were often found in both limed and reference plots and 60-70% of the root tips at each site were colonised by species occurring in both limed and reference plots. Across all three sites, fungal species belonging to the genus Tylospora and the order Pezizales became significantly more frequent in limed...

  13. Host shifts enhance diversification of ectomycorrhizal fungi: diversification rate analysis of the ectomycorrhizal fungal genera Strobilomyces and Afroboletus with an 80-gene phylogeny.

    Science.gov (United States)

    Sato, Hirotoshi; Tanabe, Akifumi S; Toju, Hirokazu

    2017-04-01

    Mutualisms with new host lineages can provide symbionts with novel ecological opportunities to expand their geographical distribution, thereby leading to evolutionary diversification. Because ectomycorrhizal (ECM) fungi provide ideal opportunities to test the relationship between host shifts and diversification, we tested whether mutualism with new host lineages could increase the diversification rates of ECM fungi. Using a Bayesian tree inferred from 23 027-base nucleotide sequences of 80 single-copy genes, we tested whether the diversification rate had changed through host-shift events in the monophyletic clade containing the ECM fungal genera Strobilomyces and Afroboletus. The results indicated that these fungi were initially associated with Caesalpinioideae/Monotoideae in Africa, acquired associations with Dipterocarpoideae in tropical Asia, and then switched to Fagaceae/Pinaceae and Nothofagaceae/Eucalyptus. Fungal lineages associated with Fagaceae/Pinaceae were inferred to have approximately four-fold and two-fold greater diversification rates than those associated with Caesalpinioideae/Monotoideae and Dipterocarpoideae or Nothofagaceae/Eucalyptus, respectively. Moreover, the diversification rate shift was inferred to follow the host shift to Fagaceae/Pinaceae. Our study suggests that host-shift events, particularly those occurring with respect to Fagaceae/Pinaceae, can provide ecological opportunities for the rapid diversification of Strobilomyces-Afroboletus. Although further studies are needed for generalization, we propose a possible diversification scenario of ECM fungi. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  14. Quercus rubra-associated ectomycorrhizal fungal communities of disturbed urban sites and mature forests.

    Science.gov (United States)

    Karpati, Amy S; Handel, Steven N; Dighton, John; Horton, Thomas R

    2011-08-01

    The presence and quality of the belowground mycorrhizal fungal community could greatly influence plant community structure and host species response. This study tests whether mycorrhizal fungal communities in areas highly impacted by anthropogenic disturbance and urbanization are less species rich or exhibit lower host root colonization rates when compared to those of less disturbed systems. Using a soil bioassay, we sampled the ectomycorrhizal fungal (EMF) communities associating with Quercus rubra (northern red oak) seedlings in soil collected from seven sites: two mature forest reference sites and five urban sites of varying levels of disturbance. Morphological and polymerase chain reaction-restriction fragment length polymorphism analyses of fungi colonizing root tips revealed that colonization rates and fungal species richness were significantly lower on root systems of seedlings grown in disturbed site soils. Analysis of similarity showed that EMF community composition was not significantly different among several urban site soils but did differ significantly between mature forest sites and all but one urban site. We identified a suite of fungal species that occurred across several urban sites. Lack of a diverse community of belowground mutualists could be a constraint on urban plant community development, especially of late-successional woodlands. Analysis of urban EMF communities can add to our understanding of urban plant community structure and should be addressed during ecological assessment before pragmatic decisions to restore habitats are framed.

  15. Ectomycorrhizal Fungal Communities in Urban Parks Are Similar to Those in Natural Forests but Shaped by Vegetation and Park Age.

    Science.gov (United States)

    Hui, Nan; Liu, Xinxin; Kotze, D Johan; Jumpponen, Ari; Francini, Gaia; Setälä, Heikki

    2017-12-01

    Ectomycorrhizal (ECM) fungi are important mutualists for the growth and health of most boreal trees. Forest age and its host species composition can impact the composition of ECM fungal communities. Although plentiful empirical data exist for forested environments, the effects of established vegetation and its successional trajectories on ECM fungi in urban greenspaces remain poorly understood. We analyzed ECM fungi in 5 control forests and 41 urban parks of two plant functional groups (conifer and broadleaf trees) and in three age categories (10, ∼50, and >100 years old) in southern Finland. Our results show that although ECM fungal richness was marginally greater in forests than in urban parks, urban parks still hosted rich and diverse ECM fungal communities. ECM fungal community composition differed between the two habitats but was driven by taxon rank order reordering, as key ECM fungal taxa remained largely the same. In parks, the ECM communities differed between conifer and broadleaf trees. The successional trajectories of ECM fungi, as inferred in relation to the time since park construction, differed among the conifers and broadleaf trees: the ECM fungal communities changed over time under the conifers, whereas communities under broadleaf trees provided no evidence for such age-related effects. Our data show that plant-ECM fungus interactions in urban parks, in spite of being constructed environments, are surprisingly similar in richness to those in natural forests. This suggests that the presence of host trees, rather than soil characteristics or even disturbance regime of the system, determine ECM fungal community structure and diversity. IMPORTANCE In urban environments, soil and trees improve environmental quality and provide essential ecosystem services. ECM fungi enhance plant growth and performance, increasing plant nutrient acquisition and protecting plants against toxic compounds. Recent evidence indicates that soil-inhabiting fungal communities

  16. Diversity and Spatial Structure of Belowground Plant–Fungal Symbiosis in a Mixed Subtropical Forest of Ectomycorrhizal and Arbuscular Mycorrhizal Plants

    Science.gov (United States)

    Toju, Hirokazu; Sato, Hirotoshi; Tanabe, Akifumi S.

    2014-01-01

    Plant–mycorrhizal fungal interactions are ubiquitous in forest ecosystems. While ectomycorrhizal plants and their fungi generally dominate temperate forests, arbuscular mycorrhizal symbiosis is common in the tropics. In subtropical regions, however, ectomycorrhizal and arbuscular mycorrhizal plants co-occur at comparable abundances in single forests, presumably generating complex community structures of root-associated fungi. To reveal root-associated fungal community structure in a mixed forest of ectomycorrhizal and arbuscular mycorrhizal plants, we conducted a massively-parallel pyrosequencing analysis, targeting fungi in the roots of 36 plant species that co-occur in a subtropical forest. In total, 580 fungal operational taxonomic units were detected, of which 132 and 58 were probably ectomycorrhizal and arbuscular mycorrhizal, respectively. As expected, the composition of fungal symbionts differed between fagaceous (ectomycorrhizal) and non-fagaceous (possibly arbuscular mycorrhizal) plants. However, non-fagaceous plants were associated with not only arbuscular mycorrhizal fungi but also several clades of ectomycorrhizal (e.g., Russula) and root-endophytic ascomycete fungi. Many of the ectomycorrhizal and root-endophytic fungi were detected from both fagaceous and non-fagaceous plants in the community. Interestingly, ectomycorrhizal and arbuscular mycorrhizal fungi were concurrently detected from tiny root fragments of non-fagaceous plants. The plant–fungal associations in the forest were spatially structured, and non-fagaceous plant roots hosted ectomycorrhizal fungi more often in the proximity of ectomycorrhizal plant roots. Overall, this study suggests that belowground plant–fungal symbiosis in subtropical forests is complex in that it includes “non-typical” plant–fungal combinations (e.g., ectomycorrhizal fungi on possibly arbuscular mycorrhizal plants) that do not fall within the conventional classification of mycorrhizal symbioses, and in

  17. Diversity and spatial structure of belowground plant-fungal symbiosis in a mixed subtropical forest of ectomycorrhizal and arbuscular mycorrhizal plants.

    Science.gov (United States)

    Toju, Hirokazu; Sato, Hirotoshi; Tanabe, Akifumi S

    2014-01-01

    Plant-mycorrhizal fungal interactions are ubiquitous in forest ecosystems. While ectomycorrhizal plants and their fungi generally dominate temperate forests, arbuscular mycorrhizal symbiosis is common in the tropics. In subtropical regions, however, ectomycorrhizal and arbuscular mycorrhizal plants co-occur at comparable abundances in single forests, presumably generating complex community structures of root-associated fungi. To reveal root-associated fungal community structure in a mixed forest of ectomycorrhizal and arbuscular mycorrhizal plants, we conducted a massively-parallel pyrosequencing analysis, targeting fungi in the roots of 36 plant species that co-occur in a subtropical forest. In total, 580 fungal operational taxonomic units were detected, of which 132 and 58 were probably ectomycorrhizal and arbuscular mycorrhizal, respectively. As expected, the composition of fungal symbionts differed between fagaceous (ectomycorrhizal) and non-fagaceous (possibly arbuscular mycorrhizal) plants. However, non-fagaceous plants were associated with not only arbuscular mycorrhizal fungi but also several clades of ectomycorrhizal (e.g., Russula) and root-endophytic ascomycete fungi. Many of the ectomycorrhizal and root-endophytic fungi were detected from both fagaceous and non-fagaceous plants in the community. Interestingly, ectomycorrhizal and arbuscular mycorrhizal fungi were concurrently detected from tiny root fragments of non-fagaceous plants. The plant-fungal associations in the forest were spatially structured, and non-fagaceous plant roots hosted ectomycorrhizal fungi more often in the proximity of ectomycorrhizal plant roots. Overall, this study suggests that belowground plant-fungal symbiosis in subtropical forests is complex in that it includes "non-typical" plant-fungal combinations (e.g., ectomycorrhizal fungi on possibly arbuscular mycorrhizal plants) that do not fall within the conventional classification of mycorrhizal symbioses, and in that

  18. Characterization of juvenile maritime pine (Pinus pinaster Ait.) ectomycorrhizal fungal community using morphotyping, direct sequencing and fruitbodies sampling.

    Science.gov (United States)

    Pestaña Nieto, Montserrat; Santolamazza Carbone, Serena

    2009-02-01

    Using ectomycorrhizal root tip morphotyping (anatomical and morphological identification), molecular analysis (internal transcribed spacer region amplification and sequencing), and fruitbody sampling, we assessed diversity and composition of the ectomycorrhizal fungal community colonizing juvenile Pinus pinaster Ait. under natural conditions in NW Spain. Overall, we found 15 Basidiomycetes and two Ascomycetes. Members of the family Thelephoraceae represented up to 59.4% of the samples. The most frequent species was Tomentella sublilacina followed by Thelephora terrestris, Russula drimeia, Suillus bovinus, and Paxillus involutus, while the less frequent were Pseudotomentella tristis, Lactarius subdulcis, Russula ochroleuca, and Entoloma conferendum. From October 2007 to June 2008, we sampled 208 sporocarps belonging to seven genera and nine species: Thelephora terrestris, Paxillus involutus, Suillus bovinus, Xerocomus badius, Scleroderma verrucosum, Amanita gemmata, A. rubescens, Amanita sp., and Russula sp. The species belonging to the genus Amanita, X. badius and S. verrucosum were not found on root samples. By comparing our results with a bibliographic review of papers published from 1922 to 2006, we found five genera and six species which have not been previously reported in symbiosis with P. pinaster. This is the first time that the diversity of the ectomycorrhizal fungal community associated with P. pinaster was investigated using molecular techniques. Considering that only 38% of the genera found by sequencing were found as fruitbodies, we conclude that integrating morphotyping and sporocarps surveys with molecular analysis of ectomycorrhizas is important to documenting the ectomycorrhizal fungus community.

  19. Diversity and Enzyme Activity of Ectomycorrhizal Fungal Communities Following Nitrogen Fertilization in an Urban-Adjacent Pine Plantation

    Directory of Open Access Journals (Sweden)

    Chen Ning

    2018-02-01

    Full Text Available Rapid economic development and accelerated urbanization in China has resulted in widespread atmospheric nitrogen (N deposition. One consequence of N deposition is the alteration of mycorrhizal symbioses that are critical for plant resource acquisition (nitrogen, N, phosphorus, P, water. In this study, we characterized the diversity, composition, and functioning of ectomycorrhizal (ECM fungal communities in an urban-adjacent Pinus elliottii plantation under ambient N deposition (~24 kg N ha−1 year−1, and following N fertilization (low N, 50 kg N ha−1 year−1; high N, 300 kg N ha−1 year−1. ECM functioning was expressed as the potential activities of extracellular enzymes required for organic N (protease, P (phosphomonoesterase, and recalcitrant polymers (phenol oxidase. Despite high ambient N deposition, ECM community composition shifted under experimental N fertilization, and those changes were linked to disparate levels of soil minerals (P, K and organic matter (but not N, a decline in acid phosphatase (AP, and an increase in phenol oxidase (PO potential activities. Based on enzyme stoichiometry, medium-smooth exploration type ECM species invested more in C acquisition (PO relative to P (AP following high N fertilization than other exploration types. ECM species with hydrophilic mantles also showed higher enzymatic PO:AP ratios than taxa with hydrophobic mantles. Our findings add to the accumulating evidence that shifts in ECM community composition and taxa specialized in organic C, N, and P degradation could modulate the soil nutrient cycling in forests exposed to chronic elevated N input.

  20. Strain Identity of the Ectomycorrhizal Fungus Laccaria bicolor Is More Important than Richness in Regulating Plant and Fungal Performance under Nutrient Rich Conditions

    Directory of Open Access Journals (Sweden)

    Christina Hazard

    2017-09-01

    Full Text Available Effects of biodiversity on productivity are more likely to be expressed when there is greater potential for niche complementarity. In soil, chemically complex pools of nutrient resources should provide more opportunities for niche complementarity than chemically simple pools. Ectomycorrhizal (ECM fungal genotypes can exhibit substantial variation in nutrient acquisition traits and are key components of soil biodiversity. Here, we tested the hypothesis that increasing the chemical complexity and forms of soil nutrients would enhance the effects of intraspecific ECM diversity on host plant and fungal productivity. In pure culture, we found substantial variation in growth of strains of the ECM fungus Laccaria bicolor on a range of inorganic and organic forms of nutrients. Subsequent experiments examined the effects of intraspecific identity and richness using Scots pine (Pinus sylvestris seedlings colonized with different strains of L. bicolor growing on substrates supplemented with either inorganic or organic forms of nitrogen and phosphorus. Intraspecific identity effects on plant productivity were only found under the inorganic nutrient amendment, whereas intraspecific identity affected fungal productivity to a similar extent under both nutrient treatments. Overall, there were no significant effects of intraspecific richness on plant and fungal productivity. Our findings suggest soil nutrient composition does not interact strongly with ECM intraspecific richness, at least under experimental conditions where mineral nutrients were not limiting. Under these conditions, intraspecific identity of ECM fungi becomes more important than richness in modulating plant and fungal performance.

  1. Ectomycorrhizal and saprotrophic fungi respond differently to long-term experimentally increased snow depth in the High Arctic

    DEFF Research Database (Denmark)

    Mundra, Sunil; Halvorsen, Rune; Kauserud, Håvard

    2016-01-01

    on the variation in species richness and community structure of ectomycorrhizal (ECM) and saprotrophic fungi. Soil samples were collected weekly from mid-July to mid-September in both control and deep snow plots. Richness of ECM fungi was lower, while saprotrophic fungi was higher in increased snow depth plots...... relative to controls. [Correction added on 23 September 2016 after first online publication: In the preceding sentence, the richness of ECM and saprotrophic fungi were wrongly interchanged and have been fixed in this current version.] ECM fungal richness was related to soil NO3-N, NH4-N, and K......; and saprotrophic fungi to NO3-N and pH. Small but significant changes in the composition of saprotrophic fungi could be attributed to snow treatment and sampling time, but not so for the ECM fungi. Delayed snow melt did not influence the temporal variation in fungal communities between the treatments. Results...

  2. A continental view of pine-associated ectomycorrhizal fungal spore banks: a quiescent functional guild with a strong biogeographic pattern.

    Science.gov (United States)

    Glassman, Sydney I; Peay, Kabir G; Talbot, Jennifer M; Smith, Dylan P; Chung, Judy A; Taylor, John W; Vilgalys, Rytas; Bruns, Thomas D

    2015-03-01

    Ecologists have long acknowledged the importance of seed banks; yet, despite the fact that many plants rely on mycorrhizal fungi for survival and growth, the structure of ectomycorrhizal (ECM) fungal spore banks remains poorly understood. The primary goal of this study was to assess the geographic structure in pine-associated ECM fungal spore banks across the North American continent. Soils were collected from 19 plots in forests across North America. Fresh soils were pyrosequenced for fungal internal transcribed spacer (ITS) amplicons. Adjacent soil cores were dried and bioassayed with pine seedlings, and colonized roots were pyrosequenced to detect resistant propagules of ECM fungi. The results showed that ECM spore banks correlated strongly with biogeographic location, but not with the identity of congeneric plant hosts. Minimal community overlap was found between resident ECM fungi vs those in spore banks, and spore bank assemblages were relatively simple and dominated by Rhizopogon, Wilcoxina, Cenococcum, Thelephora, Tuber, Laccaria and Suillus. Similar to plant seed banks, ECM fungal spore banks are, in general, depauperate, and represent a small and rare subset of the mature forest soil fungal community. Yet, they may be extremely important in fungal colonization after large-scale disturbances such as clear cuts and forest fires. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  3. Potential link between plant and fungal distributions in a dipterocarp rainforest: community and phylogenetic structure of tropical ectomycorrhizal fungi across a plant and soil ecotone.

    Science.gov (United States)

    Peay, Kabir G; Kennedy, Peter G; Davies, Stuart J; Tan, Sylvester; Bruns, Thomas D

    2010-01-01

    *Relatively little is known about diversity or structure of tropical ectomycorrhizal communities or their roles in tropical ecosystem dynamics. In this study, we present one of the largest molecular studies to date of an ectomycorrhizal community in lowland dipterocarp rainforest. *We sampled roots from two 0.4 ha sites located across an ecotone within a 52 ha forest dynamics plot. Our plots contained > 500 tree species and > 40 species of ectomycorrhizal host plants. Fungi were identified by sequencing ribosomal RNA genes. *The community was dominated by the Russulales (30 species), Boletales (17), Agaricales (18), Thelephorales (13) and Cantharellales (12). Total species richness appeared comparable to molecular studies of temperate forests. Community structure changed across the ecotone, although it was not possible to separate the role of environmental factors vs host plant preferences. Phylogenetic analyses were consistent with a model of community assembly where habitat associations are influenced by evolutionary conservatism of functional traits within ectomycorrhizal lineages. *Because changes in the ectomycorrhizal fungal community parallel those of the tree community at this site, this study demonstrates the potential link between the distribution of tropical tree diversity and the distribution of tropical ectomycorrhizal diversity in relation to local-scale edaphic variation.

  4. Ectomycorrhizal Fungal Communities and Enzymatic Activities Vary across an Ecotone between a Forest and Field.

    Science.gov (United States)

    Rúa, Megan A; Moore, Becky; Hergott, Nicole; Van, Lily; Jackson, Colin R; Hoeksema, Jason D

    2015-08-28

    Extracellular enzymes degrade macromolecules into soluble substrates and are important for nutrient cycling in soils, where microorganisms, such as ectomycorrhizal (ECM) fungi, produce these enzymes to obtain nutrients. Ecotones between forests and fields represent intriguing arenas for examining the effect of the environment on ECM community structure and enzyme activity because tree maturity, ECM composition, and environmental variables may all be changing simultaneously. We studied the composition and enzymatic activity of ECM associated with loblolly pine (Pinus taeda) across an ecotone between a forest where P. taeda is established and an old field where P. taeda saplings had been growing for <5 years. ECM community and environmental characteristics influenced enzyme activity in the field, indicating that controls on enzyme activity may be intricately linked to the ECM community, but this was not true in the forest. Members of the Russulaceae were associated with increased phenol oxidase activity and decreased peroxidase activity in the field. Members of the Atheliaceae were particularly susceptible to changes in their abiotic environment, but this did not mediate differences in enzyme activity. These results emphasize the complex nature of factors that dictate the distribution of ECM and activity of their enzymes across a habitat boundary.

  5. Distinctive fungal and bacterial communities are associated with mats formed by ectomycorrhizal fungi

    Science.gov (United States)

    Laurel A. Kluber; Jane E. Smith; David D. Myrold

    2011-01-01

    The distinct rhizomorphic mats formed by ectomycorrhizal Piloderma fungi are common features of the organic soil horizons of coniferous forests of the Pacific Northwest. These mats have been found to cover 25-40% of the forest floor in some Douglas-fir stands, and are associated with physical and biochemical properties that distinguish them from...

  6. Influence of autoclaved saprotrophic fungal mycelia on proteolytic activity in ectomycorrhizal fungi.

    Science.gov (United States)

    Mucha, Joanna; Dahm, Hanna; Werner, Antoni

    2007-07-01

    The production of proteolytic enzymes by several strains of ectomycorrhizal fungi i.e., Amanita muscaria (16-3), Laccaria laccata (9-12), L. laccata (9-1), Suillus bovinus (15-4), Suillus bovinus (15-3), Suillus luteus (14-7) on mycelia of Trichoderma harzianum, Trichoderma virens and Mucor hiemalis and sodium caseinate, yeast extract was evaluated. The strains of A. muscaria (16-3) and L. laccata (9-12) were characterized by the highest activity of the acidic and neutral proteases. Taking the mycelia of saprotrophic fungi into consideration, the mycelium of M. hiemalis was the best inductor for proteolytic activity. The examined ectomycorrhizal fungi exhibited higher activity of acidic proteases than neutral ones on the mycelia of saprotrophic fungi, which may imply the participation of acidic proteases in nutrition.

  7. Word-wide meta-analysis of Quercus forests ectomycorrhizal fungal diversity reveals southwestern Mexico as a hotspot.

    Science.gov (United States)

    García-Guzmán, Olimpia Mariana; Garibay-Orijel, Roberto; Hernández, Edith; Arellano-Torres, Elsa; Oyama, Ken

    2017-11-01

    Quercus is the most diverse genus of ectomycorrhizal (ECM) host plants; it is distributed in the Northern and Southern Hemispheres, from temperate to tropical regions. However, their ECM communities have been scarcely studied in comparison to those of conifers. The objectives of this study were to determine the richness of ECM fungi associated with oak forests in the Cuitzeo basin in southwestern Mexico; and to determine the level of richness, potential endemism and species similarity among ECM fungal communities associated with natural oak forests worldwide through a meta-analysis. The ITS DNA sequences of ECM root tips from 14 studies were included in the meta-analysis. In total, 1065 species of ECM fungi have been documented worldwide; however, 812 species have been only found at one site. Oak forests in Europe contain 416 species, Mexico 307, USA 285, and China 151. Species with wider distributions are Sebacinaceae sp. SH197130, Amanita subjunquillea, Cenococcum geophilum, Cortinarius decipiens, Russula hortensis, R. risigallina, R. subrubescens, Sebacinaceae sp. SH214607, Tomentella ferruginea, and T. lapida. The meta-analysis revealed (1) that Mexico is not only a hotspot for oak species but also for their ECM mycobionts. (2) There is a particularly high diversity of ECM Pezizales in oak seasonal forests from western USA to southwestern Mexico. (3) The oak forests in southwestern Mexico have the largest number of potential endemic species. (4) Globally, there is a high turnover of ECM fungal species associated with oaks, which indicates high levels of alpha and beta diversity in these communities.

  8. Ectomycorrhizal fungal diversity and community structure associated with cork oak in different landscapes.

    Science.gov (United States)

    Reis, Francisca; Valdiviesso, Teresa; Varela, Carolina; Tavares, Rui M; Baptista, Paula; Lino-Neto, Teresa

    2018-05-01

    Cork oak (Quercus suber L.) forests play an important ecological and economic role. Ectomycorrhizal fungi (ECMF) are key components for the sustainability and functioning of these ecosystems. The community structure and composition of ECMF associated with Q. suber in different landscapes of distinct Mediterranean bioclimate regions have not previously been compared. In this work, soil samples from cork oak forests residing in different bioclimates (arid, semi-arid, sub-humid, and humid) were collected and surveyed for ectomycorrhizal (ECM) root tips. A global analysis performed on 3565 ECM root tips revealed that the ECMF community is highly enriched in Russula, Tomentella, and Cenoccocum, which correspond to the ECMF genera that mainly contribute to community differences. The ECMF communities from the rainiest and the driest cork oak forests were distinct, with soils from the rainiest climates being more heterogeneous than those from the driest climates. The analyses of several abiotic factors on the ECMF communities revealed that bioclimate, precipitation, soil texture, and forest management strongly influenced ECMF structure. Shifts in ECMF with different hyphal exploration types were also detected among forests, with precipitation, forest system, and soil texture being the main drivers controlling their composition. Understanding the effects of environmental factors on the structuring of ECM communities could be the first step for promoting the sustainability of this threatened ecosystem.

  9. Establishment of ectomycorrhizal fungal community on isolated Nothofagus cunninghamii seedlings regenerating on dead wood in Australian wet temperate forests: does fruit-body type matter?

    Science.gov (United States)

    Tedersoo, Leho; Gates, Genevieve; Dunk, Chris W; Lebel, Teresa; May, Tom W; Kõljalg, Urmas; Jairus, Teele

    2009-08-01

    Decaying wood provides an important habitat for animals and forms a seed bed for many shade-intolerant, small-seeded plants, particularly Nothofagus. Using morphotyping and rDNA sequence analysis, we compared the ectomycorrhizal fungal community of isolated N. cunninghamii seedlings regenerating in decayed wood against that of mature tree roots in the forest floor soil. The /cortinarius, /russula-lactarius, and /laccaria were the most species-rich and abundant lineages in forest floor soil in Australian sites at Yarra, Victoria and Warra, Tasmania. On root tips of seedlings in dead wood, a subset of the forest floor taxa were prevalent among them species of /laccaria, /tomentella-thelephora, and /descolea, but other forest floor dominants were rare. Statistical analyses suggested that the fungal community differs between forest floor soil and dead wood at the level of both species and phylogenetic lineage. The fungal species colonizing isolated seedlings on decayed wood in austral forests were taxonomically dissimilar to the species dominating in similar habitats in Europe. We conclude that formation of a resupinate fruit body type on the underside of decayed wood is not necessarily related to preferential root colonization in decayed wood. Rather, biogeographic factors as well as differential dispersal and competitive abilities of fungal taxa are likely to play a key role in structuring the ectomycorrhizal fungal community on isolated seedlings in decaying wood.

  10. Dramatic changes in ectomycorrhizal community composition, root tip abundance and mycelial production along a stand-scale nitrogen deposition gradient

    DEFF Research Database (Denmark)

    Kjøller, Rasmus; Nilsson, Lars Ola; Hansen, Karin

    2012-01-01

    • Nitrogen (N) availability is known to influence ectomycorrhizal fungal components, such as fungal community composition, biomass of root tips and production of mycelia, but effects have never been demonstrated within the same forest. • We measured concurrently the abundance of ectomycorrhizal...... root tips and the production of external mycelia, and explored the changes in the ectomycorrhizal community composition, across a stand-scale N deposition gradient (from 27 to 43 kg N ha¿¹ yr¿¹) at the edge of a spruce forest. The N status was affected along the gradient as shown by a range of N...... availability indices. • Ectomycorrhizal root tip abundance and mycelial production decreased five and 10-fold, respectively, with increasing N deposition. In addition, the ectomycorrhizal fungal community changed and the species richness decreased. The changes were correlated with the measured indices of N...

  11. Water sources and controls on water-loss rates of epigeous ectomycorrhizal fungal sporocarps during summer drought

    Science.gov (United States)

    Erik A. Lilleskov; Thomas D. Bruns; Todd E. Dawson; Francisco J. Camacho

    2009-01-01

    Access to deeper soil water and water-conserving traits should reduce water stress for ectomycorrhizal fungi, permitting function during drought. Here, we explored whether epigeous fruiting of ectomycorrhizal fungi during drought was facilitated by access to deep soil water, how much water was lost from sporocarps, and how sporocarp surface to volume ratios affected...

  12. Change in soil fungal community structure driven by a decline in ectomycorrhizal fungi following a mountain pine beetle (Dendroctonus ponderosae) outbreak.

    Science.gov (United States)

    Pec, Gregory J; Karst, Justine; Taylor, D Lee; Cigan, Paul W; Erbilgin, Nadir; Cooke, Janice E K; Simard, Suzanne W; Cahill, James F

    2017-01-01

    Western North American landscapes are rapidly being transformed by forest die-off caused by mountain pine beetle (Dendroctonus ponderosae), with implications for plant and soil communities. The mechanisms that drive changes in soil community structure, particularly for the highly prevalent ectomycorrhizal fungi in pine forests, are complex and intertwined. Critical to enhancing understanding will be disentangling the relative importance of host tree mortality from changes in soil chemistry following tree death. Here, we used a recent bark beetle outbreak in lodgepole pine (Pinus contorta) forests of western Canada to test whether the effects of tree mortality altered the richness and composition of belowground fungal communities, including ectomycorrhizal and saprotrophic fungi. We also determined the effects of environmental factors (i.e. soil nutrients, moisture, and phenolics) and geographical distance, both of which can influence the richness and composition of soil fungi. The richness of both groups of soil fungi declined and the overall composition was altered by beetle-induced tree mortality. Soil nutrients, soil phenolics and geographical distance influenced the community structure of soil fungi; however, the relative importance of these factors differed between ectomycorrhizal and saprotrophic fungi. The independent effects of tree mortality, soil phenolics and geographical distance influenced the community composition of ectomycorrhizal fungi, while the community composition of saprotrophic fungi was weakly but significantly correlated with the geographical distance of plots. Taken together, our results indicate that both deterministic and stochastic processes structure soil fungal communities following landscape-scale insect outbreaks and reflect the independent roles tree mortality, soil chemistry and geographical distance play in regulating the community composition of soil fungi. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  13. Neighboring trees affect ectomycorrhizal fungal community composition in a woodland-forest ecotone.

    Science.gov (United States)

    Hubert, Nathaniel A; Gehring, Catherine A

    2008-09-01

    Ectomycorrhizal fungi (EMF) are frequently species rich and functionally diverse; yet, our knowledge of the environmental factors that influence local EMF diversity and species composition remains poor. In particular, little is known about the influence of neighboring plants on EMF community structure. We tested the hypothesis that the EMF of plants with heterospecific neighbors would differ in species richness and community composition from the EMF of plants with conspecific neighbors. We conducted our study at the ecotone between pinyon (Pinus edulis)-juniper (Juniperus monosperma) woodland and ponderosa pine (Pinus ponderosa) forest in northern Arizona, USA where the dominant trees formed associations with either EMF (P. edulis and P. ponderosa) or arbuscular mycorrhizal fungi (AMF; J. monosperma). We also compared the EMF communities of pinyon and ponderosa pines where their rhizospheres overlapped. The EMF community composition, but not species richness of pinyon pines was significantly influenced by neighboring AM juniper, but not by neighboring EM ponderosa pine. Ponderosa pine EMF communities were different in species composition when growing in association with pinyon pine than when growing in association with a conspecific. The EMF communities of pinyon and ponderosa pines were similar where their rhizospheres overlapped consisting of primarily the same species in similar relative abundance. Our findings suggest that neighboring tree species identity shaped EMF community structure, but that these effects were specific to host-neighbor combinations. The overlap in community composition between pinyon pine and ponderosa pine suggests that these tree species may serve as reservoirs of EMF inoculum for one another.

  14. Fertility-dependent effects of ectomycorrhizal fungal communities on white spruce seedling nutrition.

    Science.gov (United States)

    Smith, Alistair J H; Potvin, Lynette R; Lilleskov, Erik A

    2015-11-01

    Ectomycorrhizal fungi (EcMF) typically colonize nursery seedlings, but nutritional and growth effects of these communities are only partly understood. To examine these effects, Picea glauca seedlings collected from a tree nursery naturally colonized by three dominant EcMF were divided between fertilized and unfertilized treatments. After one growing season seedlings were harvested, ectomycorrhizas identified using DNA sequencing, and seedlings analyzed for leaf nutrient concentration and content, and biomass parameters. EcMF community structure-nutrient interactions were tested using nonmetric multidimensional scaling (NMDS) combined with vector analysis of foliar nutrients and biomass. We identified three dominant species: Amphinema sp., Atheliaceae sp., and Thelephora terrestris. NMDS + envfit revealed significant community effects on seedling nutrition that differed with fertilization treatment. PERMANOVA and regression analyses uncovered significant species effects on host nutrient concentration, content, and stoichiometry. Amphinema sp. had a significant positive effect on phosphorus (P), calcium and zinc concentration, and P content; in contrast, T. terrestris had a negative effect on P concentration. In the unfertilized treatment, percent abundance of the Amphinema sp. negatively affected foliar nitrogen (N) concentration but not content, and reduced foliar N/P. In fertilized seedlings, Amphinema sp. was positively related to foliar concentrations of N, magnesium, and boron, and both concentration and content of manganese, and Atheliaceae sp. had a negative relationship with P content. Findings shed light on the community and species effects on seedling condition, revealing clear functional differences among dominants. The approach used should be scalable to explore function in more complex communities composed of unculturable EcMF.

  15. Distributions of ectomycorrhizal and foliar endophytic fungal communities associated with Pinus ponderosa along a spatially constrained elevation gradient.

    Science.gov (United States)

    Bowman, Elizabeth A; Arnold, A Elizabeth

    2018-05-13

    Understanding distributions of plant-symbiotic fungi is important for projecting responses to environmental change. Many coniferous trees host ectomycorrhizal fungi (EM) in association with roots and foliar endophytic fungi (FE) in leaves. We examined how EM and FE associated with Pinus ponderosa each vary in abundance, diversity, and community structure over a spatially constrained elevation gradient that traverses four plant communities, 4°C in mean annual temperature, and 15 cm in mean annual precipitation. We sampled 63 individuals of Pinus ponderosa in 10 sites along a 635 m elevation gradient that encompassed a geographic distance of 9.8 km. We used standard methods to characterize each fungal group (amplified and sequenced EM from root tips; isolated and sequenced FE from leaves). Abundance and diversity of EM were similar across sites, but community composition and distributions of the most common EM differed with elevation (i.e., with climate, soil chemistry, and plant communities). Abundance and composition of FE did not differ with elevation, but diversity peaked in mid-to-high elevations. Our results suggest relatively tight linkages between EM and climate, soil chemistry, and plant communities. That FE appear less linked with these factors may speak to limitations of a culture-based approach, but more likely reflects the small spatial scale encompassed by our study. Future work should consider comparable methods for characterizing these functional groups, and additional transects to understand relationships of EM and FE to environmental factors that are likely to shift as a function of climate change. © 2018 Botanical Society of America.

  16. The effect of environmental contamination on the community structure and fructification of ectomycorrhizal fungi.

    Science.gov (United States)

    Sun, Qibiao; Liu, Yaping; Yuan, Huatao; Lian, Bin

    2017-02-01

    Ectomycorrhizal fungi are an essential component of forest ecosystems, most of which can form edible and medical fruiting bodies. Although many studies have focused on the fructification of ectomycorrhizal fungi in phenology, the impact of environmental contamination, especially living garbage, on the formation of fruiting body is still unknown. A field investigation, combined with a high-throughput sequencing method, was used to study the effect of living garbage pollution on the fructification and hypogeous community structure of ectomycorrhizal fungi symbiosing with cedar (Cedrus deodara (Roxb.) G. Don). The results showed that garbage significantly altered soil abiotic and biotic properties, increasing soil urease activity, decreasing the soil exchangeable metal content and phosphatase activity, and ultimately inhibiting the formation of fruiting bodies. The pollution of garbage also changed the community structure of hypogeous ectomycorrhizal fungi where ectomycorrhizal ascomycetes dominated. In unpolluted sites, the relative abundance of ectomycorrhizal ascomycetes and basidiomycetes were almost equal. Although no fruiting bodies were observed in that soil polluted by living garbage, the sequencing result showed that various ectomycorrhizal fungi were present underground, suggesting that these taxonomic fungi had the potential to cope with adverse conditions. This study not only provided a deeper understanding of the relationship between ectomycorrhizal fungal communities and prevailing environmental conditions, but provided a new pathway for the excavation and utilization of the resource of antistress ectomycorrhizal fungi. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  17. An assessment of ectomycorrhizal fungal communities in Tasmanian temperate high-altitude Eucalyptus delegatensis forest reveals a dominance of the Cortinariaceae.

    Science.gov (United States)

    Horton, Bryony M; Glen, Morag; Davidson, Neil J; Ratkowsky, David A; Close, Dugald C; Wardlaw, Tim J; Mohammed, Caroline

    2017-01-01

    Fungal diversity of Australian eucalypt forests remains underexplored. We investigated the ectomycorrhizal (EcM) fungal community characteristics of declining temperate eucalypt forests in Tasmania. Within this context, we explored the diversity of EcM fungi of two forest types in the northern highlands in the east and west of the island. We hypothesised that EcM fungal community richness and composition would differ between forest type but that the Cortinariaceae would be the dominant family irrespective of forest type. We proposed that EcM richness would be greater in the wet sclerophyll forest than the dry sclerophyll forest type. Using both sporocarps and EcM fungi from root tips amplified by PCR and sequenced in the rDNA ITS region, 175 EcM operational taxonomic units were identified of which 97 belonged to the Cortinariaceae. The Cortinariaceae were the most diverse family, in both the above and below ground communities. Three distinct fungal assemblages occurred within the wet and dry sclerophyll forest types and two geographic regions that were studied, although this pattern did not remain when only the root tip data were analysed. EcM sporocarp richness was unusually higher than root tip richness and EcM richness did not significantly differ among forest types. The results are discussed in relation to the importance of the Cortinariaceae and the drivers of EcM fungal community composition within these forests.

  18. Hypogeous ectomycorrhizal fungal species on roots and in small mammal diet in a mixed-conifer forest

    Science.gov (United States)

    Antonio D. Izzo; Marc Meyer; James M. Trappe; Malcolm North; Thomas D. Bruns

    2005-01-01

    The purpose of this study was to estimate the portion of an ectomycorrhizal (ECM) fungi root community with a hypogeous fruiting habit. We used molecular methods (DNA sequence analysis of the internally transcribed spacer [ITS] region of rDNA) to compare three viewpoints: ECM fungi on the roots in a southern Sierra Nevada Abies-dominated old-growth...

  19. [Impact of cork oak management on the ectomycorrhizal fungal diversity associated with Quercus suber in the Mâamora forest (Morocco)].

    Science.gov (United States)

    Maghnia, Fatima Z; Sanguin, Hervé; Abbas, Younes; Verdinelli, Marcello; Kerdouh, Benaissa; El Ghachtouli, Naima; Lancellotti, Enrico; Bakkali Yakhlef, Salah Eddine; Duponnois, Robin

    2017-05-01

    The cork oak forest is an ecosystem playing a major role in Moroccan socio-economy and biodiversity conservation. However, this ecosystem is negatively impacted by extensive human- and climate-driven pressures, causing a strong decrease in its distribution and a worsening of the desertification processes. This study aims at characterising the impact of cork oak forest management on a major actor of its functioning, the ectomycorrhizal (EcM) fungal community associated with Quercus suber, and the determination of EcM bio-indicators. The EcM fungal community has been monitored during spring and winter seasons in two sites of the Moroccan Mâamora forest, corresponding to a forest site either impacted by human activities or protected. A significant impact of cork oak forest management on the EcM fungal community has been revealed, with major differences during the summer season. The results confirmed the potential ecological significance of several EcM fungi (e.g., Cenococcum) in the sustainability of the cork oak forest functioning, but also the significant association of certain EcM fungi (Pachyphloeus, Russula, Tomentella) with a perturbation or a season, and consequently to the cork oak forest status or to climatic conditions, respectively. The development of study at the Mediterranean scale may improve the robustness of ecological models to predict the impact of global changes on this emblematic ecosystem of Mediterranean basin. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  20. Soil Type Has a Stronger Role than Dipterocarp Host Species in Shaping the Ectomycorrhizal Fungal Community in a Bornean Lowland Tropical Rain Forest

    Directory of Open Access Journals (Sweden)

    Adam L. Essene

    2017-10-01

    Full Text Available The role that mycorrhizal fungal associations play in the assembly of long-lived tree communities is poorly understood, especially in tropical forests, which have the highest tree diversity of any ecosystem. The lowland tropical rain forests of Southeast Asia are characterized by high levels of species richness within the family Dipterocarpaceae, the entirety of which has been shown to form obligate ectomycorrhizal (ECM fungal associations. Differences in ECM assembly between co-occurring species of dipterocarp have been suggested, but never tested in adult trees, as a mechanism for maintaining the coexistence of closely related tree species in this family. Testing this hypothesis has proven difficult because the assembly of both dipterocarps and their ECM associates co-varies with the same edaphic variables. In this study, we used high-throughput DNA sequencing of soils and Sanger sequencing of root tips to evaluate how ECM fungi were structured within and across a clay–sand soil nutrient ecotone in a mixed-dipterocarp rain forest in Malaysian Borneo. We compared assembly patterns of ECM fungi in bulk soil to ECM root tips collected from three ecologically distinct species of dipterocarp. This design allowed us to test whether ECM fungi are more strongly structured by soil type or host specificity. As with previous studies of ECM fungi on this plot, we observed that clay vs. sand soil type strongly structured both the bulk soil and root tip ECM fungal communities. However, we also observed significantly different ECM communities associated with two of the three dipterocarp species evaluated on this plot. These results suggest that ECM fungal assembly on these species is shaped by a combination of biotic and abiotic factors, and that the soil edaphic niche occupied by different dipterocarp species may be mediated by distinct ECM fungal assemblages.

  1. Ectomycorrhizal fungal communities of native and non-native Pinus and Quercus species in a common garden of 35-year-old trees.

    Science.gov (United States)

    Trocha, Lidia K; Kałucka, Izabela; Stasińska, Małgorzata; Nowak, Witold; Dabert, Mirosława; Leski, Tomasz; Rudawska, Maria; Oleksyn, Jacek

    2012-02-01

    Non-native tree species have been widely planted or have become naturalized in most forested landscapes. It is not clear if native trees species collectively differ in ectomycorrhizal fungal (EMF) diversity and communities from that of non-native tree species. Alternatively, EMF species community similarity may be more determined by host plant phylogeny than by whether the plant is native or non-native. We examined these unknowns by comparing two genera, native and non-native Quercus robur and Quercus rubra and native and non-native Pinus sylvestris and Pinus nigra in a 35-year-old common garden in Poland. Using molecular and morphological approaches, we identified EMF species from ectomycorrhizal root tips and sporocarps collected in the monoculture tree plots. A total of 69 EMF species were found, with 38 species collected only as sporocarps, 18 only as ectomycorrhizas, and 13 both as ectomycorrhizas and sporocarps. The EMF species observed were all native and commonly associated with a Holarctic range in distribution. We found that native Q. robur had ca. 120% higher total EMF species richness than the non-native Q. rubra, while native P. sylvestris had ca. 25% lower total EMF species richness than non-native P. nigra. Thus, across genera, there was no evidence that native species have higher EMF species diversity than exotic species. In addition, we found a higher similarity in EMF communities between the two Pinus species than between the two Quercus species. These results support the naturalization of non-native trees by means of mutualistic associations with cosmopolitan and novel fungi.

  2. Clavulina-Membranomyces is the most important lineage within the highly diverse ectomycorrhizal fungal community of Abies religiosa.

    Science.gov (United States)

    Argüelles-Moyao, Andrés; Garibay-Orijel, Roberto; Márquez-Valdelamar, Laura Margarita; Arellano-Torres, Elsa

    2017-01-01

    Abies religiosa is an endemic conifer of Mexico, where its monodominant forests are the winter refuge of the monarch butterfly. Due to climate change, it has been estimated that by 2090, A. religiosa populations will decline by 96.5 %. To achieve success, reforestation programs should consider its ectomycorrhizal (ECM) fungi. We used ITS nrDNA sequences to identify the ECM fungi associated with A. religiosa and, based on its abundance and frequency, determined the diversity and community structure in a pure A. religiosa forest near Mexico City. Using sequence metadata, we inferred the species geographic distribution and host preferences. We conducted phylogenetic analyses of the Clavulinaceae (the most important family). The ECM community held 83 species, among which the richest genera were Inocybe (21 species), Tomentella (10 species), and Russula (8 species). Besides its low species richness, the Clavulina-Membranomyces lineage was the most dominant family. Clavulina cf. cinerea and Membranomyces sp. exhibited the highest relative abundance and relative frequency values. Phylogenetic analyses placed the Clavulinaceae genotypes in three different clades: one within Membranomyces and two within Clavulina. A meta-analysis showed that the majority of the ECM fungi (45.78 %) associated with A. religiosa in Mexico have also been sequenced from North America and are shared by Pinaceae and Fagaceae. In contrast, because they have not been sequenced previously, 32.2 % of the species have a restricted distribution. Here, we highlight the emerging pattern that the Clavulina-Membranomyces lineage is dominant in several ECM communities in the Neotropics, including Aldinia and Dicymbe legume tropical forests in the Guyana Shield, the Alnus acuminata subtropical communities, and the A. religiosa temperate forests in Mexico.

  3. Rock-eating fungi: Ectomycorrhizal fungi are picky eaters

    Science.gov (United States)

    Rosenstock, Nicholas; Smits, Mark; Berner, Christoffer; Kram, Pavel; Wallander, Hakan

    2014-05-01

    Ectomycorrhizal fungi, which form mutualistic symbiosis with the roots of most temperate and boreal forest trees, play a key role in the provision of nitrogen and phosphorus to their plant symbionts; they have also been shown to provide potassium and magnesium. Ectomycorhizal hyphae colonize and take up mineral nutrients (including P, K, and Mg) from primary mineral surfaces in the soil. It is poorly understood whether mineral colonization and uptake of nutrients from minerals can increase in accordance with host plant demand for these nutrients, and this question has been difficult to address in field settings. Ectomycorrhizal fungal communities are diverse and niche separation according to nutrient uptake and transport to the host is commonly considered one of the major factors maintaining diversity and shaping ectomycorrhizal community composition.We investigated ectomycorrhizal growth, community composition, and mineral colonization in a series of connected Norway spruce forests in the Czech republic. These forests have similar aspect, climate and stand history, but are underlain by different parent materials and are, as a result, limited by different nutrients. The productivity of forests overlying a high amount of serpentinite rock are co-limited by K and P, those growing on primarily granitic rock are limited by Mg, while those on amphibolite are N limited. We assessed the fungal community in both soil and in-growth mesh bags measuring biomarkers, using in-growth assays and performing community analysis with 454 sequencing of the ITS region. In-growth mesh bags were filled with quartz sand and incubated for two growing seasons in the soil. These mesh bags select for ectomycorrhizal hyphae and were either pure quartz sand or amended with ground apatite (Ca and P source), hornblende (Mg source) or biotite (K source). Ectomycorrhizal growth and community composition were most strongly affected by parent material. The phosphorus-limited site had the lowest tree

  4. [Influence of aluminum and manganese on the growth, nutrient uptake and the efflux by ectomycorrhizal fungi].

    Science.gov (United States)

    Li, Hua; Huang, Jian-Guo; Yuan, Ling

    2013-01-01

    Al3+ and Mn2+ limit forest growth and vegetation restoration in strongly acidic soils and mining areas of aluminum and manganese. The knowledge on the influence of these two elements on ectomycorrhizal fungi can provide theoretical and technical supports for the selection of powerful ectomycorrhizal fungal strains and the bioremediation of contaminated soil. Three ectomycorrhizal fungal strains, namely Suillus luteus 13 (Sl 13), Cenococcum geophilum 04 (Cg 04) and Pisolithus tinctorius 715 (Pt 715), were grown in liquid culture mediums with Al3+ and Mn2+ added alone and together to investigate fungal growth, nutrient uptake and organic acid efflux. The results showed that the biomass of Sl 13, Cg 04 and Pt 715 was decreased by 70.35%, 52.44% and 18.55%, respectively, under Mn2+ stress. Al3 also decreased the biomass of Sl 13 by 50.74% but increased that of Cg 04. The growth of ectomycorrhizal fungi was further inhibited when grown in culture solutions with addition of both Mn2+ and Al3 and the least growth inhibition was found with Pt 715. Cg 04 might thus have a strong resistance to Al3+ stress and Pt 715 to both Al3+ and Mn2+ compared to the others. Al3+ and Mn2+ decreased the nutrient uptake by the fungi, particularly by Sl 13 which showed more obvious reduction than Pt 715 and Cg 04. However, Al3+ and Mn2+ increased the efflux of oxalic acid and protons by ectomycorrhizal fungi. An additional oxalic acid exudation by Cg 04 was observed in the coexistence of Al3+ and Mn2+ and Pt 715 exuded not only oxalic acid but also succinic acid. Therefore, ectomycorrhizal fungi resistant to Mn2+ and Al3+ could effuse more organic acids than the sensitive ones in order to alleviate the harmfulness through complexation under the stress.

  5. Fungal-host diversity among mycoheterotrophic plants increases proportionally to their fungal-host overlap.

    Science.gov (United States)

    Gomes, Sofia I F; Merckx, Vincent S F T; Saavedra, Serguei

    2017-05-01

    The vast majority of plants obtain an important proportion of vital resources from soil through mycorrhizal fungi. Generally, this happens in exchange of photosynthetically fixed carbon, but occasionally the interaction is mycoheterotrophic, and plants obtain carbon from mycorrhizal fungi. This process results in an antagonistic interaction between mycoheterotrophic plants and their fungal hosts. Importantly, the fungal-host diversity available for plants is restricted as mycoheterotrophic interactions often involve narrow lineages of fungal hosts. Unfortunately, little is known whether fungal-host diversity may be additionally modulated by plant-plant interactions through shared hosts. Yet, this may have important implications for plant competition and coexistence. Here, we use DNA sequencing data to investigate the interaction patterns between mycoheterotrophic plants and arbuscular mycorrhizal fungi. We find no phylogenetic signal on the number of fungal hosts nor on the fungal hosts shared among mycoheterotrophic plants. However, we observe a potential trend toward increased phylogenetic diversity of fungal hosts among mycoheterotrophic plants with increasing overlap in their fungal hosts. While these patterns remain for groups of plants regardless of location, we do find higher levels of overlap and diversity among plants from the same location. These findings suggest that species coexistence cannot be fully understood without attention to the two sides of ecological interactions.

  6. Disproportionate abundance between ectomycorrhizal root tips and their associated mycelia

    DEFF Research Database (Denmark)

    Kjøller, Rasmus

    2006-01-01

    Extensive knowledge of various ectomycorrhizal fungal communities has been obtained over the past 10 years based on molecular identification of the fungi colonizing fine roots. In contrast, only limited information exists about the species composition of ectomycorrhizal hyphae in soil. This study...

  7. Litter-forager termite mounds enhance the ectomycorrhizal symbiosis between Acacia holosericea A. Cunn. Ex G. Don and Scleroderma dictyosporum isolates.

    Science.gov (United States)

    Duponnois, Robin; Assikbetse, Komi; Ramanankierana, Heriniaina; Kisa, Marija; Thioulouse, Jean; Lepage, Michel

    2006-05-01

    The hypothesis of the present study was that the termite mounds of Macrotermes subhyalinus (MS) (a litter-forager termite) were inhabited by a specific microflora that could enhance with the ectomycorrhizal fungal development. We tested the effect of this feeding group mound material on (i) the ectomycorrhization symbiosis between Acacia holosericea (an Australian Acacia introduced in the sahelian areas) and two ectomycorrhizal fungal isolates of Scleroderma dictyosporum (IR408 and IR412) in greenhouse conditions, (ii) the functional diversity of soil microflora and (iii) the diversity of fluorescent pseudomonads. The results showed that the termite mound amendment significantly increased the ectomycorrhizal expansion. MS mound amendment and ectomycorrhizal inoculation induced strong modifications of the soil functional microbial diversity by promoting the multiplication of carboxylic acid catabolizing microorganisms. The phylogenetic analysis showed that fluorescent pseudomonads mostly belong to the Pseudomonads monteillii species. One of these, P. monteillii isolate KR9, increased the ectomycorrhizal development between S. dictyosporum IR412 and A. holosericea. The occurrence of MS termite mounds could be involved in the expansion of ectomycorrhizal symbiosis and could be implicated in nutrient flow and local diversity.

  8. Elevated CO2 and O3 effects on ectomycorrhizal fungal root tip communities in consideration of a post-agricultural soil nutrient gradient legacy

    Science.gov (United States)

    Carrie Andrew; Erik A. Lilleskov

    2014-01-01

    Despite the critical role of EMF in nutrient and carbon (C) dynamics, combined effects of global atmospheric pollutants on ectomycorrhizal fungi (EMF) are unclear. Here, we present research on EMF root-level community responses to elevated CO2 and O3. We discovered that belowground EMF community richness and similarity were...

  9. Contrasting diversity and host association of ectomycorrhizal basidiomycetes versus root-associated ascomycetes in a dipterocarp rainforest.

    Directory of Open Access Journals (Sweden)

    Hirotoshi Sato

    Full Text Available Root-associated fungi, including ectomycorrhizal and root-endophytic fungi, are among the most diverse and important belowground plant symbionts in dipterocarp rainforests. Our study aimed to reveal the biodiversity, host association, and community structure of ectomycorrhizal Basidiomycota and root-associated Ascomycota (including root-endophytic Ascomycota in a lowland dipterocarp rainforest in Southeast Asia. The host plant chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL region and fungal internal transcribed spacer 2 (ITS2 region were sequenced using tag-encoded, massively parallel 454 pyrosequencing to identify host plant and root-associated fungal taxa in root samples. In total, 1245 ascomycetous and 127 putative ectomycorrhizal basidiomycetous taxa were detected from 442 root samples. The putative ectomycorrhizal Basidiomycota were likely to be associated with closely related dipterocarp taxa to greater or lesser extents, whereas host association patterns of the root-associated Ascomycota were much less distinct. The community structure of the putative ectomycorrhizal Basidiomycota was possibly more influenced by host genetic distances than was that of the root-associated Ascomycota. This study also indicated that in dipterocarp rainforests, root-associated Ascomycota were characterized by high biodiversity and indistinct host association patterns, whereas ectomycorrhizal Basidiomycota showed less biodiversity and a strong host phylogenetic preference for dipterocarp trees. Our findings lead to the working hypothesis that root-associated Ascomycota, which might be mainly represented by root-endophytic fungi, have biodiversity hotspots in the tropics, whereas biodiversity of ectomycorrhizal Basidiomycota increases with host genetic diversity.

  10. Changes in Soil Fungal Community Structure with Increasing Disturbance Frequency.

    Science.gov (United States)

    Cho, Hyunjun; Kim, Mincheol; Tripathi, Binu; Adams, Jonathan

    2017-07-01

    Although disturbance is thought to be important in many ecological processes, responses of fungal communities to soil disturbance have been little studied experimentally. We subjected a soil microcosm to physical disturbance, at a range of frequencies designed to simulate ecological disturbance events. We analyzed the fungal community structure using Illumina HiSeq sequencing of the ITS1 region. Fungal diversity was found to decline with the increasing disturbance frequencies, with no sign of the "humpback" pattern found in many studies of larger sedentary organisms. There is thus no evidence of an effect of release from competition resulting from moderate disturbance-which suggests that competition and niche overlap may not be important in limiting soil fungal diversity. Changing disturbance frequency also led to consistent differences in community composition. There were clear differences in OTU-level composition, with different disturbance treatments each having distinct fungal communities. The functional profile of fungal groups (guilds) was changed by the level of disturbance frequency. These predictable differences in community composition suggest that soil fungi can possess different niches in relation to disturbance frequency, or time since last disturbance. Fungi appear to be most abundant relative to bacteria at intermediate disturbance frequencies, on the time scale we studied here.

  11. Seasonal dynamics of structure and functional activity of ectomycorrhizal roots of the Siberian fir

    Directory of Open Access Journals (Sweden)

    T. A. Sizonenko

    2017-12-01

    Full Text Available The aim of our work was to study seasonal dynamics of the Siberian fir Abies sibirica Ledeb. ectomycorrhizal morpho-anatomical structure, respiration rate and fluorescence. The study was carried out in the bilberry-sphagnum spruce forest in the middle taiga of the Komi Republic, Russia. The morpho-anatomical structure and fluorescence parameters were studied by light and luminescence microscopy. Thin root respiration was studied in intact fine roots in the field using an infrared gas analyzer. 12 subtypes of fungal mantels were revealed in ectomycorrhizal fir roots; their amount and composition demonstrated seasonal dynamic changes. At the beginning vegetation stage, the diversity and proportion of pseudoparenchymatous and double covers were maximal. Plant component of ectomycorrhizae that includes cortical parenchyma and stele had high activity of fluorescence during the entire vegetation period. The dynamics of staining of fungal component (fungal mantel and Hartig net was more contrasting. The highest fluorescence intensity of cortical parenchyma was found in ectomycorrhizae with maximal fungal mantel thickness. High proportion of tannin cells in cortical parenchyma was related with low intensity of fungal mantel and Hartig net fluorescence. During vegetation season, maximal amount of intensively strained ectomycorrhizal elements occurred in July and unstrained – in June and August. Relation between fine roots respiration and an increase of brightly strained ectomycorrhizal structural elements in fir roots was not statistically significant. Root CO2-emission was lower in May and September in comparison with summer months. For respiration rate of fir fine roots we found its strong positive correlation with the litter temperature.

  12. Experimental soil warming shifts the fungal community composition at the alpine treeline.

    Science.gov (United States)

    Solly, Emily F; Lindahl, Björn D; Dawes, Melissa A; Peter, Martina; Souza, Rômulo C; Rixen, Christian; Hagedorn, Frank

    2017-07-01

    Increased CO 2 emissions and global warming may alter the composition of fungal communities through the removal of temperature limitation in the plant-soil system, faster nitrogen (N) cycling and changes in the carbon (C) allocation of host plants to the rhizosphere. At a Swiss treeline featuring Larix decidua and Pinus uncinata, the effects of multiple years of CO 2 enrichment and experimental soil warming on the fungal community composition in the organic horizons were analysed using 454-pyrosequencing of ITS2 amplicons. Sporocarp production and colonization of ectomycorrhizal root tips were investigated in parallel. Fungal community composition was significantly altered by soil warming, whereas CO 2 enrichment had little effect. Tree species influenced fungal community composition and the magnitude of the warming responses. The abundance of ectomycorrhizal fungal taxa was positively correlated with N availability, and ectomycorrhizal taxa specialized for conditions of high N availability proliferated with warming, corresponding to considerable increases in inorganic N in warmed soils. Traits related to N utilization are important in determining the responses of ectomycorrhizal fungi to warming in N-poor cold ecosystems. Shifts in the overall fungal community composition in response to higher temperatures may alter fungal-driven processes with potential feedbacks on ecosystem N cycling and C storage at the alpine treeline. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  13. Ectomycorrhizal fungi enhance nitrogen and phosphorus nutrition of Nothofagus dombeyi under drought conditions by regulating assimilative enzyme activities.

    Science.gov (United States)

    Alvarez, Maricel; Huygens, Dries; Olivares, Erick; Saavedra, Isabel; Alberdi, Miren; Valenzuela, Eduardo

    2009-08-01

    Drought stress conditions (DC) reduce plant growth and nutrition, restraining the sustainable reestablishment of Nothofagus dombeyi in temperate south Chilean forest ecosystems. Ectomycorrhizal symbioses have been documented to enhance plant nitrogen (N) and phosphorus (P) uptake under drought, but the regulation of involved assimilative enzymes remains unclear. We studied 1-year-old N. dombeyi (Mirb.) Oerst. plants in association with the ectomycorrhizal fungi Pisolithus tinctorius (Pers.) Coker & Couch. and Descolea antartica Sing. In greenhouse experiments, shoot and root dry weights, mycorrhizal colonization, foliar N and P concentrations, and root enzyme activities [glutamate synthase (glutamine oxoglutarate aminotransferase (GOGAT), EC 1.4.1.13-14), glutamine synthetase (GS, EC 6.3.1.2), glutamate dehydrogenase (GDH, EC 1.4.1.2-4), nitrate reductase (NR, EC 1.6.6.1), and acid phosphomonoesterase (PME, EC 3.1.3.1-2)] were determined as a function of soil-water content. Inoculation of N. dombeyi with P. tinctorius and D. antartica significantly stimulated plant growth and increased plant foliar N and P concentrations, especially under DC. Ectomycorrhizal inoculation increased the activity of all studied enzymes relative to non-mycorrhizal plants under drought. We speculate that GDH is a key enzyme involved in the enhancement of ectomycorrhizal carbon (C) availability by fuelling the tricarboxylic acid (TCA) cycle under conditions of drought-induced carbon deficit. All studied assimilative enzymes of the ectomycorrhizal associations, involved in C, N, and P transfers, are closely interlinked and interdependent. The up-regulation of assimilative enzyme activities by ectomycorrhizal fungal root colonizers acts as a functional mechanism to increase seedling endurance to drought. We insist upon incorporating ectomycorrhizal inoculation in existing Chilean afforestation programs.

  14. Oxalate secretion by ectomycorrhizal Paxillus involutus is mineral-specific and controls calcium weathering from minerals

    Science.gov (United States)

    Schmalenberger, A.; Duran, A. L.; Bray, A. W.; Bridge, J.; Bonneville, S.; Benning, L. G.; Romero-Gonzalez, M. E.; Leake, J. R.; Banwart, S. A.

    2015-01-01

    Trees and their associated rhizosphere organisms play a major role in mineral weathering driving calcium fluxes from the continents to the oceans that ultimately control long-term atmospheric CO2 and climate through the geochemical carbon cycle. Photosynthate allocation to tree roots and their mycorrhizal fungi is hypothesized to fuel the active secretion of protons and organic chelators that enhance calcium dissolution at fungal-mineral interfaces. This was tested using 14CO2 supplied to shoots of Pinus sylvestris ectomycorrhizal with the widespread fungus Paxillus involutus in monoxenic microcosms, revealing preferential allocation by the fungus of plant photoassimilate to weather grains of limestone and silicates each with a combined calcium and magnesium content of over 10 wt.%. Hyphae had acidic surfaces and linear accumulation of weathered calcium with secreted oxalate, increasing significantly in sequence: quartz, granite mineral-specific oxalate exudation in ectomycorrhizal weathering to dissolve calcium bearing minerals, thus contributing to the geochemical carbon cycle. PMID:26197714

  15. Convergence in mycorrhizal fungal communities due to drought, plant competition, parasitism and susceptibility to herbivory: Consequences for fungi and host plants

    Directory of Open Access Journals (Sweden)

    Catherine A. Gehring

    2014-06-01

    Full Text Available Plants and mycorrhizal fungi influence each other’s abundance, diversity and distribution. How other biotic interactions affect the mycorrhizal symbiosis is less well understood. Likewise, we know little about the effects of climate change on the fungal component of the symbiosis or its function. We synthesized our long-term studies on the influence of mistletoe parasites, insect herbivores, competing trees, and drought on the ectomycorrhizal fungal communities associated with a foundation tree species of the southwestern United States, pinyon pine (Pinus edulis, and described how these changes feed back to affect host plant performance. We found that drought and all three of the biotic interactions studied resulted in similar shifts in ectomycorrhizal fungal community composition, demonstrating a convergence of the community towards dominance by a few closely related fungal taxa. Ectomycorrhizal fungi responded similarly to each of these stressors resulting in a predictable trajectory of community disassembly, consistent with ecological theory. Although we predicted that the fungal communities associated with trees stressed by drought, herbivory, competition, and parasitism would be poor mutualists, we found the opposite pattern in field studies. Our results suggest that climate change and the increased importance of herbivores, competitors and parasites that can be associated with it, may ultimately lead to reductions in ectomycorrhizal fungal diversity, but that the remaining fungal community may be beneficial to host trees under the current climate and the warmer, drier climate predicted for the future.

  16. Convergence in mycorrhizal fungal communities due to drought, plant competition, parasitism, and susceptibility to herbivory: consequences for fungi and host plants.

    Science.gov (United States)

    Gehring, Catherine A; Mueller, Rebecca C; Haskins, Kristin E; Rubow, Tine K; Whitham, Thomas G

    2014-01-01

    Plants and mycorrhizal fungi influence each other's abundance, diversity, and distribution. How other biotic interactions affect the mycorrhizal symbiosis is less well understood. Likewise, we know little about the effects of climate change on the fungal component of the symbiosis or its function. We synthesized our long-term studies on the influence of plant parasites, insect herbivores, competing trees, and drought on the ectomycorrhizal fungal communities associated with a foundation tree species of the southwestern United States, pinyon pine (Pinus edulis), and described how these changes feed back to affect host plant performance. We found that drought and all three of the biotic interactions studied resulted in similar shifts in ectomycorrhizal fungal community composition, demonstrating a convergence of the community towards dominance by a few closely related fungal taxa. Ectomycorrhizal fungi responded similarly to each of these stressors resulting in a predictable trajectory of community disassembly, consistent with ecological theory. Although we predicted that the fungal communities associated with trees stressed by drought, herbivory, competition, and parasitism would be poor mutualists, we found the opposite pattern in field studies. Our results suggest that climate change and the increased importance of herbivores, competitors, and parasites that can be associated with it, may ultimately lead to reductions in ectomycorrhizal fungal diversity, but that the remaining fungal community may be beneficial to host trees under the current climate and the warmer, drier climate predicted for the future.

  17. Asymmetric response of root-associated fungal communities of an arbuscular mycorrhizal grass and an ectomycorrhizal tree to their coexistence in primary succession

    Czech Academy of Sciences Publication Activity Database

    Knoblochová, T.; Kohout, Petr; Püschel, D.; Doubková, P.; Frouz, J.; Cajthaml, T.; Kukla, J.; Vosátka, M.; Rydlová, J.

    2017-01-01

    Roč. 27, č. 8 (2017), s. 775-789 ISSN 0940-6360 R&D Projects: GA ČR GA13-10377S Institutional support: RVO:61388971 Keywords : Arbuscular mycorrhiza * Ectomycorrhiza * Root-associated fungal communities Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 3.047, year: 2016

  18. Asymmetric response of root-associated fungal communities of an arbuscular mycorrhizal grass and an ectomycorrhizal tree to their coexistence in primary succession

    Czech Academy of Sciences Publication Activity Database

    Knoblochová, Tereza; Kohout, Petr; Püschel, David; Doubková, Pavla; Frouz, J.; Cajthaml, T.; Kukla, J.; Vosátka, Miroslav; Rydlová, Jana

    2017-01-01

    Roč. 27, č. 8 (2017), s. 775-789 ISSN 0940-6360 R&D Projects: GA ČR GA13-10377S Institutional support: RVO:67985939 Keywords : mycorrhiza * fungal communities * succession Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 3.047, year: 2016

  19. Ectomycorrhizal diversity associated with Cedrus deodara and Pinus wallichiana in the Kashmir Himalaya, India.

    Science.gov (United States)

    Itoo, Zahoor Ahmad; Reshi, Zafar A

    2014-01-01

    The present study was undertaken to document the ectomycorrhizal diversity associated with the Cedrus deodara and Pinus wallichiana in the Kashmir Himalaya, India. The extensive field surveys carried out in the Kashmir Himalaya at five study sites resulted in the collection and identification of 76 potential ectomycorrhizal fungal species associated with the Cedrus deodara and Pinus wallichiana. Maximum 32 number of species were found associated with Pinus wallichiana, 19 with Cedrus deodara and 25 species were found growing in association with both the conifers. The present study reveals that Cedrus deodara and Pinus wallichiana in the Kashmir Himalaya, India harbour diverse ectomycorrhizal fungal species.

  20. Controls of Isotopic Patterns in Saprotrophic and Ectomycorrhizal Fungi

    Science.gov (United States)

    Isotopes of nitrogen (δ15N) and carbon (δ13C) in ectomycorrhizal and saprotrophic fungi contain important information about ecological functioning, but the complexity of physiological and ecosystem processes contributing to fungal carbon and nitrogen dynamics has limited our abil...

  1. Pure culture response of ectomycorrhizal fungi to imposed water stress

    Science.gov (United States)

    Mark D. Coleman; Caroline S. Bledsoe; William Lopushinsky

    1989-01-01

    The ability of ectomycorrhizal fungal isolates to tolerate imposed water stress in pure culture was examined in 55 isolates of 18 species. Water potential treatments, adjusted with polyethylene glycol, were applied to Petri dish units. These units allowed colony diameter measurements of fungi grown on liquid media. Delayed growth initiation and inhibition of growth...

  2. Community structure of ectomycorrhizal fungi in Swedish boreal forests

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Lena [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Mycology and Pathology

    1998-12-31

    The main aim of this work has been to elucidate the species composition and community structure of ectomycorrhizal fungi associated with mature trees and naturally regenerated seedlings in natural boreal forests in Sweden. Further, the effects of disturbances, such as wildfire and nitrogen inputs, were studied. Sporocarp surveys, morphological stratification and DNA-based analyses of mycorrhizas were used to describe the mycorrhizal fungal communities. In addition, a reference database useful for identifying individual mycorrhizas was developed based on analyses of sporocarp tissue. Overall, the species richness of ectomycorrhizal fungi was at least 30 to 40 times higher than that of their host trees. Naturally regenerated seedlings were colonized by the ectomycorrhizal fungal species present in the mycelial network of the old trees, indicating that the species composition will remain about the same provided that the host does not disappear. Wildfire, disturbing the fungal continuum, caused a shift in the frequencies of ectomycorrhizal fungi rather than a change in species composition. Nitrogen addition did not have any detectable effect on the abundance or species richness of mycorrhizas, but led to a decrease in sporocarp production. In all the studies, there was little resemblance between the species composition of sporocarps and that of mycorrhizas. The ITS-RFLP reference database was very useful in identifying single mycorrhizas, and proved to be a powerful tool for species identification of unknown mycorrhizas 76 refs, 2 figs, 2 tabs

  3. Fungal biomass in pastures increases with age and reduced N input.

    NARCIS (Netherlands)

    Vries, de F.T.; Bloem, J.; Eekeren, van N.J.M.; Brussaard, L.; Hoffland, E.

    2007-01-01

    Previous studies have shown that soil fungal biomass increases towards more natural, mature systems. Shifts to a fungal-based soil food web have previously been observed with abandonment of agricultural fields and extensification of agriculture. In a previous field experiment we found increased

  4. Seasonal dynamics of ectomycorrhizal fungus assemblages on oak seedlings in the southeastern Appalachian Mountains

    Science.gov (United States)

    John F. Walker; Orson K. Jr. Miller; Jonathan L. Horton

    2008-01-01

    The potential for seasonal dynamics in ectomycorrhizal (EM) fungal assemblages has important implications for the ecology of both the host trees and the fungal associates. We compared EM fungus distributions on root systems of out-planted oak seedlings at two sites in mixed southeastern Appalachian Mountain forests at the Coweeta Hydrologic Laboratory in North Carolina...

  5. Root-Associated Fungi Shared Between Arbuscular Mycorrhizal and Ectomycorrhizal Conifers in a Temperate Forest.

    Science.gov (United States)

    Toju, Hirokazu; Sato, Hirotoshi

    2018-01-01

    Arbuscular mycorrhizal and ectomycorrhizal symbioses are among the most important drivers of terrestrial ecosystem dynamics. Historically, the two types of symbioses have been investigated separately because arbuscular mycorrhizal and ectomycorrhizal plant species are considered to host discrete sets of fungal symbionts (i.e., arbuscular mycorrhizal and ectomycorrhizal fungi, respectively). Nonetheless, recent studies based on high-throughput DNA sequencing technologies have suggested that diverse non-mycorrhizal fungi (e.g., endophytic fungi) with broad host ranges play roles in relationships between arbuscular mycorrhizal and ectomycorrhizal plant species in forest ecosystems. By analyzing an Illumina sequencing dataset of root-associated fungi in a temperate forest in Japan, we statistically examined whether co-occurring arbuscular mycorrhizal ( Chamaecyparis obtusa ) and ectomycorrhizal ( Pinus densiflora ) plant species could share non-mycorrhizal fungal communities. Among the 919 fungal operational taxonomic units (OTUs) detected, OTUs in various taxonomic lineages were statistically designated as "generalists," which associated commonly with both coniferous species. The list of the generalists included fungi in the genera Meliniomyces, Oidiodendron, Cladophialophora, Rhizodermea, Penicillium , and Mortierella . Meanwhile, our statistical analysis also detected fungi preferentially associated with Chamaecyparis (e.g., Pezicula ) or Pinus (e.g., Neolecta ). Overall, this study provides a basis for future studies on how arbuscular mycorrhizal and ectomycorrhizal plant species interactively drive community- or ecosystem-scale processes. The physiological functions of the fungi highlighted in our host-preference analysis deserve intensive investigations for understanding their roles in plant endosphere and rhizosphere.

  6. [Mobilization of potassium from soil by ectomycorrhizal fungi].

    Science.gov (United States)

    Zhang, Liang; Wang, Mingxia; Zhang, Wei; Huang, Jianguo; Yuan, Ling

    2014-07-04

    Ectomycorrhizal fungi (ECMF), important components in forest ecosystems, could form symbionts with wooden plant roots and participate in nutrient absorption. Boletnus sp. (Bo 07), Lactarius delicious (Ld 03) and Pisolithus tinctorius (Pt 715) isolated from Southwest China and Cenococcum geophilum (Cg 04) from Daqing Mountain, Inn Mongolia, China, were cultured in liquid Pachlewsk medium at 25 +/- 1 degrees C for 28 days with soil as sole K source. Fungal biomass, K uptake, efflux of protons and organic acids, and changes of soil K pools were measured to study K mobilization from soil by ECMFs. ] The fungal biomass, K concentration and uptake of Bo 07, Ld 03 and Pt 715 were much higher than Cg 04, indicating their strong abilities to absorb K and to adapt low K environment by bio-evolution and selection. K concentrations in culture solution were increased by ECMFs compared to blank control (without ECMF). ECMFs could promote K release from the soil into culture solution. Bo 07, Ld 03 and Pt 715 increased significantly exchangeable K in soils, while structural K in soil was decreased by Bo 07 and Ld 03. They could thus mobilize unavailable K from ECMF isolates could mobilize unavailable K in soils.

  7. Ectomycorrhizal fungi slow soil carbon cycling.

    Science.gov (United States)

    Averill, Colin; Hawkes, Christine V

    2016-08-01

    Respiration of soil organic carbon is one of the largest fluxes of CO2 on earth. Understanding the processes that regulate soil respiration is critical for predicting future climate. Recent work has suggested that soil carbon respiration may be reduced by competition for nitrogen between symbiotic ectomycorrhizal fungi that associate with plant roots and free-living microbial decomposers, which is consistent with increased soil carbon storage in ectomycorrhizal ecosystems globally. However, experimental tests of the mycorrhizal competition hypothesis are lacking. Here we show that ectomycorrhizal roots and hyphae decrease soil carbon respiration rates by up to 67% under field conditions in two separate field exclusion experiments, and this likely occurs via competition for soil nitrogen, an effect larger than 2 °C soil warming. These findings support mycorrhizal competition for nitrogen as an independent driver of soil carbon balance and demonstrate the need to understand microbial community interactions to predict ecosystem feedbacks to global climate. © 2016 John Wiley & Sons Ltd/CNRS.

  8. Bioconcentration of zinc and cadmium in ectomycorrhizal fungi and associated aspen trees as affected by level of pollution

    International Nuclear Information System (INIS)

    Krpata, Doris; Fitz, Walter; Peintner, Ursula; Langer, Ingrid; Schweiger, Peter

    2009-01-01

    Concentrations of Zn and Cd were measured in fruitbodies of ectomycorrhizal (ECM) fungi and leaves of co-occurring accumulator aspen. Samples were taken on three metal-polluted sites and one control site. Fungal bioconcentration factors (BCF = fruitbody concentration: soil concentration) were calculated on the basis of total metal concentrations in surface soil horizons (BCF tot ) and NH 4 NO 3 -extractable metal concentrations in mineral soil (BCF lab ). When plotted on log-log scale, values of BCF decreased linearly with increasing soil metal concentrations. BCF lab for both Zn and Cd described the data more closely than BCF tot . Fungal genera differed in ZnBCF but not in CdBCF. The information on differences between fungi with respect to their predominant occurrence in different soil horizons did not improve relations of BCF with soil metal concentrations. Aspen trees accumulated Zn and Cd to similar concentrations as the ECM fungi. Apparently, the fungi did not act as an effective barrier against aspen metal uptake by retaining the metals. - Populus tremula and associated ectomycorrhizal fungi accumulate zinc and cadmium to similar concentrations

  9. High diverstiy and widespread occurrence of mitotic spore mats in ectomycorrhizal Pezizales

    Science.gov (United States)

    R.A. Healy; M.E. Smith; G.M. Bonito; D.H. Pfister; Z.-W. Ge; G.G. Guevara; G. Williams; K. Stafford; L. Kumar; T. Lee; C. Hobart; J. Trappe; R. Vilgalys; D.J. McLaughlin

    2013-01-01

    Fungal mitospores may function as dispersal units and/ or spermatia and thus play a role in distribution and/or mating of species that produce them. Mitospore production in ectomycorrhizal (EcM) Pezizales is rarely reported, but here we document mitospore production by a high diversity of EcM Pezizales on three continents, in both...

  10. Strong altitudinal partitioning in the distributions of ectomycorrhizal fungi along a short (300 m) elevation gradient

    OpenAIRE

    Jarvis, Susan G.; Woodward, Steve; Taylor, Andy F.S.

    2015-01-01

    • Changes in species richness and distributions of ectomycorrhizal (ECM) fungal communities along altitudinal gradients have been attributed to changes in both host distributions and abiotic variables. However, few studies have considered altitudinal relationships of ECM fungi associated with a single host to identify the role of abiotic drivers. To address this, ECM fungal communities associated with one host were assessed along five altitudinal transects in Scotland. • Roots of Scots pin...

  11. [Response of ectomycorrhizal fungi to aluminum stress and low potassium soil].

    Science.gov (United States)

    Zhang, Wei; Huang, Jian-Guo; Yuan, Ling; Li, Yang-Bo; He, Lin-Wei

    2014-10-01

    Soil acidification, aluminum (Al3+) toxicity and nutrient deficiency could be some of the most important reasons for the decline and death of forests in tropical and subtropical areas. Ectomycorrhizal fungi for Al3+ resistance and nutrient mobilization are beneficial for preventing forests against Al3+ toxicity and increasing forest productivity. Therefore, Suillus luteus (SI 13), Pisolithus tinctorius (Pt 715) and Suillus subluteus (Ss 00) were grown in liquid culture medium with soil as the sole K source under Al3+ stress to study the fungal growth, organic acid and proton efflux, and potassium (K) unitization. The result indicated that the fungal growth, organic acid and proton efflux, and nutrient uptake, including nitrogen (N), phosphorus (P) and potassium (K), were regulated by Al3+ concentration in culture solutions. They increased with increasing Al3+ at low concentration and after reaching a peak, they started to decrease. Fungal strain with high resistance to Al3+ also showed higher Al3+ concentration at the peak than those with low ability. Al3+ concentration at the peak of fungal biomass and N uptake by Pt 715 was four folds or twice of Ss 00 and SI 13, respectively. The uptake of P and K and efflux of organic acids and protons by Pt 715 were also higher than Ss 00 and Sl 13. All three fungal strains could utilize structural K in soil minerals and the utilization rate reached 2.10% for Pt 715, 1.43% for Ss 00 and 1.17% for Sl 13, respectively, which could be related to the types and amount of organic acids and protons.

  12. The effects of fire severity on ectomycorrhizal colonization and morphometric features in Pinus pinaster Ait. seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Vásquez-Gassibe, P.; Oria-de-Rueda, J.A.; Santos-del-Blanco, L.; Martín-Pinto, P.

    2016-07-01

    Aim of study: Mycorrhizal fungi in Mediterranean forests play a key role in the complex process of recovery after wildfires. A broader understanding of an important pyrophytic species as Pinus pinaster and its fungal symbionts is thus necessary for forest restoration purposes. This study aims to assess the effects of ectomycorrhizal symbiosis on maritime pine seedlings and how fire severity affects fungal colonization ability. Area of study: Central Spain, in a Mediterranean region typically affected by wildfires dominated by Pinus pinaster, a species adapted to fire disturbance. Material and Methods: We studied P. pinaster root apexes from seedlings grown in soils collected one year after fire in undisturbed sites, sites moderately affected by fire and sites highly affected by fire. Natural ectomycorrhization was observed at the whole root system level as well as at two root vertical sections (0-10 cm and 10-20 cm). We also measured several morphometric traits (tap root length, shoot length, dry biomass of shoots and root/shoot ratio), which were used to test the influence of fire severity and soil chemistry upon them. Main results: Ectomycorrhizal colonization in undisturbed soils for total and separated root vertical sections was higher than in soils that had been affected by fire to some degree. Inversely, seedling vegetative size increased according to fire severity. Research highlights: Fire severity affected soil properties and mycorrhizal colonization one year after occurrence, thus affecting plant development. These findings can contribute to a better knowledge of the factors mediating successful establishment of P. pinaster in Mediterranean forests after wildfires. (Author)

  13. Nitrogen acquisition, transport and metabolism in intact ectomycorrhizal associations studied by 15N stable isotope techniques

    International Nuclear Information System (INIS)

    Ek, H.

    1993-05-01

    The focus of this thesis is on the external mycelium and its role in nitrogen uptake, assimilation and translocation. Tree seedlings in association with ectomycorrhizal fungi were grown in observation chambers. The fungal mycelium were fed with 15-N ammonium or 15-N nitrate or a combination of both. The effects of Collembola on the ectomycorrhizal symbiosis were also studied. The results demonstrates an important role of the external mycelium of Paxillus involutus not only in the uptake but also in the assimilation of ammonium into a variety of different amino acids, primarily glutamine but also glutamic acid, aspartic acid, and alanine, immediately after uptake. The results indicate that ammonium is assimilated by GS and GOGAT or GDH in the mycelium at the uptake site. When nitrate was added to the mycelium as the sole nitrogen source nitrate was reduced in the mycelium and the product assimilated into amino acids. When ammonium nitrate was supplied to the fungal mycelium nitrate was taken up the fungus and transferred to the plant, however, apparently no assimilation of nitrate occurred in the external mycelium. Ammonium or an assimilation product, such as glutamine, probably represses nitrate reductase (NR) but not nitrate uptake and transfer in P. involutus. P. involutus nitrogen uptake and transfer to the associated mycorrhizal pine was up to 76% higher when low numbers of the Collembola Onychiurus armatus were present compared to when they were completely absent. This was probably an indirect effect as P. involutus hyphal growth rate and extramatrical biomass increased at a low Collembola density. At high Collembola densities P. involutus hyphal growth rate was retarded. (74 refs.)

  14. Ectomycorrhizal activity as affected by soil liming

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Solbritt

    1996-05-01

    Acidification of the forest soils in southern Sweden due to atmospheric deposition has become evident during recent decades. To counteract further acidification, liming of forests in the most affected areas has been proposed. Most forest trees in the temperate and boreal forest ecosystems live in symbiosis with ectomycorrhizal fungi, and their uptake of mineral nutrients from the soil is greatly influenced by the symbiosis. In this thesis effects of liming on ectomycorrhiza have been studied in relation to effects on root colonization, fungal growth and nitrogen uptake. In field experiments the effects of liming on ectomycorrhizal colonization of root tips were variable, possibly due to different soil types and climatic variations. However, a changed mycorrhizal community structure could be detected. Laboratory studies also showed that the substrate may influence the outcome of lime applications; the nutrient status of the substrate had a marked effect on how mycelial growth was affected by liming. Under the experimental conditions used in the studies presented in this thesis, liming reduced the uptake of nitrogen and phosphorus by both mycorrhizal and non-mycorrhizal plants. The amount of extractable nitrogen and phosphorus in the peat was also reduced by liming. The latter could be due to either microbial or chemical immobilization. The lime induced decrease in nitrogen uptake was stronger in non-mycorrhizal plants than in mycorrhizal plants. Thus, the mycorrhizal plants had a higher ability to deal with the negative effects of liming on nitrogen availability. This was not the case for phosphorus. The lime induced decrease in phosphorus uptake was stronger for mycorrhizal plants, and in the highest lime treatment there was no significant difference between the mycorrhizal and the non-mycorrhizal spruce plants. 76 refs, 2 figs, 1 tab

  15. Effect of ectomycorrhizal colonization and drought on reactive oxygen species metabolism of Nothofagus dombeyi roots.

    Science.gov (United States)

    Alvarez, Maricel; Huygens, Dries; Fernandez, Carlos; Gacitúa, Yessy; Olivares, Erick; Saavedra, Isabel; Alberdi, Miren; Valenzuela, Eduardo

    2009-08-01

    Infection with ectomycorrhizal fungi can increase the ability of plants to resist drought stress through morphophysiological and biochemical mechanisms. However, the metabolism of antioxidative enzyme activities in the ectomycorrhizal symbiosis remains poorly understood. This study investigated biomass production, reactive oxygen metabolism (hydrogen peroxide and malondialdehyde concentration) and antioxidant enzyme activity (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) in pure cultures of the ectomycorrhizal fungi Descolea antartica Sing. and Pisolithus tinctorius (Pers.) Coker & Couch, and non-mycorrhizal and mycorrhizal roots of Nothofagus dombeyi (Mirb.) roots under well-watered conditions and drought conditions (DC). The studied ectomycorrhizal fungi regulated their antioxidative enzyme metabolism differentially in response to drought, resulting in cellular damage in D. antartica but not in P. tinctorius. Ectomycorrhizal inoculation and water treatment had a significant effect on all parameters studied, including relative water content of the plant. As such, N. dombeyi plants in symbiosis experienced a lower oxidative stress effect than non-mycorrhizal plants under DC. Additionally, ectomycorrhizal N. dombeyi roots showed a greater antioxidant enzyme activity relative to non-mycorrhizal roots, an effect which was further expressed under DC. The association between the non-specific P. tinctorius and N. dombeyi had a more effective reactive oxygen species (ROS) metabolism than the specific D. antartica-N. dombeyi symbiosis. We conclude that the combination of effective ROS prevention and ROS detoxification by ectomycorrhizal plants resulted in reduced cellular damage and increased plant growth relative to non-mycorrhizal plants under drought.

  16. AM fungal exudates activate MAP kinases in plant cells in dependence from cytosolic Ca(2+) increase.

    Science.gov (United States)

    Francia, Doriana; Chiltz, Annick; Lo Schiavo, Fiorella; Pugin, Alain; Bonfante, Paola; Cardinale, Francesca

    2011-09-01

    The molecular dialogue occurring prior to direct contact between the fungal and plant partners of arbuscular-mycorrhizal (AM) symbioses begins with the release of fungal elicitors, so far only partially identified chemically, which can activate specific signaling pathways in the host plant. We show here that the activation of MAPK is also induced by exudates of germinating spores of Gigaspora margarita in cultured cells of the non-leguminous species tobacco (Nicotiana tabacum), as well as in those of the model legume Lotus japonicus. MAPK activity peaked about 15 min after the exposure of the host cells to the fungal exudates (FE). FE were also responsible for a rapid and transient increase in free cytosolic Ca(2+) in Nicotiana plumbaginifolia and tobacco cells, and pre-treatment with a Ca(2+)-channel blocker (La(3+)) showed that in these cells, MAPK activation was dependent on the cytosolic Ca(2+) increase. A partial dependence of MAPK activity on the common Sym pathway could be demonstrated for a cell line of L. japonicus defective for LjSym4 and hence unable to establish an AM symbiosis. Our results show that MAPK activation is triggered by an FE-induced cytosolic Ca(2+) transient, and that a Sym genetic determinant acts to modulate the intensity and duration of this activity. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  17. Structure and phylogenetic diversity of post-fire ectomycorrhizal communities of maritime pine.

    Science.gov (United States)

    Rincón, A; Santamaría, B P; Ocaña, L; Verdú, M

    2014-02-01

    Environmental disturbances define the diversity and assemblage of species, affecting the functioning of ecosystems. Fire is a major disturbance of Mediterranean pine forests. Pines are highly dependent on the ectomycorrhizal (EM) fungal symbiosis, which is critical for tree recruitment under primary succession. To determine the effects of time since fire on the structure and recovery of EM fungal communities, we surveyed the young Pinus pinaster regenerate in three sites differing in the elapsed time after the last fire event. Pine roots were collected, and EM fungi characterized by sequencing the internal transcribed spacer (ITS) and the large subunit (LSU) regions of the nuclear ribosomal (nr)-DNA. The effects of the elapsed time after fire on the EM community structure (richness, presence/absence of fungi, phylogenetic diversity) and on soil properties were analysed.Fungal richness decreased with the elapsed time since the fire; although, the phylogenetic diversity of the EM community increased. Soil properties were different depending on the elapsed time after fire and particularly, the organic matter, carbon-to-nitrogen (C/N) ratio, nitrogen and iron significantly correlated with the assemblage of fungal species. Ascomycetes, particularly Tuberaceae and Pezizales, were significantly over-represented on saplings in the burned site. On seedlings, a significant over-representation of Rhizopogonaceae and Atheliaceae was observed in the most recently burned site, while other fungi (i.e. Cortinariaceae) were significantly under-represented. Our results are consistent with the hypothesis that fire can act as a selective agent by printing a phylogenetic signal on the EM fungal communities associated with naturally regenerated pines, pointing out to some groups as potential fire-adapted fungi.

  18. Availability of ectomycorrhizal fungi to black spruce above the present treeline in Eastern Labrador.

    Directory of Open Access Journals (Sweden)

    Laura Reithmeier

    Full Text Available Ectomycorrhizal fungi (ECMF are an important biotic factor in the survival of conifer seedlings under stressful conditions and therefore have the potential to facilitate conifer establishment into alpine and tundra habitats. In order to assess patterns of ectomycorrhizal availability and community structure above treeline, we conducted soil bioassays in which Picea mariana (black spruce seedlings were grown in field-collected soils under controlled conditions. Soils were collected from distinct alpine habitats, each dominated by a different ectomycorrhizal host shrub: Betula glandulosa, Arctostaphylos alpina or Salix herbacaea. Within each habitat, half of the soils collected contained roots of ectomycorrhizal shrubs (host (+ and the other half were free of host plants (host(-. Forest and glacial moraine soils were also included for comparison. Fungi forming ectomycorrhizae during the bioassays were identified by DNA sequencing. Our results indicate that ECMF capable of colonizing black spruce are widespread above the current tree line in Eastern Labrador and that the level of available inoculum has a significant influence on the growth of seedlings under controlled conditions. Many of the host(- soils possessed appreciable levels of ectomycorrhizal inoculum, likely in the form of spore banks. Inoculum levels in these soils may be influenced by spore production from neighboring soils where ectomycorrhizal shrubs are present. Under predicted temperature increases, ectomycorrhizal inoculum in soils with host shrubs as well as in nearby soils without host shrubs have the potential to facilitate conifer establishment above the present tree line.

  19. Availability of ectomycorrhizal fungi to black spruce above the present treeline in Eastern Labrador.

    Science.gov (United States)

    Reithmeier, Laura; Kernaghan, Gavin

    2013-01-01

    Ectomycorrhizal fungi (ECMF) are an important biotic factor in the survival of conifer seedlings under stressful conditions and therefore have the potential to facilitate conifer establishment into alpine and tundra habitats. In order to assess patterns of ectomycorrhizal availability and community structure above treeline, we conducted soil bioassays in which Picea mariana (black spruce) seedlings were grown in field-collected soils under controlled conditions. Soils were collected from distinct alpine habitats, each dominated by a different ectomycorrhizal host shrub: Betula glandulosa, Arctostaphylos alpina or Salix herbacaea. Within each habitat, half of the soils collected contained roots of ectomycorrhizal shrubs (host (+)) and the other half were free of host plants (host(-)). Forest and glacial moraine soils were also included for comparison. Fungi forming ectomycorrhizae during the bioassays were identified by DNA sequencing. Our results indicate that ECMF capable of colonizing black spruce are widespread above the current tree line in Eastern Labrador and that the level of available inoculum has a significant influence on the growth of seedlings under controlled conditions. Many of the host(-) soils possessed appreciable levels of ectomycorrhizal inoculum, likely in the form of spore banks. Inoculum levels in these soils may be influenced by spore production from neighboring soils where ectomycorrhizal shrubs are present. Under predicted temperature increases, ectomycorrhizal inoculum in soils with host shrubs as well as in nearby soils without host shrubs have the potential to facilitate conifer establishment above the present tree line.

  20. The importance of amino sugar turnover to C and N cycling in organic horizons of old-growth Douglas-fir forest soils colonized by ectomycorrhizal mats

    Science.gov (United States)

    L. Zeglin; L.A. Kluber; D.D. Myrold

    2012-01-01

    Amino sugar dynamics represent an important but under-investigated component of the carbon (C) and nitrogen (N) cycles in old-growth Douglas-fir forest soils. Because fungal biomass is high in these soils, particularly in areas colonized by rhizomorphic ectomycorrhizal fungal mats, organic matter derived from chitinous cell wall material (or the monomeric building...

  1. Effect of diflubenzuron on the development of Pinus pinaster seedlings inoculated with the ectomycorrhizal fungus Pisolithus tinctorius.

    Science.gov (United States)

    Ramos, Miguel A; Sousa, Nadine R; Franco, Albina R; Costa, Vítor; Oliveira, Rui S; Castro, Paula M L

    2013-01-01

    Diflubenzuron (DFB) is an insecticide commonly used to control forest pests. The objectives of this study were to assess the effect of diflubenzuron on the development of Pinus pinaster seedlings and Pisolithus tinctorius under laboratory conditions and to study the possible protective role of this ectomycorrhizal fungus against the effects of diflubenzuron. In vitro experiments revealed that diflubenzuron inhibited fungal growth at all tested concentrations (0.01, 0.1, 1, 10 and 100 mg L(-1)). Root growth was inhibited at the two highest diflubenzuron concentrations. The activity of the antioxidant defence system of non-inoculated P. pinaster increased at 1 and 10 mg DFB kg(-1) substrate, and inoculation increased the threshold to the highest concentration. The protective role of the ectomycorrhizal fungus was seen in the increase of CAT activity. This study revealed that despite causing no mortality, diflubenzuron has the ability to cause sub-lethal damage to P. pinaster. The disproportionate use of this insecticide may lead to higher amounts of its residues in soil and the biosphere, endangering trees, fungi and their symbiosis.

  2. [Nutrient transfer and growth of Pinus greggii Engelm. inoculated with edible ectomycorrhizal mushrooms in two substrates].

    Science.gov (United States)

    Rentería-Chávez, María C; Pérez-Moreno, Jesús; Cetina-Alcalá, Víctor M; Ferrera-Cerrato, Ronald; Xoconostle-Cázares, Beatriz

    An ectomycorrhiza is a mutualistic symbiosis of paramount importance in forestry and tree production. One of the selection criteria of ectomycorrhizal fungi that has currently gained importance is their edibility due to the economic, ecological and cultural relevance of edible ectomycorrhizal mushrooms as a non-timber forest product. The effect of the inoculation with three edible ectomycorrhizal mushrooms: Laccaria laccata, Laccaria bicolor y Hebeloma leucosarx, which are widely sold in Mexico, on the growth and nutrient contents of Pinus greggii grown in an experimental substrate and a commercial substrate enriched with a slow-release fertilizer, was evaluated. Two years after sowing, differences in terms of shoot and root biomass and macro and micronutrient contents between inoculated and non-inoculated plants, were recorded independently of the fungal species and the substrate. Despite the fact that plants grown in the commercial substrate had higher growth and nutrient contents, their ectomycorrhizal colonization percentages were smaller than those of the plants grown in the experimental substrate. The differences in the nutrient transfer to the inoculated plant shoots among the evaluated fungal species were recorded. Ca mobilization by L. laccata, Na by L. bicolor and Mn by H. leucosarx were observed in the plants growing in the experimental substrate. It has been demonstrated that the selection of substrates constitutes an important factor in the production of ectomycorrhizal plants and that the three evaluated species of edible ectomycorrhizal mushrooms have an enormous potential in the controlled mycorrhization of P. greggii. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Increased evapotranspiration demand in a Mediterranean climate might cause a decline in fungal yields under global warming.

    Science.gov (United States)

    Ágreda, Teresa; Águeda, Beatriz; Olano, José M; Vicente-Serrano, Sergio M; Fernández-Toirán, Marina

    2015-09-01

    Wild fungi play a critical role in forest ecosystems, and its recollection is a relevant economic activity. Understanding fungal response to climate is necessary in order to predict future fungal production in Mediterranean forests under climate change scenarios. We used a 15-year data set to model the relationship between climate and epigeous fungal abundance and productivity, for mycorrhizal and saprotrophic guilds in a Mediterranean pine forest. The obtained models were used to predict fungal productivity for the 2021-2080 period by means of regional climate change models. Simple models based on early spring temperature and summer-autumn rainfall could provide accurate estimates for fungal abundance and productivity. Models including rainfall and climatic water balance showed similar results and explanatory power for the analyzed 15-year period. However, their predictions for the 2021-2080 period diverged. Rainfall-based models predicted a maintenance of fungal yield, whereas water balance-based models predicted a steady decrease of fungal productivity under a global warming scenario. Under Mediterranean conditions fungi responded to weather conditions in two distinct periods: early spring and late summer-autumn, suggesting a bimodal pattern of growth. Saprotrophic and mycorrhizal fungi showed differences in the climatic control. Increased atmospheric evaporative demand due to global warming might lead to a drop in fungal yields during the 21st century. © 2015 John Wiley & Sons Ltd.

  4. Ectomycorrhizal community structure and function in relation to forest residue harvesting and wood ash applications

    International Nuclear Information System (INIS)

    Mahmood, Shahid

    2000-05-01

    Ectomycorrhizal fungi form symbiotic associations with tree roots and assist in nutrient-uptake and -cycling in forest ecosystems, thereby constituting a most significant part of the microbial community. The aims of the studies described in this thesis were to evaluate the potential of DNA-based molecular methods in below-ground ectomycorrhizal community studies and to investigate changes in ectomycorrhizal communities on spruce roots in sites with different N deposition, and in sites subjected to harvesting of forest residues or application of wood ash. The ability of selected ectomycorrhizal fungi to mobilise nutrients from wood ash and to colonise root systems in the presence and absence of ash was also studied. In total 39 ectomycorrhizal species were detected in the experimental forests located in southern Sweden. At each site five to six species colonised around 60% of the root tips. The dominant species, common to the sites, were Tylospora fibrillosa, Thelephora terrestris and Cenococcum geophilum. Differences between two sites with differing levels of N deposition suggested that community structure may be influenced by N deposition, although site history, location and degree of isolation may also influence species composition. Repeated harvesting of forest residues reduced numbers of mycorrhizal roots in the humus layer to approximately 50% of that in control plots but no shift in the ectomycorrhizal community could be detected. At another site, application of granulated wood ash induced a shift in ectomycorrhizal community structure and three ectomycorrhizal fungi ('ash fungi') were found to colonise ash granules. Two 'ash fungi' showed a superior ability to solubilise stabilised wood ash in laboratory experiments compared to other ectomycorrhizal isolates from the same site. In laboratory microcosms containing intact mycorrhizal mycelia, colonisation of wood ash patches by one 'ash fungus' was good whereas colonisation by Piloderma croceum was poor. In a

  5. Two differentially regulated phosphate transporters from the symbiotic fungus Hebeloma cylindrosporum and phosphorus acquisition by ectomycorrhizal Pinus pinaster.

    Science.gov (United States)

    Tatry, Marie-Violaine; El Kassis, Elie; Lambilliotte, Raphaël; Corratgé, Claire; van Aarle, Ingrid; Amenc, Laurie K; Alary, Rémi; Zimmermann, Sabine; Sentenac, Hervé; Plassard, Claude

    2009-03-01

    Ectomycorrhizal symbiosis markedly improves plant phosphate uptake, but the molecular mechanisms underlying this benefit are still poorly understood. We identified two ESTs in a cDNA library prepared from the ectomycorrhizal basidiomycete Hebeloma cylindrosporum with significant similarities to phosphate transporters from the endomycorrhizal fungus Glomus versiforme and from non-mycorrhizal fungi. The full-length cDNAs corresponding to these two ESTs complemented a yeast phosphate transport mutant (Deltapho84). Measurements of (33)P-phosphate influx into yeast expressing either cDNA demonstrated that the encoded proteins, named HcPT1 and HcPT2, were able to mediate Pi:H(+) symport with different affinities for Pi (K(m) values of 55 and 4 mum, respectively). Real-time RT-PCR showed that Pi starvation increased the levels of HcPT1 transcripts in H. cylindrosporum hyphae grown in pure culture. Transcript levels of HcPT2 were less dependent on Pi availability. The two transporters were expressed in H. cylindrosporum associated with its natural host plant, Pinus pinaster, grown under low or high P conditions. The presence of ectomycorrhizae increased net Pi uptake rates into intact Pinus pinaster roots at low or high soil P levels. The expression patterns of HcPT1 and HcPT2 indicate that the two fungal phosphate transporters may be involved in uptake of phosphate from the soil solution under the two soil P availability conditions used.

  6. Increased levels of airborne fungal spores to Populus tremuloides grown under elevated atmospheric CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Klinoromos, J. N. [Guelph Univ., ON (Canada). Dept. of Botany; Rillig, M. C.; Allen, M. F. [San Diego State Univ., CA (United States). Dept. of Biology; Zak, D. R. [Michigan Univ., Ann Arbor, MI (United States). School of Natural Resources and Environment; Pregitzer, K. S.; Kubiske, M. E. [Michigan Technological Univ., Houghton, MI (United States). School of Forestry and Wood Products

    1997-10-01

    The objective of this study was to test the hypothesis that soil fungi sporulation would be facilitated by increase levels of CO{sub 2} concentration, leading to higher concentrations of fungal population in the atmosphere. Results showed that airborne fungal propagules were increased fourfold under twice-ambient CO{sub 2} concentration, and the decomposing leaf litter, the main source of fungal propagules, produced a fivefold increase of spores under elevated CO{sub 2} conditions. These results confirm the hypothesis that CO{sub 2} concentrations have a direct effect on microbial functions, which in turn will affect decomposition and plant pathogen dynamics. Since there is increasing evidence for causal relationship and exposure to aeroallergens and development of asthma in humans, there is a compelling need to study fungal epidemiology in the context of a globally changing environment. 28 refs., 3 figs.

  7. N-acetylglucosamine increases symptoms and fungal burden in a murine model of oral candidiasis.

    Science.gov (United States)

    Ishijima, Sanae A; Hayama, Kazumi; Takahashi, Miki; Holmes, Ann R; Cannon, Richard D; Abe, Shigeru

    2012-04-01

    The amino sugar N-acetylglucosamine (GlcNAc) is an in vitro inducer of the hyphal mode of growth of the opportunistic pathogen Candida albicans. The development of hyphae by C. albicans is considered to contribute to the pathogenesis of mucosal oral candidiasis. GlcNAc is also a commonly used nutritional supplement for the self-treatment of conditions such as arthritis. To date, no study has investigated whether ingestion of GlcNAc has an effect on the in vivo growth of C. albicans or the pathogenesis of a C. albicans infection. Using a murine model of oral candidiasis, we have found that administration of GlcNAc, but not glucose, increased oral symptoms of candidiasis and fungal burden. Groups of mice were given GlcNAc in either water or in a viscous carrier, i.e., 1% methylcellulose. There was a dose-dependent relationship between GlcNAc concentration and the severity of oral symptoms. Mice given the highest dose of GlcNAc, 45.2 mM, also showed a significant increase in fungal burden, and increased histological evidence of infection compared to controls given water alone. We propose that ingestion of GlcNAc, as a nutritional supplement, may have an impact on oral health in people susceptible to oral candidiasis.

  8. Competition for nitrogen between Pinus sylvestris and ectomycorrhizal fungi generates potential for negative feedback under elevated CO2

    NARCIS (Netherlands)

    Alberton, O.; Kuyper, T.W.; Gorissen, A.

    2007-01-01

    We investigated fungal species-specific responses of ectomycorrhizal (ECM) Scots pine (Pinus sylvestris) seedlings on growth and nutrient acquisition together with mycelial development under ambient and elevated CO2. Each seedling was associated with one of the following ECM species: Hebeloma

  9. Belowground Carbon Allocation to Ectomycorrhizal Fungi Links Biogeochemical Cycles of Boron and Nitrogen

    Science.gov (United States)

    Lucas, R. W.; Högberg, P.; Ingri, J. N.

    2011-12-01

    Boron (B) is an essential micronutrient to most trees and represents an important limiting resource in some regions, deficient trees experiencing the loss of apical dominance, altered stem growth, and even tree death in extreme cases. Similar to the acquisition of most soil nutrients, B is likely supplied to host trees by mycorrhizal symbionts in exchange for recently fixed carbohydrates. In this way, belowground allocation of photosynthate, which drives the majority of biological processes belowground, links the biogeochemical cycles of B and nitrogen (N). Using a long-term N addition experiment in a Pinus sylvestris forest that has been ongoing for 41 years, we examined how the availability of inorganic N mediates the response of B isotopes in the tree needles, organic soil, and fungal pools in a boreal forest in northern Sweden. Using archived needle samples collected annually from the current year's needle crop, we observed δ11B to increase from 30.8 (0.5 se) to 41.8 (0.7 se)% in N fertilized plots from 1970 to 1979, a period of increasing B deficiency stress induced by N fertilization; the concentration of B in tree needles during 1979 dropping as low as 3.0 μg g-2. During the same period, B concentrations in tree needles from control plots remained relatively unchanged and δ11B remained at a steady state value of 34.1 (1.0 se)%. Following a distinct, large-scale, pulse labeling event in 1980 in which 2.5 kg ha-1 of isotopically distinct B was applied to all treatment and control plots to alleviate the N-induced B deficiency, concentrations of B in current needles increased immediately in all treatments, the magnitude of the response being dependent upon the N treatment. But unlike other pool dilution studies, δ11B of current tree needles did not return to pre-addition, steady-state levels. Instead, δ11B continued to decrease over time in both N addition and control treatments. This unexpected pattern has not been previously described but can be explained

  10. Increased diversity of fungal flora in the vagina of patients with recurrent vaginal candidiasis and allergic rhinitis.

    Science.gov (United States)

    Guo, Renyong; Zheng, Nengneng; Lu, Haifeng; Yin, Hongfang; Yao, Jinmei; Chen, Yu

    2012-11-01

    Recurrent vaginal candidiasis (RVC) is considered to be a hypersensitivity disorder that is associated with allergic rhinitis (AR) in immune deficiencies; however, whether or not the composition of the vaginal fungal flora in patients with AR and RVC is altered and if such alterations in patients with AR are associated with the development of RVC remain unclear. In the present study, a cultivation-independent method with the 18S rRNA gene clone library was used to analyze the diversity and composition of the vaginal fungal flora in patients with AR and RVC and to explore the association. Three fungal phyla (Ascomycotae, 22 out of 28; Basidiomycetes, 5 out of 28; and Oomycetes, 1 out of 28) were identified from groups of healthy volunteers, patients with AR, patients with RVC, and patients with RVC complicated by AR, including 28 phylotypes of fungal flora (10, 15, 17, and 21 phylotypes for each group, respectively). The predominant genera of fungi identified in the vagina included Candida, uncultured fungi, and Dothideomycetes. An increased proportion of Candida albicans accompanied with decreased proportions of Saccharomyces cerevisiae and uncultured fungi was observed in patients with AR or RVC (P vaginal fungal diversity in patients with AR or RVC was significantly higher compared with healthy volunteers (P vaginal fungal flora in patients with AR and RVC and indicated that disturbed vaginal fungal flora in patients with AR might be correlated with disease progression in patients with RVC.

  11. Fungal Community and Ligninolytic Enzyme Activities in Quercus deserticola Trel. Litter from Forest Fragments with Increasing Levels of Disturbance

    Directory of Open Access Journals (Sweden)

    Jesús A. Rosales-Castillo

    2017-12-01

    Full Text Available Litter fungal communities and their ligninolytic enzyme activities (laccase, Mn-peroxidase, and lignin-peroxidase play a vital role in forest biogeochemical cycles by breaking down plant cell wall polymers, including recalcitrant lignin. However, litter fungal communities and ligninolytic enzyme activities have rarely been studied in Neotropical, non-coniferous forests. Here, we found no significant differences in litter ligninolytic enzyme activities from well preserved, moderately disturbed, and heavily disturbed Quercus deserticola Trel. forests in central Mexico. However, we did find seasonal effects on enzyme activities: during the dry season, we observed lower laccase, and increased Mn-peroxidase and lignin-peroxidase activities, and in the rainy season, Mn-peroxidase and lignin-peroxidase activities were lower, while laccase activity peaked. Fungal diversity (Shannon-Weaver and Simpson indices based on ITS-rDNA analyses decreased with increased disturbance, and principal component analysis showed that litter fungal communities are structured differently between forest types. White-rot Polyporales and Auriculariales only occurred in the well preserved forest, and a high number of Ascomycota were shared between forests. While the degree of forest disturbance significantly affected the litter fungal community structure, the ligninolytic enzyme activities remained unaffected, suggesting functional redundancy and a possible role of generalist Ascomycota taxa in litter delignification. Forest conservation and restoration strategies must account for leaf litter and its associated fungal community.

  12. The host plant Pinus pinaster exerts specific effects on phosphate efflux and polyphosphate metabolism of the ectomycorrhizal fungus Hebeloma cylindrosporum: a radiotracer, cytological staining and 31 P NMR spectroscopy study.

    Science.gov (United States)

    Torres-Aquino, Margarita; Becquer, Adeline; Le Guernevé, Christine; Louche, Julien; Amenc, Laurie K; Staunton, Siobhan; Quiquampoix, Hervé; Plassard, Claude

    2017-02-01

    Ectomycorrhizal (ECM) association can improve plant phosphorus (P) nutrition. Polyphosphates (polyP) synthesized in distant fungal cells after P uptake may contribute to P supply from the fungus to the host plant if they are hydrolyzed to phosphate in ECM roots then transferred to the host plant when required. In this study, we addressed this hypothesis for the ECM fungus Hebeloma cylindrosporum grown in vitro and incubated without plant or with host (Pinus pinaster) and non-host (Zea mays) plants, using an experimental system simulating the symbiotic interface. We used 32 P labelling to quantify P accumulation and P efflux and in vivo and in vitro nuclear magnetic resonance (NMR) spectroscopy and cytological staining to follow the fate of fungal polyP. Phosphate supply triggered a massive P accumulation as newly synthesized long-chain polyP in H. cylindrosporum if previously grown under P-deficient conditions. P efflux from H. cylindrosporum towards the roots was stimulated by both host and non-host plants. However, the host plant enhanced 32 P release compared with the non-host plant and specifically increased the proportion of short-chain polyP in the interacting mycelia. These results support the existence of specific host plant effects on fungal P metabolism able to provide P in the apoplast of ectomycorrhizal roots. © 2016 John Wiley & Sons Ltd.

  13. Free amino acids production by ectomycorrhizal fungi of pine (Pinus sylvestris L.).

    Science.gov (United States)

    Rózycki, H; Strzelczyk, E

    1985-01-01

    Studies on free amino acids production by five species of ectomycorrhizal fungi (Amanita muscaria, Suillus granulatus, Suillus luteus, Suillus bovinus and Rhizopogon luteolus) show that all the fungi produced mainly: glutamic acid, leucine, lysine, ornithine, arginine and an unidentified ninhydrin-positive compound X3. Both the quality and quantity of amino acids released was different in the fungal species studied. The predominant amino acids in post-culture liquids in general did not exceed 1.5 micrograms/mg dry mass.

  14. Nitrogen addition, not initial phylogenetic diversity, increases litter decomposition by fungal communities

    Directory of Open Access Journals (Sweden)

    Anthony Stuart Amend

    2015-02-01

    Full Text Available Fungi play a critical role in the degradation of organic matter. Because different combinations of fungi result in different rates of decomposition, determining how climate change will affect microbial composition and function is fundamental to predicting future environments. Fungal response to global change is patterned by genetic relatedness, resulting in communities with comparatively low phylogenetic diversity. This may have important implications for the functional capacity of disturbed communities if lineages sensitive to disturbance also contain unique traits important for litter decomposition. Here we tested the relationship between phylogenetic diversity and decomposition rates. Leaf litter fungi were isolated from the field and deployed in microcosms as mock communities along a gradient of initial phylogenetic diversity, while species richness was held constant. Replicate communities were subject to nitrogen fertilization comparable to anthropogenic deposition levels. Carbon mineralization rates were measured over the course of sixty-six days. We found that nitrogen fertilization increased cumulative respiration by 24.8%, and that differences in respiration between fertilized and ambient communities diminished over the course of the experiment. Initial phylogenetic diversity failed to predict respiration rates or their change in response to nitrogen fertilization, and there was no correlation between community similarity and respiration rates. Last, we detected no phylogenetic signal in the contributions of individual isolates to respiration rates. Our results suggest that the degree to which phylogenetic diversity predicts ecosystem function will depend on environmental context.

  15. Nitrogen addition, not initial phylogenetic diversity, increases litter decomposition by fungal communities.

    Science.gov (United States)

    Amend, Anthony S; Matulich, Kristin L; Martiny, Jennifer B H

    2015-01-01

    Fungi play a critical role in the degradation of organic matter. Because different combinations of fungi result in different rates of decomposition, determining how climate change will affect microbial composition and function is fundamental to predicting future environments. Fungal response to global change is patterned by genetic relatedness, resulting in communities with comparatively low phylogenetic diversity (PD). This may have important implications for the functional capacity of disturbed communities if lineages sensitive to disturbance also contain unique traits important for litter decomposition. Here we tested the relationship between PD and decomposition rates. Leaf litter fungi were isolated from the field and deployed in microcosms as mock communities along a gradient of initial PD, while species richness was held constant. Replicate communities were subject to nitrogen fertilization comparable to anthropogenic deposition levels. Carbon mineralization rates were measured over the course of 66 days. We found that nitrogen fertilization increased cumulative respiration by 24.8%, and that differences in respiration between fertilized and ambient communities diminished over the course of the experiment. Initial PD failed to predict respiration rates or their change in response to nitrogen fertilization, and there was no correlation between community similarity and respiration rates. Last, we detected no phylogenetic signal in the contributions of individual isolates to respiration rates. Our results suggest that the degree to which PD predicts ecosystem function will depend on environmental context.

  16. The ectopic expression of a pectin methyl esterase inhibitor increases pectin methyl esterification and limits fungal diseases in wheat.

    Science.gov (United States)

    Volpi, Chiara; Janni, Michela; Lionetti, Vincenzo; Bellincampi, Daniela; Favaron, Francesco; D'Ovidio, Renato

    2011-09-01

    Cell wall pectin methyl esterification can influence plant resistance because highly methyl-esterified pectin can be less susceptible to the hydrolysis by pectic enzymes such as fungal endopolygalacturonases (PG). Pectin is secreted into the cell wall in a highly methyl-esterified form and, here, is de-methyl esterified by pectin methyl esterase (PME). The activity of PME is controlled by specific protein inhibitors called PMEI; consequently, an increased inhibition of PME by PMEI might modify the pectin methyl esterification. In order to test the possibility of improving wheat resistance by modifying the methyl esterification of pectin cell wall, we have produced durum wheat transgenic lines expressing the PMEI from Actinidia chinensis (AcPMEI). The expression of AcPMEI endows wheat with a reduced endogenous PME activity, and transgenic lines expressing a high level of the inhibitor showed a significant increase in the degree of methyl esterification. These lines showed a significant reduction of disease symptoms caused by the fungal pathogens Bipolaris sorokiniana or Fusarium graminearum. This increased resistance was related to the impaired ability of these fungal pathogens to grow on methyl-esterified pectin and to a reduced activity of the fungal PG to hydrolyze methyl-esterified pectin. In addition to their importance for wheat improvement, these results highlight the primary role of pectin despite its low content in the wheat cell wall.

  17. Metal-chelating compounds produced by ectomycorrhizal fungi collected from pine plantations.

    Science.gov (United States)

    Machuca, A; Pereira, G; Aguiar, A; Milagres, A M F

    2007-01-01

    To investigate the in vitro production of metal-chelating compounds by ectomycorrhizal fungi collected from pine plantations in southern Chile. Scleroderma verrucosum, Suillus luteus and two isolates of Rhizopogon luteolus were grown in solid and liquid modified Melin-Norkans (MMN) media with and without iron addition and the production of iron-chelating compounds was determined by Chrome Azurol S (CAS) assay. The presence of hydroxamate and catecholate-type compounds and organic acids was also investigated in liquid medium. All isolates produced iron-chelating compounds as detected by CAS assay, and catecholates, hydroxamates as well as oxalic, citric and succinic acids were also detected in all fungal cultures. Scleroderma verrucosum produced the greatest amounts of catecholates and hydroxamates whereas the highest amounts of organic acids were detected in S. luteus. Nevertheless, the highest catecholate, hydroxamate and organic acid concentrations did not correlate with the highest CAS reaction which was observed in R. luteolus (Yum isolate). Ectomycorrhizal fungi produced a variety of metal-chelating compounds when grown in liquid MMN medium. However, the addition of iron to all fungi cultures reduced the CAS reaction, hydroxamate and organic acid concentrations. Catecholate production was affected differently by iron, depending on the fungal isolate. The ectomycorrhizal fungi described in this study have never been reported to produce metal-chelating compound production. Moreover, apart from some wood-rotting fungi, this is the first evidence of the presence of catecholates in R. luteolus, S. luteus and S. verrucosum cultures.

  18. Organic farming increases richness of fungal taxa in the wheat phyllosphere.

    Science.gov (United States)

    Karlsson, Ida; Friberg, Hanna; Kolseth, Anna-Karin; Steinberg, Christian; Persson, Paula

    2017-07-01

    Organic farming is often advocated as an approach to mitigate biodiversity loss on agricultural land. The phyllosphere provides a habitat for diverse fungal communities that are important for plant health and productivity. However, it is still unknown how organic farming affects the diversity of phyllosphere fungi in major crops. We sampled wheat leaves from 22 organically and conventionally cultivated fields in Sweden, paired based on their geographical location and wheat cultivar. Fungal communities were described using amplicon sequencing and real-time PCR. Species richness was higher on wheat leaves from organically managed fields, with a mean of 54 operational taxonomic units (OTUs) compared with 40 OTUs for conventionally managed fields. The main components of the fungal community were similar throughout the 350-km-long sampling area, and seven OTUs were present in all fields: Zymoseptoria, Dioszegia fristingensis, Cladosporium, Dioszegia hungarica, Cryptococcus, Ascochyta and Dioszegia. Fungal abundance was highly variable between fields, 10 3 -10 5 internal transcribed spacer copies per ng wheat DNA, but did not differ between cropping systems. Further analyses showed that weed biomass was the strongest explanatory variable for fungal community composition and OTU richness. These findings help provide a more comprehensive understanding of the effect of organic farming on the diversity of organism groups in different habitats within the agroecosystem. © 2017 The Authors Molecular Ecology Published by John Wiley & Sons Ltd.

  19. Investigating niche partitioning of ectomycorrhizal fungi in specialized rooting zones of the monodominant leguminous tree Dicymbe corymbosa.

    Science.gov (United States)

    Smith, Matthew E; Henkel, Terry W; Williams, Gwendolyn C; Aime, M Catherine; Fremier, Alexander K; Vilgalys, Rytas

    2017-07-01

    Temperate ectomycorrhizal (ECM) fungi show segregation whereby some species dominate in organic layers and others favor mineral soils. Weak layering in tropical soils is hypothesized to decrease niche space and therefore reduce the diversity of ectomycorrhizal fungi. The Neotropical ECM tree Dicymbe corymbosa forms monodominant stands and has a distinct physiognomy with vertical crown development, adventitious roots and massive root mounds, leading to multi-stemmed trees with spatially segregated rooting environments: aerial litter caches, aerial decayed wood, organic root mounds and mineral soil. We hypothesized that these microhabitats host distinct fungal assemblages and therefore promote diversity. To test our hypothesis, we sampled D. corymbosa ectomycorrhizal root tips from the four microhabitats and analyzed community composition based on pyrosequencing of fungal internal transcribed spacer (ITS) barcode markers. Several dominant fungi were ubiquitous but analyses nonetheless suggested that communities in mineral soil samples were statistically distinct from communities in organic microhabitats. These data indicate that distinctive rooting zones of D. corymbosa contribute to spatial segregation of the fungal community and likely enhance fungal diversity. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  20. Growth response of drought-stressed Pinus sylvestris seedlings to single- and multi-species inoculation with ectomycorrhizal fungi.

    Directory of Open Access Journals (Sweden)

    Tabea Kipfer

    Full Text Available Many trees species form symbiotic associations with ectomycorrhizal (ECM fungi, which improve nutrient and water acquisition of their host. Until now it is unclear whether the species richness of ECM fungi is beneficial for tree seedling performance, be it during moist conditions or drought. We performed a pot experiment using Pinus sylvestris seedlings inoculated with four selected ECM fungi (Cenococcum geophilum, Paxillus involutus, Rhizopogon roseolus and Suillus granulatus to investigate (i whether these four ECM fungi, in monoculture or in species mixtures, affect growth of P. sylvestris seedlings, and (ii whether this effect can be attributed to species number per se or to species identity. Two different watering regimes (moist vs. dry were applied to examine the context-dependency of the results. Additionally, we assessed the activity of eight extracellular enzymes in the root tips. Shoot growth was enhanced in the presence of S. granulatus, but not by any other ECM fungal species. The positive effect of S. granulatus on shoot growth was more pronounced under moist (threefold increase than under dry conditions (twofold increase, indicating that the investigated ECM fungi did not provide additional support during drought stress. The activity of secreted extracellular enzymes was higher in S. granulatus than in any other species. In conclusion, our findings suggest that ECM fungal species composition may affect seedling performance in terms of aboveground biomass.

  1. Growth response of drought-stressed Pinus sylvestris seedlings to single- and multi-species inoculation with ectomycorrhizal fungi.

    Science.gov (United States)

    Kipfer, Tabea; Wohlgemuth, Thomas; van der Heijden, Marcel G A; Ghazoul, Jaboury; Egli, Simon

    2012-01-01

    Many trees species form symbiotic associations with ectomycorrhizal (ECM) fungi, which improve nutrient and water acquisition of their host. Until now it is unclear whether the species richness of ECM fungi is beneficial for tree seedling performance, be it during moist conditions or drought. We performed a pot experiment using Pinus sylvestris seedlings inoculated with four selected ECM fungi (Cenococcum geophilum, Paxillus involutus, Rhizopogon roseolus and Suillus granulatus) to investigate (i) whether these four ECM fungi, in monoculture or in species mixtures, affect growth of P. sylvestris seedlings, and (ii) whether this effect can be attributed to species number per se or to species identity. Two different watering regimes (moist vs. dry) were applied to examine the context-dependency of the results. Additionally, we assessed the activity of eight extracellular enzymes in the root tips. Shoot growth was enhanced in the presence of S. granulatus, but not by any other ECM fungal species. The positive effect of S. granulatus on shoot growth was more pronounced under moist (threefold increase) than under dry conditions (twofold increase), indicating that the investigated ECM fungi did not provide additional support during drought stress. The activity of secreted extracellular enzymes was higher in S. granulatus than in any other species. In conclusion, our findings suggest that ECM fungal species composition may affect seedling performance in terms of aboveground biomass.

  2. Ectomycorrhizal community structure and function in relation to forest residue harvesting and wood ash applications

    Energy Technology Data Exchange (ETDEWEB)

    Mahmood, Shahid

    2000-05-01

    Ectomycorrhizal fungi form symbiotic associations with tree roots and assist in nutrient-uptake and -cycling in forest ecosystems, thereby constituting a most significant part of the microbial community. The aims of the studies described in this thesis were to evaluate the potential of DNA-based molecular methods in below-ground ectomycorrhizal community studies and to investigate changes in ectomycorrhizal communities on spruce roots in sites with different N deposition, and in sites subjected to harvesting of forest residues or application of wood ash. The ability of selected ectomycorrhizal fungi to mobilise nutrients from wood ash and to colonise root systems in the presence and absence of ash was also studied. In total 39 ectomycorrhizal species were detected in the experimental forests located in southern Sweden. At each site five to six species colonised around 60% of the root tips. The dominant species, common to the sites, were Tylospora fibrillosa, Thelephora terrestris and Cenococcum geophilum. Differences between two sites with differing levels of N deposition suggested that community structure may be influenced by N deposition, although site history, location and degree of isolation may also influence species composition. Repeated harvesting of forest residues reduced numbers of mycorrhizal roots in the humus layer to approximately 50% of that in control plots but no shift in the ectomycorrhizal community could be detected. At another site, application of granulated wood ash induced a shift in ectomycorrhizal community structure and three ectomycorrhizal fungi ('ash fungi') were found to colonise ash granules. Two 'ash fungi' showed a superior ability to solubilise stabilised wood ash in laboratory experiments compared to other ectomycorrhizal isolates from the same site. In laboratory microcosms containing intact mycorrhizal mycelia, colonisation of wood ash patches by one 'ash fungus' was good whereas colonisation by

  3. Physiological aspects underlying the improved outplanting performance of Pinus pinaster Ait. seedlings associated with ectomycorrhizal inoculation.

    Science.gov (United States)

    Sanchez-Zabala, Joseba; Majada, Juan; Martín-Rodrigues, Noemí; Gonzalez-Murua, Carmen; Ortega, Unai; Alonso-Graña, Manuel; Arana, Orats; Duñabeitia, Miren K

    2013-11-01

    Mycorrhizal inoculation of conifer roots is a key strategy to optimize establishment and performance of forest tree species under both natural and cultivated conditions and also to mitigate transplantation shock. However, despite being a common practice, inoculation in outdoor nursery conditions has been poorly studied. Here, we have evaluated effectiveness of four fungal species (Lactarius deliciosus, Lactarius quieticolor, Pisolithus arhizus, and Suillus luteus) in the production of mycorrhizal Pinus pinaster seedlings in an outdoor commercial nursery and their ability to improve seedling physiology and field performance. All inoculated seedlings showed a significant increase in growth at the end of the nursery stage and these differences remained after 3 years of growth in the field. Differences observed in the content of malondialdehyde, total chlorophyll, carotenoids, anthocyanins, and phenolic compounds from needles of mycorrhizal and control seedlings may reflect a different sensitivity to photo-oxidative damage. We conclude that ectomycorrhizal inoculation improves adaptability to changeable growing conditions of an outdoor nursery and produces a higher quality nursery stock, thereby enhancing seedling performance after planting.

  4. Ectomycorrhizal impacts on plant nitrogen nutrition: emerging isotopic patterns, latitudinal variation and hidden mechanisms.

    Science.gov (United States)

    Mayor, Jordan; Bahram, Mohammad; Henkel, Terry; Buegger, Franz; Pritsch, Karin; Tedersoo, Leho

    2015-01-01

    Ectomycorrhizal (EcM)-mediated nitrogen (N) acquisition is one main strategy used by terrestrial plants to facilitate growth. Measurements of natural abundance nitrogen isotope ratios (denoted as δ(15)N relative to a standard) increasingly serve as integrative proxies for mycorrhiza-mediated N acquisition due to biological fractionation processes that alter (15)N:(14)N ratios. Current understanding of these processes is based on studies from high-latitude ecosystems where plant productivity is largely limited by N availability. Much less is known about the cause and utility of ecosystem δ(15)N patterns in the tropics. Using structural equation models, model selection and isotope mass balance we assessed relationships among co-occurring soil, mycorrhizal plants and fungal N pools measured from 40 high- and 9 low-latitude ecosystems. At low latitudes (15)N-enrichment caused ecosystem components to significantly deviate from those in higher latitudes. Collectively, δ(15)N patterns suggested reduced N-dependency and unique sources of EcM (15)N-enrichment under conditions of high N availability typical of the tropics. Understanding the role of mycorrhizae in global N cycles will require reevaluation of high-latitude perspectives on fractionation sources that structure ecosystem δ(15)N patterns, as well as better integration of EcM function with biogeochemical theories pertaining to climate-nutrient cycling relationships. © 2014 John Wiley & Sons Ltd/CNRS.

  5. Nitrogen isotope fractionation during N uptake via arbuscular mycorrhizal and ectomycorrhizal fungi into grey alder.

    Science.gov (United States)

    Schweiger, Peter F

    2016-10-20

    Arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi affect plant nitrogen (N) dynamics. Plant N isotope patterns have been used to characterise the contribution of ECM fungi to plant N uptake. By quantifying and comparing the effects of an AM and an ECM fungus on growth, N uptake and isotopic composition of one host plant grown at different relative N supply levels, the aim of this study was to improve the mechanistic understanding of natural 15 N abundance patterns in mycorrhizal plants and their underlying causes. Grey alders were inoculated with one ECM fungus or one AM fungus or left non-mycorrhizal. Plants were grown under semi-hydroponic conditions and were supplied with three rates of relative N supply ranging from deficient to luxurious. Neither mycorrhizal fungus increased plant growth or N uptake. AM root colonisation had no effect on whole plant δ 15 N and decreased foliar δ 15 N only under N deficiency. The roots of these plants were 15 N-enriched. ECM root colonisation consistently decreased foliar and whole plant δ 15 N. It is concluded, that both mycorrhizal fungi contributed to plant N uptake into the shoot. Nitrogen isotope fractionation during N assimilation and transformations in fungal mycelia is suggested to have resulted in plants receiving 15 N-depleted N via the mycorrhizal uptake pathways. Negative mycorrhizal growth effects are explained by symbiotic resource trade on carbon and N and decreased direct plant N uptake. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Experimental evolution of defense against a competitive mold confers reduced sensitivity to fungal toxins but no increased resistance in Drosophila larvae

    Directory of Open Access Journals (Sweden)

    Trienens Monika

    2011-07-01

    Full Text Available Abstract Background Fungal secondary metabolites have been suggested to function as chemical defenses against insect antagonists, i.e. predators and competitors. Because insects and fungi often compete for dead organic material, insects may achieve protection against fungi by reducing sensitivity to fungal chemicals. This, in turn, may lead to increased resistance allowing insects better to suppress the spread of antagonistic but non-pathogenic microbes in their habitat. However, it remains controversial whether fungal toxins serve as a chemical shield that selects for insects that are less sensitive to toxins, and hence favors the evolution of insect resistance against microbial competitors. Results To examine the relationship between the ability to survive competition with toxic fungi, sensitivity to fungal toxins and resistance, we created fungal-selected (FS replicated insect lines by exposing Drosophila melanogaster larvae to the fungal competitor Aspergillus nidulans over 26 insect generations. Compared to unselected control lines (UC, larvae from the FS lines had higher survival rates in the presence of A. nidulans indicating selection for increased protection against the fungal antagonist. In line with our expectation, FS lines were less susceptible to the A. nidulans mycotoxin Sterigmatocystin. Of particular interest is that evolved protection against A. nidulans and Sterigmatocytin was not correlated with increased insect survival in the presence of other fungi and mycotoxins. We found no evidence that FS lines were better at suppressing the expansion of fungal colonies but observed a trend towards a less detrimental effect of FS larvae on fungal growth. Conclusion Antagonistic but non-pathogenic fungi favor insect variants better protected against the fungal chemical arsenal. This highlights the often proposed but experimentally underexplored importance of secondary metabolites in driving animal-fungus interactions. Instead of

  7. The effect of ectomycorrhizal fungi and bacteria on pine seedlings

    Directory of Open Access Journals (Sweden)

    Hanna Dahm

    2014-08-01

    Full Text Available The effect of ecomycorrhizal fungi (Hebelon crustuliniforme(Bull.: Fr. Quél. 5392 and Pisolithus tinctorius (Pers. Coker et Couch 5335 and bacteria (Bacillus polymyxa and Azospirillum brasilense. associated with mycorrhizas on the growth of pine seedligs was investigated. In addition the influence of bacteria on fungal biomass production and the relationship between ectomycorrhizal fungi and fungi pathogenic to root of pine seedlings were determined. In general, the shoot/root ratio was higher in plants inoculated with Hebeloma crustuliniforme and bacteria than in the control seedlings (grown only under sterile conditions. In non-sterile substrate the root/shoot ratio of the mycorrhizal seedlings was lower as compared to the control. Similar phenomenon was noted in plants inoculated with the mycorrhizal fungus Pisolithus tinetorius. The bacteria used as well as the time of introduction of these organisms into the cultures of mycorrhiza fungi affected the production of fungal biomass. Hebeloma crustuliniforme and Pisolithus tinctorius inhibited the growth of Rizoctonia solani and Fusarium oxysporum fungi pathogenic to pine seedlings.

  8. Using next generation transcriptome sequencing to predict an ectomycorrhizal metabolome

    Directory of Open Access Journals (Sweden)

    Cseke Leland J

    2011-05-01

    Full Text Available Abstract Background Mycorrhizae, symbiotic interactions between soil fungi and tree roots, are ubiquitous in terrestrial ecosystems. The fungi contribute phosphorous, nitrogen and mobilized nutrients from organic matter in the soil and in return the fungus receives photosynthetically-derived carbohydrates. This union of plant and fungal metabolisms is the mycorrhizal metabolome. Understanding this symbiotic relationship at a molecular level provides important contributions to the understanding of forest ecosystems and global carbon cycling. Results We generated next generation short-read transcriptomic sequencing data from fully-formed ectomycorrhizae between Laccaria bicolor and aspen (Populus tremuloides roots. The transcriptomic data was used to identify statistically significantly expressed gene models using a bootstrap-style approach, and these expressed genes were mapped to specific metabolic pathways. Integration of expressed genes that code for metabolic enzymes and the set of expressed membrane transporters generates a predictive model of the ectomycorrhizal metabolome. The generated model of mycorrhizal metabolome predicts that the specific compounds glycine, glutamate, and allantoin are synthesized by L. bicolor and that these compounds or their metabolites may be used for the benefit of aspen in exchange for the photosynthetically-derived sugars fructose and glucose. Conclusions The analysis illustrates an approach to generate testable biological hypotheses to investigate the complex molecular interactions that drive ectomycorrhizal symbiosis. These models are consistent with experimental environmental data and provide insight into the molecular exchange processes for organisms in this complex ecosystem. The method used here for predicting metabolomic models of mycorrhizal systems from deep RNA sequencing data can be generalized and is broadly applicable to transcriptomic data derived from complex systems.

  9. Bacterial microbiomes of individual ectomycorrhizal Pinus sylvestris roots are shaped by soil horizon and differentially sensitive to nitrogen addition.

    Science.gov (United States)

    Marupakula, Srisailam; Mahmood, Shahid; Jernberg, Johanna; Nallanchakravarthula, Srivathsa; Fahad, Zaenab A; Finlay, Roger D

    2017-11-01

    Plant roots select non-random communities of fungi and bacteria from the surrounding soil that have effects on their health and growth, but we know little about the factors influencing their composition. We profiled bacterial microbiomes associated with individual ectomycorrhizal Pinus sylvestris roots colonized by different fungi and analyzed differences in microbiome structure related to soils from distinct podzol horizons and effects of short-term additions of N, a growth-limiting nutrient commonly applied as a fertilizer, but known to influence patterns of carbon allocation to roots. Ectomycorrhizal roots growing in soil from different horizons harboured distinct bacterial communities. The fungi colonizing individual roots had a strong effect on the associated bacterial communities. Even closely related species within the same ectomycorrhizal genus had distinct bacterial microbiomes in unfertilized soil, but fertilization removed this specificity. Effects of N were rapid and context dependent, being influenced by both soil type and the particular ectomycorrhizal fungi involved. Fungal community composition changed in soil from all horizons, but bacteria only responded strongly to N in soil from the B horizon where community structure was different and bacterial diversity was significantly reduced, possibly reflecting changed carbon allocation patterns. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Lack of host specificity leads to independent assortment of dipterocarps and ectomycorrhizal fungi across a soil fertility gradient.

    Science.gov (United States)

    Peay, Kabir G; Russo, Sabrina E; McGuire, Krista L; Lim, Zhenyu; Chan, Ju Ping; Tan, Sylvester; Davies, Stuart J

    2015-08-01

    Plants interact with a diversity of microorganisms, and there is often concordance in their community structures. Because most community-level studies are observational, it is unclear if such concordance arises because of host specificity, in which microorganisms or plants limit each other's occurrence. Using a reciprocal transplant experiment, we tested the hypothesis that host specificity between trees and ectomycorrhizal fungi determines patterns of tree and fungal soil specialisation. Seedlings of 13 dipterocarp species with contrasting soil specialisations were seeded into plots crossing soil type and canopy openness. Ectomycorrhizal colonists were identified by DNA sequencing. After 2.5 years, we found no evidence of host specificity. Rather, soil environment was the primary determinant of ectomycorrhizal diversity and composition on seedlings. Despite their close symbiosis, our results show that ectomycorrhizal fungi and tree communities in this Bornean rain forest assemble independently of host-specific interactions, raising questions about how mutualism shapes the realised niche. © 2015 John Wiley & Sons Ltd/CNRS.

  11. Mycorrhizal Fungal Community of Poplars Growing on Pyrite Tailings Contaminated Site near the River Timok

    Directory of Open Access Journals (Sweden)

    Marina Katanić

    2015-06-01

    Full Text Available Background and Purpose: Mycorrhizal fungi are of high importance for functioning of forest ecosystems and they could be used as indicators of environmental stress. The aim of this research was to analyze ectomycorrhizal community structure and to determine root colonization rate with ectomycorrhizal, arbuscular mycorrhizal and endophytic fungi of poplars growing on pyrite tailings contaminated site near the river Timok (Eastern Serbia. Materials and Methods: Identification of ectomycorrhizal types was performed by combining morphological and anatomical characterization of ectomycorrhizae with molecular identification approach, based on sequencing of the nuclear ITS rRNA region. Also, colonization of poplar roots with ectomycorrhizal, arbuscular mycorrhizal and dark septated endophytic fungi were analysed with intersection method. Results and Conclusions: Physico-chemical analyses of soil from studied site showed unfavourable water properties of soil, relatively low pH and high content of heavy metals (copper and zinc. In investigated samples only four different ectomycorrhizal fungi were found. To the species level were identified Thelephora terrestris and Tomentella ellisi, while two types remained unidentified. Type Thelephora terrestris made up 89% of all ectomycorrhizal roots on studied site. Consequently total values of Species richness index and Shannon-Weaver diversity index were 0.80 and 0.43, respectively. No structures of arbuscular mycorrhizal fungi were recorded. Unfavourable environmental conditions prevailing on investigated site caused decrease of ectomycorrhizal types diversity. Our findings point out that mycorrhyzal fungal community could be used as an appropriate indicator of environmental changes.

  12. Organic anion exudation by ectomycorrhizal fungi and Pinus sylvestris in response to nutrient deficiences

    NARCIS (Netherlands)

    Schöll, van L.; Hoffland, E.; Breemen, van N.

    2006-01-01

    Low molecular weight organic anions (LMWOA) can enhance weathering of mineral grains. We tested the hypothesis that ectomycorrhizal (EcM) fungi and tree seedlings increase their exudation of LMWOA when supply of magnesium, potassium and phosphorus is low to enhance the mobilization of Mg, K and P

  13. Ectomycorrhizal mats alter forest soil biogeochemistry

    Science.gov (United States)

    Laurel A. Kluber; Kathryn M. Tinnesand; Bruce A. Caldwell; Susie M. Dunham; Rockie R. Yarwood; Peter J. Bottomley; David D. Myrold

    2010-01-01

    Dense hyphal mats formed by ectomycorrhizal (EcM) fungi are prominent features in Douglas-fir forest ecosystems, and have been estimated to cover up to 40% of the soil surface in some forest stands. Two morphotypes of EcM mats have been previously described: rhizomorphic mats, which have thick hyphal rhizomorphs and are found primarily in the organic horizon, and...

  14. Selection of ectomycorrhizal willow genotype in phytoextraction of heavy metals.

    Science.gov (United States)

    Hrynkiewicz, Katarzyna; Baum, Christel

    2013-01-01

    Willow clones are used for the phytoextraction of heavy metals from contaminated soils and are usually mycorrhizal. The receptiveness of willow clones for mycorrhizal inoculum varies specific to genotype; however, it is unknown if this might have a significant impact on their efficiency in phytoextraction of heavy metals. Therefore, a model system with mycorrhizal and non-mycorrhizal willows of two different genotypes--one with usually stronger natural mycorrhizal colonization (Salix dasyclados), and one with lower natural mycorrhizal colonization (S. viminalis)--was investigated for its efficiency of phytoextraction of heavy metals (Cd, Pb, Cu, Zn) from contaminated soil. Inoculation with the ectomycorrhizal fungus Amanita muscaria significantly decreased the biomass of leaves of both inoculated willow clones, and increased or had no effect on the biomass of trunks and roots of S. dasyclados and S. viminalis, respectively. The concentrations of heavy metals in the biomass of S. dasyclados were in general higher than in S. viminalis irrespective of inoculation with the ectomycorrhizal fungus. Inoculation with A. muscaria significantly decreased the concentration of Cu in the trunks of both Salix taxa, but did not affected the concentrations of other heavy metals in the biomass. In conclusion, stronger receptiveness of willow clones for mycorrhizal inoculum was correlated with an increased total extraction of heavy metals from contaminated soils. Therefore, this seems to be a suitable criterion for effective willow clone selection for phytoremediation. Increased biomass production with relatively constant metal concentrations seems to be a major advantage of mycorrhizal formation of willows in phytoremediation of contaminated soils.

  15. Soil propagule banks of ectomycorrhizal fungi share many common species along an elevation gradient.

    Science.gov (United States)

    Miyamoto, Yumiko; Nara, Kazuhide

    2016-04-01

    We conducted bioassay experiments to investigate the soil propagule banks of ectomycorrhizal (EM) fungi in old-growth forests along an elevation gradient and compared the elevation pattern with the composition of EM fungi on existing roots in the field. In total, 150 soil cores were collected from three forests on Mt. Ishizuchi, western Japan, and subjected to bioassays using Pinus densiflora and Betula maximowicziana. Using molecular analyses, we recorded 23 EM fungal species in the assayed propagule banks. Eight species (34.8 %) were shared across the three sites, which ranged from a warm-temperate evergreen mixed forest to a subalpine conifer forest. The elevation pattern of the assayed propagule banks differed dramatically from that of EM fungi on existing roots along the same gradient, where only a small proportion of EM fungal species (3.5 %) were shared across sites. The EM fungal species found in the assayed propagule banks included many pioneer fungal species and composition differed significantly from that on existing roots. Furthermore, only 4 of 23 species were shared between the two host species, indicating a strong effect of bioassay host identity in determining the propagule banks of EM fungi. These results imply that the assayed propagule bank is less affected by climate compared to EM fungal communities on existing roots. The dominance of disturbance-dependent fungal species in the assayed propagule banks may result in higher ecosystem resilience to disturbance even in old-growth temperate forests.

  16. Hydroxamate siderophores of the ectomycorrhizal fungi Suillus granulatus and S. luteus.

    Science.gov (United States)

    Haselwandter, Kurt; Häninger, Gerlinde; Ganzera, Markus

    2011-02-01

    Despite indications that S. granulatus and S. luteus release iron-chelating compounds, the exact spectrum of ferric hydroxamates synthesized by these two Suillus species remained unclear. Hence the aim of this study was to identify all of the main siderophores produced by these two ectomycorrhizal fungal species under pure culture conditions. By means of HPLC and LC-MS analyses we show that S. granulatus releases cyclic and linear fusigen, ferrichrome, coprogen and triacetylfusarinine C into the nutrient medium, while S. luteus culture filtrates contain cyclic and linear fusigen, ferricrocin and coprogen. All of the different siderophores were identified on basis of reference compounds and their specific MS spectra which were recorded on a high resolution MS in positive electrospray ionisation mode. Initial HPLC separations were performed on a C-18 stationary phase, using an acidic eluent (0.1% formic acid in water and acetonitrile) in gradient mode. The potential of these two ectomycorrhizal fungal species to produce siderophores representing three different groups of hydroxamates is discussed in relation to its ecological significance.

  17. Overexpression of Laccaria bicolor aquaporin JQ585595 alters root water transport properties in ectomycorrhizal white spruce (Picea glauca) seedlings.

    Science.gov (United States)

    Xu, Hao; Kemppainen, Minna; El Kayal, Walid; Lee, Seong Hee; Pardo, Alejandro G; Cooke, Janice E K; Zwiazek, Janusz J

    2015-01-01

    The contribution of hyphae to water transport in ectomycorrhizal (ECM) white spruce (Picea glauca) seedlings was examined by altering expression of a major water-transporting aquaporin in Laccaria bicolor. Picea glauca was inoculated with wild-type (WT), mock transgenic or L. bicolor aquaporin JQ585595-overexpressing (OE) strains and exposed to root temperatures ranging from 5 to 20°C to examine the root water transport properties, physiological responses and plasma membrane intrinsic protein (PIP) expression in colonized plants. Mycorrhization increased shoot water potential, transpiration, net photosynthetic rates, root hydraulic conductivity and root cortical cell hydraulic conductivity in seedlings. At 20°C, OE plants had higher root hydraulic conductivity compared with WT plants and the increases were accompanied by higher expression of P. glauca PIP GQ03401_M18.1 in roots. In contrast to WT L. bicolor, the effects of OE fungi on root and root cortical cell hydraulic conductivities were abolished at 10 and 5°C in the absence of major changes in the examined transcript levels of P. glauca root PIPs. The results provide evidence for the importance of fungal aquaporins in root water transport of mycorrhizal plants. They also demonstrate links between hyphal water transport, root aquaporin expression and root water transport in ECM plants. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  18. Diversity and community structure of ectomycorrhizal fungi associated with Larix chinensis across the alpine treeline ecotone of Taibai Mountain.

    Science.gov (United States)

    Han, Qisheng; Huang, Jian; Long, Dongfeng; Wang, Xiaobing; Liu, Jianjun

    2017-07-01

    Alpine treeline ecotones represent ecosystems that are vulnerable to climate change. We investigated the ectomycorrhizal (ECM) community, which has potential to stabilize alpine ecosystems. ECM communities associated with Larix chinensis were studied in four zones along a natural ecotone from a mixed forest stand over pure forest stands, the timberline, and eventually, the treeline (3050-3450 m) in Tabai Mountain, China. Sixty operational taxonomic units (OTUs) of ECM fungi were identified by sequencing the rDNA internal transcribed spacer of ECM tips. The richness of ECM species increased with elevation. The soil C/N ratio was the most important factor explaining ECM species richness. The treeline zone harbored some unique ECM fungi whereas no unique genera were observed in the timberline and pure forest zone. Elevation and topography were equally important factors influencing ECM communities in the alpine region. We suggest that a higher diversity of the ECM fungal community associated with L. chinensis in the treeline zone could result from niche differentiation.

  19. Recent Insights on Biological and Ecological Aspects of Ectomycorrhizal Fungi and Their Interactions.

    Science.gov (United States)

    Mello, Antonietta; Balestrini, Raffaella

    2018-01-01

    The roots of most terrestrial plants are colonized by mycorrhizal fungi. They play a key role in terrestrial environments influencing soil structure and ecosystem functionality. Around them a peculiar region, the mycorrhizosphere, develops. This is a very dynamic environment where plants, soil and microorganisms interact. Interest in this fascinating environment has increased over the years. For a long period the knowledge of the microbial populations in the rhizosphere has been limited, because they have always been studied by traditional culture-based techniques. These methods, which only allow the study of cultured microorganisms, do not allow the characterization of most organisms existing in nature. The introduction in the last few years of methodologies that are independent of culture techniques has bypassed this limitation. This together with the development of high-throughput molecular tools has given new insights into the biology, evolution, and biodiversity of mycorrhizal associations, as well as, the molecular dialog between plants and fungi. The genomes of many mycorrhizal fungal species have been sequenced so far allowing to better understanding the lifestyle of these fungi, their sexual reproduction modalities and metabolic functions. The possibility to detect the mycelium and the mycorrhizae of heterothallic fungi has also allowed to follow the spatial and temporal distributional patterns of strains of different mating types. On the other hand, the availability of the genome sequencing from several mycorrhizal fungi with a different lifestyle, or belonging to different groups, allowed to verify the common feature of the mycorrhizal symbiosis as well as the differences on how different mycorrhizal species interact and dialog with the plant. Here, we will consider the aspects described before, mainly focusing on ectomycorrhizal fungi and their interactions with plants and other soil microorganisms.

  20. Ectomycorrhizal communities of ponderosa pine and lodgepole pine in the south-central Oregon pumice zone.

    Science.gov (United States)

    Garcia, Maria O; Smith, Jane E; Luoma, Daniel L; Jones, Melanie D

    2016-05-01

    Forest ecosystems of the Pacific Northwest of the USA are changing as a result of climate change. Specifically, rise of global temperatures, decline of winter precipitation, earlier loss of snowpack, and increased summer drought are altering the range of Pinus contorta. Simultaneously, flux in environmental conditions within the historic P. contorta range may facilitate the encroachment of P. ponderosa into P. contorta territory. Furthermore, successful pine species migration may be constrained by the distribution or co-migration of ectomycorrhizal fungi (EMF). Knowledge of the linkages among soil fungal diversity, community structure, and environmental factors is critical to understanding the organization and stability of pine ecosystems. The objectives of this study were to establish a foundational knowledge of the EMF communities of P. ponderosa and P. contorta in the Deschutes National Forest, OR, USA, and to examine soil characteristics associated with community composition. We examined EMF root tips of P. ponderosa and P. contorta in soil cores and conducted soil chemistry analysis for P. ponderosa cores. Results indicate that Cenococcum geophilum, Rhizopogon salebrosus, and Inocybe flocculosa were dominant in both P. contorta and P. ponderosa soil cores. Rhizopogon spp. were ubiquitous in P. ponderosa cores. There was no significant difference in the species composition of EMF communities of P. ponderosa and P. contorta. Ordination analysis of P. ponderosa soils suggested that soil pH, plant-available phosphorus (Bray), total phosphorus (P), carbon (C), mineralizable nitrogen (N), ammonium (NH4), and nitrate (NO3) are driving EMF community composition in P. ponderosa stands. We found a significant linear relationship between EMF species richness and mineralizable N. In conclusion, P. ponderosa and P. contorta, within the Deschutes National Forest, share the same dominant EMF species, which implies that P. ponderosa may be able to successfully establish

  1. Recent Insights on Biological and Ecological Aspects of Ectomycorrhizal Fungi and Their Interactions

    Directory of Open Access Journals (Sweden)

    Antonietta Mello

    2018-02-01

    Full Text Available The roots of most terrestrial plants are colonized by mycorrhizal fungi. They play a key role in terrestrial environments influencing soil structure and ecosystem functionality. Around them a peculiar region, the mycorrhizosphere, develops. This is a very dynamic environment where plants, soil and microorganisms interact. Interest in this fascinating environment has increased over the years. For a long period the knowledge of the microbial populations in the rhizosphere has been limited, because they have always been studied by traditional culture-based techniques. These methods, which only allow the study of cultured microorganisms, do not allow the characterization of most organisms existing in nature. The introduction in the last few years of methodologies that are independent of culture techniques has bypassed this limitation. This together with the development of high-throughput molecular tools has given new insights into the biology, evolution, and biodiversity of mycorrhizal associations, as well as, the molecular dialog between plants and fungi. The genomes of many mycorrhizal fungal species have been sequenced so far allowing to better understanding the lifestyle of these fungi, their sexual reproduction modalities and metabolic functions. The possibility to detect the mycelium and the mycorrhizae of heterothallic fungi has also allowed to follow the spatial and temporal distributional patterns of strains of different mating types. On the other hand, the availability of the genome sequencing from several mycorrhizal fungi with a different lifestyle, or belonging to different groups, allowed to verify the common feature of the mycorrhizal symbiosis as well as the differences on how different mycorrhizal species interact and dialog with the plant. Here, we will consider the aspects described before, mainly focusing on ectomycorrhizal fungi and their interactions with plants and other soil microorganisms.

  2. Diversity and persistence of ectomycorrhizal fungi and their effect on nursery-inoculated Pinus pinaster in a post-fire plantation in Northern Portugal.

    Science.gov (United States)

    Franco, Albina R; Sousa, Nadine R; Ramos, Miguel A; Oliveira, Rui S; Castro, Paula M L

    2014-11-01

    Ectomycorrhizal fungi (ECMF) play an important role in forest ecosystems, often mitigating stress factors and increasing seedling performance. The aim of this study was to investigate the effects of a nursery inoculation on Pinus pinaster growth and on the fungal communities established when reforesting burned areas. Inoculated P. pinaster saplings showed 1.5-fold higher stem height than the non-inoculated controls after a 5 year growth period, suggesting that fungal inoculation could potentiate tree growth in the field. Ordination analysis revealed the presence of different ECMF communities on both plots. Among the nursery-inoculated fungi, Laccaria sp., Rhizopogon sp., Suillus bovinus and Pisolithus sp. were detected on inoculated Pinus saplings on both sampling periods, indicating that they persisted after field establishment. Other fungi were also detected in the inoculated plants. Phialocephala sp. was found on the first assessment, while Terfezia sp. was detected on both sampling periods. Laccaria sp. and Rhizopogon sp. were identified in the control saplings, belonging however to different species than those found in the inoculated plot. Inocybe sp., Thelephora sp. and Paxillus involutus were present on both sampling periods in the non-inoculated plots. The results suggest that ECMF inoculation at nursery stage can benefit plant growth after transplantation to a post-fire site and that the inoculated fungi can persist in the field. This approach has great potential as a biotechnological tool to aid in the reforestation of burned areas.

  3. The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes

    Science.gov (United States)

    Dimitrios Floudas; Manfred Binder; Robert Riely; Kerrie Barry; Robert A. Blanchette; Bernard Henrissat; Angel T. Martínez; Robert Otillar; Joseph W. Spatafora; Jagjit S. Yadav; Andrea Aerts; Isabelle Benoit; Alex Boyd; Alexis Carlson; Alex Copeland; Pedro M. Coutinho; Ronald P. deVries; Patricia Ferreira; Keisha Findley; Brian Foster; Jill Gaskell; Dylan Glotzer; Pawe³ Górecki; Joseph Heitman; Cedar Hesse; Chiaki Hori; Kiyohiko Igarashi; Joel A. Jurgens; Nathan Kallen; Phil Kersten; Annegret Kohler; Ursula Kües; T. K. ArunKumar; Alan Kuo; Kurt LaButti; Luis F. Larrondo; Erika Lindquist; Albee Ling; Vincent Lombard; Susan Lucas; Taina Lundell; Rachael Martin; David J. McLaughlin; Ingo Morgenstern; Emanuelle Morin; Claude Murat; Laszlo G. Nagy; Matt Nolan; Robin A. Ohm; Aleksandrina Patyshakuliyeva; Antonis Rokas; Francisco J. Ruiz-Dueñas; Grzegorz Sabat; Asaf Salamov; Masahiro Samejima; Jeremy Schmutz; Jason C. Slot; Franz St. John; Jan Stenlid; Hui Sun; Sheng Sun; Khajamohiddin Syed; Adrian Tsang; Ad Wiebenga; Darcy Young; Antonio Pisabarro; Daniel C. Eastwood; Francis Martin; Dan Cullen; Igor V. Grigoriev; David S. Hibbett

    2012-01-01

    Wood is a major pool of organic carbon that is highly resistant to decay, owing largely to the presence of lignin. The only organisms capable of substantial lignin decay are white rot fungi in the Agaricomycetes, which also contains non–lignin-degrading brown rot and ectomycorrhizal species. Comparative analyses of 31 fungal genomes (12 generated for this study)...

  4. Suppression of allene oxide synthase 3 in potato increases degree of arbuscular mycorrhizal fungal colonization.

    Science.gov (United States)

    Morcillo, Rafael Jorge León; Navarrete, María Isabel Tamayo; Bote, Juan Antonio Ocampo; Monguio, Salomé Prat; García-Garrido, José Manuel

    2016-01-15

    Arbuscular mycorrhizal (AM) is a mutually beneficial interaction among higher plants and soil fungi of the phylum Glomeromycota. Numerous studies have pointed that jasmonic acid plays an important role in the development of the intraradical fungus. This compound belongs to a group of biologically active compounds known as oxylipins which are derived from the oxidative metabolism of polyunsaturated fatty acids. Studies of the regulatory role played by oxylipins in AM colonization have generally focused on jasmonates, while few studies exist on the 9-LOX pathway of oxylipins during AM formation. Here, the cDNA of Allene oxide synthase 3 (AOS3), a key enzyme in the 9-LOX pathway, was used in the RNA interference (RNAi) system to transform potato plants in order to suppress its expression. Results show increases in AOS3 gene expression and 9-LOX products in roots of wild type potato mycorrhizal plants. The suppression of AOS3 gene expression increases the percentage of root with mycorrhizal colonization at early stages of AM formation. AOS3 RNA interference lead to an induction of LOXA and 13-LOX genes, a reduction in AOS3 derived 9-LOX oxylipin compounds and an increase in jasmonic acid content, suggesting compensation between 9 and 13-LOX pathways. The results in a whole support the hypothesis of a regulatory role for the 9-LOX oxylipin pathway during mycorrhization. Copyright © 2015 Elsevier GmbH. All rights reserved.

  5. Nitrate Increased Cucumber Tolerance to Fusarium Wilt by Regulating Fungal Toxin Production and Distribution

    Directory of Open Access Journals (Sweden)

    Jinyan Zhou

    2017-03-01

    Full Text Available Cucumber Fusarium wilt, induced by Fusarium oxysporum f. sp. cucumerinum (FOC, causes severe losses in cucumber yield and quality. Nitrogen (N, as the most important mineral nutrient for plants, plays a critical role in plant–pathogen interactions. Hydroponic assays were conducted to investigate the effects of different N forms (NH4+ vs. NO3‒ and supply levels (low, 1 mM; high, 5 mM on cucumber Fusarium wilt. The NO3‒-fed cucumber plants were more tolerant to Fusarium wilt compared with NH4+-fed plants, and accompanied by lower leaf temperature after FOC infection. The disease index decreased as the NO3‒ supply increased but increased with the NH4+ level supplied. Although the FOC grew better under high NO3− in vitro, FOC colonization and fusaric acid (FA production decreased in cucumber plants under high NO3− supply, associated with lower leaf membrane injury. There was a positive correlation between the FA content and the FOC number or relative membrane injury. After the exogenous application of FA, less FA accumulated in the leaves under NO3− feeding, accompanied with a lower leaf membrane injury. In conclusion, higher NO3− supply protected cucumber plants against Fusarium wilt by suppressing FOC colonization and FA production in plants, and increasing the plant tolerance to FA.

  6. Nitrate Increased Cucumber Tolerance to Fusarium Wilt by Regulating Fungal Toxin Production and Distribution.

    Science.gov (United States)

    Zhou, Jinyan; Wang, Min; Sun, Yuming; Gu, Zechen; Wang, Ruirui; Saydin, Asanjan; Shen, Qirong; Guo, Shiwei

    2017-03-11

    Cucumber Fusarium wilt, induced by Fusarium oxysporum f. sp. cucumerinum (FOC), causes severe losses in cucumber yield and quality. Nitrogen (N), as the most important mineral nutrient for plants, plays a critical role in plant-pathogen interactions. Hydroponic assays were conducted to investigate the effects of different N forms (NH₄⁺ vs. NO₃ ‒ ) and supply levels (low, 1 mM; high, 5 mM) on cucumber Fusarium wilt. The NO₃ ‒ -fed cucumber plants were more tolerant to Fusarium wilt compared with NH₄⁺-fed plants, and accompanied by lower leaf temperature after FOC infection. The disease index decreased as the NO₃ ‒ supply increased but increased with the NH₄⁺ level supplied. Although the FOC grew better under high NO₃ - in vitro, FOC colonization and fusaric acid (FA) production decreased in cucumber plants under high NO₃ - supply, associated with lower leaf membrane injury. There was a positive correlation between the FA content and the FOC number or relative membrane injury. After the exogenous application of FA, less FA accumulated in the leaves under NO₃ - feeding, accompanied with a lower leaf membrane injury. In conclusion, higher NO₃ - supply protected cucumber plants against Fusarium wilt by suppressing FOC colonization and FA production in plants, and increasing the plant tolerance to FA.

  7. Extreme rainfall affects assembly of the root-associated fungal community

    DEFF Research Database (Denmark)

    Barnes, Christopher James; van der Gast, Christopher J.; McNamara, Niall P.

    2018-01-01

    -associated fungus community of a short rotation coppice willow plantation, and compared community dynamics before and after a once in 100 yr rainfall event that occurred in the UK in 2012. Monitoring of the root-associated fungi was performed over a 3-yr period by metabarcoding the fungal internal transcribed...... yet overlooked determinants of root-associated fungal community assembly. Given the integral role of ectomycorrhizal fungi in biogeochemical cycles, these events may have considerable impacts upon the functioning of terrestrial ecosystems....

  8. Spatial segregation and aggregation of ectomycorrhizal and root-endophytic fungi in the seedlings of two Quercus species.

    Directory of Open Access Journals (Sweden)

    Satoshi Yamamoto

    Full Text Available Diverse clades of mycorrhizal and endophytic fungi are potentially involved in competitive or facilitative interactions within host-plant roots. We investigated the potential consequences of these ecological interactions on the assembly process of root-associated fungi by examining the co-occurrence of pairs of fungi in host-plant individuals. Based on massively-parallel pyrosequencing, we analyzed the root-associated fungal community composition for each of the 249 Quercus serrata and 188 Quercus glauca seedlings sampled in a warm-temperate secondary forest in Japan. Pairs of fungi that co-occurred more or less often than expected by chance were identified based on randomization tests. The pyrosequencing analysis revealed that not only ectomycorrhizal fungi but also endophytic fungi were common in the root-associated fungal community. Intriguingly, specific pairs of these ectomycorrhizal and endophytic fungi showed spatially aggregated patterns, suggesting the existence of facilitative interactions between fungi in different functional groups. Due to the large number of fungal pairs examined, many of the observed aggregated/segregated patterns with very low P values (e.g., < 0.005 turned non-significant after the application of a multiple comparison method. However, our overall results imply that the community structures of ectomycorrhizal and endophytic fungi could influence each other through interspecific competitive/facilitative interactions in root. To test the potential of host-plants' control of fungus-fungus ecological interactions in roots, we further examined whether the aggregated/segregated patterns could vary depending on the identity of host plant species. Potentially due to the physiological properties shared between the congeneric host plant species, the sign of hosts' control was not detected in the present study. The pyrosequencing-based randomization analyses shown in this study provide a platform of the high

  9. Influence of long-term repeated prescribed burning on mycelial communities of ectomycorrhizal fungi.

    Science.gov (United States)

    Bastias, Brigitte A; Xu, Zhihong; Cairney, John W G

    2006-01-01

    To demonstrate the efficacy of direct DNA extraction from hyphal ingrowth bags for community profiling of ectomycorrhizal (ECM) mycelia in soil, we applied the method to investigate the influence of long-term repeated prescribed burning on an ECM fungal community. DNA was extracted from hyphal ingrowth bags buried in forest plots that received different prescribed burning treatments for 30 yr, and denaturing gradient gel electrophoresis (DGGE) profiles of partial fungal rDNA internal transcribed spacer (ITS) regions were compared. Restriction fragment length polymorphism (RFLP) and sequence analyses were also used to compare clone assemblages between the treatments. The majority of sequences derived from the ingrowth bags were apparently those of ECM fungi. DGGE profiles for biennially burned plots were significantly different from those of quadrennially burned and unburned control plots. Analysis of clone assemblages indicated that this reflected altered ECM fungal community composition. The results indicate that hyphal ingrowth bags represent a useful method for investigation of ECM mycelial communities, and that frequent long-term prescribed burning can influence below-ground ECM fungal communities.

  10. Drought resistance of Pinus sylvestris seedlings conferred by plastic root architecture rather than ectomycorrhizal colonisation

    OpenAIRE

    Moser , Barbara; Kipfer , Tabea; Richter , Sarah; Egli , Simon; Wohlgemuth , Thomas

    2015-01-01

    International audience; Abstract ContextIncreased summer drought is considered as a threat to the regeneration of Pinus sylvestris in the Central Alps. To a certain degree, seedlings are able to mitigate negative effects of drought by altering root/shoot ratios. But, seedlings may also enhance access to water and nutrients by cooperation with ectomycorrhizal fungi. AimsWe tested the importance of both mechanisms for drought resistance of P. sylvestris seedlings during early establishment and ...

  11. Ectomycorrhizal Communities Associated with the Legume Acacia spirorbis Growing on Contrasted Edaphic Constraints in New Caledonia.

    Science.gov (United States)

    Houles, Anne; Vincent, Bryan; David, Magali; Ducousso, Marc; Galiana, Antoine; Juillot, Farid; Hannibal, Laure; Carriconde, Fabian; Fritsch, Emmanuel; Jourand, Philippe

    2018-05-01

    This study aims to characterize the ectomycorrhizal (ECM) communities associated with Acacia spirorbis, a legume tree widely spread in New Caledonia that spontaneously grows on contrasted edaphic constraints, i.e. calcareous, ferralitic and volcano-sedimentary soils. Soil geochemical parameters and diversity of ECM communities were assessed in 12 sites representative of the three mains categories of soils. The ectomycorrhizal status of Acacia spirorbis was confirmed in all studied soils, with a fungal community dominated at 92% by Basidiomycota, mostly represented by/tomentella-thelephora (27.6%), /boletus (15.8%), /sebacina (10.5%), /russula-lactarius (10.5%) and /pisolithus-scleroderma (7.9%) lineages. The diversity and the proportion of the ECM lineages were similar for the ferralitic and volcano-sedimentary soils but significantly different for the calcareous soils. These differences in the distribution of the ECM communities were statistically correlated with pH, Ca, P and Al in the calcareous soils and with Co in the ferralitic soils. Altogether, these data suggest a high capacity of A. spirorbis to form ECM symbioses with a large spectrum of fungi regardless the soil categories with contrasted edaphic parameters.

  12. Fungal Meningitis

    Science.gov (United States)

    ... Schedules Preteen & Teen Vaccines Meningococcal Disease Sepsis Fungal Meningitis Language: English Spanish Recommend on Facebook Tweet Share ... the brain or spinal cord. Investigation of Fungal Meningitis, 2012 In September 2012, the Centers for Disease ...

  13. Beyond ectomycorrhizal bipartite networks: projected networks demonstrate contrasted patterns between early- and late-successional plants in Corsica.

    Directory of Open Access Journals (Sweden)

    Adrien eTaudiere

    2015-10-01

    Full Text Available The ectomycorrhizal (ECM symbiosis connects mutualistic plants and fungal species into bipartite networks. While links between one focal ECM plant and its fungal symbionts have been widely documented, systemic views of ECM networks are lacking, in particular, concerning the ability of fungal species to mediate indirect ecological interactions between ECM plant species (projected-ECM networks. We assembled a large dataset of plant-fungi associations at the species level and at the scale of Corsica using molecular data and unambiguously host-assigned records to: (i examine the correlation between the number of fungal symbionts of a plant species and the average specialization of these fungal species, (ii explore the structure of the plant-plant projected network and (iii compare plant association patterns in regard to their position along the ecological succession. Our analysis reveals no trade-off between specialization of plants and specialization of their partners and a saturation of the plant projected network. Moreover, there is a significantly lower-than-expected sharing of partners between early- and late-successional plant species, with fewer fungal partners for early-successional ones and similar average specialization of symbionts of early- and late-successional plants. Our work paves the way for ecological readings of Mediterranean landscapes that include the astonishing diversity of below-ground interactions.

  14. Evolution and host specificity in the ectomycorrhizal genus Leccinum

    NARCIS (Netherlands)

    Bakker, den H.C.; Zuccarello, G.C.; Kuyper, T.W.; Noordeloos, M.E.

    2004-01-01

    Species of the ectomycorrhizal genus Leccinum are generally considered to be host specialists. We determined the phylogenetic relationships between species of Leccinum from Europe and North America based on second internal transcribed spacer (ITS2) and glyceraldehyde 3-phosphate dehydrogenase

  15. Towards global patterns in the diversity and community structure of ectomycorrhizal fungi

    DEFF Research Database (Denmark)

    Tedersoo, Leho; Bahram, Mohammad; Toots, Märt

    2012-01-01

    Global species richness patterns of soil micro-organisms remain poorly understood compared to macro-organisms. We use a global analysis to disentangle the global determinants of diversity and community composition for ectomycorrhizal (EcM) fungi—microbial symbionts that play key roles in plant...... nutrition in most temperate and many tropical forest ecosystems. Host plant family has the strongest effect on the phylogenetic community composition of fungi, whereas temperature and precipitation mostly affect EcM fungal richness that peaks in the temperate and boreal forest biomes, contrasting...... with latitudinal patterns of macro-organisms. Tropical ecosystems experience rapid turnover of organic material and have weak soil stratification, suggesting that poor habitat conditions may contribute to the relatively low richness of EcM fungi, and perhaps other soil biota, in most tropical ecosystems. For EcM...

  16. Effects of artificial defoliation of pines on the structure and physiology of the soil fungal community of a mixed pine-spruce forest

    Science.gov (United States)

    Cullings, Ken; Raleigh, Christopher; New, Michael H.; Henson, Joan

    2005-01-01

    Loss of photosynthetic area can affect soil microbial communities by altering the availability of fixed carbon. We used denaturing gradient gel electrophoresis (DGGE) and Biolog filamentous-fungus plates to determine the effects of artificial defoliation of pines in a mixed pine-spruce forest on the composition of the fungal community in a forest soil. As measured by DGGE, two fungal species were affected significantly by the defoliation of pines (P the frequency of members of the ectomycorrhizal fungus genus Cenococcum decreased significantly, while the frequency of organisms of an unidentified soil fungus increased. The decrease in the amount of Cenococcum organisms may have occurred because of the formation of extensive hyphal networks by species of this genus, which require more of the carbon fixed by their host, or because this fungus is dependent upon quantitative differences in spruce root exudates. The defoliation of pines did not affect the overall composition of the soil fungal community or fungal-species richness (number of species per core). Biolog filamentous-fungus plate assays indicated a significant increase (P the number of carbon substrates utilized by the soil fungi and the rate at which these substrates were used, which could indicate an increase in fungal-species richness. Thus, either small changes in the soil fungal community give rise to significant increases in physiological capabilities or PCR bias limits the reliability of the DGGE results. These data indicate that combined genetic and physiological assessments of the soil fungal community are needed to accurately assess the effect of disturbance on indigenous microbial systems.

  17. Draft Genome Sequence of the Soil Bacterium Burkholderia terrae Strain BS001, Which Interacts with Fungal Surface Structures

    DEFF Research Database (Denmark)

    Nazir, Rashid; Hansen, Martin A.; Sorensen, Soren

    2012-01-01

    Burkholderia terrae BS001 is a soil bacterium which was originally isolated from the mycosphere of the ectomycorrhizal fungus Laccaria proxima. It exhibits a range of fungus-interacting traits which reveal its propensity to actively interact at fungal interfaces. Here, we present the approximately...

  18. Ectomycorrhizal Communities on the Roots of Two Beech (Fagus sylvatica) Populations from Contrasting Climates Differ in Nitrogen Acquisition in a Common Environment.

    Science.gov (United States)

    Leberecht, Martin; Dannenmann, Michael; Gschwendtner, Silvia; Bilela, Silvija; Meier, Rudolf; Simon, Judy; Rennenberg, Heinz; Schloter, Michael; Polle, Andrea

    2015-09-01

    Beech (Fagus sylvatica), a dominant forest species in Central Europe, competes for nitrogen with soil microbes and suffers from N limitation under dry conditions. We hypothesized that ectomycorrhizal communities and the free-living rhizosphere microbes from beech trees from sites with two contrasting climatic conditions exhibit differences in N acquisition that contribute to differences in host N uptake and are related to differences in host belowground carbon allocation. To test these hypotheses, young trees from the natural regeneration of two genetically similar populations, one from dryer conditions (located in an area with a southwest exposure [SW trees]) and the other from a cooler, moist climate (located in an area with a northeast exposure [NE trees]), were transplanted into a homogeneous substrate in the same environment and labeled with (13)CO2 and (15)NH4 (+). Free-living rhizosphere microbes were characterized by marker genes for the N cycle, but no differences between the rhizospheres of SW or NE trees were found. Lower (15)N enrichment was found in the ectomycorrhizal communities of the NE tree communities than the SW tree communities, whereas no significant differences in (15)N enrichment were observed for nonmycorrhizal root tips of SW and NE trees. Neither the ectomycorrhizal communities nor the nonmycorrhizal root tips originating from NE and SW trees showed differences in (13)C signatures. Because the level of (15)N accumulation in fine roots and the amount transferred to leaves were lower in NE trees than SW trees, our data support the suggestion that the ectomycorrhizal community influences N transfer to its host and demonstrate that the fungal community from the dry condition was more efficient in N acquisition when environmental constraints were relieved. These findings highlight the importance of adapted ectomycorrhizal communities for forest nutrition in a changing climate. Copyright © 2015, American Society for Microbiology. All Rights

  19. Cd-tolerant Suillus luteus: a fungal insurance for pines exposed to Cd.

    Science.gov (United States)

    Krznaric, Erik; Verbruggen, Nathalie; Wevers, Jan H L; Carleer, Robert; Vangronsveld, Jaco; Colpaert, Jan V

    2009-05-01

    Soil metal pollution can trigger evolutionary adaptation in soil-borne organisms. An in vitro screening test showed cadmium adaptation in populations of Suillus luteus (L.: Fr.) Roussel, an ectomycorrhizal fungus of pine trees. Cadmium stress was subsequently investigated in Scots pine (Pinus sylvestris L.) seedlings inoculated with a Cd-tolerant S. luteus, isolated from a heavy metal contaminated site, and compared to plants inoculated with a Cd-sensitive isolate from a non-polluted area. A dose-response experiment with mycorrhizal pines showed better plant protection by a Cd-adapted fungus: more fungal biomass and a higher nutrient uptake at high Cd exposure. In addition, less Cd was transferred to aboveground plant parts. Because of the key role of the ectomycorrhizal symbiosis for tree fitness, the evolution of Cd tolerance in an ectomycorrhizal partner such as S. luteus can be of major importance for the establishment of pine forests on Cd-contaminated soils.

  20. Nitrogen Alters Fungal Communities in Boreal Forest Soil: Implications for Carbon Cycling

    Science.gov (United States)

    Allison, S. D.; Treseder, K. K.

    2005-12-01

    One potential effect of climate change in high latitude ecosystems is to increase soil nutrient availability. In particular, greater nitrogen availability could impact decomposer communities and lead to altered rates of soil carbon cycling. Since fungi are the primary decomposers in many high-latitude ecosystems, we used molecular techniques and field surveys to test whether fungal communities and abundances differed in response to nitrogen fertilization in a boreal forest ecosystem. We predicted that fungi that degrade recalcitrant carbon would decline under nitrogen fertilization, while fungi that degrade labile carbon would increase, leading to no net change in rates of soil carbon mineralization. The molecular data showed that basidiomycete fungi dominate the active fungal community in both fertilized and unfertilized soils. However, we found that fertilization reduced peak mushroom biomass by 79%, although most of the responsive fungi were ectomycorrhizal and therefore their capacity to degrade soil carbon is uncertain. Fertilization increased the activity of the cellulose-degrading enzyme beta-glucosidase by 78%, while protease activity declined by 39% and polyphenol oxidase, a lignin-degrading enzyme, did not respond. Rates of soil respiration did not change in response to fertilization. These results suggest that increased nitrogen availability does alter the composition of the fungal community, and its potential to degrade different carbon compounds. However, these differences do not affect the total flux of CO2 from the soil, even though the contribution to CO2 respiration from different carbon pools may vary with fertilization. We conclude that in the short term, increased nitrogen availability due to climate warming or nitrogen deposition is more likely to alter the turnover of individual carbon pools rather than total carbon fluxes from the soil. Future work should determine if changes in fungal community structure and associated differences in

  1. SPATIAL DISTRIBUTION OF SOME ECTOMYCORRHIZAL FUNGI (RUSSULACEAE, FUNGI, BASIDIOMYCOTA IN FOREST HABITATS FROM THE NORTH-EAST REGION (ROMANIA

    Directory of Open Access Journals (Sweden)

    Ovidiu COPOT

    2016-12-01

    Full Text Available Ectomycorrhizal macromycetes are, generally, an important ecological component for forest habitats, and a valuable resource in the context of sustainable development of rural communities in the North-East Region of Romania. The woody species distribution is an extremely important factor for the ECM macromycetes presence. The purpose of this study was to elaborate maps of potential distribution for some ECM edible macromycetes from Russula and Lactarius genera, based on chorological information, ICAS Forest Types Map, vegetation tables and bibliographical sources. These information allowed the elaboration of 15 potential maps of distribution for 15 edible species of Russula and Lactarius. The study was based entirely on the plant – fungal associations. The results highlighted that in the North-East Region of Romania there is a noteworthy potential for Russulaceae species. As expected, there is a large amplitude of species presence in the field depending on the fungal specificity for tree host and tree species distribution.

  2. Use of Selective Fungal Culture Media Increases Rates of Detection of Fungi in the Respiratory Tract of Cystic Fibrosis Patients.

    Science.gov (United States)

    Hong, Gina; Miller, Heather B; Allgood, Sarah; Lee, Richard; Lechtzin, Noah; Zhang, Sean X

    2017-04-01

    The prevalence of fungi in the respiratory tracts of cystic fibrosis (CF) patients has risen. However, fungal surveillance is not routinely performed in most clinical centers in the United States, which may lead to an underestimation of the true prevalence of the problem. We conducted a prospective study comparing the rates of detection for clinically important fungi (CIF), defined as Aspergillus , Scedosporium , and Trichosporon species and Exophiala dermatitidis , in CF sputa using standard bacterial and selective fungal culture media, including Sabouraud dextrose agar with gentamicin (SDA), inhibitory mold agar (IMA), and brain heart infusion (BHI) agar with chloramphenicol and gentamicin. We described the prevalence of these fungi in an adult CF population. A total of 487 CF respiratory samples were collected from 211 unique participants. CIF were detected in 184 (37.8%) samples. Only 26.1% of CIF-positive samples were detected in bacterial culture medium, whereas greater rates of detection for fungi were found in IMA (65.8%; P culture media and longer incubation periods yielded higher rates of detection for CIF in CF sputum samples compared with that detected in bacterial culture medium, resulting in an underdetection of fungi by bacterial culture alone. The prevalence of fungi in CF may be better estimated by using selective fungal culture media, and this may translate to important clinical decisions. Copyright © 2017 American Society for Microbiology.

  3. Fungal Endocarditis.

    Science.gov (United States)

    Yuan, Shi-Min

    2016-01-01

    Fungal endocarditis is a rare and fatal condition. The Candida and Aspergillus species are the two most common etiologic fungi found responsible for fungal endocarditis. Fever and changing heart murmur are the most common clinical manifestations. Some patients may have a fever of unknown origin as the onset symptom. The diagnosis of fungal endocarditis is challenging, and diagnosis of prosthetic valve fungal endocarditis is extremely difficult. The optimum antifungal therapy still remains debatable. Treating Candida endocarditis can be difficult because the Candida species can form biofilms on native and prosthetic heart valves. Combined treatment appears superior to monotherapy. Combination of antifungal therapy and surgical debridement might bring about better prognosis.

  4. Defoliation effects on enzyme activities of the ectomycorrhizal fungus Suillus granulatus in a Pinus contorta (lodgepole pine) stand in Yellowstone National Park.

    Science.gov (United States)

    Cullings, Ken; Ishkhanova, Galina; Henson, Joan

    2008-11-01

    Ectomycorrhizal (EM) basidiomycete fungi are obligate mutualists of pines and hardwoods that receive fixed C from the host tree. Though they often share most recent common ancestors with wood-rotting fungi, it is unclear to what extent EM fungi retain the ability to express enzymes that break down woody substrates. In this study, we tested the hypothesis that the dominant EM fungus in a pure pine system retains the ability to produce enzymes that break down woody substrates in a natural setting, and that this ability is inducible by reduction of host photosynthetic potential via partial defoliation. To achieve this, pines in replicate blocks were defoliated 50% by needle removal, and enzyme activities were measured in individual EM root tips that had been treated with antibiotics to prevent possible bacterial activity. Results indicate that the dominant EM fungal species (Suillus granulatus) expressed all enzymes tested (endocellulase D: -glucosidase, laccase, manganese peroxidase, lignin peroxidase, phosphatase and protease), and that activities of these enzymes increased significantly (P pine) has the potential to play a significant role in C, N and P cycling in this forested ecosystem. Therefore, many above-ground factors that reduce photosynthetic potential or divert fixed C from roots may have wide-reaching ecosystem effects.

  5. Common environmental factors explain both ectomycorrhizal species diversity and pine regeneration variability in a post-fire Mediterranean forest.

    Science.gov (United States)

    Buscardo, Erika; Freitas, Helena; Pereira, João Santos; De Angelis, Paolo

    2011-08-01

    Natural seedling regeneration and establishment after stand replacing wildfires is influenced by a series of environmental and biological constraints. In this study, we characterized the diversity and structure of the ectomycorrhizal (ECM) fungal community associated with post-fire naturally regenerated maritime pine saplings, and individuate the environmental factors responsible for fungal species distribution. We also identify the main environmental factors responsible for maritime pine regeneration variability and assessed the relation between saplings performance and ECM fungal diversity indices. Fungal species were identified by direct sequencing of internal transcribed spacer regions. Five years after the disturbance event, a total of 30 taxa colonized the pine saplings. The ECM fungal community was dominated by ruderal species of the genus Rhizopogon (present in almost half of the samples). Almost one third of the identified ECM fungal species belonged to the family Thelephoraceae. Typical k-selected species like Amanita pantherina, Boletus aestivalis, Lactarius chrysorrheus, and Russula densifolia were found on pine saplings collected in proximity of unburnt pine trees, in correspondence with low erosion extents. Pine regeneration varied throughout the study areas and was enhanced at higher elevations, in correspondence with moderate slopes, shallower soils, and a reduced cover of ericaceous shrubs and bare ground. These conditions were found in close proximity to patches of pine trees that survived the disturbance event and were previously characterized by a higher pre-fire pine biomass. Even though no correlations were found between saplings performance and ECM fungal diversity indices, common environmental factors (i.e., ericaceous shrub cover, extent of erosion, slope, and soil depth) were responsible for shaping the ECM fungal distribution and for describing most of the explained regeneration variability.

  6. Fungal neuroinfections and fungaemia: unexpected increase of mortality from invasive fungal infections in 2005-2011 in comparison to 1989-1998: analysis of 210 cases.

    Science.gov (United States)

    Demitrovicova, Andrea; Liskova, Anna; Valach, Michal; Izakovic, Martin; Noge, Adriana; Baranova, Jana; Kalatova, Dagmar; Syrovatkova, Ludmila; Velicova, Jana; Bugykova, Beata; Gulasova, Ivica; Seinova, Dagmar; Mikolasova, Gertruda; Mutalova, Martina; Pilkova, Martina; Szabo, Ivan; Findova, Lubica; Madarasz, Istvan; Stanzyk, Martin; Mikulickova, Dagmar; Blazekova, Maria; Jankechova, Monika; Slezakova, Zuzana; Kuriplachova, Gabriela; Visnovsky, Jozef; Obrocnikova, Andrea; Blumm, Mathias; Blumm, Bernard; Wolfram, Simon; Zeleny, Peter; Otrubova, Jana; Rudinsky, Bruno; Nagyova, Zuzana; Vravcova, Martina; Kajaba, Jozef; Jexova, Sona; Oravec, Svetoslav; Toth, Slavomir; Klobucka, Stanislava; Gerigh, Jana; Schumann, Frank; Ambra, Robert; Bandura, Peter; Bonnack, Christian; Kubisova, Zuzana; Palo, Marek; Kalavsky, Erich; Drgona, Lubos; Mahesvaari, Rajoo; Riedl, Jan

    2013-09-01

    In this short communication we compared the data of fungaemia cases in Slovak hospitals from 1989-1998 published in 1999-2000 with data from 2005-2011. Risk factors, etiology and outcome of fungaemia between two periods (1989-1998 vs. 2005-2011) were compared and risk factors for death assessed by univariate analysis (CDC 2006 Statistical Package). In comparison to 1989-1998 when only amphotericin B and fluconazole has been used (55%), in 2005-2011 only 35.2% patients received FLU, but 26.4% received voriconazole, 22% caspofungin and anidulafungin and about 6.6% lipid formulations of Amphotericin B. In etiology, while in 1989-1998 only 37.1% (115/310) represented non-albicans Candida (NAC) and non-Candida yeasts in 2005-2011 already reached 63.7%. The significant increase of breakthrough fungaemia may be a sign of inappropriate empiric therapy.

  7. Species turnover (β-diversity) in ectomycorrhizal fungi linked to NH4+ uptake capacity.

    Science.gov (United States)

    Kranabetter, J M; Hawkins, B J; Jones, M D; Robbins, S; Dyer, T; Li, T

    2015-12-01

    Ectomycorrhizal (EcM) fungal communities may be shaped by both deterministic and stochastic processes, potentially influencing ecosystem development and function. We evaluated community assembly processes for EcM fungi of Pseudotsuga menziesii among 12 sites up to 400 km apart in southwest British Columbia (Canada) by investigating species turnover (β-diversity) in relation to soil nitrogen (N) availability and physical distance. We then examined functional traits for an N-related niche by quantifying net fluxes of NH4+, NO3- and protons on excised root tips from three contrasting sites using a microelectrode ion flux measurement system. EcM fungal communities were well aligned with soil N availability and pH, with no effect of site proximity (distance-decay curve) on species assemblages. Species turnover was significant (β(1/2) = 1.48) along soil N gradients, with many more Tomentella species on high N than low N soils, in contrast to Cortinarius species. Ammonium uptake was greatest in the spring on the medium and rich sites and averaged over 190 nmol/m(2)/s for Tomentella species. The lowest uptake rates of NH4+ were by nonmycorrhizal roots of axenically grown seedlings (10 nmol/m(2)/s), followed by Cortinarius species (60 nmol/m(2)/s). EcM roots from all sites displayed only marginal uptake of nitrate (8.3 nmol/m(2)/s). These results suggest NH4+ uptake capacity is an important functional trait influencing the assembly of EcM fungal communities. The diversity of EcM fungal species across the region arguably provides critical belowground adaptations to organic and inorganic N supply that are integral to temperate rainforest ecology. © 2015 John Wiley & Sons Ltd.

  8. Usage of the Heterologous Expression of the Antimicrobial Gene afp From Aspergillus giganteus for Increasing Fungal Resistance in Olive

    Science.gov (United States)

    Narvaez, Isabel; Khayreddine, Titouh; Pliego, Clara; Cerezo, Sergio; Jiménez-Díaz, Rafael M.; Trapero-Casas, José L.; López-Herrera, Carlos; Arjona-Girona, Isabel; Martín, Carmen; Mercado, José A.; Pliego-Alfaro, Fernando

    2018-01-01

    The antifungal protein (AFP) produced by Aspergillus giganteus, encoded by the afp gene, has been used to confer resistance against a broad range of fungal pathogens in several crops. In this research, transgenic olive plants expressing the afp gene under the control of the constitutive promoter CaMV35S were generated and their disease response against two root infecting fungal pathogens, Verticillium dahliae and Rosellinia necatrix, was evaluated. Embryogenic cultures derived from a mature zygotic embryo of cv. ‘Picual’ were used for A. tumefaciens transformation. Five independent transgenic lines were obtained, showing a variable level of afp expression in leaves and roots. None of these transgenic lines showed enhanced resistance to Verticillium wilt. However, some of the lines displayed a degree of incomplete resistance to white root rot caused by R. necatrix compared with disease reaction of non-transformed plants or transgenic plants expressing only the GUS gene. The level of resistance to this pathogen correlated with that of the afp expression in root and leaves. Our results indicate that the afp gene can be useful for enhanced partial resistance to R. necatrix in olive, but this gene does not protect against V. dahliae. PMID:29875785

  9. Nickel-tolerant ectomycorrhizal Pisolithus albus ultramafic ecotype isolated from nickel mines in New Caledonia strongly enhance growth of the host plant Eucalyptus globulus at toxic nickel concentrations.

    Science.gov (United States)

    Jourand, Philippe; Ducousso, Marc; Reid, Robert; Majorel, Clarisse; Richert, Clément; Riss, Jennifer; Lebrun, Michel

    2010-10-01

    Ectomycorrhizal (ECM) Pisolithus albus (Cooke & Massee), belonging to the ultramafic ecotype isolated in nickel-rich serpentine soils from New Caledonia (a tropical hotspot of biodiversity) and showing in vitro adaptive nickel tolerance, were inoculated to Eucalyptus globulus Labill used as a Myrtaceae plant-host model to study ectomycorrhizal symbiosis. Plants were then exposed to a nickel (Ni) dose-response experiment with increased Ni treatments up to 60 mg kg( - )(1) soil as extractable Ni content in serpentine soils. Results showed that plants inoculated with ultramafic ECM P. albus were able to tolerate high and toxic concentrations of Ni (up to 60 μg g( - )(1)) while uninoculated controls were not. At the highest Ni concentration tested, root growth was more than 20-fold higher and shoot growth more than 30-fold higher in ECM plants compared with control plants. The improved growth in ECM plants was associated with a 2.4-fold reduction in root Ni concentration but a massive 60-fold reduction in transfer of Ni from root to shoots. In vitro, P. albus strains could withstand high Ni concentrations but accumulated very little Ni in its tissue. The lower Ni uptake by mycorrhizal plants could not be explained by increased release of metal-complexing chelates since these were 5- to 12-fold lower in mycorrhizal plants at high Ni concentrations. It is proposed that the fungal sheath covering the plant roots acts as an effective barrier to limit transfer of Ni from soil into the root tissue. The degree of tolerance conferred by the ultramafic P. albus isolates to growth of the host tree species is considerably greater than previously reported for other ECM. The primary mechanisms underlying this improved growth were identified as reduced Ni uptake into the roots and markedly reduced transfer from root to shoot in mycorrhizal plants. The fact that these positive responses were observed at Ni concentrations commonly observed in serpentinic soils suggests that

  10. [Soil propagule bank of ectomycorrhizal fungi in natural forest of Pinus bungeana].

    Science.gov (United States)

    Zhao, Nan Xing; Han, Qi Sheng; Huang, Jian

    2017-12-01

    To conserve and restore the forest of Pinu bungeana, we investigated the soil propagule bank of ectomycorrhizal (ECM) fungi in a severely disturbed natural forest of P. bungeana in Shaanxi Province, China. We used a seedling-bioassay method to bait the ECM fungal propagules in the soils collected from the forest site. ECM was identified by combining morph typing with ITS-PCR-sequencing. We obtained 73 unique sequences from the ECM associated with P. bungeana seedlings, and assigned them into 12 ECM fungal OTUs at the threshold of 97% based on the sequence similarity. Rarefaction curve displayed almost all ECM fungi in the propagule bank were detected. The most frequent OTU (80%) showed poor similarity (75%) with existing sequences in the online database, which suggested it might be a new species. Cenococcum geophilum, Tomentella sp., Tuber sp. were common species in the propagule bank. Although C. geophilum and Tomentella sp. were frequently detected in other soil propagule banks of pine forest, the most frequent OTU was not assigned to known genus or family, which indicated the host-specif of ECM propagule banks associa-ted with P. bungeana. This result confirmed the importance of the special ECM propagule banks associated with P. bungeana for natural forest restoration.

  11. Detecting the heavy metal tolerance level in ectomycorrhizal fungi in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ray, P.; Tiwari, R.; Reddy, U.G.; Adholeya, A. [India Habitat Center, New Delhi (India). Energy & Resources Institute

    2005-04-01

    Eight isolates of ectomycorrhizal fungi namely, Laccaria fraterna (EM-1083), Laccaria laccata (EM-1191), Pisolithus tinctorius (EM-1081), Pisolithus tinctorius (EM-1293), Scleroderma cepa (EM-1233), Scleroderma flavidum (EM-1235), Scleroderma verucosum, (EM-1283) and Hysterangium incarceratum (EM-1185) were grown on specially designed cocktail media prepared by adding various concentrations of different heavy metals namely Al, As, Cd, Cr, Ni and Pb. The heavy metals were selected keeping in view their relative abundance in coal ash and potential toxicity. The fungal isolates were grown on such designed cocktail media. The colony diameter was used for the measurement of the fungal growth. Total heavy metal accumulated in the mycelia was assayed by atomic absorption spectrophotometry. In relation to metal tolerance ability in general, Hysterangium incarceratum (EM-1185) showed maximum tolerance with respect to growth, Laccaria fraterna (EM-1083) and Pisolithus tinctorius (EM-1293) also showed considerable tolerance to the heavy metals tested. In relation to metal uptake in particular, Pisolithus tinctorius (EM-1293), has reported maximum uptake of Al (34642.58 ppm), Cd (302.12 ppm) and Pb (3501.96 ppm). In Laccaria fraterna (EM-1083), As (130.57 ppm) and Cr (402.38 ppm) uptake was recorded maximum; and Hysterangium incarceratum (EM-1185) has recorded maximum Ni (2648.59 ppm) uptake among the three suitable isolates documented here.

  12. Spatial Segregation and Aggregation of Ectomycorrhizal and Root-Endophytic Fungi in the Seedlings of Two Quercus Species

    Science.gov (United States)

    Yamamoto, Satoshi; Sato, Hirotoshi; Tanabe, Akifumi S.; Hidaka, Amane; Kadowaki, Kohmei; Toju, Hirokazu

    2014-01-01

    Diverse clades of mycorrhizal and endophytic fungi are potentially involved in competitive or facilitative interactions within host-plant roots. We investigated the potential consequences of these ecological interactions on the assembly process of root-associated fungi by examining the co-occurrence of pairs of fungi in host-plant individuals. Based on massively-parallel pyrosequencing, we analyzed the root-associated fungal community composition for each of the 249 Quercus serrata and 188 Quercus glauca seedlings sampled in a warm-temperate secondary forest in Japan. Pairs of fungi that co-occurred more or less often than expected by chance were identified based on randomization tests. The pyrosequencing analysis revealed that not only ectomycorrhizal fungi but also endophytic fungi were common in the root-associated fungal community. Intriguingly, specific pairs of these ectomycorrhizal and endophytic fungi showed spatially aggregated patterns, suggesting the existence of facilitative interactions between fungi in different functional groups. Due to the large number of fungal pairs examined, many of the observed aggregated/segregated patterns with very low P values (e.g., fungi could influence each other through interspecific competitive/facilitative interactions in root. To test the potential of host-plants' control of fungus–fungus ecological interactions in roots, we further examined whether the aggregated/segregated patterns could vary depending on the identity of host plant species. Potentially due to the physiological properties shared between the congeneric host plant species, the sign of hosts' control was not detected in the present study. The pyrosequencing-based randomization analyses shown in this study provide a platform of the high-throughput investigation of fungus–fungus interactions in plant root systems. PMID:24801150

  13. Susceptibility of ectomycorrhizal fungi to soil heating.

    Science.gov (United States)

    Kipfer, Tabea; Egli, Simon; Ghazoul, Jaboury; Moser, Barbara; Wohlgemuth, Thomas

    2010-01-01

    Ectomycorrhizal (EcM) fungi are an important biotic factor for successful tree recruitment because they enhance plant growth and alleviate drought stress of their hosts. Thus, EcM propagules are expected to be a key factor for forest regeneration after major disturbance events such as stand-replacing forest fires. Yet the susceptibility of soil-borne EcM fungi to heat is unclear. In this study, we investigated the heat tolerance of EcM fungi of Scots pine (Pinus sylvestris L., Pinaceae). Soil samples of three soil depths were heated to the temperature of 45, 60 and 70 °C, respectively, and surviving EcM fungi were assessed by a bioassay using Scots pine as an experimental host plant. EcM species were identified by a combination of morphotyping and sequencing of the ITS region. We found that mean number of species per sample was reduced by the 60 and 70 °C treatment, but not by the 45 °C treatment. Species composition changed due to heat. While some EcM fungi species did not survive heating, the majority of species was also found in the heated samples. The most frequent species in the heat treatment were Rhizopogon roseolus, Cenococcum geophilum and several unidentified species. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  14. Identification of some ectomycorrhizal basidiomycetes by PCR amplification of their gpd (glyceraldehyde-3-phosphate dehydrogenase) genes.

    Science.gov (United States)

    Kreuzinger, N; Podeu, R; Gruber, F; Göbl, F; Kubicek, C P

    1996-01-01

    Degenerated oligonucleotide primers designed to flank an approximately 1.2-kb fragment of the gene encoding glyceraldehyde-3-phosphate dehydrogenase (gpd) from ascomycetes and basidiomycetes were used to amplify the corresponding gpd fragments from several species of the ectomycorrhizal fungal taxa Boletus, Amanita, and Lactarius. Those from B. edulis, A. muscaria, and L. deterrimus were cloned and sequenced. The respective nucleotide sequences of these gene fragments showed a moderate degree of similarity (72 to 76%) in the protein-encoding regions and only a low degree of similarity in the introns (56 to 66%). Introns, where present, occurred at conserved positions, but the respective positions and numbers of introns in a given taxon varied. The amplified fragment from a given taxon could be distinguished from that of others by both restriction nuclease cleavage analysis and Southern hybridization. A procedure for labeling DNA probes with fluorescein-12-dUTP by PCR was developed. These probes were used in a nonradioactive hybridization assay, with which the gene could be detected in 2 ng of chromosomal DNA of L. deterrimus on slot blots. Taxon-specific amplification was achieved by the design of specific oligonucleotide primers. The application of the gpd gene for the identification of mycorrhizal fungi under field conditions was demonstrated, with Picea abies (spruce) mycorrhizal roots harvested from a northern alpine forest area as well as from a plant-breeding nursery. The interference by inhibitory substances, which sometimes occurred in the DNA extracted from the root-fungus mixture, could be overcome by using very diluted concentrations of template DNA for a first round of PCR amplification followed by a second round with nested oligonucleotide primers. We conclude that gpd can be used to detect ectomycorrhizal fungi during symbiotic interaction. PMID:8795234

  15. Limited Effects of Variable-Retention Harvesting on Fungal Communities Decomposing Fine Roots in Coastal Temperate Rainforests.

    Science.gov (United States)

    Philpott, Timothy J; Barker, Jason S; Prescott, Cindy E; Grayston, Sue J

    2018-02-01

    Fine root litter is the principal source of carbon stored in forest soils and a dominant source of carbon for fungal decomposers. Differences in decomposer capacity between fungal species may be important determinants of fine-root decomposition rates. Variable-retention harvesting (VRH) provides refuge for ectomycorrhizal fungi, but its influence on fine-root decomposers is unknown, as are the effects of functional shifts in these fungal communities on carbon cycling. We compared fungal communities decomposing fine roots (in litter bags) under VRH, clear-cut, and uncut stands at two sites (6 and 13 years postharvest) and two decay stages (43 days and 1 year after burial) in Douglas fir forests in coastal British Columbia, Canada. Fungal species and guilds were identified from decomposed fine roots using high-throughput sequencing. Variable retention had short-term effects on β-diversity; harvest treatment modified the fungal community composition at the 6-year-postharvest site, but not at the 13-year-postharvest site. Ericoid and ectomycorrhizal guilds were not more abundant under VRH, but stand age significantly structured species composition. Guild composition varied by decay stage, with ruderal species later replaced by saprotrophs and ectomycorrhizae. Ectomycorrhizal abundance on decomposing fine roots may partially explain why fine roots typically decompose more slowly than surface litter. Our results indicate that stand age structures fine-root decomposers but that decay stage is more important in structuring the fungal community than shifts caused by harvesting. The rapid postharvest recovery of fungal communities decomposing fine roots suggests resiliency within this community, at least in these young regenerating stands in coastal British Columbia. IMPORTANCE Globally, fine roots are a dominant source of carbon in forest soils, yet the fungi that decompose this material and that drive the sequestration or respiration of this carbon remain largely

  16. The Paleozoic origin of enzymatic mechanisms for lignin degradation reconstructed using 31 fungal genomes

    OpenAIRE

    Floudas, Dimitrios; Binder, Manfred; Riley, Robert; Barry, Kerrie; Blanchette, Robert A; Henrissat, Bernard; Martinez, Angel T.; Otillar, Robert; Spatafora, Joseph W.; Yadav, Jagit S.; Aerts, Andrea; Benoit, Isabelle; Boyd, Alex; Carlson, Alexis; Copeland, Alex

    2012-01-01

    Wood is a major pool of organic carbon that is highly resistant to decay, owing largely to the presence of lignin. The only organisms capable of substantial lignin decay are white rot fungi in the Agaricomycetes, which also contains non?lignin-degrading brown rot and ectomycorrhizal species. Comparative analyses of 31 fungal genomes (12 generated for this study) suggest that lignin-degrading peroxidases expanded in the lineage leading to the ancestor of the Agaricomycetes, which is reconstruc...

  17. Survey of ectomycorrhizal, litter-degrading, and wood-degrading Basidiomycetes for dye decolorization and ligninolytic enzyme activity.

    Science.gov (United States)

    Casieri, Leonardo; Anastasi, Antonella; Prigione, Valeria; Varese, Giovanna Cristina

    2010-11-01

    Basidiomycetes are essential in forest ecology, being deeply involved in wood and litter decomposition, humification, and mineralization of soil organic matter. The fungal oxidoreductases involved in these processes are today the focus of much attention with a view to their applications. The ecological role and potential biotechnological applications of 300 isolates of Basidiomycetes were assessed, taking into account the degradation of model dyes in different culture conditions and the production of oxidoreductase enzymes. The tested isolates belong to different ecophysiological groups (wood-degrading, litter-degrading, ectomycorrhizal, and coprophilous fungi) and represent a broad systematic and functional biodiversity among Basidiomycetes occurring in deciduous and evergreen forests of northwest Italy (Piedmont Region). The high number of species tested and the use of different culture conditions allowed the investigation of the degradation activity of several novel species, neglected to date. Oxidative enzyme activities varied widely among all ecophysiological groups and laccases were the most commonly detected enzymes. A large number of isolates (86%), belonging to all ecophysiological groups, were found to be active against at least one model dye; the wood-degrading fungi represented the most efficient group. Noteworthily, also some isolates of litter-degrading and ectomycorrhizal fungi achieved good decolorization yield. The 25 best isolates were then tested against nine industrial dyes commonly employed in textile industries. Three isolates of Bjerkandera adusta efficiently decolorized the dyes on all media and can be considered important candidates for application in textile wastewater treatment.

  18. Impact of metal pollution on fungal diversity and community structures.

    Science.gov (United States)

    Op De Beeck, Michiel; Lievens, Bart; Busschaert, Pieter; Rineau, Francois; Smits, Mark; Vangronsveld, Jaco; Colpaert, Jan V

    2015-06-01

    The impact of metal pollution on plant communities has been studied extensively in the past, but little is known about the effects of metal pollution on fungal communities that occur in metal-polluted soils. Metal-tolerant ecotypes of the ectomycorrhizal fungus Suillus luteus are frequently found in pioneer pine forests in the Campine region in Belgium on metal-polluted soils. We hypothesized that metal pollution would play an important role in shaping below-ground fungal communities that occur in these soils and that Suillus luteus would be a dominant player. To test these hypotheses, the fungal communities in a young pine plantation in soil polluted with zinc, and cadmium were studied using 454 amplicon pyrosequencing. Results show that zinc, cadmium and soil organic matter content were strongly correlated with the fungal community composition, but no effects on fungal diversity were observed. As hypothesized, S. luteus was found to be a dominant member of the studied fungal communities. However, other dominant fungal species, such as Sistotrema sp., Wilcoxina mikolae and Cadophora finlandica were found as well. Their presence in metal-polluted sites is discussed. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Nicotiana plumbaginifolia plants silenced for the ATP-binding cassette transporter gene NpPDR1 show increased susceptibility to a group of fungal and oomycete pathogens.

    Science.gov (United States)

    Bultreys, Alain; Trombik, Tomasz; Drozak, Anna; Boutry, Marc

    2009-09-01

    SUMMARY The behaviour of Nicotiana plumbaginifolia plants silenced for the ATP-binding cassette transporter gene NpPDR1 was investigated in response to fungal and oomycete infections. The importance of NpPDR1 in plant defence was demonstrated for two organs in which NpPDR1 is constitutively expressed: the roots and the petal epidermis. The roots of the plantlets of two lines silenced for NpPDR1 expression were clearly more sensitive than those of controls to the fungal pathogens Botrytis cinerea, Fusarium oxysporum sp., F. oxysporum f. sp. nicotianae, F. oxysporum f. sp. melonis and Rhizoctonia solani, as well as to the oomycete pathogen Phytophthora nicotianae race 0. The Ph gene-linked resistance of N. plumbaginifolia to P. nicotianae race 0 was totally ineffective in NpPDR1-silenced lines. In addition, the petals of the NpPDR1-silenced lines were spotted 15%-20% more rapidly by B. cinerea than were the controls. The rapid induction (after 2-4 days) of NpPDR1 expression in N. plumbaginifolia and N. tabacum mature leaves in response to pathogen presence was demonstrated for the first time with fungi and one oomycete: R. solani, F. oxysporum and P. nicotianae. With B. cinerea, such rapid expression was not observed in healthy mature leaves. NpPDR1 expression was not observed during latent infections of B. cinerea in N. plumbaginifolia and N. tabacum, but was induced when conditions facilitated B. cinerea development in leaves, such as leaf ageing or an initial root infection. This work demonstrates the increased sensitivity of NpPDR1-silenced N. plumbaginifolia plants to all of the fungal and oomycete pathogens investigated.

  20. Increases in soil aggregation following phosphorus additions in a tropical premontane forest are not driven by root and arbuscular mycorrhizal fungal abundances

    Science.gov (United States)

    Camenzind, Tessa; Papathanasiou, Helena; Foerster, Antje; Dietrich, Karla; Hertel, Dietrich; Homeier, Juergen; Oelmann, Yvonne; Olsson, Pål Axel; Suárez, Juan; Rillig, Matthias

    2015-12-01

    Tropical ecosystems have an important role in global change scenarios, in part because they serve as a large terrestrial carbon pool. Carbon protection is mediated by soil aggregation processes, whereby biotic and abiotic factors influence the formation and stability of aggregates. Nutrient additions may affect soil structure indirectly by simultaneous shifts in biotic factors, mainly roots and fungal hyphae, but also via impacts on abiotic soil properties. Here, we tested the hypothesis that soil aggregation will be affected by nutrient additions primarily via changes in arbuscular mycorrhizal fungal (AMF) hyphae and root length in a pristine tropical forest system. Therefore, the percentage of water-stable macroaggregates (> 250µm) (WSA) and the soil mean weight diameter (MWD) was analyzed, as well as nutrient contents, pH, root length and AMF abundance. Phosphorus additions significantly increased the amount of WSA, which was consistent across two different sampling times. Despite a positive effect of phosphorus additions on extraradical AMF biomass, no relationship between WSA and extra-radical AMF nor roots was revealed by regression analyses, contrary to the proposed hypothesis. These findings emphasize the importance of analyzing soil structure in understudied tropical systems, since it might be affected by increasing nutrient deposition expected in the future.

  1. Increases in soil aggregation following phosphorus additions in a tropical premontane forest are not driven by root and arbuscular mycorrhizal fungal abundances

    Directory of Open Access Journals (Sweden)

    Tessa eCamenzind

    2016-01-01

    Full Text Available Tropical ecosystems have an important role in global change scenarios, in part because they serve as a large terrestrial carbon pool. Carbon protection is mediated by soil aggregation processes, whereby biotic and abiotic factors influence the formation and stability of aggregates. Nutrient additions may affect soil structure indirectly by simultaneous shifts in biotic factors, mainly roots and fungal hyphae, but also via impacts on abiotic soil properties. Here, we tested the hypothesis that soil aggregation will be affected by nutrient additions primarily via changes in arbuscular mycorrhizal fungal (AMF hyphae and root length in a pristine tropical forest system. Therefore, the percentage of water-stable macroaggregates (> 250µm (WSA and the soil mean weight diameter (MWD was analyzed, as well as nutrient contents, pH, root length and AMF abundance. Phosphorus additions significantly increased the amount of WSA, which was consistent across two different sampling times. Despite a positive effect of phosphorus additions on extraradical AMF biomass, no relationship between WSA and extra-radical AMF nor roots was revealed by regression analyses, contrary to the proposed hypothesis. These findings emphasize the importance of analyzing soil structure in understudied tropical systems, since it might be affected by increasing nutrient deposition expected in the future.

  2. Ectomycorrhizal fungi in Amazonian tropical forests in Colombia

    NARCIS (Netherlands)

    Vasco Palacios, A.M.

    2016-01-01

    The ectomycorrhizal (EcM) symbiosis was assumed to be restricted to the temperate regions where forests are dominated by EcM host plants, and the tropics were supposed to be dominated by endomycorrhizal fungi. However, evidence of the presence of EcM symbiosis in tropical lowland ecosystems has been

  3. Ectomycorrhizal Fungi and Biogeochemical Cycles of Boreal Forests

    NARCIS (Netherlands)

    Smits, M.M.

    2006-01-01

    Inpodzolsin Europe and North America tunnels in weatherable mineral grains were found, presumably created by ectomycorrhizal (EcM) fungi. This finding was the incentive for a research program on rock-eating mycorrhizas, of which this project is part of. The focus of this

  4. [Al3+ Absorption and Assimilation by Four Ectomycorrhizal Fungi].

    Science.gov (United States)

    Wang, Ming-xia; Yuan, Ling; Huang, Jian-guo; Zhou, Zhi-feng

    2015-09-01

    The present experiment was carried out in order to know the resistance mechanism of the ectomycorrhizal (ECM) fungi under Al stress, to establish the theoretical foundation to alleviate the Al toxicity of trees, to guide the selection of Al-resisted ECM fungi and preserve forest health. The absorption and assimilation of Al3+ by four ECM fungi [Pisolithus tinctorius (Pt 715), Suillus luteus (Sl 08 and Sl 14), Gyroporus cyanescens (Gc 99)], which were isolated from different forest soils, were investigated in pure culture in liquid media. The growths of Pt 715 and Sl 08 were less affected by Al3+, but growths of S114 and Gc 99 were obviously inhibited by Al3+. With the increasing of Al3+ concentration in culture, the absorption and assimilation of Al3+ by four ECM fungi increased. It indicated that the concentration of Al3+ in environments might be the primary factor determining the Al3+ content in the cell of each tested fungi. Amounts of Al3+ absorbed (in total or calculated in unit hyphae) by the Al3+ tolerant strains (Pt 715 and Sl 08) were significantly lower than those by the Al3+ sensitive strains (S1 14 and Gc 99), which illustrated that reducing the absorption of Al3+ under Al3+ stress environment might be an effective approach to alleviate the Al3+ poison for these Al3+ tolerant strains. Furthermore, Al3+ stress could stimulate the ECM fungi to assimilate more N, P, and K, which might indicate that increasing requirement of the nutrients also could be helpful for ECM fungi to fight against the harmful effects caused by Al3+ stress.

  5. The loss of plasma membrane lysopip and an increase of PIP2 result from treatment of carrot cells with fungal enzymes

    International Nuclear Information System (INIS)

    Chen, Q.; Boss, W.F.

    1989-01-01

    The plasma membranes of carrot cells grown in suspension culture are enriched with PIP, lysoPIP, and PIP 2 . To determine whether or not these lipids are involved in signal transduction, we have challenged the cells with a mixture of fungal cellulases, Driselase, and monitored the changes in the phosphoinositides and in the phosphoinositide kinase activity. With cell prelabeled with [ 3 H]inositol, two major changes are observed: (1) lysoPIP decreases 30% compared to the sorbitol control and (2) PIP 2 doubles. There is no increase in IP, IP 2 , or IP 3 . In vitro phosphorylation studies using [γ- 32 P]ATP indicate that the increase in PIP 2 is due in part to activation of the PIP kinase. These data suggest that the role of the polyphosphoinositides in signal transduction in plants may involve activation of the PIP kinase and/or activation of A type phospholipases rather than C type phospholipases

  6. Viability of ectomycorrhizal fungi following cryopreservation.

    Science.gov (United States)

    Crahay, Charlotte; Declerck, Stéphane; Colpaert, Jan V; Pigeon, Mathieu; Munaut, Françoise

    2013-02-01

    The use of ectomycorrhizal (ECM) fungi in biotechnological processes requires their maintenance over long periods under conditions that maintain their genetic, phenotypic, and physiological stability. Cryopreservation is considered as the most reliable method for long-term storage of most filamentous fungi. However, this technique is not widespread for ECM fungi since many do not survive or exhibit poor recovery after freezing. The aim of this study was to develop an efficient cryopreservation protocol for the long-term storage of ECM fungi. Two cryopreservation protocols were compared. The first protocol was the conventional straw protocol (SP). The mycelium of the ECM isolates was grown in Petri dishes on agar and subsequently collected by punching the mycelium into a sterile straw before cryopreservation. In the second protocol, the cryovial protocol (CP), the mycelium of the ECM isolates was grown directly in cryovials filled with agar and subsequently cryopreserved. The same cryoprotectant solution, freezing, and thawing process, and re-growth conditions were used in both protocols. The survival (positive when at least 60 % of the replicates showed re-growth) was evaluated before and immediately after freezing as well as after 1 week, 1 m, and 6 m of storage at -130 °C. Greater survival rate (80 % for the CP as compared to 25 % for the SP) and faster re-growth (within 10 d for the CP compared to the 4 weeks for the SP) were observed for most isolates with the CP suggesting that the preparation of the cultures prior to freezing had a significant impact on the isolates survival. The suitability of the CP for cryopreservation of ECM fungi was further confirmed on a set of 98 ECM isolates and displayed a survival rate of 88 % of the isolates. Only some isolates belonging to Suillus luteus, Hebeloma crustuliniforme, Paxillus involutus and Thelephora terrestris failed to survive. This suggested that the CP is an adequate method for the ultra-low cryopreservation of

  7. Cd-tolerant Suillus luteus: A fungal insurance for pines exposed to Cd

    International Nuclear Information System (INIS)

    Krznaric, Erik; Verbruggen, Nathalie; Wevers, Jan H.L.; Carleer, Robert; Vangronsveld, Jaco; Colpaert, Jan V.

    2009-01-01

    Soil metal pollution can trigger evolutionary adaptation in soil-borne organisms. An in vitro screening test showed cadmium adaptation in populations of Suillus luteus (L.: Fr.) Roussel, an ectomycorrhizal fungus of pine trees. Cadmium stress was subsequently investigated in Scots pine (Pinus sylvestris L.) seedlings inoculated with a Cd-tolerant S. luteus, isolated from a heavy metal contaminated site, and compared to plants inoculated with a Cd-sensitive isolate from a non-polluted area. A dose-response experiment with mycorrhizal pines showed better plant protection by a Cd-adapted fungus: more fungal biomass and a higher nutrient uptake at high Cd exposure. In addition, less Cd was transferred to aboveground plant parts. Because of the key role of the ectomycorrhizal symbiosis for tree fitness, the evolution of Cd tolerance in an ectomycorrhizal partner such as S. luteus can be of major importance for the establishment of pine forests on Cd-contaminated soils. - The evolutionary adaptation for higher Cd tolerance in Suillus luteus, an ectomycorrhizal fungus, is of major importance for the amelioration of Cd toxicity in pine trees exposed to high Cd concentrations.

  8. Cd-tolerant Suillus luteus: A fungal insurance for pines exposed to Cd

    Energy Technology Data Exchange (ETDEWEB)

    Krznaric, Erik [Environmental Biology Group, Centre for Environmental Sciences, Hasselt University, Agoralaan, Gebouw D, 3590 Diepenbeek (Belgium); Verbruggen, Nathalie [Laboratoire de Physiologie et de Genetique Moleculaire des Plantes, Universite Libre de Bruxelles, Campus Plaine, CP242, Bd du Triomphe, 1050 Brussels (Belgium); Wevers, Jan H.L. [Environmental Biology Group, Centre for Environmental Sciences, Hasselt University, Agoralaan, Gebouw D, 3590 Diepenbeek (Belgium); Carleer, Robert [Laboratory of Applied Chemistry, Centre for Environmental Sciences, Hasselt University, Agoralaan, Gebouw D, 3590 Diepenbeek (Belgium); Vangronsveld, Jaco [Environmental Biology Group, Centre for Environmental Sciences, Hasselt University, Agoralaan, Gebouw D, 3590 Diepenbeek (Belgium); Colpaert, Jan V., E-mail: jan.colpaert@uhasselt.b [Environmental Biology Group, Centre for Environmental Sciences, Hasselt University, Agoralaan, Gebouw D, 3590 Diepenbeek (Belgium)

    2009-05-15

    Soil metal pollution can trigger evolutionary adaptation in soil-borne organisms. An in vitro screening test showed cadmium adaptation in populations of Suillus luteus (L.: Fr.) Roussel, an ectomycorrhizal fungus of pine trees. Cadmium stress was subsequently investigated in Scots pine (Pinus sylvestris L.) seedlings inoculated with a Cd-tolerant S. luteus, isolated from a heavy metal contaminated site, and compared to plants inoculated with a Cd-sensitive isolate from a non-polluted area. A dose-response experiment with mycorrhizal pines showed better plant protection by a Cd-adapted fungus: more fungal biomass and a higher nutrient uptake at high Cd exposure. In addition, less Cd was transferred to aboveground plant parts. Because of the key role of the ectomycorrhizal symbiosis for tree fitness, the evolution of Cd tolerance in an ectomycorrhizal partner such as S. luteus can be of major importance for the establishment of pine forests on Cd-contaminated soils. - The evolutionary adaptation for higher Cd tolerance in Suillus luteus, an ectomycorrhizal fungus, is of major importance for the amelioration of Cd toxicity in pine trees exposed to high Cd concentrations.

  9. Potassium nutrition of ectomycorrhizal Pinus pinaster: overexpression of the Hebeloma cylindrosporum HcTrk1 transporter affects the translocation of both K(+) and phosphorus in the host plant.

    Science.gov (United States)

    Garcia, Kevin; Delteil, Amandine; Conéjéro, Geneviève; Becquer, Adeline; Plassard, Claude; Sentenac, Hervé; Zimmermann, Sabine

    2014-02-01

    Mycorrhizal associations are known to improve the hydro-mineral nutrition of their host plants. However, the importance of mycorrhizal symbiosis for plant potassium nutrition has so far been poorly studied. We therefore investigated the impact of the ectomycorrhizal fungus Hebeloma cylindrosporum on the potassium nutrition of Pinus pinaster and examined the involvement of the fungal potassium transporter HcTrk1. HcTrk1 transcripts and proteins were localized in ectomycorrhizas using in situ hybridization and EGFP translational fusion constructs. Importantly, an overexpression strategy was performed on a H. cylindrosporum endogenous gene in order to dissect the role of this transporter. The potassium nutrition of mycorrhizal pine plants was significantly improved under potassium-limiting conditions. Fungal strains overexpressing HcTrk1 reduced the translocation of potassium and phosphorus from the roots to the shoots of inoculated plants in mycorrhizal experiments. Furthermore, expression of HcTrk1 and the phosphate transporter HcPT1.1 were reciprocally linked to the external inorganic phosphate and potassium availability. The development of these approaches provides a deeper insight into the role of ectomycorrhizal symbiosis on host plant K(+) nutrition and in particular, the K(+) transporter HcTrk1. The work augments our knowledge of the link between potassium and phosphorus nutrition via the mycorrhizal pathway. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  10. Effects of warming and drying of soils on the ectomycorrhizal community of a mixed Pinus contorta/Picea engelmannii stand in Yellowstone Park

    Science.gov (United States)

    Cullings, Kenneth; Finley, S. K.; Parker, V. T.; Makhija, S.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Restriction Fragment Length Polymorphisms (RFLPs) analyses were used to determine patterns of change in ectomycorrhizal community structure response to seasonal warming and drying of soils. Soil cores (42 total, 21 from cold and wet soil in early June, and 21 from dry, warm soil in late August) were collected from replicate blocks in a mixed-conifer forest stand in Yellowstone. Results indicated no significant differences in species richness (2.62 species/core, SE 0.2 in June; 3.25, SE 0.2 in August), however there was a significant effect on ectomycorrhizal infection (P<0.05), mean number of EM tips/core was significantly lower in June (185.8, SE 34) than in August (337 SE 78). Data indicated no difference in overall EM fungal species composition, however among system dominants, two species (Cortinarius 9 and Cortinarius 10) were more abundant in August than in June (P<0.02). The remaining dominant fungal species exhibited no differences in relative abundance. Results are discussed in relation to soil fertility and composition.

  11. Gold content of ectomycorrhizal and saprobic macrofungi - an update

    Science.gov (United States)

    Borovi ka, J.; anda, Z.; Jelínek, E.

    2006-05-01

    Species of macrofungi growing in the wild were collected from non-auriferous and unpolluted areas, and analyzed for gold. In addition, preliminary results of samples originated from an auriferous area are presented. Gold was determined using long-term instrumental neutron activation analysis (INAA). In total, 108 samples, including 49 species of ectomycorrhizal fungi and 30 species of terrestrial saprobes, were examined. The highest concentrations (expressed in dry weight) were found in ectomycorrhizal species Russula nigricans (235 ng g-1) and Suillus variegatus (1070 ng g-1). Among the saprobic macrofungi, an extraordinary high value 2250 ng g-1 was found in Lepiota cf. clypeolaria. Gold content of saprobic macrofungi originated from the auriferous area was obviously higher than that of macrofungi from non-auriferous areas. The highest contents were found in Agaricus silvaticus (4230 ng g-1) and in two samples of Lycoperdon perlatum (6955 and 7739 ng g-1).

  12. Gold content of ectomycorrhizal and saprobic macrofungi - an update

    International Nuclear Information System (INIS)

    Borovika, J; Randa; Jelinek, E

    2006-01-01

    Species of macrofungi growing in the wild were collected from non-auriferous and unpolluted areas, and analyzed for gold. In addition, preliminary results of samples originated from an auriferous area are presented. Gold was determined using long-term instrumental neutron activation analysis (INAA). In total, 108 samples, including 49 species of ectomycorrhizal fungi and 30 species of terrestrial saprobes, were examined. The highest concentrations (expressed in dry weight) were found in ectomycorrhizal species Russula nigricans (235 ng g -1 ) and Suillus variegatus (1070 ng g -1 ). Among the saprobic macrofungi, an extraordinary high value 2250 ng g -1 was found in Lepiota cf. clypeolaria. Gold content of saprobic macrofungi originated from the auriferous area was obviously higher than that of macrofungi from non-auriferous areas. The highest contents were found in Agaricus silvaticus (4230 ng g -1 ) and in two samples of Lycoperdon perlatum (6955 and 7739 ng g -1 )

  13. Surface-bound phosphatase activity in living hyphae of ectomycorrhizal fungi of Nothofagus obliqua.

    Science.gov (United States)

    Alvarez, Maricel; Godoy, Roberto; Heyser, Wolfgang; Härtel, Steffen

    2004-01-01

    We determined the location and the activity of surface-bound phosphomonoesterase (SBP) of five ectomycorrhizal (EM) fungi of Nothofagus oblique. EM fungal mycelium of Paxillus involutus, Austropaxillus boletinoides, Descolea antartica, Cenococcum geophilum and Pisolithus tinctorius was grown in media with varying concentrations of dissolved phosphorus. SBP activity was detected at different pH values (3-7) under each growth regimen. SBP activity was assessed using a colorimetric method based on the hydrolysis of p-nitrophenyl phosphate (pNPP) to p-nitrophenol phosphate (pNP) + P. A new technique involving confocal laser-scanning microscopy (LSM) was used to locate and quantify SBP activity on the hyphal surface. EM fungi showed two fundamentally different patterns of SBP activity in relation to varying environmental conditions (P-concentrations and pH). In the cases of D. antartica, A. boletinoides and C. geophilum, changes in SBP activity were induced primarily by changes in the number of SBP-active centers on the hyphae. In the cases of P. tinctorius and P. involutus, the number of SBP-active centers per μm hyphal length changed much less than the intensity of the SBP-active centers on the hyphae. Our findings not only contribute to the discussion about the role of SBP-active centers in EM fungi but also introduce LSM as a valuable method for studying EM fungi.

  14. UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi.

    Science.gov (United States)

    Kõljalg, Urmas; Larsson, Karl-Henrik; Abarenkov, Kessy; Nilsson, R Henrik; Alexander, Ian J; Eberhardt, Ursula; Erland, Susanne; Høiland, Klaus; Kjøller, Rasmus; Larsson, Ellen; Pennanen, Taina; Sen, Robin; Taylor, Andy F S; Tedersoo, Leho; Vrålstad, Trude; Ursing, Björn M

    2005-06-01

    Identification of ectomycorrhizal (ECM) fungi is often achieved through comparisons of ribosomal DNA internal transcribed spacer (ITS) sequences with accessioned sequences deposited in public databases. A major problem encountered is that annotation of the sequences in these databases is not always complete or trustworthy. In order to overcome this deficiency, we report on UNITE, an open-access database. UNITE comprises well annotated fungal ITS sequences from well defined herbarium specimens that include full herbarium reference identification data, collector/source and ecological data. At present UNITE contains 758 ITS sequences from 455 species and 67 genera of ECM fungi. UNITE can be searched by taxon name, via sequence similarity using blastn, and via phylogenetic sequence identification using galaxie. Following implementation, galaxie performs a phylogenetic analysis of the query sequence after alignment either to pre-existing generic alignments, or to matches retrieved from a blast search on the UNITE data. It should be noted that the current version of UNITE is dedicated to the reliable identification of ECM fungi. The UNITE database is accessible through the URL http://unite.zbi.ee

  15. Isolation, Identification and Screening of Ectomycorrhizal fungi for reforestation purposes

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, N. R.; Oliveira, R. s.; Castro, P. M. I.

    2009-07-01

    Pinus pinaster occupies almost 30% of Portuguese forest area and fire is one of its major threat. Pinus pinaster is resistant to low fire intensities, however, the frequency and intensity of the current fire regime cuases a disturbing reduction of its area of distribution. Ectomycorrhizal fungi can form symbiotic associations with P. pinaster improving among other factors, plant growth and resistance to biotic and abiotic stresses, which can be a useful tool for an efficient reforestation of burned areas. (Author)

  16. Isolation, Identification and Screening of Ectomycorrhizal fungi for reforestation purposes

    International Nuclear Information System (INIS)

    Sousa, N. R.; Oliveira, R. s.; Castro, P. M. I.

    2009-01-01

    Pinus pinaster occupies almost 30% of Portuguese forest area and fire is one of its major threat. Pinus pinaster is resistant to low fire intensities, however, the frequency and intensity of the current fire regime cuases a disturbing reduction of its area of distribution. Ectomycorrhizal fungi can form symbiotic associations with P. pinaster improving among other factors, plant growth and resistance to biotic and abiotic stresses, which can be a useful tool for an efficient reforestation of burned areas. (Author)

  17. Ectomycorrhizal community structure of different genotypes of Scots pine under forest nursery conditions.

    Science.gov (United States)

    Leski, Tomasz; Aucina, Algis; Skridaila, Audrius; Pietras, Marcin; Riepsas, Edvardas; Rudawska, Maria

    2010-10-01

    In this paper, we report the effect of Scots pine genotypes on ectomycorrhizal (ECM) community and growth, survival, and foliar nutrient composition of 2-year-old seedlings grown in forest bare-root nursery conditions in Lithuania. The Scots pine seeds originated from five stands from Latvia (P1), Lithuania (P2 and P3), Belarus (P4), and Poland (P5). Based on molecular identification, seven ECM fungal taxa were identified: Suillus luteus and Suillus variegatus (within the Suilloid type), Wilcoxina mikolae, Tuber sp., Thelephora terrestris, Cenococcum geophilum, and Russuloid type. The fungal species richness varied between five and seven morphotypes, depending on seed origin. The average species richness and relative abundance of most ECM morphotypes differed significantly depending on pine origin. The most essential finding of our study is the shift in dominance from an ascomycetous fungus like W. mikolae in P2 and P4 seedlings to basidiomycetous Suilloid species like S. luteus and S. variegatus in P1 and P5 seedlings. Significant differences between Scots pine origin were also found in seedling height, root dry weight, survival, and concentration of C, K, Ca, and Mg in the needles. The Spearman rank correlation coefficient revealed that survival and nutritional status of pine seedlings were positively correlated with abundance of Suilloid mycorrhizas and negatively linked with W. mikolae abundance. However, stepwise multiple regression analysis showed that only survival and magnesium content in pine needles were significantly correlated with abundance of ECM fungi, and Suilloid mycorrhizas were a main significant predictor. Our results may have implications for understanding the physiological and genetic relationship between the host tree and fungi and should be considered in management decisions in forestry and ECM fungus inoculation programs.

  18. Fungi in roots of nursery grown Pinus sylvestris: ectomycorrhizal colonisation, genetic diversity and spatial distribution.

    Science.gov (United States)

    Menkis, Audrius; Vasaitis, Rimvydas

    2011-01-01

    The aims of this study were to investigate patterns of ectomycorrhizal (ECM) colonisation and community structure on nursery grown seedlings of Pinus sylvestris, spatial distribution of ECMs in the nursery plot and genetic diversity of commonly isolated ECM basidiomycete Hebeloma cavipes. One hundred seedlings were sampled in 225 m(2) area using a systematic grid design. For each seedling, 20 individual root tips were randomly collected, morphotyped, and surface sterilised for fungal isolation in pure culture. Results showed that ECM community was comprised of nine distinct morphotypes among which Thelephora terrestris (39.7%), Hebeloma sp. (17.8%) and Suillus luteus (6.1%) were the most abundant. Spatial distribution of ECMs in the nursery plot was determined by their relative abundance: even in common ECMs and random in rare ones. Fungal isolation yielded 606 pure cultures, representing 71 distinct taxa. The most commonly isolated fungi were the ascomycetes Neonectria macrodidyma (20.3%), Phialocephala fortinii (13.5%), Neonectria radicicola (6.3%) and the ECM basidiomycete H. cavipes (4.5%). Intraspecific genetic diversity within 27 H. cavipes isolates was studied using two methods: restriction digestion of the amplified intergenic spacer of nuclear ribosomal DNA and genealogical concordance of five genetic markers. Five and eight genotypes were revealed by each respective method, but both of those were largely consistent, in particular, in determining the largest genotype (A) composed of 18 isolates. Mapping positions for each H. cavipes isolate and genotype in the field showed that isolates of the A genotype covered a large part of the nursery plot. This suggests that H. cavipes is largely disseminated by vegetative means of local genotypes and that nursery cultivation practices are likely to contribute to the dissemination of this species in the forest nursery soils.

  19. Ectomycorrhizal Community Structure and Soil Characteristics of Mature Lodgepole Pine (Pinus Contorta) and Adjacent Stands of Old Growth Mixed Conifer in Yellowstone National Park, Wyoming USA

    Science.gov (United States)

    Douglas, Robert B.; Parker, V. Thomas; Cullings, Kenneth W.; Sun, Sidney (Technical Monitor)

    2003-01-01

    Forest development patterns following disturbance are known to influence the physical and chemical attributes of soils at different points in time. Changes in soil resources are thought to have a corresponding effect on ectomycorrhizal (ECM) community structure. We used molecular methods to compare below-ground ECM species richness, composition, and abundance between adjacent stands of homogenous lodgepole pine and old growth mixed conifer in Yellowstone National Park (YNP). In each stand-type we collected soil cores to both identify mycorrhizae and assess soil chemistry. Although no statistical difference was observed in the mean number of ECM root tips per core between stand types, the total number of species identified (85 versus 35) and the mean number of species per core (8.8 +/- 0.6 versus 2.5 +/- 0.3) were significantly higher in lodgepole pine. Differences between the actual and estimated species richness levels indicated that these forest types support a high number of ECM species and that undersampling was severe. Species compositions were widely disparate between stands where only four species were shared out of a total of 116. Soil analysis also revealed that mixed conifer was significantly lower in pH, but higher in organic matter, potassium, phosphorus, and ammonium when compared to lodgepole pine stands. Species richness per core was correlated with these chemical data, however, analysis of covariance indicated that stand type was the only statistically significant factor in the observed difference in species richness. Our data suggest that ECM fungal richness increases as homogenous lodgepole pine stands grow and mature, but declines after Engelmann spruce and subalpine fir colonize. Despite difficulties linking species composition with soil chemistry, there are a variety of physical and chemical factors that could be influencing ECM community structure. Future field experiments are necessary to test some of the mechanisms potentially operating

  20. Native ectomycorrhizal fungi of limber and whitebark pine: Necessary for forest sustainability?

    Science.gov (United States)

    Cathy L. Cripps; Robert K. Antibus

    2011-01-01

    Ectomycorrhizal fungi are an important component of northern coniferous forests, including those of Pinus flexilis (limber pine) and P. albicaulis (whitebark pine) which are being decimated by white pine blister rust and mountain pine beetles. Ectomycorrhizal fungi are known to promote seedling establishment, tree health, and may play a role in forest sustainability....

  1. Characterization of a JAZ7 activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen Fusarium oxysporum

    Science.gov (United States)

    Thatcher, Louise F.; Cevik, Volkan; Grant, Murray; Zhai, Bing; Jones, Jonathan D.G.; Manners, John M.; Kazan, Kemal

    2016-01-01

    In Arabidopsis, jasmonate (JA)-signaling plays a key role in mediating Fusarium oxysporum disease outcome. However, the roles of JASMONATE ZIM-domain (JAZ) proteins that repress JA-signaling have not been characterized in host resistance or susceptibility to this pathogen. Here, we found most JAZ genes are induced following F. oxysporum challenge, and screening T-DNA insertion lines in Arabidopsis JAZ family members identified a highly disease-susceptible JAZ7 mutant (jaz7-1D). This mutant exhibited constitutive JAZ7 expression and conferred increased JA-sensitivity, suggesting activation of JA-signaling. Unlike jaz7 loss-of-function alleles, jaz7-1D also had enhanced JA-responsive gene expression, altered development and increased susceptibility to the bacterial pathogen Pst DC3000 that also disrupts host JA-responses. We also demonstrate that JAZ7 interacts with transcription factors functioning as activators (MYC3, MYC4) or repressors (JAM1) of JA-signaling and contains a functional EAR repressor motif mediating transcriptional repression via the co-repressor TOPLESS (TPL). We propose through direct TPL recruitment, in wild-type plants JAZ7 functions as a repressor within the JA-response network and that in jaz7-1D plants, misregulated ectopic JAZ7 expression hyper-activates JA-signaling in part by disturbing finely-tuned COI1-JAZ-TPL-TF complexes. PMID:26896849

  2. Dosage and duration effects of nitrogen additions on ectomycorrhizal sporocarp production and functioning: an example from two N-limited boreal forests.

    Science.gov (United States)

    Hasselquist, Niles J; Högberg, Peter

    2014-08-01

    Although it is well known that nitrogen (N) additions strongly affect ectomycorrhizal (EM) fungal community composition, less is known about how different N application rates and duration of N additions affect the functional role EM fungi play in the forest N cycle.We measured EM sporocarp abundance and species richness as well as determined the δ (15)N in EM sporocarps and tree foliage in two Pinus sylvestris forests characterized by short- and long-term N addition histories and multiple N addition treatments. After 20 and 39 years of N additions, two of the long-term N addition treatments were terminated, thereby providing a unique opportunity to examine the temporal recovery of EM sporocarps after cessation of high N loading.In general, increasing N availability significantly reduced EM sporocarp production, species richness, and the amount of N retained in EM sporocarps. However, these general responses were strongly dependent on the application rate and duration of N additions. The annual addition of 20 kg·N·ha(-1) for the past 6 years resulted in a slight increase in the production and retention of N in EM sporocarps, whereas the addition of 100 kg·N·ha(-1)·yr(-1) during the same period nearly eliminated EM sporocarps. In contrast, long-term additions of N at rates of ca. 35 or 70 kg·N·ha(-1)·yr(-1) for the past 40 years did not eliminate tree carbon allocation to EM sporocarps, although there was a decrease in the abundance and a shift in the dominant EM sporocarp taxa. Despite no immediate recovery, EM sporocarp abundance and species richness approached those of the control 20 years after terminating N additions in the most heavily fertilized treatment, suggesting a recovery of carbon allocation to EM sporocarps after cessation of high N loading.Our results provide evidence for a tight coupling between tree carbon allocation to and N retention in EM sporocarps and moreover highlight the potential use of δ (15)N in EM sporocarps as a

  3. Molecular cloning and functional analysis of three genes encoding polygalacturonase-inhibiting proteins from Capsicum annuum, and their relation to increased resistance to two fungal pathogens

    Science.gov (United States)

    Polygalacturonase-inhibiting proteins (PGIPs) are plant cell wall glycoproteins that can inhibit fungal endopolygalacturonases (PGs). Inhibiting by PGIPs directly reduces potential PG activity in specific plant pathogenic fungi, reducing their aggressiveness. Here, we isolated and functionally chara...

  4. The effect of ectomycorrhizal fungi forming symbiosis with Pinus pinaster seedlings exposed to cadmium

    International Nuclear Information System (INIS)

    Sousa, Nadine R.; Ramos, Miguel A.; Marques, Ana P.G.C.; Castro, Paula M.L.

    2012-01-01

    Cadmium is one of the most toxic heavy metals and its accumulation in the upper layers of forest soils affects plants, microorganisms and their interactions. Adequate strategies for the reforestation of metal contaminated sites are of vital importance. The aim of this work was to evaluate the response of Pinus pinaster seedlings to Cd exposure and to assess the effect of inoculation with two selected ectomycorrhizal fungi, Suillus bovinus and Rhizopogon roseolus on that response. Seedlings were exposed to soil contaminated at 15 and 30 mg Cd kg −1 . Shoot biomass of P. pinaster decreased ca. 36% when exposed to 15 mg Cd kg −1 . Overall, colonization by S. bovinus significantly enhanced shoot development up to 30% in contaminated soil while colonization by R. roseolus produced no significant effect at both Cd concentrations tested and significantly increased the level of Cd in the shoots at both Cd concentrations. Metal accumulation in the shoots and roots of non-inoculated and S. bovinus-inoculated seedlings increased at the higher Cd levels whereas R. roseolus-inoculated seedlings were not sensitive to Cd variation in the soil. The results from our research show that inoculation with ECM fungi has a significant impact on metal uptake and development of P. pinaster seedlings; the differential response induced by the two tested species highlights the importance of selecting the appropriate strains for nursery inoculation, and, as such, this biological tool ought to be considered in reforestation processes of heavy metal contaminated areas by woody species. - Highlights: ► Ectomycorrhizal fungi can aid the reforestation of heavy metal contaminated areas. ► Cd inhibited the growth of non-inoculated 6 months-old Pinus pinaster seedlings. ► Inoculation with Suillus bovinus enhanced P. pinaster growth in Cd contaminated soil. ► Mycorrhizal symbiosis influenced the accumulation of Cd in P. pinaster seedlings.

  5. The effect of ectomycorrhizal fungi forming symbiosis with Pinus pinaster seedlings exposed to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Nadine R.; Ramos, Miguel A.; Marques, Ana P.G.C.; Castro, Paula M.L., E-mail: plcastro@esb.ucp.pt

    2012-01-01

    Cadmium is one of the most toxic heavy metals and its accumulation in the upper layers of forest soils affects plants, microorganisms and their interactions. Adequate strategies for the reforestation of metal contaminated sites are of vital importance. The aim of this work was to evaluate the response of Pinus pinaster seedlings to Cd exposure and to assess the effect of inoculation with two selected ectomycorrhizal fungi, Suillus bovinus and Rhizopogon roseolus on that response. Seedlings were exposed to soil contaminated at 15 and 30 mg Cd kg{sup -1}. Shoot biomass of P. pinaster decreased ca. 36% when exposed to 15 mg Cd kg{sup -1}. Overall, colonization by S. bovinus significantly enhanced shoot development up to 30% in contaminated soil while colonization by R. roseolus produced no significant effect at both Cd concentrations tested and significantly increased the level of Cd in the shoots at both Cd concentrations. Metal accumulation in the shoots and roots of non-inoculated and S. bovinus-inoculated seedlings increased at the higher Cd levels whereas R. roseolus-inoculated seedlings were not sensitive to Cd variation in the soil. The results from our research show that inoculation with ECM fungi has a significant impact on metal uptake and development of P. pinaster seedlings; the differential response induced by the two tested species highlights the importance of selecting the appropriate strains for nursery inoculation, and, as such, this biological tool ought to be considered in reforestation processes of heavy metal contaminated areas by woody species. - Highlights: Black-Right-Pointing-Pointer Ectomycorrhizal fungi can aid the reforestation of heavy metal contaminated areas. Black-Right-Pointing-Pointer Cd inhibited the growth of non-inoculated 6 months-old Pinus pinaster seedlings. Black-Right-Pointing-Pointer Inoculation with Suillus bovinus enhanced P. pinaster growth in Cd contaminated soil. Black-Right-Pointing-Pointer Mycorrhizal symbiosis

  6. Distinguishing ectomycorrhizal and saprophytic fungi using carbon and nitrogen isotopic compositions

    Directory of Open Access Journals (Sweden)

    Weiguo Hou

    2012-05-01

    Full Text Available Ectomycorrhizal fungi, a group of widespread symbiotic fungi with plant, obtain carbon source from trees and improve plant mineral nutrient uptake with their widespread hyphal network. Ectomycorrhizal fungi can be used as inoculants to improve the survival rates of plantation. Saprophytic fungi use the nutrition from the debris of plant or animals, and it is difficult to distinguish the saprophytic and ectomycorrhizal fungi by morphological and anatomic methods. In this research, the differences of stable carbon and nitrogen isotopic compositions of these fungi were analyzed. The results showed that the abundances of 13C of were higher than those of ectomycorrhizal fungi and the abundances of 15N of saprophytic fungi were lower than those of ectomycorrhizal fungi. Such differences of stable carbon and nitrogen isotopic compositions between ectomycorrhizal fungi and saprophytic fungi can be ascribed to their different nutrition sources and ecological functions. These results collectively indicate that stable carbon and nitrogen isotopic compositions are an effective proxy for distinguishing between ectomycorrhizal and saprophytic fungi.

  7. Fungal Responses to Anthropogenic N Deposition: A Historical Perspective

    Science.gov (United States)

    Cline, L.; Gutknecht, J.; Kennedy, P.

    2017-12-01

    Fungi mediate primary productivity via the decay of organic matter and the formation of mycorrhizal associations. Short-term experimental manipulations reveal that nitrogen (N) addition slows decomposition and decreases plant reliance on fungal symbionts. However, it remains unclear if the responses observed in experimental systems apply to natural forests, where the addition of N via atmospheric deposition has taken place over much longer time periods. To address this discrepancy, we measured N concentration and isotopic composition in leaf and sporocarp tissue of herbarium specimens collected over the last 120 years in the Twin Cities metropolitan area of Minnesota, USA. We selected specimens from two fungal genera (Marasmius, Amanita) and two plant genera (Acer, Betula) due to their differing ability to form ectomycorrhizal associations as well as extensive representation in the UMN Bell Museum collections (1890 - 2010). Independent of taxonomy and mycorrhizal association, we observed consistent and significant decreases in foliar δ15N and sporocarp δ15N values through time (mixed effects model; b = -0.046; F = 42.0; P fungi ; r2 = 0.10 P = 0.085), despite no significant change in Amanita (ectomycorrhizal fungi) or Acer (non-mycorrhizal host) N content. The declining foliar δ15N and foliar N concentrations suggest that despite significant atmospheric N input during the latter half of the 20th century, soil N availability in MN forests has actually declined. Furthermore, concomitant declines in foliar and sporocarp δ15N did not indicate a shrinking fungal role in temperate forest N cycling. We hypothesize that interactions among global change agents (i.e., N deposition and elevated atmospheric CO2) may be leading to enhanced ecosystem N sequestration and progressive N limitation. Collectively, these results suggest that short-term experimental studies may not accurately reflect the cumulative effects of background N addition via deposition in temperate forest

  8. Cd and Zn interactions and toxicity in ectomycorrhizal basidiomycetes in axenic culture

    Directory of Open Access Journals (Sweden)

    Vinicius H. De Oliveira

    2018-03-01

    Full Text Available Background Metal contamination in soils affects both above- and belowground communities, including soil microorganisms. Ectomycorrhizal (ECM fungi are an important component in belowground community and tolerant strains have great potential in enhancing plant-based remediation techniques. We assessed cadmium and zinc toxicity in five ECM species in liquid media (Hebeloma subsaponaceum; H. cylindrosporum; H. crustuliniforme; Scleroderma sp.; Austroboletus occidentalis and investigated the potential of Zn to alleviate Cd toxicity. Due to highly divergent results reported in the literature, liquid and solid media were compared experimentally for the first time in terms of differential toxicity thresholds in Cd and Zn interactions. Methods A wide range of Cd and Zn concentrations were applied to ectomycorrhizal fungi in axenic cultures (in mg L−1: 0; 1; 3; 9; 27; 81; 243 for the Cd treatments, and 0; 1; 30; 90; 270; 810; 2,430 for Zn. Combined Zn and Cd treatments were also applied to H. subsaponaceum and Scleroderma sp. Dry weight was recorded after 30 days, and in case of solid medium treatments, radial growth was also measured. Results and Discussion All species were adversely affected by high levels of Cd and Zn, and A. occidentalis was the most sensitive, with considerable biomass decrease at 1 mg L−1 Cd, while Scleroderma sp. and H. subsaponaceum were the most tolerant, which are species commonly found in highly contaminated sites. Cd was generally 10 times more toxic than Zn, which may explain why Zn had little impact in alleviating Cd effects. In some cases, Cd and Zn interactions led to a synergistic toxicity, depending on the concentrations applied and type of media used. Increased tolerance patterns were detected in fungi grown in solid medium and may be the cause of divergent toxicity thresholds found in the literature. Furthermore, solid medium allows measuring radial growth/mycelial density as endpoints which are informative and in

  9. Symbiotic fungal associations in 'lower' land plants.

    Science.gov (United States)

    Read, D J; Ducket, J G; Francis, R; Ligron, R; Russell, A

    2000-06-29

    these plants are similar to those seen in mycorrhizal associations of ericaceous plants like Vaccinium. Cross inoculation experiments have confirmed that a typical mycorrhizal endophyte of ericaceous plants, Hymenoscyphus ericae, will form associations in liverworts which are structurally identical to those seen in nature. Again, the functional significance of these associations remains to be examined. Some members of the Jungermanniales and Metzgeriales form associations with basidiomycetous fungi. These produce intracellular coils of hyphae, which are similar to the pelotons seen in orchid mycorrhizas, which also involve basidiomycetes. The fungal associates of the autotrophic Aneura and of its heterotrophic relative Cryptothallus mirabilis have been isolated. In the latter case it has been shown that the fungal symbiont is an ectomycorrhizal associate of Betula, suggesting that the apparently obligate nature of the association between the hepatic and Betula in nature is based upon requirement for this particular heterotroph.

  10. Site properties have a stronger influence than fire severity on ectomycorrhizal fungi and associated N-cycling bacteria in regenerating post-beetle-killed lodgepole pine forests.

    Science.gov (United States)

    Kennedy, Nabla M; Robertson, Susan J; Green, D Scott; Scholefield, Scott R; Arocena, Joselito M; Tackaberry, Linda E; Massicotte, Hugues B; Egger, Keith N

    2015-09-01

    Following a pine beetle epidemic in British Columbia, Canada, we investigated the effect of fire severity on rhizosphere soil chemistry and ectomycorrhizal fungi (ECM) and associated denitrifying and nitrogen (N)-fixing bacteria in the root systems of regenerating lodgepole pine seedlings at two site types (wet and dry) and three fire severities (low, moderate, and high). The site type was found to have a much larger impact on all measurements than fire severity. Wet and dry sites differed significantly for almost all soil properties measured, with higher values identified from wet types, except for pH and percent sand that were greater on dry sites. Fire severity caused few changes in soil chemical status. Generally, bacterial communities differed little, whereas ECM morphotype analysis revealed ectomycorrhizal diversity was lower on dry sites, with a corresponding division in community structure between wet and dry sites. Molecular profiling of the fungal ITS region confirmed these results, with a clear difference in community structure seen between wet and dry sites. The ability of ECM fungi to colonize seedlings growing in both wet and dry soils may positively contribute to subsequent regeneration. We conclude that despite consecutive landscape disturbances (mountain pine beetle infestation followed by wildfire), the "signature" of moisture on chemistry and ECM community structure remained pronounced.

  11. Arbuscular and Ectomycorrhizal Fungi Associated with the Invasive Brazilian Pepper Tree (Schinus terebinthifolius) and Two Native Plants in South Florida

    Science.gov (United States)

    Dawkins, Karim; Esiobu, Nwadiuto

    2017-01-01

    The potential role of soil fungi in the invasion of the Brazilian pepper tree (Schinus terebinthifolius—BP) in Florida is not known; although the low biotic resistance of Florida soils is often invoked to explain the prevalence of many invasive species. To gain an initial insight into BP's mycorrhizal associations, this study examined the rhizobiome of BP and two native plants (Hamelia patens and Bidens alba) across six locations. Arbuscular mycorrhizal fungi (AMF) associated with the roots of the target plants and bulk soil was characterized by spore morphotyping. Sequence analysis of metagenomic DNA from lateral roots/rhizosphere of BP (n = 52) and a native shrub H. patens (n = 37) on the same parcel yielded other fungal associates. Overall, the total population of AMF associated with BP was about two folds greater than that of the two native plants (p = 0.0001) growing on the same site. The dominant AMF under Schinus were members of the common Glomus and Rhizophagus spp. By contrast, the most prevalent AMF in the bulk soil and rhizosphere of the two Florida native plants, Acaulospora spp (29%) was sharply diminished (9%) under BP rhizosphere. Analysis of the ITS2 sequences also showed that Schinus rhizosphere had a high relative abundance of ectomycorrhizal fungi (76.5%) compared to the native H. patens (2.6%), with the species Lactifluus hygrophoroides (Basidiomycota) being the most prevalent at 61.5% (p < 0.05). Unlike the native plants where pathogenic fungi like Phyllosticta sp., Phoma sp., and Neofusicoccum andium were present (8.1% for H. patens), only one potentially pathogenic fungal taxon was detected (3.9%) under BP. The striking disparity in the relative abundance of AMF and other fungal types between BP and the native species is quite significant. Fungal symbionts could aide plant invasion via resource-use efficiency and other poorly defined mechanisms of protection from pathogens in their invaded range. This report exposes a potentially

  12. Comparison of root-associated communities of native and non-native ectomycorrhizal hosts in an urban landscape.

    Science.gov (United States)

    Lothamer, K; Brown, S P; Mattox, J D; Jumpponen, A

    2014-05-01

    Non-native tree species are often used as ornamentals in urban landscapes. However, their root-associated fungal communities remain yet to be examined in detail. Here, we compared richness, diversity and community composition of ectomycorrhizosphere fungi in general and ectomycorrhizal (EcM) fungi in particular between a non-native Pinus nigra and a native Quercus macrocarpa across a growing season in urban parks using 454-pyrosequencing. Our data show that, while the ectomycorrhizosphere community richness and diversity did not differ between the two host, the EcM communities associated with the native host were often more species rich and included more exclusive members than those of the non-native hosts. In contrast, the ectomycorrhizosphere communities of the two hosts were compositionally clearly distinct in nonmetric multidimensional ordination analyses, whereas the EcM communities were only marginally so. Taken together, our data suggest EcM communities with broad host compatibilities and with a limited numbers of taxa with preference to the non-native host. Furthermore, many common fungi in the non-native Pinus were not EcM taxa, suggesting that the fungal communities of the non-native host may be enriched in non-mycorrhizal fungi at the cost of the EcM taxa. Finally, while our colonization estimates did not suggest a shortage in EcM inoculum for either host in urban parks, the differences in the fungi associated with the two hosts emphasize the importance of using native hosts in urban environments as a tool to conserve endemic fungal diversity and richness in man-made systems.

  13. Cryopreservation of ectomycorrhizal fungi has minor effects on root colonization of Pinus sylvestris plantlets and their subsequent nutrient uptake capacity.

    Science.gov (United States)

    Crahay, Charlotte; Wevers, Jan; Munaut, Françoise; Colpaert, Jan V; Declerck, Stéphane

    2013-08-01

    The use of ectomycorrhizal (ECM) fungi for afforestation, bioremediation, and timber production requires their maintenance over long periods under conditions that preserve their genetic, phenotypic, and physiological stability. Cryopreservation is nowadays considered as the most suitable method to maintain the phenotypic and genetic stability of a large number of filamentous fungi including the ECM fungi. Here, we compared the ability of eight ECM fungal isolates to colonize Pinus sylvestris roots and to transport inorganic phosphate (Pi) and NH4 (+) from the substrate to the plant after cryopreservation for 6 months at -130 °C or after storage at 4 °C. Overall, the mode of preservation had no significant effect on the colonization rates of P. sylvestris, the concentrations of ergosterol in the roots and substrate, and the uptake of Pi and NH4 (+). Comparing the isolates, differences were sometimes observed with one or the other method of preservation. Suillus bovinus exhibited a reduced ability to form mycorrhizas and to take up Pi following cryopreservation, while one Suillus luteus isolate exhibited a decreased ability to take up NH4 (+). Conversely, Hebeloma crustuliniforme, Laccaria bicolor, Paxillus involutus, and Pisolithus tinctorius exhibited a reduced ability to form mycorrhizas after storage at 4 °C, although this did not result in a reduced uptake of Pi and NH4 (+). Cryopreservation appeared as a reliable method to maintain important phenotypic characteristics (i.e., root colonization and nutrient acquisition) of most of the ECM fungal isolates studied. For 50 % of the ECM fungal isolates, the colonization rate was even higher with the cultures cryopreserved at -130 °C as compared to those stored at 4 °C.

  14. Hydrophobins in the Life Cycle of the Ectomycorrhizal Basidiomycete Tricholoma vaccinum.

    Directory of Open Access Journals (Sweden)

    Dominik Sammer

    Full Text Available Hydrophobins-secreted small cysteine-rich, amphipathic proteins-foster interactions of fungal hyphae with hydrophobic surfaces, and are involved in the formation of aerial hyphae. Phylogenetic analyses of Tricholoma vaccinum hydrophobins showed a grouping with hydrophobins of other ectomycorrhizal fungi, which might be a result of co-evolution. Further analyses indicate angiosperms as likely host trees for the last common ancestor of the genus Tricholoma. The nine hydrophobin genes in the T. vaccinum genome were investigated to infer their individual roles in different stages of the life cycle, host interaction, asexual and sexual development, and with respect to different stresses. In aerial mycelium, hyd8 was up-regulated. In silico analysis predicted three packing arrangements, i.e., ring-like, plus-like and sheet-like structure for Hyd8; the first two may assemble to rodlets of hydrophobin covering aerial hyphae, whereas the third is expected to be involved in forming a two-dimensional network of hydrophobins. Metal stress induced hydrophobin gene hyd5. In early steps of mycorrhization, induction of hyd4 and hyd5 by plant root exudates and root volatiles could be shown, followed by hyd5 up-regulation during formation of mantle, Hartig' net, and rhizomorphs with concomitant repression of hyd8 and hyd9. During fruiting body formation, mainly hyd3, but also hyd8 were induced. Host preference between the compatible host Picea abies and the low compatibility host Pinus sylvestris could be linked to a stronger induction of hyd4 and hyd5 by the preferred host and a stronger repression of hyd8, whereas the repression of hyd9 was comparable between the two hosts.

  15. Soil spore bank communities of ectomycorrhizal fungi in endangered Chinese Douglas-fir forests.

    Science.gov (United States)

    Wen, Zhugui; Shi, Liang; Tang, Yangze; Hong, Lizhou; Xue, Jiawang; Xing, Jincheng; Chen, Yahua; Nara, Kazuhide

    2018-01-01

    Chinese Douglas-fir (Pseudotsuga sinensis) is an endangered Pinaceae species found in several isolated regions of China. Although soil spore banks of ectomycorrhizal (ECM) fungi can play an important role in seedling establishment after disturbance, such as in the well-known North American relative (Pseudotsuga menziesii), we have no information about soil spore bank communities in relict forests of Chinese Douglas-fir. We conducted bioassays of 73 soil samples collected from three Chinese Douglas-fir forests, using North American Douglas-fir as bait seedlings, and identified 19 species of ECM fungi. The observed spore bank communities were significantly different from those found in ECM fungi on the roots of resident trees at the same sites (p = 0.02). The levels of potassium (K), nitrogen (N), organic matter, and the pH of soil were the dominant factors shaping spore bank community structure. A new Rhizopogon species was the most dominant species in the spore banks. Specifically, at a site on Sanqing Mountain, 22 of the 57 surviving bioassay seedlings (representing 21 of the 23 soil samples) were colonized by this species. ECM fungal richness significantly affected the growth of bioassay seedlings (R 2  = 0.20, p = 0.007). Growth was significantly improved in seedlings colonized by Rhizopogon or Meliniomyces species compared with uncolonized seedlings. Considering its specificity to Chinese Douglas-fir, predominance in the soil spore banks, and positive effect on host growth, this new Rhizopogon species could play critical roles in seedling establishment and forest regeneration of endangered Chinese Douglas-fir.

  16. Tree species identity and diversity drive fungal richness and community composition along an elevational gradient in a Mediterranean ecosystem.

    Science.gov (United States)

    Saitta, Alessandro; Anslan, Sten; Bahram, Mohammad; Brocca, Luca; Tedersoo, Leho

    2018-01-01

    Ecological and taxonomic knowledge is important for conservation and utilization of biodiversity. Biodiversity and ecology of fungi in Mediterranean ecosystems is poorly understood. Here, we examined the diversity and spatial distribution of fungi along an elevational gradient in a Mediterranean ecosystem, using DNA metabarcoding. This study provides novel information about diversity of all ecological and taxonomic groups of fungi along an elevational gradient in a Mediterranean ecosystem. Our analyses revealed that among all biotic and abiotic variables tested, host species identity is the main driver of the fungal richness and fungal community composition. Fungal richness was strongly associated with tree richness and peaked in Quercus-dominated habitats and Cistus-dominated habitats. The highest taxonomic richness of ectomycorrhizal fungi was observed under Quercus ilex, whereas the highest taxonomic richness of saprotrophs was found under Pinus. Our results suggest that the effect of plant diversity on fungal richness and community composition may override that of abiotic variables across environmental gradients.

  17. Invasive fungal infections after natural disasters.

    Science.gov (United States)

    Benedict, Kaitlin; Park, Benjamin J

    2014-03-01

    The link between natural disasters and subsequent fungal infections in disaster-affected persons has been increasingly recognized. Fungal respiratory conditions associated with disasters include coccidioidomycosis, and fungi are among several organisms that can cause near-drowning pneumonia. Wound contamination with organic matter can lead to post-disaster skin and soft tissue fungal infections, notably mucormycosis. The role of climate change in the environmental growth, distribution, and dispersal mechanisms of pathogenic fungi is not fully understood; however, ongoing climate change could lead to increased disaster-associated fungal infections. Fungal infections are an often-overlooked clinical and public health issue, and increased awareness by health care providers, public health professionals, and community members regarding disaster-associated fungal infections is needed.

  18. How Does Salinity Shape Bacterial and Fungal Microbiomes of Alnus glutinosa Roots?

    Science.gov (United States)

    Thiem, Dominika; Gołębiewski, Marcin; Hulisz, Piotr; Piernik, Agnieszka; Hrynkiewicz, Katarzyna

    2018-01-01

    Black alder (Alnus glutinosa Gaertn.) belongs to dual mycorrhizal trees, forming ectomycorrhizal (EM) and arbuscular (AM) root structures, as well as represents actinorrhizal plants that associate with nitrogen-fixing actinomycete Frankia sp. We hypothesized that the unique ternary structure of symbionts can influence community structure of other plant-associated microorganisms (bacterial and fungal endophytes), particularly under seasonally changing salinity in A. glutinosa roots. In our study we analyzed black alder root bacterial and fungal microbiome present at two forest test sites (saline and non-saline) in two different seasons (spring and fall). The dominant type of root microsymbionts of alder were ectomycorrhizal fungi, whose distribution depended on site (salinity): Tomentella, Lactarius, and Phialocephala were more abundant at the saline site. Mortierella and Naucoria (representatives of saprotrophs or endophytes) displayed the opposite tendency. Arbuscular mycorrhizal fungi belonged to Glomeromycota (orders Paraglomales and Glomales), however, they represented less than 1% of all identified fungi. Bacterial community structure depended on test site but not on season. Sequences affiliated with Rhodanobacter, Granulicella, and Sphingomonas dominated at the saline site, while Bradyrhizobium and Rhizobium were more abundant at the non-saline site. Moreover, genus Frankia was observed only at the saline site. In conclusion, bacterial and fungal community structure of alder root microsymbionts and endophytes depends on five soil chemical parameters: salinity, phosphorus, pH, saturation percentage (SP) as well as total organic carbon (TOC), and seasonality does not appear to be an important factor shaping microbial communities. Ectomycorrhizal fungi are the most abundant symbionts of mature alders growing in saline soils. However, specific distribution of nitrogen-fixing Frankia (forming root nodules) and association of arbuscular fungi at early stages of

  19. A Foray into Fungal Ecology: Understanding Fungi and Their Functions Across Ecosystems

    Science.gov (United States)

    Francis, N.; Dunkirk, N. C.; Peay, K.

    2015-12-01

    Despite their incredible diversity and importance to terrestrial ecosystems, fungi are not included in a standard high school science curriculum. This past summer, however, my work for the Stanford EARTH High School Internship program introduced me to fungal ecology through experiments involving culturing, genomics and root dissections. The two fungal experiments I worked on had very different foci, both searching for answers to broad ecological questions of fungal function and physiology. The first, a symbiosis experiment, sought to determine if the partners of the nutrient exchange between pine trees and their fungal symbionts could choose one another. The second experiment, a dung fungal succession project, compared the genetic sequencing results of fungal extractions from dung versus fungal cultures from dung. My part in the symbiosis experiment involved dissection, weighing and encapsulation of root tissue samples characterized based on the root thickness and presence of ectomycorrhizal fungi. The dung fungi succession project required that I not only learn how to culture various genera of dung fungi but also learn how to extract DNA and RNA for sequencing from the fungal tissue. Although I primarily worked with dung fungi cultures and thereby learned about their unique physiologies, I also learned about the different types of genetic sequencing since the project compared sequences of cultured fungi versus Next Generation sequencing of all fungi present within a dung pellet. Through working on distinct fungal projects that reassess how information about fungi is known within the field of fungal ecology, I learned not only about the two experiments I worked on but also many past related experiments and inquiries through reading scientific papers. Thanks to my foray into fungal research, I now know not only the broader significance of fungi in ecological research but also how to design and conduct ecological experiments.

  20. Edible species of the fungal genus hebeloma and two neotropical pines

    International Nuclear Information System (INIS)

    Hernandez, V.C.; Moreno, J.P.; Lizaola, R.Q.; Moreno, J.P.

    2015-01-01

    Mexico has one of the largest diversities of pines and ectomycorrhizal fungi known world-wide. Therefore, describingnative ectomycorrizal species from the country associated with pines is important because of their biotechnological potential in the forestry and food sectors. Worldwide, Hebeloma has generally been considered a genus of poisonous ectomycorrhizal fungi. However, interestingly, in central Mexico there is a complex of under-studied Hebeloma species which are used as food in large quantities and have a great economic and social importance. Three edible species of Hebeloma widely marketed in the country were identified: Hebeloma alpinum, H. mesophaeum and H. leucosarx with scanning electron microscopy on the basis of different ornamentation patterns in the spores of these species. Synthesis was carried out by inoculating two Neotropical pines with sporomes of the three described Hebeloma species. To achieve this, inoculated pines were kept in greenhouse conditions during one year. A characteristic morphotype for each fungal species was observed and it is described here. The first known description of the morphotype of Hebeloma alpinum with pines is presented. This seminal work gives a tool to identify the morphotypes produced by the main edible ectomycorrhizal species of Hebeloma marketed in Mexico, with biotechnological potential to inoculate pines used in reforestation programmes in Neotropical areas. (author)

  1. Plant Functional Traits Associated with Mycorrhizal Root Foraging in Arbuscular Mycorrhizal and Ectomycorrhizal Trees

    Science.gov (United States)

    Eissenstat, D. M.; Chen, W.; Cheng, L.; Liu, B.; Koide, R. T.; Guo, D.

    2016-12-01

    Root foraging for nutrient "hot spots" is a key strategy by which some plants maximize nutrient gain from their carbon investment in root and mycorrhizal hyphae. Foraging strategies may depend on costs of root construction, with thick roots generally costing more per unit length than thin roots. Investment in mycorrhizal hyphae, which are considerably thinner than roots, may represent an alternative strategy for cost-effective nutrient foraging, especially for thick-root species. Type of mycorrhiza may matter, as ectomycorrhizal (EM) fungi are more associated with longer hyphae and ability to mineralize organic matter than arbuscular mycorrhizal (AM) fungi. Among AM trees in both subtropical forests in SE China and in temperate forests in central Pennsylvania, USA, we found that tree species with thin roots proliferated their roots in soil patches enriched with mineral nutrients to a greater extent than species with thick roots. In addition, thick-root species were consistently colonized more heavily with mycorrhizal fungi than thin root species, although nutrient addition tended to diminish colonization. In a common garden in central Pennsylvania of both AM and EM tree species, we found that nutrient patches enriched with organic materials resulted in greater root and mycorrhizal fungal proliferation compared to those enriched with inorganic nutrients and that thick-root species proliferated more with their mycorrhizal fungi whereas thin-root species proliferated more with their roots. We further examined with many more species, patterns of root and mycorrhizal fungal proliferation in organic-nutrient-enriched patches. Foraging precision, or the extent that roots or mycorrhizal hyphae grew in the enriched patch relative to the unenriched patch, was related to both root thickness and type of mycorrhiza. In both AM and EM trees, thick-root species were not selective foragers of either their roots or hyphae. In thin-root species, there was strong selectivity in

  2. Defoliation of interior Douglas-fir elicits carbon transfer and stress signalling to ponderosa pine neighbors through ectomycorrhizal networks.

    Science.gov (United States)

    Song, Yuan Yuan; Simard, Suzanne W; Carroll, Allan; Mohn, William W; Zeng, Ren Sen

    2015-02-16

    Extensive regions of interior Douglas-fir (Pseudotsuga menziesii var. glauca, IDF) forests in North America are being damaged by drought and western spruce budworm (Choristoneura occidentalis). This damage is resulting from warmer and drier summers associated with climate change. To test whether defoliated IDF can directly transfer resources to ponderosa pine (Pinus ponderosae) regenerating nearby, thus aiding in forest recovery, we examined photosynthetic carbon transfer and defense enzyme response. We grew pairs of ectomycorrhizal IDF 'donor' and ponderosa pine 'receiver' seedlings in pots and isolated transfer pathways by comparing 35 μm, 0.5 μm and no mesh treatments; we then stressed IDF donors either through manual defoliation or infestation by the budworm. We found that manual defoliation of IDF donors led to transfer of photosynthetic carbon to neighboring receivers through mycorrhizal networks, but not through soil or root pathways. Both manual and insect defoliation of donors led to increased activity of peroxidase, polyphenol oxidase and superoxide dismutase in the ponderosa pine receivers, via a mechanism primarily dependent on the mycorrhizal network. These findings indicate that IDF can transfer resources and stress signals to interspecific neighbors, suggesting ectomycorrhizal networks can serve as agents of interspecific communication facilitating recovery and succession of forests after disturbance.

  3. Growth, nutrient uptake and ectomycorrhizal function in Pinus sylvestris plants exposed to aluminium and heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Ahonen-Jonnarth, Ulla [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Mycology and Pathology

    2000-07-01

    The potential role of aluminium (Al) toxicity to trees has been of particular concern to forest owners and scientists since the early 1980's when Ulrich hypothesised that both Al and heavy metals were involved in forest dieback because of their increased concentrations in soil due to acidification. Since then, numerous studies have examined the effects of metals upon nutrient uptake by plants. However, most of these investigations have been carried out in the absence of mycorrhizal fungi, which, in most ecosystems, are crucial components in nutrient uptake by plants. The present work focused on the effects of elevated concentrations of Al and heavy metals on Scots pine (Pinus sylvestris L.) and the potential role of ectomycorrhiza in modifying these effects. Ectomycorrhizal colonisation enhanced the growth and nutrient uptake by seedlings. To some extent, colonisation also alleviated reduced nutrient uptake which was a feature of seedlings growing in the presence of the metals. This effect was particularly noticeable with respect to P uptake. In general, mycorrhizal seedlings grew better and had an improved P, K, Mg and S status compared with non-mycorrhizal seedlings. Significant differences were also found in nutrient uptake among seedlings colonised by different fungi. One fungus, Hebeloma cf. longicaudum, was more sensitive to the Al treatment than the pine seedlings. The use of the base cation / Al ratio as an indicator of the potential detrimental effects to trees to acidification and Al is discussed. The production of oxalic acid was found to increase when mycorrhizal and nonmycorrhizal seedlings were exposed to Al or Cu. Colonisation by Suillus variegatus or Rhizopogon roseolus, in particular, resulted in a marked increase. These results demonstrate that there is a capacity, especially by certain ectomycorrhizal fungi, for increased production of the metal-chelating oxalic acid when root systems are exposed to increased levels of metals. In a field

  4. Growth, nutrient uptake and ectomycorrhizal function in Pinus sylvestris plants exposed to aluminium and heavy metals

    International Nuclear Information System (INIS)

    Ahonen-Jonnarth, Ulla

    2000-01-01

    The potential role of aluminium (Al) toxicity to trees has been of particular concern to forest owners and scientists since the early 1980's when Ulrich hypothesised that both Al and heavy metals were involved in forest dieback because of their increased concentrations in soil due to acidification. Since then, numerous studies have examined the effects of metals upon nutrient uptake by plants. However, most of these investigations have been carried out in the absence of mycorrhizal fungi, which, in most ecosystems, are crucial components in nutrient uptake by plants. The present work focused on the effects of elevated concentrations of Al and heavy metals on Scots pine (Pinus sylvestris L.) and the potential role of ectomycorrhiza in modifying these effects. Ectomycorrhizal colonisation enhanced the growth and nutrient uptake by seedlings. To some extent, colonisation also alleviated reduced nutrient uptake which was a feature of seedlings growing in the presence of the metals. This effect was particularly noticeable with respect to P uptake. In general, mycorrhizal seedlings grew better and had an improved P, K, Mg and S status compared with non-mycorrhizal seedlings. Significant differences were also found in nutrient uptake among seedlings colonised by different fungi. One fungus, Hebeloma cf. longicaudum, was more sensitive to the Al treatment than the pine seedlings. The use of the base cation / Al ratio as an indicator of the potential detrimental effects to trees to acidification and Al is discussed. The production of oxalic acid was found to increase when mycorrhizal and nonmycorrhizal seedlings were exposed to Al or Cu. Colonisation by Suillus variegatus or Rhizopogon roseolus, in particular, resulted in a marked increase. These results demonstrate that there is a capacity, especially by certain ectomycorrhizal fungi, for increased production of the metal-chelating oxalic acid when root systems are exposed to increased levels of metals. In a field

  5. Ectomycorrhizal inoculation with Pisolithus tinctorius reduces stress induced by drought in cork oak.

    Science.gov (United States)

    Sebastiana, Mónica; da Silva, Anabela Bernardes; Matos, Ana Rita; Alcântara, André; Silvestre, Susana; Malhó, Rui

    2018-04-01

    We investigated whether the performance of cork oak under drought could be improved by colonization with the ectomycorrhizal fungus Pisolithus tinctorius. Results show that inoculation alone had a positive effect on plant height, shoot biomass, shoot basal diameter, and root growth. Under drought, root growth of mycorrhizal plants was significantly increased showing that inoculation was effective in increasing tolerance to drought. In accordance, mycorrhizal plants subjected to drought showed less symptoms of stress when compared to non-mycorrhizal plants, such as lower concentration of soluble sugars and starch, increased ability to maintain fatty acid content and composition, and increased unsaturation level of membrane lipids. After testing some of the mechanisms suggested to contribute to the enhanced tolerance of mycorrhizal plants to drought, we could not find any by which Pisolithus tinctorius could benefit cork oak, at least under the drought conditions imposed in our experiment. Inoculation did not increase photosynthesis under drought, suggesting no effect in sustaining stomatal opening at low soil water content. Similarly, plant water status was not affected by inoculation suggesting that P. tinctorius does not contribute to an increased plant water uptake during drought. Inoculation did increase nitrogen concentration in plants but it was independent of the water status. Furthermore, no significant mycorrhizal effect on drought-induced ROS production or osmotic adjustment was detected, suggesting that these factors are not important for the improved drought tolerance triggered by P. tinctorius.

  6. Screening of ectomycorrhizal fungi for degradation of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Braun-Luellemann, A.; Huettermann, A.; Majcherczyk, A. [Goettingen Univ. (Germany). Inst. fuer Forstbotanik

    2000-07-01

    Ectomycorrhizal fungi belonging to 16 species (27 strains) were tested for their ability to degrade polycyclic aromatic hydrocarbons (PAHs): Phenanthrene, chrysene, pyrene and benzo[a]pyrene. Cultivated on a complex liquid medium, most of the fungi tested were able to metabolise these compounds. Approximately 50% of the benzo[a]pyrene was removed by strains of Amanita excelsa, Leccinum versipelle, Suillus grevillei, S. luteus, and S. variegatus during a 4-week incubation period. The same amount of phenanthrene was also metabolised by A. muscaria, Paxillus involutus, and S. grevillei. The degradation of the other two PAHs was, for the most part, less effective. Only S. grevillei was able to remove 50% of the pyrene, whereas Boletus edulis and A. muscaria removed 35% of the chrysene. (orig.)

  7. Quantitative inhibition of soil C and N cycling by ectomycorrhizal fungi under field condition

    Science.gov (United States)

    Averill, C.; Hawkes, C.

    2014-12-01

    Ectomycorrhizal (ECM) ecosystems store more carbon than non-ectomycorrhizal ecosystems at global scale. Recent theoretical and empirical work suggests the presence of ECM fungi allows plants to compete directly with decomposers for soil nitrogen (N) via exo-enzyme synthesis. Experimental ECM exclusion often results in a release from competition of saprotrophic decomposers, allowing for increased C-degrading enzyme production, increased microbial biomass, and eventually declines in soil C stocks. Our knowledge of this phenomenon is limited, however, to the presence or absence of ECM fungi. It remains unknown if competitive repression of saprotrophic microbes and soil C cycling by ECM fungi varies with ECM abundance. This is particularly relevant to global change experiments when manipulations alter plant C allocation to ECM symbionts. To test if variation in ECM abundance alters the competitive inhibition of saprotrophic soil microbes (quantitative inhibition) we established experimental ECM exclusion treatments along an ECM abundance gradient. We dug trenches to experimentally exclude ECM fungi, allowing us to test for competitive release of soil saprotrophs from competition. To control for disturbance we placed in-growth bags both inside and outside of trenches. Consistent with the quantitative inhibition hypothesis, sites with more ECM fungi had significantly less microbial biomass per unit soil C and lower rates of N mineralization. Consistent with a release from competition, C-degrading enzyme activities were higher and gross proteolytic rates were lower per unit microbial biomass inside compared to outside trenches. We interpret this to reflect increased microbial investment in C-acquisition and decreased investment in N-acquisition in the absence of ECM fungi. Furthermore, the increase in C-degrading enzymes per unit microbial biomass was significantly greater in sites with the most abundant ECM fungi. Based on these results, ECM-saprotroph competition does

  8. Changes in hyphal morphology and activity of phenoloxidases during interactions between selected ectomycorrhizal fungi and two species of Trichoderma.

    Science.gov (United States)

    Mucha, Joanna

    2011-06-01

    Patterns of phenoloxidase activity can be used to characterize fungi of different life styles, and changes in phenoloxidase synthesis were suspected to play a role in the interaction between ectomycorrhizal and two species of Trichoderma. Confrontation between the ectomycorrhizal fungi Amanita muscaria and Laccaria laccata with species of Trichoderma resulted in induction of laccase synthesis, and the laccase enzyme was bound to mycelia of ectomycorrhizal fungi. Tyrosinase release was noted only during interaction of L. laccata strains with Trichoderma harzianum and T. virens. Ectomycorrhizal fungi, especially strains of Suillus bovinus and S. luteus, inhibited growth of Trichoderma species and caused morphological changes in its colonies in the zone of interaction. In contrast, hyphal changes occurred less often in the ectomycorrhizal fungi tested. Species of Suillus are suggested to present a different mechanism in their interaction with other fungi than A. muscaria and L. laccata.

  9. Developing biogeochemical tracers of apatite weathering by ectomycorrhizal fungi

    Science.gov (United States)

    Vadeboncoeur, M. A.; Bryce, J. G.; Hobbie, E. A.; Meana-Prado, M. F.; Blichert-Toft, J.

    2012-12-01

    Chronic acid deposition has depleted calcium (Ca) from many New England forest soils, and intensive harvesting may reduce phosphorus (P) available to future rotations. Thin glacial till soils contain trace amounts of apatite, a primary calcium phosphate mineral, which may be an important long-term source of both P and Ca to ecosystems. The extent to which ECM fungi enhance the weathering rate of primary minerals in soil which contain growth-limiting nutrients remains poorly quantified, in part due to biogeochemical tracers which are subsequently masked by within-plant fractionation. Rare earth elements (REEs) and Pb isotope ratios show some potential for revealing differences in soil apatite weathering rates across forest stands and silvicultural treatments. To test the utility of these tracers, we grew birch seedlings semi-hydroponically under controlled P-limited conditions, supplemented with mesh bags containing granite chips. Our experimental design included nonmycorrhizal (NM) as well as ectomycorrhizal cultures (Cortinarius or Leccinum). Resulting mycorrhizal roots and leachates of granite chips were analyzed for these tracers. REE concentrations in roots were greatly elevated in treatments with granite relative to those without granite, demonstrating uptake of apatite weathering products. Roots with different mycorrhizal fungi accumulated similar concentrations of REEs and were generally elevated compared to the NM cultures. Ammonium chloride leaches of granite chips grown in contact with mycorrhizal hyphae show elevated REE concentrations and significantly radiogenic Pb isotope signatures relative to bulk rock, also supporting enhanced apatite dissolution. Our results in culture are consistent with data from field-collected sporocarps from hardwood stands in the Bartlett Experimental Forest in New Hampshire, in which Cortinarius sporocarp Pb isotope ratios were more radiogenic than those of other ectomycorrhizal sporocarps. Taken together, the experimental

  10. Simulating ectomycorrhiza in boreal forests: implementing ectomycorrhizal fungi model MYCOFON in CoupModel (v5)

    Science.gov (United States)

    He, Hongxing; Meyer, Astrid; Jansson, Per-Erik; Svensson, Magnus; Rütting, Tobias; Klemedtsson, Leif

    2018-02-01

    The symbiosis between plants and Ectomycorrhizal fungi (ECM) is shown to considerably influence the carbon (C) and nitrogen (N) fluxes between the soil, rhizosphere, and plants in boreal forest ecosystems. However, ECM are either neglected or presented as an implicit, undynamic term in most ecosystem models, which can potentially reduce the predictive power of models.In order to investigate the necessity of an explicit consideration of ECM in ecosystem models, we implement the previously developed MYCOFON model into a detailed process-based, soil-plant-atmosphere model, Coup-MYCOFON, which explicitly describes the C and N fluxes between ECM and roots. This new Coup-MYCOFON model approach (ECM explicit) is compared with two simpler model approaches: one containing ECM implicitly as a dynamic uptake of organic N considering the plant roots to represent the ECM (ECM implicit), and the other a static N approach in which plant growth is limited to a fixed N level (nonlim). Parameter uncertainties are quantified using Bayesian calibration in which the model outputs are constrained to current forest growth and soil C / N ratio for four forest sites along a climate and N deposition gradient in Sweden and simulated over a 100-year period.The nonlim approach could not describe the soil C / N ratio due to large overestimation of soil N sequestration but simulate the forest growth reasonably well. The ECM implicit and explicit approaches both describe the soil C / N ratio well but slightly underestimate the forest growth. The implicit approach simulated lower litter production and soil respiration than the explicit approach. The ECM explicit Coup-MYCOFON model provides a more detailed description of internal ecosystem fluxes and feedbacks of C and N between plants, soil, and ECM. Our modeling highlights the need to incorporate ECM and organic N uptake into ecosystem models, and the nonlim approach is not recommended for future long-term soil C and N predictions. We also

  11. Proteome analysis of an ectomycorrhizal fungus Boletus edulis under salt shock.

    Science.gov (United States)

    Liang, Yu; Chen, Hui; Tang, Mingjuan; Shen, Shihua

    2007-08-01

    Soil salinization has become a severe global problem and salinity is one of the most severe abiotic stresses inhibiting growth and survival of mycorrhizal fungi and their host plants. Salinity tolerance of ectomycorrhizal fungi and survival of ectomycorrhizal inocula is essential to reforestation and ecosystem restoration in saline areas. Proteomic changes of an ectomycorrhizal fungus, Boletus edulis, when exposed to salt stress conditions (4% NaCl, w/v) were determined using two-dimensional electrophoresis (2DE) and mass spectrometry (MS) techniques. Twenty-two protein spots, 14 upregulated and 8 downregulated, were found changed under salt stress conditions. Sixteen changed protein spots were identified by nanospray ESI Q-TOF MS/MS and liquid chromatography MS/MS. These proteins were involved in biosynthesis of methionine and S-adenosylmethionine, glycolysis, DNA repair, cell cycle control, and general stress tolerance, and their possible functions in salinity adaptation of Boletus edulis were discussed.

  12. Decomposition by ectomycorrhizal fungi alters soil carbon storage in a simulation model

    DEFF Research Database (Denmark)

    Moore, J. A. M.; Jiang, J.; Post, W. M.

    2015-01-01

    Carbon cycle models often lack explicit belowground organism activity, yet belowground organisms regulate carbon storage and release in soil. Ectomycorrhizal fungi are important players in the carbon cycle because they are a conduit into soil for carbon assimilated by the plant. It is hypothesized...... to decompose soil organic matter. Our review highlights evidence demonstrating the potential for ectomycorrhizal fungi to decompose soil organic matter. Our model output suggests that ectomycorrhizal activity accounts for a portion of carbon decomposed in soil, but this portion varied with plant productivity...... and the mycorrhizal carbon uptake strategy simulated. Lower organic matter inputs to soil were largely responsible for reduced soil carbon storage. Using mathematical theory, we demonstrated that biotic interactions affect predictions of ecosystem functions. Specifically, we developed a simple function to model...

  13. Isotopic patterns in caps and stipes in sporocarps reveal patterns of organic nitrogen use by ectomycorrhizal fungi

    Science.gov (United States)

    Hobbie, Erik; Ouimette, Andrew; Chen, Janet

    2016-04-01

    Current ecosystem models use inorganic nitrogen as the currency of nitrogen acquisition by plants. However, many trees may gain access to otherwise unavailable soil resources, such as soil organic nitrogen, through their symbioses with ectomycorrhizal fungi, and this pathway of nitrogen acquisition may therefore be important in understanding plant responses to environmental change. Different functional groups of ectomycorrhizal fungi vary in their ability to enzymatically access protein and other soil resources. Such fungal parameters as hyphal hydrophobicity, the presence of rhizomorphs (long-distance transport structures), and exploration strategies (e.g., short-distance versus long-distance, mat formation) correspond with how fungi interact with and explore the environment, and the proportions of different exploration types present will shift along environmental gradients such as nitrogen availability. Isotopic differences between caps and stipes may provide a means to test for organic nitrogen use, since caps and stipes differ in δ13C and δ15N as a result of variable proportions of protein and other classes of compounds, and protein should differ isotopically among de novo synthesis, litter sources, and soil sources. Here, we propose that (1) isotopic differences between caps and stipes could be related to organic nitrogen uptake and to the δ13C and δ15N values of different pools of soil-derived or de novo-synthesized amino acids; (2) these isotopic differences will reflect greater acquisition of soil-derived organic nitrogen by exploration types of greater enzymatic capabilities to degrade recalcitrant nitrogen forms, specifically long-distance, medium-distance fringe, and medium-distance mat exploration types. To test these hypotheses, we use a dataset of isotopic values, %N, and %C in 208 cap/stipe samples collected from Oregon, western USA. δ13C differences in caps and stipes in a multiple regression model had an adjusted r2 of 0.292 (p Ncap-stipe (20

  14. Visualizing carbon and nitrogen transfer in the tripartite symbiosis of Fagus sylvatica, ectomycorrhizal fungi and soil microorganisms using NanoSIMS

    Science.gov (United States)

    Mayerhofer, Werner; Dietrich, Marlies; Schintlmeister, Arno; Gabriel, Raphael; Gorka, Stefan; Wiesenbauer, Julia; Martin, Victoria; Schweiger, Peter; Reipert, Siegfried; Weidinger, Marieluise; Richter, Andreas; Woebken, Dagmar; Kaiser, Christina

    2016-04-01

    Translocation of recently photoassimilated plant carbon (C) into soil via root exudates or mycorrhizal fungi is key to understand global carbon cycling. Plants support symbiotic fungi and soil microorganisms with recent photosynthates to get access to essential elements, such as nitrogen (N) and phosphorus. While a 'reciprocal reward strategy' (plants trade C in exchange for nutrients from the fungus) has been shown for certain types of mycorrhizal associations, only little is known about the mechanisms of C and N exchange between mycorrhizal fungal hyphae and soil bacteria. Our understanding of the underlying mechanisms is hampered by the fact that C and N transfer between plants, mycorrhizal fungi and soil bacteria takes place at the micrometer scale, which makes it difficult to explore at the macro scale. In this project we intended to analyse carbon and nitrogen flows between roots of beech trees (Fagus sylvatica), their associated ectomycorrhizal fungi and bacterial community. In order to visualize this nutrient flow at a single cell level, we used a stable isotope double labelling (13C and 15N) approach. Young mycorrhizal beech trees were transferred from a forest to split-root boxes, consisting of two compartments separated by a membrane (35 μm mesh size) which was penetrable for hyphae but not for plant roots. After trees and mycorrhizal fungi were allowed to grow for one year in these boxes, 15N-labelled nitrogen solution was added only to the root-free compartment to allow labelled nitrogen supply only through the fungal network. 13C- labelled carbon was applied by exposing the plants to a 13CO2 gas atmosphere for 8 hours. Spatial distribution of the isotopic label was visualised at the microscale in cross sections of mycorrhizal root-tips (the plant/mycorrhizal fungi interface) and within and on the surface of external mycorrhizal hyphae (the fungi/soil bacteria interface) using nanoscale secondary ion mass spectrometry (NanoSIMS). Corresponding

  15. Fungal keratitis: A review

    International Nuclear Information System (INIS)

    Jastaneiah, Sabah S.; Al-Rajhi, Ali A.

    2006-01-01

    Keratomycosis is a vision-threatening fungal corneal infection. The dramatic increase in the number of cases over the past three decades is attributable not only to better diagnostic recognition, improved laboratory techniques and greater awareness by the ophthalmic society as a whole, but is also due to a true increase in the incidence of keratitis related to the indiscriminate use of topical broad-spectrum antibiotics, corticosteroids and immunosuppressive drugs, as well as surgical trauma. Corneal trauma has remained the main predisposing factor over the years, though in recent years HIV-positive cases and AIDS are taking lead in certain areas. Aspergillus, Fusarium and Candida species remains the commonest 'organisms' isolated worldwide. Although the approach to this form of keratitis is similar to other types of microbial keratitis, it remains the most difficult in terms of diagnosis and management. Early recognition, prevention, prompt treatment and timely keratoplasty are crucial for a better outcome. (author)

  16. Ectomycorrhizal fungi contribute to soil organic matter cycling in sub-boreal forests.

    Science.gov (United States)

    Phillips, Lori A; Ward, Valerie; Jones, Melanie D

    2014-03-01

    Soils of northern temperate and boreal forests represent a large terrestrial carbon (C) sink. The fate of this C under elevated atmospheric CO2 and climate change is still uncertain. A fundamental knowledge gap is the extent to which ectomycorrhizal fungi (EMF) and saprotrophic fungi contribute to C cycling in the systems by soil organic matter (SOM) decomposition. In this study, we used a novel approach to generate and compare enzymatically active EMF hyphae-dominated and saprotrophic hyphae-enriched communities under field conditions. Fermentation-humus (FH)-filled mesh bags, surrounded by a sand barrier, effectively trapped EMF hyphae with a community structure comparable to that found in the surrounding FH layer, at both trophic and taxonomic levels. In contrast, over half the sequences from mesh bags with no sand barrier were identified as belonging to saprotrophic fungi. The EMF hyphae-dominated systems exhibited levels of hydrolytic and oxidative enzyme activities that were comparable to or higher than saprotroph-enriched systems. The enzymes assayed included those associated with both labile and recalcitrant SOM degradation. Our study shows that EMF hyphae are likely important contributors to current SOM turnover in sub-boreal systems. Our results also suggest that any increased EMF biomass that might result from higher below-ground C allocation by trees would not suppress C fluxes from sub-boreal soils.

  17. Effects of Management Practices and Topography on Ectomycorrhizal Fungi of Maritime Pine during Seedling Recruitment

    Directory of Open Access Journals (Sweden)

    Arthur Guignabert

    2018-05-01

    Full Text Available Symbiosis with ectomycorrhizal (ECM fungi can be important for regeneration success. In a context of increasing regeneration failures in the coastal forest of maritime pine in Southwest France, we tried to identity whether differences in ECM communities could partly explain the variation of regeneration success and how they are influenced by forest practices and stand characteristics. In particular, we focused on the effects of harvesting methods (comparing mature forest with seed-tree regeneration and clear-cuts and topography (bottom-, mid-, and top positions. Five field trials (two in regeneration failure areas and three in successful areas were used to sample 450 one-year-old seedlings. Assessments of ECM of seedling nutrient concentrations and of seedling growth based on exploration types were made. ECM root colonisation was similar in all harvesting treatments, suggesting that enough inoculum remained alive after logging. Harvesting-induced effects modifying soil properties and light availability respectively impacted ECM composition and seedling growth. Topography-induced variations in water and nutrient availability led to changes in ECM composition, but had little impact on seedling growth. Contact, short-distance, and long-distance exploration types improved the nutritional status of seedlings (Ca, K, and N, showing that mycorrhization could play an important role in seedling vitality. However, neither ECM root colonisation nor exploration types could be related to regeneration failures.

  18. Clinical consideration of fungal paranasal sinusitis

    International Nuclear Information System (INIS)

    Okuni, Tsuyoshi; Asakura, Koji; Homma, Tomo; Kawaguchi, Ryuichi; Ishikawa, Tadataka; Yamazaki, Norikazu; Himi, Tetsuo

    2008-01-01

    Fungal paranasal sinusitis is included in the differential diagnosis of unilateral paranasal lesion. Recently the incidence of fungal paranasal sinusitis has been increasing. We reviewed 24 patients (9 males and 15 females) with fungal paranasal sinusitis treated at Muroran City Hospital between January 2001 and May 2006, and clinical presentation and CT findings with those of 56 patients (36 males and 20 females) with chronic unilateral sinusitis. Fungal sinusitis patients ranged in age from 45 to 87, and the average age was 65.9 years old. In contrast, the age of chronic sinusitis patients ranged from 24 to 83, and the average age was 54.4 years old. The chief complaint of both fungal sinusitis and chronic sinusitis included rhinorrhea, nasal obstruction and post nasal discharge. CT exam was performed in all patients. In 23 cases of paranasal fungal sinusitis and 54 cases of chronic sinusitis the findings involved the maxillary sinus. The most common observation (69.6%) was bone density within the affected sinus in fungal sinusitis. However, only 2 cases of chronic sinusitis (3.9%) showed calcification. All cases of fungal sinusitis were diagnosed by pathological examinations. Most cases were proved to be aspergillus, while only one case was mucor. We treated all cases surgically, 18 cases underwent Caldwell-Luc's procedure and 5 cases underwent endoscopic sinus surgery under local anesthesia. (author)

  19. Synthesis of enzymes connected with mycoparasitism by ectomycorrhizal fungi.

    Science.gov (United States)

    Mucha, Joanna; Dahm, Hanna; Strzelczyk, Edmund; Werner, Antoni

    2006-03-01

    The production of enzymes involved in mycoparasitism by several strains of ectomycorrhizal fungi: Amanita muscaria (16-3), Laccaria laccata (9-12), L. laccata (9-1), Suillus bovinus (15-4), S. bovinus (15-3), S. luteus (14-7) on different substrates such as colloidal chitin, mycelia of Trichoderma harzianum, T. virens and Mucor hiemalis was examined. Chitinases and beta-1,3-glucanases were assayed spectrophotometrically by measuring the amount of reducing sugars releasing from suitable substrate by means of Miller's method. Beta-glucosidases were determined by measuring the amount of p-nitrophenol released from p-nitrophenyl-beta-D-glucopyranoside. It was observed that A. muscaria (16-3) and L. laccata (9-12) biosynthesized the highest activity of enzymes in contrast to the strains of S. bovinus and S. luteus. The mycelium of T. harzianum turned out to be the best substrate for the induction of beta-1,3-glucanases and beta-glucosidases for both strains of L. laccata, although the difference in the induction of chitinases in the presence of mycelia of different species of Trichoderma was not indicated.

  20. 90SR uptake by Pinus ponderosa and Pinus radiata seedlings inoculated with ectomycorrhizal fungi

    International Nuclear Information System (INIS)

    Entry, J.A.; Emmingham, W.H.; Rygiewicz, P.T.

    1994-01-01

    Strontium-90 ( 90 Sr) is a radionuclide characteristic of fallout from nuclear reactor accidents and nuclear weapons testing. Prior studies have shown that Pinus ponderosa and P. radiata seedlings can remove appreciable quantities of 90 Sr from soil and store it in plant tissue. In this study, we inoculated P. ponderosa and P. radiata seedlings with one of five isolates of ectomycorrhizal fungi. Inoculated and noninoculated (control) seedlings were compared for their ability to remove 90 Sr from an organic growth medium. Ectomycorrhizal P. ponderosa and P. radiata seedlings are able to remove 3-5 times more 90 Sr from contaminated soil than seedlings without ectomycorrhizae. (Author)

  1. Freshwater Fungal Infections

    Directory of Open Access Journals (Sweden)

    Dennis J. Baumgardner

    2017-01-01

    Full Text Available Fungal infections as a result of freshwater exposure or trauma are fortunately rare. Etiologic agents are varied, but commonly include filamentous fungi and Candida. This narrative review describes various sources of potential freshwater fungal exposure and the diseases that may result, including fungal keratitis, acute otitis externa and tinea pedis, as well as rare deep soft tissue or bone infections and pulmonary or central nervous system infections following traumatic freshwater exposure during natural disasters or near-drowning episodes. Fungal etiology should be suspected in appropriate scenarios when bacterial cultures or molecular tests are normal or when the infection worsens or fails to resolve with appropriate antibacterial therapy.

  2. Fungal Endophytes: Beyond Herbivore Management

    Directory of Open Access Journals (Sweden)

    Bamisope S. Bamisile

    2018-03-01

    Full Text Available The incorporation of entomopathogenic fungi as biocontrol agents into Integrated Pest Management (IPM programs without doubt, has been highly effective. The ability of these fungal pathogens such as Beauveria bassiana and Metarhizium anisopliae to exist as endophytes in plants and protect their colonized host plants against the primary herbivore pests has widely been reported. Aside this sole role of pest management that has been traditionally ascribed to fungal endophytes, recent findings provided evidence of other possible functions as plant yield promoter, soil nutrient distributor, abiotic stress and drought tolerance enhancer in plants. However, reports on these additional important effects of fungal endophytes on the colonized plants remain scanty. In this review, we discussed the various beneficial effects of endophytic fungi on the host plants and their primary herbivore pests; as well as some negative effects that are relatively unknown. We also highlighted the prospects of our findings in further increasing the acceptance of fungal endophytes as an integral part of pest management programs for optimized crop production.

  3. Aluminum-Tolerant Pisolithus Ectomycorrhizas Confer Increased Growth, Mineral Nutrition, and Metal Tolerance to Eucalyptus in Acidic Mine Spoil

    Directory of Open Access Journals (Sweden)

    Louise Egerton-Warburton

    2015-01-01

    Full Text Available Ectomycorrhizal fungi (ECM may increase the tolerance of their host plants to Al toxicity by immobilizing Al in fungal tissues and/or improving plant mineral nutrition. Although these benefits have been demonstrated in in vitro (pure culture or short-term nutrient solution (hydroponic experiments, fewer studies have examined these benefits in the field. This study examined the growth, mineral nutrition, and Al levels in two Eucalyptus species inoculated with three Pisolithus ecotypes that varied in Al tolerance (in vitro and grown in mine spoil in the greenhouse and field. All three ecotypes of Pisolithus improved Eucalyptus growth and increased host plant tolerance to Al in comparison to noninoculated plants. However, large variations in plant growth and mineral nutrition were detected among the Pisolithus-inoculated plants; these differences were largely explained by the functional properties of the Pisolithus inoculum. Seedlings inoculated with the most Al-tolerant Pisolithus inoculum showed significantly higher levels of N, P, Ca, Mg, and K and lower levels of Al than seedlings inoculated with Al-sensitive ecotypes of Pisolithus. These findings indicate an agreement between the fungal tolerance to Al in vitro and performance in symbiosis, indicating that both ECM-mediated mineral nutrient acquisition and Al accumulation are important in increasing the host plant Al tolerance.

  4. Implication of evolution and diversity in arbuscular and ectomycorrhizal symbioses.

    Science.gov (United States)

    Buscot, François

    2015-01-01

    Being highly sensitive to ecological variations, symbiotic associations should inherently have a limited occurrence in nature. To circumvent this sensitivity and reach their universal distribution, symbioses used three strategies during their evolution, which all generated high biodiversity levels: (i) specialization to a specific environment, (ii) protection of one partner via its internalization into the other, (iii) frequent partner exchange. Mycorrhizal associations follow the 3rd strategy, but also present traits of internalization. As most ancient type, arbuscular mycorrhiza (AM) formed by a monophyletic fungal group with reduced species richness did constantly support the mineral nutrition of terrestrial plants and enabled their ecological radiation and actual biodiversity level. In contrast ectomycorrhiza (EM) evolved later and independently within different taxa of fungi able to degrade complex organic plant residues, and the diversity levels of EM fungal and tree partners are balanced. Despite their different origins and diversity levels, AM and EM fungi display similar patterns of diversity dynamics in ecosystems. At each time or succession interval, a few dominant and many rare fungi are recruited by plants roots from a wide reservoir of propagules. However, the dominant fungal partners are frequently replaced in relation to changes in the vegetation or ecological conditions. While the initial establishment of AM and EM fungal communities corresponds to a neutral recruitment, their further succession is rather driven by niche differentiation dynamics. Copyright © 2014 The Authors. Published by Elsevier GmbH.. All rights reserved.

  5. New North American truffles (Tuber spp.) and their ectomycorrhizal associations

    Science.gov (United States)

    Gonzalo Guevara; Gregory Bonito; James M. Trappe; Efren Cázares; Gwendolyn Williams; Rosanne A. Healy; Christopher Schadt; Rytas. Vigalys

    2013-01-01

    Recent surveys of belowground fungal biodiversity in Mexico and USA have revealed many undescribed truffle species, including many in the genus Tuber. Here we describe seven new species: Tuber beyerlei, T. castilloi, T. guevarai, T. lauryi, T. mexiusanum, T. miquihuanense and T. walkeri. Phylogenetic analyses...

  6. Freezing tolerance of ectomycorrhizal fungi in pure culture.

    Science.gov (United States)

    Lehto, Tarja; Brosinsky, Arlena; Heinonen-Tanski, Helvi; Repo, Tapani

    2008-10-01

    The ability to survive freezing and thawing is a key factor for the existence of life forms in large parts of the world. However, little is known about the freezing tolerance of mycorrhizal fungi and their role in the freezing tolerance of mycorrhizas. Threshold temperatures for the survival of these fungi have not been assessed experimentally. We grew isolates of Suillus luteus, Suillus variegatus, Laccaria laccata, and Hebeloma sp. in liquid culture at room temperature. Subsequently, we exposed samples to a series of temperatures between +5 degrees C and -48 degrees C. Relative electrolyte leakage (REL) and re-growth measurements were used to assess the damage. The REL test indicated that the lethal temperature for 50% of samples (LT(50)) was between -8.3 degrees C and -13.5 degrees C. However, in the re-growth experiment, all isolates resumed growth after exposure to -8 degrees C and higher temperatures. As many as 64% of L. laccata samples but only 11% in S. variegatus survived -48 degrees C. There was no growth of Hebeloma and S. luteus after exposure to -48 degrees C, but part of their samples survived -30 degrees C. The fungi tolerated lower temperatures than was expected on the basis of earlier studies on fine roots of ectomycorrhizal trees. The most likely freezing tolerance mechanism here is tolerance to apoplastic freezing and the concomitant intracellular dehydration with consequent concentrating of cryoprotectant substances in cells. Studying the properties of fungi in isolation promotes the understanding of the role of the different partners of the mycorrhizal symbiosis in the freezing tolerance.

  7. Sharing rotting wood in the shade: ectomycorrhizal communities of co-occurring birch and hemlock seedlings

    Science.gov (United States)

    Sarah K. Poznanovic; Erik A. Lilleskov; Christopher R. Webster

    2015-01-01

    Coarse woody debris (CWD) is an important nursery environment for many tree species. Understanding the communities of ectomycorrhizal fungi (ECMF) and the effect of ECMF species on tree seedling condition in CWD will elucidate the potential for ECMF-mediated effects on seedling dynamics. In hemlock-dominated stands, we characterized ECMF communities associated with...

  8. The influence of inoculated and native ectomycorrhizal fungi on morphology, physiology and survival of American chestnut

    Science.gov (United States)

    Jenise M. Bauman; Carolyn H. Keiffer; Shiv. Hiremath

    2011-01-01

    The objective of this study was to evaluate the influence of five different species of ectomycorrhizal (ECM) fungi on root colonization of native fungi on putatively blight resistant chestnut hybrids (Castanea dentata x C. mollissima) in a reclaimed mine site in central Ohio. The five species were Hebeloma crustuliniforme, Laccaria bicolor,...

  9. Soil preparation methods promoting ectomycorrhizal colonization and American chestnut Castanea dentata establishment in coal mine restoration

    Science.gov (United States)

    Jenise M. Bauman; Carolyn H. Keiffer; Shiv Hiremath; Brian C. McCarthy

    2013-01-01

    The objective of this research was to evaluate soil subsurface methods that may aid in seedling establishment and encourage root colonization from a diverse group of ectomycorrhizal (ECM) fungi during restoration projects. American chestnut Castanea dentata Marsh. Borkh. and backcrossed chestnuts seedlings were planted on a reclaimed coal mine site...

  10. New and interesting ectomycorrhizal fungi from Puerto Rico, Mona, and Guana Islands

    Science.gov (United States)

    Orson K. Miller; D. Jean Lodge; Timothy J. Baroni

    2000-01-01

    A report of putative ectomycorrhizal fungi from Puerto Rico, Mona, and Guana Island in the Greater Antilles includes four species of Amanita, three of which are new species; two Lactarius, one is new, and two species of Boletus, one new. In addition, new distribution records of Phlebopus beniensis, Russula littoralis, Lactarius ferrugineus, a new small spored...

  11. Out of the Palaeotropics? Historical biogeography and diversification of the cosmopolitan ectomycorrhizal mushroom family Inocybaceae

    Science.gov (United States)

    P. Brandon Matheny; M. Catherine Aime; Neale L. Bougher; Bart Buyck; Dennis E. Desjardin; Egon Horak; Bradley R. Kropp; D. Jean Lodge; Kasem Soytong; James M. Trappe; David S. Hibbett

    2009-01-01

    The ectomycorrhizal (ECM) mushroom family Inocybaceae is widespread in north temperate regions, but more than 150 species are encountered in the tropics and the Southern Hemisphere. The relative roles of recent and ancient biogeographical processes, relationships with plant hosts, and the timing of divergences that have shaped the current geographic distribution of the...

  12. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors.

    Science.gov (United States)

    Shah, Firoz; Nicolás, César; Bentzer, Johan; Ellström, Magnus; Smits, Mark; Rineau, Francois; Canbäck, Björn; Floudas, Dimitrios; Carleer, Robert; Lackner, Gerald; Braesel, Jana; Hoffmeister, Dirk; Henrissat, Bernard; Ahrén, Dag; Johansson, Tomas; Hibbett, David S; Martin, Francis; Persson, Per; Tunlid, Anders

    2016-03-01

    Ectomycorrhizal fungi are thought to have a key role in mobilizing organic nitrogen that is trapped in soil organic matter (SOM). However, the extent to which ectomycorrhizal fungi decompose SOM and the mechanism by which they do so remain unclear, considering that they have lost many genes encoding lignocellulose-degrading enzymes that are present in their saprotrophic ancestors. Spectroscopic analyses and transcriptome profiling were used to examine the mechanisms by which five species of ectomycorrhizal fungi, representing at least four origins of symbiosis, decompose SOM extracted from forest soils. In the presence of glucose and when acquiring nitrogen, all species converted the organic matter in the SOM extract using oxidative mechanisms. The transcriptome expressed during oxidative decomposition has diverged over evolutionary time. Each species expressed a different set of transcripts encoding proteins associated with oxidation of lignocellulose by saprotrophic fungi. The decomposition 'toolbox' has diverged through differences in the regulation of orthologous genes, the formation of new genes by gene duplications, and the recruitment of genes from diverse but functionally similar enzyme families. The capacity to oxidize SOM appears to be common among ectomycorrhizal fungi. We propose that the ancestral decay mechanisms used primarily to obtain carbon have been adapted in symbiosis to scavenge nutrients instead. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  13. Characterization of three distinct metallothionein genes of the Ag-hyperaccumulating ectomycorrhizal fungus Amanita strobiliformis

    Czech Academy of Sciences Publication Activity Database

    Hložková, K.; Matěnová, M.; Žáčková, P.; Strnad, Hynek; Hršelová, Hana; Hroudová, Miluše; Kotrba, P.

    2016-01-01

    Roč. 120, č. 3 (2016), s. 358-369 ISSN 1878-6146 R&D Projects: GA ČR(CZ) GAP504/11/0484 Institutional support: RVO:61388971 ; RVO:68378050 Keywords : Ectomycorrhizal fungi * Gene expression * Metal binding * Metallothionein Subject RIV: EB - Genetics ; Molecular Biology; EE - Microbiology, Virology (MBU-M) Impact factor: 2.184, year: 2016

  14. Possible role of ectomycorrhizal fungi in cycling of aluminium in podzols

    NARCIS (Netherlands)

    Smits, M.M.; Hoffland, E.

    2009-01-01

    Budget studies in boreal podzols indicate a considerable upward transport of aluminium (Al) from the mineral soil into the organic horizon. In this paper we studied if ectomycorrhizal (EcM) fungi can be involved in this upward transport via their extramatrical hyphae. We tested the use of gallium

  15. Humic Acid-Like Material from Sewage Sludge Stimulates Culture Growth of Ectomycorrhizal Fungi in Vitro

    Czech Academy of Sciences Publication Activity Database

    Hršelová, Hana; Soukupová, Lucie; Gryndler, Milan

    2007-01-01

    Roč. 52, č. 6 (2007), s. 627-630 ISSN 0015-5632 R&D Projects: GA ČR GA526/06/0540 Institutional research plan: CEZ:AV0Z50200510 Keywords : ectomycorrhizal basidiomycetes * sewage sludge * humic-acid-like materials Subject RIV: EE - Microbiology, Virology Impact factor: 0.989, year: 2007

  16. Environment and host as large-scale controls of ectomycorrhizal fungi.

    Science.gov (United States)

    van der Linde, Sietse; Suz, Laura M; Orme, C David L; Cox, Filipa; Andreae, Henning; Asi, Endla; Atkinson, Bonnie; Benham, Sue; Carroll, Christopher; Cools, Nathalie; De Vos, Bruno; Dietrich, Hans-Peter; Eichhorn, Johannes; Gehrmann, Joachim; Grebenc, Tine; Gweon, Hyun S; Hansen, Karin; Jacob, Frank; Kristöfel, Ferdinand; Lech, Paweł; Manninger, Miklós; Martin, Jan; Meesenburg, Henning; Merilä, Päivi; Nicolas, Manuel; Pavlenda, Pavel; Rautio, Pasi; Schaub, Marcus; Schröck, Hans-Werner; Seidling, Walter; Šrámek, Vít; Thimonier, Anne; Thomsen, Iben Margrete; Titeux, Hugues; Vanguelova, Elena; Verstraeten, Arne; Vesterdal, Lars; Waldner, Peter; Wijk, Sture; Zhang, Yuxin; Žlindra, Daniel; Bidartondo, Martin I

    2018-06-06

    Explaining the large-scale diversity of soil organisms that drive biogeochemical processes-and their responses to environmental change-is critical. However, identifying consistent drivers of belowground diversity and abundance for some soil organisms at large spatial scales remains problematic. Here we investigate a major guild, the ectomycorrhizal fungi, across European forests at a spatial scale and resolution that is-to our knowledge-unprecedented, to explore key biotic and abiotic predictors of ectomycorrhizal diversity and to identify dominant responses and thresholds for change across complex environmental gradients. We show the effect of 38 host, environment, climate and geographical variables on ectomycorrhizal diversity, and define thresholds of community change for key variables. We quantify host specificity and reveal plasticity in functional traits involved in soil foraging across gradients. We conclude that environmental and host factors explain most of the variation in ectomycorrhizal diversity, that the environmental thresholds used as major ecosystem assessment tools need adjustment and that the importance of belowground specificity and plasticity has previously been underappreciated.

  17. Alternating Mupirocin/Gentamicin is Associated with Increased Risk of Fungal Peritonitis as Compared with Gentamicin Alone - Results of a Randomized Open-Label Controlled Trial.

    Science.gov (United States)

    Wong, Ping-Nam; Tong, Gensy M W; Wong, Yuk-Yi; Lo, Kin-Yee; Chan, Shuk-Fan; Lo, Man-Wai; Lo, Kwok-Chi; Ho, Lo-Yi; Tse, Cindy W S; Mak, Siu-Ka; Wong, Andrew K M

    2016-01-01

    vs 0.14/yr, p peritonitis (0.006/yr vs 0.03/yr, p peritonitis episodes, especially for those caused by gram-negative organisms. It was also not useful in reducing catheter-related infection due to opportunistic organisms but instead associated with a higher incidence of antibiotic-related fungal peritonitis. Copyright © 2016 International Society for Peritoneal Dialysis.

  18. The impact of selective-logging and forest clearance for oil palm on fungal communities in Borneo.

    Science.gov (United States)

    Kerfahi, Dorsaf; Tripathi, Binu M; Lee, Junghoon; Edwards, David P; Adams, Jonathan M

    2014-01-01

    Tropical forests are being rapidly altered by logging, and cleared for agriculture. Understanding the effects of these land use changes on soil fungi, which play vital roles in the soil ecosystem functioning and services, is a major conservation frontier. Using 454-pyrosequencing of the ITS1 region of extracted soil DNA, we compared communities of soil fungi between unlogged, once-logged, and twice-logged rainforest, and areas cleared for oil palm, in Sabah, Malaysia. Overall fungal community composition differed significantly between forest and oil palm plantation. The OTU richness and Chao 1 were higher in forest, compared to oil palm plantation. As a proportion of total reads, Basidiomycota were more abundant in forest soil, compared to oil palm plantation soil. The turnover of fungal OTUs across space, true β-diversity, was also higher in forest than oil palm plantation. Ectomycorrhizal (EcM) fungal abundance was significantly different between land uses, with highest relative abundance (out of total fungal reads) observed in unlogged forest soil, lower abundance in logged forest, and lowest in oil palm. In their entirety, these results indicate a pervasive effect of conversion to oil palm on fungal community structure. Such wholesale changes in fungal communities might impact the long-term sustainability of oil palm agriculture. Logging also has more subtle long term effects, on relative abundance of EcM fungi, which might affect tree recruitment and nutrient cycling. However, in general the logged forest retains most of the diversity and community composition of unlogged forest.

  19. Trace elements in fruiting bodies of ectomycorrhizal fungi growing in Scots pine (Pinus sylvestris L.) stands in Poland

    International Nuclear Information System (INIS)

    Rudawska, Maria; Leski, Tomasz

    2005-01-01

    The trace metal contents in fruiting bodies of ectomycorrhizal (ECM) fungi, symbiotic partners of Scots pine, were studied on three sites situated in west-central Poland. Elements were determined by atomic absorption spectrometry in 123 samples of 16 species. The study explored the differences in metal accumulation in relation to site, fungal species, age and part of the fruiting body and results were related to metal content in soil and plant material (roots and needles). Soil analysis revealed that results were obtained under environmental conditions not subject to strong anthropogenic pressure. Median metal concentrations did not differ disparately between sites, although the concentrations of each of the tested metals in the individual species varied to a large extent. Extremely high levels of Al with a large bioconcentration factor (BCF) were found in sporocarps of Thelephora terrestris. The spread between the highest and the lowest concentration (max/min) was very wide in Al, Cd and Pb and these elements may be considered to be absorbed preferentially by fruiting bodies of some species whereas Fe, Mn and Zn, with relatively low values of max/min, are normally absorbed by the majority of fungi. There was no clear relationship between caps and stipes in metal content. However, a tendency to higher metal concentration in the caps was observed. The metal content in young and older fruiting bodies of five different fungi was species dependent. In order to estimate the degree of accumulation of each element by plant and mushrooms, bioconcentration factors (BCFs) were calculated. In plant material (roots and needles), highest values of BCFs were noted for essential metals, like Zn and Mn. Lead showed a definite exclusion pattern (BCF below 1). In fruiting bodies of tested fungi, especially in Amanita muscaria, cadmium was the most intensively accumulated metal. Lead was excluded by plants but was accumulated or excluded by fungi depending on the species. The

  20. Fungal Genomics Program

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor

    2012-03-12

    The JGI Fungal Genomics Program aims to scale up sequencing and analysis of fungal genomes to explore the diversity of fungi important for energy and the environment, and to promote functional studies on a system level. Combining new sequencing technologies and comparative genomics tools, JGI is now leading the world in fungal genome sequencing and analysis. Over 120 sequenced fungal genomes with analytical tools are available via MycoCosm (www.jgi.doe.gov/fungi), a web-portal for fungal biologists. Our model of interacting with user communities, unique among other sequencing centers, helps organize these communities, improves genome annotation and analysis work, and facilitates new larger-scale genomic projects. This resulted in 20 high-profile papers published in 2011 alone and contributing to the Genomics Encyclopedia of Fungi, which targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts). Our next grand challenges include larger scale exploration of fungal diversity (1000 fungal genomes), developing molecular tools for DOE-relevant model organisms, and analysis of complex systems and metagenomes.

  1. Radiocaesium in the fungal compartment of forest ecosystems

    International Nuclear Information System (INIS)

    Vinichuk, Mykhaylo

    2003-01-01

    Fungi in forest ecosystems are major contributors to accumulation and cycling of radionuclides, especially radiocaesium. However, relatively little is known about uptake and retention of 137 Cs by fungal mycelia. This thesis comprises quantitative estimates of manually prepared mycelia of mainly ectomycorrhizal fungi and their possible role in the retention, turnover and accumulation of radiocaesium in contaminated forest ecosystems. The studies were conducted in two forests during 1996-1998 and 2000-2003. One was in Ovruch district, Zhytomyr region of Ukraine (51 deg 30 min N, 28 deg 95 min E), and the other at two Swedish forest sites: the first situated about 35 km northwest of Uppsala (60 deg 05 min N, 17 deg 25 min E) and the second at Hille in the vicinity of Gaevle (60 deg 85 min N, 17 deg 15 min E). The 137 Cs activity concentration was measured in prepared mycelia and corresponding soil layers. Various extraction procedures were used to study the retention and binding of 137 Cs in Of/Oh and Ah/B horizons of forest soil. 137 Cs was also extracted from the fruit bodies and mycelia of fungi. The fungal mycelium biomass was estimated and the percentage of the total inventory of 137 Cs bound in mycelia in the Ukrainian and Swedish forests was calculated. The estimated fungal biomass in Ukrainian forests varied from 0.07 to 70.4 mg/g soil, in Swedish forests between 3.6 and 19. 4 mg/g soil. Between 0.5 to 50 % of the total 137 Cs activity in the 0-10 cm soil profile was retained in the fungal mycelia. The 137 Cs activity concentration in mycelia was thus higher than that found in soil, and 137 Cs activity concentrations in the fruit bodies was higher than that in the mycelium. The survey study revealed that a major part, around 50 % of the plant-available 137 Cs in forest soil, was retained in the fungal mycelium. The most probable sources of 137 Cs for fungal mycelia and fruit bodies of fungi were found to be water soluble substances, humic matter

  2. Human Fungal Pathogens of Mucorales and Entomophthorales.

    Science.gov (United States)

    Mendoza, Leonel; Vilela, Raquel; Voelz, Kerstin; Ibrahim, Ashraf S; Voigt, Kerstin; Lee, Soo Chan

    2014-11-06

    In recent years, we have seen an increase in the number of immunocompromised cohorts as a result of infections and/or medical conditions, which has resulted in an increased incidence of fungal infections. Although rare, the incidence of infections caused by fungi belonging to basal fungal lineages is also continuously increasing. Basal fungal lineages diverged at an early point during the evolution of the fungal lineage, in which, in a simplified four-phylum fungal kingdom, Zygomycota and Chytridiomycota belong to the basal fungi, distinguishing them from Ascomycota and Basidiomycota. Currently there are no known human infections caused by fungi in Chytridiomycota; only Zygomycotan fungi are known to infect humans. Hence, infections caused by zygomycetes have been called zygomycosis, and the term "zygomycosis" is often used as a synonym for "mucormycosis." In the four-phylum fungal kingdom system, Zygomycota is classified mainly based on morphology, including the ability to form coenocytic (aseptated) hyphae and zygospores (sexual spores). In the Zygomycota, there are 10 known orders, two of which, the Mucorales and Entomophthorales, contain species that can infect humans, and the infection has historically been known as zygomycosis. However, recent multilocus sequence typing analyses (the fungal tree of life [AFTOL] project) revealed that the Zygomycota forms not a monophyletic clade but instead a polyphyletic clade, whereas Ascomycota and Basidiomycota are monophyletic. Thus, the term "zygomycosis" needed to be further specified, resulting in the terms "mucormycosis" and "entomophthoramycosis." This review covers these two different types of fungal infections. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  3. Fungal Skin Infections

    Science.gov (United States)

    ... Abbreviations Weights & Measures ENGLISH View Professional English Deutsch Japanese Espaniol Find information on medical topics, symptoms, drugs, ... touching the infected area. Diagnosis Skin scrapings or cultures Doctors may suspect a fungal infection when they ...

  4. JGI Fungal Genomics Program

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2011-03-14

    Genomes of energy and environment fungi are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 50 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such 'parts' suggested by comparative genomics and functional analysis in these areas are presented here

  5. Fungal symbiosis unearthed

    Science.gov (United States)

    Daniel Cullen

    2008-01-01

    Associations between plant roots and fungi are a feature of many terrestrial ecosystems. The genome sequence of a prominent fungal partner opens new avenues for studying such mycorrhizal interactions....

  6. Systems biology of fungal infection

    Directory of Open Access Journals (Sweden)

    Fabian eHorn

    2012-04-01

    Full Text Available Elucidation of pathogenicity mechanisms of the most important human pathogenic fungi, Aspergillus fumigatus and Candida albicans, has gained great interest in the light of the steadily increasing number of cases of invasive fungal infections.A key feature of these infections is the interaction of the different fungal morphotypes with epithelial and immune effector cells in the human host. Because of the high level of complexity, it is necessary to describe and understand invasive fungal infection by taking a systems biological approach, i.e., by a comprehensive quantitative analysis of the non-linear and selective interactions of a large number of functionally diverse, and frequently multifunctional, sets of elements, e.g., genes, proteins, metabolites, which produce coherent and emergent behaviours in time and space. The recent advances in systems biology will now make it possible to uncover the structure and dynamics of molecular and cellular cause-effect relationships within these pathogenic interactions.We review current efforts to integrate omics and image-based data of host-pathogen interactions into network and spatio-temporal models. The modelling will help to elucidate pathogenicity mechanisms and to identify diagnostic biomarkers and potential drug targets for therapy and could thus pave the way for novel intervention strategies based on novel antifungal drugs and cell therapy.

  7. Expression of cytokines in aqueous humor from fungal keratitis patients.

    Science.gov (United States)

    Zhang, Yingnan; Liang, Qingfeng; Liu, Yang; Pan, Zhiqiang; Baudouin, Christophe; Labbé, Antoine; Lu, Qingxian

    2018-04-19

    Although a series of reports on corneal fungal infection have been published, studies on pathogenic mechanisms and inflammation-associated cytokines remain limited. In this study, aqueous humor samples from fungal keratitis patients were collected to examine cytokine patterns and cellular profile for the pathogenesis of fungal keratitis. The aqueous humor samples were collected from ten patients with advanced stage fungal keratitis. Eight aqueous humor samples from patients with keratoconus or corneal dystrophy were taken as control. Approximately 100 μl to 300 μl of aqueous humor in each case were obtained for examination. The aqueous humor samples were centrifuged and the cells were stained and examined under optical microscope. Bacterial and fungal cultures were performed on the aqueous humor and corneal buttons of all patients. Cytokines related to inflammation including IL-1β, IL-6, IL-8, IL-10, TNF-α, and IFN-γ were examined using multiplex bead-based Luminex liquid protein array systems. Fungus infection was confirmed in these ten patients by smear stains and/or fungal cultures. Bacterial and fungal cultures revealed negative results in all aqueous humor specimens. Polymorphonuclear leukocytes were the predominant infiltrating cells in the aqueous humor of fungal keratitis. At the advanced stages of fungal keratitis, the levels of IL-1β, IL-6, IL-8, and IFN-γ in the aqueous humor were significantly increased when compared with control (phumor was associated with fungal keratitis.

  8. Radiocaesium in fruitbodies and mycorrhizae in ectomycorrhizal fungi

    International Nuclear Information System (INIS)

    Nikolova, Ivanka; Johanson, K.J.; Dahlberg, Anders

    1997-01-01

    Fruitbodies of Suillus variegatus and Lactarius rufus and, at a maximum distance of 50 cm, the corresponding mycorrhizae, were collected on a rocky area in a coniferous forest. The tuberculate mycorrhizae collected close to S. variegatus fruitbodies were identified by the RFLP pattern to be S. variegatus mycorrhizae. In contrast the smooth brown mycorrhizae collected close to fruitbodies of L. rufus were found to be of various species - L. rufus, but also Russula sp. The 137 Cs activity concentrations in fruitbodies and the fungal part of the tuburculate mycorrhizae of S. variegatus were about the same. A local enrichment of 137 Cs within fruitbodies was studied by collecting fruitbodies growing in clusters. Between 13 and 64% of the mean ground 137 Cs deposition of the cluster area (400 or 625 cm 2 ) was found in the fruitbodies. This indicates that there might be an important fungal redistribution of 137 Cs in the forest floor during the production of fruitbodies. The distribution of 137 Cs within the fruitbodies was heterogenous. For example in Cortinarious armillatus, the 137 Cs level in the cap was 2.7 times higher compared to in the stripe. (Author)

  9. Radiocaesium in fruitbodies and mycorrhizae in ectomycorrhizal fungi

    Energy Technology Data Exchange (ETDEWEB)

    Nikolova, Ivanka [N. Pouskharov Inst. of Soil Sciences and Agroecology, Sofia (Bulgaria); Johanson, K.J. [Swedish Univ. of Agricultural Sciences, Radioecology Dept., Uppsala (Sweden); Dahlberg, Anders [Swedish Univ. of Agricultural Sciences, Forest Mycology and Pathology Dept., Uppsala (Sweden)

    1997-12-31

    Fruitbodies of Suillus variegatus and Lactarius rufus and, at a maximum distance of 50 cm, the corresponding mycorrhizae, were collected on a rocky area in a coniferous forest. The tuberculate mycorrhizae collected close to S. variegatus fruitbodies were identified by the RFLP pattern to be S. variegatus mycorrhizae. In contrast the smooth brown mycorrhizae collected close to fruitbodies of L. rufus were found to be of various species - L. rufus, but also Russula sp. The {sup 137}Cs activity concentrations in fruitbodies and the fungal part of the tuburculate mycorrhizae of S. variegatus were about the same. A local enrichment of {sup 137}Cs within fruitbodies was studied by collecting fruitbodies growing in clusters. Between 13 and 64% of the mean ground {sup 137}Cs deposition of the cluster area (400 or 625 cm{sup 2}) was found in the fruitbodies. This indicates that there might be an important fungal redistribution of {sup 137}Cs in the forest floor during the production of fruitbodies. The distribution of {sup 137}Cs within the fruitbodies was heterogenous. For example in Cortinarious armillatus, the {sup 137}Cs level in the cap was 2.7 times higher compared to in the stripe. (Author).

  10. Limited transfer of nitrogen between wood decomposing and ectomycorrhizal mycelia when studied in the field

    DEFF Research Database (Denmark)

    Wallander, Håkan; Lindahl, Björn D.; Nilsson, Lars Ola

    2006-01-01

    was compared to the amount of 15N released from the wood-decomposing mycelia into the soil solution as 15N-NH4. The study was performed in peat-filled plastic containers placed in forest soil in the field. The wood-decomposing mycelium was growing from an inoculated wood piece and the ectomycorrhizal mycelium...... from an introduced root from a mature tree. The containers were harvested after 41 weeks when physical contact between the two foraging mycelia was established. At harvest, 15N content was analyzed in the peat (total N and 15NH4+) and in the mycorrhizal roots. A limited amount of 15N was transferred...... to the ectomycorrhizal fungus and this transfer could be explained by 15NH4+ released from the wooddecomposing fungus without involving any antagonistic interactions between the two mycelia. Using our approach, it was possible to study nutritional interactions between basidiomycete mycelia under field conditions...

  11. A novel, highly conserved metallothionein family in basidiomycete fungi and characterization of two representative SlMTa and SlMTb genes in the ectomycorrhizal fungus Suillus luteus.

    Science.gov (United States)

    Nguyen, Hoai; Rineau, François; Vangronsveld, Jaco; Cuypers, Ann; Colpaert, Jan V; Ruytinx, Joske

    2017-07-01

    The basidiomycete Suillus luteus is an important member of the ectomycorrhizal community that thrives in heavy metal polluted soils covered with pioneer pine forests. This study aimed to identify potential heavy metal chelators in S. luteus. Two metallothionein (MT) coding genes, SlMTa and SlMTb, were identified. When heterologously expressed in yeast, both SlMTa and SlMTb can rescue the Cu sensitive mutant from Cu toxicity. In S. luteus, transcription of both SlMTa and SlMTb is induced by Cu but not Cd or Zn. Several putative Cu-sensing and metal-response elements are present in the promoter sequences. These results indicate that SlMTa and SlMTb function as Cu-thioneins. Homologs of the S. luteus MTs are present in 49 species belonging to 10 different orders of the subphylum Agaricomycotina and are remarkably conserved. The length of the proteins, number and distribution of cysteine residues indicate a novel family of fungal MTs. The ubiquitous and highly conserved features of these MTs suggest that they are important for basic cellular functions in species in the subphylum Agaricomycotina. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Ericaceous dwarf shrubs affect ectomycorrhizal fungal community of the invasive Pinus strobus and native Pinus sylvestris in a pot experiment

    Czech Academy of Sciences Publication Activity Database

    Kohout, Petr; Sýkorová, Zuzana; Bahram, M.; Hadincová, Věroslava; Albrechtová, Jana; Tedersoo, L.; Vohník, Martin

    2011-01-01

    Roč. 21, č. 5 (2011), s. 403-412 ISSN 0940-6360 Institutional research plan: CEZ:AV0Z60050516 Keywords : plant invasions * mycorrhizal symbioses * seedlings establishment Subject RIV: EF - Botanics Impact factor: 2.630, year: 2011

  13. Isolation and characterization of microsatellite loci from the ectomycorrhizal basidiomycete Suillus luteus

    OpenAIRE

    Muller, L.; LAMBAERTS, Marc; VANGRONSVELD, Jaco; COLPAERT, Jan

    2006-01-01

    Eight microsatellite loci were isolated from the ectomycorrhizal basidiomycete Suillus luteus using a dual-suppression-polymerase chain reaction (PCR) method. In a test sample of 40 isolates, the total number of alleles per locus and the expected heterozygosities ranged from five to 16 and from 0.532 to 0.811, respectively. These highly polymorphic markers allow an accurate description of the genetic diversity and structure of S. luteus populations.

  14. Decomposition, nitrogen and phosphorus mineralization from beech leaf litter colonized with ectomycorrhizal or litter decomposing basidiomycetes

    OpenAIRE

    COLPAERT, Jan; VAN TICHELEN, Katia

    1996-01-01

    The decomposition and the nitrogen and phosphorus mineralization of fresh beech (Fagus sylvatica L.) leaf litter are described. Leaves were buried for up to 6 months in plant containers in which Scots pine (Pinus sylvestris L.) seedlings were cultivated at a low rate of nutrient addition. The saprotrophic abilities of three ectomycorrhizal fungi, Thelephora terrestris Ehrh.: Fr., Suillus bovinus (L.: Fr.) O. Kuntze and Paxillus involutes (Batsch: Fr) Fr., were compared with the degradation ca...

  15. Rapid extirpation of a North American frog coincides with an increase in fungal pathogen prevalence: Historical analysis and implications for reintroduction.

    Science.gov (United States)

    Adams, Andrea J; Pessier, Allan P; Briggs, Cheryl J

    2017-12-01

    As extinctions continue across the globe, conservation biologists are turning to species reintroduction programs as one optimistic tool for addressing the biodiversity crisis. For repatriation to become a viable strategy, fundamental prerequisites include determining the causes of declines and assessing whether the causes persist in the environment. Invasive species-especially pathogens-are an increasingly significant factor contributing to biodiversity loss. We hypothesized that Batrachochytrium dendrobatidis (Bd), the causative agent of the deadly amphibian disease chytridiomycosis, was important in the rapid (herpetological experts, analysis of archived field notes and museum specimen collections, and field sampling of the extant amphibian assemblage to examine (1) historical relative abundance of R. boylii ; (2) potential causes of R. boylii declines; and (3) historical and contemporary prevalence of Bd. We found that R. boylii were relatively abundant prior to their rapid extirpation, and an increase in Bd prevalence coincided with R. boylii declines during a time of rapid change in the region, wherein backcountry recreation, urban development, and the amphibian pet trade were all on the rise. In addition, extreme flooding during the winter of 1969 coincided with localized extirpations in R. boylii populations observed by interview respondents. We conclude that Bd likely played an important role in the rapid extirpation of R. boylii from southern California and that multiple natural and anthropogenic factors may have worked in concert to make this possible in a relatively short period of time. This study emphasizes the importance of recognizing historical ecological contexts in making future management and reintroduction decisions.

  16. The Paleozoic origin of enzymatic mechanisms for lignin degradation reconstructed using 31 fungal genomes

    Energy Technology Data Exchange (ETDEWEB)

    Floudas, Dimitrios; Binder, Manfred; Riley, Robert; Barry, Kerrie; Blanchette, Robert A; Henrissat, Bernard; Martinez, Angel T.; Otillar, Robert; Spatafora, Joseph W.; Yadav, Jagit S.; Aerts, Andrea; Benoit, Isabelle; Boyd, Alex; Carlson, Alexis; Copeland, Alex; Coutinho, Pedro M.; de Vries, Ronald P.; Ferreira, Patricia; Findley, Keisha; Foster, Brian; Gaskell, Jill; Glotzer, Dylan; Gorecki, Pawel; Heitman, Joseph; Hesse, Cedar; Hori, Chiaki; Igarashi, Kiyohiko; Jurgens, Joel A.; Kallen, Nathan; Kersten, Phil; Kohler, Annegret; Kues, Ursula; Kumar, T. K. Arun; Kuo, Alan; LaButti, Kurt; Larrondo, Luis F.; Lindquist, Erika; Ling, Albee; Lombard, Vincent; Lucas, Susan; Lundell, Taina; Martin, Rachael; McLaughlin, David J.; Morgenstern, Ingo; Morin, Emanuelle; Murat, Claude; Nagy, Laszlo G.; Nolan, Matt; Ohm, Robin A.; Patyshakuliyeva, Aleksandrina; Rokas, Antonis; Ruiz-Duenas, Francisco J.; Sabat, Grzegorz; Salamov, Asaf; Samejima, Masahiro; Schmutz, Jeremy; Slot, Jason C.; John, Franz; Stenlid, Jan; Sun, Hui; Sun, Sheng; Syed, Khajamohiddin; Tsang, Adrian; Wiebenga, Ad; Young, Darcy; Pisabarro, Antonio; Eastwood, Daniel C.; Martin, Francis; Cullen, Dan; Grigoriev, Igor V.; Hibbett, David S.

    2012-03-12

    Wood is a major pool of organic carbon that is highly resistant to decay, owing largely to the presence of lignin. The only organisms capable of substantial lignin decay are white rot fungi in the Agaricomycetes, which also contains non?lignin-degrading brown rot and ectomycorrhizal species. Comparative analyses of 31 fungal genomes (12 generated for this study) suggest that lignin-degrading peroxidases expanded in the lineage leading to the ancestor of the Agaricomycetes, which is reconstructed as a white rot species, and then contracted in parallel lineages leading to brown rot and mycorrhizal species. Molecular clock analyses suggest that the origin of lignin degradation might have coincided with the sharp decrease in the rate of organic carbon burial around the end of the Carboniferous period.

  17. Forests trapped in nitrogen limitation--an ecological market perspective on ectomycorrhizal symbiosis.

    Science.gov (United States)

    Franklin, Oskar; Näsholm, Torgny; Högberg, Peter; Högberg, Mona N

    2014-07-01

    Ectomycorrhizal symbiosis is omnipresent in boreal forests, where it is assumed to benefit plant growth. However, experiments show inconsistent benefits for plants and volatility of individual partnerships, which calls for a re-evaluation of the presumed role of this symbiosis. We reconcile these inconsistencies by developing a model that demonstrates how mycorrhizal networking and market mechanisms shape the strategies of individual plants and fungi to promote symbiotic stability at the ecosystem level. The model predicts that plants switch abruptly from a mixed strategy with both mycorrhizal and nonmycorrhizal roots to a purely mycorrhizal strategy as soil nitrogen availability declines, in agreement with the frequency distribution of ectomycorrhizal colonization intensity across a wide-ranging data set. In line with observations in field-scale isotope labeling experiments, the model explains why ectomycorrhizal symbiosis does not alleviate plant nitrogen limitation. Instead, market mechanisms may generate self-stabilization of the mycorrhizal strategy via nitrogen depletion feedback, even if plant growth is ultimately reduced. We suggest that this feedback mechanism maintains the strong nitrogen limitation ubiquitous in boreal forests. The mechanism may also have the capacity to eliminate or even reverse the expected positive effect of rising CO2 on tree growth in strongly nitrogen-limited boreal forests. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  18. Forests trapped in nitrogen limitation – an ecological market perspective on ectomycorrhizal symbiosis

    Science.gov (United States)

    Franklin, Oskar; Näsholm, Torgny; Högberg, Peter; Högberg, Mona N

    2014-01-01

    Ectomycorrhizal symbiosis is omnipresent in boreal forests, where it is assumed to benefit plant growth. However, experiments show inconsistent benefits for plants and volatility of individual partnerships, which calls for a re-evaluation of the presumed role of this symbiosis. We reconcile these inconsistencies by developing a model that demonstrates how mycorrhizal networking and market mechanisms shape the strategies of individual plants and fungi to promote symbiotic stability at the ecosystem level. The model predicts that plants switch abruptly from a mixed strategy with both mycorrhizal and nonmycorrhizal roots to a purely mycorrhizal strategy as soil nitrogen availability declines, in agreement with the frequency distribution of ectomycorrhizal colonization intensity across a wide-ranging data set. In line with observations in field-scale isotope labeling experiments, the model explains why ectomycorrhizal symbiosis does not alleviate plant nitrogen limitation. Instead, market mechanisms may generate self-stabilization of the mycorrhizal strategy via nitrogen depletion feedback, even if plant growth is ultimately reduced. We suggest that this feedback mechanism maintains the strong nitrogen limitation ubiquitous in boreal forests. The mechanism may also have the capacity to eliminate or even reverse the expected positive effect of rising CO2 on tree growth in strongly nitrogen-limited boreal forests. PMID:24824576

  19. Oregano (Lippia graveolens) essential oil added within pectin edible coatings prevents fungal decay and increases the antioxidant capacity of treated tomatoes.

    Science.gov (United States)

    Rodriguez-Garcia, Isela; Cruz-Valenzuela, M Reynaldo; Silva-Espinoza, Brenda A; Gonzalez-Aguilar, Gustavo A; Moctezuma, Edgar; Gutierrez-Pacheco, M Melissa; Tapia-Rodriguez, Melvin R; Ortega-Ramirez, Luis A; Ayala-Zavala, J Fernando

    2016-08-01

    Tomato is a fruit widely consumed due to its flavor and nutritional value; however, it is susceptible to fungi contamination. Oregano essential oil (OEO) is a fungicide whose constituents are volatile; therefore, their incorporation within edible coatings can protect them and maintain their efficacy. In this context, this study evaluated the effect of OEO applied within pectin coatings on the inhibition of Alternaria alternata growth, antioxidant content and sensorial acceptability of tomatoes. The major volatile compounds of OEO were carvacrol (47.41%), p-cymene (26.44%) and thymol (3.02%). All the applied OEO concentrations (15.7, 25.9 and 36.1 g L(-1) ) inhibited the in vitro growth of A. alternata, whereas the in vivo effective concentrations were 25.9 and 36.1 g L(-1) . Additionally, there was an increment of total phenols and antioxidant activity in coated tomatoes compared to controls. Aroma acceptability of tomatoes was not affected by the pectin-OEO coating; additionally, the pectin, pectin-OEO 15.7 g L(-1) treatments and control tomatoes showed higher flavor acceptability than those coated with pectin-OEO 25.9 and 36.1 g L(-1) . Pectin-OEO coatings showed antifungal effect and increased the antioxidant activity without negative effects on the sensorial acceptability of tomatoes. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  20. Fungal genomics beyond Saccharomyces cerevisiae?

    DEFF Research Database (Denmark)

    Hofmann, Gerald; Mcintyre, Mhairi; Nielsen, Jens

    2003-01-01

    Fungi are used extensively in both fundamental research and industrial applications. Saccharomyces cerevisiae has been the model organism for fungal research for many years, particularly in functional genomics. However, considering the diversity within the fungal kingdom, it is obvious...

  1. Assessment of the Effectiveness of Ectomycorrhizal Inocula to Promote Growth and Root Ectomycorrhizal Colonization in Pinus patula Seedlings Using the Most Probable Number Technique

    Directory of Open Access Journals (Sweden)

    Manuel Restrepo-Llano

    2014-01-01

    Full Text Available The aim of this study was to evaluate the response of Pinus patula seedlings to two inocula types: soil from a Pinus plantation (ES and an in vitro produced inoculum (EM. The most probable number method (MPN was used to quantify ectomycorrhizal propagule density (EPD in both inocula in a 7-order dilution series ranging from 100 (undiluted inoculum to 10−6 (the most diluted inoculum. The MPN method allowed establishing differences in the number of infective ectomycorrhizal propagules’ density (EPD (ES=34 per g; EM=156 per g. The results suggest that the EPD of an inoculum may be a key factor that influences the successfulness of the inoculation. The low EPD of the ES inoculum suggests that soil extracted from forest plantations had very low effectiveness for promoting root colonization and plant growth. In contrast, the high EPD found in the formulated inoculum (EM reinforced the idea that it is better to use proven high quality inocula for forest nurseries than using soil from a forestry plantation.

  2. 137Cs in the fungal compartment of Swedish forest soils

    International Nuclear Information System (INIS)

    Vinichuk, Mykhaylo M.; Johanson, Karl J.; Taylor, Andy F.S.

    2004-01-01

    The 137 Cs activities in soil profiles and in the mycelia of four ectomycorrhizal fungi were studied in a Swedish forest in an attempt to understand the mechanisms governing the transfer and retention of 137 Cs in forest soil. The biomass of four species of fungi was determined and estimated to be 16 g m -2 in a peat soil and 47-189 g m -2 in non-peat soil to the depth of 10 cm. The vertical distribution was rather homogeneous for two species (Tylospora spp. and Piloderma fallax) and very superficial for Hydnellum peckii. Most of the 137 Cs activity in mycelium of non-peat soils was found in the upper 5 cm. Transfer factors were quite high even for those species producing resupinate sporocarps. In the peat soil only approximately 0.3% of the total 137 Cs inventory in soil was found in the fungal mycelium. The corresponding values for non-peat soil were 1.3, 1.8 and 1.9%

  3. Fungal prostatitis: an update.

    Science.gov (United States)

    Mayayo, Emilio; Fernández-Silva, Fabiola

    2014-06-01

    Prostate pathology is a daily occurrence in urological and general medical consultations. Besides hyperplasia and neoplastic pathology, other processes, such as infectious ones, are also documented. Their etiology is diverse and varied. Within the infectious prostatic processes, fungi can also be a specific cause of prostatitis. Fungal prostatitis often appears in patients with impaired immunity and can also be rarely found in healthy patients. It can result from a disseminated infection, but it can also be localized. Fungal prostatitis is a nonspecific and harmless process. Diagnosis is commonly made by fine needle aspiration cytology or by biopsy. A number of fungi can be involved. Although there are not many reported cases, they are becoming more frequent, in particular in patients with some degree of immunodeficiency or those who live in areas where specific fungi are endemic or in visitors of those areas. We present a comprehensive review of the various forms of fungal prostatitis, and we describe the morphological characteristics of the fungi more frequently reported as causes of fungal prostatitis. We also report our own experience, aiming to alert physicians, urologists and pathologists of these particular infections.

  4. Fungal Wound Infection

    Centers for Disease Control (CDC) Podcasts

    2016-01-28

    Dr. David Tribble, acting director of the infectious disease clinical research program at Uniformed Services University of the Health Sciences, discusses fungal wound infections after combat trauma.  Created: 1/28/2016 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 1/28/2016.

  5. The Fungal Kingdom

    NARCIS (Netherlands)

    Heitman, Joseph; Howlett, B.J.; Crous, P.W.; Stukenbrock, E.H.; James, T.Y.; Gow, N.A.R.

    2017-01-01

    Fungi research and knowledge grew rapidly following recent advances in genetics and genomics. This book synthesizes new knowledge with existing information to stimulate new scientific questions and propel fungal scientists on to the next stages of research. This book is a comprehensive guide on

  6. Fungal community in sclerotia of Japanese Beech forest soils in north eastern Japan

    Science.gov (United States)

    Fathia Amasya, Anzilni; Narisawa, Kazuhiko; Watanabe, Makiko

    2014-05-01

    Sclerotia are resting structures of ectomycorrhizal fungi and appear as a response to unfavorable environmental conditions such as desiccation. They are hard, black, comparatively smooth and mostly spherical. Sclerotia are formed in rhizosphere and the 14C ages of sclerotia from A horizons of volcanic ash soils may range from modern until ca. 100~1,200 yr B.P. Most sclerotia-forming fungal species are known to be host-specific plant pathogens and therefore their abundance may indicate the presence of their host plants. The purpose of this study was to investigate fungal communities in sclerotia with an interest in describing the existing or may have previously existed host plant community. To investigate fungal community inside of sclerotia by 16S rDNA gene clone library, several hundred of sclerotia (ca. 1g) were collected from Fagus crenata forest soil in north eastern Japan. The rDNA ITS regions were then amplified by the PCR using primer pair ITS-1F/ITS-4. Aliquots of the amplified DNA were digested with restriction endonucleases AluI, Hae III, and HhaI to obtain ITS-RFLPs. To obtain the fungal community profiles a quenching fluorescence primer was used for real-time quantitative PCR (qPCR) assay to monitor the PCR amplification and then used for T-RFLP. The predominant group determined by clone library analysis from the sclerotia was Ascomycota: Arthrinium arundinis, which has been reported to be one of the soil fungal species responsible for bamboo degradation and a pathogen for many species belonging to Poaceae family.

  7. Contenido de nutrientes e inoculación con hongos ectomicorrízicos comestibles en dos pinos neotropicales Nutrient contents and inoculation with edible ectomycorrhizal fungi on two neotropical pines

    Directory of Open Access Journals (Sweden)

    VIOLETA CARRASCO-HERNÁNDEZ

    2011-03-01

    stimulate their growth. Due to the ecological and physiological importance of the ectomycorrhizal fungi, this work evaluated the effect in terms of growth, dry weight, percentage of colonization and nutrient content as a result of the inoculation with six edible ectomycorrhizal fungi within the genera Laccaria and Hebeloma on Pinus patula Schiede ex Schltdl. & Cham. and P.pseudostrobus Lindl. under greenhouse conditions. 397 days after sowing, it was observed a beneficial effect in terms of growth and dry weight of aerial and radical parts, as well as a higher contents of N, P and K of both pines as a result of the inoculation. The percentage of mycorrhization in plants inoculated with the fungi species ranged from 57 % to 90 %. When combined inoculation of ectomycorrhizal species was carried out, dominance of one of the inoculated species, in terms of root colonization, was observed. In these treatments with simultaneous inoculation, the beneficial effects reported in the hosts were comparable with those observed in plants inoculated exclusively with the dominant fungal species. According to the results, the inoculation of P. patula and P. pseudostrobus with fungal species of the genera Laccaria and Hebeloma is recommended in the establishment of forest plantations.

  8. Optimal Fungal Space Searching Algorithms.

    Science.gov (United States)

    Asenova, Elitsa; Lin, Hsin-Yu; Fu, Eileen; Nicolau, Dan V; Nicolau, Dan V

    2016-10-01

    Previous experiments have shown that fungi use an efficient natural algorithm for searching the space available for their growth in micro-confined networks, e.g., mazes. This natural "master" algorithm, which comprises two "slave" sub-algorithms, i.e., collision-induced branching and directional memory, has been shown to be more efficient than alternatives, with one, or the other, or both sub-algorithms turned off. In contrast, the present contribution compares the performance of the fungal natural algorithm against several standard artificial homologues. It was found that the space-searching fungal algorithm consistently outperforms uninformed algorithms, such as Depth-First-Search (DFS). Furthermore, while the natural algorithm is inferior to informed ones, such as A*, this under-performance does not importantly increase with the increase of the size of the maze. These findings suggest that a systematic effort of harvesting the natural space searching algorithms used by microorganisms is warranted and possibly overdue. These natural algorithms, if efficient, can be reverse-engineered for graph and tree search strategies.

  9. [Iron and invasive fungal infection].

    Science.gov (United States)

    Álvarez, Florencio; Fernández-Ruiz, Mario; Aguado, José María

    2013-01-01

    Iron is an essential factor for both the growth and virulence of most of microorganisms. As a part of the innate (or nutritional) immune system, mammals have developed different mechanisms to store and transport this element in order to limit free iron bioavailability. To survive in this hostile environment, pathogenic fungi have specific uptake systems for host iron sources, one of the most important of which is based on the synthesis of siderophores-soluble, low-molecular-mass, high-affinity iron chelators. The increase in free iron that results from iron-overload conditions is a well-established risk factor for invasive fungal infection (IFI) such as mucormycosis or aspergillosis. Therefore, iron chelation may be an appealing therapeutic option for these infections. Nevertheless, deferoxamine -the first approved iron chelator- paradoxically increases the incidence of IFI, as it serves as a xeno-siderophore to Mucorales. On the contrary, the new oral iron chelators (deferiprone and deferasirox) have shown to exert a deleterious effect on fungal growth both in vitro and in animal models. The present review focuses on the role of iron metabolism in the pathogenesis of IFI and summarises the preclinical data, as well as the limited clinical experience so far, in the use of new iron chelators as treatment for mucormycosis and invasive aspergillosis. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  10. Scale-dependent variation in nitrogen cycling and soil fungal communities along gradients of forest composition and age in regenerating tropical dry forests.

    Science.gov (United States)

    Waring, Bonnie G; Adams, Rachel; Branco, Sara; Powers, Jennifer S

    2016-01-01

    Rates of ecosystem nitrogen (N) cycling may be mediated by the presence of ectomycorrhizal fungi, which compete directly with free-living microbes for N. In the regenerating tropical dry forests of Central America, the distribution of ectomycorrhizal trees is affected by succession and soil parent material, both of which may exert independent influence over soil N fluxes. In order to quantify these interacting controls, we used a scale-explicit sampling strategy to examine soil N cycling at scales ranging from the microsite to ecosystem level. We measured fungal community composition, total and inorganic N pools, gross proteolytic rate, net N mineralization and microbial extracellular enzyme activity at multiple locations within 18 permanent plots that span dramatic gradients of soil N concentration, stand age and forest composition. The ratio of inorganic to organic N cycling was correlated with variation in fungal community structure, consistent with a strong influence of ectomycorrhiza on ecosystem-scale N cycling. However, on average, > 61% of the variation in soil biogeochemistry occurred within plots, and the effects of forest composition were mediated by this local-scale heterogeneity in total soil N concentrations. These cross-scale interactions demonstrate the importance of a spatially explicit approach towards an understanding of controls on element cycling. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  11. Plant Signals Disrupt (regulate?) Arbuscular Mycorrhizal Fungal Growth Under Enhanced Ozone and CO2 Growing Conditions for Populus tremuloides

    Science.gov (United States)

    Miller, R. M.; Podila, G. K.

    2008-12-01

    An understanding of the genetic determinants of keystone symbiotic relationships is essential to elucidating adaptive mechanisms influencing higher-order processes, including shifts in community composition following environmental perturbations. The Aspen FACE project offers a unique opportunity to address adaptive processes with an imposed three way interaction experiment composed of the atmospheric pollutant ozone (eO3), elevated CO2 (eCO2) fumigations, five Populus tremuloides (aspen) genotypes, and both arbuscular mycorrhizal and ectomycorrhizal fungal interactions. The 10 year time span of this experiment has allowed for a realistic and mechanistic understanding of above ground responses of the aspen genotypes to eCO2, eO3 and the interaction effects of eCO2 and eO3. Even so, treatment influences to the below ground, including carbon allocation to roots and associated mycorrhizal symbionts, and rhizosphere dynamics are just beginning to be understood. We hypothesized that mycorrhizal fungal responses to eCO2, eO3, and the interaction effects of eCO2+eO3 are conditioned by the degree of response of their aspen hosts. We intend to describe the molecular mechanisms of an important critical interaction between host and fungus using microarray analysis of expression profiles, as well as metabolic profiling of aspen roots and their associated mycorrhizal partner, the arbuscular mycorrhizal fungus (AMF) Glomus intraradices, under eCO2, eO3 and eCO2+eO3. We present evidence that host-derived factors, expressed in response to eCO2+eO3, trigger responses in Glomus leading to the partitioning or metabolic shift in lipid biosynthesis that is associated with reduced extraradical hyphae growth and altered lipid metabolism. We then scale these lower-level responses to give better insight to fungal intraradical and extraradical allocation of biomass and fungal and root lipid and carbohydrate content in association with aspen genotype responses to the imposed treatments. By

  12. Secretome discovery reveals lignocellulose degradation capacity of the ectomycorrhizal fungus Paxillus involutus

    DEFF Research Database (Denmark)

    Roth, Doris; Rineau, Francois; Olsen, Peter B.

    2011-01-01

    To improve our understanding of the role ectomycorrhizal fungi play in biomass conversion, we studied the transcriptome of P. involutus grown on glass beads in extract of soil organic matter. The mycelium was used for a cDNA library screened by Transposon-Assisted Signal Trapping (TAST*) for gene...... the brown rot fungi systems. In addition, GH61 apparently acts as accessory protein both in enzymatic and in radical-based cellulolysis. * Becker et al., J. Microbial Methods, 2004, 57(1), 123-33....

  13. Acute fungal sinusitis in neutropenic patients of Namazi hospital/ Shiraz

    Directory of Open Access Journals (Sweden)

    Parisa Badiee

    2008-09-01

    Full Text Available Introduction: Fungal sinusitis is a well known disease in immunocompromised patients, but recently many reports have indicated an increased prevalence of fungal sinusitis in otherwise healthy individuals. The aim of this study was to assess the frequency of invasive fungal sinusitis (IFS in neutropenic patients and to determine outcome factors that may affect their survival. Methods: A total of 142 patients who were undergoing chemotherapy were followed by clinical and radiological features suggestive of fungal sinusitis. Patients with fever, headache, facial swelling and radiological finding underwent endoscopic sinus surgery. The biopsy materials were studied by mycological and histopathological methods. Results: Eleven from 142 patients were identified to have IFS. The ethiologic agents were Aspergillus flavus (5 cases, Alternaria sp. (3 cases, Aspergillus fumigatus (2 cases and mucor (1 case. Eight of 11 cases died. Conclusions: Invasive fungal sinusitis causes a high rate of mortality among immunocompromised patients. Therefore, early diagnosis with aggressive medical and surgical intervention is critical for survival.

  14. Elevated Atmospheric CO2 Affects Ectomycorrhizal Species Abundance and Increases Sporocarp Production under Field Conditions

    Czech Academy of Sciences Publication Activity Database

    Godbold, Douglas; Vašutová, Martina; Wilkinson, A. J.; Edwards-Jonášová, Magda; Bambrick, M.; Smith, A.; Pavelka, Marian; Cudlín, Pavel

    2015-01-01

    Roč. 6, č. 4 (2015), s. 1256-1273 ISSN 1999-4907 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : face * community structure * root tips * forest * hyphae * rhizomorph * morphotype * internal transcribed spacer (ITS) * sequence Subject RIV: EH - Ecology, Behaviour Impact factor: 1.583, year: 2015

  15. Nitrogen Ion Form and Spatio-temporal Variation in Root Distribution Mediate Nitrogen Effects on Lifespan of Ectomycorrhizal Roots

    Science.gov (United States)

    Kou, L.; McCormack, M. L.; Chen, W.; Guo, D.; Wang, H.; Li, S.; Gao, W.; Yang, H.

    2017-12-01

    Background and Aims Absorptive roots active in soil resource uptake are often intimately associated with mycorrhizal fungi, yet it remains unclear how nitrogen (N) loading affects lifespan of absorptive roots associating with ectomycorrhizal (ECM) fungi. Methods Through a three-year minirhizotron experiment, we investigated the responses of ECM lifespan to different rates of N addition and examined the roles of N ion form, rooting depth, seasonal root cohort, and ECM morphotype in mediating the N effects on ECM lifespan in a slash pine (Pinus elliottii) forest in subtropical China. Results High rates of NH4Cl significantly decreased foliar P concentrations and increased foliar N: P ratios, and mean ECM lifespan was negatively correlated to foliar P concentration. N additions generally increased the lifespan of most ectomycorrhizas, but the specific differences were context dependent. N rates and forms exerted significant positive effects on ECM lifespan with stronger effects occurring at high N rates and under ammonium N addition. N additions extended lifespan of ectomycorrhizas in shallower soil and born in spring and autumn, but shortened lifespan of ectomycorrhizas in deeper soil and born in summer and winter. N additions reduced lifespan of dichotomous ectomycorrhizas, but increased lifespan of coralloid ectomycorrhizas. Conclusions The increased ECM lifespan in response to N additions may primarily be driven by the persistent and aggravated P limitation to plants. Our findings highlight the importance of environmental contexts in controlling ECM lifespan and the need to consider potential differences among mycorrhizal morphotypes when studying N—lifespan relationships of absorptive roots in the context of N deposition.

  16. Integrated long-term responses of an arctic-alpine willow and associated ectomycorrhizal fungi to an altered environment

    DEFF Research Database (Denmark)

    Clemmensen, Karina Engelbrecht; Michelsen, Anders

    2006-01-01

    We evaluated ectomycorrhizal (ECM) colonization and morphotype community composition together with growth response and biomass distribution in the arctic-alpine, prostrate willow Salix herbacea L. x Salix polaris Wahlenb. after 11 seasons of shading, warming, and fertilization at a fellfield...

  17. Ectomycorrhizal sporophore distributions in a southeastern Appalachian mixed hardwood/conifer forest with thickets of Rhododendron maximum

    Science.gov (United States)

    John F. Walker; Orson R. Jr. Miller

    2002-01-01

    Sporophore abundance of putatively ectomycorrhizal fungi was compared in a mature mixed hardwood/conifer forest inside of (1) versus outside of (2) Rhododendron maximum thickets (RmT). Experimental blocks (1/4 ha) were established inside of (3) and outside of (3) RmT at the Coweeta Hydrologic Laboratory in Macon County, North Carolina, USA. Litter...

  18. Ectomycorrhizal fungi and their enzymes in soils: is there enough evidence for their role as facultative soil saprotrophs?

    Czech Academy of Sciences Publication Activity Database

    Baldrian, Petr

    2009-01-01

    Roč. 161, č. 4 (2009), s. 657-660 ISSN 0029-8549 R&D Projects: GA ČR GA526/08/0751; GA MŠk LC06066 Institutional research plan: CEZ:AV0Z50200510 Keywords : Ectomycorrhizal fungi * lignin * Cellulose Subject RIV: EE - Microbiology, Virology Impact factor: 3.129, year: 2009

  19. Metabolism of [15N]alanine in the ectomycorrhizal fungus Paxillus involutus

    International Nuclear Information System (INIS)

    Chalot, M.; Finlay, R.D.; Ek, H.; Söderström, B.

    1995-01-01

    Chalot, M., Finlay, R. D., Ek, H., and Söderström, B. 1995. Metabolism of [ 15 N]alanine in the ectomycorrhizal fungus Paxillus involutus. Experimental Mycology 19, 297-304. Alanine metabolism in the ectomycorrhizal fungus Paxillus involutus was investigated using [ 15 N]alanine. Short-term exposure of mycelial discs to [ 15 N]alanine showed that the greatest flow of 15 N was to glutamate and to aspartate. Levels of enrichment were as high as 15-20% for glutamate and 13-18% for aspartate, whereas that of alanine reached 30%. Label was also detected in the amino-N of glutamine and in serine and glycine, although at lower levels. Preincubation of mycelia with aminooxyacetate, an inhibitor of transamination reactions. resulted in complete inhibition of the flow of the label to glutamate, aspartate, and amino-N of glutamine, whereas [ 15 N]alanine rapidly accumulated. This evidence indicates the direct involvement of alanine aminotransferase for translocation of 15 N from alanine to glutamate. Alanine may be a convenient reservoir of both nitrogen and carbon. (author)

  20. Chapter 8: Invasive fungal rhinosinusitis.

    Science.gov (United States)

    Duggal, Praveen; Wise, Sarah K

    2013-01-01

    Invasive fungal rhinosinusitis (IFRS) is a disease of the paranasal sinuses and nasal cavity that typically affects immunocompromised patients in the acute fulminant form. Early symptoms can often mimic rhinosinusitis, while late symptoms can cause significant morbidity and mortality. Swelling and mucosal thickening can quickly progress to pale or necrotic tissue in the nasal cavity and sinuses, and the disease can rapidly spread and invade the palate, orbit, cavernous sinus, cranial nerves, skull base, carotid artery, and brain. IFRS can be life threatening if left undiagnosed or untreated. While the acute fulminant form of IFRS is the most rapidly progressive and destructive, granulomatous and chronic forms also exist. Diagnosis of IFRS often mandates imaging studies in conjunction with clinical, endoscopic, and histopathological examination. Treatment of IFRS consists of reversing the underlying immunosuppression, antifungal therapy, and aggressive surgical debridement. With early diagnosis and treatment, IFRS can be treated and increase patient survival.

  1. Fungal biodiversity to biotechnology.

    Science.gov (United States)

    Chambergo, Felipe S; Valencia, Estela Y

    2016-03-01

    Fungal habitats include soil, water, and extreme environments. With around 100,000 fungus species already described, it is estimated that 5.1 million fungus species exist on our planet, making fungi one of the largest and most diverse kingdoms of eukaryotes. Fungi show remarkable metabolic features due to a sophisticated genomic network and are important for the production of biotechnological compounds that greatly impact our society in many ways. In this review, we present the current state of knowledge on fungal biodiversity, with special emphasis on filamentous fungi and the most recent discoveries in the field of identification and production of biotechnological compounds. More than 250 fungus species have been studied to produce these biotechnological compounds. This review focuses on three of the branches generally accepted in biotechnological applications, which have been identified by a color code: red, green, and white for pharmaceutical, agricultural, and industrial biotechnology, respectively. We also discuss future prospects for the use of filamentous fungi in biotechnology application.

  2. Oak protein profile alterations upon root colonization by an ectomycorrhizal fungus

    DEFF Research Database (Denmark)

    Sebastiana, Mónica; Martins, Joana; Figueiredo, Andreia

    2017-01-01

    in the roots. Consistent with the results of the biochemical analysis, the proteome analysis of the mycorrhizal roots suggests a decreasing utilization of sucrose for the metabolic activity of mycorrhizal roots which is consistent with an increased allocation of carbohydrates from the plant to the fungus...... to ectomycorrhizae formation using a proteomics approach complemented by biochemical analysis of carbohydrate levels. Comparative proteome analysis between mycorrhizal and nonmycorrhizal cork oak plants revealed no differences at the foliar level. However, the protein profile of 34 unique oak proteins was altered...... in order to sustain the symbiosis. In addition, a promotion of protein unfolding mechanisms, attenuation of defense reactions, increased nutrient mobilization from the plant-fungus interface (N and P), as well as cytoskeleton rearrangements and induction of plant cell wall loosening for fungal root...

  3. CT scan findings of fungal pneumonia

    International Nuclear Information System (INIS)

    Heckmann, M.; Uder, M.; Bautz, W.; Heinrich, M.

    2008-01-01

    The importance of fungal infection of the lung in immunocompromised patients has increased substantially during the last decades. Numerically the most patients are those with neutropenia, e.g. patients with malignancies or solid organ and stem cell transplantation, chemotherapy, corticosteroid use and HIV infection. Although fungal infections can occur in immunocompetent patients, their frequency in this population is rare. The clinical symptoms such as fever accompanied with non-productive cough are unspecific. In some patients progression to hypoxemia and dyspnea may occur rapidly. In spite of improved antifungal therapy morbidity and mortality of these infections are still high. Therefore an early and non-invasive diagnosis is very important. That is why CT and even better High-Resolution-CT (HR-CT) is a very important modality in examining immunocompromised patients with a probability of fungal infection. CT is everywhere available and, as a non-invasive method, able to give the relevant diagnose efficiently. This paper should give an overview about the radiologic findings and possible differential diagnosis of diverse pulmonary fungal infections in CT. Pneumonias caused by Aspergillus, Cryptococcus, Candida, Histoplasma, Mucor and Geotrichum capitatum are illustrated. (orig.)

  4. 50-plus years of fungal viruses

    Energy Technology Data Exchange (ETDEWEB)

    Ghabrial, Said A., E-mail: saghab00@email.uky.edu [Plant Pathology Department, University of Kentucky, Lexington, KY (United States); Castón, José R. [Department of Structure of Macromolecules, Centro Nacional Biotecnologıa/CSIC, Campus de Cantoblanco, Madrid (Spain); Jiang, Daohong [State Key Lab of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province (China); Nibert, Max L. [Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA (United States); Suzuki, Nobuhiro [Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama (Japan)

    2015-05-15

    Mycoviruses are widespread in all major taxa of fungi. They are transmitted intracellularly during cell division, sporogenesis, and/or cell-to-cell fusion (hyphal anastomosis), and thus their life cycles generally lack an extracellular phase. Their natural host ranges are limited to individuals within the same or closely related vegetative compatibility groups, although recent advances have established expanded experimental host ranges for some mycoviruses. Most known mycoviruses have dsRNA genomes packaged in isometric particles, but an increasing number of positive- or negative-strand ssRNA and ssDNA viruses have been isolated and characterized. Although many mycoviruses do not have marked effects on their hosts, those that reduce the virulence of their phytopathogenic fungal hosts are of considerable interest for development of novel biocontrol strategies. Mycoviruses that infect endophytic fungi and those that encode killer toxins are also of special interest. Structural analyses of mycoviruses have promoted better understanding of virus assembly, function, and evolution. - Highlights: • Historical perspective of fungal virus research. • Description, classification and diversity of fungal virus families. • Structural features of fungal virus particles. • Hypovirulence and exploitation of mycoviruses in biological control of plant pathogenic fungi.

  5. Tasting soil fungal diversity with earth tongues: phylogenetic test of SATe alignments for environmental ITS data.

    Directory of Open Access Journals (Sweden)

    Zheng Wang

    Full Text Available An abundance of novel fungal lineages have been indicated by DNA sequencing of the nuclear ribosomal ITS region from environmental samples such as soil and wood. Although phylogenetic analysis of these novel lineages is a key component of unveiling the structure and diversity of complex communities, such analyses are rare for environmental ITS data due to the difficulties of aligning this locus across significantly divergent taxa. One potential approach to this issue is simultaneous alignment and tree estimation. We targeted divergent ITS sequences of the earth tongue fungi (Geoglossomycetes, a basal class in the Ascomycota, to assess the performance of SATé, recent software that combines progressive alignment and tree building. We found that SATé performed well in generating high-quality alignments and in accurately estimating the phylogeny of earth tongue fungi. Drawing from a data set of 300 sequences of earth tongues and progressively more distant fungal lineages, 30 insufficiently identified ITS sequences from the public sequence databases were assigned to the Geoglossomycetes. The association between earth tongues and plants has been hypothesized for a long time, but hard evidence is yet to be collected. The ITS phylogeny showed that four ectomycorrhizal isolates shared a clade with Geoglossum but not with Trichoglossum earth tongues, pointing to the significant potential inherent to ecological data mining of environmental samples. Environmental sampling holds the key to many focal questions in mycology, and simultaneous alignment and tree estimation, as performed by SATé, can be a highly efficient companion in that pursuit.

  6. Current management of fungal infections.

    NARCIS (Netherlands)

    Meis, J.F.G.M.; Verweij, P.E.

    2001-01-01

    The management of superficial fungal infections differs significantly from the management of systemic fungal infections. Most superficial infections are treated with topical antifungal agents, the choice of agent being determined by the site and extent of the infection and by the causative organism,

  7. The evolution of fungal epiphytes

    NARCIS (Netherlands)

    Hongsanan, S.; Sánchez-Ramírez, S.; Crous, P.W.; Ariyawansa, H.A.; Zhao, R.L.; Hyde, K.D.

    2016-01-01

    Fungal epiphytes are a polyphyletic group found on the surface of plants, particularly on leaves, with a worldwide distribution. They belong in the phylum Ascomycota, which contains the largest known number of fungal genera. There has been little research dating the origins of the common ancestors

  8. Ectomycorrhizal colonization and growth of the hybrid larch F1 under elevated CO2 and O3

    International Nuclear Information System (INIS)

    Wang, Xiaona; Qu, Laiye; Mao, Qiaozhi; Watanabe, Makoto; Hoshika, Yasutomo; Koyama, Akihiro; Kawaguchi, Korin; Tamai, Yutaka; Koike, Takayoshi

    2015-01-01

    We studied the colonization of ectomycorrhizal fungi and species abundance of a hybrid larch (F 1 ) under elevated CO 2 and O 3. Two-year-old seedlings were planted in an Open-Top-Chamber system with treatments: Control (O 3  < 6 nmol/mol), O 3 (60 nmol/mol), CO 2 (600 μmol/mol), and CO 2  + O 3 . After two growing seasons, ectomycorrhiza (ECM) colonization and root biomass increased under elevated CO 2 . Additionally, O 3 impaired ECM colonization and species richness, and reduced stem biomass. However, there was no clear inhibition of photosynthetic capacity by O 3 . Concentrations of Al, Fe, Mo, and P in needles were reduced by O 3 , while K and Mg in the roots increased. This might explain the distinct change in ECM colonization rate and diversity. No effects of combined fumigation were observed in any parameters except the P concentration in needles. The tolerance of F 1 to O 3 might potentially be related to a shift in ECM community structure. - Highlights: • Elevated CO 2 enhanced growth of hybrid larch F 1 (F 1 ). • ECM colonization rate and species richness of ECM were reduced by O 3 . • Species abundance of ECM community differed between O 3 and control. • F 1 potentially resisted O 3 impacts via specific selection of Suillus spp. for element uptake. - Elevated CO 2 moderated the negative effects of O 3 on the growth of hybrid larch F 1 , by stimulating ectomycorrhizas and nutrient uptake

  9. Deep Ion Torrent sequencing identifies soil fungal community shifts after frequent prescribed fires in a southeastern US forest ecosystem.

    Science.gov (United States)

    Brown, Shawn P; Callaham, Mac A; Oliver, Alena K; Jumpponen, Ari

    2013-12-01

    Prescribed burning is a common management tool to control fuel loads, ground vegetation, and facilitate desirable game species. We evaluated soil fungal community responses to long-term prescribed fire treatments in a loblolly pine forest on the Piedmont of Georgia and utilized deep Internal Transcribed Spacer Region 1 (ITS1) amplicon sequencing afforded by the recent Ion Torrent Personal Genome Machine (PGM). These deep sequence data (19,000 + reads per sample after subsampling) indicate that frequent fires (3-year fire interval) shift soil fungus communities, whereas infrequent fires (6-year fire interval) permit system resetting to a state similar to that without prescribed fire. Furthermore, in nonmetric multidimensional scaling analyses, primarily ectomycorrhizal taxa were correlated with axes associated with long fire intervals, whereas soil saprobes tended to be correlated with the frequent fire recurrence. We conclude that (1) multiplexed Ion Torrent PGM analyses allow deep cost effective sequencing of fungal communities but may suffer from short read lengths and inconsistent sequence quality adjacent to the sequencing adaptor; (2) frequent prescribed fires elicit a shift in soil fungal communities; and (3) such shifts do not occur when fire intervals are longer. Our results emphasize the general responsiveness of these forests to management, and the importance of fire return intervals in meeting management objectives. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  10. Presentation and management of allergic fungal sinusitis

    International Nuclear Information System (INIS)

    Thahim, K.; Jawaid, M.A.; Marfani, S.

    2007-01-01

    To assess the presentation of allergic fungal sinusitis and describe the line of management in our setup. Culture and sensitivity / fungal stain proven 20 cases of allergic fungal sinusitis were selected for the study, irrespective of age and gender. Data including age, gender, socioeconomic status, signs, symptoms, laboratory findings (especially Immunoglobulin E and eosinophil count) and imaging studies (Computed Tomography and /or Magnetic Resonance Imaging) were noted for the study. Pre and postoperative medical treatment, surgery performed, follow-up; residual/recurrence disease and revised surgery performed were also recorded. In this series, allergic fungal sinusitis was a disease of younger age group with an average age of 20.75 years with male dominance (70%). Poor socioeconomic status (80%), allergic rhinitis (100%) and nasal polyposis (100%) were important associated factors. Nasal obstruction (100%), nasal discharge (90%), postnasal drip (90%) and unilateral nasal and paranasal sinuses involvement (60%) were the commonest presenting features. Aspergillus (60%) was the most common etiological agent. In all cases (100%), increased eosinophil count and IgE levels were present. Orbital (20%) and intracranial (10%) involvement were also seen. Surgical management was preferred in all cases. Functional endoscopic sinus surgery in 90% cases and lateral rhinotomy in 10% cases were performed. Recurrence / residual disease was seen in 20% cases. In this series, allergic fungal sinusitis was seen in immunocompetent, young males, belonging to poor socioeconomic status, suffering from allergic rhinitis and nasal polyposis, presenting with nasal obstruction, nasal discharge and postnasal drip. Functional endoscopic sinus surgery was the most important problem solving procedure while lateral rhinotomy was reserved for extensive disease. (author)

  11. Superficial fungal infections.

    Science.gov (United States)

    Schwartz, Robert A

    Superficial fungal infections arise from a pathogen that is restricted to the stratum corneum, with little or no tissue reaction. In this Seminar, three types of infection will be covered: tinea versicolor, piedra, and tinea nigra. Tinea versicolor is common worldwide and is caused by Malassezia spp, which are human saprophytes that sometimes switch from yeast to pathogenic mycelial form. Malassezia furfur, Malassezia globosa, and Malassezia sympodialis are most closely linked to tinea versicolor. White and black piedra are both common in tropical regions of the world; white piedra is also endemic in temperate climates. Black piedra is caused by Piedraia hortae; white piedra is due to pathogenic species of the Trichosporon genus. Tinea nigra is also common in tropical areas and has been confused with melanoma.

  12. Ignored fungal community in activated sludge wastewater treatment plants: diversity and altitudinal characteristics.

    Science.gov (United States)

    Niu, Lihua; Li, Yi; Xu, Lingling; Wang, Peifang; Zhang, Wenlong; Wang, Chao; Cai, Wei; Wang, Linqiong

    2017-02-01

    Fungi are important contributors to the various functions of activated sludge wastewater treatment plants (WWTPs); however, the diversity and geographic characteristics of fungal populations have remained vastly unexplored. Here, quantitative polymerase chain reaction and 454 pyrosequencing were combined to investigate the abundance and diversity of the activated sludge fungal communities from 18 full-scale municipal WWTPs in China. Phylogenetic taxonomy revealed that the members of the fungal communities were assigned to 7 phyla and 195 genera. Ascomycota and Basidiomycota were the most abundant phyla, dominated by Pluteus, Wickerhamiella, and Penicillium. Twenty-three fungal genera, accounting for 50.1 % of the total reads, were shared by 18 WWTPs and constituted a core fungal community. The fungal communities presented similar community diversity but different community structures across the WWTPs. Significant distance decay relationships were observed for the dissimilarity in fungal community structure and altitudinal distance between WWTPs. Additionally, the community evenness increased from 0.25 to 0.7 as the altitude increased. Dissolved oxygen and the C/N ratio were determined to be the most dominant contributors to the variation in fungal community structure via redundancy analysis. The observed data demonstrated the diverse occurrence of fungal species and gave a marked view of fungal community characteristics based on the previously unexplored fungal communities in activated sludge WWTPs.

  13. A novel model of invasive fungal rhinosinusitis in rats.

    Science.gov (United States)

    Zhang, Fang; An, Yunfang; Li, Zeqing; Zhao, Changqing

    2013-01-01

    Invasive fungal rhinosinusitis (IFRS) is a life-threatening inflammatory disease that affects immunocompromised patients, but animal models of the disease are scarce. This study aimed to develop an IFRS model in neutropenic rats. The model was established in three consecutive steps: unilateral nasal obstruction with Merocel sponges, followed by administration of cyclophosphamide (CPA), and, finally, nasal inoculation with Aspergillus fumigatus. Fifty healthy Wistar rats were randomly divided into five groups, with group I as the controls, group II undergoing unilateral nasal obstruction alone, group III undergoing nasal obstruction with fungal inoculation, group IV undergoing nasal obstruction with administration of CPA, and group V undergoing nasal obstruction with administration of CPA and fungal inoculation. Hematology, histology, and mycology investigations were performed. The changes in the rat absolute neutrophil counts (ANCs) were statistically different across the groups. The administration of CPA decreased the ANCs, whereas nasal obstruction with fungal inoculation increased the ANCs, and nasal obstruction did not change them. Histological examination of the rats in group V revealed the hyphal invasion of sinus mucosa and bone, thrombosis, and tissue infarction. No pathology indicative of IFRS was observed in the remaining groups. Positive rates of fungal culture in tissue homogenates from the maxillary sinus (62.5%) and lung (25%) were found in group V, whereas groups I, II, III, and IV showed no fungal culture in the homogenates. A rat IFRS model was successfully developed through nasal obstruction, CPA-induced neutropenia, and fungal inoculation. The disease model closely mimics the pathophysiology of anthropic IFRS.

  14. The potential of Dark Septate Endophytes to form root symbioses with ectomycorrhizal and ericoid mycorrhizal middle European forest plants.

    Directory of Open Access Journals (Sweden)

    Tereza Lukešová

    Full Text Available The unresolved ecophysiological significance of Dark Septate Endophytes (DSE may be in part due to existence of morphologically indistinguishable cryptic species in the most common Phialocephala fortinii s. l.--Acephala applanata species complex (PAC. We inoculated three middle European forest plants (European blueberry, Norway spruce and silver birch with 16 strains of eight PAC cryptic species and other DSE and ectomycorrhizal/ericoid mycorrhizal fungi and focused on intraradical structures possibly representing interfaces for plant-fungus nutrient transfer and on host growth response. The PAC species Acephala applanata simultaneously formed structures resembling ericoid mycorrhiza (ErM and DSE microsclerotia in blueberry. A. macrosclerotiorum, a close relative to PAC, formed ectomycorrhizae with spruce but not with birch, and structures resembling ErM in blueberry. Phialocephala glacialis, another close relative to PAC, formed structures resembling ErM in blueberry. In blueberry, six PAC strains significantly decreased dry shoot biomass compared to ErM control. In birch, one A. macrosclerotiorum strain increased root biomass and the other shoot biomass in comparison with non-inoculated control. The dual mycorrhizal ability of A. macrosclerotiorum suggested that it may form mycorrhizal links between Ericaceae and Pinaceae. However, we were unable to detect this species in Ericaceae roots growing in a forest with presence of A. macrosclerotiorum ectomycorrhizae. Nevertheless, the diversity of Ericaceae mycobionts was high (380 OTUs with individual sites often dominated by hitherto unreported helotialean and chaetothyrialean/verrucarialean species; in contrast, typical ErM fungi were either absent or low in abundance. Some DSE apparently have a potential to form mycorrhizae with typical middle European forest plants. However, except A. applanata, the tested representatives of all hitherto described PAC cryptic species formed typical DSE

  15. Quantification of ectomycorrhizal mycelium in soil by real time PCR compared to conventional quantification techniques

    NARCIS (Netherlands)

    Landeweert, R.; Veenman, C.; Kuyper, T.W.; Fritze, H.; Wernars, K.; Smit, E.

    2003-01-01

    Mycelial biomass estimates in soils are usually obtained by measuring total hyphal length or by measuring the amount of fungal-specific biomarkers such as ergosterol and phospholipid fatty acids (PLFAs). These methods determine the biomass of the fungal community as a whole and do not allow

  16. Influence of storage on fungal infestation in spices

    International Nuclear Information System (INIS)

    Akhtar, T.; Sattar, A.; Khan, I.

    1988-01-01

    The present work was carried out to study the influence of storage and gamma radiation on fungal control in spices. The spices were irradiated with 5.0, 7.5 and 10.0 KGy and stored under ambient conditions for 12 months. Fungal infestation decreased to undetectable levels upon irradiation of these spices especially at higher doses and increased with advanced storage period both the irradiated and unirradiated samples. (orig. /A.B.)

  17. Soil fungal communities in a Castanea sativa (chestnut) forest producing large quantities of Boletus edulis sensu lato (porcini): where is the mycelium of porcini?

    Science.gov (United States)

    Peintner, Ursula; Iotti, Mirco; Klotz, Petra; Bonuso, Enrico; Zambonelli, Alessandra

    2007-04-01

    A study was conducted in a Castanea sativa forest that produces large quantities of the edible mushroom porcini (Boletus edulis sensu lato). The primary aim was to study porcini mycelia in the soil, and to determine if there were any possible ecological and functional interactions with other dominant soil fungi. Three different approaches were used: collection and morphological identification of fruiting bodies, morphological and molecular identification of ectomycorrhizae by rDNA-ITS sequence analyses and molecular identification of the soil mycelia by ITS clone libraries. Soil samples were taken directly under basidiomes of Boletus edulis, Boletus aestivalis, Boletus aereus and Boletus pinophilus. Thirty-nine ectomycorrhizal fungi were identified on root tips whereas 40 fungal species were found in the soil using the cloning technique. The overlap between above- and below-ground fungal communities was very low. Boletus mycelia, compared with other soil fungi, were rare and with scattered distribution, whereas their fruiting bodies dominated the above-ground fungal community. Only B. aestivalis ectomycorrhizae were relatively abundant and detected as mycelia in the soil. No specific fungus-fungus association was found. Factors triggering formation of mycorrhizae and fructification of porcini appear to be too complex to be simply explained on the basis of the amount of fungal mycelia in the soil.

  18. UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi

    DEFF Research Database (Denmark)

    Köljalg, U.; Larsson, K.H.; Abarenkov, K.

    2005-01-01

    Identification of ectomycorrhizal (ECM) fungi is often achieved through comparisons of ribosomal DNA internal transcribed spacer (ITS) sequences with accessioned sequences deposited in public databases. A major problem encountered is that annotation of the sequences in these databases is not always....... At present UNITE contains 758 ITS sequences from 455 species and 67 genera of ECM fungi. •  UNITE can be searched by taxon name, via sequence similarity using blastn, and via phylogenetic sequence identification using galaxie. Following implementation, galaxie performs a phylogenetic analysis of the query...... sequence after alignment either to pre-existing generic alignments, or to matches retrieved from a blast search on the UNITE data. It should be noted that the current version of UNITE is dedicated to the reliable identification of ECM fungi. •  The UNITE database is accessible through the URL http://unite.zbi.ee...

  19. Anaerobic fungal populations

    International Nuclear Information System (INIS)

    Brookman, J.L.; Nicholson, M.J.

    2005-01-01

    The development of molecular techniques has greatly broadened our view of microbial diversity and enabled a more complete detection and description of microbial communities. The application of these techniques provides a simple means of following community changes, for example, Ishii et al. described transient and more stable inhabitants in another dynamic microbial system, compost. Our present knowledge of anaerobic gut fungal population diversity within the gastrointestinal tract is based upon isolation, cultivation and observations in vivo. It is likely that there are many species yet to be described, some of which may be non-culturable. We have observed a distinct difference in the ease of cultivation between the different genera, for example, Caecomyes isolates are especially difficult to isolate and maintain in vitro, a feature that is likely to result in the under representation of this genera in culture-based enumerations. The anaerobic gut fungi are the only known obligately anaerobic fungi. For the majority of their life cycles, they are found tightly associated with solid digesta in the rumen and/or hindgut. They produce potent fibrolytic enzymes and grow invasively on and into the plant material they are digesting making them important contributors to fibre digestion. This close association with intestinal digesta has made it difficult to accurately determine the amount of fungal biomass present in the rumen, with Orpin suggesting 8% contribution to the total microbial biomass, whereas Rezaeian et al. more recently gave a value of approximately 20%. It is clear that the rumen microbial complement is affected by dietary changes, and that the fungi are more important in digestion in the rumens of animals fed with high-fibre diets. It seems likely that the gut fungi play an important role within the rumen as primary colonizers of plant fibre, and so we are particularly interested in being able to measure the appearance and diversity of fungi on the plant

  20. Soil contamination with silver nanoparticles reduces Bishop pine growth and ectomycorrhizal diversity on pine roots

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, M. J., E-mail: m.sweet@derby.ac.uk [University of Derby, Environmental Sustainability Research Centre, College of Life and Natural Sciences (United Kingdom); Singleton, I. [Newcastle University, School of Biology (United Kingdom)

    2015-11-15

    Soil contamination by silver nanoparticles (AgNP) is of potential environmental concern but little work has been carried out on the effect of such contamination on ectomycorrhizal fungi (EMF). EMF are essential to forest ecosystem functions as they are known to enhance growth of trees by nutrient transfer. In this study, soil was experimentally contaminated with AgNP (0, 350 and 790 mg Ag/kg) and planted with Bishop pine seedlings. The effect of AgNP was subsequently measured, assessing variation in pine growth and ectomycorrhizal diversity associated with the root system. After only 1 month, the highest AgNP level had significantly reduced the root length of pine seedlings, which in turn had a small effect on above ground plant biomass. However, after 4 months growth, both AgNP levels utilised had significantly reduced both pine root and shoot biomass. For example, even the lower levels of AgNP (350 mg Ag/kg) soil, reduced fresh root biomass by approximately 57 %. The root systems of the plants grown in AgNP-contaminated soils lacked the lateral and fine root development seen in the control plants (no AgNP). Although, only five different genera of EMF were found on roots of the control plants, only one genus Laccaria was found on roots of plants grown in soil containing 350 mg AgNP/kg. At the higher levels of AgNP contamination, no EMF were observed. Furthermore, extractable silver was found in soils containing AgNP, indicating potential dissolution of silver ions (Ag+) from the solid AgNP.

  1. Soil contamination with silver nanoparticles reduces Bishop pine growth and ectomycorrhizal diversity on pine roots

    International Nuclear Information System (INIS)

    Sweet, M. J.; Singleton, I.

    2015-01-01

    Soil contamination by silver nanoparticles (AgNP) is of potential environmental concern but little work has been carried out on the effect of such contamination on ectomycorrhizal fungi (EMF). EMF are essential to forest ecosystem functions as they are known to enhance growth of trees by nutrient transfer. In this study, soil was experimentally contaminated with AgNP (0, 350 and 790 mg Ag/kg) and planted with Bishop pine seedlings. The effect of AgNP was subsequently measured, assessing variation in pine growth and ectomycorrhizal diversity associated with the root system. After only 1 month, the highest AgNP level had significantly reduced the root length of pine seedlings, which in turn had a small effect on above ground plant biomass. However, after 4 months growth, both AgNP levels utilised had significantly reduced both pine root and shoot biomass. For example, even the lower levels of AgNP (350 mg Ag/kg) soil, reduced fresh root biomass by approximately 57 %. The root systems of the plants grown in AgNP-contaminated soils lacked the lateral and fine root development seen in the control plants (no AgNP). Although, only five different genera of EMF were found on roots of the control plants, only one genus Laccaria was found on roots of plants grown in soil containing 350 mg AgNP/kg. At the higher levels of AgNP contamination, no EMF were observed. Furthermore, extractable silver was found in soils containing AgNP, indicating potential dissolution of silver ions (Ag+) from the solid AgNP

  2. Hospitalized Patients and Fungal Infections

    Science.gov (United States)

    ... are mild skin rashes, but others can be deadly, like fungal pneumonia. Because of this, it’s important ... the environment. Fungi live outdoors in soil, on plants, trees, and other vegetation. They are also on ...

  3. Cancer Patients and Fungal Infections

    Science.gov (United States)

    ... are mild skin rashes, but others can be deadly, like fungal pneumonia. Because of this, it’s important ... the environment. Fungi live outdoors in soil, on plants, trees, and other vegetation. They are also on ...

  4. Fiber, food, fuel, and fungal symbionts.

    Science.gov (United States)

    Ruehle, J L; Marx, D H

    1979-10-26

    Virtually all plants of economic importance form mycorrhizae. These absorbing organs of higher plants result from a symbiotic union of beneficial soil fungi and feeder roots. In forestry, the manipulation of fungal symbionts ecologically adapted to the planting site can increase survival and growth of forest trees, particularly on adverse sites. Vesicular-arbuscular mycorrhizae, which occur not only on many trees but also on most cultivated crops, are undoubtedly more important to world food crops. Imperatives for mycorrhizal research in forestry and agriculture are (i) the development of mass inoculum of mycorrhizal fungi, (ii) the interdisciplinary coordination with soil management, plant breeding, cultivation practices, and pest control to ensure maximum survival and development of fungal symbionts in the soil, and (iii) the institution of nursery and field tests to determine the circumstances in which mycorrhizae benefit plant growth in forestry and agri-ecosystems.

  5. Fungal infections in animals: a patchwork of different situations

    DEFF Research Database (Denmark)

    Seyedmousavi, Seyedmojtaba; Bosco, Sandra De M G; De Hoog, Sybren

    2018-01-01

    The importance of fungal infections in both human and animals has increased over the last decades. This article represents an overview of the different categories of fungal infections that can be encountered in animals originating from environmental sources without transmission to humans....... In addition, the endemic infections with indirect transmission from the environment, the zoophilic fungal pathogens with near-direct transmission, the zoonotic fungi that can be directly transmitted from animals to humans, mycotoxicoses and antifungal resistance in animals will also be discussed....... Opportunistic mycoses are responsible for a wide range of diseases from localized infections to fatal disseminated diseases, such as aspergillosis, mucormycosis, candidiasis, cryptococcosis and infections caused by melanized fungi. The amphibian fungal disease chytridiomycosis and the Bat White-nose syndrome...

  6. Structural Analysis of Fungal Cerebrosides

    Directory of Open Access Journals (Sweden)

    Eliana eBarreto-Bergter

    2011-12-01

    Full Text Available Of the ceramide monohexosides (CMHs, gluco- and galactosylceramides are the main neutral glycosphingolipids expressed in fungal cells. Their structural determination is greatly dependent on the use of mass spectrometric techniques, including fast atom bombardment-mass spectrometry (FAB-MS, electrospray ionization (ESI-MS, and energy collision-induced dissociation mass spectrometry (ESI-MS/CID-MS. Nuclear magnetic resonance (NMR has also been used successfully. Such a combination of techniques, combined with classical analytical separation, such as HPTLC and column chromatography, has led to the structural elucidation of a great number of fungal CMHs. The structure of fungal CMH is conserved among fungal species and consists of a glucose or galactose residue attached to a ceramide moiety containing 9-methyl-4,8-sphingadienine with an amidic linkage to hydroxylated fatty acids, most commonly having 16 or 18 carbon atoms and unsaturation between C-3 and C-4. Along with their unique structural characteristics, fungal CMHs have a peculiar subcellular distribution and striking biological properties. Fungal cerebrosides were also characterized as antigenic molecules directly or indirectly involved in cell growth or differentiation in Schizophyllum commune, Cryptococcus neoformans, Pseudallescheria boydii, Candida albicans, Aspergillus nidulans, A.fumigatus and Colletotrichum gloeosporioides. Besides classical techniques for cerebroside (CMH analysis, we now describe new approaches, combining conventional TLC and mass spectrometry, as well as emerging technologies for subcellular localization and distribution of glycosphingolipids by SIMS and imaging MALDI TOF .

  7. Serious fungal infections in Ecuador.

    Science.gov (United States)

    Zurita, J; Denning, D W; Paz-Y-Miño, A; Solís, M B; Arias, L M

    2017-06-01

    There is a dearth of data from Ecuador on the burden of life-threatening fungal disease entities; therefore, we estimated the burden of serious fungal infections in Ecuador based on the populations at risk and available epidemiological databases and publications. A full literature search was done to identify all epidemiology papers reporting fungal infection rates. WHO, ONU-AIDS, Index Mundi, Global Asthma Report, Globocan, and national data [Instituto Nacional de Estadística y Censos (INEC), Ministerio de Salud Pública (MSP), Sociedad de Lucha Contra el Cáncer (SOLCA), Instituto Nacional de Donación y Trasplante de Órganos, Tejidos y Células (INDOT)] were reviewed. When no data existed, risk populations were used to estimate frequencies of fungal infections, using previously described methodology by LIFE. Ecuador has a variety of climates from the cold of the Andes through temperate to humid hot weather at the coast and in the Amazon basin. Ecuador has a population of 15,223,680 people and an average life expectancy of 76 years. The median estimate of the human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS) population at risk for fungal disease (Ecuador is affected by serious fungal infection.

  8. Chronic invasive fungal rhinosinusitis by Paecilomyces variotii: A rare case report

    Directory of Open Access Journals (Sweden)

    T Swami

    2016-01-01

    Full Text Available Fungal infection of the paranasal sinuses is an increasingly recognised entity, both in normal and immunocompromised individuals. The recent increase in mycotic nasal and paranasal infections is due to both improved diagnostic research and an increase in the conditions that favour fungal infection. Aspergillus, Candida, and Mucor species are the most common causative agents of fungal sinusitis, but infection with lesser known species have been reported across the world infrequently. This article reviews and presents a case report of chronic fungal sinusitis in an immunocompetent adult male infected with Paecilomyces variotii which is opportunistic soil saprophyte, uncommon to humans.

  9. Correlation between organic acid exudation and metal uptake by ectomycorrhizal fungi grown on pond ash in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ray, P.; Adholeya, A. [Energy & Resources Institute, New Delhi (India). India Habitat Centre

    2009-04-15

    Experiments were conducted to investigate the effect of coal ash on organic acid exudation and subsequent metal uptake by ectomycorrhizal fungi. Four isolates of ectomycorrhizal fungi namely, Pisolithus tinctorius (EM-1293 and EM-1299), Scleroderma verucosum (EM-1283) and Scleroderma cepa (EM-1233) were grown on pond ash moistened with Modified Melin-Norkans medium in vitro. Exudation of formic acid, malic acid and succinic acid by these fungi were detected by HPLC. Mycelial accumulation of Al, As, Cd, Cr, Ni and Pb by these fungi was assayed by atomic absorption spectrophotometer. Relationship between organic acid exudation and metal uptake was determined using classical multivariate linear regression model. Correlation between organic acid exudation and metal uptake could be substantiated when several metals are considered collectively. The finding supports the widespread role of low molecular weight organic acid as a function of tolerance, when exposed to metals in vitro.

  10. Invasive fungal infections in Colombian patients with systemic lupus erythematosus.

    Science.gov (United States)

    Santamaría-Alza, Y; Sánchez-Bautista, J; Fajardo-Rivero, J F; Figueroa, C L

    2018-06-01

    Introduction Systemic lupus erythematosus is an autoimmune disease with multi-organ involvement. Complications, such as invasive fungal infections usually occur in patients with a greater severity of the disease. Objective The objective of this study was to determine the prevalence and risk variables associated with invasive fungal infections in a Colombian systemic lupus erythematosus population. Materials and methods A cross-sectional, retrospective study that evaluated patients with systemic lupus erythematosus for six years. The primary outcome was invasive fungal infection. Descriptive, group comparison and bivariate analysis was performed using Stata 12.0 software. Results Two hundred patients were included in this study; 84.5% of the patients were women and the median age was 36 years; 68% of the subjects had haematological complications; 53.3% had nephropathy; 45% had pneumopathy and 28% had pericardial impairment; 7.5% of patients had invasive fungal infections and the most frequently isolated fungus was Candida albicans. Pericardial disease, cyclophosphamide use, high disease activity, elevated ESR, C3 hypocomplementemia, anaemia and lymphopenia had a significant association with invasive fungal infection ( P lupus erythematosus, which was higher than that reported in other latitudes. In this population the increase in disease activity, the presence of pericardial impairment and laboratory alterations (anaemia, lymphopenia, increased ESR and C3 hypocomplementemia) are associated with a greater possibility of invasive fungal infections. Regarding the use of drugs, unlike other studies, in the Colombian population an association was found only with the previous administration of cyclophosphamide. In addition, patients with invasive fungal infections and systemic lupus erythematosus had a higher prevalence of mortality and hospital readmission compared with patients with systemic lupus erythematosus without invasive fungal infection.

  11. Do ectomycorrhizal and arbuscular mycorrhizal temperate tree species systematically differ in root order-related fine root morphology and biomass?

    OpenAIRE

    Kubisch, Petra; Hertel, Dietrich; Leuschner, Christoph

    2015-01-01

    While most temperate broad-leaved tree species form ectomycorrhizal (EM) symbioses, a few species have arbuscular mycorrhizas (AM). It is not known whether EM and AM tree species differ systematically with respect to fine root morphology, fine root system size and root functioning. In a species-rich temperate mixed forest, we studied the fine root morphology and biomass of three EM and three AM tree species from the genera Acer, Carpinus, Fagus, Fraxinus, and Tilia searching for principal dif...

  12. Fungal Community Responses to Past and Future Atmospheric CO2 Differ by Soil Type

    Science.gov (United States)

    Ellis, J. Christopher; Fay, Philip A.; Polley, H. Wayne; Jackson, Robert B.

    2014-01-01

    Soils sequester and release substantial atmospheric carbon, but the contribution of fungal communities to soil carbon balance under rising CO2 is not well understood. Soil properties likely mediate these fungal responses but are rarely explored in CO2 experiments. We studied soil fungal communities in a grassland ecosystem exposed to a preindustrial-to-future CO2 gradient (250 to 500 ppm) in a black clay soil and a sandy loam soil. Sanger sequencing and pyrosequencing of the rRNA gene cluster revealed that fungal community composition and its response to CO2 differed significantly between soils. Fungal species richness and relative abundance of Chytridiomycota (chytrids) increased linearly with CO2 in the black clay (P 0.7), whereas the relative abundance of Glomeromycota (arbuscular mycorrhizal fungi) increased linearly with elevated CO2 in the sandy loam (P = 0.02, R2 = 0.63). Across both soils, decomposition rate was positively correlated with chytrid relative abundance (r = 0.57) and, in the black clay soil, fungal species richness. Decomposition rate was more strongly correlated with microbial biomass (r = 0.88) than with fungal variables. Increased labile carbon availability with elevated CO2 may explain the greater fungal species richness and Chytridiomycota abundance in the black clay soil, whereas increased phosphorus limitation may explain the increase in Glomeromycota at elevated CO2 in the sandy loam. Our results demonstrate that soil type plays a key role in soil fungal responses to rising atmospheric CO2. PMID:25239904

  13. A Study Of Fungal Colonization In Newborn

    Directory of Open Access Journals (Sweden)

    S Rashid Husain

    1997-04-01

    Full Text Available Research Problem: What are the factors responsible for fungal colonization in newborns? Objective: To study the pattern of and predisposing fac­tors for the development of superficial candidiasis and fungal colonization in the newborns. Study Design: Prospective study. Setting: Neonatology unitof the Paediatrics department of a teaching hospital. Participants: Randomly selected pregnant mothers admit­ted to the maternity ward and the newborns delivered to them. Sample Size: 120 pregnant mothers and the newborns delivered. Study Variables: Candida, Site of colonization. Statistical Analysis: By tests of significance Results: Candida was isolated from 23 (19.16% infants on the first day increasing to 52 (43.33% infants on the sixth day. The most common site of colonization was oral cavity. Candida colonization was more common in prema­ture infants (p<0.05. Oral thrush was seen in 29 (24.17% infants during the study and a significant number of these infants showed colonization from the first day of life. Conclusions: Fungal colonization of the newborns due to Candida species is quite common, and in the first week of life predominantly occurred in the ora I cavity. Superficial clinical candidiasis, especially oral thrush is more common in those colonized on the first day of life.

  14. High turnover of fungal hyphae in incubation experiments.

    Science.gov (United States)

    de Vries, Franciska T; Bååth, Erland; Kuyper, Thom W; Bloem, Jaap

    2009-03-01

    Soil biological studies are often conducted on sieved soils without the presence of plants. However, soil fungi build delicate mycelial networks, often symbiotically associated with plant roots (mycorrhizal fungi). We hypothesized that as a result of sieving and incubating without plants, the total fungal biomass decreases. To test this, we conducted three incubation experiments. We expected total and arbuscular mycorrhizal (AM) fungal biomass to be higher in less fertilized soils than in fertilized soils, and thus to decrease more during incubation. Indeed, we found that fungal biomass decreased rapidly in the less fertilized soils. A shift towards thicker hyphae occurred, and the fraction of septate hyphae increased. However, analyses of phospholipid fatty acids (PLFAs) and neutral lipid fatty acids could not clarify which fungal groups were decreasing. We propose that in our soils, there was a fraction of fungal biomass that was sensitive to fertilization and disturbance (sieving, followed by incubation without plants) with a very high turnover (possibly composed of fine hyphae of AM and saprotrophic fungi), and a fraction that was much less vulnerable with a low turnover (composed of saprotrophic fungi and runner hyphae of AMF). Furthermore, PLFAs might not be as sensitive in detecting changes in fungal biomass as previously thought.

  15. Evaluation of pulmonary fungal diseases in patients with fungal rhino-sinusitis

    Directory of Open Access Journals (Sweden)

    M.Sh. Badawy

    2013-07-01

    Conclusion: Universal screening for pulmonary fungal infection especially in patients with fungal rhino sinusitis is highly recommended to treat it early, decrease morbidity and mortality of the diseases.

  16. Microbiological diagnostics of fungal infections

    Directory of Open Access Journals (Sweden)

    Corrado Girmenia

    2013-07-01

    Full Text Available Laboratory tests for the detection of fungal infections are easy to perform. The main obstacle to a correct diagnosis is the correlation between the laboratory findings and the clinical diagnosis. Among pediatric patients, the most common fungal pathogen is Candida. The detection of fungal colonization may be performed through the use of chromogenic culture media, which allows also the identification of Candida subspecies, from which pathogenicity depends. In neonatology, thistest often drives the decision to begin a empiric therapy; in this regard, a close cooperation between microbiologists and clinicians is highly recommended. Blood culture, if positive, is a strong confirmation of fungal infection; however, its low sensitivity results in a high percentage of false negatives, thus decreasing its reliability. Molecular diagnostics is still under evaluation, whereas the detection of some fungal antigens, such as β-D-glucan, galactomannan, mannoprotein, and cryptococcal antigen in the serum is used for adults, but still under evaluations for pediatric patients.http://dx.doi.org/10.7175/rhc.v4i1S.862

  17. Intra-antral application of an anti-fungal agent for recurrent maxillary fungal rhinosinusitis: a case report

    Directory of Open Access Journals (Sweden)

    Dunmade Adekunle D

    2012-08-01

    Full Text Available Abstract Introduction Fungal infection of the paranasal sinuses is an increasingly recognized entity both in immunocompetent and immunocompromised individuals. Treatment has been via use of either surgical or medical modalities, or a combination of the two. Here, we present a case of utilization of intra-antral application of an anti-fungal agent in the management of recurrent fungal sinusitis in an indigent Nigerian patient. Case presentation We present the case of a 30-year-old West African Yoruba man, an indigent Nigerian clergyman, who presented to our facility with a history of recurrent nasal discharge (about one year, recurrent nasal blockage (about five months, and right facial swelling (about one week. After intra-nasal antrostomy for debulking with a systemic anti-fungal agent, our patient had a recurrence after four months. Our patient subsequently had an intra-antral application of flumetasone and clioquinol (Locacorten®-Vioform® weekly for six weeks with improvement of symptoms and no recurrence after six months of follow-up. Conclusions We conclude that topical intra-antral application of anti-fungal agents is effective in patients with recurrent fungal maxillary sinusitis after surgical debulking.

  18. Fungal diversity and potential tree pathogens in decaying logs and stumps

    NARCIS (Netherlands)

    Wal, van der Annemieke; klein Gunnewiek, Paulien; Hollander, de Mattias; Boer, de Wietse

    2017-01-01

    Different types of dead wood in forest ecosystems contribute to an increase of habitats for decomposer fungi. This may have a positive effect on fungal diversity but may also increase habitats for tree pathogens. In this study we investigate the fungal diversity and composition via high-throughput

  19. The Fungal Defensin Family Enlarged

    Directory of Open Access Journals (Sweden)

    Jiajia Wu

    2014-08-01

    Full Text Available Fungi are an emerging source of peptide antibiotics. With the availability of a large number of model fungal genome sequences, we can expect that more and more fungal defensin-like peptides (fDLPs will be discovered by sequence similarity search. Here, we report a total of 69 new fDLPs encoded by 63 genes, in which a group of fDLPs derived from dermatophytes are defined as a new family (fDEF8 according to sequence and phylogenetic analyses. In the oleaginous fungus Mortierella alpine, fDLPs have undergone extensive gene expansion. Our work further enlarges the fungal defensin family and will help characterize new peptide antibiotics with therapeutic potential.

  20. Fungal contamination in hospital environments.

    Science.gov (United States)

    Perdelli, F; Cristina, M L; Sartini, M; Spagnolo, A M; Dallera, M; Ottria, G; Lombardi, R; Grimaldi, M; Orlando, P

    2006-01-01

    To assess the degree of fungal contamination in hospital environments and to evaluate the ability of air conditioning systems to reduce such contamination. We monitored airborne microbial concentrations in various environments in 10 hospitals equipped with air conditioning. Sampling was performed with a portable Surface Air System impactor with replicate organism detection and counting plates containing a fungus-selective medium. The total fungal concentration was determined 72-120 hours after sampling. The genera most involved in infection were identified by macroscopic and microscopic observation. The mean concentration of airborne fungi in the set of environments examined was 19 +/- 19 colony-forming units (cfu) per cubic meter. Analysis of the fungal concentration in the different types of environments revealed different levels of contamination: the lowest mean values (12 +/- 14 cfu/m(3)) were recorded in operating theaters, and the highest (45 +/- 37 cfu/m(3)) were recorded in kitchens. Analyses revealed statistically significant differences between median values for the various environments. The fungal genus most commonly encountered was Penicillium, which, in kitchens, displayed the highest mean airborne concentration (8 +/- 2.4 cfu/m(3)). The percentage (35%) of Aspergillus documented in the wards was higher than that in any of the other environments monitored. The fungal concentrations recorded in the present study are comparable to those recorded in other studies conducted in hospital environments and are considerably lower than those seen in other indoor environments that are not air conditioned. These findings demonstrate the effectiveness of air-handling systems in reducing fungal contamination.

  1. Epidemiology of fungal infections and risk factors in newborn patients

    Directory of Open Access Journals (Sweden)

    Paolo Manzoni

    2013-07-01

    Full Text Available The incidence of fungal infections among newborn babies is increasing, owing mainly to the in­creased ability to care and make survive immature infants at higher specific risk for fungal infections. The risk is higher in infants with very low and extremely low birth weight, in babies receiving total parenteral nutrition, in neonates with limited barrier effect in the gut, or with central venous catheter or other devices where fungal biofilms can originate. Also neonates receiving broad spectrum antibiotics, born through caesarian section or non-breastfed can feature an increased, specific risk. Most fungal infections in neonatology occur in premature children, are of nosocomial origin, and are due to Candida species. Colonization is a preliminary step, and some factors must be considered for the diagnosis and grading process: the iso­lation site, the number of colonized sites, the intensity of colonization, and the Candida subspecies. The most complicated patients are at greater risk of fungal infections, and prophylaxis or pre-emptive therapy should often be considered. A consistent decisional tree in neonatology is yet to be defined, but some efforts have been made in order to identify characteristics that should guide the prophylaxis or treatment choices. A negative blood culture and the absence of symptoms aren’t enough to rule out the diagnosis of fungal infections in newborn babies. Similarly, laboratory tests have been validated only for adults. The clinical judgement is of utmost importance in the diagnostic process, and should take into account the presence of clinical signs of infection, of a severe clinical deterioration, as well as changes in some laboratory tests, and also the presence and characteristics of a pre-existing fungal colonization.http://dx.doi.org/10.7175/rhc.v14i1S.856

  2. Distribution of ectomycorrhizal and pathogenic fungi in soil along a vegetational change from Japanese black pine (Pinus thunbergii) to black locust (Robinia pseudoacacia).

    Science.gov (United States)

    Taniguchi, Takeshi; Kataoka, Ryota; Tamai, Shigenobu; Yamanaka, Norikazu; Futai, Kazuyoshi

    2009-04-01

    The nitrogen-fixing tree black locust (Robinia pseudoacacia L.) seems to affect ectomycorrhizal (ECM) colonization and disease severity of Japanese black pine (Pinus thunbergii Parl.) seedlings. We examined the effect of black locust on the distribution of ECM and pathogenic fungi in soil. DNA was extracted from soil at depths of 0-5 and 5-10 cm, collected from the border between a Japanese black pine- and a black locust-dominated forest, and the distribution of these fungi was investigated by denaturing gradient gel electrophoresis. The effect of soil nutrition and pH on fungal distribution was also examined. Tomentella sp. 1 and Tomentella sp. 2 were not detected from some subplots in the Japanese black pine-dominated forest. Ectomycorrhizas formed by Tomentella spp. were dominant in black locust-dominated subplots and very little in the Japanese black pine-dominated forest. Therefore, the distribution may be influenced by the distribution of inoculum potential, although we could not detect significant relationships between the distribution of Tomentella spp. on pine seedlings and in soils. The other ECM fungi were detected in soils in subplots where the ECM fungi was not detected on pine seedlings, and there was no significant correlation between the distribution of the ECM fungi on pine seedlings and in soils. Therefore, inoculum potential seemed to not always influence the ECM community on roots. The distribution of Lactarius quieticolor and Tomentella sp. 2 in soil at a depth of 0-5 cm positively correlated with soil phosphate (soil P) and that of Tomentella sp. 2 also positively correlated with soil nitrogen (soil N). These results suggest the possibility that the distribution of inoculum potential of the ECM fungi was affected by soil N and soil P. Although the mortality of the pine seedlings was higher in the black locust-dominated area than in the Japanese black pine-dominated area, a pathogenic fungus of pine seedlings, Cylindrocladium pacificum, was

  3. Stem Cell Transplant Patients and Fungal Infections

    Science.gov (United States)

    ... Foodborne, Waterborne, and Environmental Diseases Mycotic Diseases Branch Stem Cell Transplant Patients and Fungal Infections Recommend on Facebook ... Mold . Top of Page Preventing fungal infections in stem cell transplant patients Fungi are difficult to avoid because ...

  4. Complications of hematopoietic stem transplantation: Fungal infections.

    Science.gov (United States)

    Omrani, Ali S; Almaghrabi, Reem S

    2017-12-01

    Patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT) are at increased risk of invasive fungal infections, especially during the early neutropenic phase and severe graft-versus-host disease. Mold-active prophylaxis should be limited to the highest risk groups. Empiric antifungal therapy for HSCT with persistent febrile neutropenia is associated with unacceptable response rates, unnecessary antifungal therapy, increased risk of toxicity, and inflated costs. Empiric therapy should not be a substitute for detailed work up to identify the cause of fever in such patients. The improved diagnostic performance of serum biomarkers such as galactomannan and β-D-glucan, as well as polymerase chain reaction assays has allowed the development of diagnostic-driven antifungal therapy strategies for high risk patients. Diagnostic-driven approaches have resulted in reduced unnecessary antifungal exposure, improved diagnosis of invasive fungal disease, and reduced costs without increased risk of mortality. The appropriateness of diagnostic-driven antifungal strategy for individual HSCT centers depends on the availability and turnaround times for diagnostics, multidisciplinary expertise, and the local epidemiology of invasive fungal infections. Echinocandins are the treatment of choice for invasive candidiasis in most HSCT recipients. Fluconazole may be used for the treatment of invasive candidiasis in hemodynamically stable patients with no prior azole exposure. The primary treatment of choice for invasive aspergillosis is voriconazole. Alternatives include isavuconazole and lipid formulations of amphotericin. Currently available evidence does not support routine primary combination antifungal therapy for invasive aspergillosis. However, combination salvage antifungal therapy may be considered in selected patients. Therapeutic drug monitoring is recommended for the majority of HSCT recipients on itraconazole, posaconazole, or voriconazole. Copyright © 2017

  5. {sup 137}Cs in the fungal compartment of Swedish forest soils

    Energy Technology Data Exchange (ETDEWEB)

    Vinichuk, Mykhaylo M. [Department of General Ecology, University of Agriculture and Ecology, Stary Blvd. 7, Zhytomyr 10001 (Ukraine); Johanson, Karl J.; Taylor, Andy F.S. [Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, Uppsala S-750 07 (Sweden)

    2004-05-05

    The {sup 137}Cs activities in soil profiles and in the mycelia of four ectomycorrhizal fungi were studied in a Swedish forest in an attempt to understand the mechanisms governing the transfer and retention of {sup 137}Cs in forest soil. The biomass of four species of fungi was determined and estimated to be 16 g m{sup -2} in a peat soil and 47-189 g m{sup -2} in non-peat soil to the depth of 10 cm. The vertical distribution was rather homogeneous for two species (Tylospora spp. and Piloderma fallax) and very superficial for Hydnellum peckii. Most of the {sup 137}Cs activity in mycelium of non-peat soils was found in the upper 5 cm. Transfer factors were quite high even for those species producing resupinate sporocarps. In the peat soil only approximately 0.3% of the total {sup 137}Cs inventory in soil was found in the fungal mycelium. The corresponding values for non-peat soil were 1.3, 1.8 and 1.9%.

  6. Root-associated fungal communities in three Pyroleae species and their mycobiont sharing with surrounding trees in subalpine coniferous forests on Mount Fuji, Japan.

    Science.gov (United States)

    Jia, Shuzheng; Nakano, Takashi; Hattori, Masahira; Nara, Kazuhide

    2017-11-01

    Pyroleae species are perennial understory shrubs, many of which are partial mycoheterotrophs. Most fungi colonizing Pyroleae roots are ectomycorrhizal (ECM) and share common mycobionts with their Pyroleae hosts. However, such mycobiont sharing has neither been examined in depth before nor has the interspecific variation in sharing among Pyroleae species. Here, we examined root-associated fungal communities in three co-existing Pyroleae species, including Pyrola alpina, Pyrola incarnata, and Orthilia secunda, with reference to co-existing ECM fungi on the surrounding trees in the same soil blocks in subalpine coniferous forests. We identified 42, 75, and 18 fungal molecular operational taxonomic units in P. alpina, P. incarnata, and O. secunda roots, respectively. Mycobiont sharing with surrounding trees, which was defined as the occurrence of the same mycobiont between Pyroleae and surrounding trees in each soil block, was most frequent among P. incarnata (31 of 44 plants). In P. alpina, sharing was confirmed in 12 of 37 plants, and the fungal community was similar to that of P. incarnata. Mycobiont sharing was least common in O. secunda, found in only 5 of 32 plants. Root-associated fungi of O. secunda were dominated by Wilcoxina species, which were absent from the surrounding ECM roots in the same soil blocks. These results indicate that mycobiont sharing with surrounding trees does not equally occur among Pyroleae plants, some of which may develop independent mycorrhizal associations with ECM fungi, as suggested in O. secunda at our research sites.

  7. DEMONSTRATION BULLETIN: FUNGAL TREATMENT BULLETIN

    Science.gov (United States)

    Fungal treatment technology uses white rot fungi (lignin degrading fungi) to treat organic contaminated soils in situ. Organic materials inoculated with the fungi are mechanically mixed into the contaminated soil. Using enzymes normally produced for wood degradation as well as ot...

  8. [Fungal infections of the gastrointestinal tract].

    Science.gov (United States)

    Maragkoudakis, Emmanouil; Realdi, Giuseppe; Dore, Maria Pina

    2005-06-01

    In immunocompetent subjects fungal infections of the gastrointestinal tract are uncommon. Candida esophagitis remains the single most common fungal infection in immunocompromised hosts or in H. pylori- infected patients who receive antibiotic therapy. Enteric fungal infections are uncommon even in HIV-infected patients. Antifungal agents such as amphotericin B, ketoconazole, fluconazole, and the various formulations of itraconazole are effective for most cases.

  9. Daphnia can protect diatoms from fungal parasitism

    NARCIS (Netherlands)

    Kagami, M.; Van Donk, E.; De Bruin, A.; Rijkeboer, M.; Ibelings, B.W.

    2004-01-01

    Many phytoplankton species are susceptible to chytrid fungal parasitism. Much attention has been paid to abiotic factors that determine whether fungal infections become epidemic. It is still unknown, however, how biotic factors, such as interactions with zooplankton, affect the fungal infection

  10. Effects of aluminum and manganese on the growth of ectomycorrhizal fungi.

    Science.gov (United States)

    Thompson, G W; Medve, R J

    1984-09-01

    Cenococcum graniforme, Suillus luteus, Thelephora terrestris, and three isolates of Pisolithus tinctorius were cultured on modified Melin-Norkrans medium at pH 3.4 and adjusted to 0 to 500 ppm (0 to 500 mug/ml) of aluminum or manganese sulfate. Except for T. terrestris, which was intolerant of aluminum at 150 and 250 to 500 ppm, and P. tinctorius isolate 250, which was intolerant of aluminum at 450 ppm, all fungi showed some growth at all concentrations of aluminum. S. luteus was the most tolerant to aluminum. Manganese was less fungitoxic than aluminum, with all fungi showing at least 65% growth at 500 ppm as compared with the control. C. graniforme was not inhibited at any concentration of manganese, and S. luteus was only affected at 500 ppm. P. tinctorius isolate 230 showed no significant variation in growth when subjected to various concentrations of three forms of manganese salts. Significant differences in growth were detected in response to three aluminum salts, but no detectable pattern was apparent. Genotypic responses to aluminum and manganese were evident for P. tinctorius. Isolates 210 and 230 were more tolerant to manganese than was isolate 250. Aluminum tolerance was in the order of isolate 230 > 210 > 250. Results of in vitro studies concerning tolerance responses of ectomycorrhizal fungi to aluminum and manganese were not consistent with field observations of the successional sequence of these fungi on acid coal spoils.

  11. Effects of aluminum and manganese on the growth of ectomycorrhizal fungi

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, G.W.; Medve, R.J.

    1984-09-01

    Cenococcum graniforme, Suillus luteus, Thelephora terrestris, and three isolates of Pisolithus tinctorius were cultured on modified Melin-Norkrans medium at pH 3.4 and adjusted to 0 to 500 ppm (0 to 500 ..mu..g/ml) of aluminum or manganese sulfate. Except for T. terrestris, which was intolerant of aluminum at 150 and 250 to 500 ppm, and P. tinctorius isolate 250, which was intolerant of aluminum at 450 ppm, all fungi showed some growth at all concentrations of aluminum. S. luteus was the most tolerant to aluminum. Manganese was less fungitoxic than aluminum, with all fungi showing at least 65% growth at 500 ppm as compared with the control. C graniforme was not inhibited at any concentration of manganese, and S. luteus was only affected at 500 ppm. P. tinctorius isolate 230 showed no significant variation in growth when subjected to various concentrations of three forms of manganese salts. Significant differences in growth were detected in response to three aluminum salts, but no detectable pattern was apparent. Genotypic responses to aluminum and manganese were evident for P. tinctorius. Isolates 210 and 230 were more tolerant to manganese than was isolate 250. Aluminum tolerance was in the order of isolate 230 > 210 > 250. Results of in vitro studies concerning tolerance responses of ectomycorrhizal fungi to aluminum and manganese were not consistent with field observations of the successional sequence of these fungi on acid coal spoils. 43 references, 3 tables.

  12. Into and out of the tropics: global diversification patterns in a hyperdiverse clade of ectomycorrhizal fungi.

    Science.gov (United States)

    Looney, Brian P; Ryberg, Martin; Hampe, Felix; Sánchez-García, Marisol; Matheny, P Brandon

    2016-01-01

    Ectomycorrhizal (ECM) fungi, symbiotic mutualists of many dominant tree and shrub species, exhibit a biogeographic pattern counter to the established latitudinal diversity gradient of most macroflora and fauna. However, an evolutionary basis for this pattern has not been explicitly tested in a diverse lineage. In this study, we reconstructed a mega-phylogeny of a cosmopolitan and hyperdiverse genus of ECM fungi, Russula, sampling from annotated collections and utilizing publically available sequences deposited in GenBank. Metadata from molecular operational taxonomic unit cluster sets were examined to infer the distribution and plant association of the genus. This allowed us to test for differences in patterns of diversification between tropical and extratropical taxa, as well as how their associations with different plant lineages may be a driver of diversification. Results show that Russula is most species-rich at temperate latitudes and ancestral state reconstruction shows that the genus initially diversified in temperate areas. Migration into and out of the tropics characterizes the early evolution of the genus, and these transitions have been frequent since this time. We propose the 'generalized diversification rate' hypothesis to explain the reversed latitudinal diversity gradient pattern in Russula as we detect a higher net diversification rate in extratropical lineages. Patterns of diversification with plant associates support host switching and host expansion as driving diversification, with a higher diversification rate in lineages associated with Pinaceae and frequent transitions to association with angiosperms. © 2015 John Wiley & Sons Ltd.

  13. Ectomycorrhizal host specificity in a changing world: can legacy effects explain anomalous current associations?

    Science.gov (United States)

    Lofgren, Lotus; Nguyen, Nhu H; Kennedy, Peter G

    2018-02-07

    Despite the importance of ectomycorrhizal (ECM) fungi in forest ecosystems, knowledge about the ecological and co-evolutionary mechanisms underlying ECM host associations remains limited. Using a widely distributed group of ECM fungi known to form tight associations with trees in the family Pinaceae, we characterized host specificity among three unique Suillus-host species pairs using a combination of field root tip sampling and experimental bioassays. We demonstrate that the ECM fungus S. subaureus can successfully colonize Quercus hosts in both field and glasshouse settings, making this species unique in an otherwise Pinaceae-specific clade. Importantly, however, we found that the colonization of Quercus by S. subaureus required co-planting with a Pinaceae host. While our experimental results indicate that gymnosperms are required for the establishment of new S. subaureus colonies, Pineaceae hosts are locally absent at both our field sites. Given the historical presence of Pineaceae hosts before human alteration, it appears the current S. subaureus-Quercus associations represent carryover from past host presence. Collectively, our results suggest that patterns of ECM specificity should be viewed not only in light of current forest community composition, but also as a legacy effect of host community change over time. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  14. Identification of genes differentially expressed in ectomycorrhizal roots during the Pinus pinaster-Laccaria bicolor interaction.

    Science.gov (United States)

    Flores-Monterroso, Aranzazu; Canales, Javier; de la Torre, Fernando; Ávila, Concepción; Cánovas, Francisco M

    2013-06-01

    Ectomycorrhizal associations are of major ecological importance in temperate and boreal forests. The development of a functional ectomycorrhiza requires many genetic and biochemical changes. In this study, suppressive subtraction hybridization was used to identify differentially expressed genes in the roots of maritime pine (Pinus pinaster Aiton) inoculated with Laccaria bicolor, a mycorrhizal fungus. A total number of 200 unigenes were identified as being differentially regulated in maritime pine roots during the development of mycorrhiza. These unigenes were classified into 10 categories according to the function of their homologues in the GenBank database. Approximately, 40 % of the differentially expressed transcripts were genes that coded for unknown proteins in the databases or that had no homology to known genes. A group of these differentially expressed genes was selected to validate the results using quantitative real-time PCR. The transcript levels of the representative genes were compared between the non-inoculated and inoculated plants at 1, 5, 15 and 30 days after inoculation. The observed expression patterns indicate (1) changes in the composition of the wall cell, (2) tight regulation of defence genes during the development of mycorrhiza and (3) changes in carbon and nitrogen metabolism. Ammonium excess or deficiency dramatically affected the stability of ectomycorrhiza and altered gene expression in maritime pine roots.

  15. Effect of coal ash on growth and metal uptake by some selected ectomycorrhizal fungi in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ray, P.; Reddy, U.G.; Lapeyrie, F.; Adholeya, A. [Energy & Resources Institute, New Delhi (India)

    2005-07-01

    Six isolates of ectomycorrhizal fungi namely, Laccaria fraterna (EM-1083), Pisolithus tinctorius (EM-1081), Pisolithus tinctorius (EM-1290), Pisolithus tinctorius (EM-1293), Scleroderma verucosurn (EM-1283), and Scleroderma cepa (EM-1233), were grown on three variants of coal ash, namely electrostatically precipitated (ESP) ash, pond ash, and bottom ash moistened with Modified Melin-Norkans (MMN) medium in vitro. The colony diameter reflected the growth of the isolates on the coal ash. Metal accumulation in the mycelia was assayed by atomic absorption spectrophotometry. Six metals, namely aluminum, cadmium, chromium, iron, lead, and nickel were selected on the basis of their abundance in coal ash and toxicity potential for the present work. Growth of vegetative mycelium on fly ash variants and metal accumulation data indicated that Pisolithus tinctorius (EM-1290) was the most tolerant among the isolates tested for most of the metals. Since this isolate is known to be mycorrhizal with Eucalyptus, it could be used for the reclamation of coal ash over burdened sites.

  16. Seletion of arbuscular mycorrhizal and ectomycorrhizal fungi for efficient symbiosis with Acacia mangium willd

    Directory of Open Access Journals (Sweden)

    Guilherme Augusto Robles Angelini

    2013-12-01

    Full Text Available Acacia mangium forms two kinds of mycorrhizal symbiosis, a arbuscular mycorrhizal fungi (AMFs type and another with ectomycorrhizal fungi (fECTOs. The present study aimed to select different AMFs species and fECTOs isolates for effective symbiosis with A. mangium, which provide seedlings well colonized, nodulated and developed. Experiments were conducted in a greenhouse at Embrapa Agrobiology, one for AMF species selection and another for fECTOs, using a randomized block design with five replicates. Treatments were species AMFs (Acaulospora laevis, Acaulospora morrowiae, Entrophospora colombiana, Entrophospora contigua, Gigaspora margarita, Glomus clarum, Scutellospora calospora, Scutellospora heterogama, Scutellospora gilmorei and Scutellospora pellucida or fECTOs isolated (UFSC Pt116; UFSC Pt24; UFSC Pt193; O 64–ITA6; UFSC Pt187 and O 40–ORS 7870. The AMFs species that promoted greater vegetative growth, mycorrhizal colonization and more effective symbioses were S. calospora, S. heterogama, S. gilmorei e A. morrowiae. The fECTOs not demonstrated effectiveness in promoting growth, but the isolate O64-ITA6 (Pisolithus tinctorius provided greater colonization. Seedlings of A. mangium have high responsiveness to inoculation with AMFs and depends on high root colonization, between 40 and 80%, to obtain relevant benefits from symbiose over nodule formation and growth.

  17. Primary renal candidiasis: fungal mycetomas in the kidney

    International Nuclear Information System (INIS)

    Morris, B.S.; Chudgar, P.D.; Manejwala, O.

    2002-01-01

    Fungal infections of the urinary tract have a predilection for drainage structures rather than for the renal parenchyma. Of the causal factors, diabetes mellitus, immunosuppressed states, AIDS and prematurity are those most commonly encountered. The case of a young, diabetic man whose chief clinical presentation was dysuria is described. On further examination he was found to harbour fungal balls in the right kidney. Radiological manifestations of acute pyelonephritis were also present. Although primary renal candidiasis is often commensurate with systemic fungaemia, he displayed none of the clinical features of disseminate infection and, hence, was treated conservatively with oral antifungal agents. Fortuitously, spontaneous passage of fungal particulate matter in urine was later reported. A significant increase in the incidence of fungal cystitis has been found in recent years; however, the patient presents with many non-specific features of cystitis. Both sonography and CT show thickening of the bladder wall but, again, this lacks specificity. In the rare instance of prostate involvement, low attenuation foci on CT are seen within the gland. Despite the existence of a large number of fungal species, only a few are pathogenic to humans. Of those that cause disease in the urinary tract, Candida albicans is the most frequently encountered. A highly characteristic finding in such infections is of fungal balls, which are made up of aggregates of mycelia. However, care should be exercised in interpretation as a host of other conditions can mimic fungal bezoars. Although a CT scan at initial examination may qualify as the more descriptive, sonography provides a serial non-invasive means of evaluating the urinary tract. When in doubt, a urine culture clinches the diagnosis. Copyright (2002) Blackwell Science Pty Ltd

  18. Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics.

    Science.gov (United States)

    Gupta, Rishi; Mehta, Girija; Khasa, Yogender Pal; Kuhad, Ramesh Chander

    2011-07-01

    The biological delignification of lignocellulosic feedstocks, Prosopis juliflora and Lantana camara was carried out with Pycnoporus cinnabarinus, a white rot fungus, at different scales under solid-state fermentation (SSF) and the fungal treated substrates were evaluated for their acid and enzymatic saccharification. The fungal fermentation at 10.0 g substrate level optimally delignified the P. juliflora by 11.89% and L. camara by 8.36%, and enriched their holocellulose content by 3.32 and 4.87%, respectively, after 15 days. The fungal delignification when scaled up from 10.0 g to 75.0, 200.0 and 500.0 g substrate level, the fungus degraded about 7.69-10.08% lignin in P. juliflora and 6.89-7.31% in L. camara, and eventually enhanced the holocellulose content by 2.90-3.97 and 4.25-4.61%, respectively. Furthermore, when the fungal fermented L. camara and P. juliflora was hydrolysed with dilute sulphuric acid, the sugar release was increased by 21.4-42.4% and the phenolics content in hydrolysate was decreased by 18.46 and 19.88%, as compared to the unfermented substrate acid hydrolysis, respectively. The reduction of phenolics in acid hydrolysates of fungal treated substrates decreased the amount of detoxifying material (activated charcoal) by 25.0-33.0% as compared to the amount required to reduce almost the same level of phenolics from unfermented substrate hydrolysates. Moreover, an increment of 21.1-25.1% sugar release was obtained when fungal treated substrates were enzymatically hydrolysed as compared to the hydrolysis of unfermented substrates. This study clearly shows that fungal delignification holds potential in utilizing plant residues for the production of sugars and biofuels.

  19. Subseafloor basalts as fungal habitats

    Directory of Open Access Journals (Sweden)

    M. Ivarsson

    2012-09-01

    Full Text Available The oceanic crust is believed to host the largest potential habitat for microbial life on Earth, yet, still we lack substantial information about the abundance, diversity, and consequence of its biosphere. The last two decades have involved major research accomplishments within this field and a change in view of the ocean crust and its potential to harbour life. Here fossilised fungal colonies in subseafloor basalts are reported from three different seamounts in the Pacific Ocean. The fungal colonies consist of various characteristic structures interpreted as fungal hyphae, fruit bodies and spores. The fungal hyphae are well preserved with morphological characteristics such as hyphal walls, septa, thallic conidiogenesis, and hyphal tips with hyphal vesicles within. The fruit bodies consist of large (∼50–200 µm in diameter body-like structures with a defined outer membrane and an interior filled with calcite. The fruit bodies have at some stage been emptied of their contents of spores and filled by carbonate-forming fluids. A few fruit bodies not filled by calcite and with spores still within support this interpretation. Spore-like structures (ranging from a few µm to ∼20 µm in diameter are also observed outside of the fruit bodies and in some cases concentrated to openings in the membrane of the fruit bodies. The hyphae, fruit bodies and spores are all closely associated with a crust lining the vein walls that probably represent a mineralized biofilm. The results support a fungal presence in deep subseafloor basalts and indicate that such habitats were vital between ∼81 and 48 Ma.

  20. An investigation on non-invasive fungal sinusitis; Molecular identification of etiologic agents

    Directory of Open Access Journals (Sweden)

    Abdolrasoul Mohammadi

    2017-01-01

    Full Text Available Background: Fungal sinusitis is increasing worldwide in the past two decades. It is divided into two types including invasive and noninvasive. Noninvasive types contain allergic fungal sinusitis (AFS and fungus ball. AFS is a hypersensitivity reaction to fungal allergens in the mucosa of the sinonasal tract in atopic individuals. The fungus ball is a different type of noninvasive fungal rhinosinusitis which is delineated as an accumulation of debris and fungal elements inside a paranasal sinus. Fungal sinusitis caused by various fungi such as Aspergillus species, Penicillium, Mucor, Rhizopus, and phaeohyphomycetes. The aim of the present study is to identify fungal species isolated from noninvasive fungal sinusitis by molecular methods. Materials and Methods: During 2015–2016, a total of 100 suspected patients were examined for fungal sinusitis. Functional endoscopic sinus surgery was performed using the Messerklinger technique. Clinical samples were identified by phenotypic and molecular methods. Polymerase chain reaction (PCR sequencing of ITS1-5.8S-ITS2 region and PCR-restriction fragment length polymorphism with Msp I restriction enzyme was performed for molecular identification of molds and yeasts, respectively. Results: Twenty-seven out of 100 suspected cases (27% had fungal sinusitis. Nasal congestion (59% and headache (19% were the most common clinical signs among patients. Fifteen patients (55.5% were male and 12 patients (44.5% were female. Aspergillus flavus was the most prevalent fungal species (26%, followed by Penicillium chrysogenum (18.5% and Candida glabrata species complex (15%. Conclusion: Since clinical manifestations, computed tomography scan, endoscopy, and histopathological findings are very nonspecific in AFS and fungus ball; therefore, molecular investigations are compulsory for precise identification of etiologic agents and appropriate management of these fungal infections.

  1. Release and characteristics of fungal fragments in various conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mensah-Attipoe, Jacob [Department of Environmental Science, University of Eastern Finland, Yliopistonranta 1D, P. O. Box 1627, FI-70211 Kuopio (Finland); Saari, Sampo [Department of Physics, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere (Finland); Veijalainen, Anna-Maria; Pasanen, Pertti [Department of Environmental Science, University of Eastern Finland, Yliopistonranta 1D, P. O. Box 1627, FI-70211 Kuopio (Finland); Keskinen, Jorma [Department of Physics, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere (Finland); Leskinen, Jari T.T. [SIB Labs, University of Eastern Finland, Yliopistonranta 1E, P. O. Box 1627, FI-70211, Kuopio (Finland); Reponen, Tiina, E-mail: reponeta@ucmail.uc.edu [Department of Environmental Science, University of Eastern Finland, Yliopistonranta 1D, P. O. Box 1627, FI-70211 Kuopio (Finland); Department of Environmental Health, University of Cincinnati, P.O. Box 670056, Cincinnati, OH 45267-0056 (United States)

    2016-03-15

    Intact spores and submicrometer size fragments are released from moldy building materials during growth and sporulation. It is unclear whether all fragments originate from fungal growth or if small pieces of building materials are also aerosolized as a result of microbial decomposition. In addition, particles may be formed through nucleation from secondary metabolites of fungi, such as microbial volatile organic compounds (MVOCs). In this study, we used the elemental composition of particles to characterize the origin of submicrometer fragments released from materials contaminated by fungi. Particles from three fungal species (Aspergillus versicolor, Cladosporium cladosporioides and Penicillium brevicompactum), grown on agar, wood and gypsum board were aerosolized using the Fungal Spore Source Strength Tester (FSSST) at three air velocities (5, 16 and 27 m/s). Released spores (optical size, d{sub p} ≥ 0.8 μm) and fragments (d{sub p} ≤ 0.8 μm) were counted using direct-reading optical aerosol instruments. Particles were also collected on filters, and their morphology and elemental composition analyzed using scanning electron microscopes (SEMs) coupled with an Energy-Dispersive X-ray spectroscopy (EDX). Among the studied factors, air velocity resulted in the most consistent trends in the release of fungal particles. Total concentrations of both fragments and spores increased with an increase in air velocity for all species whereas fragment–spore (F/S) ratios decreased. EDX analysis showed common elements, such as C, O, Mg and Ca, for blank material samples and fungal growth. However, N and P were exclusive to the fungal growth, and therefore were used to differentiate biological fragments from non-biological ones. Our results indicated that majority of fragments contained N and P. Because we observed increased release of fragments with increased air velocities, nucleation of MVOCs was likely not a relevant process in the formation of fungal fragments. Based

  2. Interactions of liposome carriers with infectious fungal hyphae reveals the role of β-glucans.

    Science.gov (United States)

    Chavan, Neelam L; Young, Joseph K; Drezek, Rebekah A; Lewis, Russell; Bikram, Malavosklish

    2012-09-04

    Relatively little is known about how liposomal formulations modulate drug delivery to fungal pathogens. We compared patterns of hyphal cell wall binding for empty rhodmine-labeled liposomes and the clinically available amphotericin B-containing liposomal formulation (AmBisome) in Aspergillus fumigatus and Candida albicans. Following 0.5 h of coincubation with A. fumigatus , empty liposomes concentrated primarily in fungal septae along at the surface of the cell wall, suggesting that liposome uptake is concentrated in areas of the cell wall where linear glucan is exposed on the cell surface, which was confirmed by aniline blue staining. Consistent with this hypothesis, pretreatment of liposomes with soluble linear glucan (laminarin) decreased liposome binding in both Aspergillus and Candida fungal hyphae, while growth of Aspergillus hyphae in the presence of an agent that increases fungal cell wall surface exposure of linear β-glucans without cell death (caspofungin) increased liposome uptake throughout the Aspergillus fungal cell wall. Increasing the polyethylene glycol (PEG) concentration in liposomes from 0 to 30% significantly increased fungal uptake of liposomes that was only modestly attenuated when fungal cells were incubated in serum concentrations ranging from 10 to 100%. The presence of β-glucans on the fungal hyphae cell walls of Aspergillus fumigatus is one of the factors responsible for mediating the binding of liposome carriers to the hyphae and could explain possible synergy reported between liposomal amphotericin B and echinocanins.

  3. DIAGNOSIS & MANAGEMENT OF ALLERGIC FUNGAL SINUSITIS

    Directory of Open Access Journals (Sweden)

    Syam Manohar Gadhamsetty

    2016-08-01

    Full Text Available BACKGROUND Chronic sinusitis is one of the common diagnosis in ENT practice. Allergic fungal sinusitis is a clinical entity with characteristic clinical, radiographic and histopathological findings. Allergic fungal sinusitis and eosinophilic mucin rhinosinusitis can easily be misdiagnosed. AIM OF STUDY A prospective clinical study of allergic Fungal Rhinosinusitis to use diagnostic criteria to confirm the disease with Radiological, Pathological & Microbiological investigations and their management. MATERIALS & METHODS A prospective study of allergic Fungal Rhinosinusitis in 2 years from November 2011 to October 2013. Among the patients who attended the ENT OPD during this period, 21 patients with symptoms and signs suggestive of Allergic Fungal Rhinosinusitis are selected.

  4. Dynamics of fungal colonization in a new medical mycology laboratory.

    Science.gov (United States)

    Sautour, M; Fournel, I; Dalle, F; Calinon, C; L'Ollivier, C; Goyer, M; Cachia, C; Aho, S; Sixt, N; Vagner, O; Cuisenier, B; Bonnin, A

    2012-03-01

    Study of the spatio-temporal fungal colonization in a new medical mycology laboratory. A 17-month survey of airborne fungal contamination was conducted in a new medical mycology laboratory at a tertiary care university hospital. This survey was implemented at three different periods: before the new premises were occupied (period A), during the move into the new laboratory (period B) and after resumption of the mycological activities in these new premises (period C). During period A, the airborne fungal load ranged from 2.3 to 6 cfu/m(3). The most frequently recovered airborne fungi were Penicillium spp. (75 to 100%). During period B, a dramatic increase in Penicillium chrysogenum conidia was observed in the air of the new laboratory (40 to 160 cfu/m(3)). During period C, the fungal load ranged from 4.5 to 8.4 cfu/m(3). Penicillium was the most common genus identified in rooms of the laboratory where no filamentous fungi were handled, while Aspergillus was clearly the predominant genus (78%) in the room dedicated to the culture of filamentous fungi. We suggest that the specific fungal ecology in air of the room dedicated to the culture of filamentous fungi is due to the handling of a large number of medical strains of A. fumigatus. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  5. Fermented whey as poultry feed additive to prevent fungal contamination.

    Science.gov (United States)

    Londero, Alejandra; León Peláez, María A; Diosma, Gabriela; De Antoni, Graciela L; Abraham, Analía G; Garrote, Graciela L

    2014-12-01

    Fungal contamination of poultry feed causes economic losses to industry and represents a potential risk to animal health. The aim of the present study was to analyze the effectiveness of whey fermented with kefir grains as additive to reduce fungal incidence, thus improving feed safety. Whey fermented for 24 h at 20 °C with kefir grains (100 g L(-1) ) reduced conidial germination of Aspergillus flavus, Aspergillus parasiticus, Aspergillus terreus, Aspergillus fumigatus, Penicillium crustosum, Trichoderma longibrachiatum and Rhizopus sp. Poultry feed supplemented with fermented whey (1 L kg(-1) ) was two to four times more resistant to fungal contamination than control feed depending on the fungal species. Additionally, it contained kefir microorganisms at levels of 1 × 10(8) colony-forming units (CFU) kg(-1) of lactic acid bacteria and 6 × 10(7) CFU kg(-1) of yeasts even after 30 days of storage. Fermented whey added to poultry feed acted as a biopreservative, improving its resistance to fungal contamination and increasing its shelf life. © 2014 Society of Chemical Industry.

  6. [Preservation of high risk fungal cultures of Histoplasma and Cryptococcus].

    Science.gov (United States)

    Fernández Andreu, C Carlos Manuel; Díaz Suárez, Luis Alberto; Ilnait Zaragozi, María Teresa; Aragonés López, Carlos; Martínez Machín, Gerardo; Perurena Lancha, Mayda R

    2012-01-01

    culture collections are responsible for providing the microbial resources for development of biological sciences. Storage in distilled water is one of the easiest and least expensive method for long-term fungal preservation. to evaluate the usefulness of this preservation method in fungal culture of Histoplasma and Cryptococcus. the preservation condition of the highest biological risk species from Histoplasma y Cryptococcus genera, included in the fungal culture collection of "Pedro Kouri" Institute of Tropical Medicine in Havana, was evaluated in this study. One hundred and two strains stored in distilled water, 92% of which had been preserved for more than 10 years, were analyzed. the percentages of recovered strains from H. capsulatum, C. neoformans and C. gattii were 64.3%; 79.1% and 100% respectively. This method of preservation proved to be satisfactory for fungal culture in labs with limited financial resources. A web-based database with interesting information about the collection was made. The importance of strict compliance with the biosafety measures in these collections, particularly with high risk pathogens. preservation of fungal cultures in distilled water is a very useful method for laboratories with limited resources. Culture collections should be assumed as an essential activity in order to solve increasing challenges in the development of biomedical sciences.

  7. Fungal cell gigantism during mammalian infection.

    Directory of Open Access Journals (Sweden)

    Oscar Zaragoza

    2010-06-01

    Full Text Available The interaction between fungal pathogens with the host frequently results in morphological changes, such as hyphae formation. The encapsulated pathogenic fungus Cryptococcus neoformans is not considered a dimorphic fungus, and is predominantly found in host tissues as round yeast cells. However, there is a specific morphological change associated with cryptococcal infection that involves an increase in capsule volume. We now report another morphological change whereby gigantic cells are formed in tissue. The paper reports the phenotypic characterization of giant cells isolated from infected mice and the cellular changes associated with giant cell formation. C. neoformans infection in mice resulted in the appearance of giant cells with cell bodies up to 30 microm in diameter and capsules resistant to stripping with gamma-radiation and organic solvents. The proportion of giant cells ranged from 10 to 80% of the total lung fungal burden, depending on infection time, individual mice, and correlated with the type of immune response. When placed on agar, giant cells budded to produce small daughter cells that traversed the capsule of the mother cell at the speed of 20-50 m/h. Giant cells with dimensions that approximated those in vivo were observed in vitro after prolonged culture in minimal media, and were the oldest in the culture, suggesting that giant cell formation is an aging-dependent phenomenon. Giant cells recovered from mice displayed polyploidy, suggesting a mechanism by which gigantism results from cell cycle progression without cell fission. Giant cell formation was dependent on cAMP, but not on Ras1. Real-time imaging showed that giant cells were engaged, but not engulfed by phagocytic cells. We describe a remarkable new strategy for C. neoformans to evade the immune response by enlarging cell size, and suggest that gigantism results from replication without fission, a phenomenon that may also occur with other fungal pathogens.

  8. Fungal cell gigantism during mammalian infection.

    Science.gov (United States)

    Zaragoza, Oscar; García-Rodas, Rocío; Nosanchuk, Joshua D; Cuenca-Estrella, Manuel; Rodríguez-Tudela, Juan Luis; Casadevall, Arturo

    2010-06-17

    The interaction between fungal pathogens with the host frequently results in morphological changes, such as hyphae formation. The encapsulated pathogenic fungus Cryptococcus neoformans is not considered a dimorphic fungus, and is predominantly found in host tissues as round yeast cells. However, there is a specific morphological change associated with cryptococcal infection that involves an increase in capsule volume. We now report another morphological change whereby gigantic cells are formed in tissue. The paper reports the phenotypic characterization of giant cells isolated from infected mice and the cellular changes associated with giant cell formation. C. neoformans infection in mice resulted in the appearance of giant cells with cell bodies up to 30 microm in diameter and capsules resistant to stripping with gamma-radiation and organic solvents. The proportion of giant cells ranged from 10 to 80% of the total lung fungal burden, depending on infection time, individual mice, and correlated with the type of immune response. When placed on agar, giant cells budded to produce small daughter cells that traversed the capsule of the mother cell at the speed of 20-50 m/h. Giant cells with dimensions that approximated those in vivo were observed in vitro after prolonged culture in minimal media, and were the oldest in the culture, suggesting that giant cell formation is an aging-dependent phenomenon. Giant cells recovered from mice displayed polyploidy, suggesting a mechanism by which gigantism results from cell cycle progression without cell fission. Giant cell formation was dependent on cAMP, but not on Ras1. Real-time imaging showed that giant cells were engaged, but not engulfed by phagocytic cells. We describe a remarkable new strategy for C. neoformans to evade the immune response by enlarging cell size, and suggest that gigantism results from replication without fission, a phenomenon that may also occur with other fungal pathogens.

  9. Ectomycorrhizal association of three Lactarius species with Carpinus and Quercus trees in a Mexican montane cloud forest.

    Science.gov (United States)

    Lamus, Valentina; Montoya, Leticia; Aguilar, Carlos J; Bandala, Victor M; Ramos, David

    2012-01-01

    Ectomycorrhizal (EM) fungi are being monitored in the Santuario del Bosque de Niebla in the central region of Veracruz (eastern Mexico). Based on the comparison of DNA sequences (ITS rDNA) of spatiotemporally co-occurring basidiomes and EM root tips, we discovered the EM symbiosis of Lactarius indigo, L. areolatus and L. strigosipes with Carpinus caroliniana, Quercus xalapensis and Quercus spp. The host of the EM tips was identified by comparison of the large subunit of the ribulose-bisphosphate carboxylase gene (rbcL). Descriptions coupled with photographs of ectomycorrhizas and basidiomes are presented.

  10. Mortality related to neonatal and pediatric fungal infections

    Directory of Open Access Journals (Sweden)

    Paolo Manzoni

    2013-07-01

    Full Text Available Thanks to the recent advances in the treatment of neonatal fungal infections, the burden of mortality has been decreasing. However a widely accepted definition is yet to be found, since different thresholds of survival are used in the published trials, and therefore mortality is assumed as occurring 7, 20, 30, or 90 days after treatment, according to the different studies. Regardless of the uncertainty of the definitions, it is more important to know if the patient died with the fungal infection or because of the fungal infection. The new antifungal drugs currently available for neonatal patients were able to increase the survival rates: the attention should, therefore, be focused on the long-term seque­lae, which, on the contrary, still affect a big amount of patients. In particular, neurobehavioral and neurosensorial disorders become often evident with age.http://dx.doi.org/10.7175/rhc.v14i1S.857 

  11. Novel fungal consortium pretreatment of waste oat straw to enhance economic and efficient biohydrogen production

    Directory of Open Access Journals (Sweden)

    Lirong Zhou

    2016-12-01

    Full Text Available Bio-pretreatment using a fungal consortium to enhance the efficiency of lignocellulosic biohydrogen production was explored.  A fungal consortium comprised of T. viride and P. chrysosporium as microbial inoculum was compared with untreated and single-species-inoculated samples. Fungal bio-pretreatment was carried out at atmospheric conditions with limited external energy input.  The effectiveness of the pretreatment is evaluated according to its lignin removal and digestibility. Enhancement of biohydrogen production is observed through scanning electron microscopy (SEM analysis. Fungal consortium pretreatment effectively degraded oat straw lignin (by >47% in 7 days leading to decomposition of cell-wall structure as revealed in SEM images, increasing biohydrogen yield. The hydrogen produced from the fungal consortium pretreated straw increased by 165% 6 days later, and was more than produced from either a single fungi species of T. viride or P. chrysosponium pretreated straw (94% and 106%, respectively. No inhibitory effect on hydrogen production was observed.

  12. Subseafloor basalts as fungal habitats

    Science.gov (United States)

    Ivarsson, M.; Bengtson, S.

    2013-12-01

    The oceanic crust makes up the largest potential habitat for life on Earth, yet next to nothing is known about the abundance, diversity and ecology of its biosphere. Our understanding of the deep biosphere of subseafloor crust is, with a few exceptions, based on a fossil record. Surprisingly, a majority of the fossilized microorganisms have been interpreted or recently re-interpreted as remnants of fungi rather than prokaryotes. Even though this might be due to a bias in fossilization the presence of fungi in these settings can not be neglected. We have examined fossilized microorganisms in drilled basalt samples collected at the Emperor Seamounts in the Pacific Ocean. Synchrotron-radiation X-ray tomography microscopy (SRXTM) studies has revealed a complex morphology and internal structure that corresponds to characteristic fungal morphology. Chitin was detected in the fossilized hyphae, which is another strong argument in favour of a fungal interpretation. Chitin is absent in prokaryotes but a substantial constituent in fungal cell walls. The fungal colonies consist of both hyphae and yeast-like growth states as well as resting structures and possible fruit bodies, thus, the fungi exist in vital colonies in subseafloor basalts. The fungi have also been involved in extensive weathering of secondary mineralisations. In terrestrial environments fungi are known as an important geobiological agent that promotes mineral weathering and decomposition of organic matter, and they occur in vital symbiosis with other microorganisms. It is probable to assume that fungi would play a similar role in subseafloor basalts and have great impact on the ecology and on biogeochemical cycles in such environments.

  13. Systemic fungal infections in neonates

    Directory of Open Access Journals (Sweden)

    Rao S

    2005-01-01

    Full Text Available Advances in neonatal management have led to considerable improvement in newborn survival. However, early (72hours onset systemic infections, both bacterial and fungal, remain a devastating complication and an important cause of morbidity and mortality in these babies. Most neonatal fungal infections are due to Candida species, particularly Candida albicans. The sources of candidiasis in NICU are often endogenous following colonization of the babies with fungi. About 10% of these babies get colonized in first week of life and up to 64% babies get colonized by 4 weeks of hospital stay. Disseminated candidiasis presents like bacterial sepsis and can involve multiple organs such as the kidneys, brain, eye, liver, spleen, bone, joints, meninges and heart. Confirming the diagnosis by laboratory tests is difficult and a high index of suspicion is required. The diagnosis of fungemia can be made definitely only by recovering the organism from blood or other sterile bodily fluid. Amphotericin B continues to be the mainstay of therapy for systemic fungal infections but its use is limited by the risks of nephrotoxicity and hypokalemia. Newer formulations of amphotericin B, namely the liposomal and the lipid complex forms, have recently become available and have been reported to have lesser toxicity. More recently Indian liposomal Amphotericin B derived from neutral lipids (L-Amp -LRC-1 has shown good response with less toxicity. A clinical trial with this preparation has shown to be safe and efficacious in neonatal fungal infections. Compared to other liposomal preparations, L-Amp-LRC-1 is effective at lower dose and is less expensive drug for the treatment of neonatal candidiasis.

  14. Fungal genome resources at NCBI

    Science.gov (United States)

    Robbertse, B.; Tatusova, T.

    2011-01-01

    The National Center for Biotechnology Information (NCBI) is well known for the nucleotide sequence archive, GenBank and sequence analysis tool BLAST. However, NCBI integrates many types of biomolecular data from variety of sources and makes it available to the scientific community as interactive web resources as well as organized releases of bulk data. These tools are available to explore and compare fungal genomes. Searching all databases with Fungi [organism] at http://www.ncbi.nlm.nih.gov/ is the quickest way to find resources of interest with fungal entries. Some tools though are resources specific and can be indirectly accessed from a particular database in the Entrez system. These include graphical viewers and comparative analysis tools such as TaxPlot, TaxMap and UniGene DDD (found via UniGene Homepage). Gene and BioProject pages also serve as portals to external data such as community annotation websites, BioGrid and UniProt. There are many different ways of accessing genomic data at NCBI. Depending on the focus and goal of research projects or the level of interest, a user would select a particular route for accessing genomic databases and resources. This review article describes methods of accessing fungal genome data and provides examples that illustrate the use of analysis tools. PMID:22737589

  15. Genetic variation and phylogenetic relationships of the ectomycorrhizal Floccularia luteovirens on the Qinghai-Tibet Plateau.

    Science.gov (United States)

    Xing, Rui; Gao, Qing-Bo; Zhang, Fa-Qi; Fu, Peng-Cheng; Wang, Jiu-Li; Yan, Hui-Ying; Chen, Shi-Long

    2017-08-01

    Floccularia luteovirens, as an ectomycorrhizal fungus, is widely distributed in the Qinghai-Tibet Plateau. As an edible fungus, it is famous for its unique flavor. Former studies mainly focus on the chemical composition and genetic structure of this species. However, the phylogenetic relationship between genotypes remains unknown. In this study, the genetic variation and phylogenetic relationship between the genotypes of F. luteovirens in Qinghai-Tibet Plateau was estimated through the analysis on two protein-coding genes (rpb1 and ef-1α) from 398 individuals collected from 24 wild populations. The sample covered the entire range of this species during all the growth seasons from 2011 to 2015. 13 genotypes were detected and moderate genetic diversity was revealed. Based on the results of network analysis, the maximum likelihood (ML), maximum parsimony (MP), and Bayesian inference (BI) analyses, the genotypes H-1, H-4, H-6, H-8, H-10, and H-11 were grouped into one clade. Additionally, a relatively higher genotype diversity (average h value is 0.722) and unique genotypes in the northeast edge of Qinghai- Tibet plateau have been found, combined with the results of mismatch analysis and neutrality tests indicated that Southeast Qinghai-Tibet plateau was a refuge for F. luteovirens during the historical geological or climatic events (uplifting of the Qinghai-Tibet Plateau or Last Glacial Maximum). Furthermore, the present distribution of the species on the Qinghai-Tibet plateau has resulted from the recent population expansion. Our findings provide a foundation for the future study of the evolutionary history and the speciation of this species.

  16. Production of amylase enzyme from mangrove fungal isolates ...

    African Journals Online (AJOL)

    The mangrove ecosystem serves as a bioresource for various industrially important microorganisms. The use of fungi as a source of industrially relevant enzymes led to an increased interest in the application of microbial enzymes in various industrial processes. Fungal colonies were isolated from sediments of five different ...

  17. Molecular phylogenetic biodiversity assessment of arctic and boreal ectomycorrhizal Lactarius Pers. (Russulales; Basidiomycota) in Alaska, based on soil and sporocarp DNA

    Science.gov (United States)

    Jozsef Geml; Gary A. Laursen; Ina Timling; Jack M. McFarland; Michael G. Booth; Niall Lennon; Chad Nusbaum; D. Lee. Taylor

    2009-01-01

    Despite the critical roles fungi play in the functioning of ecosystems, especially as symbionts of plants and recyclers of organic matter, their biodiversity is poorly known in high-latitude regions. In this paper, we discuss the molecular diversity of one of the most diverse and abundant groups of ectomycorrhizal fungi: the genus Lactarius Pers....

  18. Phylogenetic and ecological analyses of soil and sporocarp DNA sequences reveal high diversity and strong habitat partitioning in the boreal ectomycorrhizal genus Russula (Russulales; Basidiomycota)

    Science.gov (United States)

    József Geml; Gary A. Laursen; Ian C. Herriott; Jack M. McFarland; Michael G. Booth; Niall Lennon; H. Chad Nusbaum; D. Lee Taylor

    2010-01-01

    Although critical for the functioning of ecosystems, fungi are poorly known in high-latitude regions. Here, we provide the first genetic diversity assessment of one of the most diverse and abundant ectomycorrhizal genera in Alaska: Russula. We analyzed internal transcribed spacer rDNA sequences from sporocarps and soil samples using phylogenetic...

  19. Mycorrhizal associations as Salix repens L. communities in succession of dune ecosystems II Mycorrhizal dynamics and interactions of ectomycorrhizal and arbuscular mycorrhizal fungi

    NARCIS (Netherlands)

    Heijden, van der E.W.; Vosatka, M.

    2000-01-01

    Ectomycorrhizal (EcM) and arbuscular mycorrhizal (AM) associations of Salix repens were studied at 16 sites in different successional stages of dune ecosystems (calcareous-acidic, dry-wet) in the Netherlands. High EcM colonization, low AM colonization, and lack of differences between habitats

  20. An arctic community of symbiotic fungi assembled by long-distance dispersers: phylogenetic diversity of ectomycorrhizal basidiomycetes in Svalbard based on soil and sporocarp DNA

    Science.gov (United States)

    J. Geml; I. Timling; C.H. Robinson; N. Lennon; H.C. Nusbaum; C. Brochmann; M.E. Noordeloos; D.L. Taylor

    2011-01-01

    Current evidence from temperate studies suggests that ectomycorrhizal (ECM) fungi require overland routes for migration because of their obligate symbiotic associations with woody plants. Despite their key roles in arctic ecosystems, the phylogenetic diversity and phylogeography of arctic ECM fungi remains little known. Here we assess the phylogenetic diversity of ECM...

  1. Alnus acuminata in dual symbiosis with Frankia and two different ectomycorrhizal fungi (Alpova austroalnicola and Alpova diplophloeus) growing in soilless growth medium

    Science.gov (United States)

    Alejandra G. Becerra; Euginia Menoyo; Irene Lett; Ching Y. Li

    2009-01-01

    In this study we investigated the capacity of Andean alder (Alnus acuminata Kunth), inoculated with Frankia and two ectomycorrhizal fungi (Alpova austroalnicola Dominguez and Alpova diplophloeus [Zeller and Dodge] Trappe and Smith), for nodulation and growth in pots of a soilless medium...

  2. Phylogenetic distribution of fungal sterols.

    Directory of Open Access Journals (Sweden)

    John D Weete

    Full Text Available BACKGROUND: Ergosterol has been considered the "fungal sterol" for almost 125 years; however, additional sterol data superimposed on a recent molecular phylogeny of kingdom Fungi reveals a different and more complex situation. METHODOLOGY/PRINCIPAL FINDINGS: The interpretation of sterol distribution data in a modern phylogenetic context indicates that there is a clear trend from cholesterol and other Delta(5 sterols in the earliest diverging fungal species to ergosterol in later diverging fungi. There are, however, deviations from this pattern in certain clades. Sterols of the diverse zoosporic and zygosporic forms exhibit structural diversity with cholesterol and 24-ethyl -Delta(5 sterols in zoosporic taxa, and 24-methyl sterols in zygosporic fungi. For example, each of the three monophyletic lineages of zygosporic fungi has distinctive major sterols, ergosterol in Mucorales, 22-dihydroergosterol in Dimargaritales, Harpellales, and Kickxellales (DHK clade, and 24-methyl cholesterol in Entomophthorales. Other departures from ergosterol as the dominant sterol include: 24-ethyl cholesterol in Glomeromycota, 24-ethyl cholest-7-enol and 24-ethyl-cholesta-7,24(28-dienol in rust fungi, brassicasterol in Taphrinales and hypogeous pezizalean species, and cholesterol in Pneumocystis. CONCLUSIONS/SIGNIFICANCE: Five dominant end products of sterol biosynthesis (cholesterol, ergosterol, 24-methyl cholesterol, 24-ethyl cholesterol, brassicasterol, and intermediates in the formation of 24-ethyl cholesterol, are major sterols in 175 species of Fungi. Although most fungi in the most speciose clades have ergosterol as a major sterol, sterols are more varied than currently understood, and their distribution supports certain clades of Fungi in current fungal phylogenies. In addition to the intellectual importance of understanding evolution of sterol synthesis in fungi, there is practical importance because certain antifungal drugs (e.g., azoles target reactions in

  3. Rangewide analysis of fungal associations in the fully mycoheterotrophic Corallorhiza striata complex (Orchidaceae) reveals extreme specificity on ectomycorrhizal Tomentella (Thelephoraceae) across North America

    Science.gov (United States)

    Craig F. Barrett; John V. Freudenstein; D. Lee Taylor; Urmas. Koljalg

    2010-01-01

    Fully mycoheterotrophic plants offer a fascinating system for studying phylogenetic associations and dynamics of symbiotic specificity between hosts and parasites. These plants frequently parasitize mutualistic mycorrhizal symbioses between fungi and trees. Corallorhiza striata is a fully mycoheterotrophic, North American orchid distributed from...

  4. Zn pollution counteracts Cd toxicity in metal-tolerant ectomycorrhizal fungi and their host plant, Pinus sylvestris.

    Science.gov (United States)

    Krznaric, Erik; Wevers, Jan H L; Cloquet, Christophe; Vangronsveld, Jaco; Vanhaecke, Frank; Colpaert, Jan V

    2010-08-01

    Adaptive Zn and Cd tolerance have evolved in populations of the ectomycorrhizal fungus Suillus luteus. When exposed to high concentrations of both metals in vitro, a one-sided antagonism was apparent in the Zn- and Cd-tolerant isolates. Addition of high Zn concentrations restored growth of Cd-stressed isolates, but not vice versa. The antagonistic effect was not detected in a S. luteus isolate from non-contaminated land and in Paxillus involutus. The fungi were inoculated on pine seedlings and subsequently exposed to ecologically relevant Zn and Cd concentrations in single and mixed treatments. The applied doses severely reduced nutrient acquisition of non-mycorrhizal pines and pines inoculated with metal-sensitive S. luteus. Highest translocation of Zn and Cd to shoots occurred in the same plants. Seedlings inoculated with fungi collected from the polluted site reduced metal transfer to their host and maintained nutrient acquisition under high metal exposure. The isolate showing highest tolerance in vitro also offered best protection in symbiosis. The antagonistic effect of high Zn on Cd toxicity was confirmed in the plant experiment. The results indicate that a Zn- and Cd-polluted soil has selected ectomycorrhizal fungi that are able to survive and protect their phytobiont from nutrient starvation and excessive metal uptake. © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.

  5. Association of ectomycorrhizal fungi with Picea crassifolia (Pinaceae, Piceoidae) from high-altitude stands in Mount Helan Nature Reserve, China.

    Science.gov (United States)

    Fan, Y J; Grebenc, T; Wei, J; Zhao, Y L; Yan, W; Wang, L B

    2016-09-02

    We investigated the diversity of ectomycorrhiza associated with the endemic Picea crassifolia in Mount Helan National Nature Reserve in Inner Mongolia, China. Toward this objective, we conducted morphological and molecular identification of ectomycorrhizae in soil cubes taken from pure P. crassifolia stands. Eleven types of ectomycorrhizal (ECM) organisms were separated, briefly described, and identified. Nine morphotypes belonged to the phylum Basidiomycotina [Amphinema byssoides, Cortinarius sp (cf. limonius), Cortinarius vernus, Inocybe cf. nitidiscula, Inocybe sp 1, Sebacina incrustans, Sebacina sp, Suillus luteus, and Piceirhiza tuberculata x Picea crassifolia (comb. Nov.)], and two morphotypes to the phylum Ascomycotina (Cenococcum geophilum and Helvella sp). The diversity of ECM organisms in P. crassifolia was lower than that reported by other studies on spruce or pine forests, or on sporocarp diversity in the high-mountain forests of China. Most of the fungi in the rhizosphere did not correspond to species previously recorded as sporocarps above ground. Here, several new ectomycorrhiza morphotypes are proposed and described. We also confirmed the ectomycorrhizal status of the genus Sebacina (order Sebacinales).

  6. Mast fruiting of large ectomycorrhizal African rain forest trees: importance of dry season intensity, and the resource-limitation hypothesis.

    Science.gov (United States)

    Newbery, David M; Chuyong, George B; Zimmermann, Lukas

    2006-01-01

    Mast fruiting is a distinctive reproductive trait in trees. This rain forest study, at a nutrient-poor site with a seasonal climate in tropical Africa, provides new insights into the causes of this mode of phenological patterning. At Korup, Cameroon, 150 trees of the large, ectomycorrhizal caesalp, Microberlinia bisulcata, were recorded almost monthly for leafing, flowering and fruiting during 1995-2000. The series was extended to 1988-2004 with less detailed data. Individual transitions in phenology were analysed. Masting occurred when the dry season before fruiting was drier, and the one before that was wetter, than average. Intervals between events were usually 2 or 3 yr. Masting was associated with early leaf exchange, followed by mass flowering, and was highly synchronous in the population. Trees at higher elevation showed more fruiting. Output declined between 1995 and 2000. Mast fruiting in M. bisulcata appears to be driven by climate variation and is regulated by internal tree processes. The resource-limitation hypothesis was supported. An 'alternative bearing' system seems to underlie masting. That ectomycorrhizal habit facilitates masting in trees is strongly implied.

  7. Fungal treated lignocellulosic biomass as ruminant feed ingredient: a review.

    Science.gov (United States)

    van Kuijk, S J A; Sonnenberg, A S M; Baars, J J P; Hendriks, W H; Cone, J W

    2015-01-01

    In ruminant nutrition, there is an increasing interest for ingredients that do not compete with human nutrition. Ruminants are specialists in digesting carbohydrates in plant cell walls; therefore lignocellulosic biomass has potential in ruminant nutrition. The presence of lignin in biomass, however, limits the effective utilization of cellulose and hemicellulose. Currently, most often chemical and/or physical treatments are used to degrade lignin. White rot fungi are selective lignin degraders and can be a potential alternative to current methods which involve potentially toxic chemicals and expensive equipment. This review provides an overview of research conducted to date on fungal pretreatment of lignocellulosic biomass for ruminant feeds. White rot fungi colonize lignocellulosic biomass, and during colonization produce enzymes, radicals and other small compounds to breakdown lignin. The mechanisms on how these fungi degrade lignin are not fully understood, but fungal strain, the origin of lignocellulose and culture conditions have a major effect on the process. Ceriporiopsis subvermispora and Pleurotus eryngii are the most effective fungi to improve the nutritional value of biomass for ruminant nutrition. However, conclusions on the effectiveness of fungal delignification are difficult to draw due to a lack of standardized culture conditions and information on fungal strains used. Methods of analysis between studies are not uniform for both chemical analysis and in vitro degradation measurements. In vivo studies are limited in number and mostly describing digestibility after mushroom production, when the fungus has degraded cellulose to derive energy for fruit body development. Optimization of fungal pretreatment is required to shorten the process of delignification and make it more selective for lignin. In this respect, future research should focus on optimization of culture conditions and gene expression to obtain a better understanding of the mechanisms

  8. Fungal endophytes: diversity and functional roles

    Science.gov (United States)

    Rodriguez, R.J.; White, J.F.; Arnold, A.E.; Redman, R.S.

    2009-01-01

    All plants in natural ecosystems appear to be symbiotic with fungal endophytes. This highly diverse group of fungi can have profound impacts on plant communities through increasing fitness by conferring abiotic and biotic stress tolerance, increasing biomass and decreasing water consumption, or decreasing fitness by altering resource allocation. Despite more than 100 yr of research resulting in thousands of journal articles, the ecological significance of these fungi remains poorly characterized. Historically, two endophytic groups (clavicipitaceous (C) and nonclavicipitaceous (NC)) have been discriminated based on phylogeny and life history traits. Here, we show that NC-endophytes represent three distinct functional groups based on host colonization and transmission, in planta biodiversity and fitness benefits conferred to hosts. Using this framework, we contrast the life histories, interactions with hosts and potential roles in plant ecophysiology of C- and NC-endophytes, and highlight several key questions for future work in endophyte biology.

  9. Coupled Metagenomic and Chemical Analyses of Degrading Fungal Necromass and Implications for Fungal contributions to Stable Soil Organic Carbon

    Science.gov (United States)

    Egerton-Warburton, L. M.; Schreiner, K. M.; Morgan, B. S. T.; Schultz, J.; Blair, N. E.

    2016-12-01

    Fungi comprise a significant portion of total soil biomass, the turnover of which must represent a dominant flux within the soil carbon cycle. Fungal organic carbon (OC) can turn over on time scales of days to months, but this process is poorly understood. Here, we examined temporal changes in the chemical and microbial community composition of fungal necromass during a 2-month decomposition experiment in which Fusarium avenaceum (a common saprophyte) was exposed to a natural soil microbial community. Over the course of the experiment, residual fungal necromass was harvested and analyzed using FTIR and thermochemolysis-GCMS to examine chemical changes in the tissue. In addition, genomic DNA was extracted from tissues, amplified with barcoded ITS primers, and sequenced using the high-throughput Illumina platform to examine changes in microbial community composition. Up to 80% of the fungal necromass turned over in the first week. This rapid degradation phase corresponded to colonization of the necromass by known chitinolytic soil fungi including Mortierella species. Members of the Zygomycota and Ascomycota were among the dominant fungal groups involved in degradation with very small contributions from Basidiomycota. At the end of the 2-month degradation, only 15% of the original necromass remained. The residual material was rich in amide and C-O moieties which is consistent with previous work predicting that peptidoglycans are the main residual product from microbial tissue degradation. Straight-chain fatty acids exhibited varying degradation profiles, with some fatty acids (e.g. C16, C18:1) degrading more rapidly than bulk tissue while others maintained steady concentrations relative to bulk OC (C18) or increased in concentration throughout the degradation sequence (C24). These results indicate that the turnover of fungal necromass has the potential to rapidly and significantly influence a variety of soil OC properties including C/N ratios, lipid biomarker

  10. Fungal Endocarditis: Update on Diagnosis and Management.

    Science.gov (United States)

    Pasha, Ahmed Khurshid; Lee, Justin Z; Low, See-Wei; Desai, Hem; Lee, Kwan S; Al Mohajer, Mayar

    2016-10-01

    Fungal endocarditis is an extremely debilitating disease associated with high morbidity and mortality. Candida spp. are the most common isolated organisms in fungal endocarditis. It is most prevalent in patients who are immunosuppressed and intravenous drug users. Most patients present with constitutional symptoms, which are indistinguishable from bacterial endocarditis, hence a high index of suspicion is required for pursuing diagnosis. Diagnosis of fungal endocarditis can be very challenging: most of the time, blood cultures are negative or take a long time to yield growth. Fungal endocarditis mandates an aggressive treatment strategy. A medical and surgical combined approach is the cornerstone of therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Root-associated fungal community response to drought-associated changes in vegetation community.

    Science.gov (United States)

    Dean, Sarah L; Warnock, Daniel D; Litvak, Marcy E; Porras-Alfaro, Andrea; Sinsabaugh, Robert

    2015-01-01

    Recent droughts in southwestern USA have led to large-scale mortality of piñon (Pinus edulis) in piñon-juniper woodlands. Piñon mortality alters soil moisture, nutrient and carbon availability, which could affect the root-associated fungal (RAF) communities and therefore the fitness of the remaining plants. We collected fine root samples at a piñon-juniper woodland and a juniper savannah site in central New Mexico. Roots were collected from piñon and juniper (Juniperus monosperma) trees whose nearest neighbors were live piñon, live juniper or dead piñon. RAF communities were analyzed by 454 pyrosequencing of the universal fungal ITS region. The most common taxa were Hypocreales and Chaetothyriales. More than 10% of ITS sequences could not be assigned taxonomy at the phylum level. Two of the unclassified OTUs significantly differed between savanna and woodland, had few like sequences in GenBank and formed new fungal clades with other unclassified RAF from arid plants, highlighting how little study has been done on the RAF of arid ecosystems. Plant host or neighbor did not affect RAF community composition. However, there was a significant difference between RAF communities from woodland vs. savanna, indicating that abiotic factors such as temperature and aridity might be more important in structuring these RAF communities than biotic factors such as plant host or neighbor identity. Ectomycorrhizal fungi (EM) were present in juniper as well as piñon in the woodland site, in contrast with previous research, but did not occur in juniper savanna, suggesting a potential shared EM network with juniper. RAF richness was lower in hosts that were neighbors of the opposite host. This may indicate competitive exclusion between fungi from different hosts. Characterizing these communities and their responses to environment and plant neighborhood is a step toward understanding the effects of drought on a biome that spans 19,000,000 ha of southwestern USA. © 2015 by The

  12. Estimation of fungal biomass in forest litter and soil

    Czech Academy of Sciences Publication Activity Database

    Baldrian, Petr; Větrovský, Tomáš; Cajthaml, Tomáš; Dobiášová, Petra; Petránková, Mirka; Šnajdr, Jaroslav; Eichlerová, Ivana

    2013-01-01

    Roč. 6, č. 1 (2013), s. 1-11 ISSN 1754-5048 R&D Projects: GA ČR GA526/08/0751; GA MŠk LD12050 Institutional support: RVO:61388971 Keywords : Basidiomycota * Ectomycorrhizal fungi * Ergosterol Subject RIV: EE - Microbiology, Virology Impact factor: 2.992, year: 2013

  13. Fungal transmission of plant viruses.

    Science.gov (United States)

    Campbell, R N

    1996-01-01

    Thirty soilborne viruses or virus-like agents are transmitted by five species of fungal vectors. Ten polyhedral viruses, of which nine are in the family Tombusviridae, are acquired in the in vitro manner and do not occur within the resting spores of their vectors, Olpidium brassicae and O. bornovanus. Fungal vectors for other viruses in the family should be sought even though tombusviruses are reputed to be soil transmitted without a vector. Eighteen rod-shaped viruses belonging to the furo- and bymovirus groups and to an unclassified group are acquired in the in vivo manner and survive within the resting spores of their vector, O. brassicae, Polymyxa graminis, P. betae, and Spongospora subterranea. The viral coat protein has an essential role in in vitro transmission. With in vivo transmission a site in the coat protein-read through protein (CP-RT) of beet necrotic yellow vein furovirus determines vector transmissibility as does a site in a similar 98-kDa polyprotein of barley mild mosaic bymovirus. The mechanisms by which virions move (or are moved) into and out of the protoplasm of zoospores or of thalli needs study.

  14. Fungal infection risk groups among school children

    Directory of Open Access Journals (Sweden)

    Elżbieta Ejdas

    2014-08-01

    Full Text Available The aim of the study was to evaluate the relationship between ocurrence of fungi in children and living environment (city - countryside, sex, age, diet, undergone diseases therapy with antibiotics and exposure to hospital environment, and to indicate children potentially vulnerable to fungal infections. The material was consisted of swabs collected from the oral cavily, the throat and the nose of healthy children, aged 6-9 and 10-15, from both urban and rural environmens. Candida albicans, the basic aetiological factor in thc majority of mycoses recorded in humans, unquestionably prevailed in the group of the 13 speciec of yeast-like fungi and yeasts isolated. Records of C. glabrata and C. krusei increasing numbers of whose strains show resistance to basic antimycoties, as well as relatively frequent records of Trichosporon beigelii, Saccharomycopsis capsularis and Saccharomyces sp., fungi whose expansiveness and enzymatic activity have been growing, may be considered disconcerting. Vulnerability to fungal infection increases following anti-bacterial antibiotic therapy in the majority of subjects regardless season or age. This is particularly true primarily of the most stable ontocoenosis of the throat. Younger children, on the other hand, are the most vulnerable foUowing infection of the respiratory system. Fungi are likely to colonise the nose in this case. Children living in the countryside who had been ll immediately prior to the collection of the material constitute the highest risk group of the occurrence of fungi in any of the ontocoenoses studied. A greater number of positive inoculations were recorded in these children in comparison to the children from the city. It may be indicative of a more extensive spectrum of natural reservoirs of fungi and the vectors of their transmission in rural areas than those in the city, lower health hygiene and lower immunity or of a more common carriage of fungi among rural children.

  15. Snake fungal disease: an emerging threat to wild snakes.

    Science.gov (United States)

    Lorch, Jeffrey M; Knowles, Susan; Lankton, Julia S; Michell, Kathy; Edwards, Jaime L; Kapfer, Joshua M; Staffen, Richard A; Wild, Erik R; Schmidt, Katie Z; Ballmann, Anne E; Blodgett, Doug; Farrell, Terence M; Glorioso, Brad M; Last, Lisa A; Price, Steven J; Schuler, Krysten L; Smith, Christopher E; Wellehan, James F X; Blehert, David S

    2016-12-05

    Since 2006, there has been a marked increase in the number of reports of severe and often fatal fungal skin infections in wild snakes in the eastern USA. The emerging condition, referred to as snake fungal disease (SFD), was initially documented in rattlesnakes, where the infections were believed to pose a risk to the viability of affected populations. The disease is caused by Ophidiomyces ophiodiicola, a fungus recently split from a complex of fungi long referred to as the Chrysosporium anamorph of Nannizziopsis vriesii (CANV). Here we review the current state of knowledge about O. ophiodiicola and SFD. In addition, we provide original findings which demonstrate that O. ophiodiicola is widely distributed in eastern North America, has a broad host range, is the predominant cause of fungal skin infections in wild snakes and often causes mild infections in snakes emerging from hibernation. This new information, together with what is already available in the scientific literature, advances our knowledge of the cause, pathogenesis and ecology of SFD. However, additional research is necessary to elucidate the factors driving the emergence of this disease and develop strategies to mitigate its impacts.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'. © 2016 The Author(s).

  16. B-Glucan exacerbates allergic asthma independent of fungal ...

    Science.gov (United States)

    BackgroundAllergic sensitization to fungi has been associated with asthma severity. As a result, it has been largely assumed that the contribution of fungi to allergic disease is mediated through their potent antigenicity.ObjectiveWe sought to determine the mechanism by which fungi affect asthma development and severity.MethodsWe integrated epidemiologic and experimental asthma models to explore the effect of fungal exposure on asthma development and severity.ResultsWe report that fungal exposure enhances allergen-driven TH2 responses, promoting severe allergic asthma. This effect is independent of fungal sensitization and can be reconstituted with β-glucan and abrogated by neutralization of IL-17A. Furthermore, this severe asthma is resistant to steroids and characterized by mixed TH2 and TH17 responses, including IL-13+IL-17+CD4+ double-producing effector T cells. Steroid resistance is dependent on fungus-induced TH17 responses because steroid sensitivity was restored in IL-17rc−/− mice. Similarly, in children with asthma, fungal exposure was associated with increased serum IL-17A levels and asthma severity.ConclusionOur data demonstrate that fungi are potent immunomodulators and have powerful effects on asthma independent of their potential to act as antigens. Furthermore, our results provide a strong rationale for combination treatment strategies targeting IL-17A for this subgroup of fungus-exposed patients with difficult-to-treat asthma. To describe th

  17. Fungal effector proteins: past, present and future

    NARCIS (Netherlands)

    Wit, de P.J.G.M.; Mehrabi, R.; Burg, van den H.A.; Stergiopoulos, I.

    2009-01-01

    The pioneering research of Harold Flor on flax and the flax rust fungus culminated in his gene-for-gene hypothesis. It took nearly 50 years before the first fungal avirulence (Avr) gene in support of his hypothesis was cloned. Initially, fungal Avr genes were identified by reverse genetics and

  18. A novel class of fungal lipoxygenases

    NARCIS (Netherlands)

    Heshof, R.; Jylhä, S.; Haarmann, T.; Jørgensen, A.L.W.; Dalsgaard, T.K.; Graaff, de L.H.

    2014-01-01

    Lipoxygenases (LOXs) are well-studied enzymes in plants and mammals. However, fungal LOXs are less studied. In this study, we have compared fungal LOX protein sequences to all known characterized LOXs. For this, a script was written using Shell commands to extract sequences from the NCBI database

  19. Fungal infection knowledge gap in Ethiopia

    African Journals Online (AJOL)

    EPHA USER33

    receiving immunosuppressive therapy, and patients with chronic obstructive lung disease (1). Fungi also play a role in allergic fungal disease such as allergic broncho- pulmonary Aspergilosis (ABPA) and chronic or deep tissue infections. The laboratory diagnosis of fungal infection starts with a simple potassium hydroxide.

  20. Fungal cultivation on glass-beads

    DEFF Research Database (Denmark)

    Droce, Aida; Sørensen, Jens Laurids; Giese, Henriette

    Transcription of various bioactive compounds and enzymes are dependent on fungal cultivation method. In this study we cultivate Fusarium graminearum and Fusarium solani on glass-beads with liquid media in petri dishes as an easy and inexpensive cultivation method, that resembles in secondary...... metabolite production to agar-cultivation but with an easier and more pure RNA-extraction of total fungal mycelia....

  1. Current ecological understanding of fungal-like pathogens of fish: what lies beneath?

    Directory of Open Access Journals (Sweden)

    Rodolphe Elie Gozlan

    2014-02-01

    Full Text Available Despite increasingly sophisticated microbiological techniques, and long after the first discovery of microbes, basic knowledge is still lacking to fully appreciate the ecological importance of microbial parasites in fish. This is likely due to the nature of their habitats as many species of fish suffer from living beneath turbid water away from easy recording. However, fishes represent key ecosystem services for millions of people around the world and the absence of a functional ecological understanding of viruses, prokaryotes, and small eukaryotes in the maintenance of fish populations and of their diversity represents an inherent barrier to aquatic conservation and food security. Among recent emerging infectious diseases responsible for severe population declines in plant and animal taxa, fungal and fungal-like microbes have emerged as significant contributors. Here, we review the current knowledge gaps of fungal and fungal-like parasites and pathogens in fish and put them into an ecological perspective with direct implications for the monitoring of fungal fish pathogens in the wild, their phylogeography as well as their associated ecological impact on fish populations. With increasing fish movement around the world for farming, releases into the wild for sport fishing and human-driven habitat changes, it is expected, along with improved environmental monitoring of fungal and fungal-like infections, that the full extent of the impact of these pathogens on wild fish populations will soon emerge as a major threat to freshwater biodiversity.

  2. Unraveling the role of fungal symbionts in plant abiotic stress tolerance

    Science.gov (United States)

    Singh, Lamabam Peter

    2011-01-01

    Fungal symbionts have been found to be associated with every plant studied in the natural ecosystem, where they colonize and reside entirely or partially in the internal tissues of their host plant. Fungal endophytes can express/form a range of different lifestyle/relationships with different host including symbiotic, mutualistic, commensalistic and parasitic in response to host genotype and environmental factors. In mutualistic association fungal endophyte can enhance growth, increase reproductive success and confer biotic and abiotic stress tolerance to its host plant. Since abiotic stress such as, drought, high soil salinity, heat, cold, oxidative stress and heavy metal toxicity is the common adverse environmental conditions that affect and limit crop productivity worldwide. It may be a promising alternative strategy to exploit fungal endophytes to overcome the limitations to crop production brought by abiotic stress. There is an increasing interest in developing the potential biotechnological applications of fungal endophytes for improving plant stress tolerance and sustainable production of food crops. Here we have described the fungal symbioses, fungal symbionts and their role in abiotic stress tolerance. A putative mechanism of stress tolerance by symbionts has also been covered. PMID:21512319

  3. Histone Acetylation in Fungal Pathogens of Plants

    Directory of Open Access Journals (Sweden)

    Junhyun Jeon

    2014-03-01

    Full Text Available Acetylation of histone lysine residues occurs in different organisms ranging from yeast to plants and mammals for the regulation of diverse cellular processes. With the identification of enzymes that create or reverse this modification, our understanding on histone acetylation has expanded at an amazing pace during the last two decades. In fungal pathogens of plants, however, the importance of such modification has only just begun to be appreciated in the recent years and there is a dearth of information on how histone acetylation is implicated in fungal pathogenesis. This review covers the current status of research related to histone acetylation in plant pathogenic fungi and considers relevant findings in the interaction between fungal pathogens and host plants. We first describe the families of histone acetyltransferases and deacetylases. Then we provide the cases where histone acetylation was investigated in the context of fungal pathogenesis. Finally, future directions and perspectives in epigenetics of fungal pathogenesis are discussed.

  4. Soil fungal community responses to global changes

    DEFF Research Database (Denmark)

    Haugwitz, Merian Skouw

    Global change will affect the functioning and structure of terrestrial ecosystems and since soil fungi are key players in organic matter decomposition and nutrient turnover, shifts in fungal community composition might have a strong impact on soil functioning. The main focus of this thesis...... was therefore to investigate the impact of global environmental changes on soil fungal communities in a temperate and subartic heath ecosystem. The objective was further to determine global change effects on major functional groups of fungi and analyze the influence of fungal community changes on soil carbon...... and nutrient availability and storage. By combining molecular methods such as 454 pyrosequencing and quantitative PCR of fungal ITS amplicons with analyses of soil enzymes, nutrient pools of carbon, nitrogen and phosphorus we were able to characterize soil fungal communities as well as their impact on nutrient...

  5. INCIDENCE OF FUNGAL ELEMENTS IN SINONASAL POLYPOSIS

    Directory of Open Access Journals (Sweden)

    Santhosh G. S

    2016-12-01

    Full Text Available BACKGROUND Nasal polyposis is a disease entity characterised by formation of pseudoedema of sinonasal mucus membrane progressing to form polyps. It presents clinically with nasal obstruction and fleshy masses in the nasal cavity. The nasal mucosa reacts to formation of polypi in allergic fungal sinusitis also. The present study is an attempt to demonstrate possible fungal elements from the polypi removed during surgery by KOH study and HPE study. The aim of the study is to find out the incidence of fungal elements in sinonasal polyposis. MATERIALS AND METHODS 50 patients attending the ENT OPD for nasal obstruction and showing polypi on anterior rhinoscopy were selected. All the patients were subjected to surgery and specimens collected were subjected to KOH study and histopathology to demonstrate fungal elements. RESULTS Among 50 patients, the age range was from 9-57 years; mean age- 36.46 years. The male-to-female ratio was 1.5:1. Deviated nasal septum was found in 38% of patients. Among the unilateral cases, 47% were antrochoanal polyps and 53% were ethmoid polyps. Out of 50 patients, only 3 specimens were positive for fungal elements with KOH study and only 2 cases with fungal culture. Thus, the incidence of fungal elements in sinonasal polyposis was 6%. CONCLUSION The incidence of fungal elements in sinonasal polyposis was 6%. Histopathological examination of polypectomy specimen was negative for invasive fungal disease and showed inflammatory changes only. There is no difference in the detection of the presence of fungal by two methods.

  6. Casuarina in Africa: distribution, role and importance of arbuscular mycorrhizal, ectomycorrhizal fungi and Frankia on plant development.

    Science.gov (United States)

    Diagne, Nathalie; Diouf, Diegane; Svistoonoff, Sergio; Kane, Aboubacry; Noba, Kandioura; Franche, Claudine; Bogusz, Didier; Duponnois, Robin

    2013-10-15

    Exotic trees were introduced in Africa to rehabilitate degraded ecosystems. Introduced species included several Australian species belonging to the Casuarinaceae family. Casuarinas trees grow very fast and are resistant to drought and high salinity. They are particularly well adapted to poor and disturbed soils thanks to their capacity to establish symbiotic associations with mycorrhizal fungi -both arbuscular and ectomycorrhizal- and with the nitrogen-fixing bacteria Frankia. These trees are now widely distributed in more than 20 African countries. Casuarina are mainly used in forestation programs to rehabilitate degraded or polluted sites, to stabilise sand dunes and to provide fuelwood and charcoal and thus contribute considerably to improving livelihoods and local economies. In this paper, we describe the geographical distribution of Casuarina in Africa, their economic and ecological value and the role of the symbiotic interactions between Casuarina, mycorrhizal fungi and Frankia. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. The effect of fungicides used in the protection of forest tree seedlings on the growth of ectomycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Marta Aleksandrowicz-Trzcińska

    2014-08-01

    Full Text Available Fungitoxical activity of ten fungictdes most commonly used in the phytopathological protection of forest nurseries was studied, using the in vitro screening method. The fungitoxical activity was studied against five species of ectomycorrhizal fungi (seven strains. The resulting growth inhibition of fungi species and strains tested was prcscnted in terms of fungitoxicity classes of the preparations used. The highest total fungitoxicity against the mycelia of fungi taxa tested was found for Euparen, Bravo, Dithane M-45 and Ridomil. The weakest fungitoxical effect was observed for Topsin M and Bayleton. The least susceptible for the action of the fungicides studied were mycelia of Suillus luteus, while the most susceptible were those of Hebeloma crustuliniforme and Laccaria laccata. The study results arę useful for the selection of fungi strains proper for the artificial mycorrhization of seedlings.

  8. Ectomycorrhizal colonization of naturally regenerating Pinus sylvestris L. seedlings growing in different micro-habitats in boreal forest.

    Science.gov (United States)

    Iwański, Michał; Rudawska, Maria

    2007-07-01

    We investigated the species richness and composition of ectomycorrhizal (EM) fungi colonizing Pinus sylvestris L. seedlings naturally regenerating in boreal forest, in three different microhabitats: on forest ground, on decaying stumps, and within moss layer on erratic boulders. We tested the hypothesis that habitat differences would affect the composition of the EM community of regenerating pine seedlings. In total, 16 EM species were detected, from which none occurred on seedlings growing in all three microhabitats. Piloderma croceum and Cenococcum geophilum were common for seedlings growing in forest ground and on boulders, while Tricholoma aestuans and Suillus luteus were shared between seedlings growing on forest ground and decaying stumps. EM species richness and composition were strikingly different between seedlings regenerating in different microhabitats. Results are discussed as a function of dispersal and niche differentiation of EM fungi.

  9. CT and MRI features in bipolaris fungal sinusitis

    International Nuclear Information System (INIS)

    Aribandi, M.; Bazan III, C.

    2007-01-01

    Bipolaris is an increasingly recognized cause of fungal sinusitis. Reports of imaging features are sparse. Our purpose was to review the imaging features in patients with Bipolaris fungal sinusitis. A review of our data showed seven patients with culture-proven Bipolaris fungal sinusitis. Computed tomography of the paranasal sinuses in all the patients and MRI in five patients were analysed for the location, nature, extent of the disease and density/ signal characteristics on CT/MRI. The sphenoid and posterior ethmoid sinuses were most often involved (six of seven), followed by the anterior ethmoid sinus (five of seven), frontal sinus (four of seven) and maxillary sinus (three of seven) involvement. Five of seven cases had bilateral disease. Secretions were seen to fill the sinus and were expansile in nature in six of seven cases. Bony erosion was noted in all the patients. Air-fluid levels and bony sclerosis were rarely seen. Computed tomography showed central hyperdensity in all the cases. In the corresponding MR images (n = 5), the sinus contents appeared hyperintense on T1-weighted images and hypointense on T2-weighted images. Extension into the nasal cavity was found in six of seven cases. Five of seven cases had intracranial (extradural) spread. Intraorbital extension was seen in three of seven cases, with associated optic nerve compression in two. All the patients responded to surgical debridement, and systemic antifungal therapy was not required. Bipolaris fungal sinusitis typically presents with an allergic fungal sinusitis picture with expansile sinus opacification and bony erosions. There is central hyperdensity on CT scan, which appears hyperintense on T1-weighted and hypointense on T2-weighted MR images

  10. Fungal infection in organ transplant patients.

    Science.gov (United States)

    Hong, Wei; Wen, Hai; Liao, Wanqing

    2003-09-01

    To review the characteristics and evolution of the fungal spectrum, and the risk factors causing fungal infection, and to make progress in diagnosing fungal infection after organ transplantation. An English-language literature search (MEDLINE 1990 - 2000) and bibliographic review of textbooks and review articles. Twenty-three articles were selected from the literature that specifically addressed the stated purpose. Fungal infections in organ transplant patients were generally divided into two types: (1) disseminated primary or reactivation infection with one of the geographically restricted systemic mycoses; (2) opportunistic infection by fungal species that rarely cause invasive infection in normal hosts. The risk factors of fungal infection after a transplant can be evaluated and predicted according to the organ recipient's conditions before, during and after the transplant. Progress in early diagnostic methods during the past 10 years has mainly revolved around two aspects, culture and non-culture. It is important to undertake a systemic evaluation on the condition of the organ recipient before, during and after a transplant; should any risk factor for fungal infection be suspected, diagnosis should be made as early as possible by employing mycological techniques including culture and non-culture methods.

  11. Severe plant invasions can increase mycorrhizal fungal abundance and diversity

    DEFF Research Database (Denmark)

    Lekberg, Ylva; Gibbons, Sean; Rosendahl, Søren

    2013-01-01

    Invasions by non-native plants can alter ecosystem functions and reduce native plant diversity, but relatively little is known about their effect on belowground microbial communities. We show that invasions by knapweed (Centaurea stoebe) and leafy spurge (Euphorbia esula, hereafter spurge...... plant provenance.The ISME Journal advance online publication, 14 March 2013; doi:10.1038/ismej.2013.41....

  12. Fungal colonization of air-conditioning systems

    Directory of Open Access Journals (Sweden)

    Ljaljević-Grbić Milica

    2008-01-01

    Full Text Available Fungi have been implicated as quantitatively the most important bioaerosol component of indoor air associated with contaminated air-conditioning systems. rarely, indoor fungi may cause human infections, but more commonly allergenic responses ranging from pneumonitis to asthma-like symptoms. From all air conditioner filters analyzed, 16 fungal taxa were isolated and identified. Aspergillus fumigatus causes more lethal infections worldwide than any other mold. Air-conditioning filters that adsorb moisture and volatile organics appear to provide suitable substrates for fungal colonization. It is important to stress that fungal colonization of air-conditioning systems should not be ignored, especially in hospital environments.

  13. Fungal infections in neutropenic cancer patients

    International Nuclear Information System (INIS)

    Parvez, T.

    2003-01-01

    Invasive fungal infections are important causes of morbidity and mortality in cancer patients with prolonged neutropenia following chemotherapy. Recent trends indicate a change toward infections by Aspergillus species, non-albicans species of Candida, and previously uncommon fungal pathogens. These have decreased susceptibility to current antifungal agents. In the last decade there has been much effort to find solutions for these changing trends. This article reviews current approaches to prevention and treatment of opportunistic fungal infections in postchemotherapy neutropenic patients and discussion future antifungal approaches and supportive methods. (author)

  14. Successful treatment of an invasive fungal infection caused by Talaromyces sp. with voriconazole

    Directory of Open Access Journals (Sweden)

    Uluhan Sili

    2015-06-01

    Full Text Available Invasive fungal infections (IFI are on the rise due to increasing numbers of immunosuppressed and critically ill patients. A malignant-looking pulmonary nodule in an immunosuppressed patient may indeed be caused by a fungal organism. We report a patient, who was eventually diagnosed with an IFI caused by an agent of hyalohyphomycosis, Talaromyces sp. determined via molecular methods and succesfully treated with voriconazole.

  15. Mycological profile of fungal sinusitis: An audit of specimens over a 7-year period in a tertiary care hospital in Tamil Nadu

    Directory of Open Access Journals (Sweden)

    Michael Rajiv

    2008-10-01

    Full Text Available Background: Fungi are being increasingly implicated in the etiopathology of rhinosinusitis. Fungal sinusitis is frequently seen in diabetic or immunocompromised patients, although it has also been reported in immunocompetent individuals. Invasive fungal sinusitis, unless diagnosed early and treated aggressively, has a high mortality rate. Aim: Our aim was to look at the mycological and clinical aspects of fungal sinusitis in a tertiary referral center in Tamil Nadu. Design: This is a retrospective audit conducted on fungal culture positive sinus samples submitted to the Microbiology department from January 2000 to August 2007. Relevant clinical and histopathological details were analysed. Results: A total of 211 culture-positive fungal sinusitis samples were analysed. Of these, 63% had allergic fungal sinusitis and 34% had invasive fungal sinusitis. Aspergillus flavus was the most common causative agent of allergic fungal sinusitis and Rhizopus arrhizus was the most common causative agent of acute invasive sinusitis. A significant proportion of these patients did not have any known predisposing factors. Conclusion: In our study, the etiology of fungal sinusitis was different than that of western countries. Allergic fungal sinusitis was the most common type of fungal sinusitis in our community. Aspergillus sp was the most common causative agent in both allergic and chronic invasive forms of the disease.

  16. PNNL Fungal Biotechnology Core DOE-OBP Project

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Scott E.; Bruno, Kenneth S.; Butcher, Mark G.; Collett, James R.; Culley, David E.; Dai, Ziyu; Magnuson, Jon K.; Panisko, Ellen A.

    2009-11-30

    In 2009, we continued to address barriers to fungal fermentation in the primary areas of morphology control, genomics, proteomics, fungal hyperproductivity, biomass-to-products via fungal based consolidated bioprocesses, and filamentous fungal ethanol. “Alternative renewable fuels from fungi” was added as a new subtask. Plans were also made to launch a new advanced strain development subtask in FY2010.

  17. HIV/AIDS and Fungal Infections

    Science.gov (United States)

    ... Environmental Diseases Mycotic Diseases Branch People living with HIV/AIDS Recommend on Facebook Tweet Share Compartir As ... Page Preventing fungal infections in people living with HIV/AIDS Fungi are difficult to avoid because they ...

  18. Postharvest fungal deterioration of tomato ( Lycopersicum ...

    African Journals Online (AJOL)

    Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives ... tomatoes and pepper were sourced from Mile 12 Market in Lagos state. ... the ingestion of mycotoxins that are usually associated with fungal species), ...

  19. Fungal rhino sinusitisin in tehran, iran

    NARCIS (Netherlands)

    Nazeri, M.; Hashemi, S.J.; Ardehali, M.; Rezaei, S.; Seyedmousavi, S.; Zareei, M.; Hosseinjani, E.

    2015-01-01

    BACKGROUND: Fungal rhino sinusitis (FRS) is an important infection of para nasal sinuses, which encompasses two main categories; invasive and noninvasive forms according to histopathological findings. Aspergillus spp are the most common species isolated from noninvasive form, while Mucorales are

  20. Zoosporic fungal parasites of marine biota

    Digital Repository Service at National Institute of Oceanography (India)

    RaghuKumar, C.

    laboratory media. In such instances, a detailed and careful examination of the disease symptoms and the endobiotic fungal parasites is to be recorded. Maintaining dual culture of the healthy and infected host also helps to fulfill these postulates partially....

  1. Organ Transplant Patients and Fungal Infections

    Science.gov (United States)

    ... are mild skin rashes, but others can be deadly, like fungal pneumonia. Because of this, it’s important ... the environment. Fungi live outdoors in soil, on plants, trees, and other vegetation. They are also on ...

  2. Air Contamination With Fungals In Museum

    Science.gov (United States)

    Scarlat, Iuliana; Haiducu, Maria; Stepa, Raluca

    2015-07-01

    The aim of the studies was to determine the level and kind of fungal contamination of air in museum, deposits patrimony, restoration and conservation laboratories and their effects on health of workers. Microbiological air purity was measured with a SAS-100 Surface Air System impactor. The fungal contamination was observed in all 54 rooms where we made determinations. The highest levels of fungal were recorded at rooms with hygroscopic patrimony objects, eg carpets, chairs, upholstered chairs, books etc. The most species identified included under common allergens: Aspergillus, Penicillium, and Mucor. There fungal species belonging to the genus identified in this study, can trigger serious diseases museum workers, such as for example Aspergillus fumigatus, known allergies and toxic effects that may occur. In some places of the museum, occupational exposure limit values to fungi present in the air in the work environment, recommended by the specialized literature, have been overcome.

  3. Fungal keratitis - improving diagnostics by confocal microscopy

    DEFF Research Database (Denmark)

    Nielsen, Esben; Heegaard, S; Prause, J U

    2013-01-01

    Purpose: Introducing a simple image grading system to support the interpretation of in vivo confocal microscopy (IVCM) images in filamentous fungal keratitis. Setting: Clinical and confocal studies took place at the Department of Ophthalmology, Aarhus University Hospital, Denmark. Histopathological...... analysis was performed at the Eye Pathology Institute, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark. Methods: A recent series of consecutive patients with filamentous fungal keratitis is presented to demonstrate the results from in-house IVCM. Based upon our experience...... with IVCM and previously published images, we composed a grading system for interpreting IVCM images of filamentous fungal keratitis. Results: A recent case series of filamentous fungal keratitis from 2011 to 2012 was examined. There were 3 male and 3 female patients. Mean age was 44.5 years (range 12...

  4. Myco-fluidics: The fluid dynamics of fungal chimerism

    Science.gov (United States)

    Roper, Marcus; Hickey, Patrick; Dressaire, Emilie; Roch, Sebastien

    2012-11-01

    Chimeras-fantastical creatures formed as amalgams of many animals-have captured the human imagination since Ancient times. But they are also surprisingly common in Nature. The syncytial cells of filamentous fungi harbor large numbers of nuclei bathed in a single cytoplasm. As a fungus grows these nuclei become genetically diverse, either from mutation or from exchange of nuclei between different fungal individuals, a process that is known to increase the virulence of the fungus and its adaptability. By directly measuring nuclear movement in the model ascomycete fungus Neurospora crassa, we show that the fungus' tolerance for internal genetic diversity is enabled by hydrodynamic mixing of nuclei acting at all length scales within the fungal mycelium. Mathematical modeling and experiments in a mutant with altered mycelial morphology reveal some of the exquisite hydraulic engineering necessary to create these mixing flows from spatially coarse pressure gradients.

  5. Clinical and diagnostic pathways in pediatric fungal infections

    Directory of Open Access Journals (Sweden)

    Elio Castagnola

    2013-07-01

    Full Text Available Generally speaking, in pediatrics the patients mostly affected by fungal infections are hematological patients, followed by those with solid tumors, and transplant recipients. Candida infections generally occur just after birth, whereas Aspergillus infections are age-related, and increase their incidence with age. However, among infections, the incidence of bacteremias are still greater than that of mycoses. In pediatrics, in Italy the immunocompromised patients – thus particularly susceptible to fungal infections – are mainly those with severe combined immunodeficiency, chronic mucocutaneous candidiasis, and chronic granulomatous disease. Particular Aspergillus or Scedosporium infections should be considered in peculiar kinds of patients, such as those affected by cystic fibrosis. Finally, different kinds of fungi should be considered in those who come from or spend a lot time in specific areas, such as South America (e.g. coccidioidomycoses, for which differential diagnosis is with tuberculosis.http://dx.doi.org/10.7175/rhc.v4i1S.859

  6. Fungal conservation: Protected species of fungi in South Serbia region

    Directory of Open Access Journals (Sweden)

    Sadiković, D.

    2013-12-01

    Full Text Available Protection and conservation of fungi has only recently became an issue of concern. Main motives for increased attention are uncontrolled, mass collecting of edible wild mushrooms and environmental pollution which leads to the rapid decline of their natural habitats, some of which are rich with rare and endangered species. By Serbian Nature Conservation Law 2010. there are 38 strictly protected fungal species of which 17 species are recorded in this paper. 11 of those recorded species are on European and/or National Red List of endangered fungal species. All investigated territories were in South Serbia region. This study is a contribution to conservation of protected and threatened fungi and their respective habitats in Serbia.

  7. Cellulolytic potential of thermophilic species from four fungal orders

    DEFF Research Database (Denmark)

    Busk, Peter Kamp; Lange, Lene

    2013-01-01

    and in characterization of their industrially useful enzymes. In the present study we investigated the cellulolytic potential of 16 thermophilic fungi from the three ascomycete orders Sordariales, Eurotiales and Onygenales and from the zygomycete order Mucorales thus covering all fungal orders that include thermophiles....... Thermophilic fungi are the only described eukaryotes that can grow at temperatures above 45 ºC. All 16 fungi were able to grow on crystalline cellulose but their secreted enzymes showed widely different cellulolytic activities, pH optima and thermostabilities. Interestingly, in contrast to previous reports, we......Elucidation of fungal biomass degradation is important for understanding the turnover of biological materials in nature and has important implications for industrial biomass conversion. In recent years there has been an increasing interest in elucidating the biological role of thermophilic fungi...

  8. [Invasive fungal disease due to Scedosporium, Fusarium and mucorales].

    Science.gov (United States)

    Pemán, Javier; Salavert, Miguel

    2014-01-01

    The number of emerging organisms causing invasive fungal infections has increased in the last decades. These etiological agents include Scedosporium, Fusarium and mucorales. All of them can cause disseminated, virulent, and difficult-to treat infections in immunosuppressed patients, the most affected, due to their resistance to most available antifungal agents. Current trends in transplantation including the use of new immunosuppressive treatments, the common prescription of antifungal agents for prophylaxis, and new ecological niches could explain the emergence of these fungal pathogens. These pathogens can also affect immunocompetent individuals, especially after natural disasters (earthquakes, floods, tsunamis), combat wounds or near drowning. All the invasive infections caused by Scedosporium, Fusarium, and mucorales are potentially lethal and a favourable outcome is associated with rapid diagnosis by direct microscopic examination of the involved tissue, wide debridement of infected material, early use of antifungal agents including combination therapy, and an improvement in host defenses, especially neutropenia. Copyright © 2014. Published by Elsevier Espana.

  9. Fungal chitinases: diversity, mechanistic properties and biotechnological potential.

    Science.gov (United States)

    Hartl, Lukas; Zach, Simone; Seidl-Seiboth, Verena

    2012-01-01

    Chitin derivatives, chitosan and substituted chito-oligosaccharides have a wide spectrum of applications ranging from medicine to cosmetics and dietary supplements. With advancing knowledge about the substrate-binding properties of chitinases, enzyme-based production of these biotechnologically relevant sugars from biological resources is becoming increasingly interesting. Fungi have high numbers of glycoside hydrolase family 18 chitinases with different substrate-binding site architectures. As presented in this review, the large diversity of fungal chitinases is an interesting starting point for protein engineering. In this review, recent data about the architecture of the substrate-binding clefts of fungal chitinases, in connection with their hydrolytic and transglycolytic abilities, and the development of chitinase inhibitors are summarized. Furthermore, the biological functions of chitinases, chitin and chitosan utilization by fungi, and the effects of these aspects on biotechnological applications, including protein overexpression and autolysis during industrial processes, are discussed in this review.

  10. Optimizing Outcomes in Immunocompromised Hosts: Understanding the Role of Immunotherapy in Invasive Fungal Diseases

    Directory of Open Access Journals (Sweden)

    Sharada eRavikumar

    2015-11-01

    Full Text Available A major global concern is the emergence and spread of systemic life –threatening fungal infections in critically ill patients. The increase in invasive fungal infections, caused most commonly by Candida and Aspergillus species, occurs in patients with impaired defenses due to a number of reasons such as underlying disease, the use of chemotherapeutic and immunosuppressive agents, broad-spectrum antibiotics, prosthetic devices and grafts, burns, neutropenia and HIV infection. The high morbidity and mortality associated with these infections is compounded by the limited therapeutic options and the emergence of drug resistant fungi. Hence, creative approaches to bridge the significant gap in antifungal drug development needs to be explored. Here, we review the potential anti-fungal targets for patient-centered therapies and immune-enhancing strategies for the prevention and treatment of invasive fungal diseases.

  11. Biological roles of fungal carotenoids.

    Science.gov (United States)

    Avalos, Javier; Carmen Limón, M

    2015-08-01

    Carotenoids are terpenoid pigments widespread in nature, produced by bacteria, fungi, algae and plants. They are also found in animals, which usually obtain them through the diet. Carotenoids in plants provide striking yellow, orange or red colors to fruits and flowers, and play important metabolic and physiological functions, especially relevant in photosynthesis. Their functions are less clear in non-photosynthetic microorganisms. Different fungi produce diverse carotenoids, but the mutants unable to produce them do not exhibit phenotypic alterations in the laboratory, apart of lack of pigmentation. This review summarizes the current knowledge on the functional basis for carotenoid production in fungi. Different lines of evidence support a protective role of carotenoids against oxidative stress and exposure to visible light or UV irradiation. In addition, the carotenoids are intermediary products in the biosynthesis of physiologically active apocarotenoids or derived compounds. This is the case of retinal, obtained from the symmetrical oxidative cleavage of β-carotene. Retinal is the light-absorbing prosthetic group of the rhodopsins, membrane-bound photoreceptors present also in many fungal species. In Mucorales, β-carotene is an intermediary in the synthesis of trisporoids, apocarotenoid derivatives that include the sexual hormones the trisporic acids, and they are also presumably used in the synthesis of sporopollenin polymers. In conclusion, fungi have adapted their ability to produce carotenoids for different non-essential functions, related with stress tolerance or with the synthesis of physiologically active by-products.

  12. Fungal Laccases Degradation of Endocrine Disrupting Compounds

    Directory of Open Access Journals (Sweden)

    Gemma Macellaro

    2014-01-01

    Full Text Available Over the past decades, water pollution by trace organic compounds (ng/L has become one of the key environmental issues in developed countries. This is the case of the emerging contaminants called endocrine disrupting compounds (EDCs. EDCs are a new class of environmental pollutants able to mimic or antagonize the effects of endogenous hormones, and are recently drawing scientific and public attention. Their widespread presence in the environment solicits the need of their removal from the contaminated sites. One promising approach to face this challenge consists in the use of enzymatic systems able to react with these molecules. Among the possible enzymes, oxidative enzymes are attracting increasing attention because of their versatility, the possibility to produce them on large scale, and to modify their properties. In this study five different EDCs were treated with four different fungal laccases, also in the presence of both synthetic and natural mediators. Mediators significantly increased the efficiency of the enzymatic treatment, promoting the degradation of substrates recalcitrant to laccase oxidation. The laccase showing the best performances was chosen to further investigate its oxidative capabilities against micropollutant mixtures. Improvement of enzyme performances in nonylphenol degradation rate was achieved through immobilization on glass beads.

  13. Fungal biology: compiling genomes and exploiting them

    Energy Technology Data Exchange (ETDEWEB)

    Labbe, Jessy L [ORNL; Uehling, Jessie K [ORNL; Payen, Thibaut [INRA; Plett, Jonathan [University of Western Sydney, Australia

    2014-01-01

    The last 10 years have seen the cost of sequencing complete genomes decrease at an incredible speed. This has led to an increase in the number of genomes sequenced in all the fungal tree of life as well as a wide variety of plant genomes. The increase in sequencing has permitted us to study the evolution of organisms on a genomic scale. A number of talks during the conference discussed the importance of transposable elements (TEs) that are present in almost all species of fungi. These TEs represent an especially large percentage of genomic space in fungi that interact with plants. Thierry Rouxel (INRA, Nancy, France) showed the link between speciation in the Leptosphaeria complex and the expansion of TE families. For example in the Leptosphaeria complex, one species associated with oilseed rape has experienced a recent and massive burst of movement by a few TE families. The alterations caused by these TEs took place in discrete regions of the genome leading to shuffling of the genomic landscape and the appearance of genes specific to the species, such as effectors useful for the interactions with a particular plant (Rouxel et al., 2011). Other presentations showed the importance of TEs in affecting genome organization. For example, in Amanita different species appear to have been invaded by different TE families (Veneault-Fourrey & Martin, 2011).

  14. Burden of fungal infections in Senegal.

    Science.gov (United States)

    Badiane, Aida S; Ndiaye, Daouda; Denning, David W

    2015-10-01

    Senegal has a high rate of tuberculosis and a low HIV seropositivity rate and aspergilloma, life-threatening fungal infections, dermatophytosis and mycetoma have been reported in this study. All published epidemiology papers reporting fungal infection rates from Senegal were identified. Where no data existed, we used specific populations at risk and fungal infection frequencies in each to estimate national incidence or prevalence. The results show that tinea capitis is common being found in 25% of children, ~1.5 million. About 191,000 Senegalese women get recurrent vaginal thrush, ≥4 times annually. We estimate 685 incident cases of chronic pulmonary aspergillosis (CPA) following TB and prevalence of 2160 cases. Asthma prevalence in adults varies from 3.2% to 8.2% (mean 5%); 9976 adults have allergic bronchopulmonary aspergillosis (ABPA) and 13,168 have severe asthma with fungal sensitisation (SAFS). Of the 59,000 estimated HIV-positive patients, 366 develop cryptococcal meningitis; 1149 develop Pneumocystis pneumonia and 1946 develop oesophageal candidiasis, in which oral candidiasis (53%) and dermatophytosis (16%) are common. Since 2008-2010, 113 cases of mycetoma were diagnosed. In conclusion, we estimate that 1,743,507 (12.5%) people in Senegal suffer from a fungal infection, excluding oral candidiasis, fungal keratitis, invasive candidiasis or aspergillosis. Diagnostic and treatment deficiencies should be rectified to allow epidemiological studies. © 2015 Blackwell Verlag GmbH.

  15. Changes in structure and function of fungal community in cow manure composting.

    Science.gov (United States)

    Wang, Ke; Yin, Xiangbo; Mao, Hailong; Chu, Chu; Tian, Yu

    2018-05-01

    In this study, dynamic changes in fungal communities, trophic modes and effect factors in 60 days composting of cow manure were analyzed by using high throughput sequencing, FUNGuild and Biolog FF MicroPlate, respectively. Orpinomyces (relative abundance >10.85%) predominated in feedstock, and Mycothermus became the dominating genus (relative abundance >75%) during the active phase. Aerobic composting treatment had a significant effect on fungal trophic modes with pathogenic fungi fading away and wood saprotrophs increasing over composting time. Fungal communities had the higher carbon sources utilization capabilities at the thermophilic phase and mature phase than those in the other periods. Oxidation reduction potential (ORP) significantly increased from -180 to 180 mV during the treatment. Redundancy analysis showed that the succession of fungal community during composting had a significant association with ORP (p composting treatment not only influenced fungal community structure, but also changed fungal trophic modes and metabolic characteristics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Climate impacts on fungal community and trait dynamics

    Czech Academy of Sciences Publication Activity Database

    Andrew, C.; Heegaard, E.; Halvorsen, R.; Martinez-Pena, F.; Egli, S.; Kirk, P.M.; Baessler, C.; Büntgen, Ulf; Aldea, J.; Hoiland, K.; Boddy, L.; Kauserud, H.

    2016-01-01

    Roč. 22, aug (2016), s. 17-25 ISSN 1754-5048 Institutional support: RVO:67179843 Keywords : nonlinear dimensionality reduction * root-tip communities * ectomycorrhizal fungi * environmental drivers * resource availability * mycorrhizal fungi * fruit bodies * soil * forest * patterns * Community structure * Fungi-forest-climate interactions * Life-history traits * Long-term data * Successional models Subject RIV: EH - Ecology, Behaviour Impact factor: 3.219, year: 2016

  17. Repression of fungal plant pathogens and fungal-related contaminants: Selected ecosystem services by soil fauna communities in agroecosystems

    Science.gov (United States)

    Meyer-Wolfarth, Friederike; Schrader, Stefan; Oldenburg, Elisabeth; Brunotte, Joachim; Weinert, Joachim

    2017-04-01

    In agroecosystems soil-borne fungal plant diseases are major yield-limiting factors which are difficult to control. Fungal plant pathogens, like Fusarium species, survive as a saprophyte in infected tissue like crop residues and endanger the health of the following crop by increasing the infection risk for specific plant diseases. In infected plant organs, these pathogens are able to produce mycotoxins. Mycotoxins like deoxynivalenol (DON) persist during storage, are heat resistant and of major concern for human and animal health after consumption of contaminated food and feed, respectively. Among fungivorous soil organisms, there are representatives of the soil fauna which are obviously antagonistic to a Fusarium infection and the contamination with mycotoxins. Specific members of the soil macro-, meso-, and microfauna provide a wide range of ecosystem services including the stimulation of decomposition processes which may result in the regulation of plant pathogens and the degradation of environmental contaminants. Investigations under laboratory conditions and in field were conducted to assess the functional linkage between soil faunal communities and plant pathogenic fungi (Fusarium culmorum). The aim was to examine if Fusarium biomass and the content of its mycotoxin DON decrease substantially in the presence of soil fauna (earthworms: Lumbricus terrestris, collembolans: Folsomia candida and nematodes: Aphelenchoides saprophilus) in a commercial cropping system managed with conservation tillage located in Northern Germany. The results of our investigations pointed out that the degradation performance of the introduced soil fauna must be considered as an important contribution to the biodegradation of fungal plant diseases and fungal-related contaminants. Different size classes within functional groups and the traits of keystone species appear to be significant for soil function and the provision of ecosystem services as in particular L. terrestris revealed to

  18. Fungal melanins and their interactions with metals.

    Science.gov (United States)

    Fogarty, R V; Tobin, J M

    1996-09-01

    Fungal melanins are dark brown or black pigments located in cell walls. They also exist as extracellular polymers. Melanized fungi possess increased virulence and resistance to microbial attack as well as enhanced survival while under environmental stress. Melanins contain various functional groups which provide an array of multiple nonequivalent binding sites for metal ions. Pigmented Cladosporium cladosporoides was shown to biosorb 2.5- to four-fold more Ni, Cu, Zn, Cd, and Pb than albino Penicillium digitatum and at four- to six-fold higher rates. Metal desorption was significantly lower for extracellular melanin than from pigmented or albino biomass which indicated the strength of the melanin-metal bond. At equilibrium, tributyltin chloride (TBTC) concentrations of 2.5 mM, pigmented and albino Aureobasidium pullulans absorbed approximately 0.9 and 0.7 mumol TBTC mg -1 dry wt, respectively, whereas purified extracellular melanin exhibited uptake levels of approximately 22 mumol TBTC mg-1 dry wt at an equilibrium concentration of only 0.4 mM. Addition of melanin to the growth medium reduced the toxic effect of CuSO4 and TBTC due to melanin metal binding and sequestration.

  19. Fungal Laccases and Their Applications in Bioremediation

    Directory of Open Access Journals (Sweden)

    Buddolla Viswanath

    2014-01-01

    Full Text Available Laccases are blue multicopper oxidases, which catalyze the monoelectronic oxidation of a broad spectrum of substrates, for example, ortho- and para-diphenols, polyphenols, aminophenols, and aromatic or aliphatic amines, coupled with a full, four-electron reduction of O2 to H2O. Hence, they are capable of degrading lignin and are present abundantly in many white-rot fungi. Laccases decolorize and detoxify the industrial effluents and help in wastewater treatment. They act on both phenolic and nonphenolic lignin-related compounds as well as highly recalcitrant environmental pollutants, and they can be effectively used in paper and pulp industries, textile industries, xenobiotic degradation, and bioremediation and act as biosensors. Recently, laccase has been applied to nanobiotechnology, which is an increasing research field, and catalyzes electron transfer reactions without additional cofactors. Several techniques have been developed for the immobilization of biomolecule such as micropatterning, self-assembled monolayer, and layer-by-layer techniques, which immobilize laccase and preserve their enzymatic activity. In this review, we describe the fungal source of laccases and their application in environment protection.

  20. Protection by fungal starters against growth and secondary metabolite production of fungal spoilers of cheese.

    Science.gov (United States)

    Nielsen, M S; Frisvad, J C; Nielsen, P V

    1998-06-30

    The influence of fungal starter cultures on growth and secondary metabolite production of fungal contaminants associated with cheese was studied on laboratory media and Camembert cheese. Isolates of the species Penicillium nalgiovense, P. camemberti, P. roqueforti and Geotrichum candidum were used as fungal starters. The species P. commune, P. caseifulvum, P. verrucosum, P. discolor, P. solitum, P. coprophilum and Aspergillus versicolor were selected as contaminants. The fungal starters showed different competitive ability on laboratory media and Camembert cheese. The presence of the Penicillium species, especially P. nalgiovense, showed an inhibitory effect on the growth of the fungal contaminants on laboratory media. G. candidum caused a significant inhibition of the fungal contaminants on Camembert cheese. The results indicate that G. candidum plays an important role in competition with undesirable microorganisms in mould fermented cheeses. Among the starters, P. nalgiovense caused the largest reduction in secondary metabolite production of the fungal contaminants on the laboratory medium. On Camembert cheese no significant changes in metabolite production of the fungal contaminants was observed in the presence of the starters.

  1. The fungal colonisation of rock-art caves: experimental evidence.

    Science.gov (United States)

    Jurado, Valme; Fernandez-Cortes, Angel; Cuezva, Soledad; Laiz, Leonila; Cañaveras, Juan Carlos; Sanchez-Moral, Sergio; Saiz-Jimenez, Cesareo

    2009-09-01

    The conservation of rock-art paintings in European caves is a matter of increasing interest. This derives from the bacterial colonisation of Altamira Cave, Spain and the recent fungal outbreak of Lascaux Cave, France-both included in the UNESCO World Heritage List. Here, we show direct evidence of a fungal colonisation of rock tablets in a testing system exposed in Altamira Cave. After 2 months, the tablets, previously sterilised, were heavily colonised by fungi and bacteria. Most fungi isolated were labelled as entomopathogens, while the bacteria were those regularly identified in the cave. Rock colonisation was probably promoted by the dissolved organic carbon supplied with the dripping and condensation waters and favoured by the displacement of aerosols towards the interior of the cave, which contributed to the dissemination of microorganisms. The role of arthropods in the dispersal of spores may also help in understanding fungal colonisation. This study evidences the fragility of rock-art caves and demonstrates that microorganisms can easily colonise bare rocks and materials introduced into the cavity.

  2. Novel disease susceptibility factors for fungal necrotrophic pathogens in Arabidopsis.

    Science.gov (United States)

    Dobón, Albor; Canet, Juan Vicente; García-Andrade, Javier; Angulo, Carlos; Neumetzler, Lutz; Persson, Staffan; Vera, Pablo

    2015-04-01

    Host cells use an intricate signaling system to respond to invasions by pathogenic microorganisms. Although several signaling components of disease resistance against necrotrophic fungal pathogens have been identified, our understanding for how molecular components and host processes contribute to plant disease susceptibility is rather sparse. Here, we identified four transcription factors (TFs) from Arabidopsis that limit pathogen spread. Arabidopsis mutants defective in any of these TFs displayed increased disease susceptibility to Botrytis cinerea and Plectosphaerella cucumerina, and a general activation of non-immune host processes that contribute to plant disease susceptibility. Transcriptome analyses revealed that the mutants share a common transcriptional signature of 77 up-regulated genes. We characterized several of the up-regulated genes that encode peptides with a secretion signal, which we named PROVIR (for provirulence) factors. Forward and reverse genetic analyses revealed that many of the PROVIRs are important for disease susceptibility of the host to fungal necrotrophs. The TFs and PROVIRs identified in our work thus represent novel genetic determinants for plant disease susceptibility to necrotrophic fungal pathogens.

  3. Snake fungal disease: An emerging threat to wild snakes

    Science.gov (United States)

    Lorch, Jeffrey M.; Knowles, Susan N.; Lankton, Julia S.; Michell, Kathy; Edwards, Jaime L.; Kapfer, Joshua M.; Staffen, Richard A.; Wild, Erik R.; Schmidt, Katie Z.; Ballmann, Anne; Blodgett, Doug; Farrell, Terence M.; Glorioso, Brad M.; Last, Lisa A.; Price, Steven J.; Schuler, Krysten L.; Smith, Christopher; Wellehan, James F. X.; Blehert, David S.

    2016-01-01

    Since 2006, there has been a marked increase in the number of reports of severe and often fatal fungal skin infections in wild snakes in the eastern USA. The emerging condition, referred to as snake fungal disease (SFD), was initially documented in rattlesnakes, where the infections were believed to pose a risk to the viability of affected populations. The disease is caused byOphidiomyces ophiodiicola, a fungus recently split from a complex of fungi long referred to as the Chrysosporium anamorph of Nannizziopsis vriesii (CANV). Here we review the current state of knowledge about O. ophiodiicola and SFD. In addition, we provide original findings which demonstrate that O. ophiodiicola is widely distributed in eastern North America, has a broad host range, is the predominant cause of fungal skin infections in wild snakes and often causes mild infections in snakes emerging from hibernation. This new information, together with what is already available in the scientific literature, advances our knowledge of the cause, pathogenesis and ecology of SFD. However, additional research is necessary to elucidate the factors driving the emergence of this disease and develop strategies to mitigate its impacts.

  4. Fungal prosthetic valve endocarditis with mycotic aneurysm: Case report.

    Science.gov (United States)

    Brandão, Mariana; Almeida, Jorge; Ferraz, Rita; Santos, Lurdes; Pinho, Paulo; Casanova, Jorge

    2016-09-01

    Fungal prosthetic valve endocarditis is an extremely severe form of infective endocarditis, with poor prognosis and high mortality despite treatment. Candida albicans is the most common etiological agent for this rare but increasingly frequent condition. We present a case of fungal prosthetic valve endocarditis due to C. albicans following aortic and pulmonary valve replacement in a 38-year-old woman with a history of surgically corrected tetralogy of Fallot, prior infective endocarditis and acute renal failure with need for catheter-based hemodialysis. Antifungal therapy with liposomal amphotericin B was initiated prior to cardiac surgery, in which the bioprostheses were replaced by homografts, providing greater resistance to recurrent infection. During hospitalization, a mycotic aneurysm was diagnosed following an episode of acute arterial ischemia, requiring two vascular surgical interventions. Despite the complications, the patient's outcome was good and she was discharged on suppressive antifungal therapy with oral fluconazole for at least a year. The reported case illustrates multiple risk factors for fungal endocarditis, as well as complications and predictors of poor prognosis, demonstrating its complexity. Copyright © 2016 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Novel disease susceptibility factors for fungal necrotrophic pathogens in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Albor Dobón

    2015-04-01

    Full Text Available Host cells use an intricate signaling system to respond to invasions by pathogenic microorganisms. Although several signaling components of disease resistance against necrotrophic fungal pathogens have been identified, our understanding for how molecular components and host processes contribute to plant disease susceptibility is rather sparse. Here, we identified four transcription factors (TFs from Arabidopsis that limit pathogen spread. Arabidopsis mutants defective in any of these TFs displayed increased disease susceptibility to Botrytis cinerea and Plectosphaerella cucumerina, and a general activation of non-immune host processes that contribute to plant disease susceptibility. Transcriptome analyses revealed that the mutants share a common transcriptional signature of 77 up-regulated genes. We characterized several of the up-regulated genes that encode peptides with a secretion signal, which we named PROVIR (for provirulence factors. Forward and reverse genetic analyses revealed that many of the PROVIRs are important for disease susceptibility of the host to fungal necrotrophs. The TFs and PROVIRs identified in our work thus represent novel genetic determinants for plant disease susceptibility to necrotrophic fungal pathogens.

  6. Burden of serious fungal infections in Guatemala.

    Science.gov (United States)

    Medina, N; Samayoa, B; Lau-Bonilla, D; Denning, D W; Herrera, R; Mercado, D; Guzmán, B; Pérez, J C; Arathoon, E

    2017-06-01

    Guatemala is a developing country in Central America with a high burden of HIV and endemic fungal infections; we attempted to estimate the burden of serious fungal infections for the country. A full literature search was done to identify epidemiology papers reporting fungal infections from Guatemala. We used specific populations at risk and fungal infection frequencies in the population to estimate national rates. The population of Guatemala in 2013 was 15.4 million; 40% were younger than 15 and 6.2% older than 60. There are an estimated 53,000 adults with HIV infection, in 2015, most presenting late. The estimated cases of opportunistic fungal infections were: 705 cases of disseminated histoplasmosis, 408 cases of cryptococcal meningitis, 816 cases of Pneumocystis pneumonia, 16,695 cases of oral candidiasis, and 4,505 cases of esophageal candidiasis. In the general population, an estimated 5,568 adult asthmatics have allergic bronchopulmonary aspergillosis (ABPA) based on a 2.42% prevalence of asthma and a 2.5% ABPA proportion. Amongst 2,452 pulmonary tuberculosis patients, we estimated a prevalence of 495 for chronic pulmonary aspergillosis in this group, and 1,484 for all conditions. An estimated 232,357 cases of recurrent vulvovaginal candidiasis is likely. Overall, 1.7% of the population are affected by these conditions. The true fungal infection burden in Guatemala is unknown. Tools and training for improved diagnosis are needed. Additional research on prevalence is needed to employ public health measures towards treatment and improving the reported data of fungal diseases.

  7. Evaluating the combined efficacy of polymers with fungicides for protection of museum textiles against fungal deterioration in Egypt.

    Science.gov (United States)

    Abdel-Kareem, Omar

    2010-01-01

    Fungal deterioration is one of the highest risk factors for damage of historical textile objects in Egypt. This paper represents both a study case about the fungal microflora deteriorating historical textiles in the Egyptian Museum and the Coptic museum in Cairo, and evaluation of the efficacy of several combinations of polymers with fungicides for the reinforcement of textiles and their prevention against fungal deterioration. Both cotton swab technique and biodeteriorated textile part technique were used for isolation of fungi from historical textile objects. The plate method with the manual key was used for identification of fungi. The results show that the most dominant fungi isolated from the tested textile samples belong to Alternaria, Aspergillus, Chaetomium, Penicillium and Trichoderma species. Microbiological testing was used for evaluating the usefulness of the suggested conservation materials (polymers combined with fungicides) in prevention of the fungal deterioration of ancient Egyptian textiles. Textile samples were treated with 4 selected polymers combined with two selected fungicides. Untreated and treated textile samples were deteriorated by 3 selected active fungal strains isolated from ancient Egyptian textiles. This study reports that most of the tested polymers combined with the tested fungicides prevented the fungal deterioration of textiles. Treatment of ancient textiles by suggested polymers combined with the suggested fungicides not only reinforces these textiles, but also prevents fungal deterioration and increases the durability of these textiles. The tested polymers without fungicides reduce the fungal deterioration of textiles but do not prevent it completely.

  8. The role of plant mycorrhizal type and status in modulating the relationship between plant and arbuscular mycorrhizal fungal communities.

    Science.gov (United States)

    Neuenkamp, Lena; Moora, Mari; Öpik, Maarja; Davison, John; Gerz, Maret; Männistö, Minna; Jairus, Teele; Vasar, Martti; Zobel, Martin

    2018-01-25

    Interactions between communities of plants and arbuscular mycorrhizal (AM) fungi shape fundamental ecosystem properties. Experimental evidence suggests that compositional changes in plant and AM fungal communities should be correlated, but empirical data from natural ecosystems are scarce. We investigated the dynamics of covariation between plant and AM fungal communities during three stages of grassland succession, and the biotic and abiotic factors shaping these dynamics. Plant communities were characterised using vegetation surveys. AM fungal communities were characterised by 454-sequencing of the small subunit rRNA gene and identification against the AM fungal reference database MaarjAM. AM fungal abundance was estimated using neutral-lipid fatty acids (NLFAs). Multivariate correlation analysis (Procrustes) revealed a significant relationship between plant and AM fungal community composition. The strength of plant-AM fungal correlation weakened during succession following cessation of grassland management, reflecting changes in the proportion of plants exhibiting different AM status. Plant-AM fungal correlation was strong when the abundance of obligate AM plants was high, and declined as the proportion of facultative AM plants increased. We conclude that the extent to which plants rely on AM symbiosis can determine how tightly communities of plants and AM fungi are interlinked, regulating community assembly of both symbiotic partners. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  9. Fungal community structure of fallen pine and oak wood at different stages of decomposition in the Qinling Mountains, China.

    Science.gov (United States)

    Yuan, Jie; Zheng, Xiaofeng; Cheng, Fei; Zhu, Xian; Hou, Lin; Li, Jingxia; Zhang, Shuoxin

    2017-10-24

    Historically, intense forest hazards have resulted in an increase in the quantity of fallen wood in the Qinling Mountains. Fallen wood has a decisive influence on the nutrient cycling, carbon budget and ecosystem biodiversity of forests, and fungi are essential for the decomposition of fallen wood. Moreover, decaying dead wood alters fungal communities. The development of high-throughput sequencing methods has facilitated the ongoing investigation of relevant molecular forest ecosystems with a focus on fungal communities. In this study, fallen wood and its associated fungal communities were compared at different stages of decomposition to evaluate relative species abundance and species diversity. The physical and chemical factors that alter fungal communities were also compared by performing correspondence analysis according to host tree species across all stages of decomposition. Tree species were the major source of differences in fungal community diversity at all decomposition stages, and fungal communities achieved the highest levels of diversity at the intermediate and late decomposition stages. Interactions between various physical and chemical factors and fungal communities shared the same regulatory mechanisms, and there was no tree species-specific influence. Improving our knowledge of wood-inhabiting fungal communities is crucial for forest ecosystem conservation.

  10. Fungal Communities in Rhizosphere Soil under Conservation Tillage Shift in Response to Plant Growth

    Directory of Open Access Journals (Sweden)

    Ziting Wang

    2017-07-01

    Full Text Available Conservation tillage is an extensively used agricultural practice in northern China that alters soil texture and nutrient conditions, causing changes in the soil microbial community. However, how conservation tillage affects rhizosphere and bulk soil fungal communities during plant growth remains unclear. The present study investigated the effect of long-term (6 years conservation (chisel plow, zero and conventional (plow tillage during wheat growth on the rhizosphere fungal community, using high-throughput sequencing of the internal transcribed spacer (ITS gene and quantitative PCR. During tillering, fungal alpha diversity in both rhizosphere and bulk soil were significantly higher under zero tillage compared to other methods. Although tillage had no significant effect during the flowering stage, fungal alpha diversity at this stage was significantly different between rhizosphere and bulk soils, with bulk soil presenting the highest diversity. This was also reflected in the phylogenetic structure of the communities, as rhizosphere soil communities underwent a greater shift from tillering to flowering compared to bulk soil communities. In general, less variation in community structure was observed under zero tillage compared to plow and chisel plow treatments. Changes in the relative abundance of the fungal orders Capnodiales, Pleosporales, and Xylariales contributed the highest to the dissimilarities observed. Structural equation models revealed that the soil fungal communities under the three tillage regimes were likely influenced by the changes in soil properties associated with plant growth. This study suggested that: (1 differences in nutrient resources between rhizosphere and bulk soils can select for different types of fungi thereby increasing community variation during plant growth; (2 tillage can alter fungal communities' variability, with zero tillage promoting more stable communities. This work suggests that long-term changes in

  11. THE USE OF PLANTS TO PROTECT PLANTS AND FOOD AGAINST FUNGAL PATHOGENS: A REVIEW.

    Science.gov (United States)

    Shuping, D S S; Eloff, J N

    2017-01-01

    Plant fungal pathogens play a crucial role in the profitability, quality and quantity of plant production. These phytopathogens are persistent in avoiding plant defences causing diseases and quality losses around the world that amount to billions of US dollars annually. To control the scourge of plant fungal diseases, farmers have used fungicides to manage the damage of plant pathogenic fungi. Drawbacks such as development of resistance and environmental toxicity associated with these chemicals have motivated researchers and cultivators to investigate other possibilities. Several databases were accessed to determine work done on protecting plants against plant fungal pathogens with plant extracts using search terms "plant fungal pathogen", "plant extracts" and "phytopathogens". Proposals are made on the best extractants and bioassay techniques to be used. In addition to chemical fungicides, biological agents have been used to deal with plant fungal diseases. There are many examples where plant extracts or plant derived compounds have been used as commercial deterrents of fungi on a large scale in agricultural and horticultural setups. One advantage of this approach is that plant extracts usually contain more than one antifungal compound. Consequently the development of resistance of pathogens may be lower if the different compounds affect a different metabolic process. Plants cultivated using plants extracts may also be marketed as organically produced. Many papers have been published on effective antimicrobial compounds present in plant extracts focusing on applications in human health. More research is required to develop suitable, sustainable, effective, cheaper botanical products that can be used to help overcome the scourge of plant fungal diseases. Scientists who have worked only on using plants to control human and animal fungal pathogens should consider the advantages of focusing on plant fungal pathogens. This approach could not only potentially increase

  12. Responses of soil fungal community to the sandy grassland restoration in Horqin Sandy Land, northern China.

    Science.gov (United States)

    Wang, Shao-Kun; Zuo, Xiao-An; Zhao, Xue-Yong; Li, Yu-Qiang; Zhou, Xin; Lv, Peng; Luo, Yong-Qing; Yun, Jian-Ying

    2016-01-01

    Sandy grassland restoration is a vital process including re-structure of soils, restoration of vegetation, and soil functioning in arid and semi-arid regions. Soil fungal community is a complex and critical component of soil functioning and ecological balance due to its roles in organic matter decomposition and nutrient cycling following sandy grassland restoration. In this study, soil fungal community and its relationship with environmental factors were examined along a habitat gradient of sandy grassland restoration: mobile dunes (MD), semi-fixed dunes (SFD), fixed dunes (FD), and grassland (G). It was found that species abundance, richness, and diversity of fungal community increased along with the sandy grassland restoration. The sequences analysis suggested that most of the fungal species (68.4 %) belonged to the phylum of Ascomycota. The three predominant fungal species were Pleospora herbarum, Wickerhamomyces anomalus, and Deconica Montana, accounting for more than one fourth of all the 38 species. Geranomyces variabilis was the subdominant species in MD, Pseudogymnoascus destructans and Mortierella alpine were the subdominant species in SFD, and P. destructans and Fungi incertae sedis were the dominant species in FD and G. The result from redundancy analysis (RDA) and stepwise regression analysis indicated that the vegetation characteristics and soil properties explain a significant proportion of the variation in the fungal community, and aboveground biomass and C:N ratio are the key factors to determine soil fungal community composition during sandy grassland restoration. It was suggested that the restoration of sandy grassland combined with vegetation and soil properties improved the soil fungal diversity. Also, the dominant species was found to be alternative following the restoration of sandy grassland ecosystems.

  13. A trait-based framework for understanding how and why litter decay and resource stoichiometry promote biogeochemical syndromes in arbuscular- and ectomycorrhizal-dominated forests

    Science.gov (United States)

    Phillips, R.; Brzostek, E. R.; Fisher, J. B.; Sulman, B. N.; Midgley, M.; Craig, M.; Keller, A. B.

    2016-12-01

    While it has long been known that ecosystems dominated by arbuscular mycorrhizal (AM) plants (e.g., grasslands, tropical forests) cycle carbon (C) and nutrients differently than those dominated by ectomycorrhizal (ECM) plants (e.g., boreal and subarctic forests), demonstrations of these patterns in ecosystems where both mycorrhizal types co-occur are rare. We tested the hypothesis that variation between AM and ECM nutrient use traits (e.g., litter quality) promote distinct microbial traits that track biogeochemical syndromes in temperate forests. We then explored whether such belowground dynamics influence ecosystem responses to elevated CO2. To do this, we calculated the C to N ratios of litter, soil microbes and soil organic matter in AM- and ECM-dominated forests throughout the temperate region. We then used these data to parameterize a coupled plant uptake-microbial decomposition model, in order to determine how belowground interactions feedback to affect ecosystem C and N cycling in forests exposed to elevated CO2. We found support for our hypothesis: AM litters decomposed 50% faster than ECM litters (p litter decay rates were negatively correlated with the C:N of soils (including the microbial biomass and mineral soil; p < 0.05 for both) and positively correlated with net nitrification rates (p < 0.01). However, faster nitrogen (N) cycling in AM plots was also associated with a greater amount of physcially protected N in soil, suggesting that nutrient stabilizing mechanisms may constrain NPP in response to elevated CO2. Our model results supported this prediction. We found that while the C cost of acquiring of N is cheaper for AM trees than ECM trees, this cost difference is reduced under rising atmospheric CO2 owing to the enhanced protection of soil N in AM soils. Taken together, our results demonstrate that variation in AM- and ECM-associated plant and microbial traits promote predictable biogeochemical syndromes in temperate forests that can impact

  14. Fungal infections as a contributing cause of death: An autopsy study

    Directory of Open Access Journals (Sweden)

    Megha S Uppin

    2011-01-01

    Full Text Available Context: With the continuing rise in the number of immunocompromised patients, the incidence of invasive mycoses has increased. Various studies have reported the trends of fungal infections in autopsies. Because of limitations in antemortem clinical diagnosis owing to lack of sensitive diagnostic tools, information regarding frequency and pathogenesis of fungal infections is largely dependent on autopsy studies. Aim: To study the prevalence of fungal infections at autopsy spanning a period of 20 years and to document recent trends, prevalence of various fungi over decades along with underlying predisposing factors and pathological findings. Settings and Design: Retrospective study. Materials and Methods:All autopsies between 1988 and 2007 were reviewed and all cases showing fungal infections were analyzed. The clinical details and demographic data were retrieved from medical records. Representative sections from all organs were stained with hematoxylin and eosin stain and special stains including Gomori′s silver methenamine (GMS and per-iodic acid Schiff (PAS. Culture details were noted, wherever available. Results: A total of 401 autopsies were performed during the study period. Fungal infections were identified in 35 (8.7% of these cases. Leukemia was the commonest risk factor. The commonest pathogen in the present study was Aspergillus sp. The commonest single organ involved was brain (n = 18. Culture positivity was seen in 23.8% cases. Conclusion: The study highlights various predisposing factors and organisms in autopsy series. Existing diagnostic modalities are not sensitive to ensure antemortem diagnosis of fungal infections.

  15. Estimation of the Burden of Serious Human Fungal Infections in Malaysia

    Directory of Open Access Journals (Sweden)

    Rukumani Devi Velayuthan

    2018-03-01

    Full Text Available Fungal infections (mycoses are likely to occur more frequently as ever-increasingly sophisticated healthcare systems create greater risk factors. There is a paucity of systematic data on the incidence and prevalence of human fungal infections in Malaysia. We conducted a comprehensive study to estimate the burden of serious fungal infections in Malaysia. Our study showed that recurrent vaginal candidiasis (>4 episodes/year was the most common of all cases with a diagnosis of candidiasis (n = 501,138. Oesophageal candidiasis (n = 5850 was most predominant among individuals with HIV infection. Candidemia incidence (n = 1533 was estimated in hospitalized individuals, some receiving treatment for cancer (n = 1073, and was detected also in individuals admitted to intensive care units (ICU (n = 460. In adults with asthma, allergic bronchopulmonary aspergillosis (ABPA was the second most common respiratory mycoses noticed (n = 30,062 along with severe asthma with fungal sensitization (n = 39,628. Invasive aspergillosis was estimated in 184 cases undergoing anti-cancer treatment and 834 ICU cases. Cryptococcal meningitis was diagnosed in 700 subjects with HIV/AIDS and Pneumocystis jirovecii pneumonitis (PCP in 1286 subjects with underlying HIV disease. The present study indicates that at least 590,214 of the Malaysian population (1.93% is affected by a serious fungal infection annually. This problem is serious enough to warrant the further epidemiological studies to estimate the burden of human fungal infections in Malaysia.

  16. Comunidad ectomicorrícica en una cronosecuencia de Pinus radiata (Pinophyta: Pinaceae de la zona de transición climática mediterráneo-templada de Chile central The ectomycorrhizal community in a chronosequence of Pinus radiata (Pinophyta: Pinaceae of the transitional Mediterranean-temperate climatic zone of central Chile

    Directory of Open Access Journals (Sweden)

    YUSSI M PALACIOS

    2012-03-01

    Full Text Available En ecosistemas naturales y plantaciones, las coníferas establecen asociaciones mutualistas con una comunidad diversa de hongos micorrícicos. El estudio de este tema en Sudamérica es aún incipiente, y no existen antecedentes sobre la dinámica temporal de esta comunidad, y menos de sus potenciales causas, a pesar de su importancia para un país forestal como Chile. En el presente trabajo se evaluó la dinámica de la comunidad ectomicorrícica, identificando y cuantificando los hongos formadores de esta asociación en raíces finas de Pinus radiata en plantaciones de 3, 10 y 20 años. Los resultados confirman que la comunidad ectomicorrícica de P. radiata cambia con la edad de los árboles, la cual difiere más bien en el patrón de dominancia que en la riqueza de especies, separándose un primer grupo de árboles de 3 y 10 años de un segundo grupo de 20 años. Un total de once morfotipos de micorrizas fueron diferenciados. Cuatro de ellos, identificados como Hebeloma crustuliniforme, Inocybe sp., Russula sardonia y Pinirhiza spinulosa, fueron los más abundantes (77, 29, 78 y 8 % respectivamente, mientras las otras se encontraron colonizando menos de 100 puntas de raíz (In natural forest ecosystems and plantations, most trees live in mutualistic association with mycorrhizal fungi. Studies of this association in South America are still scarce, especially when referring to the causes of temporal dynamics of this symbiotic community, despite its importance in countries with a thriving forestry industry like Chile. This study evaluates the dynamics of the ectomycorrhizal community of Pinus radiata stands of 3, 10 and 20 years of age, identifying and quantifying the most common fungal colonizers of fine roots in each age class. The results confirm that the mycobiont community changes with host tree age but that age classes differ in dominance patterns rather than in species richness, with the three- and ten-year-old tree cohorts forming a

  17. Fungal Genomics for Energy and Environment

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2013-03-11

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Sequencing Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for users to nominate new species for sequencing. Over 200 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.

  18. Fungal endophytes: modifiers of plant disease.

    Science.gov (United States)

    Busby, Posy E; Ridout, Mary; Newcombe, George

    2016-04-01

    Many recent studies have demonstrated that non-pathogenic fungi within plant microbiomes, i.e., endophytes ("endo" = within, "phyte" = plant), can significantly modify the expression of host plant disease. The rapid pace of advancement in endophyte ecology warrants a pause to synthesize our understanding of endophyte disease modification and to discuss future research directions. We reviewed recent literature on fungal endophyte disease modification, and here report on several emergent themes: (1) Fungal endophyte effects on plant disease span the full spectrum from pathogen antagonism to pathogen facilitation, with pathogen antagonism most commonly reported. (2) Agricultural plant pathosystems are the focus of research on endophyte disease modification. (3) A taxonomically diverse group of fungal endophytes can influence plant disease severity. And (4) Fungal endophyte effects on plant disease severity are context-dependent. Our review highlights the importance of fungal endophytes for plant disease across a broad range of plant pathosystems, yet simultaneously reveals that complexity within plant microbiomes presents a significant challenge to disentangling the biotic environmental factors affecting plant disease severity. Manipulative studies integrating eco-evolutionary approaches with emerging molecular tools will be poised to elucidate the functional importance of endophytes in natural plant pathosystems that are fundamental to biodiversity and conservation.

  19. Phylogenetic analysis of fungal ABC transporters.

    Science.gov (United States)

    Kovalchuk, Andriy; Driessen, Arnold J M

    2010-03-16

    The superfamily of ABC proteins is among the largest known in nature. Its members are mainly, but not exclusively, involved in the transport of a broad range of substrates across biological membranes. Many contribute to multidrug resistance in microbial pathogens and cancer cells. The diversity of ABC proteins in fungi is comparable with those in multicellular animals, but so far fungal ABC proteins have barely been studied. We performed a phylogenetic analysis of the ABC proteins extracted from the genomes of 27 fungal species from 18 orders representing 5 fungal phyla thereby covering the most important groups. Our analysis demonstrated that some of the subfamilies of ABC proteins remained highly conserved in fungi, while others have undergone a remarkable group-specific diversification. Members of the various fungal phyla also differed significantly in the number of ABC proteins found in their genomes, which is especially reduced in the yeast S. cerevisiae and S. pombe. Data obtained during our analysis should contribute to a better understanding of the diversity of the fungal ABC proteins and provide important clues about their possible biological functions.

  20. Fungal endophytes for sustainable crop production.

    Science.gov (United States)

    Lugtenberg, Ben J J; Caradus, John R; Johnson, Linda J

    2016-12-01

    This minireview highlights the importance of endophytic fungi for sustainable agriculture and horticulture production. Fungal endophytes play a key role in habitat adaptation of plants resulting in improved plant performance and plant protection against biotic and abiotic stresses. They encode a vast variety of novel secondary metabolites including volatile organic compounds. In addition to protecting plants against pathogens and pests, selected fungal endophytes have been used to remove animal toxicities associated with fungal endophytes in temperate grasses, to create corn and rice plants that are tolerant to a range of biotic and abiotic stresses, and for improved management of post-harvest control. We argue that practices used in plant breeding, seed treatments and agriculture, often caused by poor knowledge of the importance of fungal endophytes, are among the reasons for the loss of fungal endophyte diversity in domesticated plants and also accounts for the reduced effectiveness of some endophyte strains to confer plant benefits. We provide recommendations on how to mitigate against these negative impacts in modern agriculture. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Fueling the Future with Fungal Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2014-10-27

    Genomes of fungi relevant to energy and environment are in focus of the JGI Fungal Genomic Program. One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts and pathogens) and biorefinery processes (cellulose degradation and sugar fermentation) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Science Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for users to nominate new species for sequencing. Over 400 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics will lead to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such ‘parts’ suggested by comparative genomics and functional analysis in these areas are presented here.

  2. Fungal Profile of Vulvovaginal Candidiasis in a Tertiary Care Hospital.

    Science.gov (United States)

    Kalaiarasan, Krishnapriya; Singh, Rakesh; Chaturvedula, Latha

    2017-03-01

    Vulvovaginal Candidiasis (VVC) is a common medical health problem of adult women. It is most commonly caused by Candida albicans . But there is a change in fungal profile. Sabouraud's Dextrose Agar (SDA) is the most common culture medium used where mixed fungal infection may be missed. It can be detected easily by using chromogenic culture medium. To know the fungal profile of vulvovaginal candidiasis using Candida CHROMagar and antifungal susceptibility pattern in patients attending tertiary care hospital. Culture confirmed cases of VVC presented at Department of Obstetrics and Gynaecology of Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India, from July 2015 to December 2015 were included in the cross-sectional study. Two high vaginal swabs were collected and inoculated on SDA and Candida CHROMagar (Hi-Media, Mumbai, India). After overnight incubation the colonies were counted and colour of the colonies were recorded from Candida CHROMagar. Candida spp. were identified by sugar fermentation and assimilation tests and other conventional tests. Antifungal susceptibility tests were performed by the disc diffusion method using fluconazole (25 μg) and voriconazole (1μg) as per the Clinical and Laboratory Standards Institute (CLSI - M44-A2) guidelines. A total of 50 culture confirmed (23.7%) cases were detected from 211 clinically suspected VVC cases. Candida glabrata (45.1%) was the most common isolate, followed by Candida tropicalis (23.5%) , Candida albicans (17.6%) , Candida krusei (9.8%) and Candida parapsilosis (3.9%) . One mixed infection of C. glabrata and C. albicans was identified on Candida CHROMagar. Mixed fungal infection was observed in 2% of positive culture and 0.5% of VVC cases. The antifungal susceptibility testing revealed that 15.7% and 9.8% isolates of Candida spp. were resistant and Susceptible Dose Dependent (S-DD) respectively to fluconazole. The increase resistant against fluconazole was because of

  3. Similar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests.

    Science.gov (United States)

    Lin, Guigang; McCormack, M Luke; Ma, Chengen; Guo, Dali

    2017-02-01

    Compared with ectomycorrhizal (ECM) forests, arbuscular mycorrhizal (AM) forests are hypothesized to have higher carbon (C) cycling rates and a more open nitrogen (N) cycle. To test this hypothesis, we synthesized 645 observations, including 22 variables related to below-ground C and N dynamics from 100 sites, where AM and ECM forests co-occurred at the same site. Leaf litter quality was lower in ECM than in AM trees, leading to greater forest floor C stocks in ECM forests. By contrast, AM forests had significantly higher mineral soil C concentrations, and this result was strongly mediated by plant traits and climate. No significant differences were found between AM and ECM forests in C fluxes and labile C concentrations. Furthermore, inorganic N concentrations, net N mineralization and nitrification rates were all higher in AM than in ECM forests, indicating 'mineral' N economy in AM but 'organic' N economy in ECM trees. AM and ECM forests show systematic differences in mineral vs organic N cycling, and thus mycorrhizal type may be useful in predicting how different tree species respond to multiple environmental change factors. By contrast, mycorrhizal type alone cannot reliably predict below-ground C dynamics without considering plant traits and climate. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  4. Ectomycorrhizal fungi as an alternative to the use of chemical fertilisers in nursery production of Pinus pinaster.

    Science.gov (United States)

    Sousa, Nadine R; Franco, Albina R; Oliveira, Rui S; Castro, Paula M L

    2012-03-01

    Addition of fertilisers is a common practice in nursery production of conifer seedlings. The aim of this study was to evaluate whether ectomycorrhizal (ECM) fungi can be an alternative to the use of chemical fertilisers in the nursery production of Pinus pinaster. A greenhouse nursery experiment was conducted by inoculating seedlings obtained from seeds of P. pinaster plus trees with a range of compatible ECM fungi: (1) Thelephora terrestris, (2) Rhizopogon vulgaris, (3) a mixture of Pisolithus tinctorius and Scleroderma citrinum, and (4) a mixture of Suillus bovinus, Laccaria laccata and Lactarius deterrimus, using forest soil as substrate. Plant development was assessed at two levels of N-P-K fertiliser (0 or 600 mg/seedling). Inoculation with a mixture of mycelium from S. bovinus, L. laccata and L. deterrimus and with a mixture of spores of P. tinctorius and S. citrinum improved plant growth and nutrition, without the need of fertiliser. Results indicate that selected ECM fungi can be a beneficial biotechnological tool in nursery production of P. pinaster. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Production and turnover of ectomycorrhizal extramatrical mycelial biomass and necromass under elevated CO2 and nitrogen fertilization.

    Science.gov (United States)

    Ekblad, Alf; Mikusinska, Anna; Ågren, Göran I; Menichetti, Lorenzo; Wallander, Håkan; Vilgalys, Rytas; Bahr, Adam; Eriksson, Ulrika

    2016-08-01

    Extramatrical mycelia (EMM) of ectomycorrhizal fungi are important in carbon (C) and nitrogen (N) cycling in forests, but poor knowledge about EMM biomass and necromass turnovers makes the quantification of their role problematic. We studied the impacts of elevated CO2 and N fertilization on EMM production and turnover in a Pinus taeda forest. EMM C was determined by the analysis of ergosterol (biomass), chitin (total bio- and necromass) and total organic C (TOC) of sand-filled mycelium in-growth bags. The production and turnover of EMM bio- and necromass and total C were estimated by modelling. N fertilization reduced the standing EMM biomass C to 57% and its production to 51% of the control (from 238 to 122 kg C ha(-1)  yr(-1) ), whereas elevated CO2 had no detectable effects. Biomass turnover was high (˜13 yr(-1) ) and unchanged by the treatments. Necromass turnover was slow and was reduced from 1.5 yr(-1) in the control to 0.65 yr(-1) in the N-fertilized treatment. However, TOC data did not support an N effect on necromass turnover. An estimated EMM production ranging from 2.5 to 6% of net primary production stresses the importance of its inclusion in C models. A slow EMM necromass turnover indicates an importance in building up forest humus. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  6. Effects of storage temperature on the fungal and chemical spoilage of maize grains and flour

    International Nuclear Information System (INIS)

    Akhter, T.; Sattar, A.; Khan, I.; Ahmed, A.

    1989-01-01

    The chemical and fungal spoilage of maize grains and flour of Sarhad White and Sarhad Yellow varieties in relation to time temperature (10 C, 15 C, 20 C and room (30-56 C) storage period at 8-12 months was studied. The results showed that total fungal counts and percent infestation markedly increased with advanced storage and increased temperature. Percentage germination generally decreased during extended storage. Peroxide values of both the grain and flour increased with increasing temperature and storage time. At the end of one year storage the total fungal counts in the grain and flour of Sarhad White and Sarhad Yellow ranged 13.6x10/sup 12/ - 20.0x10/sup 13/ and Yellow ranged 17.1x10/sup 13/ - 22.1x10/sup 14/ respectively. germination and infestation percentage of the grains of Sarhad White and Sarhad Yellow ranged 76-78% and 96-99%. The peroxide value ranged 6.6-7.0 and 6.4-6.8 meg/Kg in the grain and flour of Sarhad White respectively after one year storage. There was more fungal infestation, fungal counts and peroxidation in the grain and flour Sarhad Yellow than that of Sarhad White. (author)

  7. Molecular Diagnostics for Soilborne Fungal Pathogens

    Directory of Open Access Journals (Sweden)

    E.J. Paplomatas

    2004-08-01

    Full Text Available Several classical approaches have been developed to detect and identify soil fungal inhabitants through the years. Selective media have been devised to exclude the large number of soil organisms and allow growth of target fungi. However the advent of molecular biology has offered a number of revolutionary insights into the detection and enumeration of soilborne fungal pathogens and also has started to provide information on the identification of unknown species from DNA sequences. This review paper focuses on the application of various molecular techniques in the detection, identification, characterization and quantification of soilborne fungal plant pathogens. This is based on information from the literature and is combined with personal research findings of the author.

  8. Fungal endophytes of sorghum in Burkina Faso

    DEFF Research Database (Denmark)

    Zida, E P; Thio, I G; Néya, B J

    2014-01-01

    A survey was conducted to assess the natural occurrence and distribution of fungal endophytes in sorghum in relation to plant performance in two distinct agro-ecological zones in Burkina Faso. Sorghum farm-saved seeds were sown in 48 farmers’ fields in Sahelian and North Sudanian zones to produce...... sorghum plants. In each field, leaf samples were collected from five well-developed (performing) and five less-developed (non-performing) plants at 3-5 leaf stage, while at plant maturity leaf, stem and root samples were collected from the same plants and fungal endophytes were isolated. A total of 39...... fungal species belonging to 25 genera were isolated. The most represented genera included Fusarium, Leptosphaeria, Curvularia, Nigrospora and Penicillium. The genera Fusarium and Penicillium occurred significantly higher in performing plants as compared to non-performing plants while the genera...

  9. Identification & Characterization of Fungal Ice Nucleation Proteins

    Science.gov (United States)

    Scheel, Jan Frederik; Kunert, Anna Theresa; Kampf, Christopher Johannes; Mauri, Sergio; Weidner, Tobias; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2016-04-01

    Freezing of water at relatively warm subfreezing temperatures is dependent on ice nucleation catalysis facilitated by ice nuclei (IN). These IN can be of various origins and although extensive research was done and progress was achieved, the nature and mechanisms leading to an effective IN are to date still poorly understood. Some of the most important processes of our geosphere like the water cycle are highly dependent on effective ice nucleation at temperatures between -2°C - -8°C, a temperature range which is almost exclusively covered by biological IN (BioIN). BioIN are usually macromolecular structures of biological polymers. Sugars as well as proteins have been reported to serve as IN and the best characterized BioIN are ice nucleation proteins (IN-P) from gram negative bacteria. Fungal strains from Fusarium spp. were described to be effective IN at subfreezing temperatures up to -2°C already 25 years ago and more and more fungal species are described to serve as efficient IN. Fungal IN are also thought to be proteins or at least contain a proteinaceous compound, but to date the fungal IN-P primary structure as well as their coding genetic elements of all IN active fungi are unknown. The aim of this study is a.) to identify the proteins and their coding genetic elements from IN active fungi (F. acuminatum, F. avenaceum, M. alpina) and b.) to characterize the mechanisms by which fungal IN serve as effective IN. We designed an interdisciplinary approach using biological, analytical and physical methods to identify fungal IN-P and describe their biological, chemical, and physical properties.

  10. Mucormycosis: a devastating fungal infection in diabetics

    International Nuclear Information System (INIS)

    Rashid, M.; Bari, A.; Mehmood, S.; Tariq, K.M.; Haq, I.; Niwaz, Z.

    2005-01-01

    Mucormycosis is a highly invasive, devastating and usually fatal fungal infection of the sinuses, brain, or lungs that occurs primarily in people with immune disorders. Despite advances in diagnosis and treatment, a high mortality still exists. We present a middle aged diabetic male with this serious fungal infection involving nose, paranasal area and adjacent periorbital regions with a high risk of progressing further towards the dura mater. He was promptly diagnosed and managed with serial surgical debridements with systemic antifungals and was later fitted with a nasal prosthesis. (author)

  11. Fungal infections of the lung in children

    Energy Technology Data Exchange (ETDEWEB)

    Toma, Paolo; Colafati, Giovanna Stefania; D' Andrea, Maria Luisa [IRCCS Bambino Gesu Children' s Hospital, Department of Imaging, Rome (Italy); Bertaina, Alice; Mastronuzzi, Angela [IRCCS Bambino Gesu Children' s Hospital, Department of Pediatric Hematology/Oncology and Transfusion Medicine, Rome (Italy); Castagnola, Elio [IRCCS Istituto Giannina Gaslini, Department of Infective Diseases, Genoa (Italy); Finocchi, Andrea [IRCCS Bambino Gesu Children' s Hospital, Department of Pediatrics, Rome (Italy); Lucidi, Vincenzina [IRCCS Bambino Gesu Children' s Hospital, Cystic Fibrosis Center, Rome (Italy); Granata, Claudio [IRCCS Istituto Giannina Gaslini, Department of Pediatric Radiology, Genoa (Italy)

    2016-12-15

    Fungal infections of the lungs are relatively common and potentially life-threatening conditions in immunocompromised children. The role of imaging in children with lung mycosis is to delineate the extension of pulmonary involvement, to assess response to therapy, and to monitor for adverse sequelae such as bronchiectasis and cavitation. The aim of this paper is to show imaging findings in a series of patients with fungal pneumonia from two tertiary children's hospitals, to discuss differential diagnoses and to show how imaging findings can vary depending on the host immune response. (orig.)

  12. Vertical zonation of soil fungal community structure in a Korean pine forest on Changbai Mountain, China.

    Science.gov (United States)

    Ping, Yuan; Han, Dongxue; Wang, Ning; Hu, Yanbo; Mu, Liqiang; Feng, Fujuan

    2017-01-01

    Changbai Mountain, with intact montane vertical vegetation belts, is located at a sensitive area of global climate change and a central distribution area of Korean pine forest. Broad-leaved Korean pine mixed forest (Pinus koraiensis as an edificator) is the most representative zonal climax vegetation in the humid region of northeastern China; their vertical zonation is the most intact and representative on Changbai Mountain. In this study, we analyzed the composition and diversity of soil fungal communities in the Korean pine forest on Changbai Mountain at elevations ranging from 699 to 1177 m using Illumina High-throughput sequencing. We obtained a total 186,663 optimized sequences, with an average length of 268.81 bp. We found soil fungal diversity index was decreased with increasing elevation from 699 to 937 m and began to rise after reaching 1044 m; the richness and evenness indices were decreased with an increase in elevation. Soil fungal compositions at the phylum, class and genus levels varied significantly at different elevations, but with the same dominant fungi. Beta-diversity analysis indicated that the similarity of fungal communities decreased with an increased vertical distance between the sample plots, showing a distance-decay relationship. Variation partition analysis showed that geographic distance (mainly elevation gradient) only explained 20.53 % of the total variation of fungal community structure, while soil physicochemical factors explained 69.78 %.

  13. The SlZRT1 Gene Encodes a Plasma Membrane-Located ZIP (Zrt-, Irt-Like Protein Transporter in the Ectomycorrhizal Fungus Suillus luteus

    Directory of Open Access Journals (Sweden)

    Laura Coninx

    2017-11-01

    Full Text Available Zinc (Zn is an essential micronutrient but may become toxic when present in excess. In Zn-contaminated environments, trees can be protected from Zn toxicity by their root-associated micro-organisms, in particular ectomycorrhizal fungi. The mechanisms of cellular Zn homeostasis in ectomycorrhizal fungi and their contribution to the host tree’s Zn status are however not yet fully understood. The aim of this study was to identify and characterize transporters involved in Zn uptake in the ectomycorrhizal fungus Suillus luteus, a cosmopolitan pine mycobiont. Zn uptake in fungi is known to be predominantly governed by members of the ZIP (Zrt/IrtT-like protein family of Zn transporters. Four ZIP transporter encoding genes were identified in the S. luteus genome. By in silico and phylogenetic analysis, one of these proteins, SlZRT1, was predicted to be a plasma membrane located Zn importer. Heterologous expression in yeast confirmed the predicted function and localization of the protein. A gene expression analysis via RT-qPCR was performed in S. luteus to establish whether SlZRT1 expression is affected by external Zn concentrations. SlZRT1 transcripts accumulated almost immediately, though transiently upon growth in the absence of Zn. Exposure to elevated concentrations of Zn resulted in a significant reduction of SlZRT1 transcripts within the first hour after initiation of the exposure. Altogether, the data support a role as cellular Zn importer for SlZRT1 and indicate a key role in cellular Zn uptake of S. luteus. Further research is needed to understand the eventual contribution of SlZRT1 to the Zn status of the host plant.

  14. The SlZRT1 Gene Encodes a Plasma Membrane-Located ZIP (Zrt-, Irt-Like Protein) Transporter in the Ectomycorrhizal Fungus Suillus luteus.

    Science.gov (United States)

    Coninx, Laura; Thoonen, Anneleen; Slenders, Eli; Morin, Emmanuelle; Arnauts, Natascha; Op De Beeck, Michiel; Kohler, Annegret; Ruytinx, Joske; Colpaert, Jan V

    2017-01-01

    Zinc (Zn) is an essential micronutrient but may become toxic when present in excess. In Zn-contaminated environments, trees can be protected from Zn toxicity by their root-associated micro-organisms, in particular ectomycorrhizal fungi. The mechanisms of cellular Zn homeostasis in ectomycorrhizal fungi and their contribution to the host tree's Zn status are however not yet fully understood. The aim of this study was to identify and characterize transporters involved in Zn uptake in the ectomycorrhizal fungus Suillus luteus , a cosmopolitan pine mycobiont. Zn uptake in fungi is known to be predominantly governed by members of the ZIP (Zrt/IrtT-like protein) family of Zn transporters. Four ZIP transporter encoding genes were identified in the S. luteus genome. By in silico and phylogenetic analysis, one of these proteins, SlZRT1, was predicted to be a plasma membrane located Zn importer. Heterologous expression in yeast confirmed the predicted function and localization of the protein. A gene expression analysis via RT-qPCR was performed in S. luteus to establish whether SlZRT1 expression is affected by external Zn concentrations. SlZRT1 transcripts accumulated almost immediately, though transiently upon growth in the absence of Zn. Exposure to elevated concentrations of Zn resulted in a significant reduction of SlZRT1 transcripts within the first hour after initiation of the exposure. Altogether, the data support a role as cellular Zn importer for SlZRT1 and indicate a key role in cellular Zn uptake of S. luteus . Further research is needed to understand the eventual contribution of SlZRT1 to the Zn status of the host plant.

  15. Responses of the soil fungal communities to the co-invasion of two invasive species with different cover classes.

    Science.gov (United States)

    Wang, C; Zhou, J; Liu, J; Jiang, K; Xiao, H; Du, D

    2018-01-01

    Soil fungal communities play an important role in the successful invasion of non-native species. It is common for two or more invasive plant species to co-occur in invaded ecosystems. This study aimed to determine the effects of co-invasion of two invasive species (Erigeron annuus and Solidago canadensis) with different cover classes on soil fungal communities using high-throughput sequencing. Invasion of E. annuus and/or S. canadensis had positive effects on the sequence number, operational taxonomic unit (OTU) richness, Shannon diversity, abundance-based cover estimator (ACE index) and Chao1 index of soil fungal communities, but negative effects on the Simpson index. Thus, invasion of E. annuus and/or S. canadensis could increase diversity and richness of soil fungal communities but decrease dominance of some members of these communities, in part to facilitate plant further invasion, because high soil microbial diversity could increase soil functions and plant nutrient acquisition. Some soil fungal species grow well, whereas others tend to extinction after non-native plant invasion with increasing invasion degree and presumably time. The sequence number, OTU richness, Shannon diversity, ACE index and Chao1 index of soil fungal communities were higher under co-invasion of E. annuus and S. canadensis than under independent invasion of either individual species. The co-invasion of the two invasive species had a positive synergistic effect on diversity and abundance of soil fungal communities, partly to build a soil microenvironment to enhance competitiveness of the invaders. The changed diversity and community under co-invasion could modify resource availability and niche differentiation within the soil fungal communities, mediated by differences in leaf litter quality and quantity, which can support different fungal/microbial species in the soil. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  16. MycoCosm, an Integrated Fungal Genomics Resource

    Energy Technology Data Exchange (ETDEWEB)

    Shabalov, Igor; Grigoriev, Igor

    2012-03-16

    MycoCosm is a web-based interactive fungal genomics resource, which was first released in March 2010, in response to an urgent call from the fungal community for integration of all fungal genomes and analytical tools in one place (Pan-fungal data resources meeting, Feb 21-22, 2010, Alexandria, VA). MycoCosm integrates genomics data and analysis tools to navigate through over 100 fungal genomes sequenced at JGI and elsewhere. This resource allows users to explore fungal genomes in the context of both genome-centric analysis and comparative genomics, and promotes user community participation in data submission, annotation and analysis. MycoCosm has over 4500 unique visitors/month or 35000+ visitors/year as well as hundreds of registered users contributing their data and expertise to this resource. Its scalable architecture allows significant expansion of the data expected from JGI Fungal Genomics Program, its users, and integration with external resources used by fungal community.

  17. Hongos ectomicorrícicos y la tolerancia a la salinidad en plantas Ectomycorrhizal fungi and tolerance to salinity in plants

    Directory of Open Access Journals (Sweden)

    SELENE AGUILAR-AGUILAR

    2009-03-01

    Full Text Available El proceso de salinización de los suelos constituye un problema generalizado a nivel global. En este sentido, los hongos ectomicorrícicos tienen una importante participación en la recuperación de suelos forestales ya que involucran una serie de mecanismos celulares que pueden contribuir a la tolerancia a la salinidad en plantas que habitan los bosques templados o boreales. La participación de los hongos ectomicorrícicos en la tolerancia a la salinidad involucra la regulación homeostática de los iones, la mejora de captación de agua y la inducción de genes específicos en las raíces colonizadas. Los hongos ectomicorrícicos pueden estimular la presencia de osmolitos como la prolina, azúcares y polioles que contribuyen en la protección de las células vegetales. Además, estos organismos inducen la síntesis de enzimas antioxidantes y glutatión que participan en la disminución de especies reactivas de oxígeno. Esta revisión ofrece una descripción de la participación de los hongos ectomicorrícicos en la tolerancia a la salinidad en plantas.The process of salinization of the soil is a widespread problem at the global level. In this sense, ectomycorrhizal fungi have an important role in the recovery of forest soil, as it involves a number of cellular mechanisms that may contribute to the salinity tolerance in plants that inhabit temperate and boreal forests. The participation of ectomycorrhizal fungi on the salinity tolerance involves the ion-homeostasis regulation, improving uptake water and inducing specific gene in roots colonized. Likewise ectomycorrhizal fungi can stimulate the presence of osmolytes as proline, sugars and polyols that contribute to the protection of plant cells. Additionally, these organisms stimulate the synthesis of glutathione and antioxidant enzymes involved in the decrease of reactive oxygen species. This review provides an overview of participation of ectomycorrhizal fungi in the salinity tolerance in

  18. Laser microprobe mass analysis (LAMMA) of aluminum and lead in fine roots and their ectomycorrhizal mantles of Norway spruce (Picea abies (L.) Karst.).

    Science.gov (United States)

    Eeckhaoudt, S; Vandeputte, D; Van Praag, H; Van Grieken, R; Jacob, W

    1992-03-01

    Fine roots and ectomycorrhizal root tips were sampled in a Norway spruce (Picea abies (L.) Karst.) stand in the eastern part of the Belgian Ardennes. The cellular and partly subcellular localizations of aluminum and lead were identified by the micro-analytical laser microprobe mass analysis (LAMMA) technique. In fine roots with secondary structure, localization of aluminum was limited to the peripheral cell layers. Lead was found in the outer layers, and also in the primary phloem. Aluminum penetrated the mycorrhizal mantle, but lead was seldom detected in ectomycorrhizae.

  19. Fungal evaluation on green tea irradiated with different water activities

    International Nuclear Information System (INIS)

    Fanaro, Gustavo B.; Duarte, Renato C.; Rodrigues, Flavio T.; Villavicencio, Anna Lucia C.H.; Correa, Benedito

    2011-01-01

    The aim of this study was evaluate the fungal contamination in green tea irradiated with different radiation doses and water activities. Samples were irradiated in 60 Co irradiator at doses of 0, 2.5, 5.0, 7.5 and 10.0kGy with three different water activities. In the sample with decreased water activity, the count of fungi was lower than others samples followed by original Aw and the samples with the higher water activity, however there is no difference between the increased and decreased water activities samples after the irradiation on fungi contamination at dose of 2.5 kGy. (author)

  20. Fungal evaluation on green tea irradiated with different water activities

    Energy Technology Data Exchange (ETDEWEB)

    Fanaro, Gustavo B.; Duarte, Renato C.; Rodrigues, Flavio T.; Villavicencio, Anna Lucia C.H., E-mail: gbfanaro@ipen.b, E-mail: villavic@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (CTR/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Tecnologia das Radiacoes; Correa, Benedito, E-mail: correabe@usp.b [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Ciencias Biologicas. Dept. de Micologia

    2011-07-01

    The aim of this study was evaluate the fungal contamination in green tea irradiated with different radiation doses and water activities. Samples were irradiated in {sup 60}Co irradiator at doses of 0, 2.5, 5.0, 7.5 and 10.0kGy with three different water activities. In the sample with decreased water activity, the count of fungi was lower than others samples followed by original Aw and the samples with the higher water activity, however there is no difference between the increased and decreased water activities samples after the irradiation on fungi contamination at dose of 2.5 kGy. (author)

  1. Spontaneous fungal peritonitis: Epidemiology, current evidence and future prospective.

    Science.gov (United States)

    Fiore, Marco; Leone, Sebastiano

    2016-09-14

    Spontaneous bacterial peritonitis is a complication of ascitic patients with end-stage liver disease (ESLD); spontaneous fungal peritonitis (SFP) is a complication of ESLD less known and described. ESLD is associated to immunodepression and the resulting increased susceptibility to infections. Recent perspectives of the management of the critically ill patient with ESLD do not specify the rate of isolation of fungi in critically ill patients, not even the antifungals used for the prophylaxis, neither optimal treatment. We reviewed, in order to focus the epidemiology, characteristics, and, considering the high mortality rate of SFP, the use of optimal empirical antifungal therapy the current literature.

  2. Packaging conditions hindering fungal growth on cheese

    DEFF Research Database (Denmark)

    Nielsen, Per Væggemose; Haasum, Iben

    1997-01-01

    Fungal contamination is one of the most important quality deteriorating factors on cheese. During the last 5 years we have studied in detail the underlying factors controlling these unwanted processes in a collaborative project financed by the Danish Dairy Board and the Ministry of Agriculture...

  3. Fungal peroxidases : molecular aspects and applications

    NARCIS (Netherlands)

    Conesa, A.; Punt, P.J.; Hondel, C.A.M.J.J.

    2002-01-01

    Peroxidases are oxidoreductases that utilize hydrogen peroxide to catalyze oxidative reactions. A large number of peroxidases have been identified in fungal species and are being characterized at the molecular level. In this manuscript we review the current knowledge on the molecular aspects of this

  4. Fungal Planet description sheets: 400-468

    Czech Academy of Sciences Publication Activity Database

    Crous, P.W.; Wingfield, M. J.; Richardson, D. M.; Le Roux, J. J.; Strasberg, D.; Edwards, J.; Roets, F.; Hubka, V.; Taylor, P.W.J.; Heykoop, M.; Martín, M.P.; Moreno, G.; Sutton, D.A.; Wiederhold, N.P.; Barnes, C.W.; Carlavilla, J.R.; Gené, J.; Giraldo, A.; Guarnaccia, V.; Guarro, J.; Hernández-Restrepo, M.; Kolařík, Miroslav; Manjón, J.L.; Pascoe, I.G.; Popov, E.S.; Sandoval-Denis, M.; Woudenberg, J.H.C.; Acharya, K.; Alexandrova, A.V.; Alvarado, P.; Barbosa, R.N.; Baseia, I.G.; Blanchette, R.A.; Boekhout, T.; Burgess, T.I.; Cano-Lira, J.F.; Čmoková, A.; Dimitrov, R.A.; Dyakov, M.Yu.; Dueñas, M.; Dutta, A.K.; Esteve- Raventós, F.; Fedosova, A.G.; Fournier, J.; Gamboa, P.; Gouliamova, D.E.; Grebenc, T.; Groenewald, M.; Hanse, B.; Hardy, G.E.St.J.; Held, B.W.; Jurjević, Ž.; Kaewgrajang, T.; Latha, K.P.D.; Lombard, L.; Luangsa-Ard, J.J.; Lysková, P.; Mallátová, N.; Manimohan, P.; Miller, A.N.; Mirabolfathy, M.; Morozova, O.V.; Obodai, M.; Oliveira, N.T.; Otto, E.C.; Paloi, S.; Peterson, S.W.; Phosri, C.; Roux, J.; Salazar, W.A.; Sánchez, A.; Sarria, G.A.; Shin, H.-D.; Silva, B.D.B.; Silva, G.A.; Smith, M.Th.; Souza-Motta, C.M.; Stchigel, A.M.; Stoilova-Disheva, M.M.; Sulzbacher, M.A.; Telleria, M.T.; Toapanta, C.; Traba, J.M.; Valenzuela-Lopez, N.; Watling, R.; Groenewald, J.Z.

    2016-01-01

    Roč. 36, July (2016), s. 316-458 ISSN 0031-5850 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : ITS DNA barcodes * LSU * fungal species Subject RIV: EE - Microbiology, Virology Impact factor: 7.511, year: 2016

  5. A biotechnology perspective of fungal proteases

    Directory of Open Access Journals (Sweden)

    Paula Monteiro de Souza

    2015-06-01

    Full Text Available Proteases hydrolyze the peptide bonds of proteins into peptides and amino acids, being found in all living organisms, and are essential for cell growth and differentiation. Proteolytic enzymes have potential application in a wide number of industrial processes such as food, laundry detergent and pharmaceutical. Proteases from microbial sources have dominated applications in industrial sectors. Fungal proteases are used for hydrolyzing protein and other components of soy beans and wheat in soy sauce production. Proteases can be produced in large quantities in a short time by established methods of fermentation. The parameters such as variation in C/N ratio, presence of some sugars, besides several other physical factors are important in the development of fermentation process. Proteases of fungal origin can be produced cost effectively, have an advantage faster production, the ease with which the enzymes can be modified and mycelium can be easily removed by filtration. The production of proteases has been carried out using submerged fermentation, but conditions in solid state fermentation lead to several potential advantages for the production of fungal enzymes. This review focuses on the production of fungal proteases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications.

  6. High prevalence of a fungal prion

    NARCIS (Netherlands)

    Debets, A.J.M.; Dalstra, H.J.P.; Slakhorst, S.M.; Koopmanschap-Memelink, A.B.; Hoekstra, R.F.; Saupe, S.J.

    2012-01-01

    Prions are infectious proteins that cause fatal diseases in mammals. Prions have also been found in fungi, but studies on their role in nature are scarce. The proposed biological function of fungal prions is debated and varies from detrimental to benign or even beneficial. [Het-s] is a prion of the

  7. October 2012 Multistate Fungal Meningitis Outbreak

    Centers for Disease Control (CDC) Podcasts

    2012-10-17

    This podcast gives an overview of the October 2012 multistate fungal meningitis outbreak, including symptoms to watch for and a website for up-to-date information.  Created: 10/17/2012 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 10/17/2012.

  8. Fungal biology and agriculture: revisiting the field

    Science.gov (United States)

    Yarden, O.; Ebbole, D.J.; Freeman, S.; Rodriguez, R.J.; Dickman, M. B.

    2003-01-01

    Plant pathology has made significant progress over the years, a process that involved overcoming a variety of conceptual and technological hurdles. Descriptive mycology and the advent of chemical plant-disease management have been followed by biochemical and physiological studies of fungi and their hosts. The later establishment of biochemical genetics along with the introduction of DNA-mediated transformation have set the stage for dissection of gene function and advances in our understanding of fungal cell biology and plant-fungus interactions. Currently, with the advent of high-throughput technologies, we have the capacity to acquire vast data sets that have direct relevance to the numerous subdisciplines within fungal biology and pathology. These data provide unique opportunities for basic research and for engineering solutions to important agricultural problems. However, we also are faced with the challenge of data organization and mining to analyze the relationships between fungal and plant genomes and to elucidate the physiological function of pertinent DNA sequences. We present our perspective of fungal biology and agriculture, including administrative and political challenges to plant protection research.

  9. Fungal Systematics and Evolution: FUSE 1

    NARCIS (Netherlands)

    Crous, Pedro W; Schumacher, René K; Wingfield, Michael J; Lombard, Lorenzo; Giraldo, Alejandra; Christensen, Martha; Gardiennet, Alain; Nakashima, Chiharu; Pereira, Olinto L; Smith, Alexander J; Groenewald, Johannes Z

    2015-01-01

    Fungal Systematics and Evolution (FUSE) is introduced as a new series to expedite the publication of issues relating to the epitypification of formerly described species, report new sexual-asexual connections, the merging of sexual and asexual gen¬era following the end of dual nomenclature, and to

  10. Fungal Planet description sheets: 371-399

    Czech Academy of Sciences Publication Activity Database

    Crous, P. W.; Wingfield, M. J.; Le Roux, J. J.; Richardson, D. M.; Strasberg, D.; Shivas, R.G.; Alvarado, P.; Edwards, J.; Moreno, G.; Sharma, R.; Sonawane, M.S.; Tan, Y.P.; Altés, A.; Barasubiye, T.; Barnes, C.W.; Blanchette, R.A.; Boertmann, D.; Bogo, A.; Carlavilla, J.R.; Cheewangkoon, R.; Daniel, R.; de Beer, Z.W.; de Yáňez-Morales, J.; Duong, T.A.; Fernández-Vicente, J.; Geering, A.D.W.; Guest, D.I.; Held, B.W.; Heykoop, M.; Hubka, V.; Ismail, A.M.; Kajale, S.C.; Khemmuk, W.; Kolařík, Miroslav; Kurli, R.; Lebeuf, R.; Levesque, C.A.; Lombard, L.; Magista, D.; Manjón, J.L.; Marincowitz, S.; Mohedano, J.M.; Nováková, Alena; Oberlies, N.H.; Otto, E.C.; Paguigan, N.D.; Pascoe, I.G.; Peréz-Butrón, J.L.; Perrone, G.; Rahi, P.; Raja, H.A.; Rintoul, T.; Sanhueza, R.M.V.; Scarlett, K.; Shouche, Y.S.; Shuttleworth, L.A.; Taylor, P.W.J.; Thorn, R.G.; Vawdrey, L.L.; Solano-Vidal, R.; Voitk, A.; Wong, P.T.W.; Wood, A.R.; Zamora, J.C.; Groenewald, J.Z.

    2015-01-01

    Roč. 35, December (2015), s. 264-327 ISSN 0031-5850 R&D Projects: GA ČR(CZ) GAP506/12/1064 Institutional support: RVO:61388971 Keywords : ITS DNA barcodes * LSU * novel fungal species Subject RIV: EE - Microbiology, Virology Impact factor: 5.725, year: 2015

  11. Fungal ABC Transporter Deletion and Localization Analysis

    NARCIS (Netherlands)

    Kovalchuk, A.; Weber, S.S.; Nijland, J.G.; Bovenberg, R.A.L.; Driessen, A.J.M.

    2012-01-01

    Fungal cells are highly complex as their metabolism is compartmentalized harboring various types of subcellular organelles that are bordered by one or more membranes. Knowledge about the intracellular localization of transporter proteins is often required for the understanding of their biological

  12. The Amstersam declaration on fungal nomenclature

    DEFF Research Database (Denmark)

    Hawksworth, David L.; Crous, Pedro W.; Redhead, Scott A.

    2011-01-01

    The Amsterdam Declaration on Fungal Nomenclature was agreed at an international symposium convened in Amsterdam on 19–20 April 2011 under the auspices of the International Commission on the Taxonomy of Fungi (ICTF). The purpose of the symposium was to address the issue of whether or how the current...

  13. Fungal peritonitis in children on peritoneal dialysis.

    NARCIS (Netherlands)

    Raaijmakers, R.; Schroder, C.; Monnens, L.A.H.; Cornelissen, E.A.M.; Warris, A.

    2007-01-01

    Fungal peritonitis is a rare but serious complication in children on peritoneal dialysis (PD). In this study, risk factors were evaluated, and therapeutic measures were reviewed. A retrospective, multi-centre study was performed in 159 Dutch paediatric PD patients, between 1980 and 2005 (3,573

  14. Intercropped silviculture systems, a key to achieving soil fungal community management in eucalyptus plantations.

    Directory of Open Access Journals (Sweden)

    Caio T C C Rachid

    Full Text Available Fungi are ubiquitous and important contributors to soil nutrient cycling, playing a vital role in C, N and P turnover, with many fungi having direct beneficial relationships with plants. However, the factors that modulate the soil fungal community are poorly understood. We studied the degree to which the composition of tree species affected the soil fungal community structure and diversity by pyrosequencing the 28S rRNA gene in soil DNA. We were also interested in whether intercropping (mixed plantation of two plant species could be used to select fungal species. More than 50,000 high quality sequences were analyzed from three treatments: monoculture of Eucalyptus; monoculture of Acacia mangium; and a mixed plantation with both species sampled 2 and 3 years after planting. We found that the plant type had a major effect on the soil fungal community structure, with 75% of the sequences from the Eucalyptus soil belonging to Basidiomycota and 19% to Ascomycota, and the Acacia soil having a sequence distribution of 28% and 62%, respectively. The intercropping of Acacia mangium in a Eucalyptus plantation significantly increased the number of fungal genera and the diversity indices and introduced or increased the frequency of several genera that were not found in the monoculture cultivation samples. Our results suggest that management of soil fungi is possible by manipulating the composition of the plant community, and intercropped systems can be a means to achieve that.

  15. Intercropped Silviculture Systems, a Key to Achieving Soil Fungal Community Management in Eucalyptus Plantations

    Science.gov (United States)

    Rachid, Caio T. C. C.; Balieiro, Fabiano C.; Fonseca, Eduardo S.; Peixoto, Raquel Silva; Chaer, Guilherme M.; Tiedje, James M.; Rosado, Alexandre S.

    2015-01-01

    Fungi are ubiquitous and important contributors to soil nutrient cycling, playing a vital role in C, N and P turnover, with many fungi having direct beneficial relationships with plants. However, the factors that modulate the soil fungal community are poorly understood. We studied the degree to which the composition of tree species affected the soil fungal community structure and diversity by pyrosequencing the 28S rRNA gene in soil DNA. We were also interested in whether intercropping (mixed plantation of two plant species) could be used to select fungal species. More than 50,000 high quality sequences were analyzed from three treatments: monoculture of Eucalyptus; monoculture of Acacia mangium; and a mixed plantation with both species sampled 2 and 3 years after planting. We found that the plant type had a major effect on the soil fungal community structure, with 75% of the sequences from the Eucalyptus soil belonging to Basidiomycota and 19% to Ascomycota, and the Acacia soil having a sequence distribution of 28% and 62%, respectively. The intercropping of Acacia mangium in a Eucalyptus plantation significantly increased the number of fungal genera and the diversity indices and introduced or increased the frequency of several genera that were not found in the monoculture cultivation samples. Our results suggest that management of soil fungi is possible by manipulating the composition of the plant community, and intercropped systems can be a means to achieve that. PMID:25706388

  16. Intercropped silviculture systems, a key to achieving soil fungal community management in eucalyptus plantations.

    Science.gov (United States)

    Rachid, Caio T C C; Balieiro, Fabiano C; Fonseca, Eduardo S; Peixoto, Raquel Silva; Chaer, Guilherme M; Tiedje, James M; Rosado, Alexandre S

    2015-01-01

    Fungi are ubiquitous and important contributors to soil nutrient cycling, playing a vital role in C, N and P turnover, with many fungi having direct beneficial relationships with plants. However, the factors that modulate the soil fungal community are poorly understood. We studied the degree to which the composition of tree species affected the soil fungal community structure and diversity by pyrosequencing the 28S rRNA gene in soil DNA. We were also interested in whether intercropping (mixed plantation of two plant species) could be used to select fungal species. More than 50,000 high quality sequences were analyzed from three treatments: monoculture of Eucalyptus; monoculture of Acacia mangium; and a mixed plantation with both species sampled 2 and 3 years after planting. We found that the plant type had a major effect on the soil fungal community structure, with 75% of the sequences from the Eucalyptus soil belonging to Basidiomycota and 19% to Ascomycota, and the Acacia soil having a sequence distribution of 28% and 62%, respectively. The intercropping of Acacia mangium in a Eucalyptus plantation significantly increased the number of fungal genera and the diversity indices and introduced or increased the frequency of several genera that were not found in the monoculture cultivation samples. Our results suggest that management of soil fungi is possible by manipulating the composition of the plant community, and intercropped systems can be a means to achieve that.

  17. Improving the conversion of biomass in catalytic fast pyrolysis via white-rot fungal pretreatment.

    Science.gov (United States)

    Yu, Yanqing; Zeng, Yelin; Zuo, Jiane; Ma, Fuying; Yang, Xuewei; Zhang, Xiaoyu; Wang, Yujue

    2013-04-01

    This study investigated the effect of white-rot fungal pretreatment on corn stover conversion in catalytic fast pyrolysis (CFP). Corn stover pretreated by white-rot fungus Irpex lacteus CD2 was fast pyrolyzed alone (non-CFP) and with ZSM-5 zeolite (CFP) in a semi-batch pyroprobe reactor. The fungal pretreatment considerably increased the volatile product yields (predominantly oxygenated compounds) in non-CFP, indicating that fungal pretreatment enhances the corn stover conversion in fast pyrolysis. In the presence of ZSM-5 zeolite, these oxygenated volatiles were further catalytically converted to aromatic hydrocarbons, whose yield increased from 10.03 wt.% for the untreated corn stover to 11.49 wt.% for the pretreated sample. In contrast, the coke yield decreased from 14.29 to 11.93 wt.% in CFP following the fungal pretreatment. These results indicate that fungal pretreatment can enhance the production of valuable aromatics and decrease the amount of undesired coke, and thus has a beneficial effect on biomass conversion in CFP. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. UV-guided isolation of fungal metabolites by HSCCC

    DEFF Research Database (Denmark)

    Dalsgaard, P.W.; Nielsen, K.F.; Larsen, Thomas Ostenfeld

    2005-01-01

    Analytical standardised reversed phase liquid chromatography (RPLC) data can be helpful in finding a suitable solvent combination for isolation of fungal metabolites by high-speed counter current chromatography. Analysis of the distribution coefficient (K-D) of fungal metabolites in a series...... peptides from a crude fungal extract....

  19. Immunolocalization of hydrophobin HYDPt-1 from the ectomycorrhizal basidiomycete Pisolithus tinctorius during colonization of Eucalyptus globulus roots

    NARCIS (Netherlands)

    Tagu, D; De Bellis, R; Balestrini, R; De Vries, OMH; Piccoli, G; Stocchi, [No Value; Bonfante, P; Martin, F

    The immunolocalization of one of the hydrophobins of Pisolithus tinctorius (HYDPt-1) is reported. Hydrophobin proteins play key roles in adhesion and aggregation of fungal hyphae, and it is already known that formation of ectomycorrhizas on eucalypt roots enhances the accumulation of hydrophobin

  20. Burden of Serious Fungal Infections in Jordan

    Directory of Open Access Journals (Sweden)

    Jamal Wadi

    2018-01-01

    Full Text Available Objective: To estimate the burden of fungal infections in Jordan for the first time. Material and Methods: Population data was from UN 2011 statistics and TB cases from WHO in 2012. Fewer than 100 patients with HIV were recorded in Jordan in 2013. Approximately 100 renal transplants and eight liver transplants are performed annually. There were 12,233 major surgical procedures in Jordan in 2013, of which 5.3% were major abdominal surgeries; candidemia was estimated in 5% of the population based on other countries, with 33% occurring in the ICU. Candida peritonitis/intra-abdominal candidiasis was estimated to affect 50% of the number of ICU candidemia cases. No adult asthma rates have been recorded for Jordan, so the rate from the Holy Land (8.54% clinical asthma from To et al. has been used. There are an estimated 49,607 chronic obstructive pulmonary disease (COPD patients in Jordan, with 64% symptomatic, 25% Gold stage 3% or 4%, and 7% (3472 are assumed to be admitted to hospital each year. No cystic fibrosis cases have been recorded. Literature searches on fungal infections revealed few data and no prevalence data on fungal keratitis or tinea capitis, even though tinea capitis comprised 34% of patients with dermatophytoses in Jordan. Results: Jordan has 6.3 million inhabitants (65% adults, 6% are >60 years old. The current burden of serious fungal infections in Jordan was estimated to affect ~119,000 patients (1.9%, not including any cutaneous fungal infections. Candidemia was estimated at 316 cases and invasive aspergillosis in leukemia, transplant, and COPD patients at 84 cases. Chronic pulmonary aspergillosis prevalence was estimated to affect 36 post-TB patients, and 175 in total. Allergic bronchopulmonary aspergillosis (ABPA and severe asthma with fungal sensitization (SAFS prevalence in adults with asthma were estimated at 8900 and 11,748 patients. Recurrent vulvovaginal candidiasis was estimated to affect 97,804 patients, using a 6

  1. Rapid detection of fungal keratitis with DNA-stabilizing FTA filter paper.

    Science.gov (United States)

    Menassa, Nardine; Bosshard, Philipp P; Kaufmann, Claude; Grimm, Christian; Auffarth, Gerd U; Thiel, Michael A

    2010-04-01

    Purpose. Polymerase chain reaction (PCR) is increasingly important for the rapid detection of fungal keratitis. However, techniques of specimen collection and DNA extraction before PCR may interfere with test sensitivity. The purpose of this study was to investigate the use of DNA-stabilizing FTA filter paper (Indicating FTA filter paper; Whatman International, Ltd., Maidstone, UK) for specimen collection without DNA extraction in a single-step, nonnested PCR for fungal keratitis. Methods. Specimens were collected from ocular surfaces with FTA filter discs, which automatically lyse collected cells and stabilize nucleic acids. Filter discs were directly used in single-step PCR reactions to detect fungal DNA. Test sensitivity was evaluated with serial dilutions of Candida albicans, Fusarium oxysporum, and Aspergillus fumigatus cultures. Test specificity was analyzed by comparing 196 and 155 healthy individuals from Switzerland and Egypt, respectively, with 15 patients with a diagnosis of microbial keratitis. Results. PCR with filter discs detected 3 C. albicans, 25 F. oxysporum, and 125 A. fumigatus organisms. In healthy volunteers, fungal PCR was positive in 1.0% and 8.4% of eyes from Switzerland and Egypt, respectively. Fungal PCR remained negative in 10 cases of culture-proven bacterial keratitis, became positive in 4 cases of fungal keratitis, but missed 1 case of culture-proven A. fumigatus keratitis. Conclusions. FTA filter paper for specimen collection together with direct PCR is a promising method of detecting fungal keratitis. The analytical sensitivity is high without the need for a semi-nested or nested second PCR, the clinical specificity is 91.7% to 99.0%, and the method is rapid and inexpensive.

  2. Reduced aboveground tree growth associated with higher arbuscular mycorrhizal fungal diversity in tropical forest restoration.

    Science.gov (United States)

    Holste, Ellen K; Holl, Karen D; Zahawi, Rakan A; Kobe, Richard K

    2016-10-01

    Establishing diverse mycorrhizal fungal communities is considered important for forest recovery, yet mycorrhizae may have complex effects on tree growth depending on the composition of fungal species present. In an effort to understand the role of mycorrhizal fungi community in forest restoration in southern Costa Rica, we sampled the arbuscular mycorrhizal fungal (AMF) community across eight sites that were planted with the same species ( Inga edulis, Erythrina poeppigiana, Terminalia amazonia, and Vochysia guatemalensis ) but varied twofold to fourfold in overall tree growth rates. The AMF community was measured in multiple ways: as percent colonization of host tree roots, by DNA isolation of the fungal species associated with the roots, and through spore density, volume, and identity in both the wet and dry seasons. Consistent with prior tropical restoration research, the majority of fungal species belonged to the genus Glomus and genus Acaulospora , accounting for more than half of the species and relative abundance found on trees roots and over 95% of spore density across all sites. Greater AMF diversity correlated with lower soil organic matter, carbon, and nitrogen concentrations and longer durations of prior pasture use across sites. Contrary to previous literature findings, AMF species diversity and spore densities were inversely related to tree growth, which may have arisen from trees facultatively increasing their associations with AMF in lower soil fertility sites. Changes to AMF community composition also may have led to variation in disturbance susceptibility, host tree nutrient acquisition, and tree growth. These results highlight the potential importance of fungal-tree-soil interactions in forest recovery and suggest that fungal community dynamics could have important implications for tree growth in disturbed soils.

  3. Clash of kingdoms or why Drosophila larvae positively respond to fungal competitors

    Directory of Open Access Journals (Sweden)

    Rohlfs Marko

    2005-01-01

    Full Text Available Abstract Background Competition with filamentous fungi has been demonstrated to be an important cause of mortality for the vast group of insects that depend on ephemeral resources (e.g. fruit, dung, carrion. Recent data suggest that the well-known aggregation of Drosophila larvae across decaying fruit yields a competitive advantage over mould, by which the larvae achieve a higher survival probability in larger groups compared with smaller ones. Feeding and locomotor behaviour of larger larval groups is assumed to cause disruption of fungal hyphae, leading to suppression of fungal growth, which in turn improves the chances of larval survival to the adult stage. Given the relationship between larval density, mould suppression and larval survival, the present study has tested whether fungal-infected food patches elicit communal foraging behaviour on mould-infected sites by which larvae might hamper mould growth more efficiently. Results Based on laboratory experiments in which Drosophila larvae were offered the choice between fungal-infected and uninfected food patches, larvae significantly aggregated on patches containing young fungal colonies. Grouping behaviour was also visible when larvae were offered only fungal-infected or only uninfected patches; however, larval aggregation was less strong under these conditions than in a heterogeneous environment (infected and uninfected patches. Conclusion Because filamentous fungi can be deadly competitors for insect larvae on ephemeral resources, social attraction of Drosophila larvae to fungal-infected sites leading to suppression of mould growth may reflect an adaptive behavioural response that increases insect larval fitness and can thus be discussed as an anti-competitor behaviour. These observations support the hypothesis that adverse environmental conditions operate in favour of social behaviour. In a search for the underlying mechanisms of communal behaviour in Drosophila, this study highlights

  4. Management of fungal plant pathogens

    National Research Council Canada - National Science Library

    Arya, Arun; Perelló, Analía Edith

    2010-01-01

    .... Amidst growing concerns about the environment and food security, the development of management strategies that minimize crop losses and promote sustainable agriculture is increasingly important...

  5. Epidemiology and treatment approaches in management of invasive fungal infections

    Directory of Open Access Journals (Sweden)

    Kriengkauykiat J, Ito JI

    2011-05-01

    Full Text Available Jane Kriengkauykiat1,2, James I Ito2, Sanjeet S Dadwal21Department of Pharmacy, 2Division of Infectious Diseases, City of Hope, Duarte, CA, USAAbstract: Over the past 20 years, the number of invasive fungal infections has continued to persist, due primarily to the increased numbers of patients subjected to severe immunosuppression. Despite the development of more active, less toxic antifungal agents and the standard use of antifungal prophylaxis, invasive fungal infections (especially invasive mold infections continue to be a significant factor in hematopoietic cell and solid organ transplantation outcomes, resulting in high mortality rates. Since the use of fluconazole as standard prophylaxis in the hematopoietic cell transplantation setting, invasive candidiasis has come under control, but no mold-active antifungal agent (except for posaconazole in the setting of acute myelogenous leukemia and myelodysplastic syndrome has been shown to improve the survival rate over fluconazole. With the advent of new azole and echinocandin agents, we have seen the emergence of more azole-resistant and echinocandin-resistant fungi. The recent increase in zygomycosis seen in the hematopoietic cell transplantation setting may be due to the increased use of voriconazole. This has implications for the empiric approach to pulmonary invasive mold infections when zygomycosis cannot be ruled out. It is imperative that an amphotericin B product, an antifungal that has never developed resistance in over 50 years, be initiated. The clinical presentations of invasive mold infections and invasive candidiasis can be nonspecific and the diagnostic tests insensitive, so a high index of suspicion and immediate initiation of empiric therapy is required. Unfortunately, our currently available serologic tests do not predict infection ahead of disease, and, therefore cannot be used to initiate "preemptive" therapy. Also, the Aspergillus galactomannan test gives a false negative

  6. Gene expression profiling of a Zn-tolerant and a Zn-sensitive Suillus luteus isolate exposed to increased external zinc concentrations

    OpenAIRE

    MULLER, Ludo; Craciun, A. R.; RUYTINX, Joske; LAMBAERTS, Marc; Verbruggen, N.; VANGRONSVELD, Jaco; COLPAERT, Jan

    2007-01-01

    Complementary DNA (cDNA)-amplified fragment-length polymorphism (AFLP) was applied to analyze transcript profiles of a Zn-tolerant and a Zn-sensitive isolate of the ectomycorrhizal basidiomycete Suillus luteus, both cultured with and without increased external zinc concentrations. From the obtained transcript profiles that covered approximately 2% of the total expected complement of genes in S. luteus, 144 nonredundant, differentially expressed transcript-derived fragments (TDFs), falling in ...

  7. Treatment of Fungal Bioaerosols by a High-Temperature, Short-Time Process in a Continuous-Flow System▿

    Science.gov (United States)

    Jung, Jae Hee; Lee, Jung Eun; Lee, Chang Ho; Kim, Sang Soo; Lee, Byung Uk

    2009-01-01

    Airborne fungi, termed fungal bioaerosols, have received attention due to the association with public health problems and the effects on living organisms in nature. There are growing concerns that fungal bioaerosols are relevant to the occurrence of allergies, opportunistic diseases in hospitals, and outbreaks of plant diseases. The search for ways of preventing and curing the harmful effects of fungal bioaerosols has created a high demand for the study and development of an efficient method of controlling bioaerosols. However, almost all modern microbiological studies and theories have focused on microorganisms in liquid and solid phases. We investigated the thermal heating effects on fungal bioaerosols in a continuous-flow environment. Although the thermal heating process has long been a traditional method of controlling microorganisms, the effect of a continuous high-temperature, short-time (HTST) process on airborne microorganisms has not been quantitatively investigated in terms of various aerosol properties. Our experimental results show that the geometric mean diameter of the tested fungal bioaerosols decreased when they were exposed to increases in the surrounding temperature. The HTST process produced a significant decline in the (1→3)-β-d-glucan concentration of fungal bioaerosols. More than 99% of the Aspergillus versicolor and Cladosporium cladosporioides bioaerosols lost their culturability in about 0.2 s when the surrounding temperature exceeded 350°C and 400°C, respectively. The instantaneous exposure to high temperature significantly changed the surface morphology of the fungal bioaerosols. PMID:19201954

  8. Treatment of fungal bioaerosols by a high-temperature, short-time process in a continuous-flow system.

    Science.gov (United States)

    Jung, Jae Hee; Lee, Jung Eun; Lee, Chang Ho; Kim, Sang Soo; Lee, Byung Uk

    2009-05-01

    Airborne fungi, termed fungal bioaerosols, have received attention due to the association with public health problems and the effects on living organisms in nature. There are growing concerns that fungal bioaerosols are relevant to the occurrence of allergies, opportunistic diseases in hospitals, and outbreaks of plant diseases. The search for ways of preventing and curing the harmful effects of fungal bioaerosols has created a high demand for the study and development of an efficient method of controlling bioaerosols. However, almost all modern microbiological studies and theories have focused on microorganisms in liquid and solid phases. We investigated the thermal heating effects on fungal bioaerosols in a continuous-flow environment. Although the thermal heating process has long been a traditional method of controlling microorganisms, the effect of a continuous high-temperature, short-time (HTST) process on airborne microorganisms has not been quantitatively investigated in terms of various aerosol properties. Our experimental results show that the geometric mean diameter of the tested fungal bioaerosols decreased when they were exposed to increases in the surrounding temperature. The HTST process produced a significant decline in the (1-->3)-beta-d-glucan concentration of fungal bioaerosols. More than 99% of the Aspergillus versicolor and Cladosporium cladosporioides bioaerosols lost their culturability in about 0.2 s when the surrounding temperature exceeded 350 degrees C and 400 degrees C, respectively. The instantaneous exposure to high temperature significantly changed the surface morphology of the fungal bioaerosols.

  9. Audit of laboratory mycology services for the management of patients with fungal infections in the northwest of England.

    Science.gov (United States)

    Hassan, I A; Critten, P; Isalska, B; Denning, D W

    2006-07-01

    Fungal infection is increasingly recognised as an important cause of morbidity and mortality, especially in immunocompromised patients. Little information exists on laboratory services available and the methods used by general microbiology laboratories to diagnose these important infections. To investigate the services microbiology laboratories in northwest England provide towards the diagnosis and management of superficial and deep fungal infections. A questionnaire was sent to laboratories to get a holistic view of the support given to clinicians looking after patients with fungal infections. The aim was not to investigate details of each laboratory's standard operating procedures. The completed questionnaires, which formed the basis of this report, were returned by all 21 laboratories which were recruited. This study was conducted between March 2004 and September 2004. Services were provided to District General Hospitals and to six tertiary centres, including eight teaching hospitals by 16 laboratories. Their bed capacity was 250-1300 beds. Total specimens (including bacterial and viral) processed annually were 42 000-500,000 whereas fungal ones were 560-5400. In most microbiology laboratories of northwest England, clinicians were aware of the potential of fungal pathogens to cause infections especially in immunocompromised patients. Additional measures such as prolonged incubation of samples were introduced to improve fungal yield from patients at high risk. It is necessary to train and educate laboratory and medical staff about the role of serology and molecular methods in diagnosis and management of patients with fungal infection.

  10. Genotypic variation in the response of chickpea to arbuscular mycorrhizal fungi and non-mycorrhizal fungal endophytes.

    Science.gov (United States)

    Bazghaleh, Navid; Hamel, Chantal; Gan, Yantai; Tar'an, Bunyamin; Knight, Joan Diane

    2018-04-01

    Plant roots host symbiotic arbuscular mycorrhizal (AM) fungi and other fungal endophytes that can impact plant growth and health. The impact of microbial interactions in roots may depend on the genetic properties of the host plant and its interactions with root-associated fungi. We conducted a controlled condition experiment to investigate the effect of several chickpea (Cicer arietinum L.) genotypes on the efficiency of the symbiosis with AM fungi and non-AM fungal endophytes. Whereas the AM symbiosis increased the biomass of most of the chickpea cultivars, inoculation with non-AM fungal endophytes had a neutral effect. The chickpea cultivars responded differently to co-inoculation with AM fungi and non-AM fungal endophytes. Co-inoculation had additive effects on the biomass of some cultivars (CDC Corrine, CDC Anna, and CDC Cory), but non-AM fungal endophytes reduced the positive effect of AM fungi on Amit and CDC Vanguard. This study demonstrated that the response of plant genotypes to an AM symbiosis can be modified by the simultaneous colonization of the roots by non-AM fungal endophytes. Intraspecific variations in the response of chickpea to AM fungi and non-AM fungal endophytes indicate that the selection of suitable genotypes may improve the ability of crop plants to take advantage of soil ecosystem services.

  11. Dynamics of arbuscular mycorrhizal fungal community structure and functioning along a nitrogen enrichment gradient in an alpine meadow ecosystem.

    Science.gov (United States)

    Jiang, Shengjing; Liu, Yongjun; Luo, Jiajia; Qin, Mingsen; Johnson, Nancy Collins; Öpik, Maarja; Vasar, Martti; Chai, Yuxing; Zhou, Xiaolong; Mao, Lin; Du, Guozh